
COMPUTER ORGANIZATION
& DESIGN

THE HARDWARE/SOFTWARE
INTERFACE

DAVID A PATTERSON • JOHN L HENNESSY

Computer Organization and Design
THE H A R DW A RE/S OF TW A RE IN TE R FACE

John L. Hennessy
Stanford University

David A. Patterson
University of California at Berkeley

With a contribution by
Jam es R. Larus
University of Wisconsin

Morgan Kaufmann Publishers, Inc. San Francisco, California

Contents

Foreword vi

by Maurice V. Wilkes

Preface xiii

The SPIM Simulator for the MIPS R2000/R3000 xxiii

by James R. Larus, University of Wisconsin

CHAPTERS

Computer Abstractions and Technology

1.1 Introduction 3

1.2 Below Your Program 5

1.3 Under the Covers 10

1.4 Integrated Circuits: Fueling Innovation 21

1.5 Fallacies and Pitfalls 26

1.6 Concluding Remarks 28

1.7 Historical Perspective and Further Reading 30

1.8 Exercises 41

The Role of Performance 46

2.1 Introduction 48

2.2 Measuring Performance 52

2.3 Relating the Metrics 54

2.4 Popular Performance Metrics 60

2.5 Choosing Programs to Evaluate Performance 66

2.6 Comparing and Summarizing Performance 68

2.7 Fallacies and Pitfalls 70

2.8 Concluding Remarks 76

2.9 Historical Perspective and Further Reading 77

2.10 Exercises 81

Contents

Instructions: Language of the Machine 92

3.1 Introduction 94

3.2 Operations of the Computer Hardware 95

3.3 Operands of the Computer Hardware 97

3.4 Representing instructions in the Computer 103

3.5 instructions for Malting Decisions 110

3.6 Supporting Procedures in Computer Hardware 119

3.7 Other Styles of MIPS Addressing 124

3.8 Alternatives to the MIPS Approach 130

3.9 An Example to Put It All Together 135

3.10 A Longer Example 138

3.11 Arrays versus Pointers 143

3.12 Fallacies and Pitfalls 147

3.13 Concluding Remarks 148

3.14 Historical Perspective and Further Reading 150

3.15 Exercises 155

Arithmetic for Computers i66

4.1 Introduction 168

4.2 Negative Numbers 168

4.3 Addition and Subtraction 175

4.4 Logical Operations 179

4.5 Constructing an Arithmetic Logic Unit 182

4.6 Multiplication 198

4.7 Division 212

4.8 Floating Point 225

4.9 Fallacies and Pitfalls 244

4.10 Concluding Remarks 246

4.11 Historical Perspective and Further Reading 249

4.12 Exercises 258

The Processor: Datapath and Control 268

5.1 Introduction 270

5.2 Building a Datapath 276

5.3 A Simple Implementation Scheme 283

5.4 A Multiple Clock Cycle Implementation 312

5.5 Microprogramming: Simplifying Control Design 333

5.6 Exceptions 344

5.7 Fallacies and Pitfalls 350

5.8 Concluding Remarks 351

5.9 Historical Perspective and Further Reading 353
5.10 Exercises 357

Contents

Enhancing Performance with Pipelining 362

6.1 Introduction 364

6.2 A Pipelined Datapath 367

6.3 Pipelined Control 381

6.4 Data Hazards 390

6.5 Control for Data Hazards: Stalls 399

6.6 Reducing Data Hazards: Forwarding 412

6.7 Branch Hazards 424

6.8 Exceptions 430

6.9 Performance of Pipelined Systems 435

6.10 Fallacies and Pitfalls 436

6.11 Concluding Remarks 438

6.12 Historical Perspective and Further Reading 441

6.13 Exercises 445

L^rge and Fast: Exploiting Memory Hierarchy 452

7.1 Introduction 454

7.2 Caches 458

7.3 Virtual Memory 481

7.4 A Common Framework for Memory Hierarchies 501

7.5 Fallacies and Pitfalls 515

7.6 Concluding Remarks 519

7.7 Historical Perspective and Further Reading 521

7.8 Exercises 527

Interfacing Processors and Peripherals 532

8.1 Introduction 534

8.2 I/O Performance Measures: Some Examples from Disk and

File Systems 537

8.3 Types and Characteristics of I/O Devices 539

8.4 Buses: Connecting I/O Devices to Processor and Memory 548

8.5 Interfacing I/O Devices to the Memory, Processor, and
Operating System 565

8.6 Fallacies and Pitfalls 576

8.7 Concluding Remarks 578

8.8 Historical Perspective and Further Reading 581

8.9 Exercises 584

Contents

Parallel Processors 594

9.1 Introduction 596

9.2 SIMD Computers—Single Instruction Stream, Multiple Data Streams 596

9.3 MIMD Computers—Multiple Instruction Streams, Multiple Data
Streams 6U2

9.4 Programming MIMDs 603

9.5 MIMDs Connected by a Single Bus 607

9.6 MIMDs Connected by a Network 619

9.7 Future Directions for Parallel Processors 630

9.8 Fallacies and Pitfalls 637

9.9 Concluding Remarks—Evolution versus Revolution in Computer
Architecture 640

9.10 Historical Perspective and Further Reading 642

9.11 Exercises 646

APPENDICES

Assemblers, Linkers, and the SPIM Simulator a-2

by James R. Lnrus, Utiiversity of Wisconsin

A.l Introduction A-3

A.2 Assemblers A-10

A.3 Linkers A 17

A.4 Loading A-19

A.5 Memory Usage A-19

A.6 Procedure Call Convention A-21

A.7 Exceptions and Interrupts A-30

A.8 Input and Output A-34

A.9 SPIM A 36

A.IO MIPS R2000 Assembly Language A-47

A.ll Concluding Remarks A-71

A.12 Exercises A-72

The Basics of Logic Design 6 2

B.l Introduction B-3

B.2 Gates, Truth Tables, and Logic Equations B-4

B.3 Combinational Logic B-8

B.4 Clocks B-18

B.5 Memory Elements B-21

B.6 Finite State Machines B-35

B.7 Timing Methodologies B-39

B.8 Exercises B-45

Contents

Mapping Control to Hardware c-2

C.1 Introduction C-3

C.2 Implementing Finite State Machine Control C-4

C.3 Implementing the Next-State Function with a Sequencer C-15

C.4 Translating a Microprogram to Hardware C-23

C.5 Concluding Remarks C-27

C.6 Exercises C-28

Introducing C to Pascal Programmers d-2

D.l Introduction D-3

D.2 Variable Declarations D-3

D.3 Assignment Statements D-4

D.4 Relational Expressions and Conditional Statements D-5

D.5 Loops D-6

D.6 Examples to Put it All Together D-7

D.7 Exercises D-8

Another Approach to Instruction Set Architecture—VAX e-2

E.l Introduction E-3

E.2 VAX Operands and Addressing Modes E-4

E.3 Encoding VAX Instructions E-7

E.4 VAX Operations E-9

E.5 An Example to Put It All Together: swap E-11

E.6 A Longer Example: sort E-15

E.7 Fallacies and Pitfalls E-19

E.8 Concluding Remarks E-22

E.9 Historical Perspective and Further Reading E-23

E.IO Exercises E-25

Index i-i

Computer

Abstractions

and Technology

Civilization advances by extending
the number of important operations
which we can perform without
thinking about them.

Alfred North Whitehead

An Introduction to Mathematics, 1911

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Introduction 3

Below Your Program 5

Under the Covers 10

Integrated Circuits: Fueling Innovation 21

Fallacies and Pitfalls 26

Concluding Remarks 28

Historical Perspective and Further Reading 30

Exercises 41

Introduction

Welcome to this book! We're delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary
field, where progress is glacial and where new ideas atrophy from neglect.
No! Computer systems have a vital and synergistic relationship to an impor
tant industry-responsible for 5% to 10% of the gross national product of the
United States-and this unusual industry embraces innovation at a breath
taking rate. In the last decade there have been a half-dozen new machines
whose introduction appeared to revolutionize the computing industry; these
revolutions were cut short only because someone else built an even better
computer.

This race to innovate has led to unprecedented progress since computing's
inception in the late 1940s. Had the transportation industry kept pace with the
computer industry, for example, today we could travel coast to coast in 30 sec
onds for 50 cents. Take just a moment to contemplate how such an improve
ment would change society-living in Tahiti while working in San Francisco,
going to Moscow for an evening at the Bolshoi ballet-and you can appreciate
the implications of such a change.

Computers have led to a third revolution for civilization, with the informa
tion revolution taking its place alongside the agricultural and the industrial

4 Chapter 1 Computer Abstractions and Technology

revolutions. The resulting multiplication of humankind's intellectual strength
and reach naturally has affected the sciences as well. There is now a new vein
of scientific investigation, with computational scientists joining theoretical
and experimental scientists in the exploration of new frontiers in astronomy,
biology, chemistry, physics,

The computer revolution continues. Each time the cost of computing im
proves by another factor of 10, the opportunities for computers multiply. Ap
plications that were economically infeasible suddenly become practical. In the
recent past, the following applications were "computer science fiction."

• Automatic teller machines: A computer placed in the wall of banks to dis
tribute and collect cash was a ridiculous concept in the 1950s, when the
cheapest computer cost at least $500,000 and was the size of a car.

• Computers in automobiles: Until microprocessors improved dramatically
in price and performance in the early 1980s, computer control of cars
was ludicrous. Today, computers reduce pollution and improve fuel ef
ficiency via engine controls and increase safety through the prevention
of dangerous skids and through the inflation of air bags to protect occu
pants in a crash.

• Laptop computers: Who would have dreamed that advances in computer
systems would lead to laptop computers, allowing students to bring
computers to coffeehouses and on airplanes?

• Human genome project: The cost of computer equipment to map human
DNA sequences in the 1990s will be hundreds of millions of dollars. It's
unlikely that anyone would have considered this project had the com
puter costs been 10 to 100 times higher, as they would have been 10 to
20 years ago.

Such hardware advances have allowed programmers to create infinitely use
ful software, and explain why computers are omnipresent. Today's science
fiction computer applications include electronic libraries, the cashless society,
automated intelligent highways, and genuinely ubiquitous computing-a
pervasiveness which precludes the need to carry computers because they will
be everywhere. Clearly, advances in this technology now affect almost every
aspect of our society.

Successful programmers have always been concerned about the perfor
mance of their programs, because getting results to the user quickly is critical
in creating successful software. In the 1960s and 1970s, a primary constraint on
computer performance was the size of the computer's memory. Thus pro
grammers often followed a simple credo: Minimize memory space to make
programs fast. In the last decade advances in computer design and memory
technology have greatly reduced the importance of small memory size. Pro
grammers interested in performance now need to understand the issues that

1.2 Below Your Program 5

have replaced the simple memory model of the 1960s: the hierarchical nature
of memories and the parallel nature of processors. Programmers who seek to
build competitive versions of compilers, operating systems, databases, and
even applications will therefore need to increase their knowledge of computer
organization.

We are honored to have the opportunity to explain what's inside this rev
olutionary machine, unraveling the software below your program and the
hardware under the covers of your computer. By the time you finish this book,
you will understand the secrets of programming a computer in its native
tongue, the internal organization of computers and how it affects performance
of your programs, and even how you would go about designing a computer
of your own.

This first chapter lays the foundation for the rest of the book. It introduces
the basic ideas and definitions, places the major components of software and
hardware in perspective, and introduces integrated circuits, the technology
that fuels the computer revolution.

• Below Your Program

In Paris they simply stared when I spoke to them in French; I never did succeed in
making those idiots understand their own language.

Mark Twain, The Innocents Abroad, 1869

To actually speak to an electronic machine, you need to send electrical signals.
The easiest signals for machines to understand are on and off, and so the
machine alphabet is just two letters. Just as the 26 letters of the English alpha
bet do not limit how much can be written, the two letters of the computer
alphabet do not limit what computers can do. The two symbols for these two
letters are the numbers 0 and 1 , and we commonly think of the machine lan
guage as numbers in base 2, or binary numbers. We refer to each "letter" as a
binary digit or bit. Computers are slaves to our commands; hence, the name for
an individual command is instruction. Instructions, which are just collections
of bits that the computer understands, can be thought of as numbers. For
example, the bits

1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

tell one computer to add two numbers. Chapter 3 explains why we use num
bers for instructions and data; we don't want to steal that chapter's thunder,
but using numbers for both instructions and data is a foundation of comput
ing.

6 Chapter 1 Computer Abstractions and Technology

The first programmers communicated to computers in binary numbers, but
this was so tedious that they quickly invented new notations that were closer
to the way humans think. At first these notations were translated to binary by
hand, but this process was still tiresome. Using the machine to help program
the machine, the pioneers invented programs to translate from symbolic nota
tion to binary. The first of these programs was named an assembler. This pro
gram translates a symbolic version of an instruction into the binary version.
For example, the programmer would write

a d d A . B

and the assembler would translate this notation into

1 0 00 1 1 0 0 1 0 1 0 0 0 0 0

This instruction tells the computer to add the two numbers A and B . The
name coined for this symbolic language, still used today, is assembly language.

Although a tremendous improvement, assembly language is still far from
the notation a scientist might like to use to simulate fluid flow or that an ac
countant might use to balance the books. Assembly language requires the pro
grammer to write one line for every instruction that the machine will follow,
forcing the programmer to think like the machine.

Such low-level thinking inspired a simple question: If we can write a pro
gram to translate from assembly language to binary instructions to simplify
programming, what prevents us from writing a program that translates from
some higher level notation down to assembly language?

The answer was: nothing. Although more challenging to create than an as
sembler, this higher level translator was plausible.

Programmers today owe their productivity, and their sanity, to this obser
vation. Programs that accept this more natural notation are called compilers,
and the languages they compile are called high-level programming languages.
They enable a programmer to write this high-level language statement:

A + B

The compiler would compile it into this assembly language statement:

a d d A . B

The assembler would translate this statement into the binary instruction that
tells the computer to add the two numbers A and B:

1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

Figure 1 .1 shows the relationships among these programs and languages.

1.2 Below Your Program

High-level
language
program
(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program
(for MIPS)

s wa p (i n t v [J , i n t k)
(i n t temp :

t emp = v [k J :
v [k] = v [k+ l] ;
v [k+ l] = t emp :

s w a p :

C compiler

mu 1 i
a d d
l w
l w
S W
S W
j r

$ 2 , $ 5 , 4
$ 2 , $ 4 , $ 2
$ 1 5 , 0 ($ 2)
$ 1 6 , 4 ($ 2)
$ 1 6 , 0 ($ 2)
$ 1 5 , 4 ($ 2)
$ 3 1

Assembler

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 00 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 1 00 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 00 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7

FIGURE 1.1 C program compiled into assembly language and then assembled Into binary
machine language. Although the translation from high-level language to binary machine lan
guage is shown in two steps, some compilers cut out the middleman and produce binary
machine language directly. These languages and this program are examined in more detail in
Chapter 3.

8 Chapter 1 Computer Abstractions and Technology

High-level programming languages offer several important benefits. First,
they allow the programmer to think in a more natural language, using English
words and algebraic notation, resulting in programs that look much more like
text than like tables of cryptic symbols (see Figure 1 .1) . Moreover, they allow
languages to be designed according to their intended use. Hence, Fortran was
designed for scientific computation, Cobol for business data processing, Lisp
for symbol manipulation, and so on. The second advantage of programming
languages is improved programmer productivity. One of the few areas of
widespread agreement in software development is that it takes less time to de
velop programs when they are written in languages that require fewer lines to
express an idea. Conciseness is a clear advantage of high-level languages over
assembly language. The final advantage is that programming languages allow
programs to be independent of the computer on which they were developed,
since compilers and assemblers can translate high-level language programs to
the binary instructions of any machine. These advantages are so strong that to
day little programming is done in assembly language.

As programming matured, many of its practitioners saw that reusing pro
grams was much more efficient than writing everything from scratch. Hence
programmers began to pool potentially widely used routines into libraries.
One of the first of these subroutine libraries was for inputting and outputting
data, which included, for example, routines to control printers, such as ensur
ing paper is in the printer before printing can begin. Such software controlled
other input/ output devices, such as magnetic disks, magnetic tapes, and dis
plays. It soon became apparent that a set of programs could be run more effi
ciently if there was a separate program that supervised running those
programs. As soon as one program completed, the supervising program
would start the next program in the queue, thereby avoiding delays. These su
pervising programs, which soon included the input/ output subroutine librar
ies, are the basis for what we call operating systems today. Operating systems
are programs that manage the resources of a computer for the benefit of the
programs that run on that machine.

Software came to be categorized by its use. Software that provides services
that are commonly useful is called systems software. Operating systems, com
pilers, and assemblers are examples of systems software. In contrast to pro
grams aimed at programmers, applications software or just applications is the
name given to programs aimed at computer users, such as spreadsheets or text
editors. Figure 1 .2 shows the classical drawing mapping the hierarchical lay
ers of software and hardware.

This simplified view has some problems. Should we really place compilers
in the systems software level in Figure 1 .2? Compilers produce programs at
both the applications and the systems level, and applications programs don't
normally call on the compiler while they are running. A more realistic view of
the nature of systems appears in Figure 1.3. It shows that software does not

1.2 Below Your Program 9

FIGURE 1.2 A simplified view of hardware and software as hierarchical layers, classi·
cally shown as concentric rings building up from the core of hardware to the software
closest to the user.

Applications

software

Software

Compilers

�
gee

Virtual

memory

�

Systems

software

Operating

systems

File

system

�

Assemblers

1/0 device

d rivers

FIGURE 1.3 An example of the decomposability of computer systems. The terms in the
middle of the chart, such as LaT EX and gee, are examples of Unix programs. The terms lower in
the chart, such as virtual memory, will be introduced in Chapters 7 and 8.

10 Chapter 1 Computer Abstractions and Technology

consist of monolithic layers, but is composed of many programs that build on
one another. Like the strands of a thick rope, each time you look carefully at
what appears to be a single strand you find it is really composed of many finer
components.

• Under the Covers

Now that we have looked below your program to uncover the underlying
software, let's open the covers of the computer to learn about the underlying
hardware.

Figure 1 .4 shows a typical workstation with keyboard, mouse, screen, and
a box containing even more hardware. What is not visible in the photograph
is a network that connects the workstation to printers and disks. This photo
graph reveals two of the key components of computers: input devices, such as
the keyboard and mouse, and output devices, such as the screen and printers.
As the names suggest, input feeds the computer and output is the result of
computation sent to the user. Some devices, such as networks and disks, pro
vide both input and output to the computer.

Chapter 8 describes input/ output (I/O) devices in more detail, but let's
take an introductory tour through the computer hardware, starting with the
external I/0 devices.

Anatomy of a Mouse

I got the idea for the mouse while attending a talk at a computer conference. The
speaker was so boring that I started daydreaming and hit upon the idea.

Doug Engelbart

Although many users now take mice for granted, the idea of a pointing
device such as a mouse is less than 30 years old. Engelbart showed the first
demonstration of a system with a mouse on a research prototype in 1967. The
Alto, which was the inspiration for all workstations as well as for the Macin
tosh, included a mouse as its pointing device in 1973. By the 1980s, all work
stations and many personal computers included this device, and new user
interfaces based on graphics displays and mice became popular. The mouse is
actually quite simple, as the photograph in Figure 1 .5 shows.

The mechanical version consists of a large ball that is mounted in such a
way that it makes contact with a pair of wheels, one positioned on the x-axis
and the other on the y-axis. These wheels either turn mechanical counters or
turn a slotted wheel, through which a light-emitting diode (LED) shines on a

1.3 Under the Covers 11

FIGURE 1.4 Photograph of a workstation. The cathode ray tube (CRT) screen is the primary
output device, and the keyboard and mouse are the primary input devices. Photo courtesy of Sil
icon Graphics.

FIGURE 1.5 Photograph of the Inside of a mechanical mouse. Mouse courtesy of Logitech.

12 Chapter 1 Computer Abstractions and Technology

FIGURE 1.6 A CRT dlsplay. A beam is shot by an electronic gun through the vacuum onto a
phosphor-coated screen. The steering coil at the neck of the CRT aims the gun. Raster scan sys
tems, used in television and in almost all computers, paint the screen a line at a time as a series of
dots, or pixels. The screen is refreshed 30 to 60 times per second.

photosensor. In either scheme, moving the mouse rolls the large ball, which
turns the x-wheel or the y-wheel or both, depending on whether the mouse is
moved in the vertical, horizontal, or diagonal direction. Although there are
many styles of interfaces for these pointing devices, moving each wheel essen
tially increments or decrements counters somewhere in the system. The
counters serve to record how far the mouse has moved and in which direction.

Through the Looking Glass

Through computer displays I have landed an airplane on the deck of a moving car
rier, observed a nuclear particle hit a potential well, flown in a rocket at nearly the
speed of light and watched a computer reveal its innermost workings.

Ivan Sutherland, the "father" of computer graphics, quoted in
"Computer Software for Graphics," Scientific American, 1984

The most fascinating I/O device is probably the graphics display. Based on
television technology, a raster cathode ray tube (CRT) display scans an image
one line at a time, 30 to 60 times per second (Figure 1 .6). At this refresh rate,
few people notice a flicker on the screen. The image is composed of a matrix
of picture elements, or pixels, which can be represented as a matrix of bits,
called a bit map. Depending on the size of screen and resolution, the display
matrix ranges in size from 512 x 340 to 1560 x 1280 pixels. The simplest dis
play has 1 bit per pixel, allowing it to be black or white. For displays that sup
port over 100 different shades of black and white, sometimes called gray-scale
displays, 8 bits per pixel are required. A color display might use 8 bits for

1.3 Under the Covers 13

Frame buffer Raster scan CRT display

Yo -+--...J.......j
y 1 -+--+--+-< -

• I

FIGURE 1.7 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0,Y0) con
tains the bit pattern 0011, which is a lighter shade of gray on the screen than the bit pattern 1101
in pixel (X1,Y 1)-

each of the three primary colors (red, blue, and green), for 24 bits per pixel,
permitting millions of different colors to be displayed.

The hardware support for graphics consists mainly of a raster refresh buffer,
or frame buffer, to store the bit map. The image to be represented on-screen is
stored in the frame buffer, and the bit pattern per pixel is read out to the graph
ics display at the refresh rate. Figure 1 .7 shows a frame buffer with 4 bits per
pixel.

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at de
tecting even subtle changes on the screen. For example, when the screen is be
ing updated, the eye can detect the inconsistency between the portion of the
screen that has changed and that which hasn't.

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin
green plastic, covered with dozens of small gray or black rectangles.
Figure 1 .8 shows the contents of the workstation in Figure 1 .4. The board is
shown vertically on the left, with a tape reader and floppy disk drive shown
on the right. The small rectangles on the board contain the devices that drive
our advancing technology, integrated circuits or chips. The board is composed
of three pieces: the piece connecting to the 1/0 devices mentioned above, the
memory, and the processor. The memory is where the programs are kept when
they are running; it also contains the data needed by the running programs.
In Figure 1 .8, memory is found on the eight small boards that are attached

14 Chapter 1 Computer Abstractions and Technology

FIGURE 1.8 Inside a workstation. An exploded view of a workstation. The vertical board on
the left is a printed circuit board (PC board) that contains most of the electronics of the computer;
Figure 1 .11 is an overhead photograph of that board, rotated 90 degrees. The eight small boards
attached to the main board contain the memory chips. The processor is below the memory
boards; Figure 1 .18 is a photograph of the processor. To the right of the PC board in this worksta
tion is a tape reader and a floppy disk drive. Photo courtesy of Silicon Graphics.

perpendicularly toward the front of the large board. Each small memory
board contains 18 integrated circuits. The processor is the active part of the
board, following the instructions of the programs to the letter. It adds num
bers, tests numbers, signals I/O devices to activate, and so on. Occasionally,
people call the processor the CPU, for the more bureaucratic sounding central
processor unit. The processor is the large square below the bottom memory
boards and to the left in Figure 1 .8.

Descending even lower into the hardware, Figure 1 .9 reveals details of the
processor in Figure 1 .8. The processor comprises two main components:
datapath and control, the respective brawn and brain of the processor. The
datapath performs the arithmetic operations, and control tells the datapath,
memory, and 1/0 devices what to do according to the wishes of the instruc
tions of the program. Chapters 4 and 5 explain the datapath and control for a
straightforward implementation, and Chapter 6 describes the changes needed
for a higher performance design.

1.3 Under the Covers 15

FIGURE 1.9 Inside the processor chip used on the board shown In Figure 1.8. The right
hand side of the chip is the datapath. The upper-left-hand side is the control unit. The lower left
contains the portion of the memory system called the Translation Lookaside Buffer, which we
discuss in Chapter 7. This chip is called the MIPS R3000. Photo courtesy of MIPS Technology, Inc.

16 Chapter 1 Computer Abstractions and Technology

We have now identified the major components of any computer. When we
come to an important point in this book, a point so important that we hope you
will remember it forever, we emphasize it by identifying it as a "Big Picture"
item. We have about a dozen Big Pictures in this book, with the first being the
five components of a computer .

• .

The five classic components of a computer are input,
output, memory, datapath, and control, with the last
two sometimes combined and called the processor.
Figure 1 .10 shows the standard organization of a
computer. This organization is independent of hard
ware technology: You can place every piece of every

computer, past and present, into one of these five categories.

Processor

FIGURE 1.10 The organization of a computer, showing the five claulc compo
nents. The processor gets instructions and data from memory; input writes data to
memory, and output reads data from memory. Control sends the signals that determine
the operations of the data path, memory, input, and output.

Descending into the depths of any component of the hardware reveals
insights into the machine. We have done this for the processor, so let's try
memory. The board in Figure 1 .11 contains two kinds of memories: DRAM
and cache. DRAM stands for dynamic random access memory. Several DRAMs
are used together to contain the instructions and data of a program. In contrast
to sequential access memories such as magnetic tapes, the RAM portion of the
term DRAM means that memory accesses take the same amount of time no
matter what portion of the memory is read. Cache memory consists of a small,

1.3 Under the Covers 17

FIGURE 1.11 Clos•up of workstation processor board. This board uses the MIPS R4000
processor, which is located on the right edge of the board in the middle. The R4000 contains high
speed cache memories on the processor chip. The main memory is contained on the small boards
that are perpendicular to the motherboard in the upper left corner. The DRAM chips are mounted
on these boards (called SIMMs for Single In-line Memory Module) and then plugged into the
connectors. The connectors at the bottom of the photograph are for external 1/0 devices, such as
the network (Ethernet), keyboard, and CRT display. Photo courtesy of Silicon Graphics.

fast memory that acts as a buffer for the DRAM memory. (The nontechnical
definition of cache is a safe place for hiding things.)

The careful reader may have noticed a common theme in both the software
and the hardware descriptions: delving into the depths of hardware or soft
ware reveals more information or, conversely, lower level details are hidden
to offer a simpler model at higher levels. The use of such layers or abstractions
is a principal technique for designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard
ware and the lowest level software. Because of its importance, it is given a spe
cial name: the instruction set architecture, or simply architecture, of a machine.
The instruction set architecture includes anything programmers need to know
to make a binary machine language program work correctly, including in
structions, I/0 devices, and so on. (The components of an architecture are dis
cussed in Chapters 3, 4, 7, and 8.)

18 Chapter 1 Computer Abstractions and Technology

This standardized interface allows computer designers to talk about func
tions independently from the hardware that performs them. For example, we
can talk about the functions of a digital clock-keeping time, displaying the
time, setting the alarm-independently from the clock hardware-quartz
crystal, LED displays, plastic buttons. Computer designers distinguish archi
tecture from an implementation of an architecture along the same lines: an im
plementation is hardware that obeys the architecture abstraction. These ideas
bring us to another Big Picture.

• .

Both hardware and software consist of hierarchical
layers, with each lower layer hiding details from the
level above. This principle of abstraction is the way
both hardware designers and software designers
cope with the complexity of computer systems. One
key interface between the levels of abstraction is the

instruction set architecture: the interface between the hardware and
low-level software. This abstract interface enables many implementa
tions of varying cost and performance to run identical software.

A Safe Place for Data

I think Silicon Valley was misnamed. If you look back at the dollars shipped in prod
ucts in the last decade, there has been more revenue from magnetic disks than from
silicon. They ought to rename the place Iron Oxide Valley.

Al Hoagland, one of the pioneers of magnetic disks, 1982

Thus far we have seen how to input data, compute using the data, and dis
play data. If we were to lose power to the computer, however, everything
would be lost, because the memory inside the computer is volatile; that is, it
forgets when it loses power. In contrast, a cassette tape for a stereo doesn't
forget the recorded music when you turn off the power. This is because the
tape is magnetic and is thus a nonvolatile memory technology. To distinguish
between the memory used to hold programs while they are running and this
nonvolatile memory used to store programs between runs, the term primary
memory or main memory is used for the former and secondary memory for the
latter. The DRAMs of Figure 1 :11 are the main memory of that computer.

1.3 Under the Covers 19

FIGURE 1.12 Photograph of a disk showing ten disk platters and the read/write heads.
Photo courtesy of Storage Technology Corp.

Magnetic disks have dominated secondary memory since 1965. As
Figure 1 .12 shows, a magnetic hard disk consists of a collection of platters,
which rotate on a spindle at 3600 to 5400 revolutions per minute. The metal
platters are covered with magnetic recording material on both sides, similar to
the material found on a cassette tape. Disk diameters vary by a factor of 10, and
have been shrinking over the years. They range from 10.25 to 1 .3 inches, with
disks of less than 1 inch in diameter to be available in the near future. Tradi
tionally, the widest disks have the highest performance, and the smallest disks
have the lowest cost. To read and write information, a movable arm containing
a small electromagnetic coil called a read/write head is located just above each
surface. The use of mechanical components means that access times for mag
netic disks are much slower than for DRAMs: disks typically take 5 to 20 mil
liseconds, while DRAMs take 50 to 150 nanoseconds-making DRAMs about
100,000 times faster.

There are two major types of magnetic disks: floppy disks and hard disks.
The basic concept at work in these disks is the same: a rotating platter coated
with a magnetic recording material. The primary differences arise because the

20 Chapter 1 Computer Abstractions and Technology

floppy disk is made of a mylar substance that is flexible, while the hard disk
uses metal. Floppy disks can be removed and carried around, while most hard
disks today are not removable. Another removable medium is magnetic tape,
which is cheaper than magnetic disks but slower still: It can take seconds to
find data on a magnetic tape.

In conclusion, the primary characteristics of magnetic disks versus main
memory are

• Nonvolatility, because they are magnetic.

• Slower access time, because they are mechanical devices.

• Lower cost for the same storage capacity, because the production costs
for a given amount of storage are lower than for integrated circuits.

Communicating to Other Computers

There is an old network saying: Bandwidth problems can be cured with money. La
tency problems are harder because the speed of light is fixed-you can 't bribe God.

David Clark, MIT

We've explained how we can input, compute, display, and save data, but
there is still one missing item found in today's computers: computer net
works. Just as the processor shown in Figure 1 .10 on page 16 is connected to
memory and 1/0 devices, networks connect whole computers, allowing com
puter users to extend the power of computing by including communication.
Networks have become so popular that they are the backbone of current com
puter systems; a new machine without an optional network interface would
be ridiculed. Networked computers have several major advantages:

• Communication: Information is exchanged between computers at high
speeds.

• Resource sharing: Rather than each machine having its own 1/0 devices,
devices can be shared by computers on the network.

• Nonlocal access: By connecting computers over long distances, users
need not be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular network is the Ethernet. Its
length is limited to about a kilometer, and it takes at least a second to send
1 million bytes of data. The network itself uses the same material that is used
to connect households to cable television. Its length and speed makes the
Ethernet useful to connect computers on the same floor of a building; hence, it
is an example of what is generically called a local area network.

1.4 Integrated Circuits: Fueling Innovation 21

• Integrated Circuits: Fueling Innovation

I thought [computers] would be a universally applicable idea, like a book is. But I
didn 't think it would develop as fast as it did, because I didn't envision we'd be able
to get as many parts on a chip as we finally got. The transistor came along unex
pectedly. It all happened much faster than we expected.

J. Presper Eckert, co-inventor of ENIAC, speaking in 1991 .

Processors and memory have improved at an incredible rate because com
puter designers have long embraced the latest in electronic technology to try
to win the race of designing a better computer. Figure 1 . 13 shows the technol
ogies that have been used over time, with an estimate of the relative perfor
mance per unit cost for each technology. This section explores the technology
that has fueled the computer industry since 1975 and will continue to do so
for the foreseeable future. Since this technology shapes what computers will
be able to do and how quickly they will evolve, we believe all computer pro
fessionals should be familiar with the basics of integrated circuits.

A transistor is simply an on/ off switch controlled by electricity. The inte
grated circuit combined dozens to hundreds of transistors into a single chip. To
describe the tremendous increase in the number of transistors from hundreds
to millions, the adjectives very large scale are added to the term, creating the ab
breviation VLSI for very large scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1 .14
shows the growth in DRAM capacity since 1977. The industry has consistently
quadrupled capacity every three years, resulting in an increase in excess of
1000 times in just over 15 years! This remarkable rate of advance in cost/
performance and capacity of integrated circuits governs the design of hard
ware and software, underscoring the need to understand this technology.Let's
start at the beginning. The manufacture of a chip begins with silicon, a sub
stance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add ma
terials to silicon that allow tiny areas to transform into one of three devices:

• Excellent conductors of electricity (similar to copper or aluminum wire)

• Excellent insulators from electricity (like plastic sheathing or glass)

• Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just millions of
combinations of conductors, insulators, and switches manufactured in a sin
gle, small package.

22 Chapter 1 Computer Abstractions and Technology

Year Technology used in computers Relative performance/un it cost
1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit 900
1990 Very large scale integrated circuit 400,000

FIGURE 1.13 Relative performance per unit cost of technologies used in computers over
time. (Source: Computer Museum, Boston)

100,000 -

10,000 -

j:;·c:; � 1M
� 1,000 --- -
� 256K
�

100

16M

10 """-��-'-���..__��--'-���-'-��---'-���-'--��---'��---'
1976 1978 1980 1982 1984 1986 1988 1990 1992

Year of introduction

FIGURE 1.14 Growth of capacity per DRAM chip over time. The y-axis is measured in K bits,
where K = 1024 (210) . The DRAM industry has quadrupled capacity every three years, a 60%
increase per year, for more than 15 years. The one exception was the lM bit DRAM, which
arrived a year earlier than expected. This 4x-every-3-years rule of thumb is called the DRAM
growth rule.

The manufacturing process for integrated circuits is critical to the cost of
the chips and hence important to computer designers. The process starts with
a silicon crystal ingot, which looks remarkably like a large sausage. Today in
gots are between 5 and 8 inches in diameter and about 12 inches long. An ingot
is finely sliced into wafers no more than 0.1 inch thick. These wafers then go
through a series of steps, during which patterns of chemicals are placed on
each wafer, creating the transistors, conductors, and insulators discussed
above.

A single microscopic flaw in the wafer itself or in one of the dozens of pat
terning steps can result in that area of the wafer failing. These defects, as they

1.4 Integrated Circuits: Fueling Innovation 23

FIGURE 1.15 Photograph of a 6-inch wafer containing MIPS R4000 processors on the left
and a &-Inch wafer containing MIPS R3000 processors on the right. The number of R3000
dies per wafer on the right at 100% yield is 210. Each die is 0.8 cm by 0.9 cm and contains about
125,000 transistors. Figure 1 .9 on page 15 is a photomicrograph of one of these R3000 dies. The
number of R4000 dies per wafer on the left at 100% yield is 59. The die size is 1 .5 cm by 1 .1 cm,
and each die contains about 1 .3 million transistors. A close-up of one R4000 die is seen in
Figure 1 .16. The dozen partially rounded chips at the boundaries of the R3000 wafer are useless;
they are included because it's easier to create the masks used to pattern the silicon. The "empty"
rectangles in both wafers contain test circuits used to rapidly test the full wafer. The MIPS R4000
wafer has 4 additional test circuits at the "corners." Photo courtesy of IDT.

are called, make it virtually impossible to manufacture a perfect wafer. To
cope with imperfection, several strategies have been used, the simplest of
which is to place many independent components on a single wafer. The wafer
is then chopped up or diced into these components, called dies or chips. Dicing
enables you to discard only those dies that were unlucky enough to contain the
flaws, rather than the whole wafer. This concept is quantified by the yield of a
process, which is defined as the percentage of good dies from the total number
of dies on the wafer. Figure 1 .15 is a photograph of two wafers containing
single-chip processors before they have been diced. The wafer on the right
contains copies of the chip shown in Figure 1.9. Figure 1 .16 shows an individ
ual die of the left-hand wafer. Figures 1 .17 and 1 . 18 (on page 25) show the
packaged parts for each die.

24 Chapter 1 Computer Abstractions and Technology

FIGURE 1.16 Photograph of an R4000 die. The die size is 1 .5 cm by 1 . 1 cm, and each die con
tains about 1 .3 million transistors. The right-hand side of the die contains the datapath for the
integer portion of the processor. The left-hand side contains the datapath for the floating point
processor, which we discuss in Chapter 4. The control is in the middle of the die. The two large
blocks on the top of the die are the caches, which are discussed in Chapter 7. Photo courtesy of
MIPS Technology, Inc.

Note that there are many more of the smaller dies per wafer than the larger
dies: There are 210 dies in the 6-inch wafer on the right of Figure 1 .15 but only
59 of the larger dies in the wafer on the left. Since a wafer costs about the same

1.4 Integrated Circuits: Fueling Innovation 25

FIGURE 1.17 Photograph of the packaged part of a die in Figure 1.9, the MIPS R3000.
Photo courtesy of MIPS Technology, Inc.

FIGURE 1.18 Photograph of three different versions of the R4000 processor, shown In
die form at left. To reduce the cost of the part, a smaller package is used in lower end systems,
while a large package is used in servers and multiprocessors. The large package has over 400
pins, while the small has about 150 pins. The pins allow a wider path between the main memory
and the processor, allowing faster transfers of data and the addressing of larger memories. Photo
courtesy of MIPS Technology, Inc.

26 Chapter 1 Computer Abstractions and Technology

no matter what is on it, fewer dies mean higher costs. Costs are increased
further because a larger die is much more likely to contain a defect and thus
fail to work. Hence die costs rise very fast with increasing die area.
(Exercises 1 .46 through 1 .52 explore wafer costs in more detail.) Clearly, com
puter designers must be familiar with the technology they are using to be sure
that the added cost of larger chips is justified by enhanced performance.

Computer designers must know both hardware and software technologies
to build competitive computers. Silicon is the medium in which computer de
signers work, so they must understand the foundations of integrated circuit
costs and performance. Designers must also learn the principles of the soft
ware that most strongly affect computer hardware, namely, compilers and op
erating systems.

• Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try
to give a counterexample. We also discuss pitfalls, or easily made mistakes.
Often pitfalls are generalizations of principles that are true in a limited con
text. The purpose of these sections is to help you avoid making these mistakes
in the machines you may design or use.

Fallacy: Computers have been built in the same, old-fashioned way for far too long,
and this antiquated model of computation is running out of steam.

For an antiquated model of computation, it surely is improving quickly.
Figure 1 .19 plots the top performance per year of workstations between 1987
and 1992. (Chapter 2 explains the proper way to measure performance.) The
graph shows a line indicating an improvement of 54% per year. In contrast to
the statement above, computers are improving in performance faster today
than at any time in their history.

Pitfall: Ignoring the inexorable progress of hardware when planning a new ma
chine.

Suppose you plan to introduce a machine in three years, and you claim the
machine will be a terrific seller because it's three times as fast as anything
available today. Unfortunately, the machine will probably sell poorly, because
the average performance growth rate for the industry will yield machines with
the same performance. For example, assuming a 50% yearly growth rate in
performance, a machine with performance x today can be expected to have
performance l .53x = 3.4x in three years. Your machine would have no per-

1.5 Fallacies and Pitfalls 27

DEC 3000
AXP/500

80 -

70

60

8 50 c nJ
E 40
.g � 30

20

10

54% per year i mprovement

• IBM RS6000/540
• MIPS M20oo -

SUN-4/260
0 '--����--'-�����--L.�����-L...�����������
1987 1988 1989 1990 1991 1992

Year

FIGURE 1.19 Performance increase of workstations, 1987-92. Here performance is given
as approximately the number of times faster than the VAX-11/780, a commonly used yardstick.
The colored line plots a rate of improvement of 54% per year; hence, a performance rating of 10 in
one year must be followed by a rating of 15.4 (1 .54 x 10) the following year and 23.7 (1.54 x 15.4)
the year after. (These performance numbers are for the integer SPEC benchmarks; see Chapter 2,
section 2.5 for more details on SPEC.)

formance advantage! Many projects within computer companies are canceled,
either because they ignore this rule or because the project is completed late and
the performance of the delayed machine is below the industry average. This
phenomenon may occur in any industry, but rapid improvements in cost/per
formance make it a major concern in the computer industry.

Pitfall: Trying to predict price, performance, or price/performance more than five
years into the future in this rapidly moving field.

Figure 1 .20 is from a 197 4 book based on a government study that predicted
the cost/performance of computers in the 1980s. Conventional wisdom was
that the largest machines had the best cost/performance. This may have been
true at the time, but it hasn't been true for more than a decade. Unforeseen in
novations between 1974 and 1991 include workstations, improved compilers,
and reduced instruction set computers (see Chapter 3, section 3.14, Historical
Perspective and Further Reading). In 1990 the Sun SPARCstation achieved a
price/performance about 10 times better than these predictions, with the fol
lowing year's HP model 750 workstation at an even better price/performance.
Another way of calibrating the inaccuracy of the prediction is that we would
have to extend the curve to the year 2010 before finding computers with the

28

Cll (,) c tO
E
.g Cll c.
Cll E tO VJ
� .E

�

Chapter 1 Computer Abstractions and Technology

$100,000,000

$10,000,000

$1,000,000

$100,000

$10,000

$1,000

1990 SPARCstation SLC -•
$100 �����������-'-�����������

•-- 1991 HP 9000/750

1960 1965 1970 1975

Year

1980 1985 1990

FIGURE 1.20 Prediction of computer price/performance In 1980& made In 1974. The y-axis is actually labeled
$/MIPS. Although Turn recognized that large-scale integrated circuits would impact the cost/performance relationship, he
predicted that it would further improve the cost/performance advantage of large machines instead of allowing small and
inexpensive machines to match the performance of large machines. From Rein Turn, Computers in the 1980s (New
York: Columbia University Press, 1974) : Figure 8, p. 80.

cost/performance of a SPARCstation, and to add another 5 years to reach the
level of cost/performance of the HP machine.

II Concluding Remarks

Where . . . the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons,
computers in the future may have 1,000 vacuum tubes and perhaps weigh just
1-1/2 tons.

Popular Mechanics, March 1949, p. 258

Although it is difficult to predict exactly what level of cost/performance com
puters will have in the future, it's a safe bet that they will be much better than
they are today. To participate in these advances, computer designers and pro
grammers must understand a wider variety of issues.

1.6 Concluding Remarks 29

Both hardware and software designers construct computer systems in hi
erarchical layers, with each lower layer hiding details from the level above.
This principle of abstraction is fundamental to understanding today's comput
er systems, but it does not mean that designers can limit themselves to know
ing a single technology. Perhaps the most important example of abstraction is
the interface between hardware and low-level software, called the instruction
set architecture. Maintaining the instruction set architecture as a constant en
ables many implementations of that architecture-presumably varying in cost
and performance-to run identical software. On the downside, the architec
ture may preclude introducing innovations that require the interface to
change.

Key technologies for processors in the 1990s are compilers and silicon.
Clearly, to participate you must understand some of the characteristics of both.
Equal in importance to an understanding of integrated circuit technology is an
understanding of the expected rates of technological change. One example of
this relationship is the DRAM tradition of a fourfold capacity increase every
three years. While silicon fuels the rapid advance of hardware, new ideas in
the organization of computers have multiplied price/performance. Two of the
key ideas are exploiting parallelism in the processor, typically via pipelining,
and exploiting locality of accesses to a memory hierarchy, typically via caches.

Roadmap for this Book

At the bottom of these abstractions are the five classic components of a
computer: datapath, control, memory, input, and output (Figure 1 .21). These
five components also serve as the framework for the rest of the chapters in
this book:

• Datapath: Chapters 4, 5, and 6

• Control: Chapters 5 and 6

• Memory: Chapter 7

• Input: Chapter 8

• Output: Chapter 8

Chapter 6 describes how processor pipelining exploits parallelism, and
Chapter 7 describes how the memory hierarchy exploits locality. The remain
ing chapters provide the introduction and the conclusion to this material.
Chapter 2 covers performance and thus describes how to evaluate the whole
computer. Chapter 3 describes instruction sets-the interface between com
pilers and the machine-and emphasizes the role of compilers and program
ming languages in using the features of the instruction set. Chapter 9
concludes this coverage with a discussion on parallel processors.

30 Chapter 1 Computer Abstractions and Technology

Evaluating
Performance

FIGURE 1.21 The organization of a computer, showing the five classic components. To
help the reader keep all this in perspective, the five components of a computer are shown on the
front page of the following chapters, with the portion of interest to that chapter highlighted.

• Historical Perspective and Further Reading

An active field of science is like an immense anthill; the individual almost vanishes
into the mass of minds tumbling over each other, carrying information from place
to place, passing it around at the speed of light.

Lewis Thomas, "Natural Science," in The Lives of a Cell, 1974

A section devoted to an historical perspective closes each chapter in the text.
We may trace the development of an idea through a series of machines or
describe some important projects, and we provide references for the reader
interested in probing further. This section provides historical background on
some of the key ideas presented in this opening chapter. Its purpose is to give
you the human story behind the technological advances and to place achieve-

1. 7 Historical Perspective and Further Reading 31

FIGURE 1.22 ENIAC, the world's first general-purpose electronic computer. Note the court
tag in the lower, right hand corner; this is from the patent case mentioned on page 33. Photo cour
tesy of Charles Babbage Institute, University of Minnesota.

ments in their historical context. By understanding the past, you may be bet
ter able to understand the forces that will shape computing in the future.

The First Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built what is widely accepted to be the world's first operational
electronic, general-purpose computer. This machine, called ENIAC (Elec
tronic Numerical Integrator and Calculator), was funded by the United States
Army and became operational during World War II, but was not publicly dis
closed until 1946. ENIAC was a general-purpose machine used for computing
artillery firing tables. This U-shaped computer was 80 feet long by 8.5 feet
high and several feet wide (Figure 1 .22). Each of the twenty 10-digit registers
was 2 feet long. In total, ENIAC used 18,000 vacuum tubes.

In size, ENIAC was two orders of magnitude bigger than machines built to
day, yet it was more than four orders of magnitude slower, performing 1900

32 Chapter 1 Computer Abstractions and Technology

additions per second. ENIAC provided conditional jumps and was program
mable, clearly distinguishing it from earlier calculators. Programming was
done manually by plugging cables and setting switches, and data was entered
on punched cards. Programming for typical calculations required from half an
hour to a whole day. ENIAC was a general-purpose machine, limited prima
rily by a small amount of storage and tedious programming.

In 1944, John van Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing pro
grams as numbers; van Neumann helped crystallize the ideas and wrote a
memo proposing a stored-program computer called EDV AC (Electronic Dis
crete Variable Automatic Computer). Herman Goldstine distributed the
memo and put van Neumann's name on it, much to the dismay of Eckert and
Mauchly, whose names were omitted. This memo has served as the basis for
the commonly used term van Neumann computer. Several early pioneers in the
computer field believe that this term gives too much credit to van Neumann,
who wrote up the ideas, and too little to the engineers, Eckert and Mauchly,
who worked on the machines. For this reason, the term does not appear else
where in this book.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic
computers. When he returned to Cambridge, Wilkes decided to embark on a
project to build a stored-program computer named EDSAC (for Electronic De
lay Storage Automatic Calculator). EDSAC, shown in Figure 1 .23, became op
erational in 1949 and was the world's first full-scale, operational, stored
program computer [Wilkes 1985] . (A small prototype called the Mark I, built
at the University of Manchester in 1948, might be called the first operational
stored-program machine.) Section 3.4 in Chapter 3 explains the stored-pro
gram concept.

In 1947, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding that the patent be turned over to
the university, may have helped Eckert and Mauchly conclude that they
should leave. Their departure crippled the EDV AC project, delaying comple
tion until 1952.

Goldstine left to join van Neumann at the Institute for Advanced Study
(IAS) at Princeton in 1946. Together with Arthur Burks, they issued a report
based on the memo written earlier [Burks 1946] .The paper was incredible for
the period; reading it today, one would never guess this landmark paper was
written more than 45 years ago, because it discusses most of the architectural
concepts seen in modern computers. This paper led to the IAS machine built
by Julian Bigelow. It had a total of 1024, 40-bit words and was roughly 10 times
faster than ENIAC. The group thought about uses for the machine, published

1. 7 Historical Perspective and Further Reading 33

FIGURE 1.23 EDSAC In 1949 was the first full-scale stored-program computer. Wilkes is
the person in the front, kneeling and wearing glasses. Photo courtesy of The Computer Museum,
Boston.

a set of reports, and encouraged visitors. These reports and visitors inspired
the development of a number of new computers.

Recently, there has been some controversy about the work of John Atana
soff, who built a small-scale electronic computer in the early 1940s. His ma
chine, designed at Iowa State University, was a special-purpose computer that
was never completely operational. Mauchly briefly visited Atanasoff before he
built ENIAC. The presence of the Atanasoff machine, together with delays in
filing the ENIAC patents (the work was classified and patents could not be
filed until after the war) and the distribution of von Neumann's EDVAC pa
per, were used to break the Eckert-Mauchly patent. Though controversy still
rages over Atanasoff's role, Eckert and Mauchly are usually given credit for
building the first working, general-purpose, electronic computer [Stern 1980].

Another early machine that deserves some credit was a special-purpose
machine built by Konrad Zuse in Germany in the late 1930s and early 1940s.
Although Zuse had the design for a programmable computer ready, the Ger
man government decided not to fund scientific investigations taking more

34 Chapter 1 Computer Abstractions and Technology

than two years, because the bureaucrats expected the war would be won by
that deadline.

While work on ENIAC went forward, Howard Aiken was building an elec
tromechanical computer called the Mark-I at Harvard. He followed the Mark
I with a relay machine, the Mark-II, and a pair of vacuum tube machines, the
Mark-III and Mark-IV. In contrast to earlier machines like EDSAC, which used
a single memory for instructions and data, the Mark-III and Mark-IV had sep
arate memories for instructions and data. The machines were regarded as re
actionary by the advocates of stored-program computers; the term Harvard
architecture was coined to describe machines with separate memories. This
term is used today in a different sense to describe machines with a single main
memory but with separate caches for instructions and data.

The Whirlwind project was begun at MIT in 1947 and was aimed at appli
cations in real-time radar signal processing. Although it led to several inven
tions, its most important innovation was magnetic core memory. Whirlwind
had 2048, 16-bit words of magnetic core. Magnetic cores served as the main
memory technology for nearly 30 years.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer
Corporation. Their first machine, the BINAC, was built for Northrop and was
shown in August 1949. After some financial difficulties, their firm was
acquired by Remington-Rand, where they built the UNIVAC I (universal
automatic computer), designed to be sold as a general-purpose computer
(Figure 1 .24). First delivered in June 1951, UNIVAC I sold for about $1 million
and was the first successful commercial computer-48 systems were built!
This early machine, along with many other fascinating pieces of computer
lore, may be seen at the Computer Museum in Boston, Massachusetts.

IBM had been in the punched card and office automation business but
didn't start building computers until 1950. The first IBM computer, the IBM
701, shipped in 1952, and eventually 19 units were sold. In the early 1950s,
many people were pessimistic about the future of computers, believing that
the market and opportunities for these "highly specialized" machines were
quite limited.

In 1964, after investing $5 billion, IBM made a bold move with the an
nouncement of the System/360. An IBM spokesman said the following at the
time:

We are not at all humble in this announcement. This is the most important product
announcement that this corporation has ever made in its history. It's not a comput
er in any previous sense. It's not a product, but a line of products . . . that spans in
performance from the very low part of the computer line to the very high.

1. 7 Historical Perspective and Further Reading 35

FIGURE 1.24 UNIVAC I, the first commerclal computer In the United States. It correctly
predicted the outcome of the 1952 presidential election, but its initial forecast was withheld from
broadcast because experts doubted the use of such early results. Photo courtesy of the Charles
Babbage Institute, University of Minnesota.

Moving the idea of the architecture abstraction into commercial reality, IBM
announced six implementations of the System/360 architecture that varied in
price and performance by a factor of 25. Figure 1 .25 shows these models. IBM
bet its company on the success of a computer family, and IBM won. The Sys
tem/360 and its successors dominated the large computer market.

About a year later Digital Equipment Corporation (DEC) unveiled the
PDP-8, the first commercial minicomputer shown in Figure 1 .26. This small ma
chine was a breakthrough in low-cost design, allowing DEC to offer a comput
er for under $20,000. Minicomputers were the forerunners of microprocessors,
with Intel inventing the first microprocessor in 1971-the Intel 4004, shown in
Figure 1 .27 (on page 38) as a photomicrograph.

In 1963 came the announcement of the first supercomputer. This came not
from the large companies nor even from the high tech centers. Seymour Cray
led the design of the Control Data Corporation CDC 6600 in Minnesota. This
machine developed many ideas that are beginning to be found in the latest mi
croprocessors. Cray later left CDC to form Cray Research Inc., in Wisconsin. In
1976 he announced the Cray-1 (Figure 1 .28 on page 39). This machine was si
multaneously the fastest in the world, the most expensive, and the computer
with the best cost/performance for scientific programs.

a . c.

b. d.

FIGURE 1.25 IBM System/360 computers: models 40, 50, 65, and 75. These four models varied in cost and performance by a factor of almost 10; it
grows to 25 if we include models 20 and 30 (not shown). The clock rate, range of memory sizes, and approximate price for only the processor and memory
of average size: (a) Model 40,1.6 MHz, 32 KB-256 KB, and $225,000; (b) Model 50, 2.0 MHz, 128 KB-256 KB, and $550,000; (c) Model 65, 5.0 MHz, 256 KB-
1 MB, and $1,200,000; and (d) Model 75, 5.1 MHz, 256 KB-1 MB, $1,900,000. Adding 1/0 devices typically increased the price by factors of 1 .8 to 3.5, with
higher factors for cheaper models. Photos courtesy of International Business Machines Corporation.

1.7 Historical Perspective and Further Reading

• • •i• • •I• ; ;1. • •i• • • • • •!• • •I• �·�I• • •I• • •
1 • • •le • •·• • •I• • • • 1• • •I• • ele • • e • •

I
• • •le e eie • e e e e

37

FIGURE 1.26 The DEC PDP-8, the first commercial minicomputer, announced In 1965.
Among other uses, the PDP-8 was used to stage the musical A Chorus Line. Photo courtesy of Dig
ital Equipment Corporation, Corporate Photo Library.

While Seymour Cray was creating the world's most expensive computer,
other designers around the world were looking at using the microprocessor to
create a computer so cheap that you could have it at home. There is no single
fountainhead for the personal computer, but in 1977 the Apple II (Figure 1 .29 on
page 39) of Steve Jobs and Steve Wozniak set standards for low cost, high vol
ume, and high reliability that defined the personal computer industry. But
even with a four-year head start, Apple's personal computers finished second
in popularity. The IBM Personal Computer, announced in 1981, became the
best selling computer of any kind; its success made the Intel 80x86 the most
popular microprocessor and made the Microsoft Disk Operating System (MS
DOS) the most popular operating system. In 1990 Microsoft sold 12 million
copies of DOS-2 million more than the best selling record album of 1990-
even though DOS costs ten times as much!

38 Chapter 1 Computer Abstractions and Technology

FIGURE 1.27 Mlcrophotograph of the Intel 4004 from 1971, the first microprocessor.
Contrast this microprocessor, with just 2300 transistors and 0.3 by 0.4 cm in size, with the micro
processor in Figure 1 .16 on page 24. Photo courtesy of Intel Corp.

Computer Generations

Since 1952, there have been thousands of new computers using a wide range
of technologies and having widely varying capabilities. To put these develop
ments in perspective, the industry has tended to group computers into gener
ations. This classification is often based on the implementation technology
used in each generation, as shown in Figure 1 .30 (on page 40). Typically, each
computer generation is eight to ten years in length, although the length and
birth years-especially of recent generations-are debated. By convention,
the first generation is taken to be commercial electronic computers, rather
than the mechanical or electromechanical machines that preceded them.

The fifth generation may well be defined on two fronts: portable commu
nications/ computing devices at the low end and parallel computers at the
high end. Some computers of the future will be much more personal and
portable: They will combine laptop computers, cellular phones, and pagers to
provide electronic assistance that will be so valuable that no one will leave

1. 7 Historical Perspective and Further Reading 39

FIGURE 1.28 Cray 1, the first commercial vector supercomputer in 1976. This machine
had the unusual distinction of being both the fastest computer for scientific applications and the
computer with the best price/performance for those applications. Viewed from the top, the com
puter looks like the letter C. Photo courtesy of Cray Research, Inc.

FIGURE 1 .29 Shown here, the Apple llC Plus. The success of the original Apple, designed
by Steve Wozniak, defined the personal computer industry in 1 977 and set standards
of cost and reliability for the industry. Photo courtesy of Apple Computer, Inc.

40

1951 UNIVAC I
1964 IBM S360/

model 50
1965 PDP-8
1976 Cray-1
1981 IBM PC
1991 HP 9000/

model 750

Chapter 1 Computer Abstractions and Technology

- � . :.ill:.lr. 1• Ill
1 1950-1959

2 1960-1968

3 1969-1977

4 1978-199?

5 199?-20??

1 �:.J ... 111 Urt :-. •

Vacuum tubes

Transistors

Integrated circuit

LSI and VLSI

M icroprocessor?

-- - -!,_:. 1111• ,,..,��l•lltltlHaili
Commercial, electronic computer

Cheaper computers

M inicomputer

Personal computers and workstations

Personal portable computing devices
and parallel processors?

.....

FIGURE 1.30 Computer generations are usually determined by the change In dominant
implementation technology. Typically, each generation offers the opportunity to create a new
class of computers and for new computer companies to be created. Many researchers believe that
parallel processing at the high end and portable computers at the low end will be the basis for the
fifth computer generation.

1000 124,500 1,900 48 $1,000,000 1 $4,533,607 1
60 10,000 500,000 64 $1,000,000 263 $3,756,502 318

8 500 330,000 4 $16,000 10,855 $59,947 13,135
58 60,000 166,000,000 32,768 $4,000,000 21,842 $7,675,591 51,604

1 150 240,000 256 $3,000 42,105 $3,702 154,673
2 500 50,000,000 16,384 $7,400 3,556,188 $7,400 16,122,356

FIGURE 1.31 Characteristic: of key commercial computers since 1950, in actual dollars and In 1991 dollars adjusted for
Inflation. (Source: The Computer Museum, Boston, and Producer Price Index for Industrial Commodities.) In contrast to Figure 1 .25, in
this figure the price of the IBM S360 model 50 includes I/0 devices.

home without them. Parallel computers with tens to thousands of nodes, each
with the pow�r of a workstation connected by very high-speed networks, are
already replacing traditional supercomputers and mainframes at some instal
lations (see Chapter 9). The amazing possibility of the fifth generation is that
the same microprocessor architecture will be driving both the high-end paral
lel machines and the low-end portable computers, possibly with different im
plementations aimed at high performance or low power.

Figure 1 .31 summarizes the key characteristics of some machines men
tioned in this section. After adjusting for inflation, price/performance has im
proved by more than 16 million in 40 years. Readers interested in computer
history should consult Annals of the History of Computing, a journal devoted to
the history of computing. Several books describing the early days of comput
ing have also appeared, many written by the pioneers themselves.

1.8 Exercises

To Probe Further

Bell, C. G. [1984]. "The mini and micro industries," IEEE Computer 17:10 (October) 14-30.

An insider's personal view of the computing industry, including computer generations.

41

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. "Preliminary discussion of the logical
design of an electronic computing instrument," Report to the U.S. Army Ordnance Department,
p. l; also appears in Papers of John van Neumann, W. Aspray and A. Burks, eds., MIT Press, Cam
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97-146.

A classic paper explaining computer hardware and software before the first stored-program computer was
built. It simultaneously explained computers to the world and was a source of controversy because the first
draft did not give credit to Eckert and Mauchly.

Goldstine, H. H. [1972]. The Computer: From Pascal to van Neumann, Princeton University Press,
Princeton, N .J.

A personal view of computing by one of the pioneers who worked with van Neumann.

Hennessy, J. L., and D. A. Patterson [1990]. "Performance and Cost," Chapter 2 of Computer
Architecture: A Quantitative Approach, Morgan Kaufmann Publishers, San Mateo, Calif.

This chapter contains much more detail on the cost of integrated circuits and explains the reasons for the
difference between price and cost.

Public Broadcasting System [1992]. The Machine That Changed the World, videotapes.

These five one-hour programs include rare footage and interviews with pioneers of the computer industry.

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass.

Short biographies of 31 computer pioneers.

Stern, N. [1980]. "Who invented the first electronic digital computer?" Annals of the History of
Computing 2:4 (October) 375-76.

A historian 's perspective on Atanasofj vs. Eckert and Mauchly.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.

A personal view of computing by one of the pioneers . • Exercises

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as
long as one rated [5]. Sections of the text that should be read before attempt
ing an exercise will be given in angled brackets, e.g., <§1 .4> means you
should have read section 1 .4, Integrated Circuits: Fueling Innovation, to help
you solve this exercise. If the solution to an exercise depends on others, they

42 Chapter 1 Computer Abstractions and Technology

will be listed in curly brackets, e.g., {ex. 1 .50) means that you should answer
exercise 1 .50 before trying this exercise.

Exercises 1.1 to 1.26 Find the word or phrase from the list below that best
matches the description in the following questions. Use the letters to the left
of words in the answer. Each answer should be used only once.

a abstraction n DRAM (dynamic random access memory)

b assembler 0 implementation

c binary number p instruction

d bit q instruction set architecture

e cache integrated circuit

CPU (central processor unit) s memory

g chip operating system

h compiler u processor

computer family v semiconductor

j control w supercomputer

k datapath x transistor

defect y VLSI (very large scale integrated circuit)

m die z yield

1.1 [2] Specific abstraction that the hardware provides the low-level soft
ware.

1.2 [2] Active part of the computer, following the instructions of the pro
grams to the letter: It adds numbers, tests numbers, and so on.

1.3 [2] Another name for processor.

1.4 [2] Approach to the design of hardware or software; the system consists
of hierarchical layers, with each lower layer hiding details from the level
above.

1.5 [2] Base 2 number.

1.6 [2] Binary digit.

1. 7 [2] Collection of implementations of the same instruction set architec
ture; they are available at the same time and vary in price and performance.

1.8 [2] Component of the processor that performs arithmetic operations.

1.9 [2] Component of the processor that tells the datapath, memory, and
I/O devices what to do according to the instructions of the program.

1.10 [2] Hardware that obeys the instruction set architecture abstraction.

1.8 Exercises

1.11 [2]

1.12 [2]

High performance machine, costing more than $1 million.

Individual command to a computer.

43

1.13 [2]

1.14 [2]

1.15 [2]

Integrated circuit commonly used to construct main memory.

Integrates dozens to hundreds of transistors into a single chip.

Integrates hundreds of thousands to millions of transistors into a sin-
gle chip.

1.16 [2] Location of programs when they are running, containing the data
needed as well.

1.17 [2] Microscopic flaw in a wafer.

1.18 [2] Nickname for a die or integrated circuit.

1.19 [2] On-off switch controlled by electricity.

1.20 [2] Percentage of good dies from the total number of dies on the wafer.

1.21 [2] Program that manages the resources of a computer for the benefit of
the programs that run on that machine.

1.22 [2] Program that translates a symbolic version of an instruction into the
binary version.

1.23 [2] Program that translates from a higher level notation to assembly lan
guage.

1.24 [2] Rectangular component that results from dicing a wafer.

1.25 [2] Small, fast memory that acts as a buffer for the main memory.

1.26 [2] Substance that does not conduct electricity well.

Exercises 1.27 to 1.44 Using the categories in the table below, classify the
following examples. Use the letters to the left of words in the answer. Unlike
the previous exercises, answers in this table may be used more than once.

a

b

c

d

e

1.27

1.28

1.29

applications software

high-level programming language

input device

integrated circuit

minicomputer

[1] Apple II

[1] Assembler

[1] Compiler

output device

g personal computer

h semiconductor

supercomputer

systems software

44 Chapter 1 Computer Abstractions and Technology

1.30 [1] Cray 1

1.31 [1] DRAM

1.32 [1] Fortran

1.33 [1] IBM PC

1.34 [1] Keyboard

1.35 [1] Microprocessor

1.36 [1] Mouse

1.37 [1] Operating system

1.38 [1] Pascal

1.39 [1] PDP-8

1.40 [1] Printer

1.41 [1] Cathode Ray Tube Display

1.42 [1] Silicon

1.43 [1] Spreadsheet

1.44 [1] Text editor

1.45 [10] In a magnetic disk, the disks containing the data are constantly ro
tating. On average it should take half a revolution for the desired data on the
disk to spin under the read/write head. Assuming that the disk is rotating at
3600 revolutions per minute, what is the average time for the data to rotate un
der the disk head? What is the time if the disk were spinning at 5400 RPM?

In More Depth

Our approach in this book is to include optional sections in exercises, leaving
it up to the instructor whether to cover the material in class, leave students to
read it on their own, or skip the material altogether. This first example gives
more information on the cost of integrated circuits and is used in
Exercises 1 .46 to 1 .52.

The cost of an integrated circuit can be expressed in three simple equations:

cost per die

dies per wafer

yield

cost per wafer
dies per wafer x yield

wafer area
die area

1

(1 + defects per area x die area I 2) 2

1.8 Exercises 45

The first equation is straightforward to derive. The second is an approxima
tion, since it does not subtract the area near the border of the round wafer that
cannot accommodate the rectangular dies. The final equation is based on
years of empirical observations of yields at integrated circuit factories, with
the exponent related to the number of critical processing steps in the manu
facturing process.

1.46 [10] Combine the three equations above to determine the cost per die in
terms of die area. If you ignore constants, what is the approximate relationship
between cost and die area?

1.47 [15] Compare the estimate of the number of dies per wafer calculated in
the formula above to the actual number given in the caption of Figure 1 .15 on
page 23. Propose a formula that gives a more accurate estimate of the number
of dies per wafer and give an explanation of your formula.

1.48 [10] What is the approximate cost of a die in the wafer shown at left in
Figure 1 . 15 on page 23? Assume that a 6-inch wafer costs $750 and that the de
fect density is 2 per square centimeter. Use the number of dies per wafer given
in the figure caption.

1.49 [10] This is the same as exercise 1 .48, but use the wafer shown at right in
Figure 1 .15 on page 23 instead of the left-hand wafer.

Exercises 1.50 to 1.52 DRAM chips have significantly increased in die
size with each generation, yet yields have stayed about the same (43% to
48%). Figure 1 .32 shows key statistics for DRAM production over the years.

Capacity (K bits) 64 256 1024 4096 16384

Year 1980 1983 1985 1989 1992
Die Area (sq. cm.) 0.16 0.24 0.42 0.65 0.97
Wafer Diameter (inches) 5 5 6 6 8
Yield 48% 46% 45% 43% 48%

FIGURE 1.32 History of DRAM capacity, die size, wafer size, and yleld. Provided by
Howard Dicken of OM Data Inc. of Scottsdale, Arizona.

1.50 [5] Given the increase in die area of DRAMS, what parameter must im
prove to maintain yield?

1.51 [10] {ex. 1 .50) Derive a formula for the improving parameter found in
Exercise 1 .50 from the other parameters.

1.52 [10] <§1 .4> {ex. 1 .50, 1 .51) Using the formula in the answer to Exercise
1 .51, what is the calculated improvement in that parameter between 1980 and
1992?

Time discovers truth.

Seneca
Moral Essays, 22 A.D.

The Role of

Performance

2.1 Introduction 48

2.2 Measuring Performance 52

2.3 Relating the Metrics 54

2.4 Popular Performance Metrics 60

2.5 Choosing Programs to Evaluate Performance 66

2.6 Comparing and Summarizing Performance 68

2. 7 Fallacies and Pitfalls 70

2.8 Concluding Remarks 76

2.9 Historical Perspective and Further Reading 77

2.10 Exercises 81

The Five Classic Components of a Computer

Compiler

� G
Evaluating � Dotopoth J Memory

~
Performance

\
Processor

48 Chapter 2 The Role of Performance

• Introduction

This chapter discusses how to measure, report, and summarize performance
and describes the major factors that determine the performance of a com
puter. A primary reason for examining performance is that hardware perfor
mance is often key to the effectiveness of an entire system of hardware and
software. Assessing the performance of such a system can be quite challeng
ing. The scale and intricacy of modern software systems, together with the
wide range of performance improvement techniques employed by hardware
designers, have made performance assessment much more difficult. It is sim
ply impossible to sit down with an instruction set manual and a significant
software system and determine how fast the software will run on the
machine. In fact, for different types of applications, different performance
metrics may be appropriate and different aspects of a computer system may
be the most significant in determining overall performance.

Of course, in trying to choose among different computers, performance is
almost always an important attribute. Accurately measuring and comparing
different machines is critical to purchasers, and therefore to designers. The
people selling computers know this as well. Often, salespeople would like you
to see their machine in the best possible light, whether or not this light accu
rately reflects the needs of the purchaser's application. In some cases, claims
are made about computers that don't provide useful insight for any real appli
cations. Hence, understanding how best to measure performance and the lim
itations of performance measurements is important in selecting a machine.

Our interest in performance, however, goes beyond issues of assessing per
formance only from the outside of a machine. To understand why a piece of
software performs as it does, why one instruction set can be implemented to
perform better than another, or how some hardware feature affects perfor
mance, we need to understand what determines the performance of a ma
chine. For example, to improve the performance of a software system, we may
need to understand what factors in the hardware contribute to the overall sys
tem performance and the relative importance of these factors. These factors
may include how well the program uses the instructions of the machine, how
well the underlying hardware implements the instructions, and how well the
memory and I/0 systems perform. Understanding how to determine the per
formance impact of these factors is crucial to understanding the motivation be
hind the design of particular aspects of the machine, as we will see in the
chapters that follow.

The rest of this section describes different ways in which performance can
be determined. In section 2.2 we describe the metrics for measuring perfor-

2.1 Introduction 49

Passenger Cruising range Cruising speed · Passenger throughput
Ai rplane capacity (miles) (m.p.h.) (passengers x m.p.h.)

Boeing 737-100 101 630 598 60,398
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 2.1 The capacity, range, and speed for a number of commercial airplanes. The last column shows the rate
at which the airplane transports passengers, which is the capacity times the cruising speed (ignoring range and take-off
and landing times).

mance from the viewpoint of both a computer user and a designer. In
section 2.3 we look at how these metrics are related and present the classical
processor performance equation, which we will use throughout the text.
Section 2.4 describes some popular performance metrics and why they are in
adequate. Sections 2.5 and 2.6 describe how best to choose benchmarks to eval
uate machines and how to accurately summarize the performance of a group
of programs. Finally, in section 2.7 we'll examine some of the many pitfalls that
have trapped designers and those who analyze and report performance.

Defining performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 2.1
shows some typical passenger airplanes, together with their cruising speed,
range, and capacity. If we wanted to know which of the planes in this table
had the best performance, we would first need to define performance. For
example, considering different measures of performance we see that the plane
with the highest cruising speed is the Concorde, the plane with the longest
range is the DC-8, and the plane with the largest capacity is the 747. Let's sup
pose we define performance in terms of speed. This still leaves two possible
definitions. You could define the fastest plane as the one with the highest
cruising speed, taking a single passenger from one point to another in the
least time. However, if you were interested in transporting 450 passengers
from one point to another, the 747 would clearly be the fastest, as the last col
umn of the figure shows. Similarly, we can define computer performance in
several different ways.

If you were running a program on two different workstations, you'd say
that the faster one is the workstation that gets the job done first. However, if
you were running a computer center that had two large timeshared computers
running jobs submitted by many users, you'd say that the faster computer was
the one that completed the most jobs during a day. As an individual computer

50

Example

Answer

Chapter 2 The Role of Performance

user, you are interested in reducing response time-the time between the start
and completion of a task-also referred to as execution time. Computer center
managers are interested in increasing throughput-the total amount of work
done in a given time.

To illustrate the application of new ideas, specific examples are used
throughout this text. We highlight the example and then provide an answer.
Try working out the answer yourself, or-if you feel unsure about the ma
terial-just follow along. The examples that appear are similar in type to the
problems that you will have an opportunity to tackle in the exercises at the
end of each chapter. Here's our first example:

Do the following changes to a computer system increase throughput, de
crease response time, or both?

1 . Replacing the processor in a computer with a faster version.

2. Adding additional processors to a system that uses multiple proces
sors for separate tasks-for example, handling an airline reservations
system.

Decreasing response time almost always improves throughput. Hence, in
case 1, both response time and throughput are improved. In case 2, no one
task gets work done faster, so only throughput increases. If, however, the
demand for processing in the second case were larger than the throughput,
the system might force requests to queue up. In this case, increasing the
throughput could also improve response time. Thus, in many real computer
systems, changing either execution time or throughput often affects the
other.

In discussing the performance of machines, we will be primarily concerned
with response time for the first few chapters. (In Chapter 8 on input/ output
systems we will discuss throughput-related measures.) To maximize perfor
mance, we want to minimize response time or execution time for some task.
Thus we can relate performance and execution time for a machine X:

1
Performance = x Execution time x

Example

Answer

2.1 Introduction 51

This means that for two machines X and Y, if the performance of X is greater
than the performance of Y, we have

Performance x > Performance y

1 1
------- > -------
Execution time x Execution time y

Execution timey > Execution time x

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance

of two different machines quantitatively. We will use the phrase "X is n times
faster than Y" to mean

Performance x
= n

Performance y

If X is n times faster than Y, then the execution time on Y is n times longer than
it is on X:

Performance x Execution time y

Performance y Execution time x
n

If machine A runs a program in 10 seconds and machine B runs the same pro
gram in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

Performance A

Performance 8
or

Execution time 8
Execution time A

Thus the performance ratio is

15 = 1 .5
10

and A is therefore 1 .5 times faster than B .

n

n

52 Chapter 2 The Role of Performance

In the above example, we could also say that machine B is 1 .5 times slower
than machine A, since

means that

Performance A
Performance 8 1.5

Performance A = Performance 8
1 .5

For simplicity, we will normally use the terminology faster than when we try
to compare machines quantitatively. Because performance and execution time
are reciprocals, increasing performance requires decreasing execution time.
To avoid the potential confusion between the terms increasing and decreasing,
we usually say improve performance or improve execution time when we mean
"increase performance" and "decrease execution time." • Measuring Performance

Time is the measure of computer performance: the computer that performs
the same amount of work in the least time is the fastest. Program execution
time is measured in seconds per program. But time can be defined in different
ways, depending on what we count. The most straightforward definition of
time is called wall-clock time, response time, or elapsed time. This is the total time
to complete a task, including disk accesses, memory accesses, input/ output
(I/O) activities, operating system overhead-everything. However, comput
ers are often timeshared, and a processor may work on several programs
simultaneously. In such cases, the system may try to optimize throughput
rather than attempt to minimize the elapsed time for one program. Hence, we
often want to distinguish between the elapsed time and the time that the pro
cessor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for
this task and does not include time spent waiting for I/O or running other
programs. (Remember, though, that the response time experienced by the
user will be the elapsed time of the program, not the CPU time.) CPU time
can be further divided into the CPU time spent in the program, called user
CPU time, and the CPU time spent in the operating system performing tasks
on behalf of the program, called system CPU time. Differentiating between sys
tem and user CPU time is difficult to do accurately, because it is often hard to
assign responsibility for operating system activities to one user program
rather than another.

2.2 Measuring Performance 53

The breakdown of the elapsed time for a task is reflected in the UNIX time
command, which in one case returned

9 0 . 7 u 1 2 . 9 s 2 : 3 9 6 5 %

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time
is 2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time
that is CPU time is

90.7 + 12.9
159

= 0.65

or 65%. More than a third of the elapsed time in this example was spent wait
ing for 1/0, running other programs, or both. Sometimes we ignore system
CPU time when examining CPU execution time because of the inaccuracy of
operating systems' self-measurement and the inequity of including system
CPU time when comparing performance between machines with different
operating systems. On the other hand, system code on some machines is user
code on others, and no program runs without some operating system running
on the hardware, so a case can be made for using the sum of user CPU time
and system CPU time as the measure of program execution time.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term sys
tem performance to refer to elapsed time on an unloaded system, and use CPU
performance to refer to user CPU time. We will concentrate on CPU performance
in this chapter, although our discussions of how to summarize performance
can be applied to either elapsed time or to CPU time measurements.

Although as computer users we care about time, when we examine the de
tails of a machine it's convenient to think about performance in other metrics.
In particular, computer designers may want to think about a machine by using
a measure that relates to how fast the hardware can perform basic functions.
Al�ost all computers are constructed using a clock that runs at a constant rate
and determines when events take place in the hardware. These discrete time
intervals are called clock cycles (or ticks, clock ticks, clock periods, clocks, cy
cles). Designers refer to the length of a clock period both as the time for a com
plete clock cycle (e.g., 10 nanoseconds, or 10 ns) and as the clock rate (e.g., 100
megahertz, or 100 MHz), which is the inverse of the clock period. In the next
section, we will formalize the relationship between the clock cycles of the
hardware designer and the seconds of the computer user.

54 Chapter 2 The Role of Performance

• Relating the Metrics

Example

Answer

Users and designers often examine performance using different metrics. If we
could relate these different metrics, we could determine the effect of a design
change on the performance as seen by the user. Since we are confining our
selves to CPU performance at this point, the bottom-line performance mea
sure is CPU execution time. A simple formula relates the most basic metrics
(clock cycles and clock cycle time) to CPU time:

CPU execution time = CPU clock cycles x Clock cycle time
for a program for a program

Alternatively, because clock rate and clock cycle time are inverses:

CPU execution time
for a program

CPU clock cycles for a program
Clock rate

This formula makes it clear that the hardware designer can improve perfor
mance by reducing either the length of the clock cycle or the number of clock
cycles required for a program. As we will see in this chapter and later in
Chapters 5, 6, and 7, the designer often faces a trade-off between the number
of clock cycles needed for a program and the length of each cycle. Many tech
niques that decrease the number of clock cycles also increase the clock cycle
time.

Our favorite program runs in 10 seconds on computer A, which has a 100 MHz
clock. We are trying to help a computer designer build a machine, B, that will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing machine B to require 1 .2 times as many clock cycles as ma
chine A for this program. What clock rate should we tell the designer to target?

Let's first find the number of clock cycles required for the program on A:

CPU clock cycles A
CPU timeA =

Clock rate A

2.3 Relatlng the Metrics

10 seconds =
CPU clock cycles A

100 x 106 cycles
second

6 cycles
CPU clock cycles A = 10 seconds x 100 x 10 --

second

CPU time for B can be found using this equation:

1 .2 x CPU clock cycles A
CPU time 8 =

Clock rate 8

1 .2 x 1000 x 106 cycles
6 seconds = --------

Clock rate 8

55

1000 x 106cycles

1 .2 x 1000 x 106 cycles
Clock rate8 = ---------

6 seconds
200 x 106 cycles

d
= 200 MHz

sec on

Machine B must therefore have twice the clock rate of A to run the program in
6 seconds.

Hardware

Software

Interface

Throughout this text, you will see sections called Hardware
Software Interfaces. These sections highlight important in
teractions between some aspect of the software (typically a
program, compiler, or the operating system) and some hard
ware aspect of the computer. In addition to highlighting
such interactions, they remind the reader that hardware and
software design decisions interact in many different ways.

The equations in our previous examples do not include any reference to the
number of instructions needed for the program. However, since the compiler
clearly generated instructions to execute, and the machine had to execute the
instructions to run the program, the execution time must depend on the num
ber of instructions in a program. One way to think about execution time is that
it equals the number of instructions executed multiplied by the average time
per instruction. Therefore, the number of dock cycles required for a program
can be written as

56

Example

Answer

Chapter 2 The Role of Performance

. Average clock cycles CPU clock cycles = Instructions for a program x per instruction

The term clock cycles per instruction, which is the average number of clock cycles
each instruction takes to execute, is often abbreviated as CPI. Since different
instructions may take different amounts of time depending on what they do,
CPI is an average of all the instructions executed in the program. CPI provides
one way of comparing two different implementations of the same instruction
set architecture, since the instruction count required for a program will, of
course, be the same.

Suppose we have two implementations of the same instruction set architecture.
Machine A has a clock cycle time of 10 ns (nanoseconds) and a CPI of 2.0 for
some program, and machine B has a clock cycle time of 20 ns and a CPI of 1.2
for the same program. Which machine is faster for this program, and by how
much?

We know that each machine executes the same number of instructions for the
program; let's call this number I. First, find the number of processor clock cycles
for each machine:

CPU clock cycles A = I x 2.0

CPU clock cycles 8 = I x 1 .2

Now we can compute the CPU time for each machine:

Likewise, for B:

CPU time A = CPU clock cycles A x Clock cycle time A
= I x 2.0 x 10 ns = 20 x I ns

CPU time 8 = I x 1 .2 x 20 ns = 24 x I ns

Clearly, machine A is faster. The amount faster is given by the ratio of the exe
cution times:

2.3 Relating the Metrics

CPU performance A Execution time 8 24 x I ns
CPU performance 8 Execution time A 20 x I ns

57

= 1 .2

We can conclude that machine A is 1 .2 times faster than machine B for this pro
gram.

We can now write this basic performance equation in terms of instruction
count (the number of instructions executed by the program), CPI, and clock cy
cle time:

or

CPU time = Instruction count x CPI x Clock cycle time

C
Instruction count x CPI

PU time =
Clock rate

These formulas are particularly useful because they separate the three key
factors that affect performance. We can use these formulas to compare two
different implementations or to evaluate a design alternative if we know its
impact on these three parameters.

How can we determine the value of these factors in the performance equa
tion? We can measure the CPU execution time by running the program, and
the clock cycle time is usually published as part of the documentation for a ma
chine. The instruction count and CPI can be more difficult to obtain. Of course,
if we know the clock rate and CPU execution time, we need only the instruc
tion count or the CPI to determine the other.

We can measure the instruction count by using software tools that profile
the execution or by using a simulator of the architecture. Since the instruction
count depends on the architecture, but not on the exact implementation, we
can measure the instruction count without knowing all the details of the im
plementation. The CPI, however, depends on a wide variety of design details
in the machine, including both the memory system and the processor structure
(as we will see in Chapters 5, 6, and 7), as well as on the mix of instruction
types executed in an application. CPI varies by application, as well as among
implementations with the same instruction set.

Designers often obtain CPI by a detailed simulation of an implementation.
Sometimes it is possible to compute the CPU clock cycles by looking at the dif
ferent types of instructions and using their individual clock cycle counts. In
such cases, the following formula is useful:

11
CPU clock cycles = L (CPI ; x C;)

i = 1

58

Example

Chapter 2 The Role of Performance

• .

Figure 2.2 shows the basic measurements at different
levels in the computer and what is being measured in
each case. We can see how these factors are combined
to yield execution time measured in seconds:

In . Clock cycles Seconds
Time = structions x x -----

Instruction Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction
set to lower the instruction count may lead to an organization with a
slower clock cycle time that offsets the improvement in instruction
count. Similarly, because CPI depends on instruction mix, the code
that executes the fewest number of instructions may not be the
fastest.

- - �[!lj .. '""·�� ' t111:..1�&...1l!JJ 11:.. ••• . ..
CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI)
A verage clock cycles

I n struct ion

Clock cycle time
Seconds

C lock cycle

RGURE 2.2 The basic components of performance and how each Is measured.

where C; is the count of the number of instructions of class i executed, CPI; is
the average number of cycles per instruction for that instruction class, and n is
the number of instruction classes. Remember that overall CPI for a program
will depend on both the number of cycles for each instruction type and the
frequency of each instruction type in the program execution. Thus, both the
hardware used to execute a program and the program's characteristics affect
the observed CPI.

A compiler designer is trying to decide between two code sequences for a
particular machine. The hardware designers have supplied the following
facts:

Answer

2.3 Relating the Metrics

�� • • •• "" "' � . � > .. 'll'J'l'<l ' ,� � .. • • -'.•-'-''--ti:\.. " ,, :'°)'{,., .. , �....v,;.,, •lt:'I c'i. !l nstruc!ion.'cl��� ;� · �-�", C ,P._1_ fo� thi? i.�st�u_ctio� ;c!���-��n';!
A 1
B 2
c 3

59

For a particular high-level-language statement, the compiler writer is con
sidering two code sequences that require the following instruction counts:

�-ff:��-��·./�'.'-:7-�"' ' Instruction c-o�n!s f,�r]Tn]itffiction'i c l�?s, <:_'fl
i�cocie sequence . A: .. .· . . B1:� � .'� _ , ; c· _, ;,!-'�

2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each seq_,uence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes
4 + 1 + 1 = 6 instructions. So sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

n

CPU clock cycles = L (CPI ; x C ;)
i = 1

This yields:

CPU clock cycles 1 = (2 x l) + (l x 2) + (2 x 3) = 2 + 2 + 6 = IO cycles

CPU clock cycles 2 = (4 x l) + (l x 2) + (l x 3) = 4 + 2 + 3 = 9 cycles

So code sequence 2 is faster, even though it actually executes one extra
instruction. Since code sequence 2 takes fewer overall clock cycles but has
more instructions, it must have a lower CPL The CPI values can be com
puted by

CPI =
CPU clock cycles
Instruction count

CPI 1 =
CPU clock cycles 1 10

- = 2
Instruction count 1 5

CPI 2 =
CPU clock cycles 2 9

- 1.5
Instruction count 2 6

60 Chapter 2 The Role of Performance

The above example shows the danger of using only one factor (instruction
count) to assess performance. When comparing two machines, you must look
at all three components, which combine to form execution time. If some of the
factors are identical, like the clock rate in the above example, performance can
be determined by comparing all the nonidentical factors. However, since CPI
varies by instruction mix, both instruction count and CPI must be compared,
even if clock rates are identical. Exercises 2.14 through 2.17 explore this further
by asking you to evaluate a series of machine and compiler enhancements that
affect clock rate, CPI, and instruction count. In the next section, we'll examine
a common performance measurement that does not incorporate all the terms
and can thus be misleading.

II Popular Performance Metrics

A number of popular measures have been devised in attempts to create a
standard measure of computer performance. One result has been that simple
metrics, valid in a limited context, have been heavily misused. All proposed
alternatives to the use of time as the performance metric have led eventually
to misleading claims, distorted results, or incorrect interpretations. In this sec
tion we discuss two of the most commonly used and abused metrics.

MIPS and What's Wrong with It

One alternative to time as the metric is MIPS, or million instructions per second.
For a given program, MIPS is simply

Thus

Instruction count Instruction count
MIPS = --------

Execution time x 106 CPU clocks x Cycle time x 106
Instruction count x Clock rate

Instruction count x CPI x 106

MIPS =
Clock rate

CPI x 106

Clock rate

CPI x 106

This last formula shows that MIPS is a measure of the instruction execution
rate for a particular machine. This MIPS measurement is also called native
MIPS to distinguish it from some alternative definitions of MIPS that we will
look at shortly.

We can relate MIPS to execution time by using this formula:

Example

2.4 Popular Performance Metrics

Thus

Instruction count x CPI
Execution time = ---------

Clock rate

Instruction count
Clock rate 6
---- x lO
CPI x 106

Instruction count
Execution time =

MIPS x 106

Instruction count

MIPS x 106

61

Since MIPS is an instruction executi01� rate, MIPS specifies performance
inversely to execution time; faster machines have a higher MIPS rating. The
good news about MIPS is that it is easy to understand, and faster machines
mean bigger MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing ma
chines. First, MIPS specifies the instruction execution rate but does not depend
on the instruction set. We cannot compare computers with different instruction
sets using MIPS, since the instruction counts will certainly differ. Second, MIPS
varies between programs on the same computer; thus a machine cannot have
a single MIPS rating. Finally and most importantly, MIPS can vary inversely
with performance! There are many examples of this anomalous behavior; one
is given below.

Consider the machine with three instruction classes and CPI measurements
from the last example on page 58. Now suppose we measure the code for
the same program from two different compilers and obtain the following
data:

Instruction counts (in mil l ions)
for each instruction class .

Code from A B C ·

Compiler 2 10 1 1

Assume that the machine's clock rate is 100 MHz. Which code sequence
will execute faster according to MIPS? According to execution time?

62 Chapter 2 The Role of Performance

We can use the following equation to find MIPS:

Clock rate
MIPS = ---

CPI x 106

MIPS
lOO MHz

CPI x 106

To find overall CPI for each compiler, we start with the following:

CPI = CPU clock cycles
Instruction count

We can use an earlier formula for CPU clock cycles:

II
CPU clock cycles = L (CPI ; x C ;)

i = 1

After substituting into the first formula, we get:

CPI _,_· =_1 ____ _

Instruction count

We use this formula to compute the CPI values for the two code sequences:

6 (5 x l + l x 2 + 1 x 3) x 10 10
CPI 1 = = - = 1 428

(5 + 1 + 1) x 106 7
.

lOO MHz
MIPS 1 =

6
= 70.0

1 .428 x 10

6 (10 x l + l x 2 + 1 x 3) x 10 15
CPI 2 = = - = 1 .25

(10 + 1 + 1) x 106 12

lOO MHz
MIPS 2 =

6
= 80.0

1 .25 x 10

Hence, the code produced by Compiler 2 has a higher MIPS rating. Now
let's compute execution time using the formula:

2.4 Popular Performance Metrics 63

CPU time =
Instruction count x CPI

Clock rate

CPU time 1 =
(5 + 1 + 1) x 106 x 1 .43 7 x 1 .43

0.10 seconds
100 x 106 100

CPU time 2 =
(10 + 1 + 1) x 106 x 1 .25 12 x 1 .25

0.15 seconds
100 x 106 100

So, Compiler 1 is clearly faster-contrary to what we would conclude from
looking at MIPS!

We could also compute the performance ratio from the MIPS measure
ments and the instruction counts, using the formula from above:

Thus

Execution time =
Instruction count

CPU time 1

CPU time2

MIPS x 10 6

7 x 106

69.9 x 106

12 x 106

80.0 x 106

0.10 seconds

0.15 seconds

As examples such as this show, MIPS can fail to give a true picture of
performance-even when comparing two versions of the same program on the
same machine. One particularly misleading definition of MIPS is peak MIPS.
Peak MIPS is obtained by choosing an instruction mix that minimizes the CPI,
even if that instruction mix is totally impractical. In the example above, the
peak MIPS ratings are the same for both machines: 100 MIPS. To achieve a 100
MIPS rating with a 100 MHz clock, the CPI for the program must be 1. But the
only program that can have a CPI of 1, is a program consisting solely of type
A instructions! Thus peak MIPS tells us very little about the machine: it does
not indicate the actual MIPS rating, nor does it give any indication of actual
performance. In addition, the instruction mix used for peak MIPS may be to
tally useless. Although peak MIPS is an essentially useless measure, many
computer manufacturers have announced products using peak MIPS as a met
ric, often neglecting to include the word "peak"!

If we were trying to compare two machines with dissimilar instruction sets,
MIPS would be even more misleading, since the number of instructions re
quired could be very different; we'll see some examples of this in the next

64 Chapter 2 The Role of Performance

chapter. To compensate for this weakness, many people have chosen a defini
tion of MIPS that is relative to some agreed-upon reference machine. Relative
MIPS is defined as follows:

where

Time
R 1 t. MIPS =

reference X MIPS e a 1 v e . reference Time unrated

Time reference = Execution time of a program on the reference machine

Time unrated = Execution time of the same program on machine to be rated

MIPS reference = Agreed-upon MIPS rating of the reference machine

Relative MIPS tracks execution time only for a given program and a given
input. Even when these are identified, it becomes harder to find a reference
machine on which to run programs as the machine ages. (In the 1980s the dom
inant reference machine was the VAX-11 /780, which was called a 1-MIPS ma
chine and is now hard to find in operation.) Moreover, should the older
machine be run with the newest release of the compiler and operating system,
or should the software be fixed so the reference machine does not become fast
er over time? There is also the temptation to generalize from a relative MIPS
rating obtained using one benchmark to a general statement about relative
performance, even though there can be wide variations in performance of two
machines across a complete set of benchmarks.

In summary, the advantage of relative MIPS is small, since execution time,
program, and program input still must be known to obtain meaningful infor
mation, just as it would if seconds were used. Furthermore, although no one
would consider publishing an execution time without specifying the program
and its input, nearly everyone who chooses to use relative MIPS eventually
succumbs to the temptation either to publish MIPS ratings without additional
information or to replace relative MIPS with native or peak MIPS.

MFLOPS and What's Wrong with It

Another popular alternative to execution time is million floating-point opera
tions per second, abbreviated megaFLOPS or MFLOPS but always pronounced
"megaflops." The formula for MFLOPS is simply the definition of the acro
nym:

MFLOPS
Number of floating-point operations in a program

Execution time x 106

2.4 Popular Performance Metrics 65

A floating-point operation is an addition, subtraction, multiplication, or divi
sion operation applied to a number represented in a single or a double preci
sion floating-point representation. Such data items are heavily used in
scientific calculations and are specified in programming languages using key
words like float, real, double, or double precision. Chapter 4 discusses extensively
both representation and operations on floating-point numbers.

Clearly, a MFLOPS rating is dependent on the program. Different programs
require the execution of different numbers of floating-point operations. Since
MFLOPS were intended to measure floating-point performance, they are not
applicable outside that range. Compilers, as an extreme example, have a
MFLOPS rating near 0 no matter how fast the machine is, because compilers
rarely use floating-point arithmetic.

Because it is based on operations in the program rather than on instructions,
MFLOPS has a stronger claim than MIPS to being a fair comparison between
different machines. The key to this claim is that the same program running on
different computers may execute a different number of instructions but will al
ways execute the same number of floating-point operations. Unfortunately,
MFLOPS is not dependable because the set of floating-point operations is not
consistent across machines, and the number of actual floating-point operations
performed may vary. For example, the Cray-2 has no divide instruction, while
the Motorola 68882 has divide, square root, sine, and cosine. Thus several
floating-point operations are needed on the Cray-2 to perform a floating-point
division; whereas, on the Motorola 68882, a call to the sine routine, which
would require performing several floating-point operations on most ma
chines, would require only one operation.

Another potential problem is that the MFLOPS rating changes according
not only to the mixture of integer and floating-point operations but to the mix
ture of fast and slow floating-point operations. For example, a program with
100% floating-point adds will have a higher rating than a program with 100%
floating-point divides. The solution to both these problems is to define a meth
od of counting the number of floating-point operations in a high-level lan
guage program. This counting process can also weigh the operations, giving
more complex operations larger weights, allowing a machine to achieve a high
MFLOPS rating even if the program contains many floating-point divides.
These MFLOPS might be called normalized MFLOPS. Of course, because of the
counting and weighting, these normalized MFLOPS may be very different
from the actual rate at which a machine executes floating-point operations.

Like any other performance measure, the MFLOPS rating for a single pro
gram cannot be generalized to establish a single performance metric for a com
puter. The use of the same term to refer to everything from peak performance
(the maximum MFLOPS rate possible for any code segment), to the MFLOPS
rate for one benchmark, to a normalized MFLOPS rating only increases the

66 Chapter 2 The Role of Performance

confusion. The worst of these variants of MFLOPS, peak MFLOPS, is unrelated
to actual performance; the best variant is redundant to execution time, our
principal measure of performance. Yet, unlike execution time, it is tempting to
characterize a machine with a single MFLOPS rating without naming the pro
gram or input.

II Choosing Programs to Evaluate Performance

A computer user who runs the same programs day in and day out would be
the perfect candidate to evaluate a new computer. The set of programs run
would form a workload. To evaluate two computer systems, a user would sim
ply compare the execution time of the workload on the two machines. How
ever, most users are not in this situation. Instead, they must rely on other
methods that measure the performance of a candidate machine, hoping that
the methods will reflect how well the machine will perform with the user 's
workload. This is usually done by evaluating the machine using a set of
benchmarks, or programs chosen to measure performance. The benchmarks
form a workload that the user hopes will predict the performance of the
actual workload.

Today it is widely understood that the best type of programs to use for
benchmarks are real applications. These may be applications that the user em
ploys regularly or simply applications that are typical. For example, in an en
vironment where the users are primarily engineers, one might use a set of
benchmarks containing several typical engineering or scientific applications. If
the user community were primarily software development engineers, the best
benchmarks would probably include such applications as a compiler or docu
ment processing system. Using real applications as benchmarks makes it much
more difficult to find simple ways to speed up the execution of the benchmark.
Should we find such techniques, they are likely to help not only the bench
mark, but other applications as well.

The use of benchmarks whose performance depends on very small code
segments encourages optimizations in either the architecture or compiler that
target these segments. The compiler optimizations might recognize special
code fragments and generate an instruction sequence that is particularly effi
cient for this code fragment. Likewise, a designer might try to make some se
quence of instructions run especially fast, because the sequence occurs in a
benchmark. Recently, several companies have introduced compilers that take
a specific option (e.g., the name of the benchmark or a code describing it
uniquely) for certain well-known benchmarks. Whether the compiler would
produce good code, or even correct code, when real application programs use
these switches, is an open question.

2.5 Choosing Programs to Evaluate Performance 67

800

700

0 600 :;:; �
Q) 500 CJ c C1l E 400 :g Q) a. 300

(_) w a.. 200 (/)

100

0
gee espresso spice doduc nasa7 l i eqntott matrix300 fpppp tomcatv

Benchmark

FIGURE 2.3 SPEC performance ratios for the IBM Powerstatlon 550 using two different compilers. The higher
numbers on matrix300 (and nasa7) result from applying an optimization technique to these two kernel-oriented bench
marks. For the enhanced compiler, special flags are passed to the compiler for both nasa7 and matrix300, which are not
used for the other benchmarks. In both programs, the compiler transforms the program by blocking the matrix operations
that are in the inner loops. These blocking transformations substantially lower the number of memory accesses required
and transform the inner loops from having high cache miss rates to having almost negligible cache miss rates. Interestingly,
the original motivation for including matrix300 was to exercise the computer's memory system; however, this optimiza
tion basically reorganizes the program to minimize memory usage. This data appeared in two SPEC reports during the fall
and winter of 1991.

Small programs or programs that spend almost all their execution time in a
very small code fragment are especially vulnerable to such efforts. For exam
ple, the SPEC processor benchmark suite was chosen to use primarily real ap
plications (see section 2.9 for a further discussion of SPEC). However, the first
release of SPEC suite included a benchmark called matrix300, which consists
solely of a series of matrix multiplications. In fact, 99% of the execution time is
in a single line of this benchmark. The fact that so much time is spent in one
line doing the same computation many times has led several companies to
purchase or develop special compiler technology to improve the running time
of this benchmark. Figure 2.3 shows the performance ratios (inverse to execu
tion time) for one machine with two different compilers. The enhanced com
piler has essentially no effect on the running time of eight of the nine
benchmarks, but it improves performance on matrix300 by a factor of more
than nine. On matrix300, therefore, the program runs 729.8 times faster using
the enhanced compiler than the reference time obtained from a VAX-11 /780-
but the more typical performance of the machine is much slower. The other

68 Chapter 2 The Role of Performance

programs run from just over 30 times faster to just over 140 times faster. A user
expecting a program to run 700 times faster than it does on a VAX-11 /780
would likely be very disappointed! In 1992, there was a new release of the
SPEC benchmark suite and matrix300 was dropped.

So why doesn't everyone run real programs to measure performance? Small
benchmarks are attractive when beginning a design, since they are small
enough to compile and simulate easily, even by hand. They are especially
tempting when designers are working on a novel machine because compilers
may not be available until much later. Small benchmarks are also more easily
standardized than large programs, hence numerous published results are
available for small benchmark performance, but few for large ones.

Although the use of such small benchmarks early in the design process may
be justified, there is no valid rationale for using them to evaluate working com
puter systems. In the past, it was hard to obtain large applications that could
be easily ported to a machine, but this is no longer true. Using small programs
as benchmarks was an attempt to make fair comparisons among different ma
chines, but use of anything less than real programs after initial design studies
is likely to give misleading results and lure the designer astray.

Once we have selected a set of suitable benchmarks and obtained perfor
mance measurements, we can write a performance report. The guiding princi
ple in reporting performance measurements should be reproducibility-one
should list everything another experimenter would need to duplicate the re
sults. This must include the version of the operating system, compilers, and
the input, as well as the machine configuration. As an example, we include the
system description section of a SPEC benchmark report in Figure 2.4.

II Comparing and Summarizing Performance

Once we have selected programs to use as benchmarks and agreed on
whether we are measuring response time or throughput, you might think that
performance comparison would be straightforward. However, we must still
decide how to summarize the performance of a group of benchmarks.
Although summarizing a set of measurements results in less information,
marketers and even users often prefer to have a single number to compare
performance. The key question is, How should a summary be computed?
Figure 2.5, which is abstracted from an article about summarizing perfor
mance, illustrates some of the difficulties facing such efforts.

2.6 Comparing and Summarizing Performance

Model number:
CPU:
FPU:
Number of CPUs:
Cache size per CPU:
Memory:
Disk subsystem:
Network interface:

0 /S type and rev:
Compiler rev:

Other software:
File system type:
Firmware level :

Tuning parameters:
Background load:
System state:

Hardware

Powerstation 550
41.67 MHz POWER 4164
Integrated
1
64K data/SK instruction
64 MB
2 - 400 MB SCSI
NA

Software
AIX v3.1.5
AIX XL C/6000 Ver. 1 .1 .5
AIX XL Fortran Ver. 2 .2
None
AIX
NA

System

None
None
Multiuser (single-user login)

69

FIGURE 2.4 Sydem description of the machine used to obtain the higher performance
resuHs In Figure 2.3. A footnote attached to the entry for the Fortran compiler states: "AIX XL
Fortran Alpha Version 2.2 used for testing." Although no tuning parameters are indicated, addi
tional footnotes describe a number of special flags passed to the compilers for the benchmarks.

Computer A Compute; B�:":
Program 1 (seconds) 1 10

Program 2 (seconds) 1000 100

Total time (seconds) 1001 110

FIGURE 2.5 Execution times of two programs on two different machines. Taken from Fig
ure 1 of Smith (1988].

Using our definition of faster, the following statements hold for the program
measurements in Figure 2.5:

• A is 10 times faster than B for program 1 .

• B is 10 times faster than A for program 2.

Taken individually, each of these statements is true. Collectively, however,
they present a confusing picture-the relative performance of computers A
and B is unclear.

70 Chapter 2 The Role of Performance

Total Execution Time: A Consistent Summary Measure

The simplest approach to summarizing relative performance is to use total
execution time of the two programs. Thus

1001
B is llO

or 9 .1 times faster than A for programs 1 and 2.
This summary tracks execution time, our final measure of performance. If

the workload consists of running programs 1 and 2 an equal number of times,
this statement would predict the relative execution times for the workload on
each machine.

The average of the execution times that tracks total execution time is the
arithmetic mean (AM):

1
11

AM = - � Time .
n L... '

i = 1

where Timei is the execution time for the ith program of a total of n in the
workload. Since it is the mean of execution times, a smaller mean indicates a
smaller average execution time and thus improved performance.

The arithmetic mean tracks execution time by assuming that the programs
in the workload are each run an equal number of times. Is that the right work
load? If not, we can assign a weighting factor W; to each program to indicate
the frequency of the program in that workload. If, for example, 20% of the
tasks in the workload were program 1 and 80% of the tasks in the workload
were program 2, then the weighting factors would be 0.2 and 0.8. By summing
the products of weighting factors and execution times, we can obtain a clear
picture of the performance of the workload. This is called the weighted arith
metic mean. One method of weighting programs is to choose weights so that the
execution time of each benchmark is equal on the machine used as the base.
We will explore the weighted mean in more detail in Exercises 2.25 and 2.26.

• Fallacles and Pltfalls

Cost/performance fallacies and pitfalls have ensnared many a computer
architect, including ourselves. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that has trapped many designers
and reveals an important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a machine to increase perfor
mance by an amount proportional to the size of the improvement.

2. 7 Fallacles and Pltfalls 71

This pitfall has visited designers of both hardware and software. A simple
design problem illustrates it well. Suppose a program runs in 100 seconds on
a machine, with multiply operations responsible for 80 seconds of this time.
How much do I have to improve the speed of multiplication if I want my pro
gram to run five times faster?

The execution time of the program after I make the improvement is given
by the following simple equation:

Execution time after improvement = (Execution time affected by improvement) ----------------- + Execution time unaffected
Amount of improvement

For this problem:

80 seconds
Execution time after improvement = + (100 - 80 seconds)

n

Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

80 seconds
20 d 20 seconds = + secon s

n

80 seconds
0 =

n

That is, there is no amount by which we can enhance multiply to achieve a
fivefold increase in performance, if multiply accounts for only 80% of the
workload. The performance enhancement possible with a given improvement
is limited by the amount that the improved feature is used. This concept is
referred to as Amdahl's Law. We'll see some other implications of this relation
ship in Exercises 2.32 through 2.35.

A common theme in hardware design is a corollary of Amdahl's Law: Make
the common case fast. This simple guideline reminds us that in many cases the
frequency with which one event occurs may be much higher than another.
Amdahl's Law reminds us that the opportunity for improvement is affected by
how much time the event consumes. Thus, making the common case fast will
tend to enhance performance better than optimizing the rare case. Ironically,
the common case is often simpler than the rare case and hence is often easier
to enhance.

Fallacy: Hardware-independent metrics predict performance.

Because accurately predicting and comparing performance is so difficult,
many designers and researchers have tried to devise methods to assess perfor
mance that do not rely on measurements of execution time. These methods are

72 Chapter 2 The Role of Performance

------------ CDC 6600

- 85500

Time Instructions Size

FIGURE 2.6 As found on the cover of Assessing the Speed of Algol 60 by B. A. Wich
mann. The graph shows relative execution time, instruction count, and code size of programs
written in Algol 60 for the Burroughs B5500 and the CDC 6600. The results are normalized to a
reference machine, with a higher number indicating slower performance. The CDC 6600 was
designed later than the B5500 and had a shorter clock cycle, but that accounts for only part of the
difference. The CDC 6600 and B5500 are discussed further in the Historical Perspective sections
of Chapters 1 and 3.

frequently employed when designers compare different instruction sets to fac
tor out the effects of different implementations or software systems and arrive
at conclusions about the performance obtainable for different instruction sets.

One such method, which has been used in the past, is to use code size as a
measure of speed. With this method, the instruction set architecture with the
smallest program is fastest. The size of the compiled program is, of course, im
portant when memory space is at a premium, but it is not the same as perfor
mance. In fact, today, the fastest machines tend to have instruction sets that
lead to larger programs but can be executed faster with less hardware.

Evidence of the fallacy of using code size to measure speed can be found on
the cover of the well-known book, shown in Figure 2.6. The CDC 6600's pro
grams are over three times as big, yet the CDC machine runs Algol 60 pro
grams almost six times faster than the Burroughs 85500, a machine designed
for Algol 60.

Compiler writers sometimes use code size to choose between two different
code segments on the same architecture. While this is less misleading than try
ing to compare code size across architectures, the accuracy of predicting per
formance from code size can vary widely.

2. 7 Fallacies and Pitfalls 73

Pitfall: Comparing computers using only one or two of three performance metrics:
clock rate, CPI, and instruction count.

The processor performance equation shows why such comparisons can
mislead. Again, Figure 2.6 provides an example: the CDC 6600 executes al
most 1 .5 times as many instructions as the Burroughs B5500, yet it is 6.5 times
faster. Another example comes from increasing the clock rate while making
design decisions that also result in a high overall CPI that offsets the clock rate
advantage. The Intergraph Clipper ClOO had a clock rate of 33 MHz and a per
formance of 33 peak MIPS-the maximum performance rate for some sequence
of instructions. Yet the Sun 4/280, with half the clock rate and half the peak
MIPS rating, ran programs faster. Since the Clipper's instruction count is about
the same as the Sun's, the former machine's CPI must be more than double that
of the latter.

Pitfall: Using peak performance to compare machines.

When the Intel i860 was announced in February 1989, the product an
nouncement used the peak performance of the processor to compare perfor
mance against other machines. The i860 was able to execute up to two floating
point operations and one integer operation per clock. With a clock rate target
of 50 MHz the i860 was claimed to offer 100 MFLOPS and 150 MOPS (millions
of operations per second). The first i860-based systems (using 40-MHz parts)
became available for benchmarking during the first quarter of 1991 . By com
parison, a MIPS machine based on a 33-MHz R3000 processor, available at
about the same time, had a peak performance of about 16 MFLOPS and 33
MOPS. Although the peak performance claims might suggest that the i860-
based machine was more than five times faster than the R3000-based machine,
the SPEC benchmarks showed that the R3000-based machine was actually
about 15% faster!

Fallacy: Synthetic benchmarks predict performance.

Synthetic benchmarks are artificial programs that are constructed to try to
match the characteristics of a large set of programs. The goal is to create a sin
gle benchmark program where the execution frequency of statements in the
benchmark matches the statement frequency in a large set of benchmarks.
Whetstone and Dhrystone are the most popular synthetic benchmarks. Whet
stone was based on measurements of ALGOL programs in a scientific and en
gineering environment. It was later converted to FORTRAN and became
popular. Dhrystone, which was inspired by Whetstone, was created as a
benchmark for systems programming environments and was based on a set of
published frequency measurements. Dhrystone was originally written in Ada
and later converted to C, after which it became popular.

One major drawback of synthetic benchmarks is that no user would ever
run a synthetic benchmark as an application, because these programs don't

74 Chapter 2 The Role of Performance

compute anything a user would find remotely interesting. Furthermore, be
cause synthetic benchmarks are not real programs, they usually do not reflect
program behavior, other than the behavior considered when they were creat
ed. Finally, compiler and hardware optimizations can inflate performance of
these benchmarks, far beyond what the same optimizations would achieve on
real programs. Of course, because these benchmarks are not natural programs,
they may not reward optimizations of behavior that occur in real programs.
Here are some examples of how Dhrystone may distort the importance of var
ious optimizations:

• Optimizing compilers can easily discard 25% of the Dhrystone code; ex
amples include loops that are executed only once, making the loop over
head instructions unnecessary. To address these problems, the authors
of the benchmark "require" both optimized and unoptimized code to be
reported. In addition, they "forbid" the practice of inline-procedure ex
pansion optimization, because Dhrystone's simple procedure structure
allows elimination of all procedure calls at almost no increase in code
size.

• One C compiler appears to include optimizations targeted just for Dhry
stone. If the proper option flag is set at compile time, the compiler turns
the portion of the C version of this benchmark that copies a variable
length string of bytes (terminated by an end-of-string symbol) into a
loop that transfers a fixed number of words, assuming the source and
destination of the string is word-aligned in memory. Although an esti
mated 99.70% to 99.98% of typical string copies could not use this opti
mization, this single change can make a 20% to 30% improvement in
Dhrystone's overall performance.

The small size and simplistic structure of synthetic benchmarks makes them
especially vulnerable to this type of activity.

Pitfall: Using the arithmetic mean of normalized execution times to predict perfor
mance.

This pitfall has trapped many researchers, including one of the authors. An
inviting method of presenting machine performance is to normalize execution
times to a reference machine, similar to the relative MIPS rating discussed ear
lier, and then take the average of the normalized execution times. However, if
we average the normalized execution time values with an arithmetic mean, the
result will depend on the choice of the machine we use as a reference. For
example, in Figure 2.7 the execution times from Figure 2.5 are normalized to
both A and B, and the arithmetic mean is computed. When we normalize to A,
the arithmetic mean indicates that A is faster than B by 5.05/1 , which is the
inverse ratio of the execution times. When we normalize to B, we conclude that
B is faster by exactly the same ratio. Clearly, both these results cannot be correct!

2. 7 Fallacies and Pitfalls 75

Program 1 1 10 1 10 0.1 1

Program 2 1000 100 1 0.1 10 1

Arithmetic mean 500.5 55 1 5.05 5.05 1

Geometric mean 31.6 31.6 1 1 1 1

FIGURE 2.7 Execution times from Figure 2.5 normallzed to each machine. While the arith
metic means vary when we normalize to either A or B, the geometric means are consistent, inde
pendent of normalization.

The difficulty arises from the use of the arithmetic mean of ratios. Instead,
normalized results should be combined with the geometric mean. The formula
for the geometric mean is

n

n IT Execution time ratio i
i = 1

where Execution time ratioi is the execution time, normalized to the reference
machine, for the ith program of a total of n in the workload. Note the follow
ing:

n IT a i means the product: a1 x a2 x . . . x an
i = 1

The geometric mean is independent of which data series we use for normal-
ization because it has the property

Geometric mean (X) (X .) ---------'- = Geometric mean -'
Geometric mean (Y) Yi

meaning that taking either the ratio of the means or the means of the ratios
produces the same results. Thus the geometric mean produces the same
result whether we normalize to A or B, as we can see in the bottom row of
Figure 2.7 .When execution times are normalized, only a geometric mean can
be used to consistently summarize the normalized results.

Fallacy: The geometric mean of execution-time ratios tracks total execution time.

The advantage of the geometric mean is that it is independent of the run
ning times of the individual programs, and it doesn't matter which machine is
used for normalization. However, the drawback to using geometric means of
execution times is that they violate our fundamental principle of performance
measurement-they do not predict execution time. The geometric means in

76 Chapter 2 The Role of Performance

Figure 2.7 suggest that for programs 1 and 2 the performance is the same for
machines A and B. Yet, the arithmetic mean of the execution times, which we
know tracks total execution time, suggests that machine B is 9.1 times faster
than machine A! If we use total execution time as the performance measure, A
and B would have the same performance only for a workload that ran the first
program 100 times more often than the second program.

In general, no workload for three or more machines will match the perfor
mance predicted by the geometric mean of normalized execution times. The
ideal solution is to measure a real workload and weight the programs accord
ing to their frequency of execution. If this can't be done, normalizing so that
equal time is spent on each program on some machine at least makes the rela
tive weightings explicit and predicts execution time of a workload with that
mix. If results must be normalized to a specific machine, first summarize per
formance with the proper weighted measure and then do the normalizing.

II Concluding Remarks

Although we have focused on performance and how to evaluate it in this
chapter, designing only for performance without considering cost is unrealis
tic. All computer designers must balance performance and cost. Of course,
there exists a domain of high-performance design, in which performance is the
primary goal and cost is secondary. Much of the supercomputer industry
designs in this fashion. At the other extreme is low-cost design, where cost
takes precedence over performance. Computers like the low-end IBM PC
clones belong here. Between these extremes is cost/performance design, in
which the designer balances cost against performance. Examples from the
workstation industry typify the kinds of trade-offs that designers in this
region must live with.

We have seen in this chapter that there is a reliable method of determining
and reporting performance, using the execution time of real programs as the
metric. This execution time is related to other important measurements we can
make by the following equation:

Seconds Instructions Clock cycles Seconds
= x x -----

Program Program Instruction Clock cycles

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: Only the
product, which equals execution time, is a reliable measure of performance.

Of course, simply knowing this equation is not enough to guide the design
or evaluation of a computer. We must understand how the different aspects of
a design affect each of these key parameters. This involves a wide variety of

2.9 Historical Perspective and Further Reading 77

issues from the effects of instruction set design on dynamic instruction count,
to the impact of pipelining and memory systems on CPI, to the interaction be
tween the technology and organization that determine the clock rate. The art
of computer design lies not in plugging numbers into a performance equation,
but in accurately determining how design alternatives will affect performance
and cost.

Most computer users care about both cost and performance, and while un
derstanding the relationship among aspects of a design and its performance is
challenging, determining the cost of various design features is often a more
difficult problem. The cost of a machine is affected not only by the cost of the
components, but by the costs of labor to assemble the machine, of research and
development overhead, of sales and marketing, and of the profit margin. Fi
nally, because of the rapid change in implementation technologies, the most
cost-effective choice today is often sub-optimal in six months or a year.

Computer designs will always be measured by cost and performance and
finding the best balance will always be the art of computer design, just as in
any engineering task.

• Historical Perspective and Further Reading

From the earliest days of computing, designers have specified performance
goals-ENIAC was to be 1000 times faster than the Harvard Mark I, and the
IBM Stretch (7030) was to be 100 times faster than the fastest machine then in
existence. What wasn't clear, though, was how this performance was to be
measured.

The original measure of performance was the time required to perform an
individual operation, such as addition. Since most instructions took the same
execution time, the timing of one was the same as the others. As the execution
times of instructions in a machine became more diverse, however, the time re
quired for one operation was no longer useful for comparisons. To take these
differences into account, an instruction mix was calculated by measuring the
relative frequency of instructions in a computer across many programs. Mul
tiplying the time for each instruction by its weight in the mix gave the user the
average instruction execution time. (If measured in clock cycles, average instruc
tion execution time is the same as average CPL) Since instruction sets were
similar, this was a more precise comparison than add times. From average in
struction execution time, then, it was only a small step to MIPS. MIPS had the
virtue of being easy to understand, hence it grew in popularity.

The development of relative MIPS as a popular performance measurement
demonstrates that benchmarking does not necessarily evolve in a logical fash
ion. In the 1970s, MIPS was being used as a way to compare the performance

78 Chapter 2 The Role of Performance

of IBM 360/370 implementations. Because the measure was used to compare
identical architectures (and hence identical instruction counts), it was a valid
metric. The notion of relative MIPS came along as a way to extend the easily
understandable MIPS rating. In 1977, when the VAX-11 /780 was ready to be
announced, DEC ran small benchmarks that were also run on an IBM 370/158.
IBM marketing referred to the 370/158 as a 1-MIPS computer and, since the
programs ran at the same speed, DEC marketing called the VAX-11 /780 a
1-MIPS computer.

The popularity of the VAX-11/780 made it a popular reference machine for
relative MIPS, especially since relative MIPS for a 1-MIPS reference machine is
easy to calculate. If a machine was five times faster than the VAX-11 /780, its
rating for that benchmark would be 5 relative MIPS. The 1-MIPS rating was
widely believed for four years until Joel Erner of DEC measured the VAX-
11 /780 under a timesharing load. Erner found that the actual VAX-11/780
MIPS rate was 0.5. Subsequent VAXs that run 3 million VAX instructions per
second for some benchmarks were therefore called 6-MIPS machines because
they run 6 times faster than the VAX-11 /780. In the late 1980s, DEC began us
ing VAX units of performance (VUP), meaning performance relative to that of the
VAX-11 /780, so 6 relative MIPS became 6 VUPs.

The 1970s and 1980s marked the growth of the supercomputer industry,
which was defined by high performance on floating-point-intensive pro
grams. Average instruction time and MIPS were clearly inappropriate metrics
for this industry; hence the invention of MFLOPS. Unfortunately, customers
quickly forgot the program used for the rating, and marketing groups decided
to start quoting peak MFLOPS in the supercomputer performance wars.

As processors were becoming more sophisticated and relied on memory hi
erarchies and pipelining, a single execution time for each instruction no longer
existed; neither execution time nor MIPS, therefore, could be calculated from
the instruction mix and the manual. While it might seem obvious today that
the right thing to do would have been to develop a set of real applications that
could be used as standard benchmarks, this was a difficult task until relatively
recent times. Variations in operating systems and language standards made it
hard to create large programs that could be moved from machine to machine
simply by recompiling. Instead, the next step was benchmarking using syn
thetic programs. The Whetstone synthetic program was created by measuring
scientific programs written in Algol 60 (see Curnow and Wichman's [1976] de
scription). This program was converted to Fortran and was widely used to
characterize scientific program performance. Whetsone performance is typi
cally quoted in Whetstones per second-the number of executions of one iter
ation of the Whetsone benchmark! Dhrystone was developed much more
recently (see Weicker's [1984] description and methodology).

2.9 Historical Perspective and Further Reading 79

About the same time Whetstone was developed, the concept of kernel bench
marks gained popularity. Kernels are small, time-intensive pieces from real
programs that are extracted and then used as benchmarks. This approach was
developed primarily for benchmarking high-end machines, especially super
computers. Livermore Loops and Linpack are the best known examples. The
Livermore Loops consist of a series of 21 small loop fragments. Linpack con
sists of a portion of a linear algebra subroutine package. Kernels are best used
to isolate the performance of individual features of a machine and to explain
the reasons for differences in the performance of real programs. Because scien
tific applications often use small pieces of code that execute for a long period
of time, characterizing performance with kernels is most popular in this appli
cation class. Although kernels help illuminate performance, they often over
state the performance on real applications. For example, today's super
computers often achieve a high percentage of their peak performance on such
kernels. However, when executing real applications, the performance often is
only a small fraction of the peak performance.

Another misstep on the way to developing better benchmarking methods,
was the use of toy programs as benchmarks. Such programs typically have be
tween 10 and 100 lines of code and produce a result the user already knows be
fore running the toy program. Programs like Sieve of Erastosthenes, Puzzle,
and Quicksort are popular because they are small, easy to compile, and run on
almost any computer. These programs became quite popular in the early
1980s, when universities were engaged in designing the early RISC machines.
The small size of these programs made it easy to compile and run them on sim
ulators. Unfortunately, your authors have to admit that they played a role in
popularizing such benchmarks, by using them to compare performance and
even collecting sets of such programs for distribution. Even more unfortunate
ly, some people continue to use such benchmarks-much to our embarrass
ment! However, we can report that we have learned our lesson and we now
understand that the best use of such programs is as beginning programming
assignments.

Almost every issue that involves measuring and reporting performance has
been controversial, including the question of how to summarize performance.
The methods used have included the arithmetic mean of normalized perfor
mance, the harmonic mean of rates, the geometric mean of normalized execu
tion time, and the total execution time. Several references listed in the next
section discuss this question, including Smith's [1988] article, whose proposal
is the approach used in section 2.6.

A promising development in performance evaluation was the formation of
the System Performance Evaluation Cooperative, or SPEC, group in 1988.
SPEC comprises representatives of many computer companies-the founders
being Apollo/Hewlett-Packard, DEC, MIPS, and Sun-who have agreed on a

80 Chapter 2 The Role of Performance

set of real programs and inputs that all will run. It is worth noting that SPEC
couldn't have come into being before portable operating systems and the pop
ularity of high-level languages. Now compilers, too, are accepted as a proper
part of the performance of computer systems and must be measured in any
evaluation.

History teaches us that while the SPEC effort is useful with current comput
ers, it will not meet the needs of the next generation without changing. In 1991,
a throughput measure was added, based on running multiple versions of the
benchmark. It is most useful for evaluating timeshared usage of a uniprocessor
or a multiprocessor. Other system benchmarks that include OS- and I/0-in
tensive activities have also been added. Another change, motivated in part by
the kind of results shown in Figure 2.3, was the decision to drop matrix300 and
to add more benchmarks. One result of the difficulty in finding benchmarks
was that the initial version of the SPEC benchmarks (called SPEC89) contained
six floating-point benchmarks but only four integer benchmarks. Calculating
a single SPECMark, using the geometric mean of execution times normalized
to a VAX-11 /780, meant that this measure favored machines with strong float
ing-point performance.

In 1992, a new benchmark set (called SPEC92) was introduced. It incorpo
rated additional benchmarks, dropped matrix300, and provided separate
means (SPECINT and SPECFP) for integer and floating-point programs. To ad
dress the lack of good benchmarks for supercomputing applications, an effort
similar to SPEC, called the Perfect Club, was created by the University of Illi
nois. Like the SPEC benchmark set, the Perfect Club benchmarks consist of a
selection of real applications, aimed at the scientific and engineering environ
ments.

Creating and developing such benchmark sets has become difficult and
time-consuming. Although SPEC was initially created as a good faith effort by
a group of companies, it became important to competitive marketing and sales
efforts. The selection of benchmarks and the rules for running them are made
by representatives of the companies that compete by advertising test results.
Conflicts between the companies' perspectives and those of consumers natu
rally arise. Perhaps in the future the decisions about such performance bench
marks should be made by, or at least include, a neutral group.

To Probe Further

Curnow, H. J., and B. A. Wichman [1976]. "A synthetic benchmark," The Computer J. 19 (1): 80.

Describes the first major synthetic benchmark, Whetstone, and how it was created.

Flemming, P. J., and J. J. Wallace [1986]. "How not to lie with statistics: The correct way to sum
marize benchmark results," Comm. ACM 29:3 (March) 218-21 .

Describes some of the underlying principles in using different means to summarize performance results.

2.10 Exercises 81

McMahon, F. M. [1986]. "The Livermore FORTRAN kernels: A computer test of numerical per
formance range," Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of
California, Livermore, Calif. (December).

Describes the Livermore Loops-a set of Fortran kernel benchmarks.

Smith, J. E . [1988]. "Characterizing computer performance with a single number," Comm. ACM
31:10 (October) 1202--06.

Describes the difficulties of summarizing performance with just one number and argues for total execution
time as the only consistent measure.

SPEC [1989]. "SPEC Benchmark Suite Release 1 .0," Santa Clara, Calif., October 2, 1989.

Describes the SPEC benchmark suite.

Weicker, R. P. [1984]. "Dhrystone: A synthetic systems programming benchmark," Comm. ACM
27:10 (October) 1013-30.

Describes the Dhrystone bencl1mark and its construction .

• Exercises

2.1 [5] <§2.1> We wish to compare the performance of two different
systems: Sl and S2. System Sl costs $10,000 and System 2 costs $15,000. The
following measurements have been made on these systems:

We say one machine is more cost effective than another if the ratio of perfor
mance divided by cost is higher.

One user cares only about the performance of program 1 . Which machine is
more cost effective for running only program 1? By how much?

2.2 [5] <§2.1> Another user is concerned with throughput of the systems in
Exercise 2.1, as measured with an equal workload of programs 1 and 2. Which
system has better performance for this workload? By how much? Which sys
tem is more cost effective for this workload? By how much?

2.3 [10] <§2.1> Yet another user has the following requirements for the sys
tems discussed in Exercise 2 .1 : Program 1 must be executed 200 times each

82 Chapter 2 The Role of Performance

hour. Any remaining time can be used for running program 2. If the system
has enough performance to execute program 1 the required number of times
per hour, performance is measured by the throughput for program 2. Which
system is faster for this workload? Which system is more cost effective?

2.4 [5] <§2.2-2.3> Consider the two systems and programs in Exercise 2.1 .
The following additional measurements were made:

20 x 106

Find the instruction execution rate (instructions per second) for each machine
when running program 1 .

2.5 [5] <§2.2-2.3> I f the clock rate of system Sl in Exercise 2.1 is 20 MHz and
the clock rate of system 52 in Exercise 2.1 is 30 MHz, find the clock cycles per
instruction (CPI) for program 1 on both systems using the data in exercises 2.1
and 2.4.

2.6 [5] <§2.2-2.3> {ex. 2.5) Assuming the CPI for program 2 on each machine
in Exercise 2.1 is the same as the CPI for program 1 found in Exercise 2.5, find
the instruction count for program 2 running on each machine using the execu
tions times from Exercise 2 .1 .

2. 7 [5] <§2.2-2.3> Consider two different implementations, Ml and M2, of the
same instruction set. There are four classes of instructions (A, B, C, and D) in
the instruction set.

Ml has a clock rate of 50 MHz. The average number of cycles for each instruc
tion class on Ml is as follows:

Class CPI for this class

A 1

B 2

c 3

D 4

2.10 Exercises 83

M2 has a clock rate of 75 MHz. The average number of cycles for each instruc
tion class on M2 is as follows:

Class CPI for this c lass
A 2

B 2

c 4

D 4

Assume peak performance is defined as the fastest rate that a machine could
execute an instruction sequence chosen to maximize that rate. What are the
peak performances of Ml and M2 expressed as instructions per second?

2.8 [10] <§2.2-2.3> If the number of instructions executed in a certain pro
gram is divided equally among the classes of instructions in Exercise 2.7, how
much faster is M2 than Ml?

2.9 [5] <§2.2-2.3> !ex. 2.8) Assuming the CPI values from Exercise 2 .7 and the
instruction distribution from Exercise 2.8, at what clock rate would Ml have
the same performance as the 75-MHz version of M2?

2.10 [10] <§2.2-2.4> We are interested in two implementations of a machine,
one with and one without special floating-point hardware.

Consider a program, P, with the following mix of operations:

floating-point multiply 10%
floating-point add 15%
floating-point divide 5%
Integer instructions 70%

Machine MFP (Machine with Floating Point) has floating-point hardware and
can therefore implement the floating-point operations directly. It requires the
following number of clock cycles for each instruction class:

floating-point multiply 6
floating-point add 4
floating-point divide 20
Integer instructions 2

84 Chapter 2 The Role of Performance

Machine MNFP (Machine with No Floating Point) has no floating-point hard
ware and so must emulate the floating-point operations using integer instruc
tions. The integer instructions all take 2 clock cycles. The number of integer
instructions needed to implement each of the floating-point operations is as
follows:

floating-point multiply 30
floating-point add 20
floating-point divide 50

Both machines have a clock rate of 100 MHz. Find the native MIPS ratings for
both machines.

2.11 [10] <§2.2-2.4> If the machine MFP in Exercise 2.10 needs 300,000,000 in
structions for this program, how many integer instructions does the machine
MNFP require for the same program?

2.12 [5] <§2.2-2.4> {ex. 2.1 1) Assuming the instruction counts from Exercise
2.11, what is the execution time (in seconds) for the program in Exercise 2.10
run on MFP and MNFP?

2.13 [5] <§2.4> {ex. 2.12) Assuming that each floating-point operation counts
as 1, and that MFP executes 300,000,000 instructions, find the MFLOPS rating
for both machines in Exercise 2.10.

2.14 [10] <§2.3-2.4> You are the lead designer of a new processor. The pro
cessor design and compiler are complete and now you must decide whether
to produce the current design as it stands or spend additional time to improve
it.

You discuss this problem with your hardware engineering team and arrive at
the following options:

a. Leave the design as it stands. Call this base machine Mbase. It has a clock
rate of 50 MHz, and the following measurements have been made using a
simulator:

A 2 40%
B 3 25%
c 3 25%
D 5 10%

2.10 Exercises 85

b. Optimize the hardware. The hardware team claims that it can improve the
processor design to give it a clock rate of 60 MHz. Call this machine Mopt.
The following measurements were made using a simulator for Mopt:

A 2 40%

8 2 25%
c 3 25%

D 4 10%

What is the CPI for each machine?

2.15 [5] <§2.3-2.4> {ex. 2.14) What are the native MIPS ratings for Mbase and
MOpt in Exercise 2.14?

2.16 [10] <§2.3-2.4> {ex. 2.14) How much faster is Mopt in Exercise 2.14 than
Mbase?

2.17 [5] <§2.3-2.4> The compiler team has heard about the discussion to en
hance the machine discussed in Exercises 2.14 -2.16 . The compiler team pro
poses to improve the compiler for the machine to further enhance
performance. Call this combination of the improved compiler and the base
machine Mcomp. The instruction improvements from this enhanced compiler
have been estimated as follows:

�ti'Q;;: �Perce���of;insyu�ti.o_n�. e�ecuted �-,y�� r.- .,,... r h '" .. ·:< -s � vs., base,mac . l!'le,�-._. .. :. -i:
A 90%

8 90%
c 85%

D 95%

For example, if the base machine executed 500 class A instructions, Mcomp
would execute 0.9 x 500 = 450 class A instructions for the same program.

What is the CPI for Mcomp?

2.18 [5] <§2.3-2.4> {ex. 2.14, 2.17) Using the data of Exercise 2.14, how much
faster is Mcomp than Mbase?

2.19 [10] <§2.3-2.4> {ex. 2.14, 2.17, 2.18) The compiler group points that it is
possible to implement both the hardware improvements of Exercise 2.14 and
the compiler enhancements described in Exercise 2.17. If both the hardware

86 Chapter 2 The Role of Performance

and compiler improvements are implemented, yielding machine Mboth, how
much faster is Mboth than Mbase?

2.20 [10] <§2.3-2.4> lex. 2.14, 2 .17, 2.18, 2.19} You must decide whether to in
corporate the hardware enhancements suggested in Exercise 2.14 or the com
piler enhancements of Exercise 2.17 (or both) to the base machine described in
Exercise 2.14. You estimate that the following time would be required to im
plement the optimizations described in Exercises 2.14, 2.17, and 2.19:

Hardware 6 months Mo pt
Compiler 6 months Mcomp

Both 8 months Mboth

Recall from Chapter 1 that CPU performance improves by approximately 50%
per year, or about 3.4% per month. Assuming that the base machine has per
formance equal to that of its competitors, which optimizations (if any) would
you choose to implement?

2.21 [5] <§2.4, 2.6> The table below shows the number of floating-point oper
ations executed in two different programs and the runtime for those programs
on three different machines:

100,000,000 20

Which machine is fastest according to total execution time? How much faster
is it than the other two machines?

2.22 [5] <§2.4, 2.6> Find the MFLOPS ratings for each program on each ma
chine in Exercise 2.21, assuming that each floating-point operation counts as
1 FLOP.

2.23 [5] <§2.6, 2.7> You wonder how the performance of the three machines
in Exercise 2.22 would compare using other means to normalize performance.

Which machine is fastest by the geometric mean?

2.24 [15] <§2.6, 2.7> lex. 2.23} Find a workload for the two programs of Exer
cise 2.21 that will produce the same performance summary using total execu
tion time of the workload as the geometric mean of performance computed in

2.10 Exercises 87

Exercise 2.23. Give the workload as a percentage of executions of each pro
gram for the pairs of machines: A and B, B and C, and A and C.

2.25 [15] <§2.6, 2.7> One user has told you that the two programs in Exercises
2.22-2.23 constitute the bulk of his workload, but he does not run them equal
ly. The user wants to determine how the three machines compare when the
workload consists of different mixes of these two programs. You know you
can use the arithmetic mean to find the relative performance.

Suppose the total number of FLOPS executed in the workload is equally
divided among the two programs. That is, program 1 is run 10 times as often
as program 2. Find which machine is fastest for this workload and by how
much. How does this compare with the total execution time for a workload
with equal numbers of program executions?

2.26 [15] <§2.6, 2.7> An alternative weighting to that of Exercise 2.25 is to as
sume that equal amounts of time will be spent running each program on some
machine. Which machine is fastest using the data of Exercise 2.21 and assum
ing a weighting that generates equal execution time for each benchmark on
machine A? Which machine is fastest if we assume a weighting that generates
equal execution time for each benchmark on machine B? How do these results
compare with the unweighted performance summaries?

2.27 [15] <§2.6> If performance is expressed as a rate, then a higher rating and
a higher average indicate better performance. When performance is expressed
as a rate, the average that tracks total execution time is the harmonic mean
(HM):

HM
n

n 1 L Rate . i = 1 1

Each Rate; is l /Time ; , where Timei is the execution time for the ith of n pro
grams in the workload. Prove that the harmonic mean of a set of rates tracks
execution time by showing that it is the inverse of the arithmetic mean of the
corresponding execution times.

2.28 [3 hours] <§2.5> Pick two computers, A and B, and run the Dhrystone
benchmark and some substantial C program, such as the C compiler, calling
this program P. Try running the two programs using no optimization and
maximum optimization. Then calculate the following performance ratios:

a. Unoptimized Dhrystone on machine A versus unoptimized Dhrystone
on machine B.

88 Chapter 2 The Role of Performance

b. Unoptimized P on A versus unoptimized P on B.

c. Optimized Dhrystone on A versus optimized Dhrystone on B.

d. Optimized P on A versus optimized P on B.

e. Unoptimized Dhrystone versus optimized Dhrystone on machine A.

f. Unoptimized P versus optimized P on A.

g. Unoptimized Dhrystone versus optimized Dhrystone on B.

h. Unoptimized P versus optimized P on B.

We want to explore whether Dhrystone accurately predicts the performance
of other C programs. If Dhrystone does predict performance, then the follow
ing equations should be true about the ratios:

(a) = (b l and (c l = (d)

If Dhrystone accurately predicts the value of compiler optimizations for real
programs, then

(e l = (f l and (g) = (h)

Determine which of the above relationships hold. For the situations where the
relationships are not close, try to find the explanation. Do features of the
machines, the compiler optimizations, or the differences between P and Dhry
stone explain the answer?

2.29 [3 hours] <§2.5> Perform the same experiment as in Exercise 2.33, replac
ing Dhrystone with Whetstone and choosing a floating-point program written
in Fortran to replace P.

2.30 [4 hours] <§2.4> Devise a program in C or Pascal that determines the
peak MIPS rating for a computer. Run it on two machines to calculate the peak
MIPS. Now run a real C or Pascal program such as a compiler on the two ma
chines. How well does peak MIPS predict performance of the real program?

2.31 [4 hours] <§2.4> Devise a program in C or Fortran that determines the
peak MFLOPS rating for a computer. Run it on two machines to calculate the
peak MFLOPS. Now run a real floating-point program on both machines. How
well does peak MFLOPS predict performance of the real floating-point pro
gram?

2.10 Exercises 89

In More Depth: Amdahl's Law

Amdahl's Law is sometimes given in another form that yields the speedup.
Speedup is the measure of how a machine performs after some enhancement
relative to how it previously performed. Thus, if some feature yields a
speedup ratio of 2, performance with the enhancement is twice that before the
enhancement. Hence, we can write

Performance after improvement
Speedup = -----------

Performance before improvement
Execution time before improvement
Execution time after improvement

The earlier version of Amdahl's Law was given as

Execution time after improvement = (Execution time affected by improvement) ----------------- + Execution time unaffected
Amount of improvement

For the following problems, suppose we enhance a machine making all float
ing-point instructions run five times faster. Let's look at how speedup behaves
when we incorporate the faster floating-point hardware.

2.32 [5] <§2.7> If the execution time of some benchmark before the floating
point enhancement is 10 seconds, what will the speedup be if half of the 10 sec
onds is spent executing floating-point instructions?

2.33 [10] <§2.7> We are looking for a benchmark to show off the new floating
point unit described above, and we want the overall benchmark to show a
speedup of 3. One benchmark we are considering runs for 100 seconds with
the old floating-point hardware. How much of the initial execution time
would floating-point instructions have to account for to show an overall
speedup of 3 on this benchmark?

90 Chapter 2 The Role of Performance

2.34 [10] <§2.7> Assuming that we make floating point five times faster, plot
the speedup from this change, versus the fraction of time in the original pro
gram spent doing floating-point operations on a graph of the following form:

Cl. :J "O Q) Q) Cl.
Cf)

5.0

4.0

3.0

2.0

1.0

0.00 0.25 0.50 0.75 1.00

Fraction of time spent doing floating-point
operations in the original

2.35 [20] <§2.7> Amdahl's Law is often written as overall speedup as a func
tion of two variables: the size of the enhancement (or amount of improve
ment) and the fraction of the original execution time that the enhanced feature
is being used. Derive this form of the equation from the two equations above.

�- 1-

I speak Spanish to God,
Italian to women,
French to men,
and German to my horse.

Charles V, King of France
1337-1380

Instructions:

Language of

the Machine

3.1 Introduction 94

3.2 Operations of the Computer Hardware 95

3.3 Operands of the Computer Hardware 97

3.4 Representing Instructions in the Computer 103

3.5 Instructions for Making Decisions 110

3.6 Supporting Procedures in Computer Hardware 119

3. 7 Other Styles of MIPS Addressing 124

3.8 Alternatives to the MIPS Approach 130

3.9 An Example to Put It All Together 135

3.10 A Longer Example 138

3.11 Arrays versus Pointers 143

3.12 Fallacies and Pitfalls 147

3.13 Concluding Remarks 148

3.14 Historical Perspective and Further Reading 150

3.15 Exercises 155

The Five Classic Components of a Computer

Evaluating
Performance

Processor

Compiler

[j
Memory �

'-------------' L:J

94 Chapter 3 Instructions: Language of the Machine

11 •ntroduction

To command a computer 's hardware, you must speak its language. The words
of a machine's language are called instructions, and its vocabulary is called an
instruction set. In this chapter you will see the instruction set of a real computer,
both in the form written by humans and in the form read by the machine. Start
ing from a notation that looks like a restricted programming language, we
refine it step-by-step until you see the real language of a real computer.

You might think that the languages of machines would be as diverse as
those of humans, but in reality machine languages are quite similar, more like
regional dialects than like independent languages. Hence once you learn one,
it is easy to pick up others. This similarity occurs because all computers are
constructed from hardware technologies based on similar underlying princi
ples and because there are a few basic operations that all machines must pro
vide. Moreover, computer designers have a common goal: to find a language
that makes it easy to build the hardware and the compiler while maximizing
performance and minimizing cost. This goal is time-honored; the following
quote was written before you could buy a computer, and it is as true today as
it was in 1947.

It is easy to see by formal-logical methods that there exist certain [instruction sets]
that are in abstract adequate to control and cause the execution of any sequence of
operations The really decisive considerations from the present point of view,
in selecting an [instruction set], are more of a practical nature: simplicity of the
equipment demanded by the [instruction set], and the clarity of its application to
the actually important problems together with the speed of its handling of those
problems.

Burks, Goldstine, and von Neumann, 1947

The "simplicity of the equipment" is as valuable a consideration for the ma
chines of the 1990s as it was for those of the 1950s. The goal of this chapter is
to teach an instruction set that follows this advice, showing both how it is rep
resented in the hardware and the relationship between high-level program
ming languages and this more primitive one. We are using the C programming
language. Readers familiar with another language should refer to Appendix D
for a short comparison of C with Pascal.

By learning how instructions are represented, you will also discover the se
cret of computing: the stored-program concept. And you will exercise your
"foreign language" skills by writing assembly programs and running them on

3.2 Operations of the Computer Hardware 95

the simulator that comes with this book. We conclude with a look at the histor
ical evolution of instruction sets and an overview of other machine dialects.

The chosen instruction set comes from MIPS Computer Company and is
typical of instruction sets designed since the early 1980s. We reveal the MIPS
instruction set a piece at a time, giving the rationale along with the machine
structures. This step-by-step tutorial weaves the components with their expla
nations, making assembly language more palatable. To keep the overall pic
ture in mind, each section ends with a figure summarizing the MIPS
instruction set revealed thus far, highlighting the portions presented in that
section.

• Operations of the Computer Hardware

There must certainly be instructions for performing the fundamental arithmetic
operations.

Burks, Goldstine, and von Neumann, 1947

Every computer must be able to perform arithmetic. The MIPS notation
a d d a , b , c

instructs a computer to add the two variables b and c and to put their sum in a .
This notation is rigid in that each MIPS arithmetic instruction must always

have exactly three variables. For example, suppose we want to place the sum
of variables b, c, d, and e into variable a . The following sequence of instruc
tions adds the variables:

a d d a , b , c ff T h e s u m o f b a n d c i s p l a c ed i n a .
a d d a , a , d ff T h e s u m o f b , c a n d d i s n ow i n a .
a d d a , a , e ff T h e s um o f b , C , d a n d e i s n o w i n a .

Thus it takes three instructions to take the sum of four variables.
The words to the right of the sharp symbol (#) on each line above are com

ments for the human reader, and they are ignored by the computer. Note that
unlike other programming languages, each line of this language can contain,
at most, one instruction. Another difference is that comments terminate at the
end of a line.

The natural number of operands for an operation like addition is three: the
two numbers being added together and a placeholder for the sum. Requiring
every instruction to have exactly three operands, no more and no less, con
forms to the philosophy of keeping the hardware simple. Hardware for a vari
able number of operands is more complicated than hardware for a fixed

96

Example

Answer

Chapter 3 Instructions: Language of the Machine

MIPS assembly language

•-. . =-'' , •.• II "" l"t:tH11l111'::J l>'11;r.111 ... , "'"

3dd ad a , b - b + Always 3 operands A r l t hr.iet c .; O t r a c ub a . b . - b Al 1ays 3 operands

FIGURE 3.1 MIPS architecture revealed In section 3.1. The real machine operands will be
unveiled in the next section. Highlighted portions in such summaries show MIPS structures
introduced in this section; for this first figure, all is new.

number. This situation illustrates the first of four underlying principles of
hardware design:

Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of pro
grams written in programming languages to programs in this more primitive
notation. Figure 3.1 summarizes the portions of MIPS described in this section.

This segment of a C program contains the five variables a , b, c, d, and e :

a b + c ;
d = a - e ;

(Reminder: We are using the C programming language; readers familiar
with another language should refer to Appendix D for a short comparison
of C with Pascal.) The translation from C to MIPS instructions is performed
by the compiler. Show the MIPS code produced by the C compiler.

The C compiler could produce

a d d a , b , c
s u b d , a , e

These instructions are symbolic representations of what the processor
understands; they are called assembly language instructions.

Example

Answer

3.3 Operands of the Computer Hardware 97

A more complex C statement contains the five variables f, g, h , i , and j :

f = (g + h) - (i + j) ;

What would the C compiler produce?

The statement might be compiled into the following three MIPS instruc
tions:

a d d t O , g , h # t empo r a ry v a r i a b l e t O c o n t a i n s g+h
add t l , i , j # t e mp o r a ry v a r i a b l e t1 c o n t a i n s i +j
s u b f , t O , t l # f g e t s t O - t l , o r (g+h) - (i +j)

Note that the compiler created two new variables, t o and t l , to express the
program in the restricted three-operands-per-instruction notation of the
machine.

• Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instruc
tions cannot be any variables; they must be from a limited number of special
locations called registers. Registers are the bricks of computer construction, for
registers are primitives used in hardware design that are also visible to the pro
grammer when the computer is completed. The size of a register in the MIPS
architecture is 32 bits; groups of 32 bits occur so frequently that they are given
the name word in the MIPS architecture.

One major difference between the variables of a programming language
and registers is the limited number of registers, typically between 16 and 32 on
current computers. MIPS has 32 registers, using the notation $ 0, $ 1 , . . . , $ 3 1 to
represent them. (See section 3.14 for the history of the number of registers.)
The reason for this limit may be found in the second of our four underlying
principles of hardware technology:

Principle 2: Smaller is faster.

A very large number of registers would increase the clock cycle time simply
because it takes electronic signals longer when they must travel farther. Guide
lines such as "smaller is faster" are not absolutes; 31 registers may not be faster
than 32. Yet the truth behind such observations causes computer designers to

98

Example

Answer

Chapter 3 Instructions: Language of the Machine

take them seriously. In this case, the designer must balance the craving of pro
grams for more registers with the designer's desire to keep the clock cycle fast.

Chapters 5 and 6 show the central role that registers play in hardware con
struction; as we shall see in this chapter, effective use of registers is a key to
program performance.

It is the compiler's job to associate program variables with registers. Take,
for instance, the C statement from our earlier example:

f = (g + h) - (i + j) ;

The variables f, g, h , i , and j can be assigned to the registers $ 1 6, $ 1 7 , $ 1 8,
$ 1 9 , and $ 2 0, respectively. What is the compiled MIPS assembly code?

The compiled program is

a d d $ 8 , $ 1 7 , $ 1 8
a d d $ 9 , $ 1 9 , $ 2 0
s u b $ 1 6 , $ 8 , $ 9

r e g i s t e r $ 8 c o n t a i n s g+h
r e g i s t e r $9 c o n t a i n s i +j
f g e t s $ 8 - $ 9 , o r (g+h) - (i +j)

Registers $ 8 and $ 9 correspond to t 0 and t 1 in the earlier example.

Programming languages have simple variables that contain single data ele
ments as in these examples, but they also have more complex data structures
such as arrays. These complex data structures can contain many more data el
ements than there are registers in a machine. How can a computer represent
and access such large structures?

Recall the five components of a computer introduced in Chapter 1 and de
picted on the second page of this chapter (page 93) . The processor can store
only a small amount of data in registers, but computer memory contains mil
lions of data elements. Hence data structures, like arrays, are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS;
thus MIPS must include instructions that transfer data between memory and
registers. Such instructions are called data transfer instructions. To access a
word in memory, the instruction must supply its address. Memory is really just
a large, single-dimensional array, with the address acting as the index to that
array. Addresses start at 0. For example, in Figure 3.2, the address of the third
data element is 2, and the value of Memory[2] is 1000.

Example

Answer

3.3 Operands of the Computer Hardware

Processor Memory

Address Data

0 100

1 10

2 1000

3 1

99

FIGURE 3.2 Memory addresses and contents of memory at those locations. This is a sim
plification of the MIPS addressing; Figure 3.3 shows MIPS addressing for sequential words in
memory.

The data transfer instruction that moves data from memory to a register is
called load. The format of the load instruction is the name of the operation fol
lowed by the register to be loaded, then the start address of the array, and
finally a register that contains the index of the element of the array to be load
ed. Thus the memory address of the array element is formed by the sum of the
constant portion of the instruction and a register. The MIPS name for this in
struction is l w, standing for load word.

Assume that A is an array of 100 elements and that the compiler has associ
ated the variables g, h, and i with the registers $ 1 7 , $ 1 8, and $ 1 9 . Let's also
assume that the array starts at address A s t a r t . Translate this C statement:

g = h + A [i] ;

The C assignment statement becomes

l w
a d d

$ 8 , A s t a r t ($ 1 9 l
$ 1 7 , $ 1 8 , $ 8

T emp o r a ry r e g $ 8 g e t s A [i]
g = h + A [i]

100 Chapter 3 Instructions: Language of the Machine

The load instruction l w adds the starting address of the array A (named
A s t a r t here) to the index i in register $ 1 9 to form the address of element
A [i J . The register added to the address is therefore called the index register.
The processor then reads the value from memory at that address and places
it into register $ 8, which is used as a temporary variable. The following add
instruction can operate on the value in $ 8 (which equals A [i J) since it is in
a register. The instruction adds A [i J to h and puts the sum in the register
corresponding to g .

In addition to associating variables with registers, i t is up to
the compiler to allocate data structures like arrays to loca
tions in memory. The compiler can then place the proper
starting address into the data transfer instructions.

Hardware

Software

Interface Since 8-bit bytes are useful in many programs, the MIPS
architecture addresses individual bytes. The address of a
word is therefore actually the same as one of the 4 bytes in a

word. Hence, addresses of sequential words differ by 4. Figure 3.3 shows the
actual addresses for Figure 3.2. (Appendix A, section A-9 on page A-45, shows
the two ways to number bytes in a word.)

Processor Memory

Address Data

0 100

4 10

8 1000

12 1

FIGURE 3.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast to Figure 3.2.

Example

Answer

3.3 Operands of the Computer Hardware 101

Byte addressing also affects the index i . To get the proper byte address in
the code above, register $ 1 9 must have 4 x i so that the sum of $ 1 9 and
As t a r t will select A [i] and not A [i I 4] .

The instruction complementary to load is called store; it transfers data from
a register to memory. The format of a store is similar to that of a load: the
name of the operation, followed by the register to be stored, then the starting
address of the array, and finally a register that contains the index to the ele
ment of the array to be stored. The MIPS name is sw, standing for store word.
Once again, the MIPS address is specified in part by a constant and in part by
a register.

Assume variable h is associated with register $ 1 8. To accommodate the byte
addresses of MIPS, assume that register $ 1 9 now has the value 4 x i . Chap
ter 4 explains how to multiply in MIPS; for now assume the multiplication
has already occurred. What is the MIPS assembly code for the C statement
below?

A [i] h + A [i] ;

The C assignment statement becomes

l w $ 8 , A s t a r t ($ 1 9)
a d d $ 8 , $ 1 8 , $ 8
s w $ 8 , A s t a r t ($ 1 9)

T emp o r a ry r e g $ 8 g e t s A [i]
T empo r a ry r e g $ 8 g e t s h+A [i]
St o r e s h+A [i] b a c k i n t o A [i]

Instead of placing the sum of h and A [i J into register $ 1 7 , as in the prior
example, the sum is placed into temporary register $ 8 and then stored back
into A [i J .

These are the instructions that transfer words between memory and regis
ters in the MIPS architecture. Other brands of computers use instructions in
addition to load and store to transfer data; these alternatives are described in
section 3.8. Figure 3.4 summarizes the portions of MIPS described in this sec
tion.

102 Chapter 3 Instructions: Language of the Machine

MIPS operands

Name Example - ' - · Comments

32 registers $0, $1, $2, . . . , $31 Fast locations for data. In MIPS, data must be In rei;ilsters to perform arithmetic.

230 memory
Memory[OJ . Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses,
Memory[4] , . . . , so sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory(4294967292] and spilled rei;iisters.

MIPS assembly language

Category Instruction . Example Meaning
.-_ ·comments

add a d d S l , S 2 , S 3 $ 1 = $ 2 + $ 3 3 operands; data i n ree:isters
Arithmetic

s ub subtract S l , S 2 , S 3 S l = $ 2 - S 3 3 operands; data in ree:isters

Data load word l w $ 1 , 1 0 0 ($ 2) S l = Memory [S 2+1 0 0 J Data from memory to ree:ister
transfer store word S W $ 1 , 1 0 0 ($ 2) Memory [$ 2+1 0 0 J - $! Data from register to memory

FIGURE 3.4 MIPS architecture revealed through section 3.3. Highlighted portions show MIPS structures introduced
in this section.

Hardware

Software

Interface

Many programs have more variables than machines have
registers. Consequently, the compiler tries to keep the most
frequently used variables in registers and places the rest in
memory, using loads and stores to move variables between
registers and memory. The process of putting less common-
ly used variables (or those needed later) into memory is
called spillin� registers.

The hardware principle relating size and speed suggests that memory must
be slower than registers since registers are smaller. Titis is indeed the case; data
accesses are faster if data is kept in registers instead of memory. Moreover,
data in registers is easier to manipulate. A MIPS arithmetic instruction can
read two registers, operate on them, and write the result. A MIPS data transfer
instruction only reads one operand or writes one operand, without operating
on it. Thus data in MIPS registers are both faster to access and easier to use. To
achieve highest performance, MIPS compilers must use registers efficiently.

Elaboration: A series of instructions can be used to extract a byte from a word, so

load word and store word are sufficient for transferring bytes as well as words. Some

programs use bytes frequently, however, so the full MIPS architecture has explicit

instructions to load and store bytes. For the same reason, the full M I PS instruction set

•

3.4 Representing Instructions In the Computer 103

also has explicit instructions to load and store 16-bit quantities, called halfwords. We
cover only a subset of the MIPS instructions in this book to keep the instruction set as
easy to understand as possible. Hence we omit byte and halfword data transfer instruc
tions from the text, although section A.10 starting on page A-47 includes the ful l
instruction set .

Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct
machines and the way machines see instructions. But first, let's quickly review
how a machine represents numbers.

Humans are taught to think in base 10, but numbers may be represented in
any base. For example, 123 base 10 = 1 111011 base 2.

Numbers are kept in computer hardware as a series of high and low elec
tronic signals, and so they are considered base 2 numbers. (Just as base 10
numbers are called decimal numbers, base 2 numbers are called binary num
bers.) A single digit of a binary number is thus the "atom" of computing, for
all information is composed of binary digits or bits. This fundamental building
block can be one of two values, which can be thought of as several alternatives:
high or low, on or off, true or false, or 1 or 0.

Instructions are also kept in the computer as a series of high and low elec
tronic signals and may be represented as numbers. In fact, each piece of an in
struction can be considered as an individual number, and placing these
numbers side by side forms the instruction. For example, the MIPS instruction

a d d $ 8 , $ 1 7 , $ 1 8

is represented as the following combination of decimal numbers:

0 17 18 8 0 32

Each of these segments of an instruction is called a field. The first and last
fields (containing 0 and 32 in this case) in combination tell the MIPS computer
that this instruction performs addition. The second field gives the number of
the register that is the first source operand of the addition operation ($ 1 7) and
the third field gives the other source operand for the addition ($ 1 8) . The fourth
field contains the number of the register that is to receive the sum ($8) . The
fifth field is unused in this instruction, so it is set to 0. Thus this instruction
adds register $17 to register $18 and places the sum in register $8.

104 Chapter 3 Instructions: Language of the Machine

Of course, this instruction can also be represented as fields of binary num
bers as opposed to decimal:

000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits
the same size as a data word. In keeping with our design principle that sim
plicity favors regularity, all MIPS instructions are 32 bits long.

MIPS fields are given names to make them easier to discuss:

op rs rt rd sh amt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Here is the meaning of each name of the fields in MIPS instructions:

• op: operation of the instruction

• rs: the first register source operand

• rt: the second register source operand

• rd: the register destination operand; it gets the result of the operation

• shamt: shift amount (This term is explained in Chapter 4; you will not
need it until then.)

• funct: function; this field selects the variant of the operation in the op
field

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load instruction must specify two registers and an
address. If the address were to use one of the 5-bit fields in the format above,
the address within the load instruction would be limited to only 25 or 32 mem
ory locations. This is too small to be a useful data address.

Hence we have a conflict between the desire to keep all instructions the
same length and the desire to have a single instruction format. This leads us to
the third hardware design principle:

Principle 3: Good design demands compromise.

The compromise chosen by the MIPS designers is to keep all instructions
the same length, thereby requiring different kinds of instruction formats for
different kinds of instructions. For example, the format above is called the

3.4 Representing Instructions in the Computer 105

add R 0 reg reg reg 0 32 n.a.
sub R 0 reg reg reg 0 34 n.a.
lw 35 reg reg n.a. n.a. n.a. address
SW 43 reg reg n.a. n.a. n.a. address

FIGURE 3.5 MIPS instruction encoding. In the table above, reg means a register number
between 0 and 31, address means a 16-bit address, and n.a. (not applicable) means this field does
not appear in this format. Note that a d d and s u b instructions have the same value in the op field;
the hardware uses the funct field to decide whether to add or subtract.

R-type (for register). A second type of instruction format is called I-type and is
used by the data transfer instructions. The fields of this format are

op rs rt address

6 bits 5 bits 5 bits 16 bits

Let's take a look at the load instruction from page 101:

l w $ 8 , A s t a r t ($ 1 9 J # Temp o r a ry reg $8 g e t s A [i J

Here, 19 is placed in the rs field, 8 is placed in the rt field, and A s t a r t, the name
of the starting address for the array A, is placed in the address field. Note that
the meaning of the rt field has changed for this instruction: in a load instruc
tion, the rt field specifies the register to receive the result of the operation.

Although multiple formats complicate the hardware, we can reduce the
complexity by keeping the formats similar. For example, the first three fields
of the R-type and I-type formats have the same names, with the fourth field in
I-type equal to the length of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in
the first field: each format is assigned a set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as
three fields (R-type) or as a single field (I-type). This distinguishing field (op)
is traditionally known as the opcode. Figure 3.5 shows the numbers used in
each field for the MIPS instructions covered so far.

106

Example

Answer

Chapter 3 Instructions: Language of the Machine

We can now take an example all the way from what the programmer writes
to what the machine executes. Using the register assignments from the prior
example on page 101, including that register $ 1 9 has the value 4 x i , the C
statement:

A [i] = h + A [i] ;

is compiled into:

l w $ 8 , A s t a r t C $ 1 9)
a d d $ 8 , $ 1 8 , $ 8
sw $ 8 , A s t a r t C $ 1 9)

T empo r a ry r e g $ 8 g e t s A [i]
T empo r a ry r e g $ 8 g e t s h + A [i]
S t o r e s h + A [i] b a c k i n t o A [i]

What is the MIPS machine language code for these three instructions?

For convenience, let's first represent the machine language instructions us
ing decimal numbers. We need to pick the starting location or address for ar
ray A. Assume the location is 1200 in base 10 (or 0000 0100 1011 0000 base 2).
Here are the three instructions:

35 19 8 1200

0 18 8 8 0 32

43 19 8 1200

The l w instruction is identified by 35 (see Figure 3.5) in the first field (op).
The index register $19 is specified in the second field (rs), and the destina
tion register $8 is specified in the third field (rt). The starting address of the
array is found in the final field (address). The add instruction that follows
is specified with 0 in the first field (op) and 32 in the last field (funct). The
three register operands ($18, $8, and $8) are found in the second, third, and
fourth fields, respectively. The s w instruction is identified with 43 in the first
field. The rest of this final instruction is identical to the l w instruction.
The binary equivalent to the decimal form is

100011 10011 01000 0000 0100 1011 0000

000000 10010 01000 01000 I 00000 I 100000

101011 10011 01000 0000 0100 1011 0000

3.4 Representing Instructions in the Computer 107

Note the similarity of the binary representations of the first and last in
structions. The only difference is found in the third bit from the left.

As we shall see in Chapters 5 and 6, the similarity of the binary representa
tions of related instructions simplifies hardware design. These instructions are
another example of regularity in the MIPS architecture. Figure 3.6 summarizes
the portions of MIPS described in this section.

MIPS operands

Name Example Comments
���������������--������������������������-

32 $0, $1, $2, . . . , $31 Fast locations for data. In MIPS, data must be in registers to perform
registers arithmetic. MIPS register $0 always equals 0.

230 Memory[OJ, Accessed only by data transfer instructions in MIPS. MIPS uses byte
memory Memory[4], . . . , addresses, so sequential words differ by 4. Memory holds data structures,
words Memory[4294967292] such as arrays, and spilled registers.

MIPS assembly language

add add $1,$2,$3 $1 = $2 + $3 3 operands; data in registers
Arithmetic

sub $1,$2,$3 $1 = $2 - $3 3 operands; data in registers subtract

Data load word lw $1,100($2) $1 = Memory[$2+100] Data from memory to register
transfer store word SW $1,100($2) Memory($2+100] = $1 Data from register to memory

MIPS machine language

s ub R 0 2 3 1 34 s u b $ 1 , $ 2 , $ 3

l w I 35 2 1 100 l w $ 1 , 1 0 0 ($ 2)

S W 4 3 2 1 100 S W $ 1 , 1 00 ($ 2)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits
Format R R op rs rt rd sh amt funct Arithmetic instruction format
Format I op rs rt address Data transfer format

FIGURE 3.6 MIPS architecture revealed through section 3.4. Highlighted portions show MIPS structures introduced
in this section.

108 Chapter 3 Instructions: Language of the Machine

• .

Today's computers are built on two key principles:

1 . Instructions are represented as numbers; and

2. Programs can be stored in memory to be read or
written just like numbers.

This is the stored-program concept; its invention let the computing ge
nie out of its bottle. Figure 3.7 shows the power of the concept; specif
ically, memory can contain the C code for an editor program, the
corresponding compiled machine code, the text that the compiled pro
gram is using, and even the compiler that generated the machine code.

Processor

Memory
r - - - - - - - - - - - - - - - - -
1 Accounting program : : (Machine code) 1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J r - - - - - - - - - - - - - - - - -
1 Editor program : : (Machine code) 1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J r - - - - - - - - - - - - - - - - -
1 C compiler : : (Machine code) 1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J
; - - - - - - - - - - - - - - - - ,
1 Payroll data : � - - - - - - - - - - - - - - - - J � - ---------- -----,
1 Book text : � - - - - - - - - - - - - - - - - J r - - - - - - - - - - - - - - - - ,
1 C code for editor program : � - - - - - - - - - - - - - - - - J

FIGURE 3.7 The stored-program concept. Stored programs allow a computer that
performs accounting to become, in the blink of an eye, a computer that helps an author
write a book. The switch happens simply by loading memory with programs and data
and then telling the computer to begin executing at a given location in memory. Treat
ing instructions in the same way as data greatly simplifies both the memory hardware
and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can
translate code written in a notation far more convenient for humans into code that the
machine can understand.

3.4 Representing Instructions In the Computer 109

Hardware

Software

Interface

Recall from Chapter 1 that the symbolic representation of in
structions is called the assembly language of a computer. To
avoid confusion between the symbolic and numerical forms
of programs, we traditionally call the numerical equivalent
that the machine executes the machine language. The transla-
tion from assembly language to machine language is called
assembly, and the program that translates is called an assem

bler. Figure 3.8 shows the translation hierarchy: A C program is first translated
into an assembly language program by the compiler, then the assembler trans
lates the assembly language program into machine language. The program
that places the machine language program into memory for execution is called
a loader (see section A.4 on page A-19).

C program

Assembly language program

Machine language program

LOI

Memory

FIGURE 3.8 A translatlon hierarchy. A high-level language program is first compiled into an
assembly language program and then assembled into a machine language program. The loader
then places the machine code into the proper memory locations for execution by the processor.

110 Chapter 3 Instructions: Language of the Machine

Assembly language is obviously a great improvement over writing num
bers. In addition to replacing symbols with numbers, assemblers treat com
mon variations of machine language instructions as if they were instructions
in their own right.

For example, the MIPS hardware makes sure that register $0 always has the
value 0. That is, whenever register $0 is used, it supplies a 0, and the program
mer cannot change the value of register $0. Register $0 is used to create the as
sembly language instruction m o v e that copies the contents of one register to
another. Thus the MIPS assembler accepts this instruction even though it is not
found in the MIPS architecture:

m o v e $ 8 , $ 1 8 # r e g i s t e r $ 8 g e t s r e g i s t e r $ 1 8

The assembler converts this assembly language instruction into the ma
chine language equivalent of the following instruction:

a d d $ 8 , $ 0 , $ 1 8 # r e g i s t e r $ 8 g e t s 0 + r e g i s t e r $ 1 8

The MIPS assembler effectively increases the number of instructions avail
able to the assembly language programmers and to compilers. These instruc
tions need not be implemented in hardware; however, their appearance in
assembly language simplifies programming. Such instructions are called
pseudoinstructions.

Elaboration: Representing decimal numbers in base 2 gives an easy way to repre
sent positive integers in computer words. Chapter 4 explains how negative numbers
can be represented, but for now take our word that a 32-bit word can represent inte
gers between -2 3 1 and + 2 3 1 - 1 or -2,147,483,648 to +2,147,483,647. Such inte
gers are cal led two 's complement numbers.

II Instructions for Making Decisions

The utility of an automatic computer lies in the possibility of using a given sequence
of instructions repeatedly, the number of times it is iterated being dependent upon the
results of the computation. When the iteration is completed a different sequence of [in
structions] is to be followed, so we must, in most cases, give two parallel trains of [in
structions] preceded by an instruction as to which routine is to be followed. This choice
can be made to depend upon the sign of a number (zero being reckoned as plus for ma
chine purposes). Consequently, we introduce an [instruction] (the conditional transfer

Example

Answer

3.5 Instructions for Making Decisions 111

[instruction]) which will, depending on the sign of a given number, cause the proper
one of two routines to be executed.

Burks, Goldstine, and von Neumann, 1947

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during the compu
tation, different instructions are executed. Decision making is commonly rep
resented in programming languages using the if statement, sometimes
combined with goto statements and labels. MIPS includes two decision making
instructions, similar to an if statement with a goto:

beq r e g i s t e r l . r e g i s t e r 2 , L l

This instruction means go to the statement labeled L1 if the value in registerl
equals the value in register2. The mnemonic stands for branch equal. The sec
ond instruction is

b n e r e g i s t e r l , r e g i s t e r 2 , L l

It means go to the statement labeled L 1 if the value in registerl does not equal
the value in register2. The mnemonic stands for branch not equal. These two
instructions are called conditional branches.

In the following C code segment, f, g, h, i , and j are variables:

i f (i == j l g o t o L l ;
f g + h ;

L l : f = f - i ;

Assuming that the five variables correspond to five registers $ 1 6 through
$ 2 0, what is the compiled MIPS code?

The compiled program is

b e q $ 1 9 , $ 2 0 . L l
a d d $ 1 6 , $ 1 7 , $ 1 8

L l : s u b $ 1 6 , $ 1 6 , $ 1 9

g o t o L l i f i e q u a l s j
f g + h (s k i pped i f i e q u a l s j)
f = f - i (a l w a y s e x e c u t e d) .

112 Chapter 3 Instructions: Language of the Machine

Instructions are stored in memory in stored-program computers; hence,
instructions must have memory addresses just like other words in memory.
The label L1 thus corresponds to the address of the subtract instruction. No
tice that the assembler relieves the compiler or the assembly language pro
grammer from the tedium of calculating branch addresses, just as it does for
calculating data addresses for loads and stores (see section A.1 on page A-3
in Appendix A or the example on page 106).

Hardware"

Software

Interface

bne
a d d

j
E l s e : s u b

E x i t :

Compilers frequently create branches and labels when they
do not appear in the programming language. Using the
same variables and registers from the previous example, the
C code:

i f (i -- j) f = g + h : e l s e f g - h :

$ 1 9 , $ 2 0 . E l s e # g o to E l s e i f i "# j
$ 1 6 , $ 1 7 , $ 1 8 # f = g + h (s k i p p e d i f i � j)
E x i t lt g o t o E x i t

$ 1 6 , $ 1 7 , $ 1 8 # f = g - h (s k i pped i f j)

Figure 3.9 shows the form of the C code that the compiler must translate
into MIPS code. The second instruction above performs the "then" part of the
if statement and the fourth instruction performs the "else" part. When i "* j ,

the first instruction branches to the label E l s e, going around the "then" part.
To avoid executing the fourth instruction when i = j , we must branch around
it to the label E x i t . This introduces another kind of branch, sometimes called
an unconditional branch. This instruction says that the machine always follows
the branch. To distinguish between conditional and unconditional branches,
the MIPS name for this type of instruction is jump, abbreviated as j .

Decisions are important both for choosing between two alternatives
found in if statements-and for iterating a computation-found in loops. The
same assembly instructions are the building blocks in both cases.

3.5 Instructions for Making Decisions 113

i

E l s e :

f g + h f = g - h

E x i t :

FIGURE 3.9 Illustration of the options in the If statement above. The left box corresponds to
the "then" part of the if statement and the right box corresponds to the "else" part.

Here is a loop in C:

L o o p : g = g + A [i] ;
i = i + j ;
i f (i ! = h) g o t o L o o p ;

Assume A is an array of 100 elements and that the compiler associates the
variables g, h, i , and j to the registers $ 1 7 , $ 1 8, $ 1 9, and $ 2 0, respectively.
Let's assume that the array starts at A s t a r t . Remember that byte addressing
means we will need to multiply the index i by 4 before we can use it in the
load instruction. Let's assume that 4 has already been placed in register $10
and that the MIPS instruction mu l t (further described in Chapter 4), is avail
able for multiplies. What is the MIPS assembly code corresponding to this
C segment?

114 Chapter 3 Instructions: Language of the Machine

Answer It becomes the following assembly language code:

L o o p : m u l t
l w
a d d
a d d
b n e

$ 9 , $ 1 9 , $ 1 0
$ 8 , As t a r t ($ 9 l
$ 1 7 , $ 1 7 , $ 8
$ 1 9 , $ 1 9 , $ 2 0
$ 1 9 , $ 1 8 , L o o p

Tempo r a ry r e g $ 9
Temp o r a ry r e g $ 8
g = g + A [i]
i = i + j
g o t o L o o p i f i # h

Since the body of the loop modifies i , we must multiply its value by 4
each time through the loop. (Section 3.11 shows how to avoid these multi
plies when writing loops like this one.)

Hardware

Software

Interface

Of course, programmers don't normally write loops with
gotos, so it is up to the compiler to translate traditional loops
into assembly language. This C segment:

wh i l e C s a v e [i] == k l
i = i + j :

could be translated into the MIPS instructions below, assuming that i , j , and
k correspond to registers $ 1 9, $ 2 0, and $ 2 1 , the array s a v e starts at S s t a r t ,
and register $10 contains 4.

L o o p :

E x i t :

m u l t
l w
b n e
a d d
j

$ 9 , $ 1 9 , $ 1 0
$ 8 , S s t a r t C $ 9 l
$ 8 , $ 2 1 , E x i t
$ 1 9 , $ 1 9 , $ 2 0
Loop

Tempo r a ry r e g $ 9 = i *4
T empo r a ry r e g $8 = s a v e [i]
g o t o E x i t i f s a v e (i] # k

i = i + j
g o t o L o o p

(See Exercise 3 .11 for an optimization of this sequence.)

The test for equality or inequality is probably the most popular test, but
sometimes it is useful to see if a variable is less than another variable. For ex
ample, a for loop may want to test to see if the index variable is less than 0. Such
comparisons are accomplished in MIPS with an instruction that compares two
registers and sets a third register to 1 if the first is less than the second; other
wise, it is set to 0. The instruction is called set on less than or s l t . For example,

s l t $ 8 , $ 1 9 , $ 2 0

3.5 Instructions for Making Decisions 115

means that register $8 is set to 1 if the value in register $19 is less than the value
in register $20; otherwise, register $8 is set to 0.

Hardware

S oftware

Interface

s l t

MIPS compilers use the s l t, be q, b n e, and the fixed value of
0 in register $0 to create all relative conditions. For example,
let's take a look at the code to test if variable a (correspond
ing to register $ 1 6) is less than variable b ($ 1 7), branching to
L e s s if the condition holds. Assume that $ 1 is an available
temporary register. The first step is to use the set on less than
instruction and the temporary register:

$ 1 , $ 1 6 , $ 1 7 It $ 1 g e t s 1 i f $ 1 6< $ 1 7 (a <b }

Register $ l is set to 1 if a is less than b. Hence, a branch to see if register $ l
is not equal to 0 will give us the effect of branching if a is less than b. Register
$ 0 always contains 0, so this final test is accomplished using the b n e instruc
tion and comparing register $ 1 to register $ 0 :

b n e $ 1 , $ 0 , L e s s It g o t o L e s s i f $ 1* $ 0
It (t h a t i s . i f a < b)

This pair of instructions, s l t and bne , implements a branch on less than,
and, in fact, the MIPS assembler converts b l t (branch on less than) into exactly
these two instructions. Note again how an assembler can create instructions
that are not implemented by the hardware. Heeding von Neumann's warning
about the simplicity of the "equipment," the MIPS architecture doesn't include
b l t because it is too complicated; either it would stretch the clock cycle time
or this instruction would take extra clock cycles per instruction. Two faster in
structions are more useful.

To support such pseudoinstructions, the assembler must have a temporary
register which can be used without fear of altering the program. Since compil
ers allocate registers, the MIPS compiler writers have promised to abstain from
using register $1 so that it can be used by the MIPS assembler.

Most programming languages have a case or switch statement that allows
the programmer to select one of many alternatives depending on a single val
ue. One way to implement switch is via a sequence of conditional tests, turning
the switch statement into a chain of if-then-else statements. But sometimes the
alternatives may be efficiently encoded as a table of addresses of alternative in
struction sequences, and the program needs only to index the jump address table
and then jump to the appropriate sequence. To support such situations, com-

116 Chapter 3 Instructions: Language of the Machine

puters like MIPS include a Jump register instruction (j r), meaning an uncondi
tional jump to the address specified in a register.

This C version of a case statement is called a switch statement. The following
C code chooses among four alternatives depending on whether k has the
value 0, 1, 2, or 3. Assume the six variables f through k correspond to six
registers $ 1 6 through $ 2 1 and that register $10 contains 4. What is the cor
responding MIPS code?

s w i t c h (k) (
c a s e 0 : f + j ; b r e a k ; / * k 0 * /
c a s e 1 : f g + h ; b r e a k ; / * k 1 * /
c a s e 2 : f g h . b r e a k ; / * k 2 * /
c a s e 3 : f j ; b r e a k ; / * k 3 * /

The following MIPS assembly language will work, provided four words in
memory, starting at location J um p T a b l e, have addresses corresponding to
the labels LO, L l , L 2 , and L 3, respectively. Since we are using the variable k
to index into this array of words, we must first multiply by 4 to turn k into
its byte address equivalent.

L o o p : m u l t $ 9 , $ 1 0 , $ 2 1 # Tempo r a ry r e g $ 9 = k*4
l w $ 8 , J um pT a b l e ($ 9) # Temp reg $ 8 = J umpT a b l e [k J
j r $ 8 # j u mp b a s e d o n r e g i s t e r $ 8

L O : a d d $ 1 6 , $ 1 9 , $ 2 0 # k=O s o f g e t s i + j
j E x i t # e n d o f t h i s c a s e s o g o t o E x i t

L l : a d d $ 1 6 , $ 1 7 , $ 1 8 # k=l s o f g e t s g + h
j E x i t # e n d o f t h i s c a s e s o g o t o Ex i t

L2 : s u b $ 1 6 , $ 1 7 , $ 1 8 fl k=2 s o f g e t s g - h
j E x i t # e n d o f t h i s c a s e s o g o t o E x i t

L3 : s u b $ 1 6 , $ 1 9 , $ 2 0 # k=3 s o f g e t s i - j
E x i t : fl e n d o f s w i t c h s t a t e me n t

3.5 Instructions for Making Decisions 117

Machine language procedure A

Machine language procedure B
Machine language program

O: Procedure A
L nker

Machine language procedu re C
64: Procedure B

112: Procedure C
176: Procedure D

Machine language procedure D

FIGURE 3.10 A llnker allows separate compllatlon and assembly of portions of a whole
program. It finds the addresses in the machine language procedures and corrects the addresses
to refer to the actual memory locations.

Hardware

Software

Interface

What we have presented so far suggests that a single change
to one line of one procedure requires compiling and assem
bling the whole program. Complete retranslation is a terrible
waste of computing resources. This is particularly true for
standard library routines, because programmers would be
compiling and assembling routines that by definition almost
never change. An alternative is to compile and assemble

each procedure independently, so that a change to one line would require
compiling and assembling only one procedure. This alternative implies a new
systems program that would take all the independently assembled machine
language programs and "stitch" them together.

The challenge for this program is to place the independent modules end to
end, fix the cross-references between modules, and, finally, to alter any ad
dresses within these independent modules to make them refer to the new in
struction addresses. Figure 3.10 shows an example. Such references occur in
branch instructions, jump instructions, and data addresses, so the job of this
program is much like that of an editor: It finds the old addresses and replaces
them with the new addresses. Editing gives rise to the name of the
program: link editor or linker for short. The reason a linker makes sense is that
it is much faster to "patch" code than it is to recompile and reassemble. Many
operating systems combine the linker with the loader, giving rise to the name
linking loader. Sections A.3 on page A-17 and A.4 on page A-19 describe linkers
and loaders in more detail.

118 Chapter 3 Instructions: Language of the Machine

MIPS operands

Name Example Comments .. ,.,."I_ �

$0, $1, $2, . . . , $31 Fast locations for data. In MIPS, data must be in registers to perform
32 registers arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for the

assembler to handle pseudoinstructions.

230 memory
Memory(OJ, Accessed only by data transfer instructions in MIPS. MIPS uses byte
Memory(4]. addresses, so sequentia l words differ by 4. Memory holds data structures,

words Memory(4294967292] such as arrays, and spilled registers.

MIPS assembly language

Category Instruction Example Meaning Comm1fots
add add $1,$2,$3 $1 = $2 + $3 3 operands; data in registers

Arithmetic
subtract sub $1,$2,$3 $1 = $2 - $3 3 operands; data in registers

Data load word lw $1,100($2) $1 = Memory($2+100] Data from memory to register
transfer store word SW $1,100($2) Memory[$2+100] = $1 Data from register to memory

branch on equal beq $1,$2,L if ($1 == $2) go to L Equal test and branch
Conditional branch on not eq. bne $1,$2,L if ($1 I= $2) go to L Not equal test and branch Branch

set on less than sit $1,$2,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; for beq,bne

Unconditional jump j 10000 go to 10000 Jump to target address
jump jump register jr $31 go to $31 For switch statements

MIPS machine language

sub R 0 2 3 1 34 sub $1,$2,$3
lw 35 2 1 100 lw $1,100($2)
SW 43 2 1 100 SW $1,100($2)
beq 4 1 2 100 beq S l , $ 2 , 1 00

bne 5 1 2 100 b n e $ 1 . $ 2 , 1 0 0

sit R 0 2 3 1 0 42 s t S l . S 2 , $ 3

J 2 10000 . 0 000 C s e e s e c t i on 3 .
jr R 0 31 0 0 0 8 r $ 3
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits
Format R R op rs rt rd sh amt funct Arithmetic instruction format
Format I I op rs rt address Data transfer, branch format

FIGURE 3.11 MIPS architecture revealed through section 3.5. Highlighted portions show MIPS structures introduced
in this section. The J format, used for jump instructions, is explained in section 3.7.

Figure 3.1 1 summarizes the portions of MIPS described in this section.

3.6 Supporting Procedures In Computer Hardware 119

Elaboration: Readers who might have heard about delayed branches, covered in
Chapter 6, should not worry: The MIPS assembler makes them invisible to the assem
bly language programmer.

• Supporting Procedures In Computer Hardware

A procedure or subroutine is one way that programmers structure programs,
both to make them easier to understand and to allow code to be reused. An
instruction set must provide a way to jump to a procedure and then return
from the procedure to the instruction just after the calling point. Programmers
must also have conventions governing how to pass parameters and how to
support the nesting of procedure calls.

First, let's look at the primitive operations that support procedures. MIPS
provides an instruction that jumps to an address and simultaneously saves the
address of the following instruction in register $ 3 1 . The jump-and-link instruc
tion (j a l) is simply written

j a l P r o c e d u r eAdd r e s s

The link portion of the name means that a link is formed to the calling site to
allow the procedure to return to the proper address. This link, stored in regis
ter $ 3 1 , is called the return address.

We already have an instruction to do the return jump:

j r $ 3 1

The Jump register instruction, useful in the switch statement, jumps to the
address stored in register $ 3 1-which is just what we want.

Implicit in the instruction set is the need to have a register to hold the ad
dress of the current instruction being executed. The j a l instruction just incre
ments this register to point to the next instruction before saving it in register
$ 3 1 , and j r $ 3 1 simply copies $ 3 1 into that register. For historical reasons,
this register is almost always called the program counter, abbreviated PC, al
though a more sensible name would have been Instruction Address register.
MIPS follows tradition and calls it the PC.

Suppose a procedure wanted to call another procedure. Then the program
mer would need to save the old value of register $ 3 1 , since the new j a l would
clobber the old return address. This is an example of where we need to spill
registers to memory, as mentioned in the Hardware Software Interface on
page 102.

Since procedures can call procedures that call procedures, and so on, the
ideal data structure for spilling registers is a stack-a last-in-first-out queue. A

120 Chapter 3 Instructions: Language of the Machine

stack needs a pointer to the top of the stack to show where the next procedure
should place the registers to be spilled or where old register values can be
found. The top of the stack is adjusted by the number of registers that are
saved or restored. Stacks are so popular that they have their own buzzwords
for transferring data to and from the stack: Placing data onto the stack is called
a push, and removing data from the stack is called a pop.

Assume procedure A has invoked procedure B, that procedure B is about to
call procedure C, and that C calls no more procedures. Figure 3.12 on page
122 shows the steps we must perform. Before calling C, procedure B must
save its return address on the stack. The stack pointer, register $29, is adjust
ed to point to the new top of stack. Procedure C is then called, and the j a l
instruction changes register $31 to contain C's return address. After proce
dure C returns to procedure B, the old return address is restored from the
stack into register $31 . The stack pointer is then changed back to the old top
of-stack location. What is the essential MIPS code to implement this calling
protocol?

Below is the basic MIPS assembly code segment. Assume that register $29
contains the pointer to the top of the stack and one register, say $24, already
has the value to adjust the top of stack. Recall that the MIPS assembly con
vention is to list labels on the left, indent the instruction to the right of the
labels, and follow these with an optional comment that starts with the sharp
symbol (#).

A : . . .

j a l B # c a l l B & s a v e r e t u r n a d d r e s s i n $ 3 1

B : . . .
n o w r e a dy t o c a l l c

a d d $ 2 9 , $ 2 9 , $ 2 4 # a d j u s t s t a c k t o ma k e r oom
f o r n e x t i t e rn

S W $ 3 1 , 0 ($ 2 9) # s a v e t h e r e t u r n a d d r e s s
j a l c # c a 1 1 C & s a v e r e t u r n a d d r e s s i n

$ 3 1 ; r e t u r n f r om C t o n e x t i n s t r
l w $ 3 1 , 0 ($ 2 9) # r e s t o r e B ' s r e t u r n a d d r e s s . . .
s u b $ 2 9 , $ 2 9 , $ 2 4 # a d j u s t s t a c k t o p o p

B ' s r e t u r n a d d r e s s

3.6 Supporting Procedures in Computer Hardware

j r $ 3 1
c : . . .

j r $ 3 1

r e t u r n t o r o u t i n e t h a t c a l l ed B

r e t u r n t o r o u t i n e t h a t c a l l e d C

121

A calls B using j a l , saving the address of the following instruction in
register $ 3 1 . Before B calls C, the stack pointer is adjusted and register $31
is saved. Procedure B then calls C, saving the address again in $ 3 1 . Since
procedure C calls no other procedure, it skips storing its return address on
the stack. When C is finished, it returns to B by executing the Jump register
instruction using register $ 3 1 , which in turn invokes the load instruction
that follows the jump and link instruction in B. This load restores the proper
return address into $ 3 1 , and the subtract adjusts the stack the other direc
tion. When B is finished, it returns to A using j r with register $ 3 1 , returning
to the instruction just after the j a l in procedure A.

In addition to return addresses, we need a convention that governs passing
the arguments, or parameters, passed to a procedure. The MIPS software con
vention is to put parameters in registers $4 through $7. If a procedure needs to
call another procedure, these parameter registers can be saved and restored
from the stack just like return addresses. In general, if a procedure modifies
registers used by the current routine, there must be a convention for saving
and restoring registers across procedure calls. The two standard conventions
are:

1 . Caller save. The calling procedure (caller) is responsible for saving and
restoring any registers that must be preserved across the call. The called
procedure (callee) can then modify any register without constraint.

2. Callee save. The callee is responsible for saving and restoring any regis
ters that it might use. The caller uses registers without worrying about
restoring them after a call.

Sections 3.9 and 3.10 use callee save, and Exercises 3.28 and 3.29 treat the
subject in depth. Note that conventions are not generally limited to a single
language. This allows compiled procedures written originally in Fortran to
call procedures written originally in C, and vice versa.

Figure 3.13 summarizes the portions of MIPS described in this section.

122 Chapter 3 Instructions: Language of the Machine

1. After A calls B

$31

B's return address

$29 (Stack pointer)

$29 (Stack pointer)

3. After B calls C

$31

C's return address

$29 (Stack pointer)

•

Memory

B's return address

Memory

B's return address

Memory

B's return address

Top of stack

Bottom of stack

New top of stack

Bottom of stack

Top of stack

Bottom of stack

New top of stack

Bottom of stack

FIGURE 3.12 Saving and restoring the return address on the stack. Procedure calls are
nested. Since B calling C will clobber register $31, we must save the current value on the stack.
Register $29 is the stack pointer that points to an area of memory containing the top of the stack,
which is shown in color. Boldface color indicates items that have changed from the previous step.

3.6 Supporting Procedures in Computer Hardware 123

MIPS operands

Name Example Comments

$0, $1, $2, . . . , $31 Fast locations for data. In MIPS, data must be in registers to perform
32 registers arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for

the assembler to handle pseudoinstructions.
Memory[OJ. Accessed only by data transfer instructions. MIPS uses byte addresses,

230 memory words Memory[4], . . . , so sequential words differ by 4. Memory holds data structures, such as
Memory[4294967292] arrays, and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
add add $1,$2 ,$3 $1 = $2 + $3 3 operands; data in registers

Arithmetic
sub $1,$2,$3 $1 = $2 - $3 subtract 3 operands; data in registers

load word lw $1,100($2) $1 = Memory($2+100] Data from memory to register
Data Transfer

SW $1, 100($2) Memory[$2+100] = $1 store word Data from register to memory
branch on equal beq $1,$2,L if ($1 == $2) go to L Equal test and branch

Conditional Branch branch on not eq. bne $1,$2,L if ($1 != $2) go to L Not equal test and branch
set on less than sit $1,$2,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; for beq,bne
jump j 10000 go to 10000 Jump to target address

Unconditional Jump jump register jr $31 go to $31 For switch , procedure return
jump and l ink jal 10000 $31 = PC + 4; go to 10000 For procedure call

MIPS machine language

sub 0 2 3 1 34 sub $1,$2,$3
lw 35 2 1 100 lw $1,100($2)
SW 43 2 1 100 SW $1,100($2)
beq 4 1 2 100 beq $1,$2,100
bne 5 1 2 100 bne $1,$2,100
sit R 0 2 3 1 0 42 sit $1,$2,$3

J 2 10000 10000 (see section 3. 7)

jr R 0 31 0 0 0 8 jr $31
jal J 3 10000 jal 10000 (see section 3.7)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits
Format R R op rs rt rd shamt funct Arithmetic instruction format
Format I op rs rt address Data transfer, branch format

FIGURE 3.13 MIPS architecture revealed through section 3.6. Highlighted portions show MIPS structures introduced
in this section. The J format, used for jump and jump-and-link instructions, is explained in section 3.7.

124 Chapter 3 Instructions: Language of the Machine

Elaboration: What if there are more than four parameters? The MIPS convention is to
place the extra parameters on the stack. The procedure then expects the first four
parameters to be in registers $4 through $7 and the rest in memory, addressable via
the stack pointer.

Parameters are passed in registers to make cal ls fast. Another chal lenge in making
fast calls is avoiding saving and restoring registers . A M IPS software convention is to
consider some registers as caller saved (not preserved across procedure call) and oth
ers as cal lee saved (preserved across procedure cal l) . The compiler a l locates short
l ived values to the former category of registers and long-l ived values to the latter,
thereby reducing register saves and restores. Figure A.9 on page A-23 shows the con
vention .

A final point to mention is that by historical precedent, stacks "grow" from higher
addresses to lower addresses. Thus we must think of higher addresses as being at the
bottom of Figure 3 .12 for it to follow this convention. This convention means that you
push values onto the stack by subtracting from the stack pointer. Adding to the stack
pointer shrinks the stack, thereby popping values off the stack.

• other Styles of MIPS Addressing

Designers of the MIPS architecture provided two more ways of accessing oper
ands. The first is to make it faster to access small constants and the second is to
make branches more efficient.

Constant or Immediate Operands

Many times a program will use a constant in an operation-for example, incre
menting an index to point to the next element of an array, counting iterations
of a loop, or adjusting a stack in a nested procedure call. In fact, in two pro
grams that have been studied, more than half of the arithmetic instructions
have a constant as an operand: in the C compiler gee, 52% of arithmetic oper
ands are constant; in the circuit simulation program spice, it is 69%.

With the instructions given so far, we would have to load a constant from
memory to use it. (The constants would have been placed in memory when the
program was loaded.) For example, to add the constant 4 to register $ 2 9, we
could use the code

l w
a d d

$ 2 4 , Add r C o n s t a n t4 ($ 0)
$ 2 9 , $ 2 9 , $ 2 4

$ 2 4 = c o n s t a n t 4
$ 2 9 = $ 2 9 + $ 2 4 ($ 2 4 = 4)

assuming that Add r C o n s t a n t 4 is the memory address of the constant 4.
An alternative that avoids memory accesses is to offer new versions of the

arithmetic instructions in which one operand is a constant, with the novel con-

3. 7 Other Styles of MIPS Addressing 125

straint that this constant is kept inside the instruction itself. Following the rec
ommendation urging regularity, we use the same format for these instructions
as for the data transfer instructions. In fact, the I in the name of the I-type for
mat is for immediate, the traditional name for this type of operand. The MIPS
field containing the constant is 16 bits long.

The add instruction that has one constant operand is called add immediate or
a d d i . To add 4 to register 29 we just write

a d d i $ 2 9 , $ 2 9 , 4 ff $ 2 9 = $ 2 9 + 4

What is the corresponding MIPS machine code?

This instruction is the following machine code (using decimal numbers):

op rs rt immediate

8 29 29 4

In binary it is

001000 11101 11101 0000 0000 0000 0100

Immediate or constant operands are also popular in comparisons. Since reg
ister $ 0 always has 0, we can already compare to 0. To compare to other values,
there is an immediate version of the set on less than instruction. To test if reg
ister $ 1 8 is less than the constant 10, we can just write:

s l t i $ 8 , $ 1 8 , 1 0 ff $ 8 = 1 i f $ 1 8 < 1 0
Similar to the prior example on page 115 (Hardware Software Interface), this
instruction is followed by b n e $ 8 , $ 0 to branch if register $18 is less than the
constant 10.

Immediate addressing illustrates the final hardware design guideline, first
mentioned in Chapter 2:

Principle 4: Make the common case fast.

Constant operands occur frequently, and by making constants part of arith
metic instructions they are much faster than if they were loaded from memory.

Although constants are frequently short and fit into the 16-bit field, some
times they are too big. The MIPS instruction set includes the instruction load
upper immediate (l u i) specifically to set the upper 16 bits of a constant in a reg
ister, allowing a subsequent instruction to specify the lower 16 bits of the con
stant. Figure 3.14 shows the operation of l u i .

126 Chapter 3 Instructions: Language of the Machine

The mach ine language version of l u i $ 8 , 2 5 5 :

001111 00000 01000 0000 0000 1111 1111
Contents of register 8 after executing l u i $ 8 , 2 5 5 :

� 0000 0000 fi11 1111 0000 0000 0000 0000
FIGURE 3.14 The effect of the lui instruction. The instruction l u i transfers the rightmost 16 bits of the draw
ing into the leftmost 16 bits of the register, filling the lower 16 bits with zeros. As we shall see in Chapter 4, this is
like multiplying the constant by 2 16 before loading it into the register.

Example

Answer

What is the MIPS assembly code to load this 32-bit constant into register
$16?

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

First we would load the upper 1 6 bits, which is 6 1 in decimal, using l u i :

l u i $ 1 6 , 6 1 # 6 1 d e c i m a l = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 b i n a ry

The value of register $16 afterward is

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The next step is to add the lower 1 6 bits, whose decimal value is 2304:

a d d i $ 1 6 , $ 1 6 , 2 3 0 4 if 2 3 0 4 d e c i m a l = 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

The final value in register $16 is the desired value:

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

3. 7 Other Styles of MIPS Addressing 127

Hardware

Software

Interface

Either the compiler or the assembler must break large con
stants into pieces and then reassemble them into a register.
As you might expect, this size restriction may be a problem
for memory addresses in loads and stores as well as for con
stants in immediate instructions. If this job falls to the assem-
bler, as it does for MIPS software, then the assembler must

have a temporary register available in which to create the long values. This is
another use for register $1, which was reserved to allow the assembler to ex
pand the set of branch instructions that it accepted (see the Hardware Software
Interface on page 1 15). This means that the assembly language programmer
can let the assembler handle large constants and large addresses.

Addressing in Branches and Jumps

The simplest addressing is found in the MIPS jump instructions. They use the
final MIPS instruction format, called the /-type, which consists of 6 bits for the
operation field and the rest of the bits for the address field. Thus,

j 1 0 0 0 0 # g o t o l o c a t i o n 1 0 0 0 0

is assembled into this format:

2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 1 0 0 0 0 .
Unlike the jump instruction, the conditional branch instruction must speci

fy two operands in addition to the branch address. Thus,
b n e $ 8 , $ 2 1 , E x i t # g o t o E x i t i f $ 8 * $ 2 1

is assembled into this instruction, leaving only 16 bits for the branch address:

5 8 21 Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that
no program could be bigger than 216 , which is far too small to be a realistic op
tion today. An alternative would be to specify a register that would always be

128 Chapter 3 Instructions: Language of the Machine

added to the branch address, so that a branch instruction would calculate the
following:

PC = register + branch address

This allows the program to be as large as 232
and still be able to use conditional

branches, solving the branch address size problem. The question is then,
which register?

The answer comes from seeing how conditional branches are used. Condi
tional branches are found in loops and in if statements, so they tend to branch
to a nearby instruction. For example, almost half of all conditional branches in
gee and spice go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch
within 216

of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 216 ,
so the PC is the ideal choice. This form of branch addressing is called PC-rela
tive addressing. As we shall see in Chapter 5, it is convenient for the hardware
to increment the PC early to point to the next instruction. Hence the MIPS ad
dress is actually relative to the address of the following instruction (PC + 4) as
opposed to the current instruction (PC).

Like most recent machines, MIPS uses PC-relative addressing for all condi
tional branches because the destination of these instructions is likely to be
close to the branch. On the other hand, jump-and-link instructions invoke pro
cedures that have no reason to be near the call, and so they normally use other
forms of addressing. Hence MIPS offers long addresses for procedure calls by
using the Hype format for both jump and jump-and-link instructions.

The while loop on page 1 14 was compiled into this MIPS assembler code:

L o o p : m u l t $ 9 , $ 1 9 , $ 1 0 fl Tempo r a ry r e g $ 9 = i *4
l w $ 8 , S s t a r t ($ 9) fl Tempo r a ry r e g $ 8 = s a v e [i]
b n e $ 8 , $ 2 1 , E x i t fl g o t o E x i t i f s a v e [i] "#- k
a d d $ 1 9 , $ 1 9 , $ 2 0 fl i = i + j

j L o o p fl g o t o L o o p
E x i t :

If we assume that the loop is placed at location 80000 in memory and that
the address S s t a r t refers to location 1000, what is the MIPS machine code
for this loop?

Answer

3. 7 other Styles of MIPS Addressing 129

The assembled instructions and their addresses would look like this:

80000

80004

80008

80012

80016

80020

0

35

5

0

2

19 10

9 8

8 2 1

19 20

9 I 0 I 24

1000

8

19 I 0 I 32

80000

Remember that MIPS uses byte addresses, so addresses of sequential
words differ by 4, the number of bytes in a word. The b n e instruction on the
third line adds 8 bytes to the address of the following instruction (80012),
specifying the branch destination relative to that instruction (8) instead of
using the full address (80020). The jump instruction on the last line does use
the full address (80000), corresponding to the label L o o p . (The first line is
a simplified version of the MIPS multiply instruction; see page 179 in
Chapter 4 for details.)

Hardware

Software

Interface

Nearly every conditional branch is to a nearby location, but
occasionally it branches far away, farther than can be repre
sented in the 16 bits of the conditional branch instruction.
The assembler comes to the rescue just as it did with large
addresses or constants: it inserts an unconditional jump to
the branch target, and the condition is inverted so that the
branch decides whether to skip the jump. For example, a

branch on register $18 being equal to register $19 such as

beq $ 1 8 , $ 1 9 , L l

can be replaced by this pair of instructions that offers a much greater branch
ing distance:

L 2 :

b n e $ 1 8 , $ 1 9 , L 2
j L l

We have seen two new forms of addressing in this section. Multiple forms
of addressing are generically called addressing modes. The MIPS addressing
modes are

130

II .

Chapter 3 Instructions: Language of the Machine

1 . Register addressing, where the operand is a register;

2. Base or displacement addressing, where the operand is at the memory
location whose address is the sum of a register and an address in the
instruction;

3. Immediate addressing, where the operand is a constant within the
instruction itself; and

4. PC-relative addressing, where the address is the sum of the PC and a con
stant in the instruction.

Figure 3.15 shows how operands are identified for each addressing mode. The
next section expands this list to show addressing modes found in other styles
of computers.

Figure 3.16 shows the MIPS architecture that is revealed in Chapter 3. The
remaining hidden portion of MIPS deals mainly with arithmetic, covered in
the next chapter.

Elaboration: Since all M IPS instructions are 4 bytes long, M IPS stretches the d is
tance of the branch by having PC-relative addressing refer to the number of words to
the next instruction instead of the number of bytes. Thus the 16-bit field can branch
four times as far by interpreting the field as a relative word address rather than as a rel
ative byte address. Thus the address field for b e q and b n e in Figure 3.16 should be
25 instead of 100; we hide this detail for s impl icity.

The 26-bit field in jump instructions is also a word address, meaning that it repre
sents a 28-bit byte address. Since the PC is 32 bits , 4 bits must come from someplace
else. The MIPS jump instruction replaces only the lower 28 bits of the PC , leaving the
upper 4 bits of the PC unchanged. The loader and l inker must be careful to avoid plac
ing a program across an address boundary of 256 MB (64 mi l l ion instructions), for oth
erwise a jump must be replaced by a Jump register instruction and other instructions
to load the ful l 32-bit address into a register.

Alternatives to the MIPS Approach

Designers of instruction sets sometimes provide more powerful operations
than those found in MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can
occur at the cost of simplicity, increasing the time a program takes to execute
because the instructions are slower. This slowness may be the result of a slower
clock cycle time or of requiring more clock cycles than a simpler sequence (see
section 2.8 on page 76). The following sections present several methods of
reducing the number of executed instructions by using more powerful ways of

3.8 Alternatives to the MIPS Approach 131

1. Register addressing

op rs rt rd fun ct

I
register

2 . Base addressing

op rs rt address

register

Memory

3. Immediate addressing

op rs rt immediate

4. PC-relative addressing

op rs rt address

PC

Memory

FIGURE 3.15 Illustration of the four MIPS addressing modes. The operands are shaded in color. The oper
ands of modes 2 and 4 are locations in memory, whereas the operand for mode 1 is a register. For mode 3 the
operand is 16 bits of the instruction itself.

132

Name

32 registers

230
memory
words

Category

Arithmetic

Data
Transfer

Conditional
Branch

Uncondi-
tional Jump

sub
addi
lw
SW

lu i
beq
bne
sit
slti

jr
jal
Field size
Format R
Format I
Format J

Chapter 3 Instructions: Language of the Machine

MIPS operands

Example Comments
Fast locations for data. In MIPS, data must be in registers to perform

$0, $1, $2, . . . , $31 arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for
the assembler to handle pseudoinstructions and large constants.

Memory[OJ, Accessed only by data transfer instructions. MIPS uses byte addresses, so
Memory[4], . . . , sequential words differ by 4. Memory holds data structures, such as arrays,
Memory(4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Instruction Example Meaning Comments
add
subtract
add immediate
load word
store word

load upper imm.
branch on equal
branch on not eq.
set on less than

set less than imm.
jump
jump register
jump and l ink

R 0

8
35
43

15
4

I 5
R 0

10
2

R 0
3

6 bits
R op

op
J op

add $1,$2,$3
sub $1,$2,$3
addi $1,$2, 100
lw $1,100($2)
SW $1,100($2)

lui $1 ,100
beq $1,$2, 100
bne $1,$2, 100
sit $1,$2,$3

slti $1,$2,100
j 10000
jr $31
jal 10000

$1 = $2 + $3
$1 = $2 - $3

$1 = $2 + 100
$1 = Memory[$2+100]
Memory($2+100] = $1

$1 = 100 * 216

if ($1 == $2) go to PC+4+100
if ($1 != $2) go to PC+4+100
if ($2 < $3) $1=1; else $1=0

if ($2 < 100) $1=1; else $1=0
go to 10000
go to $31
$31 = PC + 4; go to 10000

MIPS machine language

2 3 1 34

2 1 100
2 1 100
2 1 100
0 1 100
1 2 100
1 2 100
2 3 1 0 42
2 1 100

10000
31 0 0 0 8

10000
5 bits 5 bits 5 bits 5 bits 6 bits

rs rt rd shamt funct
rs rt address/immediate

target address

3 operands; data in registers
3 operands; data in registers

Used to add constants
Data from memory to register
Data from register to memory

Loads constant in uooer 16 bits
Equal test; PC relative branch
Not equal test; PC relative
Compare less than; for beq,bne

Compare less than constant
Jump to target address
For switch, procedure return
For procedure call

sub $1,$2,$3

addi $1,$2,100
lw $1, 100($2)
SW $1,100($2)

lui $1,100
beq $1,$2 , 100
bne $1,$2, 100
sit $1,$2,$3
slti $1,$2,100

10000
jr $31
jal 10000
All MIPS instructions 32 bits
Arithmetic instruction format
Transfer, branch, imm. format
Jump instruction format

FIGURE 3.16 MIPS architecture revealed In Chapter 3. Highlighted portions show portions from this section.

3.8 Alternatives to the MIPS Approach 133

Autoincrement addressing (not found in MIPS)

op rs rt address

register

Memory

FIGURE 3.17 Illustration of autoincrement addressing mode. The operand is shaded in color.

accessing operands and by using more powerful operations. Appendix E
describes the VAX architecture, an example of such an alternative approach.

Autoincrement and Autodecrement

Imagine the case of a code sequence marching through an array of words in
memory. A frequent pair of operations would be loading a word and then
incrementing the Index register to point to the next word. The idea of autoin
crement addressing is to have a new version of data transfer instructions that
will automatically increment the Index register to point to the next word each
time data is transferred. Since the MIPS architecture uses byte addresses and
words are 4 bytes, this new form would be equivalent to this pair of MIPS
instructions:

l w
a d d i

$ 8 , S s t a r t ($ 1 9 l
$ 1 9 , $ 1 9 , 4

r e g $ 8 g e t s S [$ 1 9 J
$ 1 9 = $ 1 9 + 4

They would be replaced by a single hypothetical instruction, not found in MIPS,
that might look like this:

l w+ $ 8 , S s t a r t ($ 1 9) # r eg $ 8=S [$ 1 9 J ; $ 1 9 = $ 1 9+4

Using the same notation as Figure 3.15, Figure 3.17 shows autoincrement
addressing.

Sometimes programs will march through memory in the other direction,
and so autodecrement address may be provided as well. Autoincrement and au
todecrement addressing are also useful for stacks, since they are equivalent to
primitives for push and pop.

134 Chapter 3 Instructions: Language of the Machine

Memory-Based Operands for Operations

Another attempt to reduce the number of instructions executed also combines
loads with arithmetic instructions, but in this case the idea is to have a version
of the arithmetic instruction that can specify one of its operands to be in mem
ory. The goal is to replace this pair of MIPS instructions

l w $ 8 , A s t a r t ($ 1 9) # T emp o r a ry r e g $ 8 g e t s A [$ 1 9 J
a d d $ 1 6 , $ 1 7 , $ 8 # $ 1 6 = $ 1 7 + A [i]

with a single add instruction that adds memory operand A [$ 1 9 J directly to
register $ 1 7 and then places the sum in register $ 1 6 . This hypothetical instruc
tion, not found in MIPS, might look like this:

a d d m $ 1 6 , $ 1 7 , A s t a r t ($ 1 9) # $ 1 6= $ 1 7 + M em o ry [$ 1 9+A s t a r t]

Incorporating this instruction, thereby disregarding the advice on regulari
ty, means longer instructions to hold both a memory address field and the
three register fields, and probably leads to multiple sizes of instructions. In the
VAX architecture, each operand can be a register or a memory location, and
the address of a memory operand can use more than a dozen different ad
dressing modes. Since many instructions have three memory addresses per in
struction, this combination leads to a large number of instruction lengths.

Complex Operations

The examples of more sophisticated operations above all dealt with ways of
accessing operands. Another path to a more powerful instruction set is making
the operations themselves more complex than the simple arithmetic primitives
we have seen so far. Following this approach, the computer designer looks for
instruction sequences that happen frequently and replaces them with a single
instruction, hoping to improve performance by reducing the number of exe
cuted instructions. The designers of the VAX followed this approach; see
Appendix E. One example would be a single instruction that does everything
needed to call a procedure, including saving registers and adjusting the stack.
(The Fallacy on page 147 explains the reasons not to do this.)

Let's look at another example. The for loop found in most programming lan
guages allows the programmer to specify the starting value of the loop index,
the ending value, and the amount the index should be incremented. Some ma
chines provide an increment-compare-and-branch instruction to try to match the
needs of a for loop. Assuming that we want to increment register $19, compare
to register $20, and then branch as long as register $ 1 9 is less, we would need
the following MIPS instructions:

3.9 An Example to Put It All Together 135

Lo o p :

a d d i
s 1 t
b n e

$ 1 9 , $ 1 9 , 1
$ 8 , $ 1 9 , $ 2 0
$ 8 , $ 0 , L o o p

$ 1 9 = $ 1 9 + 1
$ 8 = 1 i f $ 1 9 < $ 2 0
$ 8 * 0 me a n s $ 1 9 < $ 2 0 ,
s o g o t o L o o p i f $ 8 * $ 0

A single instruction replacing these three would specify the register to be
incremented, the register to be compared, and the branch address. This hypo
thetical instruction, once again not found in MIPS, might look like this:

i c b $ 1 9 , $ 2 0 , L o o p# $ 1 9=$ 1 9+ 1 ; i f $ 1 9 < $ 2 0 t h e n g o t o L o o p

Hardware

Software

Interface

In addition to going against the advice of simplicity, such so
phisticated operations may not exactly match what the com
piler needs to produce. For example, suppose that instead of
incrementing by 1 the compiler wanted to increment by 4, or
instead of branching on less than, the compiler wanted to
branch if the index was less than or equal to the limit. Then
the instruction just described would be a mismatch. When

faced with such objections, the instruction set designer might then generalize
the operation, adding another operand to specify the increment and perhaps
an option on which branch condition to use. Then the danger is that a common
case, say, incrementing by 1, will be slower than a sequence of simple
operations.

The path toward operation complexity is thus fraught with peril. To avoid
these problems, designers have moved toward simpler instructions. Section
3.12 demonstrates the pitfalls of complexity.

• An Example to Put It All Together

One danger of showing assembly language code in snippets is that the reader
has no idea what a full assembly language program looks like. In this section
and the next we derive the MIPS code from a procedure written in C.
Section 3.10 uses this code in a longer example.

Let's start with the code for the procedure s w a p in Figure 3.18. (The Pascal
version of this procedure is found on page D-8 in Appendix D.) This procedure
simply swaps two locations in memory. When translating from C to assembly
language, we follow these general steps:

136 Chapter 3 Instructions: Language of the Machine

s w a p (i n t v [J . i n t k l
{

I

i n t t e m p ;

t e m p � v [k] ;
v [k] � v [k+l] ;
v [k+ l] � t e mp ;

FIGURE 3.18 A C procedure that swaps two locations In memory. This procedure will be
used in the sorting example in the next section. Appendix D shows the C and Pascal versions of
this procedure side by side (page D-8).

1 . Allocate registers to program variables.
2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the s w a p procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation

As mentioned on page 121, the MIPS convention on parameter passing is to
use registers $4, $5, $6, and $7. Since swap has just two parameters, v and k ,
they will be found in registers $4 and $5. The only other variable is t emp, which
we associate with register $15. This register allocation corresponds to the vari
able declarations in the first half of the s w a p procedure.

Code for the Body of the Procedure

The remaining lines of C code in s w a p are
t emp = v [k] ;
v [k] = v [k+l] ;
v [k+l] = temp ;

A simplistic view is to translate them into these five MIPS instructions:
a d d $ 2 , $ 4 , $ 5 if reg $ 2 = v + k

l w
l w

S W
S W

$ 1 5 , 0 ($ 2)
$ 1 6 , 1 ($ 2)

$ 1 6 , 0 ($ 2)
$ 1 5 , 1 ($ 2)

if r e g $ 2 h a s t h e a d d r e s s o f v [k]
if r e g $ 1 5 (t emp) = v [k]
if reg $ 1 6 = v [k+l]
if r e f e r s t o n e x t e l eme n t o f v
if v [k] = r e g $ 1 6
if v [k+ l J = reg $ 1 5 (t emp)

3.9 An Example to Put It All Together 137

Note that the register $2 contains the base of array, and we use the constant
part of the instruction to select the element of the array. The code is not that
simple, however. Recall that the memory address for MIPS refers to the byte
address, and so words are really 4 bytes apart; both the index and the address
are wrong! Hence we need to multiply the index k by 4 before adding it to the
address, and we must increment the address of v [k J by 4 instead of by 1 to get
the address of v [k + 1 J . Forgetting that sequential word addresses differ by 4 instead
of by 1 is a common mistake in assembly language programming.

We assume an instruction that can multiply by a small constant for now
(mu l i), but we'll cover the real instructions in Chapter 4. We must also change
the address from 1 to 4 in the data transfers that refer to v [k + 1 J , since sequen
tial words are 4 bytes apart. The new version has the changes highlighted:

m u l i $ 2 , $ 5 , 4 # r e g $ 2 = k * 4
a d d $ 2 . $ 4 . $ 2 # r e g $ 2 = v + (k * 4)

l w
l w

S W
S W

$ 1 5 , 0 ($ 2)
$ 1 6 , 4 ($ 2)

$ 1 6 , 0 ($ 2)
$ 1 5 , 4 ($ 2)

r e g $ 2 h a s t h e a d d r e s s o f v [k]
r e g $ 1 5 (t emp) = v [k]
r e g $ 1 6 = v [k+ l]
r e fe r s t o n e x t e l eme n t o f v
v [k] = r e g $ 1 6
v [k+l] = re g $ 1 5 (t emp)

Now we have allocated storage and written the code to perform the opera
tions of the procedure. The only missing code is the code that preserves regis
ters across the routine that calls s w a p.

Preserving Registers Across Procedure Invocation

Let's use callee save as our convention. Since we are changing registers $2, $15,
and $16, we must first make room on the stack to save their original values.
Register $29 contains the stack pointer, and we need to adjust it by 3 x 4 or 12
bytes before we save the three words:

a d d i $ 2 9 , $ 2 9 , - 1 2

The adjustment is negative because the MIPS convention is for the stack to
grow from higher addresses to lower addresses. Now we save the old values:

s w $ 2 , 0 ($ 2 9) # s a v e $ 2 o n s t a c k
s w $ 1 5 , 4 ($ 2 9) # s a v e $ 1 5 o n s t a c k
s w $ 1 6 , 8 ($ 2 9) # s a v e $ 1 6 on s t a c k

At the end of the procedure we just restore the registers via three loads and
then adjust the stack in the other direction. Since s w a p calls no procedures, we
skip saving and restoring the return address in register $31. We just place a
Jump register instruction at the end of the code to return.

138 Chapter 3 Instructions: Language of the Machine

Sa v ing registers

s wa p : a d d i
S W
S W
S W

$ 2 9 , $ 2 9 , - 1 2
$ 2 , 0 ($ 2 9)

$ 1 5 , 4 ($ 2 9)
$ 1 6 , 8 ($ 2 9)

fl m a k e r o om on s t a c k f o r 3 r e g
fl s a v e $ 2 on s t a c k

mu l i

a d d

l w
l w

S W
S W

l w
l w
l w
a d d i

fl s a v e $ 1 5 o n s t a c k
fl s a v e $ 1 6 o n s t a c k

Procedure body

$ 2 , $ 5 , 4 fl reg $2 = k * 4
$ 2 , $ 4 , $ 2 fl r e g $ 2 = v + (k*4)

II r e g $ 2 h a s t h e a d d r e s s
$ 1 5 , 0 ($ 2) fl r e g $ 1 5 < t emp) = v [k]
$ 1 6 , 4 ($ 2) fl r e g $ 1 6 = v [k+l]

II r e f e r s t o n e x t e l eme n t
$ 1 6 , 0 ($ 2) II v [k] = r e g $ 1 6
$ 1 5 , 4 ($ 2) fl v [k + l] = r e g $ 1 5 (t emp)

Restoring registers

$ 2 , 0 ($ 2 9)
$ 1 5 , 4 ($ 2 9)
$ 1 6 , 8 ($ 2 9)
$ 2 9 . $ 2 9 , 1 2

fl r e s t o r e $ 2 f r om s t a c k
fl r e s t o re $ 1 5 f r om s t a c k
fl r e s t o re $ 1 6 f r om s t a c k
fl r e s t o r e s t a c k p o i n t e r

o f v [k]

o f v

FIGURE 3.19 MIPS assembly code of the procedure swap In Figure 3.18 on page 136.

The Full Procedure

We are now ready for the whole routine. To make it easier to follow, we iden
tify each block of code with its purpose in the procedure in Figure 3.19. This
simple example shows the power of writing in high-level programming lan
guages versus assembly language: 8 lines of C code became 17 lines of MIPS
assembly code.

II A Longer Example

To ensure that the reader appreciates the rigor of programming in assembly
language, we'll try a second, longer example. In this case we'll build a routine
that calls the s w a p procedure from section 3.9. This program sorts an array of
10,000 integers. Figure 3.20 shows the C version of the program, and the Pascal
version is found on page D-8 in Appendix D. Once again we present this pro
cedure in several steps, concluding with the full procedure.

3.10 A Longer Example

i n t v [l O O O O] ;

s o r t (i n t v [J . i n t n)
(

i n t i , j ;
f o r (i = O ; i < n ; i = i +l) (

f o r (j = i - 1 ; j >=O && v [j J > v [j +l] ;
s w a p (v , j) ;

139

j - 1) (

FIGURE 3.20 A C procedure that performs a bubble sort on the array v. For readers unfa
miliar with C, the three parts of the first for statement are the initialization that happens before
the first iteration (i = 0), the test if the loop should iterate again (i < n), and the operation that hap
pens at the end of each iteration (i = i + 1). Appendix D shows the C and Pascal versions of this
procedure side by side (page D-8).

Register Allocation

The two parameters of the procedure s o rt , v and n, are in the parameter reg
isters $4 and $5, and we assign register $19 to i and register $17 to j .

Code for the Body of the Procedure

The procedure body consists of two nested for loops and a call to swap that
includes parameters. Let's unwrap the code from the outside to the middle.

The Outer Loop
The first translation step is the first for loop:

f o r (i = O ; i < n ; i = i + l) {
Recall that the C for statement has three parts: initialization, loop test, and iter
ation increment. It takes just one instruction to initialize i to 0, the first part of
the for statement:

a d d $ 1 9 , $ 0 , $ 0 # i = O

It also takes just one instruction to increment i , the last part of the for:

a d d i $ 1 9 . $ 1 9 . 1 # i = i + 1

The loop should be exited if i < n is not true, or, said another way, should be
exited if i 2". n . This test takes two instructions:

f o r l t s t : s l t $ 1 . $ 1 9 , $ 5
b e q $ 1 , $ 0 , e x i t l

r e g $ 1 = 0 i f $ 1 9 2". $ 5 (i 2".n)
g o t o e x i t l i f $ 1 9 2". $ 5 (i 2".n)

140 Chapter 3 Instructions: Language of the Machine

The set on less than instruction sets register $1 to 1 if $19 < $5 and 0 otherwise.
Since we want to test if $19 ;:: $5, we branch if register $1 is zero. The bottom of
the loop just jumps back to the loop test:

e x i t l :
j f o r l t s t ff j um p t o t e s t o f o u t e r l o o p

The skeleton code of the first for loop is then:
a d d $ 1 9 . $ 0 , $ 0 ff i = O

f o r 1 t s t : s l t $ 1 . $ 1 9 . $ 5 ff r e g $ 1 = 0 i f $ 1 9 ;:: $ 5 (i ;::n)

e x i t l :

b e q $ 1 , $ 0 , ex i t l ff g o t o ex i t l i f $ 1 9 ;:: $ 5 (i ;::n)

(b ody o f f i r s t f o r l o o p)

a d d i $ 1 9 . $ 1 9 . 1
j f o r l t s t

ff i = i + 1
ff j um p t o t e s t o f o u t e r l o o p

Voila! Exercise 3.11 explores writing faster code for similar loops.

The Inner loop
The second for loop looks like this in C:

f o r (j = i - 1 ; j >=O && v [j J > v [j + l] ; j = j - 1) {

The initialization portion of this loop is again one instruction:
a d d i $ 1 7 . $ 1 9 . - 1 ff j = i - 1

and the decrement of j is also one instruction:
a d d i $ 1 7 . $ 1 7 . - 1 ff j = j - 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

f o r 2 t s t : s l t i $ 1 , $ 1 7 . O ff r e g $ 1 = 1 i f $ 1 7 < O (j < 0)
b n e $ 1 , $ 0 , e x i t 2 ff g o t o e x i t 2 i f $ 1 7 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn't skip, j ;:: 0.
The second test exits if v [j J > v [j + 1 J is not true, or exits if v [j J :::; v [j + 1 J .

First we create the address by multiplying j by 4 (since we need a byte ad
dress) and add it to the base address of v :

m u l i $ 1 5 , $ 1 7 , 4 ff r e g $ 1 5 j * 4
a d d $ 1 6 , $ 4 , $ 1 5 ff r e g $ 1 6 v + (j *4)

Now we load v [j J :

l w $ 24 , 0 ($ 1 6) ff r e g $ 2 4 = v [j]

Since we know that the second element is just the following word, we add 4 to
the address in register $16 to get v [j + 1 J :

3.10 A Longer Example 141

l w $ 2 5 , 4 ($ 1 6) # r e g $ 2 5 = v [j + l]

The test of v [j J � v [j + 1 J is the same as v [j + 1 J 2:v [j J , so the two instructions
of the exit test are

s l t $ 1 , $ 2 5 , $ 24 # r e g $ l = 0 i f $ 2 5 2: $ 24
b e q $ 1 , $ 0 , e x i t 2 # g o t o e x i t 2 i f $ 2 5 2: $ 2 4

The bottom of the loop jumps back to the full loop test:

j f o r 2 t s t # j ump t o t e s t o f i n n e r l o o p

Combining the pieces together, the second for loop looks like this:
a d d i $ 1 7 . $ 1 9 , - 1 # j = i - 1

f o r 2 t s t : s l t i $ 1 , $ 1 7 , 0 # r e g $ 1 = 1 i f $ 1 7 < 0 (j < O l
b n e $ 1 , $ 0 , e x i t 2 # g o t o ex i t 2 i f $ 1 7 < 0 (j < O l
m u l i $ 1 5 , $ 1 7 , 4 # r e g $ 1 5 j * 4
a d d $ 1 6 , $ 4 , $ 1 5 # r e g $ 1 6 v + (j *4)
l w $ 2 4 , 0 ($ 1 6) # r e g $ 2 4 v [j]
l w $ 2 5 . 4 ($ 1 6) # r e g $ 2 5 v [j + l]
s l t $ 1 , $ 2 5 , $ 24 # r e g $ 1 0 i f $ 2 5 2: $ 24
b e q $ 1 , $ 0 , e x i t 2 # g o t o e x i t 2 i f $ 2 5 2: $ 2 4

(b ody o f s e c o n d f o r l o o p)

a d d i $ 1 7 . $ 1 7 . - 1 # j = j - 1
j f o r 2 t s t # j ump t o t e s t o f i n n e r l o o p

e x i t 2 :

The Procedure Call
The next step is the body of the second for loop:

s wa p (v , j l ;

Calling s w a p is easy enough:
j a l s w a p

Passing Parameters
The problem comes when we want to pass parameters, because the s o r t pro
cedure needs the values in registers $4 and $5, yet the s w a p procedure needs to
have its parameters placed in those same registers. One solution is to copy the
parameters for s o r t into other registers earlier in the procedure, making reg
isters $4 and $5 available for the call of s w a p .We first copy $4 and $5 into $18
and $20 during the procedure:

m o v e $ 1 8 , $ 4 # c o py p a r a m e t e r $ 4 i n t o $ 1 8
m o v e $ 2 0 , $ 5 # c o py p a r a m e t e r $ 5 i n t o $ 2 0

142 Chapter 3 Instructions: Language of the Machine

(Remember that m o v e is a pseudoinstruction provided by the assembly for the
convenience of the assembly language programmer: see page 110.) Then we
pass the parameters to s w a p with these two instructions:

m o v e $ 4 , $ 1 8 # f i r s t s w a p p a r a met e r i s v
m o v e $ 5 , $ 1 7 # s e c o n d s w a p pa r a m e t e r i s j

Preserving Registers Across Procedure Invocation

The only remaining code is the saving and restoring of registers using the
callee save convention. Clearly we must save the return address in register $31,
since s o r t calls another procedure. The other registers we have used are $15,
$16, $17, $18, $19, $20, $24, and $25. The prologue of the sort procedure is then

a d d i $ 2 9 , $ 2 9 , - 3 6 # ma k e r o o m o n s t a c k f o r 9 r e g
s w $ 1 5 , 0 ($ 2 9) # s a v e $ 1 5 o n s t a c k
s w $ 1 6 , 4 ($ 2 9) # s a v e $ 1 6 o n s t a c k
s w $ 1 7 , 8 ($ 2 9) # s a v e $ 1 7 o n s t a c k
s w $ 1 8 , 1 2 ($ 2 9) # s a v e $ 1 8 o n s t a c k
s w $ 1 9 , 1 6 ($ 2 9) # s a v e $ 1 9 on s t a c k
s w $ 2 0 , 2 0 ($ 2 9) # s a v e $ 2 0 o n s t a c k
s w $ 2 4 , 2 4 ($ 2 9) # s a v e $ 2 4 o n s t a c k
s w $ 2 5 , 2 8 ($ 2 9) # s a v e $ 2 5 o n s t a c k
s w $ 3 1 , 3 2 ($ 2 9) # s a v e $ 3 1 o n s t a c k

The tail of the procedure simply reverses all these instructions, then adds a j r
to return.

The Full Procedure

Now we put all the pieces together in Figure 3.21, being careful to replace ref
erences to registers $4 and $5 in the for loops with references to registers $18
and $20. Once again to make the code easier to follow, we identify each block
of code with its purpose in the procedure. In this example, 11 lines of the s o r t
procedure in C became the 44 lines in the MIPS assembly language.

1S111n1"a11111n! Copying $18 into $4 in the passing parameters section was unneces
sary, since that was the old value of $4, but it is good practice to save al l the parame
ters if you are going to cal l another procedure. We could also streaml ine the procedure
call overhead by using a combination of callee and caller save for procedures that don't
call other procedures, such as s w a p . Exercises 3.28 and 3.29 explore these options.

3.11 Arrays versus Pointers 143

Arrays versus Pointers

A challenging topic for any new programmer is understanding pointers. Com
paring assembly code that uses arrays and array indices to the assembly code
that uses pointers offers insight into that difference. This section shows C and
MIPS assembly versions of two procedures to clear a sequence of words in
memory: one using array indices and one using pointers. Figure 3.22 shows
the two C procedures.

Let's start with the array version, c l e a r 1 , focusing on the body of the loop
and ignoring the procedure linkage code. We assume that the two parameters
a r r a y and s i z e are found in the registers $4 and $5, and that i is allocated to
register $2.

The initialization of i , the first part of the for loop, is straightforward:

m o v e $ 2 , $ 0 # i = 0 (r e g i s t e r $ 0 = O J
To set a r r a y [i J to 0 we must first get its address. Start by multiplying i by 4
to get the byte address:

l o o p l : m u l i $ 1 4 , $ 2 , 4 # $ 1 4 = i * 4

Since the starting address of the array is in a register, we must add it to the
index to get the address of a r r a y [i J using an add instruction:

a d d $ 3 , $ 4 , $ 1 4 # $ 3 = a d d r e s s o f a r r a y [i]

Finally we can store 0 in that address:

sw $ 0 , 0 ($ 3) # a r r a y [i] = 0

This is the end of the body of the loop, so the next step is to increment i :

a d d i $ 2 , $ 2 , 1 # i = i + 1

The loop test checks if i is less than s i z e :

s l t $ 1 , $ 2 , $ 5 # $ 1 = (i < s i z e)
b n e $ 1 , $ 0 , l o o p l # i f (i < s i z e) g o t o l o o p l

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

m o v e $ 2 . $ 0
l o o p l : m u l i $ 1 4 , $ 2 , 4

a d d $ 3 , $ 4 , $ 1 4
S W $ 0 , 0 ($ 3)
a d d i $ 2 , $ 2 , 1
s l t $ 1 , $ 2 , $ 5
b n e $ 1 , $ 0 , l o o p l

i = 0
$ 1 4 = i * 4
$ 3 = a d d r e s s o f a r r ay [i]
a r r a y [i J = 0
i = i + 1
$ 1 = (i < s i z e)
i f (i < s i z e) g o t o l o o p l

144 Chapter 3 Instructions: Language of the Machine

Saving registers
s o r t : a d d i $ 2 9 , $ 2 9 , - 3 6 # m a k e r o o m on s t a c k f o r 9 r e g

S W $ 1 5 , 0 ($ 2 9) # s a v e $ 1 5 on s t a c k
S W $ 1 6 , 4 ($ 2 9) # s a ve $ 1 6 on s t a c k
S W $ 1 7 , 8 ($ 2 9) # s a v e $ 1 7 on s t a c k
S W $ 1 8 , 1 2 ($ 2 9) # s a ve $ 1 8 on s t a c k
S W $ 1 9 , 1 6 ($ 2 9) ii s a ve $ 1 9 on s t a c k
S W $ 2 0 , 2 0 ($ 2 9) ii s a ve $ 2 0 o n s t a c k
S W $ 2 4 . 2 4 ($ 2 9) II s a ve $ 2 4 o n s t a c k
S W $ 2 5 . 2 8 ($ 2 9) II s a ve $ 2 5 o n s t a c k
S W $ 3 1 , 32 ($ 2 9) II s a v e $ 3 1 o n s t a c k

• .r.
•. :---.�'. .1 ::1 �!c;icec!ure. body " .,_ ··, . ' - .'!lo ·

Move parameters
move $ 1 8 . $ 4 ft c o py p a r a me t e r $ 4 i n t o $ 1 8
move $ 2 0 , $ 5 ft c o py p a r a me t e r $ 5 i n t o $ 2 0

a dd $ 1 9 . $ 0 , $ 0 ft i = 0
Outer loop f o r l t s t : s l t $ 1 , $ 1 9 , $ 2 0 ft reg $ 1 = 0 i f $ 1 9 � $ 2 0 (i �n)

b e q $ 1 , $ 0 , ex i t l ft go t o e x i t l i f $ 1 9 � $ 2 0 (i �n)
a d d i $ l 7 . $ 1 9 , - 1 ft j = i - 1

f o r 2 t s t : s l t i $ 1 , $ 1 7 . 0 ft r e g $ 1 = 1 i f $ 1 7 < 0 C j < O l
b n e $ 1 , $ 0 . ex i t 2 # g o t o e x i t 2 i f $ 1 7 < 0 C j < O l
mu l i $ 1 5 , $ 1 7 . 4 # r e g $ 1 5 = j * 4

Inner loop a d d $ 1 6 , $ 1 8 , $ 1 5 If r eg $ 1 6 = v + (j * 4)
l w $ 2 4 , 0 ($ 1 6) ft reg $ 2 4 = v [j J
l w $ 2 5 , 4 ($ 1 6) II reg $ 2 5 = v [j + l]
s l t $ 1 ' $ 2 5 , $ 24 ft r e g $ 1 = 0 i f $ 2 5 � $ 2 4
beq $ 1 , $ 0 , e x i t 2 ft g o t o e x i t 2 i f $ 2 5 � $ 2 4

m o v e $ 4 , $ 1 8 ft 1 s t p a r a me t e r o f s w a p i s v
Pass parameters

m o v e $ 5 , $ 1 7 ft 2 n d p a r a me t e r o f s w a p i s j and call
j a l s w a p

a d d i $ 1 7 , $ 1 7 ' - 1 ft j = j - 1
Inner loop

j f o r 2 t s t ft j ump t o t e s t o f i n n e r l oo p

e x i t 2 : a d d i $ 1 9 , $ 1 9 , 1 # i = i + 1
Outer loop

j fo r l t s t II j ump t o t e s t o f o u t e r l oo p

. Restoring registers

e x i t 1 : l w $ 1 5 , 0 ($ 2 9) # r e s t o r e $ 1 5 f r om s t a c k
l w $ 1 6 . 4 ($ 2 9) ft r e s t o r e $ 1 6 f r om s t a c k
l w $ 1 7 , 8 ($ 2 9) ft r e s t o r e $ 1 7 f r om s t a c k
l w $ 1 8 . 1 2 ($ 2 9) ft r e s t o r e $ 1 8 f r om s t a c k
l w $ 1 9 , 1 6 ($ 2 9) # r e s t o r e $ 1 9 f r om s t a c k
l w $ 2 0 , 2 0 ($ 2 9) # r e s t o r e $ 2 0 f r om s t a c k
l w $ 2 4 , 2 4 ($ 2 9) ff r e s t o r e $ 2 4 f r om s t a c k
l w $ 2 5 . 2 8 ($ 2 9) # r e s t o r e $ 2 5 f rom s t a c k
l w $ 3 1 . 3 2 ($ 2 9) If r e s t o r e $ 3 1 f r om s t a c k
a d d i $ 2 9 , $ 2 9 , 3 6 If r e s t o r e s t a c k po i n t e r

FIGURE 3.21 MIPS assembly version of procedure sort I n Figure 3.20 on page 139.

3.11 Arrays versus Pointers

c l e a r l (i n t a r r a y [] . i n t s i z e)

I
i n t i ;

f o r C i = O ; i < s i z e ; + 1)
a r r a y [i] O ;

c l e a r 2 C i n t * a r r a y , i n t s i z e)

I
i n t * P ;

f o r C p = & a r r ay [O J : p < & a r r a y [s i z e] ; p

* P = 0 :

145

p + 1)

FIGURE 3.22 Two C procedures for setting an array to all zeros. C l e a r 1 uses indexes while
c l e a r 2 uses pointers. The second procedure needs some explanation for those unfamiliar with
C. The address of a variable is indicated by " & " and referring to the object pointed to by a pointer
is indicated by "* " . The declarations declare that array and p are pointers to integers. The first
part of the for loop in c l e a r 2 assigns the first element of a r r a y to the pointer p. The second part
of the for loop tests to see if the pointer is pointing to the last element of a r r a y. Incrementing a
pointer by one, in the last part of the for loop, means moving the pointer to the next sequential
object of its declared size. Since p is a pointer to integers, the compiler will generate MIPS instruc
tions to increment p by 4, the number of bytes in a MIPS integer. The assignment in the loop
places 0 in the object pointed to by p .

(This code works as long as s i z e is greater than 0.)
The second procedure allocates the two parameters a r r a y and s i z e to the

registers $4 and $5 and allocates p to register $2. The code for the second pro
cedure starts with assigning the pointer p to the first element of the array:

m o v e $ 2 , $ 4 # p = a d d r e s s o f a r r a y [O J

The next code is the body of the for loop, which simply stores 0 into p :

l o o p 2 : s w $ 0 , 0 ($ 2) # Memo ry [p] = 0

This is all of the body of the loop, so the next code is the iteration increment,
which changes p to point to the next word:

a d d i $ 2 , $ 2 , 4 # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, the compiler increments p by 4.

The loop test is next. The first step is calculating the address of the last ele
ment of a r r a y . Start with multiplying s i z e by 4 to get its byte address:

m u l i $ 1 4 , $ 5 , 4 # $ 1 4 = s i z e * 4

146

l o o p l :

Chapter 3 Instructions: Language of the Machine

and then we add the product to the starting address of the array to get the
address of the last element of the array:

a d d $ 3 , $ 4 , $ 1 4 # $ 3 = a d d r e s s of a r r ay [s i z e J

The loop test is simply to see if p is less than the last element of a r r ay :

s l t $ 1 , $ 2 , $ 3 # $ 1 = (p < & a r r a y [s i z e J)
b n e $ l , $ 0 , l o o p 2 # i f (p < & a r r ay [s i z e J) g o t o l o o p 2

With all the pieces completed we can show a pointer version of the code to
zero an array:

m o v e $ 2 , $ 4 # p = a d d r e s s o f a r r a y [O J
l o o p 2 : S W $ 0 , 0 ($ 2) # Memo ry [p J = 0

a d d i $ 2 , $ 2 , 4 # p = p + 4
m u l i $ 1 4 , $ 5 , 4 # $ 1 4 = s i z e * 4
a d d $ 3 , $ 4 , $ 1 4 # $ 3 = a d d r e s s o f a r r ay [s i z e]
s l t $ 1 , $ 2 , $ 3 # $ 1 = (p < & a r r a y [s i z e])
b n e $ 1 , $ 0 , l o o p 2 # i f (p < & a r r a y [s i z e]) g o t o l o o p 2

As in the first example, this code assumes s i z e is greater than 0.
Note that this program calculates the address of the end of the array every

iteration of the loop even though it does not change. A faster version of the
code moves this calculation outside the loop:

m o v e $ 2 , $ 4 # p = a d d r e s s o f a r r a y [O J
m u l i $ 1 4 , $ 5 , 4 # $ 1 4 = s i z e * 4
a d d $ 3 , $ 4 , $ 1 4 # $ 3 = a d d r e s s o f a r r ay [s i z e]

l o o p 2 : s w $ 0 , 0 ($ 2) # Memo ry [p J = 0
a d d i $ 2 , $ 2 , 4 # p = p + 4
s l t $ 1 , $ 2 , $ 3 # $ 1 = (p < & a r r a y [s i z e J)
b n e $ l , $ 0 , l o o p 2 # i f (p < & a r r a y [s i z e J) g o t o l o o p 2

Comparing the two code sequences side by side illustrates the difference
between array indices and pointers (the changes introduced by the pointer
version are highlighted) :

move $ 2 , $ 0 If i = 0 move $ 2 , $4 If p - & a r ray [O J
m u l i
a d d
S W
a d d i
s l t
b n e

$ 1 4 , $ 2 , 4 If $ 1 4 = i * 4 mu l i $ 1 4 , S 5 , 4 # $ 14 = s 1 ze * 4
$ 3 , $ 4 , $ 1 4 If $ 3 =& a r r a y [i] add $3 , $4 , $ 1 4 If $3 = & a r ray [s i ze]
$ 0 , 0 ($ 3) If a r r ay [i J = O 1 oop2 : SW $0 , 0 ($2) # Memory [p] = o
$ 2 , $ 2 , l If i = i + 1 a d d i $ 2 , $2 , 4 # p - p + 4
$ 1 , $ 2 , $ 5 If $ 1 = (i < s i z e) s l t $ 1 , $ 2 , $3 # $ l= (p <&a rray [s i ze J l
$ 1 , $ 0 , l o o p l If i f () g o t o l o o p l bne $ l , $0 , l oop2 # i f () go to l oop2

The version on the left must have the multiply and add inside the loop because
i is incremented and each address must be recalculated from the new index
while the memory pointer version increments the pointer p directly. This

3.12 Fallacies and Pitfalls 147

reduces the instructions executed per iteration from 6 to 4. Many modern com
pilers will optimize the C code in c l e a r 1 to produce code similar to the assem
bly code above on the right-hand side. 1111 Fallacles and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Perhaps the most famous counterexample is an instruction in the VAX archi
tecture that supported an elaborate procedure call mechanism in a single
instruction. This single instruction automatically saved the following items on
the stack: the return address, the number of parameters, any registers that
would be modified by the procedure, and the old value of the stack pointer.

In addition, the c a 1 1 instruction updated the stack pointer and did some
other bookkeeping before jumping to the procedure. The VAX also had an in
struction very similar to j a l in MIPS. People found that using compiler con
ventions on parameter passing and register saving and replacing the
sophisticated call instruction by simpler instructions like j a l had the follow
ing effect: it made programs run 1 .2 times faster by avoiding the powerful in
struction! Clearly moving procedure call into hardware means you can't tailor
the overhead to the program, and is overkill in most cases.

Pitfall: Writing in assembly language in order to obtain the highest performance.

At one time compilers for programming languages produced naive instruction
sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to thor
oughly understand the concepts in Chapters 6 and 7 on processor pipelining
and memory hierarchy.

This battle between compilers and assembly language coders is one situa
tion in which humans are losing ground. For example, C offers the program
mer a chance to give a hint to the compiler about which variables should be
kept in registers versus spilled to memory. When compilers were poor at reg
ister allocation, such hints were vital to performance. In fact, some C textbooks
spent a fair amount of time giving examples to effectively use register hints.
Today's C compilers generally ignore such hints because the compiler does a
better job at allocation than the programmer.

As a specific counterexample, we ran the MIPS assembly language pro
grams in Figures 3.19 and 3.21 to compare performance to the C programs in
Figures 3.18 and 3.20. Figure 3.23 shows the results. As you can see, the com
piled program is 1 .5 times faster than the assembled program. The compiler
generally was able to create assembly language code that was tailored exactly

148 Chapter 3 Instructions: Language of the Machine

Assembly 37.9 seconds

c 25.3 seconds

FIGURE 3.23 Performance Comparison of the C and assembly language version of the
sort and swap procedures in sections 3.9 and 3.10. The size of the array to be sorted was
increased to 10,000 elements. The programs were run on a DECsystem 5900 with 128 MB of main
memory and a 40-MHz R3000 processor using version 4.2a (Revision 47) of the Ultrix operating
system. The C compiler was run with the -0 option.

to these conditions, while the assembly language program was written in a
slightly more general fashion to make it easier to modify and understand. The
specific improvements of the C compiler were a more streamlined procedure
linkage convention and changing the address calculations to move the multi
ply outside the inner loop.

Even if the battle isn't lost yet, the dangers of writing in assembly language
are longer time spent coding and debugging, the loss in portability, and the
difficulty of maintaining such code. One of the few widely accepted axioms of
software engineering is that coding takes longer if you write more lines, and it
clearly takes many more lines to write a program in assembly language than
in C. And once it is coded, the next danger is that it will become a popular pro
gram. Such programs always live longer than expected, meaning that some
one will have to update the code over several years and make it work with new
releases of operating systems and new models of machines. Writing in higher
level language instead of assembly language not only allows future compilers
to tailor the code to future machines, it also makes the software easier to main
tain, and allows the program to run on more brands of computers.

Pitfall: Forgetting that sequential word addresses in machines with byte address
ing do not differ by 1 .

The first version of our s w a p code on page 136 made this mistake. Many an
assembly language programmer has toiled over errors made by assuming that
the address of the next word can be found by incrementing the address in a
register by 1 instead of by the word size in bytes. Forewarned is forearmed!

1111 Concludlng Remarks

Less is more.

Robert Browning, Andrea de/ Sarto, 1855

The two principles of the stored-program computer are the use of instructions
that are indistinguishable from numbers and the use of alterable memory for

3.13 Concluding Remarks 149

programs. These principles allow a single machine to aid environmental scien
tists, financial advisers, and novelists in their specialties. The selection of a set
of instructions that the machine can understand demands a delicate balance
among the number of instructions needed to execute a program, the number
of clock cycles needed by an instruction, and the speed of the clock. Four prin
ciples guide the designers of instruction sets in making that delicate balance:

1 . Simplicity favors regularity. Regularity motivates many features of the
MIPS instruction set: keeping all instructions a single size, always
requiring three register operands in arithmetic instructions, and keep
ing the register fields in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 reg
isters rather than many more.

3. Good design demands compromise. One MIPS example was the compro
mise between providing for larger addresses and constants in instruc
tions and keeping all instructions the same length.

4. Make the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and imme
diate addressing for constants.

Above this machine level is assembly language, a language that humans
can read. The assembler translates it into the binary numbers that machines
can understand, and it even "extends" the instruction set by creating symbolic
instructions that aren't in the hardware. For instance, constants or addresses
that are too big are broken into properly sized pieces, common variations of
instructions are given their own name, and so on.

The MIPS instructions we have covered so far are listed in Figure 3.24. Each
category is associated with constructs that appear in programming languages:

• The arithmetic instructions correspond to the operations found in as
signment statements.

• Data transfer instructions are most likely to occur when dealing with
data structures like arrays.

• The conditional branches are used in if statements and in loops.

• The unconditional jumps are used in procedure calls and returns and
also for case/switch statements.

More of the MIPS instruction set is revealed in Chapter 4, after we explain
computer arithmetic. Appendix A (section A.10 on page A-47) describes the
full MIPS architecture.

150

Arithmetic

Data transfer
Cond itional branch
Jump

Chapter 3 Instructions: Language of the Machine

add , sub, add i Operations i n assignment statements

lw, sw, J u i References t o data structures such a s arrays

beq , bne, s it, slti /f statements and loops

j, jr, ja l Procedure cal ls , returns, and case/switch statements

48% 50%

33% 41%

1 7% 8%

2% 1%

FIGURE 3.24 MIPS Instruction categories, examples, correspondence to high-level program language constructs,
and percentage of MIPS Instructions executed by category for two programs, gee and spice. Figure 3.16 on page
132 shows more details of the MIPS architecture revealed in this chapter, and Figure 4.46 on page 248 shows the percentage
of the individual MIPS instructions executed.

These instructions are not born equal; the popularity of the few dominates
the many. For example, Figure 3.24 shows the popularity of each class of in
structions for two programs, gee and spice. The varying popularity of instruc
tions plays an important role in the chapters on performance, datapath,
control, and pipelining.

II Historical Perspective and Further Reading

accumulator: Archaic term for register. On-line use of it as a synonym for "reg
ister" is a fairly reliable indication that the user has been around quite a while

Eric Raymond, The New Hacker's Dictionary, 1991

Hardware was precious in the earliest stored-program computers. As a conse
quence, computer pioneers could not afford the number of registers found in
today's machines. In fact, these machines had a single register for arithmetic
instructions. Since all operations would accumulate in a single register, it was
called the accumulator, and this style of instruction set is given the same label.
For example, EDSAC in 1949 had a single accumulator.

The three-operand format of the MIPS suggests that a single register is at
least two registers shy of our needs. Having the accumulator as both a source
operand and as the destination of the operand fills part of the shortfall, but it
still leaves us one operand short. That final operand is found in memory. Ac
cumulator machines have the memory-based operand-addressing mode sug
gested earlier. It follows that the add instruction of an accumulator instruction
set would look like this:

a d d 2 0 0

3.14 Hlstorlcal Perspective and Further Reading 151

This instruction means add the accumulator to the word in memory at address
200 and place the sum back into the accumulator. No registers are specified
because the accumulator is known to be both a source and a destination of the
operation.

What is the accumulator-style assembly code for this C code?

A = B + C ;

It would be translated into the following instructions in an accumulator in
struction set:

l o a d A d d r e s s B ff A c e Memo ry [Ad d r e s s B J ,
ff o r A c e = B

a d d Ad d r e s s C ff A c e B + M e m o ry [Ad d r e s s C J ,
ff o r A c e = B+C

s t o r e A d d r e s s A ff Memo ry [Ad d r e s s A J = A c c .
ff o r A = B+C

All variables in a program are in memory in accumulator machines, in
stead of in registers as we saw for MIPS. One way to think about this is that
variables are always spilled to memory in this style of machine. As you may
imagine, it takes many more instructions to execute a program with a sin
gle-accumulator architecture. (See Exercises 3.25 and 3.26 for other compar
ative examples.)

The next step in the evolution of instruction sets was the addition of regis
ters dedicated to specific operations. Hence, registers might be included to act
as indices for array references in data transfer instructions, to act as separate
accumulators for multiply or divide instructions, and to serve as the top-of
stack pointer. Perhaps the best known example of this style of instruction set
is found in the Intel 8086, the computer at the core of the IBM Personal Com
puter. This style of instruction set is labeled extended accumulator or dedicated
register or special-purpose register. Like the single-register accumulator ma
chines, one operand may be in memory for arithmetic instructions. Like the
MIPS architecture, however, there are also instructions where all the operands
are registers.

The generalization of the dedicated register machine allows all the registers
to be used for any purpose, hence the name general-purpose register. MIPS is an
example of a general-purpose register machine. This style of instruction set
may be further divided into those that allow one operand to be in memory as

152

Example

Chapter 3 Instructions: Language of the Machine

ED SAC 1 accumulator 1949
I BM 701 1 accumulator 1953
CDC 6600 8 load-store 1963
IBM 360 16 register-memory 1964
DEC PDP-8 1 accumulator 1965
DEC PDP-11 8 register-memory 1970
DEC VAX 16 register-memory, memory-memory 1977
Motorola 68000 16 register-memory 1980
M IPS 32 load-store 1985
SPARC 32 load-store 1987

FIGURE 3.25 Number of general-purpose registers in popular machines over the years.

found in accumulator machines, called a register-memory architecture, and
those that demand that operands always be in registers, called either a load
store or a register-register machine. The first load-store machine was the CDC
6600 in 1963, considered by many to be the first supercomputer. MIPS is a
more recent example of a load-store machine. Perhaps the best known register
memory instruction set is the IBM 360 architecture, first announced in 1964.
This instruction set is still at the core of IBM's mainframe computers-respon
sible for a large part of the business of the largest computer company in the
world. Register-memory architectures were the most popular in the 1960s and
the first half of the 1970s. Figure 3.25 shows a history of the number of registers
in some popular computers.

Digital Equipment Corporation's VAX architecture took memory operands
one step further in 1977. It allowed any combination of registers and memory
operands to be used in an instruction. A style of machine in which all operands
can be in memory is called memory-memory. (In truth the VAX instruction set,
like almost all other instruction sets since the IBM 360, is a hybrid since it also
has general-purpose registers; see Appendix E.)

What is the memory-memory style assembly code for this C code?

A = B + C ;

3.14 Historical Perspective and Further Reading 153

It would be translated into the following instructions in a memory-memory
instruction set:

a d d Add r e s s A , Ad d r e s s B , Ad d r e s s C

(See Exercises 3.25 and 3.26 for more comparative examples.)

While MIPS has a single 32-bit add instruction, the VAX has many versions
of a 32-bit add to specify the number of operands and whether an operand is
in memory or is in a register. In addition, each memory operand can be access
ed with more than 10 addressing modes. This combination of address modes
and register, versus memory, operands means that there are thousands of vari
ants of a VAX add instruction. Clearly this variability makes VAX implemen
tations more challenging.

When memory was scarce, it was also important to keep programs small, so
machines like the Intel 8086, IBM 360, and VAX had variable-length instruc
tions, both to match the varying operand specifications and to minimize code
size. Intel 8086 instructions are from 1 to 5 bytes long, IBM 360 instructions are
2, 4, or 6 bytes long, and VAX instruction lengths are anywhere from 1 to 54
bytes. If instruction memory space becomes precious once again, such tech
niques could return to popularity.

In the 1960s, a few companies followed a radical approach to instruction
sets. In the belief that it was too hard for compilers to utilize registers effective
ly, these companies abandoned registers altogether! Instruction sets were
based on a stack model of execution, like that found in the older Hewlett-Pack
ard hand-held calculators. Operands are pushed on the stack from memory or
popped off the stack into memory. Operations take their operands from the
stack and then place the result back onto the stack. In addition to simplifying
compilers by eliminating register allocation, stack machines lent themselves to
compact instruction encoding, thereby removing memory size as an excuse
not to program in high-level languages.

What is the stack-style assembly code for this C code?

A = B + C ;

154 Chapter 3 Instructions: Language of the Machine

It would be translated into the following instructions in a stack instruction
set:

p u s h Add r e s s C
p u s h Add r e s s B
a d d

p o p Add r e s s A

T o p=To p+4 ; S t a c k [T o p J =Memo ry [Ad d r e s s C J
T o p=To p+4 ; S t a c k [T o p J =Memo ry [Ad d r e s s B J
S t a c k [T o p - 4 J =S t a c k [T o p]
+ S t a c k [T o p - 4 J ; T o p=T o p - 4 ;
Memo ry [Ad d r e s s A J =S t a c k [T o p J ;
T o p=T o p - 4 ;

To get the proper byte address, we use 4 to adjust the stack. The down
side of stacks as compared to registers is that it is hard to reuse data that has
been fetched or calculated without repeatedly going to memory. (See Exer
cises 3.25 and 3.26 for other comparative examples.)

In the 1960s little systems software was written in high-level languages. For
example, virtually every commercial operating system before UNIX was pro
grammed in assembly language, and more recently even OS/2 was originally
programmed at that same low level. Some people blamed the instruction sets
rather than the programming languages and the compiler technology. Hence
a machine design philosophy called high-level language computer architecture
was advocated, with the goal of making the hardware more like the program
ming languages. More efficient programming languages and compilers, plus
expanding memory, doomed this movement to a historical footnote. The Bur
roughs BSOOO was the commercial fountainhead of this philosophy, but today
there is no significant commercial descendent of this 1960s radical.

This language-oriented design philosophy was replaced in the 1980s by
RISC, which stands for reduced instruction set computer. Improvements in pro
gramming languages, compiler technology, and memory size meant that less
programming was being done at the assembly level, so instruction sets could
be measured by how well compilers used them as opposed to how well assem
bly language programmers used them.

For the reasons discussed earlier in this chapter, it was difficult both for the
compiler to use the more complex operations and for the instruction set de
signer to avoid making such instructions so general that they were slower than
simple instruction sequences. Virtually all new instruction sets since 1982 have
followed this RISC philosophy of fixed instruction lengths, load-store instruc
tion set, limited addressing modes, and limited operations. MIPS, Sun SP ARC,
Hewlett Packard HPP A, IBM Power PC, and DEC Alpha are all examples of
RISC architectures.

3.15 Exercises 155

To Probe Further

Hennessy, J. L., and D. A. Patterson [1990]. Computer Architecture: A Quantitative Approach, Mor
gan Kaufmann Publishers, San Mateo, Calif.

Chapters 3 and 4 describe Intel 80x86, IBM 360, VAX, and a generic RISC machine. The book also includes
measurements of the frequency of instructions and operands. Appendix E surveys four RISC
architectures: MIPS, SPARC, 88000, and i860.

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.

This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H., and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX, Digital Press,
Boston.

This book concentrates on the VAX, but also includes descriptions of the Intel 80x86, IBM 360, and CDC
6600.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York.

The Motorola 680x0 is the main focus of the book, but it covers the Intel 80x86 as well. Ill Exercises

Appendix A describes the MIPS simulator that is helpful for these exercises.

3.1 [3] <§3.2, 3.9> In some cases a simple instruction set like MIPS can synthe
size instructions found in richer instruction sets such as the VAX. The follow
ing VAX instruction decrements register $5:

d e c l $ 5 if r e g i s t e r $ 5 = $ 5 - 1

The operation is described in the comment of the instruction to help explain
the operation. What is the single MIPS instruction, or if it cannot be repre
sented in a single instruction, the shortest sequence of MIPS instructions, that
performs the same operation?

3.2 [3] <§3.2, 3.9> This is the same as Exercise 3.1, except this VAX instruction
clears register $5:

c l r l $ 5 if r e g i s t e r $ 5 = 0

3.3 [3] <§3.3, 3.9> This is the same as Exercise 3.1, except this VAX instruction
clears memory location 1000:

c l r l 1 0 0 0 if memo ry [l O O O J = 0

156 Chapter 3 Instructions: Language of the Machine

3.4 [5] <§3.2, 3.5, 3.9> This is the same as Exercise 3.1, except this VAX instruc
tion adds 1 to register $5, placing the sum back in register $5, compares the
sum to register $6, and then branches to L1 if $5 < $6:

a o b l s s $ 6 , $ 5 , L l # $ 5 = $ 5 + 1 : i f ($ 5 < $ 6) g o t o L l

3.5 [5] <§3.2, 3.5, 3.9> This is the same as Exercise 3.1, except this VAX instruc
tion subtracts 1 from register $5, placing the difference back in register $5, and
then branches to L1 if $5 > 0:

s o b g t r $ 5 , L l # $ 5 = $ 5 - l ; i f ($ 5 > 0) g o t o L l

3.6 [5] <§3.7> Show the single MIPS instruction or minimal sequence of in
structions for this C statement:

a = b + 1 0 0 ;

Assume a corresponds to register $11 and b corresponds to register $12.

3.7 [10] <§3.7> Show the single MIPS instruction or minimal sequence of in
structions for this C statement:

x [l O J = x [l l] + c ;

Assume c corresponds to register $13 and the array x begins at memory loca
tion 4,000,000ten·

3.8 [10] <§3.2, 3.3, 3.5, 3.7> The following program tries to copy words from
the address in register $4 to the address in register $5, counting the number of
words copied in register $2. The program stops copying when it finds a word
equal to 0. You do not have to preserve the contents of registers $3, $4, and $5.
This terminating word should be copied but not be counted.

l o o p : l w $ 3 , 0 ($ 4) # R e a d n e x t wo rd f r om s o u r c e
a d d i $ 2 , $ 2 , l if I n c r eme n t c o u n t w o r d s c o p i ed
S W $ 3 , 0 ($ 5) if W r i t e t o d e s t i n a t i o n
a d d i $ 4 , $ 4 , 1 # Ad v a n c e p o i n t e r t o n e x t s o u r c e
a d d i $ 5 , $ 5 , 1 # Ad v a n c e p o i n t e r t o n e xt d e s t
b n e $ 3 , $ 0 , l o o p # L o o p i f w o r d c o p i ed � z e r o

There are multiple bugs in this MIPS program. Fix them and turn in a bug
free version of this program. Like many of the exercises in this chapter, the
easiest way to write MIPS programs is to use the simulator described in
Appendix A. (The preface describes how to get a copy of this program.)

3.9 [15] <§3.4> Using the MIPS program in Exercise 3.8 (with bugs intact), de
termine the instruction format for each instruction and the decimal values of
each instruction field.

3.15 Exercises 157

3.10 [10] <§3.2, 3.3, 3.5, 3.7> {ex. 3.8} Starting with the corrected program in
the answer to Exercise 3.8, write the C code segment that might have produced
this code. Assume variable s o u r c e corresponds to register $4, the variable
d e s t i n a t i on corresponds to register $5, and the variable c o u n t corresponds
to register $2. Show variable declarations, but assume that source and destina
tion have been initialized to the proper addresses.

3.11 [10] <§3.5> This C segment

w h i l e (s a v e [i J == k)
i = i + j ;

on page 114 uses both a conditional branch and an unconditional jump each
time through the loop. Only poor compilers would produce code with this
loop overhead. Rewrite the assembly code so that it uses at most one branch
or jump each time through the loop. If the number of iterations of the loop is
10, what is the number of instructions executed before and after the optimiza
tion?

3.12 [3] <§3.5> There are six relative conditions between the values of two
registers. Assuming that variable i corresponds to register $ 1 9 and variable j
to $ 2 0, show the MIPS code for the condition corresponding to this C code:

i f (i == j) g o t o L l :

3.13 [3] <§3.5> This is the same as Exercise 3.12, except use this C code:

i f (i ! = j) g o t o L l :

3.14 [3] <§3.5> This is the same as Exercise 3.12, except use this C code:

i f (i < j) g o t o L l ;

3.15 [3] <§3.5> This is the same as Exercise 3.12, except use this C code:

i f (i <= j) g o t o L 1 :

3.16 [3] <§3.5> This is the same as Exercise 3.12, except use this C code:

i f (i > j) g o t o L 1 ;

3.17 [3] <§3.5> This is the same as Exercise 3.12, except use this C code:

i f (i >= j) g o t o L 1 :

3.18 [5] <3.5, 3.7> The instruction

b e q $ 2 , $ 3 , L l

will compare the contents of $2 and $3 and branch to L1 if they are equal.
Unfortunately, there is no single instruction that can be used to compare $2
with an immediate value such as 14. Look at the format for branch instruc-

158 Chapter 3 Instructions: Language of the Machine

tions and explain why. Write a sequence of MIPS instructions that will branch
to L1 if $2 is equal to 14. Hint: It only takes two instructions.

3.19 [30] <§3.5> Consider the following fragment of C code:

f o r (i =O ; i <= l O O ; i = i + l)
{ a [i] = b [i J + c ;)

Assume that a and b are arrays of words at addresses 1500 and 2000, respec
tively. Register $15 is associated with variable i and $16 with c. Write the
code for MIPS. How many instructions are executed during the running of
this code? How many memory data references will be made during execu
tion?

3.20 [10] <§3.13> When designing memory systems, it becomes useful to
know the frequency of memory reads versus writes as well as the frequency of
accesses for instructions versus data. Using the average instruction-mix infor
mation for MIPS for the program gee in Figure 3.24 on page 150, find

a. the percentage of all memory accesses that are for data (vs. instructions)

b. the percentage of all memory accesses that are reads (vs. writes). Assume
that two-thirds of data transfers are loads.

3.21 [10] <§3 .13> This is the same as Exercise 3.20, but replace the program
gee with spice.

3.22 [15] <§3.13> Suppose we have made the following measurements of av
erage CPI for instructions:

Arithmetic 1.0 clock cycles

Data transfer 1 .4 clock cycles

Conditional branch 1 .7 clock cycles

Jump 1.2 clock cycles

Compute the effective CPI for MIPS. Average the instruction frequencies for
gee and spice in Figure 3.24 on page 150 to obtain the instruction mix.

3.23 [20] <§3.9> Several researchers have suggested that adding a register
memory addressing mode to a load/store machine might be useful. The idea
is to replace sequences of

by

l w $ 8 , a d d r ($ 3)
a d d $ 2 , $ 2 , $ 8

3.15 Exercises

a d d m $ 2 , a d d r ($ 3)

159

Assume the new instruction will cause the clock cycle to increase by 10%. Use
the instruction frequencies for the gee benchmark from Figure 3.24 on page
150, and assume that two-thirds of the moves are loads and the rest are stores.
Assume the new instruction affects only the clock speed and not the CPI.
What percentage of the loads must be eliminated for the machine with the
new instruction to have at least the same performance?

3.24 [10] <§3.9> Using the information in Exercise 3.23, write a multiple in
struction sequence in which a load of $8 followed immediately by the use of
$8-in, say, an add-could not be replaced by a single instruction of the form
proposed.

In More Depth:

Comparing Instruction Sets of Different Styles

For the next three exercises, your task is to compare the memory efficiency of
four different styles of instruction sets for two code sequences. The architec
ture styles are

• Accumulator

• Memory-Memory: All three operands of each instruction are in memory.

• Stack: All operations occur on top of the stack. Only push and pop ac
cess memory, and all other instructions remove their operands from the
stack and replace them with the result. The implementation uses a stack
for the top two entries; accesses that use other stack positions are mem
ory references.

• Load-Store: All operations occur in registers, and register-to-register in
structions have three operands per instruction. There are 16 general
purpose registers, and register specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all
four instruction sets:

• The opcode is always 1 byte (8 bits).

• All memory addresses are 2 bytes (16 bits).

• All data operands are 4 bytes (32 bits).

• All instructions are an integral number of bytes in length.

There are no other optimizations to reduce memory traffic, and the variables
a , b, c, and d are initially in memory.

160 Chapter 3 Instructions: Language of the Machine

Using the assembly language mnemonics from section 3.14, write the best
equivalent assembly language code for the high-level language fragments
given.

3.25 [15] <§3.14> Write the four code sequences for

a = b + c ;

For each code sequence, calculate the instruction bytes fetched and the mem
ory-data bytes transferred. Which architecture is most efficient as measured by
code size? Which architecture is most efficient as measured by total memory
bandwidth required (code + data)?

3.26 [20] <§3.14> Write the four code sequences for

a b + c ;
b = a + c ;
d = a - b ;

For each code sequence, calculate the instruction bytes fetched and the mem
ory-data bytes transferred (read or written). Which architecture is most effi
cient as measured by code size? Which architecture is most efficient as
measured by total memory bandwidth required (code + data)? If the answers
are not the same, why are they different?

3.27 [5] <§3.14> Sometimes architectures are characterized according to the
typical number of memory addresses per instruction. Commonly used terms
are 0-, 1-, 2-, and 3-addresses per instruction. Associate the names above with
each category.

In More Depth:

Register Conventions and Procedure Overhead

Caller and callee save (page 121) are strategies to save and restore registers
across procedure calls. MIPS software uses a combination of the two strategies,
saving only registers $16 to $23 and $30 across procedure calls if they are mod
ified. This compiler convention reduces the amount of code to be written, low
ers the cost of calls, and standardizes linkage to simplify calling procedures
written in different languages. In fact, some compilers use alternative names
for the registers to reflect their different uses. Figure A.9 on page A-23 lists all
register conventions and the alternative names.

3.28 [15] <§3.9, A.6> Rewrite the swap procedure in Figure 3.19 on page 138
using the conventions in Figure A.9 on page A-23 to reduce the saving and re
storing of registers. What is the change in number of instructions executed in
the new version?

3.15 Exercises 161

ASCII ASCI I ASCII ASCI I ASCI I
value Character value Character value Character value Character value Character

32 space 51 3 70 F 89 y 108 l
33 ! 52 4 7 1 G 90 z 109 m
34 " 53 5 72 H 91 [110 n
35 # 54 6 73 I 92 \ 111 0
36 $ 55 7 74 J 93 J 112 p
37 % 56 8 75 K 94 � 113 q

38 & 57 9 76 L 95 - 114 r

39 ' 58 : 77 M 96 115 s
40 (59 ' 78 N 97 a 116 t
41) 60 < 79 0 98 b 117 u
42 * 61 = 80 p 99 c 118 v
43 + 62 > 81 Q 100 d 119 w
44 ' 63 ? 82 R 101 e 120 x
45 64 @ 83 s 102 f 121 y
46 65 A 84 T 103 g 122 z
47 I 66 B 85 u 104 h 123 l
48 0 67 c 86 v 105 i 124 I
49 1 68 D 87 w 106 j 125 }
50 2 69 E 88 x 107 k 126 -

FIGURE 3.26 ASCII representation of characters. Values not shown include values useful in formatting characters. For
example, 9 represents a tab character and 13 represents a carriage return. Other useful ASCII values are 8 for backspace and
0 for Null, the value the programming language C uses to terminate the end of a string.

3.29 [15] <§3.10, A.6> Rewrite the sort procedure Figure 3.21 on page 144 us
ing the conventions in Figure A.9 on page A-23 to reduce the saving and re
storing of registers. What is the change in number of instructions executed in
the new version (not including the call of swap)?

In More Depth: Characters and Strings

While many programs work primarily with numbers, others work with char
acters. Most computers today use 8-bit bytes to represent characters, with the
American Standard Code for Information Interchange (ASCII) being the rep
resentation that nearly everyone follows. Figure 3.26 summarizes ASCII.

Because of the popularity of strings in some programs, MIPS provides spe
cial instructions to move bytes. Load byte (l b) loads a byte from memory, plac
ing it in the rightmost 8 bits of a register; the other 24 bits are set to 0. Store byte
(s b) takes a byte from the rightmost 8 bits of a register and writes it to memory.
Thus the sequence

162 Chapter 3 Instructions: Language of the Machine

l b $ 3 , 0 ($ 4)
s b $ 3 , 0 ($ 5)

copies a byte.

R e a d byte f r om s o u r c e
W r i t e byte t o d e s t i n a t i o n

Characters are normally combined into strings, which have a variable num
ber of characters. C uses the convention that a string is terminated by a byte
with the value 0.

3.30 [10] Compute the decimal byte values that form the null-terminated
ASCII representation of the string (the "s" in "bits" is the last character).

A by t e i s 8 b i t s .

3.31 [20] {ex. 3.8) Write a procedure, b c o py, in MIPS assembler language. The
b c o py procedure takes two arguments: a pointer to a null-terminated source
string in register $4 and a pointer to the destination string in register $5. It re
turns a count of the total number of non-null characters in the string in register
$2. Hint: Look at the program copy in Exercise 3.8 for ideas. The easiest way
to write a MIPS program is to use the simulator described in Appendix A.

3.32 [30] {ex. 3.8, 3.3l }Both the program in the answer to Exercise 3.8 and the
program in the answer to Exercise 3.31 copy bytes. Under what circumstances
do they behave in exactly the same way? Assuming those circumstances hold,
write formulas for the number of instructions executed for both programs as a
function of the number of bytes copied. Describe what a hybrid program
would have to do to determine when to invoke the faster copying program as
a procedure. (The instructions you need to do this are described in the next
chapter.)

3.33 [30] Write a program in MIPS assembly language to convert an ASCII
decimal string to an integer. Your program should expect register $4 to hold
the address of a null-terminated string containing some combination of the
digits 0 through 9. Your program should compute the integer value equivalent
to this string of digits, then place the number in register $2. Your program need
not handle negative numbers. If a non-digit character appears anywhere in the
string, your program should stop with the value -1 in register $2.

For example, if register $4 points to a sequence of three bytes SOten' 52tew
oten (the null-terminated string "24"), then when the program stops, register
$2 should contain the value 24ten· (The subscript "ten" means base 10.)

3.34 [20] Write a procedure, b f i n d, in MIPS assembler language. The proce
dure should take a single argument which is a pointer to a null-terminated
string in register $4. The b f i n d procedure should locate the first b character in
the string and return its address in register $2. If there are no b's in the string,
then bfind should return a pointer to the null character at the end of the string.

3.15 Exercises 163

For example, if the argument to b f i n d points to the string " i m b i b e," then the
return value will be a pointer to the third character of the string.

3.35 [20] {ex. 3.33) Write a procedure, b c o u n t, in MIPS assembler language.
The b c o u n t procedure takes a single argument, which is a pointer to a string
in register $4, and it returns a count of the total number of b characters in the
string in register $2. You must use your b f i n d procedure in Exercise 3.34 in
your implementation of b c o u n t .

3.36 [30] Write a procedure, i t o a , that will convert an integer argument into
an ASCII decimal string. The procedure should take two arguments: the first
is an integer in register $4 and the second is the address at which to write a re
sult string in register $5. Then i t o a should convert its first argument to a null
terminated decimal ASCII string and store that string at the given result loca
tion. The return value from i t o a , in register $2, should be a count of the num
ber of non-null characters stored at the destination.

In More Depth: The Single Instruction Computer

The computer architecture in this book, MIPS, has one of the simpler instruc
tion sets in existence. However, it is possible to imagine even simpler instruc
tion sets. In this assignment you are to consider a hypothetical machine called
SIC, for Single Instruction Computer. As its name implies, SIC has only one
instruction: Subtract and Branch if Negative, or s b n for short. The sbn instruc
tion has three operands, each consisting of the address of a word in memory:

s b n a , b , c # Mem [a J = Mem [a J - Mem [b J ; i f (M em [a J < O l g o t o c

The instruction will subtract the number in memory location b from the
number in location a and place the result back in a , overwriting the previous
value. If the result is greater than or equal to 0, the computer will take its next
instruction from the memory location just after the current instruction. If the
result is less than 0, the next instruction is taken from memory location c . SIC
has no registers and no instructions other than sbn.

Although it has only one instruction, SIC can imitate many of the operations
of more complex instruction sets by using clever sequences of sbn instructions.
For example, here is a program to copy a number from location a to location b :

s t a r t : s b n temp . t emp , . + 1 # S e t s t emp t o z e r o
s b n temp . a , . + l # S e t s t emp t o - a
s b n b , b , . +l # S e t s b t o z e r o
s b n b , t emp , . +l # S e t s b t o - t emp , w h i c h i s a

In the program above, the notation .+ 1 means "the address after this one,"
so that each instruction in this program goes on to the next in sequence wheth
er or not the result is negative. We assume Temp to be the address of a spare
memory word that can be used for temporary results.

164 Chapter 3 Instructions: Language of the Machine

3.37 [10] Write a SIC program to add a and b, leaving the result in a and leav
ing b unmodified.

3.38 [20] Write a SIC program to multiply a by b, putting the result in c . As
sume that memory location o n e contains the number 1 . Assume a and b are >
0 and that it's OK to modify a or b . Hint: What does this program compute?

c = O ; w h i l e (b > 0) l b = b - l ; c = c + a : l

Numerical precision
is the very soul
of science.

Sir D'arcy Wentworth Thompson,
On Growth and Form, 1917

Arithmetic for

Computers

4.1 Introduction 168

4.2 Negative Numbers 168

4.3 Addition and Subtraction 175

4.4 Logical Operations 179

4.5 Constructing an Arithmetic Logic Unit 182

4.6 Multiplication 198

4.7 Division 212

4.8 Floating Point 225

4.9 Fallacies and Pitfalls 244

4.10 Concluding Remarks 246

4.11 Historical Perspective and Further Reading 249

4.12 Exercises 258

The Five Classic Components of a Computer

Evaluating
Performance

Processor

Compiler

I\\-----\ rt==1 L:J
Memory rt==1

\ L:J '--------'

168 Chapter 4 Arithmetic for Computers

• Introduction

Computer words are composed of bits; thus words can be represented as
binary numbers. Although the natural numbers 0, 1, 2, and so on can be rep
resented either in decimal or binary form, what about the other numbers that
commonly occur? For example,

• How are negative numbers represented?

• What is the largest number that can be represented by a computer
word?

• What happens if an operation creates a number bigger than can be rep
resented?

• What about fractions and real numbers?

And underlying all these questions is a mystery: How does hardware really
add, subtract, multiply, or divide numbers?

The goal of this chapter is to unravel this mystery, including representation
of numbers, arithmetic algorithms, hardware that follows these algorithms,
and the implications of all this for instruction sets. These insights may even ex
plain quirks that you have already encountered with computers. (Readers
who are familiar with signed binary numbers may wish to skip the next two
sections and go to section 4.4 on page 179.)

II Negative Numbers

Numbers can be represented in any base; humans prefer base ten and, as we
examined in Chapter 3, base two is best for computers. Because we will fre
quently be dealing with both decimal and binary numbers, to avoid confu
sion we will subscript decimal numbers with ten and binary numbers with
two.

In any number base the value of ith digit d is

d x base
;

4.2 Negative Numbers 169

where i starts at 0 and increases from right to left. This leads to an obvious
way to number the bits in the word: Simply use the power of the base for that
bit. For example,

1 0 1 l two

represents

(1 x 2 3) + (0 x 2 2) + (1 x 2 1) + (1 X 2 ° l t e n
(1 X 8) + (0 X 4) + (1 X 2) + (1 X 1) t en
8 + 0 + 2 + l t en
1 1 t e n

Hence the bits are numbered 0, 1, 2, 3, . . . from right to left in a word. The
drawing below shows the numbering of bits within a MIPS word and the
placement of the number lOlltwo :

3 1 3U 2 9 28 2 7 26 2 5 ?4 2 3 2 2 2 1 20 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 I I 1 0 9 8 7 6 5 4 3 2 I 0 I o o o o i o o o o l o o o o l o o o o i o o o o l o o o o i o o o o l 1 o 1 1 1
(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and right
most may be unclear. Hence, the phrase least significant bit is used to refer
to the rightmost bit (bit 0 above) and most significant bit to the leftmost bit
(bit 31) .

The MIPS word is 32 bits long, so we can represent 232 different 32-bit pat
terns. It is natural to let these combinations represent the numbers from 0 to
232

- 1 (4,294,967,295ten) :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O Otwo O t en
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O l two l t e n
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O l O two 2 t e n

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l O l two 4 , 2 9 4 , 9 6 7 , 2 9 3ten
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l O two 4 , 2 9 4 , 9 6 7 , 2 9 4 t en
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l two 4 , 2 9 4 , 9 6 7 , 2 9 5ten

Computer programs calculate both positive and negative numbers, so we
need a representation that distinguishes the positive from the negative. This
representation should be divided as evenly as possible, since it would be awk
ward to be able to represent, say, 2000ten but not -2000ten· Since a 32-bit word
has an even number of bit patterns, balanced representation seems straightfor
ward. It's not. The reason is that we need to represent zero plus an equal num
ber of positive and negative numbers. The alternative to unbalanced positives

170 Chapter 4 Arithmetic for Computers

and negatives is having two bit patterns to represent 0. The cure of two bit pat
terns that are different but both represent 0 is worse than the disease of unbal
ance, so 32-bit computers use the following unbalanced convention:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O two= O t en
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O l two= l ten
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O l O two= 2 t e n

O l l l l l l l l l l l l l l l l l l l l l l l l l l l l l O l two= 2 , 1 4 7 , 4 8 3 , 6 4 5 ten
O l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l O two= 2 , 1 4 7 , 4 83 , 64 6 ten
0 1 l l l l two= 2 , 1 4 7 , 4 83 , 6 4 7 ten
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O Otwo = - 2 , 1 4 7 , 483 , 648t e n
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 1 two= - 2 , 1 4 7 , 483 , 6 4 7 t e n
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Otwo= - 2 , 1 4 7 , 483 , 646 t en

l l l l l l l l l l l l l l l l l l l l l l l l l l l l 1 1 0 l two = - 3 ten
l l l l l l l l l l l l l l l l l l l l l l l l l l l l 1 1 1 0 two = - 2 te n
1 l l l l tw o= - l ten

The positive half of the numbers, from 0 to 2,147,483,647ten (231-1), use the
same representation as before. The following bit pattern (1000 . . . OOOOtwo)
represents the most negative number -2,147,483,648ten (-231). It is followed by
a declining set of negative numbers: -2,147,483,647ten (1000 . . . OOOltwo) down
to -lten (1111 . . . 1 1 1 ltwo)· There is, therefore, just one negative number,
-2,147,483,648ten, that has no corresponding positive number. This conven
tion for representing signed binary numbers is called two's complement repre
sentation. It ensures that x + (-x) = 0.

In addition to a single 0, two's complement representation has the advan
tage that all negative numbers have a 1 in the most significant bit. Consequent
ly, hardware need test only this bit to see if a number is positive or negative
(with 0 considered positive) . This particular bit is often called the sign bit. By
recognizing the role of the sign bit, we can represent positive and negative
numbers in terms of the bit value times a power of 2 (here xi means the ith bit
of x):

(x31 x -231) + (x30 x 230) + (x29 x 229) + . . . + (xl x 21) + (xO x 2°)

The sign bit is multiplied by -231 and the rest of the bits are then multiplied
by positive versions of their respective base values.

What is the decimal value of this 32-bit two's complement number?

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l O O two

Answer

Example

4.2 Negative Numbers

Substituting into the bit values in the formula above:

(1 x -231) + (1 x 230) + (1 x 229) + . . . + (1 x 22) + (0 x 21) + (0 x 2°)
= -231 + 230 + 229 + . . . + 22

171

= -2,147,483,648ten + 2,147,483,644ten
= -4ten

Hardware

Software

Interface

Unlike the numbers discussed above, memory addresses
naturally start at 0 and continue to the largest address. Put
another way, negative addresses make no sense. Thus, pro
grams want to deal sometimes with numbers that can be
positive or negative and sometimes with numbers that can
be only positive. Programming languages reflect this dis
tinction. C, for example, names the former integers (declared

as i n t in the program) and the latter unsigned integers (u n s i g n ed i n t) .
Comparison instructions must deal with this dichotomy. Sometimes a bit

pattern with a 1 in the most significant bit represents a negative number and,
of course, is less than any positive number, which must have a 0 in the most
significant bit. With unsigned integers, on the other hand, a 1 in the most sig
nificant bit represents a number that is larger than any that begins with a 0.
MIPS offers two versions of the set-on-less-than comparison to handle these al
ternatives. Set on less than (s l t) and set on less than immediate (s l t i) work with
signed integers. Unsigned integers are compared using set on less than unsigned
(s l t u) and set on less than immediate unsigned (s l t i u) .

Suppose register $16 has the binary number

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l l two

and that register $17 has the binary number

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O l two
What are the values of registers $8 and $9 after these two instructions?

s l t $ 8 , $ 1 6 , $ 1 7 H s i g n e d compa r i s o n

s l t u $ 9 , $ 1 6 , $ 1 7 H u n s i g n e d comp a r i s o n

172 Chapter 4 Arithmetic for Computers

The value in register $16 represents -1 if it is an integer and 4,294,967,295ten
if it is an unsigned integer. The value in register $17 represents 1 in either
case. Then register $8 has the value 1, since -lten < lten, and register $9 has
the value 0, since 4,294,967,295ten > l ten-

Before going on to addition and subtraction, let's examine a few shortcuts
when working with two's complement numbers. The first shortcut is a quick
way to negate a binary number. Simply invert every 0 to 1 and every 1 to 0,
then add 1 to the result. This shortcut is based on the observation that the num
ber represented by inverting each bit is off by 1 from the two's complement
negative of the number.

Negate 2ten' and then check the result by negating -2ten-

2 t en = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O l Otwo

Negating this number by inverting the bits and adding 1 :
l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l O l tw o

+ 1 two
�����������������

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Otwo
- 2 t en

Going the other direction,
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l O two

is first inverted and then incremented:

+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O l two

1 two
�����������������

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O l Otwo
2 t e n

The second shortcut tells us how to convert a binary number represented in
n bits to a number represented with more than n bits. For example, the imme
diate field in the load, store, branch, add, and set-on-less-than instructions
contains a two's complement 16-bit number, representing -32,768ten (-215) to
32,767ten(215-1). To add the immediate field to a 32-bit register, the machine
must convert that 16-bit number to its 32-bit equivalent. The shortcut is to take
the most significant bit from the smaller quantity, the sign bit, and replicate it
to fill the new bits of the larger quantity. The old bits are simply copied into

4.2 Negative Numbers 173

the right portion of the new word. This shortcut is commonly called sign exten
sion.

Convert 16-bit binary versions of 2ten and -2ten to 32-bit binary numbers.

The 16-bit binary version of the number 2 is
0 0 0 0 0 0 0 0 0 0 0 0 O O l O two= 2 t e n

It is converted to a 32-bit number by making 16 copies of the value in the
most significant bit (0) and placing that in the left-hand half of the word.
The right half gets the old value:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O l O two= 2 t e n

Let's negate the 16-bit version of 2 using the earlier shortcut. Thus,
0 0 0 0 0 0 0 0 0 0 0 0 O O l O two

becomes

+
l l l l l l l l l l l l l l O l two

l two

l l l l l l l l l l l l l l l O two

Creating a 32-bit version of the negative number means copying the sign
bit 16 times and placing it on the left:

l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l O twu= - 2 t e n

This trick works because positive two's complement numbers can be
thought of as having an infinite number of Os on the left and negative numbers
have an infinite number of ls. Placing a two's complement number in a word
merely chops off those bits to make the number fit in a word, and sign exten
sion restores them.

The main point of this section is that we need to represent both positive and
negative integers within a computer word and, although there are pros and
cons to any option, the overwhelming choice for the last 25 years has been
two's complement. Figure 4.1 shows the additions to the MIPS assembly lan
guage revealed in this section. (MIPS machine language is illustrated on the
endpapers of this book.)

174

Name

32 registers

230

memory
words

Category

Arithmetic

Data
transfer

Conditional
branch

Unconditional
jump

Chapter 4 Arithmetic for Computers

MIPS operands

Example Comments
$0, $1, $2, . . . ,$31 Fast locations for data. In MIPS, data must be in registers to perform

arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for the
assembler to handle pseudoinstructions and large constants.

Memory[OJ. Accessed only by data transfer instructions. MIPS uses byte addresses, so
Memory[4], . . . , sequential words differ by 4. Memory holds data structures, such as arrays,
Memory[4294967292] and spilled registers, such as those saved on procedure calls.

Instruction
add add
subtract sub
add immediate addi
load word lw
store word SW

load upper lui
imm.
branch on beq
equal
branch on not bne
eq.
set on less sit
than
set less than slti
imm.

set on less situ
than unsii;!ned
set less than sltiu
imm. unsigned
jump j
jump register jr
jump and link jal

MIPS assembly language

Example
$1,$2,$3
$1,$2,$3
$1,$2,100
$1,100($2)
$1,100($2)
$1,100

$1,$2,100

$1,$2,100

$1,$2,$3

$1,$2,100

$1,$2,$3

$1,$2,100

10000
$31
10000

Meaning
$1 = $2 + $3
$1 = $2 - $3
$1 = $2 + 100
$1 = Memory[$2+100]
Memory[$2+100] = $1

$1 = 100 x 216

if ($1 == $2) go to PC+4+100

if ($1 != $2) go to PC+4+100

if ($2 < $3) $1 = 1; else $1 = 0

if ($2 < 100) $1 = 1; else $1 = o

if ($2 < $3) $1 = 1; else $1 = O

if ($2 < 100) $1 = 1; else $1 = 0

go to 10000
go to $31
$31 = PC + 4; go to 10000

Comments ·,
3 operands ; data in registers
3 operands; data in registers
Used to add constants
Data from memory to register
Data from register to memory
Loads constant in upper 16bits

Equal test; PC relative branch

Not equal test; PC relative

Compare less than;
2's comp.
Compare < constant;
2's comp.
Compare less than;
unsii;!ned numbers
Compare less than constant;
unsii;!ned numbers
Jump to target address
For switch, procedure return
For procedure call

FIGURE 4.1 MIPS architecture revealed thus far. Color indicates portions from this section added to the MIPS architec
ture revealed in Chapter 3 (Figure 3.16 on page 132). MIPS machine language is illustrated in the endpapers of this book.

Elaboration: Two's complement gets its name from the rule that the sum of an n-bit
number and its negative is 2n, hence the complement or negation of a two's comple
ment number x is 2n - x. One obvious alternative representation to two 's complement
uses the leftmost bit as the sign , with the other 31 bits representing the number. This
sign and magnitude representation has the drawback of having positive and negative 0.
In addition, it is harder to design an adder for sign and magnitude, as we shal l see
shortly. A third alternative is called one 's complement. The negative of a one's comple
ment is found by inverting each bit, from 0 to 1 and from 1 to 0. This representation is

4.3 Addition and Subtraction 175

s imi lar to two 's complement except that it has two Os: 00 . . . OOtwo is positive 0 and
11 . . . 11two is negative 0. The most negative number 10 . . . OOOtwo represents
-2 ,147 ,483,647ten and so the positives and negatives are balanced . A final notation,
which we wi l l look at when we d iscuss floating point, is to make the most negative
value be 00 . . . OOOtwo and the most positive value be 11 . . . 11two• with 0 typically
having the value 10 . . . OOtwo · This is cal led a biased notation, for it biases the num
ber such that the number plus the bias is non-negative .

As a final point, in order to save space, many programs display numbers using a
h igher base than binary that converts easi ly to binary. Since almost a l l computer data
sizes are multiples of 4, hexadecimal (base 16) numbers are popu lar. The 16 hexadec
imal d igits are 0, 1, 2, 3, 4, 5, 6, 7 , 8, 9, a, b, c, d, e, and f. C uses the notation
Oxnnnn to represent a hexadecimal number. In this book, we wi l l use either the sub
script hex or the C notation.

II Addition and Subtraction

Subtraction: Addition 's Tricky Pal

Example

Answer

No. 10, Top Ten Courses for Athletes at a Football Factory
David Letterman et al., Book of Top Ten Lists, 1990

Addition is just what you would expect in computers. Digits are added bit by
bit from right to left, with carries passed to the next digit to the left, just as
you would do by hand. Subtraction uses addition: The appropriate operand
is simply negated before being added.

Let's try adding 6ten to 7ten and then subtracting 6ten from 7ten·

+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O l l l two
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O l l O two

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l l O l two

The 4 bits to the right have all the action; Figure 4.2 shows the sums and
carries. The carries are shown in parentheses, with the arrows showing how
they are passed.

176 Chapter 4 Arithmetic for Computers

(0) 0

(0) (1) (1) (0)

0 0 1 1

0 0 1 1

(0) 0 (0) 1 (1) 1 (1) 0

(Carries)

1

0

(0) 1

FIGURE 4.2 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the
operation for the second digit to the right is O+ 1+1 . This generates a 0 for this sum bit and a
carry out of 1 . The third digit is the sum of 1+1+1, resulting in a carry out of 1 and a sum bit of
1. The fourth bit is 1 +O+O, yielding a 1 sum and no carry.

Subtracting 6ten from 7ten can be done directly:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 l two
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O l l Otwo

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O l two

or via addition using the two's complement representation of -6:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 l two

+ 1 1 1 1 l l l l l l l l l l l l l l l l l l l l l l l l 1 0 1 0 two

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O l two

The one complexity in computer addition is the possibility of the sum being
too large to represent properly. No matter how numbers are represented, it's
possible that the sum of two 32-bit numbers will be too large to represent in 32
bits. This event is called overflow.

For example, the sum of these two signed numbers is too large for 32 bits:

0 1 l l l l two= 2 , 1 4 7 , 4 83 , 6 4 7 t e n
+ 0 0 0 0 0000 0000 0000 0000 0000 0000 O O l O two= 2 ten

= l O l two= - 2 , 1 4 7 , 4 83 , 6 4 7 te n

The sum of 2,147,483,647ten + 2 should be 2,147,483,649tew but instead we get
the negative value -2,147,483,647ten· The problem is that we need 33 bits to
represent 2,147,483,649ten in two's complement notation, but the word size is
only 32 bits. Therefore, the result has only the lower 32 bits of the actual sum.

Overflow can also occur in subtraction. For example, to subtract 2 from
-2 ,147,483,647ten' we convert 2 to -2 and add it to -2,147,483,647ten:

4.3 Addition and Subtraction

Operation Operand A Operand B , Result
·
.

A + B � 0 � 0 < O

A + B < O < O � 0

A - B � 0 < 0 < O

A - B < O � 0 � 0

FIGURE 4.3 Overflow conditions for addition and subtraction.

l O l tw o = - Z . 1 4 7 . 4 8 3 , 6 4 7 t e n
+ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l O two = - Z t e n
= 0 1 1 1 1 1 1 1 1 1 1 1 l l l l l l l l l l l l l l l l l l l l tw o = 2 , 1 4 7 , 4 8 3 , 6 4 7 t e n

177

Once again, the result of -2,147,483,647ten - 2 should be -2,147,483,649ten' but
we cannot represent that result in 32 bits so we get the wrong positive value of
2,147,483,647ten·

When can overflow occur? When adding operands with different signs,
overflow cannot occur. The reason is the sum must be no larger than one of the
operands. For example, -10 + 4 = -6. Since the operands fit in 32 bits and the
sum is no larger than an operand, the sum must fit in 32 bits as well. Therefore
no overflow can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract,
but it's just the opposite principle: When the signs of the operands are the same,
overflow cannot occur. To see this, remember that x - y = x + (-y) , because
we subtract by negating the second operand and then add. So, when we sub
tract operands of the same sign we end up by adding operands of different signs.
From the prior paragraph, we know that overflow cannot occur in this case.

Having examined when overflow cannot occur, we still haven't answered
how to detect when it does occur. As we saw in the examples above, adding or
subtracting two 32-bit numbers can yield a result that needs 33 bits to be fully
expressed. The lack of a 33rd bit means that when overflow occurs the sign bit
is being set with the value of the result instead of the proper sign of the result:
Since we need just one extra bit, only the sign bit can be wrong. That is, over
flow occurs when adding two positive numbers and the sum is negative, or
vice versa. And overflow occurs in subtraction when we subtract a negative
number from a positive number and get a negative result, or when we subtract
a positive number from a negative number and get a positive result. Figure 4.3
shows the combination of operations, operands, and results that indicate an
overflow. (Exercise 4.29 gives a shortcut for detecting overflow more simply in
hardware.)

178 Chapter 4 Arithmetic for Computers

Hardware

Software

Interface

The machine designer must decide how to handle arithmetic
overflows. Although some languages like C leave the deci
sion up to the machine designer, languages like Ada and
Fortran require that the program be notified. The program
mer or the programming environment must then decide
what to do when overflow occurs.

MIPS detects overflow with an exception, also called an interrupt on many
computers. An exception or interrupt is essentially an unplanned procedure
call. The address of the instruction that overflowed is saved in a register, and
the computer jumps to a predefined address to invoke the appropriate routine
for that exception. The interrupted address is saved so that in some situations
the program can continue after corrective code is executed (see Chapter 7).
MIPS includes a register called exception program counter (EPC) to contain the
address of the instruction that caused the exception. The instruction move from
system control (mf cO) is used to copy EPC into a register so that MIPS software
has the option of returning to the offending instruction via a Jump register in
struction. Chapter 5, section 5.6, covers exceptions in more detail; Chapters 7
and 8 also describe situations where exceptions and interrupts occur.

We have just seen how to detect overflow for two's complement numbers
in a machine. What about unsigned integers? Clearly, unsigned integers exist
that are too large to be represented in 32 bits, but they are normally not consid
ered to overflow. The reason is that unsigned integers are commonly used for
memory addresses and, unlike natural numbers, they do have a finite limit in
that memories are finite. In our MIPS machine, the maximum memory that a
user can address directly is 4,294,967,296ten or 232 bytes.

The machine designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two
kinds of arithmetic instructions to recognize the two choices:

• a d d (a d d), a d d i mme d i a t e (a d d i), and s u b t r a c t (s u b) cause exceptions
on overflow, and

• a d d u n s i g n e d (a d d u), a d d i mmed i a te u n s i g n e d (a d d i u), and s u b
t r a c t u n s i g n e d (s u b u) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate
the unsigned versions of the arithmetic instructions a d d u, a d d i u, and s u b u .
The MIPS Ada compilers, however, pick the appropriate arithmetic instruc
tions, depending on the type of the operands.

4.4 Loglcal Operations 179

The main point of this section is that, independent of the representation, the
finite word size of computers means that arithmetic operations can create re
sults that are too large to fit in this fixed word size. It's easy to detect overflow
in natural numbers, although these are almost always ignored because pro
grams don't want to detect overflow for address arithmetic, the most common
use of natural numbers. Two's complement presents a greater challenge, yet
some software systems require detection of overflow, so today all machines
have a way to detect it. Figure 4.4 shows the additions to the MIPS architecture
from this section.

Elaboration: In the preceding text, we said that you copy EPC into a register via
m f c O and then return to the i nterrupt code via Jump register. This leads to an interest
ing question: How can you use Jump register to return to the interrupted code and yet
restore the original values of a l l registers? You either restore the old registers first,
thereby destroying your return address from EPC, or you restore a l l registers but the
one with the return address so that you can jump-meaning an exception would result
in changing one register at any time in the program execution! Neither option is satis
factory. To rescue the hardware from this d i lemma, MIPS programmers agreed to
reserve registers $26 and $27 for the operating system; these registers are not

restored on exceptions. Just as the MIPS compilers avoid using register $1 so that the
assembler can use it as a temporary register (see the Hardware Software Interface on
page 115 in Chapter 3), compilers also abstain from using registers $26 and $27 to
make them avai lable for the operating system . Exception routines place the return
address in one of these registers and then use Jump register to restore the address.

• Loglcal Operations

Insanity is often the logic of an accurate mind overtaxed.

Oliver Wendell Holmes, The Autocrat of the Breakfast Table, 1 858

Although the first computers concentrated on full words, it soon became clear
that it was useful to operate on fields of bits within a word or even on individ
ual bits. Examining characters within a word, each of which are stored as 8
bits, is one example of such an operation. It follows that instructions were
added to simplify, among other things, the packing and unpacking of bits into
words.

One class of such operations is called shifts. They move all the bits in a word
to the left or right, filling the emptied bits with Os. For example, if register $16
contained

180

Name

32
registers

230

memory
words

Category,

Arithmetic

Data
transfer

Conditional
branch

Uncondi·
tional jump

Chapter 4 Arithmetic for Computers

MIPS operands

Example Comments
$0, $1, $2, . . . ,$31 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.

MIPS register $0 always equals 0. Register $1 is reserved for the assembler to
handle pseudoinstructions and large constants.

Memory[OJ, Accessed only by data transfer instructions. M IPS uses byte addresses, so
Memory[4], . . . , sequential words differ by 4. Memory holds data structures, such as arrays, and
Memory[4294967 292] spilled registers, such as those saved on procedure cal ls.

Instruction
add
subtract
add immediate
add unsigned

subtract u ns igned

add i m mediate
u n s igned

Move from
coorocessor ree..

load word
store word
load upper imm.

branch on equal
branch on not eq.
set on less than
set less than imm.
set less than uns.
set I. t. imm. uns.
jump
jump register
jump and link

MIPS assembly language
Example

add $1,$2,$3
sub $1,$2,$3
addi $1,$2,100
addu $1.$2.$3

subu $ 1 , $2 . $ 3

addiu $ 1 , $ 2 .100

mfcO $ 1 ,$epc

Jw $1,100($2)
SW $ 1,100($2)
lui $1 ,100

beq $1,$2,100
bne $1,$2,100
sit $1.$2,$3
slti $1,$2,100
situ $1,$2,$3
sltiu $1,$2 ,100
j 10000
jr $31
jal 10000

Meaning
$1 = $2 + $3
$1 = $2 - $3
$1 = $2 + 100
$ 1 = $2 + $3
$1 = $2 - $3

$1 = $2 + 100

$1 = $epc

$1 = Memory($2+100)
Memory[$2+100) = $1

$1 = 100 x 216

if ($1 == $2) go to PC+4+100
if ($1 !:= $2) go to PC+4+100
if ($2 < $3) $1 = 1; else $1 = O

if ($2 < 100) $1 = 1; else $1 "' O

if ($2 < $3) $1 = 1 ; else $1 = O

if ($2 < 100) $1 = 1; else $ 1 = 0
go to 10000
go to $31
$31 = PC + 4; go to 10000

Comments
3 operands; except i on possible

3 operands; exception possib l e

+ constant; exception possib l e

3 operands; no exceptions
3 operands: no exceptions

+ conslant; no exceptions

Used to get copy of Exception PC

Data from memory to register
Data from register to memory
Loads constant in upper 16 bits

Equal test; PC relative branch
Not equal test; PC relative
Compare less than; 2 's comp.
Compare < constant; 2's comp.
Compare less than; natural no.
Compare < constant; natural
Jump to target address
For switch, procedure return
For procedure call

FIGURE 4.4 MIPS architecture revealed thus far. Color indicates the portions revealed since Figure 4.1 on page 174.
MIPS machine language is illustrated on the endpapers of this book.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l l O l two

and the instruction to shift left by 8 was executed, the new value would look
like this:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 O O O O two

4.4 Loglcal Operations 181

To complement a shift left, there is a shift right. The two MIPS shift instruc
tions are called shift left logical (s l l) and shift right logical (s r l) . To perform the
operation above, assuming that the result should go in register $10:

s 1 1 $ 1 0 , $ 1 6 , 8 # r e g $ 1 0 = r e g $ 1 6 < < 8 b i t s

In Chapter 3, we delayed explaining the shamt field in the R format. It stands
for shift amount and is used in shift instructions. Hence, the machine language
version of the instruction above is

op rs rt rd sh amt funct

0 0 16 10 8 0

The encoding of s 1 1 is 0 in both the op and funct fields, rd contains $10, rt
contains $16, and shamt contains 8. The rs field is unused, and thus is set to 0.

Another useful operation that isolates fields is AND. (We capitalize the
word to avoid confusion between the operation and the English conjunction.)
AND is a bit-by-bit operation that leaves a 1 in the result only if both bits of the
operands are 1. For example, if register $10 still contains

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 O O O O two

and register $9 contains

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 O O O O two

then, after executing the MIPS instruction
a n d $ 8 , $ 9 , $ 1 0 # r e g $ 8 = r e g $ 9 & r e g $ 1 0

the value of register $8 would be

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 O O O O two

As you can see, AND can be used to apply a mask to a set of bits to force Os
where there is a 0 in the mask. To place a value into one of these seas of Os,
there is the complement to AND called OR. It is a bit-by-bit operation that
places a 1 in the result if either operand bit is a 1 . To elaborate, if the registers
$9 and $10 are unchanged from the preceding example, the result of the MIPS
instruction

o r $ 8 , $ 9 , $ 1 0 # r e g $ 8 = r e g $ 9 I r e g $ 1 0

is this value in register $8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 O O O O two

182 Chapter 4 Arithmetic for Computers

Logical ope ration s :
· "' :'-':·�·)·\c.ol>�t_!>'7s"':;�;��M!P.s1!'l�����'f 1

Shift Left « s 1 1
Shift Right » s r l

AN D & a n d . a n d i

OR I o r . o r i

FIGURE 4.5 Logical operations and their corresponding operations In C and MIPS.

Figure 4.5 shows the logical C operations and the corresponding MIPS in
structions. Constants are useful in logical operations as well as in arithmetic
operations, so MIPS also provides the instructions and immediate (a n d i) and or
immediate (o r i). This section describes the logical operations AND, OR, and
shift found in every computer today. Figure 4.6 summarizes the MIPS instruc
tions for those operations.

Elaboration: Since a n d i and o r i normally work with unsigned integers, the imme
diates are treated as unsigned integers as wel l , meaning that they are expanded to 32
bits by adding leading Os instead of sign extension. The MIPS assembler creates 32-bit
constants with the pair of instructions l u i and o r i ; see Chapter 3, pages 125-126
for an example of creating 32-bit constants using l u i and a d d i .

• Constructing an Arithmetic Logic Unit

ALU n. [Arthritic Logic Unit or (rare) Arithmetic Logic Unit] A random-number
generator supplied as standard with all computer systems.

Stan Kelly-Bootle, The Devil's DP Dictionary, 1981

The arithmetic logic unit or ALU is the brawn of the computer, the device that
performs the arithmetic operations like addition and subtraction or logical
operations like AND and OR This section constructs an ALU from the four
hardware building blocks shown in Figure 4.7 (see Appendix B for more
details on these building blocks). Cases 1, 2, and 4 in Figure 4.7 all have two
inputs. We will sometimes use versions of these components with more than
two inputs, confident that the reader can generalize from this simple exam
ple. (In any case, Appendix B provides examples with more inputs.)

�
32 registers

230 memory
words

--llW"l'iH.:.t,:C.•1•

Arithmetic

Logical

Data
transfer

Conditional
branch

Uncondi-
tional jump

4.5 Constructing an Arithmetic Logic Unit 183

MIPS operands

�:f';lllllJr:J 1..-., ...
$0, $1, $2, . . . ,$31 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.

MIPS register $0 always equals 0. Register $1 is reserved for the assembler to
handle pseudoinstructions and large constants.

Memory[OJ. Accessed only by data transfer instructions. MIPS uses byte addresses, so
Memory[4], . . . , sequential words differ by 4. Memory holds data structures, such as arrays, and
Memory[4294967292] spilled registers, such as those saved on procedure calls.

....... ... u .. ""
add
subtract
add immediate
add unsigned
subtract unsigned
add imm. unsign.
Move fr. copr. reg.
and
or
and immediate
or immediate
shift left logical
shift right logical

load word
store word
load upper imm.

branch on equal
branch on not eq.
set on less than
set less than imm.
set less than uns.
set I. t. imm. uns.
jump
jump register
jump and link

MIPS assembly language

,- .;111 ... :...
add $1,$2,$3
sub $1,$2,$3
addi $1,$2,100
addu $1,$2,$3
subu $1,$2,$3
addiu $1,$2,100
mfcO $1,$epc
and $1,$2,$3
or $1,$2,$3
andi $1,$2,100
Ori $1 ,$2, 100
sll $1,$2,10
srl $1,$2,10

lw $1,100($2)
SW $1, 100($2)
lui $1 ,100

beq $1,$2 ,100
bne $1,$2,100
sit $1,$2,$3
slti $1,$2,100
situ $1 ,$2,$3
sltiu $1,$2,100

j 10000
jr $31
jal 10000

ll'� ·z111u :
$1 = $2 + $3
$ 1 = $2 - $3
$1 = $2 + 100
$ 1 = $2 + $3
$1 = $2 - $3
$1 = $2 + 100
$1 = $epc
$1 = $2 & $3
$1 = $2 I $3
$1 = $2 & 100
$1 = $2 1 100
$1 = $2 « 10
$1 = $2 » 10

$1 = Memory[$2+100]
Memory[$2+100) = $1

$1 = 100 x 216

if ($1 == $2) go to PC+4+100
if ($1 I= $2) go to PC+4+ 100
if ($2 < $3) $1 = 1; else $1 = O
if ($2 < 100) $1 = 1; else $1 = 0
if ($2 < $3) $1 = 1; else $1 = O
if ($2 < 100) $1 = 1; else $1 = O

go to 10000
go to $31
$31 = PC + 4; go to 10000

l � ... �

3 operands; exception possible
3 operands; exception possible
+ constant; exception possible
3 operands; no exceptions
3 operands; no exceptions
+ constant; no exceptions
Used to get of Exception PC
3 reg. operands; Logical AND
3 reg. operands; Logical OR
Logical AND reg, constant
Logical OR reg, constant
Shift left by constant
Shift right by constant

Data from memory to register
Data from register to memory
Loads constant in upper 16bits

Equal test; PC relative branch
Not equal test; PC relative
Compare less than; 2's comp.
Compare < constant; 2's comp.
Compare less than; natural num.
Compare < constant; natural num.
Jump to target address
For switch, procedure return
For procedure call

FIGURE 4.6 MIPS architecture revealed thus far. Color indicates the portions since Figure 4.4 on page 180. MIPS
machine language is illustrated on the endpapers of this book.

184 Chapter 4 Arithmetic for Computers

1. And gate (c = a · b)

2. Or gate (c = a + b)

3. Inverter (C = a)

4. Multiplexor
(if d = = o c = a;

else c = b)

: =o-- c

: =:[)- c

a -(:>o---- c

d

·=tr, b 1

0 0 0

0 1 0

1 0 0

1 1 1

0 0 0

0 1 1

1 0 1

1 1 1

m 0

m b

FIGURE 4. 7 Four hardware building blocks used to construct an arithmetic logic unit. The
name of the operation and an equation describing it appear on the left. In the middle is the sym
bol for the block we will use in the drawings. On the right are tables that describe the outputs in
terms of the inputs. Using the notation from Appendix B, a . b means "a AND b," a + b means "a
OR b," and a line over the top (e.g., ';;°J means invert.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let's
assume that we will connect 32 1-bit ALUs to create the desired ALU. We'll
therefore start by constructing a 1-bit ALU.

A 1·bit ALU

The logical operations are easiest, because they map directly onto the hard
ware components in Figure 4.7. The 1-bit logical unit for AND and OR looks
like this:

4.5 Constructing an Arithmetic Logic Unit 185

Operation l
Result

The multiplexor on the right then selects a AND b or a OR b, depending on
whether the value of Operation is 0 or 1 . The line that controls the multiplexor
is shown in color to distinguish it from the lines containing data. Notice that
we have renamed the control and output lines of the multiplexor to give them
names that reflect the function of the ALU.

The next function to include is addition. From Figure 4.2 on page 176 we can
deduce the inputs and outputs of a single-bit adder. First, an adder must have
two inputs for the operands and a single-bit output for the sum. There must be
a second output to pass on the carry, called Carryout. Since the CarryOut from
the neighbor adder must be included as an input, we need a third input. This
input is called Carryin . Figure 4.8 shows the inputs and the outputs of a 1-bit
adder. Since we know what addition is supposed to do, we can specify the
outputs of this "black box" based on its inputs, as Figure 4.9 demonstrates.

From Appendix B, we know that we can express the output functions Car
ryOut and Sum as logical equations, and these equations can in turn be imple
mented with the building blocks in Figure 4.7. Let's do CarryOut; the table
below shows the values of the inputs when CarryOut is a 1 :

· . Inputs ·,

a b Carryln
. . .

0 1 1

1 0 1

1 1 0

1 1 1

186 Chapter 4 Arithmetic for Computers

Carryln

a

+ Sum

b

Carryout

FIGURE 4.8 A l·blt adder. This adder is called a full adder; it is also called a (3,2) adder because
it has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half
adder.

0 0 0 0 0 O + O + O = OOtwo
0 0 1 0 1 0 + 0 + 1 = 01two

0 1 0 0 1 0 + 1 + 0 = 01two

0 1 1 1 0 0 + 1 + 1 = 10tw0

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two
1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE 4.9 Input and output specification for a l·blt adder.

We can turn this truth table into a logical equation, as explained in
Appendix B (Recall that a + b means "a OR b" and that a · b means "a AND
b".) :

CarryOut = (b · Carryln) + (a · Carryln) + (a · b) + (a · b · Carryln)

If a · b · Carryln is true, then one of the other three terms must also be true, so
we can leave out this last term corresponding to the fourth line of the table.
We can thus simplify the equation to

CarryOut = (b · Carryln) + (a · Carryln) + (a · b)

4.5 Constructing an Arithmetic Logic Unit 187

Carryln

Carryout

FIGURE 4.10 Adder hardware for the carry out slgnal. The rest of the adder hardware is the
logic for the Sum output given in the equation above.

Figure 4.10 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates corre
spond exactly to the three parenthesized terms of the formula above for Car
ryOut, and the OR gate sums the three terms.

The Sum bit is set when exactly one input is 1 or when allthree inputs are
1. The Sum results in a messier Boolean equation (recall that a means NOT a):

- -

Sum = (a · b · Carry In) + (a · b · Carry In)

+ (a · b · Carryln) + (a · b · Carryln)

The drawing of the logic for the Sum bit in the adder black box is left as an
exercise for the reader (see Exercise 4.30).

Figure 4.11 shows a 1-bit ALU derived by combining the adder with the ear
lier components. Sometimes designers also want the ALU to perform a few
more simple operations, such as generating 0. The easiest way to add an oper
ation is to expand the multiplexor controlled by the Operation line and, for this
example, to connect 0 directly to the new input of that expanded multiplexor.

A 32-bit ALU

Now that we have completed the 1 -bit ALU, the full 32-bit ALU is created by
connecting adjacent "black boxes." Using xi to mean the ith bit of x,
Figure 4.12 shows a 32-bit ALU. Just as a single stone can cause ripples to
radiate to the shores of a quiet lake, a single carry out of the least significant
bit (ResultO) can ripple all the way through the adder, causing a carry out of

188 Chapter 4 Arithmetic for Computers

Operation
Carryln

CarryOut

Result

FIGURE 4.11 A 1-blt ALU that performs AND, OR, and addition (see Figure 4.10).

the most significant bit (Result31) . Hence, the adder created by directly link
ing the carries of 1-bit adders is called a ripple carry adder. We'll see a faster
way to connect the 1-bit adders later.

Subtraction is the same as adding the negative version of an operand, and
this is how adders perform subtraction. Recall that the shortcut for negating a
two's complement number is to invert each bit (sometimes called the one's com
plement) and then add 1 (see page 174, Elaboration). In order t� invert each bit,
we simply add a 2:1 multiplexor that chooses between b and b , as Figure 4.13
shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure 4.12. The
added multiplexor gives the option of b or its inverted value, depending on
Binvert, but this is only one step in negating a two's complement number. No
tice that the least significant bit still has a Carryln signal, even though it's un
necessary for addition. What happens if we set Carryln to 1 instead of O? The
adder will then calculate a + b + 1. By selecting the inverted version of b, we
get exactly what we want:

a + b + 1 = a + (b + 1) = a + (-b) = a - b

The simplicity of the hardware design of a two's complement adder helps
explain why two's complement representation has become the universal stan
dard for integer computer arithmetic.

4.5 Constructing an Arithmetic Logic Unit 189

aO
ResultO

bO

al

ALU1 Resultl
bl

a2

ca�H Carryln
ALU2 Result2

b2
Carryout

t I
a31 Carryln

ALU31 Result31
b31

Carryout

FIGURE 4.12 A 32-blt ALU constructed from 32 1·blt ALUs. CarryOut of the less significant bit
is connected to the Carry In of the more significant bit. This organization is called ripple carry.

Tailoring the 32-bit ALU to MIPS

This set of operations-add, subtract, AND, OR- is found in the ALU of
almost every computer. But the design of the ALU is incomplete. If we look at
Figure 4.6 on page 183, we see that the operations of most MIPS instructions
can be performed by this ALU. One instruction that still needs support is the
set-on-less-than instruction. Recall that the operation produces 1 if Rs < Rt,
and 0 otherwise. Consequently, set on less than will set all but the least signif
icant bit to 0, with the least significant bit set according to the comparison.

190 Chapter 4 Arithmetic for Computers

Binvert Operation
Carryln

a -+-------'----i

Carryout

Result

FIGURE 4.13 A 1-blt ALU that performs AND, OR, and addition on a and b or a and b . By
selecting b (Binvert = 1) and setting Carry In to 1, we get two's complement subtraction of b from
a instead of addition of b to a.

Thus, we need to expand the multiplexor to bring a value for the less than
comparison for each bit of the ALU. Figure 4.14 shows the new 1-bit ALU
with the expanded multiplexor. What remains to consider is how to compare
and set the least significant bit for set-on-less-than instructions.

What happens if we subtract Rt from Rs? If the difference is negative, then
Rs < Rt since

(Rs - Rt) < 0
=> ((Rs - Rt) + Rt) < (O + Rt)
=> (0 + Rs) < (0 + Rt)
=> Rs < Rt

Then we want the least significant bit of set on less than to be a 1 if the dif
ference is negative and a 0 if it's positive. It would seem that this corresponds
exactly to the sign-bit values: 1 means negative and 0 means positive. Follow
ing this line of argument, we need only connect the sign bit from the adder out
put to the least significant bit to get what we want.

Unfortunately, the Result output from the most significant ALU bit for the
less operation is not the output of the adder; the ALU output for the less oper
ation is the input value Less. Thus, we need a new ALU for the most significant
bit which makes the adder output available in addition to the standard result

4.5 Constructing an Arithmetic Logic Unit

Binvert

a -+------1----i

Operation
carryln

0

1

Carryout

191

Result

FIGURE 4.14 A 1-bit ALU that performs AND, OR, and addition on a and b or b . It includes a
direct input that is connected to perform the set-on-less-than operation (see Figure 4.16).

output. Figure 4.15 shows the design, with this new adder output line called
Set. As long as we need a special ALU for the most significant bit, we added
the overflow detection logic since it is also associated with that bit.

Unfortunately, the test of less than is a little more complicated than just
described because of overflow; Exercise 4.25 on page 261 explores what must
be done. Figure 4.16 shows the final organization of the 32-bit ALU.

Notice that every time we want the ALU to subtract, we set both Carryln
and Binvert to 1 . For adds or logical operations, we want both control lines to
be 0. We can therefore simplify control of the ALU by combining the Carryln
and Binvert to a single control line called Bnegate.

To further tailor the ALU to the MIPS instruction set, we must support con
ditional branch instructions. These instructions branch either if two registers
are equal or if they are unequal. The easiest way to test equality with the ALU
is to subtract b from a and then test to see if the result is 0, since

(a - b = 0) � a = b

Thus, if we add hardware to test if the result is 0, we can test for equality.
The simplest way is to OR all the outputs together and then send that signal
through an inverter:

192 Chapter 4 Arithmetic for Computers

Binvert

a

b

Overflow
detection

Operation
Carryln

0

1

Result
2

----+-+ Set

CarryOut

FIGURE 4.15 A 1-blt ALU for the most significant bit. It includes a direct output from the
adder for the less than comparison called Set.

Zero = (Result31 + Result30 + . . . + Result2 + Resultl + ResultO)

Figure 4.17 shows the revised 32-bit ALU.
Now that we have seen what is inside a 32-bit ALU, we will use the univer

sal symbol for a complete ALU, as shown in Figure 4.18. The 3 ALU Operation
lines, consisting of the combination of the 1-bit Bnegate line and the 2-bit Op
eration line, make the ALU perform the desired operation: add, subtract,
AND, OR, or set on less than. Figure 4.19 shows the ALU control lines and the
corresponding ALU operation.

Carry Lookahead

The next question is, "How quickly can this ALU add two 32-bit oper
ands?" We can determine the a and b inputs, but the Carryln input
depends on the operation in the adjacent 1-bit adder. If we trace all the
way through the chain of dependencies, we get to the least significant

4.5 Constructing an Arithmetic Logic Unit

Binvert

aO
bO

a1
b1

0

a2
b2

0

a31
b31

0

I�--�T'" ALUO ResultO

Less
Carryout

1----�-+ Result1

1----�-+ Result2

i-------+ Result31
i-----� set
1-------1-+ Overflow

193

FIGURE 4.16 A 32-blt ALU constructed from the 31 l·blt ALUs found In Figure 4.14 and
one 1-blt ALU found In Figure 4.15. The Less inputs are connected to 0 except for the least sig
nificant bit, and that is connected to the Set output of the most significant bit. If the ALU performs
a - b and we select the input 3 in the multiplexor in Figures 4.14 and 4.15, then Result = 0 . . . 001 if
a < b, and Result = 0 . . . 000 otherwise. (The carryout of the most significant bit is useful in multi
word additions as carryin of upperwords.)

bit, so the most significant bit of the sum must wait for the sequential
evaluation of the 32 1 -bit adders. This sequential chain reaction is too
slow to be used in time-critical hardware. There are a variety of schemes
to anticipate the carry so that the worst-case scenario is a function of the
log2 of the number of bits in the adder. These anticipatory signals are

194 Chapter 4 Arithmetic for Computers

Bnegate

ao
bO

a1
b1

0

a2
b2

0

a31
b31

0

Operation

ResultO

Result1

Zero

Result2

Result31

1--------. Set
1-------i-------------+ Ove�ow

FIGURE 4.17 The final 32-bit ALU. This adds a Zero detector to Figure 4.16, using the 1-bit ALU.

faster because they go through fewer gates in sequence, but it takes
many more gates in parallel to anticipate the proper carry.

Appendix B mentions that any equation can be represented in two levels of
logic, since the only external inputs are the two operands and the Carryln to
the least significant bit of the adder. In theory, we could calculate the Carry In
values to all the remaining bits of the adder in just two levels of logic.

4.5 Constructing an Arithmetic Logic Unit

ALU operation

a

b

Carryout

Zero
Result
Overflow

195

FIGURE 4.18 The symbol commonly used to represent an ALU, as shown In Rgure 4.17.
This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.
The control lines labeled ALUOperation include the Operation and Bnegate lines from
Figure 4.17; their values and the ALU operation are found in Figure 4.19.

ALU Control l i nes Function
000 And
001 Or
010 Add
110 Subtract
111 Set-0n-less-than

FIGURE 4.19 The values of the three ALU Control llnes Bnegate and Operation and the
corresponding ALU operations.

For example, the Carry In for bit 2 of the adder is the CarryOut of bit 1 of the
adder, so the formula is

Carryln2 = (bl · Carrylnl) + (a l · Carrylnl) + (a l · b l)

Similarly, Carrylnl is defined as
Carrylnl = (bO · CarrylnO) + (aO · CarrylnO) + (aO · bO)

Substituting the definition of Carrylnl for the first equation results in this for
mula, where ci means Carrylni:

c2 = (a l · aO · bO) + (a l · aO · c O) + (a l · bO · c O)
+ (bl · aO · bO) + (bl · aO · cO) + (bl · b O · cO) + (a l · bl)

You can imagine how the equation expands a s we get to higher bits in the
adder; this complexity is reflected in the cost of the hardware for fast carry,
making this simple scheme prohibitively expensive for wide adders.

196 Chapter 4 Arithmetic for Computers

Most fast-carry schemes limit the complexity of the equations to simplify
the hardware, while still making substantial improvements over ripple carry.
One such scheme is a carry-lookahead adder. The first step is to factor out some
common terms from these complex logic equations. Two important factors are
called generate (gi) and propagate (pi):

gi = ai · bi

pi = ai + bi

The two terms are well-named:

gi is true if bit i of the adder generates a Carryout independent of Carry In;

pi is true if bit i of the adder propagates a Carry In to a CarryOut.

The Carrylni is a 1 if either gi-l is 1 or both Pi-l is 1 and Carrylni-l is 1 . Using
propagate and generate we can express the Carryln signals more economi
cally; let's show it for 4 bits:

cl = gO + (pO · c O)

c2 = g 1 + (p 1 · gO) + (p 1 · pO · c 0)

c3 = g2 + (p2 · gl) + (p2 · pl · gO) + (p2 · pl · pO · cO)

c4 = g3 + (p3 · g2) + (p3 · p2 · gl) + (p3 · p2 · pl · gO)
+ (p3 · p2 · pl · pO · cO)

These equations just represent common sense: Carrylni is a 1 if some earlier
adder generates a carry and all intermediary adders propagate a carry.

Even this simplified form leads to large equations and, hence, considerable
logic even for a 16-bit adder. In Chapter 1, we said computer systems cope
with complexity by using levels of abstraction. Let's try abstraction here. First
we consider this 4-bit adder with its carry-lookahead logic as a single building
block. Then we must have two choices: either we just connect these abstrac
tions in ripple carry fashion or we create carry-lookahead signals for them.

We'll need carry lookahead at the higher level to run fast. To perform carry
lookahead for 4-bit adders, we need propagate and generate signals at this
higher level. Here they are for the four 4-bit adder blocks:

PO = p3 · p2 · pl · pO

Pl = p7 · p6 · p5 · p4

P2 = pl l · plO · p9 · p8

P3 = pl5 · pl4 · pl3 · pl2

That is, the propagate signal for the 4-bit abstraction (Pi) is true only if each of
the bits in the group will propagate a carry. Similarly, the generate signal for

4.5 Constructing an Arithmetic Logic Unit 197

the 4-bit abstraction (Gi) is true only if all of the bits will generate a carry from
the most significant bit of the group:

GO = g3 + (p3 · g2) + (p3 · p2 · gl) + (p3 · p2 · pl · gO)

Gl = g7 + (p7 · g6) + (p7 · p6 · gS) + (p7 · p6 · pS · g4)

G2 = gll + (pll · glO) + (pll · plO · g9) + (pll · plO · p9 · g8)

G3 = glS + (plS · gl4) + (plS · pl4 · gl3) + (plS · pl4 · p13 · gl2)

Then the equations at this higher level of abstraction for a 16-bit adder are
very similar to those before:

Cl = GO + (PO · cO)

C2 = Gl + (Pl · GO) + (Pl · PO · cO)

C3 = G2 + (P2 · Gl) + (P2 · Pl · GO) + (P2 · Pl · PO · cO)

C4 = G3 + (P3 · G2) + (P3 · P2 · Gl) + (P3 · P2 · Pl · GO)
+ (P3 · P2 · Pl · PO · cO)

Exercises 4.31 to 4.35 explore the speed differences between these carry
schemes, different notations for multi-bit propagate and generate signals, and
the design of a 64-bit adder.

Summary

The primary point of this section is that the traditional ALU can be con
structed from a multiplexor and a few gates that are replicated 32 times. To
make it more useful to the MIPS architecture, we expand the traditional ALU
with hardware to test if the result is 0, detect overflow, and perform the basic
operation for set on less than.

The logic equation for the Sum output of the fu l l adder on page 187
can be expressed more simply by using a more powerful gate than AND and OR. An
exclusive OR gate is true if the two operands d isagree; that is ,

x * y � 1 and x = y � 0

I n some technologies, exclusive OR is more efficient than two levels of AND and OR
gates. Using the symbol EB to represent exclusive OR, here is the new equation:

S u m = a EB b EB C a r r y l n

We have now accounted for al l but one of the arithmetic and logical operations for
the M IPS instruction set: the ALU in Figure 4.18 omits support of shift i nstructions. It
wou ld be possible to widen the ALU multiplexor to include a left shift by 1 bit or right
shift by 1 bit. But hardware designers have created a circu it cal led a barrel shifter,

198 Chapter 4 Arithmetic for Computers

which can shift from 1 to 31 bits in no more time than it takes to add two 32-bit num
bers, so shifting is normally done outside the ALU .

II MuHlpllcatlon

Multiplication is vexation, Division is as bad;
The rule of three doth puzzle me, And practice drives me mad.

Anonymous, Elizabethan manuscript, 1570

With the construction of the ALU and explanation of addition, subtraction,
and shifts, we are ready to build the more vexing operation of multiply.

But first let's review the multiplication of decimal numbers in longhand to
remind ourselves of the steps and the names of the operands. For reasons that
will become clear shortly, we limit this decimal example to using only the dig
its 0 and 1 . Multiplying lOOOten by lOOlten:

Multiplicand
Multiplier

Product

1 O O O ten
X l O O l t e n

1 0 0 0
0 0 0 0

0 0 0 0
1 0 0 0

1 00 1 0 0 0 te n

The first operand is called the multiplicand and the second the multiplier. The
final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right
to left, multiplying the multiplicand by the single digit of the multiplier and
placing the intermediate product at the appropriate place to the left of the
earlier results.

The first observation is that the number of digits in the product is consider
ably larger than the number in either the multiplicand or the multiplier. In fact,
if we ignore the sign bits, the length of an n-bit multiplicand and an m-bit mul
tiplier is a product that is n+m bits long. Hence, like add, multiply must cope
with overflow, because we normally want a 32-bit product as the result of mul
tiplying two 32-bit numbers.

In this example we restricted the decimal digits to 0 and 1 . With only two
choices, each step of the multiplication is simple:

Just place a copy of the multiplicand (1 x multiplicand) in the proper place
if the multiplier digit is a 1, or

4.6 Multlpllcatlon

-

Multiplicand
Shift left

Product
Write ·--....

64 bits

Control

-

Multiplier
Shift right

32 bits

199

FIGURE 4.20 First version of the multlpllcatlon hardware. The Multiplicand register, ALU,
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. The
32-bit multiplicand starts in the right half of the Multiplicand register, and is shifted left 1 bit on
each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts
with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier
registers and when to write new values into the Product register.

place 0 (0 x multiplicand) if the digit is 0.

Although the decimal example above happened to use only 0 and 1, multipli
cation of binary numbers must always use 0 and 1, and thus always offers
only these two choices.

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tra
dition in the belief that the reader will gain better understanding by seeing the
evolution of the multiply hardware and algorithm through three generations.
The rest of this section presents successive refinements of the hardware and
the algorithm until we have a version that you would really find in a comput
er. For now, let's assume that we are multiplying only positive numbers.

First Iteration of the Multiplication Algorithm and Hardware

The initial design mimics the algorithm we learned in grammar school; the
hardware is shown in Figure 4.20. We have drawn the hardware so that data
flows from top to bottom to more closely resemble the paper-and-pencil
method.

Let's assume that the multiplier is in the 32-bit Multiplier register and that
the 64-bit Product register is initialized to 0. Since the basic algorithm shifts the

200 Chapter 4 Arithmetic for Computers

Multiplicand register left one digit each step so that it can be added to that
step, moving the 32-bit multiplicand value from being aligned on the right to
aligned on the left, we use a 64-bit Multiplicand register with the multiplicand
starting in the right half of the register and 0 in the left half. This register is
shifted left 1 bit each step to align the multiplicand with the sum being accu
mulated in the 64-bit Product register.

Figure 4.21 shows the three basic steps needed for each bit. The least signif-

MultiplierO = 1

1a. Add multiplicand to product and
place the result in Product register

Start

Multipl ierO = O

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

Done

FIGURE 4.21 The first multlpllcatlon algorithm, using the hardware shown In Figure 4.20.
If the least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to
the next step. Shift the multiplicand left and the multiplier right in the next two steps. These three
steps are repeated 32 times.

Example

Answer

4.6 Multiplication 201

icant bit of the multiplier (MultiplierO) determines whether the multiplicand is
added to the Product register. The left shift in step 2 has the effect of moving
the intermediate operands to the left, just as when multiplying by hand. The
shift right in step 3 gives us the next bit of the multiplier to examine in the fol
lowing iteration. These three steps are repeated 32 times to obtain the product.

Using 4-bit numbers to save space, multiply 21en x 3ten or OOlOtwo x OOlliv.·o·

Figure 4.22 shows the value of each register for each of the steps labeled ac
cording to Figure 4.21, with the final value of 0000 OllOtwo or 6ten· Color is
used to indicate the register values that change on that step, and the bit cir
cled is the one examined to determine the operation of the next step.

Iteration Step Multipl ier Multiplicand Product

0 Initial Values 00 1© 0000 0 0 1 0 0 0 0 0 0000

1a: 1 =>Prod=Prod+Mcand 00 1 1 0000 0 0 1 0 0 0 0 0 0 0 1 0

1 2: Sh ift left Mu ltiplicand 00 1 1 0000 0 1 0 0 0000 0 0 1 0

3 : Shift right Multiplier ooo© 0000 0 1 00 0000 0 0 1 0

la: 1 =>Prod=Prod+Mcand 0001 0000 0 1 00 0000 0 1 1 0

2 2: Sh ift left Multiplicand 0001 0000 1 000 0000 0 1 1 0

3: Shift right Multiplier ooo@ 0000 1 000 0000 0 1 1 0

1: O =>no operation 0000 0000 1 000 0000 0 1 1 0

3 2: Shift left Multiplicand 0000 0001 0000 0000 0 1 1 0

3: Shift right Multiplier ooo@ 000 1 0000 0000 0 1 1 0

1: o =>no operation 0000 000 1 0000 0000 0 1 1 0

4 2: Shift left Multiplicand 0000 0 0 1 0 0000 0000 0 1 1 0

3: Shift right Multiplier 0000 00 1 0 0000 0000 0 1 1 0

FIGURE 4.22 MuHlply example using Hrst algortttun In Figure 4.21.

If each step took a clock cycle, this algorithm would require almost 100 clock
cycles to multiply. The relative importance of arithmetic operations like mul
tiply varies with the program, but addition and subtraction may be anywhere
from 5 to 100 times more popular than multiply. Accordingly, in many appli-

202 Chapter 4 Arithmetic for Computers

Mull olicand

64 bits

Shift right •--.r
Write •--"- Control

-

Multiplier
Shift right

32 bits

FIGURE 4.23 Second version of the multlpllcatlon hardware. Compare to the first version in
Figure 4.20. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only
the Product register left at 64 bits. Now the product is shifted right. These changes are high
lighted in color.

cations, multiply can take multiple clock cycles without significantly affecting
performance. Yet Amdahl's Law (see Chapter 2, page 71) reminds us that even
a moderate frequency for a slow operation can limit performance.

Second Iteration of the Multiplication Algorithm

and Hardware

Computer pioneers recognized that half of the bits of the multiplicand in the
first algorithm were always 0, so only half could contain useful bit values. A
full 64-bit ALU thus seemed wasteful and slow since half of the adder bits
were adding 0 to the intermediate sum.

The original algorithm shifts the multiplicand left with Os inserted in the
new positions, so the least significant bits of the product can never change after
they are formed. Instead of shifting the multiplicand left, they wondered, what
if we shift the product to the right? Now the multiplicand would be fixed rela
tive to the product, and since we are adding only 32 bits, the adder need be
only 32 bits wide. Figure 4.23 shows how this change halves the widths of both
the ALU and the multiplicand.

Figure 4.24 shows the multiply algorithm inspired by this observation. This
algorithm starts with the 32-bit Multiplicand and 32-bit Multiplier registers set
to their named values and the 64-bit Product register set to 0. This algorithm

4.8 Multlpllcatlon

Multipl ierO = 1

1a. Add multiplicand to
the product and place the result in
tn er o the Product register

2. Shift the Prod

Start

Multipl ierO = O

3. Shift the Multiplier register right 1 bit

Done

203

FIGURE 4.24 The second multlpllcatlon elgorlthm, using the herdw11re In FllUr• 4.23. In
this version, the Product register is shifted right instead of shifting the Multiplicand. Color type
shows the changes from Figure 4.21.

only forms a 32-bit sum, so only the left half of the 64-bit Product register is
changed during the addition.

204

Example

Answer

Chapter 4 Arithmetic for Computers

•:.�1terition ; �·,.·�· .t .. ;· . • -��-step_ ·,, · ' Multiplier Multiplicand Product
t -'-. -..- ..,,..__ I , Y .. ' -r , - '

0 Initial Values 0 0 1© 0 0 1 0 0000 0000

1a : 1 =>Prod=Prod+Mcand 0 0 1 1 0 0 1 0 0 0 1 0 0000

1 2: Shift right Product 0 0 1 1 0 0 1 0 0 0 0 1 0000

3: Shift right Multiplier oooQ) 0 0 1 0 0001 0000

1a: 1 =>Prod=Prod+Mcand 0 0 0 1 0 0 1 0 00 1 1 0000

2 2: Shift right Product 0 0 0 1 0 0 1 0 0 0 0 1 1 0 00

3: Shift right Multiplier ooo@ 0 0 1 0 0 0 0 1 1 00 0

1: O =>no operation 0000 0 0 1 0 0 0 0 1 1 00 0

3 2: Shift right Product 0000 0 0 1 0 000 1 1 00

3: Shift right Multiplier ooo@ 0 0 1 0 0000 1 1 00

1: O =>no operation 0000 0 0 1 0 0000 1 1 00

4 2: Shift right Product 0000 0 0 1 0 0000 0 1 1 0

3: Shift right Multiplier 0000 0 0 1 0 0 0 0 0 0 1 1 0

FIGURE 4.25 Multlply example using second algorlthm In Figure 4.24.

Multiply OOlOtwo x 0011tw0using the algorithm in Figure 4.24.

Figure 4.25 above shows the revised 4-bit example, again giving 0000
OllOtwo·

Final Version of the Multiplication Algorithm and Hardware

The final observation of the frugal computer pioneers was that the Product
register had wasted space that matched exactly the size of the multiplier: As
the wasted space in the product disappears, so do the bits of the multiplier. In
response, the third version of the multiplication algorithm combines the
rightmost half of the product with the multiplier. Figure 4.26 shows the hard
ware. The least significant bit of the 64-bit Product register (ProductO) now is
the bit to be tested.

The algorithm starts by assigning the multiplier to the right half of the Prod
uct register, placing 0 in the upper half. Figure 4.27 shows the new steps.

Example

Answer

4.6 Multlpllcatlon

Multiplicand

64 bits

Shift right __ _,
Write __ .._ Control

205

FIGURE 4.26 Third version of the multlpllcatlon hardware. Comparing to the second version
in Figure 4.23 on page 202, the separate Multiplier register disappeared. The multiplier is placed
instead in the right half of the Product register.

Multiply OOlOtwo x OOlltwo using the algorithm in Figure 4.27.

Figure 4.28 below shows the revised 4-bit example for the final algorithm.

Signed Multiplication

So far we have dealt with positive numbers. The simplest way to convert this
algorithm to signed numbers is to first convert the multiplier and multipli
cand to positive numbers and then remember the original signs. The algo
rithms should then be run for 31 iterations, leaving the signs out of the
calculation. As we learned in grammar school, we need negate the product
only if the original signs disagree.

Booth's Algorithm

A more elegant approach to multiplying signed numbers is called Booth's algo
rithm. It starts with the observation that with the ability to both add and sub
tract there are multiple ways to compute a product. Suppose we want to
multiply 2ten by 6ten or OOlOtwo by Ol10tw0:

208 Chapter 4 Arithmetic for Computers

ProductO = 1

la. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

Start

ProductO = O

2. Shift the Product register right 1 bit

Done

FIGURE 4.27 The third multlpllcatlon algorithm. It needs only two steps because the Product
and Multiplier registers have been combined. Color type shows changes from Figure 4.24.

O O l Otwo
x O l l Otwo

+ 0 0 0 0 s h i ft (0 i n m u l t i p l i e r)
+ 0 0 1 0 a d d (1 i n m u l t i p l i e r)
+ 0 0 1 0 a d d (1 i n m u l t i p l i e r)
+ 0 0 0 0 s h i ft (0 i n m u l t i p l i e r)

OOOO l l O Otwo

4.6 Multlpllcatlon 207

Iteration Step Multiplicand Product
0 Initial Values 0 0 1 0 0 0 0 0 0 0 1©

la: 1 =>Prod=Prod+Mcand 0 0 1 0 0 0 1 0 001 1
1 00 1 0 0 0 0 1 o oaj) 2: Shift right Product

la: 1 =>Prod=Prod+Mcand 00 1 0 00 1 1 0001
2 00 1 0 000 1 l OcXg 2: Shift right Product

1: o =>no operation 00 1 0 0001 1000
3 00 1 0 0000 l l cXg 2 : Shift right Product

1: 0 =>no operation 0 0 1 0 0000 1 1 00
4 0 0 1 0 2: Shift right Product 0000 0 1 1 0

FIGURE 4.28 Multiply example using third algorithm In Figure 4.27.

Booth observed that an ALU that could add or subtract could get the same
result in more than one way. For example, since

6 t e n
0 1 l O two

= - Z t e n + S t en • or = - O O l O two+ l O O O two

we could replace a string of l s in the multiplier with an initial subtract when
we first see a 1 and then later add for the bit after the last one. For example,

O O l O two
x 0 1 l O two
+ 0 0 0 0 s h i f t (0 i n m u l t i p l i e r)

0 0 1 0 s u b (f i r s t 1 i n m u l t i p l i e r)
+ 0 0 0 0 s h i f t (m i d d l e o f s t r i n g o f l s)
+ 0 0 1 0 a d d (p r i o r s t e p h a d l a s t 1)

O O O O l l O O two

Booth invented this approach in a quest for speed, believing that shifting
was faster than addition. Indeed, for some patterns his algorithm would be
faster; it's our good fortune that it handles signed numbers as well, and we'll
prove this later. The key to Booth's insight is in his classifying groups of bits
into the beginning, the middle, or the end of a run of ls:

Middle of r u n
End of run I 0 (1 1 1 1 1 1) 0

,
,
Beginning of run

208 Chapter 4 Arithmetic for Computers

Of course, a string of Os already avoids arithmetic, so we can leave these
alone.

If we are limited to looking at just 2 bits, we can then try to match the situ
ation in the preceding drawing, according to the value of these 2 bits:

Current bit Bit to the right Explanation Example
1 0 Beginning of a run of 1 s 0000 1 1 1 1 OODtwo
1 1 Middle of a run of l s 0000 1 1 1 1 OOOtwo
0 1 End of a run of ls 000 0 1 1 1 1 000tw0
0 0 Middle of a run of Os 0 000 1 1 1 1 000tw0

Booth's algorithm changes the first step of the algorithm in Figure 4.27-
looking at 1 bit of the multiplier and then deciding whether to add the multi
plicand-to looking at 2 bits of the multiplier. The new first step, then, has four
cases, depending on the values of the 2 bits. Let's assume that the pair of bits
examined consists of the current bit and the bit to the right-which was the
current bit in the previous step. The second step is still to shift the product
right. The new algorithm is then

1 . Depending on the current and previous bits, do one of the following:

0 0 : a. Middle of a string of Os, so no arithmetic operation.

0 1 : b. End of a string of ls, so add the multiplicand to the left half of the
product.

1 0 : c. Beginning of a string of ls, so subtract the multiplicand from the
left half of the product.

1 1 : d. Middle of a string of ls, so no arithmetic operation.

2. As in the previous algorithm, shift the Product register right 1 bit.

Now we are ready to begin the operation, shown in Figure 4.29. It starts
with a 0 for the mythical bit to the right of the rightmost bit for the first stage.
The table below compares the two algorithms, with Booth's on the right. Note
that Booth's operation is now identified according to the values in the 2 bits.
By the fourth step the two algorithms have the same values in the Product reg
ister.

The one other requirement is that shifting the product right must preserve
the sign of the intermediate result, since we are dealing with signed numbers.
The solution is to extend the sign when the product is shifted to the right. Thus,
step 2 of the second iteration turns 1110 0011 Otwo into 1111 0001 l two instead of

4.6 Multiplication 209

1: 0 => no operation 0000 la: 00 => no operation 0000 1
0 0 1 0 2 : Shift right Product 2: Shift ri ht Product
0 0 1 0 la: 1 = > Prod = Prod + Mcand l C le: 10 =>Prod = Prod - Mcand 00 1 1

2
0 0 1 0 2 : Shift right Product 1 0 1 2 : Shift right Product 1 .
0 0 1 0

3
la: 1 => Prod = Prod + Mcand 1 1 1 ld: 11 => no operation 1 1 1 1 0 00 1

0 0 1 0 2 : Shift ri ht Product C l 2: Shift right Product 1 1 1 0 '
0 0 1 0 1: O => no operation 0001 1 000 lb: 01 =>Prod = ·Prod + Mcand " l 1 000

4
0 0 1 0 2 : Shift right Product 00 . . 2 : Shift right Product 00 1 1 0 0

FIGURE 4.29 Comparing algorithm I n Figure 4.27 and Booth's algorithm for positive numbers.

Example

Answer

0111 0001 ltwo· This shift is called an arithmetic right shift to differentiate it from
a logical right shift.

Let's try Booth's algorithm with negative numbers: 2ten x -3ten = --6ten or
0010iw0 X 110liw0 = 1111 l0l01wo·

Figure 4.30 shows the steps. Our example computes multiply 1 bit at a time,
but it is possible to generalize Booth's algorithm to look at multiple bits for
faster multiplies (see Exercise 4.39).

0
1.c: 10 => Prod = Prod - Mcand 0 0 1 0 1 1 1 0 1 1 0 1 0 1
2: Shift right Product 0 0 1 0 1 1 1 1 0 1 1 1
1.b: 01 => Prod = Prod + Mcand 0 0 1 0 000 1 0 1 1 0 1

2
2: Shift ri ht Product 00 1 0 0000 1 0 1 0
1.c: 10 => Prod = Prod - Mcand 00 1 0 1 1 1 0 1 0 1 1 0

3
2: Shift right Product 00 1 0 1 1 1 1 0 1 0
1.d: 1 1 => no operation 00 1 0 1 1 1 1 0 1 0 1 1

4
2: Shift right Product 00 1 0 1 1 1 1 1 0 0 1

FIGURE 4.30 Booth'• algorithm wHh negative muHlpller example.

210

Example

Answer

Chapter 4 Arithmetic for Computers

Hardware

Software

Interface

Booth's observation about replacing arithmetic by shifts can
be applied when multiplying by constants. Some compilers
replace multiplications by short constants with a series of
shifts, adds, and subtracts. Because 1 bit to the left represents
a number twice as large in base 2, shifting the bits left has the
same effect as multiplying by a power of 2, so almost every
compiler will substitute a left shift for a multiplication by a
constant that is a power of 2.

Let's multiply Sten by 2ten using a left shift by 1 .

Given that

lOltwo = (1 X 22) + (0 X 21) + (1 X 2°hen = 4 + 0 + lten = Sten
if we shift left one bit we get

and

1010two = (1 x 23) + (0 x 22) + (1 x 21) + (0 X 2°hen
= 8 + 0 + 2 + oten = lOten

S X 2\en = lOten
Hence the MIPS s 1 1 instruction can be used for multiplies by powers

of 2.

For real multiplies, MIPS provides a separate pair of 32-bit registers to con
tain the 64-bit product, called Hi and Lo. To produce a properly signed or un
signed product, MIPS has two instructions: multiply (m u l t) and multiply
unsigned (mu l t u) . To fetch the normal 32-bit product, the programmer uses
move from lo (mflo). The MIPS assembler allows multiply instructions to spec
ify three registers, issuing the m f l o and mf h i instructions to place the products
into registers.

Both multiply instructions ignore overflow, so it is up to the software to
check to see if the product is too big to fit in 32 bits. To avoid overflow, Hi must
be 0 for m u l t u or must be the replicated sign of Lo for m u l t . The instruction
move from hi (m f h i) transfers Hi to a register to test for overflow.

4.6 Multlpllcatlon 211

Now that we have seen Booth's algorithm work, we are ready to see why it
works for two's complement signed integers. Let a be the multiplier and b be
the multiplicand and we'll use ai to refer to bit i of a. Recasting Booth's algo
rithm in terms of the bit values of the multiplier yields this table:

' 1 1 1 . " • · J _ Op.eration '

0 0 Do nothing
0 1 Add b

1 0 Subtract b

1 1 Do nothing

Instead of representing Booth's algorithm in tabular form, we can represent it
as the expression:

(ai-1 - ai)
where the value of the expression means the following actions:

0 do nothing,
+1 add b,
-1 subtract b.

Since we know that shifting of the multiplicand left with respect to the
Product register can be considered multiplying by a power of 2, Booth's algo
rithm can be written as the sum:

(a_1 - a0) x b
+ (ao - a1) x b x 21
+ (a1 - a2) x b x 22

+ (a29 - a30) x b x 230
+ (a30 - ll31) x b x 231

We can simplify this sum by noting that

- a· x zi-l+ a· x zi = (-a· + 2a·) x zi-l = (2a· - a·) x zi-l = a· x zi-l I I I I I I I

and by factoring out b from each term:

b X ((a31 X -231) + (a30 X 230) + (a29 X 229) + . . . + (a1 X 21) + (ao X 2°))

212 Chapter 4 Arithmetic for Computers

The long formula in parentheses to the right of the first multiply operation is
simply the two's complement representation of a (see page 170.) Thus the
sum is further simplified to

b x a

Hence Booth's algorithm does in fact perform two's complement multiplica
tion of a and b.

Summary

Multiplication is accomplished by a simple shift and add hardware, derived
from the paper-and-pencil method learned in grammar school. Compilers
even replace multiplications by powers of 2 with shift instructions. Signed
multiplication is more challenging, with Booth's algorithm rising to the chal
lenge with essentially a clever factorization of the two's complement number
representation of the multiplier.

Elaboration: The original reason for Booth 's algorithm was speed , because early
machines could shift faster than they could add . The hope was that this encoding
scheme would increase the number of shifts . This algorithm is sensitive to particular
bit patterns, however, and may actually increase the number of adds or subtracts. For
example, bit patterns that alternate 0 and 1 , called isolated 1s, w i l l cause the hard
ware to add or subtract at each step. If all combinations occur with uniform distribu
tion, then on average there is no savings. Greater advantage comes from performing
multiple bits per step, which we explore in Exercise 4.39 .

• Division

Divide et impera.

Latin for "Divide and rule," Ancient political maxim cited by Machiavelli, 1532

The reciprocal operation of multiply is divide, an operation that is even less
frequent and even more quirky. It even offers the opportunity to perform a
mathematically invalid operation: dividing by 0.

Let's start with an example of long division using decimal numbers to recall
the names of the operands and the grammar school division algorithm. For

4. 7 Division 213

reasons similar to those in the previous section, we limit the decimal digits to
just 0 or 1 . The example is dividing 1,001,0lOten by lOOOten:

lOOlten Quotient

Divisor lOOOten 1001010ten Dividend

-1000
10
101
1010

-1000
lOten Remainder

The two operands (dividend and divisor) and the result (quotient) of divide
are accompanied by a second result called the remainder. Here is another way
to express the relationship between the components:

Dividend = Quotient x Divisor + Remainder

where the Remainder is smaller than the Divisor. Infrequently, programs use
the divide instruction just to get the remainder, ignoring the quotient. Note
that the size of the dividend is limited by the sum of the sizes of the divisor
and quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our care
fully selected decimal example uses only the numbers 0 and 1, so it's easy to
figure out how many times the divisor goes into the portion of the
dividend: it's either 0 times or 1 time. Binary numbers contain only 0 or 1, so
binary division is restricted to these two choices, thereby simplifying binary
division.

Once again textbooks traditionally jump to the refined division hardware,
and once again we abandon tradition to offer insight into how that hardware
evolved. The next three subsections examine three versions of the divide algo
rithm, refining the hardware requirements as we go. Let's assume that both
the dividend and divisor are positive and hence the quotient and the remain
der are nonnegative.

First Iteration of the Division Algorithm and Hardware

Figure 4.31 shows hardware to mimic our grammar school algorithm. We
start with the 32-bit Quotient register set to 0. Each step of the algorithm
needs to move the divisor to the right one digit, so we start with the divisor
placed in the left half of the 64-bit Divisor register and shift it right one bit
each step to align it with the dividend.

214 Chapter 4 Arithmetic for Computers

-

Divisor

Remainder

64 bits

Shift right

-

Quotient
Shift left

32 bits

FIGURE 4.31 First version of the division hardware. The Divisor register, ALU, and Remain
der register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor
starts in the left half of the Divisor register and is shifted right 1 bit on each step. The remainder is
initialized with the dividend. Control decides when to shift the Divisor and Quotient registers
and when to write the new value into the Remainder register.

Figure 4.32 shows three steps of the first division algorithm. Unlike a hu
man, the computer isn't smart enough to know in advance whether the divisor
is smaller than the dividend. It must first subtract the divisor in step l; remem
ber that this is how we performed the comparison in the set-on-less-than in
struction. If the result is negative, the next step is to restore the original value
by adding the divisor back to the remainder (step 2b). The remainder and quo
tient will be found in their namesake registers after the iterations are complete.

4. 7 Division

Start

1. Subtract the Divisor register from the
Remainder register and place the
result In the Remainder register

Remainder � O Remainder < 0

2a. Shift the Quotient register to the left
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder

register and place the sum in the
Remainder register. Also shift the

Quotient register to the left, setting the
new least significant bit to 0

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

Done

211

FIGURE 4.32 The first division algorithm, using the hardware In Figure 4.31. If the Remain
der is positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A neg
ative Remainder after this step means that the divisor did not go into the dividend, so step 2b
generates a 0 in the quotient and adds the divisor to the remainder, thereby reversing the subtrac
tion of step 1 . The final shift, in step 3, aligns the divisor properly, relative to the dividend for the
next iteration. These steps are repeated 33 times; the reason for the apparent extra step will
become clear in the next version of the algorithm.

216 Chapter 4 Arithmetic for Computers

Example Using a 4-bit version of the algorithm to save pages, let's try dividing 7ten
by 2ten or 0000 01 1 1 two by OOlOtwo·

Answer Figure 4.33 shows the value of each register for each of the steps, with the
quotient being 3ten and the remainder l tcn· Notice that the test in step 2 of
whether the remainder is positive or negative simply tests whether the sign
bit of the Remainder register is a 0 or 1. The surprising requirement of this
algorithm is that it takes n + 1 steps to get the proper quotient and
remainder.

1: Rem = Rem - Div 0000 0 0 1 0
1 2b: Rem<O => +Div, sll Q, QO = 0 0000 0 0 1 0

3 : shift Div right 0000

1: Rem = Rem - Div 0000 0001

2 2b: Rem < O => +Div, sll Q, QO = O 0000 0 0 0 1

3 : shift Div right 0000 0000 0 1 1 1
1: Rem = Rem - Div 0000 0000 1 1 1 1

3 2b: Rem < 0 => +Div, sll Q, QO = 0 0000 0000 0 1 1 1
3: shift Div right 0000 0000 0 1 1 1

1: Rem = Rem - Div 0000 0000
4 2a: Rem :<: O => sll Q, QO = 1 0 0 0 1 0000

3 : shift Div right 0 0 0 1 0 0 0 1 0 0 1 1

1: Rem = Rem - Div 0 0 0 1 0000 00 .

5 2a: Rem ;:: O => sll Q, QO = 1 0 0 1 1 0000 0 0 1 0 0 0 0 1
3: shift Div right 0 0 1 1 000 01 0 0 0 0 0 0 0 1

FIGURE 4.33 Division example using fi rst algorithm I n Figure 4.32.

Second Version of the Division Algorithm and Hardware

Once again the frugal computer pioneers recognized that, at most, half the
divisor has useful information, and so both the divisor and ALU could poten
tially be cut in half. Shifting the remainder to the left instead of shifting the
divisor to the right produces the same alignment and accomplishes the goal
of simplifying the hardware necessary for the ALU and the divisor.
Figure 4.34 shows the simplified hardware for the second version of the algo
rithm.

4. 7 Division

Divisor

64 bits

Shift left ,.__ _ _,
Write .----... Control

-
Quotient

Shift left
32 bits

217

FIGURE 4.34 Second version of the division hardware. The Divisor register, ALU, and Quo
tient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to
Figure 4.31 , the ALU and Divisor registers are halved and the remainder is shifted left. These
changes are highlighted.

The second improvement comes from noticing that the first step of the cur
rent algorithm cannot produce a 1 in the quotient bit; if it did, then the quotient
would be too large for the register. By switching the order of the operations to
shift and then subtract, one iteration of the algorithm can be removed.
Figure 4.35 shows the changes in this refined division algorithm. The remain
der is now found in the left half of the Remainder register.

218 Chapter 4 Arithmetic for Computers

Start

1 Shift the Remaina r ·Eis r I f1 1 bit

2 Subtract the Divisor register from the
len n or he Remainder register, and
place the result in the 1en alf 1e

Remainder register

Remainder � O

3a Shift the Quotient register to the left,
setting the new rightmost bit to 1

Done

Remainder < O

3 Restore the original value by adding
the Divisor register to the I f h

Remainder register and place the sum
in the 1e h<il Remainder register.

Also, shift the Quotient register to the left,
setting the new least significant bit to O

FIGURE 4.35 The second division algorithm, using the hardware In Figure 4.34. Unlike the
first algorithm in Figure 4.32, only the left half of the remainder is changed, and the remainder is
shifted left instead of the divisor being shifted right. Color type shows the changes from
Figure 4.32.

Example

Answer

4. 7 Division

Divide 0000 Oll ltwo by OOIOtwo using the algorithm in Figure 4.35.

The answer is summarized in Figure 4.36.

219

Ii . ' ,_ ' , � c L"f}';r,1 .-.� -_,, :/.Sf:;,_,, u .. ' ., ... tlln.UL.,. I._ .. . 1r;111111:...
0 Initial Values 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1

1: shift Rem left 0 0 0 0 0 0 1 0 0 0 0 0 L .
1 2: Rem = Rem - Div 0 0 0 0 0 0 1 0 (} 1 1 0 1 1 1 0

3b: Rem < O => +Div. sll Q. QO = O 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0
1: shift Rem left 0 0 0 0 0 0 1 0 0 0 0 1 1 1

2 2: Rem = Rem - Div O D D O 0 0 1 0 (}1 1 1 1 1 00
3b: Rem < O => +Div, sl l Q, QO = o 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
1 : sh ift Rem left 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0

3 2: Rem = Rem - Div 0 0 0 0 0 0 1 0 (t)oo 1 1 00 0
3a: Rem � O => sll Q , QO = 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0
1: shift Rem left 0 0 0 1 0 0 1 0 00 1 1 0 0 0 0

4 2: Rem = Rem - Div 0 0 0 1 0 0 1 0 (00 0 1 0 0 0 0
3a ; Rem � O => s l l Q, QO = 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0

FIGURE 4.38 Dtvlslon example uslni second algorithm In Figure 4.U.

Final Version of the Division Algorithm and Hardware

With the same insight and motivation as in the third version of the multiplica
tion algorithm, computer pioneers saw that the Quotient register could be
eliminated by shifting the bits of the quotient into the Remainder instead of
shifting in Os as in the preceding algorithm. Figure 4.37 shows the third ver
sion of the algorithm. We start the algorithm by shifting the Remainder left as
before. Thereafter, the loop contains only two steps because the shifting of the
Remainder register shifts both the remainder in the left half and the quotient
in the right half (see Figure 4.38). The consequence of combining the two reg
isters and the new order of the operations in the loop is that the remainder
will be shifted left one time too many. Thus the final correction step must shift
back only the remainder in the left half of the register.

220 Chapter 4 Arithmetic for Computers

Start

1. Shift the Remainder register left 1 bit

2. Subtract the Divisor register from the
left half of the Remainder register and
place the result in the left half of the

Remainder register

Remainder � O

3a. Shift the Remainder register to the
left, setting the new rightmost bit to 1

Remainder < O

3b. Restore the original value by adding
the Divisor register to the left half of the

Remainder register and place the sum
in the left half of the Remainder register.
Also shift the Remainder register to the
left, setting the new rightmost bit to O

Done. Shift left half of Remainder right 1 bit

FIGURE 4.37 The third division algorithm has Just two steps. The Remainder register shifts
left, combining steps 1 and 3 in Figure 4.35 on page 218.

Example

Answer

4. 7 Division

Divisor

Remainder

64 bits

Shift left ---
Write --- Control

221

FIGURE 4.38 Third version of the division hardware. This version combines the Quotient reg
ister with the right half of the Remainder register.

Use the third version of the algorithm to divide 0000 Ollltwo by OOlOtwo·

Figure 4.39 shows how the quotient is created in the bottom of the Remain
der register and how both are shifted left in a single operation.

Iteration Step Divisor Remainder
I n itial Values 0 0 1 0 0000 0 1 1 1

0
0 0 1 0 Shift Rem left 1 0 1 .

2: Rem = Rem - Div 0 0 1 0 (i)l 1 1 1 0
1

3b: Rem < 0 => + Div, sl l R, RO = 0 0 0 1 0 : u t; l 1

2: Rem = Rem - Div 0 0 1 0 (i)l L 1 1 0 0
2

3b: Rem < 0 => +Div, Sii R, RO = 0 0 0 1 0 . c 1 1

2: Rem = Rem - Div 0 0 1 0 ©00 1 1 0 00
3 0 0 1 0 .0 1 1 3a: Rem � O => sl l R , RO = 1 .

2: Rem = Rem - Div 0 0 1 0 (00� � 0 0 0 1
4 " 3a: Rem � O => sl l R, RO = 1 0 0 1 0 • v 1

Shift left half of Rem right 1 0 0 1 0 1 0 0 _ 0 0 1 1

FIGURE 4.39 Division example using third algorithm In Figure 4.37.

222 Chapter 4 Arithmetic for Computers

Signed Division

So far we have ignored signed numbers in division. The simplest solution is
to remember the signs of the divisor and dividend and then negate the quo
tient if the signs disagree.

The one complication is that we must also set the sign of the remainder. Re
member that the following equation must always hold:

Dividend = Quotient x Divisor + Remainder

To understand how to set the sign of the remainder, let's look at the exam
ple of dividing all the combinations of 7ten by 2ten· The first case is easy:

+7 + +2: Quotient = +3, Remainder = +1

Checking the results:
7 = 3 x 2 + (+1) = 6 + 1

If we change the sign of the dividend, the quotient must change as well:
-7 + +2: Quotient = -3

Rewriting our basic formula to calculate the remainder:

So,

Remainder = (Dividend - Quotient x Divisor)
= -7 - (-3 x + 2) = -7- (-6) = -1

-7 + +2: Quotient = -3, Remainder = -1

Checking the results again:
-7 = -3 x 2 + (-1) = -6 - 1

The reason the answer isn't a quotient of -4 and a remainder of + 1, which
would also fit this formula, is that the quotient and remainder must have the
same signs no matter what the signs of the dividend and divisor. Clearly if -(x
+ y) * (-x) + y, programming would be an even greater challenge!

We calculate the other combinations by following the same logic:
+7 + -2: Quotient = -3, Remainder = + 1

-7 + -2: Quotient = +3, Remainder = -1

Notice that a nonzero remainder always has the same sign as the dividend.
So the correctly signed division algorithm makes the sign of the remainder the
same as the dividend, and the quotient is negated if the signs of the operands
are opposite.

4. 7 Division

Hardware

Software

Interface

223

The observant reader will recognize that the same hardware
can be used for both multiply and divide. The only require
ment is a 64-bit register that can shift left or right and a 32-bit
ALU that adds or subtracts. For example, MIPS uses the
32-bit Hi and 32-bit Lo registers for both multiply and di-
vide. As we might expect from the algorithm above, Hi con
tains the remainder and Lo contains the quotient after the

divide instruction. To handle both signed integers and unsigned integers,
MIPS has two instructions: divide (d i v) and divide unsigned (d i v u) . The MIPS
assembler allows divide instructions to specify three registers, issuing the
m f l o and m f h i instructions to place the results into registers.

MIPS divide instructions ignore overflow, so software must determine if
the quotient is too large. In addition to overflow, division can also result in an
improper calculation: division by 0. Some machines distinguish these two
anomalous events. MIPS software must check the divisor to discover division
by 0 as well as overflow.

Summary

The commonality hardware support for multiply and divide allows MIPS to
provide a single pair of 32-bit registers that are used both for multiply and
divide. Figure 4.40 summarizes the additions to the MIPS architecture for the
last two sections.

Elaboration: The reason for needing an extra iteration for the first algorithm and the
early shift in the second and th ird algorithms involves the placement of the dividend in
the Remainder register. We expect to have a 32-bit quotient and a 32-bit d ivisor, but
each is really a 31-bit integer plus a sign bit. The product would be 31 +31, or 62 bits
plus a single sign bit; the hardware can then support only a 63-bit dividend . Given that
registers are normally powers of 2, this means we must place the 63-bit dividend prop
erly in the 64-bit Remainder register. If we place the 63 bits to the right, we need to run
the algorithm for an extra step to get to that last bit. A better solution is to shift early,
thereby saving a step of the algorithm.

224

Name

32
registers

230

memory
words

Category

Arithmetic

Logica l

Data
transfer

Cond i-
tional

branch

Uncondi-
tional J u m p

Chapter 4 Arithmetic for Computers

MIPS operands

Example Comments
Fast locations for data. In MIPS. data must be in registers to perform

$0, $ 1 , $2 $ 3 1 . arithmetic. M I P S register $0 always equals 0. Register $ 1 is reserved for the
Hi , Lo assembler to handle pseudoinstructions and l arge constants. Hi and Lo are

32-bit registers containing the results of multiply and divide .

Memory[O J . Accessed only b y data transfer instructions. MIPS uses byte addresses, so
Memory[4) , sequential words differ by 4. Memory holds data structures, such as arrays,
Memory[4294967292] and spil led registers, such as those saved on procedure calls.

Instruction
add

subtract

add immedi ate

add unsigned

subtract unsigned

add i m m . u n s ign.

Move fr. copr. reg.

multiply

multiply unsigned

divide

divide unsigned

Move from H i

Move from Lo

and

or

and immediate

or immediate
shift left logical

shift right logical

load word

store word

load upper i m m .

branch on eq ual

branch on not eq .

set on less than

set less than imm.

set less than uns.

set I . l. imm. uns.

j u m p

jump register

jump and l ink

MIPS assembly Language

Example
add $ 1.$2,$3

sub $ 1 . $ 2 . $3

addi $ 1 , $ 2 . 100

addu $ 1 ,$2,$3

subu $ 1 . $2,$3

addiu $ 1 , $2 . 100

mfcO $ 1 , $epc

mull $2.$3

multu $2,$3

div $2 ,$3

divu $2,$3

mfhi $1

mflo $ 1

and $ 1 ,$2,$3

or $ 1 , $2,$3

andi $ 1 , $ 2 . 100

ori $ 1 , $ 2 , 100

S i l $1 .$2.10

sr l $ 1 . $2 ,10

lw $ 1 , 100($2)

SW $ 1 , 100($2)

lui $ 1 . 100

beq $ 1 , $2, 100

bne $ 1 , $ 2 , 100

s it $ 1 ,$2 ,$3

slti $ 1 , $2, 100

situ $ 1 , $2 , $ 3

s l t i u $ 1 , $ 2 , 100

j 10000

jr $31

ja l 10000

Meaning
$ 1 = $2 + $3

$ 1 = $ 2 - $ 3

$ 1 = $2 + 100

$1 = $ 2 + $ 3

$ 1 = $2 - $ 3

$ 1 = $2 + 100

$1 = $epc

Hi, Lo = $2 x $ 3

H i , Lo = $2 x $3

Lo = $2 / $3, H i = $2 mod $3

Lo = $2 / $3, H i = $2 mod $3

$ 1 = H i

$ 1 = Lo

$1 = $2 & $ 3

$ 1 = $2 I $3

$1 = $2 & 100

$ 1 = $2 I 100

$ 1 = $2 « 10

$ 1 = $2 » 10

$1 = Memory[$2+100]

Memory[$2+100] = $1

$ 1 = 100 x 216
if ($ 1 == $2) go to PC+4+100

i f ($1 != $2) go to PC+4+100

i f ($2 < $3) $1 = 1: else $1 = o
if ($2 < 100) $1 = 1 : else $ 1 = O

if ($2 < $3) $1 = 1; else $ 1 = O

if ($2 < 100) $1 = 1 ; else $1 = 0

go to 10000

go to $31

$31 = PC + 4 ; go to 10000

I Comments '
3 operands; exception possible

3 operands; exception possible

+ constant; exception possible

3 operands; no exceptions

3 operands; no exceptions

+ constant; no exceptions

Used to get Exception PC

64-bit signed product in H i . Lo

64-b1t unsigned product in H i . Lo

Lo = quotient, Hi = remainder

Unsigned Quotient and Rem .

Used to get copy of H i

Used t o get copy of L o

3 reg. operands: Logical AND

3 reg. operands: Logical OR

Logical AND reg, constant

Logical OR reg. constant

Shift left by constant

Shift right by constant

Data from memory to register

Data from regi ster to me mory

Loads constant i n upper 16 bits

Equal test: PC re lative branch

Not equal test; PC relative

Compare less than: 2's comp.

Com pare < constant: 2's comp.

Compare less than; natural no.

Com pare < constant; natural

Jump to target address

For switch, procedure return

For procedure cal l

FIGURE 4.40 MIPS architecture revealed thus far. Color indicates the portions revealed since Figure 4.6 on page 1 83 .
MIPS machine language is i l lustrated o n the endpapers of t h i s book.

4.8 Floating Point 225

• Floating Point

Speed gets you nowhere if you're headed in the wrong direction.

American proverb

In addition to signed and unsigned integers, programming languages include
numbers to represent numbers with fractions, which are called reals in mathe
matics. Here are some examples of reals:

3.14159265 . . ·ten (pi)

2.71828 . . ·ten (e)

O.OOOOOOOOlten or l .Oten x 10-9 (seconds in a nanosecond)

3,155,760,000ten or 3.15576ten x 109 (seconds in a century)

Notice that in the last case, the number didn't represent a small fraction, but
it was bigger than we could represent with a signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has
no leading Os is called a normalized number, which is the usual way to write it.
For example, l .Ol1I' x 10-9 is in normalized scientific notation, but O.lten x 10-s

and 10.0ten x 10- are not.
Just as we can show decimal numbers in scientific notation, we can also

show binary numbers in scientific notation:

l .Otwo x rl
The binary base replaces the decimal base so that we can adjust the exponent
by 1 to keep the binary number in normalized form.

Computer arithmetic that supports such numbers is called floating point, be
cause it represents numbers in which the decimal point is not fixed, as it is for
integers. The programming language C uses the name float for such numbers.
Just as in scientific notation, numbers are represented as a single digit to the
left of the decimal point. In binary, the form is

l .xxxxxxxxxtwo x 2YYYY

(Although the computer represents the exponent in base 2 as well as the rest
of the number, to simplify the notation we'll show the exponent in decimal.)

226 Chapter 4 Arithmetic for Computers

A standard scientific notation for reals in normalized form offers three ad
vantages. It simplifies exchange of data that includes floating-point numbers;
it simplifies the floating-point arithmetic algorithms to know that numbers
will always be in this form; and it increases the accuracy of the numbers that
can be stored in a word, since the unnecessary leading Os are replaced by real
numbers to the right of the decimal point.

Hardware

Software

Interface

Practicality dictates that floating-point numbers be compat
ible with the size of a word. Representation of a MIPS float
ing-point number is shown below, where s is the sign of the
floating-point number (1 meaning negative), exponent is the
value of the 8-bit exponent field (including the sign of the ex-
ponent), and significand is the 23-bit number in the fraction.
This is called sign and magnitude representation, since the

sign has a separate bit from the rest of the number.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent significand

1 bit 8 bits 2 3 bits

In general, floating point numbers are of the form:
S E (-1) x F x 2

F involves the value in the significand field and E involves the value in the ex
ponent field; the exact relationship to these fields will be spelled out soon.

The designer of arithmetic must find a compromise between the size of the
significand and the size of the exponent, because a fixed word size means you
must take a bit from one to add a bit to the other. This trade-off is between ac
curacy and range: Increasing the size of the significand enhances the number
of bits to represent the significand, but increasing the size of the exponent in
creases the range of numbers that can be represented. As our guideline from
Chapter 3 reminds us, good design demands compromise.

These chosen sizes of exponent and significand give MIPS computer arith
metic an extraordinary range. Fractions as small as about 2.0ten x 10-33 and
numbers as large as about 2.0ten x 1038 can be represented in a computer. Alas,
extraordinary differs from infinite, so it is still possible for numbers to be too

4.8 Floating Point 227

large. Thus, overflow interrupts can occur in floating-point arithmetic as well
as in integer arithmetic. Notice that overflow here means that the exponent is
too large to be represented in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as pro
grammers will want to know when they have calculated a number that is too
large to be represented, they will want to know if the fraction they are calcu
lating has become so small that it cannot be represented; either event could re
sult in a program giving incorrect answers. This situation occurs when the
negative exponent is too large to fit in the exponent field. To contrast it from
overflow, some people call this event underflow.

To reduce the chances of underflow or overflow, most programming lan
guages offer a notation that has a larger exponent. In C this is called double, and
operations on doubles are called double precision floating-point arithmetic; sin
gle precision floating-point is the name of the earlier format. MIPS double pre
cision allows numbers almost as small as about 2.0ten x 10-308 and almost as
large as about 2.0ten x 10308.

Hardware

Software

Interface

The representation of a double prec1s10n floating-point
number takes two MIPS words, as shown below, where s is
still the sign of the number, exponent is the value of the 11-bit
exponent field, and significand is the 52-bit number in the
fraction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent significand

1 bit 11 bits 20 bits

significand (cont'd)

32 bits

These formats go beyond MIPS. They are part of the IEEE 754 floating-point
standard, found in virtually every computer invented since 1980. This standard
has greatly improved both the ease of porting floating-point programs and the
quality of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading 1
bit of normalized binary numbers implicit. Hence, the significand is actually

228 Chapter 4 Arithmetic for Computers

24 bits long in single precision (implied 1 and a 23-bit fraction), and 53 bits long
in double precision (1 +52). Since 0 has no leading 1 , it is given the reserved ex
ponent value 0 so that the hardware won't attach a leading 1 to it. Thus
00 . . . OOtwo represents O; the representation of the rest of the numbers uses the
form from before with the hidden 1 added:

(-1) s x (1 + significand) x 2E

where the bits of the significand represent the fraction between 0 and 1 and E
specifies the value in the exponent field, to be given in detail shortly. If we
number the bits of the significand from left to right sl, s2, s3, . . . , then the
value is

S -1 -2 -3 -4 E (-1) x (1 + (sl x 2) + (s2 x 2) + (s3 x 2 ·) + (s4 x 2) + . . .) x 2

The designers of IEEE 754 also wanted a floating-point representation that
could be easily processed by integer operations. This is why the sign is in the
most significant bit, allowing a test of less than, greater than, or equal to 0 to
be performed quickly. Placing the exponent before the significand simplifies
integer sorting of floating-point numbers, since numbers with bigger expo
nents look larger than numbers with smaller exponents, as long as they have
the same sign.

Negative exponents pose a challenge to simplified sorting. If we use two's
complement or any other notation in which negative exponents have a 1 in the
most significant bit of the exponent field, a negative exponent will look like a
big number. For example, l .Otwo x r1 would be represented as

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 0

(Remember that the leading 1 is implicit in the significand.) The value l .Otwo x
2+1 would look like the smaller binary number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0

The desirable notation must therefore represent the most negative exponent
as 00 . . . OOtwo and the most positive as 11 . . . 1 l two· This is called biased nota
tion, with the bias being the number subtracted from the normal, unsigned
representation to determine the real value.

4.8 Floating Point 229

IEEE 754 uses a bias of 127 for single precision, so -1 is represented by the
bit pattern of the value -1+127ten or 126ten = 011 1 1 1 10tw0, and + 1 is represent
ed by 1+127 or 128ten = 1000 OOOOtwo· This means that the value represented by
a floating-point number is really

(-l)s X (1 + significand) X 2(exponent-bias)

The exponent bias for single precision is 127 and for double precision is 1023.

Show the IEEE 754 binary representation of the numbers -0.75ten in single
and double precision.

The number -0.75ten is also -3/ 4ten or -3122ten· It is also represented by the
fraction -lltwol22ten or -0.l ltwo· In scientific notation the value is -0.lltwo
x 2° and in normalized scientific notation it is -1 . ltwo x T1.

The general representation for a single precision number is

(-1)5 X (1 + significand) X 2(exponent-127)

and so we add the bias 127 to the exponent of -1 .ltwo x r1

(-1)1 x (1 +.lOOO OOOO OOOO OOOO OOOO OOOtw0) x 2(126-127)

The single precision, binary representation of -0.75ten is then

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0

1 bit 8 bits

The double precision representation is

(-1)1 x (1 + .1000000000000000000000000000
000000000000000000000000) x 2(l022-l023)

two

23 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 11 bits 20 bits [o l
32 bits

230 Chapter 4 Arithmetic for Computers

What decimal number is represented by this word?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .

The sign bit is 1, the exponent field contains 129, and the significand field
contains 1 x i-2 = 1 /4 or 0.25. Using the basic equation:

(-l)s x (1 + significand) x 2(exponent-bias)

= (-1)1 x (1 + 0.25) x 2(129-127)

= -1 x 1 .25 x 22

= -1 .25 x 4
= -5.0

In the next sections we will give the algorithms for floating-point addition
and multiplication. At their core, they use the corresponding integer opera
tions on the significands, but extra bookkeeping is necessary to handle the ex
ponents and normalize the result. We first give an intuitive derivation of the
algorithms in decimal, and then give a more detailed, binary version in the
figures.

E1�1E1i.1r:111Tif11n• In an attempt to increase range without removing bits from the signifi
cand , some computers before the IEEE 754 standard used a base other than 2. For
example, the IBM 360 and 370 mainframe computers use base 16. Since changing
the IBM exponent by 1 means shifting the significand by 4 bits, "normalized" base 16
numbers can have up to 3 lead ing bits of Os. Hexadecimal digits mean that up to 3 bits
must be dropped from the s ignificand, which leads to surprising problems in the accu
racy of floating-point arithmetic, as noted in the H istorical Perspective section on
page 249.

Floating-Point Addition

Let's add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999ten x 101 + l .610ten x 10-1 . Assume that we can
store only four decimal digits of the significand and two decimal digits of the
exponent.

4.8 Floating Point 231

Step 1 . To be able to add these numbers properly, we must align the decimal
point of the number with the smaller exponent. Hence, we need a form
of the smaller number, l .610tenx 10-1, that matches the larger expo
nent. We obtain this by observing that there are multiple representa
tions of an unnormalized floating-point number in scientific notation:

l .610ten X 10-l = 0.1610ten X 10°
= 0.01610ten X 101

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number 9.999ten x 101 . Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is
really:

0.016ten X 101

Step 2. Next comes the addition of the significands:

9.999ten

+ 0.016ten

10.015ten

The sum is 10.0lSten x 101

Step 3. This sum is not in normalized scientific notation, so we need to correct
it. Again, there are multiple representations of this number; we pick
the normalized form:

10.0lSten X 101
= l .0015ten X 102

Thus, after the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the
other were negative it would be possible for the sum to have many
leading Os, requiring left shifts. Whenever the exponent is increased
or decreased, we must check for overflow or underflow-that is, we
must make sure that the exponent still fits in its field.

Step 4. Since we assumed that the significand can be only 4 digits long (ex
cluding the sign), we must round the number. In our grammar school
algorithm, the rules truncate the number if the digit to the right of the
desired point is between 0 and 4 and add 1 to the digit if the number
to the right is between 5 and 9. The number

l .0015ten X 102

232 Chapter 4 Arithmetic for Computers

is rounded to four digits in the significand to

1 .002ten X 102

since the fourth digit to the right of the decimal point was between 5
and 9. Notice that if we have bad luck on rounding, such as adding 1
to a string of 9s, the sum may no longer be normalized and we would
need to perform step 3 again.

Figure 4.41 shows the algorithm for binary floating-point addition that fol
lows this decimal example. Steps 1 and 2 are similar to the example just
discussed: adjust the significand of the number with the smaller exponent and
then add the two significands. Step 3 normalizes the results, forcing a check for
overflow or underflow. The test for overflow and underflow in step 3 depends
on the precision of the operands. For single precision, the maximum exponent
is 127 and the minimum exponent is -126. The limits for double precision are
1023 and -1022.

For simplicity, we assume truncation in step 4, one of four rounding options
in IEEE 754 floating point. The accuracy of floating-point calculations depends
a great deal on the accuracy of rounding so, although it is easy to follow, trun
cation leads away from accuracy.

Try adding the numbers O.Sten and -0.4375ten in binary using the algorithm
in Figure 4.41 .

Let's first look at the binary version of the two numbers in normalized sci
entific notation, assuming that we keep 4 bits of precision:

o.sten = l /2ten 1 12\en
= O.ltwo = O.ltwo x 2° = l .OOOtwo x r1

-0.4375ten = -7 / 16ten = -7 /2\en
= -0.0ll ltwo = - 0.011 1two x 2° = -1 .110two x r2

Now we follow the algorithm:

Step 1 . The significand of the smaller number (- 1 . l l two x r2) is shifted
right until its exponent matches the larger number:

-1.llOtwo x r2 = -0.lll two x T1

4.8 Floatlng Point

Step 2. Add the significands:

l.Otwo x T1 + (--0.llltwo x T1) = O.OOltwo x T1

Step 3. Normalize the sum, checking for overflow or underflow:

O.OOltwo x T1 = O.OlOtwo x T2= O.lOOtwo x T3

= l .OOOtwo x 2-4

233

Since 127 � -4 � -126, there is no overflow or underflow. (The bi
ased exponent would be -4+ 127 or 123, which is between 0 and 255,
the smallest and largest biased exponents.)

Step 4. Round the sum:

l .OOOtwo x 2--4

The sum already fits in 4 bits, so there is no need to round.
This sum is then

l .OOOtwo x 2-4 = O.OOOlOOOtwo = O.OOOltwo
= 1 /2\en = l / 16ten = 0.0625ten

This sum is what we would expect from adding 0.5ten to -0.4375ten·

Many machines dedicate hardware to run floating-point operations as fast
as possible. Figure 4.42 sketches the basic organization of hardware for float
ing-point addition.

Floating-Point Multiplication

Now that we have explained floating-point addition, let's try floating-point
multiplication. We start by multiplying decimal numbers in scientific notation
by hand: l .llOten x 1010 x 9.200ten x 10-5. Assume that we can store only four
digits of the significand and two digits of the exponent.

Step 1 . Unlike addition, we calculate the exponent of the product by simply
adding the exponents of the operands together:

New exponent = 10 + (-5) = 5

Let's do this with the biased exponents as well to make sure we
obtain the same result. 10 + 127 = 137 and -5 + 127 = 122, so
New exponent = 137 + 122 = 259

234 Chapter 4 Arithmetic for Computers

Start

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left

and decrementing the exponent

Yes

4. Round the significand to the appropriate
number of bits

No

Done

Exception

FIGURE 4.41 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.

4.8 Floating Point

Sign Exponent

0

Exponent

difference

235

Significand Sign Exponent Significand

0

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

FIGURE 4.42 Block diagram of an arithmetic unit dedicated to floating.point addition. The
steps of Figure 4.41 correspond to each block, from top to bottom. First the exponent of one oper
and is subtracted from the other using the small ALU to determine which is larger and by how
much. This difference controls the three multiplexors; from left to right they select the larger expo
nent, the significand of the smaller number, and the significand of the larger number. The smaller
significand is shifted right and then the significands are added together using the big ALU. The
normalization step then shifts the sum left or right and increments or decrements the exponent.
Rounding then creates the final result.

236 Chapter 4 Arithmetic for Computers

This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias, because we are adding the biases
as well as the exponents:
New exponent = (10 + 127) + (-5 +127) = (5 + 2 x 127) = 259

Accordingly, to get the correct biased sum when we add biased num
bers, we must subtract the bias from the sum:
New exponent = 137 + 122 - 127 = 259 - 127 = 132 = (5 + 127)

and 5 is indeed the exponent we calculated initially.

Step 2. Next comes the multiplication of the significands:

l . l lOten
X 9.200ten

0000
0000

2220
9990

10212000ten

There are three digits to the right of the decimal for each operand, so
the decimal point is placed six digits from the right in the product sig
nificand:
10.212000ten

Assuming that we can keep only three digits to the right of the deci
mal point, the product is 10.212 x 105.

Step 3. This product is unnormalized, so we need to correct it. Again, there
are multiple representations of this number, so we must pick the nor
malized form:

10.212ten X 105
= l .0212ten X 106

Thus, after the multiplication, the product can be shifted right one
digit to put it in normalized form, adding 1 to the exponent. At this
point, we can check for overflow and underflow. Underflow may
occur if both operands are small-that is, if both have large negative
exponents.

Step 4. We assumed that the significand is only four digits long (excluding
the sign), so we must round the number. The number

l .0212ten X 106

is rounded to four digits in the significand to

l .021ten X 106.

4.8 Floatlng Point 237

Step 5. The sign of the product depends on the signs of the original operands.
If they are both the same, the sign is positive; otherwise it's negative.
Hence the product is

+ l .021ten X 106.

The sign of the sum in the addition algorithm was determined by
addition of the significands, but in multiplication the sign of the
product is determined by the signs of the operands.

Once again, as Figure 4.43 shows, multiplication of binary floating-point
numbers is quite similar to the steps we have just completed. We start with cal
culating the new exponent of the product by adding the biased exponents, be
ing sure to subtract one bias to get the proper result. Next is multiplication of
significands, followed by an optional normalization step. The size of the expo
nent is checked for overflow or underflow, and then the product is rounded.
If rounding leads to further normalization, we once again check for exponent
size. Finally, set the sign bit to 1 if the signs of the operands were different
(negative product) or to 0 if they were the same (positive product).

Let's try multiplying the numbers O.Sten and -0.4375ten using the steps in
Figure 4.43.

In binary, the task is multiplying l .OOOtwo x T1 by - 1 . l lOtwo x T2.

Step 1 . Adding the exponents without bias:

-l + (-2) = -3

or, using the biased representation:

(-1 + 127) + (-2 + 127) - 127 = (-1 - 2)+(127 + 127 - 127)
= -3 + 127= 124

Step 2. Multiplying the significands:

l .OOOtwo
X l .llOtwo

0000
1000

1000
1000
lllOOOOtwo

238 Chapter 4 Arithmetic for Computers

The product is l . l lOOOOtwo x r3, but we need to keep it to 4 bits,
so it is l . llOtwo x r3.

Step 3. Now we check the product to make sure it is normalized and then
check the exponent for overflow or underflow. The product is al
ready normalized and, since 127 � -3 � -126, there is no overflow
or underflow. (Using the biased representation, 254 � 124 � 1, so
the exponent fits.)

Step 4. Rounding the product makes no change:

1 . 1 lOtwo x r3

Step 5. Since the signs of the original operands differ, make the sign of the
product negative. Hence the product is

-1 . llOtwo x r3

Converting to decimal to check our results:

-1 .llOtwo x T3 = -0.00lllOtwo = -0.00llltwo

= -7 f25ten = -7 /32ten = -0.21875ten

The product of O.Sten and -0.4375ten is indeed -0.21875ten-

Hardware

Software

Interface

MIPS supports the IEEE single precision and double preci
sion formats with these instructions:

• Floating-point addition, single (a d d . s) and addition, dou
ble (a d d . d)

• Floating-point subtraction, single (s u b . s) and subtraction,
double (s u b . d)

• Floating-point multiplication, single (m u l . s) and multiplication, double
(m u l . d)

• Floating-point division, single (d i v . s) and division, double (d i v . d)

• Floating-point comparison, single (e . x . s) and comparison, double (e . x . d),
where x may be equal (eq), not equal (n e q), less than (l t), less than or equal
(l e), greater than (g t), or greater than or equal (ge)

• Floating-point branch, true (b e 1 t) and branch,false (b e 1 f) . Floating-point
comparison sets a bit to true or false, depending on the comparison con-

4.8 Floating Point

Start

1. Add the biased exponents of the two
numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting
it right and incrementing the exponent

Yes

4. Round the significand to the appropriate
number of bits

No

5. Set the sign of the product to positive if the
signs of the original operands are the same.

If they differ make the sign negative

Done

239

Exception

FIGURE 4.43 Floating-point multipllcatlon. The normal path is to execute steps 3 and 4 once,
but if rounding causes the sum to be unnormalized, we must repeat step 3.

240 Chapter 4 Arithmetic for Computers

dition, and a floating-point branch then decides whether or not to
branch, depending on the condition.

One issue that computer designers face in supporting floating-point arith
metic is whether to use the same registers used by the integer instructions or
to add a special set for floating point. Because programs normally perform
integer operations and floating-point operations on different data, separating
the registers will only slightly increase the number of instructions needed to
execute a program. The major impact is to create a separate set of data trans
fer instructions to move data between floating-point registers and memory.
The MIPS designers decided to add separate floating-point registers-called
$f0, $fl, $f2, . . . -used either for single precision or double precision, and
hence included in separate loads and stores for single precision and double
precision floating-point registers: l . s, s . s, l . d , and s . d . Thus, the MIPS
code to load two single precision numbers from memory, add them, and then
store the sum might look like this:

l . s $ f4 , x ($ 2 9) 4f L o a d 3 2 - b i t F . P . n um b e r i n t o F4
l . s $ f 6 , y ($ 2 9) 4f L o a d 3 2 - b i t F . P . n umbe r i n t o F 6
a d d . s $ f 2 , $ f4 , $ f 6 4f F 2 = F4 + F 6 s i n g l e p r e c i s i o n
s . s $ f 2 , z ($ 2 9) 4f S t o r e 3 2 - b i t F . P . n um b e r f r om F 2

Figure 4.44 summarizes the floating point portion of the MIPS architecture
revealed in Chapter 4, with the additions to support floating point shown in
color.

Only 16 of the 32 M IPS floating-point registers can be used for single
precision operations: $f0, $f2, $f4, . . . , $f30. Double precision is computed using
pairs of these registers. The odd number floating-point registers are used only to load
and store the right half of 64-bit floating-point numbers.

Accurate Arithmetic

Unlike integers, which can represent exactly every number between the
smallest and largest number, floating-point numbers are normally approxi
mations for a number they can't really represent. The reason is that an infinite
variety of real numbers exists between, say, 0 and 1, but no more than 253 can
be represented exactly in double precision floating point. The best we can do
is get the floating-point representation close to the actual number. Thus, IEEE
754 offers several modes of rounding to let the programmer pick the desired
approximation.

32 floating
point regs

2JO
memory
words

4.8 Floatlng Point 241

MIPS floating-point operands

$f0, $fl, $f2 • . . • . $f31

Memory[OJ,
Memory[4],
Memory[4294967292]

MIPS floating pointer registers are used in pairs for double precision
numbers.Odd numbered registers cannot be used for arithmetic or branch,
JUSt for data transfer of the right "half" of double precision register pairs.
Accessed only by data transfer instructions. M IPS uses byte addresses, so
sequential words differ by 4. Memory holds data structures, such as
arrays, and spilled registers, such as those saved on procedure calls.

MIPS floating-point assembly language

· category ___ TriSfoiC:TiOn{;��W�xa·m1>1e•: . . ; - \�-·fi. jvieaning c�
FP add single add.s $f2,$f4, $f6 $f2 = $f4 + $f6 Floating-Pt. add (single prec.)
FP subtract single sub.s $f2,$f4,$f6 $f2 = $f4 - $f6 Floating-Pt. sub (single prec.)
FP multiply single mul.s $f2,$f4,$f6 $f2 = $f4 x $f6 Floating-Pt. multiply (s. prec.)

Arithmetic
FP divide single div.s $f2,$f4,$f6 $f2 = $f4 I $f6 Floating-Pt. divide (s. prec.)
FP add double add.d $f2.$f4,$f6 $f2 = $f4 + $f6 Floating-Pt. add (double prec.)
FP subtr. double sub.d $f2,$f4,$f6 $f2 = $f4 - $f6 Floating-Pt. sub (double prec.)
FP mult. double mul.d $f2,$f4,$f6 $f2 = $f4 x $f6 Floating-Pt. multiply (d. prec.)

FP divide double d1v.d $f2,$f4,$f6 $t2 = $f4 / $f6 Floating-Pt. divide (d. prec.)

Data load word copr. 1 lwcl $fl,100($2) $fl = Memory[$2+100] 32-bit data to FP register
transfer store word copr. 1 swcl $fl,100($2) Memory[$2+100] = $fl 32-bit data to memory

branch on FP true belt 100 if (cond==l) go to PC+4+100 PC relative branch if FP cond.
branch on FP false bclf 100 if (cond==O) go to PC+4+100 PC relative branch if not cond.

Condi-
c.lt.s $f2,$f4 if ($f2 < $f4) tional FP compare single Floating-Pt. compare less than

branch (eq,ne,lt,le ,gt,ge) cond=l; else cond=O single precision
FP comp. double c.lt.d $f2,$f4 If ($f2 < $f4) Floating-Pt. compare less than
(eq,ne,lt,le ,gt,ge) cond=l; else cond=O double precision

MIPS floating-point machine language 1.\1 ---�� -·--- �-��=>r.·-�.:o �r - •• ""'1' -· �-... •· • .,-•. '-• . ' "" . , Name ,.., .. Format :· ., ;.i;,_ :. --:_;_..;'." .. �. : ... -'!.Example\· >� • •. . -,_., . .,.. ;_ :' -·� �-- ; '. • •• ·�·-�!'!1'!1_ents
add.s R 17 16 6 4 2 0 add.s $f2,$f4,$f6

sub.s R 17 16 6 4 2 1 sub.s $f2,$f4,$f6
mul.s R 17 16 6 4 2 2 mul.s $f2,$f4,$f6
d1v.s R 17 16 6 4 2 3 div.s $f2,$f4,$f6
add.d R 17 17 6 4 2 0 add.d $f2,$f4,$f6
sub.d R 17 17 6 4 2 1 sub.d $f2,$f4,$f6
mul .d R 17 17 6 4 2 2 mul.d $f2,$f4,$f6
div.d R 17 17 6 4 2 3 div.d $f2,$f4,$f6

lwcl I 49 2 1 100 lwcl $fl,100($2)
swcl I 57 2 1 100 swc1 $f1.100($2)
belt I 17 8 1 100 belt 100
bclf I 17 8 0 100 bclf 100
c.lt.s R 17 16 4 2 0 60 c . lt.s $f2,$f4

c.lt.d R 17 17 4 2 0 60 c. lt.d $f2, $f4
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

FIGURE 4.44 MIPS floatlng point architecture revealed thus far. See Appendix A, section A.10 on page A-47 for more
detail.

242 Chapter 4 Arithmetic for Computers

Rounding sounds simple enough, but to round accurately requires the
hardware to include extra bits in the calculation. In the preceding examples,
we were vague on the number of bits that an intermediate representation can
occupy, but clearly if every intermediate result had to be truncated to the exact
number of digits, there would be no opportunity to round. IEEE 754, therefore,
always keeps 2 extra bits on the right during intermediate calculations, called
guard and round, respectively. Let's do a decimal example to illustrate the
value of these extra digits.

Add 2.56tenx 10° to 2.34ten x 102 assuming that we have three significant
decimal digits. Round to the nearest decimal number with three significant
decimal digits, first with guard and round digits and then without them.

First we must shift the smaller number to the right to align the exponents,
so 2.56ten x 10° becomes 0.0256ten x 102. Since we have guard and round dig
its, we are able to represent the two least significant digits when we align
exponents. The guard digit holds 5 and the round digit holds 6. The sum is

2.3400ten
+ 0.0256ten

2.3656ten

Thus the sum is 2.3656tenx 102. Since we have two digits to round, we want
values 0 to 49 to round down and 51 to 99 to round up, with 50 being the tie
breaker. Rounding the sum up with three significant digits yields 2.37ten x
102.

Doing this without guard and round digits drops two digits from the cal
culation. The new sum is then

2.34ten
+ 0.02ten

2.36ten

The answer is 2.36tenx 102, off by 1 in the last digit from the sum obtained
above.

Since the worst case for rounding would be when the actual number is
halfway between two floating-point representations, accuracy in floating
point is normally measured in terms of the number of bits in error in the
least significant bits of the significand; the measure is called the number of
units in the last place or ulp. If a number was off by 2 in the least significant
bits, it would be called off by 2 ulps. IEEE 754 guarantees that the computer
uses the number that is within one-half ulp.

4.8 Floatlng Point 243

Summary

The big picture below reinforces the stored program concept from Chapter 3;
the meaning of the information cannot be determined just by looking at the
bits, for the same bits can represent a variety of objects. This section shows
that computer arithmetic is finite and thus can disagree with natural arith
metic. For example, the IEEE standard 754 floating-point representation

(-l)S x (1 + significand) x 2(exponent-bias)

is almost always an approximation of the real number. Computer systems
and programmers at times must take care to minimize this gap between com
puter arithmetic and arithmetic in the real world .

• .

Bit patterns have no inherent meaning. They may
represent signed integers, unsigned integers, float
ing-point numbers, instructions, and so on. What is
represented depends on the instruction that operates
on the bits in the word.

The major difference between computer numbers
and numbers in the real world is that computer numbers have limited
size, hence limited precision; it's possible to calculate a number too big
or too small to be represented in a word. Programmers must remem
ber these limits and write programs accordingly.

Elaboration: The IEEE 754 floating-point standard is filled with l ittle widgets to help
the programmer try to maintain accuracy, l ike the toggle switches in an airl ine cockpit.
We' l l cover a few here, but take a look at the references at the end of section 4.11 to
learn more .

There are four rounding modes: always round up (toward +=), always round down
(toward -=), truncate, and round to nearest even. The final mode determines what to do
if the number is exactly halfway in between. The Internal Revenue Service always rounds
0.50 dol lars up , possibly to the benefit of the IRS. A more equitable way would be to
round up this case half the time and round down the other half. I EEE 754 says that if
the bit to the left of the halfway case is odd , add 1; if it' s even, truncate. This method
always creates a 0 in the least significant bit, giving the rounding mode its name.

Two extra d igits are always enough for the first three rounding modes. To always ob
tain the right rounding for the last case , the standard has a third bit in addition to guard
and round ; it is set whenever there are nonzero bits to the right of the round bit. This
sticky bit a l lows the computer to see the d ifference between 0.50 . . . OOten and
0.50 . . . 01tenwhen rounding. The sticky bit m ight be set, for example, during addition,
when the smaller number is shifted to the right.

The goal of such modes is to al low the machine to get the same results as if the
intermediate results were calculated to infin ite precision and then rounded.

244 Chapter 4 Arithmetic for Computers

Other features of I EEE 754 are special symbols to represent unusual events. For ex
ample, instead of interrupting on a divide by 0, you can set the result to a bit pattern
representing += or -00; the largest exponent is reserved for these special symbols.
When the programmer prints the results, the program will print an infinity symbol. It even
has a symbol for the result of invalid operations, such as 0/0 or subtracting infin ity from
infin ity. This symbol is NaN, for Not A Number. Finally, in an attempt to squeeze every
last bit of precision from a floating-point operation, the standard allows some numbers
to be represented in unnormal ized form . Rather than having a gap between 0 and the
smallest normal ized number, I EEE allows denormalized numbers. They have the same
exponent as zero but a nonzero significand. They allow a number to degrade in signifi
cance unti l it becomes 0, called gradual underflow.

Here are the encodings of IEEE 754 floating-point numbers:

i'.'.f���-_Si,!lgle��re�isi�-�/·2:;:;; ;· ·�oubl,e�-�r�c.isi_ori��'.·" ;, �: . . �:_Object Jipre�e.nt�� · · ,",
Exponent Significand Exponent Significand

0 0 0 0 0

0 nonzero 0 nonzero Denormalized number

1 to 254 anything 1 to 2046 anything Floating Point number

255 0 2047 0 Infinity

255 nonzero 2047 nonzero NaN (Not A Number)

The possibi l ity of an occasional unnormal ized operand has given headaches to float
ing-point designers who are trying to bui ld fast floating-point units. Hence many comput
ers cause an exception if an operand is denormalized, letting software complete the
operation.

• Fallacles and Pitfalls

Thus mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true.

Bertrand Russell, Recent Words on the Principles of Mathematics, 1901

Arithmetic fallacies and pitfalls generally stem from the difference between
the limited precision of computer arithmetic and the unlimited precision of
natural arithmetic.

4.9 Fallacies and Pitfalls

Pitfall: Forgetting that floating-point addition is not associative. (Hence
x + (y + z) * (x + y) + z.)

245

Given the great range of numbers that can be represented in floating point,
problems occur when adding two large numbers of opposite signs plus a small
number. For example, suppose x = - I.Sten x 1038, y = I .Sten x 1038, and z = 1 .0,
and that these are all single precision numbers. Then

X + (y + z) = -I.Sten X 1038 + (1 .Sten X 1038 + 1 .0)

= -I .Sten X 1038 + (I .Sten X 1038) = 0.0

(x + y) + z= (- I .Sten X 1038 + I .Sten X 1038) + 1 .0
= (O.Oten) + 1 .0 = 1 .0

Since floating-point numbers have limited precision and result in approxima
tions of real results, I .Sten x 1038 is so much larger than l .Oten that I .Sten x
1038 + 1 .0 is still I .Sten x 1038. That's why the sum of x, y, and z is 0.0 or 1 .0,
depending on the order of the floating-point additions.

Fallacy: Just as a left shift instruction can replace an integer multiply by a power
of 2, a right shift is the same as an integer division by a power of 2.

Recall that a binary number x, where xi means the ith bit, represents the num
ber:

. . . + (x3 x 23) + (x2 x 22) + (xl x 21) + (xO x 2°)

Shifting the bits of x right by n bits would seem to be the same as dividing by
2n. And this is true for unsigned integers. The problem is with signed inte
gers. For example, suppose we want to divide -Sten by 4ten; the quotient
should be -1 ten· The two's complement representation of -Sten is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 l l two

According to this fallacy, shifting right by 2 should divide by 4ten (22):
0 0 1 1 l l l l 1 0two

With a 0 in the sign bit, this result is clearly wrong. The value created by the
shift right is actually 1 ,073,7 41,822ten instead of -lten·

Perhaps the solution would be to have an arithmetic right shift (see
page 208) that extends the sign bit instead of shifting in Os. A 2-bit arithmetic
shift right of -Sten produces

l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l Otwo

The result is -2ten instead of -lten; close, but no cigar.

246 Chapter 4 Arithmetic for Computers

Ill Concludlng Remarks

Computer arithmetic is distinguished from paper-and-pencil arithmetic by
the constraints of limited precision. This limit may result in invalid operations
through calculating numbers larger than the predefined limits. Such anoma
lies, called overflow or underflow, may result in exceptions or interrupts,
emergency events similar to unplanned subroutine calls. Chapter 5 discusses
exceptions in more detail. Floating-point arithmetic has the added challenge
of being an approximation of real numbers, and care needs to be taken to
ensure that the computer number selected is the representation closest to the
actual number. The challenges of imprecision and limited representation are
part of the inspiration for the field of numerical analysis.

Over the years computer arithmetic has become largely standardized,
greatly enhancing the portability of programs. Two's complement binary inte
ger arithmetic and IEEE 754 binary floating-point arithmetic are found in the
vast majority of computers sold today. For example, every desktop computer
sold since this book was first printed follows these conventions.

A side effect of the stored program computer is that bit patterns have no
inherent meaning. The same bit pattern may represent a signed integer, un
signed integer, floating-point number, instruction, and so on. It is the instruc
tion that operates on the word that determines its meaning.

With the explanation of computer arithmetic in this chapter comes a de
scription of much more of the MIPS instruction set. Figure 4.45 lists the MIPS
instructions covered in Chapters 3 and 4. For the rest of the book, we concen
trate on the left-hand side of the table-the integer instruction set excluding
multiply and divide. Figure 4.46 on page 248 gives the popularity of each of
these instructions for two programs: gee and spice. Note that the double pre
cision floating point is much more popular than single precision for this run
ning of the spice program-supporting evidence for the decision by MIPS
designers to offer 16 separate double precision floating-point registers.

4.10 Concludlni Remarks 247

add a d d R multiply mu l t R

add immediate a d d i multiply unsigned mu l t u R

add unsigned a d d u R divide d i v R

add immediate unsigned a dd i u divide WlSigned d i v u R

subtract s ub R move from hi mf h i R

subtract unsigned s u bu R move from lo mfl o R

and a nd R move from system control (EPC) mfcO R

and immediate a n d i floating-point add single add . s R

or o r R floating-point add double a d d . d R

or immediate o r i floating-point subtract single s u b . s R

shift left logical s l 1 R floating-point subtract double s ub . d R

shift right logical s r l R floating-point multiply single m u l . s R

load upper immediate 1 u i floating-point multiply double m u l . d R

load word l w floating-point divide single d i v . s R

store word SW floating-point divide double d i v . d R

branch on equal beq load word to floating-point single l . s

branch on not equal bne load word to floating-point double l . d

jump j J store word to floating-point single s . s

jump and link j a l J store word to floating-point double s . d

jump register j r R branch on floating-point true be l t

set less than s l t R branch on floating-point false bc l f

set less than immediate s l t i floating-point compare single c . x . s R

set less than unsigned s l t u R (x = eq, neq, It, le, gt, ge)
set less than immediate s l t i u floating-point compare double c . x . d R
unsigned (x = eq, neq, It, le, gt, ge)

FIGURE 4.4& Tiie MIPS Instruction Mt eoYeNd so ,_, This book concentrates on the instructions in the left column.
Appendix A, section A.10 gives the full MIPS instruction set.

248 Chapter 4 Arithmetic for Computers

' . � � u•111Ul •�'·00 1 ' . . � �
add a d d 0% 0% multiply mu l t 0% 0%

add imm. a d d i 0% 0% multiply unsigned m u l t u 0% 0%

add unsigned a d d u 8% 1 3% divide d i v 0% 0%

add imm. uns. a d d i u 16% 6% divide unsigned a i v u 0% 0%

subtract s u b 0% oo,{, move from hi mfh i 0% 0%

subtract unsigned s u b u 1 % 1 % move from lo mf l o 0% 0%

and a n d 2% 1 % move from system control m f c O 0% 0%

and imm. a n d i 2% 1 % f.p. add single a d d . s 0% 0%

or or 2% 0% f.p. add double a d d . d 0% 5%

or imm. o r i 0% 1% f.p. subtract single s u b . s 0% 0%

shift left logical s 1 1 8% 6% f.p. subtract double s u b . d O'Jlo 3%

shift right logical s r l 2% 1 % f.p. multiply single m u l . s 0% 0%

load upper irnm. l u i 2% 0% f.p. multiply double mu l . d 0% 6%

load word l w 22% 1 1 % f.p. divide single d i v . s 0% 0%

store word S W 1 1 % 5% f.p. divide double d i v . d 0% 3%

branch on equal beq 8% 5% load word to f.p. single l . s 0% 0%

branch on not eq. bne 8% 1 % load word to f.p. double 1 . d 0% 15%

jump j 0% 0% store word to f.p. single s . s 0% 3%

jump and link j a l 1 % 1 % store word to f.p. double s . d 0% 6%

jump register j r 1 % 1 % branch on f.p. true b e l t 0% 1%

set less than s l t 3% 1 o;., branch on f.p. false bc l f 0% 1 %

set less than imm. s l t i 1 % 0% f.p. compare single c . x . s 0% 0%

set less than uns. s l t u 1 % 0% (x = eq, neg, It, le, gt, ge)

set less t. imm. uns. s l t i u 1 % 0% f.p. compare double c . x . d 0% 2%

Column Total 100% 55% Column Total 0% 45%

FIGURE 4.48 The frequency of the MIPS Instructions for two programs, gee and spice. (Calculated from "pixie" out
put of the full MIPS instruction set and then converted to equivalent instructions from the MIPS subset in the table.)

4.11 Historical Perspective and Further Reading

II Historical Perspective and Further Reading

249

Gresham 's Law ("Bad money drives out Good") for computers would say "The Fast
drives out the Slow even if the Fast is wrong. "

W. Kahan, 1992

At first it may be hard to imagine a subject of less interest than the correctness
of computer arithmetic or its accuracy and harder still to understand why a
subject so old and mathematical should be so controversial. Computer arith
metic is as old as computing itself, and some of the subject's earliest notions,
like the economical re-use of registers during serial multiplication and divi
sion, still command respect today. Maurice Wilkes [1985] recalled a conversa
tion about that notion during his visit to the United States in 1946, before the
earliest stored-program machine had been built:

. . . a project under von Neumann was to be set up at the Institute of
Advanced Studies in Princeton . . . Goldstine explained to me the princi
pal features of the design, including the device whereby the digits of the
multiplier were put into the tail of the accumulator and shifted out as the
least significant part of the product was shifted in. I expressed some ad
miration at the way registers and shifting circuits were arranged . . . and
Goldstine remarked that things of that nature came very easily to von
Neumann.

There is no controversy here; it can hardly arise in the context of exact inte
ger arithmetic so long as there is general agreement on what integer the correct
result should be. However, as soon as approximate arithmetic enters the pic
ture, so does controversy, as if one person's negligible must be another's every
thing.

The First Dispute

Floating-point arithmetic kindled disagreement before it was ever built. John
von Neumann refused to include it in the machine he built at Princeton. In an
influential report coauthored in 1946 with H. H. Goldstine and A. W. Burks,
he gave the arguments for and against floating point. In favor:

. . . to retain in a sum or product as many significant digits as possible
and . . . to free the human operator from the burden of estimating and in
serting into a problem "scale factors"-multiplication constants which
serve to keep numbers within the limits of the machine.

Floating point was excluded for several reasons:

There is, of course, no denying the fact that human time is consumed in
arranging for the introduction of suitable scale factors. We only argue

250 Chapter 4 Arithmetic for Computers

that the time consumed is a very small percentage of the total time we
will spend in preparing an interesting problem for our machine. The first
advantage of the floating point is, we feel, somewhat illusory. In order to
have such a floating point, one must waste memory capacity which
could otherwise be used for carrying more digits per word. It would
therefore seem to us not at all clear whether the modest advantages of a
floating binary point offset the loss of memory capacity and the increased
complexity of the arithmetic and control circuits.

The argument seems to be that most bits devoted to exponent fields would be
bits wasted. Experience has proved otherwise.

One software approach to accommodate reals without floating-point hard
ware was called floating vectors; the idea was to compute at runtime one scale
factor for a whole array of numbers, choosing the scale factor so that the ar
ray's biggest number would barely fill its field. By 1951, James H. Wilkinson
had used this scheme extensively for matrix computations. The problem
proved to be that a program might encounter a very large value, and hence the
scale factor must accommodate these rare large numbers. The common num
bers would thus have many leading Os, since all numbers had to use a single
scale factor. Accuracy was sacrificed because the least significant bits had to be
lost on the right to accommodate leading Os. This wastage became obvious to
practitioners on early machines that displayed all their memory bits as dots on
cathode ray tubes (like TV screens), because the loss of precision was visible.
Where floating point deserved to be used, no practical alternative existed.

Thus true floating-point hardware became popular because it was useful.
By 1957, floating-point hardware was almost ubiquitous. A decimal floating
point unit was available for the IBM 650; and soon the IBM 704, 709, 7090,
7094 . . . series would offer binary floating-point hardware for double as well
as single precision. As a result, everybody had floating point, but every imple
mentation was different.

Diversity Versus Portability

Since roundoff introduces some error into almost all floating-point opera
tions, to complain about another bit of error seems picayune. So for twenty
years nobody complained much that those operations behaved a little differ
ently on different machines. If software required clever tricks to circumvent
those idiosyncracies and finally deliver results correct in all but the last sev
eral bits, such tricks were deemed part of the programmer 's art. For a long
time, matrix computations mystified most people who had no notion of error
analysis; perhaps this continues to be true. That may be why people are still
surprised that numerically stable matrix computations depend upon the
quality of arithmetic in so few places, far fewer than are generally supposed.
Books by Wilkinson and widely used software packages like UNPACK and

4.11 Hlstorlcal Perspective and Further Reading 251

EISPACK sustained a false impression, widespread in the early 1970s, that a
modicum of skill sufficed to produce portable numerical software.

Portable here means that the software is distributed as source-code in some
.standard language to be compiled and executed on practically any commer
cially significant machine, and that it will then perform its task as well as any
other program performs that task on that machine. Insofar as numerical soft
ware has often been thought to consist entirely of machine-independent math
ematical formulas, its portability has often been taken for granted; the mistake
in that presumption will become clear shortly.

Packages like LINP ACK and EISP ACK cost so much to develop-over a
hundred dollars per line of Fortran delivered-that they could not have been
developed without U. S. government subsidy; their portability was a precon
dition for that subsidy. But nobody thought to distinguish how various com
ponents contributed to their cost. One component was algorithmic-devise an
algorithm that deserves to work on at least one computer despite its roundoff
and over/underflow limitations. Another component was the software engi
neering effort required to achieve and confirm portability to the diverse com
puters commercially significant at the time; this component grew more
onerous as ever more diverse floating-point arithmetics blossomed in the
1970s. And yet scarcely anybody realized how much that diversity inflated the
cost of such software packages.

A Backward Step

Early evidence that somewhat different arithmetics could engender grossly
different software development costs was presented in 1964. It happened at a
meeting of SHARE, the IBM mainframe users' group, at which IBM
announced System/360, the successor to the 7094 series. One of the speakers
described the tricks he had been forced to devise to achieve a level of quality
for the S/360 library that was not quite so high as he had previously achieved
for the 7094.

Part of the trouble could have been foretold by von Neumann had he still
been alive. In 1948 he and Goldstine had published a lengthy error analysis so
difficult and so pessimistic that hardly anybody paid attention to it. It did pre
dict correctly, however, that computations with larger arrays of data would
probably fall prey to roundoff more often. IBM S/360s had bigger memories
than 7094s, so data arrays could grow bigger, and they did. To make matters
worse, the S/360s had narrower single precision words (32 bits versus 36) and
used a cruder arithmetic (hexadecimal or base 16 versus binary or base 2) with
consequently poorer worst-case precision (21 significant bits versus 27) than
old 7094s. Consequently, software that had almost always provided (barely)
satisfactory accuracy on 7094s too often produced inaccurate results when run
on S/360s. The quickest way to recover adequate accuracy was to replace old
codes' single precision declarations with double precision before recompila
tion for the S/360. This practice exercised S/360 double precision far more
than had been expected.

252 Chapter 4 Arithmetic for Computers

The early S/360s' worst troubles were caused by lack of a guard digit in
double precision. This lack showed up in multiplication as a failure of identi
ties like 1 .0 * x = x, because multiplying x by 1 .0 dropped x's last hexadecimal
digit (4 bits). Similarly, if x and y were very close but had different exponents,
subtraction dropped off the last digit of the smaller operand before computing
x - y. This last aberration in double precision undermined a precious theorem
that single precision then (and now) honored: If 1 / 2 ::; x/y ::; 2, then no
rounding error can occur when x - y is computed; it must be computed
exactly.

Innumerable computations had benefited from this minor theorem, most
often unwittingly, for several decades before its first formal announcement
and proof. We had been taking all this stuff for granted.

The identities and theorems about exact relationships that persisted, de
spite roundoff, with reasonable implementations of approximate arithmetic
were not appreciated until they were lost. Previously, all that had been
thought to matter were precision (how many significant digits were carried)
and range (the spread between over /underflow thresholds). Since the S/360s'
double precision had more precision and wider range than the 7094s', soft
ware was expected to continue to work at least as well as before. But it didn't.

Programmers who had matured into program managers were appalled at
the cost of converting 7094 software to run on S/360s. A small subcommittee
of SHARE proposed improvements to the S/360 floating point. This commit
tee was surprised and grateful to get a fair part of what they asked for from
IBM, including all-important guard digits. By 1968, these had been retrofitted
to S/360s in the field at considerable expense; worse than that was customers'
loss of faith in IBM's infallibility. IBM employees who can remember the inci
dent still shudder.

The People Who Built the Bombs

Seymour Cray has been associated for decades with the CDC and Cray com
puters that were, when he built them, the world's biggest and fastest. He has
always understood what his customers wanted most: speed. And he gave it to
them even if, in so doing, he also gave them arithmetics more interesting than
anyone else's. Among his customers have been the great government labora
tories like those at Livermore and Los Alamos, where nuclear weapons were
designed. The challenges of "interesting" arithmetics were pretty tame to
people who had to overcome Mother Nature's challenges.

Perhaps all of us could learn to live with arithmetic idiosyncracy if only one
computer's idiosyncracies had to be endured. Instead, when accumulating dif
ferent computers' different anomalies, software dies the Death of a Thousand
Cuts. Here is an example from Cray's machines:

i f C x == 0 . 0) y = 1 7 . 0 e l s e y = z / x

4.11 Historical Perspective and Further Reading 253

Could this statement be stopped by a divide-by-0 error? On a CDC 6600 it
could. The reason was a conflict between the 6600's adder, where x was com
pared with 0.0, and the multiplier and divider. The adder's comparison exam
ined x 's leading 13 bits, which sufficed to distinguish zero from normal
nonzero floating-point numbers x. The multiplier and divider examined only
12 leading bits. Consequently, tiny numbers x existed that were nonzero to the
adder but zero to the multiplier and divider! To avoid disasters with these tiny
numbers, programmers learned to replace statements like the one above by

i f (1 . 0 * x == O . O l y = 1 7 . 0 e l s e y = z I x

But this statement is unsafe to use in would-be portable software because it
malfunctions obscurely on other computers designed by Cray, the ones mar
keted by Cray Research, Inc. If x is so huge that 2.0 * x would overflow, then
1 .0 * x may overflow too! This happens because Cray computers check the
product's exponent for overflow before the product's exponent has been nor
malized, just to save the delay of a single AND gate. In case you think the
statement above is safe to use now for portable software, since computers of
the CDC 6600 era are no longer commercially significant, you should be
warned that it can lead to overflow on a Cray computer even if z is almost as
tiny as x; the trouble here is that the Cray computes not z I x but z * (1 I x) ,
and the reciprocal can overflow even though the desired quotient is unexcep
tionable. A similar difficulty troubles the Intel i860s used in its massively par
allel computers. The would-be programmer of portable code faces countless
dilemmas like these whenever trying to program for the full range of existing
computers.

Rounding error anomalies that are far worse than the over/underflow
anomaly just discussed also affect Cray computers. The worst error comes
from the lack of a guard digit in add/subtract, an affliction of IBM S/360s. Fur
ther bad luck for software is occasioned by the way Cray economized his mul
tiplier; about one-third of the bits that normal multiplier arrays generate have
been left out of his multipliers because they would contribute less than a unit
to the last place of the final Cray-rounded product. Consequently, a Cray's
multiplier errs by almost a bit more than might have been expected. This error
is compounded when division takes three multiplications to improve an ap
proximate reciprocal of the divisor and then multiply the numerator by it.
Square root compounds a few more multiplication errors. The fast way drove
out the slow, even though the fast was occasionally slightly wrong.

Making the World Safe for Floating Point, or Vice Versa

William Kahan was an undergraduate at the University of Toronto in 1953
when he learned to program its Ferranti-Manchester Mark 1 computer.
Because he entered the field early, Kahan became acquainted with a wide

254 Chapter 4 Arithmetic for Computers

range of devices and a large proportion of the personalities active in comput
ing; the numbers of both were small at that time. He has performed computa
tions on slide rules, desktop mechanical calculators, tabletop analog
differential analyzers, and so on; he used all but the earliest electronic com
puters and calculators mentioned in this book.

Kahan's desire to deliver reliable software led to an interest in error analy
sis that intensified during two years of postdoctoral study in England, where
he became acquainted with Wilkinson. In 1960, he resumed teaching at Toron
to, where an IBM 7090 had been acquired, and was granted free reign to tinker
with its operating system, Fortran compiler, and runtime library. (He denies
that he ever came near the 7090 hardware with a soldering iron but admits ask
ing to do so.) One story from that time illuminates how misconceptions and
numerical anomalies in computer systems can incur awesome hidden costs.

A graduate student in aeronautical engineering used the 7090 to simulate
the wings he was designing for short takeoffs and landings. He knew such a
wing would be difficult to control if its characteristics included an abrupt on
set of stall, but he thought he could avoid that. His simulations were telling
him otherwise. Just to be sure that roundoff was not interfering, he had repeat
ed many of his calculations in double precision and gotten results much like
those in single; his wings had stalled abruptly in both precisions. Disheart
ened, the student gave up.

Meanwhile Kahan replaced IBM's logarithm program (ALOG) with one of
his own, which he hoped would provide better accuracy. While testing it, Ka
han re-ran programs using the new version of ALOG. The student's results
changed significantly; Kahan approached him to find out what had happened.

The student was puzzled. Much as the student preferred the results pro
duced with the new ALOG-they predicted a gradual stall-he knew they
must be wrong because they disagreed with his double precision results. The
discrepancy between single and double precision results disappeared a few
days later when a new release of IBM's double precision arithmetic software
for the 7090 arrived. (The 7090 had no double precision hardware.) He went
on to write a thesis about it and to build the wings; they performed as predict
ed. But that is not the end of the story.

In 1963, the 7090 was replaced by a faster 7094 with double precision float
ing-point hardware but with otherwise practically the same instruction set as
the 7090. Only in double precision and only when using the new hardware did
the wing stall abruptly again. A lot of time was spent to find out why. The 7094
hardware turned out, like the superseded 7090 software and the subsequent
early S/360s, to lack a guard bit in double precision. Like so many program
mers on those machines and on Cray's, the student discovered a trick to com
pensate for the lack of a guard digit; he wrote the expression (0 . 5 - x) + 0 . 5

4.11 Historical Perspective and Further Reading 255

in place of 1 . 0 - x. Nowadays we would blush if we had to explain why such
a trick might be necessary, but it solved the student's problem.

Meanwhile the lure of California was working on Kahan and his family;
they came to Berkeley and he to the University of California. An opportunity
presented itself in 1974 when accuracy questions induced Hewlett Packard's
calculator designers to call in a consultant. The consultant was Kahan, and his
work dramatically improved the accuracy of HP calculators, but that is anoth
er story. Fruitful collaboration with congenial co-workers, however, fortified
him for the next and crucial opportunity.

It came in 1976, when John F. Palmer at Intel was empowered to specify the
"best possible" floating-point arithmetic for all of Intel's product line. The 8086
was imminent, and an 8087 floating-point coprocessor for the 8086 was con
templated. (A coprocessor is simply an additional chip that accelerates a portion
of the work of a processor; in this case, it accelerated floating-point computa
tion.) Palmer had obtained his Ph.D. at Stanford a few years before and knew
who to call for counsel of perfection-Kahan. They put together a design that
obviously would have been impossible only a few years earlier and looked not
quite possible at the time. But a new Israeli team of Intel employees led by Rafi
Nave felt challenged to prove their prowess to Americans and leaped at an op
portunity to put something impossible on a chip-the 8087. By now, floating
point arithmetics that had been merely diverse among mainframes had be
come anarchic among microprocessors, one of which might be host to a dozen
varieties of arithmetic in ROM firmware or software. Robert G. Stewart, an en
gineer prominent in IEEE activities, got fed up with this anarchy and proposed
that the IEEE draft a decent floating-point standard. Simultaneously, word
leaked out in Silicon Valley that Intel was going to put on one chip some awe
some floating point well beyond anything its competitors had in mind. The
competition had to find a way to slow Intel down, so they formed a committee
to do what Stewart requested.

Meetings of this committee began in late 1977 with a plethora of competing
drafts from innumerable sources and dragged on into 1985 when IEEE Stan
dard 754 for Binary Floating Point was made official. The winning draft was
very close to one submitted by Kahan, his student Jerome T. Coonen, and
Harold S. Stone, a professor visiting Berkeley at the time. Their draft was
based on the Intel design, with Intel's permission of course, as simplified by
Coonen. Their harmonious combination of features, almost none of them new,
had at the outset attracted more support within the committee and from out
side experts like Wilkinson than any other draft, but they had to win nearly
unanimous support within the committee to win official IEEE endorsement,
and that took time.

In 1980, Intel became tired of waiting and released the 8087 for use in the
IBM PC. In 1982, Motorola announced its 68881, which found a place in Sun 3s

256 Chapter 4 Arithmetic for Computers

and Macintosh Ils; Apple had been a supporter of the proposal from the begin
ning. Another Berkeley graduate student, George S. Taylor, had soon de
signed a high-speed implementation of the proposed standard for an early
super-minicomputer (ELXSI 6400). The standard was becoming de facto be
fore its final draft's ink was dry.

An early rush of adoptions gave the computing industry the false impres
sion that IEEE 754, like so many other standards, could be implemented easily
by following a standard recipe. Not true. Only the enthusiasm and ingenuity
of its early implementors made it look easy. In fact, to implement IEEE 754 cor
rectly demands extraordinarily diligent attention to detail; to make it run fast
demands extraordinarily competent ingenuity of design. Had the industry's
engineering managers realized this, they might not have been so quick to af
firm that, as a matter of policy, "We conform to all applicable standards."

Today the computing industry is enmeshed in a host of standards that
evolve continuously as technology changes. The floating-point standards IEEE
754/854 (they are practically the same) stand in somewhat splendid isolation
only because nobody wishes to repeat the protracted wrangling that sur
rounded their birth when, with unprecedented generosity, the representatives
of hardware interests acceded to the demands of those few who represented
the interests of mathematical and numerical software. Unfortunately, the com
piler-writing community was not represented adequately in the wrangling,
and some of the features didn't balance language and compiler issues against
other points. That community has been slow to make IEEE 754's unusual fea
tures available to the applications programmer. Humane exception handling
is one such unusual feature; directed rounding another. Without compiler
support, these features could atrophy.

At present, IEEE 754/854 have been implemented to a considerable degree
of fidelity in at least part of the product line of every North American comput
er manufacturer except Cray Research Inc., and that company has recently an
nounced that it too will conform "to some degree" by the mid 1990s to ease the
transfer of data files and portable software between CRA Ys and the worksta
tions through which CRAY users have come to access their machines nowa
days.

In 1989, the Association for Computing Machinery, acknowledging the
benefits conferred upon the computing industry by IEEE 754, honored Kahan
with the Turing Award. On accepting it, he thanked his many associates for
their diligent support, and his adversaries for their blunders. So . . . not all er
rors are bad.

To Probe Further

Readers interested in learning more about floating point will find two publi
cations by David Goldberg [1990, 1991] good starting points; they abound

4.11 Hlstorlcal Perspective and Further Reading 257

with pointers to further reading. Several of the stories told above come from
Kahan [1972, 1983]. The latest word on the state of the art in computer arith
metic is often found in the Proceedings of the latest IEEE-sponsored Sympo
sium on Computer Arithmetic, held every two or three years; the tenth was
held in 1991.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. "Preliminary discussion of the logical
design of an electronic computing instrument," Report to the U.S. Army Ordnance Dept., p. l; also
in Papers of John van Neumann, W. Aspray and A. Burks, eds., MIT Press, Cambridge, Mass., and
Tomash Publishers, Los Angeles, Calif. (1987) 97-146.

This classic paper includes arguments against floating-point hardware.

Goldberg, D. [1990]. "Computer Arithmetic," Appendix A of Computer Architecture: A Quantitative
Approach, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San Mateo, Calif.

A more advanced introduction to integer and floating-point arithmetic, with emphasis on hardware. It cov
ers pages 1 68 to 225 of this book in just 10 pages, leaving another 45 pages for advanced topics.

Goldberg, D. [1991] . "What every computer scientist should know about floating-point arith
metic," ACM Computing Surveys V23#1, pp. 5-48.

Another good introduction to floating-point arithmetic by the same author, this time with emphasis on soft
ware.

Kahan, W. [1972] . "A survey of error-analysis," in Info. Processing 71 (Proc. IFIP Congress 71 in
Ljubljana), vol. 2, pp. 1214-39, North-Holland Publishing, Amsterdam.

This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. "Mathematics written in sand," Proc. Amer. Stat. Assoc. Joint Summer Meetings of
1983, Statistical Computing Section, pp. 12-26.

The title refers to silicon, and is another source of stories illustrating the importance of accurate arithmetic.

Koren, I. [1993]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, N.J.

A recent textbook aimed at seniors and first year graduate students that explains fundamental principles of
basic arithmetic, as well as complex operations such as logarithmic and trigonometric functions.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.

This computer pioneer's recollections include the derivation of the standard hardware for multiply and
divide developed by van Neumann.

258 Chapter 4 Arithmetic for Computers

II Exercises

Never give in, never give in, never, never, never-in nothing, great or small, large
or petty-never give in

Winston Churchill, Address at Harrow School, October 29, 1941

4.1 [15] <§3, 4.2, 4.8> The Big Picture on page 243 mentions that bits have no
inherent meaning. Given the bit pattern

1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

What does it represent, assuming that it is

a. a two's complement integer?

b. an unsigned integer?

c. a single precision floating-point number?

d. a MIPS instruction?

4.2 [10] <§4.2, 4.4, 4.8> This exercise is similar to Exercise 4.1, but this time use
the bit pattern

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.3 [3] <§4.2> Convert 512ten into a 32-bit two's complement binary number.

4.4 [3] <§4.2> Convert -1 ,023ten into a 32-bit two's complement binary num
ber.

4.5 [5] <§4.2> Convert -4,000,000ten into a 32-bit two's complement binary
number.

4.6 [5] <§4.2> What decimal number does this two's complement binary
number represent: 1 0 0 0 0 0 l l O Otwo?

4.7 [5] <§4.2> What decimal number does this two's complement binary
number represent: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l two?

4.8 [5] <§4.2> What decimal number does this two's complement binary
number represent: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 two?

4.9 [5] <§4.2> What binary number does this hexadecimal number represent:
7fff fffahex? What decimal number does it represent?

4.12 Exercises 259

4.10 [5] <§4.2> What hexadecimal number does this binary number
represent: 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0tw0?

4.11 [5] <§4.8> Using the notation in the Hardware Software Interface sec
tions on pages 226 and 227, show the MIPS binary floating-point formats in
single precision and double precision for lOten·

4.12 [5] <§4.8> This exercise is similar to Exercise 4.11, but this time replace
the number lOten with 10.5ten·

4.13 [10] <§4.8> This exercise is similar to Exercise 4.11, but this time replace
the number lOten with O.lten·

4.14 [10] <§4.10> For the program gee (Figure 4.46 on page 248), find the 10
most frequently executed MIPS instructions. List them in order of popularity,
from most used to least used. Show the rank, name, and percentage of instruc
tions executed for each instruction. If there is a tie for a given rank, list all in
structions that tie with the same rank, even if this results in more than 10
instructions.

4.15 [10] <§4.10> This exercise is similar to Exercise 4.14, but this time replace
the program gee with the program spice.

4.16 <§4.10> {§4.14, 4.15} These questions examine the relative frequency of
instructions in different programs.

a. [5] Which instructions are found in both the answer to Exercise 4.14 and in
the answer to Exercise 4.15?

b. [5] What percentage of gee instructions executed is due to the instructions
identified in Exercise 4.16a?

c . [5] What percentage of gee instructions executed is due to the instructions
identified in Exercise 4.14?

d. [5] What percentage of spice instructions executed is due to the instruc
tions identified in Exercise 4.16a?

e. [5] What percentage of spice instructions executed is due to the instruc
tions identified in Exercise 4.15?

4.17 [10] <§4.10> {ex. 4.14, 4.15, 4.16} If you were designing a machine to ex
ecute the MIPS instruction set, what are the five instructions that you would
try to make as fast as possible, based on the answers to Exercises 4.14 through
4.16? Give your rationale.

4.18 [15] <§2, 4.10> Using Figure 4.46 on page 248, calculate the average clock
cycles per instruction (CPI) for the program gee. Figure 4.47 gives the average

260 Chapter 4 Arithmetic for Computers

:/ry • :-. � �. fostructio·n" category �. .. • • • .-• ., ...,. r7 "• "•• :.- JI.
· ·• �···,'..,.,:� ,Average �CP.I,.

• • • - - � J 4 •

Loads and stores 01.4

Conditional branch 01.8

Jumps 01.2

Integer multiply 10.0

Integer divide 30.0

Floating-point add and subtract 02.0

Floating-point mu ltiply, single precision 04.0

Floating-po int multiply, double precision 05.0

Floating-point divide, single precision 12.0

Floating-point divide, double precision 19.0

FIGURE 4.47 CPI for MIPS instruction categories.

CPI per instruction category, taking into account cache misses and other ef
fects. Assume that instructions omitted from the table have a CPI of 1 .0.

4.19 [15] <§2, 4.10> This exercise is similar to Exercise 4.18, but this time re
place the program gee with the program spice.

4.20 [5] <§4.2> Why doesn't MIPS have a subtract immediate instruction?

4.21 [10] <§4.2> Find the shortest sequence of MIPS instructions to determine
the absolute value of a two's complement integer. Convert this instruction (ac
cepted by the MIPS assembler):

a b s $ 1 0 , $ 1 1

This instruction means that register $10 has a copy of register $11 if register
$11 is positive, and the two's complement of register $11 if $11 is negative.

4.22 [10] <§4.3> Find the shortest sequence of MIPS instructions to determine
if there is a carry out from the addition of two registers, say registers $11 and
$12. Place a 0 or 1 in register $10 if carry out is 0 or 1, respectively.

4.23 [15] <§4.3> {ex. 4.22) Find the shortest sequence of MIPS instructions to
perform double precision integer addition. Assume that one 64-bit, two's com
plement integer is in registers $12 and $13 and another is in registers $14 and
$15. The sum is to be placed in registers $10 and $11 . In this example the most
significant word of the 64-bit integer is found in the even-numbered registers,
and the least significant word is found in the odd-numbered registers.

4.12 Exercises 261

4.24 [20] <§4.6> Find the shortest sequence of MIPS instructions to perform
double precision integer multiplication. Assume that one 64-bit, unsigned inte
ger is in registers $12 and $13 and another is in registers $14 and $15. The
128-bit product is to be placed in registers $8, $9, $10 and $11 . The most signif
icant word is found in the lower numbered registers, and the least significant
word is found in the higher numbered registers in this example. Hint: Write
out the formula for (a x 232 + b) x (c x 232 + d).

4.25 [15] <§4.5> The ALU supported set on less than (s l t) using just the sign
bit of the adder. Let's try a set-on-less-than operation using the values -7ten
and 6ten· To make it simpler to follow the example, let's limit the binary repre
sentations to 4 bits: lOOltwo and OllOtwo·

lOOltwo - 01 lOtwo = lOOltwo + 1010two = OOlltwo

This result would suggest that -7 > 6, which is clearly wrong. Hence we must
factor in overflow in the decision. Modify the 1-bit ALU in Figure 4.15 on
page 192 to handle s l t correctly. Make your changes on a photocopy of this
figure to save time.

4.26 [15] <§4.4> Some computers have explicit instructions to extract an arbi
trary field from a 32-bit register and place it in the least significant bits of a reg
ister. The figure below shows the desired operation:

31 0

field

31 - j bits

31 0

0 . . . 0 0 0 0 field

32 - (j - i) bits j - i bits

Find the shortest sequence of MIPS instructions that extracts a field for the
constant values i = 7 and j = 19 from register $16 and places it in register $17.

In More Depth: Logical Instructions

The full MIPS instruction set has two more logical operations not mentioned
thus far: x o r and n o r. The operation x o r stands for exclusive OR, and n o r
stands for not OR. The table that follows defines these operations on a bit
by-bit basis. These instructions will be useful in the following two exercises.

262 Chapter 4 Arithmetic for Computers

�J'!o.tt•�U�...tQ"'-�-�.., • ,.,..� .,.·t�·�"�"�"'l"# .J� -c:..- ... � •, , � 1i�� ,.;;'. .�·l��b\ .,-��:;\ a;-xorJ b,;:-> ·.·a . n_or;� � _'¥.__ • #J A ·� , , ":...- --t� • .: � - . • -..•.A" ,:1;-J>.(�IJO g_ ,-4 ,

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 0

4.27 [15] <§4.4> Show the minimal MIPS instruction sequence for a new in
struction called s w a p that exchanges two registers. After the sequence com
pletes, the Destination register has the original value of the Source register,
and the Source register has the original value of the Destination register. Con
vert this instruction:

s w a p r l O , r 2 0

The hard part is that this sequence must use only these two registers! Hint: Try
to use the new logical instructions: What is the value of (0 xor A)? (B xor B)?

4.28 [5] <§4.4> Show the minimal MIPS instruction sequence for a new in
struction called n o t that takes the one's complement of a Source register and
places it in a Destination register. Convert this instruction (accepted by the
MIPS assembler):

n o t r 1 0 , r 2 0

Hint: Try to use the new logical instructions.

4.29 [20] <§4.5> A simple check for overflow during addition is to see if the
Carry In to the most significant bit is not the same as the CarryOut of the most
significant bit. Prove that this check is the same as in Figure 4.3 on page 177.

4.30 [10] <§4.5> Draw the gates for the Sum bit of an adder, given the equa
tion on page 187.

4.31 [5] <§4.5> Rewrite the equations on page 197 for a carry lookahead logic
for a 16-bit adder using a new notation. First use the names for the Carryin sig
nals of the individual bits of the adder. That is, use c4, c8, cl2, . . . instead of
Cl, C2, C3, Also, let Pi,j mean a propagate signal for bits i to j, and Gi,j
mean a generate signal for bits i to j. For example, the equation

C2 = G 1 + (Pl · GO) + (Pl · PO · c 0)

can be rewritten as

c8 = G 7_ 4 + (P 7• 4 · G 3, 0) + (P 7_ 4 · P 3_ 0 · c0)

This more general notation is useful in creating wider adders.

4.12 Exercises 263

4.32 [15] <§4.5> {ex. 4.31) Write the equations for a carry lookahead logic for
a 64-bit adder using the new notation from Exercise 4.31 and using 16-bit
adders as building blocks.

4.33 [10] <§4.5> Now calculate the relative performance of adders. Assume
that hardware corresponding to any equation containing only OR or AND
terms, such as the equations for pi and gi on page 196, takes one time unit T.
Equations that consist of the OR of several AND terms, such as the equations
for cl, c2, c3, and c4 on page 196, take 2T. Calculate the numbers and perfor
mance ratio for 4-bit adders for both ripple carry and carry lookahead. If the
terms in equations are further defined by other equations, then add the appro
priate delays for those intermediate equations, and continue recursively until
the actual input bits of the adder are used in an equation.

4.34 [15] <§4.5> {ex. 4.33) This exercise is similar to Exercise 4.33, but this time
calculate the relative speeds of a 16-bit adder using ripple carry only, ripple
carry of 4-bit groups that use carry lookahead, and the carry lookahead
scheme on page 197.

4.35 [15] <§4.5> {ex. 4.32, 4.33, 4.34) This exercise is similar to Exercises 4.33
and 4.34, but this time calculate the relative speeds of a 64-bit adder using rip
ple carry only, ripple carry of 4-bit groups that use carry lookahead, ripple car
ry of 16-bit groups that use carry lookahead, and the carry-lookahead scheme
from Exercise 4.32.

In More Depth: Carry Save Adders

The adder in Figure 4.8 on page 186 is called a (3,2) adder because each stage
adds 3 bits and produces 2 output bits. This piece of hardware is simple and
fast; the problem comes from trying to get the Carryln signal calculated in a
timely fashion. When we are just adding two numbers together, there is little
we can do with this observation, but when we are adding more than two
operands, it is possible to reduce the cost of the carry. Perhaps the most likely
case would be when trying to multiply more quickly by using many adders to
add many numbers in a single clock cycle. Compared to the multiply algo
rithm in Figure 4.27 on page 206, such a scheme could multiply more than 10
times faster.

Assume we want to add four 4-bit numbers a, b, e, and J. Figure 4.48 shows
how to use (3,2) adders to form two independent sums, called C' and S'. Note
that the C' is shifted left 1 bit relative to S'. This technique of delaying carry
propagation until the end of a sum of numbers is called carry save addition. To
get the actual sum of these four numbers, we need to add C' and S' together
using a normal adder.

264 Chapter 4 Arithmetic for Computers

b3 e3 f3 b2 e2 f2 bi e1 f1 bO eO fO

s5 s4 s3 s2 s1 so

a b e

Carry save adder

Carry save adder

C' S'

Normal adder

s

FIGURE 4.48 Carry save addition of four 4-blt numbers. The details are shown on the left, with the individual signals
in lower case, and the higher level blocks are on the right in upper case. Note that the sum of 4 n-bit numbers can take n+2
bits.

4.36 [5] <§4.5> Assume the time delay through each 1-bit (3,2) adder is 2T.
Calculate the time of adding four 4-bit numbers using three ripple carry
adders versus the time using the carry save scheme in Figure 4.48.

4.37 [10] <§4.5> {ex. 4.33, 4.34, 4.36) Calculate the delays to add four 16-bit
numbers using full carry lookahead adders versus carry save with a carry loo
kahead adder forming the final sum. The time unit T in Exercises 4.33 and 4.36
are the same.

4.38 [20] <§4.5, 4.6> {ex. 4.33, 4.34, 4.36, 4.37} Combinational multipliers refer
to using many adders to try to reduce the time of multiplication. This exercise
estimates the cost and speed of a combinational multiplier to multiply two
16-bit numbers. Assume that you have 16 intermediate terms M15, M14, . . . ,
MO, called partial products, that contain the multiplicand ANDed with multipli
er bits m15, m14, . . . , mO. First show the block organization of the 16-bit carry
save adders to add these 16 terms, as shown on the right in Figure 4.48. Then
calculate the delays to add these 16 numbers. Compare this time to the itera
tive multiplication scheme in Figure 4.27 on page 206 but only assume 16 iter
ations using a 16-bit adder that has full carry lookahead whose speed was
calculated in Exercise 4.34.

4.39 [30] <§4.6> The original reason for Booth's algorithm was to reduce the
number of operations by avoiding operations when there were strings of Os

4.12 Exercises 265

and ls. Revise the algorithm on page 208 to look at 3 bits at a time and compute
the multiplicand 2 bits at a time. Fill in the following table to determine the
2-bit Booth encoding:

Current bits Previous bit Operation Reason
ai+1 a i ai-1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Assume that you have both the multiplicand and 2 x multiplicand already in
registers. Explain the reason for the operation on each line, and show a 6-bit
example that runs faster using this algorithm. Hint: Try dividing to conquer;
see what the operations would be in each of the eight cases in the table using
a 2-bit Booth algorithm, and then optimize the pair of operations.

4.40 [30] <§4.6, 4.7> The division algorithm in Figure 4.37 on page 220 is
called restoring division, since each time the result of subtracting the divisor
from the dividend is negative you must add the divisor back into the dividend
to restore the original value. Recall that shift left is the same as multiplying by
2. Let's look at the value of the left half of the Remainder again, starting with
step 3b of the divide algorithm and then going to step 2:

(Remainder + Divisor) x 2 - Divisor

This value is created from restoring the Remainder by adding the Divisor,
shifting the sum left, and then subtracting the Divisor. Simplifying the result
we get

Remainder x 2 + Divisor x 2 - Divisor = Remainder x 2 + Divisor

Based on this observation, write a nonrestoring division algorithm using the
notation of Figure 4.37 that does not add the Divisor to the Remainder in step
3b. Show that your algorithm works by dividing 0000 Ollltwo by OOlOtwo·

4.41 [5] <§4.8> Add 6.42ten x 101 to 9.Slten x 102, assuming that you have only
three significant digits, first with guard and round digits and then without
them.

266 Chapter 4 Arithmetic for Computers

4.42 [5] <§4.8> This exercise is similar to Exercise 4.41, but this time use the
numbers 8.76ten x 101 and l .47ten x 102.

4.43 [25] <§4.8> Derive the floating-point algorithm for division as we did for
addition and multiplication on pages 230 through 240. First divide l .llOten x
1010 by l .lOOten x 10-5, showing the same steps that we did in the example
starting on page 233. Then derive the floating-point division algorithm using
a format similar to the multiplication algorithm in Figure 4.43 on page 239.

4.44 [30] <§4.8> The Elaboration on page 243 explains the four rounding
modes of IEEE 754 and the extra bit, called the sticky bit, needed in addition to
the 2 bits called guard and round. Guard is the first bit, round is the second bit,
and sticky represents whether the remaining bits are 0 or not. Fill in the follow
ing table with logical equations that are functions of guard(g), round(r), and
sticky(s) for the result of a floating-point addition that creates Sum. Let p be the
proper number of bits in the significand for a given precision and Sump be the
pth most significant bit of Sum. A blank box means that the p most significant
bits of the sum are correctly rounded. If you place an equation in a box, a false
equation means that the p bits are correctly rounded; a true equation means
add 1 to the pth most significant bit of Sum.

Rounding mode Sum C: 0 Sum < 0

Toward -oo

Toward +00
Truncate

Nearest Even

4.45 [30] <§4.5> If you have access to a computer containing a MIPS proces
sor, write a loop in assembly language that sets registers $26 and $27 to an ini
tial value, and then loop for several seconds, checking the contents of these
registers. Print the values if they change. See the Elaboration on page 1 79 for
an explanation of why they change. Can you find a reason for the particular
values you observe?

In a major matter,
no details are small.

French Proverb

The Processor:

Datapath

and Control

5.1 Introduction 270

5.2 Building a Datapath 276

5.3 A Simple Implementation Scheme 283

5.4 A Multiple Clock Cycle Implementation 312

5.5 Microprogramming: Simplifying Control Design 333

5.6 Exceptions 344

5. 7 Fallacies and Pitfalls 350

5.8 Concluding Remarks 351

5.9 Historical Perspective and Further Reading 353

5.10 Exercises 357

The Five Classic Components of a Computer

Evaluating
Performance

Processor

Compiler

Memory

,___ __ __,

~
B

270 Chapter 5 The Processor: Datapath and Control

• Introduction

In Chapter 2, we saw that the performance of a machine was determined by
three key factors: instruction count, clock cycle time, and clock cycles per
instruction. The compiler and the instruction set architecture, which we
examined in Chapters 3 and 4, determine the instruction count required for a
given program. However, both the clock cycle time and the number of clock
cycles per instruction are determined by the implementation of the processor.
In this chapter, we construct the datapath and control unit for two different
implementations of the MIPS instruction set.

We will be designing an implementation that includes the core of the MIPS
instruction set, including:

• The memory-reference instructions load word (1 w) and store word (sw)

• The arithmetic-logical instructions a d d , s u b, a n d, o r, and s l t
• The branch equal instruction (b eq); and the jump instruction (j), which

we add last.

This subset does not include all the integer instructions (for example, mul
tiply and divide are missing), nor does it include any floating-point instruc
tions. However, the key principles used in creating a datapath and designing
the control will be illustrated. The implementation of the remaining instruc
tions is similar.

In examining the implementation, we will have the opportunity to see how
the instruction set architecture determines many aspects of the implementa
tion, and how the choice of various implementation strategies affects the clock
rate and CPI for the machine. Many of the key design principles introduced in
earlier chapters can be illustrated by looking at the implementation. This in
cludes the guidelines Make the common case fast and Simplicity favors regularity.
In addition, most of the concepts used to implement the MIPS subset in this
chapter and the next are the same ideas that are used to construct a broad spec
trum of computers, from high-performance machines to general-purpose mi
croprocessors to special-purpose processors used with increasing frequency in
products ranging from VCRs to automobiles.

An Overview of the Implementation

In Chapters 3 and 4, we looked at a core subset of MIPS instructions, includ
ing the integer arithmetic-logical instructions, the memory-reference instruc
tions, and the branch instructions. Much of what needs to be done to

5.1 Introduction 271

implement these instructions is the same, independent of the exact type of
instruction. For every instruction, the first two steps are identical:

1. Send the program counter (PC) to a memory that contains the code to
fetch the instruction.

2. Read one or two registers using fields of the instruction to select the
registers to read. For a load instruction we need to read only one regis
ter, but all other instructions require that we read two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction type. However, for each of the three instruction types
(memory-reference, arithmetic-logical, and branches), the actions are largely
the same, independent of the exact opcode. Even across different instruction
classes there are some similarities. For example, all instruction types use the
ALU after reading the registers. The memory reference instructions use the
ALU for an effective address calculation, the arithmetic-logical instructions
for the opcode execution, and branches for comparison. As we can see, the
simplicity and regularity of the instruction set simplifies the implementation
by making the execution of many of the instruction types similar.

After using the ALU, the actions required to complete the different instruc
tion types differ. A memory-reference instruction will need to access the mem
ory containing the data to complete a store or get a word that is being loaded.
An arithmetic-logical instruction must write the data from the ALU back into
a register. Lastly, for a branch instruction, we may need to change the next in
struction address based on the comparison. Figure 5.1 shows the high-level
view of a MIPS implementation. In the remainder of the chapter, we refine this
view to fill in the details, which requires that we add further functional units,
increase the number of connections between units, and, of course, add a con
trol unit to control what actions are taken for different instruction types. Before
we begin to create a more complete implementation, we need to discuss a few
principles of logic design.

A Word about Logic Conventions and Clocking

To discuss the design of a machine, we must decide how the logic implement
ing the machine will operate and how the machine is clocked. This section
reviews a few key ideas in digital logic that we will use extensively in this
chapter. The reader who has little or no background in digital logic will find it
helpful to read through Appendix B before continuing.

Within a logic design, it is often convenient for the designer to change the
mapping between a logically true or false signal and the high or low voltage
level. Thus, in some parts of a design, a signal that is logically asserted may ac
tually be an electrically low signal, while in others an electrically high signal is

272

PC

Instruction

memory

Chapter 5 The Processor: Datapath and Control

Instruction

Data

Register #
Registers

Register #

Register #

Address

�i-------i Data

Data

memory

FIGURE 5.1 An abstract view of the implementation of the MIPS subset showing the major functional units and
the major connections between them. All instructions start by using the program counter to supply the instruction
address to the instruction memory. After the instruction is fetched, the register operands used by an instruction are speci
fied by fields of that instruction. Once the register operands have been fetched, they can be operated on to compute a mem
ory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a
compare (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to the
Result register. If the operation is a load or store, the ALU result is used as an address to either store a value from the regis
ters or load a value from memory into the registers. The result from the ALU or memory is written back into the register
file. Branches require the use of the ALU output to determine the next instruction address, which requires some control
logic, as we will see.

asserted. To maintain consistency we will use the word asserted to indicate a
signal that is logically high and assert to specify that a signal should be driven
logically high.

The functional units in the MIPS implementation consist of two different
types of logic elements: elements that contain state and elements that operate
on data values. The elements that operate on data values are all combinational,
which means that their outputs depend only on the current inputs. Given the
same input, a combinational element always produces the same output. The
ALU shown in Figure 5.1 and discussed in detail in Chapter 4 is a combina
tional element. Given a set of inputs, it always produces the same output, be
cause it has no internal storage.

Other elements in the design are not combinational, but instead contain
state. An element contains state if it has some internal storage. We call these el
ements state elements, because, if we pulled the plug on the machine, we could
restart it by loading the state elements with the values they contained before
we pulled the plug. Furthermore, if we saved and restored the state elements,
it would be as if the machine had never lost power. Thus, these state elements

5.1 Introduction 273

completely characterize the machine. In Figure 5.1, the instruction and data
memories as well as the registers are all examples of state elements.

A state element has at least two inputs and one output. The required inputs
are the data value, which is to be written, and the clock, which determines
when the data input value is stored. The output provides the value that was
written in the previous clock. For example, the simplest state element is a D
type flip-flop (see Appendix B), which has exactly these two inputs (a value
and a clock) and one output. In addition to flip-flops, our MIPS implementa
tion also uses two other types of state elements: memories and registers, both
of which appear in Figure 5.1 . The clock is used only to determine when the
state element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers de
pends on both the register numbers supplied and on what was written into the
registers previously. The operation of both the combinational and sequential
elements and their construction are discussed in more detail in Appendix B.

A clocking methodology defines when signals can be read and when they can
be written. It is important to distinguish the timing of reads from writes, be
cause, if a signal is written at the same time it is read, the value of the read
could correspond to the old value, the newly written value, or even some mix
of the two! Needless to say, computer designs cannot tolerate this unpredict
ability. A clocking methodology is designed to prevent this circumstance.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in the ma
chine are updated only on a clock edge. Thus, the state elements all update
their internal storage on the clock edge. Because only state elements can store
a data value, any collection of combinational logic must have its inputs coming
from a set of state elements and its outputs written into a set of state elements.
The inputs are values that came from a previous clock cycle, while the outputs
are values that will be used in a following clock cycle. Figures 5.2 and 5.3 show
two examples. In the simpler example shown in Figure 5 .2, the block of com
binational logic operates in a single clock cycle. In this case, all signals must
propagate from state element 1, through the combinational logic, and to state
element 2 in the time of one clock cycle, and state element 2 can be written at
the end of every clock cycle. The time necessary for the signals to reach state
element 2 defines the length of the clock cycle.

The second example requires several clock cycles for the signals to propa
gate from state element 1 through the combinational logic to state element 2.
In this case, the signal that controls the writing of the second state element
must be controlled so that the internal storage in the state element is not up
dated on every clock, but only on certain clocks. The state element is still up-

274 Chapter 5 The Processor: Datapath and Control

Clock cycle

State
element

1

J

State
element

2

FIGURE 5.2 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into
internal storage. Any inputs to a state element must reach a stable value (that is, have reached a
value from which they will not change until after the clock edge) before the active clock edge
causes the state to be updated.

State State
element element

1 2

Write Write

Clock cycle J I
FIGURE 5.3 State element 2 is not written on every clock, but only on a clock edge when
the write signal is also asserted. This organization can be used to allow the combinational
logic block to take several clock cycles to propagate from the inputs at state element 1. The output
of state element 1 also must not change during the time the signal is propagating through the
combinational logic. Thus, state element 1 must also have a controlled write signal. If, for exam
ple, it requires two clock periods to propagate through the combinational logic, then the write
control for state element 1 must be deasserted during the clock cycle that precedes the clock cycle
in which state element 2 is written.

dated on a clock edge, but only if the write signal is also asserted, as shown in
Figure 5.3. For this to work properly, it is critical that the output of state ele
ment 1 also does not change during the clock cycles in which the signal is prop
agating through the combinational logic. Both state elements will require write
signals and these signals must be coordinated so that the clocking methodolo-

5.1 Introduction

State
element

275

FIGURE 5.4 An edge-triggered methodology allows a state element to be read and written
In the same clock cycle without creating a race that could lead to Indeterminate data val
ues. Of course, the clock cycle still must be long enough so that the input values are stable when
the active clock edge occurs.

gy is consistent. This type of state element will be used extensively in the mul
ticycle design that we will explore in the second half of this chapter. For
simplicity, we do not show the write signal when a state element is updated
on every active clock edge. Although we will not show the clock signal explic
itly, remember that all state elements have the clock as an input.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write the register in the
same clock cycle, as shown in Figure 5.4. It doesn't matter whether we assume
that all writes take place on the rising clock edge or on the falling clock edge,
since the inputs to the combinational logic block cannot change except on the
chosen clock edge. In Appendix B we briefly discuss additional timing con
straints (such as set-up and hold times) as well as other timing methodologies.

Nearly all of these state and logic elements will have inputs and outputs
that are 32 bits wide, since that is the width of most of the data handled by the
processor. We will make it clear whenever a unit has an input or output that is
other than 32 bits in width. The figures will indicate buses, which are signals
wider than 1 bit, with thicker lines. Arrows help clarify the direction of the
flow of data between elements. Color indicates a control signal as opposed to
a signal that carries data; this distinction will become clearer as we proceed
through this chapter.

The MIPS Subset Implementation

We will start with a simple implementation that uses a single long clock cycle
for every instruction and follows the general form of Figure 5.1 . In this first
design, every instruction begins execution on one clock edge and completes
execution on the next clock edge.

While easier to understand, this approach is not really practical, since it
would be slower than an implementation that allows different instruction

276 Chapter 5 The Processor: Datapath and Control

types to take different numbers of clock cycles, each of which could be shorter.
After designing the control for this simple machine, we will look at an imple
mentation that uses multiple clock cycles for each instruction. This implemen
tation is more realistic but also requires more complex control. In this chapter,
we will take the specification of the control to the level of logic equations and
finite state machine specifications. From either representation, a modern com
puter-aided design (CAD) system can synthesize a hardware implementation.
Before closing the chapter, we will discuss how exceptions (mentioned in
Chapter 4) are implemented.

• Bulldlng a Datapath

A reasonable way to start a datapath design is to examine the major compo
nents required to execute each type of MIPS instruction. Let's start by looking
at which datapath elements each instruction needs and build up the sections
of the datapath for each instruction type from these elements. When we show
the datapath elements initially, we will also show their control signals. After
that, we will not include the control signals in the actual datapath until
section 5.3, when we add the control unit.

The first element we will need is a place to store the instructions of a pro
gram. A memory unit, which is a state element, is used to hold and supply in
structions given an address, as shown in Figure 5.5. The address of the
instruction must also be kept in a state element, which we call the program
counter, also shown in Figure 5.5. Lastly, we will need an adder to increment
the PC to the address of the next instruction. This adder, which is combination
al, can be built from the ALU we designed in the last chapter simply by wiring
the control lines so that the control always specifies an add operation. We will
draw this ALU with the label Add, as in Figure 5.5, to indicate that it has been
permanently made an adder and cannot perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also incre
ment the program counter so that it points at the next instruction, 4 bytes later.
The datapath for this step, shown in Figure 5.6, uses the three elements from
Figure 5.5.

Now let's consider the R-format instructions. They all read two registers,
perform an ALU operation on the contents of the registers, and write the re
sult. We call these instructions either R-type instructions or arithmetic-logical
instructions (since they perform arithmetic or logical operations). This instruc
tion class includes a d d, s u b, a n d , o r, and s l t; recall that a typical instance of
such an instruction is a d d $ 1 , $ 2 , $ 3, which reads $ 2 and $ 3 and writes $ 1 . The
processor's 32 registers are stored in a structure called a register file. A register

5.2 Bulldlng a Datapath

Instruction
address

Instruction

memory

Instruction

a. Instruction memory

-r+ Tl ite
b. Program counter

277

Add Sum

c. Adder

FIGURE 5.5 Two state elements are needed to store and acceu Instructions, and an
adder Is needed to compute the next Instruction addreu. The state elements are the instruc
tion memory and the program counter. The instruction memory need only provide read access,
because the datapath does not write instructions. (We will need to write the instruction memory
when we load the program; this is not hard to add, and we ignore it for simplicity.) Since the
instruction memory unit can only be read, we do not include a read control signal; this simplifies
the design. Control signals, such as the write signal on the PC, are shown in color. The program
counter is a 32-bit register that will be written under the control of a write signal. The adder is an
ALU wired to always perform an add of its two 32-bit inputs and place the result on its output.

Read
address

Instruction

memory

4

Instruction i----•

FIGURE 5.8 A portion of the datapath used for fetching Instructions and Incrementing the
program counter. The fetched instruction is used by other parts of the datapath.

278 Chapter 5 The Processor: Datapath and Control

Register
numbers

Data {

Read
register 1

Read
register 2

Read
data 1

Registers
Write
register

Write
data

Read
data 2

Write

a. Registers

Data ALU ALU result

b. ALU

FIGURE 5.7 The two elements needed to Implement R.format ALU operations are the register Ille and the ALU.
The register file contains all the registers and provides two read ports and one write port. The register file always provides
the contents of the registers corresponding to the Read register inputs on the outputs, while the writes must be explicitly
controlled with the write control signal. The inputs carrying the register number to the register file are all 5 bits wide,
whereas the lines carrying data values are 32 bits wide. (The design of multiported register files is discussed in section B.5
of Appendix B.) The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 3
bits wide, using the ALU designed in the previous chapter (see Figure 4.18). We will need the Zero detection output of the
ALU shortly to implement branches, and we will add it then. The overflow output will not be needed until section 5.6,

when we discuss exceptions; we omit it until then.

file is a collection of registers in which any register can be read or written by
specifying the number of the register in the file. The register file contains the
register state of the machine. In addition, we will need an ALU to operate on
the values read from the registers.

Because the R-format instructions have three register operands, we will
need to read two data words from the register file and write one data word
into the register file for each instruction. For each data word to be read from
the registers, we need an input to the register file that specifies the register
number to be read and an output from the register file that will carry the value
that has been read from the registers. To write a data word, we will need two
inputs: one to specify the register number to be written and one to supply the
data to be written into the register. Thus, we need a total of four inputs (three
for register numbers and one for data) and two outputs (both for data), as
shown in Figure 5.7. The register file always outputs the contents of whatever
register numbers are on the Read register inputs. Writes, however, are con
trolled by the write control signal, which must be asserted for a write to occur
when the clock input falls. The register number inputs are 5 bits wide to spec
ify 1 of 32 registers (32 = 25), whereas the data input and two data outputs are
each 32 bits wide. The ALU takes two 32-bit inputs and produces a 32-bit re-

5.2 Building a Datapath 279

Read
register 1 Read
Read data 1

Instruction register 2
Registers ALU

Write
register Read
Write data 2
data

FIGURE 5.8 The datapath for R-type instructions. The ALU discussed in Chapter 4 can be
controlled to provide all the basic ALU functions required for R-type instructions.

sult. The ALU, shown in Figure 5.7, is controlled by the 3-bit signal described
in Chapter 4.

The datapath for these R-type instructions, which uses the register file and
the ALU of Figure 5.7, is shown in Figure 5.8. Since the register numbers come
from fields of the instruction, we show the instruction, which comes from
Figure 5.6, as connected to the register inputs of the register file.

Next, consider the MIPS load and store instructions, which have the gener
al form: l w $ 1 , o f f s e t_v a l u e ($ 2) or s w $ 1 , o f f s e t_v a l u e ($ 2) . These in
structions compute a memory address by adding the base register ($ 2) to the
16-bit signed, offset field contained in the instruction. If the instruction is a
store, the value to be stored must also be read from the register file ($ 1) . If the
instruction is a load, the value read from memory must be written into the reg
ister file in the specified register ($ 1) . Thus, we will need both the register file
and the ALU, which are required for R-format instructions and shown in
Figure 5.7. In addition, we will need a unit to sign-extend the 16-bit offset field
in the instruction to a 32-bit signed value, and a data memory unit to read from
or write to. The data memory must be written on store instructions; hence, it
has both read and write control signals, as well as an input for the data to be
written into memory. Figure 5.9 shows these two elements.

Figure 5.10 shows how to combine these elements to build the datapath for
a load word or a store word instruction, assuming that the instruction has al
ready been fetched. The register number inputs for the register file come from
fields of the instruction, as does the offset value, which after sign extension be
comes the second ALU input.

The beq instruction has three operands, two registers that are compared for
equality, and a 16-bit offset used to compute the branch target address relative

280 Chapter 5 The Processor: Datapath and Control

Write

Read
address

Read
data 16 32

Write
address

Data

Write
memory

data

Read

a. Data memory unit b. Sign-extension unit

FIGURE 5.9 The two units needed to implement loads and stores are the data memory
unit and the sign-extension unit, In addition to the register file and ALU of Figure 5.7. The
memory unit is a state element with inputs for the read address, write address, and the write
data, and a single output for the read result. There are separate read and write controls, although
only one of these may be asserted on any given clock. The sign-extension unit has a 16-bit input
that is sign-extended into a 32-bit result appearing on the output (see Chapter 4, page 172).

Read
register 1

... _ _. Read
Instruction register 2

Registers .,_ _ _.. Write
register

Write
data

16

Read
data l ___ _

Read
data 2

ALU
Read
address

Write
address

"'-t------------i Write
data

32

Read
data

Data

memory

FIGURE 5.10 The datapath for a load or store that does a register access. It is followed by a memory address calcu
lation, then a read or write from memory, and a write into the register file if the instruction is a load.

5.2 Building a Datapath 281

to the branch instruction address. Its form is be q $ 1 . $ 2 . o f f s e t . To imple
ment this instruction, we must compute the branch target address by adding
the sign-extended offset field of the instruction to the PC. As noted in an Elab
oration in Chapter 3, there are two details in the instruction set architecture to
which we must pay attention.

• The instruction set architecture specifies that the base for the branch ad
dress calculation is the address of the instruction following the branch.
Since we compute PC + 4 (the address of the next instruction) in the in
struction fetch datapath, it is easy to use this value as the base for com
puting the branch target address.

• The architecture also states that the offset field is shifted left 2 bits so that
it is a word offset; this shift is helpful because it increases the effective
range of the offset field by a factor of 4.

To deal with the latter complication, we will need to shift the offset field by
two. This is done in the datapath figures beginning with Figure 5.11, which
shows the branch datapath. (Later on we will also need to adjust jump off
sets.)

In addition to computing the branch target address, we must also deter
mine whether the next instruction is the instruction that follows sequentially
or the instruction at the branch target address. When the condition is true (i.e.,
the operands are equal), the branch target address becomes the new PC, and
we say that the branch is taken. If the operands are not equal, the incremented
PC should replace the current PC (just as for any other normal instruction); in
this case, we say that the branch is not taken.

Thus, the branch must do two operations: compute the branch target ad
dress and compare the register contents. To compute the branch target ad
dress, we will need a sign-extension unit, just like that in Figure 5.9, and an
adder. We must also modify the instruction fetch portion of the datapath. To
perform the compare, we need to use the register file shown in Figure 5.7 to
supply the two register operands (although we will not need to write into the
register file). In addition, the comparison can be done using the ALU we de
signed in Chapter 4. Since that ALU provides an output signal that indicates
whether the result was 0, we can send the two register operands to the ALU
with the control set to do a subtract. If the Zero signal out of the ALU unit is
asserted, we know that the two values are equal. Although the Zero output al
ways signals if the result is 0, we will be using it only to implement the equal
test of branches. Later, we will show exactly how to connect the control signals
of the ALU for use in the datapath. The datapath for a branch combines these
elements, as shown in Figure 5 .11 .

282 Chapter 5 The Processor: Datapath and Control

Instruction

PC + 4 from instruction datapath

Read
register 1

Read
register 2

Registers
Write
register

Write
data

16

Read
data 1 i-+----.i

Read
data 2 i-+----.i

32

ALU Zero

Branch target

To branch
control logic

FIGURE 5.11 The datapath for a branch uses an ALU for evaluatlon of the branch condl·
tion and a separate adder for computing the branch target as the sum of the Incremented
PC and the sign-extended, lower 16 bits of the Instruction (the branch displacement),
shifted left 2 bits. The unit labeled Shift left 2 performs the shift adding 001wo to the bottom of
the sign-extended offset field. Since we know that the offset was sign-extended from 16 bits, the
shift will throw away only "sign bits." Control logic is used to decide whether the incremented
PC or branch target should replace the PC, based on the Zero output of the ALU.

The jump instruction operates by replacing a portion of the PC with the
lower 26 bits of the instruction shifted left by two bits. This shift is accom
plished simply by concatenating 00 to the jump offset.

Now that we have examined the datapaths needed for the individual in
struction types, we can combine them into a single datapath and add the con
trol to complete the implementation. The datapaths shown in Figures 5.6, 5.8,
5.10, and 5 .11 will be the building blocks for two different implementations. In
the next section we will create an implementation that uses a single clock cycle
for every instruction. In section 5.4, we will look at an implementation that
uses multiple clock cycles for every instruction.

5.3 A Slmple Implementation Scheme 283

• A Simple Implementation Scheme

Example

In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple datapath and con
trol by assembling the datapath segments of the last section and adding con
trol lines as needed. This simple implementation covers load word (1 w), store
word (s w), branch equal (be q), and the arithmetic-logical instructions a d d ,
s u b, a n d , o r, and s l t . We will later enhance the design to include a jump
instruction (j) .

Creating a Single Datapath

Suppose we were going to build a datapath from the pieces we looked at in
Figures 5.6, 5.8, 5 . 10, and 5.11 . The simplest datapath might attempt to exe
cute all instructions in one clock cycle. This means that no datapath resource
can be used more than once per instruction and that any element needed
more than once must be duplicated. We therefore need a memory for instruc
tions separate from one for data. While some of the functional units will need
to be duplicated when the individual datapaths of the previous section are
combined, many of the elements can be shared by different instruction flows.
To share a datapath element between two different instruction types, we may
need to allow multiple connections to the input of an element and have a con
trol signal select among the inputs. This is commonly done with a device
called a multiplexor, although this device might better be called a data selector.
The multiplexor, which was introduced in the last chapter (Figure 4.7 on
page 184), selects from among several inputs based on the setting of its con
trol lines.

The arithmetic-logical (or R-type) instruction datapath of Figure 5.8 on
page 279 and the memory instruction datapath of Figure 5.10 on page 280
are quite similar. The key differences are

• The second input to the ALU unit is either a register (if it's an R-type in
struction) or the sign-extended lower half of the instruction (if it's a
memory instruction) .

• The value written into the Result register comes from the ALU (for an
R-type instruction) or the memory (for a load).

284

Instruction

Chapter 5 The Processor: Datapath and Control

Show how to combine the two datapaths using multiplexors, without
duplicating the functional units that are in common in Figures 5.8 and 5.10.
Ignore the control of the multiplexors.

To combine the two datapaths and use only a single register file and an
ALU, we must support two different sources for the second ALU input, as
well as two different sources for the data stored into the register file. Thus,
one multiplexor is placed at the ALU input and another at the data input to
the register file. Figure 5.12 shows the combined datapath.

The instruction fetch portion of the datapath, shown in Figure 5.6 on
page 277, can easily be added to the datapath in Figure 5.12. Figure 5.13 shows
the result. The combined datapath includes a memory for instructions and a
separate memory for data. This combined datapath requires both an adder
and an ALU, since the adder is used to increment the PC, while the other ALU
is used for executing the instruction in the same clock cycle.

Now we can combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for branches from Figure 5.11 . Figure 5.14
shows the datapath we obtain by composing the separate pieces. The branch
instruction uses the main ALU for comparison of the register operands, so we

Read register 1

Read register 2

Read i-------+i data 1

Registers Read
data 2 �---+! Write

register
Write
data

16 32

M
u
x

Read
address

Read
data Write M

address u Data x

Write memory
data

FIGURE 5.12 Combining the datapaths for the memory Instructions and the R·type Instructions. This example
shows how a single datapath can be assembled from the pieces. The multiplexors and their connections are highlighted.

4

Read
address

Instruction
memory

5.3 A Simple Implementation Scheme

Instruction

Read
1q::stcr 1

H3 'i?
""+------'.,_! .:!:�d

Data
memory

285

M

FIGURE 5.13 The Instruction fetch portion of the datapath from Figure 5.6 is appended to the datapath of
Figure 5.12 that handles memory and ALU Instructions. The addition is highlighted. The result is a datapath that sup
ports many operations of the MIPS instruction set-branches and jumps are the major missing pieces.

must keep the adder in Figure 5.11 for computing the branch target address.
An additional multiplexor is required to select either the sequentially follow
ing instruction address (PC + 4) or the branch target address to be written into
the PC. Because the PC will be written with one of these two values on every
clock, we do not need an explicit write control signal.

Now that we have completed this simple datapath, we can add the control
unit. The control unit must be able to take inputs and generate a write signal
for each state element, the selector control for each multiplexor, and the ALU
control. The ALU control is different in a number of ways, and it will be useful
to design it first before we design the rest of the control unit.

The ALU Control

Recall from Chapter 4 that the ALU has three control inputs. Only five of the
possible eight input combinations are used. Figure 4.19 on page 195 showed
the five following combinations:

286

4

Read
acidress

Instruction
memory

Chapter 5 The Processor: Datapath and Control

000 And

001 Or

010 Add

110 Subtract

111 Set-on-less-than

Depending on the instruction type, the ALU will need to perform one of these
five functions. For load and store instructions, we use the ALU to compute
the memory address by addition. For the R-type instructions, the ALU needs
to perform one of five actions (subtract, add, AND, OR, or set-on-less-than),
depending on the value of the 6-bit funct (or function) field in the low-order

Instruction

Read
register 1
Read
reg;ister 2

Registers Read i--.--+--r Write data 2
register

\1\lrite
data

M

M
u
x

Read
data

Data
memory

M

FIGURE 5.14 The slmple datapath for the MIPS architecture combines the elements required by the different
Instruction classes. This datapath can execute the basic instructions (load/store word, ALU operations, and branches) in
a single clock cycle. The additions to Figure 5.13, which are needed to implement branches, are highlighted.

5.3 A Simple Implementation Scheme 287

Instruction Instruction Desired ALU control
opcode ALU Op operation Function code ALU action input

LW 00 load word xxxxxx add 010
SW 00 store word xxxxxx add 010
Branch equal 01 branch equal xxxxxx subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 O R 100101 or 001
R-type 10 set-on-less-than 101010 set-on-less-than 111

FIGURE 5.15 This table shows how the ALU control bits are set depending on the ALUOp
control bits and the different function codes for the R·type instruction The opcode, listed
in the first column, determines the setting of the ALUOp bits. All the encodings are shown in
binary. Notice that when the ALUOp code is 00 or 01, the output fields do not depend on the
function code field; in this case, we say that we "don't care" about the value of the function code,
and the function field is shown as X X X X X X . When the ALU Op value is 10, then the function code
is used to set the ALU control input.

bits of the instruction (see Chapter 3, page 104). For branch equal, the ALU
must perform a subtraction.

We can generate the 3-bit ALU control input using a small control unit that
has as inputs the function field of the instruction and a 2-bit control field,
which we call ALUOp. ALUOp indicates whether the operation to be per
formed should be add (00) for loads and stores, subtract (01) for b e q, or the op
eration encoded in the function field (10). The output of the ALU control unit
is a 3-bit signal that directly controls the ALU by generating one of the five
3-bit combinations shown on the previous page. In Figure 5.15 we show how
to set the ALU control inputs based on the 2-bit ALUOp control and the 6-bit
function code. For completeness, the relationship between the ALUOp bits
and the instruction opcode is also shown. Later in this chapter we will see how
the ALUOp bits are generated from the main control unit.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit function code field to the three ALU operation con
trol bits. Because only a small number of the 64 possible values of the function
field are of interest and the function field is used only when the ALUOp bits
equal 10, we can use a small piece of logic that recognizes the subset of possible
values and causes the correct setting of the ALU control bits. As a step in de
signing this logic, it is useful to create a truth table for the interesting combi
nations of the function code field and the ALUOp bits as we've done in
Figure 5.16 ; this truth table shows how the 3-bit ALU control is set depending
on these two input fields. Since the full truth table is very large (28

= 256 en
tries) and the ALU control is unused for most of these input combinations, we
show only the truth table entries for which the ALU control is needed.

288 Chapter 5 The Processor: Datapath and Control

0 0 x x x x x x 010

x 1 x x x x x x 110

1 x x x 0 0 0 0 010

1 x x x 0 0 1 0 110

1 x x x 0 1 0 0 000

1 x x x 0 1 0 1 001

1 x x x 1 0 1 0 111

FIGURE 5.16 The truth table for the three ALU control bits (called Operation) as a func-
tion of the ALUOp and function code field. Only the entries for which the ALU control is not
all zeroes are shown. Some don't care entries have been added. For example, the ALUOp does
not use the encoding 11, so the truth table can contain entries lX and Xl, rather than 10 and 01.
Also, when the function code field is used, the first two bits (FS and F4) of these instructions are
always 10, so they are don't care terms and are replaced with XX in the truth table.

Throughout this chapter, we will use this practice of showing only the truth
table entries that have nonzero output values. (This practice has a disadvan
tage that we will discuss shortly.)

Because in many instances we do not care about the values of some of the
inputs and to keep the tables compact, we also include "don't care" terms. A
don't care term in this truth table (represented by an X) indicates that the out
put is true, independent of the value of the corresponding input. For example,
when the ALUOp bits are 00 , as in the first line of the table in Figure 5.16, we
always set the ALU control to 0 1 0, independent of the function code. In this
case, then, the function code inputs will be don't cares in this line of the truth
table. Later, we will see examples of another type of don't care term. The read
er unfamiliar with the concept of don't care terms should see Appendix B for
more information.

Once the truth table has been constructed, it can be optimized and then
turned into gates. This process is completely mechanical. Optimization takes
advantage of the don't cares in the table.

A logic block that implements the ALU control function will have three dis
tinct outputs (called Operation2, Operationl, and OperationO), each corre
sponding to one of the three bits of the ALU control. The logic function for
each output is constructed by combining all the truth table entries that set that
particular output. For example, the low-order bit of the ALU control (Opera
tionO) is set by the last two entries of the truth table in Figure 5.16. Thus, the
truth table for OperationO will have these two entries. In addition, looking at
the truth tables for each output individually allows us to minimize the logic
required by exploiting commonalities among the terms associated with an out
put. Figure 5.17 shows the truth tables for each of the three ALU control bits.

5.3 A Simple Implementation Scheme

ALUOp Function code fields ·

289

ALUOpl ALUOpO FS F4 F3 F2 Fl FO

1 x x x x x 1 x

a. The truth table for Operation2 = 1. This table corresponds to the left bit of the Operation field
in Figure 5.16.

�·��F:' ALUOp Function code fields
. ALtfop_l . AL_lJOpO FS F4 F3 F2 Fl FO

x x x x x 0

b. The truth table for Operation! = 1.

ALUOp Function code fields

x x

ALUOpl ALUOpO FS F4 F3 F2 Fl FO

1 x x x 1 x x x

c. The truth table for OperationO = 1.

FIGURE 5.17 The truth tables for the three ALU control lines. Only the entries for which the
output is 1 are shown. The bits in each field are numbered from right to left starting with O; thus,
FS is the most significant bit of the function field and FO is the least significant bit. Similarly, the
names of the signals corresponding to the 3-bit operation code supplied to the ALU are Opera
tion2, Operation1, and OperationO (with the last being the least significant bit). Thus, the truth
table above shows the input combinations for which the ALU control should be 010, 001, llO, or
111 (the combinations 011, 100, and 101 are not used). The ALUOp bits are named ALUOpl and
ALUOpO. The three output values depend on the 2-bit ALUOp field and, when that field is equal
to 10, the 6-bit function code in the instruction. Accordingly, when the ALUOp field is not equal
to 10, we don't care about the function code value (it is represented by an X). See Appendix B for
more background on don't cares.

We have also taken advantage of the common structure in each truth table to
incorporate additional don't cares. For example, the five lines in the truth table
of Figure 5.16 that set Operationl are reduced to just two entries in Figure 5.17.
A logic minimization program will use the don't care terms to reduce the num
ber of gates and the number of inputs to each gate in a logic gate realization of
these truth tables.

From the simplified truth table in Figure 5.17, we can generate the logic
shown in Figure 5.18, which we call the ALU control block. This process is
straightforward and can be done with a computer-aided design (CAD) pro
gram. An example of how the logic gates can be derived from the truth tables
is given in the legend to Figure 5.18.

290 Chapter 5 The Processor: Datapath and Control

ALUOp

ALU control block

ALUOpO

ALUOpl

Operation2
F3

--- Operation
F2 Operationl

F (5-0)
Fl

OperationO

FO

FIGURE 5.18 The ALU control block generates the three ALU control bits, based on the
function code and ALUOp bits. This logic is generated directly from the truth table in
Figure 5.17. Only 4 of the 6 bits in the function code are actually needed as inputs, since the upper
2 bits are always don't cares. Let's examine how this logic relates to the truth table of Figure 5.17.
Consider the Operation2 output, which is generated by two lines in the truth table for Opera
tion2. The second line is the AND of two terms (Fl = 1 and ALUOpl = l); the top two-input AND
gate corresponds to this term. The other term that causes Operation2 to be asserted is simply
ALUOpO. These two terms are combined with an OR gate whose output is Operation2. The out
puts OperationO and Operationl are derived in similar fashion from the truth table.

This ALU control logic is simple because there are only three outputs, and
only a few of the possible input combinations need to be recognized. If a large
number of possible ALU function codes had to be transformed into ALU con
trol signals, this simple method would not be efficient. Instead, one could use
a decoder, a memory, or a structured array of logic gates. These techniques are
described in detail in Appendices B and C.

Elaboration: In genera l , a logic equation and truth table representation of a logic
function are equivalent. (We d iscuss this in further detai l in Appendix B .) However,
when a truth table on ly specifies the entries that result in nonzero outputs, it may not
completely describe the logic function. A fu l l truth table completely ind icates al l don't
care entries. For example, the encod ing 11 for ALUOp always generates a don't care in
the output. Thus, a complete truth table would have XXX in the output portion for a l l
entries with 11 in the ALUOp field. These don't care entries allow us to replace the

5.3 A Slmple Implementation Scheme 291

Field 0 rs rt rd sh amt funct

Bit positions 31-26 25-21 20-16 15-11 10-6 5-0

a . R-type instruction

Field 35 or 43 rs rt address

Bit positions 31-26 25-21 20-16 15-0

b. Load or store instruction

Field 4 rs rt address

Bit positions 31-26 25-21 20-16 15-0

c. Branch instruction

FIGURE 5.19 The three Instruction classes (R·type, load and store, and branch) use two different Instruction for
mats. The jump instructions use another format, which we will discuss shortly. a. Instruction format for R-format
instructions, which all have an opcode of 0. These instructions have three register operands: rs, rt, and rd. Fields rs and rt
are sources, and rd is the destination. The ALU function is in the field funct and is decoded by the ALU control design in
the previous section. The instructions with this form that we implement are add, sub, and, or, and sit. The shamt field is
used only for shifts; we will ignore it. b. Instruction format for load (opcode=35) and store (opcode=43) instructions. The
register rs is the base register that is added to the 16-bit address field to form the memory address. For loads, rt is the desti
nation register for the loaded value. For stores, rt is the source register whose value should be stored into
memory. c. Instruction format for branch equal (opcode=4). The registers rs and rt are the source registers that are com
pared for equality. The 16-bit address field is shifted and added to the PC to compute the branch target address.

ALUOp field 10 and 01 with 1X and X1, respectively. Incorporating the don't care terms
and min imizing the logic is both complex and error-prone and , thus , is better left to a
program.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function
code and a 2-bit signal as its control inputs, we can return to looking at the
rest of the control. To start this process, let's identify all the control lines and
the required instruction components for the datapath we constructed in
Figure 5.14 on page 286. To understand how buses should be added to route
the instruction pieces to the datapath, it is useful to review the formats of the
three instruction types: the R-type, branch, and load/store instructions.
These formats are shown in Figure 5.19.

There are several major observations about this instruction format that we
will rely on:

• The op field, also called the opcode, is always contained in bits 31-26. We
will refer to this field as Op[5-0] .

292 Chapter 5 The Processor: Datapath and Control

• The two registers to be read are always specified by the rs and rt fields,
at positions 25-21 and 20-16. This is true for the R-type instructions,
branch equal, and for store.

• The base register for load and store instructions is always in bit posi
tions 25-21 (rs).

• The 16-bit offset for branch equal, load, and store is always in positions
15-0.

• The destination register is in one of two places. For a load it is in bit
positions 20-16 (rt), while for an R-type instruction it is in bit positions
15-11 (rd). Thus, we will need to add a multiplexor to select which field
of the instruction is used to indicate the register number to be written.

Using this information, we can add the instruction labels and extra multi
plexor (for the Write register number input of the register file) to the simple
datapath. Figure 5.20 shows these additions plus the ALU control block, the
write signals for state elements, the read signal for the data memory, and the
control signals for the multiplexors. Since all the multiplexors have two inputs,
they each require a single control line.

Figure 5.20 shows the seven single-bit control lines plus the 2-bit ALUOp
control signal. We have already defined how the ALUOp control signal works,
and it is useful to define what the seven other control signals do informally be
fore we determine how to set these control signals during instruction execu
tion. Figure 5.21 describes the function of these seven control lines.

Now that we have looked at the function of each of the control signals, we
can look at how to set them. The control unit can set all but one of the control
signals, based solely on the opcode field of the instruction. The PCSrc control
line is the exception. That control line should be set if the instruction is branch
on equal (a decision that the control unit can make) and the Zero output of the
ALU, which is used for equality comparison, is true. To generate the PCSrc
signal, we will need to AND together a signal from the control unit, which we
call Branch, with the Zero signal out of the ALU.

These nine control signals can now be set on the basis of six input signals
to the control unit, which are the opcode bits. The datapath with the control
unit and the control signals are shown in Figure 5.22.

Before we try to write a set of equations or a truth table for the control unit,
it will be useful to try to define the control function informally. Because the set
ting of the control lines depends only on the opcode, we define whether each
control signal should be 0, 1, or don't care (X), for each of the opcode fields of
interest. Figure 5.23 defines how the control signals should be set for each op
code; this information follows directly from Figures 5.15, 5.21, and 5.22.

With the information contained in Figures 5.21 and 5.23, we can design the
control unit logic, but before we do that, let's look at how each instruction uses

I •
Liia = ...

4 I I
Read maddress

Instruction
131-0)

Instruction
memory

RegWnte

Instruction 125-21) I Read
register 1

I Instruction (20-16) I Read • register 2

PCSrc

.-����������������+10

d��"f I I ALUSrc I

M
u
x

-----1

MemWnte

Write
Registers Read I 1 I (0 data 2

Read
address

Read
data

Instruction 115-11)

Instruction 115-01

u
x

RegDst

register

Write
data

16

Instruction 15-0)

Write
address

L.""""1------'----�,__-l ��;�e

Data

memory

MemRead

ALUOp

MemtoReg

u

FIGURE 5.20 The datapath of Figure 5.14 wHh all necessary multiplexors and all control lines Identified. The control lines are shown in color.
The ALU control block has also been added

294 Chapter 5 The Processor: Datapath and Control

sig�@.! iamJil ���. ,} -��ffE�ct :when deasserted . Effect when asserted
MemRead None Data memory contents at the read address are put on

read data output.
MemWrite None Data memory contents at address given by write

address is replaced by value on write data input.
ALUSrc The second ALU operand comes from the second The second ALU operand is the sign-extended lower

register file output. 16-bits of the instruction.
RegDst The register destination number for the Write The register destination number for the Write register

register comes from the rt field. comes from the rd field.
RegWrite None The register on the Write register input is written into

with the value on the write data input.
PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder that

that computes the value of PC + 4. computes the branch target.
MemtoReg The value fed to the register write data input The value fed to the register write data input comes from

comes from the ALU. the data memory.

FIGURE 5.21 The function of each of the seven control signals. When the 1-bit control to a two-way multiplexor is
asserted, the multiplexor selects the input corresponding to 1 . Otherwise, if the control is deasserted, the multiplexor
selects the 0 input. Remember that the state elements all have the clock as an implicit input and that the clock is used in
controlling writes. The clock is never gated externally to a state element, since this can create timing problems. (See Appen
dix B for further discussion of this problem.)

the datapath. In the next few figures, we show the flow of three different in
struction types through the datapath. The asserted control signals and active
datapath elements are highlighted in each of these. Note that a multiplexor
whose control is 0 has a definite action, even if its control line is not highlight
ed. Multiple-bit control signals are highlighted if any constituent signal is as
serted.

Let's begin with an R-type instruction, such as a d d $ x . $ y , $ z . Rather than
looking at the entire datapath as one piece of combinational logic, it is easier
to think of an instruction executing in a series of steps, focusing our attention
on the portion of the datapath associated with each step. The four steps to ex
ecute an R-type instruction are

1 . An instruction is fetched from the instruction memory and the PC is
incremented. Figure 5.24 shows this first step. The active units and
asserted control lines are highlighted; those that are asserted in later
steps of an R-type instruction are in gray, and those in light gray are
those not active for an R-type instruction in any step. The same format
is followed for the next three steps.

2. Two registers, $ y and $ z, are read from the register file as shown in
Figure 5.25 on page 298. The main control unit computes the setting of
the control lines during this step also.

3. The ALU operates on the data read from the register file, using the

I •

t: .!!

4

Read
address

Instruction memory

Instruction
(31--0)

Instruction (31-26)

,,-..,._ __ _, RegDst
Branch
MemRead
MemtoReg
ALUOp

Control MemWnte
ALUSrc
Regwnte

I Instruction (25-21) � I Read
register 1

I Instruction (20-16) I Read d��a� l-�+-11-�-+-� ...
I register 2

M

Instruction (15-11)

Instruction (15-0)

Write
Registers

d�t�a� I I I I r
register

Write
data

16

Instruction (5-0)

Read
address o

u ·--�
M Write u address

Write
data

Readnl data �
Data

memory

FIGURE 5.22 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction. The outputs of
the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for controlling read
and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch
(Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the
ALU; the AND gate output controls the selection of the next PC.

296 Chapter 5 The Processor: Datapath and Control

Memto- Reg Mem Mem
Instruction RegDst ALUSrc Reg Write Read Write Branch ALU0p1 ALUOpO

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
SW x 1 x 0 0 1 0 0 0
beq x 0 x 0 0 0 1 0 1

FIGURE 5.23 The setting of the control lines is completely determined by the opcode fields of the Instruction.
The first row of the table corresponds to the R-format instructions (a d d, s u b t r a c t, a n d, o r, and s l t). For all instructions,
the source register fields are rs and rt and the destination register field is rd; this defines how the signals ALUSrc and
RegDst are set. Furthermore, an R-type instruction writes a register (RegWrite = 1), but neither reads nor writes data mem
ory. The ALUOp field for R-type instructions is set to 10 to indicate that the ALU control should be generated from the
funct field. The second and third rows of this table give the control signal settings for l w and s w. These ALUSrc and
ALUOp fields are set to perform the effective address calculation. The MemRead and MemWrite are set to perform the
memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. The
branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for
branch is set for a subtract (ALU control = 01), which is used to test for comparison. Notice that the MemtoReg field is irrel
evant when the Reg Write signal is 0-since the register is not being written, the value of the data on the register data write
port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don't care. This type of
don't care must be added by the designer, since it depends on knowledge of how the datapath works. Don't cares can also
be added to RegDst when RegWrite is 0.

function code (bits 5-0 of the instruction) to generate the ALU function.
Figure 5.26 on page 299 shows the operation of this step.

4. The result from the ALU is written into the register file using bits 15-11
of the instruction to select the destination register ($ x) . Figure 5.27 on
page 300 shows the final step added to the previous three.

Remember that this implementation is combinational. That is, it is not real
ly a series of four distinct steps. The datapath really operates in a single clock
cycle, and the signals within the datapath can vary unpredictably during the
clock cycle. The signals stabilize roughly in the order of the steps given above,
because the flow of information follows this order. Thus, Figure 5.27 shows
not only the action of the last step, but essentially the operation of the entire
datapath when the clock cycle actually ends.

We can illustrate the execution of a load word, such as l w $ x , o f f s e t ($y) ,
in a style similar to Figure 5.27. Figure 5.28 on page 301 shows the active func
tional units and asserted control lines for a load. We can think of a load instruc
tion as operating in five steps (similar to the R-type executed in four):

1 . An instruction is fetched from the instruction memory and the PC is
incremented.

2. A register ($y) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and
the sign-extended lower 16 bits of the instruction (offs et) .

I ca
� ID
.:::!

4 v

I I
I I I I

address
1f1 Read

I
Instruction

lnstnictlon
[31-0] I metllOl'Y

, RegDst
�< Branch

Mein Read

MemtoReg

Instruction [31-26) ALUOp I MemWnte

ALUSr<
RegWnte

I � Instruction f?r;..?11 .-� - - · Read
register 1

I I I nstruction 120-161 i,:::;::::;::;;::::.:;:.;;..�.:....-::::::---J �e��ter 2

d=�� I I I I •I

I I Instruction�)

I M

--
Instruction [15-0)

Write
RecJste,..

d:�ag I I I I I register
Write
data

16

Instruction [5-01

Read
address

o 1 (··-- "L.� L........l J Read If 1 resu� data M Wu M
address Data memory Write
data

FIGURE 5.24 The first step of an R-type instruction performs a fetch from instruction memory and Increments the PC. The portions active
in this step are highlighted; the light gray portions are not active in any step, while those in between are active on later steps.

I •
t: .!

4 --i / I

Instruction [31-26)

Instruction [2&-21)
Read
address

Instruction [20-16]
......... Instruction

[31--0)
lnotruc:tlon

......_,. Instruction [1&-111

Instruction [1&-0J

/ �h RPgDsl

MemReilfl
MumtOR(•g

I Control l ALUOp
-

Mf'mW11lt:
ALUSrc
RegWnte � register 1 Read
Read data 1

register 2
Reclst.,. Read

M Write data 2
u register

Write
data

16

Instruction [&-OJ

Read
address

Read t--{ l
. · -- ,,L� I _ I I data I J M

0 1 t' ---
Write
address

Data
memory

Write
data

FIGURE 5.25 The second phase In the execution of R-type instructions reads the two source registers from the register flle. The main con
trol unit also uses the opcode field to determine the control line setting. These units become active in addition to the units active during the instruc
tion fetch portion, shown in Figure 5.24.

I •

= .!!

4 --J / I

Read
address

lnetnlctlon
memory

Reg Ost

I \ Branch
Me1nReocl

t/em10R�g

Instruction (31-26) I Conbol l ALUOp
�t-mWr:tt
ALU5rr \ / RegWrite

Instruction (2&-21) � Read register 1

Read
register 2

Read
data 1

Rectst- Read
Write data 2

u register

Instruction (1&-11) •
Write
data

1 1 16
Instruction 11&-DJ > (

Instruction (&-DJ

Read
address

Readnl

Write
data :

address Data
Write

memory
data

FIGURE 5.26 The third phase of execution for II-type Instructions Involves the ALU operating on the register data operands. The control
line values are all set and the ALU control has been computed. The ALU operates on the data.

I •

= -2

4

Read
address LJ

Instruction
[31-0)

lmtructlon
IMftlOf)'

-· , RegDst
81 .�1 1< t•
MC! �,nc HJ
M1·· �toR· r

Instruction (31-26) I I ALUOp
Control 1-;.;..;.._ _______ .,.,

�1<�!� ' W r1 1
,\I U5r<
RegWrite

I Instruction [25-21] � I Read
register 1 Read I I I I 11 data 1 I Read tructlon (20-16)

' register �
Read 1--T"ir I

I Ins I
R._-. data 2 Write

register u

Instruction (15-11) Write
data

Read
address

Write
address

' I I I I l �:�e
Instruction (15-0) 16

Instruction (5-0)

Read
data

Data memory

1
M

FIGURE 5.27 The final step in an R·type instruction, writing the result, is added to the active units shown for the previous thr- steps in
Figure 5.26 on page 299. The PC is also updated at the end of this phase. Because the datapath is combinational, this step shows all the active units
and asserted control lines when they are stable.

l •
Col � '-

4 --I / I
�Hee,Dsi

/ '\ t> 1 1111cn
MemRead
MemtoReg

Instruction (31-26] I Contn>l l � i\;.;;L;;U;.;;0.:;.P _______ .,.1 Mcn1Wr 1te

Read
address

Instruction
....,,_,

Instruction
(31-0]

i\LUSrc
RegWrite

I Instruction (25-21] � I Read
register 1

I Instruction (20-16] I Read I register 2
d��"'t ------�

M u
R..ostera Read I 1 I I , f data 2 Write

register

Instruction (15-11] Write
data

Read
address

Write
address

I I I I I I ��;�
Instruction (15-0] 16

Instruction (5-0]

Read
data

-
"*""'Y

1
M
u

FIGURE 5.28 The operation of a load instruction with the simple datapath control scheme. A store instruction would operate very similarly.
The main difference would be that the memory control would indicate a write rather than a read, the second register value read would be used for
the data to store, and the operation of writing the data memory value to the register file would not occur.

302 Chapter IS The Processor: Datapath and Control

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the regis
ter destination is given by bits 20-16 of the instruction ($ x) .

Finally, we can illustrate the operation of the branch-on-equal instruction,
such as b e q $ x . $y . o f f s et , in the same fashion. It operates much like an
R-format instruction, but the ALU output is used to determine whether the PC
is written with PC + 4 or the branch target address. Figure 5.29 shows the four
steps in execution:

1 . An instruction is fetched from the instruction memory and the PC is
incremented.

2. Two registers, $ x and $ y, are read from the register file.

3. The ALU performs a subtract on the data values read from the register
file. The value of PC + 4 is added to the sign-extended lower 16 bits of
the instruction (o f f s e t); the result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to
store into the PC.

In the next section, we will examine machines that are truly sequential,
namely, those in which each of these steps is a distinct clock cycle.

Now that we have seen how the instructions operate in steps, let's continue
with the control implementation. The control function can be precisely defined
using the contents of Figure 5.23. The outputs are the control lines, the input is
the 6-bit opcode field, Op [5-0]. Thus, we can create a truth table for each of
the outputs. Before doing so, let's write down the encoding for each of the op
codes of interest in Figure 5.23, both as a decimal number and as a series of bits
that are input to the control unit:

(;.��-- . ! · '.' · · �·::.�:,,�?-�· i;� :-i.-; ·. :.1' �:� .. ::;��� b.ll� � ... �:1'\!'-.,,:,..{o'�. :··:---:;.:�
•· •• ·)Opcode· m .,,_. . '"'. ... - - • pco e m. mary.,.. . ._ . , , . . ,

' ... - • •_ , , • .. r , �" L r f'" , � • Ji, , �, , • � " • • J • t
�- Name'. · · . ��ci_r'nal • . · ·op��' ,' Op4 . .- , Op���· .• Op2·· · Op1· ._ :' OpO
R-format Oien 0 0 0 0 0 0

lw 351en 1 0 0 0 1 1

SW 431en 1 0 1 0 1 1

beq 41en 0 0 0 1 0 0

Using this information, we can now describe the logic in the control unit in
one large truth table that combines all the outputs as in Figure 5.30. It com-

ii' f
� �

4

Read address

lnstNCtlon
memory

Instruction
(31-0)

Instruction (31-26)

� . Re�Dst
Branch
Mt'rnRead
Me1nt0Rt-g

ALU Op

Control Mt..•mWnlt'

ALUS1c
RegWnte

I Instruction (25-21) - I Read register 1

I Instruction (20--16) I Read d��a� l-�.-tt--�-+-�.-t
1 register 2

Instruction [15-11]

Instruction [15-0)

M
u

. Registers Read I 1 I I (Write data 2 register
Wnte
data

16

lnstructmn [5--0 J

�l (·�--
re;�EJ-TI

Read 1 address
Read

Wnte
data 1 I M

address Data
Write

memory

data

FIGURE 5.29 The datapath in operation for a branch equal instruction. After using the register file and ALU to perform the compare, the Zero
output is used to select the next program counter from between the two candidates.

304 Chapter 5 The Processor: Datapath and Control

R-format lw SW beq
Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0
Inputs

Op2 0 0 0 1

Op1 0 1 1 0

OpO 0 1 1 0

RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1

FIGURE 5.30 The control function for the slmple one-clock Implementation Is completely
specified by this truth table. The top half of the table gives the combinations of input signals
that correspond to the four opcodes that determine the control output settings. (Remember that
Op [5-0] corresponds to bits 31-26 of the instruction, which is the opcode field.) The bottom por
tion of the table gives the outputs. Thus, the output RegWrite is asserted for two different combi
nations of the inputs. If we consider only the four opcodes shown in this table, then we can
simplify the truth table by using don't ca�n the input portion. For example, we can detect
an R-format instruction with the equation Op5 • Op2, since this is sufficient to distinguish the
R-format instructions from l w, s w, and b e q . We do take advantage of this simplification, since the
rest of the MIPS opcodes are used in a full implementation.

pletely specifies the control function, and we can implement it directly in gates
in the same way that we implemented the ALU control unit.

Implementing this simple control function with an unstructured collection
of gates is reasonable because the control function is neither complex nor large.
However, if most of the 64 possible opcodes were used and there were many
more control lines, the number of gates would be much larger and each gate
could have many more inputs. Since any function can be computed in two lev
els of logic, another way to implement a logic function is with a structured
two-level logic array. Figure 5.31 shows such an implementation. It uses an ar
ray of AND gates followed by an array of OR gates. This structure is called a
programmable logic array (PLA). A PLA is one of the most common ways to im
plement a control function. We will return to the topic of using structured logic
elements to implement control later in this chapter; further discussion of this
topic also appears in Appendices B and C.

5.3 A Simple Implementation Scheme

Inputs

Op5
Op4
Op3
Op2
Op1
OpO

n

R-fo rm at

-

I
�

-

I
Ll��w Llt

lw SW

-

I
w n

beq

-

I
�

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

305

FIGURE 5.31 The structured Implementation of the control function as described by the
truth table In Figure 5.30. The structure, called a programmable logic array (PLA) uses an
array of AND gates followed by an array of OR gates. The inputs to the AND gates are the func
tion inputs and their inverses (bubbles indicate inversion of a signal). The inputs to the OR gates
are the outputs of the AND gates (or, as a degenerate case, the function inputs and inverses). The
output of the OR gates is the function outputs.

Figure 5.22 includes the implementation of many of the instructions we
looked at in Chapter 3. One class of key instructions missing is that of the
jump instructions. Show how to extend the implementation of Figure 5.22
to include the jump instruction. Describe how to set any new control lines.

306 Chapter 5 The Processor: Datapath and Control

The jump instruction looks somewhat like a branch instruction but com
putes the target PC differently and is not conditional. Like a branch, the
low-order 2 bits of a jump address are always OOtwo· The next lower 26 bits
of this 32-bit address come from the 26-bit immediate field in the instruc
tion, as shown in Figure 5.32. The upper 4 bits of the address that should re
place the PC come from the current PC. Thus, we can implement a jump by
storing into the PC the concatenation of

• the upper four bits of the current PC (these are bits 31-28),

• the 26-bit immediate field of the jump instruction, and

• the bits ootwo·

Figure 5.33 on page 307 shows the addition of the control for j mp added
to Figure 5.22. An additional multiplexor is used to select the source for the
new PC value, which is either the incremented PC (PC + 4), the branch tar
get PC, or the jump target PC. One additional control signal is needed for
the additional multiplexor. This control signal, called jump, is asserted only
when the instruction is a jump-that is, when the opcode is 2.

Field 2 address
Bit positions 31-26 25-0

FIGURE 5.32 Instruction format for the jump instruction {opcode = 2). The destination
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC to
the 26-bit address field in the jump instruction and adding 00 as the two low-order bits.

What's Wrong with a Single-Cycle Implementation

By definition, the clock cycle must have the same length for every instruction
in this single-cycle design, and the CPI (see Chapter 2) will therefore be 1 . Of
course, the clock cycle is determined by the longest possible path in the
machine. This path is almost certainly a load instruction, which uses five
functional units in series: the instruction memory, the register file, the ALU,
the data memory, and the register file. Although the CPI is 1, the overall per
formance of a single clock implementation is not likely to be very good, since
several of the instruction types could fit in a shorter clock cycle.

I •

�
�

4

I I yPC� Read
address I I I Instruction

(31--0]

lnstrucllon
memory I

Instruction (25--0J Jump address (29--0)

PC + 4 [2�26]

Instruction (31-26]

1 1 Instruction 125-211

� , Rel!D5t
Jump
BriJnch

Me1riRedc1

MemtoReg

ALUOll

Mf'1nWn1e

ALUSrc

RegW1lte

Read ... ____________ register 1

I I Instruction l?O- rn I
Read I I I I rl data 1 � . I Read I I register 2

Write
Registers

d=t�a� I I I I ' I
1 1 Instruction 115-111

Instruction (15-01

register

Write
data

16

Instruction 15--01

�l (----
re;�EJ-rf

Read
address I Write
address

Write
data

Data

Re•d n1 data M
u

memory

FIGURE 5.33 Tbe simple control and datapath are extended to handle the Jmp Instruction. An additional multiplexor (at the upper right) is used
to choose between target and either the branch target or the sequential instruction following this one. This multiplexor is controlled by the jump control
signal. The jump instruction as defined in the MIPS instruction set actually uses the value of PC [31-28] for the jump target address rather than the
value of these bits after the PC has been incremented by 4. This makes a difference only if the increment of the PC by 4 causes one of the high-order
4 bits of the PC to change. For simplicity, we ignore this detai l and use the incremented PC as the source for the upper 4 bits.

308 Chapter 5 The Processor: Datapath and Control

Assume that the operation time for the major functional units in this imple
mentation are

• Memory units: 10 ns,

• ALU and adders: 10 ns,

• Register file (read or write): 5 ns.

Assuming that the multiplexors, control unit, PC accesses, sign-extension
unit, and wires have no delay, which of the following implementations
would be faster and by how much?

1 . An implementation in which every instruction operates in one clock
cycle of a fixed length.

2. An implementation where every instruction executes in one clock cycle
using a variable-length clock, which for each instruction is only as long
as it needs to be. (Such an approach is not terribly practical, but it will
allow us to see what is being sacrificed when all the instructions must
execute in a single clock of the same length.)

Use the instruction mix for gee that appears in Chapter 4, Figure 4.46 on
page 248 to determine the performance of the alternatives.

Let's start by comparing the CPU execution times. Recall from Chapter 2
that

CPU execution time = Instruction count x CPI x Clock cycle time

Since CPI must be 1, we can simplify this to

CPU execution time = Instruction count x Clock cycle time

We need only find the clock cycle time for the two implementations. The
critical path for the different instruction types is as follows:

5.3 A Slmple Implementation Scheme

.,� .. • -·-- ,1.E_· :• '�t ...-� .. -:- � ;.:- .. l • ,., � �· •. i "l\ " •- ., �.
• -

��'!S!r�£_�On�'""·:,_ .\t,< . : <'1.:. ... �1'-.\'::,'.;'f¥,-� .. ·if,· . . ·· , '· •,- ,:,
typ_� �� ;·�� :.��;'.!.�;!!'.:-;.f Libc;ti_�l)a!(u.nlts!fi_s_ed; by, the_ in'struction. !YPe

R-format Instruction Register ALU Register
fetch access access

309

Load word Instruction Register ALU Memory Register
fetch access access access

Store word Instruction Register ALU Memory
fetch access access

Branch Instruction Register ALU
fetch access

Jump Instruction
fetch

Using these critical paths, we can compute the required length for each
instruction type:

R-format operations 10 5 10 0 5 30 ns
Load word 10 5 10 10 5 40 ns
Store word 10 5 10 10 35 ns
Branch 10 5 10 0 25 ns
Jump 10 10 ns

So the clock cycle for a machine with a single clock for all instructions is
40 ns, but a machine with a variable clock will have a cycle between 10 ns
and 40 ns.

We can find the average clock cycle length for a machine with a variable
length clock using the information above and an instruction frequency dis
tribution. This distribution can be computed from Chapter 4's Figure 4.46
by summing the individual frequencies into categories: 22% loads, 11 %
stores, 49% R-format operations, 16% branches, and 2% jumps.

Thus, the average time per instruction with a variable clock is

CPU clock cycle = 40 x 22% + 35 x 1 1 % + 30 x 49% + 25 x 16% + 10 x 2%

= 31.6 ns

Since the variable clock implementation has a shorter average clock
cycle, it is clearly faster. Let's find the performance ratio:

310 Chapter 5 The Processor: Datapath and Control

CPU performance variable clock

CPU performance single clock

CPU performance variable clock

CPU performance single clock

CPU Execution time
. 1 1 k smg e c oc

CPU Execution time variable clock

IC x CPU clock cycle . 1 1 k smg e c oc

IC X CPU clock cycle variable clock

CPU clock cycle single clock

CPU clock cycle variable clock

40
= 1 .27

31.6

The variable clock implementation would be 1 .27 times faster. Unfortunate
ly, implementing a variable-speed clock for each instruction type is ex
tremely difficult, and the overhead for such an approach could be larger
than any advantage gained. As we will see in the next section, an alternative
is to use a shorter clock cycle that does less work and then vary the number
of clock cycles for the different instruction types.

The penalty for using the single-clock-cycle design with a fixed clock cycle
is nontrivial, but might be considered acceptable for this small instruction set.
However, if we tried to implement the floating-point unit or an instruction set
with more complex instructions, or to use more sophisticated implementation
techniques, this single-clock-cycle design wouldn't work well at all. Let's look
at an example with floating point.

Suppose we have a floating-point unit that requires 20 ns for a floating
point add time and 60 ns for a floating-point multiply. All the other func
tional unit times are as in the previous example, and a floating-point in
struction is like an arithmetic-logical instruction, except that it uses the
floating point ALU rather than the main ALU. Using the instruction distri
bution for spice from Chapter 4, Figure 4.46 on page 248, find the perfor
mance ratio between an implementation in which the clock cycle is different
for each instruction type and an implementation in which all instructions
have the same clock cycle time. Assume that

• Double-precision loads and stores take the same time as 32-bit loads
and stores.

• FP branch takes the same time as an integer branch.

5.3 A Slmple Implementation Scheme

• FP subtract and compare take the same time as FP add.

• FP divide takes the same time as FP multiply.

From the previous example, we know that

CPU performance variable clock CPU clock cycle single clock

CPU performance single clock CPU clock cycle variable clock

311

The cycle time for the single-cycle machine will be equal to the longest in
struction timing, which is floating-point multiply. The time for a floating
point multiply, and thus the clock cycle, is 10 + 5 + 60 + 5 = 80 ns .

Consider a machine whose instructions have different cycle times. The
time for a floating-point add instruction is 10 + 5 + 20 + 5 = 40 ns . If we sum
up the individual instruction frequencies in Figure 4.46, we get 26% loads,
14% stores, 31% R-format, 8% branches, 2% jumps, and 19% floating-point
operations (of which 9% are multiplies or divides, and 10% are adds, sub
tracts, or compares). Thus, the average clock length will be

CPU clock cycle = 40 x 26% + 35 x 14% + 30 x 31 % + 25 x 8%

+ 10 x 2% + 80 x 9% + 40 x 10% = 38.0 ns

The improvement in performance is

CPU performance variable clock CPU clock cycle single clock
---��������� = -����������

CPU performance single clock CPU clock cycle variable clock

80
- = 2.11
38

A variable clock would allow us to improve performance by more than
two times.

Similarly, if we had a machine with more powerful operations and address
ing modes, instructions could vary from three or four functional unit delays to
tens or hundreds of functional unit delays. In addition, because we must as
sume that the clock cycle is equal to the worst-case delay for all instructions,
we can't use implementation techniques that reduce the delay of the common
case but do not improve the worst-case cycle time. For example, such a restric
tion would make a cache useless in this machine! A single-cycle implementa
tion thus violates our key design principle of making the common case fast. In

312 Chapter 5 The Processor: Datapath and Control

addition, with this single-cycle implementation, each functional unit can be
used only once per clock; therefore, some functional units must be duplicated,
raising the cost of the implementation.

We can avoid these difficulties by using implementation techniques that
have a shorter clock cycle-derived from the basic functional unit delays
and that require multiple clock cycles for each instruction. The next section ex
plores this alternative implementation scheme. In Chapter 6, we'll look at an
other implementation technique, called pipelining, that uses a datapath very
similar to the one in this section. Pipelining overlaps the execution of multiple
instructions to further increase performance.

II A MuHlple Clock Cycle Implementation

In an earlier example, we broke each instruction into a series of steps corre
sponding to the functional unit operations that were needed. We can use
these steps to create a multicycle implementation. In a multicycle implementa
tion, each step in the execution will take one clock cycle. The multicycle imple
mentation allows a functional unit to be used more than once per instruction,
as long as it is used on different clock cycles. This can help reduce the amount
of hardware required. The ability to allow instructions to take different num
bers of clock cycles and the ability to share functional units within the execu
tion of a single instruction are the major advantages of a multicycle design.
Figure 5.34 shows the abstract version of the multicycle datapath. Comparing
this to the datapath for the single-cycle version shown in Figure 5.14 on
page 286, we can see the following differences:

• A single memory unit is used for both instructions and data.

• A register is used to save the instruction after it is read. This Instruction
register (IR) is required because the memory may be re-used to access
data later in the instruction execution.

There is a single ALU, rather than an ALU and two adders.
Because several functional units are shared for different purposes, we need

both to add multiplexors and to expand existing multiplexors. Since one mem
ory is used for both instructions and data, we need a multiplexor to select be
tween the two sources for a memory address, namely the PC (for instruction
access) and the ALU result (for data access). Sharing the ALU requires the in
troduction of a multiplexor for the first ALU input, which can be either a reg
ister or the PC, and a change in the multiplexor on the second ALU input from
a two-way to a four-way multiplexor, which requires two additional
inputs: the constant 4 (used to increment the PC) and the sign-extended and
shifted offset field used in the branch address computation. Figure 5.35 shows

5.4 A Multiple Clock Cycle Implementation 313

-

- Data � - PC Address

- - Register #
Memory

Instruction � Instruction - Registers ALU -or data -
register - Register # v - Data - Register #

FIGURE 5.34 The high-level view of the multlcycle datapath. This picture shows the key elements of the datapath: a
shared memory unit, a single ALU shared among instructions, and the datapaths to connect these shared units.

M
Read
address

Memory

---.i ����SS
Write
data

MemData
Instruction

register

------.i Read
register 1

------.i �e���ter 2

M
u
x

Registers
Write
register

Write
data

16

FIGURE 5.35 Multlstate datapath for MIPS handles all basic Instructions. The additions versus the single-�lock data
path include a multiplexor for the memory read address, a multiplexor for the top ALU input, and an expansion of the
multiplexor on the bottom ALU input to a four-way selector. These small additions allow us to remove two adders and a
memory unit.

314 Chapter 5 The Processor: Datapath and Control

the details of the datapath with these additional multiplexors. Altogether, by
introducing a register and three multiplexors, we are able to reduce the num
ber of memory units from two to one and eliminate two adders. Since registers
and multiplexors are fairly small, this could yield a substantial reduction in the
hardware cost.

Because the datapath shown in Figure 5.35 takes multiple clock cycles per
instruction, it will require a different set of control signals. We will need a
write signal for each of the state elements: the memory, the PC, the general
purpose registers, and the Instruction register. We will also need a read signal
for the memory. We can use the ALU control unit from earlier examples (Fig
ures 5.17 and 5.18) to control the ALU here as well. Finally, each of the two
input multiplexors requires a single control line, while the four-input multi
plexor requires two control lines. Figure 5.36 shows the datapath of
Figure 5.35 with these control lines added. After we look at the sequencing of
instructions we will see that additional control signals will be required to im
plement some instructions, specifically branches; these signals will control
when the PC is written and what value is written into the PC.

Before examining the steps to execute each instruction, it is useful to state
informally what effect the control signals, which we have added, have when
they are asserted and deasserted (just as we did for the single-cycle design in
Figure 5.21 on page 294). Figure 5.37 shows what each control signal does
when it is asserted and deasserted. The single-bit control signals appear in ta
ble a of the figure, and the two-bit control signals ALUSelB and ALUOp are
defined in table b.

li:lr1n11r1111111n� To reduce the number of signal l ines interconnecting the functional
units, designers can use shared buses. A shared bus is a set of l ines that connect mul
tiple units; in most cases, they include multiple sources that can place data on the bus
and multiple readers of the value. Just as we reduced the number of functional units
for the datapath, we can reduce the number of buses interconnecting these units by
sharing the buses. For example, there are five sources coming to the ALU ; however,
only two of them are needed at any one time. Thus, a pair of buses can be used to hold
values that are being sent to the ALU . Rather than placing a large multiplexor in front of
the ALU , a designer can use a shared bus and then ensure that only one of the sources
is driving the bus at any point.

Breaking the Instruction Execution into Clock Cycles

Given this datapath, we now need to look at what should happen in each
clock cycle of the multicycle execution, since this will determine what addi
tional datapath elements (temporary registers, for example) and what addi-

I •
� .!

lorD MemRead MemWnte

0

LJ M Read u
• address

1 Memory
Wrtte
address MemData

Wrtte
data

IRWnte

Instruction
(25-21]

Instruction
(20-16)

Instruction

RegDst Regwnte

1--------+---� Read
register 1

Read 1------1---+----� register 2
Registers

[15-0]
Instruction I I Instruction

[15-11)

Write
register

Wrtte
data register

Instruction
[15-0)

M

•
1

MemtoReg

16

Instruction
(5-0]

ALUSelA

d��81. 1-----�

d��� 1-.----�
4

ALUSelB

ALUOp

FIGURE 5.36 The multicycle datapath with the control lines shown. The signals ALUOp and ALUSelB are 2-bit control signals, while all
the other control lines are 1-bit signals. The MemRead signal has been moved to the top of the memory unit to simplify the figures.

316 Chapter 5 The Processor: Datapath and Control

Signal name Effect when deasserted Effect when asserted ,. . ·-
Mem Read None Contents of memory at the read address are put on read

data output.
MemWrite None Memory contents at the write address is replaced by value

on write data input
ALUSelA The first ALU operand is the PC. The first ALU operand comes from the register given by the

rs field.
RegDst The register destination number for the The register destination number for the register write

register write comes from the rt field. comes from the rd field.
RegWrite None The register given by Write register number is written with

the value on the write data input.
MemtoReg The value fed to the register write data input The value fed to the register write data input comes from

comes from the ALU . the Data memory.
lorD The PC is used to supply the address to the The output of the ALU is used to supply the address to the

memory unit. memory unit.
IRWrite None The value from the memory unit is written into the

Instruction rel!ister (IR) .

a . The actions of the 1-bit control signals are defined.

Signal name Value Effect ··- A ,. ..- *_.

00 The second input to the ALU comes from the register given by the rt field.

ALU Se IS
01 The second input to the ALU is the constant 4.
10 The second input to the ALU is the sign.extended lower 16 bits of the IR.
11 The second input to the ALU is the sign.extended and shifted lower 16 bits of the IR
00 The ALU performs an add operation .

ALU Op 01 The ALU performs a subtract operation .
10 The function code field of the instruction determine the ALU operation.

b. The actions of the 2-bit control signals are defined.

FIGURE 5.37 The action caused by the setting of each control slgnal. Table a describes the 1-bit control signals, while
table b describes the 2-bit signals. Only those control lines that affect multiplexors have an action when they are 0. This
information is similar to that in Figure 5.21 on page 294 for the single-cycle datapath, but adds the new control lines (ALU
SelA, IorD, IRWrite, and ALUSelB) and removes control lines that are no longer used or have been replaced Gump, Branch,
and ALUSrc).

tional control signals may be needed. We will need to introduce a register to
hold a signal value whenever the following two conditions hold:

1. The signal is computed in one clock cycle and used in another; and

2. The inputs to the functional block that outputs this signal can change
before the signal is written into a state element.

5.4 A Multiple Clock Cycle Implementation 317

For example, we need to store the instruction into the Instruction register,
because the functional unit (the memory) that produces the value changes its
output before we complete all uses of the fields of the instruction. On the other
hand, when the ALU is used in an R-type instruction, we need not store its out
put, even though we will not use the output until the next clock. This is be
cause the output of the ALU does not change (that is, it is stable) during the
clock cycle when it is written into the register file. The ALU output is stable be
cause the inputs to the ALU come from the register file, and the output of the
register file is determined by the rs and rt fields of the Instruction register,
which is stable because it is a state element written only once per instruction
execution. Thus, the functional units from the register file through the ALU
constitute one block of combinational logic, whose inputs come from the In
struction register (a state element), and whose output is written into the regis
ter file (also a state element). This structure looks like the structure we saw
abstractly in Figure 5.3 on page 274. Although the single-cycle implementa
tion always used state elements that were written every clock (as in Figure 5.4
on page 275), our multicycle implementation will write the state element selec
tively, as in Figure 5.3.

Our goal in breaking the execution into clock cycles should be to balance the
amount of work done in each cycle, so that we minimize the clock cycle time.
We can break the execution into five steps, each taking one clock cycle, which
will be roughly balanced in length. For example, we will restrict each step to
contain at most one ALU operation, or one register file access, or one memory
access. With this restriction, the clock cycle could be as short as the longest of
these operations.

In the single-cycle datapath each instruction must use a set of datapath
elements to carry out its execution. Many of the datapath elements operate in
series, using the output of another element as an input. Some datapath ele
ments operate in parallel; for example, the PC is incremented and the instruc
tion is read at the same time. A similar situation exists in the multicycle
datapath. All the operations listed in one step occur in parallel within one
clock cycle, while successive steps operate in series in different clock cycles.
The limitation of one ALU operation, one memory access, or one register file
access determines what can fit in one step. The five execution steps and their
actions are given below.

1. Instruction fetch step:

Fetch the instruction from memory and increment the program counter.

I R Memo ry [P C J ;

P C P C + 4 ;

318 Chapter 5 The Processor: Datapath and Control

Operation: Send the PC to the memory as the address, perform a read, and
fetch the instruction into the Instruction register (IR), where it will be stored.
To implement this step, we will need to assert the control signals MemRead
and IRWrite, and set IorD to 0 to select the PC as the source of the address. We
also increment the PC by 4 in this stage, which requires setting the ALUSelB
signal to 01, the ALUSelA signal to 0, and ALUOp to 00 (to make the ALU
add). Finally, we will also want to store the incremented instruction address
back into the PC; we will add this path and control, when we have deter
mined the full control for the PC, including branches. The increment of the PC
and the instruction memory access can occur in parallel.

2. Instruction decode and register fetch step:

In the previous step and in this one, we do not yet know what the instruction
is, so we can perform only actions that are either applicable to all instructions
(such as fetching the instruction in step 1), or are not harmful, in case the
instruction isn't what we think it might be. Thus, in this step we can read the
two registers indicated by the rs and rt instruction fields, since it isn't harmful
to read them even if it isn't necessary. The register contents may be needed in
later stages, so we name them A and B in the following description. The regis
ter outputs need not be saved in a temporary register, since the register num
ber inputs (and thus the register data outputs) are not changed throughout
the execution of the instruction.

We will also compute the branch target address with the ALU, which also
is not harmful because we can ignore the value if the instruction turns out not
to be a branch. Because we do not know whether this instruction is a branch
(let alone whether the branch should be taken) and because we need to use the
ALU for other purposes in later steps, we must save the computed branch tar
get address into a new register that we name Target. (We'll show the revised
datapath and control once we have completed all five steps.)

Performing these "optimistic" actions early has the benefit of decreasing the
number of clock cycles needed to execute an instruction. We can do these op
timistic actions early because of the regularity of the instruction formats. For
instance, if the instruction has two register inputs, they are always in the rs
and rt fields; and if the instruction is a branch, the offset is always the low
order 16 bits:

A R e g i s t e r [I R [2 5 - 2 1]] ;

B Re g i s t e r [I R [Z 0 - 1 6]] ;

T a r g e t = P C + (s i g n - e x t e n d C I R [l 5 - 0 J) < < 2) ;

Operation: Access the register file to read the registers using the rs and rt
fields; this does not require setting any control lines. Compute the branch tar
get address and store the address in Target. This requires setting ALUSelB to

5.4 A Multiple Clock Cycle Implementation 319

the value 11 (so that the offset field is both sign-extended and shifted), ALU
SelA to 0, and ALU Op to 00. In addition to adding the Target register, we will
need to add a write control line for this register, which must be asserted dur
ing this step. The register accesses and computation of branch target occur in
parallel.

After this clock cycle, determining the action to take can depend on the in
struction contents.

3. Execution, memory address computation, or branch completion:

This is the first cycle during which the datapath operation is determined by
the instruction type. In all cases, the ALU is operating on the operands pre
pared in the previous step, performing one of three functions, depending on
the instruction type. We name the ALU result ALUoutput for use in later
stages. Since the ALU inputs are stable, this value need not be saved in a reg
ister. However, any signals set in this cycle that affect the ALU result must be
held constant until the ALU results are written into a register or are no longer
needed. We specify the action to be taken depending on the instruction class:

Memory reference:

A L U o u t p u t = A + s i g n - e x t e n d (I R [l 5 - 0 J) ;

Operation: The ALU is adding the operands to form the memory address.
This requires setting ALUSelA to 1, which will use the first register file output
as the first ALU input, and setting ALUSelB to 10, which will cause the output
of the sign-extension unit to be used for the second ALU input. The ALUOp
signals will need to be set to 00, forcing the ALU to add.

Arithmetic-logical instruction (R-type):

A L U o u t p u t = A o p B ;

Operation: The ALU is performing the operation specified by the opcode on
the two registers read in the previous cycle. This requires setting ALUSelA = 1
and setting ALUSelB = 00, which together cause the register file outputs to be
used as the ALU inputs. The ALUOp signals will need to be set to 10, so that
the function code is used to determine the ALU control signal settings.

Branch:

i f (A == B) P C = Ta r g e t ;

Operation: The ALU is used to do the equal comparison between the two reg
isters read in the previous step. The Zero signal out of the ALU is used to
determine whether or not to branch. This requires setting ALUSelA = 1 and
setting ALUSelB = 00, just as for an R-type instruction. The ALUOp signals

320 Chapter 5 The Processor: Datapath and Control

will need to be set to 01 to perform the subtract used for equality testing. A
write signal will need to be triggered for updating the PC if the Zero output of
the ALU is asserted. This will be specified later when we add the PC control.

4. Memory access or R-type instruction completion step:

During this step, loads and stores access memory and arithmetic-logical oper
ations write their result. We name the output of the memory memory-data,
though it need not correspond to a register, since its output will be stable dur
ing the next clock cycle when it is written into a register.

Memory reference:

memo ry - d a t a

o r

Memo ry [A L U o u t p u t J ;

Memo ry [A L U o u t p u t J = B ;

Operation: If the instruction is a load, data returns from memory, and we call
the value memory-data. If the instruction is a store, then the data is written
into memory. In either case, the address used is the one computed during the
previous step and named ALU output. The ALU control signals set in the pre
vious cycle must be held stable during this cycle. For a store, the source oper
and, which we named B, was read in the step that occurred two clock cycles
earlier. The signal MemRead (for a load) or MemWrite (for store) will need to
be asserted. In addition, the signal IorD is set to 1 to force the memory
address to come from the ALU, rather than the PC.

Arithmetic-logical instruction (R-type):

Reg [I R [l 5 - l l] J = A L U o u t p u t ;

Operation: Place the result of the ALU operation into the Result register. The
signal RegDst must be set to 1 to force the rd (bits 15-11) field to be used to
select the register to write. RegWrite must be asserted, and MemtoReg must
be set to 0, so that the output of the ALU is written (as opposed to the mem
ory data output). The signals ALUSelA, ALUSelB, and ALUOp do not change
from the previous clock cycle. Recall that because writes are edge-tiggered,
the write of the rd register cannot affect the data currently being read, even if
the register destination is also an instruction source register.

5. Write-back step:

Re g [I R [Z 0 - 1 6]] = memo ry d a t a ;

Operation: Write the load data from memory into the register file. Here we set
MemtoReg = 1, to write the result from memory, and RegWrite, to cause a
write, and we make RegDst = 0, to choose the rt (bits 20-16) field as the regis-

5.4 A Multlple Clock Cycle Implementation 321

Action for R-type Action for memory· Action for
Step name instructions reference instructions branches

Instruction fetch IR = Memory[PC]
PC = PC + 4;

Instruction decode/ A = Registers[IR[25-21]]
register fetch B = Registers[IR[20-16]]

Target = PC + (sign-extend (IR[15-0)) « 2)

Execution, address computation, ALUoutput = A op B ALUoutput = A + sign-extend if (A == B) then
or branch completion (IR[15-0]) PC = Target
Memory access or R-type Reg[I R[15-11]) = memory-Oata = Memory(ALUoutput]
completion ALUoutput or

Memory [ALUoutput] = B
Write-back Reg[IR[20-16]] = memory-data

FIGURE 5.38 Summary of the steps taken to execute any Instruction type. Instructions take from 3 to 5 execution
steps. The first two steps are independent of the instruction type. After these steps, an instruction takes from 1 to 3 more
cycles to complete, depending on the instruction type.

ter number. Again, the ALUSelA, ALUSelB, and ALUOp signals must be held
stable until the end of this cycle.

This five-step sequence is summarized in Figure 5.38. From this sequence
we can determine what the control must do on each clock cycle. However, be
fore we can design the control unit, we must add the PC write control and mul
tiplexors necessary to select the correct value to write into the PC, as well as
the Target register and its control. Since implementing the jump instruction re
quires dealing with the same two capabilities, let's also incorporate the control
for the jump instruction at the same time. Including the jump instruction, there
are three possible sources for the value to be written into the PC. These are

• The ALUoutput, which is the source when the PC is incremented for a
sequential instruction fetch.

• The Target register, which is the source when the instruction is a taken
conditional branch. We will also need a signal to write the register,
called TargetWrite.

• The lower 26 bits of the Instruction register (IR) shifted left by two and
concatenated with the upper 4 bits of the PC, which is the source when
the instruction is a jump.

We encode these three possible sources using a 2-bit control signal, PCSource.
The three possibilities above are encoded as 00, 01, and 10, corresponding to
the sources ALUoutput (00), Target (01), and the IR (10). The signal PCSource
then controls a 3-input multiplexor.

322 Chapter 5 The Processor: Datapath and Control

As we observed when we implemented the single-cycle control, the PC is
written in two different ways. If the instruction is not a conditional branch
(beq), the PC is written unconditionally. If the instruction is a conditional
branch, the incremented PC is replaced with the value in Target, only if the
ALU output signal Zero is also asserted. Thus, we need two PC write signals,
which we will call PCWrite and PCWriteCond. The PCWriteCond signal and
the Zero signal from the ALU are combined with an AND gate, which then is
combined with PCWrite to create a write signal for the PC.

Figure 5.39 shows the complete multicycle datapath and control unit, in
cluding the additional control signals, Target register, and multiplexor for im
plementing the PC updating. Figure 5.40 shows the effects of these additional
control signals; together with Figure 5.37 these tables define the effects of all
the control signals in the multicycle datapath of Figure 5.39.

Defining the Control

Now that we have determined what the control signals are and when they
must be asserted, we can implement the control unit. To design the control
unit for the single-cycle datapath, we used a set of truth tables that specified
the setting of the control signals based on the instruction type; then we
mapped those truth tables to the logic gates shown in Figure 5.31 . For the
multicycle datapath, the control is more complex because the instruction is
executed in a series of steps. The control for the multicycle datapath must
specify both the signals to be set in any step and the next step in the sequence.

In this subsection and in section 5.5, we will look at two different techniques
to specify the control. The first technique is based on finite state machines that
are usually represented graphically. The second technique, called micropro
gramming, uses a programming representation for control. Both of these tech
niques represent the control in a form that allows the detailed imple
mentation-using gates, ROMs, or PLAs-to be synthesized by a CAD system.
In this chapter, we will focus on the design of the control and its representation
in these two forms. For those interested in how these control specifications are
translated into actual hardware, Appendix C continues the development of
this chapter, translating the multicycle control unit to a detailed hardware im
plementation. The key ideas of control can be grasped from this chapter with
out examining the material in the Appendix. However, if you want to get
down to the bits, Appendix C can show you how to do it!

The first method we use to specify the multicycle control is a finite state ma
chine. A finite state machine consists of a set of states and directions on how to
change states. The directions are defined by a next-state function, which maps
the current state and the inputs to a new state. When we use a finite state ma
chine for control, each state also specifies a set of outputs that are asserted
when the machine is in that state. The implementation of a finite state machine

i •

J:: �

PC Source

I I Target Wrote

1 .-----------==±· ===l�=�§�R \ ���10 I
MemWnte Control

Read
address

Memory
Write
address

MemOata
.-! Write

data

IRWnte

Mem�
ALUSelA

RegWnte

[�] j RegDst

PC [31-28]
� I I I I I I I 1 1 1 1 1\ 1:�

Instruction

Instruction
[25-211 r;;-Re-ad-;----'-----

[31-26] instruction register 1
[20-16)

Instruction

Read Read

[25-0)
register 2 data 1 r------1
Write

Redsters

Instruction Npter :��Jon register d=�� Hr----.f,

lnstructkm [15-0) r-lc!i:...}-
y

Jump
address

FIGURE 5.39 This is the complete datapath for the multicycle Implementation together with the necessary control lines. The control lines of
Figure 5.36 are attached to the control unit, and the control and datapath elements needed to effect changes to the PC are included. The major additions
from Figure 5.36 include: the Target register (in the upper right-hand comer), the three-input multiplexor used to select the source of a new PC value
(at the top right), two gates used to combine the PC write signals, and the control signals PCSource, PCWrite, PCWriteCond, and TargetWrite. The
PCWriteCond signal is ANDed with the Zero output of the ALU to decide whether a branch should be taken; the resulting signal is ORed with the con
trol signal PCWrite, to generate the actual write control signal for the PC. In addition, the output of the IR is rearranged to send the lower 26 bits (the
jump address) to the logic used to select the next PC. These 26 bits are concatenated with the high-order 4 bits of the current PC, and then shifted 2 bits
to the left (this is equivalent to just concatenating two low-order 0 bits).

324 Chapter 5 The Processor: Datapath and Control

Signal Effect when
name deasserted Effect when asserted

PCWrite None The PC is written; the source is controlled by PCSource.
PCWriteCond None The PC is written if the Zero output from the ALU is also active.
TargetWrite None The output of the ALU is written into the register Target.

a. The actions of the additional 1-bit control signals are defined.

Signal
name Value Effect

00 The ALU output is sent to the PC for writing.

PC Source 01 The contents of the register Target are sent to the PC for writing.
10 The jump target address (PC + 4(29-26] concatenated with

IR[25--0] and shifted left two bits) is sent to the PC for writing.

b. The actions of the additional 2-bit control signal, PCSource, are defined.

FIGURE 5.40 The effect of the control signals, which determine how the PC is written.
Table a describes the I-bit control signals, which control writing of the PC and the Target register.
Table b describes the 2-bit signal that determines the source of a value written into the PC. This
information together with the contents of Figure 5.37 define the operation of all the control sig
nals in the multicycle datapath.

usually assumes that all outputs that are not explicitly asserted are deasserted,
and the correct operation of the datapath often depends on the fact that a sig
nal is deasserted. For example, the RegWrite signal should be asserted only
when a register is to be written; when it is not explicitly asserted, it must be
de asserted.

Multiplexor controls are slightly different, since they select one of the inputs
whether they are 0 or 1 . Thus, in the finite state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement
the finite state machine with logic, setting a control to 0 may be the default and
thus may not require any gates. A simple example of a finite state machine ap
pears in Appendix B, and readers unfamiliar with the concept of a finite state
machine should examine Appendix B before proceeding.

The finite state control essentially corresponds to the five steps of execution
shown on pages 317 through 321; each state in the finite state machine will take
one clock cycle. The finite state machine will consist of several parts. Since the
first two steps of execution are identical for every instruction, the initial two
states of the finite state machine will be common for all instructions. Steps 3
through 5 differ, depending on the opcode. After the execution of the last step
for a particular instruction type, the finite state machine will return to the
initial state to begin fetching the next instruction. Figure 5.41 shows this

5.4 A Multiple Clock Cycle Implementation 325

Start

! !
Instruction fetch/decode and register fetch

(Figure 5.42)

l l l l
Memory access R-type instructions Branch instruction Jump instruction instructions

(Figure 5.43) (Figure 5.44) (Figure 5.45) (Figure 5.46)

I I I I

FIGURE 5.41 The high-level view of the finite state machine control. The first steps are inde
pendent of the instruction type; then a series of sequences that depend on the instruction opcode
are used to complete each instruction type. After completing the actions needed for that instruc
tion type, the control returns to fetch a new instruction. Each box in this Figure may represent
one to several states. The arc labeled Start marks the state in which to begin when the first
instruction is to be fetched.

abstracted representation of the finite state machine. To fill in the details of the
finite state machine, we will first expand the instruction fetch and decode por
tion, then we will show the states (and actions) for the different instruction
types.

We show the first two states of the finite state machine in Figure 5.42, using
a traditional graphic representation. We number the states to simplify the ex
planation, though the numbers are arbitrary. State 0, corresponding to step 1,
is the starting state of the machine.

The signals that are asserted in each state are shown within the state. The
arcs between states define the next state, and are labeled with conditions that
select a specific next state when multiple next states are possible. After state 1,
the signals asserted may depend on the type of instruction. Thus, the finite
state machine has four arcs exiting state 1, corresponding to the four instruc
tion types: memory reference, R-type, branch on equal, and jump. This pro
cess of branching to different states depending on the instruction is called
decoding, since the choice of the next state, and hence the actions that follow,
depend on the instruction type.

The portion of the finite state machine needed to implement the memory
reference instructions is shown in Figure 5.43. For the memory-reference in
structions, the first state after fetching the instruction and registers computes
the memory address (state 2). To compute the memory address, the ALU input

326 Chapter 5 The Processor: Datapath and Control

Memory reference FSM
(Figure 5.43)

Instruction fetch

0
MemRead

ALUSelA=O
lorD=O
IRWrite

ALUSelB=01
ALUOp=OO

PCWrite
PCSource=OO

R-type FSM
(Figure 5.44)

Branch FSM
(Figure 5.45)

Instruction decode/

Register fetch

1

ALUSelA=O
ALUSelB=11
ALUOp=OO
TargetWrite

Jump FSM
(Figure 5.46)

FIGURE 5.42 The Instruction fetch and decode portion of every Instruction Is Identical.
These states correspond to the top box in the abstract finite state machine in Figure 5.41 . In the
first state we assert a number of signals to cause the memory to read an instruction and write it
into the Instruction register (MemRead and IRWrite), and we set IorD to 0 to choose the PC as the
address source. The signals PCWrite, PCSource, ALUSelA, ALUOp, and ALUSelB are set to com
pute PC + 4 and store it into the PC. In the next state, we compute the branch target address by
setting ALUSelB to 11 (causing the shifted and sign-extended lower 16 bits of the IR to be sent to
the ALU), setting ALUSelA to 0 and ALUOp to 00; we store the result in the Target register (using
TargetWrite). There are four next states that depend on the type of the instruction, which is
known during this state. If the instruction is either l w or s w, we go to one state, while the other
arcs handle single instruction opcodes. The control unit input, called op, is used to determine
which of these arcs to follow.

multiplexors must be set so that the first input is the register corresponding to
rs, while the second input is the sign-extended displacement field. After the
memory address calculation, the memory should be read or written; this re
quires two different states. If the instruction opcode is l w, then state 3 (corre
sponding to the step Memory access) does the memory read (MemRead is
asserted) . If it is s w, state 5 does a memory write (MemWrite is asserted). In
both states 3 and 5, the signal IorD is set to 1 to force the memory address to
come from the ALU. After performing a write, the instruction sw has complet
ed execution, and the next state is state 0. However, if the instruction is a load,
another state (state 4) is needed to write the result from the memory into the
register file.

The memory is kept in read mode with the same address (by asserting
MemRead and IorD). These signals must be kept asserted across states because
the output of the ALU and the memory are not saved in a register. If the con-

5.4 A Multlple Clock Cycle Implementation

3

4

From state 1
(Op='LW') or (Op='SW')

Memory address computation

�
II
a.
Q. Memory

access

MemRead
ALUSelA=1

Memory

access

lorD=1
ALUSelB=10
ALUOp=OO

Write back step
MemRead

ALUSelA=1
lorD=1

RegWrite
MemtoReg=1

RegDst=O
ALUSelB=10
ALUOp=OO

To state O
(Figure 5.42)

327

FIGURE 5.43 The finite state machine for controlllng memory-reference instructions has
four states. These states correspond to the box labeled "Memory access instructions" in
Figure 5.41. After performing a memory address calculation, a separate sequence is needed for
load and for store. The setting of the control signals ALUSelA, ALUSelB, and ALUOp is used to
cause the memory address computation. These signals must be kept stable until the value is writ
ten into a register (if a load) or into memory (if a store).

trol values changed, the output of the ALU and memory would change, and
the value stored as a result of the load would be incorrect. With these values
stable, setting the multiplexor controls MemtoReg = 1 and RegDst = 0 will
send the memory output to be written into the register file, using rd as the reg-

328 Chapter 5 The Processor: Datapath and Control

6

From state 1

{Op=R-type)

Execut ion

ALUSelA=1
ALUSelB=OO
ALU0p=10

To state O
(Figure 5.42)

FIGURE 5.44 R·type Instructions can be Implemented with a simple two-state finite state
machine. These states correspond to the box labeled R-type Instructions in Figure 5.41. The first
state causes the ALU operation to occur, while the second state causes the ALU result to be writ
ten in the register file. The signals dealing with the ALU are stable during both cycles. The three
additional signals asserted during state 7 cause the ALU output to be written into the register
specified by the rd field of the Instruction register.

ister number. After this state, corresponding to the Write-back step, the next
state is state 0.

To implement the R-type instructions requires a two-state finite state
machine corresponding to the steps Execute and R-type completion. Figure
5.44 shows this two-state portion of the finite state machine. State 6 asserts
ALUSelA and leaves the ALUSelB signals deasserted; this forces the two
registers that were read from the register file to be used as inputs to the ALU.
Setting ALUOp to 10 causes the ALU control unit to use the function code to
set the ALU control signals. In state 7, RegWrite is asserted to cause the register
to write, and RegDst is asserted to cause the rd field to be used as the register
number of the destination.

5.4 A Multiple Clock Cycle Implementation

8

From state 1

ALUSelA=1
ALUSelB=OO
ALU0p=01

PCWriteCond
PCSource=01

To state O
(Figure 5.42)

329

FIGURE 5.45 The branch Instruction requires a slngle state machine. The first three outputs
that are asserted cause the ALU to compare the registers (ALUSelA, ALUSe!B, and ALUOp),
while the signals PCSource and PCWriteCond perform the conditional write if the branch condi
tion is true.

For branches, only a single additional state is necessary, because they com
plete execution during the third step of instruction execution. During this
state, the control signals that cause the ALU to compare the two register values
must be set, and the signals that cause the PC to be written conditionally with
the address in the Target register are also set. To perform the comparison re
quires that we assert ALUSelA and set the ALUOp value to 01 (forcing a sub
tract). To control the writing of the PC, we assert PCWriteCond and set
PCSource to 01, which will cause the value in the Target register to be written
into the PC if the Zero bit out of the ALU is asserted. Figure 5.45 shows this
single state machine.

The last instruction type is jump; like branch, it requires only a single state
(shown in Figure 5.46) to complete its execution. In this state, the signal
PCWrite is asserted to cause the PC to be written. By setting PCSource to 10,
the value supplied for writing will be the lower 26 bits of the Instruction reg
ister with OOtwo concatenated combined with the upper 4 bits of the PC.

We can now put these pieces of the finite state machine together to form a
specification for the control unit, as shown in Figure 5.47 on page 332. In each
state, the signals that are asserted are shown. The next-state function depends
on the opcode bits of the instruction, so we label the arcs corresponding to the
next state function simply with the instruction opcode test they use on the in
put to the control unit (which is the opcode field of the IR). Given this imple-

330 Chapter 5 The Processor: Datapath and Control

From state 1

PCWrite
PCSource=lO

To state O
(Figure 5.42)

FIGURE 5.46 The jump Instruction requires a single state that asserts two control signals
to write the PC with the lower 26 bits of the Instruction register shifted left two bits.

mentation, and the knowledge that each state requires one clock cycle, we can
find the CPI for a typical instruction mix.

Using the control shown in Figure 5.47 and the gee instruction mix shown
in the example starting on page 308, what is the CPI, assuming that each
state requires one clock cycle?

The mix is 22% loads, 11% stores, 49% R-format operations, 16% branches,
and 2% jumps. The number of clock cycles for each instruction type is

• Loads: 5,

• Stores: 4,

• R-format instructions: 4,

• Branches: 3, and

• Jumps: 3 .

5.4 A Multiple Clock Cycle Implementation

The CPI is given by the following:

CPI CPU clock cycles

Instruction count

L Instruction count i x CPI i

Instruction count

The ratio

Instruction count i
� x CPI £... Instruction count 1

Instruction count i

Instruction count

331

is simply the instruction frequency for the instruction class i. We can there
fore substitute to obtain

CPI = 0.22 x 5 + 0. l l x 4 + 0.49 x 4 + 0.16 x 3 + 0.02 x 3

= 1 . 1 + 0.44 + 1 .96 + 0.48 + 0.06 = 4.04

This CPI is considerably better than the worst-case CPI would have been
if all the instructions took the same number of clock ticks (5).

A finite state machine can be implemented with a register that holds the
current state and a block of combinational logic that determines both the data
path signals to be asserted as well as the next state. Figure 5.48 shows how
such an implementation might look. Appendix C describes in detail how the
finite state machine is implemented using this structure. In section C.1, the
combinational control logic for the finite state machine of Figure 5.47 is imple
mented both with a ROM (read-only memory) and a PLA (programmable log
ic array). (Also see Appendix B for a description of these logic elements.) In the
next section of this chapter, we consider another way to represent control. Both
of these techniques are simply different representations of the same control in
formation.

11E:u,n1llrlll1tltlln� The style of finite state machine in Figure 5.4 7 is called a Moore
machine, after Edward Moore. Its identifying characteristic is that the output depends
only on the current state . An alternative style of machine is a Mealy machine, named
after George Mealy. The Mealy machine al lows both the input and the current state to
be used to determine the output.

332 Chapter 5 The Processor: Datapath and Control

Memory ad(iress

4

Memory

access

Write-back step

MemRead
ALUSelA=1

lorD=1
RegWrite

MemtoReg=1
RegDst=O

ALUSelB=10
ALUOp=OO

Memory

access

0
I n struction fetd1

MemRead
ALUSelA=O

lorD=O
IRWrite

ALUSelB=01
ALUOp=OO

PCWrite
PCSource=OO

PCSource=01

I n struction decode/

Register fetch

Jump
completion

FIGURE 5.47 The complete finite state machine control for the datapath shown In Figure 5.39. The labels on the
arcs are conditions that are tested to determine which state is the next state; when the next state is unconditional, no label is
given. The labels inside the nodes indicate the output signals asserted during that state; we always specify the setting of a
multiplexor control signal if the correct operation requires it. Hence, in some states a multiplexor control will be set to 0. In
Appendix C, we will examine how to turn this finite state machine into logic equations and look at how to implement
those logic equations.

•

5.5 Microprogramming: Slmpllfylng Control Design

Comblnatlonal

control logic

Inputs

Inputs from instruction
register opcode field

Outputs

333

Datapath control outputs

Next state

FIGURE 5.48 Finite state machine controllers are typically Implemented using a block of
comblnatlonal logic and a register to hold the current state. The outputs of the combina
tional logic are the next-state number and the control signals to be asserted for the current state.
The inputs to the combinational logic are the current state and any inputs used to determine the
next state. In this case, the inputs are the register opcode bits .

Microprogramming:

Simplifying Control Design

For the control of our simple MIPS subset, a graphical representation of the
finite state machine, as in Figure 5.47, is certainly adequate. We can draw such
a diagram on a single page and translate it into equations (see Appendix C)
without generating too many errors. Consider an implementation of the full
MIPS instruction set, which contains over 100 instructions (see Appendix A).
In one implementation, instructions take from 1 cycle to over 20 cycles.
Clearly, the control function will be much more complex. Or consider an
instruction set with more instructions of widely varying types: The control
unit could easily require thousands of states with hundreds of different

334 Chapter 5 The Processor: Datapath and Control

sequences. For example, the VAX instruction set has more than 20 addressing
mode combinations, each of which can be used for any of up to five operands.

In such cases, specifying the control unit with a graphical representation
will be cumbersome, since the finite state machine can contain hundreds to
thousands of states and even more arcs! The graphical representation-while
useful for a small finite state machine-is hard to fit on a page, let alone under
stand, when it becomes very large. Programmers know this phenomenon
quite well: As programs become large, additional structuring techniques (for
example, procedures and modules) are needed to keep the programs compre
hensible. Of course, specifying complex control functions directly as equa
tions, without making any mistakes, becomes essentially impossible.

Can we use some of the ideas from programming to help create a method
of specifying the control that will make it easier to understand as well as to de
sign? Suppose we think of the set of control signals that must be asserted in a
state as an instruction to be executed by the datapath. To avoid confusing the
instructions of the MIPS instruction set with these low-level control instruc
tions, the latter are called microinstructions. Each microinstruction defines the
set of datapath control signals that must be asserted in a given state. Executing
a microinstruction has the effect of asserting the control signals specified by
the microinstruction.

In addition to defining which control signals must be asserted, we must
also specify the sequencing-what microinstruction should be executed next?
In the finite state machine shown in Figure 5.47 on page 332, the next state is
determined in one of two different ways. Sometimes a single next state follows
the current state unconditionally. For example, state 1 always follows state 0,
and the only way to reach state 1 is via state 0. In other cases, the choice of the
next state depends on the input. This is true in state 1, which has four different
successor states. When we write programs, we also have an analogous situa
tion. Sometimes a group of instructions should be executed sequentially, and
sometimes we need to branch. In programming, the default is sequential exe
cution, while branching must be indicated explicitly. In describing the control
as a program, we will also assume that microinstructions written sequentially
are executed in sequence, while branching must be indicated explicitly. The
default sequencing mechanism can still be implemented using a structure like
the one in Figure 5.48 on page 333; however, it is often more efficient to imple
ment the default sequential state using a counter. We will see how such an im
plementation looks at the end of this section.

Designing the control as a program that implements the machine instruc
tions in terms of simpler microinstructions is called microprogramming. The key
idea is to represent the asserted values on the control lines symbolically, so
that the microprogram is a representation of the microinstructions, just as as
sembly language is a representation of the machine instructions. In choosing a

5.5 Microprogramming: Simplifying Control Design 335

syntax for an assembly language, we usually represent the machine instruc
tions as a series of fields (opcode, registers, and offset or immediate field); like
wise, we will represent a microinstruction syntactically as a sequence of fields
whose functions are related.

Defining a Microinstruction Format

The microprogram is a symbolic representation of the control that will be
translated by a program to control logic. In this way, we can choose how
many fields a microinstruction should have and what control signals are
affected by each field. The format of the microinstruction should be chosen so
as to simplify the representation, making it easier to write and understand the
microprogram. For example, it is useful to have one field that controls the
ALU and a set of three fields that determine the two sources for the ALU
operation as well as the destination of the ALU result. In addition to readabil
ity, we would also like the microprogram format to make it difficult or impos
sible to write inconsistent microinstructions. A microinstruction is incon
sistent if it requires that a given control signal be set to two different values.
We will see an example of how this could happen shortly.

To avoid a format that allows inconsistent microinstructions, we can make
each field of the microinstruction responsible for specifying a nonoverlapping
set of control signals. To choose how to make this partition of the control
signals for this implementation into microinstruction fields, it is useful to re
examine

• Figure 5.37 on page 316, which shows the function of each data path con
trol signal,

• The control signals that affect the PC (Figure 5.40 on page 324), and

• Figure 5.39 on page 323, which shows all the control signals and how
they affect the datapath.

Signals that are never asserted simultaneously may share the same field.
Figure 5.49 shows how the microinstruction can be broken into eight fields
and defines the general function of each field. The first seven fields of the
microinstruction control the datapath, while the Sequencing field (the eighth
field) specifies how to select the next microinstruction.

Microinstructions are usually placed in a ROM or a PLA (both described in
Appendix B), so we can assign addresses to the microinstructions. The ad
dresses are usually given out sequentially, in the same way that we chose se
quential numbers for the states in the finite state machine. Three different
methods are available to choose the next microinstruction to be executed:

1 . Increment the address of the current microinstruction to obtain the
address of the next microinstruction. This is indicated in the micropro-

336 Chapter 5 The Processor: Datapath and Control

Field name Function of field
ALU control Specify the operation being done by the ALU during this clock.
SRC1 Specify the source for the first ALU operand.
SRC2 Specify the source for the second ALU operand.
ALU destination Specify a register to be written from the ALU result.
Memory Specify read or write and the address source.
Memory register Specify the register destination (for a memory read) or the source of the

values (for a memory write).
PCWrite control Specify the writing of the PC.
Sequencing Specify how to choose the next microinstruction to be executed.

FIGURE 5.49 Each microinstruction contains these eight fields. The values for each field are
shown in Figure 5.50.

gram by putting S e q in the Sequencing field. Since sequential execution
of instructions is encountered often, many microprogramming systems
make this the default and simply leave the entry blank as the default.

2. Branch to the microinstruction that begins execution of the next MIPS
instruction. We will label this initial microinstruction (corresponding to
state 0) as F e t c h and place the indicator F e t c h in the Sequencing field
to indicate this action.

3. Choose the next microinstruction based on the control unit input.
Choosing the next microinstruction on the basis of some input is called
a dispatch. Dispatch operations are usually implemented by creating a
table containing the addresses of the target microinstructions. This table
is indexed by the control unit input and may be implemented in a ROM
or in a PLA. There are often multiple dispatch tables; for this implemen
tation, we will need two dispatch tables, one to dispatch from state 1
and one to dispatch from state 2. We indicate that the next microinstruc
tion should be chosen by a dispatch operation by placing D i s p a t c h i ,
where i is the dispatch table number, in the Sequencing field.

Figure 5.50 gives a description of the values allowed for each field of the
microinstruction and the effect of the different field values. Remember that
the microprogram is a symbolic representation. This microinstruction format
is just one example of many potential formats.

Elaboration: Notice that both the Memory and ALU destination fields can specify a
register to be written. However, our datapath wi l l not support this, s ince it has only a
s ingle register file write port. Typical ly, the m icroassembler wi l l perform checks on the
microinstruction fields to ensure that such inconsistencies are flagged as errors and

5.5 Microprogramming: Slmpllfylng Control Design 337

Lmll.lrnm:illl � -I 'lfil.lil !,_OilllllMUt ll��Clllo.:!l!lNI r.-.�
Add Cause the ALU to add.

ALU control F u n e c o d e Use the instruction's function code to determine ALU contro l .

S u b t Cause the ALU to subtract.

P C
SRC1

Use the PC as the first ALU input.

r s Register rs i s the first ALU input.

4 Use 4 for the second ALU input.

E x t e n d Use output o f the sign-extension unit a s the second ALU input.
SRC2

E x t s h f t Use the output of the shift by 2 unit a s the second ALU input.

r t Register rt i s the second ALU input.

ALU destination
T a r g e t ALU output is written into the register Target.

rd ALU output is written into register rd.

Re a d P C Read memory using the PC as address.

Memory Re a d A L U Read memory using the ALU output a s address.

W r i t e A L U Write memory using the ALU output a s address.

I R Data read from memory is written into the Instruction register.

Memory register W r i t e r t Data read from memory i s written into register rt .
Re a d r t Data written into memory comes from register rt.
A L U Write the output o f the ALU into the PC.

PCWrite control Ta r g e t - c o n d I f the Zero output o f the ALU i s active, write the PC with the contents o f the
register Target.

j u mp a dd r e s s Write the PC with the jump address from the instruction.

Seq Choose the next microinstruction sequentially.

Sequencing F e t c h G o to the first microinstruction to begin a new instruction.

D i s p a t c h i Dispatch using the ROM specified by i (1 or 2) .

FIGURE 5.50 Each field of the microinstruction has a number of values that it can take on. The second column
gives the possible values that are legal for the field, and the third column defines the effect of that value. Each field value is
mapped to a particular setting of the datapath control lines; this mapping is described in Appendix C, section C.3.

corrected . An alternative is to structure the m icroinstruction format to avoid this . We
cou ld achieve this by making the register destination a separate field and describing
whether the memory or ALU provided the value to be stored and which instruction field
contained the register designator. Of course, th is m ight make the m icroinstruction
harder to read . Most microprogramming systems choose readabi l ity and require the
m icrocode assembler to detect such errors.

338

Fetch Acid

Add

Chapter 5 The Processor: Datapath and Control

Creating the Microprogram

Now let's create the microprogram for the control unit. We will label the
instructions in the microprogram with symbolic labels, which can be used to
specify the contents of the dispatch tables (see Appendix C for a discussion of
how the dispatch tables are defined and assembled). In writing the micropro
gram, there are two situations in which we may want to leave a field of the
microinstruction blank. When a field that controls a functional unit or that
causes state to be written (such as the Memory field or the ALU dest field) is
blank, no control signals should be asserted. When a field only specifies the
control of a multiplexor that determines the input to a functional unit, such as
the SRCl field, leaving it blank means that we do not care about the input to
the functional unit (or the output of the multiplexor).

The easiest way to understand the microprogram is to break it into pieces
that deal with each component of instruction execution, just as we did when
we designed the finite state machine. The first component of every instruction
execution is to fetch the instructions, decode them, and compute both the se
quential PC and branch target PC. These actions correspond directly to the
first two steps of execution described on pages 317 through 321. The two mi
croinstructions needed for these first two steps are shown below:

PC 4 Read PC IR ALU Seq

PC Extshft Target Dispatch 1

To understand what each microinstruction does, it is easiest to look at the
effect of a group of fields. In the first microinstruction, the fields asserted and
their effects are

ALU control, SRC1, SRC2

Memory and memory register

PCWrite control

Sequencing

Compute PC + 4.

Fetch instruction into IR.

Causes the output of the ALU to be written
into the PC.

Go to the next microinstruction.

ALU
Label control

LWSWl Add

LW2 Add

Add

SW2 Add

5.5 Microprogramming: Slmpllfylng Control Design 339

For the second microinstruction, the registers will be read using the fields
of the instruction register. The other operations controlled by the microin
struction are

Fields Effect

ALU control , SRCl,
SRC2, ALU destination

Store PC + sign-extension (IR[15--0)) « 2 into Target.

Sequencing Use dispatch table 1 to choose the next microinstruction address.

We can think of the dispatch operation as a case statement with the opcode
field and the dispatch table 1 used to select one of four different microinstruc
tion sequences (memory reference, R-type instructions, branch, and jump).
The microprogram for memory-reference instructions has four microinstruc
tions, as shown below. The first instruction does the memory address calcula
tion. A two-instruction sequence is needed to complete a load (memory read
followed by register write), while the store requires only one microinstruction
after the memory address calculation:

ALU Memory PCWrite
SRC1 SRC2 destination Memory register control Sequencing

rs Extend Dispatch 2

rs Extend Read ALU Seq

rs Extend Read ALU Write rt Fetch

rs Extend Write ALU Read rt Fetch

Let's look at the fields of the first microinstruction in this sequence:

Fields Effect

ALU contro l ,
SRC1, SRC2

Sequencing

Compute the memory address: Register (rs) + sign.extend (IR[15-0))

Use the second dispatch table to jump to either LW2 or SW2.

The first microinstruction in the sequence specific to l w is labeled LW2. This
microinstruction has the following effect:

Fields Effect

ALU control, SRCl , SRC2 The output of the ALU is still the memory address.

Memory Read memory using the ALU output as the address.

Sequencing Go to the next microinstruction.

340 Chapter S The Processor: Datapath and Control

The next microinstruction completes execution with a microinstruction that
has the following effects:

Fields Effect
ALU control, SRC1, SRC2 The output of the ALU is still the memory address.

Memory and memory register Read memory using the ALU output as the address
and write the result into the register designated by rt.

Sequencing Go to the microinstruction labeled F e t c h .

Notice that since the fields of the two microinstructions that complete a load
word instruction do not conflict, we could combine these two microinstruc
tions into a single microinstruction of the form:

This process is often performed by a microcode optimizer to reduce the num
ber of microinstructions. However, if we made this change, it would probably
increase the length of the dock cycle, since both the memory access and regis
ter write would have to occur in a single microinstruction, and each microin
struction corresponds to a single clock cycle. Thus, when we try to optimize
the microcode, either by hand or with a program, we must know what set of
datapath actions can fit in the clock cycle that we are designing toward.

The store microinstruction, labeled SW2, operates similarly to the load mi
croinstruction labeled L W2:

Fields Effect
ALU control, SRC1, SRC2 The output of the ALU is still the memory address.

Memory and Memory register Write memory using the ALU output as the address and the
register designated by rt as the value to write.

Sequencing Go to the microinstruction labeled F e t c h .

The microprogram sequence for R-type instructions consists o f two
microinstructions: the first performs the ALU operation, while the second
writes the result into the register file:

5.5 Microprogramming: Simplifying Control Deslp 341

Like the example of the load instruction above, we could combine these two
microinstructions into a single microinstruction. However, this would mean
that the ALU and register write back would occur in one clock cycle, possibly
leading to a longer clock cycle and a slower machine. The first microinstruc
tion initiates the ALU operation:

ALU control,
SRC1, SRC2

Sequencing

The ALU operates on the register contents of the rs and rt registers, using the
func field to specify the ALU operation.

Go to the next microinstruction.

The second microinstruction causes the ALU output to be written in the reg
ister file:

ALU control , SRCl,
SRC2 . ALU destination

Sequencing

The ALU continues the same operation. The ALU dest field
specifies that rd is used to choose the destination register.

Go to the microinstruction labeled Fetch .

The microprogram sequence for branch requires one microinstruction:

The asserted fields of this microinstruction are

Fields Effect
ALU contro l , The ALU subtracts the register operands to generate the Zero output.
SRC1, SRC2

PCWrite control Causes the PC to be written using the value in target, if the Zero output
of the ALU is true.

Sequencing Go to the microinstruction labeled Fetch.

The jump microcode sequence also consists of one microinstruction:

342

ALU
Label control

Fetch Add

Add

LWSW1 Add

LW2 Add

Add

SW2 Add

Rformat1 Fune code

Fune code

BEQ1 Subt

JUMP1

Chapter 5 The Processor: Datapath and Control

Only two fields of this microinstruction are asserted:

Go to the microinstruction labeled Fetch.

The entire microprogram appears in Figure 5.51. It consists of the 10 micro
instructions appearing above. This microprogram matches the 10-state finite
state machine we designed earlier, since they were both derived from the same
five-step execution sequence for the instructions. In more complex machines
the microprogram sequence might consist of hundreds or thousands of micro
instructions.

This microprogram is translated into microinstructions and dispatch tables,
which can then be implemented in ROMs or PLAs. This process is directly
analogous to the process of translating an assembly language program into
machine instructions, or translating the finite state diagram of Figure 5.47 into
hardware. The datapath control signals specified in each microinstruction can
be implemented using the same logic structures that we used for implement
ing a finite state machine.

Figure 5.48 on page 333 showed one method for implementing the sequenc
ing. Figure 5.52 shows another type of sequencer that uses an incrementer
to choose the next control instruction. In this type of implementation, the

ALU Memory PCWrite
SRC1 SRC2 destination Memory register control Sequencing

PC 4 Read PC IR ALU Seq

PC Extshft Target Dispatch 1

rs Extend Dispatch 2

rs Extend Read ALU Seq

rs Extend Read ALU Write rt Fetch

rs Extend Write ALU Read rt Fetch

rs rt Seq

rs rt rd Fetch

rs rt Target-cond. Fetch

jump address Fetch

FIGURE S.S1 The microprogram for the control unit. The labels are used to determine the targets for the dispatch oper
ations. Dispatch 1 does a jump based on the IR to a label ending with a 1. The PCWrite control indicates whether the PC
should be written conditionally (on the basis of the equal signal from the ALU) by including cond in the specification.
There are three possible sources for the value that will be written into the PC: the ALU output, the branch target address
register (Target), and the jump address target that comes from combining the lower 26 bits of the instruction and the PC.

5.5 Microprogramming: Slmpllfylng Control Design

1

1 ! I � Adder /
I

Comblnatlonal
control logic

Outputs •

Input

f
I

State

Address select logic

t
Inputs from instruction
register opcode field

I
I
I

,

'

-

Sequencing
control

343

Data path
control
outputs

FIGURE 5.52 A typical lmplementatlon of a microcode controller would use an expllclt
lncrementer to compute the default sequential next state. A combination logic block
would be used to set the datapath control based on the current state and also to determine how
the next microinstruction would be chosen. The address select logic would contain the dispatch
tables as well as the logic to select from among the alternative next states; the selection of the next
microinstruction is controlled by the sequencing control outputs from the control logic. The com
bination of the current state register, incrementer, dispatch tables, and address select logic forms a
sequencer that selects the next microinstruction.

combinational control logic would determine the value of the datapath control
lines, as well as how to select the next state. The address select logic would
contain the dispatch tables and would, under the control of the address select
outputs, determine the next microinstruction to execute. The type of sequencer
shown in Figure 5.52 can be used to implement either a finite state or a micro
program control specification, and section C.2 of Appendix C describes how
to generate such a sequencer in more detail. Section C.3 describes how a mi
croprogram can be translated to such an implementation. The choice of which
way to represent the control and how to implement are independent decisions,

344 Chapter 5 The Processor: Datapath and Control

affected by both the structure of the control function and the technology used
to implement the control. Before we can discuss what factors favor the differ
ent implementation mechanisms, we need to talk about one of the hardest as
pects of control: exceptions. • Exceptions

Control is the most challenging aspect of processor design: it is both the
hardest part to get right and the hardest part to make fast. The hardest part of
control is implementing exceptions and interrupts-events other than branches
or jumps that change the normal flow of instruction execution. An exception
is an unexpected event from within the processor; arithmetic overflow is an
example of an exception. An interrupt is an event that also causes an unex
pected change in control flow but comes from outside of the processor. Inter
rupts are used by 1/0 devices to communicate with the processor, as we will
see in Chapter 8. Many architectures and authors do not distinguish between
interrupts and exceptions, often using the older name interrupt to refer to both
types of events. We follow the MIPS convention using the term exception to
refer to any unexpected change in control flow without distinguishing
whether the cause is internal and external; we use the term interrupt only
when the event is externally caused.

Interrupts were initially created to handle unexpected events like arith
metic overflow and to signal requests for service from I/O devices. The same
basic mechanism was extended to handle internally-generated exceptions as
well. Here are some examples showing whether the situation is generated
internally by the processor or externally generated:

Type of event From where? MIPS terminology ·
1/0 device request External Interrupt
I nvoke the operating system Internal Exception
from user program
Arithmetic overflow Internal Exception
Using an undefined instruction I nternal Exception
Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific sit
uation that causes an exception to occur. Accordingly, we will return to this
topic in Chapter 7, when we discuss memory hierarchies, and in Chapter 8,
when we discuss 1/0. In this section, we deal with the control implementation

5.6 Exceptions 345

of two types of exceptions that arise from the portions of the instruction set
and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often
on the critical timing path of a machine, which determines the clock cycle time
and thus performance. Without proper attention to exceptions during design
of the control unit, attempts to add exceptions to a complicated implementa
tion can significantly reduce performance, as well as complicate the task of
getting the design correct.

How Are Exceptions Handled?
The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. The basic
action that the machine must perform when an exception occurs is to save the
address of the offending instruction in the exception program counter (EPC)
and then transfer control to the operating system at some specified address.
The operating system can then take the appropriate action, which may
involve providing some service to the user program, taking some predefined
action in response to an overflow, or stopping the execution of the program
and reporting an error. After performing whatever action is required due to
the exception, the operating system can terminate the program or may con
tinue its execution, using the EPC to determine where to restart the execution
of the program. In Chapter 7, we will look more closely at the issue of restart
ing the execution.

For the operating system to handle the exception, it must know the reason
for the exception, in addition to the instruction that caused it. There are two
main methods used to communicate the reason for an exception. The method
used in the MIPS architecture is to include a Status register (called the Cause
register), which holds a field that indicates the reason for the exception. A sec
ond method is to use vectored interrupts. In a vectored interrupt, the address to
which control is transferred is determined by the cause of the exception. For
example, to accommodate the two exception types listed above, we might de
fine the following:

Arithmetic overflow 01000000 00000000 00000000 010000001wo

346 Chapter 5 The Processor: Datapath and Control

The operating system knows the reason for the exception by the address at
which it is initiated. The addresses are separated by 32 instructions; thus, the
operating system must record the reason for the exception and may perform
some limited processing in this sequence. When the exception is not vectored,
a single entry point can be used, and the operating system decodes the status
register to find the cause. Other key issues in exception handling are related
to the memory system and the capabilities of the operating system.

We can perform the processing required for exceptions by adding a few ex
tra registers and control signals to our basic implementation and by slightly
extending the finite state machine. Let's assume that we are implementing the
exception system used in the MIPS architecture. (Implementing vectored ex
ceptions is no more difficult.) We will need to add two additional registers to
the datapath:

• EPC: A 32-bit register used to hold the address of the affected instruc
tion.

• Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently un
used. Assume that the low-order bit of this register encodes the two
possible exception sources mentioned above: undefined instruction=O
and arithmetic overflow=l.

We will need to add two control signals to cause the EPC and Cause registers
to be written; call these EPCWrite and Cause Write. In addition, we will need a
1-bit control signal to set the low-order bit of the Cause register appropriately;
call this signal IntCause. Finally, we will need to be able to write the exception
address into the PC; let's assume that this address is 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 O O O O O O O O two · Currently, the PC is fed from the output of a 3-way
multiplexor, which is controlled by the 2-bit signal PCSource (see Figure 5.39
on page 323). We can change this to a 4-way multiplexor, with additional
input wired to the constant value 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O O O O O O O O two · Then PCSource i s set to 11 (which was previously unused) to
select the value 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O two to be written
into the PC.

Because the PC is incremented during the first cycle of every instruction,
we cannot just write the value of the PC into the EPC, since the value in the PC
will be the instruction address plus 4. However, we can use the ALU to sub
tract 4 from the PC and write the output into the EPC. This requires no addi
tional control signals or paths, since we can use the ALU to subtract, and the
constant 4 is already a selectable ALU input. The data write port of the EPC,
therefore, is connected to the ALU output. With these additions, the action to
be taken on different types of exceptions can be accomplished by the finite
state machine shown in Figure 5.53. To connect this finite state machine to the

5.6 Exceptions

10

lntCause=O
CauseWrite

347

12

To state 0 to begin next instruction

FIGURE 5.53 This four-state machine handles the three aspects of exception processing.
It sets the Cause register (states 10 and 11), gets the address of the offending instruction into the
EPC (state 12), and sets the PC to the exception vector address (state 13). Each of states 10 and 11
represents the starting point for an exception. The function of these states is to set the Cause reg
ister input correctly and to cause it to be written. In state 12, we use the ALU to compute PC - 4;
the PC is the first ALU input, and the second is the digit4 (selected by ALUSelB = 01). The ALU
subtracts (since ALUOp = 01), and the result is written into the EPC (EPCWrite). The PC is writ
ten with the exception vector address by setting control signals in state 13.

finite state machine of the main control unit, we must determine how to detect
exceptions and add arcs that transfer control from the main execution machine
to this exception-handling finite state machine.

348 Chapter 5 The Processor: Datapath and Control

How Control Checks for Exceptions
Now we have to design a method to detect these exceptions and to transfer
control to the appropriate state in the exception finite state machine shown in
Figure 5.53. Each of the two possible exceptions is detected differently:

• Undefined Instruction: This is detected when no next state is defined
from state 1 for the op value. We handle this exception by defining the
next-state value for all op values other than l w, s w, 0 (R-type), j mp, and
b e q as state 10. We show this by symbolically using other to indicate that
the op field does not match any of the opcodes that label arcs out of
state 1 . A modified finite state diagram is shown in Figure 5.54.

• Arithmetic overflow: Chapter 4 included logic in the ALU to detect over
flow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finite state machine to specify
an additional possible next state for state 7, as shown in Figure 5.54.

By combining the finite state machines in Figures 5.53 and 5.54, we can ar
rive at a complete specification of the control for this MIPS subset with two
types of exceptions. Remember that the challenge in designing the control of a
real machine is to handle the variety of different interactions between instruc
tions and other exception-causing events in such a way that the control logic
remains both small and fast. The complex interactions that are possible are
what make the control unit the most challenging aspect of hardware design.

EU1bc>rcc1tic>n: If you examine the finite state machine in Figure 5.54 closely, you can
see that some problems could occur in the way the exceptions are handled. For exam
ple, in the case of arithmetic overflow, the instruction causing the overflow completes
writing its result, because the overflow branch is in the state when the write completes.
However, it's possible that the architecture defines the instruction as having no effect
if the instruction causes an exception; this is what the MIPS instruction set architec
ture specifies. I n Chapter 7, we wi l l see that certain classes of exceptions require us to
prevent the instruction from changing the mach ine state, and that this aspect of han
dl ing exceptions becomes complex and potential ly l im its performance.

MemRead
ALUSelA=1

lorD=1
RegWrite

MemtoReg=1
RegDst=O

ALUSelB=10
ALUOp=OO

5.6 Exceptions

0
Instruction fetch

MemRead
ALUSelA=O

lorD=O
IRWrite

ALUSelB=01
ALUOp=OO

PCWrite
PCSource=OO

Instruction decode/
Register fetch

349

FIGURE 5.54 This shows the finite state machine with the additions to handle exception detection. States 10 and
11 are defined in the exception-handling extension to the base finite state machine appearing in Figure 5.53 on page 347.
The branch out of state 1 labeled (Op=other) indicates the next state when the input does not match the opcode of any of l w,
s w, 0 (R-type), j mp, or b e q . The branch out of state 7 labeled Overflow indicates the action to be taken when the ALU sig
nals an overflow.

350 Chapter 5 The Processor: Datapath and Control

• Fallacies and Pitfalls

Pitfall: Microcode implementing a complex instruction may not be faster than a se
quence using simpler instructions.

Most machines with a large and complex instruction set are implemented
using a microcode stored in ROM. Surprisingly, on such machines, sequences
of individual simpler instructions are sometimes as fast as or even faster than
the custom microcode sequence for a particular instruction. How can this pos
sibly be true? At one time, microcode had the advantage of being fetched
from a much faster memory than instructions in the program. Since caches
came into use in 1968, microcode no longer has such a consistent edge in fetch
time. Microcode does, however, still have the advantage of using internal
temporary registers in the computation, which can be helpful on machines
with few general-purpose registers. The disadvantage of microcode is that the
algorithms must be selected before the machine is announced and can't be
changed until the next model of the architecture. The instructions in a pro
gram, on the other hand, can utilize improvements in its algorithms at any
time during the life of the machine. Along the same lines, the microcode
sequence is probably not optimal for all possible combinations of operands.

The VAX Index instruction provides an example of the above phenome
non. This instruction checks to see if the index is between two bounds, one of
which is usually 0. The V AX-11 /780 microcode uses two compares and two
branches to do this, while the standard instructions can perform the same
check in one compare and one branch. The program can check the index
against the upper limit using unsigned comparisons rather than two's comple
ment comparisons. This treats a negative index (less than zero and so failing
the comparison) as if it were a very large number, thus exceeding the upper
limit. (The algorithm can be used with nonzero lower bounds by first subtract
ing the lower bound from the index.) Replacing the Index instruction by a se
quence of VAX instructions to perform the necessary function always
improves performance on the VAX-11/780.

Fallacy: If there is space in control store, new instructions are free of cost.

One of the benefits of a microprogrammed approach is that control store
implemented in ROM is not very expensive. Moreover, if we use off-the-shelf
parts for the ROM, there may be unused control store available to expand the
instruction set. The analogy here is that of building a house and discovering,

5.8 Concluding Remarks 351

near completion, that you have enough land and materials left to add a room.
This room wouldn't be free, however, since there would be the costs of labor
and maintenance for the life of the home. The temptation to add "free"
instructions can occur only when the instruction set is not fixed, as is likely to
be the case in the first model of a computer. Because upward compatibility of
binary programs is a highly desirable feature, all future models of this
machine will be forced to include these so-called free instructions, even if
space is later at a premium.

The extra instructions may also be costly to implement in future technolo
gies. For example, consider a large instruction set initially implemented with
microcode. If a later implementation is done in VLSI, it may be difficult to
place all the control store on the same chip as the rest of the processor. Placing
the control off-chip is also unattractive, since it requires more pins and may
slow down the clock. During the 1980s, VLSI implementations of the VAX en
countered exactly this problem and, eventually, some instructions were actu
ally removed from the VAX instruction set; programs that used such
instructions generated exceptions that trapped to software to perform these in
structions. Lastly, additions to the instruction set may also ignore the cost of a
longer development time to test the added instructions, as well as the possibil
ity of costs for repairing bugs in them after the hardware is shipped.

• Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor
can be designed starting with the instruction set architecture and an under
standing of the basic characteristics of the technology. In section 5 .2, we saw
how the datapath for a MIPS processor could be constructed based on the
architecture and the decision to build a single-cycle implementation. Of
course, the underlying technology also affects many design decisions by dic
tating what components can be used in the datapath, as well as whether a sin
gle-cycle implementation even makes sense. Along the same lines, in the first
portion of section 5.4, we saw how the decision to break the clock cycle into a
series of steps led to the revised multicycle datapath. In both cases, the top
level organization-a single-cycle or multicycle machine-together with the
instruction set, prescribed many characteristics of the datapath design.

Similarly, the control is largely defined by the instruction set architecture,
the organization, and the datapath design. In the single-cycle organization,
these three aspects essentially define how the control signals must be set. In
the multicycle design, the exact decomposition of the instruction execution
into cycles, which is based on the instruction set architecture, together with the
datapath, define the requirements on the control.

352 Chapter 5 The Processor: Datapath and Control

Control is one of the most challenging aspects of computer design. A major
reason for this is that designing the control requires an understanding of how
all the components in the processor operate. To help meet this challenge, we
examined two techniques for specifying control: finite state diagrams and mi
croprogramming. These control representations allow us to abstract the spec
ification of the control from the details of how to implement it. Using
abstraction in this fashion is the major method we have to cope with the com
plexity of computer designs.

Once the control has been specified, we can map it to detailed hardware.
The exact details of the control implementation will depend on both the struc
ture of the control and on the underlying technology used to implement it. Ab
stracting the specification of control is also valuable because the decisions of
how to implement the control are technology-dependent and likely to change
over time.

In the 1960s and 1970s, microprogramming was one of the most important
techniques used in implementing machines. Through most of that period, ma
chines were implemented with discrete components or MSI (medium scale in
tegration-fewer than 1000 gates per chip), and designers had to choose
between two types of implementations: hardwired control or microprogrammed
control. Hardwired control was characterized by finite state machines using an
explicit next state and implemented primarily with random logic. In this era,
microprogrammed control used microcode to specify control that was then
implemented with a microprogram sequencer (a counter) and ROMs. Hard
wired control received its name because the control was implemented in hard
ware and could not be easily changed. Microprograms implemented in ROM
were also called firmware, because they could be changed somewhat more eas
ily than hardware, but not nearly as easily as software.

The reliance on standard parts of low- to medium-level integration made
these two design styles radically different. Microprogrammed approaches
were attractive because implementing the control with a large collection of
low-density gates was extremely costly. Furthermore, the popularity of rela
tively complex instruction sets demanded a large control unit, making a ROM
based implementation much more efficient. The hardwired implementations
were faster, but too costly for most machines. Furthermore, it was very diffi
cult to get the control correct, and changing ROMs was easier than replacing a
random logic control unit. Eventually, microprogrammed control was imple
mented in RAM, to allow changes late in the design cycle, and even in the field
after a machine shipped.

As architectures became more complex, so did the control. Designers also
took advantage of the relative ease of adding new instruction set features to a
microprogrammed machine, and instruction set complexity grew quickly.

5.9 Historical Perspective and Further Reading 353

Much has changed in the 40 years since Wilkes [1953] wrote the first paper
on microprogramming. The most important changes are

• Control units are implemented as integral parts of the processor, often
on the same silicon die. They cannot be changed independent of the rest
of the processor. Furthermore, given the right computer-aided design
tools, the difficulty of implementing a ROM or a PLA is the same.

• ROM, which was used to hold the microinstructions, is no longer faster
than RAM, which holds the machine language program. A PLA imple
mentation of a control function is often much smaller than the ROM im
plementation, which may have many duplicate or unused entries. If the
PLA is smaller, it is usually faster.

• Instruction sets have become much simpler than they were in the 1960s
and 1970s, leading to reduced complexity in the control.

• Computer-aided design tools have improved so that control can be
specified symbolically and, by using much faster computers, thorough
ly simulated before hardware is constructed. This makes it plausible to
get the control logic correct without the need for fixes later.

These changes have blurred the distinctions among different implementa
tion choices. Certainly, using an abstract specification of control is helpful.
How that control is then implemented depends on its size, the underlying
technology, and the available CAD tools.

• Historical Perspective and Further Reading

Maurice Wilkes learned computer design in a summer workshop from Eckert
and Mauchly and then went on to build the first full-scale, operational,
stored-program computer-the EDSAC. From that experience he realized the
difficulty of control. He thought of a more centralized control using a diode
matrix and, after visiting the Whirlwind computer in the U.S., wrote [Wilkes
1985] :

I found that it did indeed have a centralized control based on the use of a matrix
of diodes. It was, however, only capable of producing a fixed sequence of eight
pulses-a different sequence for each instruction, but nevertheless fixed as far as
a particular instruction was concerned. It was not, I think, until I got back to
Cambridge that I realized that the solution was to turn the control unit into a
computer in miniature by adding a second matrix to determine the flow of con
trol at the microlevel and by providing for conditional micro-instructions.

354 Chapter 5 The Processor: Datapath and Control

• .

Control may be designed using one of several initial
representations. The choice of sequence control, and
how logic is represented, can then be determined
independently; the control can then be implemented
with one of several methods using a structured logic
technique. Figure 5.55 shows the variety of methods

for specifying the control and moving from the specification to an
implementation using some form of structured logic:

Initial Finite state Microprogram representation diagram

Sequencing Explicit next Microprogram counter
control state function + dispatch ROMS

Logic Logic Truth
representation equations tables

Implementation Programmable Read only
technique logic array memory

FIGURE 5.55 Alternative methods for specifying and Implementing control.
The arrows in this figure indicate po ible de ign paths: any path from the initial
representation to the final implementation technology is viable. Traditionally,
"hardwired control" means that the techniques on the left-hand side are u ed, and
"microprogrammed control" means that the techniques on the right-hand side are
used.

Wilkes [1953] was ahead of his time in recognizing that problem. Unfortu
nately, the solution was also ahead of its time: To provide control, micro
programming relies on fast memory that was not available in the 1950s. Thus,
Wilkes's ideas remained primarily academic conjecture for a decade, although
he did construct the EDSAC 2 using microprogrammed control in 1958 with
ROM made from magnetic cores.

IBM brought microprogramming into the spotlight in 1964 with the IBM
360 family. Before this event, IBM saw itself as a cluster of many small busi
nesses selling different machines with their own price and performance levels,

5.9 Historical Perspective and Further Reading 355

but also with their own instruction sets. (Recall that little programming was
done in high-level languages, so that programs written for one IBM machine
would not run on another.) Gene Amdahl, one of the chief architects of the
IBM 360, said that managers of each subsidiary agreed to the 360 family of
computers only because they were convinced that microprogramming made
it feasible. To be sure of the viability of microprogramming, the IBM vice pres
ident of engineering even visited Wilkes surreptitiously and had a "theoreti
cal" discussion of the pros and cons of microcode. IBM believed that the idea
was so important to its plans that it pushed the memory technology inside the
company to make microprogramming feasible.

Stewart Tucker of IBM was saddled with the responsibility of porting soft
ware from the IBM 7090 to the new IBM 360. Thinking about the possibilities
of microcode, he suggested expanding the control store to include simulators,
or interpreters, for older machines. Tucker [1967] coined the term emulation for
this, meaning full simulation at the microprogrammed level. Occasionally,
emulation on the 360 was actually faster than on the original hardware.

Once the giant of the industry began using microcode, the rest soon fol
lowed. One difficulty in adopting microcode was that the necessary memory
technology was not widely available, but that was soon solved by semicon
ductor ROM and later RAM. The microprocessor industry followed the same
history, with the limited resources of the earliest chips forcing hardwired con
trol. But as the resources increased, the advantages of simpler design, ease of
change, and the ability to use a wide variety of underlying implementations
persuaded many to use microprogramming.

With the increasing popularity of microprogramming came more sophisti
cated instruction sets. Over the years, most microarchitectures became more
and more dedicated to support the intended instruction set, so that repro
gramming for a different instruction set failed to offer satisfactory perfor
mance. With the passage of time came much larger control stores, and it
became possible to consider a machine as elaborate as the VAX with more than
300 different instruction opcodes and more than a dozen memory addressing
modes. The use of RAM to store the microcode also made it possible to debug
the microcode and even fix some bugs once machines were in the field. The
VAX architecture represented the high-water mark for instruction set architec
tures based on microcode implementations. Typical implementations of the
full VAX instruction set required 400 to 500 Kb of control store.

As 1994 begins, the VAX architecture has seen its last days. A new stream
lined architecture from Digital, called Alpha, has replaced the VAX. This new
architecture is based on the same principles of design used in other RISC ar
chitectures, including the MIPS, SPARC, IBM Power PC, and the HP Precision
architecture. With the disappearance of the VAX, traditional micro
programming, in which the control is implemented with one major control

356 Chapter 5 The Processor: Datapath and Control

store, will largely disappear from new processor designs. Even processors
such as the Intel Pentium are employing large amounts of hardwired control,
at least for the central core of the processor.

Of course, control unit design will continue to be a major aspect of all com
puters, and the best way to specify and implement the control will vary, just
as computers will vary from streamlined RISC architectures with simple con
trol to special-purpose processors with potentially large amounts of more
complex and specialized control.

To Probe Further
Kidder, Tracy [1981]. Soul of a New Machine, Little, Brown, and Co., New York.

Describes the design of the Data General Eclipse series that replaced the first DG machines such as the
Nova. Kidder records the intimate interactions among architects, hardware designers, microcoders, and
project management.

Levy, H. M., and R. H. Eckhouse, Jr. [1989]. Computer Programming and Architecture: The VAX, 2nd
ed., Digital Press, Bedford, Mass.

Good description of the VAX architecture and several different microprogrammed implementations.

Patterson, D. A. [1983]. "Microprogramming," Scientific American 248:3 (March) 36-43.

Overview of microprogramming concepts.

Tucker, S. G. [1967]. "Microprogram control for the System/360," IBM Systems Journal 6:4, 222-
241.

Describes the microprogrammed control for the 360, the first microprogrammed commercial machine.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.

Intriguing biography with many stories about industry pioneers and the trials and successes in building
early machines.

Wilkes, M. V., and J. B. Stringer [1953]. "Microprogramming and the design of the control circuits
in an electronic digital computer," Proc. Cambridge Philosophical Society 49:230-38. Also reprinted
in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982),
McGraw-Hill, New York, 158-63, and in "The Genesis of Microprogramming" in Annals of the
History of Computing 8: 116.

These two classic papers describe Wilkes's proposal for microcode.

5.10 Exercises 357

II Exercises

5.1 [10] <§5.2-5.3> We wish to add the instruction j a l (jump and link) to the
single-cycle datapath described in this chapter (this instruction is described in
Chapter 3, page 119. Add any necessary datapaths and control signals to the
single-clock datapath of Figure 5 .33 on page 307. You can photocopy the
existing datapath (or use Figure 5.22 on page 295, if you prefer) to make it
less work to show the additions.

5.2 [5] <§5.3> {ex. 5.1) Show the additions to the table in Figure 5.23 on page
296 needed to set all the control lines that were added in Exercise 5.lfor the
instruction j a l . Remember to add the jump control line if it is needed to
implement j a l .

5.3 [10] <§5.4> We wish to add the datapath parts and control needed to
implement the j a l instruction in the multiclock datapath and control. Show
the additions to the datapath and control lines of Figure 5.39 on page 323
needed to implement these instructions in the multicycle datapath. You can
photocopy the existing datapath to make it less work to show the additions.
Again, there are multiple solutions; choose the solution that minimizes the
number of clock cycles for this added instruction.

5.4 [5] <§5.4> {ex. 5.3) Show the steps in executing the j a l instruction in the
multiclock datapath, using the same breakdown of steps as used on pages 317
through 321 .

5.5 [5] <§5.4> {ex. 5.3, 5.4) Show the additions to the finite state machine of
Figure 5.54 on page 349 to implement the j a l instruction.

5.6 [20] <§5.4> Your friends at c3 (Creative Computer Corporation) have
determined that the critical path that sets the clock cycle length of the multi
cycle datapath is memory access for loads and stores (not for instructions).
This has caused their newest implementation of the MIPS 30000 to run at a
clock rate of 500 MHz rather than the target clock rate of 750 MHz. However,
Clara at C3 has a solution. If all the cycles that access memory are broken into
two clock cycles, then the machine can run at its target clock rate. Using the
gee mixes shown in Chapter 4 (Figure 4.46 on page 248), determine how
much faster the machine with the two-cycle memory accesses is compared
with the 500-MHz machine with single-cycle memory access. Assume all
jumps and branches take the same number of cycles and that the set instruc
tions and arithmetic immediate instructions are implemented as R-type
instructions.

358 Chapter 5 The Processor: Datapath and Control

5.7 [15] <§5.1-5.4> For this problem use the gee data from 4.46 on page 248.
Assume there are three machines:

• Ml: The multiclock datapath of Chapter 5 with a 50-MHz clock.

• M2: A machine like the multiclock datapath of Chapter 5, except that
register updates are done in the same clock as a memory read or ALU
operation. Thus, in Figure 5.54 on page 349 states 6 and 7 and states 3
and 4 are combined. This machine has a 40-MHz clock, since the register
update increases the length of the critical path.

• M3: A machine like M2, except that effective address calculations are
done in the same clock as a memory access. Thus, states 2, 3, and 4 can
be combined, as can 2 and 5, as well as 6 and 7. This machine has a 25-
MHz clock, because of the long cycle created by combining address cal
culation and memory access.

Find out which machine is fastest. Are there instruction mixes that would
make another machine faster, and if so, what are they?

5.8 [20] <§5.4> Suppose there were a MIPS instruction, called b c p, that copied
a block of words from one address to another. Assume that this instruction
requires that the starting address of the source block is in register $1 and the
destination address is in $2, and the number of words to copy is in $3 (which
is � 0). Furthermore, assume that the values of these registers as well as regis
ter $4 can be destroyed in executing this instruction (so that the registers can
be used as temporaries to execute the instruction) .

Write the MIPS assembly language program to implement block copy. How
many instructions will be executed to perform a 100-word block copy? Using
the CPI of the instructions in the multicycle implementation, how many
cycles are needed for the 100-word block copy?

5.9 [30] <§5.5> Microcode has been used to add more powerful instructions to
an instruction set; let's explore the potential benefits of this approach. Give a
microprogram to implement the b c p instruction. To implement this instruc
tion, we will need to extend the microinstruction format. In the extended for
mat we allow the SRCl and SRC2 fields to contain either an explicit register
designator, and the SRC2 field to contain a small constant (five bits in length).
We also allow the ALU destination field to contain an explicit register speci
fier. Finally, we will need to have microinstructions that can conditionally
branch, since implementing b c p will require a loop. Assume the sequencing
field is extended to allow a branch based on the 0 bit out of the ALU. The label
specifies another microinstruction.

5.10 Exercises 359

How many microinstructions will be executed to copy a block of 100 words?
How does this compare to the number of MIPS instructions required? Assum
ing each microinstruction takes one cycle, how does the cycle count of the
microcode implementation compare the implementation using MIPS instruc
tions in Exercise 5.8. How do you explain the difference?

5.10 [15] <§5.5> {ex. 5.9} To implement the b c p instruction in Exercise 5.9, we
needed to expand the microinstruction. Assume that each field of the microin
struction is encoded separately and that there will be at most 1024 microin
structions. Find the width of each field in the original and extended
microinstruction and the total widths. Remember to include bits that describe
fields that can have different types of values (e.g., SRCl in the extended
microinstruction).

5.11 [5] <§5.2-5.3> We wish to add the instruction a d d i u (Add Immediate
Unsigned) to the single-cycle datapath described in this chapter. This instruc
tion is described in Chapter 3. Add any necessary datapaths and control sig
nals to the single clock datapath of Figure 5 .22 on page 295. You can
photocopy the existing datapath to make it faster to show the additions.

5.12 [10] <§5.3> {ex. 5.11 } Show the additions to the table in Figure 5.23 on
page 296 needed to set the control lines that were added in Exercise 5.11 for
the instruction a d d i u .

5.13 5] <§5.4> We wish to add the datapath parts and control needed to imple
ment the a d d i u instruction in the multiclock data path and control. Show the
additions to the datapath and control lines of Figure 5.39 on page 323 needed
to implement this instruction in the multicycle datapath.

5.14 [5] <§5.4> {ex. 5.13} Show the steps in executing the a d d i u instruction in
the multiclock datapath, using the same breakdown of steps as used in pages
317 through 320.

5.15 [10] <§5.4> {ex. 5.13, 5 .14} Show the additions to the finite state machine
of Figure 5 .47 on page 332 needed to implement the a d d i u instruction.

5.16 [5] <§5.5, 5.8> {ex. 5.13, 5.14, 5 .15) Write the microcode sequences for the
a d d i u instruction. If you need to make any changes to the microinstruction
format or field contents, indicate how the new format and fields will set the
control outputs.

5.17 [1 week] <§5.2, 5.3> Using a hardware simulation language such as Ver
ilog, implement a functional simulator for the single-cycle version. Build your
simulator using an existing library of parts, if such a library is available. If the
parts contain timing information, determine what the cycle time of your
implementation will be.

360 Chapter 5 The Processor: Datapath and Control

5.18 [1 week] <§5.2, 5.4, 5.5> Using a hardware simulation language such as
Verilog, implement a functional simulator for the multicycle version of the
design. Build your simulator using an existing library of parts, if such a
library is available. If the parts contain timing information, determine what
the cycle time of your implementation will be.

5.19 [2-3 months] <§5.1-5.3> Build a machine that implements the single
cycle machine in this chapter using standard parts.

5.20 [2-3 months] <§5.1-5.8> Build a machine that implements the multicycle
machine in this chapter using standard parts.

5.21 [Discussion] <§5.5, 5.8, 5.9> Hypothesis: If the first implementation of an
architecture uses microprogramming, it affects the instruction set architec
ture. Why might this be true? Can you find an architecture that will probably
always use microcode? Why? Which machines will never use microcode?
Why? What control implementation do you think the architect had in mind
when designing the instruction set architecture?

5.22 [Discussion] <§5.5, 5 .10> Wilkes invented microprogramming in large
part to simplify construction of control. Since 1980, there has been an explo
sion of computer-aided design software whose goal is also to simplify con
struction of control. This has made control design much easier. Can you find
evidence, either based on the tools or real designs, that support or refute this
hypothesis?

5.23 [Discussion] <§5.10> The MIPS instructions and the MIPS microinstruc
tions have many similarities. What would make it difficult for a compiler to
produce MIPS microcode rather than macrocode? What changes to the
microarchitecture would make the microcode more useful for this applica
tion?

Thus times do shift,
each thing his turn does hold;
New things succeed,
as former things grow old.

Robert Herrick
Hesperides: Ceremonies for Christmas Eve, 1648

Enhancing

Performance

with Pipelining

6.1 Introduction 364

6.2 A Pipelined Datapath 367

6.3 Pipelined Control 381

6.4 Data Hazards 390

6.5 Control for Data Hazards: Stalls 399

6.6 Reducing Data Hazards: Forwarding 412

6.7 Branch Hazards 424

6.8 Exceptions 430

6.9 Performance of Pipelined Systems 435

6.10 Fallacies and Pitfalls 436

6.11 Concluding Remarks 438

6.12 Historical Perspective and Further Reading 441

6.13 Exercises 445

The Five Classic Components of a Computer

Evaluating
Performance

Compiler

364 Chapter 6 Enhancing Performance with Plpelinlng

Introduction

Never waste time.

American Proverb

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. Today, pipelining is key to making processors fast.

A pipeline is like an assembly line: in both, each step completes one piece
of the whole job. Workers on a car assembly line perform small tasks, such as
installing seat covers. The power of the assembly line comes from many work
ers performing small tasks to collectively produce many cars per day. On a
well-balanced assembly line, a new car exits the line in the time it takes to per
form one of the many steps. Note that the assembly line does not reduce the
time it takes to complete an individual car; it increases the number of cars being
built simultaneously and thus the rate at which cars are started and completed.

As in a car assembly line, the work to be done in a pipeline for an instruction
is broken into small pieces, each of which takes a fraction of the time needed
to complete the entire instruction. Each of these steps is called a pipe stage or a
pipe segment. The stages are juxtaposed to form a pipe-instructions enter at
one end, are processed through the stages, and exit at the other end. Once
again, pipelining does not reduce the time it takes to complete an individual
instruction; it increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. In the terms used
in Chapter 2, page 50, pipelining improves instruction throughput rather than
individual instruction execution time.

Just as the throughput of a car assembly line is determined by how often a
car exits the line, the throughput of an instruction pipeline is determined by
how often an instruction exits the pipeline. Because they are hooked together,
all the pipe stages must be ready to proceed at the same time; thus, the rate at
which instructions exit the pipeline cannot exceed the rate at which they enter
the pipeline. The time required to move an instruction one step down the pipe
line is ideally one clock cycle. The length of a clock cycle is determined by the
time required for the slowest pipe stage, because all stages must proceed at the
same rate.

The goal of designers-whether of instruction pipelines or car assembly
lines-is to balance the length of each stage; otherwise, there will be idle time
during a stage. If the stages are perfectly balanced, then the time between in
structions on the pipelined machine-assuming ideal conditions-is equal to

6.1 Introduction 365

Time between instructions ·reim· e<l
T. b · · nonp1 1me etween mstruct10ns pipel'ned = b f . 1 Num er o pipe stages

Under ideal conditions, the speedup from pipelining equals the number of
pipe stages; a five-stage pipeline is five times faster. Usually, however, the
stages are imperfectly balanced. In addition, pipelining involves some over
head. Thus the time per instruction on the pipelined machine will exceed the
minimum possible, and speedup will be less than the number of pipeline
stages.

To make this discussion concrete, let's create a pipeline using the example
components from Chapter 5 from the single-cycle implementation. In this ex
ample, and in the rest of this chapter, we limit our attention to seven
instructions: load word (l w), store word (sw), add (a d d), subtract (s u b), and
(a n d), or (o r), and branch equal (b eq) . The operation times for the major func
tional units in the implementation from Chapter 5, page 308 are

• Memory units: 10 ns

• ALU and adders: 10 ns

• Register file (read or write): 5 ns

Assuming that the multiplexors, control unit, PC accesses, and sign-extension
unit have no delay, the time required for each of the seven instructions is
shown in the table below:

Instruction Register ALU Data Register Total
Instruction type memory read operation memory write time

Load word (l w) 10 ns 5 ns 10 ns 10 ns 5 ns 40 ns

Store word (s w) 10 ns 5 ns 10 ns 10 ns 35 ns

R-format (add, s u b , a n d , o r) 10 ns 5 ns 10 ns 5 ns 30 ns

Branch (beq) 10 ns 5 ns 10 ns 25 ns

Because the single-cycle design must allow for the worst-case instruction
the slowest instruction in the table above-the time required for every instruc
tion is 40 ns. The execution of a sequence of load instructions would be as
shown on the top of the next page:

366 Chapter 6 Enhancing Performance with Plpellnlng

Instruction
execution Time -------------------------+
order

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Instruction
fetch

Reg ALU Data
fetch

Reg

--------------.! Instruction
40 ns fetch

Reg ALU

40 ns

Data
fetch

Reg

Instruction
R

fetch
eg

40 ns
Thus, the time between the first and fourth instructions is 3 x 40 ns or 120 ns.

Instructions were divided into five steps in Chapter 5. This suggests that a
five-stage pipeline would be a good starting place. Five stages means we exe
cute five instructions at a time, with one in each pipeline stage. Each pipe stage
takes one clock cycle. A sequence of load instructions in the pipelined imple
mentation would then be

Instruction 10 20 30 40 50 60
execution Time
order

lw $1, 100($0)
Instruction

Reg ALU Data
Reg

fetch fetch

Data lw $2, 200($0) 10 ns
I nstruction

Reg ALU Reg
fetch fetch

Instruction lw $3, 300($0) 10 ns Reg ALU Data
Reg

fetch fetch

10 ns

All the stages take a single clock cycle, so the clock cycle must be long
enough to accommodate the slowest operation. Just as the single-cycle design
must take the worst-case clock cycle of 40 ns even though some instructions
can be as fast as 25 ns, the pipelined execution clock cycle must have the worst
case clock cycle of 10 ns even though some stages take only 5 ns. This is still a
fourfold improvement. The formula above suggests that a five-stage pipeline
could offer a fivefold improvement, or an 8-ns clock cycle; the difference is due
to the imbalance in the length of the pipe stages.

Although the example shows a fourfold improvement, the improvement in
total execution time for the three instructions is more modest: 70 ns versus 120
ns. To see why total execution time is less important, let's examine what would
happen to the execution time if we increased the number of instructions. We

6.2 A Plpellned Datapath 367

start by extending the drawings above to 1003 instructions. We would add
1000 instructions to the left in the pipelined example; each instruction adds 10
ns to the total execution time. The total execution time would be 1000 x 10 ns
+ 70 ns, or 10,070 ns. In the nonpipelined example, we would add 1000 instruc
tion, each taking 40 ns, so total execution time would be 1000 x 40 ns + 120 ns,
or 40,120 ns. Under these ideal conditions, the ratio of total execution times for
real programs on nonpipelined to pipelined machines is close to the ratio of
times between instructions:

40,120 ns
= 3.98 ""'

40ns
10,070 ns lOns

Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruc
tion throughput is the important metric because real programs execute bil
lions of instructions.

Pipelining is a technique that exploits parallelism among the instructions in
a sequential instruction stream. It has the substantial advantage that, unlike
some speedup techniques (see Chapter 9), it can be invisible to the program
mer. In this chapter, we will first cover the concept of pipelining using the
MIPS instruction subset from Chapter 5 (1 w, s w, a d d , s u b , a n d , o r, beq) and a
simplified version of its pipeline. We will then look at the problems that pipe
lining introduces and the performance attainable under typical situations. Lat
er in the chapter, we will examine advanced techniques that can be used to
overcome the difficulties encountered in pipelined machines.

II A Plpellned Datapath

Figure 6.1 shows the single-cycle datapath from Chapter 5. Expanding from
the example above, the division of an instruction into five stages means a five
stage pipeline, which in turn means that five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five
pieces, with each piece named corresponding to a stage of instruction execu
tion:

1 . IF: Instruction fetch

2. ID: Instruction decode and register fetch

3. EX: Execution and effective address calculation

4. MEM: Memory access

5. WB: Write back

368

Instruction fetch

Instruction
Instruction

memo.,

Chapter 6 Enhancing Performance with Plpellnlng

Instruction decode/
register fetch

Read register 1

Read register 2

Execute/
address calculation

Write Registers
d��a� I--_..._+.(register

Write data

16

Memory access Write back

Read address Data Read 1--....--r memory data Write address

FIGURE 6.1 The slngle-cycle datapath from Chapter 5 (slmllar to Figure 5.20 on page 293). Each step of the instruc
tion can be mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-back
step, which sends either the ALU result or the data from memory to the left to be written into the registers.

In Figure 6.1 these five components correspond roughly to the way the
datapath is drawn; instructions and data move generally from left to right
through the five stages as they complete execution. Going back to our automo
tive analogy, cars get closer to complete assembly as they move through the
line, and they never move backwards through the line.

There are, however, two exceptions to this left-to-right flow of instructions:

• The write-back stage, which places the result back into the register file
in the middle of the datapath.

• The selection of the next value of the PC, choosing between the incre-
mented PC and the branch address from the MEM stage.

Data flowing from right to left does not affect the current instruction; only
later instructions in the pipeline are influenced by these two data movements
(see section 6.4).

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

6.2 A Plpellned Datapath

Time (in clock cycles) ---------------

r:l _ _l_r:f"�eg �� �i ...
I
I

369

cc 7

FIGURE 6.2 Instructions being executed In the single-cycle datapath in Figure 6.1, assuming plpellned execution.
This figure pretends that each instruction has its own datapath. The five pieces of this stylized datapath correspond to the
portions of the datapath in Figure 6.1. IM represents the instruction memory and the PC in the instruction fetch stage, Reg
stands for the registers and sign extender in the instruction decode/register fetch phase (ID), and so on. To maintain proper
time order, this stylized datapath breaks the register file into two logical halves: registers read during register fetch (ID)
and registers write during write back (WB). This dual use is represented by drawing the left half of the registers using
dashed lines in the ID stage, when they are not being written, and the right half in dashed lines in the WB stage, when they
are not being read. Notice that in pipelined execution the second instruction must read the new instruction from the mem
ory even though the first instruction depends on the instruction memory being stable for the entire instruction. Such con
flicts lead to the pipeline registers in Figure 6.3.

One way to show what happens in pipelined execution is to pretend that
each instruction has its own datapath, and then to place these datapaths on a
timeline to show their relationship. Figure 6.2 shows the execution of the in
structions in the example from the previous section by displaying their private
datapaths on a common timeline. We use a stylized version of the datapath in
Figure 6.1 to show the relationships in Figure 6.2.

Figure 6.2 seems to suggest that three instructions need three datapaths. Re
call that in Chapter 5 we added registers to hold data so that portions of the
datapath could be shared during instruction execution; we use the same tech
nique here. For example, in Chapter 5 the instruction memory was used only
by one instruction at a time for the duration of that instruction execution. With
pipelining, as Figure 6.2 shows, the instruction memory is used during only
one of the five stages of an instruction, allowing it to be shared by other in
structions during the other four stages. To retain the value of an individual in-

370

Read -. ..

Chapter 6 Enhancing Performance with Pipellnlng

Read
re&Jster 1

Read
recister2

Read
data 1

A.Pt•rt Read
wme data 2
retister

Write
<la!a

16

10/EX EX/MEM

Write
....

MEM/WB

FIGURE 6.3 The plpellned version of the datapath In Figure 6.1. The pipeline registers, in color, separate each pipeline
stage. They are labeled by the stages that they separate; for example, the first is labeled "IF /ID" because it separates the
instruction fetch and instruction decode stages. The registers must be wide enough to store all the data corresponding to
the lines that go through them. For example, the IF / ID register must be 64 bits wide because it must hold both the 32-bit
instruction fetched from memory and the incremented 32-bit PC address.

struction for its other four stages, the value read from instruction memory
must be saved in a register. Similar arguments apply to every pipeline stage,
so we must place registers wherever there are dividing lines between stages in
Figure 6.1 .

Figure 6.3 shows the pipelined datapath with the pipeline registers high
lighted and named for the two stages separated by that register. All instruc
tions advance during each clock cycle from one pipeline register to the next.

Notice that there is no pipeline register separating the write-back stage from
the next instruction fetch. All instructions must update some state in the ma
chine, so a separate pipeline register is redundant for the state that is updated.
For example, a load instruction will place its result in 1 of the 32 registers, and
any later instruction that needs that data will simply read the appropriate reg
ister. Sections 6.4 and 6.5 describe what happens when there are dependencies
between pipelined instructions; ignore them for now.

To show how the pipelining works, throughout this chapter we show se
quences of figures to demonstrate operation over time. These extra pages

lw

Instruction fetch

6.2 A Plpellned Datapath

Reacl reciiatet l
..... regis� 2

..... data 1
R•Ptan Rcikl Wm.e data 2 l'e&JSle<

16

371

10/0. MEM/WS

FIGURE 6.4 IF: the first pipe stage of an Instruction, with the active portions of the datapath In Figure 6.3 hlgh
llghted. Highlighting the right half of a register or memory, such as instruction memory, means it is read in this pipe stage.
Highlighting the left half, such as the IF /ID register, means that it is written in this stage. The highlighting of a whole reg
ister, such as the PC, means that the register is both read and written in this pipe stage. As in Chapter 5, there is no confu
sion when reading and writing registers because the contents change only on the clock edge.

would seem to require much more time from the reader. Fear not, for the se
quences take much less time to understand because the reader can compare to
see what changes in each clock cycle. Figures 6.4 through 6.8, our first se
quence, show the active portions of the datapath highlighted as a load instruc
tion goes through the five stages of pipelined execution. We show a load first
because it is active in all five stages. We highlight the right half of registers or
memory when they are being read and highlight the left half when they are be
ing written. We show the instruction abbreviation l w with the name of the pipe
stage that is active in each figure. The five stages are

1 . Instruction Fetch: Figure 6.4 shows the instruction being read from
memory using the address in the PC and then placed in the IF /ID pipe
line register. (The IF / ID pipeline register is similar to the Instruction
register in Figure 5.34 on page 313.) The PC address is incremented by 4
and then loaded back into the PC to be ready for the next clock cycle.

372

RHO
........

Chapter 6 Enhancing Performance with Plpellnlng

lw

Instruction decode

Read
re&lster 1

Write
'"l)•te<

wme
....

10/EX EXiMEM MEM/WB

FIGURE 6.5 ID: the second pipe stage of an Instruction, with the portions of the datapath In Figure 6.3 hlgh
llghted that are used in this pipe stage as In Figure 6.4. Note that although the load will need only the top register,
the processor doesn't know what instruction is being loaded, so it both sign-extends the 16-bit constant and reads both reg
isters into the ID/EX pipeline register. The processor doesn't need all three operands for this instruction, but always load
ing all three can't hurt and makes control simpler.

This incremented address is also saved in the IF /ID pipeline register in
case it is needed later for an instruction, such as b e q; the computer can
not know which type of instruction is being fetched, so it must prepare
for any instruction.

2. Instruction Decode and Register Read: Figure 6.5 shows the instruction
portion of the IF /ID pipeline register supplying the 16-bit immediate
field that is sign-extended to 32 bits and the register numbers to read
the two registers. All three values are all stored in the ID/EX pipeline
register, along with the incremented PC address. Although, during this
clock cycle, we will know the identity of the instruction being decoded
and can store only what will be used in later clock cycles, it costs little
to save everything. Hence, we again transfer everything that might be
needed by any instruction during a later clock cycle.

6.2 A Pipelined Datapath 373

lw

Execution

ID/EX EJVMEM

FIGURE 6.6 EX: the third pipe stage of a load Instruction, highlighting the portions of the datapath In Figure 6.3
used In this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM
pipeline register.

3. Execute and Effective Address Calculation: Figure 6.6 shows that the load
instruction reads the contents of register 1 and the sign-extended
immediate from the ID /EX pipeline register and adds them using the
ALU. That sum is placed in the EX/MEM pipeline register.

4. Memory: Figure 6.7 shows the load instruction reading the data mem
ory using the address from the EX/MEM pipeline register and loading
the data into the MEM/WB pipeline register.

5. Write Back: Figure 6.8 shows the final step: reading the data from the
MEM/WB pipeline register and writing it into the registers in the mid
dle of the figure.

This walk-through of the load instructions shows that any information
needed in the next pipe stage must be passed to that stage via a pipeline reg
ister. Walking through a store instruction shows the similarity of instruction
execution; moreover, the walk-through emphasizes the need to keep informa-

374

IMtNCtlon
-

Chapter 6 Enhancing Performance with Plpellnlng

Read �1ster l
Read register 2

RecJ•teni ReaQ Wnte data 2
regls�r

Wnte aota

16

EXJMEM

lw
Memory

Wnte data

.... R

MEM/WB

FIGURE 6. 7 MEM: the fourth pipe stage of a load Instruction, highlighting the portions of the datapath In
Figure 6.3 used In this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the
data is placed in the MEM/WB pipeline register.

tion used later in the execution of the instruction in the pipeline registers. Here
are the five pipe stages of the store instruction:

I . Instruction Fetch: The instruction is read from memory using the
address in the PC and then is placed in the IF /ID pipeline register. This
stage occurs before the instruction is identified, so Figure 6.4 works for
store as well as load.

2. Instruction Decode and Register Read: The instruction in the IF /ID pipe
line register supplies the register numbers for reading two registers and
extends the sign of the 16-bit immediate. These three 32-bit values are
all stored in the ID /EX pipelining register. Figure 6.5 for load instruc
tions also shows the operations of the second stage for stores. These
first two stages are executed by all instructions, since it is too early to
know the type of the instruction.

3. Execute and Effective Address Calculation: Figure 6.9 shows the third step;

6.2 A Pipelined Datapath

..... reaJsler 1

--

16

Read clate 1

10/EX EX/MEM

Data Read
....

MEM/WB

375

lw

Write back

FIGURE 6.8 WB: the final pipe stage of a load Instruction, highlighting the portions on the datapath in Figure 6.3
used In this pipe stage. Data is read from the MEM/WB pipeline registers and written into the registers in the middle of
the datapath.

the effective address is placed in the EX/MEM pipeline register.

4. Memory: Figure 6.10 shows the data being written to memory. Note
that the register containing the data to be stored was read in an earlier
stage and stored in ID /EX. The only way to make the data available
during the MEM stage is to place the data into the EX/MEM pipeline
register in the EX stage, just as we stored the effective address into
EX/MEM.

5. Write Back: Figure 6.11 shows the final step of the store. For this instruc
tion, nothing happens in the write-back stage. Since every instruction
behind the store is already in progress, we have no way to accelerate
those instructions. Hence an instruction passes through a stage even if
there is nothing to do, because later instructions are already progress
ing at the maximum rate.

376 Chapter 6 Enhancing Performance with Plpellnlng

Read �1�lH 1
Read reti•ter 2

Read """' '
Recl•ten Reaa Wnte ctala 2 register

Write """'

16

SW

Execution

10/EX EX/MEM

Wnte data

0.U Re� .. ,.

MEM/WB

FIGURE 6.9 EX: the third pipe stage of a store Instruction. Unlike the third stage of the load instruction in Figure 6.6,
the second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn't
hurt to always write this second register into the EX/MEM pipeline register, we write the second register only on a store
instruction to make the pipeline easier to understand.

The store instruction illustrates that in order to pass something from an ear
ly pipe stage to a later pipe stage, the information must be placed in a pipeline
register; otherwise the information is lost as the next instruction enters that
pipeline stage. For the store instruction we needed to pass one of the registers
read in the ID stage to the MEM stage, where it is stored in memory. The data
was first placed in the ID /EX pipeline register and then passed to the
EX/MEM pipeline register.

Load and store illustrate a second key point: each component of the datap
ath-such as instruction memory, registers, ALU, and data memory-is used
within a single pipeline stage. Hence these components, and their control, can
be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Can you
see it? Which register is changed in the final stage of the load? More specifical
ly, which instruction supplies the write register number? The instruction in the

Read address

6.2 A Plpellned Datapath

Read register 1
Read register 2

Reao data 1
Retlsters �coo Write <!ata 2 register

Wnte data

16

377

SW

Memory

ID/EX EX/MEM MEM/WB

FIGURE 6.10 MEM: the fourth pipe stage of a store Instruction. In this stage, the data is written into data memory for
the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipe
line register.

IF /ID pipeline register supplies the write register number, yet this instruction
occurs considerably after the load instruction!

Hence, we need to preserve the register number in the load instruction. Just
as store passed the register contents from the ID /EX to the EX/MEM pipeline
registers for use in the MEM stage, load must pass the register number from the
ID /EX through EX/MEM to the MEM/WB pipeline register for use in the WB
stage. Another way to think about the passing of the register number is that,
in order to share the pipelined datapath, we needed to preserve the instruction
read during the ID stage, so each pipeline register contains a portion of the in
struction needed for that stage and later stages.

Figure 6.12 shows the correct version of the datapath, passing the write reg
ister number first to the ID/EX register, then to the EX/MEM register, and fi
nally to the MEM/WB register. The register number is used during the WB
stage to specify the register to be written. Figure 6.13 is a single drawing of the
corrected datapath, highlighting all five stages of the load instruction in Fig-

378

lnsbvctlon
.......,.

Chapter 6 Enhancing Performance with Plpellnlng

Read
reglster 1

Read
re-g1s1er 2

Read
ctatB 1

R9811ters Read
Wnte dat.a 2
register

W11te data

16

10/EX EX/MEM

D.ta Read
data

MEM/WB

SW

Write back

FIGURE 6.11 WB: the final pipe stage of a store instruction. Once the data is written in memory in the previous stage,
there is nothing left for the store instruction to do, so nothing happens in this stage.

ures 6.4 to 6.8. (See section 6.7 for an explanation of how to make the branch
instruction work as expected.)

Graphically Representing Pipelines

Pipelining can be difficult to understand, since many instructions are simulta
neously executing in a single datapath in every clock cycle. To aid under
standing there are two basic styles of pipeline figures: multiple-clock-cycle
diagrams, such as Figure 6.2 on page 369, and single-dock-cycle diagrams,
such as Figures 6.4 through 6.11. Let's try showing a sequence of instructions
using both styles of pipeline diagrams for this two-instruction sequence:

l w $ 1 0 , 9 ($ 1)
s u b $ 1 1 , $ 2 , $ 3

Figure 6.14 shows the multiple-clock-cycle pipeline diagram for these two
instructions. Time advances from left to right across the page in these dia
grams, and instructions advance from the top to the bottom of the page. A

lnltrvction
.,._,.

6.2 A Plpellned Datapath

Read
register 1

Read
register 2

Read data 1
Aept.ets Read Wntt data 2 resister

Wnte
data

16

379

ID/EX EX/MEM MEM/WB

FIGURE 6.12 The corrected pipellned datapath to properly handle the load Instruction. The write register number
now comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage
until it reaches the MEM/WB pipeline register. This new path is shown in color.

representation of the pipeline stages is placed in each portion along the
instruction axis, occupying the proper clock cycles. These stylized datapaths
represent the five stages of our pipeline, but a rectangle naming each pipe
stage works just as well. Figure 6.15 shows the more traditional version of the
multiple-clock-cycle pipeline diagram. We use multiple-clock-cycle diagrams
to give overviews of pipelining situations.

Single-clock drawings show the state of the entire datapath during a single
clock cycle, and usually all the instructions in the pipeline are identified by la
bels above their respective pipeline stages. We use this type of figure to show
the details of what is happening within the pipeline during each clock cycle;
typically, the drawings appear in groups to show pipeline operation over a se
quence of clock cycles for multiple instructions. Figures 6.16 to 6.18 show the
single-clock cycle pipeline diagrams for these two instructions.

These two views of the pipeline are equivalent, of course. Taking a single
clock vertical slice from a multiple-clock-cycle diagram shows the state of the
pipeline in a single-clock-cycle diagram. One confusing aspect is the order of
instructions in the two diagrams: the newest instruction is at the bottom of the

380 Chapter 6 Enhancing Performance with Plpellnlng

ID/EX EX/MEM MEM/WB

FIGURE 6.13 The portion of the datapath In Figure 6.12 that Is used In all five stages of a load Instruction.

multiple-clock-cycle diagram, and it is on the left in the single-clock-cycle dia
gram.

Converting from a sequence of single-clock-cycle diagrams to a single
multi-clock-cycle diagram is harder: You must rotate each single-clock draw
ing 90 degrees counter-clockwise to make it fit within a clock boundary, and
then align the datapaths so that all stages of each instruction occqpy a single
horizontal line (see Exercise 6.6).

Elaboration: Because the PC communicates information between two instructions, as
opposed to within a s ingle instruction, diagrams such as Figure 6.16 show the PC as
an expl icit register. You could consider it as a pipeline register before the instruction
fetch stage, or between the write-back stage of one instruction and the instruction
fetch of the next instruction. The PC would then be drawn as an elongated rectangle
l i ke the other pipeline registers.

Program
execution
order
(i n instructions)

lw $10, 9($1)

6.3 Pipelined Control 381

Time (in clock cycles) -------------------

cc 1 cc 2 cc 3 cc 4 cc 5 cc 6

sub $11, $2, $3

FIGURE 6.14 Multlple-clock-c:ycle pipeline diagram of two instructions. See Figure 6.15 for the traditional way to
draw this diagram, and Figures 6.16 to 6.18 for the single-clock-cycle pipeline diagrams for the same instructions.

Program
execution
order
(in instructions) j lw $10, 9($1)

sub $11, $2, $3

Time (in clock cycles) ---------------------

cc 1 cc 2 cc 3 cc 4 cc 5 cc 6

I Instruction Instruction Execution Data
Write back fetch decode memory

Instruction Instruction Execution Data Write back I fetch decode memory

FIGURE 6.15 Tradltlonal multlple-clock-c:ycle pipeline diagram of two Instructions In Figure 6.14.

• Pipelined Control

In the 6600 Computer, perhaps even more than in any previous computer, the con
trol system is the difference.

James Thornton, Design of a Computer: The Control Data 6600, 1970

Just as we added control to the simple datapath in section 5.2, we now define
control for the pipelined datapath. We start with a simple design that views

382 Chapter 6 Enhancing Performance with Plpellnlng

the problem through rose-colored glasses; in sections 6.4 through 6.8, we
remove these glasses to reveal complexities of the real world such as
branches.

The first step is to label the control lines on the existing datapath.
(Figure 6.19 shows those lines.) We borrow as much as we can from the control
for the simple datapath in Figure 5 .20 on page 293. In particular, we use the
same ALU control logic, branch logic, register number multiplexor, and con
trol lines. These functions are defined in Figure 5.15 on page 287, Figure 5.21
on page 294, and Figure 5 .23 on page 296. (We reproduce the key information
in Figures 6.20 through 6.22 to make the remaining text easier to follow.)

As for the single clock cycle implementation discussed in Chapter 5, we as
sume that the PC is written on each clock cycle, so there is no separate write
signal for the PC. By the same argument, there are no separate write signals for
the pipeline registers (IF/ID, ID/EX, EX/MEM, and MEM/WB), since the
pipeline registers are also written during each clock cycle.

To specify control for the pipeline, we need only set the control values dur
ing each pipeline stage. Because each control line is associated with a compo
nent active in only a single pipeline stage, we can divide the control lines into
five groups according to the pipeline stage:

1 . Instruction Fetch: The control signals to read instruction memory and to
write the PC are always asserted, so there is nothing special to control
in this pipeline stage.

2. Instruction Decode/Register Fetch: As in the previous stage, the same
thing happens at every clock cycle, so there are no optional control lines
to set.

3. Execution: The signals to be set are RegDst, ALUop, and ALUSrc (see
Figures 6.20 and 6.22). The signals select the Result register, the ALU
operation, and either a register or a sign-extended immediate for the
ALU.

4. Memory Stage: The control lines set in this stage are Branch, MemRead,
and Mem Write. These signals are set by the branch equal, load, and
store instructions, respectively.

5. Write Back: The two control lines are MemtoReg, which decides between
sending the ALU result or the memory value to the registers, and Reg
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines
unchanged, we can use the same values per instruction as before. Figure 6.22

6.3 Plpellned Control

lw $10, 9($1)

Instruction fetch

sub $11, $2, $3

Instruction fetch

....
FtglSY'r l

....
�stet 2

.... ,
R"lftlttt Read

Wnte da1a 2
ret.lster

Write

16

lw $10, 9($1)

Instruction decode

.... rec,ilter1

.... recister 2 R
wnte
rea1stet

Write
....

16

' ' ' IDJ,E.ll.
' ' ' EX/�EM

' ' �EM

.... address

Wnto
....

.....

Oata Re-fld -

' : ' ' ' ' ' ' : ' ' ' ' ' ' ' ' ' ' ME�/WB

383

FIGURE 6.16 Slngle-cycle plpellne diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). The high
lighted portions of the datapath are active in that clock cycle. The load is fetched in clock cycle 1 and decoded in clock cycle
2, with the subtract fetched in the second clock cycle.

384 Chapter 8 Enhancing Performance with Pipelining

sub $11, $2, $3

Instruction decode

.... rec;lster 1

18

-dota 1

. : 10{0

' IO{EX

lw $10, 9($1)

Execution

sub $11, $2, $3

Execution

' : �EM

' ' ' �EM

R·w-J ""'"'" Dol<t
WriU? "*"°"

lw $10, 9($1)

Memory

' ' ' : . : .

i
i : ME>.!;\.\13

FIGURE 8.17 Slngle-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In the third
clock cycle in the top diagram, l w enters the EX stage. At the same time, s u b enters ID. In the fourth clock cycle (bottom
datapath), l w moves into MEM stage, reading memory using the address found in EX/MEM at the beginning of clock
cycle 4. At the same time, the ALU subtracts and then places the difference into EX/MEM at the end of the clock cycle.

Read address
Instruction

"'°"""'

6.3 Plpellned Control

Read recister l
.... re&lstef 2

Read data l

�t9"9 ReOO Wrtte data 2 reaJster
Write

Write
....

16

16

' ' ' 10.;E\
' ' ' EX�EM

' ' ' E.X."tEM

sub $11, $2, $3
Memory

R•"" address

Write ., ..

Data

D•t• Rcoo
data

' ' ' ' ' ' '

385

lw $10, 9($1)
Write back

sub $11, $2, $3
Write back I

M�/WB

FIGURE 6.18 Sln,ie-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In clock
cycle 5, lw completes by writing the data in MEM/WB into register 10 and s u b sends the difference in EX/MEM to
MEM/WB. In the next clock cycle, s u b writes the value in MEM/WB to a register.

I •

= �

4

Read
address

Instruction
mel!Klf)'

IF/ID

Regwrite

Read
register 1

Read
register 2

Read
data 1

Registers Read
data 2 Write

register

Write
data --

ID/EX

Instruction \ (M ri+t�. Sign
extend

Instruction
(20-16(n�I I

ALUOp
Instruction
(15-11)

RegDst

EX/MEM

Branch

Write
data

PCSrc

Data Read
data

MemRead

MEM/WB

MemtoReg

1
M

x

FIGURE 6.19 The pipelined datapath of Figure 6.13 with the control signals identified. This datapath borrows the control logic for PC source, reg
ister destination number, and ALU control from Chapter 5. Note that we now need the 6-bit function code of the instruction in the EX stage as input to
ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6 least significant bits of the immediate
field in the instruction, so the ID/EX pipeline register can supply them from the immediate field since sign extension leaves these bits unchanged.

6.3 Plpellned Control 387

LW 00 load word xxxxxx add 010

SW 00 store word xxxxxx add 010

Branch equal 01 branch equal xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 set-on-less-than 101010 set-on-less-than 111

FIGURE 6.20 A copy of Figure 5.15 from page 287. This figure shows how the ALU control
bits are set depending on the ALUOp control bits and the different function codes for the R-type
instruction.

: Signaf,name
-

,;._· �Effect wtien deasserted'(O) ·�'.�=����.!!f.§t'-'h�serted !1!111111
MemRead None. Data memory contents at the read address are put

on read data output.

MemWrite None_ Data memory contents at address given by write
address are replaced by value on write data input

ALUSrc The second ALU operand comes from the second The second ALU operand is the sign-extended
register file output. lower 16 bits of the instruction .

RegDst The register destination for the register write The register destination number for the register
comes from the rt field. write comes from the rd field.

RegWrite None. The register given by write register number input is
written into with the value on the write data input.

PCSrc The PC is replaced by the output of the adder that The PC is replaced by the output of the adder that
computes the value of PC + 4. computes the branch target.

MemtoReg The value fed to the register write data input The value fed to the register write data input
comes from the ALU. comes from the data memory.

FIGURE 6.21 A copy of Figure 1.21 from page 294. The function of each of seven control signals is defined. The ALU
control lines (ALUop) are defined in the leftmost column of Figure 6.20. When a 1-bit control to a two-way multiplexor is
asserted, the multiplexor selects the input corresponding to 1 . Otherwise, if the control is deasserted, the multiplexor
selects the 0 input. Note that PCSrc is controlled by an A N D gate in Figure 6.19; if the branch signal and the ALU Zero signal
are both set, then PCSrc is 1; otherwise it is 0. Control sets the branch signal only during a b e q instruction; otherwise,
PCSrc is set to 0.

is the same as Figure 5.23 on page 296, except that the control lines have been
grouped by pipeline stage.

Implementing control means setting the nine control lines to these values in
each stage for each instruction. The simplest way to do this is to extend the

388 Chapter 6 Enhancing Performance with Pipelining

Execution stage Memory stage Write back stage
control lines control lines control l ines

Reg ALU ALU ALU Mem Mem Reg Memto
Instruction Ost Op1 OpO Src Branch Read Write Write Reg

R-format 1 1 0 0 0 0 0 1 0

l w 0 0 0 1 0 1 0 1 1

S W x 0 0 1 0 0 1 0 x

beq x 0 1 0 1 0 0 0 x

FIGURE 6.22 The values of the control lines are the same as In Figure 5.23 on page 296, but they have been shuf..
fled into three groups corresponding to the last three pipeline stages.

Instruction

I F/ ID ID/EX EX/MEM MEM/WB

FIGURE 6.23 The control lines for the final three stages. Note that four of the nine control
lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM
pipeline register extended to hold the control lines; three are used during the MEM stage; and the
last two are passed to MEM/WB for use in the WB stage.

pipeline registers to include control information. Returning to our automotive
analogy, imagine a note placed in the car frame saying "Install Corinthian
leather interior"; this note would be passed along but ignored until it reached
the upholstery stage. The note can be removed once the leather is installed.

Since the optional control lines start with the EX stage, we can create the
control information during instruction decode. Figure 6.23 shows that these
control signals are then used in the appropriate pipeline stage as the instruc
tion moves down the pipeline, just as the write register number for loads

6.3 Pipelined Control 389

moves down the pipeline in Figure 6.12 on page 379. Figure 6.24 shows the full
datapath with the extended pipeline registers and the control lines connected
to the proper stage.

Show these five instructions going through the pipeline:
l w $ 1 0 , 9 ($ 1)
s u b $ 1 1 , $ 2 , $ 3
a n d $ 1 2 , $ 4 , $ 5
o r $ 1 3 , $ 6 , $ 7
a d d $ 1 4 , $ 8 , $ 9

Label the instructions in the pipeline that precede the l w a s b e f o r e < l > ,
b e f o r e < 2 >, . . . , and the instructions after the a d d as a f t e r < l > , a f t e r < 2 > ,

Figures 6.25 through 6.29 show these instructions proceeding through the
nine clock cycles it takes them to complete execution, highlighting what is
active in a stage and identifying the instruction associated with each stage
during a clock cycle.

Reviewing these figures carefully will give you insight into how pipelines
work. A few items you may notice:

• Although one instruction begins each clock cycle, an individual instruc
tion still takes five clock cycles to complete.

• In Figure 6.27 you can see the sequence of the destination register num
bers from left-to-right at the bottom of the Pipeline Registers. The num
bers advance to the right during each clock cycle, with the MEM/WB
pipeline register supplying the number of the register written during
the WB stage.

• Note that it takes four clock cycles before the five-stage pipeline is op
erating at full efficiency, as shown in Figure 6.27.

• When a stage is inactive, the values of the control lines are deasserted
(shown as 0 in the figures), to prevent anything from occurring.

390 Chapter 6 Enhancing Performance with Pipelining

• In contrast to Chapter 5, where sequencing of control required special
hardware, sequencing of control is embedded by the pipeline structure
itself. All instructions take the same number of clock cycles, and all con
trol information is computed during instruction decode and then
passed along by the pipeline registers.

II Data Hazards

The example in the previous section shows the power of pipelined execution
and how the hardware performs the task. It's now time to take off the rose
colored glasses and look at what happens with real programs.

The instructions in Figures 6.25 through 6.29 were independent; none of
them used the results calculated by any of the others. Let's look at a sequence
with many dependencies, shown in color:

s ub $ 2 , $ 1 , $ 3 # Re g i s t e r $ 2 w r i t t e n b y s u b
a n d $ 1 2 , $ 2 , $ 5 # 1 s t ope r a n d ($ 2) d e p e n d s o n s u b
o r $ 1 3 , $ 6 , $ 2 # 2 n d o p e r a n d ($ 2) d e p e n d s o n s u b
a d d $ 1 4 , $ 2 , $ 2 # l s t ($ 2) & 2 n d ($ 2) d e p e n d o n s u b
s w $ 1 5 , 1 0 0 ($ 2) # I n d e x ($ 2) d e p e n d s o n s u b

The last four instructions are all dependent on the result in register $2 of the
first instruction. If register $2 had the value 10 before the subtract instruction
and -20 afterwards, the programmer intends that -20 will be used in the
instructions that refer to register $2.

How would this sequence perform with our pipeline? Figure 6.30 illustrates
the execution of these instructions. Like Figure 6.2 on page 369, a simplified
version of the datapath is shown for each instruction, with each datapath
aligned to the appropriate clock cycle; program execution goes down the page
instruction by instruction and time marches across the page in clock cycles. To
demonstrate the execution of this instruction sequence in our current pipeline,
the top of Figure 6.30 shows the value of register $2 at the beginning of each
clock cycle.

To maintain proper time order, this stylized datapath breaks the register file
into two logical halves: registers read during ID and registers write during
WB. This split makes sense, because the halves are logically joined only when
the same register is being read and written. For now it's helpful to think of the
read half and write half as separate resources, but we'll address this factor
shortly.

;;-f
14 �

I rr:u x �
IF/ID
�

Addi I I
4

..--
Read L.,.j PC 1--"-+l address

...__ lnstrucUon
memory �

ID/EX

WB

Control M

� I

c: t-I Read ·fi register 1

� �
Read I-

data 1 � E
Read I lii t---l registe�:glsters Read � � I

data 2 Write 1---+1 register

.....i Write
data

Instruction
1 15-0]

Instruction
120-16)

32 t� -:: M u
1 l-..1 I � I . RegDst

Branch

DJ;
, _ Read

address

�

Data r[memory
Write
address

1-+--1 Write
data

I

� B

Read 1-+o
data

1l' a: 3 E "' :::;

� M u I
x

u
MemRead

I-
.____

FIGURE 6.24 The pipelined datapath of Figure 6.19, with the control signals connected to the control portions of the pipeline registers. The
control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX pipeline register. The control lines
for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

IF: lw $10, 9($1) i ID: before<1>

IF: sub $11, $2, $3 ID: lw $10, 9($1)

.... f91illef l

.... N&}sl« 2
"�· "'�•!Iler
V.1,te
dBi•

l�"f"" 16

... -10 120-18)

instruction 115-11)

j EX: before<2>

' '°'"'

! EX: before<!>

i MEM: before<3> l WB: before<4>

i MEM: before<2> i WB: before<3>

1-, 1-��.....,f--��--, '

... ,

FIGURE 6.25 Clock cycles 1 and 2. The top datapath shows what is active in the first clock cycle, and the bottom shows
what is active in the second. The phrase "before<i>" means the ith instruction before l w. The l w instruction in the top data
path is in the IF stage. At the end of the clock cycle, the l w instruction is in the IF /ID pipeline registers. In the second clock
cycle, seen in the bottom data path, the l w moves to the ID stage and s u b enters in the IF stage. Note that the values of the
instruction fields and the selected registers are shown in the ID stage. Hence register $1 and the constant 9, the operands of
l w, are written into the ID /EX pipeline register. "X" means an unused field in l w. The number 10, representing the destina
tion register number of l w, is also placed in ID /EX. The top of the pipeline register shows the control values for l w to be
used in the remaining stages. (page 392)

IF: and $12, $4, $5

IF: or $13, $6, $7

Read

....

ID: sub $11, $2, $3

·sub"

k\Stl\ICtl()l'I
(20-161

lnstructlOl'1
llS-111

j 10: and $12, $4, $5

Read
reaoste1 1

Read 1q1steJ 2
•

'\\",!(-et SI·�·

:�l()n 16

"""""""
(20--161

ln!WUctlOl'I L2 us-111

1 EX: lw $10, . . .

j EX: sub $11, . . .

MEM: before<l>

1 MEM: lw $10, . . .

' w:EM
'

-....

'W'l" ...

10

i WB: before<2>

Mi�
'
'

i WB: before<l>

Mo;/WB
'
' '

FIGURE 6.26 Clock cycles 3 and 4. In the top diagram, l w enters the EX stage in the third clock cycle, adding $1 and 9 to
form the effective address in the EX/MEM pipeline register. At the same time, s u b enters ID, reading registers $2 and $3,
and the a n d instruction starts IF. In the fourth clock cycle (bottom datapath), l w moves into MEM stage, reading memory
using the value in EX/MEM as the effective address. In the same clock cycle, the ALU subtracts $3 from $2, places the dif
ference into EX/MEM, a n d reads registers $4 and $5 during ID, and the o r instruction enters IF. The two diagrams show
the control signals being created in the ID stage and peeled off as they are used in subsequent pipe stages. (page 393)

IF: add $14, $8, $9 l ID: or $13, $6, $7

'T
' ' ' '

·...-

-- 1

ll'ISttuttiOn
[20-16]

lns!N<t""'
13 115-111

EX: and $12 . . . i MEM: sub $11 . . . i WB: lw $10, 9($1)
'

f

IF: after<!> ��r::::::::t·�: 1_0--:.._:_a:::d_d_$_1_4_._$;
8=, $=9======t! E=X=: =or=$=1=3=.=·=·======ji=

M=E=M=:=a
�n

d
-l-

$
-
12�·

-
·
-
· �Ji�

W
�

B: sub $11, $2, $3

"""

l•tr�ton_,

'T
.
.
.

.....

l
-- 1

--

'"'""'""" (15-0] 16

"""""""'
(20-16]

�""'''""' 14 (1!5-UJ

' !EM
i-;;.������--.

10/EX

f
....

FIGURE 6.27 Clock cycles 5 and 6. With a d d entering IF in the top datapath, all instructions are engaged. The final
instruction in this example, "after<i>" means the ith instruction after a d d . By writing the data in MEM/WB into register
10, l w completes; both the data and the register number are in MEM/WB. Then s u b sends the difference in EX/MEM to
MEM/WB, and the rest of the instructions move forward. In the next clock cycle, s u b selects the value in MEM/WB to
write to register number 11, again found in MEM/WB. The remaining instructions play follow-the-leader: the ALU calcu
lates the OR of $6 and $7 for the o r instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the a d d
instruction. (page 394)

IF: after<2>

IF: after<3>

i ID: after<1>
. lf�D
. '
' '
'

' '

ID: after<2>
' �110
' '
'

' '

ln!tf'l.ICllOl'I 115 111

i EX: add $14 . . . i MEM: or $13 . . . WB: and $12, $4, $5

! EX: after<!> i MEM: add $14 . . . i WB: or $13, $6, $7
�----�-----------<�---+-+-----�,,_....,

.. t=----t-+----,

Ml�

f

FIGURE 8.28 Clock cycles 7 and 8. In the top datapath, the a d d instruction brings up the rear, adding the values corre
sponding to registers $8 and $9 during the EX stage. The result is passed from EX/MEM to MEM/WB in the MEM stage
for the o r instruction, and the WB stages write the results in MEM/WB to register $12 to finish the a n d instruction. Note
that the control signals are deasserted (set to 0) in the ID stage, since no instruction is being executed. In the following clock
cycle (lower drawing), the WB stage writes the result to register $13, thereby completing o r, and the MEM stage passes the
sum in EX/MEM to MEM/WB. (page 395)

396 Chapter 6 Enhancing Performance with Plpellnlng

IF: atter<4> i ID: after<3> j EX: after<2>
.------�--------�

... ._
-

' "'"'

i MEM: after<1> i WB: add $14, $8, $9
' ' '

1----H--�T
f

FIGURE 6.29 Clock cycle 9. The WB stage writes the sum in MEM/WB into register $14, completing a d d and the five
instruction sequence.

Figure 6.30 shows that the values read for register $2 would not be the result
of the s u b instruction unless the read occurred during clock cycle 6 or later.
The only instruction that would use the correct value of -20 is the final store
instruction; a n d , o r, and a d d would all use the incorrect value 10. Using this
style of drawing, such problems become apparent when a dependence line
goes backwards in time. Thus, in Figure 6.30, we see problems with a n d , o r,
and a d d instructions because they are dependent on a value written later.

Such dependencies are called data hazards, and they are one reason that
high-performance pipelines are hard to design: for hardware, for software, or
for both.

6.4 Data Hazards 397

Time (in clock cycles) --------------.

cc 1

Value of register $2: 10

Program
execution
order
(in instructions)

sub $2 . $1, $3

and $12. $2 . $5

or $13, $6, $2

add $14, $2 . $2

SW $15, 100:$2)

cc 2 cc 3

10 10

cc 4 cc 5 cc 6 cc 7 CC B cc 9

10 10 -20 -20 -20 -20

FIGURE 6.30 Plpellned dependencies In a flv•lnstructlon sequence using slmpllfled datapaths to show the
dependencies. All the dependent actions are shown in color, and "CC i" at the top of the figure means clock cycle i. The
first instruction writes into $2, and all the following instructions read $2. This register is written in clock cycle 5, so the
proper value is unavailable before clock cycle 6. The colored lines from the top datapath to the lower ones show the depen
dencies. Those that must go backwards in time are called pipeline data hazards. Note that the registers have read and write
halves.

Example For this code from the inner loop of the MIPS sort program, found in
Figure 3.21 on page 144, draw a figure like Figure 6.30 showing the data
hazards as backwards dependencies:

a d d $ 1 6 , $ 1 8 , $ 1 5 # r e g $ 1 6 v + (j *4)
l w $ 2 4 , 0 ($ 1 6) # r e g $ 2 4 v [j]
l w $ 2 5 , 4 ($ 1 6) # r e g $ 2 5 v [j + l]
s l t $ 1 , $ 2 5 , $ 2 4 # r e g $ l = O i f $ 2 5 � $ 24
b e q $ 1 , $ 0 , e x i t 2 # g o t o e x i t 2 i f $ 2 5 � $ 2 4

398 Chapter 6 Enhancing Performance with Pipelining

Answer Figure 6.31 shows the five data hazards. The first two revolve around the
writing of register $16 by a d d and the reading of it by the two loads. The
third is the writing of $24 by the first l w and reading by s l t; the fourth is
the writing of $25 by the second l w and the reading again by s l t; the final
data hazard is the writing of $8 by s l t and the reading of it by beq .

Time (in clock cycles) ---------------+

cc 1

Value of register $16: 10

Program
execution
order
(in instructions)

add $16. $18, $15

lw $24. 0($16)

lw $25. 4($16)

sit $& $25. $24

cc 2 cc 3 CC 4 cc 5

10 10 10 10

CC 6 cc 7 CC 8 CC 9

-20 -20 -20 -20

FIGURE 6.31 Plpellnecl dependencies In another five-instruction sequence. All the dependent actions are shown in
color, and "CCi" at the top means clock cycle i. The first instruction writes into $16, and the next two loads read $16, caus
ing two data hazards. They in turn write $24 and $25 which are read by the S l t instruction, causing two more data haz
ards. The final data hazard is that the s l t writes $8 and b e q reads $8.

6.5 Control for Data Hazards: Stalls 399

Hardware

Software

Interface

In the next two sections, we'll see hardware schemes for re
solving data hazards. One alternative strategy is to legislate
data hazards out of existence: the compiler is forbidden to
generate sequences such as the five instructions above. For
example, the compiler would insert three independent in-
structions between the s u b and the a n d instructions, thereby
making the hazard disappear. When no such instructions

can be found, the compiler inserts instructions guaranteed to be independent:
n o p instructions. The abbreviation stands for "no operation," because n o p nei
ther reads a register, modifies data, nor writes a result. The code below uses
n o p instructions to get the proper result:

s u b $ 2 , $ 1 , $ 3
n o p
n o p
n o p
a n d $ 1 2 . $ 2 , $ 5
o r $ 1 3 , $ 6 , $ 2
a d d $ 1 4 , $ 2 , $ 2
S W $ 1 5 , 1 00 ($ 2)

Although this code works properly for this pipeline, these three n o p 's occupy
three dock cycles that do no useful work. Ideally, the compiler will find
instructions to perform to help the computation, replacing these idle instruc
tions. Exercise 6.8 is an example of trying to schedule instructions to avoid haz
ards.

• Control for Data Hazards: Stalls

If at first you don't succeed, redefine success.

A saying

The simplest approach to resolving data hazards in hardware is to stall the
instructions in the pipeline until the hazard is resolved. In the example in
Figure 6.30, this means stalling the instructions following the initial s u b
instruction until data can be read during clock cycle 6. Computer designers
whimsically gave the nickname bubble to a stall of instructions in the pipeline,
but remember that bubble is just a cute name for a pipeline stall.

400

Example,

Answer

Chapter 6 Enhancing Performance with Plpellnlng

With this strategy, one first detects a hazard and then stalls instructions in
the pipeline (inserts bubbles) until the hazard is resolved. On closer inspection,
we see that the hazard occurs exactly when an instruction tries to read a regis
ter in its ID stage that an earlier instruction intends to write in its WB stage. A
notation that names the fields of the pipeline registers allows for a more pre
cise notation. For example, "IF / ID.ReadRegisterl" refers to the number of the
register found in the pipeline register IF / ID; that is, the first port of the register
file. The first part of the name, to the left of the period, is the name of the pipe
line register; the second part is the name of the field in that register. Using this
notation, the three pairs of hazard conditions are

la.
lb.
2a.
2b.
3a.
3b.

ID /EX.WriteRegister
ID/EX.WriteRegister
EX/MEM.WriteRegister
EX/MEM.WriteRegister
MEM/WB.WriteRegister
MEM/WB.WriteRegister

= IF / ID.ReadRegisterl
= IF / ID.ReadRegister2
= IF /ID.ReadRegisterl
= IF / ID.ReadRegister2
= IF /ID.ReadRegisterl
= IF /ID.ReadRegister2

The hazard in the sequence on page 390 is on register $2, between the result of
s u b $ 2 , $ 1 , $ 3 and the first read operand of a n d $ 1 2 , $ 2 , $ 5 . This hazard is
detected when the a n d instruction is in the ID stage and the prior instruction
is in the EX stage, so this is hazard la:

ID/EX.WriteRegister = IF/ ID.ReadRegisterl = $2.

Classify the data hazards in this sequence from page 390:
s u b $ 2 . $ 1 , $ 3 II Re g i s t e r $ 2 s e t b y s u b
a n d $ 1 2 , $ 2 , $ 5 II 1 s t o p e r a n d ($ 2 l s e t b y s u b
o r $ 1 3 . $ 6 , $ 2 II 2 n d o p e r a n d ($ 2 l s e t b y s u b
a dd $ 1 4 , $ 2 , $ 2 II l s t ($ 2) & 2 n d ($ 2) s e t by s u b
s w $ 1 5 , 1 00 ($?) II I n d e x ($ 2) s e t b y s u b

As mentioned above, the s u b-a n d hazard is type la. The remaining hazards:

• The s u b-o r hazard is condition 2b:
E X / M E M . W r i t e Reg i s t e r = I F / I D . Re a d Reg i s t e r 2 = $ 2 ;

• The first s u b-a d d hazard is condition 3a:
M EM / W B . W r i t e Re g i s t e r = I F / I O . R e a d Reg i s t e r l $ 2 ;

• The second s u b- a d d hazard is condition 3b:
M E M / W B . W r i t e Re g i s t e r = I F / I D . Re a d Re g i s t e r 2 $ 2 .

Program
execution
order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13. $6, $2

add $14, $2, $2

SW $15, 100:$2)

6.5 Control for Data Hazards: Stalls 401

There is no data hazard between s u b and s w because s w reads $2 after s u b
writes $2.

If there is a data hazard, then stalling the dependent instruction in the ID
stage until the instruction causing the dependency completes makes the haz
ard disappear. Figure 6.32 shows how inserting three bubbles before the ID
stage of the a n d instruction removes the problem in Figure 6.30.

Because some instructions do not write registers, this policy is conservative;
sometimes there will be unnecessary stalls. One solution is simply to check to
see if the RegWrite signal will be active: examining the WB control field of the
pipeline register during the ID, EX, and MEM stages determines if RegWrite is
asserted. Finally, because the ID /EX register has two WriteRegister fields, we
must also use the RegDst signal in the EX stage to select the proper register
number for the write port. We'll show this in more detail below.

Now that we can detect hazards, half of the problem is resolved-but we
must still stall instructions. If the instruction in the ID stage is stalled, then the
instruction in the IF stage must also be stalled; otherwise, we would lose the
fetched instruction. Preventing these two instructions from making progress
is accomplished simply by changing neither the PC register nor the IF /ID
pipeline register. Provided these registers are preserved, the instruction in the

Time (in clock cycles) ----------+

cc 1 cc 2 CC 3 cc 4 cc 5 cc 6 cc 7 CC 8 cc 9

FIGURE 6.32 The pipelined instruction sequence of Figure 6.30 with three bubbles inserted to resolve the data
hazard. Note that by resolving the data hazard for the a n d instruction, the bubbles also resolve hazards for all instructions
that follow the a n d instruction.

402 Chapter 6 Enhancing Performance with Pipelining

IF stage will continue to be read using the same PC, and the registers in the ID
stage will continue to be read using the same instruction in the IF /ID pipeline
register.

To stall the pipeline, we need to get the same effect as inserting n o p instruc
tions, as in the Hardware/Software Interface section on page 399, but this time
the n o p "instructions" begin in the EX pipeline stage. In Figure 6.22 on page
388, we see that deasserting all nine control signals (setting them to 0) in the
EX, MEM, and WB stages will create a "do nothing" instruction. Hence, the
easiest way to insert a bubble in the pipeline is to change the EX, MEM, and
WB control fields of the ID /EX pipeline register to 0. These benign control val
ues are percolated forward at each clock cycle with the proper effect: no reg
isters or memories are written if the control values are all 0. Figure 6.32 is a
shorthand representation of what really happens in the hardware. Just like an
air bubble in a water pipe, a stall bubble proceeds down the instruction pipe
and exits at the far end. The a n d instruction sits in the IF /ID pipeline register
for three cycles and launches three separate bubbles into the pipe, shown in
Figure 6.33.

Now that we know how to detect hazards and cause stalls in the pipeline,
we can specify the hardware to implement stalls. Figure 6.34 highlights the
modified datapath with a new Hazard Detection Unit controlling the writing of
the PC and IF /ID registers plus the multiplexors that choose between the real
control values and all Os. The Hazard Detection Unit stalls and deasserts the
control fields if any of the three hazard tests below are true, relying on a few
logic gates to implement these tests:

1 . EX hazard:

ID/EX.RegWrite and
((ID/EX.RegDst = 0 and ID/EX.WriteRegisterRt = IF/ID.ReadRegisterl) or
(ID/EX.RegDst = 1 and ID/EX.WriteRegisterRd = IF/ID.ReadRegisterl) or
(ID/EX.RegDst = 0 and ID/EX.WriteRegisterRt = IF/ID.ReadRegister2) or
(ID/EX.RegDst = 1 and ID/EX.WriteRegisterRd = IF/ID.ReadRegister2))

The first test is more complicated because we need to know if the oper
ation is a load or an R-format instruction (RegDst = 0 or 1) to select the
proper destination register number (load uses WriteRegisterRt and
R-format uses WriteRegisterRd).

2. MEM hazard:

EX/MEM.RegWrite and
((EX/MEM.WriteRegister = IF /ID.ReadRegisterl) or
(EX/MEM.WriteRegister = IF /ID.ReadRegister2))

Here the hazard is between instructions in the ID and MEM stages.

Program
execution
order
(in instructions)

sub $2. $1, $3

stall

stall

stall

and $12, $2, $5

or $13. $6. S2

add $14. $2. $2

SW $15, 100($2)

6.5 Control for Data Hazards: Stalls

Time (in clock cycles) -----------+

cc 1 cc 2 cc 3 CC 4 cc 5

ml1���1 LU1fL. ..
cc 6

403

cc 7 cc 8 cc 9 cc 10 cc 11 cc 12

FIGURE 6.33 A version of Figure 6.32, showing the way stalls are really inserted into the pipeline. Since the
dependencies go forward in time, there are no data hazards. Note that the three stall clock cycles, shown as bubbles in
Figure 6.30, are similar to the n o p instructions placed by the compiler in the example on page 399.

3. WB hazard:

MEM/WB.RegWrite and
((MEM/WB.WriteRegister = IF /ID.ReadRegisterl) or
(MEM/WB.WriteRegister = IF /ID.ReadRegister2))

This WB hazard can be avoided, depending on what happens when a
register is read and written in the same clock cycle: if the read delivers
what is written, as is the case for many implementations of register
files, the hazard will disappear. We assume it is a hazard in this section.

404

" c ;t �
-

PC - lnatrucUon memory
-

Chapter 6 Enhancing Performance with Pipelining

r Haurd l"rl detection
unit I

s
� �
IF1 D
-

c .2 u � I--

-

l J..f 0
M

Control u -
x a -�

RegWnte

Re&11terw

EX/MEM.RegWnte 1 10/EX.RegWnte
ID/EX
-

.....- WB
- i:�M

i-- M L: - 10/EX.RegDst

....._ EX -
- -

8-- -....

.... ,__'CJ'
M u
x

- -
10/EX.WriteReglsterRt -rr l
10/EX.WriteRegisterRd

EX/MEM.WriteRegister

MEM/WB.RegWnte

c� ws-
-

Data - -'1 memory � -
x u-�

-

-

MEM/WB.WriteRegister

FIGURE 6.34 The Hazard Detection Unit stops the PC and IF /ID pipeline register from being written and selects
Os for the control values in the ID/EX pipeline register if it detects a hazard. It uses the destination register number
and write register signals from the last three pipeline registers to determine a hazard, the current instruction in the ID
stage, plus the bit from the ID/EX pipeline register that selects the destination register.

Example Find the hazards and show the stalls in the pipeline as a result of the haz
ards in this instruction sequence:

s u b $ 2 . $ 1 , $ 3
a n d $ 4 , $ 2 , $ 5
o r $ 8 , $ 2 , $ 6
a d d $ 9 , $ 4 , $ 2
s l t $ 1 , $ 6 , $ 7

6.5 Control for Data Hazards: Stalls 405

There are data hazards for register $2 between the first two instructions and
for register $4 between the second and fourth instructions. Although there
are also dependencies on register $2 between s u b and the third and fourth
instructions, just as in Figure 6.33 the resolution of the data hazard for the
second instruction also removes any hazards on that register for following
instructions.

Figures 6.35 through 6.40 show the events in clock cycles 2-13 in the ex
ecution of these instructions. In clock cycle 3, the Hazard Detection Unit
sees the writing by the s u b instruction of register $2 in the EX stage while
the a n d instruction in the ID stage is reading register $2. The HDU stalls the
pipeline in clock cycles 4-6, allowing the s u b instruction to write its result
and the a n d instruction to read the new value. The next hazard is detected
in clock cycle 8, when the write of register $4 by the a n d instruction in the
MEM stage conflicts with the reading of register $4 by the a d d instruction
in the ID stage. After the new value is written (clock cycle 9), the a d d reads
the correct value in clock cycle 10, and the HDU allows the pipeline to con
tinue.

Ell1bt:11rll!1ticlln: Just as we became less conservative on stal ls by checking to see if the
first instruction real ly writes the register, a simi lar improvement occurs by preventing a
match on ReadRegister2 for loads, because loads use only ReadRegister1. For exam
ple, this pair of assembly language instructions:

a d d $ 8 , $ 1 , $ 2
l w $ 8 , 1 2 0 0 ($ 5)

looks l ike this in machine language:

op rs rt

0 1 2

35 5 8

(rd) (shamt) address/funct

8 0 32

1200

As you can see, the 8 in the rt field of the second instruction would lead to a stal l if

the second instruction was an R-format instruction; since it is a load , and the rt field
gives the destination register, this combination should not sta l l . Hence , we should pre
vent sta l ls on matches of ReadRegister2 from loads.

A further enhancement concerns register $0 in the MIPS architecture; $0 can never
change from the value 0, so sta l ls due to writing and reading register $0 should also
be prevented.

(Elaboration continues on page 412)

406 Chapter 6 Enhancing Performance with Plpellnlng

and $4, $2, $5 sub $2, $1, $3 before<1> before<2> before<3>
' ' ' ' ' r - . " , ..

1 1 :---rt -=- l I
D '.1'M t:f,\\'1 {. :

ID/EX "' ' " ' lo ' '
� ' 10 '
" L�EM � Lr; � � - "' �

i • L- [�� I /ID -I!,. � �x
� - -

!l 8--� $1 .g

B- i Reel _ Data fo-o -'1'
lnatn =- "'" memory

M
..... - $3 u

x

r�
-'O'

M
u

2 x

10/EX WnteRegisterRt I T0 '
10/EX WnteReg1sterRd

I ' I
EX/MEM WnteReg1ster ' I I

' MEM/W8.WnteReg1stef :
Clo ck 2 ' '

or $8, $2, $6 and $4, $2, $5 sub $2, $1, $3 before<1> before<2>
' r ' ' -

0 :--rl -:.- l 1 11 1\1 H 'o\ ' 0 ' � ID/EX ID/EX.R.,Wnto ' 1 00 - 10 '
� : ' - we I EX:PM � · Lf -� I- • 000 000 . _ ,,. L: [�� • -o -..!.,. 0000 I /ID - .

- � ... -
!l � � $2 $1 -�

t� I Data /"""' Roel - -..... memory i- - 1
lnatn:.. {) M

..... .., SS $3 u
x r�

,.... - o
•
•

4 2 •

r�
ID/EX.WriteReg1sterRt I ' '
10/EX.WriteRef.isterRd ' ' I ' '

EX/MEM WnteReg1s1er ' ' I ' '
' ' MEM(WB.Wr1teReg1ster :

Clo ck 3 I ' '
I ' ' ' ' '

FIGURE 6.35 Clock cycles 2 and 3 of the Instruction sequence In the example. The values of the significant control
lines, registers, and register numbers are labeled in the figures. The a n d instruction wants to read the value created by the
s u b instruction, so the Hazard Detection Unit stalls the a n d and o r instructions in clock cycle 3 until the hazard is resolved
in clock cycle 6 (see Figure 6.37).

or $8, $2, $6

0

Clock 4

or $8, $2, $6

0

Clock 5

6.5 Control for Data Hazards: Stalls

and $4, $2, $5
-

0 -
-

I .10

and $4, $2, $5

ID ·EX WnteRep-tsterRt

bubble

0
ID/EX Re&Wrrte

00
000

0
M

bubble

1 0 EX/MEM.Re&Wnte :
10/EX IO/EX.Regwr1te :

1 00 � 00 :

sub $2 .

10

Data
memo!)'

MEMIWB.WriteReg1ster

bubble

MEM/WB.Re&\Vrite
0

407

before<1>

M

sub $2 . . .

I 1 I I I I I ;��-000-------... L� ______ ..

o -.!.,. � M

I I I 00 I I tE� I .10

Rell

I

Re«Wnte

$2 -

-

,..... - a
M u l-------1 .

.. --------''"----;.-l--'"" rf <., 10/D..WnteRegistcrRt
IO:EX Wr1teRe�1sterRd

EX;MEM.WnteReg1ster

-- Data
memo!)' -

-

I I I I I
MEM/WB.WnteReg1ster :

FIGURE 6.36 Clock cycles 4 and 5 of the instruction sequence in the example. The stall continues in these two clock
cycles as a result of the hazard. Note that although the correct value for register $2 is written by the end of clock cycle 5, the
value read during that clock cycle and loaded into the ID JEX pipeline register is the old value. The pipeline must therefore
stall one more clock cycle to allow the correct value to be loaded into the pipeline register.

408

or $8, $2, $6

Clock 6

add $9, $4, $2

1

.!! j lr

& ·-
__,

Clo ck 7

Chapter 6 Enhancing Performance with Pipelining

and $4, $2, $5
-

dotoctlon
-

I �D

or $8, $2, $6
r -1:-----rt... dotoctlon

1 -

i �
I

I �D
:...

j
- -

' ' ' '
'
' '
I ' '

'

I

$2

$5

i bubble bubble
I
I

O EX/MEM RegWnte : 0
ID/EX.Recwnte :

I 00 I

ex;MeM
000 00

()
M

EX/MEM.WriteRegister

------.,

I I I
'
I

MEM/WB.WriteRegister :

and $4, $2, $5
I
I

I 1 EX/MEM. Rep'nte 1 1 IDfEX
0 -10 - we

10/EX.Reawm• I
I '

10 '

,.._ 000 000

bubble

0

00

bubble

bubble

Ef _u-; - M l:� • -
....... 1100 - EX

- - i--

t1-$2 $2

....__,... Dllt• i- -� R.,._. """""'' M
S6 $5 u

- • I J0
,..... - "'

M
•

8 t� iO:f.;' Wrctr.>R��.i:;�t�l ' ' '

ID /EX. WriteRegjsterRd ' I ' ' '
f.Y.:�1EM Wi 1!eRe�,�-t.er ' ' ' ' '

I ' �.'l[M:'l\8 \\',:tf;:f.);i:, .. >tCt :
' ' '

FIGURE 6.37 Clock cycles 6 and 7 of the Instruction sequence In the example. The a n d instruction is allowed to
proceed in clock cycle 6, with the rest of the instructions progressing as long as the HDU detects no hazards. Note that
there is no instruction in the Datapath writing register $2 any longer, so the o r instruction can proceed as well.

sit $1, $6, $7

Clock 8

sit $1, $6, $7

_L� &,

I

Clo ck 9

6.5 Control for Data Hazards: Stalls

add $9, $4, $2

t--+i++-1 -
0

IFflD

or $8, $2, $6

ID/EX.Re(Nnte
10

()()()

$4 $2
t---� �----�

$2 $6

9 8

0 M

"-t--t-1-1"'1----------�

add $9, $4, $2

-- J -
I

I
1 -

00

bubble

0 EX/MEM.ReCWnto

10/EX.Re(Nnto
00

and $4 . . .

10

4

Dotn
menlOry

or $8 . . .

MEM/WB.Re&WJite 1
1 I I I I I I

and $4

1 l ID�EX
.-- we

Ef
I I - I _, M � M

()()() 10 I
• I
• - c� 0 - 1 0000 IFflD ""__ EX we-

....L. Re,Wnte - - -

tr $4 .§ ; Oatn I-+ -'!
.....::.. mf!mol')' M

$2 u
• _r�

_,'(i � M 8 4
u

9 '
1o:t\.Wr.:�·P\•r.i \t\··�� I r� I I I ;[J.' f'CWt .?. -��· -f!'��r. rR:� I I I I ' I ' EX/MEM.WriteRegister ' I ' I ' ' I I ' MEM/WB. WrtteRegister : I I I I ' ' I

409

FIGURE 6.38 Clock cycles 8 and 9 of the Instruction sequence In the example. In clock cycle 8, register $ 4 is a haz
ard between the a n d instruction in the MEM stage and a d d instruction in the ID stage, so the HOU stalls the a d d and s l t
instructions in clock cycle 9.

410

sit $1, $6, $7

Clock 10

after<l>

lnstluctlon
... _,

--

ct lottt111ct.oo
�mort

Clock 11

i-

Chapter 6 Enhancing Performance with Pipelining

add $9, $4, $2 bubble bubble or $8

-11.....r 'E=:::t=======::::::�=====;;:�;:;;:;;;;;;:=;==,-::--ME;;i,iWii":ii;;:;;;;;:-i � MEM/WB.RetNrfte :
unit

O EX/MEM.RetNrite : 0
: 10/EX.Reawnte

: : ()() I I

()()() EX;
M

eM : ()() '
I

ME�/WB

I 10

sit $1, $6, $7

$4

S2

add $9, $4, $2

8 y

I
'
I
I
I

MEM/WB.WriteReglster :

bubble

I
l EX/MEM Reprtte : 0

I (101,EX ;._° - ID/EX.Recwnte :
I 10 I

M

8

bubble

IFl,10

' µ� �� t--...P++-1-i - • ,..._ M ' . -.__, � EX
ooo

LL �,__we

M

M
E

�

M

_._oo ____ _ tE�
-

I -� J
S6

- S7

M u l------..i

.._ ___ l�-;1-EX-;...-:-·�-'=-=��·f'-,s:-�-·..q-�-1-.;.: __.t £
f.> ."Mt.M 1\'·i�';R.•·gcs: •

-

I I I I I
"-�t M: l'°'iU TT!"H!?t>�•\!\•· :

r--- 1
M u
•

-

FIGURE 6.39 Clock cycles 10 and 11 of the instruction sequence in the example. The stalled s l t and a d d instruc
tions are allowed to proceed in clock cycle 10.

after<2>

Clock 12

after<3>

B- lnsh11Ctk>n
memo') -

Clo ck 13

8.5 Control for Data Hazards: Stalls

after<2>

-

lr.;!fJ
Re(Wnte

0 -� �
-

-

IO:"t" .. Wnh•R,•�1\U1Rl
IU:EX.Wr:t';R':�1:it�rKi.1

I I

sit $1, $6, $7

1 EX/MEM.Re,wr1te :
10/EX.RoCWrta i I

add $9 . . .

MEM/WB.R.,wrtte

���������, EXJMEM
10

EX/MEM.WriteROClster

after<1> sit $1 . . .

EX/MEM.fle&Wnte MEM/WB.Re(Wnte
1

bubble

0

1
M

add $9

1
ID.:EX

�EM
10 we r� -

M we-
- - ,....

&- -� Data � -'1' merno') M
•
• r�

....-'O
M 1 9 u .

I rr� I I
I I I I I

EX/MEM. WrlaRejister I I I I I
I I MEM/WB.WriteRe&1ster :
I I I

411

FIGURE 8.40 Clock cycles 12 and 13 of the Instruction sequence In the example. The a d d instruction stalled in
Figure 6.39 completes in clock cycle 13.

412 Chapter 6 Enhancing Performance with Pipelining

A final remark is that the hazard checking occurs between the instruction in the ID
stage and the instructions in their EX, MEM , and WB stages. Th is checking occurs i n
the middle of the clock cycle, and i t works as long as the machine knows whether to
zero the control l ines via the multiplexor by the end of the clock cycle. The first hazard
cou ld be simpler if we were wi l l i ng to look at the opcode bits during the ID stage to
determine whether the destination register number was for a load or an R-format
instruction.

II Reducing Data Hazards: Forwarding

There is less in this than meets the eye.

Tallulah Bankhead, Remark to Alexander Wollcott, 1922

Stalling the pipeline guarantees correct execution when the compiler gener
ates dependent instructions near each other, but the cost of correctness is
lower performance. If we look more carefully at Figure 6.30 on page 397, we
see that the value needed by the a n d instruction as the input to the ALU in
clock cycle 4 actually exists in the ALUResult field of the EX/MEM pipeline
register of the s u b instruction. Similarly, the input to the ALU for the follow
ing o r instruction can be found in the MEM/WB pipeline register of the s u b
instruction. If we change the register file so that it will supply the value writ
ten if the read and the write are to the same register, the datapath can supply
the operand for the a d d instruction as well. Using the same argument that we
don't have to stall as long as there are no backwards dependencies,
Figure 6.41 shows the dependencies between the pipeline registers and the
inputs to the ALU for the same code sequence as in Figure 6.30. The change is
that the dependency begins from a pipeline register rather than waiting for the
WB stage to write the instruction set registers. The required data exists in the
pipeline registers in time to be used by later instructions, suggesting a short
cut that might reduce performance losses from stalling.

If we can take the inputs to the ALU from any pipeline registers rather than
just ID/EX, the pipeline can proceed without stalls. This technique, using tem
porary results instead of waiting for the registers to be written, is called for
warding or bypassing. By adding multiplexors to the input of the ALU and by
supplying control similar to the Hazard Detection Unit, we can run the pipe
line at full speed in the presence of these data hazards.

For now, we will assume the only instructions we need to forward are the
four R-format instructions: a d d, s u b, a n d, and o r . Figure 6.42 shows a close
up of the ALU and pipeline register before and after adding forwarding.

Value of register $2:

Value of EX/MEM:

Value of MEM/WB:

Program
execution
order
(in instructions)

sub $2 $1. $3

and $12. $2 $5

or $13. $6, $2

add $14, $2 $2

SW $15, 100($2)

6.6 Reducing Data Hazards: Forwarding

Time (in clock cycles)

cc 1 cc 2 cc 3 cc 4 cc 5

10 10 10 10 10/-20

x x x -20 x
x x x x -20

413

cc 6 cc 7 cc 8 cc 9

-20 -20 -20 -20

x x x x
x x x x

FIGURE 6.41 The dependencies between the pipeline registers move forward in time, so it is possible to supply
the Inputs to the ALU needed by the and Instruction and or instruction by forwarding the results found In the
pipeline registers rather than stall. The values in the pipeline registers show that the desired value is available before it
is written into the register. We assume that the register file forwards values that are read and written during the same clock
cycle, so the a d d does not stall, but the values come from the register file instead of a pipeline register. Register file for
warding is why clock cycle 5 shows register $2 having the value 10 at the beginning and -20 at the end of the clock cycle.

Figure 6.43 shows the values of the control lines for the ALU multiplexors that
select either the normal register values or one of the forwarded values.

This forwarding control will be in the EX stage, because the ALU forward
ing multiplexors are found in that stage. Thus, we must pass the register num
bers from the ID stage via the ID /EX pipeline register, to determine whether
to forward values. The two conditions for forwarding and the location of the
result are as follows:

1. EX hazard:

if (EX/MEM.RegWrite
and (EX/MEM.WriteRegister = ID/EX.ReadRegisterl)) ALUSelA = 01

414

Registers

Registers

Chapter 6 Enhancing Performance with Plpellnlng

I D/EX

I D/EX

M
u
x

M
u
x

ALUSelB

EX/MEM

ALU i-------+t

a. No forwarding

EX/MEM

Forward In&

unit

b. With forwarding

Data

memory

Data

memory

MEM/WB

MEM/WB

M
u
x

M
u
x

FIGURE 6.42 On the top are the ALU and plpellne registers before adding forwarding. On the bottom, the multiplex
ors have been expanded to add the forwarding paths, and we show the Forwarding Unit. The new hardware is shown in
color.

6.6 Reducing Data Hazards: Forwarding 415

1· Mux control Source Explanation - .. � r �. -- 1-r�
�". -..

ALUSelA = 00 ID/EX The first ALU operand comes from the normal registers.

ALUSelA = 01 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ALUSelA = 10 MEM/WB The first ALU operand is forwarded from data memory or an earlier ALU result.

ALUSelB = 00 ID/EX The second ALU operand comes from the normal registers.

ALUSelB = 01 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ALUSelB = 10 MEM/WB The second ALU operand is forwarded from data memory or an earlier ALU result.

FIGURE 6.43 The control values for the forwarding multiplexors In Figure 6.42. The signed immediate that is another
input to the ALU is described in the elaboration at the end of this section.

if (EX/MEM.RegWrite
and (EX/MEM.WriteRegister = ID/EX.ReadRegister2)) ALUSelB = 01

This case forwards the result from the previous instruction to either
input of the ALU.

2. MEM hazard:

if (MEM/WB.RegWrite
and (MEM/WB.WriteRegister = ID/EX.ReadRegisterl)) ALUSelA = 10

if (MEM/WB.RegWrite
and (MEM/WB.WriteRegister = ID/EX.ReadRegister2)) ALUSelB = 10

This case has the same register number matching, but the forwarded
value is determined by whether this instruction depends on an ALU
operation (MemtoReg = 0) or a load instruction (MemtoReg = 1) .

There is no third hazard, because we assume in this section that the register
file supplies the correct result if the instruction in the ID stage reads the same
register written by the instruction in the WB stage. This revised register file is
another form of forwarding, but it occurs within the register file.

One complication is that hazards can occur in both EX and MEM stages for
the same ALU input. For example, when summing a vector of numbers in a
single register, a sequence of instructions will all read and write to the same
register. In this case, priority goes to the EX hazard, because it is found in the
instruction nearest the instruction in the ID stage in the program execution or
der. Thus, the control for the MEM hazard would be:

if (MEM/WB.RegWrite
and (EX/MEM.WriteRegisterRt i= ID/EX.ReadRegisterl)
and (MEM/WB.WriteRegister = ID/EX.ReadRegisterl)) ALUSelA = 10

416 Chapter 6 Enhancing Performance with Pipelining

if (MEM/WB.RegWrite
and (EX/MEM.WriteRegisterRt =t= ID/EX.ReadRegister2)
and (MEM/WB.WriteRegister = ID/EX.ReadRegister2)) ALUSelB = 10

Figure 6.44 shows the hardware necessary to support forwarding multi
plexors on the inputs to the ALU controlled by the Forwarding Unit.

Show how forwarding works with the instruction sequence from the previ
ous example:

s u b $ 2 , $ 1 , $ 3
a n d $ 4 , $ 2 , $ 5
o r $ 8 , $ 2 , $ 6
a d d $ 9 , $ 4 , $ 2
s l t $ 1 , $ 6 , $ 7

Figures 6.45 and 6.46 show the events in clock cycles 3-6 in the execution of
these instructions. In clock cycle 4, the Forwarding Unit sees the writing by
the s u b instruction of register $2 in the MEM stage while the a n d instruction
in the EX stage is reading register $2. The Forwarding Unit selects the
EX/MEM pipeline register instead of the ID /EX pipeline register as the up
per input to the ALU to get the proper value for register $2. The following
o r instruction also reads register $2, so the Forwarding Unit selects the
MEM/WB pipeline register for the upper input to the ALU in clock cycle 5.
The following a d d instruction reads both register $4, the target of the a n d in
struction, and register $2, still the target of the s u b instruction. In clock cycle
6, the Forwarding Unit thus selects the MEM/WB pipeline register for the
upper ALU input and the new ID/EX pipeline register for the lower ALU
input.

Comparing these figures to Figures 6.35 through 6.40 on pages 406 to
411, we see that forwarding takes 8 clock cycles to complete the a d d instruc
tion; stalling took 13 clock cycles to complete the same amount of work. This
large reduction in clock cycles for the relatively small increase in hardware
complexity is the reason why almost all pipelined machines today provide
some form of forwarding.

Adding forwarding removes the datapath hazards, because a hazard can be
defined only with respect to particular hardware-hence the name Forward
ing Unit rather than Hazard Forwarding Unit.

:1
�

, .::!

ID/EX
....--

IF/IDWrite I � ffi -1 : · � :· I IZ�
PCWnte

PC 1-1 Instruction
memOfY lo-

.......

IFJID

5 � I I I •I
1il
c i.-::-

'--

RegWrlle

f---

Rectsters

f---

1-- 1--

I �
x MU}- Data

memory to- � M
u I-� x

I It(;�
�

- � F°':�:lnl lEQJ I
1 'LI]

FIGURE 6.44 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 6.34 on page 404, the additions are
the multiplexors to the inputs to the ALU. This figure is also a stylized drawing, leaving out details from the full datapath such as the branch hardware
and the sign-extension hardware.

418 Chapter 6 Enhancing Performance with Pipelining

or $8, $2, $6 and $4, $2, $5

PCWnte

I j -5--

Clock 3

add $9, $4, $2 : or $8, $2, $6

PCWrlte

I

Clock 4

IF/IOWme I
'f/ID

Instruction
....._

j, __ _

Re�

$2

Re�

$6

2
6

8

i sub $2, $1, $3 ! before<1>
' ' '

'
I '

ID/EX ' ' ' 10 ' 1------------. EX/MEM

and $4, $2, $5

ID/EX
10

Dat•
... """I'

i before<2>
' ' ' I ' ' ' I
'
'
'
I M(�!!'WB

before<1>

FIGURE 6.45 Clock cycles 3 and 4 of the Instruction sequence In the example on page 416. The bold lines show
ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The Forwarding Unit is high
lighted by shading it when it is forwarding data to the ALU.

sit $1, $6, $7

Clock 5

after<1>

PCW!tU

-
__,

Clock 6

6.6 Reducing Data Hazards: Forwarding

add $9, $4, $2

j ...--- Ro

sit $1, $6, $7

6

i R s

Rapl1W
$6

$7

6

i or $8, $2, $6
I
I

IDf.EX

add $9, $4, $2

I
IDf.EX

419

and $4 . . . sub $2 . . .

or $8 . . . and $4 . . .

Dute
""'"'°"

FIGURE 6.46 Clock cycles 5 and 6 of the Instruction sequence In the example on page 416. The bold lines show
ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The Forwarding Unit is high
lighted when it is forwarding data to the ALU. The a d d completes in two more clock cycles.

420

Program
execution
order
(in instructions)

lw $2 , 100($1)

and $12. $2 . $5

or $13. $6, S2

add $14. $2 . $2

SW $15, 100:$2)

Chapter 6 Enhancing Performance with Pipelining

Time (in clock cycles) ----------------+

cc 1 cc 2 cc 3 cc 4 cc 5 CC 6 cc 7 cc s cc 9

FIGURE 6.47 A pipelined sequence of instructions, this time replacing the "sub" in Figure 6.41 with a load
instruction. Since the dependence between the load and the following instruction (a n d) goes backwards in time, this haz
ard cannot be solved by forwarding. Hence, this combination must result in a stall by the Hazard Detection Unit.

Elaboration: There is another compl ication to the conditions for forwarding data.
MIPS requires that register $0 never be changed, so every use of $0 must supply a 0
as an operand. The conditions above thus work properly as long as I D/EX.ReadRegis
teri '#- 0 and I D/EX.ReadRegister2 '#- 0.

One alternative to the explanation of forwarding in this section is to determine the
control of the multiplexors on the ALU i nputs during the ID stage, setting those values
in new control fields of the I D/EX pipel ine register. The hardware may be faster,
because the time to select the ALU inputs is l ikely to be on the critical path.

Forwarding with Loads and Stores

Alas, there is one case when forwarding cannot save the day-when an
instruction tries to read a register following a load instruction that writes the
same register. Figure 6.47 illustrates the problem. The data is still being read
from memory in clock cycle 4 while the ALU is performing the operation for
the following instruction. In this case, something must still stall the pipeline
for the combination of load followed by an instruction that reads its result.

6.6 Reducing Data Hazards: Forwarding 421

Hence, we revive the Hazard Detection Unit. It operates during the ID
stage, and it continues to work in the presence of the Forwarding Unit. Check
ing for load instructions by testing if the control signal ID/EX.MemRead is ac
tive, the Hazard Detection Unit control is now reduced to this single condition:

if (ID/EX.RegWrite and ID/EX.MemRead and
((ID/EX.WriteRegisterRt = IF/ID.ReadRegisterl) or

(ID I EX. Wri teRegister Rt = IF I ID .ReadRegister2)))
stall the pipeline

Figure 6.48 highlights the pipeline connections for both the Hazard Detec
tion Unit and the Forwarding Unit. As before, the Forwarding Unit controls
the ALU multiplexors to replace the value from a general purpose register
with the value from the proper pipeline register.

Hardware

Software

Interface

• -

As another example of the trade-off between compiler and
hardware complexity, the original MIPS processors avoided
hardware to stall the pipeline by requiring software to fol
low the load with an instruction independent of that load. In
the worst case, no p instructions were placed after loads .

Although the hardware may or may not rely on the
compiler to resolve hazard dependencies to ensure
correct execution, the compiler must understand the
pipeline to achieve the best performance. Otherwise,
unexpected stalls will reduce the performance of the
compiled code.

Elaboration: The signed- immediate input to the ALU , needed by loads and stores, is
missing from the datapath in Figure 6 .48. S ince central control decides between regis
ter and immediate, and since the Forwarding Unit chooses the pipel ine register for a
register input to the ALU , the easiest solution is to add a 2 :1 multiplexor that chooses
between the ALUSelB mu ltiplexor output and the signed immediate. Figure 6.49 shows
this addition. Note that this solution d iffers from what we learned in Chapter 5, where

I • e

�
�
�
IFJID

....

c: 0

HllZAld \
detection

� �
Control

0

� I I 1 I ii
Regis ten PC � Instruction

memory �
"' c: i-=-

ID/EX.RegWnte

M

....__

....__

Sff I : I tr.:
I r M

.....-t u
x

I 1 1 .r M 1-+l u

�\.....,.

-

ALU}- Data
memory

-

1---+-r M
u I-w-<

....__
ID/EX. WrtteRegisterRt � 111·��14JI I L1i

FIGURE 6.48 Plpellned control overview, showing the two multiplexors for forwarding, the Hazard Detection Unit, and the Forwarding Unit.
Although the ID and EX stages have been simplified-the sign-extended immediate and branch logic are missing-this drawing gives the essence of
the forwarding hardware requirements.

6.6 Reducing Data Hazards: Forwarding 423

ID/EX EX/MEM M EM/WB
- - -

,,,.......... i--
M � ,... u
x

.. -
Registers ALUSrc

ALU �
r-... ,__.. - .. _. / M M Data _,.... - u u � -

x x memory M

- u ...
'-.,_) '-" x r�

-... I -1 � --r -
Forwarding I unit

FIGURE 6.49 A close-up of the datapath in Figure 6.42 on page 414 shows a 2:1 multiplexor, which has been
added to select the signed Immediate as an ALU input.

the multiplexor control led by l ine ALUSelB was expanded to include the immediate
input.

Forward ing helps with hazards when store instructions are dependent on other
instructions. Connecting the ALUSelB output conta in ing store data to the EX/MEM
pipel ine register forwards the proper value. This added multiplexor for immediates also
avoids false matches for the condition mentioned in the elaboration about stal ls on
page 405.

We can improve the performance of loads fol lowed by stores by adding more for
warding hardware. If we were to redraw Figure 6 .4 7 on page 420, replacing the a n d
instruction that immediately fol lows l w with an s w, we wou ld see that it is possible to
avoid a sta l l , s ince the data exists i n the MEM/WB register of a load instruction in time
for its use in the MEM stage of a store instruction. Exercise 6 .17 examines the
changes to the datapath necessary to avoid th is hazard.

424 Chapter 6 Enhancing Performance with Pipelining

• Branch Hazards

Program
execution
order
(in instructions)

40 beq $1. $3, 28

44 and $12, $2. $5

48 or $13. $6. $2

52 add $14. $2, $2

72 lw $4, 50($7)

There are a thousand hacking at the branches of evil to one who is striking at
the root.

Henry David Thoreau, Walden, 1854

Thus far we have limited our concern to hazards involving arithmetic opera
tions and data transfers. But another kind of pipeline hazard involves
branches. Figure 6.50 shows a sequence of instructions and indicates when
the branch would occur in this pipeline. An instruction must be fetched at
every clock cycle to sustain the pipeline, yet in our design the decision about
whether to branch doesn't occur until the Memory pipeline stage. This delay
in determining the proper instruction to fetch is called a control hazard or
branch hazard, in contrast to the data hazards we have just examined.

Time (in clock cycles) -----------+

cc 1 cc 2 cc 3 cc 4 cc 5 CC 6 cc 7 cc 8 cc 9

FIGURE 6.50 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40,
44, . . .) are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage
clock cycle 4 for the b e q instruction above-the three sequential instructions that follow the branch will be fetched and
begin execution. Without intervention, those three following instructions will begin execution before b e q branches to l w at
location 72.

6. 7 Branch Hazards 425

Returning to our analogy once again, suppose we ran out of Corinthian
leather at the upholstery station. We call our suppliers in Spain, but they won't
be able to supply the famous material for two months. We then tell the people
at the front of the assembly line to stop sending cars needing that option. In the
case of computers, this is similar to branching on a condition. The difficulty is
that there may be many cars needing Corinthian leather already on the assem
bly line, and it's too late to stop them; we would set aside those partially com
pleted cars until the new shipment of Corinthian leather arrives. Similarly, we
may need to set aside instructions that are fetched before we know the condi
tion of the branch.

This section on control hazards is shorter than previous sections on data
hazards. The reasons are that control hazards are relatively simple to under
stand, they occur much less frequently than data hazards, and there is nothing
as effective against control hazards as forwarding for branches, hence we use
simpler schemes. We look at two common schemes for resolving control haz
ards.

Always Stall

One solution is to stall until the branch is complete. This solution, shown in
Figure 6.51, will encounter a penalty of several clock cycles for each branch.
The drawback is that many times a conditional branch will decide against
branching, and the work that would have been accomplished fetching and
decoding the following instructions is exactly what will need to happen any
way.

Assume Branch Not Taken

A common improvement over stalling upon fetching a branch is to assume
that the branch will not be taken and so will continue execution down the
sequential instruction stream. If the branch is taken, the instructions that are
being fetched and decoded must be discarded. Execution continues at the
branch target. Figure 6.52 shows how this optimization changes the flow in
Figure 6.51. If branches are untaken half the time, and it costs little to discard
the instructions, this optimization halves the cost of control hazards.

To discard instructions, we merely change the original control values to Os,
much as in the stall approach. The difference is that we must also change the
three instructions in the IF, ID, and EX stages when the branch reaches the
MEM stage; for stalls, we just changed control to 0 in the ID stage and let them
percolate right. Discarding instructions, then, means we must be able to flush
instructions in the IF, ID, and EX stages of the pipeline.

To flush instructions in the IF stage, we add a control line, called IF.Flush,
that zeros the instruction field of the IF / ID pipeline register to flush the

426

Program
execution
order
(in instructions)

40 beq $1, $3, 28

stall

stall

stall

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14. $2, $2

Chapter 6 Enhancing Performance with Pipelining

Time (in clock cycles) ----------+

cc 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 CC 8 CC 9 cc 10 cc 11 cc 12

FIGURE 6.51 A branch with stalls to resolve the control hazard. The simplest solution is to stall all instructions that
follow the branch until after the decision is clear, and then allow the proper instructions to execute. Stalling essentially
increases the cost of a branch from one clock cycle to four clock cycles.

fetched instruction. To flush instructions in the ID stage, we use the multiplex
or already in the ID stage that zeros control signals for stalls. A new control
signal, called ID.Flush, is ORed with the stall signal from the Hazard Detection
Unit to flush during ID. For the EX phase we use a new signal called EX.Flush
to cause new multiplexors to zero the EX control lines. Control determines
whether to send a flush signal depending on the instruction opcode and the
value of the branch condition being tested. Figure 6.53 shows these changes.

Program
execution
order
(in instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6. $2

52 add $14, $2, $2

6. 7 Branch Hazards 427

Time (in clock cycles) --------------

cc 1 cc 2 cc 3 cc 4 cc s CC 6 cc 7 cc 8

FIGURE 6.52 In contrast to Figure 6.51, when the branch Is not taken, the Instruction takes just one clock cycle.
Only when the branch is taken does the instruction take four clock cycles.

Example

Answer

Show what happens both when the branch is taken and when it's not taken
in this instruction sequence, assuming the optimization on branches not
taken:

3 6 s u b $ 1 0 , $ 4 , $ 8
4 0 b e q $ 1 , $ 3 , 2 8 # P C - r e l a t i v e b r a n c h t o a d d r e s s 7 2
4 4 a n d $ 1 2 , $ 2 , $ 5
48 o r $ 1 3 , $ 2 , $ 6
5 2 a d d $ 1 4 , $ 4 , $ 2
5 6 s l t $ 1 5 , $ 6 , $ 7

7 2 l w $ 4 , 5 0 ($ 7)

If the branch in location 40 is untaken, the instructions proceed as in
Figure 6.52. Figure 6.54 shows what happens when a branch is taken.

;;-f
...
�

IF.Flush ID.Flush EX.Flush -

I I ' d ��I � "'� 1 JI i :BJ I """'" I rB 0 : I EX/MEM

�

I-

1 . I I � � I I r=f x
'-I PC � Instruction �

memory -
Registers ALU Data

memory lo- �
�

�----------+ �

�

1 1 1 1 1 1 1le�:�nd�
v

-

M t-1 u x

LJt, 1 1 1 1 1 1 ._ .. � 4+-9 untt I

M
u I-�

L.- ui

FIGURE 6.53 Datapath for branch, including hardware to flush the instructions that follow branch. Since the branch decision is made in the
fourth pipeline stage, three instructions that follow the branch will be in the pipe at that time. The control lines IF.Flush, ID.Flush, and EX.Flush deas
sert the control lines in the first three stages. Figure 6.52 shows the timing of the operations for a branch. Although the new-PC mux appears in the
MEM stage in this figure, the decision between a branch target address from an earlier instruction and PC+4 occurs in the IF stage. Also, although the
flush lines are shown coming from the control unit in this figure, in reality they are coming from hardware that determines if a branch is taken, found
in the MEM stage, such as the branch and gate in Figure 6.24 on page 391 .

6. 7 Branch Hazards 429

add $14, $4, $2 ! or $13, $2, $6 ! and $12, $2, $5 sub $10

'"

Clock 5

lw $4, 50($7) ! bubble ! bubble ! bubble beq

FIGURE 6.54 The MEM stage of clock cycle 5 determines that a branch must be taken, so It selects 72 as the
next PC address and zeros the control line values for the next clock cycle. Clock cycle 6 shows the instruction at
location 72 being fetched and the three bubbles in the pipeline as a result of the taken branch.

430 Chapter 6 Enhancing Performance with Pipelining

Elaboration: This branch optimization scheme is just one form of branch prediction. In
th is case , we predict that the branch is untaken, flushing the pipel ine when we are
wrong. With more hardware, it is possible to try other schemes of branch prediction.
One approach to predicting when a branch wi l l be taken is to look up the address of the
instruction to see if a branch was taken the last time th is instruction was executed,
and, if so, to begin fetching new instructions from the same place as the last time.
Compiler-based approaches are also available; they use a techn ique called delayed
branches. Exercises 6.20 through 6.22 explore th is solution to control hazards .

• .

Pipelining improves throughput but not the time per
instruction: the five-stage pipeline still takes five
clock cycles for the instruction to complete. Hence
data and control dependencies in programs together
with instruction latencies offer an upper limit to the
benefit of pipelining because the processor must

sometimes wait for the full execution time of an instruction for the
dependency to be resolved.

This upper limit can be raised, but not eliminated, by reducing
control hazards via branch optimizations such as in Figure 6.52, and
by reducing data hazards via compiler scheduling.

• Exceptions

To make a computer with automatic program-interruption facilities behave [se
quentially] was not an easy matter, because the number of instructions in various
stages of processing when an interrupt signal occurs may be large.

Fred Brooks Jr., Planning a Computer System: Project Stretch, 1962

Another form of control hazard involves exceptions. For example, suppose
the following instruction

a d d $ 1 , $ 2 , $ 1

has an arithmetic overflow. We need to transfer control to the exception rou
tine immediately after this instruction, because we wouldn't want this invalid
value to contaminate other registers or memory locations; the MIPS exception
routine is at location 4000 0040hex (see Chapter 5, page 317). Just as we did for
the taken branch in the previous section, we must flush the instructions that

6.8 Exceptions 431

follow the a d d instruction from the pipeline and begin fetching instructions
from the new address. We will use the same mechanism we used for taken
branches, but this time the deasserting of control lines is invoked by the
exception. To start fetching instructions from location 4000 0040hex' we simply
add a third input to the PC multiplexor that sends 4000 0040hex to the PC.

This example points out a problem with exceptions: If we do not stop exe
cution in the middle of the instruction, the programmer will not be able to see
the original value of register $1 that helped cause the overflow, because it will
be clobbered as the destination register of the a d d instruction. Due to careful
planning, the overflow exception is detected during the EX stage, hence we
can use the EX.Flush signal to prevent instructions in the EX stage from writ
ing their results in the WB stage.

The final step is to save the address of the offending instruction in the Ex
ception Program Counter (EPC), as we did in Chapter 5. In reality, we save the
address + 4, so the exception handling routine must first subtract 4 from the
saved value. Figure 6.55 shows a stylized version of the datapath, including
the branch hardware and necessary accommodations to handle exceptions.

Given this instruction sequence:

4 0 hex s u b $ 1 1 , $ 2 , $ 4
4 4 hex a n d $ 1 2 , $ 2 , $ 5
48hex o r $ 1 3 . $ 2 . $ 6
4 c hex a d d $ 1 , $ 2 , $ 1
5 0 h ex s l t $ 1 5 , $ 6 , $ 7
5 4 hex l w $ 1 6 , 5 0 ($ 7)

Assume the instructions to be invoked on an exception begin like this:
4 0 0 0 0 04 0 h ex S W $ 2 5 , 1 0 0 0 ($ 0)
4 0 0 0 0 044h e x S W $ 2 6 , 1 0 0 4 ($ 0)

Show what happens in the pipeline if an overflow exception occurs in the
a d d instruction.

Figure 6.56 shows the events, starting with the a d d instruction in the EX
stage. The overflow is detected during that phase and 4000 0040hex is forced
into PC. Clock cycle 6 shows that the a d d and following instructions are
flushed, and the first instruction of the exception code is fetched. Note that
the address of the instruction following the a d d is saved: 4chex + 4 = 50hex·

l • e "'

IF.Flush I I ID.Flush EX.Flush �

I I I
: r---r---, ,,...., I-

�

I £"
40DDD040 :i � I-

x

'-'
EX/MEM

I-

"-t PC� Instruction 1-o memory �
Reg11ters

i--
� tf

ALU}- Data memory
..__

Slgn H extend �

v

I M�B

Llwai--
t--

...... 1---+-r M
u I-�

.__ � l llllk�WJI I L1 1
FIGURE 6.55 The datapath with controls to handle exceptions. The changes from Figure 6.53 include a third input, with the value 4000 0040hev in
the multiplexor that supplies the new PC value and a Trap PC register to save the address of the instruction that caused the exception. The 4000 0040hex
input to the multiplexor is the initial address to begin fetching instructions in the event of an overflow exception. (Trap PC register is just above the
ALU multiplexors.) Although the flush lines are shown coming from the control unit in this figure, in reality they are coming from hardware that deter
mines if a branch is taken, found in the MEM stage, such as the branch and gate in Figure 6.24 on page 391 .

lw $16 . . . ! sit $15, $6, $7 ! add $1, $2, $1

SW $25, 1000($0) ! bubble bubble

•()()()()()4•

Clock 6

i or $13 . . .

: bubble

and $12 . . .

i or $13 . . .

'
' '
'
'

FIGURE 6.56 Event in the result of an exception due to arithmetic overflow In the add instruction. The overflow is
detected during the EX stage of clock 5, saving the address following the add in the TrapPC register (4c + 4 = 50hexl· Over
flow causes all the Flush signals to be set near the end of this clock cycle, deasserting all control values (setting them to 0).
Clock cycle 6 shows the instructions converted to bubbles in the pipeline plus the fetching of the first instruction of the
exception routine-s w $25,1000($0)-from instruction location 40000040hex· Note that the a n d and o r instructions still
complete. (page 433)

434 Chapter 6 Enhancing Performance with Plpellnlng

Chapter 5 lists some other causes of exceptions:

• I/ 0 device request

• Invoking an operating system service from a user program

• Using an undefined instruction

• Hardware malfunction

With five instructions active in any clock cycle, the challenge is to associate
the exception with the appropriate instruction. The Cause register records all
possible exceptions in a clock cycle, and the exception software must match
the exception and the instruction. An important clue is knowing in which
pipeline stage a type of exception can occur. For example, an undefined
instruction is discovered in the ID stage, and invoking the operating system
occurs in the EX stage. The hardware will associate the exception with the
instruction in the proper stage, allowing earlier instructions to complete and
flushing the rest.

The difficulty of always associating the correct exception with the correct
instruction in pipelined computers has led some computer designers to relax
this requirement in noncritical cases. Such machines are said to have imprecise
interrupts or imprecise exceptions. Hence, a machine with imprecise exceptions
might not stop in time, so the EPC might contain 1000, when the offending in
struction was really at location 992 or even 1008. Exceptions are precise in
MIPS, and the vast majority of machines today support precise interrupts or pre
cise exceptions.

I/O device requests and hardware malfunctions are not associated with a
specific instruction, so the implementation has some flexibility as to when to
interrupt the pipeline. The hardware should pick the simplest instruction to
associate with the I/O exception, but because the hardware is unstable when
a malfunction happens, it may be wise to stop as many instructions as possible.

One complication is that multiple exceptions can occur simultaneously. For
example, if an arithmetic overflow was followed by an illegal instruction, we
would see the overflow exception and the illegal instruction exception in the
same clock cycle. The normal solution is to prioritize the exceptions so that it
is easy to determine which is serviced first; this strategy works for pipelined
machines as well. In the MIPS R3000, the hardware sorts exceptions so that the
earliest instruction is interrupted. In this case it would be the arithmetic over
flow. Exceptions are collected in the Cause register, so that the hardware can
interrupt based on later exceptions once the earliest one has been serviced.

6.9 Performance of Pipelined Systems 435

• Performance of Pipelined Systems

Example

Answer

The reason for designing pipelined processors is higher performance, and as
we have seen, pipelining reduces the average execution time per instruction.
Hazards limit the gains to be made from pipelining, but hardware and soft
ware techniques have been devised to circumvent these limits.

The compiler writer must understand the pipeline of the target machine to
achieve the best performance; otherwise, unexpected stalls may squander the
advantages of pipelined performance.

Find the hazard in this code from the body of the s w a p procedure in
Figure 3.18 on page 136:

fl r e g $ 2 h a s t h e a d d r e s s o f v [k]
l w $ 1 5 , 0 ($ 2) fl r e g $ 1 5 (t emp) = v [k J
l w $ 1 6 , 4 ($ 2) fl reg $ 1 6 = v [k+ l J
S W $ 1 6 , 0 ($ 2) fl v [k] = r e g $ 1 6
S W $ 1 5 . 4 ($ 2) fl v [k+ l] = reg $ 1 5 (t emp)

Reorder the instructions to avoid as many pipeline stalls as possible.

The hazard occurs on register $16 between the second l w and the first sw.
Without forwarding, we would need to find three independent instructions
to place between them. Forwarding means that we need find only one, and
swapping the second sw is a perfect match:

fl reg $ 2 h a s t he a d d r e s s o f v [k]
l w $ 1 5 , 0 ($ 2) fl r e g $ 1 5 (t emp) = v [k]
l w $ 1 6 , 4 ($ 2) # reg $ 1 6 = v [k+ l]
S W $ 1 5 , 4 ($ 2) ff v [k+l] = r e g $ 1 5 (t emp)
S W $ 1 6 , 0 ($ 2) ff v [k] = reg $ 1 6

Note that we do not create a new hazard, because there is still one in
struction between the write of register $15 by the load and the read of reg
ister $15 in the store. Thus, on a machine with forwarding, the reordered
sequence takes four clock cycles to start these instructions.

436 Chapter 6 Enhancing Performance with Pipelining

Example Using the code in the example above, rewrite the code for a machine with
out forwarding, inserting nop instructions as necessary.

Answer With comments showing the timing of the load of register $15, the code for
the machine without forwarding would look like this:

l w $ 1 5 . 0 ($ 2) # f e t c h o f l w $ 1 5
l w $ 1 6 , 4 ($ 2) # d e c o d e o f l w $ 1 5
n o p # l w $ 1 5 c a l c u l a t e s d a t a a d d r e s s
n o p # l w $ 1 5 c omp l e t e s M E M s t a g e
S W $ 1 5 , 4 ($ 2) # l w $ 1 5 w r i t e s r e g $ 1 5 , f e t c h O f S W $ 1 5
S W $ 1 6 , 0 ($ 2) # r e a d o f r e g $ 1 5 f o r s w $ 1 5 , 4 ($ 2)

The sequence takes six clock cycles on the machine without forwarding
compared to four on the machine with forwarding. The benefits of forward
ing are so great that even if forwarding reduces the clock rate slightly due
to the extra multiplexors, it will still likely lead to a faster machine.

II Fallacies and Pltfalls

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the difficulties of pipelining arise because of instruction set compli
cations. Here are some examples:

• Variable instruction lengths and running times can lead to imbalance
among pipeline stages, causing other stages to back up. They can also
severely complicate hazard detection and the maintenance of precise ex
ceptions.

• Sophisticated addressing modes can lead to different sorts of problems.
Addressing modes that update registers, such as autoincrement, com
plicate hazard detection. Other addressing modes that require multiple
memory accesses substantially complicate pipeline control and make it
difficult to keep the pipeline flowing smoothly.

Perhaps the best recent example is the DEC Alpha and the DEC NV AX. In
comparable technology, the new instruction set architecture of the Alpha al
lowed an implementation whose performance is more than twice as fast as

6.10 Fallacies and Pitfalls

Cl> (.) c l1l
§
.g Cl> Cl.
Cl> > :;:; l1l a:; a::

3.0 -

2.5

2.0

1.5

1.0

0.5 -

1 2 4 8 16

Pipeline depth

437

FIGURE 6.57 The depth of plpellnlng versus the speedup obtained. The x axis shows the
number of stages in the EX portion of the floating-point pipeline. A single-stage pipeline corre
sponds to 32 levels of logic, which might be appropriate for a single FP operation. This data is
based on Table 2 in S. R. Kunkel and J. E. Smith, "Optimal pipelining in supercomputers," Proc.
13th Symposium on Computer Architecture (June 1986), pages 404-414.

NVAX. In another example, Bhandarkar and Clark [1991] compared the MIPS
M/2000 and the VAX 8700 by counting clock cycles of the SPEC benchmarks;
they concluded that, although MIPS M/2000 executes more instructions, the
VAX on average executes 2.7 times as many clock cycles, so the MIPS is faster
(see Figure E.9 on page E-21) .

Fallacy: Increasing the depth of pipelining always increases performance.

Three factors combine to limit the performance improvement gained by pipe
lining. First, data hazards in the code mean that increasing the pipeline depth
increases the time per instruction, because a larger percentage of the cycles
become stalls. Second, control hazards mean that increasing pipeline depth
results in slower branches, thereby increasing the clock cycles for the pro
gram. Finally, clock skew and latch overhead combine to limit the decrease in
clock period obtained by further pipelining. Figure 6.57 shows the trade-off
between pipeline depth and performance for a floating-point pipeline.

Fallacy: Pipelining is easy.

Our books testify to the subtlety of correct pipeline execution. Our first book
had a pipeline bug in its first edition, despite its being reviewed by more than
100 people and being class-tested at 18 universities. The bug was uncovered

438 Chapter 6 Enhancing Performance with Plpelinlng

only when someone tried to build the computer in that book. Similarly, the
alpha edition of this book had a bug involving forwarding and store instruc
tions, and this bug escaped the scrutiny of many reviewers and students.
Beware!

II Concluding Remarks

Nine-tenths of wisdom consists of being wise in time.

American Proverb

Pipelining improves the average execution time per instruction. Depending
on whether you start with a single-cycle or multiple-cycle datapath, this
reduction can be thought of as decreasing the clock cycle time or as decreas
ing the number of clock cycles per instruction (CPI). We started with the sim
ple single-cycle datapath, so pipelining was presented as reducing the clock
cycle time of the simple datapath. Figure 6.58 shows the effect on CPI and

Multicycle
data path

(section 5.4)

Slower

Pipelined
data path

(Chapter 6)

Single-cycle
data path

(section 5.3)

Faster

Instruction throughput

(Instructions per clock cycle or 1/CPI)

FIGURE 6.58 The performance consequences of simple (single-cycle) datapath and multi
cycle datapath from Chapter 5 and the pipelined execution model in Chapter 6. While the
instructions per clock cycle (instruction throughput) is slightly larger in the simple datapath, the
pipelined datapath is close and it uses a clock rate as fast as the multicycle datapath.

6.11 Concluding Remarks

Single-cycle
data path

(section 5.3)

1

Latency for an Instruction

Pipelined
datapath

(Chapter 6)

Mu lticycle
data path

(section 5.4)

Several

439

FIGURE 6.59 The basic relationship between the datapaths in Figure 6.58. The pipelined
datapath is shown as multiple clock cycles for instruction latency because the execution time of
an instruction is not shorter; it's the instruction throughput that is improved.

clock rate for each of the datapaths from Chapters 5 and 6, with pipelining
offering both a low CPI and a fast clock rate.

Pipelining improves throughput, but not the inherent execution time, or la
tency, of instructions; the latency is similar in length to the multiple-clock cycle
approach. Unlike that approach, which uses the same hardware repeatedly
during instruction execution, pipelining starts an instruction every clock cycle
by having dedicated hardware. Figure 6.59 shows the datapaths from
Figure 6.58 placed according to the amount of sharing of hardware and in
struction latency.

Latency introduces difficulties due to dependencies in programs, because a
dependency means the machine must wait the full instruction latency for the
hazard to be resolved. The cost of data dependencies can be reduced through
the use of forwarding hardware, and the frequency of control dependencies
can be reduced through both branch prediction hardware and compiler sched
uling.

While striving for the fastest clock cycle time, hardware designers must also
ensure correct execution of all instruction sequences. Compiler writers may or
may not be asked to participate by limiting the types of sequences generated,
but they must understand the pipeline to achieve best performance. Hardware
and software techniques cannot completely remove the cost and frequency of

440 Chapter 6 Enhancing Performance with Pipelining

hazards; instruction latency and program dependencies bound the benefits of
pipelined execution.

Recent Developments

More transistors per chip have meant that techniques formerly limited to
mainframe and supercomputers have made their way down to single-chip
computers. Functions that are sequential in recent workstations, but are pipe
lined in supercomputers like the Cray, are being pipelined in the current gen
eration of single-chip computers. These machines are sometimes called
superpipelined processors, an informal term suggesting a deeper pipeline than
the five-stage model discussed in this chapter.

Another method of taking advantage of more transistors is to try to start or
issue more than one instruction per clock cycle. Multiple issues allow the in
struction-execution rate to exceed the clock rate. Machines that issue multiple
independent instructions per clock cycle have been called superscalar machines.
In a superscalar machine, the hardware can issue a small number (say, two to
four) of independent instructions in a single clock cycle. If the instructions in
the instruction stream are dependent or don't meet certain criteria, however,
only the first instruction in sequence is issued. Figure 6.60 compares a super
scalar pipeline to a superpipelined pipeline.

The challenges to compiler writers for the two machines are similar. Super
scalar machines are sensitive to compilers avoiding pairs of dependent in
structions; superpipelined machines depend on compilers scheduling
instructions into the longer delays for memory access and until the branch de
cision stage.

What would a MIPS machine look like as a superscalar implementation?
Let's assume that two instructions are issued per clock cycle. One of the in
structions could be a load, store, branch, or integer ALU operation, and the
other could be any floating-point operation. Issuing two instructions per cycle
will require fetching and decoding 64 instruction bits. To keep the decoding
simple, we could require that the instructions be paired and aligned on a 64-
bit boundary. To make this worthwhile, however, we need either pipelined
floating-point units or multiple independent units. Otherwise, floating-point
instructions can only be fetched, and not issued, because all the floating-point
units will be busy.

Several difficulties may limit the effectiveness of a superscalar pipeline. In
our simple MIPS pipeline, loads had a latency of one clock cycle; this prevent
ed one instruction from using the result without stalling. In the superscalar
pipeline, the result of a load instruction cannot be used on the same clock cycle
or on the next clock cycle. Hence, the next three instructions cannot use the
load result without stalling. The consequences of a control hazard also become
longer. Effectively exploiting the parallelism available in a superscalar ma-

6.12 Historical Perspective and Further Reading 441

Instruction Instruction Execution Data Write back fetch decode memory
Superscalar

Instruction Instruction Execution Data Write back fetch decode memory

Instr. I nstr. I nstr. Exec. Data Data Data Write
fetch fetch dee. mem. mem. mem. back

Superpipelined
Instr. I nstr. I nstr.

Exec.
Data Data Data Write

fetch fetch dee. mem. mem. mem. back

FIGURE 6.60 A superscalar pipeline vs. a superpipelined pipeline. This two-way superscalar
fetches or issues two instructions every clock cycle and follows our traditional five-stage pipe
line. The superpipelined model is patterned after the pipeline in the MIPS R4000 and has eight
stages. Although the superpipelined model should have a higher clock rate, little else can be said
about the relative performance of these two approaches today. The success of superscalar
machines is sensitive to compilers avoiding pairs of dependent instructions; the success of super
pipelined machines depends on compilers scheduling instructions into the longer delays for
memory accesses and branches.

chine requires more ambitious compiler techniques for scheduling instruc
tions as well as more complex instruction-decoding hardware.

A microprocessor that is both superscalar and superpipelined is the DEC
Alpha. This two-way superscalar machine has eight pipeline stages, yielding
a clock rate of 200 Mhz. Putting this rate into perspective, the clock rate of the
Cray C-90 supercomputer announced in 1991 is just 1 .25 times faster than the
clock rate of this single chip processor found in single-chip computers an
nounced in 1992. Chapter 2 reminds us that clock rate is only one of three key
performance parameters, but this is still an impressive achievement.

II Hlstorical Perspective and Further Reading

supercomputer: Any machine still on the drawing board.

Stan Kelly-Bootle, The Devil's DP Dictionary, 1981

This section describes some of the major advances in pipelining.

442 Chapter 6 Enhancing Performance with Pipelining

FIGURE 6.61 Photograph of the Stretch computer, one of the first pipelined computers.
Photo courtesy of International Business Machines Corporation.

It is generally agreed that one of the first general-purpose pipelined ma
chines was Strctclz, the IBM 7030 (Figure 6.61). Stretch followed the IBM 704
and had a goal of being 100 times faster than the 704. The goals were a
"stretch" of the state of the art at that time-hence the nickname. The plan was
to obtain a factor of 1 .6 from overlapping fetch, decode, and execute, using a
four-stage pipeline. Stretch was also a training ground for both the architects
of the IBM 360, Gerrit Blaauw and Fred Brooks Jr., and the architect of the IBM
RS/6000, John Cocke.

CDC delivered the first CDC 6600 in 1964 (Figure 6.62). The CDC 6600 was
unique in many ways. The interaction between pipelining and instruction set
design was understood, and the instruction set was kept simple to promote
pipelining. The CDC 6600 also used an advanced packaging technology.
Thornton's book [1970] provides an excellent description of the entire ma
chine, from technology to architecture, and includes a foreword by Seymour
Cray. (Unfortunately, this book is currently out of print.) The 6600 is consid
ered to be the first supercomputer; the core instructions of Cray's subsequent
computers have many similarities to those of the original CDC 6600.

The IBM 360/91 introduced many new concepts, including dynamic detec
tion of memory hazards and generalized forwarding (Figure 6.63). The ap
proach is normally named Tomasulo's algorithm, after an engineer who worked
on the project. The team that created the 360/91 was led by Michael Flynn,

6.12 Historical Perspective and Further Reading 443

FIGURE 6.62 Photograph of the CDC-6600, the first supercomputer. Photo courtesy of
Charles Babbage Institute, University of Minnesota.

who was given the 1992 ACM Eckert-Mauchly Award, in part for his contri
butions to the IBM 360/91 .

The RISC machines refined the notion of compiler-scheduled pipelines in
the early 1980s. The concepts of delayed branches and delayed loads-com
mon in microprogramming-were extended into the high-level architecture.
These instructions define away hazards: delayed loads mean that the new reg
ister value is unavailable for the next instruction, and delayed branches mean
that the branch occurs after the following instruction, not before it (see Exercis
es 6.20 through 6.22) .

An approach that predated superscalar that relies on similar compiler tech
nology is called long instruction word (LIW) or sometimes very long instruction
word (VLIW). In this approach, several instructions are issued during each
clock cycle as in the superscalar case, but in LIW the compiler guarantees that
there are no dependencies between instructions that issue at the same time and
that there are sufficient hardware resources to execute them, thereby simplify
ing the instruction decoding and issuing logic. A very practical advantage of
superscalar over LIW designs is that superscalar processors can run without
changing binary machine programs that run on more traditional architectures;
LIW requires the source code for the programs to be available so that the pro
grams can be recompiled. LIW machines are rare today.

444 Chapter 6 Enhancing Performance with Pipelining

FIGURE 6.63 The IBM 360/91 pushed the state-of-the-art in pipelined execution when it
was unveiled in 1966. Photo courtesy of International Business Machines Corporation.

A number of papers have explored the trade-offs among alternative pipe
lining approaches. Jouppi and Wall [1989] examine the performance differenc
es between superpipelined and superscalar systems, concluding that their
performance is similar, but that superpipelined machines may require less
hardware to achieve the same performance. Recent machines are found in
both camps: The MIPS R4000 is superpipelined, the IBM RS/6000 and Sun Su
perSPARC are superscalar, and the DEC Alpha is both superpipelined and su
perscalar.

To Probe Further

Bhandarkar, D., and D. W. Clark [1991] . "Performance from architecture: comparing a RISC and
a CISC with similar hardware organizations," Proc. Fourth Conj on Architectural Support for Pro
gm111111i11g Languages and Operating Systems, IEEE/ ACM (April), Palo Alto, 310-19.

A quantitative co111pariso11 of F<.lSC and CISC written by scholars who argued for CISCs as well as built
them; they conclude tlzat MIPS is between 2 and 4 times faster than a VAX built with similar technology,
with a 111ea11 of2.7; Figure E . 1 1 011 page E-23 is based on this paper.

6.13 Exercises 445

Hennessy, J. L., and D. A. Patterson [1990]. Computer Architecture: A Quantitative Approach, Mor
gan Kaufmann Publishers, San Mateo, Calif.

Chapter 6 goes into considerably more detail about pipelined machines, including dynamic hardware
scheduling and superpipelined and superscalar machines.

Jouppi, N. P., and D. W. Wall [1989]. "Available instruction-level parallelism for superscalar and
superpipelined machines," Proc. Third Conf on Architectural Support for Programming Languages
and Operating Systems, IEEE/ ACM (April), Boston, 272-82.

A comparison of superpipelined and superscalar systems.

Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

A formal text on pipelined control, with emphasis on underlying principles.

Russell, R. M. [1978]. "The CRAY-1 computer system," Comm. of the ACM 21:1 (January) 63-72.

A short summary of a classic computer, which uses vectors of operations to remove pipeline stalls.

Smith, A., and J. Lee [1984]. "Branch prediction strategies and branch target buffer design," Com
puter 17:1 (January) 6-22.

An early survey on branch prediction.

Smith, J . E., and A. R. Plezkun [1988]. "Implementing precise interrupts in pipelined processors,"
IEEE Trans. on Computers 37:5 (May) 562-73.

Covers the difficulties in interrupting pipelined computers.

Thornton, J. E. [1970]. Design of a Computer: The Control Data 6600, Scott, Foresman, Glenview, Ill.

A classic book describing a classic machine. II Exercises

6.1 [5] <§6.2> For each pipeline register in Figure 6.3 on page 370, label each
portion of the pipeline register by the name of the value that is loaded into the
register, as explained on page 400. Also determine the length of each field in
bits and the total length of the pipeline register. For example, the lower portion
of the IF / ID pipeline register contains an instruction field that is 32 bits wide.

6.2 [5] <§6.3> {ex. 6.1) Following the same procedure as in Exercise 6.1, show
the additional widths of the pipeline registers for Figure 6.24 on page 391 .

6.3 [20] <§6.3> Figure 6.64 i s similar to Figure 6.27 on page 394, but the in
structions are unidentified. Your task is to determine as much as you can of
the five instructions in the five pipeline stages. If you cannot fill in a field of an

446

IF:

Chapter 6 Enhancing Performance with Pipelining

! 10 :
'

'
' IF{IO
'
'
'
'
'
'
'
'
'
'
'

10

11

2090

11

1

: Ex:
'

�)
....
reti•ter 1

Wrtte

:�� 16

1nstrucb00
120-161

1nstruC{H)(I
110-111

! MEM:
'

--

31

! ws:
'
'
'
'

f

FIGURE 6.64 The pipelined datapath for Exercise 6.3. Use the numeric labels to determine as many fields of each of the
five instructions in the pipeline as possible.

instruction, state why. Hint: Try writing as many of the 32 bits of each instruc
tion in binary before writing the instructions in assembly language notation;
use the end pages to get the instruction values.

6.4 [40] <§6.3> Using Figure 6.27 on page 394, determine the value of every
field in the four pipeline registers in clock cycle 5. (These are the values at the
beginning of the clock cycle.) Assume that before the instructions are executed
the state of the machine was as follows:

• The PC has the value SOOten' the address of the l w instruction.

• Every register has the initial value lOten plus the register number (e.g.,
register $8 has the initial value 18ten) .

• Every memory word accessed as data has the initial value lOOOten plus
the byte address of the word (e.g., Memory[8] has the initial value
1008ten) .

6.13 Exercises 447

Determine the value of every field, including those unidentified in the figure
and those unnecessary for a specific instruction. If you believe a field value is
impossible to determine from the information provided, explain why.

6.5 [10] <§6.2> Using Figures 6.4 through 6 .11 on pages 371 through 378 as a
guide, use colored pens or markers to show which portions of the datapath are
active and which are inactive in each of the five stages of the a d d instruction.
We suggest that you photocopy figures to act as backgrounds to answer this
exercise. Be sure to include a legend to explain your color scheme. (We hereby
grant the book owner permission to violate the Copyright Protection Act in
doing the exercises in Chapters 5 and 6!)

6.6 [15] <§6.3> To be sure you understand the relationship between the two
styles of drawing pipelines, draw the information in Figures 6.25 through 6.29
on pages 392 through 396 in the style of Figure 6.30 on page 397. Be sure to
highlight the active portions of the datapaths in this simpler figure.

6.7 [10] <§6.4, 6.5, 6.6, 6.9> The example on page 435 shows how to maximize
performance on our pipelined datapath with forwarding and stalls on a use
following a load. Now look at the code in Exercise 3.8 on page 156. Rewrite this
code to minimize performance on this datapath-that is, reorder the instruc
tions so that this sequence takes the most clock cycles to execute while still ob
taining the same result. Choose the code in Exercise 3.8 with the bugs intact or
with the bugs fixed; the purpose of this exercise is to show the impact of in
struction scheduling.

6.8 [20] <§6.4> Programs on pipelined machines often stall without forward
ing or compiler help. Start with this simple loop:

mov $ 5 , $ 0
S u m : l w $ 1 0 , 1 0 0 0 ($ 2 0)

a d d u $ 5 , $ 5 , $ 1 0
a d d i u $ 2 0 , $ 2 0 , - 4
b n e $ 2 0 ' $ 0 , S u m

and assume the pipeline structure o f Figure 6.19 on page 386.This datapath
neither stalls nor forwards on hazards, so you must add n o p instructions.
Rewrite the code inserting as few n o p instructions as needed for proper exe
cution; reorder the instructions, if possible, to minimize the number of nops
while preserving correctness. Write a formula for the number of clock cycles
to execute the loop as a function of N, the number of words copied.

6.9 [30] <§6.4> {ex. 6.8} Compilers can help by unrolling loops and interleaving
the code from different iterations. Making the same assumptions as Exercise
6.8 and using the same initial program, try scheduling instructions to remove
n o p instructions. Assume that $20 contains 3 x N, where N is the number of

448 Chapter 6 Enhancing Performance with Pipelining

words to be added together. Show the code and write a formula for the num
ber of clock cycles to execute the optimized loop as a function of N. These tech
niques typically take more registers to get good performance, since formerly
sequential computations will be interleaved and registers therefore cannot be
reused as quickly. To see if this is true, count the number of registers used in
each version of the code. How much faster is this version than that in Exercise
6.8? Hint: Remember that $20 contains a multiple of 3; try replicating the code
within the loop so that each time through the loop you do four loads and four
adds.

6.10 [20] <§6.4> This exercise is the same as Exercise 6.8, but replace the code
with this code:

C o py : l w $ 1 0 , 1 0 0 0 ($ 2 0)
S W $ 1 0 , 2 0 0 0 ($ 2 0)
a d d i u $ 2 0 , $ 2 0 , - 4
b n e $ 2 0 , $ 0 , C o py

6.11 [30] <§6.4> {ex. 6.10) This exercise is the same as Exercise 6.9, but this
time replace the code with the code found in Exercise 6.10. Assume that $20
contains 3 x N, where N is the number of words to be copied. Show the code
and write a formula for the number of clock cycles to execute the optimized
loop as a function of N. How much faster is this version than that in Exercise
6.10?

6.12 [15] <§6.6> Following the suggestion of the elaboration on page 420, one
alternative to forwarding control is to determine the control of the multiplex
ors on the ALU inputs during the ID stage, setting those values in new control
fields of the ID/EX pipeline register. The hardware may be faster, because the
time to select the ALU inputs is likely on the critical path. Redraw Figure 6.48
on page 422 with this change.

6.13 [5] <§6.5>List all of the inputs and outputs of the Hazard Detection Unit
in Figure 6.34 on page 404. Give the names and the number of bits for each in
put and output.

6.14 [15] <§6.5, C> {ex. 6.13) Using Appendix C and the answer to Exercise
6.13, design the hardware to implement the Hazard Detection Unit. Hint: To
decide if register numbers are equal, try using an exclusive OR gate (see the
Elaboration on page 197 of Chapter 4 or the In More Depth section on page 261
of Chapter 4).

6.15 [15] <§6.6> List all the inputs and outputs of the Forwarding Unit in
Figure 6.48 on page 422. Give the names and the number of bits for each input
and output.

6.13 Exercises 449

6.16 [30] <§6.6, C> {ex. 6.15) Using Appendix C and the answer to Exercise
6.15, design the hardware to implement the Forwarding Unit. Hint: To decide
if register numbers are equal, try using an exclusive OR gate (see the Elabora
tion on page 197 of Chapter 4 or the In More Depth section on page 261 of
Chapter 4).

6.17 [30] <§6.6, 6.9> The Elaboration that starts on page 421 suggests that we
could remove the hazard for a load followed by a store that uses the same reg
ister. Show the changes to the datapath in Figure 6.47 on page 420 and change
the logic equations starting on page 413 to remove this hazard.

6.18 [20] <§6.6> Let's change the code sequence on page 416 by replacing
s u b $ 2 , $ 1 , $ 3 with l w $ 2 , $ 1 , 1 0 0 . Show the state of the pipeline through an
instruction sequence as in Figures 6.45 through 6.50 on pages 418 through 424.
Assume that the datapath contains both the Forwarding Unit and the Hazard
Detection Unit in Figure 6.48 on page 422. You may do much less drawing if
you make several photocopies of Figure 6.48 and label the copies appropriate
ly.

6.19 [10] <§6.2, 4.8> In this chapter we used pipelining to improve execution
of all instructions. Pipelining can also improve performance of the execution
phase of slow instructions. Figure 4.42 on page 235 shows a datapath for float
ing-point addition. Draw pipeline registers onto that figure, and then the pipe
line stages for floating-point addition, starting with instruction fetch.

In More Depth: Delayed Branches

An alternative scheme to branch prediction to reduce the cost of control haz
ards is called delayed branch. In a delayed branch, the execution cycle with a
branch delay of length n is

b r a n c h i n s t r u c t i o n
s e q u e n t i a l s u c c e s s o r 1
s e q u e n t i a l s u c c e s s o r?

s e q u e n t i a l s u c c e s s o r
n

b r a n c h t a r g e t i f t a k e n

The sequential successors are in the branch-delay slots. The job of the software
is to make the successor instructions valid and useful. Most machines with
delayed branch instructions are limited to a single-branch delay slot.

6.20 [15] <§6.7> Using the example on page 427, rewrite the code to be as fast
as possible using a new instruction b e q d, which means a branch equal instruc
tion with a single-branch delay slot.

450 Chapter 6 Enhancing Performance with Pipelining

6.21 [10] <§6.7> {ex. 6.20) Using the answer to Exercise 6.20, draw the execu
tion of the instructions as in Figure 6.54 on page 429. Once again, photocopy
ing may save time.

6.22 [30] <§6.7> In which stage must the branch decision be made to reduce
the branch delay to a single instruction? Redraw the datapath using new hard
ware that will reduce the branch delay to one cycle.

6.23 [1 week] <§6.4, 6.5, 6.6> Using the simulator provided with this book,
collect statistics on data hazards for a C program (supplied either by the in
structor or with the software). You will write a subroutine that is passed the
instruction to be executed, and this routine must model the five-stage pipeline
in this chapter. Have your program collect the following statistics:

• Number of instructions executed.

• Number of data hazards.

• Number of hazards that result in stalls.

• If the MIPS C compiler that you are using issues n o p instructions to
avoid hazards, count the number of n o p instructions as well.

Assuming that the memory accesses always take one clock cycle, calculate the
average number of clock cycles per instruction. Classify n o p instructions as
stalls inserted by software, then subtract them from the number of instruc
tions executed in the CPI calculation.

6.24 [1 month] <§5.3, 6.3-6.8> If you have access to a simulation system such
as Verilog or ViewLogic, first design the single-cycle datapath and control
from Chapter 5. Then evolve this design into a pipelined organization, as we
did in this chapter. Be sure to run MIPS programs at each step to ensure that
your refined design continues to operate correctly.

. . . the one single development
that put computers on their

Large and Fast:

Exploiting

Memory Hierarchy

feet was the invention of a reliable
form of memory, namely, the
core memory Its cost was
reasonable, it was reliable and,
because it was reliable, it could
in due course be made large.

Maurice Wilkes
Memoirs of a Computer Pioneer, 1985

7 . 1 Introduction 454

7 .2 Caches 458

7.3 Virtual Memory 481

7 .4 A Common Framework for Memory Hierarchies 501

7 .5 Fallacies and Pitfalls 515

7.6 Concluding Remarks 519

7. 7 Historical Perspective and Further Reading 521

7 .8 Exercises 527

The Five Classic Components of a Computer

Evaluating
Performance

Processor

Compiler •

454 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

II Introduction

From the earliest days of computing, programmers have wanted unlimited
amounts of fast memory. The topics we will look at in this chapter all focus on
aiding programmers by creating the illusion of unlimited fast memory. There
are many techniques for making this illusion robust and enhancing its perfor
mance; accordingly, this chapter has more than its share of elaborations,
which you should feel free to skip over. Before we look at how the illusion is
actually created, let's consider a simple analogy that illustrates the key princi
ples and mechanisms that we use.

Suppose you were a student writing a term paper on important historical
developments in computer hardware. You are sitting at a desk in the engineer
ing or math library with a collection of books that you have pulled from the
shelves and are examining. You find that several of the important machines
that you need to write about are described in the books you have, but there is
nothing about the EDSAC. So, you go back to the shelves and look for an ad
ditional book. You find a book on early British computers that covers EDSAC.
Once you have a good selection of books on the desk in front of you, there is a
good probability that many of the topics you need can be found in them, and
you may spend a great deal of time just using the books on the desk without
going back to the shelves. Having several books on the desk in front of you
saves a lot of time compared to having only one book there and constantly
having to go back to the shelves to return it and take out another.

The same principle allows us to create the illusion of a large memory that
we can access as fast as a very small memory. Just as you did not need to access
all the books in the library at once with equal probability, a program does not
access all of its code or data at once with equal probability. Otherwise, it would
be impossible to make most memory accesses fast and still have large amounts
of memory in machines, just as it would be impossible for you to fit all the li
brary books on your desk and still have a chance of finding what you wanted
quickly.

This principle of locality underlies both the way in which you did your work
in the library and the way that programs operate. The principle of locality
states that programs access a relatively small portion of their address space at
any instant of time, just as you accessed a very small portion of the library's
collection. There are two different types of locality:

• Temporal locality (locality in time): If an item is referenced, it will tend to
be referenced again soon. If you recently brought a book to your desk to
look at, you will probably need to look at it again soon.

7 .1 Introduction 455

• Spatial locality (locality in space): If an item is referenced, items whose
addresses are close by will tend to be referenced soon. When you
brought out the book on early computers in England to find out about
EDSAC, you found that you were also able to use that book to find out
about several other early British computers. We'll see how spatial local
ity is used in memory hierarchies a little later in this chapter.

Just as accesses to books on the desk naturally exhibit locality, locality in
programs arises from simple and natural program structures. For example,
most programs contain loops, so that instructions and data are likely to be ac
cessed repeatedly, showing high amounts of temporal locality. Since instruc
tions are normally accessed sequentially, programs show high spatial locality.
Accesses to data also exhibit a natural spatial locality. For example, accesses to
elements of an array or a record will naturally have high degrees of spatial lo
cality.

We take advantage of the principle of locality by implementing the memory
of a computer as a memory hierarchy. A memory hierarchy consists of multiple
levels of memory with different speeds and sizes. The fastest memories are
more expensive per bit than the slower memories and thus are usually smaller.
Main memory is implemented from DRAM (dynamic random access memo
ry), while levels closer to the CPU (caches) will use SRAM (static random ac
cess memory). DRAM is less costly per bit than SRAM, although it is
substantially slower. The price difference arises because DRAM uses fewer
transistors per bit of memory, and DRAMs thus have larger capacities for the
same silicon areas; the speed difference arises from several factors described
in section B.5 of Appendix B.

Because of the differences in cost and access time, it is advantageous to
build memory as a hierarchy of levels, with the faster memory close to the pro
cessor and the slower, less expensive memory below that, as shown in
Figure 7. 1 . The goal is to present the user with as much memory as is available
in the cheapest technology, while providing access at the speed offered by the
fastest memory. This corresponds directly to what you did in the library: the
books on the desk were faster to access, but you didn't have space to keep all
the books on the desk. Today, the three major technologies used to construct
memory hierarchies are SRAM, DRAM, and disk. The access time and price
per bit vary widely among these technologies, as the table below shows, using
typical values for 1993:

Memory technology Typical access time $ per MByte in 1993

SRAM 8-35 ns $100-$400

DRAM 90-120 ns $25-$50

Magnetic disk 10,000,000-20,000,000 ns $1-$2

456 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Speed CPU Size Cost: $/bit

Fastest I Memory I Smallest H ighest

B
Slowest B Biggest Lowest

FIGURE 7.1 The basic structure of a memory hierarchy. By implementing the memory sys
tem as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the
hierarchy, but can be accessed as if it were all built from the fastest memory.

Just as you often found the information in a book on your desk, the princi
ple of temporal locality means that most of the time we will find the data item
that we want in the faster memory, since it is likely that the data item was ac
cessed recently. The memory system is organized as a hierarchy: a level closer
to the processor is a subset of any level further away, and all the data is stored
at the lowest level. By comparison, the books on your desk form a subset of the
library you are working in, which is in turn a subset of all the libraries on cam
pus. Furthermore, as we move away from the processor the levels take pro
gressively longer to access, just as we might encounter in a hierarchy of
campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied be
tween only two adjacent levels at a time, so we can focus our attention on just
two levels. The upper level-the one closer to the processor-is smaller and
faster (since it uses more expensive technology) than the lower level. The min
imum unit of information that can be either present or not present in the two
level hierarchy is called a block, as shown in Figure 7.2; in our library analogy,
a block of information is one book.

If the data requested by the processor appears in some block in the upper
level, this is called a hit (analogous to your finding the information in one of
the books on your desk). If the data is not found in the upper level, the request
is called a miss. The lower level in the hierarchy is then accessed to retrieve the
block containing the requested data. (Continuing our analogy, you get up

7 .1 Introduction 457

Processor

Data are transferred

FIGURE 7 .2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called
a block. Usually we transfer an entire block when we copy something between levels.

from your desk and go over to the shelves to look for the desired information.)
The hit rate, or hit ratio, is the fraction of memory accesses found in the upper
level; it is often used as a measure of the performance of the memory hierar
chy. The miss rate (1 .0 - hit rate) is the fraction of memory accesses not found
in the upper level.

Since performance is the major reason for having a memory hierarchy, the
speed of hits and misses is important. Hit time is the time to access the upper
level of the memory hierarchy, which includes the time needed to determine
whether the access is a hit or a miss (that is, the time needed to look through
the books on the desk). The miss penalty is the time to replace a block in the up
per level with the corresponding block from the lower level, plus the time to
deliver this block to the processor (or, the time to get another book from the
shelves and place it on the desk). Because the upper level is smaller and built
using faster memory parts, the hit time will be much smaller than the time to
access the next level in the hierarchy, which is the major component of the miss
penalty. (The time to examine the books on the desk is much smaller than the
time to get up and go look for something in a book on the shelves.)

As we will see in this chapter, the concepts used to build memory systems
affect many other aspects of a computer, including how the operating system
manages memory and 1 /0, how compilers generate code, and even how ap
plications use the machine. Of course, because all programs spend much of
their time accessing memory, the memory system is necessarily a major factor
in determining performance. Since memory systems are so critical, there has
been a lot of work on them and very sophisticated mechanisms have been de-

458 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

veloped. In this chapter, we will see the major conceptual ideas, although
many simplifications and abstractions have been used to keep the material
manageable in length and complexity. We could easily have written hundreds
of pages on memory systems, as a number of recent doctoral theses have dem
onstrated .

• .

Programs exhibit both temporal locality, the tendency
to re-use recently accessed data items, and spatial
locality, the tendency to reference data items that are
close to other recently accessed items. Memory hier
archies take advantage of temporal locality by keeping
more recently accessed data items closer to the pro

cessor. Memory hierarchies take advantage of spatial locality by mov
ing blocks consisting of multiple contiguous words in memory to
upper levels of the hierarchy.

A memory hierarchy uses smaller and faster memory technologies
close to the processor. Thus accesses that hit in the highest level of the
hierarchy can be processed quickly. Accesses that miss go to lower
levels of the hierarchy, which are larger but slower. If the hit rate is
high enough, the memory hierarchy has an access time close to that of
the highest (and fastest) level and a size equal to that of the lowest
(and largest) level.

• Caches

Cache: a safe place for hiding or storing things.

Webster's New World Dictionary of the American Language,
Third College Edition (1988)

In our library example, the desk acted as a cache-a safe place to store things
(books) that we needed to examine. Cache was the name chosen to represent
the level of the memory hierarchy between the CPU and main memory in the
first commercial machine. Today, although this remains the dominant use of
the word cache, the term is also used to refer to any storage managed to take
advantage of locality of access. Caches first appeared in research machines in

7.2 Caches 459

X4 X4

X1 X1

Xn - 2 Xn - 2

Xn - 1 Xn - 1

X5 X5

Xn

X3 X3

a. Before the reference to Xn. b. After the reference to Xn.

FIGURE 7 .3 The cache just before and just after a reference to a word Xn that Is not lnl·
tlally In the cache. This reference causes a miss that forces the cache to fetch Xn from memory
and insert it into the cache.

the early 1960s and in production machines later in that same decade; virtu
ally every general-purpose machine built today, from the fastest to the slow
est, includes a cache.

In this section, we begin by looking at a very simple cache in which the pro
cessor requests are each one word and the blocks also consist of a single word.
Figure 7.3 shows such a simple cache, before and after requesting a data item
that is not initially in the cache. Before the request, the cache contains a collec
tion of recent references Xl, X2, . . . , Xn-1, and the processor requests a word
Xn that is not in the cache. This request results in a miss, and the word Xn is
brought from memory into cache.

Looking at the scenario in Figure 7.3, we can see that there are two ques
tions we must answer: How do we know if a data item is in the cache? And, if
it is, how do we find it? The answers to these two questions are related. If each
word can go in exactly one place in the cache, then we will know how to find
the word if it is in the cache. The simplest way to assign a location in the cache
for each word in memory is to assign the cache location based on the address
of the word in memory. This cache structure is called direct mapped, since each
memory location is mapped to exactly one location in the cache. The typical
mapping between addresses and cache locations for a direct mapped cache is
usually simple. For example, almost all direct mapped caches use the
mapping:

Address of the block modulo number of blocks in the cache

460 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

000 001 010 011 100 101 110 111

00001 00101 01001 01101 10001 10101 11001 11101

FIGURE 7 .4 A direct mapped cache with 8 entries showing the addresses of memory
words between 0 and 30 that map to the same cache locations. Because there are 8 words
in the cache, an address X maps to the cache word X modulo 8. That is, the low-order log2(8) = 3
bits are used as the cache index. Thus, addresses OOOOltwo, 0100ltw0, lOOOltwo, and llOOltwo all
map to entry OOltwo of the cache, while addresses 00101two' OllOltwo' 10101two' and lllOltwo all
map to entry lOltwo of the cache.

This mapping is attractive because if the number of entries in the cache is a
power of 2, then modulo can be computed simply by using only the low
order log2 (cache size in blocks) bits of the address; hence the cache may be
accessed directly with the low-order bits. For example, Figure 7.4 shows a
direct mapped cache of eight words and the memory addresses between
1 (0000ltw0) and 29 (lllOl two) that map to locations 1 (OOltwo) and 5 (101tw0)
in the cache.

Because each cache location can contain the contents of a number of differ
ent memory locations, how do we know whether the data in the cache corre
sponds to a requested word? That is, how do we know whether a requested
word is in the cache or not? We can plan for this by adding a set of tags to the
cache. The tags contain the information required to identify whether a word in
the cache corresponds to the requested word.

We also need a way to recognize that a cache block does not have valid in
formation. For instance, when a processor starts up, the cache will be empty,
and the tag fields will be meaningless. Some of the cache entries in Figure 7.3
are empty; we need to know that the tag should be ignored for such entries.

7.2 Caches 461

The most common procedure is to add a valid bit to indicate whether an entry
contains a valid address. If the bit is not set, there cannot be a match on this
address.

For the rest of this section, we will focus on explaining how reads work in a
cache and how the cache control works for reads. In general, handling reads is
a little simpler than handling writes, since reads do not have to change the con
tents of the cache. After seeing the basics of how reads work and how cache
misses can be handled, we'll examine the cache designs for two real machines
and detail how these caches handle writes.

Figure 7.5 shows the contents of an eight-word direct mapped cache as it
responds to a string of requests from the processor. Since there are eight blocks
in the cache, the low-order 3 bits of an address give the block number. Here is
the action for each reference:

Decimal address Binary address Hit or miss Assigned cache block
of reference of reference in cache (where found or placed)

22 10110two Miss (7.5b) (101 10iwo mod 8) = 110iwo

26 11010two M iss (7 .5c) (11010iw0 mod 8) = 010iw0
22 10110two H it (10 1 10iw0 mod 8) = 110iw0

26 110101wo Hit (1 1010iw0 mod 8) = 010iw0

16 10000two Miss (7 .5d) (10000iw0 mod 8) = 000iw0

4 00100two Miss (7.5e) (00 100iw0 mod 8) = 100iw0

16 10000two Hit (10000iw0 mod 8) = 000iw0
18 10010two Miss (7 .5f) (10010iwo mod 8) = 010iw0

When the word at address 18 (10010tw0) is brought into the cache in block 2
(OlOtwo), the word at address 26 (11010tw0), which was in the cache in block 2
(010tw0), must be replaced by the newly requested data. This behavior allows
a cache to take advantage of temporal locality: Recently accessed words re
place less-recently referenced words. This is directly analogous to needing a
book from the shelves and having no more space on your desk-some book
already on your desk must be returned to the shelves. In a direct mapped
cache, there is only one place to put the newly requested item and hence only
one choice of what to replace.

We know where to look in the cache for each possible address: The low-or
der bits of an address can be used to find the unique cache entry to which the
address could map. Figure 7.6 shows how an address is divided into a cache
index, which is used to select the block and a tag field, which is used to com
pare with the entry in the tag field of the cache. Because a given address can
appear in exactly one location, the tag need only correspond to the upper por-

462 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

000 N 000 N
001 N 001 N
010 N 010 N
011 N 011 N
100 N 100 N

101 N 101 N

110 N 110 y 10two Memory(10110twol
111 N 111 N

a. The initial state of the cache after power-on. b. After handling a miss of address (l0l l01w0)·

000 N 000 y 10two Memory (10000twol
001 N 001 N
010 y 11two Memory (11010twol 010 y 1 1two Memory (11010two)

011 N 011 N

100 N 100 N
101 N 101 N
110 y 10two Memory (101101wol 110 y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (l 1010twof d. After handling a miss of address (10000tw0).

000 y 10two Memory (10000two) 000 y 10two Memory (10000twol

001 N 001 N
010 y 11two Memory (110101wol 010 y 10two Memory (10010two)

011 N 011 N
100 y OOtwo Memory (00100two) 100 y OOtwo Memory (00100twol
101 N 101 N

110 y 10two Memory (10110two) 110 y 10two Memory (10110twol
111 N 111 N

e. After handling a miss of address (001001w0). f. After handling a miss of address (100101w0).

FIGURE 7.5 The cache contents are shown after each reference request that misses with the index and tag fields
shown in binary. The cache is initially empty with all valid bits (V entry in cache) turned off (N). The processor requests
the following addresses: 10110two(miss), 11010two(miss), 10110two(hit), 11010two (hit), lOOOOtwo(miss), OOlOOtwo(miss),
lOOOOtwo(hit), and 10010two(miss). The figures show the cache contents after each miss in the sequence has been handled.
When address 10010two(18) is referenced, the entry for address 11010two(26) must be replaced, and a reference to 11010two
will cause a subsequent miss. Remember that the tag field will contain only the upper portion of the address. The full
address of a word contained in cache block i with tag field j for this cache is 8 x j + i, or equivalently the concatenation of
the tag field j and the index i. You can see this by looking at the block address in the Data field of any cache entry and the
corresponding index and tag. For example, in cache f above, index 010 has tag 10 and corresponds to address 10010.

7.2 Caches

Address (showing bit positions)

31 30 29 28 27 16 15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

I
H it Tag

Index

0
1
2

. . .

. . .

. . .

1021
1022
1023

t20

Valid

I

I I B�e:I offset

... 10 ...

I ndex

Tag Data

' 20 ' 32 ... r--
=

463

Da ta

FIGURE 7.6 For this cache, the lower portion of the address Is used to select a cache
entry consisting of a data word and a tag. The tag from the cache is compared against the
upper portion of the address to determine1JVhether the entry in the cache corresponds to the
requested address. Because the cache has 2 or 1024 words, and a block size of 1 word, 10 bits
are used to index the cache, leaving 32 - 10 - 2 = 20 bits to be compared against the tag. If the tag
and upper 20 bits of the address are equal and the valid bit is on, then the request hits in the
cache, and the word is supplied to the processor. Otherwise, a miss occurs.

tion of the address, which is not used to index the cache. Thus, the index of a
cache block, together with the tag contents of that block, uniquely specify the
memory address of the word contained in the cache block. Because the bits in
the index field are used as an address to access the cache, the total number of
entries in the cache must be a power of 2. In the MIPS architecture, the least

464 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

significant 2 bits of every address specify a byte within a word and are not
used to select the word in the cache.

The total number of bits needed for a cache is a function of the cache size
and the address size, because the cache includes both the storage for the data
and for the tags. Assuming the 32-bit byte address of MIPS, a direct mapped
cache of size 2n words with one-word blocks will require a tag field whose
width is 32 - (n + 2) bits wide, because 2 bits are used for the byte offset and
n bits are used for the index. The total number of bits in a direct mapped cache
is 2n x (block size + tag size + valid field size) . Since the block size is 1 word
(32 bits) and the address width is 32-bits, the number of bits in such a cache
is: 2'1 x (32 + (32 - n - 2) + 1) = 2n x (63 - n) .

How many total bits are required for a cache with 64 Kbytes of data?

We know that 64 Kbytes is 16K words, which is 214 words. Thus the total
cache size is

214 x (32 + (32 - 14 - 2) + 1) = 214 x 49 = 784 x 210
= 784 Kbits

or almost 100 KB for a 64 KB cache. For this cache, the total number of bits
in the cache is about 1.5 times as many as needed just for the storage of the
data.

Handling Cache Misses

Before we look at the cache of a real system, let's see how the control unit
deals with cache misses. The control unit must detect a miss and process the
miss by fetching the data from memory (or a lower level cache) . If the cache
reports a hit, the machine continues using the data as if nothing had hap
pened. Consequently, we can use the same basic control that we developed in
Chapter 5 and enhanced to accommodate pipelining in Chapter 6. The memo
ries in the datapath used in Chapters 5 and 6 are simply replaced by caches.

Modifying the control to take a hit into account is trivial; misses, however,
require some extra work. Let's look at how instruction misses are handled for
either the multicycle or pipelined datapath; the same approach can be easily
extended to handle data misses. If an instruction access results in a miss, then
the contents of the Instruction register are not valid, and the actions that are
performed on the next clock cycle (reading the registers) will be useless. Luck
ily, as we observed in Chapter 5, performing these actions is harmless. Of
course, when we do fetch the correct instruction, we will need to reread the
registers using the register designators from the actual instruction.

7.2 Caches 465

To perform the actions needed for a cache miss on an instruction read, we
must be able to instruct the lower level in the memory hierarchy to perform a
read. Since the program counter is incremented in the first clock cycle of exe
cution, the address of the instruction that generates the cache miss is equal to
the value of the program counter minus 4. We can compute this value using
the ALU. Once we have the address, we need to instruct the main memory to
perform a read. We wait for the memory to respond (since the access will take
multiple cycles), and then write the word into the cache. We can now define
the steps to be taken on an instruction cache miss:

1. Compute the value of PC - 4.

2. Instruct the main memory to perform a read and wait for the memory
to complete its access.

3. Write the cache entry, putting the data from memory in the data portion
of the entry, writing the upper bits of the address (from the ALU) into
the tag field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will re-fetch the
instruction, this time finding it in the cache.

The processing of a cache miss creates a stall, similar to the pipeline stalls
discussed in Chapter 6 but somewhat simpler. For a cache miss we can stall the
entire machine while we wait for memory; when memory responds, we sim
ply continue. Pipeline stalls are more complex, because we must continue ex
ecuting some instructions while we stall others.

The control of the data cache is essentially identical: On a miss, we simply
stall the processor until the memory responds with the data. In the rest of this
section we describe two different caches from real machines, and we examine
how they handle both reads and writes. In section 7.4, we will describe more
techniques for handling writes.

121111h1,,r=1't1111n° To reduce the penalty of cache misses, designers employ two tech
niques, one which we d iscuss here and another that we wi l l d iscuss later. To reduce
the number of cycles that a processor is stal led for a cache miss, we can allow a pro
cessor to continue executing instructions whi le the cache miss is handled. This strat
egy does not help for instruction misses, because we cannot fetch new instructions to
execute. In the case of data m isses, however, we can al low the machine to continue
fetching and executing instructions until the loaded word is required. While this addi
tiona l effort may save cycles, it w i l l probably not save very many cycles, because the
loaded data wi l l l i kely be needed very shortly.

466 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

I
H it

Address (showing bit positions)

31 30 29 28 • • • • • • 19 18 17 16 15 14 13 12 • . . . • . 5 4 3 2 1 0

I 1.B�etl offset 1'16 ... 14 ...

16 bits 32 bits

Valid Tag Data

' 16K
entries

... 16 ... 32 r-- r--

�

Da ta

FIGURE 7. 7 The caches In the DECstation 3100 each contain 16K blocks with one word
per block. This means that the index is 14 bits and that the tag contains 16 bits.

An Example Cache: The DECstation 3100

The DECStation 3100 is a workstation that uses a MIPS R2000 as the processor
and a very simple cache implementation. The processor has a pipeline similar
to that discussed in Chapter 6. When operating at peak speed, the processor
requests both an instruction word and a data word on every clock. To satisfy
the demands of the pipeline without stalling, separate instruction and data
caches are used. Each cache is 64 KB or 16K words with a one-word block.
Figure 7.7 shows the organization of the DS 3100 data cache.

7.2 Caches 467

Read requests for the cache are straightforward. Because there are separate
data and instruction caches, separate control signals will be needed to read
and write each cache. (Remember that we need to write into the instruction
cache when a miss occurs.) Thus, the steps for a read request to either cache
are as follows:

1 . Send the address to the appropriate cache. The address comes either
from the PC (for an instruction read) or from the ALU (for a data
access).

2. If the cache signals hit, the requested word is available on the data lines.
If the cache signals miss, we send the full address to the main memory.
When the memory returns with the data, we write it into the cache.

Writes work somewhat differently. Suppose on a store instruction, we
wrote the data into only the data cache (without changing main memory);
then, after the write into the cache, memory would have a different value from
that in the cache. In such a case, the cache and memory are said to be inconsis
tent. The simplest way to keep the main memory and the cache consistent is to
always write the data into both the memory and the cache. This scheme, which
the DECStation 3100 uses, is called write-through. Later in this chapter, we will
see another way to handle writes into a cache.

The other key aspect to understand about writes is what occurs on a write
miss. Because the data word in the cache is being written by the processor,
there is no reason to read a word from memory; it would just be overwritten
by the processor. In fact, for this simple cache we can always just write the
word into the cache, updating both the tag and data. We do not need to con
sider whether a write hits or misses in the cache. This leads to the following
simple scheme for processing writes, used on the DECStation 3100:

1. Index the cache using bits 15 - 2 of the address.

2. Write both the tag portion (using bits 31 - 16 of the address) and the
data portion with the word.

3. Also write the word to main memory using the entire address.

Although this design handles writes very simply, it would not provide very
good performance. With a write-through scheme, every write causes the data
to be written to main memory. These writes will take a long time and could
slow down the machine considerably. In gee, for example, 11 % of the instruc
tions are stores. In the DECStation 3100, the CPI without cache misses for a
program like gee is about 1 .2, so spending 10 cycles on every write would lead
to a CPI of 1 .2 + 10 x 1 1 % == 2 .3 , reducing performance by a factor of nearly 2.

One solution to this problem is to use a write buffer. A write buffer stores the
data while it is waiting to be written to memory. After writing the data into the

468 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

FIGURE 7 .8 Instruction and data miss rates for the DECStation 3100 when executing two
different programs. The combined miss rate is the effective miss rate seen. It is obtained by
weighting the instruction and data individual miss rates by the frequency of instruction and data
references. Remember that data misses include only data reads, because writes cannot miss in the
DECStation 3100 cache.

cache and into the write buffer, the processor can continue execution. The
write buffer can accommodate a fixed number of words, usually from 1 to less
than 10. When a write to main memory completes, the entry in the write buffer
is freed up. If the write buffer is full when the processor reaches a write, the
processor must stall until there is an empty position in the write buffer. Of
course, if the rate at which the memory can complete writes is less than the rate
at which the processor is generating writes, no amount of buffering can help,
because writes are being generated faster than the memory system can accept
them.

The rate at which writes are generated may also be less than the rate at
which the memory can accept them, and stalls may still occur. This can happen
when the writes occur in bursts, even if on average the frequency of stores is
low. To reduce the occurrence of such stalls, machines may increase the depth
of the write buffer. For example, the DECStation 3100 write buffer is four
words deep.

What sort of cache miss rates are attained with a cache like that used by the
DECStation 3100? Figure 7.8 shows the miss rates for the instruction and data
cache for two programs, which we have seen before. The combined miss rate
is the effective rate for each program after accounting for the differing frequen
cy of instruction and data accesses.

Remember that although miss rate is an important characteristic of cache
designs, the ultimate measure will be the effect of the memory system on pro
gram execution time; we'll see how miss rate and execution time are related
shortly. First we must explore how the memory system can take advantage of
spatial locality.

Elaboration: A combined cache of the total size equal to the sum of the two spl it
caches wi l l usual ly have a better hit rate . This is true because the combined cache
does not rigidly divide the number of entries that may be used by instructions from
those that may be used by data. Nonetheless, many machines use a split instruction
and data cache to increase the bandwidth from the cache.

7.2 Caches 469

Here are some measurements for the DECStation 3100 for the program gee, and for
a combined cache whose size is equal to the total of the two caches on the 3100:

• Total cache size: 128 KB

• Split cache effective m iss rate: 5.4%

• Combined cache miss rate: 4.8%

The miss rate of the spl it cache is only sl ightly worse.
For many systems, the advantage of doubling the cache bandwidth, by supplying

both an instruction and data word on every cache access, eas i ly overcomes the d isad
vantage of a sl ightly increased miss rate . This is another reminder that we cannot use
m iss rate as the sole measure of cache performance.

Taking Advantage of Spatial Locality

The cache we have described so far, while simple, does nothing to take advan
tage of spatial locality in requests, since each word is in its own block. As we
noted in section 7.1, spatial locality exists naturally in programs. To take
advantage of spatial locality, we want to have a cache block that is larger than
one word in length. When a miss occurs, we will then fetch multiple words
that are adjacent and carry a high probability of being needed shortly.
Figure 7.9 shows a cache that holds 64 KB of data, but with blocks of four
words (16 bytes) each. Compared with Figure 7.6 on page 463, which shows
the same total size cache with a one-word block, an extra block index field
occurs in the address of the cache in Figure 7.9. This block index field is used
to control the multiplexor (shown at the bottom of the figure), which selects
the requested word from the four words in the indexed block. The total num
ber of tags in the cache with a multiword block is smaller, because each tag is
used for four words. This improves the efficiency of memory use in the cache.

How do we find the cache block for a particular address? We can use the
same mapping that we used for a cache with a one-word block: address of the
block modulo number of blocks in the cache. The block address is simply the
word address divided by the number of words in the block (or equivalently,
the byte address divided by the number of bytes in the block).

Consider a cache with 64 blocks and a block size of 16 bytes. What block
number does byte address 1200 map to?

With 16 bytes per block, byte address 1200 is block address l l��o J = 75

470

I
H it

31 30 29 28

Tag

v

...._ '

Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

which maps to cache block number (75 modulo 64) = 11 . An equivalent way
to compute the cache block number is (word address)

d bl k
modulo (blocks in cache) .

wor s per oc

Address (showing bit positions)

19 18 17 16 15 14 13 12 . . . 7 6 5 4 3 2 1 0

I I B�e:I offset

l16 ... 12 ... 2 Da I'- ta

Index Block offset

16 bits 128 bits

Tag Data

4K
entries

... 16 ... 32 ... 32 ... 32 ... 32

�
l l • • (Mux "\

l32

FIGURE 7.9 A 64 KB cache using four-word (16 byte) blocks. The tag field is 16 bits wide and the index field is 12 bits
wide, while a 2-bit field (bits 3-2) are used to index the block and select the word from the block using a 4-to-1 multiplexor.
In practice, the low-order bits of the address (bits 2 and 3 in this case) are used to enable only those RAMs that contain the
desired word. This eliminates the need for the multiplexor. This technique works because the values of the block offset bits
are known at the same time as the rest of the address bits.

7.2 Caches 471

1 6.1% 2 .1% 5.4%
gee

4 2.0% 1.7% 1.9%
1 1.2% 1.3% 1.2%

spice
4 0.3% 0.6% 0.4%

FIGURE 7 .10 The miss rates for gee and spice with a cache like that in the DecStatlon
3100 with a block size of either one word or four words. With the four-word block, we
include write misses, which do not incur any penalty for the one-word block and are not
included in that case.

Read misses are processed the same way for a multiword block as for a
single-word block; a miss always brings back the entire block. Write hits and
misses, however, must be handled differently than they were in the DECSta
tion 3100 cache. Because the block contains more than a single word, we can
not just write the tag and data. To see why this is true, assume that there are
two memory addresses X and Y, that both map to cache block C, and that C
currently contains Y. Now consider writing to address X by simply overwrit
ing the data and tag in cache block C. After the write, block C will have the tag
for X, but the data portion of block C will contain one word of X and three
words of Y!

We can solve this problem by writing the data while performing a tag com
parison, just as if the request were a read. If the tag of the address and the tag
in the cache entry are equal, we have a write hit and can continue. If the tags
are unequal, we have a write miss and must fetch the block from memory. Af
ter the block is fetched and placed into the cache, we can rewrite the word that
caused the miss into the cache block. Unlike the case with a one-word block,
write misses with a multi word block will require reading from memory.

The reason for increasing the block size was to take advantage of spatial lo
cality to improve performance. So how does a larger block size affect perfor
mance? In general, the miss rate falls when we increase the block size. This is
easiest to see with an example. Suppose the following byte addresses are re
quested by a program: 16, . . . , 24, . . . , 20 and none of these addresses is in the
cache. Spatial locality tells us that some pattern of this form is highly probable,
although the order of the references may vary. If the cache has a four-word
block, then the miss to address 16 will cause the block containing addresses 16,

20, 24, and 28 to be loaded into the cache. Only one miss is encountered for the
three references, provided that an intervening reference doesn't bump the
block out of the cache. With a one-word block, two additional misses are re
quired because each miss brings in only a single word. Figure 7.10 shows the
miss rates for the programs gee and spice with one- and four-word blocks. The

472 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

40%

35%

30%
1 KB

s
25%

�
"' 20% "'
�

15%

10% -
8 KB

5% ---������� • .._.������ .. • 16 KB

64 KB
0%

4 256 KB 16 64 256

Block size (bytes)

FIGURE 7 .11 Miss rate versus block size. For a small 1 KB cache, a large 256-byte block size
causes a higher miss rate than the smaller block sizes. This data was collected for a direct mapped
cache using traces (SAVEO) collected by Agarwal for the VAX. More details can be found in Agar
wal, A. Analysis of Cache Performance for Operating Systems and Multiprogramming, Ph.D. Thesis,
Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May 1987).

instruction cache miss rates drop at a rate that is nearly equal to the increase in
block size; this is because the instruction references have better spatial locality.
The improvement in the data cache miss rate is up to a factor of two.

The miss rate may actually go up, if the block size is made very large, com
pared with the cache size, because the number of blocks that can be held in the
cache will become small, and there will be a great deal of competition for those
blocks. As a result, a block will be bumped out of the cache before many of its
words are accessed. As Figure 7.llshows, increasing the block size usually de
creases the miss rate. However, the spatial locality among the words in a block
decreases with a very large block, consequently, the improvements in the miss
rate become smaller-and the miss rate can eventually even increase.

A more serious problem associated with just increasing the block size is that
the cost of a miss increases. The miss penalty is determined by the time re
quired to fetch the block from the next lower level of the hierarchy and load it
into the cache. The time to fetch the block has two parts: the latency to the first
word and the transfer time for the block. Clearly, unless we change the mem
ory system, the transfer time will increase as the block size grows. Since the
time to process a miss increases proportionally to the block size, the miss pen
alty also grows. Furthermore, the improvement in the miss rate starts to de-

7.2 Caches 473

crease as the blocks become larger. The result is that the increase in the miss
penalty overwhelms the decrease in the miss rate for large blocks, and cache
performance thus decreases. Of course, if we design the memory to transfer
larger blocks more efficiently, we can increase the block size and obtain further
improvements in cache performance. We discuss this topic in the next section.

EU•1>e>ra11111>n: The major disadvantage of increasing the block size is that the cache
miss penalty increases. Although it is hard to do anyth ing about the latency component
of the m iss penalty, we m ay be able to hide some of the transfer time so that the miss
penalty is effectively smal ler. The simplest method for doing this, called early restart, is
s imply to resume execution as soon as the requested word of the block is returned,
rather than wait for the entire block. Many machines use this technique for instruction
access, where it works best. I nstruction accesses are largely sequentia l , so if the
memory system can del iver a word every clock cycle, the processor may be able to
restart operation when the requested word is returned, with the memory system del iv
ering new instruction words just in time. This techn ique is usual ly less effective for
data caches, because it is l ikely that the words wil l be requested from the block in a
less predictable way, and the probabi l ity that the processor wil l need another word from
a d ifferent cache l ine before the transfer completes is high . If the processor cannot
access the data cache because a transfer is ongoing, then it must stal l .

An even more sophisticated scheme i s to organize the memory so that the
requested word is transferred from the memory to the cache first. The remainder of the
l ine is then transferred, starting with the address after the requested word and wrap
ping around to the beginning of the block. This technique, cal led requested word first,

can be s l ightly faster than early restart, but it is l imited by the same properties that
l imit early restart.

Designing the Memory System to Support Caches

Cache misses are satisfied from main memory, which is constructed from
DRAMs. In Chapter 1 , we saw that DRAMs are designed with the primary
emphasis on density rather than access time. Although it is difficult to reduce
the latency to fetch the first word from memory, we can reduce the miss pen
alty if we increase the bandwidth from the memory to the cache. This allows
larger block sizes to be used while still maintaining a low miss penalty, simi
lar to that for a smaller block.

To understand the impact of different organizations for memory, let's de-
fine a set of hypothetical memory access times:

• 1 clock cycle to send the address

• 10 clock cycles for each DRAM access initiated

• 1 clock cycle to send a word of data

474

Memory

Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Cache

Bus

Memory

b. Wide memory organization

Memory Memory Memory Memory
bank O bank 1 bank 2 bank 3

c. Interleaved memory organization

a. One-word-wide memory organization

FIGURE 7 .12 The primary method of achieving higher memory bandwidth Is to Increase the physlcal or loglcal
width of the memory system. In this figure there are two ways in which the memory bandwidth is improved. The sim
plest design, (a), uses a memory where all components are one word wide; (b) shows a wider memory, bus, and cache;
while (c) shows a narrow bus and cache with an interleaved memory.

If we have a cache block of four words and a one-word-wide bank of
DRAMs, the miss penalty would be 1 + 4 x 10 + 4 x 1 = 45 clock cycles. Thus,
the number of bytes transferred per clock cycle for a single miss would be

4 x 4
- = 0.36

45

Figure 7.12 shows three options for designing the memory system. The first
option follows what we have been assuming so far: memory is one word
wide, and all accesses are made sequentially. The second option increases the
bandwidth to memory by widening the memory and the buses between the
processor and memory; this allows parallel access to all the words of the block.
The third option, called interleaving, increases the bandwidth by widening the
memory but not the interconnection bus. Thus, we still pay a cost to transmit
each word, but we can avoid paying the cost of the access latency more than

7.2 Caches 475

once. Let's look at how much these other two options improve the 45-cycle
miss penalty that we would see for option a in Figure 7.12.

Increasing the width of the memory and the bus will increase the memory
bandwidth proportionally, decreasing the transfer time portion of the miss
penalty. With a main memory width of two words, the miss penalty drops
from 45 clock cycles to 1 + 2 x 10 + 2 x 1 = 23 clock cycles. With a four-word
wide memory, the miss penalty is just 12 clock cycles. The bandwidth for a sin
gle miss is then 0.6956 (or 0.70) of a byte per clock cycle for a memory that is
two words wide, and 1 .33 bytes per clock cycle when the memory is four
words wide. The major cost of this enhancement is in the wider bus; a second
ary cost is in additional buffers at the memory.

Instead of making the entire path between the memory and cache wider, the
memory chips can be organized in banks to read or write multiple words in
one access time rather than reading and writing a single word each time. Each
bank could be one word wide so that the width of the bus and the cache need
not change, but sending addresses to several banks permits them all to read si
multaneously. This scheme, which is called interleaving, retains the advantage
of incurring the full memory latency only once. For example, with four banks,
the time to get a four-word block would consist of 1 cycle to transmit the ad
dress to the banks, 10 cycles for all four banks to access memory, and 4 cycles
to send the four words back to the cache. This yields a miss penalty of
1 + 1 x 10 + 4 x 1 = 15 clock cycles. This is an effective bandwidth per miss of
just over 1 byte per clock, or about three times the bandwidth for the one
word-wide memory and bus. Banks are also valuable on writes. Each bank can
write independently, quadrupling the write bandwidth and leading to fewer
stalls in a write-through cache. As we will see, there is an alternative strategy
for writes that makes interleaving even more attractive.

l:laHlc>r11tlc>n: As capacity per memory chip increases, there are fewer chips in the
same-sized memory system . Memory chips are organized to produce a smal l number
of output bits, usual ly 1 to 8, with 1 being the most popular. We describe the organiza
tion of a RAM as d x w, where d is the number of addressable locations (the depth) and
w is the output (or width of each location) . Thus, the most popular 4 Mbit DRAMs are
4M x 1. As memory chip densities grow, the width of a memory chip remains constant,
but the depth increases (see Appendix B for further discussion of DRAMs). Because of
<this, multiple banks become much less attractive, because the minimum memory con
figuration increases quickly. For example, a 16 MB main memory with banks each 32
bits wide takes 128 memory chips of 1 Mb x 1 chips , easi ly organized into four banks
of 32 memory chips. But if 4 Mb x 1-bit memory chips are used for 16 MB, there can
be only one bank with a width of 32 bits. This is the main disadvantage of interleaved
memory banks.

Another possibi l ity for improving the rate at which we transfer data from the memory
to the caches is to take advantage of the structure of DRAMs. DRAMs are organized as

476 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Total access time to Column access
Year introduced Chip size S per MByte a new row/column time to existing row

1980 64 Kbit 1500 250 ns 150 ns
1983 256 Kbit 500 185 ns 100 ns
1985 1 Mbit 200 135 ns 40 ns
1989 4 Mbit 50 1 10 ns 40 ns
1992 16 Mbit 15 90 ns 30 ns

FIGURE 7.13 DRAM sizes increase by multiples of four approximately once every three years. The improvements
in access time have been slower but continuous, and cost almost tracks density improvements, although cost is often
affected by other issues, such as availability and demand. Column access time usually determines the time to perform a
page mode access. DRAMs are almost always available in xl configurations initially (e.g., 4 Mbit x 1). Wider configurations
(e.g., 1 Mbit x 4) usually track availability of the xl configuration by close to a year, and they cost more. Two major reasons
for this are that the package for the xl configuration is cheaper and it is the commodity product.

square arrays, and access time is divided into row access and column access. DRAMs
buffer a row of bits inside the DRAM for column access. They also come with optional
timing signals that allow repeated accesses to the buffer without a row-access time.
One common version of this capabi l ity is called page mode. I n page mode, the buffer
acts l ike a SRAM; by changing column address, random bits can be accessed in the
buffer until the next row access or refresh time. This capability changes the access
time significantly, since the access time to bits in the row is much lower. Figure 7 .13
shows how the density, cost, and access time of DRAMS have changed over the years.

The advantage of these optimizations is that they use the circuitry already on the
DRAMs, adding l ittle cost to the system whi le achieving a significant improvement in
bandwidth. (The same is true of interleaving.) Furthermore, these DRAM options allow
us to increase the bandwidth without incurring system disadvantages in terms of
expandabil ity and minimum memory size that are associated with wider memories or
interleaving. The internal architecture of DRAMs and how these optimizations are
implemented are described in section 8 .5 of Appendix 8.

Cache Performance

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the mem
ory system. Normally, we assume that the cost of cache accesses that are hits
are part of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
x Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we
make that assumption here. We also restrict the discussion to a simplified
model of the memory system. In real processors, the stalls generated by reads

7.2 Caches 477

and writes can be quite complex and accurate performance prediction usually
requires very detailed simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles com
ing from reads plus those coming from writes:

Memory-stall clock cycles = Read-stall cycles + Write-stall cycles

The read-stall cycles can each be defined in terms of the number of read
accesses per program, the miss penalty in clock cycles for a read, and the read
miss rate:

Read-stall cycles
Reads ---- x Read miss rate x Read miss penalty

Program

Writes are more complicated. For a write-through scheme, we have two
sources of stalls: write misses, which require that we fetch the block before
continuing the write; and write buffer stalls, which occur when the write
buffer is full when a write occurs. Thus, the cycles stalled for writes equals the
sum of these two:

. (Writes) Wnte-stall cycles = x Wnte miss rate x Wnte miss penalty
Program

+ Write buffer stalls

In many cache organizations, the read and write miss penalties are the
same (the time to fetch the block from memory). If we assume that the write
buffer stalls are negligible (or fold them into the stalls for write cache misses),
we can combine the reads and writes by using a single miss rate and the miss
penalty:

Memory-stall clock cycles

We can also write this as

Memory-stall clock cycles

Memory accessess ------- x Miss rate x Miss penalty
Program

Instructions Misses 1 ----- x x Miss pena ty
Program Instruction

Let's consider a simple example to help us understand the impact of cache
performance on machine performance.

Assume an instruction cache miss rate for gee of 5% and a data cache miss
rate of 10%. If a machine has a CPI of 4 without any memory stalls and the
miss penalty is 12 cycles for all misses, determine how much faster a ma
chine would run with a perfect cache that never missed. Use the instruction
frequencies for gee from Chapter 4, Figure 4.46 on page 248.

478 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

The number of memory miss cycles for instructions in terms of the Instruc
tion count (IC) is

Instruction miss cycles = IC x 5% x 12 = 0.6 x IC
We know that the frequency of loads and stores is 33%. Therefore, we

can find the number of memory miss cycles for data references:

Data miss cycles = IC x 33'Yo x 10% x 12 = 0.4 x IC

Thus, the total number of memory stall cycles is 0.6 IC + 0.4 IC = 1 .0 IC.
This is one cycle of memory stall per instruction. Accordingly, the CPI with
memory stalls is 4 + 1 = 5. Since there is no change in instruction count or
clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

IC x CPI stall x Clock Cycle

IC x CPI perfect X Clock cycle

CPI stall 5
-

CPI perfect 4

5
The performance with the perfect cache is better by 4. 1 .25 .

What happens if the processor is made faster, but the memory system stays
the same? The amount of time spent on memory stalls will take up an increas
ing fraction of the execution time; Amdahl's Law, which we examined in
Chapter 2, reminds us of this fact. A few simple examples show how serious
this problem can be. Suppose we speed up the machine in the previous exam
ple by reducing its CPI from 4 to 2 without changing the clock rate. The system
with cache misses would then have a CPI of 2 + 1 = 3, and the system with the
perfect cache would be

3
- = 1 .5 times faster.
2

The amount of execution time spent on memory stalls would have risen
from

1 1
20°/c t = 33% .

5
= 0 0 3

Similarly, increasing the clock rate without changing the memory system
also increases the performance lost due to cache misses, as the next example
shows.

7.2 Caches 479

Suppose we increase the performance of the machine in the previous exam
ple by doubling its clock rate. Since the main memory speed is unlikely to
change, assume that the absolute time to handle a cache miss does not
change. How much faster will the machine be with the faster clock, assum
ing the same miss rate as the previous example?

Measured in the faster clock cycles, the new miss penalty will be twice as
long, or 24 clock cycles. Hence:

Total miss cycles per instruction = (5% x 24) + 33% x (10% x 24) = 2.0

This means that the faster machine with cache misses will have a CPI of 4 +
2 = 6, compared to a CPI with cache misses of 5 for the slower machine.

Using the formula for CPU time from the previous example, we can
compute the relative performance as:

Performance with fast clock Execution time with slow clock
Performance with slow clock Execution time with fast clock

IC x CPI x Clock cycle

IC x CPI x
Clock cycle

5 5
-

1 3 6 x -
2

2

This means the machine with the faster clock is 1 .67 times faster rather than
2 times faster, which it would have been without the increased effect of
cache misses.

As these examples illustrate, cache behavior penalties increase as a machine
becomes faster. Furthermore, if a machine improves both clock rate and CPI,
it suffers a double hit:

1 . The lower the CPI, the more pronounced the impact of stall cycles.

2. The main memory system is unlikely to improve as fast as processor
cycle time. When calculating CPI, the cache miss penalty is measured in
CPU clock cycles needed for a miss. Therefore, a higher CPU clock rate
leads to a larger miss penalty, if the main memories of two machines
have the same absolute access times.

480 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Thus, the importance of cache performance for CPUs with low CPI and high
clock rates is greater; and, consequently, the danger of neglecting cache
behavior in assessing the performance of such machines is greater.

The previous examples and equations assume that the hit time is not a fac
tor in determining cache performance. Although, clearly, if the hit time in
creases, the total time to access a word from the memory system will increase,
possibly causing an increase in the processor cycle time. Although we will see
additional examples of this shortly, one example is increasing the cache size.
A larger cache could clearly have a longer access time, just as if your desk in
the library was very large (say 10' by 10'), it would take longer to locate a book
on the desk. At some point, the increase in hit time for a larger cache could
dominate the improvement in hit rate, leading to a decrease in processor per
formance. An example of this behavior is shown in the Fallacies and Pitfalls in
section 7.1.

Summary: The Basics of Caches

In this section, we started by examining the simplest of caches: a direct
mapped cache with a one-word block. In such a cache, both hits and misses
are simple, since a word can go in exactly one location and there is a separate
tag for every word. To keep the cache and memory consistent, a write
through scheme can be used, so that every write into the cache also causes
memory to be updated.

To take advantage of spatial locality, a cache must have a block size larger
than one word. The use of a larger block decreases the miss rate and improves
the efficiency of the cache by reducing the amount of tag storage relative to the
amount of data storage in the cache. Although a larger block size decreases the
miss rate, it can also increase the miss penalty. If the miss penalty increased
linearly with the block size, larger blocks could easily lead to lower perfor
mance. To avoid this, the bandwidth of main memory is increased to transfer
cache blocks more efficiently. The two common methods for doing this are
making the memory wider and interleaving. In both cases, we reduce the time
to fetch the block by minimizing the number of timE1s we must start a new
memory access to fetch a block. These schemes may also reduce the transfer
time to move the block from the memory to the cache.

The last part of the section examined cache performance. Since the total
number of cycles spent on a program is the sum of the processor cycles and the
memory stall cycles, the memory system can have a significant effect on pro
gram execution time. In fact, as processors get faster (either by lowering CPI
or increasing the clock rate), the relative effect of the memory stall cycles in
creases, making a good memory system critical to achieving high perfor
mance. The number of memory stall cycles depends on both the miss rate and
the miss penalty. The challenge, as we will see in section 7.4, is to reduce one

7 .3 Virtual Memory 481

of these factors without significantly affecting other critical factors in the mem
ory hierarchy. • Virtual Memory

. . . a system has been devised to make the core drum combination appear to the pro
grammer as a single level store, the requisite transfers taking place automatically.

Kilburn et al., One-level storage system, 1962

In the previous section, we saw how caches served as a method for providing
fast access to recently used portions of a program's code and data. Similarly,
the main memory can act as a "cache" for the secondary storage, usually
implemented with magnetic disks. This technique is called virtual memory.
There are two major motivations for virtual memory: to allow efficient shar
ing of memory among multiple programs and to remove the programming
burdens of a small, limited amount of main memory.

Consider a collection of programs running at once on a machine. The total
memory required by all the programs may be much larger than the amount of
physical memory available on the machine, but only a fraction of this memory
is actively being used at any point in time. Main memory need contain only the
active portions of the programs, just as a cache contains only the active portion
of one program. This allows us to efficiently share the processor as well as the
main memory.

A second motivation is to allow user programs to exceed the size of primary
memory. Formerly, if a program became too large for physical memory, it was
up to the programmer to make it fit. Programmers divided programs into
pieces and then identified the pieces that were mutually exclusive. These over
lays were loaded or unloaded under user program control during execution,
with the programmer ensuring that the program never tried to access an over
lay that was not loaded and that the overlays loaded never exceeded the total
size of the memory. As one can well imagine, this responsibility was a substan
tial burden on programmers. Virtual memory, which was invented to relieve
programmers of this difficulty, automatically manages the two levels of the
memory hierarchy represented by main memory and secondary storage.

Of course, we cannot know which programs will share the physical memo
ry with other programs when we compile them. In fact, the programs sharing
the physical memory can even change dynamically while the programs are
running. Because of this, we would like to compile each program into its own
address space, that is, a separate range of memory locations accessible only to
this program. Because multiple user programs share a single physical memo-

482 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Virtual addresses Physical addresses

Disk addresses

FIGURE 7 .14 In virtual memory, pages are mapped from one set of addresses, called vir
tual addresses, to another set called physical addresses. The processor generates virtual
addresses while the memory is accessed using physical addresses. Both the virtual memory and
the physical memory are broken into pages, so that a virtual page is really mapped to a physical
page. Of course, it is also possible for a virtual page to be absent from physical memory and not
be mapped to a physical address as soon, residing instead on disk. Physical pages can be shared
by having two virtual addresses point to the same physical address. This capability is used to
allow two different programs to share data or code.

ry, which the operating system must also share, we must be able to protect the
programs from one another. Both the translation of each program's address
space and the protection of the address space from other programs are provid
ed by virtual memory.

Although the concepts at work in virtual memory and in caches are the
same, their differing historical roots have led to the use of different terminolo
gy. A virtual memory block is called a page, and a virtual memory miss is
called a page fault. With virtual memory, the CPU produces a virtual address,
which is translated by a combination of hardware and software to a physical ad
dress, which in turn can be used to access main memory. Figure 7.14 shows the
virtual addressed memory with pages mapped to physical memory. This pro
cess is called memory mapping or address translation. Today, the two memory hi
erarchy levels controlled by virtual memory are DRAMs and magnetic disks.
If we return to our library analogy, we can think of a virtual address as the title
of a book and a physical address as the location of that book in the library
(which might be given by the Library of Congress number) .

7 .3 Virtual Memory

Virtual address

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Virtual page number Page offset

Physical page number Page offset

Physical address

483

FIGURE 7.15 Mapping from a virtual to a physical address. The page size is 212 = 4 KB. The
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in
it. This means that main memory can have at most 1 gigabyte, while the virtual address space is
4GB.

Virtual memory also simplifies loading the program for execution. Virtual
memory provides relocation, because the virtual addresses used by a program
are mapped to different physical addresses before they are used to access
memory. This mapping allows us to load the program into any location in
physical memory. Furthermore, all virtual memory systems in use today relo
cate the program as a set of fixed-size blocks (pages), thereby eliminating the
need to find a contiguous block of memory to allocate to a program; instead,
the operating system need only find sufficient pages in physical memory. For
merly, relocation and allocation problems required special hardware and spe
cial support in the operating system; today, virtual memory also provides this
function.

In virtual memory, the address is broken into a virtual page number and a
page offset. Figure 7.15 shows the translation of the virtual page number to a
physical page number. The physical page number constitutes the upper portion
of the physical address, while the page offset, which is not changed, consti
tutes the lower portion. The number of bits in the page offset field determines
the page size. The number of pages addressable with the virtual address need
not match the number of pages addressable with the physical address.

Many design choices in virtual memory systems are motivated by the high
cost of a miss. A page fault will take hundreds of thousands of cycles to pro
cess. (The table on page 455 shows the relative speeds of main memory and
disk.). This enormous miss penalty, dominated by the time to get the first

484 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

word for typical page sizes, leads to several key decisions in designing virtual
memory systems:

• Pages should be large enough to amortize the high access time. Sizes
from 4 KB to 16 KB are typical, and designers are considering sizes as
large as 64 KB.

• Organizations that reduce the page fault rate are attractive. The primary
technique used here is to allow flexible placement of pages.

• Misses in a virtual memory system can be handled in software, because
the overhead will be small compared to the access time to disk. Further
more, the software can afford to use clever algorithms for choosing how
to place pages, because even small reductions in the miss rate will pay
for the cost of such algorithms.

• Using write-through to manage writes in virtual memory will not work,
since writes take too long. Instead, we need a scheme that reduces the
number of disk writes.

The next few sections address these factors in virtual memory design.

S:b1h•'llr:111t1�,n· The discussion of virtual memory in this book focuses on paging,

which uses fixed-size blocks. There is also a variable-size block scheme cal led segmen

tation. In segmentation, an address consists of two parts: a segment number and a
segment offset. The segment register is mapped to a physical address, and the offset
is added to find the actual physical address. Because the segment can vary in size , a
check is also needed to make sure that the offset is within the segment. The major
use of segmentation is to support more powerful methods of protection and sharing in
an address space. Most operating system textbooks contain extensive discussions of
segmentation compared to paging and of the use of segmentation to logical ly share the
address space. The major disadvantage of segmentation is that it spl its the address
space into logically separate pieces that must be manipulated as a two-part
address: the segment number and the offset. Paging, in contrast, makes the boundary
between page number and offset invisible to programmers and compi lers.

Segments have also been used as a method to extend the address space, without
changing the word size of the machine. Such attempts have been unsuccessful
because of the awkwardness and performance penalties inherent in a two-part
address of which programmers and compi lers must be aware.

Many architectures d ivide the address space into large fixed-size blocks that s im
p l ify protection between the operating system and user programs and increase the effi
ciency of implementing paging. Although these d ivisions are often cal led segments,
th is mechan ism is much simpler than variable-block segmentation and is not visible to
user programs; we discuss it in more detail shortly.

7 .3 Vlrtual Memory 485

Placing a Page and Finding It Again

Because of the incredibly high penalty for a miss, designers would like to
reduce the number of misses by optimizing the page placement. If we allow a
virtual page to be mapped to any physical page, the operating system can
then choose to replace any page it wants when a page fault occurs. For exam
ple, the operating system can use a sophisticated algorithm to try to choose a
page that will not be needed for a long time. Thus, virtual memory systems
allow a virtual page to be mapped to any physical page. This mapping is
called fully associative, since any page (or block) can be associated with any
location in the physical memory (or cache). Correspondingly, our task in the
library is much easier if we can place a book anywhere on the desk than if
each book could go in only one location, since the set of books we can have on
the desk is more flexible.

If a page can reside anywhere, we need a mechanism to find it. This mech
anism is a structure called a page table. A page table, which resides in memory,
is indexed with the page number from the virtual address and contains the
corresponding physical page number. Each program has its own page table,
which maps the virtual address space of the program to physical memory. In
our library analogy, the page table corresponds to a mapping between book ti
tles and library locations. Just as the card catalog may contain entries for books
in another library on campus rather than the local branch library, we will see
that the page table may contain entries for pages not present in memory. To
indicate the location of the page table in memory, the hardware includes a
register that points to the start of the page table; we call this the page table reg
ister. Assume (for now) that the page table is in a fixed and contiguous area of
memory.

Figure 7.16 uses the page table register, the virtual address, and the indicat
ed page table to show how the hardware can form a physical address. A valid
bit is used in each page table entry, just as we did in a cache. If the bit is off, the
page is not present in physical memory and a page fault occurs. If the bit is on,
the page is valid and the entry contains the physical page number. Because the
page table contains a mapping for every possible virtual page, no tags are re
quired.

486 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Virtual address

31 30 29 28 27 • 15 14 13 12 1 1 10 9 8 3 2 1 0

I Page table register I Virtual page number Page offset

' 20 !'--
Valid

I
Page table

If O then page is not
present in memory

29 28 27

Physical page number

... 18

.

r-..

. . . . 15 14 13 12

Physical page number

' 12 !'--

11 10 9 8

Page offset

Physical address

3 2 1 0

I

I
FIGURE 7 .18 The page table Is Indexed with the vlrtual page number to obtain the corresponding portion of the
physical address. The starting address of the page table is given by the page table pointer. In this figure, the page size is
212 bytes = 4 KB. The virtual address space is 232 or 4 GigaBytes, and the physical address space is 230 bytes, which allows
main memory of up to 1 GigaByte. The number of entries in the page table will be 220 or 1 million entries. The valid bit for
each entry indicates whether the mapping is legal. If it is off, then the page is not present in memory.

7.3 Virtual Memory 487

Hardware

Software

Interface

The page table, together with the program counter and the
registers, specifies the state of a program. If we want to allow
another program to use the CPU, we must save this state.
Later, after restoring this state, the program can continue ex
ecution. We often refer to this state as a process. The process
is considered active when it is in possession of the CPU and;
otherwise, it is considered inactive. The operating system can

make a process active by loading the process's state, including the program
counter, which will initiate execution at the value of the saved program
counter. The process's address space, and hence all the data it can access in
memory, is defined by its page table, which resides in memory. Rather than
save the entire page table, the operating system simply loads the page table
register to point to the page table of the process it wants to make active.

Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating sys
tem must be given control. This is done with the exception mechanism, the
details of which we discuss later in this section. Once the operating system
gets control, it must find the page in the next level of the hierarchy (usually
magnetic disk) and decide where to place the requested page in physical
memory. The virtual address alone does not immediately tell us where the
page is on disk. Returning to our library analogy, we cannot find the location
of a library book on the shelves just by knowing its title. Instead, we go to the
catalog and look up the book, obtaining an address for the location on the
shelves (for example, the Library of Congress number). Likewise, in a virtual
memory system, we must keep track of the location on disk of each page in
the virtual address space. Because we do not know ahead of time when a
page will be chosen to be replaced, the operating system usually creates the
space on disk for all the pages of a process when it creates the process. At that
time, it also creates a data structure to record where each virtual page is
stored on disk. This data structure may be part of the page table, or may be an
auxiliary data structure indexed in the same way as the page table.
Figure 7.17 shows the organization when a single table holds either the physi
cal page number or the disk address.

Assuming that all the pages in physical memory are in use, the operating
system must choose a page to replace. Because we want to minimize the num
ber of page faults, most operating systems try to choose a page that they hy-

488

Virtual page
number

Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Physical memory

Page table

Valid
1

1

1

1

0

1

1

0

1

1

0

1

FIGURE 7 .17 The page table maps each page in virtual memory to either a page In physical memory or a page
stored on disk, which is the next level in the hierarchy. The virtual page number is used to index the page table. If the
valid bit is on, the page table supplies the physical page number (i.e., the starting address of the page in memory) corre
sponding to the virtual page. If the valid bit is off, the page currently resides only on disk, at a specified address. In many
systems, the table of physical page addresses and disk page addresses, while logically one table, are stored in two separate
data structures. Dual tables are justified in part because we must keep the disk addresses of all the pages, even if they are
currently in main memory.

pothesize will not be needed in the near future. Relying on the principle of
temporal locality, the operating system can search for the least recently used
(LRU) page, making the assumption that a page that has not been used in a
long time is less likely to be needed than a more recently accessed page.

For example, suppose the most recent page references (in order) were 10, 12,
9, 7, 11 , 10, and then we referenced page 8, which was not present in memory.
The LRU page is page 12; in LRU replacement, we would replace page 12 in
physical memory with page 8. If the next reference also generated a page fault,
we would replace page 9, since it would be the LRU among the pages present
in memory.

7 .3 Vlrtual Memory 489

Hardware

Software

Interface

To help the operating system estimate the LRU pages, some
machines provide a use bit or reference bit, which is set when
ever a page is accessed. The operating system periodically
clears the use bits and later records them so it can determine
which pages were touched during a particular time period.
By keeping track in this way, the operating system can select
a page that is among the least recently referenced. If this bit

is not provided by the hardware, the operating system must find another way
to estimate which pages have been accessed.

Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table
entry, the total page table size is

32 2 20 2 bytes
- = 2 pages x 2 -- = 4 MB
212 page

That is, we would need to use 4 MB of memory for each program in execution at any
time. On a machine with tens to hundreds of active programs and a fixed-size page
table, most or al l of the memory would be tied up in page tables! To reduce the size of
the page table, two d ifferent techniques are used. Both techniques try to reduce the
amount of page table storage needed to map the amount of physical memory in use.

The simplest technique is to keep a bounds register that l imits the size of the page
table for a given process. If the virtual page number becomes larger than the contents
of the l imit register, entries must be added to the page table. This al lows the page
table to grow as a process consumes more space. Thus, the page table wil l only be
large if the process is using many pages of virtual address space. This technique
requires that the address space expand in only one direction.

Allowing growth in only one d i rection is not sufficient, since most languages require
two areas whose size is expandable. One area holds the stack and the other area
holds the heap. Because of this, it is convenient to divide the page table and let it grow
from the highest address down, as well as from the lowest address up. This means
that there wi l l be two separate page tables and two separate l imits. The use of two
page tables breaks the address space into two segments. The high-order bit of an
address determines the segment and thus which page table to use for that address.
Since the segment is specified by the high-order address bit, each segment can be as
large as one-half of the address space. A l imit register for each segment specifies the
current size of the segment, which grows in units of pages. This type of segmentation
is used by many architectures, including the MIPS architecture. Un l ike the type of seg
mentation d iscussed in the Elaboration on page 484, this form of segmentation is
invisible to the appl ications program, although not to the operating system.

490 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Another approach to reducing the page table size is to apply a hashing function to
the virtual address so that the page table data structure need be only the size of the
number of physical pages in main memory. Such a structure is cal led an inverted page

table. Of course, the look-up process is s l ightly more complex with an inverted page
table, because we can no longer just i ndex the page table.

Lastly, most modern systems also al low the page tables to be paged. Although this
sounds tricky, it works by using the same basic ideas of virtual memory and simply
al lowing the page tables to reside in the virtual address space. In addition , there are
some smal l but critical problems, such as a never-ending series of page faults, that
must be avoided. How these problems are overcome is both very detai led and typically
highly machine specific; these topics are covered in many operating system textbooks.

What About Writes?

In a cache, the difference between the access time to the cache and main mem
ory is tens of cycles, and write-through schemes can be used, although we
need a write buffer to hide the latency of the write from the processor. In a vir
tual memory system, writes to the next level of the hierarchy (disk) take hun
dreds of thousands of cycles; therefore, building a write buffer to allow the
system to write-through to disk would be completely impractical. The alter
native strategy is called write back. In a write-back scheme, individual writes
are accumulated into a page. When the page is replaced in the memory, it is
copied back into the next level of the memory hierarchy, hence, the other
name for this scheme, copy back.

Hardware

Software

Interface

A write-back scheme has another major advantage in a vir
tual memory system. Because the disk transfer time is small
compared with its access time, copying back an entire page
is much more efficient than writing individual words back
to the disk. A write-back operation, while more efficient
than transferring individual words, is still costly. Thus, we
would like to know whether a page needs to be copied back

when we choose to replace it. To track whether a page has been written since
it was read into the memory, a dirty bit is added to the page table. The dirty bit
is set when the page is first written. If the operating system chooses to replace
the page, the dirty bit indicates whether the page needs to be written out be
fore its location in memory can be given to another page.

7 .3 Virtual Memory 491

Making Address Translation Fast: The TLB

Page tables are so large that they must be stored in main memory. This means
that every memory access takes at least twice as long: one memory access to
obtain the physical address and a second access to get the data. The key to
improving access performance is to rely on locality of reference to the page
table. When a translation for a virtual page number is used, it will probably
be needed again in the near future, because the references to the words on
that page have both temporal and spatial locality. Accordingly, modern
machines include a special cache that keeps track of recently used transla
tions. As mentioned earlier, this special address translation cache is referred
to as a translation-lookaside buffer, or TLB. The TLB corresponds to that little
piece of paper we typically use to record the location of a set of books we look
up in the card catalog; rather than continually searching the entire catalog, we
record the location of several books and use the scrap of paper as a cache.

A TLB is a cache that holds only page table mappings. Thus, each tag entry
in the TLB holds a portion of the virtual page number, and each data entry of
the TLB holds a physical page number. Because we will no longer access the
page table on every reference, instead accessing the TLB, the TLB will need to
include other bits, such as the reference bit and the dirty bit. Figure 7.18 shows
how the TLB acts as a cache for the page table references.

On every reference, we look up the virtual page number in the TLB. If we
get a hit, the physical page number is used to form the address, and the corre
sponding reference bit is turned on. If the processor is performing a write, the
dirty bit is also turned on. If a miss in the TLB occurs, we must determine
whether it is a page fault or merely a TLB miss. Because the TLB has many few
er entries than the number of pages in physical memory, TLB misses will be
much more frequent than true page faults. On a TLB miss, if the page exists in
memory, the translation can be loaded from the page table into the TLB and
the reference can be tried again. If the page is not present in memory, a page
fault has occurred and the operating system must be notified with an excep
tion. TLB misses can be handled either in hardware or software. In practice,
there is little performance difference between the two approaches, because the
basic operations that must be performed are the same in either case.

When a TLB miss occurs and the missing translation has been retrieved
from the page table, we will need to select a TLB entry to replace. Because the
use and dirty bits are contained in the TLB entry, we need to copy these bits
back to the page table entry when we replace an entry. These bits are the only
portion of the TLB entry that can be changed. Using a write-back strategy (that
is, copying these entries back at miss time rather than whenever they are writ
ten) is very efficient, since we expect the TLB miss rate to be small. Some sys
tems use other techniques to approximate the use and dirty bits, eliminating

492 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Vlrtual page
number

Valid
1

0
1

1

1

0

Valid
1

1

1

1

0
1
1

0
1

1

0
1

TLB

Tag Physical page address

Page table

FIGURE 7.18 The TLB acts as a cache on the page table for the entries that map to physlcal pages only. The TLB
contains a subset of the virtual-to-physical page mappings that are in the page table. (The TLB mappings are shown in
color.) Because the TLB is a cache, it must have a tag field. If there is no matching entry in the TLB for a page, the page table
must be examined. The page table either supplies a physical page number for the page (which can then be used to build a
TLB entry) or indicates that the page resides on disk, in which case a page fault occurs. Since the page table has an entry for
every virtual page (it is not a cache, in other words), no tag field is needed.

the need to write into the TLB except to load a new map entry on a miss; the
MIPS R2000 and R3000 use such a scheme, as we will see shortly.

Some typical values for a TLB might be

Block size 1-2 page-table entries (typically 4-8 bytes each)
Hit time 1/2 to 1 clock cycle
Miss penalty 10-30 clock cycles
Miss rate 0.01%-1%
TLB size 32-1,024 entries

7 .3 Vlrtual Memory 493

In addition to these parameters, the mapping of translations to entries in the
TLB varies widely. Many systems use fully associative TLBs because a fully
associative mapping has a lower miss rate; furthermore, since the TLB is
small, the cost of a fully associative mapping is not too high (we'll return to
this topic in section 7.4). With a fully associative mapping, choosing the entry
to replace becomes tricky. Since TLB misses are much more frequent than
page faults and must be handled more cheaply, we cannot afford an expen
sive software algorithm, as we can for page faults. Some TLB designs main
tain support for LRU in the hardware, but the cost of LRU support increases
with the size of a fully associative TLB. As a result, many systems provide
some support for randomly choosing an entry to replace. We'll examine such
replacement schemes in section 7.4.

Now let's take a closer look at the TLB in the DECStation 3100, and then
look at all the steps involved in satisfying a memory request. The processor in
the DECStation 3100 is a MIPS R2000, which includes the TLB on the micro
processor. The processor uses 4 KB pages; thus the virtual page number is 20
bits long, as shown in Figure 7.16 on page 486. The physical address is the
same size as the virtual address. The TLB contains 64 entries, is fully associa
tive, and is shared between the instruction and data references. Each entry is
64 bits wide and contains a 20-bit tag (which is the virtual page number for that
TLB entry), the corresponding physical page number (also 20 bits), a valid bit,
a dirty bit, and several other bookkeeping bits. When a TLB miss occurs, the
hardware saves the page number of the reference and the matching TLB entry
(if such an entry exists) in a pair of special registers. These registers help the
operating system efficiently handle the TLB miss in software, using a few spe
cial instructions that can access and update the TLB. A miss can take as few as
10 cycles, but on average takes about 16 cycles. The hardware maintains an in
dex that indicates the recommended entry to replace; the recommended entry
is chosen randomly. Figure 7.19 shows the TLB and one of the caches, while
Figure 7.20 shows the steps in processing a read or write request.

There are several d ifferent ways to combine address translation and
cache access. In Figure 7 . 19 , the virtual address must first go through the TLB to form
a physical address that is used to access the cache. As a result, the amount of time to
access memory must accommodate both a TLB access and a cache access; of course,
these accesses can be pipelined. Alternatively, the machine can index the cache with
an address that is completely or partially virtual (called a virtually addressed cache).

When the cache is accessed with such an address and pages are shared between pro
grams (which may access them with d ifferent virtual addresses) , there is the possibil ity
of aliasing. Aliasing occurs when the same object has two names-in this case, two vir
tual addresses for the same page. This creates a problem in that a word on such a
page may be cached in two d ifferent locations, each corresponding to different virtual

494 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Virtual address

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Virtual page number Page offset I
120 ... 12

Valid Dirty Tag Physical page number

--TLB

TLB hit � 20

--{L Physical page number

Physical address I 116 ... 14 t2
Tag

Index Byte
offset

Valid Tag Data

Cache

' I

� 32

ache hit --{L Data c

FIGURE 7 .19 The TLB and cache Implement the process of going from a virtual address to a data Item In the Dec
Station 3100. This figure shows the organization of the TLB and one of the caches in the DECStation 3100. This diagram
focuses on a read; Figure 7.20 describes how to handle writes. While the cache is direct mapped, the TLB is fully associa
tive. Implementing a fully associative TLB requires that every TLB tag be compared against the index value, since the entry
of interest can be anywhere in the TLB. We return to this topic in section 7.4

7 .3 Virtual Memory

TLB miss
interrupt

Cache miss stall

No

No

Virtual address

TLB access

Yes

No

Try to read data
from cache

Deliver data
to the CPU

Yes

Set in TLB

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

495

FIGURE 7.20 Processing a read or a write through the DECStatlon 3100 TLB and cache. If the TLB generates a hit,
the cache can be accessed with the resulting physical address. If the operation is a write, the cache entry is overwritten and
the data is sent to the write buffer; remember, though, that a cache write miss cannot occur for the DECStation 3100 cache,
which uses one-word blocks and a write-through cache. For a read, the cache generates a hit or miss and supplies the data
or causes a stall while the data is brought from memory. In actuality, the TLB does not contain a true dirty bit; instead, it
uses the write protection bit to detect the first write. How this works will be explained in the next section. Notice that a TLB
hit and a cache hit are independent events; this is examined further in the exercises at the end of this chapter.

addresses. This would al low one program to write the data without the other program
being aware that the data had changed. Virtually addressed caches introduce either
design l im itations on the cache and TLB to avoid al iases or require the operating sys
tem to take steps to ensure that al iases do not occur.

496 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Implementing Protection with Virtual Memory

Although each process has its own virtual address space, the physical mem
ory is shared among multiple user processes and also with the operating sys
tem. Nevertheless, we do not want a renegade process to be able to write into
the address space of another user process or into the operating system. For
example, if the program that maintains student grades is running on a
machine at the same time as the programs of the students in the first pro
gramming course, we wouldn't want the errant program of a beginner to
write over someone's grades. We also want to prevent one process from read
ing the data of another process. For example, we wouldn't want one student
program to read the grades while they were in the processor's memory. Once
we begin sharing physical memory, we must provide the ability for a process
to protect its data both from reading and writing by another process.

Remember that each process has its own virtual address space. Thus, if the
operating system keeps the page tables organized so that the independent vir
tual pages map to disjoint physical pages, one process will not be able to access
another's data. Of course, this also requires that a user process not be able to
change the page table mapping. The operating system can assure this if it pre
vents the user process from modifying its own page tables. Yet the operating
system must be able to modify the page tables.

Hardware

Software

Interface

To enable the operating system to implement protection in
the virtual memory system, the hardware must provide at
least the three basic capabilities summarized below.

1 . Support at least two modes that indicate whether the
running process is a user process or an operating system
process, variously called a kernel process, a supervisor
process, or an executive process.

2. Provide a portion of the CPU state that a user process can read but not
write. This includes the user/supervisor mode bit(s) and the page table
pointer.

3. Provide mechanisms whereby the CPU can go from user mode to
supervisor mode, and vice versa. The first direction is typically accom
plished by a system call exception, implemented as a special instruction
(syscall in the MIPS instruction set) that transfers control to a dedicated
location in supervisor code space. As with any other exception, the pro
gram counter from the point of the system call is saved, and the CPU is
placed in supervisor mode. The return to user mode from the exception
will restore the state of the process that generated the exception.

With these mechanisms the operating system can change the page tables as
well as prevent a user process from changing them, ensuring that a user pro
cess can access only the storage provided to it by the operating system.

7 .3 Virtual Memory 497

Processes may want to share information in a limited way. For example, the
operating system may want to allow the user process to read some information
about the process, such as running time, but may not want the user program
to modify this data. Similarly, two user programs may want to share data for
reading but not for writing. Accordingly, most systems provide the ability to
distinguish between reading and writing a page, protecting them separately.
This is usually done with a write protection bit, or separate read and write bits.
This bit is included in each page table entry and is checked on every access.

Hardware

Software

Interface

To allow another process, say Pl, to read a page owned by
process P2, P2 would ask the operating system to create a
page table entry for a virtual page in Pl's address space that
points to the same physical page that P2 wants to share. The
operating system could use the write protection bit to pre-
vent Pl from writing the data, if that was P2' s wish. Any bits
that determine the access rights for a page must be included

in both the page table and TLB, because the page table is accessed only on a
TLB miss.

Elaboration: When the operating system decides to change from running process
P1 to running process P2 (called a context switch or process switch), it must ensure
that P2 cannot get access to the page tables of P1, because that would compromise
protection. If there is no TLB, it suffices to change the page table register to point to
P2's page table (rather than to P1's) ; with a TLB, we must clear the TLB entries that
belong to Pi-both to protect the data of P1 and to force the TLB to load the entries for
P2. If the process switch rate were high, this could be quite inefficient. For example, P2
might load only a few TLB entries before the operating system switched back to PL
Unfortunately, P1 would then find that all its TLB entries were gone and would have to
go through TLB m isses to reload them. This problem arises because the virtual
addresses used by P1 and P2 are the same, and we must clear out the TLB to avoid
confusing these addresses. A common alternative is to extend the virtual address
space by adding a process identifier or task identifier. This smal l field identifies the cur
rently running process ; it is kept in a register loaded by the operating system when it
switches processes. The process identifier is added to the tag portion of the TLB, so
that a TLB hit occurs only if both the page number and the process identifier match.
This e l iminates the need to clear the TLB except on rare occasions.

498 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Handling Page Faults and TLB Misses

While the translation of virtual to physical addresses with a TLB is straight
forward when we get a TLB hit, handling TLB misses and page faults is more
complex. A TLB miss occurs when no entry in the TLB matches a virtual
address. A TLB miss can indicate one of two possibilities:

1 . The page is present in memory, and we need only create the missing
TLB entry.

2. The page is not present in memory, and we need to transfer control to
the operating system to deal with a page fault.

How do we know which of these two circumstances has occurred? When we
process the TLB miss we will look for a page table entry to bring into the TLB;
if the matching page table entry has a valid bit that is turned off, then the cor
responding page is not in memory and we have a page fault, rather than just a
TLB miss. If the valid bit is on, we can simply retrieve the physical page num
ber from the page table entry and use it to create the TLB entry. A TLB miss
can be handled in software or hardware, because it will require only a short
sequence of operations to copy a valid page table entry from memory into the
TLB.

Handling a page fault requires using the exception mechanism to interrupt
the active process, transferring control to the operating system, and later re
suming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle used to access memory. To restart the instruc
tion after the page fault is handled, the program counter of the instruction that
caused the page fault must be saved. Just as in Chapters 5 and 6, the exception
program counter (EPC) is used to hold this value. In addition, the page fault
exception must be asserted early enough to change the state immediately fol
lowing the clock cycle when the memory access occurs. If the page fault was
not recognized until later, a load instruction could overwrite a register, and
this could be disastrous when we try to restart the instruction. For example, for
the instruction l w $ 1 . 0 ($ 1) , the machine must be able to prevent the write
back from occurring; otherwise, it could not properly restart the instruction,
since the contents of $ 1 would have been destroyed. A similar complication
arises on stores. We must prevent the write into memory from actually com
pleting when there is a page fault; this is usually done by deasserting the write
control line to the memory.

Once the process that generated the page fault has been interrupted and the
operating system has control, it uses the Exception cause register to diagnose
the cause of the exception. Because the exception is a page fault, the operating
system knows that extensive processing will be required. Thus, it saves the en
tire state of the active process. This includes all the general-purpose and float
ing-point registers, the page table address register, the EPC, and the exception
cause register. The virtual address that caused the fault depends on whether
the fault was an instruction or data fault. The address of the instruction that

7 .3 Vlrtual Memory 499

generated the fault is in the EPC. If it was an instruction page fault, the EPC
contains the virtual address of the faulting page; otherwise, the faulting virtual
address can be computed by examining the instruction (whose address is in
the EPC) to find the base register and offset field.

Once the operating system knows the virtual address that caused the page
fault, it must complete three steps:

1 . Look up the page table entry using the virtual address and find the
location of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be
written out to disk first.

3. Start a read to bring the referenced page in from disk into the chosen
physical page.

Of course, this last step will take hundreds of thousands of cycles (so will the
second if the replaced page is dirty); accordingly, the operating system will
usually select another process to execute in the CPU until the disk access com
pletes. Because the operating system has saved the state of the process, it can
freely give control of the processor to another process.

When the read of the page from disk is complete, the operating system can
restore the state of the process that originally caused the page fault and execute
an instruction that returns from the exception. This instruction will reset the
processor from kernel to user mode, as well as restore the program counter.
The user process then re-executes the instruction that faulted, accesses the re
quested page successfully, and continues execution.

Hardware

Software

Interface

Between the time we begin executing the exception handler
in the operating system and the time that the operating sys
tem has saved all the state of the process, the operating sys
tem is particularly vulnerable. For example, if another
exception occurred when we were processing the first ex-
ception in the operating system, the control unit would over
write the exception program counter, making it impossible

to return to the instruction that caused the page fault! We can avoid this by
providing the ability to both mask out and enable exceptions. When an excep
tion first occurs, we set a bit that masks all other exceptions; this could happen
at the same time we set the supervisor mode bit. The operating system will
then save just enough state to allow it to recover if another exception occurs
(namely, the exception program counter and Cause register). The operating
system can then re-enable exceptions. These steps make sure that exceptions
will not cause the processor to lose any state and thereby be unable to restart
execution of the interrupting instruction.

500 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Page fault exceptions are difficult to implement due to a combination of
three characteristics: They occur in the middle of instructions; the instruction
cannot be completed before handling the exception; and, after handling the ex
ception, the instruction must be restarted as if nothing had occurred.

Making instructions restartable, so that the exception can be handled and the
instruction later continued, is relatively easy in an architecture like the MIPS.
Because each instruction writes only one data item and this write occurs at the
end of the instruction cycle, we can simply prevent the instruction from com
pleting (by not performing the write) and restart the instruction at the begin
ning.

For machines with much more complex instructions that may touch many
memory locations and write many data items, making instructions restartable
is much harder. Processing one instruction may generate several page faults in
the middle of the instruction. For example, some machines have block move
instructions that touch thousands of data words. In such machines instruc
tions often cannot be restarted from the beginning, as we do for MIPS instruc
tions. Instead, the instruction must be interrupted and later continued
midstream in its execution. Resuming an instruction in the middle of its exe
cution usually requires saving some special state, processing the exception,
and restoring that special state. Making this work properly requires careful
and detailed coordination between the exception handling code in the operat
ing system and the hardware.

Because the TLB is the subset of the page map that is accessed on every cy
cle, protection violations are also seen as TLB exceptions. The operating sys
tem can handle these with the same basic hardware that it uses to deal with
TLB misses and page faults. A special set of values in the Cause register may
be used to indicate protection violations, as opposed to a TLB miss. The oper
ating system can access the TLB or page table entry that matched the virtual
page so that it can examine the process's access rights and report the appropri
ate error.

Ela1b1Jr111tlc1n: Handl ing TLB misses in software is analogous to handl ing page
faults: Both a TLB m iss and a page fault are signaled by the same event. To speed up
processing of a s imple TLB miss that wi l l be much more frequent than a true page
fault, two d ifferent values for the Cause register are generated by a TLB miss. One set
ting indicates that there was no matching TLB entry, whi le another setting indicates
that the TLB entry exists but that the page is not present in memory (the TLB valid bit
really contains the page table valid bit). On a MIPS R2000/3000 processor, these two
events are distinguished. Because the exception for TLB entry missing is much more
frequent, the operating system loads the TLB from the page map without examining the
entry and restarts the instruction when such an exception occurs. If the entry is
inval id , another exception occurs, and the operating system recognizes that a page

7 .4 A Common Framework for Memory Hierarchies 501

fault has occurred. This method makes the frequent case of a TLB miss fast, at a sl ight
performance penalty for the infrequent case of a page fault.

Summary: Virtual Memory

Virtual memory is the name for the level of memory hierarchy that manages
caching between the main memory and disk. Because the misses, called page
faults, are so expensive, several techniques are used to reduce the miss rate:

1 . Blocks, called pages, are made large to take advantage of spatial locality
and to reduce the miss rate.

2. The mapping between virtual addresses and physical addresses, which
is implemented with a page table, is made fully associative so that a vir
tual page can be placed anywhere in physical memory.

3. The operating system uses techniques, such as LRU and a reference bit,
to choose which pages to replace.

Writes to disk are also expensive, so virtual memory uses a write-back scheme
and also tracks whether a page is unchanged (with a dirty bit) to avoid writ
ing unchanged pages back to disk.

Because virtual memory creates another address space (the virtual address
space), it allows the virtual memory to be larger than the physical memory. In
addition, because the physical memory is shared by multiple processes, the
virtual memory system must also implement protection, so that processes can
only access their own pages. By restricting access to the page table, so that only
the operating system can change the mapping, we can safely share the memo
ry and CPU among processes.

If a CPU had to access a page table resident in memory to translate every
access, virtual memory would have too much overhead. Instead, a TLB caches
the translations from the page table. Each address is then translated from a vir
tual address to a physical address using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles
and policies, as the next section shows.

• A Common Framework for Memory Hierarchies

By now, you've recognized that the different types of memory hierarchies
share a great deal in common. Although many of the aspects of memory hier
archies differ quantitatively, many of the policies and features that determine
how a hierarchy functions qualitatively are similar. Figure 7.21 shows how

502 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Typical values Typical values for Typical values
Feature for caches paged memory for a TLB

Total size in blocks 250-10 ,000 2,000- 250,000 32 -1024
Total size in bytes 4 KB-4 MB 8 MB- 1 GB 128-8000
Block size in bytes 4-256 4 KB-16 KB 4-16
Miss penalty in clocks 10- 100 100,000- 1,000,000 10-50
Miss rates 0.1%-20% 0.00001%-0.0001% 0.01%-1%

FIGURE 7.21 The key quantitative design parameters that characterize the thr- major
memory hierarchies in a machine. These are typical values for these levels as of 1993.
Although the range of values is wide, this is partially because many of the values that have
shifted over time are related; for example, as caches become larger to overcome larger miss penal
ties, block sizes also grow.

some of the quantitative characteristics of memory hierarchies can differ. In
the rest of this section, we will discuss the common operational aspects of
memory hierarchies and how these determine their behavior. We will exam
ine these policies as a series of four questions that apply between any two lev
els of a memory hierarchy, athough for simplicity we will primarily use
terminology for caches.

Question 1: Where Can a Block Be Placed?

When we looked at the cache hierarchy, we saw the simplest placement
scheme: A block could go in exactly one place in the upper level of the hierar
chy. This placement scheme is called direct mapped. In a virtual memory sys
tem, we saw that a page could be placed anywhere in the physical memory, a
scheme called fully associative. In fact, there is really a spectrum of design
points from direct mapped to fully associative.

The middle range of designs is called set associative. In a set associative
cache, there are a fixed number of locations (at least two) where each block can
be placed; a set associative cache with n locations for a block is called an n-way
set associative cache. An n-way set associative cache consists of a number of
sets, each of which consists of n blocks. Each block in the memory maps to a
unique set in the cache given by the index field, and a block can be placed in
any element of that set. Given this, a set associative placement combines direct
mapped placement and fully associative placement: A block is directly
mapped into a set, and then all the blocks in the set are searched for a match.

Remember that in a direct mapped cache, the position of a block is given by
Block number modulo number of blocks in the cache

In a set associative cache, the set containing a block is given by
Block number modulo number of sets in the cache

7 .4 A Common Framework for Memory Hierarchies

Direct mapped

Block # O 1 2 3 4 5 6 7

Data

Tag

Search

Set associative

Set # 0 1 2 3

Data

Tag

Search

503

Fully associative

Data

Tag • Search

FIGURE 7 .22 Placement of a block whose address Is 12 varies for direct mapped, set
associative, and fully associative caches. In direct mapped placement, there is only one
cache block where memory block 12 can be found and that block is given by (12 modulo 8) = 4. In
a two-way set associative cache, there would be four sets, and memory block 12 must be in set
(12 mod 4) = O; the memory block could be in either element of the set. In a fully associative
placement, the block for block address 12 can appear in any of the eight blocks.

Since the block may be placed in any element of the set, all the elements of the
set must be searched. In a fully associative cache, the block can go anywhere
and all the blocks in the cache must be searched. Figure 7.22 shows where
block 12 can be placed in a cache with eight blocks total, according to the
block placement policy for a direct mapped, two-way set associative, and
fully associative cache. Although we discuss the use of set associativity with
caches, TLBs often use set associative placement.

We can think of every block placement strategy as a variation on set asso
ciativity. A direct mapped cache is simply a one-way set associative
cache: Each cache entry holds one block and forms a set with one element. A
fully associative cache with m entries is simply an m-way set associative cache;
it has one set with m blocks and an entry can reside in any block within that
set. Figure 7.23 shows the possible associativity structures for an eight-block
cache.

The advantage of increasing the degree of associativity is that it usually de
creases the miss rate, as the next example shows.

504 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

1-way set associative
(Direct mapped)

Block

0
1
2
3
4
5
6
7

Set

0
1

Tag Data

2-way set associative

Set Tag Data Tag Data

0
1
2
3

4-way set associative

Tag Data Tag Data Tag Data Tag Data

I I I I I I I I I
8-way set associative (Fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

FIGURE 7 .23 An eight-block cache configured as direct mapped, two-way set associative,
four-way set associative, and fully associative. The total size of the cache in blocks is equal to
the number of sets times the associativity (or set size). Thus, for a fixed cache size, increasing the
associativity decreases the number of sets, while the number of elements per set increases. With
eight blocks, an eight-way set associative cache is the same as a fully associative cache, although
for realistically sized caches, these two organizations would usually look rather different.

There are three small caches, each consisting of four one-word blocks. One
cache is fully associative, a second is two-way set associative, and the third
is direct mapped. Assuming that the replacement policy used is least recent
ly used, find the number of misses for each cache organization given the fol
lowing sequence of block addresses: 0, 8, 0, 6, 8 .

Answer

7 .4 A Common Framework for Memory Hierarchies 505

The direct mapped case is easiest. First, let's determine to which cache block
each block address maps.

Block address Cache block
0 (0 modulo 4) = O
4 (4 modulo 4) = O
6 (6 modulo 4) = 2
8 (8 modulo 4) = O

Now we can fill in the cache contents after each reference, using a blank
entry to mean that the block is invalid:

• • •, ,. • • � "'7"'� r f -r:<•.�..,... T • - _.,;- -..,..· � ·· T- _..,...,. �� �r�· • · • r

Ald;es
'
s.of m�;,:;c,;\-;: - · Hlt · · , Contents· of cache .blocks after reference

·. · bloc_l{ accessed , _ · or m iss '... O" ... · � 1 . ._ 2
·

3

0 Miss Memory[OJ
8 Miss Memory[8]
0 Miss Memory[OJ
6 Miss Memory[OJ Memory[6]
8 Miss Memory[8]

The direct mapped cache generates five misses.

:,1 .;

The set associative cache has two sets (with indices 0 and 1) with two ele
ments per set. Let's first determine to which set each block address maps.

810C:i<,address ·cache. li1oci<.;;;
0 (0 modulo 2) = O
4 (4 modulo 2) = 0

6 (6 modulo 2) = O
8 (8 modulo 2) = O

Because we have a choice of which entry in a set to replace on a miss, we
need a replacement rule. Set associative caches usually employ LRU re
placement, which we used when we examined virtual memory. Thus, the
contents of the set associative cache after each reference look like

506 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

0 Miss Memory(OJ

8 Miss Memory(OJ Memory(BJ

0 Hit Memory(OJ Memory[SJ

6 Miss Memory(OJ Memory[6)

8 Miss Memory(OI Memory[SJ

The two-way set associative cache has a total of four misses, one less than
the direct mapped cache.

The fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. Its performance is best:

8 Miss Memory[OJ Memory(BJ

0 Hit Memory[OJ Memory(B]

6 Miss Memory[OJ Memory(8] Memory(6]

8 Hit Memory[OJ Memory[SJ Memory[6]

The fully associative cache clearly has the best performance, with only
three misses. For this string of references, this is the best we can do because
three unique addresses are accessed. Notice that if we had eight blocks in
the cache, there would be no replacements in the two-way set associative
cache (check this for yourself) and it would have the same number of misses
as the fully associative cache. Similarly, if we had 16 blocks all three caches
would have the same number of misses. This shows us that cache size and
associativity are not independent in determining cache performance.

If this example used a cache with multiword blocks and the memory ad
dresses were given in words, we could use the same function to compute
the cache block after converting the memory addresses to block addresses
by simply dividing the memory word address by the number of words in
the block.

How much of a reduction in the miss rate is achieved by associativity?
Figure 7.24 shows the improvement for the programs gee and spice with a pair
of 64 KB caches (split instruction and data) with a four-word block, and asso
ciativity ranging from direct-mapped to four-way. On gee, going from one
way to two-way associativity improves the effective combined miss rate by
about 20%, but there is no further improvement in going to four-way associa-

7 .4 A Common Framework for Memory Hierarchies

-:.11n:ir.11 ,,ft . 1i'l
gee 1
gee 2
gee 4

spice 1
spice 2
spice 4

- -II "--"""'1 ••11 '
�-II 1r.;11:.i

2.0%
1.6%
1.6%
0.3%
0.3%
0.3%

..

507

Elim - -l�••·l�••·.1· ,911.I !UIJll • t_I
• 1("1 1111 , ..

1.7% 1.9%
1.4% 1 .5%
1.4% 1 .5%
0.6% 0.4%
0.6% 0.4%
0.6% 0.4%

FIGURE 7 .24 The min rates for gee and spice with a cache llke that In the DecStatlon
3100 but with a block size of four words and auoclatlvlty varylni from on•way to four
way.

9.0%

8.0%

7 .0%

6.0%

� 5.0% �
"' "' 4.0% �

3.0%

2.0%

1.0%

0.0%
Direct mapped 2-way 4-way 8-way

Set associativity

FIGURE 7 .25 The min rates for each of five cache sizes Improve as the associativity
Increases. While the benefit of going from one-way (direct mapped) to two-way set associative
is significant, the benefits of further associativity shrink. There is little improvement in going
from four-way to eight-way set associative. This data was generated from traces of the VAX run
ning the Ultrix operating system and a multiprogrammed workload. It uses 32-byte blocks and
LRU replacement.

tivity. The low miss rates for spice leave little opportunity for improvement by
associativity.

The advantage of set associativity in improving the miss rate gets smaller as
the cache (or other level in the hierarchy) gets larger. Figure 7.25 shows the
miss rate for caches from one-way to eight-way set associative for five differ-

508 Chapter 7 Large and Fast: Explolting Memory Hierarchy

Tag Index Block Offset

FIGURE 7 .26 The three portions of an address In a set associative or direct mapped
cache. The tag is used to check all the blocks in the set, and the index is used to select the set by
comparing against the blocks. The block offset is the address of the desired data within the block.

ent size caches. The incremental benefit of each additional degree of associa
tivity shrinks. A fully associative cache would have a miss rate only slightly
better than that of the eight-way set associative design. The advantage of asso
ciativity is clearly an improved miss rate. The potential disadvantages are in
creased cost and slower access time, as we will see in the next section.

Question 2: How Is a Block Found?

We have seen how to find a block in a virtual memory system: We simply
index the page table. Similarly, in a direct mapped cache, we index the cache
to find the one block of interest. Let's consider the task of finding a block in a
cache that is set associative. Each block in the cache includes an address tag
that gives the block address. The tag of every cache block that might contain
the desired information is checked to see if it matches the block address from
the CPU. Figure 7.26 shows how the address is decomposed. The index value
is used to select the set containing the address of interest, and the tags of all
the blocks in the set must be searched. Because speed is of the essence, all the
tags in the selected set are searched in parallel. A serial search would make
the hit time of a set associative cache too slow.

If the total size is kept the same, increasing the associativity increases the
number of blocks per set, which is the number of simultaneous compares
needed to perform the search in parallel: Each increase by a factor of two in
associativity doubles the number of blocks per set and halves the number of
sets. Accordingly, each factor of two increase in associativity decreases the size
of the index by 1 bit and increases the size of the tag by 1 bit. In a fully associa
tive cache, there is effectively only 1 set, and all the blocks must be checked in
parallel. Thus, there is no index, and the entire address, excluding the block
offset, is compared against the tag of every block. In other words, we search
the entire cache without any indexing.

In a direct mapped cache, such as that shown in Figure 7.4 on page 460, only
a single comparator is needed, because the entry can be in only one block, and
we access the cache simply by indexing. In a four-way set associative cache,
shown in Figure 7.27, four comparators are needed, together with a 4-to-1
multiplexor to choose among the four potential members of the selected set.
The cache access consists of indexing the appropriate set and then searching
the elements of the set. The costs of an associative cache are the extra compar-

7.4 A Common Framework for Memory Hierarchies 509

Address

31 30 29 28 27 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I t22 8 "

Index v Tag Data v Tag Data v Tag Data v Tag Data

0
1
2

I J I I J I '
253
254
255

' 22 ' 32

1?
L " "

= =

I I

h l �w 1 M"IUPl•!m
!

Hit Data

FIGURE 7 .27 The lmplementatlon of a four-way set associative cache requires four comparators and a 4-to-1 mul
tlplexor. The comparators determine which element of the selected set (if any) matches the tag. The output of the compar
ators is used to select the data from one of the four indexed sets, using a multiplexor. In some implementations, the output
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the output. The
output enable signal comes from the comparators, causing the element that matches to drive the data outputs. This elimi
nates the need for the multiplexor.

510 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

ators and any delay imposed by having to do the compare and select from
among the elements of the set.

The choice among direct mapped, set associative, or fully associative map
ping in any memory hierarchy will depend on the cost of a miss versus the cost
of implementing associativity, both in time and in extra parts. In virtual mem
ory systems, three facts are important in making the choice:

1 . Miss rates are crucial since the miss penalty is so high.

2. The mapping is implemented in software with no cycle time impact.

3. The large page size means the page table size overhead is small.

Therefore, virtual memory systems always use fully associative placement.
Set associative placement is often used for caches and TLBs, where the access
combines indexing and the search of a small set. Many recent systems have
used direct mapped caches because of their advantage in access time and sim
plicity. The advantage in access time occurs because finding the requested
block does not depend on a comparison. Large caches never use fully associa
tive placement, because of the cost and hit time penalties, coupled with the
small performance advantage over a set associative cache. The use of a full
map, like a page table for virtual memory, is not practical for a cache, because
the map would be very large (with considerably more entries than a page
table), and could not be accessed quickly.

Question 3: Which Block Should Be Replaced

on a Cache Miss?

When a miss occurs in an associative cache, we must decide which block to
replace. In a fully associative cache, all blocks are candidates for replacement.
If the cache is set associative, we must choose among the blocks in the set. Of
course, replacement is easy in a direct mapped cache, because there is only
one candidate.

There are two primary strategies employed for selecting which block to re
place:

• Random: Candidate blocks are randomly selected, possibly using some
hardware assistance.

• Least recently used (LRU): The block replaced is the one that has been un
used for the longest time.

A virtue of random selection is that it is simple to build in hardware. As the
number of blocks to keep track of increases, LRU becomes increasingly expen
sive and, in practice, is only approximated. In a two-way set associative cache,
random replacement has a miss rate about 1 . 1 times higher than LRU replace
ment. As the caches become larger, the miss rate for both replacement

7 .4 A Common Framework for Memory Hierarchies 511

strategies falls, and the absolute difference becomes small. LRU replacement
shows a wider advantage with larger degrees of associativity, but it is also
harder to implement. In virtual memory, some form of LRU is always approx
imated since even a tiny reduction in the miss rate can be important when the
cost of a miss is enormous.

Question 4: What Happens on a Write?

A key characteristic of any memory hierarchy is how it deals with writes. We
have already seen the two basic options:

• Write through: The information is written to both the block in the cache
and to the block in the lower level of the memory hierarchy (main mem
ory for a cache). The caches in section 7.2 used this scheme.

• Write back (also called copy back): The information is written only to the
block in the cache. The modified block is written to the lower level of the
hierarchy only when it is replaced. Virtual memory systems always use
write back, for the reasons discussed in section 7.3.

Both write back and write through have their advantages. The key advan
tages of write back are

• Individual words can be written by the processor at the rate the cache,
rather than the memory, can accept them.

• Multiple writes within a block require only one write to the lower level
in the hierarchy.

• When blocks are written back, the system can make effective use of a
wide lower level, since the entire block is written. We also want to wid
en this interface to improve the handling of read misses.

With write through, the advantages are

• Read misses are cheaper, because they never require writes to the lower
level.

• Write through is easier to implement than write back, although to be
practical in a high-speed system, a write-through cache will need to use
a write buffer.

In virtual memory systems, only a write-back policy is practical because of
the long latency of a write to the lower level of the hierarchy (disk). As CPUs
continue to increase in performance at a faster rate than DRAM-based main
memory, the rate at which writes are generated by a processor will exceed 'the
rate at which the memory system can process them, even allowing for physi
cally and logically wider memories. As a consequence, it is likely that more
and more caches will use a write-back strategy in the future.

512 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

• -

While caches, TLBs, and virtual memory may uu
tially look very different, they rely on the same two
principles of locality and can be understood by look
ing at how they deal with four questions:

Question 1: Where can a block be placed?
Answer 1: One place (direct mapped), a few places (set asso

ciative), or any place (fully associative).

Question 2: How is a block found?
Answer 2: There are three methods: indexing (as in a direct

mapped cache), limited search (as in a set associa
tive cache), and full search (as in a fully associa
tive cache). Note that a page table is indexed, but
provides fully associative placement. This is possi
ble because a page table is a full map--every pos
sible index is included in the page table.

Question 3: What block is replaced on a miss?
Answer 3: Typically, either the least recently used or a ran

dom block.

Question 4: How are writes handled?
Answer 4: Each level in the hierarchy can use either write

through or write back.

Elaboration: Actual ly implementing stores efficiently in a cache that uses a write
back strategy is more complex than in a write-through cache. In a write-back cache, we
must write the block back to memory if the data in the cache is d irty and we have a
cache miss. If we simply overwrote the block on a store before we knew whether the
store had hit in the cache (as we would for a write-through cache), we would destroy the
contents of the block, which is not backed up in memory.

This means that stores in a write-back cache either require two cycles (a cycle to
check for a hit followed by a cycle to actually perform the write) or requ ire an extra
buffer, cal led a store buffer, to hold that data-effectively allowing the store to take
only one cycle by pipel in ing it.

7 .4 A Common Framework for Memory Hierarchies

The Three C's: An Intuitive Model for Understanding

the Behavior of Memory Hierarchies

513

In this section, we look at a model that provides good insight into the sources
of misses in a memory hierarchy and how the misses will be affected by
changes in the hierarchy. We will explain the ideas in terms of caches,
although the ideas carry over directly to any other level in the hierarchy. In
this model, all misses are classified into one of three categories:

• Compulsory misses: The first access to a block is not in the cache, so the
block must be brought into the cache. These are also called cold start
misses.

• Capacity misses: If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.

• Conflict misses: If the block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory and capacity miss
es) will occur, because a block can be discarded and later retrieved if too
many blocks map to its set. These are also called collision misses.

Figure 7.28 shows how the miss rate divides into the three sources. These
sources of misses can be directly attacked by changing some aspect of the
cache design. Since conflict misses arise directly from contention for the same
cache block, a fully associative placement avoids all conflict misses. Associa
tivity, however, may slow access time (as we will see shortly), leading to lower
overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, cach
es have been growing steadily larger for many years. Of course, when we
make the cache larger we must also be careful about increasing the access time,
which could lead to slower overall performance.

Because compulsory misses are generated by the first reference to a block,
the primary way for the cache system to reduce the number of compulsory
misses is to increase the block size. This will reduce the number of references
required to touch each block of the program once, because the program will
consist of fewer cache blocks. Increasing the block size too much can have a
negative effect on performance, because of the increase in the miss penalty.

The decomposition of misses into the three C's is a useful qualitative model.
In real cache designs, many of the design choices interact and changing one
cache characteristic will often affect several components of the miss rate. De
spite such shortcomings, this model is a useful way to gain insight into the per
formance of cache designs.

514

20%

18%

16%

Ql 14% a. i!:'
en 12% .!!! E
(ii 10% a.
Ql +"' � 8%
en en � 6%

4%

2%

0%

Chapter 7 Large and Fast: Exploiting Memory Hierarchy

2 4

Conflict 4-way

Conflict 8-way

Capacity

Compulsory

8 16

Cache size (K bytes)

32 64 128

FIGURE 7.28 The miss rate can be broken into the three sources of misses. The total miss rate and source compared
to cache size are shown. The conflict portion is shown for associativities from one-way to eight-way .

• .

The challenge in designing memory hierarchies is
that every change that potentially improves the miss
rate can also negatively affect overall performance as
the table below summarizes. This combination of
the positive and negative effects of each design
parameter is what makes the design of memory

hierarchy challenging.

Increase size
Increase associativity

Increase block size

Decreases capacity misses May increase access time
Decreases miss rate due to May increase access time
conflict misses
Decreases miss rate for a May increase miss penalty
wide range of block sizes

7 .5 Fallacies and Pitfalls 515

• Fallacies and Pitfalls

As one of the most naturally quantitative aspects of the computer architec
ture, memory hierarchy would seem to be less vulnerable to fallacies and pit
falls. Not only have there been many fallacies propagated and pitfalls
encountered, but some have led to major negative outcomes. We start with a
pitfall that often traps students in exercises and exams.

Pitfall: Forgetting to account for byte addressing or the cache block size in simu
lating a cache.

When simulating a cache (by hand or machine), we need to make sure we
account for the effect of byte addressing or multiword blocks in determining
which cache block a given address maps into. For example, if we have a cache
with a size of 32 bytes and a block size of 4 bytes, the byte address 36 maps into
block 1 of the cache, since byte address 36 is block address 9 and (9 modulo 8)
= 1 . On the other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4. Make sure the problem clearly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache
with 256 bytes and a block size of 32 bytes: Which block does the byte address 300 fall into? Byte address 300 is block address

l 330� J =

9 .

The number of blocks in the cache is l 2:26 J = 8 ,

Block number 9 falls into cache block number (9 modulo 8) = 1 .
This mistake catches many people, including authors (in earlier drafts) and

instructors who forget whether they intended the addresses to be in words,
bytes, or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Selecting too small an address space.

Just five years after DEC designed the new PDP-11 computer family, it was
apparent that its creation had a major flaw-the size of its addresses. Address
size limits the program length, since the size of a program and the amount of
data needed by the program must be less than 2address size . The reason the ad
dress size is so hard to change is that it determines the minimum width of any
thing that can contain an address: PC, register, memory word, and effective
address arithmetic. If there is no plan to expand the address from the start, the

516 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

chances of successfully changing address size are so slim that it normally
means the end of that computer family. Bell and Strecker put it like this:

There is only one mistake that can be made in computer design that is dif
ficult to recover from-not having enough address bits for memory ad
dressing and memory management. The PDP-11 followed the unbroken
tradition of nearly every known computer. [Bell, C. G., and W. D. Strecker.
"Computer structures: What have we learned from the PDP-11?," Proc.
Third Annual Symposium on Computer Architecture (January 1976), Pitts
burgh, Penn., 1-14]

The IBM 360 series was announced six years prior to the PDP-11 and contin
ues to sell well with only minor extensions. The reason is that the 360 had a
24-bit address space, and it was possible to extend its address space to 32 bits,
the natural word size for the machine. Similarly, the VAX, introduced as a 32-
bit replacement for the PDP-11, has survived longer, selling over 100,000
units.

A partial list of successful general-purpose machines that eventually
starved to death for lack of address bits includes the PDP-8, PDP-10, PDP-11,
Intel 8086, Intel 80186, Intel 80286 (although the 80386 provided a 16-bit back
ward compatibility mode), AMI 6502, Zilog Z80, Cray-1, and Cray X-MP. In
fact, as this book was being written, Digital announced a new architecture of
fering a 64-bit address space that will replace the VAX. The consensus is that
32 bits of address space is rapidly becoming too little: The R4000 implements
a 64-bit version of the MIPS architecture, and 64-bit versions of the SPARC ar
chitecture and the IBM Power architecture are under development.

Pitfall: Using miss rate as the only metric for evaluating a memory hierarchy.

As we just discussed, miss rate can be a misleading metric when other cache
parameters are ignored. Let's consider a specific example. Suppose that we
were running the workload used for the measurements in Figure 7.25 on page
507. Increasing the direct mapped cache size from 32 KB to 64 KB reduces the
miss rate from 5.0% to about 4.0%. Suppose the machine with the larger cache
has a clock cycle time of 20 ns, while the machine with the smaller cache has a
clock cycle time of 17 ns, and we assume that the CPI without memory stalls is
the same. If the miss penalty is 200 ns and there are 1 .5 memory references per
instruction, the machine with the larger cache is actually slower, despite its su
perior cache hit rate. To see this, use the following equation:

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)

x Clock cycle time

7 .5 Fallacies and Pitfalls 517

where the memory stall cycles are given using the equation from page 477:

Instructions Misses
Memory-stall clock cycles = x . x Miss penalty

Program Instruction

The term misses per instruction combines the instruction and data miss rates
into a single term:

Misses (Data references)
= Instruction miss rate + Data miss rate x ------

Instruction Instruction

For the smaller cache (using IC to stand for instruction per program):

Memory-stall clock cycles = IC x (0.05 + (0.05 x 0.5))

x I Absolute miss penalty l I Clock cycle time

= IC x 0.075 x l 200 1 = 0.9 x IC
Memory-stall clock cycles I 17

For the machine with the larger cache:

Memory-stall clock cycles = IC x (0.04 + (0.04 x 0.5))

x I Absolute miss penalty l
I Clock cycle time

Memory-stall clock cycles = IC x 0.06 x 1 2
2
°
0
° l = 0.6 x IC

Now we can put these pieces into the CPU time equation. Let the CPI without
memory stalls be C. Then the number of CPU clock cycles is C x IC . This
leads to the following CPU execution time for the machine with the smaller
cache:

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
x Clock cycle time

CPU time ((C x IC) + (0.9 x IC)) x 17 ns
17 x C x IC + 15 x IC = (17C + 15) IC

Now, for the larger cache we obtain:

CPU time = (C x IC + 0.6 x IC) x 20 ns
= 20 x C x IC + 18 x IC = (20C + 18) IC

Thus, the machine with the larger cache has a longer execution time and is
actually slower. The next fallacy discusses a common misconception that fol
lows similar lines.

518 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Pitfall: Choosing a set associative cache over a direct mapped cache solely because
the set associative cache has a better miss rate.

As we just saw, the cache access time strongly influences the CPU clock rate.
If the impact on clock rate to implement set associativity exceeds the perfor
mance improvement from the lower miss rate, the set associative cache will
have worse performance than a direct mapped cache. The data in Figures 7.10
and 7.25 clearly show that this can occur.

In the mid-1980s, many designers recognized this danger and selected
direct mapped placement. The advantages of direct mapped caches include
lower costs, faster hit times, and therefore smaller average access times for
large, direct mapped caches. Of course, this choice is highly dependent on the
implementation technology, and the best choice may change from design to
design or over time. In the early 1990s, the migration of first-level caches onto
the processor chip has reduced the overhead required to implement set asso
ciativity and has led some designers to choose set associativity for these small,
on-chip caches.

Pitfall: Extending an address space by adding segments on top of a flat address
space.

During the 1970s, many programs grew so large that not all the code and
data could be addressed with just a 16-bit address. Machines were then re
vised to offer 32-bit addresses, either through a flat 32-bit address space or by
adding 16 bits of segment to the existing 16-bit address. From a marketing
point of view, adding segments that were programmer-visible and that forced
the programmer and compiler to decompose programs into segments could
solve the addressing problem. Unfortunately, there is trouble any time a pro
gramming language wants an address that is larger than one segment, such as
indices for large arrays, unrestricted pointers, or reference parameters. More
over, adding segments can turn every address into two words-one for the
segment number and one for the segment offset--causing problems in the use
of addresses in registers. As this book is being completed, the limits of 32-bit
addresses are being reached. Some architectures, such as the MIPS R4000, DEC
Alpha, and SUN SP ARC, have chosen to support 64-bit flat address spaces.
Others, such as HP PA-RISC are providing an extended address space via seg
mentation, although this may change in the near future. Still other architec
tures, such as the VAX, will come to an end rather than try to make the leap to
a larger address space.

Q) u c ro
E
.g Q) a..

7 .6 Concludlng Remarks 519

• Concluding Remarks

100,000%

10,000%

1,000%

The difficulty of building a memory system to keep pace with faster CPUs is
underscored by the fact that the raw material for main memory, DRAMs, is
essentially the same in the fastest computers as it is in the slowest (and cheap
est). It is the principle of locality that gives us a chance to overcome the long
latency of memory access-and the soundness of this strategy is demon
strated at all levels of the memory hierarchy. Although these levels of the
hierarchy look quite different in quantitative terms, they follow similar strate
gies in their operation and exploit the same properties of locality.

Because CPU speeds continue to increase faster than either DRAM access
times or disk access times, memory will increasingly be a factor that limits per
formance. Processors continue to increase in performance at a spectacular rate,
and DRAMs show every sign of continuing their fourfold improvement in
density every three years. The access time of DRAMs, however, is improving at
a much slower rate-about 7% per year. Figure 7.29 plots optimistic and pes-

CPU (fast)

CPU (slow)

Year

FIGURE 7 .29 Using their 1980 performance as a ba-llne, the performance of DRAM• and processors Is plotted
over time. The DRAM baseline is 64 KB in 1980, with three years to the next generation. The slow processor line assumes
a 19% improvement per year until 1985 and a 50% improvement thereafter. The fast processor line assumes a 26% perfor
mance improvement between 1980 and 1985 and 100% per year thereafter. Note that the vertical axis must be on a logarith
mic scale to record the size of the processor-DRAM performance gap.

520 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

simistic processor performance projections against the steady 7% annual per
formance improvement in DRAM speeds. The processor-DRAM performance
gap is clearly becoming a problem.

Recent Trends

The challenge in designing memory hierarchies to close this growing gap, as
we noted in The Big Picture on page 514, is that all the hardware design
choices for memory hierarchies have both a positive and negative effect on
performance. This means that for each level of the hierarchy there is an opti
mal performance point, which must include some misses. If this is the case,
how can we overcome the growing gap between CPU speeds and lower lev
els of the hierarchy? This question is currently the topic of much research.
One possible answer is to increase the number of levels in the hierarchy, using
multilevel caches. For example, a two-level cache would add another cache
between the first-level cache and the main memory. We can then design each
cache to satisfy different criteria. For example, the first-level cache can be
small enough to match the clock cycle time of a fast processor, while the sec
ond-level cache can be large enough to achieve very high hit rates. This flexi
bility has led to the adoption of two-level caches in a number of machines
announced since 1990. Many recent high-end workstations and microproces
sor-based servers now use two-level caches, with the first-level cache being
on the processor chip.

The parameters of second-level caches may be quite different from those of
first-level caches. The foremost difference between the two levels is that the
speed of the first-level cache usually affects the clock rate of the processor,
while the speed of the second-level cache affects only the miss penalty of the
first-level cache. We can consider, therefore, many alternatives in the second
level cache that would be inappropriate for the first-level cache. Size is one ex
ample. Second-level caches are usually much larger than primary caches. For
example, the Silicon Graphics Crimson workstation uses a 1 MB secondary
cache, which is as large as the main memory of many workstations from the
1980s!

Another attempt to reduce the processor-DRAM performance gap is to re
assess the interface on the DRAM chips. Several efforts are under way to rede
sign that interface to offer much higher bandwidth than standard DRAMs, in
part by supplying a clock to DRAM chips to synchronize transfers and in part
by increasing the number of pins on the DRAMS. In the next several years, we
will know if computer designers will pay the higher costs of specialized
DRAMs to get the higher performance of new interfaces.

Another possible direction is to seek software help. Efficiently managing
the memory hierarchy using a variety of program transformation and hard
ware facilities is a major focus of research in compilers. Two different ideas are

7. 7 Historical Perspective and Further Reading 521

being explored. One idea is to reorganize the program to enhance its spatial
and temporal locality. This approach focuses on loop-oriented programs that
use large arrays as the major data structure; large linear algebra problems are
a typical example. By restructuring the loops that access the arrays, substan
tially improved locality-and, therefore, cache performance-can be obtained.
Another direction is to try to use compiler-directed pre/etching. In prefetching,
a block of data is brought into the cache before it is actually referenced. The
compiler tries to identify data blocks needed in the future and, using special
instructions, tells the memory hierarchy to move the blocks into the cache.
When the block is actually referenced it is found in the cache, rather than caus
ing a cache miss.

As we will see in Chapter 9, memory systems are also a central design issue
for parallel processors. The growing importance of the memory hierarchy in
determining system performance in both uniprocessor and multiprocessor
systems means that this important area will continue to be a focus of both de
signers and researchers for some years to come.

Historical Perspective and Further Reading

Ideally one would desire an indefinitely large memory capacity such that any par
ticular . . . word would be immediately available We are . . . forced to recognize
the possibility of constructing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann,
Preliminary Discussion of the Logical Design

of an Electronic Computing Instrument, 1946

The developments of most of the concepts in this chapter have been driven by
revolutionary advances in the technology we use for memory. Before we dis
cuss how memory hierarchies were developed, let's take a brief tour of the
development of memory technology. In this section, we focus on the technolo
gies for building main memory and caches; Chapter 8 will provide some of
the history of developments in disk technology.

The ENIAC had only a small number of registers (about 20) for its storage
and implemented these with the same basic vacuum tube technology that it
used for building logic circuitry. However, the vacuum tube technology was
far too expensive to be used to build a larger memory capacity. Eckert came up
with the idea of developing a new technology based on mercury delay lines.
In this technology, electrical signals were converted into vibrations that were
sent down a tube of mercury, reaching the other end where they were read out

522 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

FIGURE 7.30 The mercury delay lines in the EDSAC. This technology made it possible to build
the first stored program computer. The young engineer in this photograph is none other than
Maurice Wilkes, the lead architect of the EDSAC. Photo courtesy of The Computer Museum, Bos
ton.

and recirculated. One mercury delay line could store about 0.5K bits. Al
though these bits were accessed serially, the mercury delay line was about a
hundred times more cost-effective than vacuum tube memory. The first
known working mercury delay lines were developed at Cambridge for the
EDSAC. Figure 7.30 shows the mercury delay lines of the EDSAC, which had
32 tanks and a total of 512 36-bit words.

Despite the tremendous advance offered by the mercury delay lines, they
were terribly unreliable and still rather expensive. The breakthrough came
with the invention of core memory by J. Forrester at MIT as part of the Whirl
wind project, in the early 1950s. Core memory uses a ferrite core, which can be
magnetized, and once magnetized, acts as a store (just as a magnetic recording
tape stores information) . A set of wires running through the center of the core
make it possible to read the value stored on any ferrite core. The Whirlwind

7. 7 Historical Perspective and Further Reading 523

FIGURE 7 .31 A core memory plane from the Whirlwind containing 256 cores arranged In a
16x16 array. Core memory was invented for the Whirlwind, which was used for air defense
problems, and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder and
president of Digital for 20 years, built the machine that tested these core memories; it was his first
computer.) Photo courtesy of The Computer Museum, Boston.

eventually included a core memory with 2048 16-bit words, or a total of 32 K
bits. Core memory was a tremendous advance: It was cheaper, faster, much
more reliable, and had higher density.

Core memory was so much better than the alternatives that it became the
dominant memory technology only a few years after its invention and re
mained so for nearly 20 years. The technology that replaced core memory was
the same one that we now use both for logic and memory: the integrated cir
cuit. While registers were built out of transistorized memory in the 1960s, and
IBM machines used transistorized memory for microcode store and caches in
1970, building main memory out of transistors remained prohibitive until the
development of the integrated circuit. With the integrated circuit, it became
possible to build a DRAM (dynamic random access memory-see Appendix B
for a description). The first DRAMS were built at Intel in 1970, and the ma
chines using DRAM memories (as a high-speed option to core) came shortly
thereafter; they used lK-bit DRAMs. Figure 7.32 shows an early DRAM board.
By the late 1970s, core memory became a historical curiosity. Just as core mem
ory technology had allowed a tremendous expansion in memory size, DRAM
technology allowed a comparable expansion. In the 1990s, many personal

524 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

FIGURE 7.32 An early DRAM board. This board uses 18 Kbit chips. Photo courtesy of Interna
tional Business Machines Corporation.

FIGURE 7.33 A modern 1 MB SIMM, using 1 Mbit chips. This SIMM, used in a Macintosh,
sells for about $25/MB. Photo courtesy of MIPS Technology, Inc.

computers have as much memory as the largest machines using core memory
ever had.

Modern DRAMs are often packaged with multiple chips on a little board
(called SIMMs). The SIMM shown in Figure 7.33 contains a total of 1 MB and
sells for about $25 in 1993. While DRAMs will remain the dominant memory

7. 7 Hlstorlcal Perspective and Further Reading 525

technology for some time to come, dramatic innovations in the packaging of
DRAMs to provide both higher bandwidth and greater density are ongoing.

The Development of Memory Hierarchies

Although the pioneers of computing foresaw the need for a memory hierar
chy and coined the term, the automatic management of two levels was first
proposed by Kilburn and his colleagues and demonstrated at the University
of Manchester with the Atlas computer, which implemented virtual memory.
This was the year before the IBM 360 was announced. IBM planned to include
virtual memory with the next generation (System/370), but the operating sys
tem wasn't up to the challenge in 1970. Virtual memory was announced for
the 370 family in 1972, and it was for this machine that the term translation
lookaside buffer was coined. The only computers today without virtual mem
ory are a few supercomputers, and even they may add this feature in the near
future.

The problems of inadequate address space have plagued designers repeat
edly. The architects of the PDP-11 identified a small address space as the only
architectural mistake that is difficult to recover from. When the PDP-11 was
designed, core memory densities were increasing at a very slow rate, and the
competition from 100 other minicomputer companies meant that DEC might
not have a cost-competitive product if every address had to go through the
16-bit datapath twice. Hence the decision to add just four more address bits
than the predecessor of the PDP-11 . The architects of the IBM 360 were aware
of the importance of address size and planned for the architecture to extend to
32 bits of address. Only 24 bits were used in the IBM 360, however, because the
low-end 360 models would have been even slower with the larger addresses.
Unfortunately, the expansion effort was greatly complicated by programmers
who stored extra information in the upper eight "unused" address bits.

Many of the early ideas in memory hierarchies originated in England. Just
a few years after the Atlas paper, Wilkes [1965] published the first paper de
scribing the concept of a cache, calling it a slave:

The use is discussed of a fast core memory of, say, 32,000 words as slave to
a slower core memory of, say, one million words in such a way that in prac
tical cases the effective access time is nearer that of the fast memory than
that of the slow memory.

This two-page paper describes a direct mapped cache. While this was the
first publication on caches, the first implementation was probably a direct
mapped instruction cache built at the University of Cambridge by Scarrott and
described at the 1965 IFIP Congress. It was based on tunnel diode memory, the
fastest form of memory available at the time.

526 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Subsequent to that publication, IBM started a project that led to the first
commercial machine with a cache, the IBM 360/85. Gibson at IBM recognized
that memory-accessing behavior would have a significant impact on perfor
mance. He described how to measure program behavior and cache behavior
and showed that the miss rate varies between programs. Using a sample of 20
programs (each with 3 million references-an incredible number for that
time), Gibson analyzed the effectiveness of caches using average memory
access time as the metric. Conti, Gibson, and Pitkowsky described the result
ing performance of the 360/85 in the first paper to use the term cache. Since this
early work, it has become clear that caches are one of the most important ideas
not only in computer architecture, but in software systems as well. The idea of
caching has found applications in operating systems, networking systems,
databases, and compilers, to name a few. There are thousands of papers on the
topic of caching, and it continues to be an important area of research.

Protection Mechanisms

Architectural support for protection has varied greatly over the past 20 years.
In early machines, before virtual memory, protection was very simple at best.
In the 1970s, more elaborate mechanisms that supported different protection
levels (called rings) were invented. In the late 1970s and early 1980s, very
elaborate mechanisms for protection were devised and later built; these
mechanisms supported a variety of powerful protection schemes that allowed
controlled instances of sharing, in such a way that a process could share data
while controlling exactly what was done to the data. The most powerful
method, called capabilities, created a data object that described the access
rights to some portion of memory. These capabilities could then be passed to
other processes, thus granting access to the object described by the capability.
Supporting this sophisticated protection mechanism was both complex and
costly, because creation, copying, and manipulation of capabilities required a
combination of operating system and hardware support. Recent machines all
support a simpler protection scheme based on virtual memory, similar to that
discussed in section 7.3.

To Probe Further

Conti, C., D. H. Gibson, and S. H. Pitowsky [1968). "Structural aspects of the System/360 Model
85, part I: General organization," IBM Systems J. 7:1, 2-14.

Describes the first commercial machine to use a cache and its resulting performance.

Hennessy, J., and D. Patterson [1990). Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, San Mateo, Calif., Chapter 8.

For more in-depth coverage of a variety of topics including protection, register windows, improving write
performance, virtually addressed caches, multilevel caches, and cache coherency.

7 .8 Exercises 527

Kilburn, T., D. B. G. Edwards, M. J. Lanigan, F. H. Sumner [1962]. "One-level storage system,"
IRE Transactions on Electronic Computers EC-11 (April) 223-35. Also appears in D. P. Siewiorek, C.
G. Bell, and A. Newell, Computer Structures: Principles and Examples, McGraw-Hill, New York,
135-48, 1982.

This classical paper is the first proposal for virtual memory.

Przybylski, S. A. (1990]. Cache and Memory Hierarchy Design: A Performance-Directed Approach,
Morgan Kaufmann Publishers, San Mateo, Calif.

A thorough exploration of multi-level memory hierarchies and their performance.

Smith, A. J. [1982]. "Cache memories," Computing Surveys 14:3 (September) 473-530.

The classic survey paper on caches. This paper defined the terminology for the field and has served as a ref
erence for many computer designers.

Tanenbaum, A. [1991] . Operating Systems Principles, Addison-Wesley, Reading, Mass.

An operating system textbook with a good discussion of virtual memory.

Wilkes, M. (1965]. "Slave memories and dynamic storage allocation," IEEE Trans. Electronic Com
puters EC-14:2 (April) 270-71.

The first, classic, paper on caches .

• Exercises

7.1 [10] <§7.2> Here is a string of address references given as word
addresses: 1, 4, 8, 5, 20, 17, 19, 56, 9, 11 , 4, 43, 5, 6, 9, 17. Assuming a direct
mapped cache with 16 one-word blocks that is initially empty, label each ref
erence in the list as a hit or miss and show the final contents of the cache.

7.2 [10] <§7.2> Using the reference string listed in Exercise 7.1, show the hits
and misses and final cache contents for a direct mapped cache with four-word
blocks and a total size of 16 words.

7.3 [10] <§7.2, 7.4> Using the reference string listed in Exercise 7.1, show the
hits and misses and final cache contents for a two-way set associative cache
with one-word blocks and a total size of 16 words. Assume LRU replacement.

7.4 [10] <§7.2, 7.4> Using the reference string listed in Exercise 7.1, show the
hits and misses and final cache contents for a fully associative cache with one
word blocks and a total size of 16 words. Assume LRU replacement.

7.5 [10] <§7.2, 7.4> Using the reference string listed in Exercise 7.1, show the
hits and misses and final cache contents for a fully associative cache with four
word blocks and a total size of 16 words. Assume LRU replacement.

7 .6 [15] <§7.2> Cache Cl is direct mapped with 16 one-word blocks. Cache C2
is direct mapped with 4 four-word blocks. Assume that the miss penalty for

528 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

Cl is 8 clock cycles and the miss penalty for C2 is 1 1 clock cycles. Assuming
that the caches are initially empty, find a reference string for which C2 has a
lower miss rate but spends more cycles on cache misses than Cl . Use word
addresses.

7. 7 [15] <§7.2> For the caches in Exercise 7.6, find a reference string for which
C2 has more misses than Cl. Use word addresses.

7.8 [10] <§7.2> Compute the number of bytes in the cache in Figure 7.9.

7 .9 [15] <§7.3> Consider a virtual memory system with the following proper
ties:

• 40-bit virtual address

• 16 KB pages

• 36-bit physical address

What is the total size of the page table for each process on this machine,
assuming that the valid, protection, dirty, and use bits take a total of 4 bits and
that all the virtual pages are in use. Assume that disk addresses are not stored
in the page table.

7.10 [15] <§7.3> Assume that the virtual memory system of Exercise 7.9 is im
plemented with a two-way set associative TLB with a total of 256 TLB entries.
Show the virtual to physical mapping with a figure like the top half of
Figure 7.19 on page 494. Make sure to label the width of all fields and signals.

7 .11 [15] <§7.2, 7.4> Assume that the cache for the system described in Exer
cise 7.9 is two-way set associative and has eight-word blocks and a total size
of 16 KB. Show the cache organization and access using the same format as
Figure 7.27 on page 509.

7 .12 [10] <§7.2> Find a method to eliminate the AND gate on the valid bit in
Figure 7.6 on page 463. Hint: you need to change the comparison.

7.13 [20] <§7.2, 7.4> Consider three machines with different cache configura
tions:

1 . Cache 1 : Direct mapped with one-word blocks.

2. Cache 2: Direct mapped with four-word blocks.

3. Cache 3: 2-way set associative with four-word blocks.

The following miss rate measurements have been made:

1 . Cache 1: Instruction miss rate is 4%; data miss rate 8%.

2. Cache 2: Instruction miss rate is 2%; data miss rate 5%.

529

3. Cache 3: Instruction miss rate is 2%; data miss rate 4%.

For these machines, one-half of the instructions contain a data reference.
Assume that the cache miss penalty is 6 + Block size in words . The CPI for
this workload was measured on a machine with cache 1 and was found to
be 2.0.

Determine which machine spends the most cycles on cache misses.

7.14 [5] <§7.2> {ex. 7.13} The clock rates for the machines in Exercise 7.13 are
10 ns for the first and second machine and 12 ns for the third machine. Deter
mine which machine is the fastest and which is the slowest.

7 .15 [10] <§7.2> Consider a memory hierarchy using one of the three organi
zations for main memory shown in Figure 7.12 on page 474. Assume that the
cache block size is 16 words, that the width of organization b of the figure is
four words, and the number of banks in organization c is four. If the main
memory latency for a new access is 10 cycles and the transfer time is one cycle,
what are the miss penalties for each of these organizations?

7.16 [10] <§7.2> {ex. 7.15 } Suppose a processor with a 16-word block size has
an effective miss rate per instruction of 0.5%. Assume the CPI without cache
misses is 1 .2. How much faster is this processor when using the wide memory
described in Exercise 7.15 compared to the narrow or interleaved memories
described in the exercise?

7.17 [20] <§7.2-7.4> In a memory hierarchy like that of Figure 7.19 that in
cludes a TLB and a cache organized as shown, a memory reference can en
counter three different types of misses: a cache miss, a TLB miss, and a page
fault. Consider all the combinations of these three events with one or more oc
curring (seven possibilities). For each possibility, state whether this event can
actually occur and under what circumstances.

7.18 [3 hours] <§7.2-7.4> Use a cache simulator to simulate several different
cache organizations for the first 1 million references in a trace of gee. Both din
ero (a cache simulator) and the gee traces are available-see the preface. As
sume an instruction cache of 32 KB and a data cache of 32 KB using the same
organization. You should choose at least two kinds for associativity and two
block sizes. Draw a diagram like that in Figure 7.27 showing the data cache or
ganization with the best hit rate.

7.19 [4 hours] <§7.2-7.4> We want to use a cache simulator to simulate sev
eral different TLB and virtual memory organizations. Use the first 1 million

530 Chapter 7 Large and Fast: Exploltlng Memory Hierarchy

references of gee for this evaluation. We want to know the TLB miss rate for
each of the following TLBs and page sizes:

1 . 64-entry TLB with full associativity and 4 KB pages

2. 32-entry TLB with full associativity and 8 KB pages

3. 64-entry TLB with 8-way associativity and 4 KB pages

4. 128-entry TLB with 4-way associativity and 4 KB pages

In More Depth

To capture the fact that the time to access data for both hits and misses affects
performance, designers often use average memory access time (AMAT) as a
way to examine alternative cache designs. Average memory access time is the
average time to access memory considering both hits and misses and the fre
quency of different accesses; it is equal to the following:

AMAT = Time for a hit + Miss rate x Miss penalty

AMAT is useful as a figure of merit for different cache systems.

7.20 [10] <§7.2> Find the AMAT for a machine with a 10-ns clock, a miss pen
alty of 20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache
access time including hit detection of 1 clock cycle. Assume that the read and
write miss penalties are the same and ignore other write stalls.

7.21 [10] <§7.2> Suppose we can improve the miss rate to 0.03 misses per ref
erence by doubling the cache size. This causes the cache access time to increase
to 1 .2 clock cycles. Using the AMAT as a metric, determine if this is a good
trade-off.

7.22 [10] <§7.2> If the cache access time determines the processor's clock cy
cle time, which is often the case, AMAT may not correctly indicate whether
one cache organization is better than another. If the machine's clock cycle time
must be changed to match that of a cache, is this a good trade-off? Assume the
machines are identical except for the clock rate and number of cache miss cy
cles; assume 1 .5 references per instruction and a CPI without cache misses of
2. The miss penalty is 20 cycles for both machines.

7.23 [1 day] <§7.2, 7.4> You are commissioned to design a cache for a MIPS
R3000 system. It has a 32-bit physical byte address and requires separate in
struction and data caches. The RAMs have an access time of 15 ns, and a size
of 32 K x 8 bits, and you have a total of 16 RAMs to use. The miss penalty for
the memory system is 8 + 2 x Block size in words . Using set associativity adds
2 ns to the cache access time. Using the first 1 million references of gee, find the
best I and D cache organizations, given the available RAMs.

I/0 certainly has been lagging
in the last decade.

Seymour Cray
Public lecture, 1976

Interfacing

Processors

and Peripherals

8.1 Introduction 534

8.2 1/0 Performance Measures: Some Examples from Disk

and File Systems 537

8.3 Types and Characteristics of 1/0 Devices 539

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 548

8.5 Interfacing 1/0 Devices to the Memory, Processor, and

Operating System 565

8.6 Fallacies and Pitfalls 576

8. 7 Concluding Remarks 578

8.8 Historical Perspective and Further Reading 581

8.9 Exercises 584

The Five Classic Components of a Computer

Evaluating
Performance

Processor

Compiler

Memory

\ \
Input

\
\ \

Output

\

534 Chapter 8 Interfacing Processors and Peripherals

II Introduction

As in processors, many of the characteristics of input/output (1/0) systems are
driven by technology. For example, the properties of disk drives affect how
the disks should be connected to the processor, as well as how the operating
system interacts with the disks. 1/0 systems, however, differ from processors
in several important ways. Although processor designers often focus prima
rily on performance, designers of 1/0 systems must consider issues such as
expandability and resilience in the face of failure as much as they consider
performance. Second, performance in an 1/0 system is a more complex mea
surement than for a processor. For example, with some devices we may care
primarily about access latency, while with others throughput is crucial. Fur
thermore, performance depends on many aspects of the system: the device
characteristics, the connection between the device and the rest of the system,
the memory hierarchy, and the operating system. Figure 8.1 shows the struc-

Processor

Main
memory

Interrupts

Memory-1/0 bus

1/0 1/0
controller controller

Graphics
output

1/0
controller

Network
r

)

FIGURE 8.1 Typical collection of 1/0 devices. The connections between the I/O devices, processor,
and memory are usually called buses. Communication among the devices and the processor use both
protocols on the bus and interrupts, as we will see in this chapter.

8.1 Introduction 535

ture of a system with its 1/0. All of the components from the individual 1/0
devices to the processor to the system software will affect the performance of
tasks that include 1/0.

The difficulties in assessing and designing 1/0 systems have often relegat
ed 1/0 to second-class status. Research focuses on processor design; compa
nies present performance using primarily processor-oriented measures;
courses in every aspect of computing, from programming to computer archi
tecture, often ignore 1/0 or give it scanty coverage; and textbooks leave the
subject to near the end, making it easier for students and instructors to skip it!

This situation doesn't make sense: imagine how you'd like to use a com
puter without 1/0! Furthermore, in an era when machines from low-end PCs
to the fastest mainframes and even supercomputers are being built from the
same basic microprocessor technology, 1/0 capability is often one of the most
distinctive features of the machines. Many of the recent developments in the
computer industry are exciting as much for their new 1/0 capabilities as for
their processor power. This is because machines interact with people through
1/0.

If these concerns are still not convincing, our discussion of Amdahl's Law
in Chapter 2 should remind us that ignoring 1/0 is dangerous. A simple ex
ample demonstrates this.

Suppose we have a benchmark that executes in 100 seconds of elapsed time,
where 90 seconds is CPU time and the rest is 1/0 time. If CPU time im
proves by 50°/c, per year for the next five years but 1/0 time doesn't improve,
how much faster will our program run at the end of five years?

We know that

Elapsed time = CPU time + 1/0 time

100 = 90 + 1/0 time

I/ 0 time = 10 seconds

The new CPU times and the resulting elapsed times are computed in the fol
lowing table:

536 Chapter 8 Interfacing Processors and Peripherals

After n years

0

1

2

3

4

5

CPU time
90 seconds

9 0
- = 6 0 seconds
1 . 5

6 0
- = 4 0 seconds
1 . 5

4 0
- = 2 7 seconds
1 . 5

2 7
- = 1 8 seconds
1 . 5

1 8
- = 1 2 seconds
1 . 5

1/0 time
10 seconds

10 seconds

10 seconds

10 seconds

10 seconds

10 seconds

Elapsed time
100 seconds

70 seconds

50 seconds

37 seconds

28 seconds

22 seconds

The improvement in CPU performance over five years is

90
= 7.5

12

However, the improvement in elapsed time is only
100

= 4.5
22

% 1/0 time
10%

14%

20%

27%

36%

45%

and the I/0 time has increased from 10% to 45% of the elapsed time.

How we should assess I/0 performance often depends on the application.
In some environments, we may care primarily about system throughput. In
these cases, 1/0 bandwidth will be most important. Even 1/0 bandwidth can
be measured in two different ways:

1. How much data can we move through the system in a certain time?

2. How many 1/0 operations can we do per unit time?

Which measurement is best may depend on the environment. For example,
in many supercomputer applications, most I/0 requests are for long streams
of data, and transfer bandwidth is the important characteristic. In another en
vironment, we may wish to process a large number of small, unrelated access
es to an 1/0 device. An example of such an environment might be a tax
processing office of the National Income Tax Service (NITS). NITS mostly
cares about processing a large number of forms in a given time; each tax form
is stored separately and is fairly small. A system oriented toward large file
transfer may be satisfactory, but an 1/0 system that can support the simulta-

•

8.2 1/0 Performance Measures: Some Examples from Disk and File Systems 537

neous transfer of many small files may be cheaper and faster for processing
millions of tax forms.

In other applications, we care primarily about response time, which you
will recall is the total elapsed time to accomplish a particular task. If the 1/0
requests are extremely large, response time will depend heavily on band
width, but in many environments most accesses will be small, and the 1/0 sys
tem with the lowest latency per access will deliver the best response time. On
single-user machines such as workstations and personal computers, response
time is the key performance characteristic.

A large number of applications, especially in the vast commercial market
for computing, require both high throughput and short response times. Exam
ples include automatic teller machines (ATMs), airline reservation systems, or
der entry and inventory tracking systems, file servers, and machines for
timesharing. In such environments, we care about both how long each task
takes and how many tasks we can process in a second. The number of ATM re
quests you can process per hour doesn't matter if each one takes 15 minutes
you won't have any customers left! Similarly, if you can process each ATM re
quest quickly, but only handle a small number of requests at once, you won't
be able to support many ATMs or the cost of the computer per ATM will be
very high.

If 1/0 is truly important, how should we compare 1/0 systems? This is a
complex question, because 1/0 performance depends on many aspects of the
system and different applications stress different aspects of the 1/0 system.
Furthermore, a design can trade response time for throughput, or vice versa,
making it impossible to measure just one aspect in isolation. For example, re
sponse time is generally minimized by handling a request as early as possible,
while greater throughput can be achieved if we try to handle related requests
together. Accordingly, we may increase throughput on a disk by grouping re
quests that access locations that are close together. Such a policy will increase
the response time for some requests. As a result, throughput may improve, but
average response time will probably increase.

Before discussing the aspects of I/O devices and how they are connected,
let's look briefly at some performance measures for 1/0 systems .

1/0 Performance Measures: Some

Examples from Disk and File Systems

Assessment of an 1/0 system must take into account a variety of factors. Per
formance is one of these, and in this section, we give some examples of mea
surements proposed for determining the performance of disk systems. These
benchmarks are affected by a variety of system features, including the disk
technology, how disks are connected, the memory system, the processor, and

538 Chapter 8 Interfacing Processors and Perlpherals

the file system provided by the operating system. Overall, the state of bench
marking on the I/O side of computer systems remains quite primitive com
pared with the extensive activity lately seen in benchmarking processor
systems. Perhaps this situation will change as designers realize the impor
tance of I/0 and the inadequacy of our techniques to evaluate it.

Supercomputer 1/0 Benchmarks

Supercomputer I/O is dominated by accesses to large files on magnetic disks.
Many supercomputer installations run batch jobs, each of which may last for
hours. In these situations, I/O consists of one large read followed by writes to
snapshot the state of the computation should the computer crash. As a result,
supercomputer I/O in many cases consists more of output than input. The
overriding supercomputer I/O measure is data throughput: the number of
bytes per second that can be transferred between a supercomputer's main
memory and disks during large transfers.

Transaction Processing 1/0 Benchmarks

Transaction processing (TP) applications involve both a response time require
ment and a performance measurement based on throughput. Furthermore,
most of the I/O accesses are small. Because of this, TP applications are chiefly
concerned with J/0 rate, measured as the number of disk accesses per second,
as opposed to data rate, measured as bytes of data per second. TP applications
generally involve changes to a large data base with the system meeting some
response time requirements as well as gracefully handling certain types of
failures. These applications are extremely critical and cost-sensitive. For
example, banks normally use TP systems because they are concerned about a
range of characteristics. These include making sure transactions aren't lost,
handling transactions quickly, and minimizing the cost of processing each
transaction. Although reliability in the face of failure is an absolute require
ment in such systems, both response time and throughput are critical to
building cost-effective systems.

A number of transaction processing benchmarks have been developed. The
best known benchmark, called TPC-B, has a number of variations. The basic
benchmark simulates a transaction system such as a network of ATMs. Perfor
mance is rated as throughput with the additional requirement that only trans
actions serviced within a predetermined, constant response time count toward
the service rate. The throughput measure is transactions per second or TPS; in
1993, the TPS for high-end, one-processor machines is about 300.

Depending on how cleverly the transaction processing system is designed,
each transaction results in between 2 and 10 disk I /Os and takes between 5,000
and 20,000 CPU instructions per disk I/O. What makes this benchmark partic-

8.3 Types and Characteristics of 1/0 Devices 539

ularly challenging is that the size of the database is scaled up as the TPS rate
increases. This reflects how real systems operate and prevents the database
from becoming totally memory resident on very large machines. The follow
ing table shows how the number of ATMs and the database size scale with the
target TPS rate:

fl'."':.'..JP-S� i. --;f NUm0ber CJf. ATMS'jj!.Account-file· size·
:�

• � �· � • ,c;.: " • •• r .•• '- , - J:. ·� -. ...,. ...-... - - �

10 1000 0.1 GB

100 10.000 1.0 GB

1000 100,000 10.0 GB

10,000 1 ,000,000 100.0 GB

File System 1/0 Benchmarks

File systems, which are stored on disks, have a different access pattern. For
example, measurements of UNIX file systems in an engineering environment
have found that 80% of accesses are to files of less than 10 KB and that 90% of
all file accesses are to data with sequential addresses on the disk. Further
more, 67% of the accesses were reads, 27% were writes, and 6% were read
write accesses. Such measurements have led to the creation of synthetic file
system benchmarks. One of the most popular of such benchmarks has five
phases, using 70 files with a total size of 200 KB:

• MakeDir: Constructs a directory subtree that is identical in structure to
the given directory subtree.

• Copy: Copies every file from the source subtree to the target subtree.

• ScanDir: Recursively traverses a directory subtree and examines the
status of every file in it.

• ReadAll: Scans every byte of every file in a subtree once.

• Make: Compiles and links all the files in a subtree.

• Types and Characteristics of If O Devices

1/0 devices are incredibly diverse. Three characteristics are useful in organiz
ing this wide variety:

• Behavior: Input (read once), output (write only, cannot be read), or stor
age (can be reread and usually rewritten).

• Partner: Either a human or a machine is at the other end of the 1/0 de
vice, either feeding data on input or reading data on output.

540 Chapter 8 Interfacing Processors and Peripherals

Device Behavior Partner Data rate (K B/sec)

Keyboard I n put Human 0.01

Mouse I n put H uman 0.02

Voice input I n put H u man 0.02

Scanner I n put Human 200.00

Voice output Output H u man 0.60

Line printer Output Human 1.00

Laser printer Output Human 100.00

Graphics display Output Human 30,000.00

Network-terminal I n put or output Machine 0.05

Network-LAN I n put or output Machine 200.00

Floppy disk Storage Machine 50.00

Optical disk Storage Machine 500 00

Magnetic tape Storage Machine 2000.00

Magnetic disk Storage Machine 2000.00

FIGURE 8.2 The diversity of 1/0 devices. 1/0 devices can be distinguished by whether they
serve as input, output, or storage devices, their communication partner (people or other comput
ers), and their peak communication rates. The data rates span six orders of magnitude. Note that
a network can be an input or an output device, but cannot be used for storage. For historical rea
sons, disk and memory sizes as well as transfer rates are always quoted in base two, so that 1 KB
= 1024 bytes. Networks, on the other hand, specify transfer rates in decimal, so that 10 Mb = 10
million bits per second.

• Data rate: The peak rate at which data can be transferred between the
I/O device and the main memory or processor. It is useful to know what
maximum demand the device may generate.

For example, a keyboard is an input device used by a human with a peak data
rate of about 10 bytes per second. Figure 8.2 shows some of the I/0 devices
connected to computers.

In Chapter 1, we briefly discussed four important and characteristic I/O
devices: mice, graphics displays, disks, and networks. We use mice, disks,
and networks as examples to illustrate how I/O devices interface to processors
and memories, but before we do that it will be useful to discuss these devices
in more detail than in Chapter 1 .

Mouse

The interface between a mouse and a system can take one of two forms: the
mouse either generates a series of pulses when it is moved (using the LED
and detector described in Chapter 1 to generate the pulses), or it increments

8.3 Types and Characteristics of 1/0 Devices 541

+20 in Y EJ +20 in Y
-20 in X +20 in X

B
Initial EJ position

of mouse

-20 in Y B -20 in Y
-20 in X +20 in X

FIGURE 8.3 Moving the mouse In the horizontal direction or vertlcal direction causes the
X or Y counter, respectlvely, to Increment or decrement. Moving it along a diagonal causes
both counters to change. Since the ball doesn't move when the mouse is not contacting the sur
face, it may be picked up and moved without changing the counters. When the mouse uses
pulses to communicate its movement, there are four types of pulses: +X, -X, + Y, and -Y. Rather
than generate a change in the counter value, the mouse generates the appropriate number of
pulses on each of the four pulse signal lines. The value 20 is an arbitrary count that measures how
far the mouse has moved.

and decrements counters. Figure 8.3 shows how the counters change when
the mouse is moved and describes how the interface would operate if it gen
erated pulses instead. The processor can periodically read these counters, or
count up the pulses, and determine how far the mouse has moved since it
was last examined. The system then moves the cursor on the screen appropri
ately. This motion appears smooth because the rate at which you can move
the mouse is slow compared with the rate at which the processor can read the
mouse status and move the cursor on the screen.

Most mice also include one or more buttons, and the system must be able
to detect when a button is depressed. By monitoring the status of the button,
the system can also differentiate between clicking the button and holding it
down. Of course, the mapping between the counters and the button position
and what happens on the screen is totally controlled by software. That's why,
for example, the rate at which the mouse moves across the screen and the rate
at which single and double clicks are recognized can usually be set by the user.
Similarly, software interpretation of the mouse position means that the cursor
doesn't jump completely off the screen when the mouse is moved a long dis
tance in one direction. This method of having the system monitor the status of

542 Chapter 8 Interfacing Processors and Peripherals

the mouse by reading signals from it is a common way to interface lower per
formance devices to machines; it is called polling, and we'll revisit it in
section 8.5.

Magnetic Disks

As mentioned in Chapter 1, there are two major types of magnetic
disks: floppy disks and hard disks. Both types of disks rely on a rotating plat
ter coated with a magnetic surface and use a moveable read/write head to
access the disk. Disk storage is nonvolatile, meaning that the data remains
even when power is removed. Because the platters in a hard disk are metal
(or, recently, glass), they have several significant advantages over floppy
disks:

• The hard disk can be larger, because it is rigid.

• The hard disk has higher density, because it can be controlled more pre
cisely.

• The hard disk has a higher data rate, because it spins faster.

• Hard disks can incorporate more than one platter.

For the rest of this section we will focus on hard disks, and we use the term
magnetic disk to mean hard disk.

A magnetic disk consists of a collection of platters (2 to 20), each of which
has two recordable disk surfaces, as shown in Figure 8.4. The stack of platters
is rotated at 3600 to 5400 RPM and has a diameter of from just over an inch to
just over 10 inches. Each disk surface is divided into concentric circles, called
tracks. There are typically 500 to 2000 tracks per surface. Each track is in turn
divided into sectors that contain the information; each track may have 32 to 128
sectors, and the sector is the smallest unit that can be read or written. The se
quence recorded on the magnetic media is a sector number, a gap, the infor
mation for that sector including error correction code (see Appendix B, page
B-33), a gap, the sector number of the next sector, and so on. Traditionally, all
tracks have the same number of sectors and hence the same number of bits.
The wider disks have usually offered the best performance and the smaller di
ameter disks have the best cost per megabyte.

As we saw in Chapter 1 , to read and write information the read/write
heads must be moved so that they are over the correct location. The disk arms
for each surface are connected together and move in conjunction, so that every
arm is over the same track of every surface. The term cylinder is used to refer
to all the tracks under the arms at a given point on all surfaces.

To access data, the operating system must direct the disk through a three
stage process. The first step is to position the arm over the proper track. This
operation is called a seek, and the time to move the arm to the desired track is

8.3 Types and Characteristics of 1/0 Devices 543

� Plottern

Tracks

Platter C: :1JliJ
"" v '"" (/ Q

Sectorn

FIGURE 8.4 Disks are organized Into platters, tracks, and sectors. Both sides of a platter are
coated so that information can be stored on both surfaces. Floppy disks have the same organiza
tion, but consist of only one platter.

called seek time. Disk manufacturers report minimum seek time, maximum
seek time, and average seek time in their manuals. The first two are easy to
measure, but the average is open to wide interpretation because it depends on
the seek distance. The industry has decided to calculate average seek time as
the sum of the time for all possible seeks divided by the number of possible
seeks. Average seek times are usually advertised as 12 ms to 20 ms, but, de
pending on the application and scheduling of disk requests, the actual average
seek time may be only 25% to 33% of the advertised number, due to locality of
disk references. This locality arises both because of successive access to the
same file and because the operating system tries to schedule such access to
gether.

Once the head has reached the correct track, we must wait for the desired
sector to rotate under the read/write head. This time is called the rotation la
tency or rotational delay. The average latency to the desired information is half
way around the disk. Because the disks rotate at 3600 RPM to 5400 RPM, the
average rotation time is between

544 Chapter 8 Interfacing Processors and Peripherals

and

0.5 rotation
Average rotational latency =

3600 RPM
0.5 rotation

seconds
3600 RPM / (60 .)

mmute
0.0083 sec = 8.3 ms

0.5 rotation
Average rotational latency =

5400 RPM
0.5 rotation

seconds
5400 RPM / (60 .)

mmute
0.0056 sec = 5.6 ms

Smaller diameter disks are attractive because they can spin at higher rates
without excessive power consumption, thereby reducing rotational latency.

The last component of a disk access, transfer time, is the time to transfer a
block of bits, typically a sector. This is a function of the transfer size, the rota
tion speed, and the recording density of a track. Transfer rates in 1992 are typ
ically 2 to 4 MB per second.

The detailed control of the disk and the transfer between the disk and the
memory is usually handled by a disk controller. The controller adds the final
component of disk-access time, the controller time, which is the overhead the
controller imposes in performing an 1/0 access. The average time to perform
an 1/0 operation will consist of these four times plus any wait time incurred
because other processes are using the disk.

What is the average time to read or write a 512-byte sector for a typical disk
rotating at 4500 RPM? The advertised average seek time is 20 ms, the trans
fer rate is 2 MB/sec, and the controller overhead is 2 ms. Assume that the
disk is idle so that there is no waiting time.

Average disk access is equal to average seek time + average rotational delay
+ transfer time + controller overhead. Using the advertised average seek
time, the answer is

0.5 KB
20 ms + 6.7 ms + + 2 ms = 20 + 6.7 + 0.2 + 2 = 28.9 ms

2.0 MB/sec
If the measured average seek time is 25% of the advertised average time,

the answer is

5 ms + 6.7 ms + 0.2 ms + 2 ms = 13.9 ms

8.3 Types and Characteristics of 1/0 Devices 545

Notice that when we consider average measured seek time, as opposed to
average advertised seek time, the rotational latency can be the largest com
ponent of the access time.

Disk densities have continued to increase for more than 30 years. The im
pact of this compounded improvement in density and the reduction in
physical size of a disk drive has been amazing, as Figure 8.5 shows. The
aims of different disk designers have led to a wide variety of drives being
available at any particular time. Figure 8.6 shows the characteristics of five
different magnetic disks from three manufacturers. Large-diameter drives
have many more megabytes to amortize the cost of electronics, so the tradi
tional wisdom was that they had the lowest cost per megabyte. But this ad
vantage is offset for the small drives by the much higher sales volume,
which lowers manufacturing costs: In 1993, disks cost between $1 .00 and
$2.00 per megabyte, almost independent of width. The small drives also
have advantages in power and volume.

FIGURE 8.5 Six magnetic disks, varying In diameter from 14 inches down to 1.8 Inches.
These disks were introduced over more than a decade ago and hence are not intended to be rep
resentative of the best 1993 capacity of disks of these diameters. This photograph does, however,
accurately portray their relative physical sizes. The widest disk is the DEC R81, containing four
14-inch diameter platters and storing 456 MB. It was manufactured in 1985. The 8-inch diameter
disk comes from Fujitsu, and this 1984 disk stores 130 MB on six platters. The Micropolis RD53
has five 5.25-inch platters and stores 85 MB. The IBM 0361 also has five platters, but these are just
3.5 inches in diameter. This 1988 disk holds 320 MB. The Conner CP 2045 has two 2.5-inch plat
ters containing 40 MB, and was made in 1990. The smallest and newest disk is the Integral 1820.
This single 1 .8-inch platter contains 20 MB and was made in 1992. (Photographed by Peg Skor
pinski.)

546 Chapter 8 Interfacing Processors and Peripherals

� ,_ B ': t � �U,lli'JJ � 1 1111 · ... :1#-;�r - - P.I:.r.ty.\(;.I
.... �, .. . · ··-- L...,r,il:UJ \'1'H''".l:fll r' J'��

Disk diameter (inches) 10.88 5.25 3.50 2.50 1 .80

Formatted data capacity (MB) 22, 700 1350 1000 63 21

MTIF (hours) 50,000 250,000 400,000 45,000 100,000

Number of arms/box 12 1 1 1 1

Maximum I/Os/second/arm 50 55 55 35 35

Maximum I/Os/second/box 600 55 55 35 35

Rotation speed (RPM) 3600 3600 4318 3600 3600

Transfer rate (MB/sec) 4.2 3-4.2 4 2.3 1.9

Power /box (watts) 2900 37 12 3 2

MB/watt 8 37 102 2 1 10.5

Volume (cu. ft.) 97 1 0.13 0.08 0.02

MB/cu. ft. 234 1350 7692 1050 1050

FIGURE 8.6 Characteristics of five magnetic disks. There is a dramatic variation from the
enormous capacity of the large IBM 3090, intended for mainframes, to the tiny Integral disk, suit
able for portable computers. Although the capacity and I/O rates of the large-diameter disks are
much greater, and the smallest disks take much less space, the IBM 0663 (in the middle) offers the
best storage density per watt and per cubic foot. The entry MTTF is the mean time to failure, which
is a common measure of reliability.

Elaboration: Each track has the same number of bits, and the outer tracks are longer.
The outer tracks thus record information at a lower density per inch of track than do
tracks closer to the center of the disk. Recording more sectors on the outer tracks than
on the inner tracks, cal led constant bit density, is becoming more widespread with the
advent of inte l l igent interface standards such as SCSI (see section 8.4). The rate at
which an inch of track moves under the head varies: it is faster on the outer tracks.
Accordingly, if the number of bits per inch is constant, the rate at which bits must be
read or written varies, and the electronics must accommodate this factor when con
stant bit density is used .

Networks

Networks are the major medium used to communicate between computers.
The table below shows key characteristics of typical networks:

Distance 0.01 to 10,000 kilometers

Speed 0.001 MB/sec to 100 MB/sec

Topology Bus, ring, star, tree

Shared lines None (point-to-point) or shared (multidrop)

8.3 Types and Characteristics of 1/0 Devices 547

We'll illustrate these characteristics with three examples.
The RS232 standard provides a 0.3- to 19.2-Kbit-per-second terminal net

work. A central computer connects to many terminals over slow but cheap ded
icated wires. These point-to-point connections form a star from the central
computer, with each terminal ranging from 10 to 100 meters in distance from
the computer.

The local area network, or LAN, is what is commonly meant today when peo
ple mention a network, and Ethernet is what most people mean when they
mention a LAN. (Ethernet has in fact become such a common term that it is of
ten used as a generic term for LAN.) The Ethernet is essentially a 10,000 Kbit
per-second, one-wire bus that has no central control. Messages, or packets, are
sent over the Ethernet in blocks that vary from 64 bytes to 1518 bytes and take
0.1 ms and 1 .5 ms to send, respectively. An Ethernet is essentially a bus with
multiple masters and a scheme for determining who gets bus control; we'll
discuss how the distributed control is implemented in the Exercises. Because
the Ethernet is a bus, only one sender can be transmitting at any time; this lim
its the bandwidth. In practice, this is not usually a problem because the utili
zation is fairly low. Of course, some LANs become overloaded through poor
capacity planning, and response time and throughput can degrade rapidly at
higher utilization.

Long-haul networks cover distances of 10 to 10,000 kilometers. The first and
most famous long-haul network was the ARP ANET (named after its funding
agency, the Advanced Research Projects Agency of the U.S. government). It
transferred data at 56 Kbits per second and used point-to-point dedicated lines
leased from telephone companies. The host computer talked to an interface
message processor (IMP), which communicated over the telephone lines. The
IMP took information and broke it into 1-Kbit packets, which could take sep
arate paths to the destination node. At each hop a packet was stored (for recov
ery in case of failure) and then forwarded to the proper IMP according to the
address in the packet. The destination IMP reassembled the packets into a
message and then gave it to the host. Most networks today use this packet
switched approach, in which packets are individually routed from source to
destination.

The bandwidths of networks are probably growing faster than the band
width of any other type of device at present. High-speed networks using cop
per and coaxial cable offer 100 Megabit/second bandwidths, while optical
fiber offers bandwidths up to 1 Gigabit/ second. The challenge in putting these
networks into use lies primarily in building systems that can efficiently inter
face to these media and sustain these bandwidths between two programs that
want to communicate. Accomplishing this requires that all the pieces of the
1/0 system, from the operating system to the memory system to the bus to the

548

•

Chapter 8 Interfacing Processors and Peripherals

device interface, be able to accommodate these bandwidths. This is truly a top
to-bottom systems challenge .

Buses: Connecting 1/0 Devices to

Processor and Memory

In a computer system, the various subsystems must have interfaces to one
another. For example, the memory and processor need to communicate, as do
the processor and the I/O devices. This is commonly done with a bus. A bus is
a shared communication link, which uses one set of wires to connect multiple
subsystems. The two major advantages of the bus organization are versatility
and low cost. By defining a single connection scheme, new devices can easily
be added, and peripherals can even be moved between computer systems
that use the same kind of bus. Furthermore, buses are cost effective, because a
single set of wires is shared in multiple ways.

The major disadvantage of a bus is that it creates a communication bottle
neck, possibly limiting the maximum I/O throughput. When I/O must pass
through a single bus, the bandwidth of that bus limits the maximum I/O
throughput. In commercial systems, where I/O is very frequent, and in super
computers, where the I/O rates must be very high because the processor per
formance is high, designing a bus system capable of meeting the demands of
the processor as well as connecting large numbers of I/O devices to the ma
chine presents a major challenge.

One reason bus design is so difficult is that the maximum bus speed is
largely limited by physical factors: the length of the bus and the number of de
vices. These physical limits prevent us from running the bus arbitrarily fast.
Within these limits, there are a variety of techniques we can use to increase the
performance of the bus; however, these techniques may adversely affect other
performance metrics. For example, to obtain fast response time for I/O opera
tions, we must minimize the bus latency by streamlining the communication
path. On the other hand, to sustain high I/O data rates, we must maximize the
bus bandwidth. The bus bandwidth can be increased by using more buffering
and by communicating larger blocks of data, both of which increase the bus la
tency! Clearly, these two goals, low latency and high bandwidth, can lead to
conflicting design requirements. Finally, the need to support a range of devic
es with widely varying latencies and data transfer rates also makes bus design
challenging.

A bus generally contains a set of control lines and a set of data lines. The
control lines are used to signal requests and acknowledgments, and to indicate
what type of information is on the data lines. The data lines of the bus carry
information between the source and the destination. This information may
consist of data, complex commands, or addresses. For example, if a disk wants

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 549

to write some data into memory from a disk sector, the data lines will be used
to indicate the address in memory in which to place the data as well as to carry
the actual data from the disk. The control lines will be used to indicate what
type of information is contained on the data lines of the bus at each point in the
transfer. Some buses have two sets of signal lines to separately communicate
both data and address in a single bus transmission. In either case, the control
lines are used to indicate what the bus contains and to implement the bus pro
tocol. And because the bus is shared, we also need a protocol to decide who
uses it next; we will discuss this problem shortly.

Let's consider a typical bus transaction. A bus transaction includes two
parts: sending the address and receiving or sending the data. Bus transactions
are typically defined by what they do to memory. A read transaction transfers
data from memory (to either the processor or an I/O device), and a write trans
action writes data to the memory. Clearly, this terminology is confusing. To
avoid this, we'll try to use the terms input and output, which are always de
fined from the perspective of the processor. Figure 8.7 shows the steps in a typ
ical output operation, in which data will be read from memory and sent to the
device. Figure 8.8 shows the steps in an input operation where data is read
from the device and written to memory. In both figures, the active portions of
the bus and memory are shown in color, and a read or write is shown by shad
ing the unit, as we did in Chapter 6.

Types of Buses

Buses are traditionally classified as one of three types: processor-memory buses,
I/O buses, or backplane buses. Processor-memory buses are short, generally high
speed, and matched to the memory system so as to maximize memory-pro
cessor bandwidth. I/O buses, by contrast, can be lengthy, can have many
types of devices connected to them, and often have a wide range in the data
bandwidth of the devices connected to them. I/O buses do not typically inter
face directly to the memory, but use either a processor-memory or a back
plane bus to connect to memory. Backplane buses are designed to allow
processors, memory, and I/0 devices to coexist on a single bus; they balance
the demands of processor-memory communication with the demands of I/O
device-memory communication. Backplane buses received their name
because they were often built into the backplane, an interconnection structure
within the chassis; processor, memory, and I/O boards would then plug into
the backplane using the bus for communication.

Processor-memory buses are often design-specific, while both I/0 buses
and backplane buses are frequently re-used in different machines. In fact,
backplane and I/O buses are often standard buses that are used by many differ
ent computers manufactured by different companies. By comparison, proces
sor-memory buses are often proprietary, although in many recent machines

550 Chapter 8 Interfacing Processors and Perlpherals

Control lines

Memory Processor
Data l ines

Disks

a.

Control l ines

Memory Processor
Data lines

Disks

b.

Control lines

Memory Processor
Data lines

Disks

c . .

FIGURE 8.7 The three steps of an output operation. In each step the active participants in the
communication are shown in color. Notice that the data lines of the bus can carry both an address
(as in step a) and data (as in step c). (a) First step in an output operation that reads from memory.
The control lines indicate a read request, while the data lines contain the address. (b) Second step
in an output operation. The memory is accessing the data. (c) Third and final step in an output
operation. The memory transfers the data using the data lines of the bus, signaling that the data is
available with the control lines. The device stores the data as it appears on the bus.

they may be the backplane bus, and the standard or 1/0 buses plug into the
processor-memory bus. In many recent machines, the distinction among these
bus types, especially between backplane buses and processor-memory buses,
may be very minor.

During the design phase, the designer of a processor-memory bus knows
all the types of devices that must connect to the bus, while the 1/0 or back
plane bus designer must design the bus to handle unknown devices that vary
in latency and bandwidth characteristics. Normally, an 1/0 bus presents a
fairly simple and low-level interface to a device, requiring minimal additional
electronics to interface to the bus. A backplane bus usually requires additional
logic to interface between the bus and a device or between the backplane bus
and a lower level 1/0 bus. A backplane bus offers the cost advantage of a

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 551

Control lines

Memory Processor
Data lines

Disks

,a .

Control lines

Memory Processor
Data l ines

Disks

b.

FIGURE 8.8 An Input operation takes less active time because the device does not need
to wait for memory to access data. In the steps shown, we assume that the device did wait for
memory to indicate its readiness, but even this will not be true in some systems. As in the previ
ous figures, the active participants in each step in the communication are shown in color. The
shading on the memory in step (b) indicates that it is writing. (a) First step in an input operation.
The control lines indicate a write request for memory, while the data lines contain the address.
(b) When the memory is ready, it signals the device, which then transfers the data. Typically, the
memory will store the data as it receives it. The device need not wait for the store to be com
pleted.

single bus. Figure 8.9 shows a system using a single backplane bus, a system
using a processor-memory bus with attached 1/0 buses, and a system using
all three types of buses. Machines with a separate processor-memory bus nor
mally use a bus adapter to connect the 1/0 bus to the processor-memory bus.
Some high-performance, expandable systems use an organization that com
bines the three buses: the processor-memory bus has one or more bus adap
tors that interface a standard backplane bus to the processor-memory bus. 1/0
buses, as well as device controllers, can plug into the backplane bus. The IBM
RS/6000 and Silicon Graphics multiprocessors use this type of organization.
This organization offers the advantage that the processor-memory bus can be
made much faster than a backplane or 1/0 bus and that the 1/0 system can be
expanded by plugging many 1/0 controllers or buses into the backplane bus,
which will not affect the speed of the processor-memory bus.

Synchronous and Asynchronous Buses

The substantial differences between the circumstances under which a proces
sor-memory bus and an 1/0 bus or backplane bus are designed lead to two

Processor

a .

Processor

b.

Processor

c.

Backplane bus

1/0 devices

Processor-memory bus

Bus
adapter

1/0
bus

Processor-memory bus

Bus
adapter

Backplane
bus

Bus
adapter

Bus
adapter

Memory

Memory

Memory

FIGURE 8.9 Many machines use a slngle backplane bus for both processor-memory and
1/0 traffic. Some high-performance machines use a separate processor-memory bus that 1/0
buses "plug" into. Some systems make use of all three types of buses, organized in a hierarchy.
(a) A single bus used for processor to memory communication, as well as communication
between 1/0 devices and memory. The bus used in an IBM PC has this structure. (b) A separate
bus is used for processor-memory traffic. To communicate data between memory and 1/0
devices, the 1/0 buses interface to the processor-memory bus, using a bus adapter. The bus
adapter provides speed-matching between the buses. In an Apple Macintosh-II, the processor
memory bus is a NuBus (a backplane bus) that has 1/0 devices that interface directly as well as
an 1/0 bus that plugs into the NuBus; the latter is a SCSI bus. (c) A separate bus is used for pro
cessor-memory traffic. A small number of backplane buses tap into the processor-memory bus.
The processor-memory buses interface to the lower level 1/0 bus. This is usually done with a
single-chip controller, such as a SCSI bus controller. An advantage of this organization is the
small number of taps into the high-speed processor-memory bus. (page 552)

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 553

different schemes for communication on the bus: synchronous and asynchro
nous. If a bus is synchronous, it includes a clock in the control lines and a fixed
protocol for communicating that is relative to the clock. For example, for a
processor-memory bus performing a read from memory, we might have a
protocol that transmits the address and read commands on the first clock
cycle, using the address lines to indicate the type of request. The memory
might then be required to respond with the data word on the fifth clock. This
type of protocol can be implemented easily in a small finite state machine.
Because the protocol is predetermined and involves little logic, the bus can
run very fast and the interface logic will be small. Synchronous buses have
two major disadvantages, however. First, every device on the bus must run at
the same clock rate. Second, because of clock-skew problems, synchronous
buses cannot be long if they are fast (see Appendix B for a discussion of clock
skew). Processor-memory buses are often synchronous because the devices
communicating are close, small in number, and prepared to operate at high
clock rates.

An asynchronous bus is not clocked. Because it is not clocked, an asynchro
nous bus can accommodate a wide variety of devices, and the bus can be
lengthened without worrying about clock skew or synchronization problems.
To coordinate the transmission of data between sender and receiver, an asyn
chronous bus uses a handshaking protocol. A handshaking protocol consists of a
series of steps in which the sender and receiver proceed to the next step only
when both parties agree. The protocol is implemented with an additional set
of control lines.

A simple example will illustrate how asynchronous buses work. Let's con
sider a device requesting a word of data from the memory system. Assume
that there are three control lines:

1. ReadReq: Used to indicate a read request for memory. The address is
put on the data lines at the same time.

2. DataRdy: Used to indicate that the data word is now ready on the data
lines. In an output transaction, the memory will assert this signal since
it is providing the data. In an input transaction, an 1/0 device would
assert this signal, since it would provide data. In either case, the data is
placed on the data lines at the same time.

3. Ack: Used to acknowledge the ReadReq or the DataRdy signal of the
other party.

In an asynchronous protocol, the control signals ReadReq and DataRdy are
asserted until the other party (the memory or the device) indicates that the
control lines have been seen and the data lines have been read; this indication
is made by asserting the Ack line. This complete process is called handshaking.

554 Chapter 8 Interfacing Processors and Perlpherals

ReadReq

Data

Ack

DataRdy

The steps in the protocol begin immediately after the device signals a request by raising ReadReq
and putting the address on the Data l ines:

1. When Memory sees the ReadReq line, it reads the address from the data bus and raises Ack
to indicate it has been seen.

2. 1/0 device sees the Ack l ine high and releases the ReadReq and data lines.
3. Memory sees that ReadReq is low and drops the Ack l ine to acknowledge the Readreq signal.
4. This step starts when the memory has the data ready. It places the data from the read request

on the data lines and raises DataRdy.
5. The 1/0 device sees DataRdy, reads the data from the bus, and signals that it has the data by

raising Ack.
6. The memory sees the Ack signal, drops DataRdy, and releases the data lines.
7. Finally, the 1/0 device, seeing DataRdy go low, drops the Ack line, which indicates that the

transmission is completed.

A new bus transaction can now begin.

FIGURE 8.10 The asynchronous handshaking protocol consists of seven steps to read a
word from memory and receive It In an 1/0 device. The signals in color are those asserted by
the I/0 device, while the memory asserts the signals shown in black. The arrows label the seven
steps and the event that triggers each step. The symbol showing two lines (high and low) at the
same time on the data lines indicates that the data lines have valid data at this point. (The symbol
indicates that the data is valid, but the value is not known.)

Figure 8.10 shows how such a protocol operates by depicting the steps in the
communication.

An asynchronous bus protocol works like a pair of finite state machines
that are communicating in such a way that a machine does not proceed until it
knows that another machine has reached a certain state; thus, the two ma
chines are coordinated.

The handshaking protocol does not solve all the problems of communicat
ing between a sender and receiver that have different clocks. An additional
problem arises when we sample an asynchronous signal (such as ReadReq).
This problem, called a synchronization failure, can lead to unpredictable

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 555

behavior; it can be overcome with devices called synchronizers, which are de
scribed in Appendix B.

Show how the control for an input transaction from an I /O device to mem
ory (as in Figure 8.8) can be implemented as a pair of finite state machines.

Figure 8.11 shows the two finite state machine controllers that implement
the handshaking protocol of Figure 8.10.

If a synchronous bus can be used, it is usually faster than an asynchronous
bus because of the overhead required to perform the handshaking. An exam
ple demonstrates this.

We want to compare the maximum bandwidth for a synchronous and an
asynchronous bus. The synchronous bus has a clock cycle time of 50 ns, and
each bus transmission takes 1 clock cycle. The asynchronous bus requires 40
ns per handshake. The data portion of both buses is 32 bits wide. Find the
bandwidth for each bus when performing one-word reads from a 200-ns
memory.

First, the synchronous bus, which has 50-ns bus cycles. The steps and times
required for the synchronous bus are as follows:

1 . Send the address to memory: 50 ns.

2. Read the memory: 200 ns.

3. Send the data to the device: 50 ns.

Thus, the total time is 300 ns. This yields a maximum bus bandwidth of
4 bytes every 300 ns, or

4 bytes
300 ns

4 MB
0.3 seconds

13.3
MB

second

556 Chapter 8 Interfacing Processors and Perlpherals

At first glance, it might appear that the asynchronous bus will be much
slower, since it will take seven steps, each at least 40 ns, and the step corre
sponding to the memory access will take 200 ns. If we look carefully at
Figure 8.10, we realize that several of the steps can be overlapped with the
memory access time. In particular, the memory receives the address at the
end of step 1 and does not need to put the data on the bus until the begin
ning of step 5; steps 2, 3, and 4 can overlap with the memory access time.
This leads to the following timing:

Step 1: 40 ns

Steps 2, 3, 4: maximum (3 x 40 ns, 200 ns) = 200 ns

Steps 5, 6, 7: 3 x 40 ns = 120 ns

Thus, the total time to perform the transfer is 360 ns, and the maximum
bandwidth is

4 bytes

360 ns

4 MB MB
-- = 11 .1 --
0.36 second

Accordingly, the synchronous bus is only about 20% faster. Of course, to
sustain these rates, the device and memory system on the asynchronous bus
will need to be fairly fast to accomplish each handshaking step in 40 ns.

Even though a synchronous bus may be faster, the choice between a syn
chronous and an asynchronous bus has implications not only for data band
width but also for an 1/0 system's capacity in terms of physical distance and
the number of devices that can be connected to the bus. Asynchronous buses
scale better with technology changes and can support a wider variety of device
response speeds. It is for these reasons that 1/0 buses are often asynchronous,
despite the increased overhead.

Increasing the Bus Bandwidth

Although much of the bandwidth of a bus is decided by the choice of a syn
chronous or asynchronous protocol and the timing characteristics of the bus,
several other factors affect the bandwidth that can be attained by a single
transfer. The most important of these are

l . Data bus width: By increasing the width of the data bus, transfers of
multiple words require fewer bus cycles.

2. Separate versus multiplexed address and data lines: Our example in
Figure 8.8 used the same wires for address and data; including separate
lines for addresses will make the performance of writes faster, because
the address and data can be transmitted in one bus cycle.

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 557

1/0 Device Memory

FIGURE 8.11 These finite state machines Implement the control for the handshaking pro
tocol Illustrated In Figure 8.10. The numbers in each state correspond to the steps shown in
Figure 8.10. The first state of the I/O device (upper left comer) starts the protocol, just as in Fig
ure 8.10. Each state in the finite state machine effectively records the state of both the device and
memory. This is how they stay synchronized during the transaction.

3. Block transfers: Allowing the bus to transfer multiple words in back-to
back bus cycles without sending an address or releasing the bus will
reduce the time needed to transfer a large block.

Each of these design alternatives will increase the bus performance for a
single bus transfer. The cost of implementing one of these enhancements is one

558 Chapter 8 Interfacing Processors and Perlpherals

or more of the following: more bus lines, increased complexity, or increased
response time for requests that may need to wait while a long block transfer
occurs.

Elaboration:Another method for increasing the effective bus bandwidth when multi
ple parties want to communicate on the bus is to release the bus when it is not being
used for transmitting information. Consider the example of a memory read that we
examined in Figure 8.10. What happens to the bus whi le the memory access is occur
ring? In this s imple protocol , the device and memory continue to hold the bus during
the memory access time when no actual transfer is taking place. An alternative proto
col, which releases the bus, would operate l ike this:

1. The device signals the memory and transmits the request and address.

2. After the memory acknowledges the request, both the memory and device
release all control l ines.

3. The memory access occurs, and the bus is free for other uses during this
period.

4. The memory signals the device on the bus to indicate that the data is avai lable.

5. The device receives the data via the bus and signals that it has the data, so the
memory system can release the bus.

For the synchronous bus in the example above , such a scheme would occupy the bus
for only 100 of the 300 ns required for the complete bus transaction.

This type of protocol is called a split transaction protocol. The advantage of such a
protocol is that, by freeing the bus during the time data is not being transmitted, the
protocol al lows another requestor to use the bus. This can improve the effective bus
bandwidth for the entire system, if the memory is sophisticated enough to handle mul
tiple, overlapping transactions.

With a split transaction, however, the time to complete one transfer is probably
increased because the bus must be acquired twice . Split transaction protocols are also
more expensive to implement, primarily because of the need to keep track of the other
party in a communication. In a split transaction protocol , the memory system must
contact the requestor to in itiate the reply portion of the bus transaction, so the identity
of the requestor must be transmitted and retained by the memory system.

Obtaining Access to the Bus

Now that we have reviewed some of the many design options for buses, we
can deal with one of the most important issues in bus design: How is the bus
reserved by a device that wishes to use it to communicate? We touched on
this question in several of the above discussions, and it is crucial in designing
large 1/0 systems that allow 1/0 to occur without the processor's continuous
and low-level involvement.

8.4 Buses: Connecting 1/0 Devices to Processor and Memory 559

Why is a scheme needed for controlling bus access? Without any control,
multiple devices desiring to communicate could each try to assert the control
and data lines for different transfers! Just as chaos reigns in a classroom when
everyone tries to talk at once, multiple devices trying to use the bus simulta
neously would result in confusion.

Chaos is avoided by introducing one or more bus masters into the system.
A bus master controls access to the bus: it must initiate and control all bus re
quests. The processor must be able to initiate a bus request for memory and
thus is always a bus master. The memory is usually a slave-since it will re
spond to read and write requests but never generate its own requests.

The simplest system possible has a single bus master: the processor. Hav
ing a single bus master is similar to what normally happens in a classroom
all communication requires the permission of the instructor. In a single master
system, all bus requests must be controlled by the processor. The steps in
volved in a bus transaction with a single master bus are shown in Figure 8.12.
The major drawback of this approach is that the processor must be involved in
every bus transaction. A single sector read from a disk may require the proces
sor to get involved hundreds to thousands of times, depending on the size of
each transfer. Because devices have become faster and capable of transferring
at much higher bandwidths, involving the processor in every bus transaction
has become less and less attractive.

The alternative scheme is to have multiple bus masters, each of which can
initiate a transfer. If we want to allow several people in a classroom to talk
without the instructor having to recognize each one, we must have a protocol
for deciding who gets to talk next. Similarly, with multiple bus masters, we
must provide a mechanism for arbitrating access to the bus so that it is used in
a cooperative rather than a chaotic way.

Bus Arbitration

Deciding which bus master gets to use the bus next is called bus arbitration.
There are a wide variety of schemes for bus arbitration; these may involve
special hardware or extremely sophisticated bus protocols. In a bus arbitra
tion scheme, a device (or the processor) wanting to use the bus signals a bus
request and is later granted the bus. After a grant, the device can use the bus,
later signaling to the arbiter that the bus is no longer required. The arbiter can
then grant the bus to another device. Most multiple-master buses have a set of
bus lines for performing requests and grants. A bus release line is also needed
if each device does not have its own request line. Sometimes the signals used
for bus arbitration have physically separate lines, while in other systems the
data lines of the bus are used for this function (though this prevents overlap
ping of arbitration with transfer).

560 Chapter 8 Interfacing Processors and Peripherals

Bus request lines

Memory 8 8 Processor
Bus

Disks

a.

Bus request lines

Memory I· 8 8 Processor
Bus

Disks

b.

c.

1:
Bus request l ines

Memory 8 8 Processor
Bus

Disks

FIGURE 8.12 The lnltlal steps In a bus transaction with a single master (the processor). A
set of bus request lines is used by the device to communicate with the processor, which then ini
tiates the bus cycle on behalf of the requesting device. The active lines and units are shown in
color in each step. Shading is used to indicate the source of a read (memory) or destination of a
write (the disk). After step c, the bus cycle continues like a normal read transaction, as in Figure
8.7. (a) First, the device generates a bus request to indicate to the processor that the device
wants to use the bus. (b) The processor responds and generates appropriate bus control sig
nals. For example, if the device wants to perform output from memory, the processor asserts the
read request lines to memory. (c) The processor also notifies the device that its bus request is
being processed; as a result, the device knows it can use the bus and places the address for the
request on the bus.

Arbitration schemes usually try to balance two factors in choosing which
device to grant the bus. First, each device has a bus priority, and the highest pri
ority device should be serviced first. Second, we would prefer that any device,
even one with low priority, never be completely locked out from the bus. This
property, called fairness, ensures that every device that wants to use the bus is
guaranteed to get it eventually. In addition to these factors, more sophisticated
schemes aim at reducing the time needed to arbitrate for the bus. Because ar
bitration time is overhead and increases latency, it should be reduced and
overlapped with bus transfers whenever possible.

8.4 Bu-s: Connecting 1/0 Devices to Processor and Memory 561

Highest priority Lowest priority

Device 1 Device 2 . . . Device n

LJ I Grant I Grant l , , , ,
Bus Grant Release

arbiter I , ,
, , .

Request

FIGURE 8.13 A daisy chain bus u-• a bus grant line that chains through each device
from highest to lowest priority. If the device has requested bus access, it uses the grant line to
determine access has been given to it. Because the grant line is passed on only if a device does not
want access, priority is built into the scheme. The name daisy chain arises from the structure of
the grant line that chains from device to device. The detailed protocol used by a daisy chain is
described in an elaboration on page 562.

Bus arbitration schemes can be divided into four broad classes:

• Daisy chain arbitration: In this scheme, the bus grant line is run through
the devices from highest priority to lowest (the priorities are determined
by the position on the bus). A high-priority device that desires bus ac
cess simply intercepts the bus grant signal, not allowing a lower priority
device to see the signal. Figure 8.13 shows how a daisy chain bus is or
ganized. The advantage of a daisy chain bus is simplicity; the disadvan
tages are that it cannot assure fairness-a low-priority request may be
locked out indefinitely-and the use of the daisy chain grant signal also
limits the bus speed. The VME bus, a standard backplane bus, uses mul
tiple daisy chains for arbitration.

• Centralized, parallel arbitration: These schemes use multiple request
lines, and the devices independently request the bus. A centralized ar
biter chooses from among the devices requesting bus access and notifies
the selected device that it is now bus master. The disadvantage of this
scheme is that it requires a central arbiter, which may become the bot
tleneck for bus usage.

• Distributed arbitration by self-selection: These schemes also use multiple
request lines, but the devices requesting bus access determine who will
be granted access. Each device wanting bus access places a code indicat
ing its identity on the bus. By examining the bus, the devices can deter
mine the highest priority device that has made a request. There is no
need for a central arbiter; each device determines independently wheth-

562 Chapter 8 Interfacing Processors and Peripherals

er it is the high-priority requestor. This scheme, however, does require
more lines for request signals. The NuBus, which is the backplane bus
in Apple Macintosh Ils, uses this scheme.

• Distributed arbitration by collision detection: In this scheme, each device
independently requests the bus. Multiple simultaneous requests result
in a collision. The collision is detected and a scheme for selecting among
the colliding parties is used. Ethernets, which use this scheme, are fur
ther described in Exercise 8.20 on page 591.

The suitability of different arbitration schemes is determined by a variety of
factors including how expandable the bus must be both in terms of the num
ber of I/O devices and the bus length, how fast the arbitration should be, and
what degree of fairness is needed.

protocol followed by a device on a daisy chain bus is

1. Signal the request l ine.

2 . Wait for a transition on the grant l ine from low to high, indicating that the bus is
being reassigned. Intercept the grant signal, and do not al low lower priority
devices to see it. Drop the winning device's request.

3. Use the bus.

4 . Signal that the bus is no longer requ i red by asserting the release l ine.

By watching for a transition on the grant l ine, rather than just a level , we prevent the
device from taking the bus away from a lower priority device that bel ieves it has been
granted bus access. To improve fairness in a daisy chain scheme, we can simply make
the rule that a device that has just used the bus cannot reacqu ire the bus until it sees
the bus request l ine go low. Since a device wil l not release the request l ine until its
request is satisfied, a l l devices w i l l have an opportunity to use the bus before any sin
gle device uses it twice. Some bus systems-VME, for example-use multiple daisy
chains with a separate set of request and grant l ines for each daisy chain and a priority
encoder to select from among the multiple requests.

Bus Standards

Most computers allow users to add additional and even new types of periph
erals. The I/O bus serves as a way of expanding the machine and connecting
new peripherals. To make this easier, the computer industry has developed
several bus standards. The standards serve as a specification for the computer
manufacturer and for the peripheral manufacturer. A bus standard ensures
the computer designer that peripherals will be available for a new machine,
and it ensures the peripheral builder that users will be able to hook up their
new equipment.

8.4 Buses: Connecting 1/0 Devices to Processor and Memory

The different bus characteristics allow the creation of
buses optimized for a wide range of different devices,
number of devices, and bandwidth demands. • .

Figure 8.14 shows some of the design alternatives
we have discussed and what choices might be made in
low-cost versus high-performance systems. In gener

al, higher cost systems use wider and faster buses with more sophisti
cated protocols-typically a synchronous bus for the reasons we saw
in the example on page 555. In contrast, a low-cost system favors a bus
that is narrower and does not require intelligence among the devices
(hence a single master), and is asynchronous so that low-speed devic
es can interface inexpensively .

. , .,option!'"�,; ;.-.-� •High pertormanc·e ·4 � \. · .;:.: :�'l'.ow�cosi'>.' '.'r· . • � · � �.,...).,.__ , J -4 _. 1 , � ' _ _._ ·" ' ""' ..
Bus width Separate address and data lines Multiplex address and data lines

Data width Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits)

Transfer size Multiple words require less bus Single-word transfer is simpler
overhead

Bus masters Multiple masters (requires Single master (no arbitration)
arbitration)

Clocking Synchronous Asynchronous

FIGURE 8.14 The 1/0 bus cta.ractertstlcs determine the performance of 1/0
transfers, the number of 1/0 buses that c an be connected, and the cost of co.
nectlng devices. Shorter buses can be faster, but will not be as expandable. Similarly,
wider buses can have higher bandwidth but will be more expensive. Split transaction
buses are another way to increase bandwidth at the expense of cost (see the Elabora
tion on page 558).

563

Machines sometimes become so popular that their 1/0 buses become de
facto standards, as is the case with the IBM PC-AT bus. Once a bus standard is
heavily used by peripheral designers, other computer manufacturers incorpo
rate that bus and offer a wide range of peripherals. Sometimes standards are
created by groups that are trying to address a common problem. The intelligent
peripheral interface (IPI), small computer system interface (SCSI), and Ethernet are
examples of standards that arose from the cooperation of manufacturers.
Sanctioning bodies like ANSI or IEEE also create and approve standards. The
Futurebus standard was created by an IEEE standards committee.

584 Chapter 8 lnterfactng Processors and Perlpherals

Characteristic VME Bus Nu Bus Future Bus IPI SCSI

Bus type Backplane Backplane Backplane 1/0 1/0
Bus width (signals) 128 96 96 16 8
Address/data Not multiplexed Multi plexed Multiplexed N/A N/A
multiplexed?
Data width (primary) 16-32 bits 32 bits 32 bits 16 bits 8 bits
Number of bus masters Multiple Multiple Multiple Single Multiple
Arbitration Multiple daisy Distributed Distributed NA Self-selection

chain self-selection self-selection
Clocking Asynchronous Synchronous Asynchronous Asynchronous Either
Bandwidth, 150-ns 12-9 M B/sec 13.2 MB/sec 15.5 MB/sec 25.0 MB/sec 5.0 MB/sec or
memory, single word 1 .5 MB/sec
Bandwidth, 150-ns 13.6 MB/sec 26.4 MB/sec 20.8 M B/sec 25.0 MB/sec 5_0 MB/sec or
memory, multiple 1.5 MB/sec
words (infinite length)
Maximum number of 21 16 20 8 7
devices
Maximum bus length 0_5 meter 0.5 meter 0.5 meter 50 meters 25 meters
Standard name I EEE 1014 pending I EEE 896.1 ANSI X3-129 ANSI X3.131

FIGURE 8.16 Key ch•acterlstlcs of five different bus standards. The first three buses are backplane buses and the
last two are 1/0 buses. For the backplane buses, the bandwidth calculations assume a fully loaded bus and are given for
both single-word transfers and block transfers of unlimited length; measurements are shown assuming 150 ns access time.
All these buses can perform single-word or multiword transfers. The bandwidth for the 1/0 buses is given as their maxi
mum data transfer rate. The SCSI standard offers either asynchronous or synchronous 1/0; the asynchronous version
transfers at 1 .5 MB/sec and the synchronous at 5 MB/sec.

Figure 8.15 summarizes the key characteristics of several bus standards.
Two different types of buses are included in this figure. The first three (VME,
NuBus, and FutureBus) are general-purpose, backplane buses designed for in
terconnecting processors, memory, and 1/0 devices. The last two (IPI and
SCSI) are 1/0 buses. Connecting these buses to memory requires a controller
that interfaces the devices on the I / 0 bus to a processor-memory bus. The con
troller coordinates transfers from a device on the 1/0 bus to the memory via
the processor-memory bus.

Bus bandwidth for a general-purpose bus containing memory is not simply
a single number. Because of bus overhead, the size of the transfer affects band
width significantly. Since the bus usually transfers to or from memory, the
speed of the memory also affects the bandwidth.

Buses provide the electrical interconnect among 1/0 devices, processors,
and memory, and also define the lowest level protocol for communication.
Above this basic level, we must define hardware and software protocols for
controlling data transfers between 1/0 devices and memory, and for the pro
cessor to specify commands to the I / 0 devices. These topics are covered in the
next section.

•

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 585

Interfacing 1/0 Devices to the Memory,

Processor, and Operating System

A bus protocol defines how a word or block of data should be communicated
on a set of wires. This still leaves several other tasks that must be performed
to actually cause data to be transferred from a device and into the memory
address space of some user program. This section focuses on these tasks and
will answer such questions as:

• How is a user 1/0 request transformed into a device command and
communicated to the device?

• How are data actually transferred to or from a memory location?

• What is the role of the operating system?

As we will see when we answer these questions, the operating system plays
a major role in handling 1/0, acting as the interface between the hardware and
the program that requests 1/0.

The responsibilities of the operating system arise from three characteristics
of 1/0 systems:

1 . The 1/0 system is shared by multiple programs using the processor.

2. 1/0 systems often use interrupts (externally generated exceptions) to
communicate information about 1/0 operations. Because interrupts
cause a transfer to kernel or supervisor mode, they must be handled by
the operating system (OS).

3. The low-level control of an 1/0 device is complex because it requires
managing a set of concurrent events and because the requirements for
correct device control are often very detailed.

Hardware

Software

Interface

The three characteristics of 1/0 systems above lead to sever
al different functions the OS must provide:

• The OS guarantees that a user's program accesses only
the portions of an 1 /0 device to which the user has
rights. For example, the OS must not allow a program to
read or write a file on disk if the owner of the file has not
granted access to this program. In a system with shared

1/0 devices, protection could not be provided if user programs could per-
form 1/0 directly.

• The OS provides abstractions for accessing devices by supplying rou
tines that handle low-level device operations.

566 Chapter 8 Interfacing Processors and Peripherals

• The OS handles the interrupts generated by 1/0 devices, just as it han
dles the exceptions generated by a program.

• The OS tries to provide equitable access to the shared I/0 resources, as
well as schedule accesses in order to enhance system throughput.

To perform these functions on behalf of user programs, the operating sys
tem must be able to communicate with the 1/0 devices and to prevent the user
program from communicating with the 1/0 devices directly. Three types of
communication are required:

1 . The OS must be able to give commands to the 1/0 devices. These com
mands include not only operations like read and write, but other opera
tions to be done on the device, such as a disk seek.

2. The device must be able to notify the OS when the 1/0 device has com
pleted an operation or has encountered an error. For example, when a
disk has completed a seek, it will notify the OS.

3. Data must be transferred between memory and an 1/0 device. For
example, the block being read on a disk read must be moved from disk
to memory.

In the next few sections, we will see how these communications are per
formed.

Giving Commands to 1/0 Devices

To give a command to an 1/0 device, the processor must be able to address
the device and to supply one or more command words. Two methods are
used to address the device: memory-mapped 1/0 and special 1/0 instructions.
In memory-mapped I/O, portions of the address space are assigned to 1/0
devices. Reads and writes to those addresses are interpreted as commands to
the 1/0 device.

For example, a write operation can be used to send data to an 1/0 device
where the data will be interpreted as a command. When the processor places
the address and data on the memory bus, the memory system ignores the op
eration, because the address indicates a portion of the memory space used for
1/0. The device controller, however, sees the operation, records the data, and
transmits it to the device as a command. User programs are prevented from is
suing 1/0 operations directly, because the OS does not provide access to the
address space assigned to the 1/0 devices and thus the addresses are protect
ed by the address translation. Memory-mapped 1/0 can also be used to trans-

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 567

mit data by writing or reading to select addresses. The device uses the address
to determine the type of command and the data may be provided by a write or
obtained by a read. In any event, the address accessed by the instructions en
codes both the device identity and the type of transmission between processor
and device.

Actually performing a read or write of data to fulfill a program request usu
ally requires several separate 1/0 operations. Furthermore, the processor may
have to interrogate the status of the device between individual commands to
determine whether the command completed successfully. For example, the
DEC LPll line printer has two 1/0 device registers-one for status informa
tion and one for data to be printed. The Status register contains a done bit, set
by the printer when it has printed a character, and an error bit, indicating that
the printer is jammed or out of paper. Each byte of data to be printed is put into
the Data register. The processor must then wait until the printer sets the done
bit before it can place another character in the buffer. The processor must also
check the error bit to determine if a problem has occurred. Each of these oper
ations requires a separate 1/0 device access.

l!Utbc>rcc1tlc>n: The alternative to memory-mapped 1/0 is to use dedicated 1/0 instruc
tions in the processor. These 1/0 instructions can specify both the device number and
the command word (or the location of the command word in memory). The processor
communicates the device address via a set of wires normally included as part of the
1/0 bus. The actual command can be transmitted over the data l ines in the bus. Exam
ples of computers with 1/0 instructions are the Intel 80x86 and the IBM 370 comput
ers. By making the 1/0 instructions i l legal to execute when not in kernel or supervisor
mode, user programs can be prevented from accessing the devices d irectly.

Communicating with the Processor

The process of periodically checking status bits to see if it is time for the next
1/0 operation, as in the previous example, is called polling. Polling is the sim
plest way for an 1/0 device to communicate with the processor. The 1/0
device simply puts the information in a Status register, and the processor
must come and get the information. The processor is totally in control and
does all the work. A mouse is an input-only device that is usually accessed by
polling.

The disadvantage of polling is that it can waste a lot of processor time be
cause processors are so much faster than 1/0 devices. The processor may read
the Status register many times, only to find that the device has not yet complet
ed a comparatively slow 1/0 operation, or that the mouse has not budged
since the last time it was polled. When the device has completed an operation,
we must still read the status to determine whether it was successful.

568 Chapter 8 Interfacing Processors and Peripherals

Let's determine the impact of polling overhead for three different devices.
Assume that the number of clock cycles for a polling operation is 100 and
that the processor executes with a 50-MHz clock.

Determine the fraction of CPU time consumed for the following three
cases, assuming that you poll often enough so that no data is ever lost:

1. The mouse must be polled 30 times per second to ensure that we do not
miss any movement made by the user.

2. The floppy disk transfers data to the processor in 16-bit units and has a
data rate of 50 KB/second. No data transfer can be missed.

3. The hard disk transfers data in one-word chunks and can transfer at
2 MB I second. Again, no transfer can be missed.

First the mouse:

Clock cycles per second for polling = 30 x 100 = 3000 cycles per second

Fraction of the processor clock cycles consumed = 3000
= 0.006%

50 x 106

Polling can clearly be used for the mouse without much performance im
pact on the processor.

For the floppy disk, the rate at which we must poll is

50
KB

second

2
bytes

polling access

= 25K
polling accesses

= 25 x 2
10polling accesses

second second

Thus, we can compute the number of cycles (converting from K to 1024, as
well):

Cycles per second for polling = 25 x 2
10 x 100

5 = 25.6 x 10 clock cycles per second

25.6 x 105
Fraction of the processor consumed = 6 = 5%

50 x 10

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 589

This amount of overhead is substantial, but might be tolerable in a low-end
system with only a few 1/0 devices like this floppy disk.

In the case of the hard disk, we must poll at a rate equal to the data rate
in words, which is SOOK times per second (2 MB per second/ 4 bytes per
transfer). Thus,

Cycles per second for polling = 500 x 2
10 x 100

6 = 51 .2 x 10 cycles per second

51.2 x 106
Fraction of the processor consumed = = 100%

50 x 10
6

Thus the processor is totally consumed by polling the disk. Clearly, polling
will not be acceptable for a hard disk on this machine.

The overhead in a polling interface was recognized long ago, leading to the in
vention of interrupts to notify the processor when an 1/0 device requires at
tention from the processor. Interrupt-driven 1/0, which is used by almost all
systems for at least some devices, employs 1/0 interrupts to indicate to the
processor that an 1/0 device needs attention. When a device wants to notify
the processor that it has completed some operation or needs attention, it caus
es the processor to be interrupted.

An 1/0 interrupt is just like the exceptions we saw in Chapters 5, 6, and 7,
with two important exceptions:

1 . An 1/0 interrupt is asynchronous with respect to the instruction execu
tion. That is, the interrupt is not associated with any instruction and
does not prevent the instruction completion. This is very different from
either page fault exceptions or exceptions such as arithmetic overflow.
Our control unit need only check for a pending 1/0 interrupt at the
time it starts a new instruction.

2. In addition to the fact that an 1/0 interrupt has occurred, we would like
to convey further information such as the identity of the device gener
ating the interrupt. Furthermore, the interrupts represent devices that
may have different priorities and whose interrupt requests have differ
ent urgencies associated with them.

To communicate information to the processor, such as the identity of the
device raising the interrupt, a system can use either vectored interrupts or an
exception Caµse register. When the interrupt is recognized by the processor,
the device can send either the vector address or a status field to place in the
Cause register. As a result, when the OS gets control it knows the identity of

570 Chapter 8 Interfacing Processors and Perlpherals

the device that caused the interrupt and can immediately interrogate the de
vice. An interrupt mechanism eliminates the need for the processor to poll the
device and instead allows the processor to focus on executing programs.

To deal with the different priorities of the 1/0 devices, most interrupt
mechanisms have several levels of priority. These priorities indicate the order in which
the processor should process them. Both internal ly generated exceptions and 1/0 inter
rupts have priorities; typical ly, 1/0 interrupts have lower priority than internal excep
tions. There may be multiple 1/0 interrupt priorities, with h igh-speed devices
associated with the h igher priorities. If the exception mechanism is vectored (see
Chapter 5, section 5.6), the vector address for a fast device wi l l correspond to the
higher priority interrupt. If a Cause register is used , then the register contents for a
faster device are set for the higher priority interrupt.

Transferring the Data between a Device and Memory

We have seen two different methods that enable a device to communicate
with the processor. These two techniques, polling and 1/0 interrupts, form
the basis for two methods of implementing the transfer of data between the
1/0 device and memory. Both these techniques work best with lower band
width devices, where we are more interested in reducing the cost of the
device controller and interface than in a providing a high-bandwidth transfer.
Both polling and interrupt-driven transfers put the burden of moving data
and managing the transfer on the processor. After looking at these two
schemes, we will examine a scheme more suitable for higher performance
devices or collections of devices.

We can use the processor to transfer data between a device and memory
based on polling. Consider our mouse example. The processor can periodical
ly read the mouse counter values and the position of the mouse buttons. If the
position of the mouse or one of its buttons has changed, the operating system
can notify the program associated with interpreting the mouse changes.

An alternative mechanism is to make the transfer of data interrupt driven. In
this case, the OS would still transfer data in small numbers of bytes from or to
the device. But because the 1/0 operation is interrupt driven, the OS simply
works on other tasks while data is being read from or written to the device.
When the OS recognizes an interrupt from the device, it reads the status to
check for errors. If there are none, the OS can supply the next piece of data, for
example, by a sequence of memory-mapped writes. When the last byte of an
1/0 request has been transmitted and the 1/0 operation is completed, the OS
can inform the program. The processor and OS do all the work in this process,
accessing the device and memory for each data item transferred. Let's see how
an interrupt-driven 1/0 interface might work for the floppy disk.

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 571

Suppose we have the same floppy disk and processor we used in the exam
ple on page 568. Assume that it wants to transfer 16-bit quantities at a rate
of 50 KB per second. The overhead for each transfer, including the interrupt,
is 100 clock cycles. Find the fraction of the processor consumed when the
floppy disk is active.

The rate at which we must interrupt the processor when the disk is transfer
ring:

50
KB

second

2
bytes

polling access

Thus,

= 25K
polling accesses

= 25 x 2
10 polling accesses

second second

10 Cycles per second for floppy = 25 x 2 x 100
5

= 25.6 x 10 cycles per second

Fraction of the processor consumed during a transfer

25.6 x 105
= 5%

50 x 106

Of course, the floppy disk is not busy 100% of the time, and the processor
is undisturbed when the disk is idle, since no polling is required. For exam
ple, if the floppy disk is actively transferring only 10% of the time, the over
head is only 0.5%. This absence of overhead when the 1/0 is inactive is the
major advantage of an interrupt-driven interface versus polling.

Interrupt-driven 1/0 relieves the processor from having to wait for every
1/0 event, although if we used this metho� for transferring data from or to a
hard disk, the overhead could still be intolerable, since it would consume 100%
of the processor when the disk was transferring. For high-bandwidth devices
like hard disks, the transfers consist primarily of relatively large blocks of data
(hundreds to thousands of bytes). So computer designers invented a mecha
nism for off-loading the processor and having the device controller transfer
data directly to or from the memory without involving the processor. This
mechanism is called direct memory access (OMA). The interrupt mechanism is

572 Chapter 8 Interfacing Proceuors and Perlpherals

still used by the device to communicate with the processor, but only on com
pletion of the 1/0 transfer or when an error occurs.

OMA is implemented with a specialized controller that transfers data be
tween an 1/0 device and memory independent of the processor. The OMA
controller becomes the bus master and directs the reads or writes between it
self and memory. There are three steps in a OMA transfer:

1. The processor sets up the OMA by supplying the identity of the device,
the operation to perform on the device, the memory address that is the
source or destination of the data to be transferred, and the number of
bytes to transfer.

2. The OMA starts the operation on the device and arbitrates for the bus.
When the data is available (from the device or memory), it transfers the
data. The OMA device supplies the memory address for the read or
write. If the request requires more than one transfer on the bus, the
OMA unit generates the next memory address and initiates the next
transfer. Using this mechanism, a OMA unit can transfer an entire disk
sector that may be thousands of bytes in length without bothering the
processor. Many OMA controllers contain some buffering to allow
them to deal flexibly with delays either in transfer or those incurred
while waiting to become bus master.

3. Once the OMA transfer is complete, the controller interrupts the pro
cessor, which can then determine by interrogating the OMA device or
examining memory whether the entire operation completed success
fully.

There may be multiple OMA devices in a computer system. For example,
in a system with a single processor-memory bus and multiple 1/0 buses, each
I/ 0 bus controller will often contain a OMA processor that handles any trans
fers between a device on the 1 /0 bus and the memory. Let's see how much of
the processor is consumed using OMA to handle our hard disk example.

Suppose we have the same processor and hard disk as our earlier example
on page 568. Assume that the initial set-up of a OMA transfer takes 1000
clock cycles for the processor, and assume the handling of the interrupt at
OMA completion requires 500 clock cycles for the processor. The hard disk
has a transfer rate of 2 MB/second and uses OMA. If the average transfer
from the disk is 4KB, what fraction of the 50-MHz processor is consumed if
the disk is actively transferring 100% of the time? Ignore any impact from
bus contention between the processor and OMA controller.

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 573

Each OMA transfer takes

4 KB 3
---- =

2
x 10- seconds 2 MB

second

So if the disk is constantly transferring, it requires

1000 + 500
cycles

_____ tr_a_n_s_fe_r_ = 750 x 103 clock cycles
2

x 10-3 seconds second
transfer

Since the processor runs at 50 MHz:

Fraction of processor consumed
3 750 x 10

= 15 x 10-3
= 1.5%

50 x 10
6

Unlike either polling or interrupt-driven I/ 0, OMA can be used to interface
a hard disk without consuming all the processor cycles for a single 1/0. In ad
dition, the disk will not be actively transferring data most of the time, and this
number will be considerably lower. Of course, if the processor is also contend
ing for memory, it will be delayed when the memory is busy doing a OMA
transfer. By using caches, the processor can avoid having to access memory
most of the time, thereby leaving most of the memory bandwidth free for use
by I/ 0 devices.

Elt1Ell!1ra1t101111: To further reduce the need to interrupt the processor and occupy it in
handling an 1/0 request that may involve doing several actual operations, the 1/0 con
troller can be made more intell igent. Inte l l igent control lers are often called f/O proces

sors (as well as 1/0 controllers or channel controllers). These special ized processors
basical ly execute a series of 1/0 operations, called an 1/0 program. The program may
be stored in the 1/0 processor, or it may be stored in memory and fetched by the 1/0
processor. When using an 1/0 processor, the operating system typical ly sets up an 1/0
program that indicates the 1/0 operations to be done as wel l as the size and transfer
address for any reads or writes. The 1/0 processor then takes the operations from the
1/0 program and interrupts the processor only when the entire program is completed.
DMA processors are essential ly special-purpose processors (usually single-chip and
nonprogrammable) , whi le 1/0 processors are often implemented with general-purpose
microprocessors, which run a special ized 1/0 program.

574 Chapter 8 Interfacing Processors and Peripherals

Direct Memory Access and the Memory System

When OMA is incorporated into an 1/0 system, the relationship between the
memory system and processor changes. Without OMA, all accesses to the
memory system come from the processor and thus proceed through address
translation and cache access as if the processor generated the references. With
OMA, there is another path to the memory system-one that does not go
through the address translation mechanism or the cache hierarchy. This dif
ference generates some problems in both virtual memory systems and sys
tems with caches. These problems are usually solved with a combination of
hardware techniques and software support.

Hardware

Software

Interface

In a system with virtual memory, should OMA work with
virtual addresses or physical addresses? The obvious prob
lem with virtual addresses is that the OMA unit will need to
translate the virtual addresses to physical addresses. The
major problem with OMA in regard to physical addresses is
that a transfer cannot easily cross a page boundary. If an I/O
request crossed a page boundary, then the memory locations

to which it was being transferred would not be contiguous in the physical
memory. This is because the memory locations would correspond to multiple
virtual pages, each of which could be mapped to any physical page. Conse
quently, if we use physical addresses, we must constrain all OMA transfers to
stay within one page.

One method to allow the system to initiate OMA transfers that cross page
boundaries is to make the OMA work on virtual addresses. In such a system,
the OMA unit has a small number of map entries that provide virtual-to-phys
ical mapping for a transfer. The operating system provides the mapping when
the 1/0 is initiated. By using this mapping, the OMA unit need not worry
about the location of the virtual pages involved in the transfer.

Another technique is for the operating system to break the OMA transfer
into a series of transfers, each confined within a single physical page. The
transfers are then chained together and handed to an I / 0 processor or intelli
gent OMA unit that executes the entire sequence of transfers; alternatively, the
operating system can individually request the transfers.

Whichever method is used, the operating system must still cooperate by not
moving pages around while a OMA transfer involving that page is in progress.

The difficulties in having OMA in a virtual memory system arise because
pages have both a physical and a virtual address. OMA also creates problems

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 575

for systems with caches because there can be two copies of a data item: one in
the cache and one in memory. Because the DMA processor issues memory re
quests directly to the memory rather than through the cache, the value of a
memory location seen by the DMA unit and the processor may differ. Consid
er a read from disk that the DMA unit places directly into memory. If some of
the locations into which the DMA writes are in the cache, the processor will re
ceive the old value when it does a read. Similarly, if the cache is write-back, the
OMA may read a value directly from memory when a newer value is in the
cache, and the value has not been written back. This is called the stale data prob
lem or coherency problem.

Hardware

Software

Interface

This problem is avoided by using one of three major tech
niques. One approach is to route the 1/0 activity through
the cache. This ensures that reads see the latest value while
writes update any data in the cache. Routing all 1/0 through
the cache is expensive and potentially has a large negative
performance impact on the processor, since the 1/0 data is
rarely used immediately and may displace useful data that a

running program needs. A second choice is to have the OS selectively invali
date the cache for an 1/0 read or force write-backs to occur for an 1/0 write
(often called cache flushing). This approach has no hardware drawbacks and is
probably more efficient if the software can perform the function easily and ef
ficiently. Because this flushing of large parts of the cache need only happen on
DMA block accesses, it will be relatively infrequent. The third approach is to
provide a hardware mechanism for selectively flushing (or invalidating) cache
entries. Hardware invalidation to ensure cache coherence is typical in multi
processor systems, and the same technique can be used for 1/0; we discuss
this topic in detail in Chapter 9.

We have looked at three different methods for transferring data between
an 1/0 device and memory. In moving from polling to an interrupt-driven to
a OMA interface, we shift the burden for managing an 1/0 operation from the
processor to a progressively more intelligent 1/0 controller. These methods
have the advantage of freeing up processor cycles. Their disadvantage is that
they increase the cost of the 1/0 system. Because of this, a given computer sys
tem can choose which point along this spectrum is appropriate for the 1/0 de
vices connected to it.

576 Chapter 8 Interfacing Processors and Peripherals

• Fallacles and Pitfalls

Pitfall: Using the peak transfer rate of a portion of the I/0 system to make perfor
mance projections or performance comparisons.

Many of the components of an 1/0 system, from the devices to the controllers
to buses, are specified using their peak bandwidths. In practice, these peak
bandwidth measurements are often based on unrealistic assumptions about
the system or are unattainable due to other system limitations. For example,
in quoting bus performance, the peak transfer rate is often specified using a
memory system that is impossible to build. A VME bus has a peak bandwidth
of about 28 MB/second with an impossible 0 access time memory and 13.6
MB I second with a 150-ns memory. Similarly, if we compared the transfer rate
of Futurebus to VME with 0-ns access time memories, we would conclude
that Futurebus has almost four times the bandwidth of VME. But with 150-ns
memories, Futurebus has only 1 .5 times the bandwidth. In addition to these
gaps between peak and actual performance, Amdahl's Law reminds us that
the throughput of an 1/0 system will be limited by the lowest performance
component in the 1/0 path.

Fallacy: Magnetic storage is on its last legs and will be replaced shortly.

This is both a fallacy and a pitfall. Such claims have been made constantly
for the past 20 years, though the string of failed alternatives in recent years
seems to have reduced the level of claims for the death of magnetic storage.
Among the unsuccessful candidates proposed to replace magnetic storage
have been magnetic bubble memories, optical storage, and photographic stor
age. None of these systems has matched the combination of characteristics that
favor magnetic disks: nonvolatility, low cost, reasonable access time, and high
reliability. Magnetic storage technology continues to improve at the same pace
it has sustained over the past 25 years.

Possibly the biggest challenge for magnetic storage will come from semi
conductor memory. Because semiconductor memory continues to decrease in
price faster than magnetic storage and because it is much faster, it is likely that
semiconductor memory will play an even larger role in future machines. Non
volatile forms of semiconductor memory (flash memories, for example) are
also likely to grow in importance.

Pitfall: Moving functions from the CPU to the I/O processor expecting to improve
performance without a careful analysis.

There are many examples of this pitfall trapping people, although I/O pro
cessors, when properly used, can certainly enhance performance. A frequent

8.6 Fallacies and Pitfalls 577

instance of this fallacy is the use of intelligent 1/0 interfaces, which, because
of the higher overhead to set up an 1/0, can turn out to have worse latency
than a processor-directed 1/0 activity (although if the processor is freed up
sufficiently, system throughput may still increase). Frequently, performance
falls when the 1/0 processor has much lower performance than the main pro
cessor. Consequently, a small amount of main processor time is replaced with
a larger amount of peripheral processor time. Workstation designers have
seen both these phenomena repeatedly.

A more serious problem can occur when the migration of an 1/0 feature
changes the instruction set architecture or system architecture in a program
mer-visible way. This forces all future machines to have to live with a decision
that made sense in the past. If CPUs improve in cost/performance more rap
idly than the 1/0 processor (and this will likely be the case), then moving the
function may result in a slower machine in the next computer.

The most telling example comes from the IBM 360. It was decided that the
performance of the ISAM system, an early database system, would improve if
some of the record searching occurred in the disk controller itself. A key field
was associated with each record, and the device searched each key as the disk
rotated until it found a match. It would then transfer the desired record. This
technique requires an extra large gap between records when a key is present.

The speed at which a track can be searched is limited by the speed of the
disk and of the number of keys that can be packed on a track. On an IBM 3330
disk, the key is typically 10 characters; the gap is equivalent to 191 characters
if there is a key, and 135 characters when no key is present. If we assume that
the data is also 10 characters and that the track has nothing else on it, a 13,165-
byte track can contain

13,165
191 + 10 + 10

= 62 key-data records

The time per key search is

16.7 ms (1 revolution)
62

= 0.27 ms/key search

In place of this scheme, we could put several key-data pairs in a single
block and have smaller inter-record gaps. Assuming that there are 15 key-data
pairs per block and that the track has nothing else on it, then

13165 13165
135 + 300

= 30 blocks of key-data pairs
135 + 15 x (10 + 10)

The revised performance is then

16.7 ms (1 revolution)
30 x 15

"" 0.04 ms/key search

578 Chapter 8 Interfacing Processors and Peripherals

Of course, the disk-based search would look better if the keys were much
longer.

As processors got faster, the CPU time for a search became trivial, while the
time for a search using the hardware facility improved very little. While the
strategy made early machines faster, programs that use the search-key opera
tion in the 1/0 processor run up to six times slower on today's machines!

• Concluding Remarks

1/0 systems are evaluated on several different characteristics: the variety of
1/0 devices supported; the maximum number of I/O devices; cost; and per
formance, measured both in latency and in throughput. These goals lead to
widely varying schemes for interfacing 1/0 devices. In the low end, schemes
like buffering and even OMA can be avoided to minimize cost. In midrange
systems, buffered OMA is likely to be the dominant transfer mechanism. In
the high end, latency and bandwidth may both be important, and cost may be
secondary. Multiple paths to I/O devices with limited buffering often charac
terize high-end 1/0 systems. Increasing the bandwidth with both more and
wider connections eliminates the need for buffering at an increase in cost.
Typically, being able to access the data on an 1/0 device at any time (high
availability) becomes more important as systems grow. As a result, redun
dancy and error correction mechanisms become more and more prevalent as
we enlarge the system.

The design of I/ 0 systems is complicated because the limiting factor in I/ 0
system performance can be any of several critical resources in the 1/0 path,
from the operating system to the device. Furthermore, independent requests
from different programs interact in the 1/0 system, making the performance
of an 1/0 request dependent on other activity that occurs at the same time.
Lastly, design techniques that improve bandwidth often negatively impact la
tency, and vice versa. For example, adding buffering usually increases the sys
tem cost and also the system bandwidth. But it also increases latency by
placing additional hardware between the device and memory. It is this combi
nation of factors, including some that are unpredictable, that makes designing
1/0 systems and improving their performance challenging not only for archi
tects but also for OS designers and even applications programmers building
1/0-intensive applications.

Future Directions in 1/0 Systems

What does the future hold for 1/0 systems? The rapidly increasing perfor
mance of processors strains 1/0 systems, whose physical components cannot

8. 7 Concludlng Remarks

• .

The performance of an 1/0 system, whether mea
sured by bandwidth or latency, depends on all the el
ements in the path between the device and memory,
including the operating system that generates the 1/0
commands. The bandwidth of the buses, the memory,
and the device determine the maximum transfer rate

from or to the device. Similarly, the latency depends on the device la
tency, together with any latency imposed by the memory system or
buses. The effective bandwidth and response latency also depend on
other 1/0 requests that may cause contention for some resource in the
path. Finally, the operating system is a bottleneck. In some cases, the
OS takes a long time to deliver an 1/0 request from a user program to
an 1/0 device, leading to high latency. In other cases, the operating
system effectively limits the 1/0 bandwidth because of limitations in
the number of concurrent 1/0 operations it can support. In some cas
es, the memory system and operating system, rather than the device,
are the major bottlenecks.

579

improve in performance as fast as processors. To hide the growing gap
between the speed of processors and the access time to secondary storage
(primarily disks), main memory is used as a cache for secondary storage.
These file caches, which rely on spatial and temporal locality in access to sec
ondary storage, are maintained by the operating system. The use of file caches
allows many file accesses to be handled from memory rather than from disk.

Magnetic disks are increasing in capacity quickly, but access time is im
proving only slowly. One reason for this is that the opportunities for magnetic
disks are growing faster in the low end of the market than in the high end, and
the low end is driven primarily by the demand for lower cost per megabyte.
This market has helped shrink the size of the disk from the 14-inch platters of
the mainframe disk to the 1.3-inch disks developed for laptop and palmtop
computers.

One future candidate for optimizing storage is not a new technology, but a
new organization of disk storage-arrays of small and inexpensive disks. The
argument for arrays is that since price per megabyte is independent of disk
size, potential throughput can be increased by having many disk drives and,
hence, many disk arms. Simply spreading data over multiple disks automati
cally forces accesses to several disks. (While arrays improve throughput, laten
cy is not necessarily reduced.) Adding redundant disks to the array offers the
opportunity for the array to discover a failed disk and automatically recover
the lost information. Arrays may thus enhance the reliability of a computer

580 Chapter 8 Interfacing Processors and Perlpherals

system as well as performance. This redundancy has inspired the acronym
RAID for these arrays: redundant arrays of inexpensive disks.

The next level of the storage hierarchy below magnetic disks promises to
offer extraordinary increases in capacity in the next several years. The driving
force may well be the helical scan tape. Found in 8-mm video cameras and 4-mm
digital audio tapes, helical scan tape records at an angle to the tape rather than
parallel, as in longitudinally recorded tapes. The tape still moves at the same
speed, but the fast-spinning tape head records bits much more densely-a fac
tor of about 50 to 100 denser than longitudinally recorded tapes. And because
the medium was created for consumer products, the improvement in cost per
bit over time has been even greater than for traditional magnetic tapes used
solely by the computer industry.

Advances in tape capacity are being enhanced by advances on two other
fronts: compression and robots. Faster processors have enabled systems to be
gin using compression to multiply storage capacity. Factors of 2 to 3 are com
mon, with compression of 20:1 possible for certain types of data such as
images. The second enhancement is inexpensive robots to automatically load
and store tapes, offering a new level in the hierarchy between on-line magnetic
disks and off-line magnetic disks on shelves. This "robo-line" storage means ac
cess to terabytes of information at the delay of tens of seconds, without the in
tervention of a human operator. Figure 8.16 is a photograph of a tape "robot."

Computer networks are also making great strides, mainly by taking advan
tage of the properties of optical fibers to send information. Optical fiber will be
the foundation of the National Research and Educational Network (NREN),
which will be installed in the middle of the 1990s. This nationwide network
will transfer data at 1 gigabit per second, or a factor of 20 faster than the cur
rent Internet. This opens the possibility of nationwide networks operating at
speeds formerly associated with the backplanes within a single cabinet.

Such advances offer "computing science fiction" scenarios that would have
seemed absurd just a few years ago. For example, if all the books in the Library
of Congress were converted to ASCII, they would occupy just 10 terabytes (al
though the pictures might take even more, depending on their number and
resolution). Helical scan tapes, tape robots, compression, and high-speed net
works could be the building blocks of an electronic library. All the information
on all the books in the world available at your fingertips for the cost of a large
minicomputer. And parallel processing, discussed in the next chapter, will al
low this information to be indexed so that all books could be searched by con
tent rather than by title. Electronic libraries would change the lives of anyone
with a library card, and the technology to create them is within our grasp.

8.8 Hlstorlcal Perspective and Further Reading 581

FIGURE 8.16 The Exabyte EXB-120 holds 116 8-mm helical scan tapes. Each tape holds 10
.. pbytes, yleldlng a total capacity of over a terabyte. The EXB-120 costs about as much as
two to four workstations. Photo courtesy of the Exabyte Corporation.

• Historical Perspective and Further Reading

The history of 1/0 systems is a fascinating one. Many of the most interesting
artifacts of early computers are their 1/0 devices. The sealed Winchester disk,
which today completely dominates disk technology, is a relatively new inven
tion. Prior to that, most hard disks were removable. In fact, the earliest rotat
ing storage devices were drums and fixed-head disks. A drum had a
cylindrical surface coated with a magnetic film. It used a large number of
read/write heads positioned over each track on the drum. Drums were rela
tively high-speed 1/0 devices often used for virtual memory paging or for

582 Chapter 8 Interfacing Processors and Peripherals

creating a file cache to slower speed devices. Large (2 to 3 feet in diameter)
fixed-head disks were also in use in the 1960s. Moving-head disks became the
dominant high-speed magnetic storage in the 1970s, though their high cost
meant that magnetic tape continued to be used extensively until later in the
decade. Winchester disks grew rapidly in popularity in the 1980s, completely
replacing removable disks by the middle of the decade.

The 1970s saw the invention of a number of remarkable 1/0 devices. Per
haps one of the most unusual was a film storage device that stored data opti
cally on small strips of photographic film. These film storage devices could not
only read and write film, but actually kept the filmstrips stored in the device
(which was about 5 feet by 4 feet by 3 feet), retrieving them mechanically.

The early IBM 360s pioneered many of the ideas that we use in 1/0 systems
today. The 360 was the first machine to make heavy use of DMA, and it intro
duced the notion of 1/0 programs that could be interpreted by the device.
Chaining of 1/0 programs was a key feature. The concept of channels intro
duced in the 360 corresponds to the 1/0 bus of today.

The trend for high-end machines has been toward use of programmable
1/0 processors. The original machine to use this concept was the CDC 6600,
which used 1/0 processors called peripheral processors.

The forerunner of today's workstations as well as the Macintosh and other
systems using windows was the Alto, developed at Xerox Palo Alto Research
Center in 1973 [Thacker et al. 1982]. This machine integrated the needs of the
1/0 functions into the microcode of the processor. This included support for
the bit-mapped graphics display, the disk, and the network. The network for
the Alto was the first Ethernet [Metcalfe and Boggs 1976] . The Alto also sup
ported the first laser printer, configured as a print server accessible over the
Ethernet. Similarly, disk servers were also built. The mouse, invented earlier
by Doug Engelbart of SRI, was a key part of the Alto. The 16-bit processor used
a writable control store, which enabled researchers to program in support for
the 1/0 devices. The single microprogrammed engine drove the graphics dis
play, mouse, disks, network, and, when there was nothing else to do, ran the
user's program.

While today we associate microprocessors with the personal computer rev
olution, they were originally developed to meet the demand for special-pur
pose controllers. Since the invention of the microprocessor, designers have
developed many 1/0 controllers that adapt a microprocessor to a specific task.
These include everything from DMA controllers to SCSI controllers to com
plete Ethernet controllers on a single chip.

The first multivendor bus may have been the PDP-11 Unibus in 1970. DEC
encouraged other companies to build devices that would plug into its bus, and
many companies did. A more recent example is SCSI, which stands for small
computer systems interface. This bus, originally called SASI, was invented by

8.8 Hlstorlcal Perspective and Further Reading 583

Shugart and was later standardized by the IEEE. This open system approach
to buses contrasts with proprietary buses using patented interfaces, which
companies adopt to forestall competition from plug-compatible vendors. The
use of proprietary buses also raises the costs and lowers the availability of 1/0
devices that plug into proprietary buses, because such devices must have an
interface designed exclusively for that bus.

Ongoing development in the areas of tape robots, head-mounted displays,
gloves for complete tactile feedback, and computer screens that you write on
with pens are indications that the incredible developments in 1/0 technology
are likely to continue in the future.

To Probe Further

Bashe, C. J., L. R. Johnson, J. H. Palmer, and E. W. Pugh [1986]. IBM's Early Computers, MIT Press,
Cambridge, Mass.

Describes the I/O system architecture and devices in IBM's early computers.

Borrill, P. L. [1986]. "32-bit buses: An objective comparison," Proc. Buscon 1986 West, San Jose,
Calif., 138-45.

A comparison of various 32-bit bus standards.

Gray, J. and Reuter, A. [1993]. Transaction Processing: Concepts and Techniques, Morgan Kaufmann,
San Mateo, CA.

A description of transaction processing, including discussions of benchmarking and performance evalua
tion.

Kahn, R. E. [1972]. "Resource-sharing computer communication networks," Proc. IEEE 60:11
(November) 1397-1407.

A classic paper that describes the ARPANet.

Katz, R. H., D. A. Patterson, and G. A. Gibson [1989]. "Disk system architectures for high perfor
mance computing," Proc. IEEE 78:2 (December).

Introduces disk arrays and discusses the advantages of adopting such an organization.

Levy, J. V. [1978]. "Buses: The skeleton of computer structures," in Computer Engineering: A DEC
View of Hardware Systems Design, C. G. Bell, J . C. Mudge, and J. E. McNamara, eds., Digital Press,
Bedford, Mass.

This is a good overview of key concepts in bus design with some examples from DEC machines.

Metcalfe, R. M., and D. R. Boggs [1976]. "Ethernet: Distributed packet switching for local com
puter networks," Comm. ACM 19:7 (July) 395-404.

Describes the Ethernet network.

584 Chapter 8 Interfacing Processors and Peripherals

Smotherman, M. [1989). "A sequencing-based taxonomy of 1/0 systems and review of historical
machines," Computer Architecture News 17:5 (September) 5-15.

Describes the development of important ideas in I/0.

Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs [1982). "Alto: A
personal computer," in Computer Structures: Principles and Examples, D. P. Siewiorek, C. G. Bell,
and A. Newell, eds., McGraw-Hill, New York, 549-572.

Describes the Alto-forerunner of workstations as well as the Apple Macintosh .

• Exercises

8.1 [10] <§8.1-8.2> Here are two different 1/0 systems intended for use in
transaction processing:

• System A can support 1000 1/0 operations per second.

• System B can support 750 I / 0 operations per second.

The systems use the same processor that executes 50 million instructions per
second. Assume that each transaction requires 5 1/0 operations and that each
1/0 operation requires 10,000 instructions. Ignoring response time and
assuming transactions may be arbitrarily overlapped, what is the maximum
transaction per second rate that each machine can sustain?

8.2 [15] <§8.1-8.2> {ex. 8.1) The latency of an 1/0 operation for the two sys
tems in Exercise 8.1 differs. The latency for an 1/0 on System A is equal to 20
ms, while for System B the latency is 18 ms for the first 500 I/Os per second
and 25 ms per 1/0 for each 1/0 between 500 and 750 1/0 per second. In the
workload, every tenth transaction depends on the immediately preceding
transaction and must wait for its completion. What is the maximum transac
tion rate that still allows every transaction to complete in 1 second and does
not exceed the 1 /0 bandwidth of the machine? For simplicity, assume all
transaction requests arrive at the beginning of a 1-second interval.

8.3 [10] <§8.4> Suppose we have a memory system that uses a 50-MHz clock.
The memory transmits 8-word requests at the rate of 1 word per cycle. For
reads from memory, the accesses occur as follows:

1 . 1 cycle to accept the address,

2. 3 cycles of latency, and

3. 8 clock cycles to transmit the 8 words.

8.9 Exercises

For writes to memory, accesses occur as follows:

1 . 1 cycle to accept the address,

2. 2 cycles of latency,

3. 8 clock cycles to transmit the 8 words, and

4. 3 cycles to recover and write the error correction code.

585

Find the maximum bandwidth in megabytes per second for an access pattern
consisting of

a. All reads from memory.

b. All writes to memory.

c. A mix of 65% reads from memory and 35% writes to memory.

8.4 [15] <§8.4> {ex. 8.3} The memory system and bus system of Exercise 8.3
were originally designed to support a processor with 8-word cache blocks. A
new processor is designed that has 16-word cache blocks. There are two alter
native organizations for the memory and bus:

1. Use the 8-word organization described in Exercise 8.3 and perform two
separate 8-word accesses for each miss.

2. Convert the memory system to provide 16 words by initiating two sep
arate 8-word accesses. For reads, the system transmits the first 8 words
while fetching the second 8. For writes, the transmission of the second 8
words can begin immediately after receipt of the first 8 words.

Using the access steps from Exercise 8.3, find the maximum bandwidth sus
tainable for each of these mechanisms assuming that reads and writes occur
with equal frequency.

8.5 [15] <§8.4> Consider two different bus systems:

• Bus 1 is a 64-bit-wide multiplexed address and data bus. Transmitting
an address or a 64-bit data item takes one bus cycle. Reads or writes to
the memory incur a three-cycle latency. Starting with the fourth cycle,
the memory system can accept or deliver up to 8 words at a rate of 2
words every bus cycle.

• Bus 2 is a bus with separate 32-bit address and 32-bit data. Each trans
mission takes one bus cycle. A read to the memory incurs a three-cycle
latency, then, starting with the fourth cycle, the memory system can de
liver up to 8 words at a rate of 1 word every bus cycle. For a write, the
first word is transmitted with the address; after a three-cycle latency up
to 7 additional words may be transmitted at the rate of 1 word every bus
cycle.

586 Chapter 8 Interfacing Processors and Perlpherals

Evaluate these buses assuming only 1 word requests where 60% of the
requests are reads and 40% are writes. Find the maximum bandwidth that
each bus and memory system can provide in words per bus cycle.

8.6 [15] <§8.4> Assume that the memory requests in Exercise 8.5 are all 8
words long. Find the maximum bandwidth that each bus and memory system
can provide to the processor in words per bus cycle.

8. 7 [20] <§8.4> Assume the bus and memory systems in Exercise 8.5 are used
to handle disk access, where 75% of the accesses are input operations (memory
writes) and 25% are output operations (memory reads). The disks transfer data
at 2 MB per second and have 8 word buffers, so that data can be transferred 8
words at a time. Find the maximum number of simultaneous disk transfers
that can be sustained for each bus system if the bus is clocked at 50 MHz and
1/0 is allowed to consume 100% of the bus and memory bandwidth.

8.8 [15] <§8.4> We need to interface an 1/0 device with the memory system
described in Exercise 8.3 using an asynchronous bus. Assume the same type of
handshaking protocol as Figure 8.10 on page 554 uses. Show the steps in the
asynchronous protocol for reading a block of 8 words from memory. Assume
as in Exercise 8.3 that the memory latency is incurred only once.

8.9 [15] <§8.4> {ex. 8.8) Let's determine the maximum bandwidth that can be
sustained for the asynchronous bus and memory system of Exercise 8.8. As
sume each handshaking step takes 20 ns and memory access takes 60 ns. Allow
the maximum overlap among memory access and handshaking, as in the ex
ample on page 555. Assume the memory lines are buffered so that the access
for the next word can start immediately. Find the maximum bandwidth for 8-
word reads from memory to the device. How does this compare to the rates
that could be sustained with a synchronous interface?

8.10 [20] <§8.3-8.5> Here are a variety of building blocks used in an I/ 0 sys
tem that has a synchronous processor-memory bus running at 50 MHz, and
one or more 1/0 adapters that interface 1/0 buses to the processor-memory
bus.

• Memory system: The memory system has a 32-bit interface and handles
four word transfers. For writes to memory, the memory system accepts
a word every clock cycle for four clock cycles and then takes an addi
tional four clock cycles before the words have been stored and it can ac
cept another transaction.

• DMA interfaces: The 1/0 adapters use OMA to transfer the data be
tween the 1/0 buses and the processor-memory bus. The OMA unit ar
bitrates for the processor-memory bus and sends/receives four word

8.9 Exercises 587

blocks from/ to the memory system. The OMA controller can accommo
date up to 8 disks. Initiating a new 1/0 operation (including the seek
and access) takes 2 ms during which another 1/0 cannot be initiated by
this controller (but outstanding operations can be handled).

• The I/O bus: The 1/0 bus is a synchronous bus with a sustainable band
width of 4 MB per second; each transfer is one word long.

• The disks: The disks have a measured average seek plus rotational laten
cy of 20 ms. The disks have a read/write bandwidth of 2 MB per second,
when they are transferring.

Find the time required to read a 16 KB sector from a disk to memory, assum
ing this is the only activity on the bus.

8.11 [15] <§8.3-8.5> {ex. 8.10) For the 1/0 system described in Exercise 8.10,
find the maximum instantaneous bandwidth at which data can be transferred
from disk to memory using as many disks as needed; how many disks and 1/0
buses (the minimum of each) do you need to achieve the bandwidth? Since
you need only achieve this bandwidth for an instant, latencies need not be con
sidered.

8.12 [20] <§8.3-8.5> {ex. 8 .10, 8.1 1) Assume all accesses in the 1/0 system de
scribed in Exercise 8.10 are 4 KB block reads. If there are a total of 6 1/0 buses
(and OMA controllers), find the maximum number of I / Os the system can sus
tain in steady state assuming the reads are uniformly distributed to the disks.
What is the sustained 1/0 bandwidth?

8.13 [15] <§8.3-8.5> {ex. 8.10, 8 .11, 8.12) Find the size for 1/0 block reads that
will allow the organization in Exercise 8.12 to saturate the 1/0 buses (the size
should be a power of 2). How many 1/0 operations per second can the system
perform and what is the 1/0 bandwidth?

8.14 [15] <§8.4-8.5, 7.2, 7.4> Consider a 50-MHz processor that uses the mem
ory system of Exercise 8.3 to handle cache misses. Assume the processor has a
write-back cache and the following measurements have been made:

• The cache miss rate is 0.05 misses per instruction.

• Forty percent of the misses require a write-back operation, while the
other 60% require only a read.

Assuming the processor is stalled for the duration of a miss (including the
write-back time if a write-back is needed), find the number of cycles per
instruction spent handling cache misses.

588 Chapter 8 Interfacing Processors and Peripherals

8.15 [15] <§7.4, 8.4> We are considering changing the block size of the cache
in the processor of Exercise 8.14 to 16 words. We would like to use one of the
two memory and bus systems described in Exercise 8.4. With a 16-word block,
the miss rate is reduced to 0.03 misses per instruction. The fraction of write
back operations will not be affected. The processor will still be stalled for the
duration of a miss. Find the cycles per instruction spent handling cache misses
for the 16-word block size using the two different bus systems.

8.16 [2 days to 1 week] <§8.5, Appendix A> This assignment uses SPIM to
build a simple set of 1/0 routines that will perform 1/0 to the terminal using
polling. First, you need to build two 1/0 routines, whose C declarations and
descriptions are shown below:

v o i d p r i n t (c h a r * s t r i n g) ;

p r i n t takes a single argument, which is the address of a NULL-terminated
ASCII string. All of the characters of the string except the null terminating
character should be output by p r i n t . It should print the characters one at a
time, waiting for each character to be output before sending the next one. It
should not return until all the characters have been output. The procedure
p r i n t should work for strings of any length. This version of p r i n t should not
use interrupts; just test the "ready" bit of the transmitter control register con
tinuously until the device is ready.

c h a r g e t c h a r () ;

The procedure g e t c h a r takes no arguments and returns a character result. If
g e t c h a r waits until a character has been typed on the terminal, then it should
return the character's value in $2 (the result register). Do not use interrupts;
simply test the ready bit continuously until a character has arrived.

Write a main program that uses these two procedures to read a line from the
terminal, which will be terminated by a carriage return. Then print the entire
line to the terminal including a carriage return and line feed. All your code
should obey the conventions in Appendix A for procedure calling, stack
usage, and register usage.

8.17 [3 days-1 week] <§8.5, Appendix A> Your assignment is to build an in
terrupt-driven mechanism for buffered 1/0 to and from the terminal. This ex
ercise handles output only, but the next one handles input.

For the output only portion, there are three parts to the program:

1 . A main program, which repeatedly calls procedure p r i n t to print the
string " I k n ow w h a t I a m d o i n g . "

8.9 Exercises 589

2. The procedure p r i n t, which stores the output characters in a buffer
shared by it and the interrupt routine.

3. The interrupt routine, which copies characters from the output buffer to
the transmitter.

You need to write all three routines. The routine p r i n t and the interrupt rou
tine should communicate by using a shared circular buffer with space for 32
characters. The p r i n t procedure should take a string as argument and add
the characters of the string to the output buffer one at a time, advancing as
soon as there is space in the buffer. Keep in mind that p r i n t should not
manipulate the terminal device registers directly except to make sure that
transmitter interrupts are enabled. Furthermore, p r i n t should contain addi
tional code to deal with a full output buffer. The main program generates
characters much faster than they can be output, so the buffer will quickly fill
up. In a real system, if the output buffer fills up, the operating system will
stop running the current user's process and switch to a different process. Your
program doesn't need to support multiple users, so p r i n t can take a simpler
approach: it just checks the buffer over and over again until eventually it isn't
full anymore. The buffer is full when the next position in which p r i n t wants
to insert a character has not been emptied by the interrupt routine.

After writing print, write the interrupt routine called by p r i n t . Here is a list
of things the interrupt routine must do:

1 . I f the transmitter i s not ready, then the interrupt routine should not do
anything. (You shouldn't have gotten an interrupt in the first place if
the transmitter isn't ready, but it's a good idea to check anyway.)

2. If the output buffer isn't empty, copy the next character from the output
buffer to the Transmitter Data register and adjust the buffer pointers.

3. If the output buffer is empty, turn off the interrupt-enable bit in the
Transmitter Control register. Otherwise continuous interrupts will
occur. Each time it deposits a character in the buffer, p r i n t will need to
turn this bit on.

4. Don't forget that you must save and restore any registers that you use
in the interrupt routine, even temporary registers like register $8 and
register $9. This is necessary because interrupts can occur at any time
and those registers could have been in use at the time of the interrupt.
You must save the registers on the stack. The only exceptions to this
rule are registers $26 and $27, which are reserved for use by interrupt
routines; these registers need not be saved and restored. One of these
registers can be used to return from the interrupt routine back to the
code that was interrupted.

590 Chapter 8 Interfacing Processors and Peripherals

Test your code by writing the routine main that calls p r i n t to print the string.
It should output lines continuously, with each line containing the characters
01 k n ow w h a t I a m d o i n g . " .

8.18 [3 days-1 week] <§8.5, Appendix A> {ex. 8.17} Extend the code you've
already written to handle interrupt-driven input. This program should do in
put in the same way as the previous program did output: by using a buffer to
communicate between the routine g e t c h a r and the interrupt routine. Be
aware that g e t c h a r returns a character from the buffer, waiting in a loop if no
characters are present. Similarly, the interrupt routine will add characters as
they are typed, discarding characters if the buffer is full when they arrive. In
this an 8-entry buffer should work well.

Use these two routines to read characters from the terminal and output them
to the terminal. Try typing characters rapidly to make sure your program can
handle the output or the input buffer filling up. For example, if you type two
or three characters rapidly, the output buffer may fill up. However, no output
should be lost: the print procedure will simply have to spin for a bit, during
which time additional input characters will be buffered in the input buffer. If
you type eight or ten characters very rapidly, then the input buffer will proba
bly fill up. When this happens, your interrupt routine will have to discard
characters: the program should continue to function, but there won't be any
output of the discarded input characters you typed. Once the output catches
up with the input, your program should accept input again just as if the input
buffer had never filled up.

8.19 [1 day to 1 week] <§8.2-8.4> Take your favorite computer and write pro
grams that achieve the following:

l . Maximum bandwidth from and to a single disk.

2. Maximum bandwidth from and to multiple disks.

3. The maximum number of 512-byte transactions from and to a single
disk.

4. The maximum number of 512-byte transactions from and to multiple
disks.

What is the percentage of the bandwidth that you achieve compared to what
the 1/0 device manufacturer claims? Also, record processor utilization in
each case for the programs running separately. Next, run all four together and
see what percentage of the maximum rates you can achieve. From this, can
you determine where the system bottlenecks lie?

8.9 Exercises 591

In More Depth: Ethernet

An Ethernet is essentially a standard bus with multiple masters (each com
puter can be a master) and a distributed arbitration scheme using collision
detection. Most Ethernets are implemented using coaxial cable as the
medium. When a particular node wants to use the bus, it first checks to see
whether some other node is using the bus; if not, it places a carrier signal on
the bus, and then proceeds to transmit. A complication can arise because the
control is distributed and the devices may be physically far apart. As a result,
two nodes can both check the Ethernet, find it idle, and begin transmitting at
once; this is called a collision. A node detects collisions also by listening to the
network when transmitting, to see whether a collision has occurred. A colli
sion is detected when the node finds that what it hears on the Ethernet differs
from what it transmitted. When collisions occur, both nodes stop transmitting
and delay a random time interval before trying to resume using the net
work-just as two polite people do when they both start talking at the same
time! Consequently, the number of nodes on the network is limited-if too
many collisions occur, the performance will be poor. In addition, constraints
imposed by the requirement that collisions be detected by all nodes limit the
length of the Ethernet and the number of connections to the network.
Although this idea sounds like it might not work, it actually works amazingly
well and has been central to the enormous growth in the use of local area net
works.

8.20 [3 days to 1 week] <§8.3-8.4> Write a program that simulates an Ether
net. Assume the following network system characteristics:

• A transmission bandwidth of 10 Mbits per second.

• A latency for a signal to travel the entire length of the network and re
turn to its origin of 15 microseconds. This is also the time to detect a col
lision.

Make the following assumptions about the 100 hosts on the network:

• The packet size is 1000 bytes.

• Each host tries to send a packet after T seconds of computation, where
T is exponentially distributed with mean M. Note that the host begins
its T seconds of computation only after successfully transmitting a
packet.

• If a collision is detected, the host waits a random amount of time chosen
from an exponential distribution with a mean of 60 microseconds.

592 Chapter 8 Interfacing Processors and Perlpherals

Simulate and plot the sustained bandwidth of the network compared to the
mean time between transmission attempts (M). Also, plot the average wait
time between trying to initiate a transmission and succeeding in initiating it
(compared to M).

Ethernets actually use an exponential back-off algorithm that increases the
mean of the back-off time on successive collisions. Assume that the mean of
the distribution from which the host chooses how much to delay is doubled
on successive collisions. How well does this work? Is the bandwidth higher
than when a single distribution is used? Can the initial mean be lower?

In More Depth: Disk Arrays

As mentioned in section 8.7, one direction for future disk systems is to use
arrays of smaller disks that provide more bandwidth through parallel access.
In most disk arrays, all the spindles are synchronized-sector 0 in every disk
rotates under the head at the exact same time-and the arms on all the disks
are always over the same track. Furthermore, the data is "striped" across the
disks in the array, so that consecutive sectors can be read in parallel. Let's
explore how such a system might work.

8.21 <§8.3-8.5> [20) Assume that we have the following two magnetic-disk
configurations: a single disk and an array of four disks. Each disk has 16 sec
tors/ track, each sector holds lK bytes, and it revolves at 3600 RPM. Assume
the seek time is 10 ms. The delay of the disk controller is 2 ms per transaction,
either for a single disk or for the array. Assume the performance of the 1/0 sys
tem is limited only by the disks and controller. Remember that the consecutive
sectors on the single disk system will be spread one sector per disk in the array.
Compare the performance in I/Os per second of these two disk organizations,
assuming the requests are random reads, half of which are 4KB and half of
which are 16KB of data from sequential sectors. The sectors may be read in any
order; for simplicity, assume that the rotational latency is one-half the revolu
tion time for the single disk read of four sectors and the disk array read of 16
sectors. Challenge: Can you work out the actual average rotational latency in
these two cases?

8.22 <§8.3-8.5> [10) {ex. 8.21) Using the same disk systems as Exercise 8.21,
with the same access patterns, determine the performance in megabytes per
second for each system.

Parallel

Processors

There are finer fish in the sea than
have ever been caught.

lrlsh Proverb

The future belongs to those who
prepare for it.

American Proverb

9.1 Introduction 596

9.2 SIMD Computers-Single Instruction Stream, Multiple

Data Streams 596

9.3 MIMD Computers-Multiple Instruction Streams, Multiple

Data Streams 602

9.4 Programming MIMDs 603

9.5 MIMDs Connected by a Slngle Bus 607

9.6 MIMDs Connected by a Network 619

9. 7 Future Directions for Parallel Processors 630

9.8 Fallacies and Pitfalls 637

9.9 Concluding Remarks-Evolution versus Revolution in

Computer Architecture 640

9.10 Hlstorlcal Perspective and Further Reading 642

9.11 Exercises 646

The Five Classic Components of a Computer

Evaluating
Performance

Compiler

596 Chapter 9 Parallel Processors

11 •ntroductlon

II

Future computers of all sizes will embrace parallelism even more than they
do today. We believe that the exploitation of parallel machines will provide an
exciting opportunity in this decade. Those who understand applications,
algorithms, and architecture will be prepared for this opportunity.

As parallelism can appear at many levels, it is useful to categorize the alter
natives. In 1966, Flynn proposed a simple model of categorizing computers
that is still useful today. Scrutinizing the most constrained component of the
machine, he counted the number of parallel instruction and data streams and
then labeled the computer with this count:

1. Single instruction stream, single data stream (SISD, the uniprocessor)

2. Single instruction stream, multiple data streams (SIMD)

3. Multiple instruction streams, single data stream (MISD)

4. Multiple instruction streams, multiple data streams (MIMD)

Some machines are hybrids of these categories, of course, but we stick with
this classic model because it is simple, easy to understand, and gives a good
first approximation. It is also-perhaps because of its understandability-the
most widely used scheme.

Your first question about the model should be, "Single or multiple com
pared with what?" A machine that adds a 32-bit number in one clock cycle
would seem to have multiple data streams when compared with a bit-serial
computer that takes 32 clock cycles to add. Flynn chose computers popular
during that time, the IBM 704 and IBM 7090, as the model of SISD; today, the
MIPS implementations in Chapters 5 and 6 would be fine reference points.

Having established the reference point for SISD, we move to the next
class: SIMD.

SIMD Computers-Single Instruction

Stream, Multiple Data Streams

The cost of a general multiprocessor is, however, very high and further design op
tions were considered which would decrease the cost without seriously degrading
the power or efficiency of the system. The options consist of recentralizing one of the

9.2 SIMD Computers-Single Instruction Stream, Multiple Data Streams 597

three major components . . . Centralizing the [control unit] gives rise to the basic
organization of [an] . . . array processor such as the Illiac IV.

Bouknight et al., "The Illiac IV system," Proc. IEEE 60:4, 369-379, 1972

SIMD computers operate on vectors of data. For example, when a single
SIMD instruction adds 64 numbers, the SIMD hardware sends 64 data
streams to 64 ALUs to form 64 sums within a single clock cycle.

The virtues of SIMD are that all the parallel execution units are synchro
nized and they all respond to a single instruction that emanates from a single
program counter (PC). From a programmer's perspective, this is close to the
already familiar SISD. Although every unit will be executing the same instruc
tion, each execution unit has its own address registers, and so each unit can
have different data addresses.

The original motivation behind SIMD was to amortize the cost of the control
unit over dozens of execution units. Another advantage is the reduced size of
program memory-SIMD needs only one copy of the code that is being simul
taneously executed, while MIMD may need a copy in every processor. Virtual
memory and increasing capacity of DRAM chips have reduced the importance
of this advantage.

Real SIMD computers have a mixture of SISD and SIMD instructions. There
is typically a SISD host computer to perform sequential operations such as
branches or address calculations. The SIMD instructions are broadcast to all
the execution units, each with its own set of registers and memory. Execution
units rely on interconnection networks to exchange data.

SIMD works best when dealing with arrays in for loops. Hence, for massive
parallelism to work in SIMD, there must be massive data, or data parallelism.
SIMD is at its weakest in case or switch statements, where each execution unit
must perform a different operation on its data, depending on what data it has.
Execution units with the wrong data are disabled so that units with proper
data may continue. Such situations essentially run at 1 I nth performance,
where n is the number of cases.

Let's sketch an SIMD program to better understand this style of architec
ture. Suppose we want to sum 100,000 numbers on a SIMD computer with
100 execution units.

598 Chapter 9 Parallel Processors

The first step is to split 100,000 numbers into 100 subsets, one subset per ex
ecution unit. The front end processor places each subset of numbers into the
local memory of each of the execution units. If the 100,000 numbers are in
the array A in the host, then let's call the name of the local array A l .

The next step is to get the sum of each subset. This step, the first piece of
SIMD code, is simply a loop that every execution unit follows; read a word
from local memory and add it to a local variable:
s u m = O ;
f o r (i = O ; i < 1 0 0 0 ; i = i + 1) / * l o o p o v e r e a c h a r r a y * /

s u m = s um + A l [i J ; / * s u m t h e l o c a l a r r a y s * /

The last step is adding these 100 partial sums. The hard part is that each
partial sum is located in a different execution unit. Hence, we must use the
interconnection network to send partial sums for the final summing. Rather
than sending all the partial sums to a single processor, which would result
in sequentially adding the partial sums, we divide to conquer. First, half of
the execution units send their partial sums to the other half of the execution
units, where two partial sums are added together. Then one quarter of the
execution units (half of the half) send this new partial sum to the other quar
ter of the execution units (the remaining half of the half) for the next round
of sums. This halving, sending, and receiving continues until there is a sin
gle sum of all numbers. Let P n represent the number of the execution unit,
s e n d (x , y) be a routine that sends over the interconnection network to ex
ecution unit number x the value y, and r e c e i v e () be a function that accepts
a value from the network for this execution unit.

The SIMD code for summing the distributed partial sums is then

l i m i t = 1 0 0 ;
h a l f = 1 0 0 ; / * 1 0 0 e x e c u t i o n u n i t s i n S I M O * /
r e p e a t

h a l f = (h a l f+ l) / 2 ; / * s e n d v s . r e c e i v e d i v i d i n g l i n e * /
i f (P n >= h a l f & & P n < l i m i t) s e n d (P n - h a l f . s um) ;
i f (P n < (l i m i t / 2 - 1)) s um = s um + r e c e i v e () ;
l i m i t = h a l f ; / * u p p e r l i m i t o f s e n d e r s * /

u n t i l (h a l f == l) ; / * e x i t w i t h f i n a l s um * /

This loop divides the execution units into senders and receivers, with the
senders passing their sums to the execution unit whose number is the send
er's execution unit number modulo half the number of units. Care must be
taken when there are an odd number to sum.

The complete SIMD program consists of the two code segments above.

A basic trade-off in SIMD machines is processor performance versus

9.2 SIMD Computers-Slngle Instruction Stream, Multlple Data Streams 599

. , . • - - 'T •-� ' ·' <.•.:.c. 'G•· .,.._,,.�,,...f._·:�1 g: . .. ' .. t • • • • • :· :�-.- ,ii �-.! ; �-· .. :'; �.�-,;=·�-��'YI� p ''1 ., ., ,.,,.,, , , : . ! . ro� .,_ .. � , f .. :.:... ···}· r ������
. Maxi!l1u

,
m f;iits/ .. ,; .; cloc� , · N um�er-_�f: • �;/sy_s

Institution Name no. of proc. proc. rate · FPUs "·. � ...-: J (M B :'t'�ar

U. I l l inois llliac IV 64 64 5 MHz 64 0.125 2,560 1972

ICL DAP 4,096 1 5 MHz 0 2 2 ,560 1980

Goodyear MPP 16,384 1 10 MHz 0 2 20,480 1982

Thinking CM-2 65,536 1 7 MHz 2048 512 16,384 1987
Machines (optional)

Maspar MP-1216 16,384 4 25 MHz 0 256 or 1024 23,000 1989

FIGURE 9.1 Characteristics of five SIMD computers. Number of FPUs means number of floating-point units.

number of processors. The machines in the marketplace today emphasize a
high degree of parallelism over performance of the individual processors. The
Connection Machine 2 (CM-2), for example, offers 65,536 single-bit-wide pro
cessors, while the Illiac IV had 64 64-bit processors. Figure 9.1 lists the charac
teristics of some well-known SIMD computers.

The Connection Machine 2 from Thinking Machines

The Connection Machine 2 (CM-2) consists of up to 65,536 processors, with
each processor having a single-bit ALU, four 1-bit registers, 64K bits of mem
ory, and a connection to a network that allows any processor to talk to any
other. Figure 9.2 is a photograph of the CM-2. An additional floating-point
accelerator (FPA) is optional, and it is shared by 32 of the 1-bit processors,
resulting in 2048 FPAs in a CM-2. Since floating point is so much faster using
the FPA, it is more accurate for floating-point problems to think of the CM-2
as having 2048 powerful processors, rather than 65,536 weak ones. There are
only four types of chips in the CM-2: a custom chip containing 16 of the 1-bit
processors, commercial DRAMs, a custom chip to act as the interface to the
FPA, and an off-the-shelf FPA chip. Thus, a full system has 4096 custom pro
cessor chips, which include the communication interface to other processors,
22,528 DRAM chips (including extra memory for error correction), 2048 cus
tom FPA interface chips, and 2048 standard FPA chips.

The basic CM-2 operation reads 2 bits from the local memory and one from
a register, computes two separate 1-bit results, and stores one back to local
memory and one to a register. The CM-2 stores the result conditionally, de
pending on the value of a third 1-bit register. The clock cycle is determined by
the time to read memory. Arithmetic is performed 1 bit at a time, with the pro
gram for a 32-bit add taking about 21 microseconds.

Putting this in perspective, the MIPS R2000 of the same time period took
just 0.066 microseconds to perform a 32-bit add when the operands are all reg-

600 Chapter 9 Parallel Processors

FIGURE 9.2 Photograph of the CM-2. Photo courtesy of Thinking Machines Corporation.

isters; if the operands were in the cache an add would take on average about
0.198 microseconds. Although R2000 could perform a single 32-bit add about
100 times (21 /0.198) to 300 times (21 /0.066) faster, the CM-2 performs 65,536
additions at once. Thus, the CM-2 can perform about 200 (65,536/300) to 600
(65,536/100) times as many 32-bit adds per second as the R2000.

With 16 processors per chip, the network connecting the processors togeth
er has two logical pieces: within chips and between chips. Within the chip, ev
ery processor has a dedicated link to each of the other processors. The network
that connects the chips together is called a Boolean n-cube; with 4096 or 212,
chips, it is a 12-cube. Section 9.6 describes this network in more detail, but
small versions of this topology are easy to imagine: a 2-cube is simply a square
with processors at the four corners and a 3-cube is simply a cube with proces
sors at the eight corners.

At the time the machine was announced, the clock rate was 7 MHz, the
memory per node was 64K bits, and the FPA was 32 bits wide internally and
ran at 7 MHz. Later versions tracked technology with increases in the proces
sor clock rate, the memory capacity, and the width and clock rate of the FPA.

Figure 9.3 shows the organization of the CM-2. The CM-2 is connected to a
traditional SISD machine, called a front end, via a sequencer. The front end exe-

9.2 SIMD Computers-Single Instruction Stream, Multiple Data Streams

I I Front end
(SISD) I

I

- 16K processors
� (512 FPAs)

I I 1 Sequencer 1 J 1

16K processors
(512 FPAs)

I I

16K processors
(512 FPAs)

I l
16K processors

(512 FPAs)

I I
Data vault (disk array)

-
-

601

I
FIGURE 9.3 Organization of the CM·2. The CM-2 can have multiple front-end computers and
data vaults.

cutes the program, sending SIMD instructions to the sequencer when they are
encountered. The sequencer is something like the microprogram controller of
Chapter 5, except that instead of sending the microinstruction to a single data
path as in Chapter 5, the CM-2 sequencer broadcasts its instructions to all
65,536 processors and 2048 FPAs.

The CM-2 also has an 1/0 channel for every 8192 processors. This can be
connected to a custom frame buffer or to a disk array to offer high 1/0 band
width as an alternative to going through the front end.

Elaboration: Although MISD fills out Flynn's classification , it is d ifficult to envision. A
single instruction stream is s impler than multiple instruction streams, but mu ltiple
instruction streams with multiple data streams (MIMD) are easier to imagine than mul
tiple instructions with a s ingle data stream (MISD).

602

•

Chapter 9 Parallel Processors

MIMD Computers-Multiple Instruction

Streams, Multiple Data Streams

Multis are a new class of computers based on multiple microprocessors. The small
size, low cost, and high performance of microprocessors allow design and construc
tion of computer structures that offer significant advantages in manufacture, price
performance ratio, and reliability over traditional computer families . . . Multis are
likely to be the basis for the next, the fifth, generation of computers.

C. G. Bell, "Multis: A new class of multiprocessor computers,"
Science 228 (April 26, 1985), p.463

Computer architects have always sought the El Dorado of computer
design: To create powerful computers simply by connecting many existing
smaller ones. This is the idea behind MIMDs. The user orders as many proces
sors as the budget allows and receives a commensurate amount of perfor
mance. MIMDs are also scalable: the hardware and software are designed to
be sold with a variable number of processors, with current machines varying
by a factor of more than 20. Since software is scalable, some MIMDs can sup
port operation in the presence of broken hardware; that is, if a single proces
sor fails in a MIMD with n processors, the system provides continued service
with n - 1 processors. Finally, MIMDs may have the highest absolute perfor
mance-faster than the fastest uniprocessor.

The good news is that MIMD has established a beachhead. While the micro
processor has improved dramatically in performance, making it the most cost
effective uniprocessor, it is generally agreed that if you can't handle a time
shared workload on a single-chip SISD, then a MIMD composed of many sin
gle-chip SISDs is probably more effective than building a high-performance
SISD from a more exotic technology.

Small companies like Sequent offer low-end MIMDs; large companies like
IBM, DEC, and Cray Research deliver the high-end MIMDs. Moreover, virtu
ally all current file servers can be ordered with multiple processors. Conse
quently, multiprocessors now embody a significant market, responsible for a
majority of mainframes, virtually all supercomputers, and an increasing frac
tion of file servers.

MIMDs define high performance as high throughput for independent tasks.
This is in contrast to running a single task on multiple processors. We use the
term parallel processing program to refer to a single program that runs on multi
ple processors simultaneously. Although parallel processing programs may
not yet be important commercially for more than a small percentage of users,
we can expect that the percentage will increase in the future.

9.4 Programming MIMD• 603

Here are two key questions that drive the designs of MIMDs:

• How do parallel processors share data?

• How do parallel processors coordinate?

The answers to the first question fall in two main camps. Processors with a
single address space, sometimes called shared-memory processors, offer the pro
grammer a single memory address space that all processors share. Processors
communicate through shared variables in memory, with loads and stores ca
pable of accessing any memory location. As processors operating in parallel
normally will share data, they also need to coordinate when operating on
shared data; otherwise, one processor could start working on data before an
other is finished with it. This coordination is called synchronization. When shar
ing is supported with a single address space, there must be a separate
mechanism for synchronization. One approach uses a lock: only one processor
at a time can acquire the lock, and other processors interested in shared data
must wait until the original processor unlocks the variable. Locking is de
scribed in section 9.5.

An alternative model for communicating data uses message sending for com
municating among processors. As an extreme example, processors on differ
ent workstations communicate by sending messages over a local area network.
Provided the system has routines to send and receive messages, coordination
is built-in with message sending since one processor knows when it sends a
message and the receiving processor knows when the message arrives. The re
ceiving processor can then send a message back to the sender saying the mes
sage has arrived, if the sender needs that confirmation.

MIMDs are constructed in two basic styles: processors connected by a sin
gle bus, and processors connected by a network. We will examine these two
styles in detail in following sections, but first let's look at the general issues in
programming MIMDs.

II Programming MIMDs

I don't know what the programming language of the future will look like, but I know
it will be called Fortran.

Anonymous

The bad news is that it remains to be seen how many important applications
will run faster on MIMDs via parallel processing. The obstacle is not the price
of the SISD used to compose MIMDs, the flaws in topologies of interconnec
tion networks, nor the unavailability of appropriate programming languages;

604 Chapter 9 Parallel Processors

the difficulty has been that too few important application programs have
been rewritten to complete tasks sooner on parallel processors. Because it is
even harder to find applications that can take advantage of many processors,
the challenge is greater for large-scale MIMDs.

But why is this so? Why should parallel processing programs be so much
harder to develop than sequential programs? One reason is that it is difficult
to write MIMD programs that are fast, especially as the number of processors
increases. As an analogy, think of the communication overhead for a task done
by one person compared to the overhead for a task done by a committee, es
pecially as the size of the committee increases. Although n people may have
the potential to finish any task n times faster, the communication overhead for
the group may prevent it; n-fold speedup becomes especially unlikely as n in
creases. (Imagine the change in communication overhead if a committee
grows from 10 people to 1000 people to 1,000,000.)

Another reason why it is difficult to write parallel processing programs is
that the programmer must know a good deal about the hardware. On a uni
processor, the high-level language programmer writes the program largely ig
noring the underlying machine organization-that's the job of the compiler.
But, so far at least, the parallel processing programmer had better know the
underlying organization to write programs that are fast and capable of run
ning with a variable number of processors. Moreover, such parallel programs
are not portable to other MIMDs.

Although this second obstacle is beginning to lessen, our discussion in
Chapter 2 reveals a third obstacle: Amdahl's Law. It reminds us that even
small parts of a program must be parallelized to reach their full potential; thus,
coming close to linear speedup involves discovering new algorithms that are
inherently parallel.

Suppose you want to achieve linear speedup with 100 processors. What
fraction of the original computation can be sequential?

Amdahl's Law (page 71) says

Execution time after improvement =

Execution time affected by improvement
E . . ff d

f
+ xecuhon time una ecte

Amount o improvement

9.4 Programming MIMDs 605

Substituting for the goal of linear speedup with 100 processors means the
execution time is reduced by 100:

Execution time after improvement
100

Execution time affected by improvement . . ff d
100

+ Execution time una ecte

Solving for the unaffected execution time:

. . ff d
Execution time after improvement

Execution time una ecte =
100

Execution time affected by improvement
-

100
= 0

Accordingly, to achieve linear speedup with 100 processors, none of the
original computation can be sequential. Put another way, to get a speedup
of 99 from 100 processors means the percentage of the original program that
was sequential would have to be 0.01 % or less.

Yet there are applications with substantial parallelism.

Suppose you want to perform two sums: one is a sum of two scalar vari
ables and one is a matrix sum of a pair of two-dimensional arrays, size 1000
by 1000. What speedup do you get with 1000 processors?

If we assume performance is a function of the time for an addition t, then
there is 1 addition that does not benefit from parallel processors and
1,000,000 additions that do. If the time before is 1,000,001 t,

Execution time before improvement =

Execution time affected by improvement
E . . ff d

A f .
+ xecuhon hme una ecte

mount o improvement

1,000,000t
Execution time before improvement =

1000
+ 1 t

1001

606 Chapter 9 Parallel Processors

Speedup is then

s d
1,000,001

= 999 pee up =
1001

Even if there were 100 sums of scalar variables to one sum of a pair of 1000
by 1000 arrays, the speedup would still be 909.

Massive Parallelism

The term massively parallel is widely used but rarely defined, but no one
would define a computer with less than 100 processors as massively parallel.
Even with such a conservative dividing line, parallel processing using more
than 100 processors is not yet important in everyday computing. Ideally, we
should have a simple model that allows programmers to more easily create
portable programs that achieve good performance on real parallel processors
and to enable researchers to invent new algorithms that will work well on
many parallel processors. Unfortunately, traditional theoretical models for
parallel computation do not accurately predict performance of current com
mercial parallel processors.

The need for new portable algorithms for massively parallel machines un
derlines our belief that parallel machines offer an exciting challenge for the fu
ture, predicated on a clear understanding of applications, algorithms, and
architecture.

Single Program Multiple Data

While the search for algorithms and models continues, progress has been
made on the general approach to programming; we are converging on a Sin
gle Program Multiple Data (SPMD). It was conceivable to write 1000 different
programs for 1000 different processors in an MIMD machine, but in practice
this proved to be impossible. Today MIMD programmers write a single
source program and think of the same program running on all processors.

The SIMD and MIMD camps realized that synchronization simplified pro
gramming, but MIMD advocates feared that they gave up too much by requir
ing every instruction on every processor to be synchronized. Given
independent memories, however, processors interact only during communi
cation. Thus, if processors operate in MIMD-style when not communicating,
and in SIMD-style when communicating, then this compromise eliminates
weaknesses of SIMD while maintaining its simplified programming model. Of
course, not all communications need to be synchronized, but this generaliza
tion is the essence of the insight. SPMD offers the programming advantages of

9.5 MIMDs Connected by a Single Bus 607

SIMD without suffering either the inflexibility of the problem domain or the
inability to utilize off-the-shelf processors.

In addition to a standard style of programming, scientific programmers
seem to be headed for agreement on a programming language. The choice ap
pears to be a version of Fortran that supports array operators and allows hints
to the compiler on memory allocation to try to keep the data near the proces
sor. Alas, for non-scientific programs, the language of choice remains unclear.
The current popular languages are versions of C or C++ extended with com
munication procedures and a preprocessor to support parallel constructs, but
there is no consensus yet, as there is in the Fortran community, of the features
to be included in such a language.

• MIMDs Connected by a Single Bus

Sequent
Si l icon Graphics
Sun

The high performance and low cost of the microprocessor inspired renewed
interest in multiprocessors in the 1980s. Figure 9.4 lists the characteristics of
some commercial single-bus computers. Several microprocessors can usefully
be placed on a common bus because

• Each microprocessor is much smaller than a multichip processor, so
busses can be shorter.

• Caches can lower bus traffic.

• Mechanisms were invented to keep caches and memory consistent for
multiprocessors, just as caches and memory are kept consistent for I/O.

Traffic per processor and the bus bandwidth determine the useful number
of processors in such a multiprocessor. Figure 9.5 is a drawing of a generic sin
gle-bus multiprocessor. The caches replicate data in their faster memories both
to reduce the latency to the data and to reduce the memory traffic on the bus.

Symmetry 30 32 16 MHz 30 240 53

4/360 16 32 40 MHz 16 512 320 1990

4/640 4 32 40 MHz 4 768 320 1991

FIGURE 9.4 Characteristics of three MIMD computers connected by a single backplane bus. Number of FPUs
means number of floating-point units. Communications bandwidth for these machines is the bus bandwidth.

608

Example

Answer

Chapter 9 Parallel Processors

Processor Processor Processor

Single bus

Memory 1/0

FIGURE 9.5 A slngle-bus multlprocessor. Typical size is between 2 and 32 processors.

Recall from Chapter 8 that 1/0 can experience inconsistencies in the value
of data between the version in memory and the version in the cache. This cache
coherency problem applies to multiprocessors as well as 1/0.

Let's consider the parallel summing program we sketched in the example
on page 597, but this time for a single-bus MIMD computer; let's assume we
have 10 processors to sum the 100,000 numbers.

The first step again would be to split the set of numbers into subsets of the
same size. This time we do not allocate the subsets to a different memory,
since there is a single memory for this machine; we just give different start
ing addresses to each processor. P n is the number of the processor, between
0 and 9. All processors start the program by running the loop that sums
their subset of numbers:

s um [P n] = 0 ;
f o r (i = l O O O O * P n ; i < l O O O O * (P n+l) ; i = i + 1)

s u m [P n] = s um [P n J + A [i] ; / * s um t h e a s s i g ned a r e a s * /

9.5 MIMDs Connected by a Slngle Bus 609

This loop uses load instructions to bring the correct subset of numbers to the
caches of each processor from the common main memory.

The next step is again to add these many partial sums, and once again
we divide to conquer. Half of the processors add pairs of partial sums, then
a quarter add pairs of the new partial sums, and so on until we have the
final sum. We want each processor to have its own version of the loop
counter variable i , so we must indicate that it is a "private" variable.

There are two important differences in this second step from the SIMD
program. First, the partial sums are not sent and received; the requesting
processor just loads from the address to get a copy of the partial sum. The
hardware guarantees that the correct value will be supplied. The second
difference is that the cooperating processors must synchronize to be sure
the result is ready. With SIMD, each instruction is issued in lock step to all
units, so there is no need to synchronize before sending and receiving re
sults; with MIMD processors, there is no such implicit coordination, so
there must be explicit synchronization at key points in the program. In this
example, the two processors must synchronize before the "consumer" pro
cessor tries to read the result from the memory location written by the "pro
ducer" processor; otherwise, the consumer may read the old value of the
data. Here is the code (h a l f is private also):

h a l f = 1 0 ; / * 1 0 p r o c e s s o r s i n s i n g l e - b u s M I M D * /
r e pe a t

s y n c h () ; / * w a i t f o r c o m p l e t i o n o f p a r t i a l s um s * /
i f (h a l f % 2 ! = 0 & & P n == 0) s u m [0 J = s um [0 J + s um [h a l f - 1 J ;
h a l f = h a l f / 2 ; / * d i v i d i n g l i n e o n w h o s um s * /
i f C P n < h a l f) s um [P n] = s um [P n] + s um [P n + h a l f] ;

u n t i l (h a l f == 1) ; ! * ex i t w i t h f i n a l s um i n S um [O J * /

We have used what is called a barrier synchronization primitive; proces
sors wait at the barrier until every processor has reached it. Then they pro
ceed. Barrier synchronization allows all processors to rapidly synchronize.
This function can be implemented either in software with the lock synchro
nization primitive, described on pages 614 to 616, or with special hardware
that combines each processor "ready" signal into a single global signal that
all processors can test.

Unlike I/0, which rarely uses multiple data copies (a situation to be avoid
ed whenever possible), as this example suggests, multiple processors require
copies of the same data in multiple caches. Alternatively, accesses to shared
data could be forced always to go around the cache to memory, but that would
be too slow and it would require too much bus bandwidth; performance of a
multiprocessor program depends on the performance of the system when
sharing data. The protocols to maintain coherency for multiple processors
are called cache-coherency protocols. The next few subsections explain cache-

610 Chapter 9 Parallel Processors

Processor Processor Processor

Single bus

Memory 1/0

FIGURE 9.6 A single-bus multiprocessor using snooping cache coherency. The extra set of
tags, shown in color, are used to handle snoop requests. The tags are duplicated to reduce the
demands of snooping on the caches.

coherency protocols, methods of synchronizing processors using cache coher
ency, and the Sequent Symmetry multiprocessor as an example of a single-bus
MIMD.

Multiprocessor Cache Coherency

The most popular protocol to maintain cache coherency is called
snooping: Figure 9.6 shows how caches access memory over a common bus.
All cache controllers monitor or snoop on the bus to determine whether or not
they have a copy of the shared block.

Snooping became popular with machines of the 1980s, which used single
buses to main memory. These uniprocessors were extended by adding multi
ple processors on that bus to give easy access to the shared memory. Caches
were then added to improve the performance of each processor, leading to
schemes to keep the caches up-to-date by snooping on the information over
that shared bus.

Maintaining coherency has two components: reads and writes. Multiple
copies are not a problem when reading, but a processor must have exclusive
access to write a word. Processors must also have the most recent copy when
reading an object, so all processors must get new values after a write. Thus,
snooping protocols must locate all the caches that share an object to be written.

9.5 MIMD• Connected by a Slngle Bus 611

The consequence of a write to shared data is either to invalidate all other copies
or to update the shared copies with the value being written.

The status bits already in a cache block are expanded for snooping proto
cols, and that information is used in monitoring bus activities. On a read miss,
all caches check to see if they have a copy of the requested block and then take
the appropriate action, such as supplying the data to the cache that missed.
Similarly, on a write, all caches check to see if they have a copy and then act,
either invalidating or updating their copy to the new value.

Since every bus transaction checks cache-address tags, one might assume
that it interferes with the processor. It would interfere if not for duplicating the
address-tag portion of the cache (not the whole cache) to get an extra read port
for snooping; see Figure 9.6. This way, snooping rarely interferes with the pro
cessor's access to the cache. When there is interference, the processor will like
ly stall because the cache is unavailable.

Snooping protocols are of two types, depending on what happens on a
write:

• Write-invalidate: The writing processor causes all copies in other caches
to be invalidated before changing its local copy; it is then free to update
the local data until another processor asks for it. The writing processor
issues an invalidation signal over the bus, and all caches check to see if
they have a copy; if so, they must invalidate the block containing
the word. Thus, this scheme allows multiple readers but only a single
writer.

• Write-update: Rather than invalidate every block that is shared, the writ
ing processor broadcasts the new data over the bus; all copies are then
updated with the new value. This scheme, also called write broadcast,
continuously broadcasts writes to shared data while write invalidate
deletes all other copies so that there is only one local copy for subse
quent writes.

Write-update is like write-through because all writes go over the bus to
update copies of the shared data. Write invalidate uses the bus only on the
first write to invalidate the other copies, and hence subsequent writes do not
result in bus activity. Consequently, write-invalidate has similar benefits to
write-back in terms of reducing demands on bus bandwidth, while write
update has the advantage of making the new values appear in caches sooner,
which can reduce latency.

Commercial cache-based multiprocessors use write-back caches because
write-back reduces bus traffic and thereby allows more processors on a single
bus. To preserve that precious communications bandwidth, all commercial
machines also use write-invalidate as the standard protocol.

612 Chapter 9 Parallel Processors

Hardware

Software

Interface

One insight is that block size plays an important role in
cache coherency. For example, take the case of snooping on
a cache with a block size of eight words, with a single word
alternatively written and read by two processors. The proto
col that only broadcasts or sends one word has an advantage
over a scheme that transfers the full block.

Large blocks can also cause what is called false sharing: When two unrelated
shared variables are located in the same cache block, the full block is ex
changed between processors even though the processors are accessing differ
ent variables (see Exercises 9.3 and 9.4). Compiler research is underway to
reduce cache miss rates by allocating highly correlated data to the same cache
block. Success in this effort could increase the desirability of large blocks for
multiprocessors.

Measurements to date indicate that shared data has lower spatial and tem
poral locality than other types of data. Thus, shared data misses often domi
nate cache behavior even though they may be just 10% to 40% of the data
references.

Elaboration: In a multiprocessor using cache coherency over a s ingle bus, what hap
pens if two processors try to write to the same shared data word in the same clock
cycle? The bus arbiter decides which processor gets the bus first, and this processor
wil l i nval idate or update the other processor's copy depending on the protocol. The sec
ond processor then does its write. This sequential operation makes writes to d ifferent
words in the same block work correctly.

An Example of a Cache-Coherency Protocol

To illustrate the intricacies of a cache-coherency protocol, Figure 9.7 shows a
finite state transition diagram for a write-invalidation protocol based on a
write-back policy. Each cache block is in one of three states:

1 . Read only: This cache block is clean (not written) and may be shared.

2. Read/Write: This cache block is dirty (written) and is not shared.

3. Invalid: This cache block does not have valid data.

The three states of the protocol are duplicated in the figure to show transi
tions based on processor actions as opposed to transitions based on bus oper-

9.5 MIMDs Connected by a Single Bus 613

Processor read miss

Processor write miss

Another processor has a read
miss or a write miss for

this block (seen on bus).
Write back old block

Processor

Processor write
(hit or miss)

Cache state transitions
using signals from processor

Invalidate or
another processor
has a write miss

for this block
(seen on bus)

Cache state transitions
using signals from bus

FIGURE 9.7 A wrlte-lnvalldate, cache-coherency protocol. The upper part of the diagram
shows state transitions based on actions of the processor associated with this cache; the lower
part shows transitions based on actions of other processors seen as operations on the bus. There
is only o�ate machine in a cache, although there are two represented here to clarify when a
transition occurs. The black arrows and actions specified in black text would be found in caches
without coherency, with the colored arrows and actions added to achieve cache coherency. In
contrast to what is shown here, some protocols call writes to clean data a write miss, so that there
is no separate signal for invalidation.

614 Chapter 9 Parallel Processors

ations. This is done only for purposes of illustration; there is really only one
finite state machine per cache, with stimuli coming either from the attached
processor or from the bus.

Transitions in the state of a cache block happen on read misses, write miss
es, or write hits; read hits do not change cache state. Let's start with a read
miss. When the processor has a read miss that maps onto a block, it will change
the state of that block to Read Only and write back the old block if the block
was in the Read/Write state (dirty). All the caches in the other processors mon
itor the read miss to see if this block is in their cache. If one has a copy and it is
in the Read/Write state, then the block is changed to the Invalid state. (Some
protocols would change the state to Read Only.) The read miss is then satisfied
by reading from memory.

Now let's try writes. To write a block, the processor acquires the bus, sends
an invalidate signal, writes into that block and places it in the Read/Write
state. Because other caches monitor the bus, all caches check to see if they have
a copy of that block; if they do, they invalidate it.

As you might imagine, there are many variations on cache coherency that
are much more complicated than this simple model. The variations include
whether or not the other caches try to supply the block if they have a copy,
whether or not the block must be invalidated on a read miss, as well as wheth
er writes invalidate or update the results as discussed earlier.

Synchronization Using Coherency

One of the major requirements of a single-bus multiprocessor is to be able to
coordinate processes that are working on a common task. Typically, a pro
grammer will use lock variables to coordinate or synchronize the processes.
The challenge for the architect of a multiprocessor is to provide a mechanism
to decide which processor gets the lock and to provide the operation that
locks a variable. Arbitration is easy for single-bus multiprocessors, since the
bus is the only path to memory: the processor that gets the bus locks out all
other processors from memory. If the processor and bus provide an atomic
swap operation, programmers can create locks with the proper semantics. The
adjective atomic is key, for it means that a processor can both read a location
and set it to the locked value in the same bus operation, preventing any other
processor from reading or writing memory.

Figure 9.8 shows a typical procedure for locking a variable using an atomic
swap instruction. Assume that 0 means unlocked ("go") and 1 means locked
("stop"). A processor first reads the lock variable to test its state. A processor
keeps reading and testing until the value indicates that the lock is unlocked.
The processor then races against all other processors that were similarly spin
waiting to see who can lock the variable first. All processors use an atomic

9.5 MIMD& Connected by a Single Bus

No

Load lock
variable

Try to lock variable using swap:
Read lock variable and then set

variable to locked value (1)

No

Begin update
of shared data

Finish u pdate
of shared data

l
Unlock:

Set lock variable to O

615

FIGURE 9.8 Steps to acquire a lock to synchronize processes and then to release the
lock on exit from the key section of code.

swap instruction that reads the old value and stores a 1 ("stop") into the lock
variable. The single winner will see the 0 ("go"), and the losers will see a 1 that
was placed there by the winner. (The losers will continue to write the variable
with the locked value of l , but that doesn't change its value.) The winning pro-

616

1 Has lock

Chapter 9 Parallel Processors

Spins, testing if lock = O Spins, testing if lock = O None

2 Sets lock to O and O Spins, testing if lock = O
sent over bus

Spins, testing if lock = 0 Write-invalidate of lock variable
from PO

3 Cache miss Cache miss Bus decides to service P2 cache
miss

4

5

6

7

8

(Waits while bus busy)

Lock = O

Lock = O Cache miss for P2 satisfied

Swap: reads lock and sets to Cache miss for P1 satisfied
1

Swap: reads lock and sets to Value from swap = O and 1 Write-invalidate of lock variable
1 sent over bus from P2

Value from swap = 1 and 1 Owns the lock, so can update Write-invalidate of lock variable
sent over bus shared data from P1

Spins, testing if lock = O None

FIGURE 9.9 Cache-coherency steps and bus traffic for three processors, PO, Pl, and P2. This figure assumes write
invalidate coherency. PO starts with the lock (step 1). PO exits and unlocks the lock (step 2). Pl and P2 race to see which
reads the unlocked value during the swap (steps 3-5). P2 wins and enters the critical section (steps 6 and 7), while Pl spins
and waits (steps 7 and 8).

cessor then executes the code that updates the shared data. When the winner
exits, it stores a 0 ("go") into the lock variable, thereby starting the race all over
again.

Let's examine how the spin lock scheme of Figure 9.8 works with bus-based
cache coherency. One advantage of this algorithm is that it allows processors
to spin wait on a local copy of the lock in their caches. This reduces the amount
of bus traffic; Figure 9.9 shows the bus and cache operations for multiple pro
cessors trying to lock a variable. Once the processor with the lock stores a 0
into the lock, all other caches see that store and invalidate their copy of the lock
variable. Then they try to get the new value for the lock of 0. (With write-up
date cache coherency, the caches would update their copy rather than first in
validate and then load from memory.) This new value starts the race to see
who can set the lock first. The winner gets the bus and stores a 1 into the lock;
the other caches replace their copy of the lock variable containing 0 with a l .

They read that the variable is already locked and must return to testing and
spinning.

This scheme has difficulty scaling up to many processors because of the
communication traffic generated when the lock is released.

The Sequent Symmetry Multiprocessor

Several research projects and companies investigated the single-bus multi
processors in the 1980s. One example is Sequent Computer Systems, Inc.,

9.5 MIMDs Connected by a Single Bus 617

FIGURE 9.10 Photograph of the Sequent Symmetry. Photo courtesy of Sequent Computer
Systems, Inc.

founded to build multiprocessors based on standard microprocessors and the
UNIX operating system. In 1986, Sequent began to design the Symmetry mul
tiprocessor, assuming a microprocessor four to five times faster than the pro
cessor in an earlier system. Figure 9.10 is a photograph of the Sequent
Symmetry. The goal was to support as many processors as possible using the
1/0 controllers developed for the earlier system. This meant the bus had to
remain compatible, although the new memory and bus system had to deliver
roughly four to five times more bandwidth than the older system. Figure 9.11
shows the organization of the machine.

The goal of higher memory-system bandwidth with a similar bus was at
tacked on four levels. First, the cache was increased to 64 KB, increasing the hit
rate and therefore the effective memory bandwidth as seen by the processor.
Second, the cache policy was changed from write-through to write-back to re
duce the number of write operations on the shared bus. To maintain cache co
herency with write-back, Symmetry used a write-invalidate scheme. The third
change was to double the bus width to 64 bits, thereby doubling the bus band
width to 53 MB/sec. The final change was to have each memory controller in
terleave memory as two banks, allowing the memory system to match the
bandwidth of the wider bus. The memory system can have up to six control
lers with up to 240 MB of main memory.

One experiment evaluated the Symmetry as a timeshared (multipro
grammed) multiprocessor running ten independent programs, comparing

618 Chapter 9 Parallel Processors

2 to 32 CPU/FPUs 1 to 6 memory modules

80386 CPU/ 80386 CPU/ Main memory Main memory
1167 FPU 1167 FPU (8 MB-40 MB) (8 MB-40 MB)

64-KB 64-KB Memory Memory
write-back write-back

cache cache controller controller

System bus

Ethernet

SCSI bus

Disk
controller

Multibus

X.25 network

FIGURE 9.11 The Sequent Symmetry multiprocessor has up to 30 microprocessors, each with 84 KB of two-way
set associative, write-back caches connected over the shared system bus. Up to six memory controllers also talk to
this 64-bit-wide bus, plus some interfaces for I/O. In addition to a special-purpose disk controller, there is an interface for
the system console, Ethernet network, and SCSI I/0 bus (see Chapter 8), as well as another interface for Multibus. I/O
devices can be attached either to SCSI or to Multibus, as the customer desires. (Although all interfaces are labeled "Bus
adapter," each is a unique design.) For more details on cache behavior of this machine, see T. Lovett and S. Thakkar, "The
Symmetry multiprocessor system," in Proc. 1988 International Conference on Parallel Processing, 303-310.

write-through and write-back cache policies. The experiment ran n copies of
the program on n processors. This study found that with write-through, about
half the programs started to stray from linearly increasing throughput at 6 to
8 processors, yet with write-back, all but one of the ten programs stayed near
linear for up to 28 processors. (The single failure was caused by hot spots in
the operating system rather than by the write-back coherency protocol.)

Notice that in this style of parallel processor, memory access times are
uniform: for all processors, the time of a memory access is equally fast (in the
local cache) or slow (in main memory). This is in contrast to the network-con
nected machines discussed in the next section. Hence, the label uniform memory

9.6 MIMD& Connected by a Network 619

access is applied to machines in which the time for a memory access is uniform;
nonuniform memory access applies to other machines. In the next section, we will
discuss examples of nonuniform access computers.

• MIMDs Connected by a Network

Single-bus designs are attractive, but limited because the three desirable bus
characteristics are incompatible: high bandwidth, low latency, and unlimited
length. There is also a limit to the bandwidth of a single memory module
attached to a bus. Thus, a single bus imposes practical constraints on the
number of processors that can be connected to it; to date, the largest number
of processors connected to a single bus in a commercial computer is 30.

If the goal is to connect many more processors together, then the computer
designer needs to use more than a single bus. Figure 9.12 shows how this can
be organized. Note that in Figure 9.5 on page 608, the connection medium
the bus-is between the processors and memory, whereas in Figure 9.12,
memory is attached to each processor and the connection medium-the net
work-is between these combined nodes. For single-bus systems the medium
is used on every memory access, while in the latter case it is used only for in
terprocessor communication.

Processor Processor Processor

Memory Memory Memory

t t t
Network

FIGURE 9.12 The organization of a network-connected multiprocessor. Typical size is
between 32 and 1024 processors. Note that, in contrast to Figure 9.5, the multiprocessor connec
tion is no longer between memory and the processor. MIMDs have also been built with the net
work between the processors and memory; the Cray XMP and YMP multiprocessors are perhaps
the best known examples, but this placement is currently out of favor.

620 Chapter 9 Parallel Processors

This brings us to a debate about the organization of memory in large-scale
parallel processors. The debate unfortunately often centers on a false
dichotomy: shared memory versus distributed memory. Shared memory really
means a single address space, implying implicit communication with loads
and stores. The real opposite of a single address is multiple private address spac
es, implying explicit communication with sends and receives. Distributed
memory refers to the physical location of the memory. If physical memory is
divided into modules, with some placed near each processor, as in Figure 9.12,
then physical memory is distributed. The real opposite of distributed memory
is centralized memory, where access time to a physical memory location is the
same for all processors because every access goes over the interconnect, as in
Figure 9.5. This style of machine is sometimes called dance hall, with the pro
cessors all on one side and the memories all on the other, invoking the image
of a school dance with the boys on one side of the floor and the girls on the
other.

Single address space versus multiple address spaces and distributed mem
ory versus centralized memory are orthogonal issues: MIMDs can have a sin
gle address space and a distributed physical memory or multiple private
address spaces and a centralized physical memory. The proper debates con
cern the pros and cons of a single address space, of explicit communication,
and of distributed physical memory.

For large-scale parallel machines, the argument about distribution of phys
ical memory was recently resolved; every large-scale machine distributes
physical memory, as the cost/performance advantage of keeping some mem
ory near each processor is too great to ignore. Another argument is that it is
much easier to construct a machine that can scale by a factor of 100 if the mem
ory and the processor are on the same unit being replicated. In such organiza
tions, the local memory is much faster than nonlocal memory, varying from 3
to 10 times faster with hardware support; it is even slower if messages are sent.
Programmers of large-scale parallel machines try to minimize accesses to non
local memory. These parallel processors are called nonuniform memory access
machines.

In machines without a single global address, communication is explicit; the
programmer or the compiler must send messages to ship data to another node
and must receive messages to accept data from another node.

Let's try our summing example again for a network-connected MIMD with
100 processors using multiple address spaces.

9.6 MIMDs Connected by a Network 621

Since this computer has multiple address spaces just like a SIMD, the code
might be similar to that version. Like the SIMD code and in contrast to the
single-bus MIMD code, the first step is distributing the 100 subsets to each
of the local memories. The processor containing the 100,000 numbers sends
the subsets to each of the 100 processor-memory nodes.

Now let's examine the SIMD code to see what changes need to be made
to run on the network-connected MIMD:
s um = O ;
f o r C i = O ; i < 1 0 0 0 ; i + 1) / * l o o p o v e r e a c h a r r a y * /

s um = s um + A l [i] ; / * s um t h e l o c a l a r r a y s * /
l i m i t = 1 0 0 ;
h a l f = 1 0 0 ; / * 1 0 0 p r o c e s s o r s i n t h i s n e tw o r k - M I M D * /
r e p e a t

h a l f (h a l f+ l) / 2 ; / * s e n d v s . r e c e i v e d i v i d i n g l i n e * /
i f C P n >= h a l f & & P n < l i m i t) s e n d (P n - h a l f . s um) ;
i f C P n < (l i m i t / 2 - 1)) s um = s u m + r e c e i v e () ;
l i m i t = h a l f ; / * u p p e r l i m i t o f s e n d e r s * /

u n t i l (h a l f == l) ; / * e x i t w i t h f i n a l s um * /
The first three lines sum the subset of numbers in each node. This code

works fine as is. The last seven lines perform the sum of the partial sums
from multiple address spaces. The only potential problem with the code
above is synchronization; in SIMD, each instruction is executed in all units
at the same time, but there is no such lockstep operation in MIMD. This
code divides all processors into senders or receivers and each receiving pro
cessor gets only one message, so we can presume that a receiving processor
will stall until it receives a message. Thus, send and receive can be used as
primitives for synchronization as well as for communication, as the proces
sors are aware of the transmission of data. With these assumptions, this
SIMD code works without modification on the network-connected MIMD.

Figure 9.13 shows the characteristics of several network-connected MIMDs.
Since the number of pins per chip is limited, not all processors can be connect
ed directly. This restriction has inspired a whole zoo of topologies for consid
eration in the design of the network. In the next subsection, we'll look at the
characteristics of some of the key alternatives of network designs.

Network Topologies

The straightforward way to connect processor-memory nodes is to have a
dedicated communication link between every node. Between the high
cost/performance of this fully connected network and the low cost/perfor
mance of a bus are a set of networks that constitute a wide range of trade-offs

622 Chapter 9 Parallel Processors

Intel iPSC/2 128 16 16 MHz 128 512 MB 896 345 1988

nCube nCube/ten 1024 32 10 MHz 1024 512 MB 10,240 640 1987

Intel Delta 540 32 40 MHz 540 17,280 MB 21,600 640 1991

Thinking CM-5 1024 32 33 MHz 4096 32,768 MB 5120 5120 1991
Machines

FIGURE 9.13 Characteristics of four MIMD computers connected by a network. Number of FPUs means number of
floating-point units. All these machines have distributed physical memory and multiple private address spaces.

in cost/performance. Network costs include the number of switches, the
number of links on a switch to connect to the network, the width (number of
bits) per link, and length of the links when the network is mapped into a
physical machine. For example, on a machine that scales between tens and
thousands of processors, some links may be metal rectangles within a chip
that are a few millimeters long, and others may be cables that must stretch
several meters from one cabinet to another. Network performance is multifac
eted as well. It includes the latency on an unloaded network to send and
receive a message, the throughput in terms of the maximum number of mes
sages that can be transmitted in a given time period, delays caused by conten
tion for a portion of the network, and variable performance depending on the
pattern of communication. Another obligation of the network may be fault
tolerance, for very large systems may be required to operate in the presence of
broken components.

Networks are normally drawn as graphs, with each arc of the graph repre
senting a link of the communication network. The processor-memory node is
shown as the black square and the switch is shown as a colored circle. In this
section, all links are bidirectional; that is, information can flow in either direc
tion. All networks consist of switches whose links go to processor-memory
nodes and to other switches. The first improvement over a bus is a network
that connects a sequence of nodes together:

This topology is called a ring. Since some nodes are not directly connected,
some messages will have to hop along intermediate nodes until they arrive at
the final destination.

9.6 MIMDs Connected by a Network 623

Unlike a bus, a ring is capable of many simultaneous transfers. Because
there are numerous topologies to chose from, performance metrics are needed
to distinguish these designs. Two are popular. The first is total network band
width, which is the bandwidth of each link multiplied by the number of links.
This represents the very best case. For the ring network above with P proces
sors, the total network bandwidth would be P times the bandwidth of one link;
the total network bandwidth of a bus is just the bandwidth of that bus, or 1
times the bandwidth of that link.

To balance this best case, we include another metric that is closer to the
worst case: the bisection bandwidth. This is calculated by dividing the machine
into two parts, each with half the nodes. Then you sum the bandwidth of the
links that cross that imaginary dividing line. The bisection bandwidth of a ring
is 2 times the link bandwidth and it is 1 time the link bandwidth for the bus. If
a single link is as fast as the bus, the ring is only twice as fast as a bus in the
worst case, but it is P times faster in the best case.

Since some network topologies are not symmetric, the question arises of
where to draw the imaginary line when bisecting the machine. This is a worst
case metric, so the answer is to choose the division that yields the most pessi
mistic network performance; stated alternatively, calculate all possible bisec
tion bandwidths and pick the smallest.

At the other extreme from a ring is a fully connected network, where every
processor has a bidirectional link to every other processor. For fully connected
networks, the total network bandwidth is (P x P-1)/2 and the bisection band
width is (P /2)2.

The tremendous improvement in performance of fully connected networks
is offset by the tremendous increase in cost. This inspires engineers to invent
new topologies that are between the cost of rings and the performance of fully
connected networks. The evaluation of success depends in large part on the
nature of the communication in the workload of parallel programs run on the
machine.

The number of different topologies that have been discussed in publications
would be difficult to count, but the number that have been used in commercial
parallel processors is just a handful. Figure 9.14 illustrates two of the popular
topologies. Real machines frequently add extra links to these simple topolo
gies to improve performance and reliability. Figure 9.15 summarizes these dif
ferent topologies using the two metrics of this section for 64 nodes.

An alternative to placing a processor at every node in a network is to leave
only the switch at some of these nodes. The switches are smaller than proces
sor-memory-switch nodes, and thus may be packed more densely, thereby
lessening distance and increasing performance. Such networks are frequently
called multistage networks to reflect the multiple steps that a message may trav
el. Types of multistage networks are as numerous as single-stage networks;

624 Chapter 9 Parallel Processors

a. 20 grid or mesh of 16 nodes b. N-cube tree of 8 nodes (8 = 23 so n = 3)

FIGURE 9.14 Network topologies that have appeared in commercial parallel processors.
The colored circles represent switches and the black squares represent processor-memory nodes.
Even though a switch has many links, generally only one goes to the processor. The Boolean n
cube topology is an n-dimensional interconnect with 2" nodes, requiring n links per switch (plus
one for the processor) and thus n nearest neighbor nodes. Frequently these basic topologies have
been supplemented with extra arcs to improve performance and reliability. For example, the
switches in the left and right columns of the 20 grid could be connected through the unused
ports on each switch, making four horizontal rings.

Performance Total network bandwidth 1 64
Bisection bandwidth 1 2

Cost Ports per switch n.a. 3
Total number of links 1 128

112
8
5

176

192
32

7
256

2016
1024

64
2080

FIGURE 9.15 Relative cost and performance of several interconnects for 64 nodes. Note
that any network topology that scales the bisection bandwidth linearly must scale the number of
network links faster than linearly. Figure 9.16a is an example of a fully connected network.

Figure 9.16 illustrates two of the popular multistage organizations. A fully con
nected or crossbar network allows any node to communicate with any other node
in one pass through the network. An Omega network uses less hardware than
the crossbar network (2n log2 n vs. n2 switches), but contention can occur be
tween messages, depending on the pattern of communication. For example,
the Omega network in Figure 9.16 cannot send a message from PO to P6 at the
same time it sends a message from Pl to P7.

Implementing Network Topologies

This simple analysis of all the networks in this section ignores important
practical considerations in the construction of a network. The distance of each
link affects the cost of communicating at a high clock rate-generally, the

9.6 MIMDs Connected by a Network 625

a. Cross bar b. Omega network

A c

B D

c. Omega network switch box

FIGURE 9.16 Popular multistage network topologies for 8 nodes. The switches in these drawings are simpler than in
earlier drawings because the links are unidirectional; data comes in at the bottom and exits out the right link.The switch
box in (c) can pass A to C and B to D or B to C and A to D. The crossbar uses n2 switches, where n is the number of proces
sors while the Omega network uses n/2 log2 n of the large switch boxes, each of which is logically composed of 4 of the
smaller switches. In this case the crossbar uses 64 switches versus 12 switch boxes or 48 switches in the Omega network.
The crossbar, however, can support any combination of messages between processors while the Omega network cannot.

longer the distance, the more expensive it is to run at a high clock rate. Shorter
distances also make it easier to assign more wires to the link, as the power to
drive many wires from a chip is less if the wires are short. Shorter wires are
also cheaper than long wires. A final practical limitation is that the three
dimensional drawings must be mapped onto chips and boards which are
essentially two-dimensional media. The bottom line is that topologies that

626 Chapter 9 Parallel Processors

U. I l l inois l l l iac IV 64 2D grid 64 5 MHz 40 2560 320 1972
ICL DAP 4096 2D grid 1 5 MHz 0.6 2560 40 1980
Goodyear MPP 16,384 2D grid 1 10 MHz 1.2 20,480 160 1982
Thinking CM-2 1024 to 4096 12-cube 1 7 MHz 1 65,536 1024 1987
Machines
nCube nCube/ten 1 to 1024 10-cube 1 10 MHz 1.2 10,240 640 1987
Intel iPSC/2 16 to 128 7-cube 1 16 MHz 2 896 345 1988
Mas par MP-1216 32 to 512 2D grid + 1 25 MHz 3 23,000 1300 1989

multistage
Omega

Intel Delta 540 2D grid 16 40 MHz 40 21,600 640 1991
Thinking CM-5 32 to 1024 Multistage 4 40 M Hz 20 20,480 5120 1991
Machines fat tree

FIGURE 9.17 Characteristics of networks of some parallel processors mentioned in this chapter. The Maspar
machine packs 32 4-bit processors per node chip, and the CM-2 packs 16 1-bit processors per node chip. The 2D grid of the
Intel Delta is 16 rows by 35 columns.

appear elegant when sketched on the blackboard may look awkward when
constructed from chips, cables, boards, and boxes. To put this section in per
spective, Figure 9.17 lists the networks used in the parallel processors used in
this book. Note that this figure includes SIMDs as well as MIMDs. In the fol
lowing subsection, we describe a network-connected MIMD in more detail.

The Connection Machine 5 from Thinking Machines

One system design goal of the CM-5, which was introduced by Thinking
Machines Corporation in 1991, was to scale to 1 teraFLOPs-one million
megaFLOPS-which would require thousands of processors, given the avail
able technologies. As a result, the design emphasizes the scalability of all
aspects of the system, particularly the data network. The CM-5 attaches both
processing nodes and I/O devices to the data network, allowing both compu
tation and I/O bandwidth to scale as required by the customer. Thus, users
could have a machine with 1024 processors and connections for 32 disk sys
tems, or 32 processors and 1024 disk systems. Initial orders for the machine
varied between 32 and 1024 processors.

The CM-5 bridges traditional SIMD and MIMD architectures by supple
menting the traditional data network with a second network, called the control
network, which directly supports SIMD communication operations. This al
lows the CM-5 to take advantage of the SIMD software technology developed
for the CM-2, as well as supporting other MIMD programming styles.

9.6 MIMD• Connected by a Network

Memory
Memory Memory

8 Mbytes 8 Mbytes
8 Mbytes (optional) (optional)

I I I
Vector unit Vector unit Vector unit
(optional) (optional) (optional)

I I I I
Memory

controller

t 64-bit bus t t
RISC CM-5

microprocessor, network
cache interface

t t
To CM-5 internal communications networks

Memory
8 Mbytes
(optional)

I
Vector unit
(optional)

I

627

64-bit paths
(plus ECC)

FIGURE 9.18 The CM-5 processing node. The base configuration has between 8 and 32 MB of
memory, while the vector units only come with 32 MB. The RISC microprocessor chosen is
SPARC.

Because of the desire to build very large systems, the CM-5 designers in
cluded a number of features to enhance the overall system reliability. First, the
CM-5 is designed to operate in the presence of processor or network failures,
minimizing the performance effects of hardware failures. Second, the CM-5 in
cludes a third network, called the diagnostics network, which is capable of run
ning manufacturing quality tests on the components while they are in the
system. Finally, the CM-5 includes many mechanisms to detect runtime fail
ures in a timely manner. These include error correcting codes on data stored
in processor memory, and checks on the sanity of network messages as they
pass through each switch.

The CM-5 computation node consists of a SP ARC microprocessor with an
optional vector execution unit, up to 32 MB of memory, and a network inter
face. Figure 9.18 illustrates the node. The SPARC processor controls the node
and makes use of the slave vector units for operations on large floating-point
or integer arrays. A vector unit executes SIMD-like instructions of a single op
eration on a collection of data. Instead of using multiple execution units as in

628 Chapter 9 Parallel Processors

FIGURE 9.19 The CM·S data network fat-tree topology for 16 nodes or 1/0 devices. The
colored circles in are switches and the squares at the bottom are processor-memory nodes. Some
lines are in color to make the fat tree easier to understand. In this fat-tree implementation, the
switches have four downward connections and two or four upward connections; in this figure,
switches have two upward connections. This three-dimensional view shows the increase in band
width over a simple tree as you move up from the nodes at the bottom.

SIMD, vector processors use a single unit that is heavily pipelined. All other
computations are performed by the SP ARC processor itself. The node memory
is addressable by both the vector units and the SP ARC processor.

The vector units are optimized for streaming 64-bit data from their memory
bank through their internal IEEE floating-point and integer AL Us. The vector
units include internal registers for storage of temporary variables, and are ca
pable of generating their own independent memory addresses. Each vector
unit is capable of a peak rate of 32 megaflops, giving the CM-5 computation
node an aggregate peak rate of 128 megaflops.

The network interface attaches the node to both the data network and con
trol network, and allows direct user access to both networks without being en
cumbered by the operating system overhead. The elaboration at the end of this
section gives the details on how the CM-5 does this.

The CM-5 data network is a tree-based topology, but has bandwidth added
higher in the tree to match the requirements of common communications pat
terns. This topology, commonly called a fat tree, is shown in Figure 9.19. Data
travels between nodes in messages which can hold 1 to 4 data words. The

9.6 MIMDs Connected by a Network 629

FIGURE 9.20 The Thinking Machines' CM·S, announced in 1991, scales from 32 proces
sors up to 16,384 processors. The machine in the photograph has 768 processors. The largest
initial order was for 1024 processors. If someone has $100,000,000 in 1993, Thinking Machines
will build a machine with a peak performance of over one teraFLOPS. Photo courtesy of Think
ing Machines Corporation.

nodes are numbered starting at 0, and nodes address messages to other nodes
by this numeric address. The fat-tree topology provides many different paths
between a given pair of nodes. The switches in the tree use randomization
techniques to evenly spread the message load across the possible paths, and
use switching strategies which avoid message deadlock and guarantee equal
access to the network to all nodes.

Figure 9.20 is a photograph of the CM-5.

Elaboration: Giving users the abi l ity to send and receive messages without invoking
the operating system would seem to defeat protection mechanisms necessary in a
mu ltiuser system. This is not the case i n the CM-5 because of several mechanisms.
First, messages for the operating system are tagged so that they cause an interrupt
upon arrival at the destination, thereby invoking the operating system kernel in each
node. Thus the user cannot subvert messages for the operating system. Second, the

630 Chapter 9 Parallel Processors

CM-5 operating system schedules al l the processors in a particular section of the
machine to be running the same program, and the CM-5 hardware and operating sys
tem prevent messages from leaving a section, called a partition. Moreover, the com
plete state of the network in a partition can be saved and restored when a processor is
swapped in and out. Because of this, a user program cannot send or receive messages
intended for other programs. Final ly, portions of the network interface that support
these mechanisms are protected from the user, so a user program is l imited to send
ing and receiving user messages.

• Future Directions for Parallel Processors

Uniprocessor performance is improving at an unprecedented rate, with
microprocessors leading the way. Figure 1 .19 on page 27 shows that the fast
est microprocessors have increased in performance by 50% per year every
year since 1987. This rapid rate of change does not come free: estimates of the
cost of development of the recent MIPS R4000 include 30 engineers for three
years, requiring about $30 million to develop the chip, another $10 million to
fabricate it, and 50,000 hours on machines rated at 20 MIPS to simulate the
chip. The effort needed to reach such high levels of performance, combined
with the relatively low cost of purchasing such microprocessors, led Cray
Research, Intel, and Thinking Machines to use off-the-shelf microprocessors
in their new large-scale parallel processors.

Memory capacity has improved at a high rate for a considerably longer time
than for processors. Figure 1 . 14 on page 22 shows that DRAMs have increased
their capacity fourfold every three years. Once again, the tremendous devel
opment investment, combined with the low cost of purchasing DRAMs, has
led almost all computer manufacturers, including parallel processor compa
nies, to build their memories from DRAMs.

A final technology is the interconnection network. The bandwidth of the in
terconnection network has improved because of improvements in the speed of
logic, improvements in the packaging of parallel processors, and simply by in
creasing the number of wires in the links that make up the interconnection net
work. For example, Intel improved its peak bandwidth per link from 0.5
MB/second in the iPSC in 1986 to 40 MB/second in the Delta in 1991, in part
by increasing the number of bits per link from 1 to 16.

Thus, the three technologies available to parallel processor designers are
fast microprocessors, high-capacity DRAMs, and increasing network band
width; interestingly, are all improving at comparable rates.

9. 7 Future Directions for Parallel Processors 631

Facts of Life for Large-Scale Parallel Processors

These exciting opportunities are constrained by some "facts of life" for the
parallel processor designer. The first fact of life is that because the nodes are
very similar to the core of a workstation, the cost of a large-scale parallel pro
cessor node is comparable to the cost of a workstation. As the most expensive
supercomputer costs less than $25,000,000 for processor and memory and as
the price of workstations has remained between $5000 and $10,000, even if
such machines could match workstation prices the largest parallel processors
will have between 2500 and 5000 nodes. This does not include the cost of the
interconnection network, leading to even fewer nodes. Furthermore, many
computers are purchased for scientific applications at a much lower price;
thus, these machines have far fewer nodes than the practical maximum. For
example, Los Alamos National Labs purchased a CM-5 with 1024 nodes, the
Army High Performance Computer Research Center purchased a CM-5 with
512 nodes, and both the University of California and the University of Wis
consin have parallel processors with 128 nodes. Accordingly, while a practical
limit of the number of processors is 1000 to 10,000 in the 1990s, for many cus
tomers and applications, 100 to 1000 processors will be sufficient.

While this number is smaller than many researchers assumed it would be,
it is still large enough to give pause to the parallel processor designer, who
must be very sensitive to the cost of a node. An extra $1000 per node, when
multiplied by 1000, costs the designer's company $1,000,000, with the in
creased price to the customer on the order of $4,000,000.

The topology of the interconnection network is important in the construc
tion of a machine that can scale from 100 to 10,000 nodes, and the best topology
for 100 to 500 nodes may not be the choice for 1000 to 10,000 nodes. Thus, the
topology may vary with the maximum number of nodes and the packaging
choices for that machine. The good news is that there are many good intercon
nection network topologies to choose from; the bad news is that, given these
fine alternatives and the importance of the topology to the cost of the machine,
there is unlikely to be a single topology that all parallel processor companies
will follow. For example, the nCube/2 uses a hypercube topology, the Intel
Delta uses a two-dimensional grid, and the TMC CM-5 uses a fat tree
(Figure 9.19).

632 Chapter 9 Parallel Processors

Hardware

Software

Interface

The lack of a standard topology is less of an obstacle to por
table parallel processor programs than one might first sus
pect. One reason is that the software overhead to send a
message is so large that it masks the effects of the topology.
In other words, these costs are so high that the time to send
a message to the nearest neighbor node is similar to the time
to send to the furthest neighbor. Figure 9.21 shows the over

head cost to send a message for several parallel processors. The overhead is
high in some cases because the protocols are designed to send large messages,
so that sometimes by pipelining them, the latency is seen only once. Such pipe
lined routing is called wormhole routing. Other reasons for the high overhead
are invoking the operating system on sending or receiving a message and a
slow interface between the processor and the network.

The second reason for the lesser importance of topologies is that cost-effec
tive fault tolerance is incompatible with topology-dependent algorithms, be
cause by definition a broken link or node means that sometimes messages will
follow different paths than the programmer would expect from the network
topology. Fault tolerance is critical because a machine with 10,000 nodes, each
similar to a workstation, should have a mean time between failures that is
10,000 times worse than a workstation. Thus, with large parallel processors,
the question is not whether anything is broken at any point in time, but rather
how many components are broken. Parallel processors must work in the pres
ence of broken network links and broken nodes; hence large parallel proces-

Message overhead in Clock cycle
Machine processor clock cycles rate Year

nCube 6400 40 MHz 1987

nCube, optimized software 1000 40 MHz 1987

Intel iPSC/860 1500 33 MHz 1990

CM-5 3600 40 MHz 1991

CM-5, optimized software 132 40 MHz 1991

FIGURE 9.21 Measured message overhead on several parallel processors. This does not
include the latency of the network; just the time to launch a message. The optimized software
uses active messages which operate at the kernel level in most machines, while the unoptimized
software is what came from the manufacturer (T. von Eicken et al., Active Messages: A Mechanism
for Integrated Communication and Computation, 19th Annual Symposium on Computer Architec
ture, Gold Coast, Australia, May 1992, 256-266). While we can expect the overhead to drop, it is
likely to remain significant.

9. 7 Future Directions for Parallel Processors 633

sors are not amenable to topology-specific algorithms even if the overhead of
communication is reduced.

Taken in combination, these elements deflate the value of topology-specific
algorithms:

• The lack of a standard topology combined with the importance of por
table parallel processor programs to the success of the industry;

• the high overhead of communication, making the latency virtually the
same for messages independent of the distance between nodes; and

• operation in the presence of broken links and broken nodes.

Two other facts of life for the parallel processor designer are summarized
more quickly. As we saw in Figure 7.13 on page 476 in Chapter 7, DRAMs are
getting bigger but not faster, so caches are very important to bridging the gap
between DRAM speed and processor speed; virtually all new microprocessors
come with caches on the chip. For this reason, locality of reference will be im
portant to get the best performance per node, just as it is for workstations. The
second point is that floating-point performance is critical for the parallel pro
cessors. Floating-point applications created a need for vector supercomputers,
and they sustained the vector supercomputer industry which in turn led to
more of these applications. Hence the natural software applications for paral
lel processors are floating-point intensive applications.

A Common Building Block

There was considerably more diversity in the parallel processors of the 1980s,
but the technological opportunities and facts of life of the 1990s are driving
commercial parallel processors toward a common hardware organization.
Figure 9.22 shows the four components of this organization: DRAM-based
main memory, microprocessors, an interconnection network, and network
interfaces between the processor-memory pairs and the interconnection net
work. We believe this organization will dominate commercial parallel proces
sors at least for the rest of this decade, for the reasons discussed above.
Current examples of this popular organization include the Cray Research
T3D, Intel Delta and Paragon, nCube parallel processors, Thinking Machines'
CM-5, and the Transputer-based parallel processors. These companies and
machines dominate today's large-scale parallel processor industry.

For all these reasons, we believe designers of the massively parallel proces
sors of the 1990s are much more likely to limit the largest machine to thou
sands of 64-bit processors rather than to millions of 1-bit processors.

634 Chapter 9 Parallel Processors

DRAM memory

M icroprocessor

Network interface

DRAM memory

M icroprocessor

Network i nterface

network

FIGURE 9.22 The common organization of parallel processors for the 1990s. This organi
zation characterizes most parallel processors. For example, it covers the Cray Research MPPP,
Intel Paragon, nCube, Thinking Machines CM-5, and Transputer-based parallel processors, such
as the Meiko Computing Surface or the Parsytec GC.

A key characteristic of programs for parallel machines
is frequency of synchronization and communication.
Large-scale parallel machines have distributed physi
cal memory; the higher bandwidth and lower over
head of local memory compared to nonlocal memory
strongly rewards parallel processing programmers

who utilize locality.

Addressing in Large-Scale Parallel Processors

With widespread agreement on distributed memory, the next question facing
future machines is communication. For the hardware designer the simplest
solution is to offer only send and receive instead of the implicit communica
tion that is possible as part of any load or store. Send and receive also have
the advantage of making it easier for the programmer to optimize
communication: It's simpler to overlap computation with communication by
using explicit sends and receives rather than implicit loads and stores.

9. 7 Future Directions for Parallel Processors 635

On the other hand, loads and stores normally have much lower communi
cation overhead than do sends and receives. And some applications will have
references to remote information that is only occasionally and unpredictably
accessed, so it is much more efficient to use an address to remote data rather
than to retrieve it in case it might be used. Adding a single address space to
sends and receives so that communication is possible as part of any load or
store is harder, although it is comparable to the virtual memory system al
ready found in most processors (see Chapter 7). A uniprocessor uses page ta
bles to decide if an address points to data in local memory or on a disk; this
translation system might be modified to decide if the address points to local
data, to data in another processors's memory, or to disk.

Caches are important to performance no matter how communication is per
formed, so we want to allow the shared data to appear in the cache of the pro
cessor that owns the data as well as in the processor that requests the data.
Thus, the single global address resurrects cache coherency, since there are
multiple copies of the same data with the same address in different processors.
Clearly the bus-snooping protocols of section 9.5 won't work here, as there is
no single bus on which all memory references are broadcast.

An alternative to bus snooping is directories. In directory-based protocols
there is logically a single directory that keeps the state of every block in main
memory. Information in the directory can include which caches have copies
of the block, whether it is dirty, and so on. Of course, directory entries can be
distributed so that different requests can go to different memories, thereby re
ducing contention and allowing a scalable design. Directories retain the char
acteristic that the sharing status of a block is always in a single known location,
making a large-scale parallel processor plausible.

Designers of snooping caches and directories face similar issues; the only
difference is the mechanism that detects when there is a write to shared data.
Instead of watching the bus to see if there are requests that require that the lo
cal cache be updated or invalidated, the directory controller sends explicit
commands to each processor that has a copy of the data. Such messages can
then be sent over the network.

636 Chapter 9 Parallel Processors

Hardware

Software

Interface

Note that with a single address space, the data could be
placed arbitrarily in memories of different processors. This
has two negative performance consequences. The first is that
the miss penalty would be much longer because the request
must go over the network. The second is that the network
bandwidth would be consumed moving data to the proper
processors. For programs that have low miss rates, this may

not be significant. On the other hand, programs with high miss rates will have
much lower performance when data is assigned randomly. If the programmer
or the compiler allocates data to the processor that is likely to use it, then this
performance pitfall is removed. Unlike private memory organizations, this al
location only needs to be good, since missing data can still be fetched. Such le
niency simplifies the allocation problem.

Another possible solution is to add a second level of coherence to the main
memory for every processor. This directory would allow blocks of main mem
ory to migrate, relieving the programmer or the compiler of memory alloca
tion. As long as main memory blocks are not frequently shipped back and
forth repeatedly, this scheme may achieve the performance of intelligent allo
cation of memory at the cost of considerably more hardware complexity. This
scheme is called cache only memory and is used by the Kendall Square Re
search KSR-1 .

Figure 9.23 summarizes the coherency options for a single address space.

"Superclusters"

The similarity of the parallel processing nodes and workstations suggests that
parallel processing of the future may use off-the-shelf computers. If high
speed local area networks connect desktop computers through a high-band
width central switch and the message sending overhead can be reduced on
workstations, then the distinction between parallel processors and clusters of
workstations may vanish later in the decade. Parallel processing in the year
2000 may simply be software that uses idle workstations on the network.

9.8 Fallacies and Pitfalls 637

Processor . . . Processor Processor . . . Processor

t
Cache

t
Memory

t
a.

. . .

I o;rnoto� I
Network

t
Cache

t
Memory

t

t t
Cache Cache

. . .

t t
Memory I o;rnoto� I Memory

t t
Network

b.

FIGURE 9.23 Options for a single address space in a large-scale parallel processor. The colored rectangles represent
the replicated data. (a) Coherence at cache level using directories in a network-connected parallel processor. The original
data is in memory and the copies are replicated only in the caches. (b) Coherence at memory level using directories in a net
work connected parallel processor. The copies are replicated in remote memory and in the caches. The scheme in (b) is sim
ilar to the scheme used in the Kendall Square Research parallel processor, the KSR-1. As long as memory is coherent, the
data can be safely cached. If the data in a memory is invalidated, then corresponding blocks in the cache must be invali
dated as well.

• Fallacies and Pltfalls

Number 9: Quote performance in terms of processor utilization, parallel speedups
or MFLOPS per dollar.

David H. Bailey, "Twelve ways to fool the masses when giving performance
results on parallel supercomputers," Supercomputing Review, 1991

The many assaults on parallel processing have uncovered numerous fallacies
and pitfalls. We cover three here.

Pitfall: Measuring performance of parallel processors by linear speedup versus ex
ecution time.

"Mortar shot" graphs-plotting performance compared to the number of pro
cessors showing linear speedup, a plateau, and then a falling-off-have long

638 Chapter 9 Parallel Processors

been used to judge the success of parallel processors. Although scalability is
one facet of a parallel program, it is an indirect measure of performance. The
primary question to be asked concerns the power of the processors being
scaled: a program that linearly improves performance to equal 100 Intel
8086s may be slower than the sequential version on a workstation. Be espe
cially careful of floating-point-intensive programs, as processing elements
without floating-point hardware assist may scale wonderfully but have poor
collective performance.

Measuring results using linear speedup compared to the execution time can
mislead the programmer as well as those hearing the performance claims of
the programmer. Many programs with poor speedup are faster than programs
which show excellent speedup as the number of processors increases.

Comparing execution times is fair only if you are comparing the best algo
rithms on each machine. (Of course, you can't subtract time for idle processors
when evaluating a parallel processor, so CPU time is an inappropriate metric

· for parallel processors.) Comparing the identical code on two machines may
seem fair, but it is not; the parallel program may be slower on a uniprocessor
than a sequential version. Sometimes, developing a parallel program will lead
to algorithmic improvements, so that comparing the previously best-known
sequential program with the parallel code-which seems fair-compares in
appropriate algorithms. To reflect this issue, sometimes the terms relative
speedup (same program) and true speedup (best programs) are used.

Fallacy: Amdahl's Law doesn't apply to parallel computers.

In 1987 the head of a research organization claimed that Amdahl's Law had
been broken by a MIMD machine. To try to understand the basis of the media
reports, let's see the quote that gave us Amdahl's Law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the ef
fort expended on achieving high parallel processing rates is wasted unless
it is accompanied by achievements in sequential processing rates of very
nearly the same magnitude.

This statement must still be true; the neglected portion of the program must
limit performance. One interpretation of the law leads to the following
lemma: portions of every program must be sequential, so there must be an
economic upper bound to the number of processors-say 100. By showing
linear speedup with 1000 processors, this lemma is disproved and hence the
claim that Amdahl's Law was broken.

The approach of the researchers was to change the input to the
benchmark: Rather than going 1000 times faster, they computed 1000 times
more work in comparable time. For their algorithm, the sequential portion of
the program was constant, independent of the size of the input, and the rest

9.8 Fallacies and Pitfalls 639

Harmon ic mean
MFLOPS of the

Peak MFLOPS Perfect Club Percent of peak
Machine rating benchmarks MFLOPS

Cray X-MP/416 940 14.8 1%

I BM 3090-6005 800 8.3 1%

NEC SX/2 1300 16.6 1%

FIGURE 9.24 Peak performance and harmonic mean of actual performance for the 12
Perfect Club Benchmarks. These results are for the programs run unmodified. When tuned by
hand, performance of the three machines moves to 24.4, 11.3, and 18.3 MFLOPS, respectively.
This is still 2'1o or less of peak performance.

was fully parallel-hence, linear speedup with 1000 processors. Simply scal
ing the size of applications, without also scaling floating-point accuracy, the
number of iterations, the 1/0 requirements, and the way applications deal
with error may be naive. Many applications will not calculate the correct result
if the problem size is increased unwittingly.

We see no reason why Amdahl's Law doesn't apply to parallel processors.
What this research does point out is the importance of having benchmarks that
can grow large enough to demonstrate performance of large-scale parallel pro
cessors.

Fallacy: Peak performance tracks observed performance.

One definition of peak performance is "performance that a machine is guar
anteed not to exceed." Alas, the supercomputer industry uses this metric in
marketing, and its fallacy is being exacerbated with parallel machines. Not
only are industry marketers using the nearly unattainable peak performance
of a uniprocessor node (Figure 9.24), but they are then multiplying it by the
total number of processors, assuming perfect speedup! Amdahl's Law sug
gests how difficult it is to reach either peak; multiplying the two together also
multiplies the sins. Figure 9.25 compares the peak to sustained performance
on two benchmarks; the 128 processor iPSC achieves only 3% to 9% of peak
performance. Clearly peak performance does not track observed perfor
mance. (The iPSC cost one-tenth of the Cray, so it is has better cost/perfor
mance.)

Such performance claims can confuse the manufacturer as well as the user
of the machine. The danger is that the manufacturer will develop software li
braries with success judged as percentage of peak performance measured in
megaflops compared to less time, or that hardware will be added that increas
es peak node performance but is difficult to use.

640

•

Chapter 9 Parallel Processors

Cray YMP (8 Procs) Intel iPSC/860 (128 Procs)

MFLOPS % Peak MFLOPS % Peak

Peak 2666 100% 7680 100%

30 FFT PDE 1795 67% 696 9%

LU Pseudo App 1705 64% 224 3%

FIGURE 9.25 Peak versus observed performance for Cray YMP and Intel IPSC/860. The
prices are estimated at $25,000,000 for the Cray versus $2,500,000 for the iPSC, so the iPSC has
better price/performance. This table was derived from the talk, "Performance Results for the
NAS Parallel Benchmarks" given by David H. Bailey at Supercomputing '91 in Albuquerque,
New Mexico, on November 14, 1991.

Concluding Remarks-Evolution versus

Revolution in Computer Architecture

The stumbling way in which even the ablest of the scientists in every generation
have had to fight through thickets of erroneous observations, misleading generali
zations, inadequate formulations, and unconscious prejudice is rarely appreciated
by those who obtain their scientific knowledge from textbooks.

James B. Conant, Science and Common Sense, 1951

Reading conference and journal articles from the last 25 years can leave one
discouraged; so much effort has been expended with so little impact. Opti
mistically speaking, these papers act as gravel and, when placed logically
together, form the foundation for the next generation of computers. From a
more pessimistic point of view, if 90% of the ideas disappeared, no one would
notice.

One reason for this predicament is what could be called the "von Neumann
syndrome." By hoping to invent a new model of computation that will revolu
tionize computing, researchers are striving to become the von Neumann of the
21st century. Another reason is taste: researchers often select problems that no
one else cares about. Even if important problems are selected, there is fre
quently a lack of experimental evidence to demonstrate convincingly the value
of the solution. Moreover, when important problems are selected and the so
lutions are demonstrated, the proposed solutions may be too expensive rela
tive to their benefit. Sometimes this expense is measured as straightforward
cost/performance-the performance enhancement does not merit the added
cost. More often the expense of innovation comes from being too disruptive to
computer users. Figure 9.26 shows what we mean by the evolution-revolution
spectrum of computer architecture innovation. To the left are ideas that are in-

9.9 Concluding Remark-Evolution versus Revolution in Computer Architecture 641

0
::!:
�

'QI) 0 'QI)
c c

.E
::!: .iii
� � 0 (/) E 0 ::!:

<L>

� u E <..>
<L> <L> U5 e

'QI)
<o a.

e c E <L>]1 a. «= .<:::
ro

>
<L> (/) .iii e Qi .<::: <L> :::> (.) (/) � <..> a. <..> E t en ro ro ro � a: (.) i= > � ::!: a..

i i i i i i i i
Evolutionary Revolutionary

FIGURE 9.26 The evolution-revolution spectrum of computer architecture. The first four
columns are distinguished from the last column in that applications and operating systems may
be ported from other computers rather than written from scratch. For example, RISC is listed in
the closer to the spectrum because user compatibility is only at the level of high-level languages
(HLLs), while microprogramming allows binary compatibility, and parallel processing MIMDs
require changes to algorithms and extending HLLs. Timeshared MIMD means MIMDs justified
by running many independent programs at once, while parallel processing MIMD means
MIMDs intended to run a single program faster.

visible to the user (presumably except better cost, better performance, or both);
this is the evolutionary end of the spectrum. At the other end are revolutionary
architecture ideas. These are the ideas that require new applications from
programmers who must learn new programming languages and models of
computation, and must invent new data structures and algorithms.

Revolutionary ideas are easier to publish than evolutionary ideas, but to be
adopted they must have a much higher payoff. Caches are an example of an
evolutionary improvement. Within five years after the first publication about
caches, almost every computer company was designing a machine with a
cache. The Reduced Instruction Set Computer (RISC) ideas were nearer to the
middle of the spectrum, for it took closer to ten years for most companies to
have a RISC product. An example of a revolutionary computer architecture is
the Connection Machine-1 . Every program that runs efficiently on that ma
chine was either substantially modified or written especially for it, and pro
grammers need to learn a new style of programming for it. Thinking Machines
was founded in 1983, but only a few companies offer machines like the CM-1,
and that company has significantly evolved away from the original architec
ture. Note that Thinking Machines is older than most RISC companies, and yet
the RISC technology is practically universal.

642 Chapter 9 Parallel Processors

Projects that the computer industry ignores may be valuable if they docu
ment the lessons learned for future efforts. The sin is not in having a novel
architecture that is commercially unsuccessful, but in neglecting to quantita
tively evaluate the strengths and weaknesses of the novel ideas. Failures of
past research projects do not mean that the ideas are dead forever. Changes in
technology may rejuvenate an idea that previously had the wrong trade-offs
or rejuvenate an idea that was ahead of the technology.

When contemplating the future-and inventing your own contributions to
the field-remember the evolution-revolution spectrum. Acceptance of hard
ware ideas means acceptance by software people; therefore, hardware people
must learn more about software. And if software people want good machines,
they must learn more about hardware to be able to communicate with and
thereby influence hardware designers. Also, keep in mind the principles of
computer organization found in this book; these will surely guide computers
of the future, just as they have guided computers of the past.

-liiil Historical Perspective and Further Reading

For over a decade prophets have voiced the contention that the organization of a sin
gle computer has reached its limits and that truly significant advances can be made
only by interconnection of a multiplicity of computers in such a manner as to per
mit cooperative solution Demonstration is made of the continued validity of
the single processor approach . . .

Gene Amdahl, "Validity of the single processor approach to achieving large scale
computing capabilities," Spring Joint Computer Conference, 1 967

The earliest ideas on SIMD predate the Illiac IV (seen in Figure 9.27), perhaps
the most infamous of the supercomputer projects. Although successful in
pushing several technologies useful in later projects, the Illiac IV failed as a
computer. Costs escalated from the $8 million estimated in 1966 to $31 million
by 1972, despite the construction of only a quarter of the planned machine.
Actual performance was at best 15 MFLOPS compared to initial predictions of
1000 MFLOPS for the full system (see Falk [1976]) . Delivered to NASA's Ames
Research in 1972, the computer took three more years of engineering before it
was operational. For better or worse, computer architects are not easily dis
couraged; SIMD successors of the Illiac IV include the ICL OAP, Goodyear
MPP (Figure 9.28), Thinking Machines CM-1 and CM-2, and Maspar MP-1
and MP-2.

It is difficult to distinguish the first parallel processor. The first computer
from the Eckert-Mauchly Corporation, for example, had duplicate units to im-

9.10 Hlstorlcal Perspective and Further Reading 643

FIGURE 9.27 The llllac IV control unit followed by Its 64 processing elements. It was per
haps the most infamous of supercomputers. The project started in 1965 and ran its first real appli
cation in 1976. The 64 processors used a 13-MHz clock, and their combined main memory size
was 1 megabyte: 64 x 16KB. The Illiac IV was the first machine to teach us that software for par
allel machines dominates hardware issues. Photo courtesy of NASA Ames Research Center.

prove reliability. After several laboratory attempts at parallel processors, the
first successful commercial parallel processors appeared in the 1980s. Bell
[1985] suggests the key to success was that the smaller size of the microproces
sor allowed the memory bus to replace the interconnection network hardware,
and that portable operating systems meant that parallel processor projects no
longer required the invention of a new operating system. He distinguishes
parallel processors with multiple private address by calling them multicomput
ers, reserving the term multiprocessor for machines with a single address space.

There is a vast amount of information on parallel processors: conferences,
journal papers, and even books seem to be appearing faster than any single
person can absorb the ideas. One good source is the Supercomputing confer
ence, held annually since 1988. The papers cover applications, algorithms, and
architecture, a mix that we think bodes well for the future. Textbooks on par-

644 Chapter 9 Parallel Processors

FIGURE 9.28 The Goodyear MPP with 16,384 processors. It was delivered May 2, 1983 to
NASA Goddard Space Center and was operational the next day. It was decommissioned on
March 1, 1991.

allel computing have been written by Almasi and Gottlieb [1989], Hockney
and Jesshope [1988], and Hwang [1993] .

It is hard to predict the future, yet Gordon Bell has made two predictions
for 1995. The first is that a computer capable of sustaining a TeraFLOPS
(TFLOPS)-one million MFLOPS-will be constructed by 1995, using either a
MIMD with 4K to 32K nodes or a SIMD with several million processing ele
ments [Bell 1989]. To put this prediction in perspective, each year the Gordon
Bell Prize acknowledges advances in parallelism, including the fastest real
program (highest MFLOPS). Figure 9.29 shows the winners of the prize. Ma
chines and programs will have to improve by a factor of 3 each year for the
fastest program to achieve 1 TFLOPS in 1995. So far they are on track. In 1991
Thinking Machines announced the CM-5, a computer that can scale to 1
TFLOPS-provided someone is willing to pay well in excess of $100,000,000 to
buy one.

The second Bell prediction concerns the number of data streams in super
computers shipped in 1995. Danny Hillis of Thinking Machines believes that
while supercomputers with a small number of data streams may be best-sell
ers, the biggest machines will have many data streams, and these will perform

9.10 Historical Perspective and Further Reading 645

1988 400 Cray X-MP 4 8

1989 1680 Cray Y-MP 8 16

1990 5600 CM-2 65,536 2048

1991 14,200 CM-2 65,536 2048

FIGURE 9.29 Winners of Gordon Bell Prize for highest floating-point performance for a
real application program. The 1991 example is for 32-bit floating-point operations, while the
others are for 64-bit floating-point operations.

the bulk of the computations. Bell bet Hillis that in the last quarter of 1995,
more sustained MFLOPS will be shipped in machines using few data streams
(::::JOO) as opposed to many data streams (:::::1000). This bet concerns only super
computers, defined as machines costing more than $1,000,000 and used for sci
entific applications. Sustained MFLOPS is defined for this bet as the number
of floating-point operations per month, so the availability of machines affects
their rating. The loser must write and publish an article explaining why his
prediction failed; your authors will act as judge and jury.

To Probe Further

Almasi, G. 5., and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/Cummings, Redwood
City, Calif.

A textbook covering parallel computers.

Amdahl, G. M., [1967]. "Validity of the single processor approach to achieving large scale com
puting capabilities," Proc. AFIPS Spring Joint Computer Conf 30, Atlantic City, N. J. (April) 483-
485.

Written in response to the claims of the llliac IV, this three-page article describes Amdahl's Law and gives
the classic reply to arguments for abandoning the current form of computing.

Bell, C. G. [1989]. "The future of high performance computers in science and engineering," Comm.
ACM 32:9 (September) 1091-1101.

Reviews the trends in computing and speculates on the future of SIMD and MIMD.

Falk, H. [1976]. "Reaching for the Gigaflop," IEEE Spectrum 13:10 (October) 65-70.

Chronicles the sad story of the Illiac IV: four times the cost and less than one-tenth the performance of
original goals.

Flynn, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909.

Classic article showing SISD/SIMD/MISD/MIMD classifications.

646 Chapter 9 Parallel Processors

Hockney, R. W., and C. R. Jesshope [1988]. Parallel Computers-2, Architectures, Programming and
Algorithms, Adam Hilger Ltd., Bristol, England, and Philadelphia.

Another textbook covering parallel computers.

Hord, R. M. [1982]. The Illiac-IV, the First Supercomputer, Computer Science Press, Rockville, Md.

A historical accounting of the Illiac IV project.

Hwang, K. [1993]. Advanced Computer Architecture with Parallel Programming, McGraw-Hill, New
York.

Another textbook covering parallel computers.

Moldovan, D. I. [1993]. Parallel Processing from Applications to Systems, Morgan Kaufmann Pub
lishers, San Mateo, Calif.

An introduction to multiprocessor architectures, including the structure of parallel processors and parallel
algorithms.

Seitz, C. [1985]. "The Cosmic Cube," Comm. ACM 28:1 (January) 22-31.

A tutorial article on a parallel processor connected via a hypertree. The Cosmic Cube is the ancestor of the
Intel supercomputers.

Slotnick, D. L. [1982]. "The conception and development of parallel processors-A personal
memoir," Annals of the History of Computing, 4:1 (January) 20-30.

Recollections of the beginnings of parallel processing by the architect of the Illiac IV

Exercises

9.1 [15] <§9.2, 9.3> What trends favor MIMD over SIMD, and vice versa?
Consider synchronization and utilization of memory and processors.

9.2 [15] <§9.7> Figure 9.21 shows how communication in a large-scale paral
lel processor can take hundreds of clock cycles. What hardware and software
techniques might reduce this time? How can you change the architecture or
the programming model to make a computer more immune to such delays?

9.3 [5] <§9.5> Count the number of transactions on the bus for the following
sequence of activities involving shared data. Assume that both processors use
write-back caches and write-update cache coherency and use a block size of
one word. Assume that all the words in both caches are clean.

1 Processor 1 Write 100

2 Processor 2 Write 104

3 Processor 1 Read 100

4 Processor 2 Read 104

9.11 Exercises 647

9.4 [10] <§9.5> False sharing can lead to unnecessary bus traffic and delays.
Follow the directions for Exercise 9.3, except change the block size to four
words.

9.5 [15] <§9.6> Another possible network topology is a three-dimensional
grid. Draw the topology as in Figure 9.14 for 64 nodes. What is the bisection
bandwidth of this topology?

9.6 [10] <§9.6> The fat tree used in the CM-5 has four children instead of two
as in the binary tree. Recall that the processors are only on the leaves of the tree
with the parents only being switches. Compare the worst-case latency for a
machine with 1024 processors for a binary tree and a fat tree.

9.7 [15] <§9.10> Construct a scenario whereby a truly revolutionary architec
ture-pick your favorite candidate-will play a significant role. Significant is
defined as 10% of the computers sold, 10% of the users, 10% of the money
spent on computers, or 10% of some other figure of merit.

9.8 [2 hours] <§9.2> The CM-2 uses 64K 1-bit processors in SIMD mode. Bit
serial operations may easily be simulated 32 bits per operation by a 32-bit
wide SISD, at least for logical operations. The CM-2 takes about 500 ns for such
operations. If you have access to a fast SISD, calculate how long add and AND
take on 64K 1-bit numbers. Find a way to make them run fast on the SISD.

9.9 [2 hours] <§9.2> A popular use of the CM-2 is to operate on 32-bit data us
ing multiple steps with the 64K 1-bit processors. The CM-2 takes about 21 mi
croseconds for a 32-bit AND or add. Simulate this activity on a fast SISD;
calculate how long it takes to add and AND 64K 32-bit numbers.

9.10 [1 week] <§9.8> Super-linear performance improvement means a pro
gram on n processors is more than n times faster than the equivalent
uniprocessor. One argument for super-linear speedup is that time spent ser
vicing interrupts or switching contexts is reduced when you have many pro
cessors, because only one needs service interrupts and there are more
processors to be shared by users. Measure the time spent on a workload in
handling interrupts or context switching on a uniprocessor versus a parallel
processor. This workload may be a mix of independent jobs for a multipro
gramming environment or a single large job. Does the argument hold?

9.11 [1 week] <§9.5, 9.6> A parallel processor is typically marketed using pro
grams that can scale performance linearly with the number of processors. Port
programs written for one parallel processor to the other and measure their ab
solute performance and how it changes as you change the number of proces
sors. What changes must be made to improve performance of the ported
programs on each machine? What is performance according to each program?

648 Chapter 9 Parallel Processors

9.12 [1 week] <§9.5, 9.6> Instead of trying to create fair benchmarks, invent
programs that make one parallel processor look terrible compared with the
others, and also programs that always make one look better than others. What
are the key performance characteristics of each program and machine?

9.13 [1 week] <§9.5, 9.6> Parallel processors usually show performance in
creases as you increase the number of processors, with the ideal being n times
speedup for n processors. The goal of this exercise is to create a biased bench
mark that gets worse performance as you add processors. For example, this
means that 1 processor on the parallel processor would run the program fast
est, 2 would be slower, 4 would be slower than 2, and so on. What are the key
performance characteristics for each organization that give inverse linear
speedup?

9.14 [1 week] <§9.6, 9.7> Networked workstations may be considered paral
lel processors, albeit with slow communication relative to computation. Port
parallel processor benchmarks to a network using remote procedure calls for
communication. How well do the benchmarks scale on the network versus the
parallel processor? What are the practical differences between networked
workstations and a commercial parallel processor?

A P P E N D I X

Assemblers,

Linkers,

and the SPIM

Simulator

James R. Larus
Computer Sciences Department
University of Wisconsin-Madison

Fear of serious injury cannot alone
justify suppression of free speech
and assembly.

Louis Brandeis,
Whitney v. California, 1927

A.1 Introduction A-3

A.2 Assemblers A-10

A.3 Linkers A-17

A.4 Loading A-19

A.5 Memory Usage A-19

A.6 Procedure Call Convention A-21

A.7 Exceptions and Interrupts A-30

A.8 Input and Output A-34

A.9 SPIM A-36

A.10 MIPS R2000 Assembly Language A-47

A.11 Concluding Remarks A-71

A.12 Exercises A-72

Introduction

Encoding instructions as binary numbers is natural and efficient for comput
ers. Humans, however, have a great deal of difficulty understanding and
manipulating these numbers. People read and write symbols (words) much
better than long sequences of digits. Chapter 3 showed that we need not
choose between numbers and words because computer instructions can be
represented in many ways. Humans can write and read symbols and comput
ers can execute the equivalent binary numbers. This appendix describes the
process by which a human-readable program is translated into a form that a
computer can execute, provides a few hints about writing assembly pro
grams, and explains how to run these programs on SPIM, a simulator that
executes MIPS programs.

Assembly language is the symbolic representation of a computer's binary en
coding-machine language. Assembly language is more readable than machine
language because it uses symbols instead of bits. The symbols in assembly lan
guage name commonly occurring bit patterns, such as opcodes and register
specifiers, so people can read and remember them. In addition, assembly lan
guage permits programmers to use labels to identify and name particular
memory words that hold instructions or data.

A-4 Appendix A Assemblers, Linkers, and the SPIM Simulator

Assembler

Assembler

Assembler

Linker

Program
library

FIGURE A.1 The process that produces an executable flle. An assembler translates a file of
assembly language into an object file, which is linked with other files and libraries into an execut
able file.

A tool called an assembler translates assembly language into binary instruc
tions. Assemblers provide a friendlier representation than a computer's zeros
and ones that simplifies writing and reading programs. Symbolic names for
operations and locations are one facet of this representation. Another facet is
programming facilities that increase a program's clarity. For example, macros,
discussed in section A.2, enable a programmer to extend the assembly lan
guage by defining new operations.

An assembler reads a single assembly language source file and produces an
object file containing machine instructions and bookkeeping information that
helps combine several object files into a program. Figure A.1 illustrates how a
program is built from modules. Most programs consist of several files-also
called modules-that are written, compiled, and assembled independently. A
program may also use prewritten routines supplied in a program library. A
module typically contains references to subroutines and data defined in other
modules and in libraries. The code in a module cannot be executed when it
contains unresolved references to labels in other object files or libraries. Another
tool called a linker combines a collection of object and library files into an exe
cutable file, which a computer can run.

To see the advantage of assembly language, consider the following se
quence of figures, all of which contain a short subroutine that computes and
prints the sum of the squares of integers from 0 to 100. Figure A.2 shows the
machine language that a MIPS computer executes. With considerable effort,
you could use the opcode and instruction format tables in Chapters 3 and 4 to
translate the instructions into a symbolic program similar to Figure A.3. This
form of the routine is much easier to read because operations and operands are

A.1 Introduction

0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

A·S

FIGURE A.2 MIPS machine language code for a routine to compute and print the sum of
the squares of Integers between O and 100.

written with symbols, rather than with bit patterns. However, this assembly
language is still difficult to follow because memory locations are named by
their address, rather than by a symbolic label.

Figure A.4 shows assembly language that labels memory addresses with
mnemonic names. Most programmers prefer to read and write this form.
Names that begin with a period, for example . d a t a and . g l o b l , are assembler
directives that tell the assembler how to translate a program but do not produce
machine instructions. Names followed by a colon, such as s t r or ma i n , are la
bels that name the next memory location. This program is as readable as most
assembly language programs (except for a glaring lack of comments), but it is
still difficult to follow because many simple operations are required to accom
plish simple tasks and because assembly language's flat structure and lack of
control-flow constructs provide few hints about the program's operation. By
contrast, the C routine in Figure A.5 is both shorter and clearer since variables
have mnemonic names and the loop is explicit rather than constructed with
branches. (Readers unfamiliar with C should look at Appendix D.) In fact, the
C routine is the only one that the author wrote. The other forms of the program
were produced by a C compiler and assembler.

A-6 Appendix A Assemblers, Unkers, and the SPIM Simulator

a d d i u $ 2 9 , $ 2 9 , - 32
S W $ 3 1 , 2 0 ($ 2 9)
S W $ 4 , 3 2 ($ 2 9)
S W $ 5 ' 36 ($ 2 9)
S W $ 0 , 24 ($ 2 9)
S W $ 0 , 28 ($ 2 9)
l w $ 1 4 ' 2 8 ($ 2 9)
l w $ 2 4 , 2 4 ($ 2 9)
m u l t u $ 1 4 , $ 1 4
a d d i u $ 8 , $ 1 4 , 1
s l t i $ 1 , $ 8 , 1 0 1
S W $ 8 , 28 ($ 2 9)
m f l o $ 1 5
a d d u $ 2 5 , $ 2 4 , $ 1 5
b n e $ 1 , $ 0 , 9
S W $ 2 5 , 2 4 ($ 2 9)
l u i $ 4 ' 4 0 9 6
l w $ 5 , 24 ($ 2 9)
j a l 1 0488 1 2
a d d i u $ 4 ' $ 4 ' 1 0 7 2
l w $ 3 1 , 2 0 ($ 2 9)
a d d i u $ 2 9 , $ 2 9 , 32
j r $ 3 1
move $ 2 , $ 0

FIGURE A.3 The same routine written In assembly language. However, the code for the rou
tine does not label memory locations nor include comments.

In general, assembly language plays two roles (see Figure A.6). The first
role is the output language of compilers. A compiler translates a program writ
ten in a high-level language (such as C or Pascal) into an equivalent program in
machine or assembly language. The high-level language is called the source
language and the compiler's output is its target language.

Assembly language's other role is as a language in which to write pro
grams. This role used to be the dominant one. Today, however, because of
larger main memories and better compilers, most programmers write in a
high-level language and rarely, if ever, see the instructions that a computer ex
ecutes. Nevertheless, assembly language is still important to write programs
in which speed or size are critical or to exploit hardware features that have no
analogues in high-level languages.

Elaboration: Compi lers can produce machine language directly instead of relying on
an assembler. These compi lers typically execute much faster than those that invoke an
assembler as part of compilation. However, a compiler that generates machine lan
guage must perform many tasks that an assembler normally handles, such as resolv-

A.1 Introduction A·7

. t e x t

. a l i g n 2

. g l o b l m a i n
m a i n :

s u b u $ 2 9 , $ s p , 3 2
S W $ 3 1 , 2 0 ($ 2 9)
s d $ 4 , 3 2 ($ 2 9)
S W $ 0 , 2 4 ($ 2 9)
S W $ 0 , 28 ($ 2 9)

l o o p :
l w $ 1 4 , 28 ($ 2 9)
m u l $ 1 5 , $ 1 4 , $ 1 4
l w $ 2 4 , 2 4 ($ 2 9)
a d d u $ 2 5 , $ 2 4 , $ 1 5
S W $ 2 5 , 2 4 ($ 2 9)
a d d u $8 , $ 1 4 , 1
S W $ 8 , 2 8 ($ 2 9)
b l e $ 8 , 1 0 0 , l o o p
l a $ 4 , s t r
l w $ 5 , 24 ($ 2 9)
j a l p r i n t f
m o v e $ 2 ' $ 0
l w $ 3 1 , 2 0 ($ 2 9)
a d d u $ 2 9 , $ 2 9 , 32
j $ 3 1

. d a t a

. a l i g n 0
s t r :

. a s c i i z " T h e s u m f r om 0 . . 1 0 0 i s %d \ n "

FIGURE A.4 The same routine written In assembly language with labels, but no com
ments. The commands that start with periods are assembler directives (see pages A-48-A-50) .

. t e x t indicates that succeeding lines contain instructions. . d a t a indicates that they c<;?ntain
data . . a l i g n n indicates that the items on the succeeding lines should be aligned on a 2 byte
boundary. Hence, . a l i g n 2 means the next i tern should be on a word boundary. . g l ob l ma i n
declares that main is a global symbol that should be visible to code stored in other files. Finally,
. a s c i i z stores a null-terminated string in memory.

i ng addresses and encoding instructions as binary numbers. The trade-off is between
compi lation speed and compiler simplic ity.

Although this appendix focuses on MIPS assembly language, assembly
programming on most other machines is very similar. The additional instruc
tions and address modes in CISC machines, such as the VAX (see
Appendix E), can make assembly programs shorter but do not change the pro-

A-8 Appendix A Assemblers, Linkers, and the SPIM Simulator

i n c l u d e < s t d i o . h >

i n t
m a i n (i n t a r g c , c h a r * a r g v [J)
{

i n t i ;
i n t s u m = 0 ;

f o r (i = 0 ; i <= 1 0 0 ; = i + 1 l s um = s u m + i * i ;
p r i n t f (" T h e s um f r om 0 . . 1 0 0 i s % d \ n " . s um) ;

FIGURE A.5 The routine written In the C programming language.

Compiler Assembler Linker

t
Assembly language program

Computer

FIGURE A.6 Assembly language Is either written by a programmer or Is the output of a
compller.

cess of assembling a program or provide assembly language with the advan
tages of high-level languages such as type-checking and structured control
flow.

When to Use Assembly Language

The primary reason to program in assembly language, as opposed to an avail
able high-level language, is that the speed or size of a program is critically
important. For example, consider a computer that controls a piece of machin
ery such as a car 's brakes. A computer that is incorporated in another device,
such as a car, is called an embedded computer. This type of computer needs to
respond rapidly and predictably to events in the outside world. Because a
compiler introduces uncertainty about the time cost of operations, program
mers may find it difficult to ensure that a high-level language program
responds within a definite time interval-say, 1 millisecond after a sensor
detects that a tire is skidding. An assembly language programmer, on the

A.1 Introduction A·9

other hand, has tight control over which instructions execute. In addition, in
embedded applications, reducing a program's size, so that it fits in fewer
memory chips, reduces the cost of the embedded computer.

Despite these considerations, some embedded appl ications are writ
ten in a high-level language. Many of these appl ications are large and complex pro
grams that must be extremely rel iable. Assembly language programs are longer and
more difficult to write and read than high-level language programs. This greatly
increases the cost of writing an assembly language program and make it extremely dif
ficult to verify the correctness of this type of program. In fact, these considerations led
the Department of Defense, which pays for many complex embedded systems, to
develop Ada, a new high-level l anguage for writing embedded systems.

A hybrid approach, in which most of a program is written in a high-level
language and time-critical sections are written in assembly language, builds
on the strengths of both languages. Programs typically spend most of their
time executing a small fraction of the program's source code. This observation
is just the principle of locality that underlies caches (see section 7.2 in
Chapter 7). Program profiling measures where a program spends its time and
can find the time-critical parts of a program. In many cases, this portion of the
program can be made faster with better data structures or algorithms. Some
times, however, significant performance improvements only come from re
coding a critical portion of a program in assembly language.

This improvement is not necessarily an indication that the high-level lan
guage's compiler has failed. Compilers typically are better than programmers
at producing uniformly high-quality machine code across an entire program.
Programmers, however, understand a program's algorithms and behavior at
a deeper level than a compiler and can expend considerable effort and ingenu
ity improving small sections of the program. In particular, programmers often
consider several procedures simultaneously while writing their code. Compil
ers typically compile each procedure in isolation and must follow strict con
ventions governing the use of registers at procedure boundaries. By retaining
commonly used values in registers, even across procedure boundaries, pro
grammers can make a program run faster. Another major advantage of assem
bly language is the ability to exploit specialized instructions, for example,
string copy or pattern-matching instructions. Compilers, in most cases, cannot
determine that a program loop can be replaced by a single instruction. How
ever, the programmer who wrote the loop can replace it easily with a single in
struction.

In the future, a programmer's advantage over a compiler is likely to be
come increasingly difficult to maintain as compilation techniques improve
and machines' pipelines increase in complexity (see section 3.10 in Chapter 3).

A·10 Appendix A Assemblers, Unkers, and the SPIM Slmulator

The final reason to use assembly language is that no high-level language is
available on a particular computer. Many older or specialized computers do
not have a compiler, so a programmer's only alternative is assembly language.

Drawbacks of Assembly Language

Assembly language has many disadvantages that strongly argue against its
widespread use. Perhaps its major disadvantage is that programs written in
assembly language are inherently machine-specific and must be totally
rewritten to run on another computer architecture. The rapid evolution of
computers discussed in Chapter 1 means that architectures become obsolete.
An assembly language program remains tightly bound to its original architec
ture, even after the computer is eclipsed by new, faster, and more cost-effec
tive machines.

Another disadvantage is that assembly language programs are longer than
the equivalent programs written in a high-level language. For example, the C
program in Figure A.4 is 1 1 lines long, while the assembly program in
Figure A.4 is 31 lines long. In more complex programs, the ratio of assembly to
high-level language (its expansion factor) can be much larger than the factor of
three in this example. Unfortunately, empirical studies have shown that pro
grammers write roughly the same number of lines of code per day in assembly
as in high-level languages. This means that programmers are roughly x times
more productive in a high-level language, where x is the assembly language
expansion factor.

To compound the problem, longer programs are more difficult to read and
understand and they contain more bugs. Assembly language exacerbates the
problem because of its complete lack of structure. Common programming id
ioms, such as if-then statements and loops, must be built from branches and
jumps. The resulting programs are hard to read because the reader must re
construct every higher-level construct from its pieces and each instance of a
statement may be slightly different. For example, look at Figure A.4 and an
swer these questions: What type of loop is used? What are its lower and upper
bounds? II Assemblers

An assembler translates a file of assembly language statements into a file of
binary machine instructions and binary data. The translation process has two
major parts. The first step is to find memory locations with labels so the rela
tionship between symbolic names and addresses is known when instructions
are translated. The second step is to translate each assembly statement by

A.2 Assemblers A-11

combining the numeric equivalents of opcodes, register specifiers, and labels
into a legal instruction. As shown in Figure A.1, the assembler produces an
output file, called an object file, which contains the machine instructions,
data, and bookkeeping information.

An object file typically cannot be executed because it references procedures
or data in other files. A label is external (also called global) if the labeled object
can be referenced from files other than the one in which it is defined. A label
is local if the object can be used only within the file in which it is defined. In
most assemblers, labels are local by default and must be explicitly declared
global. Subroutines and global variables require external labels since they are
referenced from many files in a program. Local labels hide names that should
not be visible to other modules-for example, static functions in C, which can
only be called by other functions in the same file. In addition, compiler-gener
ated names-for example, a name for the instruction at the beginning of a
loop-are local so the compiler need not produce unique names in every file.

Consider the program in Figure A.4 on page A-7. The subroutine has an
external (global) label m a i n . It also contains two local labels-1 o o p and
s t r-that are only visible with this assembly language file. Finally, the
routine also contains an unresolved reference to an external label p r i n t f,
which is the library routine that prints values. What are the local and global
labels in Figure A.4?

The local labels are l o o p and s t r and the global label is ma i n .

Since the assembler processes each file in a program individually and in
isolation, it only knows the addresses of local labels. The assembler depends
on another tool, the linker, to combine a collection of object files and libraries
into an executable file by resolving external labels. The assembler assists the
linker by providing lists of labels and unresolved references.

However, even local labels present an interesting challenge to an assem
bler. Unlike names in most high-level languages, assembly labels may be used
before they are defined. In the example, in Figure A.4, the label s t r is used by
the l a instruction before it is defined. The possibility of a forward reference, like
this one, forces an assembler to translate a program in two steps: first find all
labels and then produce instructions. In the example, when the assembler sees
the l a instruction, it does not know where the word labeled s t r is located or
even whether s t r labels an instruction or datum.

A·12 Appendix A Assemblers, Linkers, and the SPIM Simulator

An assembler's first pass reads each line of an assembly file and breaks it
into its component pieces. These pieces, which are called lexemes, are individ
ual words, numbers, and punctuation characters. For example, the line

b l e $ 8 , 1 0 0 , l o o p

contains 6 lexemes: the opcode b l e, the register specifier $ 8, a comma, the
number 100, a comma, and the symbol l oop .

I f a line begins with a label, the assembler records in its symbol table the
name of the label and the address of the memory word that the instruction oc
cupies. The assembler then calculates how many words of memory the in
struction on the current line will occupy. By keeping track of the instructions'
sizes, the assembler can determine where the next instruction goes. To com
pute the size of a variable-length instruction, like those on the VAX, an assem
bler has to examine it in detail. On the other hand, fixed-length instructions,
like those on MIPS, only require a cursory examination. The assembler per
forms a similar calculation to compute the space required for data statements.
When the assembler reaches the end of an assembly file, the symbol table
records the location of each label defined in the file.

The assembler uses the information in the symbol table during a second
pass over the file, which actually produces machine code. The assembler again
examines each line in the file. If the line contains an instruction, the assembler
combines the binary representations of its opcode and operands (register spec
ifiers or memory address) into a legal instruction. The process is similar to the
one used in section 3.4 in Chapter 3. Instructions and data words that refer
ence an external symbol defined in another file cannot be completely assem
bled (they are unresolved) since the symbol's address is not in the symbol
table. An assembler does not complain about unresolved references since the
corresponding label is likely to be defined in another file.

l!Utbc>rill1tlc>n: If an assembler's speed is important, this two-step process can be
done in one pass over the assembly file with a technique known as backpatching. In its
pass over the file, the assembler bui lds a (possibly incomplete) binary representation
of every instruction. If the instruction references a label that has not yet been defined,
the assembler records the label and instruction in a table. When a label is defined, the
assembler consults this table to find a l l instructions that contain a forward reference
to the labe l . The assembler goes back and corrects their binary representation to i ncor
porate the address of the label. Backpatching speeds assembly, because the assem
bler only reads its input once. However, it requ i res an assembler to hold the entire
binary representation of a program in memory so instructions can be backpatched.
This requirement can l im it the size of programs that can be assembled.

A.2 Assemblers A·13

• Assembly language is a programming language. Its
principal difference from high-level languages such
as BASIC, Pascal, and C is that assembly language
provides only a few, simple types of data and control
flow. Assembly language programs do not specify the
type of value held in a variable. Instead, a program

mer must apply the appropriate operations (e.g., integer or floating
point addition) to a value. In addition, in assembly language pro
grams must implement all control flow with goto's. Both factors make
assembly language programming for any machine-MIPS or VAX
(see Appendix E)-more difficult and error-prone than writing in a
high-level language.

Object File Format

Assemblers produce object files. An object file on Unix contains six distinct
sections (see Figure A.7):

• The object file header describes the size and position of the other pieces of
the file.

• The text segment contains the machine language code for routines in the
source file. These routines may be unexecutable because of unresolved
references.

• The data segment contains a binary representation of the data in the
source file. The data also may be incomplete because of unresolved ref
erences to labels in other files.

• The relocation information identifies instructions and data words that de
pend on absolute addresses. These references must change if portions of
the program are moved in memory.

• The symbol table associates addresses with external labels in the source
file and lists unresolved references.

Object file
header

Text
segment

Data Relocation
segment information

Symbol
table

Debugging
information

FIGURE A. 7 Object Fiie. A Unix assembler produces an object file with six distinct sections.

A·14 Appendix A Assemblers, Linkers, and the SPIM Simulator

• The debugging information contains a concise description of the way in
which the program was compiled, so a debugger can find which instruc
tion addresses correspond to lines in a source file and print the data
structures in readable form.

The assembler produces an object file that contains a binary representation
of the program and data and additional information to help link pieces of a
program. This relocation information is necessary because the assembler does
not know which memory locations a procedure or piece of data will occupy af
ter it is linked with the rest of the program. Procedures and data from a file are
stored in a contiguous piece of memory, but the assembler does not know
where this memory will be located. The assembler also passes some symbol ta
ble entries to the linker. In particular, the assembler must record which exter
nal symbols are defined in a file and what unresolved references occur in a file .

..:111rh1,1r:111111'n* For convenience, assemblers assume each file starts at the same
address (for example, location 0) with the expectation that the l inker wil l relocate the
code and data when they are assigned locations in memory. The assembler produces
relocation information, which contains an entry describing each instruction or data
word in the file that references an absolute address. On MIPS, only the subroutine cal l ,
load , and store instructions reference absolute addresses. Instructions that use PC-rel
ative addressing, such as branches, need not be relocated.

Additional Facilities

Assemblers provide a variety of convenience features that help make assem
bler programs short and easier to write, but do not fundamentally change
assembly language. For example, data layout directives allow a programmer to
describe data in a more concise and natural manner than its binary represen
tation.

In Figure A.4, the directive
. a s c i i z " T h e s u m f r o m 0 . . 1 0 0 i s %d \ n "

stores characters from the string in memory. Contrast this line with the al
ternative of writing each character as its ASCII value (Figure 3.26 in
Chapter 3 describes the ASCII encoding for characters) :

. by t e 84 , 1 04 , 1 0 1 . 3 2 , 1 1 5 , 1 1 7 , 1 0 9 , 3 2

. by t e 1 0 2 , 1 1 4 , 1 1 1 . 1 0 9 , 3 2 , 48 , 3 2 , 4 6

. by t e 4 6 , 3 2 , 4 9 , 48 , 4 8 , 3 2 , 1 0 5 , 1 1 5

. by t e 3 2 , 3 7 , 1 0 0 , 1 0 , 0

A.2 Asse111blers A·15

The . a s c i i z directive is easier to read because it represents characters as
letters, not binary numbers. An assembler can translate characters to their
binary representation much faster and more accurately than a human. Data
layout directives specify data in a human-readable form that the assembler
translates to binary. Other layout directives are described in section A.10 on
pages A-48-A-50. Define the sequence of bytes produced by this directive:

. a s c i i z " T h e q u i c k b r own f o x j um p s o v e r t h e l a zy d o g "

. by t e 84 , 1 04 , 1 0 1 , 3 2 , 1 1 3 , 1 1 7 , 1 0 5 , 9 9
. by t e 1 0 7 , 3 2 , 9 8 , 1 1 4 , 1 1 1 , 1 1 9 , 1 1 0 , 3 2
. by t e 1 0 2 , 1 1 1 , 1 2 0 , 3 2 , 1 0 6 , 1 1 7 , 1 0 9 , 1 1 2
. by t e 1 1 5 , 3 2 , 1 1 1 , 1 1 8 , 1 0 1 , 1 1 4 , 3 2 , 1 1 6
. by t e 1 0 4 , 1 0 1 , 3 2 , 1 08 , 9 7 , 1 2 2 , 1 2 1 , 3 2
. by t e 1 0 0 , 1 1 1 . 1 0 3 , 0

Macros are a pattern-matching and replacement facility that provide a sim
ple mechanism to name a frequently used sequence of instructions. Instead of
repeatedly typing the same instructions every time they are used, a program
mer invokes the macro and the assembler replaces the macro call with the cor
responding sequence of instructions. Macros, like subroutines, permit a
programmer to create and name a new abstraction for a common operation.
Unlike subroutines, however, macros do not cause a subroutine call and return
when the program runs since a macro call is replaced by the macro's body
when the program is assembled. After this replacement, the resulting assem
bly is indistinguishable from the equivalent program written without macros.

As an example, suppose that a programmer needs to print many numbers.
The library routine p r i n t f accepts a format string and one or more values
to print as its arguments. A programmer could print the integer in register
$ 7 with the following instructions:

. d a t a
i n t_s t r : . a s c i i z " % d "

. t e x t
l a $ 4 , i n t s t r

m o v $ 5 , $ 7

j a l p r i n t f

L o a d s t r i n g a d d r e s s
i n t o f i r s t a r g (4)
L o a d v a l u e i n t o
s e c o n d a r g (5)
C a l l t h e p r i n t f r o u t i n e

A·16 Appendix A Assemblers, Unkers, and the SPIM Slmulator

The . d a t a directive tells the assembler to store the string in the program's
data segment and the . t e x t directive tells the assembler to store the instruc
tions in its text segment.

However, printing many numbers in this fashion is tedious and produc-
es a verbose program that is difficult to understand. An alternative is to in
troduce a macro, p r i n t_ i n t , to print an integer:

. d a t a
i n t s t r : . a s c i i z " % d "

. t e x t

. ma c r o p r i n t_i n t ($ a r g)
l a $ 4 . i n t_s t r # L o a d s t r i n g a d d r e s s i n t o

m o v $ 5 , $ a r g

j a l p r i n t f
. e n d_ma c r o

p r i n t_i n t ($ 7)

f i r s t a r g (4)
L o a d ma c r o ' s p a r a me t e r
($ a rg) i n t o s e c o n d a r g (5)
C a l l t h e p r i n t f r o u t i n e

The macro has a formal parameter, $ a r g , that names the argument to macro.
When the macro is expanded, the argument from a call is substituted for the
formal parameter throughout the macro's body. Then the assembler replac
es the call with the macro's newly expanded body. In the first call on
p r i n t_ i n t, the argument is $ 7, so the macro expands to the code:

l a $ 4 , i n t_s t r
m o v $ 5 , $ 7
j a l p r i n t f

In a second call on p r i n t_ i n t, say p r i n t_ i n t ($ 8) , the argument is $8, so
the macro expands to:

l a $ 4 , i n t_s t r
mov $ 5 , $ 8
j a l p r i n t f

What does the call p r i n t_ i n t ($ 4) expand to?

l a $ 4 , i n t_s t r
mov $ 5 , $ 4
j a l p r i n t f

A.3 Unkers A-17

This example illustrates one drawback of macros. A programmer who uses
this macro must be aware that p r i n t_ i n t uses register $ 4 and so cannot
correctly print the value in that register.

Elaboration: Assemblers conditionally assemble pieces of code, which permits a
programmer to i nclude or exclude groups of instructions when a program is assembled.
This feature is particularly useful when several versions of a program d iffer by a small
amount. Rather than keep these programs in separate files-which greatly complicates
fixing bugs in the common code-programmers typical ly merge the versions into a s in
gle file. Code particular to one version is conditionally assembled, so it can be
excluded when other versions of the program are assembled.

If macros and conditional assembly are usefu l , why do assemblers for Un ix systems
rarely, if ever, provide them? One reason is that most programmers on these systems
write programs in h igher-level languages l i ke C. Most of the assembly code is produced
by compi lers, which find it more convenient to repeat code rather than define macros.
Another reason is that other tools on Unix-such as c p p , the C preprocessor, or m4 , a
general macro processor-can provide macros and conditional assembly for assembly
language programs.

Hardware

Software

Interface

Some assemblers also implement pseudoinstructions, which
are instructions provided by an assembler, but not imple
mented in hardware. Chapter 3 contains many examples of
how the MIPS assembler synthesizes pseudoinstructions
and addressing modes from the spartan MIPS hardware in-
struction set. For example, section 3.5 in Chapter 3 describes
how the assembler synthesizes the b l t instruction from two

other instructions: s 1 t and b ne . By extending the instruction set, the MIPS as
sembler makes assembly language programming easier without complicating
the hardware. Many pseudoinstructions could also be simulated with macros,
but the MIPS assembler can generate better code for these instructions because
it can use a dedicated register ($ 1) and is able to optimize the generated code.

Linkers

Separate compilation permits a program to be split into pieces that are stored in
different files. Each file contains a logically related collection of subroutines
and data structures that form a module in a larger program. A file can be com-

A-18 Appendix A Assemblers, Linkers, and the SPIM Simulator

piled and assembled independently of other files, so changes to one module
do not require recompiling the entire program. As we discussed above, sepa
rate compilation necessitates the additional step of linking to combine object
files from separate modules and fix their unresolved references.

The tool that merges these files is the linker. It performs three tasks:

• Searches the program libraries to find library routines used by the pro
gram.

• Determines the memory locations that code from each module will oc
cupy and relocates its instructions by adjusting absolute references.

• Resolves references among files.

A linker's first task is to ensure that a program contains no undefined la
bels. The linker matches the external symbols and unresolved references from
a program's files. An external symbol in one file resolves a reference from an
other file if both refer to a label with the same name. Unmatched references
mean a symbol was used, but not defined anywhere in the program.

Unresolved references at this stage in the linking process do not necessarily
mean a programmer made a mistake. The program could have referenced a li
brary routine whose code was not in the object files passed to the linker. After
matching symbols in the program, the linker searches the system's program li
braries to find predefined subroutines and data structures that the program
references. The basic libraries contain routines that read and write data, allo
cate and deallocate memory, and perform numeric operations. Other libraries
contain routines to access a database or manipulate terminal windows. A pro
gram that references an unresolved symbol that is not in any library is errone
ous and cannot be linked. When the program uses a library routine, the linker
extracts the routine's code from the library and incorporates it into the pro
gram text segment. This new routine, in turn, may depend on other library
routines, so the linker continues to fetch other library routines until no external
references are unresolved or a routine cannot be found.

If all external references are resolved, the linker next determines the mem
ory locations that each module will occupy. Since the files were assembled in
isolation, the assembler could not know where a module's instructions or data
will be placed relative to other modules. When the linker places a module in
memory, all absolute references must be relocated to reflect its true location.
Since the linker has relocation information that identifies all relocatable refer
ences, it can efficiently find and backpatch these references.

The linker produces an executable file that can run on a computer. Typical
ly, this file has the same format as an object file, except that it contains no un
resolved references or relocation information.

A.4 Loading A·19

• Loading

A program that links without an error can be run. Before being run, the pro·
gram resides in a file on secondary storage, such as a disk. On Unix systems,
the operating system kernel brings a program into memory and starts it run
ning. To start a program, the operating system performs the following steps:

1 . Reads the executable file's header to determine the size of the text and
data segments.

2. Creates a new address space for the program. This address space is
large enough to hold the text and data segments, along with a stack seg
ment (see section A.5).

3. Copies instructions and data from the executable file into the new
address space.

4. Copies arguments passed to the program onto the stack.

5. Initializes the machine registers. In general, most registers are cleared,
but the stack pointer must be assigned the address of the first free stack
location (see section A.5).

6. Jumps to a start-up routine that copies the program's arguments from
the stack to registers and calls the program's m a i n routine. If the m a i n
routine returns, the start-up routine terminates the program with the
exit system call.

Memory Usage

The next few sections elaborate the description of the MIPS architecture pre
sented earlier in the book. Earlier chapters focused primarily on hardware
and its relationship with low-level software. These sections focus primarily
on how assembly language programmers use MIPS hardware. These sections
describe a set of conventions followed on many MIPS systems. For the most
part, the hardware does not impose these conventions. Instead, they represent
an agreement among programmers to follow the same set of rules so that soft
ware written by different people can work together and make effective use of
MIPS hardware.

Systems based on MIPS processors typically divide memory into three
parts (see Figure A.8). The first part, near the bottom of the address space

A·20 Appendix A Assemblers, Linkers, and the SPIM Simulator

7fffffff16
Stack segment

!
t

Dynamic data
- - - - - - - - - - -

Static data Data segment

1000000016
Text segment

40000015 Reserved

FIGURE A.8 Layout of memory.

(starting at address 400000hex), is the text segment, which holds the program's
instructions.

The second part, above the text segment is the data segment, which is further
divided into two parts. Static data (starting at address lOOOOOOOhex) contains ob
jects whose size is known to the compiler and whose lifetime-the interval
during which a program can access them-is the program's entire execution.
For example, in C, global variables are statically allocated since they can be ref
erenced anytime during a program's execution. The linker both assigns static
objects to locations in the data segment and resolves references to these ob
jects.

Immediately above static data is dynamic data. This data, as its name im
plies, is allocated by the program as it executes. In C programs, the ma 1 1 o c li
brary routine finds and returns a new block of memory. Since a compiler
cannot predict how much memory a program will allocate, the operating sys
tem expands the dynamic data area to meet demand. As the upward arrow in
the figure indicates, m a 1 1 o c expands the dynamic area with the s b r k system
call, which causes the operating system to add more pages to the program's
virtual address space (see section 7.3 in Chapter 7) immediately above the dy
namic data segment.

The third part, the program stack segment, resides at the top of the virtual
address space (staring at address 7fffffffhex). Like dynamic data, the maximum
size of a program's stack is not known in advance. As the program pushes val
ues on the stack, the operating system expands the stack segment down, to
wards the data segment.

A.6 Procedure Call Convention A·21

This three-part division of memory is not the only possible one. However,
it has two important characteristics: the two dynamically expandable seg
ments are as far apart as possible, and they can grow to use a program's entire
address space.

Hardware

Software

Interface

Because the data segment begins far above the program at
address lOOOOOOOh•x' load and store instructions cannot di
rectly reference data objects with their 16-bit offset fields (see
section 3.4 in Chapter 3). For example, to load the word in
the data segment at address 10008000hex into register $ 2 re
quires two instructions:

l u i $ 1 6 . O x l OO O # Ox l OO O mea n s 1 000 b a s e 1 6 o r 4096 b a s e 1 0

l w $ 2 , Ox8000 ($ 1 6) 11 Oxl O O O O O O O + OxBOOO = O x l 0008000

(The Ox before a number means that it is a hexadecimal value. For example,
Ox8000 is 8000hex or 32768.)

To avoid repeating the l u i instruction at every load and store, MIPS sys
tems typically dedicate a register ($ 28) as a global pointer to the static data seg
ment. This register contains address 10008000h•x' so load and store instructions
can use their signed 16-bit offset fields to access the first 64KB of the static data
segment. With this global pointer, we can rewrite the example as a single
instruction:

l w $ 2 , 0 ($ 28)

Of course, the global pointer register makes addresses 10000000hex-10010000hex faster to access than other heap locations. The MIPS compiler usu
ally stores global variables in this area because these variables are more fre
quently accessed than other global data.

• Procedure Call Convention

Conventions governing the use of registers are necessary when procedures in
a program are compiled separately. To compile a particular procedure, a com
piler must know which registers it may use and which registers are reserved
for other procedures. Rules for using registers are called register-use or proce
dure call conventions. As the name implies, these rules are, for the most part,
conventions followed by software rather than rules enforced by hardware.

A·22 Appendix A Assemblers, Linkers, and the SPIM Simulator

However, most compilers and programmers try very hard to follow these
conventions, because violating them causes insidious bugs.

The calling convention described in this section is the one used by gee com
piler. The native MIPS compiler uses a more complex convention that is slight
ly faster.

The MIPS CPU contains 32 general purpose registers that are numbered 0-
31. Register $ 0 always contains the hardwired value 0.

• Registers $ a t (1), $ k 0 (26), and $ k 1 (27) are reserved for the assembler
and operating system and should not be used by user programs or com
pilers.

• Registers $ a 0-$ a 3 (4-7) are used to pass the first four arguments to rou
tines (remaining arguments are passed on the stack). Registers $ v 0 and
$ v 1 (2, 3) are used to return values from functions.

• Registers $ t 0-$ t 9 (8-15, 24, 25) are caller-saved registers that are used
to hold temporary quantities that need not be preserved across calls (see
section 3.6 in Chapter 3).

• Registers $ s 0-$ s 7 (16-23) are callee-saved registers that hold long-lived
values that should be preserved across calls.

• Register $ g p (28) is a global pointer that points to the middle of a 64K
block of memory in the static data segment.

• Register $ s p (29) is the stack pointer, which points to the first free loca
tion on the stack. Register $ f p (30) is the frame pointer. The j a l instruc
tion writes register $ r a (31), the return address from a procedure call.
These two registers are explained in the next section.

The two-letter abbreviations and names for these registers-for example
$ s p for the stack pointer-reflect the registers' intended uses in the procedure
call convention. In describing this convention, we will use the names instead
of register numbers. The table in Figure A.9 lists the registers and describes
their intended uses.

Procedure Calls

This section describes the steps that occur when one procedure (the caller)
invokes another procedure (the callee). Programmers who write in a high
level language (like C or Pascal) never see the details of how one procedure
calls another because the compiler takes care of this low-level bookkeeping.
However, assembly language programmers must explicitly implement every
procedure call and return.

A.6 Procedure Call Convention A·23

I> 1� .. ,,.11-""t•· . ,,. .. - ""' •. ' .. i•'"'�i:· .:.t-:f!Jlt'"� 111 1[:.J .�..-� . :.:.1\�•.:r;,' .. �- �, .. ;;;v.>;:<-•:�� ;
zero 0 Constant O

at 1 Reserved for assembler

vO 2 Expression evaluation and results of a function

vl 3 Expression evaluation and results of a function

ao 4 Argument 1

al 5 Argument 2

a2 6 Argument 3

a3 7 Argument 4

to 8 Temporary (not preserved across cal l)

tl 9 Temporary (not preserved across call)

t2 10 Temporary (not preserved across cal l)

t3 11 Temporary (not preserved across call)

t4 12 Temporary (not preserved across call)

t5 13 Temporary (not preserved across cal l)

t6 14 Temporary (not preserved across cal l)

t7 15 Temporary (not preserved across call)

so 16 Saved temporary (preserved across call)

sl 17 Saved temporary (preserved across call)

s2 18 Saved temporary (preserved across call)

s3 19 Saved temporary (preserved across call)

s4 20 Saved temporary (preserved across call)

s5 2 1 Saved temporary (preserved across call)

s6 22 Saved temporary (preserved across call)

s7 23 Saved temporary (preserved across call)

t8 24 Temporary (not preserved across call)

t9 25 Temporary (not preserved across cal l)

kO 26 Reserved for OS kernel

kl 27 Reserved for OS kernel

gp 28 Pointer to global area

sp 29 Stack pointer

fp 30 Frame pointer

ra 31 Return address (used by function call)

FIGURE A.9 MIPS registers and usage convention.

A-24 Appendix A Assemblers, Linkers, and the SPIM Slmulator

Most of the bookkeeping associated with a call is centered around a block
of memory called a procedure call frame. This memory is used for a variety of
purposes:

• To hold values passed to a procedure as arguments.

• To save registers that a procedure may modify, but which the proce
dure's caller does not want changed.

• To provide space for variables local to a procedure.

In most programming languages, procedure calls and returns follow a
strict last-in, first-out (LIFO) order so this memory can be allocated and deal
located on a stack, which is why these blocks of memory are sometimes called
stack frames.

A programming language that does not permit recursive procedures
procedures that call themselves either d irectly or indirectly through a chain of calls
need not al locate frames on a stack. In a nonrecursive language, each procedure 's
frame may be statically allocated since only one invocation of a procedure can be
active at a time. Older versions of Fortran prohibited recursion because statical ly-al lo
cated frames produced faster code on some older machines. However, on load-store
architectures l ike MIPS, stack frames may be just as fast because a frame pointer reg
ister points d irectly to the active stack frame, which permits a s ingle load or store
instruction to access values in the frame. In addition, recursion is a valuable program
m ing technique.

Figure A.10 shows a typical stack frame. The frame consists of the memory
between the frame pointer (Hp), which points to the first word of the frame,
and the stack pointer ($ s p), which points to the first stack word after the frame.
The stack grows down from higher memory addresses, so the frame pointer
points above the stack pointer. The executing procedure uses the frame point
er to quickly access values in its stack frame. For example, an argument in the
stack frame can be loaded into register $ 2 with the instruction:

l w $ 2 , 0 ($ f p)

A stack frame may be built in many different ways; however, the caller and
callee must agree on the sequence of steps. The steps below describe the calling
convention used on most MIPS machines. This convention comes into play at
three points during a procedure call: immediately before the caller invokes
the callee, just as the callee starts executing, and immediately before the callee

A.6 Procedure Call Convention

Argument 6
Argument 5

$fp -
Saved registers

H igher memory addresses

Stack
grows

Local variables !
Lower memory addresses

$sp -

A·25

FIGURE A.10 Layout of a stack frame. The frame pointer ($ f p) points to the first word in the
currently executing procedure's stack frame. The stack pointer ($ s p) points to the first free word
on the stack after the frame. The first four arguments are passed in registers, so the fifth argument
is the first one stored on the stack.

returns to the caller. In the first part, the caller puts the procedure call argu
ments in standard places and invokes the callee to:

1. Pass arguments. By convention, the first four arguments are passed in
registers $ a 0-$ a 3 . Any remaining arguments are pushed on the stack
and appear at the beginning of the called procedure's stack frame.

2. Save caller-saved registers. The called procedure can use these registers
($ a 0- $ a 3 and $ t 0-$ t 9) without first saving their value. If the caller
expects to use one of these registers after a call, it must save its value
before the call.

3. Execute a j a l instruction (see section 3.6 of Chapter 3), which jumps to
the callee's first instruction and saves the return address in register $ r a .

Before a called routine starts running, it must take the following steps to set
up its stack frame:

1 . Allocate memory for the frame by subtracting the frame's size from the
stack pointer.

2. Save callee-saved registers in the frame. A callee must save the values
in these registers ($ s 0-$ s 7 , $ f p, and $ r a) before altering them since the

A·26 Appendix A Assemblers, Linkers, and the SPIM Simulator

caller expects to find these registers unchanged after the call. Register
$ fp is saved by every procedure that allocates a new stack frame. How
ever, register $ r a only needs to be saved if the callee itself makes a call.
The other callee-saved registers that are used also must be saved.

3. Establish the frame pointer by adding the stack frame's size to $ s p and
storing the sum in register Hp.

Hardware

Software

Interface

The MIPS register-use convention provides callee- and call
er-saved registers because both types of registers are advan
tageous in different circumstances. Callee-saved registers
are better used to hold long-lived values, such as variables
from a user's program. These registers are only saved during
a procedure call if the callee expects to use the register. On
the other hand, caller-saved registers are better used to hold

short-lived quantities that do not persist across a call, such as immediate val
ues in an address calculation. During a call, the callee can also use these regis
ters for short-lived temporaries.

Finally, the callee returns to the caller by executing the following steps:

1 . If the callee is a function that returns a value, it places the returned
value in register $ v 0 .

2 . Restore all callee-saved registers that were saved upon procedure entry.

3. Pop the stack frame by subtracting the frame size from $ s p .

4. Return by jumping to the address in register $ r a .

Procedure Call Example

As an example, consider the C routine:

ma i n C)
\

p r i n t f (" T h e f a c t o r i a l o f 1 0 i s %d \ n " , f a c t (1 0)) ;

i n t f a c t (i n t n)
\

i f (n < l)
r e t u r n C l) ;

A.8 Procedure Call Convention A-27

e l s e
r e t u r n (n * f a c t (n - l)) ;

}
which computes and prints 10! (the factorial of 10, 10! = 10 x 9 x . . . x 1) .
f a c t is a recursive routine that computes n! by multiplying n times (n - 1) .
The assembly code for this routine illustrates how programs manipulate stack
frames.

Upon entry, the routine m a i n creates its stack frame and saves the two
callee-saved registers it will modify: $ f p and $ r a . The frame is larger than re
quired for these two registers. The minimum size of a stack frame is 24 bytes
for procedures not containing a call. This frame holds four argument registers
($ a 0-$ a 3) and the return address $ r a , padded to a double-word boundary (24
bytes) .

. t e x t

. g l o b l m a i n
m a i n :

s u b u $ s p , $ s p , 3 2 # S t a c k f r a m e i s 3 2 b y t e s l o n g
S W $ r a , 2 0 ($ s p) # S a v e r e t u r n a d d r e s s
S W $ f p , 1 6 ($ s p) ff S a v e o l d f r a me p o i n t e r
a d d u $ f p , $ s p , 3 2 ff S e t u p f r a me p o i n t e r

The routine m a i n then calls the factorial routine and passes it the single argu
ment 10. After f a c t returns, main calls the library routine p r i n t f and passes
it both a format string and the result returned from f a c t :

l i $ a 0 , 1 0 ff P u t a r g um e n t (1 0) i n $ a 0
j a l f a c t ff C a 1 1 f a c t o r i a l f u n c t i o n

l a $ a 0 , $ L C ff P u t f o rm a t s t r i n g i n $ a 0
m o v e $ a l , $ v 0 ff M o v e f a c t r e s u l t t o $ a l
j a l p r i n t f ff C a 1 1 t h e p r i n t f u n c t i o n

Finally, after printing the factorial, m a i n returns. But first, it must restore
the registers it saved and pop its stack frame:

$ L C :

l w
l w
a d d u
j r

. r d a t a

. a s c i i

$ r a , 2 0 ($ s p)
$ f p , 1 6 ($ s p)
$ s p , $ s p , 3 2
$ r a

Re s t o r e r e t u r n a d d r e s s
Re s t o r e f r a m e p o i n t e r
P o p s t a c k f r a m e
ff Ret u r n t o c a l l e r

" T h e f a c t o r i a l o f 1 0 i s % d \ n \ O O O "

A·28 Appendix A Assemblers, Linkers, and the SPIM Slmulator

The factorial routine is similar in structure to m a i n . First, it creates a stack
frame and saves the callee-saved registers it will use. In addition to saving
$ r a and Hp, f a c t also saves its argument ($ a 0), which it will use for the
recursive call:

. t ext
f a c t :

s u b u $ s p , $ s p , 3 2 # S t a c k f r ame i s 3 2 bytes l o n g
S W $ r a , 2 0 ($ s p) # S a v e r e t u r n a d d re s s
S W $ f p , 1 6 ($ s p) # S a v e f r a me p o i n t e r
a d d u $ f p , $ s p , 3 2 # S e t u p f r a me p o i n t e r

S W $ a 0 , 0 ($ f p) # S a v e a r g um e n t (n)

The heart of the f a c t routine performs the computation from the C pro
gram. It tests if the argument is greater than zero. If not, the routine returns the
value 1 . If the argument is greater than zero, the routine recursively calls itself
to compute fa c t (n - 1) and multiplies that value times n :

l w $ 2 , 0 ($ f p) # L o a d n
b g t z $ 2 , $ L 2 # B r a n c h i f n > 0
l i $ 2 , 1 # Re t u r n 1
j $ L 1 # J ump t o c o d e t o r e t u r n

$ L 2 :
l w $ 3 , 0 ($ f p) # L o a d n
s u b u $ 2 , $ 3 , 1 # C o m p u t e n - 1
m o v e $ a 0 , $ 2 ff M o v e v a l u e t o $ a 0
j a l f a c t ff C a 1 1 f a c t o r i a l f u n c t i o n

l w $ 3 , 0 ($ f p) ff L o a d n
m u l $ 2 , $ 2 , $ 3 ff C o m p u t e f a c t (n - 1) * n

Finally, the factorial routine restores the callee-saved registers and returns
the value in register $ 2 :

$ L 1 : ff Res u l t i s i n $ 2
l w $ r a . 2 0 ($ s p) ff Re s t o r e $ r a
l w $ f p , 1 6 ($ s p) ff Re s t o r e $ f p
a d d u $ s p , $ s p , 3 2 ff P o p s t a c k
j $ r a ff Ret u r n t o c a l l e r

A.6 Procedure Call Convention A·29

Figure A.11 shows the stack at the call: f a c t (7 l . m a i n runs first, so its
frame is deepest on the stack. m a i n calls f a c t (1 0) , whose stack frame is
next on the stack. Each invocation recursively invokes f a c t to compute the
next-lowest factorial. The stack frames parallel the LIFO order of these calls.
What does the stack look like when the call to f a c t (1 0 l returns?

Stack

Old $ra
Old $fp main

Old $ra
Old $fp fact (10)
Old $a0

Old $ra
Old $fp fact (9)
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

fact (8) l SU.ok g<�'
fact (7)

FIGURE A.11 Stack frames during the call of fact(7).

Stack

Old $ra
Old $fp main

The difference between the M IPS compi ler and the gee compiler is that
the M IPS compiler usually does not use a frame pointer, so this register is avai lable as

A·30 Appendix A Assemblers, Linkers, and the SPIM Simulator

another cal lee-saved register $ s 8. This change saves a couple of instructions in the
procedure cal l and return sequence. However, it compl icates code generation because
a procedure must access its stack frame with $ s p, whose value changes during the
procedure 's execution as values are pushed on the stack.

• Exceptions and Interrupts

Section 5.6 of Chapter 5 describes the MIPS exception facility, which responds
both to exceptions caused by errors during an instruction's execution and to
external interrupts caused by 1/0 devices. This section describes exception
and interrupt handling in more detail. In MIPS processors, a part of the CPU
called coprocessor 0 records the information the software needs to handle
exceptions and interrupts. The MIPS simulator SPIM does not implement all
of coprocessor O's registers, since many are not useful in a simulator or are
part of the memory system, which SPIM does not implement. However, SPIM
does provide the following coprocessor 0 registers:

Register Register ,: ; . • ,,,., : ,_ · ,. · ' >" -
narie number Usage • ·

BadVAddr

Status

Cause

EPC

8

12

13

14

Register containing the memory address at which memory reference
occurred

Interrupt mask and enable bits

Exception type and pending interrupt bits

Register containing address of instruction that caused exception

These four registers are part of coprocessor O's register set and are accessed by
the l w c O, m f cO , mt c O, and s w c O instructions. After an exception, register E P C
contains the address of the instruction that was executing when the exception
occurred. If the instruction made a memory access that caused the exception,
register B a d V A d d r contains the referenced memory location's address. The
two other registers contain many fields and are described below.

Figure A.12 shows the Status register fields implemented by the MIPS sim
ulator SPIM. The i n t e r r u p t ma s k field contains a bit for each of the five hard
ware and three software possible interrupt levels. A bit that is 1 allows
interrupts at that level. A bit that is 0 disables interrupts at that level. The low
6 bits of the Status register implement a three-deep stack for the k e r n e l I u s e r
and i n t e r r u p t e n a b l e bits. The k e r n e l I u s e r bit is 0 if a program was in the

A. 7 Exceptions and Interrupts

15

FIGURE A.12 The Status register.

Interrupt
mask

8 5

Old

A-31

4 3 2 1 0

Previous Cu rrent

kernel when an exception occurred and 1 if it was running in user mode. If the
i n t e r r u p t e n a b l e bit is 1 , interrupts are allowed. If it is 0, they are disabled.
When an interrupt occurs, these six bits are shifted left by two bits, so the cur
rent bits become the previous bits and the previous bits become the old bits
(the old bits are discarded). The current bits are both set to 0 so the interrupt
handler runs in the kernel interrupts disabled.

Figure A.13 shows the Cause register fields implemented by SPIM. The five
p e n d i n g i n t e r r u p t bits correspond to the five interrupt levels. A bit becomes
1 when an interrupt at its level has occurred but has not been serviced. The Ex
ception code register describes the cause of an exception with the following
codes:

·: Number · Name Description
� --�-'-'-��>�--�·��·��������--������������

0 INT External i nterru pt

4 ADDRL Address error exception {load or instruction fetch)

5 ADD RS Address error exception {store)

6 IBUS Bus error on instruction fetch

7 DBUS Bus error on data load or store

8 SYSCALL Syscall exception

9 BKPT Breakpoint exception

10 RI Reserved instruction exception

12 OVF Arithmetic overflow except ion

Exceptions and interrupts cause a MIPS processor to jump to a piece of
code, at address 80000080hex (in the kernel, not user address space), called an

A·32

Example

Appendix A Assemblers, Linkers, and the SPIM Simulator

FIGURE A.13 The Cause register.

15 10

Pending
interrupts

5 2

Exception
code

interrupt handler. This code examines the exception's cause and jumps to an ap
propriate point in the operating system. The operating system responds to an
exception either by terminating the process that caused the exception or by
performing some action. A process that causes an error, such as executing an
unimplemented instruction, is killed by the operating system. On the other
hand, exceptions such as page-faults are requests from a process to the operat
ing system to perform a service, such as bringing in a page from disk. The op
erating system processes these requests and resumes the process. The final
type of exceptions are interrupts from external devices. These generally cause
the operating system to move data to or from an 1/0 device and resume the
interrupted process. The code in the example below is a simple interrupt han
dler, which invokes a routine to print a message at each exception (but not in
terrupts). This code is similar to the interrupt handler used by the SPIM
simulator described in the Example that follows.

The interrupt handler first saves registers $ a 0 and $ a 1 , which it later uses
to pass arguments, The interrupt handler cannot store the old values from
these registers on the stack, as would an ordinary routine, because the cause
of the interrupt might have been a memory reference that used a bad value
(such as 0) in the stack pointer. Instead the interrupt handler stores these
registers in two memory locations: (s a v e 0 and s a v e 1). If the interrupt rou
tine itself could be interrupted, two locations would not be enough since the
second interrupt would overwrite values saved during the first interrupt.
However, this simple interrupt handler finishes running before it enables
interrupts, so the problem does not arise .

. k t e x t O x 8 0 0 0 0 0 8 0

S W $ a 0 s a v e O # H a n d l e r i s n o t r e - e n t r a n t a n d c a n ' t u s e

S W $ a l s a v e l # s t a c k t o s a v e $ a 0 , $ a l

D o n ' t n e e d t o s a v e $ k 0 / $ k l

A. 7 Exceptions and lntem1pts A-33

The interrupt handler then moves the C a u s e and E P C registers into CPU
registers. The C a u s e and E P C registers are not part of the CPU register set.
Instead, they are registers in coprocessor 0, which is the part of the CPU that
handles interrupts. The instruction mf c O $ k O , $ 1 3 moves coprocessor O's
register 13 (the Cause register) into CPU register $ k O . Note that the inter
rupt handler need not save registers $ k 0 and $ k 1 because user programs are
not supposed to use these registers. The interrupt handler uses the value
from the Cause register to test if the exception was caused by an interrupt
(see the preceding table). If so, the exception is ignored. If the exception was
not an interrupt, the handler calls p r i n t_ex c p to print a warning message.

m f c O $ k O $ 1 3 # M o v e C a u s e i n t o $ k 0
m f c O $ k 1 $ 1 4 # M o v e E P C i n t o $ k l

s g t $ v 0 $ k 0 O x 4 4 # I g n o r e i n t e r r u p t s
b g t z $ v 0 d o n e

m o v $ a 0 , $ k 0 # M o v e C a u s e i n t o $ a 0
m o v $ a l , $ k 1 # M o v e E P C i n t o $ a l
j a l p r i n t_e x c p # P r i n t e x c e pt i o n e r r o r mes s a g e

Before returning, the interrupt handler restores registers $ a 0 and $ a 1 . It
then executes the r f e (return from exception) instruction, which restores
the previous interrupt mask and kernel/ user bits in the Status register. This
switches the processor state back to what it was before the exception and
prepares to resume program execution. The interrupt handler then returns
to the program by jumping to the instruction following the one that caused
the exception.

d o n e :
l w $ a 0 s a v e O
l w $ a l s a v e l
a d d i u $ k 1 $ k l 4 # D o n o t r e e x e c u t e

f a u l t i n g i n s t r u c t i o n
r f e # Re s t o r e i n t e r r u p t s t a t e
j r $ k l

. k d a t a
s a v e O : . w o r d 0
s a v e l : . w o r d 0

On real MIPS processors, the return from an interrupt handler is more
complex. The r f e i nstruction must execute in the delay slot of the j r instruction that
returns to the user program so that no interrupt-handler instruction executes with the
user program's interrupt mask and kernel/user bits. In addition, the interrupt handler

A·34 Appendix A Assemblers, Linkers, and the SPIM Simulator

cannot always jump to the instruction fol lowing E P C . For example, if the instruction that
caused the exception was in a branch instruction's delay slot (see Chapter 6) , the next
instruction may not be the fol lowing instruction in memory.

• Input and Output

SPIM simulates one I/O device: a memory-mapped terminal. When a pro
gram is running, SPIM connects its own terminal (or a separate console win
dow in the X-window version x s p i m) to the processor. A MIPS program
running on SPIM can read the characters that you type. In addition, if the
MIPS program writes characters to the terminal, they appear on SPIM's ter
minal or console window. One exception to this rule is control-C: this charac
ter is not passed to the program, but instead causes SPIM to stop and return
to command mode. When the program stops running (for example, because
you typed control-C or because the program hit a breakpoint), the termi
nal is reconnected to s p i m so you can type SPIM commands. To use
memory-mapped I/O (see below), s p i m or x s p i m must be started with the

- ma p p ed_ i o flag.
The terminal device consists of two independent units: a receiver and a

transmitter. The receiver reads characters from the keyboard. The transmitter
writes characters to the display. The two units are completely independent.
This means, for example, that characters typed at the keyboard are not auto
matically "echoed" on the display. Instead, a program must explicitly echo a
character by reading it from the receiver and writing it to the transmitter.

A program controls the terminal with four memory-mapped device regis
ters, as shown in Figure A.14. "Memory-mapped" means that each register ap
pears as a special memory location. The Receiver Control register is at location
ffffOOOOhex· Only two of its bits are actually used. Bit 0 is called "ready": if it is
1, it means that a character has arrived from the keyboard but has not yet been
read from the Receiver Data register. The ready bit is read-only: writes to it
are ignored. The ready bit changes from 0 to 1 when a character is typed at the
keyboard, and it changes from 1 to 0 when the character is read from the Re
ceiver Data register.

Bit 1 of the Receiver Control register is the keyboard "interrupt enable."
This bit may be both read and written by a program. The interrupt enable is
initially 0. If it is set to 1 by a program, the terminal requests an interrupt at
level 0 whenever the ready bit is 1. However, for the interrupt to affect the pro
cessor, interrupts must also be enabled in the Status register (see section A.7).
All other bits of the Receiver Control register are unused.

A.8 Input and Output

Receiver control
(OxffffOOOO)

Receiver data
(Oxffff0004)

Transmitter control
(Oxffff0008)

Transmitter data
(OxffffOOOc)

Unused 1 1

Interrupt Ready
enable

Unused 8

��· - , .. : -� .: :�ii, , . " ' ' .
. ,

Received byte

Unused 1 1

Interrupt Ready
enable

Unused 8
. ' -�,.: . . ,... : ' , .. _ .. �

Transmitted byte

A·35

FIGURE A.14 The termlnal Is controlled by four device registers, each of which appears
as a memory location at the given address. Only a few bits of these registers are actually
used. The others always read as Os and are ignored on writes.

The second terminal device register is the Receiver Data register (at address
ffff0004hex) . The low-order eight bits of this register contain the last character
typed at the keyboard. All other bits contain Os. This register is read-only and
changes only when a new character is typed at the keyboard. Reading the Re
ceiver Data register resets the ready bit in the Receiver Control register to 0.

The third terminal device register is the Transmitter Control register (at ad
dress ffff0008hex). Only the low-order two bits of this register are used. They be
have much like the corresponding bits of the Receiver Control register. Bit 0 is
called "ready" and is read-only. If this bit is 1, the transmitter is ready to accept
a new character for output. If it is 0, the transmitter is still busy writing the pre
vious character. Bit 1 is "interrupt enable" and is readable and writable. If this
bit is set to 1 , then the terminal requests an interrupt on level one whenever the
ready bit is 1 .

The final device register i s the Transmitter Data register (at address
ffffOOOchex) . When a value is written into this location, its low-order eight bits

A-36 Appendix A Assemblers, Linkers, and the SPIM Slmulator

(i.e., an ASCII character as in Figure 3.26 in Chapter 3) are sent to the console.
When the Transmitter Data register is written, the ready bit in the Transmitter
Control register is reset to 0. This bit stays 0 until enough time has elapsed to
transmit the character to the terminal; then the ready bit becomes 1 again. The
Transmitter Data register should only be written when the ready bit of the
Transmitter Control register is 1 . If the transmitter is not ready, writes to the
Transmitter Data register are ignored (the write appears to succeed but the
character is not output).

Real computers require time to send characters over the serial lines that
connect terminals to computers. These time lags are simulated by SPIM. For
example, after the transmitter starts to write a character, the transmitter's
ready bit becomes 0 for a while. SPIM measures time in instructions executed,
not in real clock time. This means that the transmitter does not become ready
again until the processor executes a certain number of instructions. If you stop
the machine and look at the ready bit, it will not change. However, if you let
the machine run, the bit eventually changes back to 1 . • SPIM

SPIM is a software simulator that runs programs written for MIPS
R2000/R3000 processors. SPIM's name is just MIPS spelled backwards. SPIM
can read and immediately execute assembly language files or (on some sys
tems) MIPS executable files. SPIM is a self-contained system for running
MIPS programs. It contains a debugger and provides a few operating system
like services. SPIM is much slower than a real computer (100 or more times).
However, its low cost and wide availability cannot be matched by real hard
ware!

An obvious question is, Why use a simulator when many people have
workstations that contain MIPS chips that are significantly faster than SPIM?
One reason is that these workstations are not universally available. Another
reason is rapid progress towards new and faster computers renders these ma
chines obsolete (see Chapter 1) . The current trend is to make computers faster
by executing several instructions concurrently. This makes architectures more
difficult to understand and program. The MIPS architecture may be the epito
me of a simple, clean RISC machine.

In addition, simulators can provide a better environment for programming
than an actual machine because they can detect more errors and provide more
features than an actual computer. For example, SPIM has an X-window inter
face that works better than most debuggers on the actual machines.

Finally, simulators are a useful tool in studying computers and the pro
grams that run on them. Because they are implemented in software, not sili-

A.9 SPIM A-37

con, simulators can be easily modified to add new instructions, build new
systems such as multiprocessors, or simply to collect data.

Simulation of a Virtual Machine

The MIPS architecture, like that of many RISC computers, is difficult to pro
gram directly because of delayed branches, delayed loads, and restricted
address modes. This difficulty is tolerable since these computers were
designed to be programmed in high-level languages and present an interface
appropriate for compilers rather than assembly language programmers. A
good part of the programming complexity results from delayed instructions.
A delayed branch requires two cycles to execute (see section 6.7 of Chapter 6).
In the second cycle, the instruction immediately following the branch exe
cutes. This instruction can perform useful work that normally would have
been done before the branch. It can also be a n o p (no operation). Similarly,
delayed loads require two cycles so the instruction immediately following a
load cannot use the value loaded from memory (see section 6.2 of Chapter 6).

MIPS wisely chose to hide this complexity by having its assembler imple
ment a virtual machine. This virtual computer appears to have nondelayed
branches and loads and a richer instruction set than the actual hardware. The
assembler reorganizes (rearranges) instructions to fill the delay slots. It also
simulates the additional, pseudoinstructions with short sequences of actual in
structions.

By default, SPIM simulates the richer virtual machine. However, it can also
simulate the bare hardware. Below, we describe the virtual machine and only
mention in passing features that do not belong to the actual hardware. In do
ing so, we follow the convention of MIPS assembly language programmers
(and compilers), who routinely use the extended machine. (For a description
of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture,
Prentice Hall, 1992.)

Getting Started with SPIM

The rest of this appendix contains a complete and rather detailed description
of SPIM. Many details should never concern you; however, the sheer volume
of information can obscure the fact that SPIM is a simple, easy-to-use pro
gram. This section contains a quick tutorial on SPIM that should enable you
to load, debug, and run simple MIPS programs.

SPIM comes in two versions. The plain version is called s p i m. It runs on any
type of terminal. It operates like most programs of this type: you type a line of
text, hit the r e t u r n key, and s p i m executes your command.

The fancier version of SPIM is called x s p i m. It uses the X-window system,
so you must have a bit-mapped display to run it. x s p i m, however, is a much

A·38 Appendix A Assemblers, Unkers, and the SPIM Slmulator

easier program to learn and use because its commands are always visible on
the screen and because it continually displays the machine's registers.

Since most people use and prefer x s p i m, this section only discusses that
program. If you plan to use s p i m, do not skip this section. Read it first and then
look at the SPIM Command-Line Options (starting on page A-41) to see how
to accomplish the same thing with s p i m commands.

To start x s p i m, type x s p i m in response to your system's prompt ('%'):

% x s p i m

On your system, x s p i m may be kept in an unusual place and you may need
to execute a command first to add that place to your search path. Your instruc
tor should tell you how to do this.

When x s p i m starts up, it pops up a large window on your screen.
Figure A.15 shows a picture of this window. The window is divided into five
panes:

• The top pane is called the register display. It shows the values of all reg
isters in the MIPS CPU and FPU. This display is updated whenever your
program stops running.

• The pane below contains the control buttons to operate x s p i m. These but
tons are discussed below, so we can skip the details for now.

• The next pane, called the text segments, displays instructions both from
your program and the system code that is loaded automatically when
x s p i m starts running. Each instruction is displayed on a line that looks
like

[0 x 0 0 4 0 0 0 0 0 J O x 8 f a 4 0 0 0 0 l w $ 4 , 0 ($ 2 9) : 89 : l w $ a 0 , 0 ($ s p)

The first number on the line, in square brackets, is the hexadecimal
memory address of the instruction. The second number is the instruc
tion's numerical encoding, again displayed as a hexadecimal number.
The third item is the instruction's mnemonic description. Everything
following the semicolon is the actual line from your assembly file that
produced the instruction. The number 89 is the line number in that file.
Sometimes nothing is on the line after the semicolon. This means that
the instruction was produced by SPIM as part of translating a pseudo
instruction. Look down a line or two to find the pseudoinstruction that
you wrote.

• The next pane, called the data segments, displays the data loaded into
your program's memory and the data on the program's stack.

• The bottom pane is the SPIM messages that x s p i m uses to write messag
es. This is where error messages appear.

Register
display

Control
buttons

Text
segments

Data and
stack
segments

SPIM
messages

A.9 SPIM

uplm
PC 00000000 EPC - 00000000 C a u s e

L O
= 00000000 B a d V a d d r - 00000000 Sta t u s = 00000000 H I = 00000000 - 00000000

RO (r O l = 00000000 R8 (t 0)
R l C a t > = 000000 00 R 9 (t l)
R 2 (v 0) - 00000000 R I O (t 2 l
RJ (v l) = 00000000 R l l (t 3)
R4 C a O l = 00000000 R l Z (t4)
R S (a l J = 00000000 R l 3 (t S)
R6 (a 2 l = 00000000 R l 4 (t 6)
R 7 (a 3) = 00000000 R l 5 (t l l

F PO = 0 . 000000 F P 8 FP2 = 0 . 000000 F P l O
F P 4 = 0 . 000000 F P 1 2 FP6 - 0 . 000000 F P 1 4

I - quit 1 I load 1 I
I prtnt 1 I breakpt 1 I

[0x0040000 0] Ox8f a 4 00 0 0
[Ox004000 0 4 J O x 2 7 a 5 0004
[Ox00400008] Ox24a60004
[0x0040000c] Ox0004 1 0BO

General registers
= 00000000 R l 6 (S O) = 00000000 R 2 4 (t 8) -
= 00000000 R l 7 (s l l = 00000000 R25 (s 9) -
= 00000000 R l 8 (s 2) = 00000000 R26 (k0) =
= 00000000 R l 9 (s 3) = 00000000 R27 (k 1) -
- 00000000 R 2 0 (s 4) = 00000000 R 2 8 (g p) -
-· 00000000 R 2 1 (S 5) = 00000000 R29 (s p) -
= 00000000 R22 (S 6) = 00000000 R 3 0 C s8) -- 00000000 R23 (s 7) = 00000000 R31 (r a) =

Double floating point registers
= 0 . 000000 = 0 . 000 000 - 0 . 000000
= 0 . 000000

F P l 6
F P 1 8
F P 2 0
F P 2 2

= 0 . 000000 F P 2 4 -
= 0 . 000000 FP26 =
= 0 . 000000 F P 28 = - 0 . 000000 FPJO -

Single floating point registers

1 I 1 I - 1 I •V..-1 run •• ..

help 1 [terminal l [mode 1
Text Segments

l w $ 4 . O C S 2 9) ; 89 : l w S a O , O C S s p l
a d d i u $ 5 , S 2 9 . 4 ; 90 : a d d i u S a l . S s p .
a d d i u $ 6 , S S . 4 : 9 1 : a dd i u S a 2 , S a l ,
s l l $ 2 , $ 4 , 2 : 92 : s 1 1 S v O . S a O , 2

A·39

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0 . 000000
0 . 000000
0 . 000000
0 . 000000

4
4

[0x004000 1 0] Ox00 c 2 3 0 2 1 a dd u $ 6 . s 6 . $ 2 : 9 3 : a d d u S a 2 . $ a 2 , $ v 0
[0 x004000 1 4 J OxOcO OOOOO j a l OxOOOOOOOO [ma i n] : 94 : j a l ma i n
[O x004000 1 8] Ox3402000a ori $ 2 , S O . 1 0 : 9 5 : 1 i $ v 0 1 0
[O x004000 l c] OxOOOOOOOc s y s c a l l : 9 6 : s y s c a l l

Data Segments

[O x l OOOOOO O J . . . [Ox l O O l OO O O J OxOOOOOOOO
[0x l 00 1 0 004] O x 7 4 7 06 5 6 3 O x 2 0 6 e 6 f 6 9 O x 6 3 6 f 2 0 0 0
[0x l 00 1 0 0 1 0 J Ox 7 2 7 2 7 5 6 3 O x 6 1 206465 O x 6 9 2 0 6 4 6 e O x 7 2 6 f 6 e 6 7
[O x l 00 1 0 0 2 0 J Ox000a6465 O x 4 9 5 b 2 0 2 0 O x 7 2 6 5 7 4 6e O x 7 4 7 0 7 5 7 2
[0 x l 00 1 0 0 3 0] Ox000020Sd O x 20200000 O x 6 1 6e555b O x 6 e 6 7 696c
[O x l 0 0 1 0 040 J O x 6 1 2 0 6 4 6 5 O x 6 S 7 26464 Ox6 9 2 0 7 3 7 3 Ox6e69206e
[O x l O O l O O S O J O x 64 2 f 7 4 7 3 O x 2 06 1 7 4 6 1 O x 6 3 7 4 6566 Ox002 05d68
[0 x l 0 0 1 0 0 6 0 J O x 5 5 5 b 2 0 2 0 O x 6 96 c 6 1 6 e Ox64656e67 O x 6 4 6 4 6 1 2 0
[O x l 0 0 1 0 0 7 0) O x 7 3 7 3 6 5 7 2 Ox 206e6920 O x 7 2 6 f 7 4 7 3 O x 0 0 2 0 5 d 6 5

S P I M Ve r s i o n 5 . 2 o f D e c emb e r 3 1 . 1 99 ?
C o py r i g h t (c) 1 9 9 0 - 9 2 by J ames R . L a r u s (l a ru s @c s . w i s c . ed u)
A 1 1 R i g h t s R e s e r v ed . .
See t h e f i l e README f o r a f u l l copy r i g h t n o t i c e .

FIGURE A.15 SPIM's X·window Interface: xspim.

mailto:larus@cs.wisc.edu

A-40 Appendix A Assemblers, Linkers, and the SPIM Simulator

Let's see how to load and run a program. The first thing to do is to click on
the L O A D button (the second one in the first row of buttons) with the left mouse
key. Your click tells x s p i m to pop up a small prompt window that contains a
box and two or three buttons. Move your mouse so the cursor is over the box
and type the name of your file of assembly code. Then click on the button la
beled A S S E M B L Y F I L E . If you change your mind, click on the button labeled
A B O RT C O M M A N D and x s p i m gets rid of prompt window. When you click on
A S s E M B L Y F I L E, x s p i m gets rid of the prompt window, then loads your program
and redraws the screen to display its instructions and data. Now move the
mouse to put the cursor over the scrollbar to the left of the text segments and
click the left mouse button on the white part of this scrollbar. A click scrolls the
text pane down so you can find all instructions in your program.

To run your program, click on the R U N button in x s p i m's control button
pane. It pops up a prompt window with two boxes and two buttons. Most of
the time, these boxes contain the correct values to run your program, so you
can ignore them and just click on o K. This button tells x s p i m to run your pro
gram. Notice that when your program is running, x s p i m blanks out the register
display pane because the registers are continually changing. You can always
tell whether x s p i m is running by looking at this pane. If you want to stop your
program, make sure the mouse cursor is somewhere over x s p i m's window
and type control-C. This causes x s p i m to pop up a prompt window with two
buttons. Before doing anything with this prompt window, you can look at reg
isters and memory to find out what your program was doing. When you un
derstand what happened, you can either continue the program by clicking on
C O N T I N U E or stop your program by clicking on A B O RT C O M M A N D.

If your program reads or writes from the terminal, x s p i m pops up another
window called the console. All characters that your program writes appear on
the console and everything that you type as input to your program should be
typed in this window.

Suppose your program does not do what you expect. What can you do?
SPIM has two features that help debug your program. The first, and perhaps
the most useful, is single-stepping, which allows you to run your program an
instruction at a time. Click on the button labeled s t e p and another prompt
pops up. This prompt contains two boxes and three buttons. The first box asks
for the number of instructions to step every time you click the mouse. Most of
the time, the default value of 1 is a good choice. The other box asks for argu
ments to pass to the program when it starts running. Again, most of the time
you can ignore this box because it contains an appropriate value. The button
labeled ST E P runs your program for the number of instructions in the top box.
If that number is 1, x s p i m executes the next instruction in your program, up
dates the display, and returns control to you. The button labeled C O N T I N U E

A.9 SPIM A-41

stops single-stepping and continues running your program. Finally, A B O RT

C O M M A N D stops single-stepping and leaves your program stopped.
What do you do if your program runs for a long time before the bug arises?

You could single-step until you get to the bug, but that can take a long time
and it is easy to get so bored and inattentive that you step past the problem. A
better alternative is to use a breakpoint, which tells x s p i m to stop your program
immediately before it executes a particular instruction. Click on the button in
the second row of buttons marked B R E A K P O I N T S . The x s p i m program pops up a
prompt window with one box and many buttons. Type in this box the address
of the instruction at which you want to stop. Or, if the instruction has a global
label, you can just type the name of the label. This is a particularly convenient
way to stop at the first instruction of a procedure. To actually set the break
point, click on A D D . You can then run your program. When SPIM is about to ex
ecute the breakpointed instruction, x s p i m pops up a prompt with the
instruction's address and two buttons. The C O N T I N U E button continues running
your program and A B O RT C OM M A N D stops your program. If you want to delete a
breakpoint, type in its address and click on D E L E T E . Finally, L I ST tells x s p i m to
print (in the bottom pane) a list of all breakpoints that are set.

Single-stepping and setting breakpoints will probably help you find a bug
in your program quickly. How do you fix it? Go back to the editor that you
used to create your program and change it. To run the program again, you
need a fresh copy of SPIM, which you get in two ways. Either you can exit from
x s p i m by clicking on the O U I T button, or you can clear x s p i m and reload your
program. If you reload your program, you must clear out the memory so rem
nants of your previous program do not interfere with your new program. To
do this, click on the button labeled C L E A R. Hold the left mouse key down and a
two-item menu will pop up. Move the mouse so the cursor is over the item la
beled M E M O R Y & R E G I S T E R S and release the key. This causes x s p i m to clear its
memory and registers and return the processor to the state it was in when
x s p i m first started. You can now load and run your new program.

The other buttons in x s p i m perform functions that are occasionally useful.
When you are more comfortable with x s p i m, you should look at the descrip
tion below to see what they do and how they can save you time and effort.

SPIM Command-Line Options

Both versions of SPIM-s p i m, the terminal version, and x s p i m, the X ver
sion-accept the following command-line options:

- b a r e Simulate a bare MIPS machine without pseudoinstructions or the
additional addressing modes provided by the assembler. Implies
- q u i e t .

- a s m Simulate the virtual MIPS machine provided by the assembler. This

A-42 Appendix A Assemblers, Linkers, and the SPIM Simulator

is the default.

- n o t r a p Do not load the standard exception handler and start-up code.
This exception handler handles exceptions. When an exception occurs,
SPIM jumps to location 80000080hcXI which must contain code to service
the exception. In addition, this file contains start-up code that invokes
the routine ma i n . Without the start-up routine, SPIM begins execution
at the instruction labeled s t a r t .

- t r a p Load the standard exception handler and start-up code. This is the
default.

- n o q u i e t Print a message when an exception occurs. This is the default.

- q u i et Do not print a message at exceptions.

- n om a p p e d_i o Disable the memory-mapped I/O facility (see
section A.8). This is the default.

- m a pped_i o Enable the memory-mapped I/O facility (see section A.8).
Programs that use SPIM syscalls (see section on System Calls,
page A-45) to read from the terminal cannot also use memory-mapped
I/O.

- f i l e Load and execute the assembly code in the file.

- e x e c u t e Load and execute the code in the MIPS executable file a.out.
This command is only available when SPIM runs on a system contain
ing a MIPS processor.

- s < s e g > s i z e Sets the initial size of memory segment seg to be size
bytes. The memory segments are named: t e x t, d a t a , s t a c k, kt ext ,
and k d a t a . The text segment contains instructions from a program.
The d a t a segment holds the program's data. The s t a c k segment holds
its runtime stack. In addition to running a program, SPIM also executes
system code that handles interrupts and exceptions. This code r e s i d e s
in a separate part of the address space called the kernel. The k t e x t seg
ment holds this code's instructions and k d a t a holds its data. There is
no k s t a c k segment since the system code uses the same stack as the
program. For example, the pair of arguments - s d a t a 2 0 0 0 0 0 0 starts
the user data segment at 2,000,000 bytes.

- l < s e g > s i z e Sets the limit on how large memory segment seg can
grow to be size bytes. The memory segments that can grow are d a t a ,
s t a c k, and k d a t a .

A.9 SPIM A-43

Terminal Interface (spim)

The simpler version of SPIM is called s p i m. It does not require a bitmapped
display and can be run from any terminal. Although s p i m may be more diffi
cult to learn, it operates just like x s p i m and provides the same functionality.

The s p i m terminal interface provides the following commands:

ex i t Exit the simulator.

r e a d " f i 1 e " Read file of assembly language into SPIM. If the file has
already been read into SPIM, the system must be cleared (see r e i n i -

t i a 1 i z e, below) or global symbols will be multiply defined.

1 o a d " f i 1 e " Synonym for r e a d .

e x e c u t e " a . o u t " Read the MIPS executable file a.out into SPIM. This
command is only available when SPIM runs on a system containing a
MIPS processor.

r u n < a d d r > Start running a program. If the optional address addr is pro
vided, the program starts at that address. Otherwise, the program starts
at the global symbol __ s t a rt , which is usually the default startup code
that calls the routine at the global symbol m a i n .

s t e p < N > Step the program for N (default: 1) instructions. Print instruc-
tions as they execute.

c o n t i n u e Continue program execution without stepping.

p r i n t $ N Print register N.

p r i n t $ f N Print floating point register N.

p r i n t a d d r Print the contents of memory at address addr.

p r i n t_sym Print the symbol table, i.e., the addresses of the global (but
not local) symbols.

r e i n i t i a 1 i z e Clear the memory and registers.

b r e a k p o i n t a d d r Set a breakpoint at address addr. addr can be either a
memory address or symbolic label.

d e 1 e t e a d d r Delete all breakpoints at address addr.

1 i s t List all breakpoints.

Rest of line is an assembly instruction that is stored in memory.

< n 1 > A newline re-executes previous command.

? Print a help message.

A-44 Appendix A Assemblers, Linkers, and the SPIM Slmulator

Most commands can be abbreviated to their unique prefix, e.g., ex, r e, l ,
r u, s , p . More dangerous commands, such as r e i n i t i a l i z e, require a longer
prefix.

X·Window Interface (xspim)

The tutorial, "Getting Started with SPIM" (page A-37), explains the most
common x s p i m commands. However, x s p i m has other commands that are
occasionally useful. This section provides a complete list of the commands.

The X version of SPIM, x s p i m, looks different but operates in the same
manner as s p i m. The X window has five panes (see Figure A.4). The top pane
displays the registers. These values are continually updated, except while a
program is running.

The next pane contains buttons that control the simulator:

q u i t Exit from the simulator.

l o a d Read a source or executable file into SPIM.

r u n Start the program running.

s t e p Single-step a program.

c l e a r Reinitialize registers or memory.

s e t v a l u e Set the value in a register or memory location.

p r i n t Print the value in a register or memory location.

b r e a k p o i n t Set or delete a breakpoint or list all breakpoints.

h e l p Print a help message.

t e r m i n a l Raise or hide the console window.

mode Set SPIM operating modes.

The next two panes display the memory. The top one shows instructions
from the user and kernel text segments. (These instructions are real-not pseu
do-MIPS instructions. SPIM translates assembler pseudoinstructions to 1-3
MIPS instructions. Each source instruction appears as a comment on the first
instruction to which it is translated.) The first few instructions in the text seg
ment are the default start-up code (__s t a r t) that loads a r g c and a r g v into
registers and invokes the ma i n routine. The lower of these two panes displays
the data and stack segments. Both panes are updated as a program executes.

The bottom pane is used to display SPIM messages. It does not display out
put from a program. When a program reads or writes, its 1/0 appears in a sep
arate window, called the Console, which pops up when needed.

A.9 SPIM A-45

Surprising Features

Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator
and certain things are not identical to an actual computer. The most obvious
differences are that instruction timing and the memory systems are not identi
cal. SPIM does not simulate caches or memory latency, nor does it accurately
reflect floating-point operation or multiply and divide instruction delays.

Another surprise (which occurs on the real machine as well) is that a
pseudoinstruction expands to several machine instructions. When you single
step or examine memory, the instructions that you see are different from the
source program. The correspondence between the two sets of instructions is
fairly simple since SPIM does not reorganize instructions to fill delay slots.

Byte Order

Processors can number bytes within a word so the byte with the lowest num
ber is either the leftmost or rightmost one. The convention used by a machine
is its byte order. MIPS processors can operate with either big-endian byte order:

or little-endian byte order:

SPIM operates with both byte orders. SPIM's byte order is the same as the
byte order of the underlying machine that runs the simulator. For example, on
a DECstation 3100, SPIM is little-endian, while on a Macintosh, HP Bobcat, or
Sun SP ARC, SPIM is big-endian.

System Calls

SPIM provides a small set of operating system-like services through the sys
tem call (sy s c a l l) instruction. To request a service, a program loads the sys
tem call code (see Figure A.16) into register $ v 0 and arguments into registers
$ a 0 . . . $ a 3 (or $ f 1 2 for floating-point values). System calls that return values
put their results in register $ v 0 (or $ f 0 for floating-point results). For exam
ple, the following code prints " t h e a n s we r = 5":

A-46 Appendix A Assemblers, Linkers, and the SPIM Simulator

Service . Systef!1 call c_ode ''· '.Argu.ments Result

print_int 1 $ a 0 = integer

print_ float 2 $ f 1 2 = float

prinLdouble 3 $ f l 2 = double

print_ string 4 $ ao = string

read_int 5 integer (in $ v 0)

read_ float 6 float (in HO)

read_ double 7 double (in $ f 0)

read_stri ng 8 $ a 0 = buffer, $a 1 = length

sbrk 9 $ a 0 = amount address (in $ vO)

exit 10

FIGURE A.16 System services .

. d a t a
s t r :

. a s c i i z " t h e a n s w e r =

. t e x t
l i $ v 0 , 4 # s y s t em c a 1 1 c o d e f o r p r i n t_s t r
l a $ a 0 , s t r # a d d r e s s o f s t r i n g t o p r i n t
s y s c a l l # p r i n t t h e s t r i n g

l i $ v 0 , 1 # s y s t em c a l l c o d e f o r p r i n t_ i n t
l i $ a 0 , 5 # i n t e g e r t o p r i n t
s y s c a l l # p r i n t i t

The p r i n t_ i n t system call is passed an integer and prints it on the console.
p r i n t_f l o a t prints a single floating-point number; p r i n t_d o u b l e prints a
double precision number; and p r i n t_s t r i n g is passed a pointer to a null-ter
minated string, which it writes to the console.

I

The system calls r e a d_ i n t, r e a d_ f l o a t, and r e a d_d o u b l e read an entire
line of input up to and including the newline. Characters following the num- ·

her are ignored. r e a d_s t r i n g has the same semantics as the Unix library rou
tine f g e t s . It reads up to n - 1 characters into a buffer and terminates the
string with a null byte. If fewer than n - 1 characters are on the current line,
r e a d_s t r i n g reads up to and including the newline and again null-terminates
the string. Warning: Programs that use these syscalls to read from the terminal
should not use memory-mapped 1/0 (see section A.8).

Finally, s b r k returns a pointer to a block of memory containing n addition
al bytes, and e x i t stops a program from running.

A.10 MIPS R2000 Assembly Language

Memory

-------- -------
CPU Coprocessor 1 (FPU)

Registers

$0

�

$31

I Arithmetic I I Multiply
unit divide

�
Coprocessor 0 (traps and memory)

registers

BadVAddr � Status c

FIGURE A.17 MIPS R2000 CPU and FPU.

II MIPS R2000 Assembly Language

Registers

$0

$31

Arithmetic
unit

A-47

A MIPS processor consists of an integer processing unit (the CPU) and a col
lection of coprocessors that perform ancillary tasks or operate on other types
of data such as floating-point numbers (see Figure A.17) . SPIM simulates two
coprocessors. Coprocessor 0 handles exceptions, interrupts, and the virtual
memory system. SPIM simulates most of the first two and entirely omits
details of the memory system. Coprocessor 1 is the floating-point unit. SPIM
simulates most aspects of this unit.

A-48 Appendix A Assemblers, Linkers, and the SPIM Simulator

Addressing Modes

MIPS is a load/store architecture, which means that only load and store
instructions access memory. Computation instructions operate only on values
in registers. The bare machine provides only one memory-addressing
mode: c (r x) , which uses the sum of the immediate c and register r x as the
address. The virtual machine provides the following addressing modes for
load and store instructions:

Format Address computation

(register) contents of register

imm immediate

imm (register) immediate + contents of register

symbol address of symbol

symbol imm address of symbol + or - immediate

symbol imm (register) address of symbol + or - (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity
is aligned if its memory address is a multiple of its size in bytes. Therefore, a
halfword object must be stored at even addresses and a full word object must
be stored at addresses that are a multiple of 4. However, MIPS provides some
instructions to manipulate unaligned data (l w l , l w r, s w l , and s w r) .

Assembler Syntax

Comments in assembler files begin with a sharp sign (ff). Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and
dots (.) that do not begin with a number. Instruction opcodes are reserved
words that cannot be used as identifiers. Labels are declared by putting them
at the beginning of a line followed by a colon, for example:

. d a t a
i t em : . w o r d 1

. t e x t

. g l o b l ma i n
ma i n : l w $ t 0 , i t e m

1F M u s t be g l o b a l

Numbers are base 1 0 by default. If they are preceded by Ox, they are inter
preted as hexadecimal. Hence, 256 and OxlOO denote the same value.

A.10 MIPS R2000 Assembly Language A-49

Strings are enclosed in double-quotes ("). Special characters in strings fol
low the C convention:

• newline \n

• tab \t

• quote \"

SPIM supports a subset of the assembler directives of the MIPS assembler
directives:

. a l i g n n Align the next datum on a2n byte boundary. For example,

. a l i g n 2 aligns the next value on a word boundary . . a l i g n 0 turns off
automatic alignment of . h a l f , . wo r d, . f l o a t, and . d o u b l e directives
until the next . d a t a or . kd a t a directive .

. a s c i i s t r Store the string s t r in memory, but do not null-terminate it.

. a s c i i z s t r Store the string s t r in memory and null-terminate it.

. byte b l b n Store the n values in successive bytes of memory .

. d a t a < a d d r > Subsequent items are stored in the data segment. If the
optional argument addr is present, subsequent items are stored starting
at address addr .

. d o u b l e d 1 , . . . , d n Store the n floating-point double precision num
bers in successive memory locations .

. e x t e r n sym s i z e Declare that the datum stored at sym is s i z e bytes
large and is a global symbol. This directive enables the assembler to
store the datum in a portion of the data segment that is efficiently
accessed via register $ g p .

. f l o a t f l f n Store the n floating-point single precision numbers
in successive memory locations .

. g l o b l sym Declare that symbol sym is global and can be referenced
from other files .

. h a l f h 1 , . . . , h n Store the n 16-bit quantities in successive memory
halfwords .

. k d a t a < a d d r > Subsequent data items are stored in the kernel data seg
ment. If the optional argument addr is present, subsequent items are
stored starting at address addr .

. k t e x t < a d d r > Subsequent items are put in the kernel text segment. In
SPIM, these items may only be instructions or words (see the . w o r d

directive below). I f the optional argument addr is present, subsequent

A·SO Appendix A Assemblers, Linkers, and the SPIM Simulator

items are stored starting at address addr .

. s e t n o a t . s e t a t The first directive prevents SPIM from complaining
about subsequent instructions that use register $ 1 . The second directive
reenables the warning. Since pseudoinstructions expand into code that
uses register $ 1 , programmers must be very careful about leaving val
ues in this register .

. s p a c e n Allocate n bytes of space in the current segment (which must
be the data segment in SPIM) .

. t e x t < a d d r > Subsequent items are put in the user text segment. In
SPIM, these items may only be instructions or words (see the . word

directive below). I f the optional argument addr is present, subsequent
items are stored starting at address addr .

. w o r d w 1 , . . . , w n Store the n 32-bit quantities in successive memory
words.

SPIM does not distinguish various parts of the data segment (. d a t a , . r d a t a ,

and . s d a t a) .

Encoding MIPS Instructions

Figure A.18 explains how a MIPS instruction is encoded in a binary number.
Each column contains instruction encodings for a field (a contiguous group of
bits) from an instruction. The numbers at the left margin are values for a field.
For example, the j opcode has a value of 2 in the opcode field. The text at the
top of a column names a field and specifies which bits it occupies in an
instruction. For example, the o p field is contained in bits 26 to 31 of an instruc
tion. This field encodes most instructions. However, some groups of instruc
tions use additional fields to distinguish related instructions. For example, the
different floating-point instructions are specified by bits 0 to 5. The arrows
from the first column show which opcodes use these additional fields.

Instruction Format

The rest of this appendix describes both the instructions implemented by
actual MIPS hardware and the pseudoinstructions provided by the MIPS
assembler. The two types of instructions are easily distinguished. Actual
instructions depict the fields in their binary representation. For example, in:

a d d Rd , R s ,
Rt

0

6

Rs Rt

5 5

Rd 0 Ox20 Addition (with overflow)

5 5 6

the a d d instruction consists of six fields. Each field's size in bits is the small
number below the field. This instruction begins with 6 bits of zeros. Register

10 16 0 (31:26)
0 00
1 01
2 02 j
3 03 jal
4 04 beq
5 05 bne
6 06 blez
7 07 bgtz
8 08 addi
9 09 addiu

10 Oa slti
11 Ob sltiu
12 Oc andi
13 Od ori
14 Oe xori
15 Of lui
16 10 Z = O
17 1 1 Z = 1
18 12 Z = 2 ·
19 13 Z = 3
20 14
21 15
22 16
23 17
24 18
25 19
26 la
27 lb
28 le
29 ld
30 le
31 1f
32 20 lb
33 21 lh
34 22 lwl
35 23 lw
36 24 lbu
37 25 lhu
38 26 lwr
39 27
40 28 s
41 29 sh
42 2a swl
43 2b SW
44 2c
45 2d
46 2e swr
47 2f
48 30 lwc
49 31 lwc1
so 32 lwc2
51 33 lwc3
52 34
53 35
54 36
55 37
56 38 swc
57 39 swc1
58 3a swc2
59 3b swc3
60 3c
61 3d
62 3e
63 3f

-� .
�

•r
rs

125:21>
0 mfcz
1
2 cfcz
3
4 mtcz
5
6 ctcz
7 �
8
9

10
11 ...
12
13
14
15
16 copz -
17 copz ...
18 copz
19 copz
20 copz
21 copz
22 copz
23 cooZ
24 copz
25 copz
26 copz
27 copz
28 copz
29 copz
30 copz
31 ,..,.,.nz

,.. I (16:16) 1,.
0 bczf 0
1 bczt 1

2
3
4
5
6 - 7 .
8
9

10
11
12
13

if z = 0 14
15
16
17

if z =l, if z = 1, 18
f=d f=s 19

20
21
22
23
24
25
26
27
28
29 •II' nn
31

10 - 0 .
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

.� 28
29

funct rt 30
4:0 120:16) 31

0 bltz 32
tlbr 1 bgez 33
tlbwi 2 34

3 35
4 36
5 37

tlbwr 6 38
7 39

tlbp 8 40
9 41

10 42
1 1 43
12 44
13 45
14 46
15 47

rte 16 bltzal 48
17 bgezal 49
18 so
19 51
20 52
21 53
22 54
23 55
24 56
25 57
26 58
27 59
28 60
29 61
nn 'n
31 63

funct(5:0)
slT

srl
sra
sllv

srlv
srav
Jr
jalr

syscall
break

mfh1
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

sit
situ

1 0 nct(5:0)

,-+ 0 a
1 sub.f
2 mul.f
3 div.f
4
5 abs.f
6 mov.f 7 1-n:..::e=:.:. ''----1
8
9

1 0
1 1
1 2
1 3
1 4
1
1
5 1------4 6

1 7
1 8
1 9
2 0
2 1
22
23_ __ __.

4 2
25
2 6
2 7
2 8
2 9
3 0
3
3

1
1------1

2
3

3

3
34

5

3
3

36
7
8

cvt.s.
cvt.d.f

cvt.w.f

3 9 1------1 40
4 1
42
4 3
44
4 5
4 6
4
4

7 1------1 8
4 9

5
5
5

so
1
2
3

54
5 5

c . .
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f

56 c.s .
5
5

7 c.ngle.f
8 c.seq.f

5 9 c.ngl.f
60 c.lt.f
6
6

1 c.nge.f
2 c.le. f

63 u....��'-_J

FIGURE A.18 MIPS opc:ocle 1111111· The values of each field are shown to its left. The first column shows the values in base 10 and the second
shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except for 6 op
values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by pointers. The last field (funct) uses 'f" to mean
"s" if rs = 16 and op = 17 or "d" if rs = 17 and op = 17. The second field (rs) uses "Z" to mean "O", "1", "2", or "3" if op = 16, 17, 18, or 19,
respectively. U rs = 16, the operation is �ified elsewhere: if z = 0, the operations are specified in the fourth field (bits 4 to O); if z = 1, then
the operations are in the last field with! = s. U rs = 17 and z = 1, then the operations are in the last field with/= d. (page A-51)

A-52 Appendix A Assemblers, Linkers, and the SPIM Simulator

specifiers begin with a capital "R," so the next field is a 5-bit register specifier
called Rs . This is the same register that is the second argument in the symbolic
assembly at the left of this line. Another common field is Imm16, which is a 16-
bit immediate number.

Pseudoinstructions follow roughly the same conventions, but omit instruc
tion encoding information. In these instructions, Rd e s t and Rs r e are registers
and S r e 2 is either a register or an immediate value.

In general, the assembler and SPIM translate a more general form of an in
struction (e.g., a d d $ 3 , $ 4 , O x 5 5) to a specialized form (e.g., a d d i $ 3 , $ 4 ,

0 x 5 5) .

Arithmetic and Logical Instructions

a b s Rd e s t ,
R s r e

Absolute value

Put the absolute value of register Rs re in register Rd e s t .

a d d Rd , R s , 0 Rs Rt Rd 0 Ox20 Addition (with overflow)
Rt

6 5 5 5 5 6

a d d u Rd , R s , 0 Rs Rt Rd 0 Ox21 Addition (without overflow)
Rt

6 5 5 5 5 6

Put the sum of registers R s and Rt into register Rd .

a d d i Rt , R s , 8 Rs Rt Imm Addition immediate (with
I mm overflow)

6 5 5 16

a d d i u Rt , R s , 9 Rs Rt Imm Addition immediate (without
I mm overflow)

6 5 5 16

Put the sum of register Rs and the sign-extended immediate into register Rt .

and Rd , R s .
Rt

0

6

Rs Rt

5 5

Rd 0

5 5

Ox24 AND

6

A.10 MIPS R2000 Assembly Language

Put the logical AND of registers Rs and Rt into register Rd .

a n d i Rt . R s .
I mm

Oxc

6

Rs

5

Rt Imm AND immediate

5 16

A-53

Put the logical AND of register R s and the zero-extended immediate into reg
ister Rt .

d i v Rs . Rt 0 Rs Rt 0 Ox1a Divide (with overflow)

6 5 5 10 6

d i v u Rs . Rt 0 Rs Rt 0 Ox1b Divide (without overflow)

6 5 5 10 6

Divide register R s by register Rt . Leave the quotient in register l o and the re
mainder in register h i . Note that if an operand is negative, the remainder is
unspecified by the MIPS architecture and depends on the convention of the
machine on which SPIM is run.

d i v Rde s t . Rs r e l .
S r e 2

d i v u Rde s t . Rs r e l ,
S r e 2

Divide (with overflow)

Divide (without overflow)

Put the quotient of register R s r e l and S r e 2 into register Rd e s t .

m u l R d e s t . Rs r e l .
S r e 2

m u l o Rd e s t . R s r e l ,
S r e 2

mu l o u Rd e s t . R s r e l . S r e 2

Multiply (without overflow)

Multiply (with overflow)

Unsigned multiply (with
overflow)

A-54 Appendix A Assemblers, Linkers, and the SPIM Simulator

Put the product of register R s r e 1 and S r c 2 into register Rd e s t .

m u l t R s , Rt 0 Rs Rt 0 Ox18 Multiply

6 5 5 10 6

m u l t u Rs , Rt 0 Rs Rt 0 Ox19 Unsigned multiply

6 5 5 10 6

Multiply registers R s and Rt . Leave the low-order word of the product in reg
ister l o and the high-order word in register h i .

n e g Rd e s t . R s r c

n e g u Rd e s t , R s r c

Negate value (with overflow)

Negate value (without
overflow)

Put the negative of register R s r e into register Rd e s t .

n o r Rd , R s ,
Rt

0

6

Rs Rt

5 5

Rd 0

5 5

Ox27 NOR

6

Put the logical NOR of registers Rs and Rt into register Rd .

n o t Rd e s t , R s r c NOT

Put the bitwise logical negation of register R s r e into register Rd e s t .

o r Rd , R s , Rt l
.___

o
��-

Rs
�.__

R
_

t
��

Rd
�,___

o
�_

o
_
x
_
2
_
5
�

OR

6 5 5 5 5 6

Put the logical OR of registers Rs and I mm into register Rt .

o r i Rt , R s ,
I mm

Oxd

6

Rs

5

Rt Imm OR immediate

5 16

A.10 MIPS R2000 Assembly Language A·55

Put the logical OR of register Rs and the zero-extended immediate into register
Rd .

r em Rd e s t . R s r c l .
R s r c 2

r emu Rde s t . R s r c l , R s r c 2

Remainder

U nsigned remainder

Put the remainder of register Rs r c 1 divided by register S r c 2 into register Rd -
e s t . Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the convention of the machine on which
SPIM is run.

r o l Rd e s t , R s r e l , R s r c 2 Rotate left

r o r Rd e s t . R s r e l , R s r c 2 Rotate right

Rotate register Rs r c 1 left (right) by the distance indicated by S r c 2 and put the
result in register Rd e s t .

s 1 1 Rd , Rt , 0 Rs Rt Rd Sa 0 Shift left logical
S a

6 5 5 5 5 6

s 1 1 v Rd . Rt . 0 Rs Rt Rd 0 4 Shift left logical variable
Rs

6 5 5 5 5 6

s r a Rd . Rt . 0 Rs Rt Rd Sa 3 Shift right arithmetic
S a

6 5 5 5 5 6

s r a v Rd . Rt , I 0 Rs Rt Rd 0 7 Shift right arithmetic variable
Rs

6 5 5 5 5 6

s r l Rd . Rt , 0 Rs Rt Rd Sa 2 Shift right logical
S a

6 5 5 5 5 6

A-56 Appendix A Assemblers, Unkers, and the SPIM Slmulator

s r l v Rd . Rt . 0 Rs Rt Rd 0 6 Shift right logical variable
R s

6 5 5 5 5 6

Shift register Rt left (right) by the distance indicated by immediate S a (Rs) and
put the result in register Rd .

s u b Rd . R s , 0 Rs Rt Rd 0 Ox22 Subtract (with overflow)
Rt

6 5 5 5 5 6

s u b u Rd , R s . 0 Rs Rt Rd 0 Ox23 Subtract (without overflow)
R t

6 5 5 5 5 6

Put the difference of registers Rs and Rt into register Rd .

x o r Rd . R s . 0 Rs Rt Rd 0 Ox26 XOR
Rt

6 5 5 5 5 6

Put the logical XOR of registers R s and R t into register Rd .

x o r i Rt , R s ,
I mm

Oxe

6

Rs

5

Rt Imm XOR immediate

5 16

Put the logical XOR of register Rs and the zero-extended immediate into reg
ister Rd .

Constant-Manipulating Instructions

l i Rdes t . I mm load immediate

Move the immediate i mm into register Rd e s t .

l u i Rt , I mm Oxf Rs Rt Imm Load upper immediate

6 5 5 16

Load the lower halfword of the immediate I mm into the upper halfword of reg
ister Rt . The lower bits of the register are set to 0.

A.10 MIPS R2000 Assembly Language A·57

Comparison Instructions

s e q Rde s t , R s r c l , R s r c 2 Set equal

Set register Rd e s t to 1 if register Rs r c 1 equals S r c 2 and to 0 otherwise.

s g e Rd e s t , R s r c l , R s r c 2

s g e u Rd e s t , R s r c l , R s r c 2

Set greater than equal

Set greater than equal
unsigned

Set register Rd e s t to 1 if register Rs r c 1 is greater than or equal to S r c 2 and to
0 otherwise.

s g t Rde s t . R s r e l , R s r c 2 Set greater than

s g t u Rd e s t , R s r c l . R s r c 2 Set greater than unsigned

Set register Rd e s t to 1 if register Rs r c 1 is greater than S r c 2 and to 0 otherwise.

s l e Rd e s t , R s r e l , R s r c 2 Set less than equal

s l e u Rd e s t , R s r c l , R s r c 2 Set less than equal unsigned

Set register Rd e s t to 1 if register Rs r c 1 is less than or equal to S r c 2 and to 0
otherwise.

s l t Rd , R s , 0 Rs Rt Rd 0 Ox2a Set less than
Rt

6 5 5 5 5 6

s l t u Rd , R s , 0 Rs Rt Rd 0 Ox2b Set less than unsigned
Rt

6 5 5 5 5 6

A-58 Appendix A Assemblers, Linkers, and the SPIM Simulator

Set register Rd to 1 if register Rs is less than Rt and to 0 otherwise.

s l t i Rd , R s , Oxa Rs Rd Imm Set less than immediate
I mm

6 5 5 16

s l t i u Rd , Rs , Oxb Rs Rd Imm Set less than unsigned
I mm immediate

6 5 5 16

Set register Rd to 1 if register Rs is less than the sign-extended immediate and
to 0 otherwise.

s n e Rde s t , R s r c l , R s r c 2 Set not equal

Set register Rd e s t to 1 if register Rs r c 1 is not equal to S r c 2 and to 0 otherwise.

Branch and Jump Instructions

Branch instructions use a signed 16-bit instruction offset field; hence they can
jump 215 - 1 instructions (not bytes) forward or 215 instructions backwards.
The jump instruction contains a 26-bit address field.

In the descriptions below, the offsets are not specified. Instead, the instruc
tions branch to a label. This is the form used in most assembly language pro
grams because the distance between instructions is difficult to calculate when
pseudoinstructions expand into several real instructions.

b l a b e l Branch instruction

Unconditionally branch to the instruction at the label.

b c z t l a b e l Oxlz 8 1 Offset Branch coprocessor z true

6 5 5 16

b c z f l a b e l Oxlz 8 0 Offset Branch coprocessor z false

6 5 5 16

A.10 MIPS R2000 Auembly Language A-69

Conditionally branch the number of instructions specified by the offset if z's
condition flag is true (false). z is 0, 1, 2, or 3.

b e q R s , Rt ,
l a b e l

4

6

Rs

5

Rt Offset Branch on equal

5 16

Conditionally branch the number of instructions specified by the offset if reg
ister R s equals Rt .

beqz Rs r e . l a b e l Branch on equal zero

Conditionally branch to the instruction at the label if R s r e equals 0.

b g e R s r e , S r e 2 , l a b e l

b g e u R s r e , S r e 2 , l a b e l

Branch on greater than equal

Branch on greater than equal
unsigned

Conditionally branch to the instruction at the label if register Rs r e 1 is greater
than or equal to S r e 2 .

b g e z Rs , l a b e l I
_

1
_....__

R
_
s

_.__
1

__. ___
o
_
ff
_
se

_
t
__

__, Branch on greater than equal
zero

6 5 5 16

Conditionally branch the number of instructions specified by the offset if reg
ister R s is greater than or equal to 0.

b g e z a l
R s . l a b e l

1 Rs J Ox11 I Offset Branch on greater than equal
�-�--�-�------� zero and l ink

6 5 5 16

Conditionally branch the number of instructions specified by the offset if reg
ister R s r e is greater than or equal to 0. Save the address of the next instruction
in register 31.

bgt Rs r e l , S r e 2 , l a be l

b g t u Rs r e l , S r e 2 , l a be l

Branch on greater than

Branch on greater than
unsigned

A-60 Appendix A Assemblers, Unkers, and the SPIM Simulator

Conditionally branch to the instruction at the label if register Rs r e 1 is greater
than S r c2 .

b gtz Rs , l a b e l
�
I _1 _

_.__
R
_
s

_.__
o

__.. ___
o

_
ffs

_
e
_
t __ _, Branch on greater than zero

6 5 5 16

Conditionally branch the number of instructions specified by the offset if reg
ister Rs is greater than 0.

b l e Rs r c l . S r c 2 , l a b e l

b l e u R s r c l . S r c 2 , l a b e l

Branch on less than equal

Branch on less than equal
unsigned

Conditionally branch to the instruction at the label if register Rs r c 1 is less than
or equal to S r c 2 .

b l e z Rs . l a b e l
�
! _6 _

_.__
Rs

_.___
o

__..
___ o

_
ffs

_
e
_
t __ _,

6 5 5 16

Branch on less than equal
zero

Conditionally branch the number of instructions specified by the offset if reg
ister Rs is less than or equal to 0.

Branch on greater than equal
�-�--.__

_
_.__

______ __, zero and l ink

Branch on less than and l ink

Conditionally branch the number of instructions specified by the offset if reg
ister Rs is greater than or equal to 0 or less than 0, respectively. Save the ad
dress of the next instruction in register 31 .

b l t Rs r c l , S r c 2 , l a b e l Branch on less than

b l t u Rs r c l , S r c 2 , l a b e l Branch on less than unsigned

A.10 MIPS R2000 Assembly Language A-61

Conditionally branch to the instruction at the label if register Rs r c 1 is less than
S r c 2 .

b l t z Rs , l a b e l
�
I �1�

_..__
R
_
s

_.__
�o

�
�

�
�o

_
ff
_
se

_
t�

��
Branch on less than zero

6 5 5 16

Conditionally branch the number of instructions specified by the offset if reg
ister Rs is less than 0.

b n e Rs . l a b e l 5 Rs 0 Offset Branch on not equal

6 5 5 16

Conditionally branch the number of instructions specified by the offset if reg
ister Rs is not equal to 0.

b n e z R s r c , l a b e l Branch on not equal zero

Conditionally branch to the instruction at the label if register Rs r e is not equal
to 0.

j l a b e l 2 Target Jump

6 26

Unconditionally jump to the instruction at Target.

j a l l a b e l 3 Target Jump and l ink

6 26

Unconditionally jump to the instruction at Target. Save the address of the next
instruction in register Rd .

j a l r Rs , Rd 0 Rs 0 Rd 0 9 Jump and l ink register

6 5 5 5 5 6

A-82 Appendix A Auemblers, Unkers, and the SPIM Slmulator

Unconditionally jump to the instruction whose address is in register Rs . Save
the address of the next instruction in register Rd (which defaults to 31) .

j r Rs 0 Rs 0 8 Jump register

6 5 16 5

Unconditionally jump to the instruction whose address is in register R s r e .

Load Instructions

l a Rde s t , a d d r e s s Load address

Load computed address-not the contents of the location-into register Rd e s t .

l b R t , Ox20 Rs Rt Offset Load byte
a d d r e s s

6 5 5 16

l b u Rt , Ox24 Rs Rt Offset Load unsigned byte
a d d r e s s

6 5 5 16

Load the byte at address into register Rt . The byte is sign-extended by l b, but
not by l bu .

l d Rde s t , a d d r e s s Load doubleword

Load the 64-bit quantity at address into registers Rd e s t and Rd e s t + 1 .

l h Rt , Ox21 Rs Rt Offset Load halfword
a d d r e s s

6 5 5 16

l h u R t , Ox25 Rs Rt Offset Load unsigned halfword
a d d r e s s

6 5 5 16

A.10 MIPS R2000 Assembly Language A-63

Load the 16-bit quantity (halfword) at address into register Rt . The halfword is
sign-extended by l h, but not by l h u .

l w Rt .
a d d r e s s

Ox23 Rs

6 5

Rt Offset Load word

5 16

Load the 32-bit quantity (word) at address into register Rt .

l wcz Rt ,
a d d r e s s

Ox3Z I Rs

6 5

Rt Offset Load word coprocessor

5 16

Load the word at address into register Rt of coprocessor z (0-3).

l w l Rt , Ox22 Rs Rt Offset Load word left
a d d r e s s

6 5 5 16

l w r Rt . Ox23 Rs Rt Offset Load word right
a d d r e s s

6 5 5 16

Load the left (right) bytes from the word at the possibly unaligned address into
register Rt .

u l h Rde s t . a d d r e s s

u l h u Rd e s t , a d d r e s s

Unal igned load halfword

Unal igned load halfword
unsigned

Load the 16-bit quantity (halfword) at the possibly unaligned address into reg
ister Rd e s t . The halfword is sign-extended by the u l h , but not the u l h u, in
struction

u l w Rde s t , a d d r e s s Unal igned load word

Load the 32-bit quantity (word) at the possibly unaligned address into register
Rd e s t .

A-64 Appendix A Assemblers, Linkers, and the SPIM Simulator

Store Instructions

s b Rt ,
a d d r e s s

Ox28 Rs

6 5

Rt Offset

5 16

Store the low byte from register Rt at address.

sd Rs r e . a d d r e s s

Store byte

Store double-word

Store the 64-bit quantity in registers Rs r e and Rs re + 1 at address.

s h Rt ,
a d d r e s s

Ox29 Rs

6 5

Rt Offset Store halfword

5 16

Store the low halfword from register Rt at address.

S W Rt .
a d d r e s s

Ox2b Rs

6 5

Rt Offset

5 16

Store the word from register Rt at address.

swez R t ,
a d d r e s s

lox3(1-Z)I Rs

6 5

Rt Offset

5 16

Store word

Store word coprocessor

Store the word from register Rt of coprocessor z at address.

s w l Rt , Ox2a Rs Rt Offset Store word left
a d d r e s s

6 5 5 16

s w r R t , Ox2e Rs Rt Offset Store word right
a d d r e s s

6 5 5 16

Store the left (right) bytes from register Rt at the possibly unaligned address.

u s h Rs r e . a d d r e s s Unal igned store halfword

A.10 MIPS R2000 Assembly Language A-65

Store the low halfword from register R s r e at the possibly unaligned address.

u s w R s r e . a d d r e s s Unal igned store word

Store the word from register R s r e at the possibly unaligned address.

Data Movement Instructions

m o v e Rd e s t , R s r e Move

Move register R s r e to Rd e s t .

The multiply and divide unit produces its result in two additional registers,
h i and l o . These instructions move values to and from these registers. The
multiply, divide, and remainder pseudoinstructions that make this unit ap
pear to operate on the general registers move the result after the computation
finishes.

m f h i Rd 0 0 Rd 0 Ox10 Move from hi

6 10 5 5 6

m f l o i Rd 0 0 Rd 0 Ox12 Move from lo

6 10 5 5 6

Move the h i (l o) register to register Rd .

mt h i 0 Rs 0 Ox11 Move to hi

6 5 15 6

mt l o 0 Rs 0 Ox13 Move to lo

6 5 15 6

Move register R s to the h i (l o) register.

A·66 Appendix A Assemblers, Linkers, and the SPIM Simulator

Coprocessors have their own register sets. These instructions move values
between these registers and the CPU's registers.

m f cz Rd e s t ,
C P s r e

Ox1Z I 0

6 5

Rt

5

Rd 0 Move from coprocessor z

5 11

Move coprocessor z' s register C P s r c to CPU register Rd e s t .

m f c l . d Rd e s t , F R s r c l Move double from
coprocessor 1

Move floating-point registers F R s r c l and F R s r c l + 1 to CPU registers Rd e s t
and Rd e s t + 1 .

Rt Rd 0 mtcz C P d e s t , Ox1z I 4
R s r c '--����'---�-'----������---'

6 5 5 5 11

Move to coprocessor z

Move CPU register R s r c to coprocessor z' s register C P d e s t .

Floating-Point Instructions

The MIPS has a floating-point coprocessor (numbered 1) that operates on sin
gle precision (32-bit) and double precision (64-bit) floating-point numbers.
This coprocessor has its own registers, which are numbered $ f 0-$ f 3 1 .

Because these registers are only 32-bits wide, two of them are required to hold
doubles. To simplify matters, floating-point operations, even single precision
operations, only use even-numbered registers.

Values are moved in or out of these registers one word (32-bits) at a time
by l w e 1 , s w c l , m t c 1 , and mf c 1 instructions described above or by the l . s, l . d,
s . s , and s . d pseudoinstructions described below. The flag set by floating
point comparison operations is read by the CPU with its b c l t and b c l f in

structions.
In the actual instructions below,fmt is 0 for single precision and 1 for dou

ble precision. In the pseudoinstructions below, F Rd e s t is a floating-point reg
ister (e.g., $ f 2) .

a b s . d F d , F s Ox11

6

1

5

0

5

Fs Fd

5 5

5
6

Floating-point absolute value
double

A.10 MIPS R2000 Assembly Language

a b s . s F d , F s Ox11

6

0

5

0

5

Fs Fd

5 5

5

6

A-67

Floating-point absolute value
single

Compute the absolute value of the floating-point double (single) in register F s
and put it in register F d .

a d d . d Fd , F s , Ox11 1 Ft Fs Fd 0 Floating-point addition double
F t

6 5 5 5 5 6

a d d . s Fd , F s , Ox11 0 Ft Fs Fd 0 Floating-point addition single
F t

6 5 5 5 5 6

Compute the sum of the floating-point doubles (singles) in registers F s and F t
and put it in register F d .

c . eq . d F s , F t l Ox11 1 Ft Fs Fd IFcl 2 Compare equal double

6 5 5 5 5 2 4

c . eq . s F s , F t l Ox11 0 Ft Fs Fd H 2 Compare equal single

Compare the floating-point double in register F s against the one in Ft and set
the floating-point condition flag true if they are equal.

c . l e . d F s , F t l Ox11 1 Ft Fs 0 IFcl 2 Compare less than equal
double

6 5 5 5 5 2 4

c . l e . s F s , F t l Ox11 0 Ft Fs 0 IFcl 2 Compare less than equal
single

6 5 5 5 5 2 4

Compare the floating-point double in register F s against the one in F t and set
the floating-point condition flag true if the first is less than or equal to the sec
ond.

c . l t . d F s , F t
�
l

_
o

_
x1

_
1
�_

1
_�F

_
t�_

F
_
s�-

o�l
_
Fc�l_o

_
x�c I Compare less than double

6 5 5 5 5 2 4

A-68 Appendix A Assemblers, Linkers, and the SPIM Simulator

c . l t . s F s , F t ! Ox11 0 Ft Fs 0 H Oxc I Compare less than single

6 5 5 5 5 2 4

Compare the floating-point double in register F s against the one in Ft and set
the condition flag true if the first is less than the second.

c v t . d . s Fd , Ox11 1 0 Fs Fd Ox21 Convert single to double
F s

6 5 5 5 5 6

c v t . d . w Fd , Ox11 0 0 Fs Fd Ox21 Convert integer to double
F s

6 5 5 5 5 6

Convert the single precision floating-point number or integer in register F s to
a double precision number and put it in register F d .

c v t . s . d Fd , Ox11 1 0 Fs Fd Ox20 Convert double to single
F s

6 5 5 5 5 6

c v t . s . w Fd . Ox11 0 0 Fs Fd Ox20 Convert integer to single
F s

6 5 5 5 5 6

Convert the double precision floating-point number or integer in register F s to
a single precision number and put it in register F d .

c v t . w . d Fd , Ox11 1 0 Fs Fd Ox24 Convert double to integer
F s

6 5 5 5 5 6

c v t . w . s Fd , Ox11 0 0 Fs Fd Ox24 Convert single to integer
F s

6 5 5 5 5 6

Convert the double or single precision floating-point number in register F s to
an integer and put it in register Fd .

d i v . d Fd , F s , Ox11 1 Ft Fs Fd 3 Floating-point divide double
Ft

6 5 5 5 5 6

A.10 MIPS R2000 Assembly Language

d i v . s F d , F s , Ox11 0 Ft Fs Fd 3
F t ���������������

6 5 5 5 5 6

A·69

Floating-point divide single

Compute the quotient of the floating-point doubles (singles) in registers F s

and F t and put it in register F d .

l . d F d e s t , a d d r e s s Load floating-point double

l . s F d e s t , a d d r e s s Load floating-point single

Load the floating-point double (single) at a d d r e s s into register F d e s t .

m o v . d F d , F s I Ox11 1 0 Fs Fd 6 Move floating-point double

6 5 5 5 5 6

m o v . s F d , F s I Ox11 0 0 Fs Fd 6 Move floating-point single

6 5 5 5 5 6

Move the floating-point double (single) from register F s to register F d .

m u l . d F d , F s . I Ox11 1 Ft Fs Fd 2 I Floating-point multiply double
F t

6 5 5 5 5 6

m u l . s F d . F s , Ox11 0 Ft Fs Fd 2 Floating-point multiply single
F t

6 5 5 5 5 6

Compute the product of the floating-point doubles (singles) in registers F s and
F t and put it in register F d .

n e g . d F d . F s . I Ox11 1 Ft Fs Fd 7 negate double
F t

6 5 5 5 5 6

n e g . s F d . F s . I Ox11 0 Ft Fs Fd 7 negate single
F t

6 5 5 5 5 6

A·70 Appendix A Assemblers, Unkers, and the SPIM Slmulator

Negate the floating-point double (single) in register F s and put it in register F d .

s . d Fd e s t , a d d r e s s Store floating-point double

s . s F d e s t , a d d r e s s Store floating-point single

Store the floating-point double (single) in register F d e s t at a d d r e s s .

s u b . d Fd , F s . J Ox11 1 Ft Fs Fd 1 Floating-point subtract double
Ft

6 5 5 5 5 6

s u b . s Fd . F s . I Ox11 0 Ft Fs Fd 1 Floating-point subtract single
Ft

6 5 5 5 5 6

Compute the difference of the floating-point doubles (singles) in registers F s
and F t and put it in register Fd .

Exception and Interrupt Instructions

r f e

6 1

Restore the S t a t u s register_

s y s c a 1 1 0

6

0

19

0

20

Ox20 Return from exception

6

Oxc System call

6

Register $ v 0 contains the number of the system call (see Figure A.16) pro
vided by SPIM.

b r e a k 0

6

code

20

Oxd Break

6

A.11 Concluding Remarks A-71

Cause exception code. Exception 1 is reserved for the debugger.

n o p 0 0 0 0 0 0 No operation

6 5 5 5 5 6

Do nothing.

1111 Concluding Remarks

Programming in assembly language requires a programmer to trade off help
ful features of high-level languages-such as data structures, type checking,
and control constructs-for complete control over the instructions that a com
puter executes. External constraints on some applications, such as response
time or program size, require a programmer to pay close attention to every
instruction. However, the cost of this level of attention is assembly language
programs that are longer, more time-consuming to write, and more difficult to
maintain than high-level language programs.

Moreover, three trends are reducing the need to write programs in assem
bly language. The first trend is toward the improvement of compilers. Modern
compilers produce code that is typically comparable to the best handwritten
code and is sometimes better. The second trend is the introduction of new pro
cessors that are not only faster, but in the case of processors that execute mul
tiple instructions simultaneously, also more difficult to program by hand. In
addition, the rapid evolution of the modern computer favors high-level lan
guage programs that are not tied to a single architecture. Finally, we witness a
trend toward increasingly complex applications-characterized by complex
graphic interfaces and many more features than their predecessors. Large ap
plications are written by teams of programmers and require the modularity
and semantic checking features provided by high-level languages.

To Probe Further

Kane, G., and Heinrich, J. [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.

The last word on the MIPS instruction set and assembly language programming on these machines.

Aho, A., Sethi, R., and Ullman, J. [1985]. Compilers: Principles, Techniques, and Tools, Addison
Wesley, Reading, Mass.

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compil
ers.

A· 72 Appendix A Assemblers, Linkers, and the SPIM Slmulator

II Exercises

A.1 [5] <§A.5> Section A.5 described how memory is partitioned on most
MIPS systems. Propose another way of dividing memory that meets the same
goals.

A.2 [10] <§A.6> Write and test a MIPS assembly language program to com
pute and print the first 100 prime numbers. A number n is prime if no numbers
except 1 and n divide it evenly. You should implement two routines:

• t e s t_p r i me (n l Return 1 if n is prime and 0 if n is not prime.

• ma i n (l Iterate over the integers, testing if each is prime. Print the
first 100 numbers that are prime.

Test your programs by running them on SPIM.

A.3 [5] <§A.6> Rewrite the code for f a c t to use fewer instructions.

A.4 [5] <§A.7> Is it ever safe for a user program to use registers k O or k l ?

A.S [15] <§A.7> Section A.7 contains code for a very simple exception han
dler. One serious problem with this handler is that it disables interrupts for a
long time. This means that interrupts from a fast 1/0 device may be lost. Write
a better exception handler that is interruptable and enables interrupts as
quickly as possible.

A.6 [15] <§A.7> The simple exception handler always jumps back to the in
struction following the exception. Write a better handler that uses the E P C reg
ister to determine which instruction should be executed after the exception.

A p p E N D x

The Basics of

Logic Design

I always loved that word, Boolean.

Claude Shannon
IEEE Spectrum, April 1992, p. 72
(Shannon's master's thesis showed that the algebra
invented by George Boole in the 1800s could represent the
workings of electrical switches.)

B.1 Introduction B-3

B.2 Gates, Truth Tables, and Logic Equations B-4

B.3 Comblnatlonal Logic B-8

B.4 Clocks B-18

B.5 Memory Elements B-21

B.6 Finite State Machines B-35

B. 7 Timing Methodologies B-39

B.8 Exercises B-45

Introduction

This appendix provides a brief discussion of the basics of logic design. It does
not replace a course in logic design nor does it enable the reader to design sig
nificant working logic systems. For readers with little or no exposure to logic
design, however, this appendix will provide sufficient background to under
stand all the material in this book. In addition, for those looking to under
stand some of the motivation behind how computers are implemented, this
material will serve as a useful introduction. For readers whose curiosity is
aroused and not sated by this appendix, the references at the end provide sev
eral additional sources of information.

Section B.2 introduces the basic building blocks of logic, namely gates. Sec
tion B.3 uses these building blocks to construct simple combinational logic sys
tems, which contain no memory. Readers with some exposure to logic or
digital systems will probably be familiar with the material in these first two
sections. Section B.4 is a short introduction to the topic of clocking, which is
necessary to discuss how memory elements work. Section B.5 introduces
memory elements; it describes both the characteristics that are important to
understanding how they are used in Chapters 5 and 6, and the background
that motivates many of the aspects of memory hierarchy design in Chapter 7.
Section B.6 describes the design and use of finite state machines, which are se-

B·4 Appendix B The Basics of Logic Design

quential logic blocks. Readers who intend to read Appendix C should thor
oughly understand the material in Sections B.2 through B.6, while those who
intend to read only the material on control in Chapters 5 and 6 can skim the
appendices, but should have some familiarity with all the material except Sec
tion B.7. Section B.7 is intended for the reader who wants a deeper understand
ing of clocking methodologies and timing. It explains the basics of how edge
triggered clocking works, introduces another clocking scheme, and briefly
describes the problem of synchronizing asynchronous inputs.

II Gates, Truth Tables, and Logic Equations

The electronics inside a modern computer are digital. Digital electronics oper
ate with only two voltage levels of interest: a high voltage and a low voltage.
All other voltage values are temporary and occur while transitioning between
the values. As mentioned in Chapter 3, this is a key reason why computers
use binary numbers, since a binary system matches the underlying abstrac
tion inherent in the electronics. In various logic families, the values and rela
tionships between the two voltage values differ. Thus, rather than refer to the
voltage levels, we talk about signals that are (logically) true, or are 1 , or are
asserted; or signals that are (logically) false, or 0, or deasserted. The values 0 and
1 are called complements or inverses of one another.

Logic blocks are categorized as one of two types, depending on whether
they contain memory. Blocks without memory are called combinational; the
output of a combinational block depends only on the current input. In blocks
with memory, the outputs can depend on both the inputs and the value stored
in memory, which is called the state of the logic block. In this section and the
next, we will focus only on combinational logic. After introducing different
memory elements in section B.5, we will describe how sequential logic, which
is logic including state, is designed.

Truth Tables

Because a combinational logic block contains no memory, it can be completely
specified by defining the values of the outputs for each possible set of input
values. Such a description is normally given as a truth table. For a logic block
with n inputs, there are 2n entries in the truth table, since there are that many
possible combinations of input values. Each entry specifies the value of all the
outputs for that particular input combination.

Example

Answer

B.2 Gates, Truth Tables, and Logic Equations B-5

Consider a logic function with three inputs, A, B, and C and three outputs,
0, E, and F. The function is defined as follows: 0 is true if at least one input
is true, E is true if exactly two inputs are true, and F is true only if all three
inputs are true. Show the truth table for this function.

The truth table will contain 23 = 8 entries. Here it is:

A , . "
0
0
0
0
1
1
1
1

· . .° Inputs

·-. : · . . B . .

0
0
1
1
0
0
1
1

'• . :"� ':.. . �� -:·:-�:� r:i�·-"·-:-.: • • · • ..: �.· •t,.. .:::J",-'" "'"":'-'; .. ; A .. -, .. -;, �:�· , .. ,l·
. _ Outputsz��! -J. · ,.,_'..,. ·. <";_

' ·C · · '.· ;:.i·�·'D �: . >. "-.·1E'· : ·_.; . .,_··;.�if' . ' �:,.� ,.·, , ... ·.·"!'-).",&;• >.1111 &..;.... • .k:e"-�·__. � ',.:.'".L:t'1 S .. }',\Y.£ � :,._ :..r::.;.4;. �

0 0 0 0

1 1 0 0

0 1 0 0

1 1 1 0

0 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

Truth tables can completely describe any combinational logic function;
however, they grow in size quickly and may not be easy to understand. Some
times we want to construct a logic function that will be 0 for many input com
binations, and we use a shorthand of specifying only the truth table entries for
the nonzero outputs. This approach is used in Chapter 5 and Appendix C.

Boolean Algebra

Another approach is to express the logic function with logic equations. This is
done with the use of Boolean algebra (named after Boole, a 19th-century math
ematician). In Boolean algebra, all the variables have the values 0 or 1 and, in
typical formulations, there are three operators.

• The OR operator is written as +, as in A + B. The result of an OR operator
is 1 if either of the variables is 1 . The OR operation is also called a logical
sum, since its result is 1 if either operand is 1 .

• The AND operator is written as · , as in A · B . The result of an AND
operator is 1 only if both inputs are 1 . The AND operator is also called
logical product, since its result is 1 only if both operands are 1 .

• The unary operator NOT, written as A . The result of a NOT operator is
1 only if the input is zero. Applying the operator NOT to a logical value
results in an inversion or negation of the value (i.e., if the input is 0 the

B-6 Appendix B The Basics of Logic Design

output is 1, and vice versa).

There are several laws of Boolean algebra that are helpful in manipulating
logic equations.

• Identity law: A + 0 = A and A · 1 = A .

• Zero and One laws: A + 1 = 1 and A · 0 = 0 .

• Inverse laws: A + A = 1 and A · A = 0 .

• Commutative laws: A + B = B + A and A · B = B · A .

• Associative laws: A + (B + C) = (A + B) + C and
A · (B · C) = (A · B) · C .

• Distributive laws: A · (B + C) = (A · B) + (A · C) and
A + (B · C) = (A + B) · (A + C) .

In addition, there are two other useful laws, called DeMorgan's Laws, that are
the subject of Exercise B.6.

Any logic function can be written as a series of equations with an output on
the left-hand side of each equation and a formula consisting of variables and
the three operators above on the right-hand side.

Show the logic equations for the logic function described in the previous ex
ample.

Here's the equation for D_:

D = A + B + C

F is equally simple:

F = A · B · C

E is a little tricky. Think of it in two parts: what must be true for E to be true
(two of the three inputs must be true), and what cannot be true (all three
cannot be true). Thus we can write E as

E = ((A · B) + (A · C) + (B · C)) · (A · B · C)

B.2 Gates, Truth Tables, and Logic Equations B·7

We can also derive E by realizing that E is true only if exactly two of the in
puts are true. Then we can write E as an OR of the three possible terms that
has two true inputs and one false input:

E = (A · B · C) + (A · C · B) + (B · C · A)

Proving that these two expressions are equivalent is the task of
Exercise B.7.

Gates

Logic blocks are built from gates that implement basic logic functions. For
example, an AND gate implements the AND function and an OR gate imple
ments the OR function. Since both AND and OR are commutative and asso
ciative, an AND or an OR gate can have multiple inputs, with the output
equal to the AND or OR of all the inputs. The logical function NOT is imple
mented with an inverter that always has a single input. The standard repre
sentation of these three logic building blocks is shown in Figure B.l .

Rather than draw inverters explicitly, a common practice is to add "bub
bles" to the inputs or output of a gate to cause the logic value on that input line
or output line to be inverted. For example, Figure B.2 shows the logic diagram

FIGURE B.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from left
to right. The signals to the left of each symbol are the inputs, while the output appears on the
right. The AND and OR gates both have two inputs. Inverters have a single input.

A ---{)>o
B -----1

FIGURE B.2 Logic gate implementation of A + B using explicit inverts on the left and
-

using bubbled inputs and output on the right. This logic function can be simplified to A · B .

Appendix B The Basics of Logic Design

for the function A + B , using explicit inverters on the left and using bubbled
inputs and outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and
inversion; Exercises B.2 through B.5 give you the opportunity to try imple
menting some common logic functions with gates. In the next section we'll see
how an implementation of any logic function can be constructed using this
knowledge.

In fact, all logic functions can be constructed with only a single gate type, if
that gate is inverting. The two common inverting gates are called NOR and
NANO and correspond to inverted OR and AND gates, respectively. NOR
and NANO gates are called universal, since any logic function can be built us
ing this one gate type. Exercises B.10 and B.11 ask you to prove this fact.

II Combinational Logic

In this section we look at a couple of basic logic building blocks that we use
heavily, and we discuss the design of structured logic that can be automati
cally implemented from a logic equation or truth table by a translation pro
gram. Lastly, we discuss the notion of an array of logic blocks.

Multiplexors

One basic logic function that we saw quite often in Chapters 4, 5, and 6 is the
multiplexor. A multiplexor might more properly be called a selector, since its
output is one of the inputs that is selected by a control. Consider the two
input multiplexor. As shown on the left side of Figure B.3, this multiplexor
has three inputs: two data values and a selector (or control) value. The

A
A

u c

B
c

B

s s

FIGURE B.3 A two-input multiplexor, on the left, and its implementation with gates, on
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one
selector input (5), as well as an output C.

8.3 Combinational Logic B·9

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0
OutO

Out1 0 1 0 0 0 0 0 0 1 0 0

Out2 0 1 1 0 0 0 0 1 0 0 0

Decoder
Out3

1 0 0 0 0 0 1 0 0 0 0
Out4

Out5 1 0 1 0 0 1 0 0 0 0 0
Out6 1 1
Out?

0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

a. A 3-bit decoder. b. The truth table.

FIGURE 8.4 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called OutO to Out7. Only the
output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the
decoder says that the input signal is 3 bits wide.

selector value determines which of the inputs becomes the output. We can
represent Jhe logic function computed by a two-input multiplexor as
C = (A · S) + (B · S) , which is shown in gate form on the right side of Fig
ure B.3. Multiplexors can be created with an arbitrary number of data inputs.
If there are n data inputs there will need to be I log 2n l selector inputs. To
associate the inputs with selector values, we often label the data inputs
numerically (i.e., 0, 1, 2, 3, . . . , n-1) and interpret the data selector inputs as a
binary number. When there are only two inputs, the selector is a single signal
that selects one of the inputs if it is true (1) and the other if it is false (0).

Decoders

Another logic block that we will use in building larger components is a
decoder. The most common type of decoder has an n-bit input and 2n outputs
where only one output is asserted for each input combination. This decoder
translates the n-bit input into a signal that corresponds to the binary value of
the n-bit input. The outputs are thus usually numbered, say OutO,
Outl, . . . , Outm. If the value of the input is i, then Outi will be true and all
other outputs will be false. Figure B.4 shows a 3-bit decoder and the truth
table. This decoder is called a 3-to-8 decoder since there are 3 inputs and 8 (23)
outputs. There is also a logic element called an encoder that performs the
inverse function of a decoder, taking 2n inputs and producing an n-bit output.

B·lO Appendix B The Basics of Logic Design

Two-level Logic and PLAs

As pointed out in the previous section, any logic function can be imple
mented with only AND, OR, and NOT functions. In fact, a much stronger
result is true. Any logic function can be written in a canonical form, where
every input is either a true or complemented variable and there are only two
levels of gates-one being AND and the other OR-with a possible inversion
on the final output. Such a representation is called a two-level representation
and there are two forms, called sum-of-products and product-of-sums. A sum of
products representation is a logical sum (OR) of products (terms using the
AND operator); whereas, a product of sums is just the opposite. In our earlier
example we had two equations for the output E:

E = ((A · B) + (A · C) + (B · C)) · (A · B · C)
and

E = (A · B · C) + (A · C · B) + (B · C · A)

This second equation is in a sum-of-products form: it has two levels of logic
and the only inversions are on individual variables. The first equation has
three levels of logic.

We can also write E as a product of sums:

E = (A + B + C) · (A + C + B) · (B + C + A)

To derive this form , you need to use DeMorgan 's theorems, which are d iscussed in
Exercise B.6. Exercise B.8 asks you to derive the product of sums representation from
the sum of products using DeMorgan 's theorems.

In this text, we use the more common sum-of-products form. It is easy to
see that any logic function can be represented as a sum of products by con
structing such a representation from the truth table for the function. Each truth
table entry for which the function is true corresponds to a product term. The
product term consists of a logical product of all the inputs or the complements
of the inputs, depending on whether the entry in the truth table has a 0 or 1
corresponding to this variable. The logic function is the logical sum of the
products term where the function is true. This is more easily seen with an ex
ample.

Example

Answer

B.3 Combinational Logic B-11

Show the sum-of-products representation for the following truth table.

Inputs Output

A B c D

0 0 0 0
0 0 1 1

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

There are four product terms, since the function is true (1) for four different
input combinations. These are

A · B · C

A · B · C

A · B · C

A · B · C

Thus, we can write the function for D as the sum of these terms:

D = (A · B · C) + (A · B · C) + (A · B · C) + (A · B · C)

Note that only those truth table entries for which the function is true gener
ate terms in the equation.

We can use this relationship between a truth table and a two-level repre
sentation to generate a gate-level implementation of any set of logic functions.
A set of logic functions corresponds to a truth table with multiple output col
umns, as we saw in the example on page B-5. Each output column represents
a different logic function, which may be directly constructed from the truth ta
ble.

The sum-of-products representation corresponds to a common structured
logic implementation called a programmable logic array (or PLA). A PLA has a
set of inputs and corresponding input complements (which can be implement
ed with a set of inverters), and two stages of logic. The first stage is an array of

B·12 Appendix B The Basics of Logic Design

Inputs AND gates

OR gates Outputs

FIGURE B.5 The basic form of a PLA consists of an array of AND gates followed by an
array of OR gates. Each entry in the AND gate array is a product term consisting of any number
of inputs or inverted inputs. Each entry in the OR gate array is a sum term consisting of any num
ber of these product terms.

AND gates that form a set of product terms (sometimes called minterms); each
product term can consist of any of the inputs or their complements. The second
stage is an array of OR gates, each of which forms a logical sum of any number
of the product terms. Figure B.5 shows the basic form of a PLA.

A PLA can directly implement the truth table of a set of logic functions with
multiple inputs and outputs. Since each entry where the truth table is true re
quires a product term, there will be a corresponding row in the PLA. Each out
put corresponds to a potential row of OR gates in the second stage. The
number of OR gates corresponds to the number of truth table entries for which
the output is true. The total size of a PLA, such as that shown in Figure B.5, is
equal to the sum of the size of the AND gate array (called the AND plane) and
the size of the OR gate array (called the OR plane). Looking at Figure B.5, we
can see that the size of the AND gate array is equal to the number of inputs
times the number of different product terms, and the size of the OR gate array
is the number of outputs times the number of product terms.

A PLA has two characteristics that help make it an efficient way to imple
ment a set of logic functions. One, only the truth table entries that produce a
true value for at least one output have any logic gates associated with them.
Two, each different product term will have only one entry in the PLA, even if
the product term is used in multiple outputs. Let's look at an example.

Example

Answer

B.3 Combinational Logic 8·13

Consider the set of logic functions defined in the example on page B-5.
Show a PLA implementation of this example.

Here is the truth table we constructed earlier:

:t .
Inputs " outputs

. ! .< ..

"·1' ';'A_, B .i___ � -!..__ ____ - -�� -

0 0
0 0
0 1

0 1

1 0
1 0

1 1
1 1

. c --
0
1
0
1
0
1
0
1

D E "::·� f' _ __:__ � -
0 0 0
1 0 0

1 0 0

1 1 0

1 0 0
1 1 0

1 1 0
1 0 1

Since there are seven unique product terms with at least one true value in
the output section, there will be seven columns in the AND plane. The num
ber of rows in the AND plane is three (since there are three inputs), and
there are also three rows in the OR plane (since there are three outputs). Fig
ure B.6 shows the resulting PLA with the product terms corresponding to
the truth table entries from top to bottom.

I nputs

A �...-�--e��..-�--e��.-� �--e

B �+.11---+-+-�-H11---+-+-�+-e>---+..._�+-e
C �-t-ti-.--t--H.--t-ti-.--t--1-11--+-t-+--+-H11--++•

FIGURE B.6 The PLA for implementing the logic function described above.

Outputs

D

E

B·14 Appendix B The Basics of Logic Design

Inputs

A

B

c

4>
4>
4>-
OR plane

AN D plane

Ou tputs
D

E

F

FIGURE B. 7 A PLA drawn using dots to Indicate the components of the product terms and
sum terms In the array. Rather than use inverters on the gates, usually all the inputs are run the
width of the AND plane in both true and complement forms. A dot in the AND plane indicates
that the input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the
corresponding product term appears in the corresponding output.

Rather than drawing all the gates, as we did in Figure B.6, designers often
show just the position of AND gates and OR gates. Dots are used on the inter
section of a product term signal line and an input line or an output line when
a corresponding AND gate or OR gate is required. Figure B.7 shows how the
PLA of Figure B.6 would look when drawn in this way. The contents of a PLA
are fixed when the PLA is created, although there are also forms of PLA-like
structures, called PALs, that can be programmed electronically when a design
er is ready to use them.

ROMs

Another form of structured logic that can be used to implement a set of logic
functions is a read-only memory, commonly called a ROM. A ROM is called a
memory because it has a set of locations that can be read; however, the con
tents of these locations are fixed, usually at the time the ROM is created. There
are also programmable ROMs (PROMs) that can be programmed electrically,
when a designer knows their contents. There are also erasable PROMs; these
devices require a slow erasure process using ultraviolet light, and thus are
used as read-only memories, except during the design and debugging pro
cess.

B.3 Combinational Logic B-15

A ROM has a set of input address lines and a set of outputs. The number of
addressable entries in the ROM determines the number of address lines: if the
ROM contains 211 addressable entries, called the height, then there are n input
lines. The number of bits in each addressable entry is equal to the number of
output bits and is sometimes called the width of the ROM. The total number of
bits in the ROM is equal to the height times the width. The height and width
are sometimes collectively referred to as the shape of the ROM.

A ROM can encode a collection of logic functions directly from the truth ta
ble. For example, if there are n functions with m inputs, we need a ROM with
m address lines (and 2m entries), with each entry being n bits wide. The entries
in the input portion of the truth table represent the addresses of the entries in
the ROM, while the contents of the output portion of the truth table constitute
the contents of the ROM. If the truth table is organized so that the sequence of
entries in the input portion constitute a sequence of binary numbers (as have
all the truth tables we have shown so far), then the output portion gives the
ROM contents in order as well. In the previous example starting on page B-13,
there were three inputs and three outputs. This leads to a ROM with 23 = 8 en
tries, each 3 bits wide. The contents of those entries in increasing order by ad
dress are directly given by the output portion of the truth table that appears on
page B-13.

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a
full output word for every possible input combination. A PLA is only partially
decoded. This means that a ROM will always contain more entries. For the ear
lier truth table on page B-13, the ROM contains entries for all eight possible in
puts, whereas the PLA contains only the seven active product terms. As the
number of inputs grows, the number of entries in the ROM grows exponential
ly. In contrast, for most real logic functions the number of product terms grows
much more slowly (see the examples in Appendix C). This difference makes
PLAs generally more efficient for implementing combinational logic func
tions. RO Ms have the advantage of being able to implement any logic function
with the matching number of inputs and outputs. This advantage makes it eas
ier to change the ROM contents if the logic function changes, since the size of
the ROM need not change.

Don't Cares

Often in implementing some combinational logic, there are situations where
we do not care what the value of some output is, either because another out
put is true or because a subset of the input combinations determine the values
of the outputs. Such situations are referred to as don't cares. Don't cares are
important because they make it easier to optimize the implementation of a
logic function.

B·16

Example

Answer

Appendix B The Basics of Logic Design

There are two types of don't cares: output don't cares and input don't
cares, both of which can be represented in a truth table. Output don't cares arise
when we don't care about the value of an output for some input combination.
They appear as X's in the output portion of a truth table. When an output is a
don't care for some input combination, the designer or logic optimization pro
gram is free to make the output true or false for that input combination. Input
don't cares arise when an output depends on only some of the inputs, and they
are also shown as X's, though in the input portion of the truth table.

Consider a logic function with inputs A, B, and C defined as follows.

• If A or C is true, then output D is true, whatever the value of B.

• If A or B is true, then output E is true, whatever the value of C.

• Output F is true if exactly one of the inputs is true, although we don't
care about the value of F, whenever D and E are both true.

Show the full truth table for this function and the truth table using don't
cares. How many product terms are required in a PLA for each of these?

Here's the full truth table, without don't cares:

�'---'1"-i'��fl�/"" .. "'

;:: ·��··1J·/�,t!_ \��!
0
0
0
0
1
1
1
1

��111';;,7.._...,;,,�:'.· ;;._;·, '•,
�� :.;q ::i r:�,�. ,.. i';i' 1� rn

0 0 0
0 1 1
1 0 0
1 1 1
0 0 1
0 1 1
1 0 1
1 1 1

ilml,l'l�"11
� 1'31

0 0
0 1
1 1
1 0
1 1
1 0
1 0
1 1

This requires seven product terms without optimization. The truth table
written with output don't cares looks like:

B.3 Comblnatlonal Logic B-17

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 x

1 0 0 1 1 x

1 0 1 1 1 x

1 1 0 1 1 x

1 1 1 1 1 x

This truth table can be further simplified to yield:

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

x 1 1 1 1 x

1 x x 1 1 x

This simplified truth table requires a PLA with four minterms, or it can be
implemented in discrete gates with one two-input AND gate and three OR
gates (two with three inputs and one with two inputs). This compares to the
original truth table that had seven minterms and would require four AND
gates.

Logic minimization is critical to achieving efficient implementations. One
tool useful for hand minimization of random logic is Karnaugh maps. Kama ugh
maps represent the truth table graphically so that product terms that may be
combined are easily seen. Nevertheless, hand optimization of significant logic
functions using Kamaugh maps is impractical, due both to the size of the maps
and their complexity. Fortunately, the process of logic minimization is highly
mechanical and can be performed by design tools. In the process of minimiza
tion the tools take advantage of the don't cares, so specifying them is impor
tant. The textbook references at the end of this appendix provide further
discussion on logic minimization, Kamaugh maps, and the theory behind
such minimization algorithms.

Arrays of Logic Elements

Many of the combinational operations to be performed on data have to be
done to an entire word (32-bits) of data. Thus we often want to build an array

B-18 Appendix B The Basics of Logic Design

of logic elements, which we can represent simply by showing that a given
operation will happen to an entire collection of inputs. For example, we saw
on page B-8 what a one-bit multiplexor looked like, but inside a machine,
much of the time we want to select between a pair of buses. A bus is a collec
tion of data lines that is treated together as a single logical signal. (The term
bus is also used to indicate a shared collection of lines with multiple sources
and uses, especially in Chapter 8, where I/O buses were discussed.)

For example, in the MIPS instruction set the result of an instruction that is
written into a register can come from one of two sources. A multiplexor is used
to choose which of the two buses (each 32 bits wide) will be written into the
Result register. The one-bit multiplexor, which we showed earlier, will need to
be replicated 32 times. We indicate that a signal is a bus rather than a single
one-bit line by showing it with a thicker line in a figure. Most buses are 32 bits
wide; those that are not are explicitly labeled with their width. When we show
a logic unit whose inputs and outputs are buses, this means that the unit must
be replicated a sufficient number of times to accommodate the width of the in
put. Figure B.8 shows how we draw a multiplexor that selects between a pair
of 32-bit buses and how this expands in terms of 1-bit-wide multiplexors.
Sometimes we need to construct an array of logic elements, where the inputs
for some elements in the array are outputs from earlier elements. For example,
this is how a multibit wide ALU is constructed. In such cases, we must explic
itly show how to create wider arrays, since the individual elements of the array
are no longer independent, as they are in the case of a 32-bit-wide multiplexor. II Clocks

Before we discuss memory elements and sequential logic, it is useful to dis
cuss briefly the topic of clocks. This short section introduces the topic and is
similar to the discussion found at the beginning of Chapter 5. More details on
clocking and timing methodologies are presented in section B.7.
Clocks are needed in sequential logic to decide when an element that contains
state should be updated. A clock is simply a free-running signal with a fixed
cycle time; the clock frequency is simply the inverse of the cycle time. As shown
in Figure B.9, the clock cycle time or clock period is divided into two
portions: when the clock is high and when the clock is low. In this text, we
use only edge-triggered clocking. This means that all state changes occur on a
clock edge. We use an edge-triggered methodology because it is simpler to
explain. Depending on the technology, it may or may not be the best choice
for a clocking methodology.

In an edge-triggered methodology, either the rising edge or the falling
edge of the clock is active and causes state changes to occur. As we will see in

B.4 Clocks 8·19

Select Select

32
A31

32
--- c u C31

32

a. A 32-bit wide 2-to-1 multiplexor.

831

A30

830

AO

BO

u C30

u co

b. The 32-bit wide multiplexor is actually an array of 32 1-bit
multiplexors.

FIGURE B.8 A multlplexor Is arrayed 32 times to perform a Hlectlon between two 32·blt Inputs. Note that there is
still only one data selection signal used for all 32-bit multiplexors.

_ ____. ----� �""'"' ""
Clock period Rising edge

FIGURE B.9 A clock sl1&nal osclllates between hll&h and low values. The clock period is the
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is
active and causes state to be changed.

B-20 Appendix B The Basics of Logic Design

State
element 1----.i

1

Clock cycle J

State
...._ __ _.. element

2

FIGURE B.10 The inputs to a combinational logic block come from a state element, and
the outputs are written into a state element. The clock edge determines when the contents
of the state elements are updated.

the next section, the state elements in an edge-triggered design are implement
ed so that the contents of the state elements only change on the active clock
edge. The choice of which edge is active is influenced by the implementation
technology and does not affect the concepts involved in designing the logic.

The major constraint in a clocked system, also called a synchronous system,
is that the signals that are written into state elements must be valid when the
active clock edge occurs. A signal is valid if it is stable (i.e., not changing) and
the value will not change again until the inputs change. Since combinational
circuits cannot have feedback, if the inputs to a combinational logic unit are
not changed, the outputs will eventually become valid. Figure B.10 shows the
relationship among the state elements and the combinational logic blocks in a
synchronous, sequential logic design. The state elements, whose outputs
change only on the clock edge, provide valid inputs to the combinational logic
block. To ensure that the values written into the state elements on the active
clock edge are valid, the clock must have a long enough period so that all the
signals in the combinational logic block stabilize. This constraint sets a lower
bound on the length of the clock period. In the rest of this appendix, as well as
in Chapters 5 and 6, we usually omit the clock signal, since we are assuming
that all state elements are updated on the same clock edge. Some state ele
ments will be written on every clock edge, while others will be written only
under certain conditions (such as a register being updated). In such cases, we
will have an explicit write signal for that state element. The write signal must
still be gated with the clock so that the update occurs only on the clock edge if
the write signal is active. We will see how this is done and used in the next sec
tion.

One other advantage of an edge-triggered methodology is that it is possible
to have a state element that is used as both an input and output to the same

B.5 Memory Elements

State
element

B·21

FIGURE B.11 An edge-triggered methodology allows a state element to be read and writ·
ten In the same clock cycle without creating a race that could lead to undermined data
values. Of course, the clock cycle must still be long enough so that the input values are stable
when the active clock edge occurs.

combinational logic block, as shown in Figure B.1 1 . In practice, care must be
taken to prevent races in such situations and to ensure that the clock period is
long enough; this topic is discussed further in section B.7.

Now that we have discussed how clocking is used to update state elements,
we can discuss how to construct the state elements.

• Memory Elements

In this section we discuss the basic principles behind memory elements, start
ing with flip-flops and latches, moving on to registers files, and finally to
memories. All memory elements store state: the output from any memory
element depends both on the inputs and on the value that has been stored
inside the memory element. Thus, all logic blocks containing a memory ele
ment contain state and are sequential.

The simplest type of memory elements are unclocked; that is, they do not
have any clock input. Although we only use clocked memory elements in this
text, an unclocked latch is the simplest memory element, so let's look at this
circuit first. Figure B.12 shows an S-R latch (set-reset latch), built frQ_m a pair of
NOR gates (OR gates with inverted outputs). The outputs Q and Q represent
the value of the stored state and its complement. When neither S nor R are as
serted, the cross-.f_oupled NOR gates act as inverters and store the previous
values of Q and Q . For example, if the ou_!put, Q, is true, then the bottom in
verter produces a false output (which is Q), which becomes the input to the
top inverter, which produces a true output, �hich is Q, and so on. If S is assert
ed then the output Q will.Pe asserted and Q will be deasserted, while if R is
asserted, then the output Q will be asserted and Q�ill be deasserted. When S
and R are both deasserted the last values of Q and Q will continue to be stored
in the cross-coupled structure. Asserting S and R simultaneously can lead to

B·22 Appendix B The Basics of Logic Design

FIGURE B.12 A pair of cross-coupled NOR gates can �ore an internal val�e. The value
stored on the Q_utput Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q.
If either R or Q are asserted Q will be deasserted and vice-versa.

incorrect operation: Depending on how S and R are deasserted, the latch may
oscillate or become metastable (this is described in more detail in section B.7).

This cross-coupled structure is the basis for more complex memory ele
ments that allow us to store data signals. These elements contain additional
gates used to store signal values and to cause the state to be updated only in
conjunction with a clock. The next section shows how these elements are built.

Flip-Flops and Latches

Flip-flops and latches are the simplest memory elements. In both flip-flops and
latches the output is equal to the value of the stored state inside the element.
Furthermore, unlike the S-R latch described above, all the latches and flip
flops we will use from this point on are clocked, which means they have a
clock input and the change of state is triggered by that clock. The difference
between a flip-flop and a latch is the point at which the clock causes the state
to actually change. In a clocked latch the state is changed whenever the
appropriate inputs change and the clock is asserted, whereas in a flip-flop, the
state is changed only on a clock edge. Since throughout this text we use an
edge-triggered timing methodology where state is only updated on clock
edges, we need only use flip-flops. Flip-flops are often built from latches, so
we start by describing the operation of a simple clocked latch and then dis
cuss the operation of a flip-flop constructed from that latch.

For computer applications, the function of both flip-flops and latches is to
store a signal. A D latch or D flip-flop stores the value of its data input signal in
the internal memory. Although there are many other types of latches and flip
flops, the D type is the only basic building block that we will need. A D latch
has two inputs and two outputs. The inputs are the data value to be stored
(called D) and a clock signal (called C) that indicates when the latch should
read the value on the D input and store it. Ihe outputs are simply the value of
the internal state (Q) and its complement (Q). When the clock input C is assert
ed, the latch is said to be open, and the value of the output (Q) becomes the val-

8.5 Memory Elements B·23

FIGURE B.13 A D latch implemented with NOR gates. A NOR gate acts as an inverter, if the
other input is zero. Thus, the cross-coupled pair of NOR gates acts to store the state value unless
the clock input, C, is asserted, in which case the value of input D replaces the value of Q and is
stored. The value of input D must be stable when the clock signal C changes from asserted to
deasserted.

D _J
c ____ _, L
Q -----'

FIGURE B.14 Operation of a D latch assuming the output is initially deasserted. When the
clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D
input.

ue of the input D. When the clock input C is deasserted, the latch is said to be
closed, and the value of the output (Q) is whatever value was stored the last
time the latch was open.

Figure B.13 shows how a D latch can be implemented with two additional
gates added to the cross-coupled NOR gates. Since when the latch is open the
value of Q changes as D changes, this structure is sometimes called a transpar
ent latch. Figure B.14 shows how this D latch works, assuming that the output
Q is initially false and that D changes first.

As mentioned earlier, we use flip-flops as the basic building block rather
than latches. Flip-flops are not transparent: their outputs change only on the
clock edge. A flip-flop can be built so that it triggers on either the rising (posi
tive) or falling (negative) clock edge; for our designs we can use either type.
Figure B.15 shows how a falling-edge D flip-flop is constructed from a pair of

8·24 Appendix B The Basics of Logic Design

D -+----1 D
D Q D

D Q Q

FIGURE B.15 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open
and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the
first latch is closed, but the second latch, called the slave, is open and gets its input from the out
put of the master latch.

D _J
c ----- L
Q _______ ___,

FIGURE B.16 Operation of a D flip-flop with a falling-edge trigger, assuming the output is
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q out
put stores the value of the D input.

D latches. In a D flip-flop, the output is stored when the clock edge occurs. Fig
ure B.16 shows how this flip-flop operates.

Because the D input is sampled on the clock edge, it must be valid for a pe
riod of time immediately before and immediately after the clock edge. The
minimum time that the input must be valid before the clock edge is called the
set-up time; the minimum time during which it must be valid after the clock
edge is called the hold time. Thus the inputs to any flip-flop (or anything built
using flip-flops) must be valid during a window that begins at time tset-up be
fore the clock edge and ends at thold after the clock edge, as shown in Figure
B.17. Section B.7 talks about clocking and timing constraints in more detail.

We can use an array of D flip-flops to build a register that can hold a multi
bit datum, such as a byte or word. We used registers throughout our datapaths
in Chapters 5 and 6.

B.5 Memory Elements B·25

D
Set-up time Hold time

FIGURE B.17 Set-up and hold time requirements for a D flip-flop with a falling-edge trig·
ger. The input must be stable a period of time before the clock edge, as well as after the clock
edge. The minimum time the signal must be stable before the clock edge is called the set-up time,
while the minimum time the signal must be stable after clock is called the hold time. Failure to
meet these minimum requirements can result in a situation where the output of the flip-flop may
not even be predictable, as described in section B.7. Hold times are usually either 0 or very small
and thus not a cause of worry.

Register Files

One structure that is central to our datapath is a register file. A register file con
sists of a set of registers that can be read and written by supplying a register
number to be accessed. A register file can be implemented with a decoder for
each read or write port and an array of registers built from D flip-flops.
Because reading a register does not change any state, we need only supply a
register number as an input, and the only output will be the data contained in
that register. For writing a register we will need three inputs: a register num
ber, the data to write, and a clock that controls the writing into the register. In
Chapters 5 and 6, we used a register file that has two read ports and one write
port. This register file is drawn as shown in Figure B.18. The read ports can be
implemented with a pair of multiplexors, each of which is as wide as the
number of bits in the register file. Figure B.19 shows the implementation of
two register read ports for a 32-bit-wide register file.

Implementing the write port is slightly more complex since we can only
change the contents of the designated register. We can do this by using a de
coder to generate a signal that can be used to determine which register to
write. Figure B.20 shows how to implement the write port for a register file. It
is important to remember that the flip-flop changes state only on the clock
edge. In Chapters 5 and 6, we hooked up write signals for the register file ex
plicitly and assume the clock shown in Figure B.20 is attached implicitly.

What happens if the same register is read and written during a clock cycle?
Because the write of the register file occurs on the clock edge, the register will
be valid during the time it is read, as we saw earlier in Figure B.10. The value
returned will be the value written in an earlier clock cycle. If we want a read
to return the value currently being written, additional logic in the register file
or outside of it is needed. Chapter 6 makes extensive use of such logic.

B·26 Appendix B The Basics of Logic Design

Read register
number 1 Read
Read register data 1
number 2

Register file
Write
register

Write
data Write

Read
data 2

FIGURE B.18 A register flle with 2 read ports and 1 write port has 5 inputs and 2 outputs.
The control input Write is shown in color.

Read register
number 1

Read register
number 2

Register 0
Register 1

. . .
Register n - 1

Register n

........
-

A
M
u -- Read data 1
x

'-.J

A
M
u .._ - Read data 2
x

'--""

FIGURE B.19 The Implementation of two read ports for a register file with n registers can
be done with a pair of n-to-1 multiplexors each 32 bits wide. The register read number sig
nal is used as the multiplexor selector signal. Figure B.20 shows how the write port is imple
mented.

B.5 Memory Elements B·27

Write

0
c

Register O
1 D

Register number n-to-1 c
decoder Register 1

n - 1
D

n

c

Register n - 1
D

c

Register n
Register data D

FIGURE B.20 The write port for a register file Is Implemented with a decoder that Is used
with the write signal to generate the C input to the registers. All three inputs (the register
number, the data, and the write signal) will have set-up and hold-time constraints that ensure
that the correct data is written in to the register file.

SRAMs

Registers and register files provide the basic building block for small memo
ries, but larger amounts of memory are built using either SRAMs (static ran
dom access memories) or DRAMs (dynamic random access memories). In this
section, we discuss SRAMs, which are somewhat simpler, while the next sec
tion discusses DRAMs. SRAMs are simply integrated circuits that are mem
ory arrays with (usually) a single access port that can provide either a read or
a write. SRAMs have a fixed access time to any datum, though the read and
write access characteristics often differ.

A SRAM chip has a specific configuration in terms of the number of ad
dressable locations, as well as the width of each addressable location. For ex
ample, a 256Kxl SRAM provides 256K entries, each of which is 1 bit wide.
Thus, it will have 18 address lines (since 256K = 21 8), a single data output line,
and a single data input line. A 32Kx8 SRAM has the same total number of bits,
but will have 15 address lines to address 32K entries each of which holds an 8-
bit wide datum; thus there are 8 data output and 8 data input lines. As with
ROMs, the number of addressable locations is often called the height, with the
number of bits per unit called the width. For a variety of technical reasons, the

B·28 Appendix B The Basics of Logic Design

15
Address

Chip select
Output enable SRAM Dout[7-0] 32K x 8

Write enable

8
Din[7-0]

FIGURE B.21 A 32Kx8 SRAM showing the 15 address (32K = 2
15

) and 8 data inputs, the
three control lines, and the 8 data outputs.

newest and fastest SRAMs are typically available in narrow configurations: xl
and x4. Figure B.21 shows the input and output signals for a 32Kx8 SRAM.

To initiate a read or write access, the Chip select signal must be made ac
tive. For reads, we must also activate the Output enable signal that controls
whether or not the datum selected by the address is actually driven on the
pins. The Output enable is useful for connecting multiple memories to a sin
gle-output bus and using Output enable to determine which memory drives
the bus. The SRAM read access time is usually specified as the delay from the
time that Output enable is true and the address lines are valid until the time
that the data is on the output lines. Typical read access times for SRAMs in
1993 vary from about 8 ns for the fastest CMOS parts to 35 ns parts, which,
while slower, are usually cheaper and often denser. The largest SRAMs avail
able in 1993 have over 1 million bits of data.

For writes, we must supply the data to be written and the address, as well
as signals to cause the write to occur. When both the Write enable and Chip
select are true, the data on the data input lines is written into the cell specified
by the address. There are set-up-time and hold-time requirements for the ad
dress and data lines, just as there were for D flip-flops and latches. In addition,
the Write enable signal is not a clock edge but a pulse with a minimum width
requirement. The time to complete a write is specified by the combination of
the set-up times, the hold times, and the Write enable pulse width.

Large SRAMs cannot be built in the same way we build a register file, be
cause unlike a register file where a 32-to-1 multiplexor might be practical, the
64K to 1 multiplexor that would be needed for a 64Kxl SRAM is totally im
practical. Rather than use a giant multiplexor, large memories are implement
ed with a shared output line, called a bit line, which multiple memory cells in
the memory array can assert. To allow multiple sources to drive a single line,
a three-state buffer (or tri-state buffer) is used. A three-state buffer has two
inputs: a data signal and an Output enable. The single output from a three-

B.5 Memory Elements B·29

Select O

Data O
Out

Select 1

Out
Data 1

Select 2 Output

Data 2
Out

Select 3 Enable

Data 3
Out

FIGURE B.22 Four three-state buffers are used to form a multiplexor. Only one of the four
Select inputs can be asserted. A three-state buffer with a deasserted Output enable, has a high
impedance output that allows a three-state buffer whose Output enable is asserted to drive the
shared output line.

state buffer is equal to the asserted or deasserted input signal if the Output en
able is asserted, and is otherwise in a high-impedance state that allows another
three-state buffer whose Output enable is asserted to determine the value of a
shared output. Figure B.22 shows a set of three-state buffers wired to form a
multiplexor with a decoded input. It is critical that the Output enable of at
most one of the three-state buffers be asserted; otherwise, the three-state buff
ers may try to set the output line differently. By using three-state buffers in the
individual cells of the SRAM, each cell that corresponds to a particular output
can share the same output line. The use of a set of distributed three-state buff
ers is a more efficient implementation than a large centralized multiplexor.
The three-state buffers are incorporated into the flip-flops that form the basic
cells of the SRAM. Figure B.23 shows how a small 4x2 SRAM might be built,
using D latches with an input called Enable that controls the three-state out
put.

The design in Figure B.23 eliminates the need for an enormous multiplexor;
however, it still requires a very large decoder and a correspondingly large
number of word lines. For example, in a 16Kx8 SRAM, we would need a 14-to-
16K decoder and 16K word lines (which are the lines used to enable the indi
vidual flip-flops) ! To circumvent this problem, large memories are organized
as rectangular arrays and use a two-step decoding process. Figure B.24 shows

B-30 Appendix B The Basics of Logic Design

Din[1] Din[O]

D D D D
Write enable - c latch o -• - c latch Q -

r Enable l Enable
0 L - -

v '
2-to-4 D D D D

decoder - c latch o -• - c latch Q -' l Enable l Enable
1 L v '

Address
D D

-- D D
- c latch o -• - c latch Q �--o l Enable l Enable

2 -
L v '

D D D D
- c latch o -• - c latch Q ----<

r Enable l Enable
3 T - - -

�u
Dout[1] Dout[O]

FIGURE B.23 The basic structure of a 4x2 SRAM consists of a decoder that selects which pair of cells to acti·
vate. The activated cells use a three-state output connected to the vertical bit lines that supply the requested data. The
address that selects the cell is sent on one of a set of vertical address lines, called the word lines. For simplicity, the Output
Enable and Chip Select signals have been omitted, but they could easily be added with a few AND gates.

how a 32Kx8 SRAM might be organized using a two-step decode. As we will
see, the two-level decoding process is quite important in understanding how
DRAMs operate.

DRAMs

In a Static RAM (SRAM) the value stored in a cell is kept on a pair of inverting
gates, and as long as power is applied the value can be kept indefinitely. In a
Dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a

Address
[14-6]

B.5 Memory Elements 8·31

9-to-512
decoder 512

512 x 64 512 x 64 512 x 64 512 x 64 512 x 64 512 x 64 512 x 64 512 x 64
SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Dout7 Dout6 Dout5 Dout4 Dout3 Dout2 Dout2 Dout1

FIGURE B.24 Typical organization of a 32Kx8 SRAM as an array of 512x64 arrays. The first decoder generates the
addresses for 8 512x64 arrays; then a set of multiplexors is used to select one bit from each 64-bit-wide array. This is a much
easier design than a single-level decode that would need either an enormous decoder (15 to 32K) or a gigantic multiplexor
(32K to 1) .

capacitor. A single transistor is then used to access this stored charge, either to
read the value or to overwrite the charge stored there. Because DRAMs use
only a single transistor per bit of storage, they are much denser and cheaper
per bit. By comparison, SRAMs require four to six transistors per bit. In
DRAMs, the charge is stored on a capacitor, so it cannot be kept indefinitely
and must periodically be refreshed. That is why this memory structure is called
dynamic, as opposed to the static storage in an SRAM cell. To refresh the cell,
we merely read its contents and write it back. The charge can be kept for sev
eral milliseconds, which might correspond to close to a million clock cycles.
Today, single-chip memory controllers often handle the refresh function inde
pendently of the processor. If every bit had to be read out of the DRAM and
then be written back individually, with large DRAMs containing multiple
megabytes, we would constantly be refreshing the DRAM, leaving no time
for accessing it. Fortunately, DRAMs also use a two-level decoding structure
and this allows us to refresh an entire row (which shares a word line) with a
read cycle followed immediately by a write cycle. Typically, refresh opera
tions consume 1 to 2% of the active cycles of the DRAM, leaving the remain
ing 98% to 99% of the cycles available for reading and writing data.

B·32 Appendix B The Basics of Logic Design

Word l ine

Capacitor

V
Bit l ine

FIGURE B.25 A 1-transistor DRAM cell contains a capacitor that stores the cell contents
and a transistor used to access the cell.

F:b'llh1'llr:111ti1'n� How does a DRAM read and write the signal stored in a cel l? The tran
sistor inside the cell is a switch , cal led a pass transistor, that al lows the value stored
on the capacitor to be accessed either for reading or writing. Figure B.25 shows how
the single-transistor cell looks. The pass transistor acts l i ke a switch: when the signal
on the word l ine is asserted , the switch is open, connecting the capacitor to the bit
l i ne . If the operation is a write, then the value to be written is placed on the bit line. If
the value is a 1, the capacitor wil l be charged. If the value is a 0, then the capacitor wi l l
be d ischarged. Reading is sl ightly more complex, since the DRAM must detect a very
smal l charge stored in the capacitor. Before activating the word l ine for a read, the bit
l ine is charged to the voltage that is halfway between the low and high voltage. Then, by
activating the word l ine, the charge on the capacitor is read out onto the bit l ine. This
causes the bit l i ne to move sl ightly towards the high or low d i rection, and this change is
detected with a sense ampl ifier, which can detect small changes in voltage.

DRAMs use a two-level decoder, as shown in Figure B.26, consisting of a
row access, followed by a column access. The row access chooses one of a number
of rows and activates the corresponding word line. The contents of all the col
umns in the active row are then stored in a set of latches. The column access
then selects the data from the column latches. To save pins and reduce the
package cost, the same address lines are used for both the row and column ad
dress; a pair of signals called RAS (Row Access Strobe) and CAS (Column Ac
cess Strobe) are used to signal the DRAM that either a row or column address
is being supplied. Refresh is performed by simply reading the columns into
the column latches and then writing the same values back. Thus an entire row
is refreshed in one cycle. The two-level addressing scheme, combined with the
internal circuitry, make DRAM access times much longer (by a factor of 5 to
10) than SRAM access times. In 1993, typical DRAM access times range from
70 to 120 ns. The much lower cost per bit makes DRAM the choice for main
memory, while the faster access time makes SRAM the choice for caches.

B.5 Memory Elements

Row
decoder

11-to-2048

Address[10-0] --------.

2048 x 2048
array

Column latches

Mux

Dout

B-33

FIGURE B.26 A 4Mx1 DRAM is built with a 2048x2048 array. The row access uses 11 bits to
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from
these 2048 latches. The RAS and CAS signals control whether the address lines are sent to the row
decoder or column multiplexor.

You might observe that a 4Mxl DRAM actually accesses 2048 bits on every
row access and then throws away 2047 of those during a column access.
DRAM designers have used the internal structure of the DRAM as a way to
provide higher bandwidth out of a DRAM. This is done by allowing the col
umn address to change without changing the row address, resulting in an ac
cess to other bits in the column latches. Page-mode and static-column-mode
RAMs both provide the ability to change access multiple bits out of a row by
changing the column address only. (The difference is whether CAS must also
be reasserted or not.) Nibble-mode RAMs internally generate the next three col
umn addresses, thus providing four bits (called a nibble) for every row access.
As we demonstrated in Chapter 7, these modes can be used to boost the band
width available out of main memory to match the needs of the processor and
caches.

Error Correction

Because of the potential for data corruption in large memories, most com
puter systems use some sort of error-checking code to detect possible corrup
tion of data. One simple code that is heavily used is a parity code. In a parity
code the number of ls in a word is counted; the word has odd parity if the

B·34 Appendix B The Basics of Logic Design

number of ls is odd and even otherwise. When a word is written into mem
ory, the parity bit is also written (1 for odd, 0 for even). Then, when the word
is read out, the parity bit is read and checked. If the parity of the memory
word and the stored parity bit do not match, an error has occurred. A one-bit
parity scheme can detect at most one bit of error in a data item; if there are
two bits of error, then a 1-bit parity scheme will not detect any errors, since
the parity will match the data with two errors. (Actually, a 1-bit parity scheme
can detect any odd number of errors; however, the probability of having three
errors is much lower than the probability of having two, so, in practice, a 1-bit
parity code is limited to detecting a single bit of error.) Of course, a parity
code cannot tell which bit in a data item is in error.

A 1-bit parity scheme is an error-detecting code; there are also error-correct
ing codes (ECC) that will detect and allow correction of an error. For large main
memories, many systems use a code that allows the detection of up to 2 bits of
error and the correction of a single bit of error. These codes work by using
more bits to encode the data; for example, the typical codes used for main
memories require 7 or 8 bits for every 128 bits of data.

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look at
the data plus the parity bit, no 1-bit change is sufficient to generate another legal com
bination of the data plus parity. For example, if we change a bit in the data, the parity
wi l l be wrong, and vice versa. Of course, if we change 2 bits (any two data bits or one
data bit and the parity bit), the parity wi l l match the data and the error cannot be
detected. Hence, there is a distance of two between legal combinations of parity and
data.

To detect more than one error or correct an error we need a distance-3 code, which
has the property that any legal combination of the bits in the error correction code and
the data have at least 3 bits differing from any other combination. Suppose we have
such a code and we have one error in the data. In that case the code plus data wi l l be
1 bit away from a legal combination and we can correct the data to that legal combina
tion. If we have two errors, we can recognize that there is an error, but we cannot cor
rect the errors. Let's look at an example. Here are the data words and a d istance-3
error correction code for a 4-bit data item.

Data Code bits Data Code bits ��������-������� ��������

0000 000 1000 111

0001 011 1001 100

0010 101 1010 010

0011 110 1011 001

0100 110 1100 001

0101 101 1101 010

0110 011 1110 100

0111 000 1111 111

B.6 Finite State Machines B-35

To see how this works, let 's choose a data word , say 0110, whose error correction
code is 011. Here are the four 1-bit error possibi l ities for this data: 1110, 0010,
0100 , and 0111. Now look at the data item with the same code (011), which is the
entry with the value 0001. If the error correction decoder received one of the four pos
sible data words with an error, it would have to choose between correcting to 0110 or
0001. While these four words with error have only 1 bit changed from the correct pat
tern of 0110, they each have 2 bits that are different from the alternate correction of
0001. Hence the error correction mechanism can easily choose to correct to 0110,
s ince a s ingle error is much lower probabil ity. To see that two errors can be detected,
s imply notice that al l the combinations with 2 bits changed have a d ifferent code. The
one re-use of the same code is with 3 bits different, but if we correct a 2-bit error, we
wi l l correct to the wrong value, since the decoder wi l l assume that on ly a single error
has occurred . If we want to correct 1-bit errors and detect, but not erroneously correct,
2-bit errors, we need a d istance-4 code .

Although we d istingu ished between the code and data in our explanation, in truth,
an error correction code treats the combination of code and data as a s ingle word in a
larger code (7 bits in this example). Thus it deals with errors in the code bits in the
same fashion as errors in the data bits.

While the above example requ ires n - 1 bits for n bits of data, the number of bits
requ i red grows slowly, so that for a d istance-3 code, a 64-bit word needs 7 bits and a
128-bit word needs 8. This type of code is cal led a Hamming code, after R. Hamming,
who described a method for creating such codes.

• Finite State Machines

As we saw earlier, digital logic systems can be classified as combinational or
sequential. Sequential systems contain state stored in memory elements inter
nal to the system. Their behavior depends both on the set of inputs supplied
and on the contents of the internal memory, or state of the system. Thus a
sequential system cannot be described with a truth table. Instead, a sequential
system is described as a finite state machine (or often just state machine). A finite
state machine has a set of states and two functions called the next-state func
tion and the output function. The set of states correspond to all the possible val
ues of the internal storage. Thus, if there are n bits of storage, there are 2n
states. The next-state function is a combinational function that, given the
inputs and the current state, determines the next state of the system. The out
put function produces a set of outputs from the current state and the inputs.
Figure B.27 shows this diagrammatically.

The state machines we discuss here and in Chapter 5 are synchronous. This
means that the state changes together with the clock cycle and a new state is
computed once every clock. Thus, the state elements are updated only on the

B-36 Appendix B The Basics of Logic Design

Clock
Inputs -+----------+-..

Output
function

Next
state

1-----+ .. Outputs

FIGURE B.27 A state machine consists of internal storage that contains the state and two combinational
functions: the next-state function and the output function. Often, the output function is restricted to take only the
current state as its input; this does not change the capability of a sequential machine, but does affect its internals.

clock edge. We use this methodology in this section and throughout Chapters
5 and 6, and we do not usually show the clock explicitly. We use state ma
chines throughout Chapters 5 and 6 to control the execution of the processor
and the actions of the datapath.

To illustrate how a finite state machine operates and is designed, let's look
at a simple and classic example: controlling a traffic light. (Chapters 5 and 6
contain more detailed examples of using finite state machines to control pro
cessor execution.) When a finite state machine is used as a controller, the out
put function is often restricted to depend on just the current state. Such a finite
state machine is called a Moore machine. This is the type of finite state machine
we use throughout this book. If the output function can depend on both the
next state and the current input, the machine is called a Mealy machine. These
two machines are equivalent in their capabilities and one can be turned into
the other mechanically.

Our example concerns the control of a traffic light at an intersection of a
north-south bound route and an east-west route. For simplicity, we will con
sider only the green and red lights; adding the yellow light is left for an exer
cise. We want the lights to cycle no faster than 30 seconds in each direction, so
we will use a 0.033-Hz clock so that the machine cycles between states at no
faster than once every 30 seconds. There are two output signals.

• NSlite: When this signal is asserted, the light on the north-south road is
green; when this signal is deasserted the light on the north-south road
is red.

B.6 Finite State Machines B·37

• EWlite: When this signal is asserted, the light on the east-west road is
green; when this signal is deasserted the light on the east-west road
is red.

In addition, there are two inputs: NScar and EWcar.

• NScar: Indicates that a car is over the detector placed in the roadbed in
front of the light on the north-south road (going north or south).

• EWcar: Indicates that a car is over the detector placed in the roadbed in
front of the light on the east-west road (going east or west).

The traffic light should change from one direction to the other only if a car is
waiting to go in the other direction; otherwise, the light should continue to
show green in the same direction as the last car that crossed the intersection.

To implement this simple traffic light we need two states.

• NS green: the traffic light is green in the north-south direction.

• EWgreen: the traffic light is green in the east-west direction.

We also need to create the next-state function, which can be specified with a
table.

Notice that we didn't specify in the algorithm what happens when a car
approaches from both directions. In this case, the next-state function given
above changes the state to ensure that a steady stream of cars from one direc
tion cannot lock out a car in the other direction.

The finite state machine is completed by specifying the output function.

B-38 Appendix B The Basics of Logic Design

EWcar

FIGURE B.28 The graphical representation of the two-state traffic light controller. We sim

plified the logic functions on the state transitions. For example, the transition from NSgreen to

EWgreen in the next state table is (NScar · EWcar) + (NScar · EWcar) , which is equivalent

to EWcar.

Before we examine how to implement this finite state machine, lets look at
a graphical representation, which is often used for finite state machines. In this
representation, nodes are used to indicate states. Inside the node we place a list
of the outputs that are active for that state. Directed arcs are used to show the
next-state function, with labels on the arcs specifying the input condition as
logic functions. The graphical representation for this finite state machine is
shown in Figure B.28.

A finite state machine can be implemented, with a register to hold the cur
rent state and a block of combinational logic that computes the next-state func
tion and the output function. Figure B.29 shows how a finite state machine
with four bits of state and, thus, up to 16 states, might look. To implement the
finite state machine in this way, we must first assign state numbers to the
states. This process is called state assignment. For example, we could assign NS
green to state 0 and EWgreen to state 1 . The state register would contain a sin
gle bit. The next-state function would be given as

NextState = (CurrentState · EWcar) + (CurrentState · NScar)

where CurrentState is the contents of the state register (0 or 1) and NextState
is the output of the next-state function that will be written into the state regis
ter at the end of the clock cycle. The output function is also simple:

NSlite = CurrentState

EWlite = CurrentState

B. 7 Timing Methodologies

Combinational logic

'-.,.----'
Inputs

B-39

1---- } Outputs

Next state

FIGURE B.29 A finite state machine Is Implemented with a state register that holds the
current state and a comblnatlonal loglc block to compute the next state and output func
tions. The latter two functions are often split apart and implemented with two separate blocks of
logic, which may require fewer gates.

The combinational logic block is often implemented using structured logic,
such as a PLA. A PLA can be constructed automatically from the next-state
and output-function tables. In fact, there are computer-aided-design (CAD)
programs that take either a graphical or textual representation of a finite state
machine and produce an optimized implementation automatically. In Chap
ters 5 and 6, finite state machines were used to control processor execution.
Appendix C will discuss the detailed implementation of these controllers
with both PLAs and ROMs. II Timing Methodologles

Throughout this appendix and in the rest of the text we use an edge-triggered
timing methodology. This timing methodology has the advantage that it is
simpler to explain and understand than a level-triggered methodology. In this
section we explain this timing methodology in a little more detail and also
introduce level-sensitive clocking. We conclude this section by briefly discuss
ing the issue of asynchronous signals and synchronizers, an important prob
lem for digital designers.

The purpose of this section is to introduce the major concepts in clocking
methodology. The section makes some important simplifying assumptions;

B-40

_J

Appendix B The Basics of Logic Design

D Q t-------F
Fl i p-flop

c

tcombinational

------1 0 Q

tsetup

Fl i p-flop

c

FIGURE B.30 In an edge-triggered design the clock must be long enough to allow signals to be valid for the
required set-up time before the next clock edge. The time for a flip-flop input to propagate to the flip-flip outputs is
tprop; the signal then takes tcombinational to travel through the combinational logic and must be valid tsetup before the next
clock edge.

the reader interested in understanding timing methodology in more detail
should look at one of the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to ex
plain and has fewer rules required for correctness. In particular, if we assume
that all clocks arrive at the same time, we are guaranteed that a system with
edge-triggered registers between blocks of combinational logic can operate
correctly without races, if we simply make the clock long enough. A race oc
curs when the contents of a state element depend on the relative speed of dif
ferent logic elements. In an edge-triggered design, the clock cycle must be long
enough to accommodate the path from one flip-flop through the combination
al logic to another flip-flop where it must satisfy the set-up time requirement.
Figure B.30 shows this requirement for a system using rising-edge triggered
flip-flops. In such a system the clock period (or cycle time) must be at least as
large as

t prop + t combinatorial + t
setup

for the worst case values of these three delays. The simplifying assumption is
that the hold-time requirements are satisfied. Satisfying the hold-time
requirements in most designs is not a problem, since the propagation time
(tprop) is always larger than the hold time for a flip-flop.

One additional complication that must be considered in edge-triggered de
signs is clock skew. Clock skew is the difference in absolute time between when
two state elements see a clock edge. Clock skew arises because the clock signal
will often use two different paths, with slightly different delays, to reach two

B. 7 Timing Methodologies

Clock arrives

at time T

D

Fl ip-flop

c Clock arrives

after T + Ll

Q
Fl ip-flop

c

B-41

FIGURE B.31 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the differ
ence in when the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward and change the
input to the second flip-flop before the clock arrives at the second flip-flop.

different state elements. If the clock skew is large enough, it may be possible
for a state element to change and cause the input to another flip-flop to change
before the clock edge is seen by the second flip-flop. Figure B.31 illustrates this
problem, ignoring set-up time and flip-flop propagation delay. To avoid incor
rect operation the clock period is increased to allow for the maximum clock
skew. Thus, the clock period must be longer than

t
prop

+ t
combinatorial + f

setup + tskew ·

With this constraint on the clock period, the two clocks can also arrive in the
opposite order, with the second clock arriving t

skew earlier, and the circuit
will work correctly. Designers reduce clock skew problems by carefully rout
ing the clock signal to minimize the difference in arrival times. In addition,
smart designers also provide some margin by making the clock a little longer
than the minimum; this allows for variation in components as well in the
power supply. Since clock skew can also affect the hold-time requirements,
minimizing the size of the clock skew is important.

Edge-triggered designs have two drawbacks: they require extra logic and
they may sometimes be slower. Just looking at the D flip-flop versus the level
sensitive latch that we used to construct the flip-flop shows that edge-trig
gered design requires more logic. An alternative is to use level-sensitive clock
ing. Because state changes in a level-sensitive methodology are not
instantaneous, a level-sensitive scheme is slightly more complex and requires
additional care to make it operate correctly.

Level-Sensitive Timing

In a level-sensitive timing methodology, the state changes occur at either high
or low levels, but they are not instantaneous as they are in an edge-triggered
methodology. Because of the noninstantaneous change in state, races can eas
ily occur. To ensure that a level-sensitive design will also work correctly if the
clock is slow enough, designers use two-phase clocking, which makes use of

B-42

<1>1

D
Latch

c

Q

Appendix B The Basics of Logic Design

<1>1 I I L_
<1>2 1 t I

Nonoverlapping
periods

FIGURE B.32 A two-phase clocking scheme showing the cycle of each clock and the non·
overlapping periods.

<1>2
Latch

c

Q

<Pl
Latch

c

FIGURE B.33 A two-phase timing scheme with alternating latches showing how the system operates on both
clock phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of combinational
inputs has a stable input during <jl2 and its output is latched by <Jlz. The second (rightmost) combinational block operates in
just the opposite fashion with stable inputs during <jl2. Thus the delays through the combinational blocks determine the
minimum time that the respective clocks must be asserted. The size of the nonoverlapping period is determined by the
maximum clock skew and the minimum delay of any logic block.

two nonoverlapping clocks. The clocks, typically called <jl1 and <jl2, are con
structed so that at most one of the clock signals is high at any given time, as
shown in Figure B.32. We can use these two clocks to build a system that has
level sensitive latches and is free from any race conditions, just as the edge
triggered designs were.

One simple way to design such a system is to alternate the use of latches
that are open on <jl1 with latches that are open on <jl2. Because both clocks are
not asserted at the same time, a race cannot occur. If the input to a combina
tional block is a <jl1 clock, then its output is latched by a <jl2 clock, which is open
only during <jl2 when the input latch is closed and hence has a valid output. Fig
ure B.33 shows how a system with two-phase timing and alternating latches
operates. As in an edge-triggered design, we must pay attention to clock skew,
particularly between the two clock phases. By increasing the amount of non
overlap between the two phases, we can reduce the potential margin of error.
Thus the system is guaranteed to operate correctly if each phase is long
enough and there is large enough nonoverlap between the phases.

B. 7 Timing Methodologies

Asynchronous i nput D Q
Fl i p-flop

Clock C

B-43

Synchronous output

FIGURE B.34 A synchronizer build from a D flip-flop is used to sample an asynchronous
signal to produce an output that is synchronous with the clock. This "synchronizer" will
not work properly'

Asynchronous Inputs and Synchronizers

By using a single clock or a two-phase clock, we can eliminate race condi
tions, if clock skew problems are avoided. Unfortunately, it is impractical to
make an entire system function with a single clock and still keep the clock
skew small. While the CPU may use a single clock, 1/0 devices will probably
have their own clock. In Chapter 8, we showed how an asynchronous device
may communicate with the CPU through a series of handshaking steps. To
translate the asynchronous input to a synchronous signal that can be used to
change the state of a system, we need to use a synchronizer, whose inputs are
the asynchronous signal and a clock and whose output is a signal synchro
nous with the input clock.

Our first attempt to build a synchronizer uses an edge-triggered D flip-flop,
whose D input is the asynchronous signal, as shown in Figure B.34. Because
we communicate with a handshaking protocol (as we will see in Chapter 8), it
does not matter whether we detect the asserted state of the asynchronous sig
nal on one clock or the next, since the signal will be held asserted until it is ac
knowledged. Thus, you might think that this simple structure is enough to
sample the signal accurately, which would be the case except for one small
problem.

The problem is a situation called metastability. Suppose the asynchronous
signal is transitioning between high and low when the clock edge arrives.
Clearly, it is not possible to know whether the signal will be latched as high or
low. That problem we could live with. Unfortunately, the situation is
worse: when the signal that is sampled is not stable for the required set-up
and hold times, the flip-flop may go into a metastable state. In such a state, the
output will not have a legitimate high or low value, but will be in the indeter
minate region between them. Furthermore, the flip-flop is not guaranteed to
exit this state in any bounded amount of time. Some logic blocks that look at
the output of the flip-flop may see its output as 0, while other may see it as 1 .
This situation is called a synchronizer failure. In a purely synchronous system,
synchronizer failure can be avoided by ensuring that the set-up and hold times
for a flip-flop or latch are always met, but this is impossible when the input is
asynchronous. Instead, the only solution possible is to wait long enough be
fore looking at the output of the flip-flop to ensure that its output is stable, and

B-44 Appendix B The Basics of Logic Design

Asynchronous i nput __ ___, D Q i-----< D Q
Fl i p-flop

Clock __ ___, C

Fl ip-flop

c

Synchronous output

FIGURE B.35 This synchronizer will work correctly if the period of metastability that we
wish to guard against is less than the clock period. Although the output of the first flip-flop
will may be metastable, it will not be seen by any other logic element until the second clock,
when the second D flip-flop samples the signal, which by that time should no longer be in a
metastable state.

that it has exited the metastable state, if it ever entered it. How long is long
enough? Well, the probability that the flip-flop will stay in the metastable state
decreases exponentially, so after a very short time the probability that the flip
flop is in the metastable state is very low; however, the probability never
reaches O! So designers wait long enough that the probability of a synchronizer
failure is very low, and the time between such failures will be years or even
thousands of years. For most flip-flop designs, waiting for a period that is sev
eral times longer than the set-up time makes the probability of synchroniza
tion failure very low. If the clock rate is longer than the potential metastability
period (which is likely), then a safe synchronizer can be built with two D flip
flops, as shown in Figure B.35. The reader interested in reading more about
these problems should look into the references.

To Probe Further

There are a number of good texts on logic design. Here are some you might
like to look into.

Katz, Randy H. [1993]. Modern Logic Design. Benjamin/Cummings, Redwood City.

A general text on logic design.

McCluskey, E. J . [1986]. Logic Design Principles. Prentice Hall, Englewood Cliffs, New Jersey.

Contains extensive discussions of hazards, optimization principles, and testability.

Mead, C., and L. Conway [1980]. Introduction to VLSI Ssystems. Addison-Wesley, New York.

Discusses the design of VLSI systems using nMOS technology.

Proser, F. P., and 0. E. Winkel [1987]. The Art of Digital Design. 2nd edition. Prentice Hall, Engle
wood Cliffs, New Jersey.

A general text on logic design.

Wakerly, J. F. [1990]. Digital Design: Principles and Practices. Prentice Hall, Englewood Cliffs, New
Jersey.

A general text on logic design.

B.8 Exercises B-45

II Exercises

B.1 [10] <§B.2> Show that there are 2n entries in a truth table for a function
with n inputs.

B.2 [10] <§B.2> One logic function that is used for a variety of purposes (in
cluding within adders and to compute parity) is exclusive-or. The output of a
two-input exclusive-or function is true only if exactly one of the inputs is true.
Show the truth table for a two-input exclusive OR function and implement this
function using AND gates, OR gates, and inverters.

B.3 [10] <§B.2, B.5> Construct the truth table for a four-input even-parity
function (see page B-33 for a description of parity).

B.4 [10] <§B.2, B.5> Implement the four-input even-parity function with AND
and OR gates using bubbled inputs and outputs.

B.5 [10] <§B.2, B.3, B.5> Implement the four-input even-parity function with
a PLA.

In More Depth

In addition to the basic laws we discussed on pages B-5 and B-6, there are two
important theorems, called DeMorgan's theorems, which are

A + B = A · B and A · B = A + B

B.6 [10] <§B.2> Prove DeMorgan's theorems with a truth table of the form:

A B A B A · B i + i A+i A · B

0 0

0 1

1 0

1 1

B. 7 [15] <§B.2> Prove that the two equations for E in the example starting on
B-6 are equivalent by using DeMorgan's theorems and the axioms shown on
page B-6.

B.8 [15] <§B.2-B.3> Derive the product of sums representation for E shown
on B-10 starting with the sum-of-products representation. You will need to use
DeMorgan's theorems.

B.9 [30] <§B.2-B.3> Give an algorithm for constructing the sum-of-products
representation for an arbitrary logic equation consisting of AND, OR, and

B-46 Appendix B The Basics of Logic Design

NOT. The algorithm should be recursive and should not construct the truth ta
ble in the process.

B.10 [15] <§B.2> Prove that the NOR gate is universal by showing how to
build the AND, OR, and NOT functions using a two-input NOR gate.

B.11 [15] <§B.2> Prove that the NANO gate is universal by showing how to
build the AND, OR, and NOT functions using a two-input NANO gate.

B.12 [15] <§B.2, B.3> Prove that a two-input multiplexor is also universal by
showing how to build the AND, OR, and NOT functions using a multiplexor.

B.13 [15] <§B.2, B.5> Construct a 3-bit counter using three D flip-flops and a
selection of gates. The inputs should consist of a signal that resets the counter
to 0, called reset, and a signal to increment the counter, called inc. The outputs
should be the value of the counter. When the counter has value 7 and is incre
mented, it should wrap around and become 0.

B.14 [20] <§B.3, B.5> A Gray code is a sequence of binary numbers with the
property that no more than one bit changes in going from one element of the
sequence to another. For example, here is a 3-bit binary Gray code: 000, 001 ,
01 1 , 010, 110, 1 11 , 101, and 100. Using three D flip-flops and a PLA, construct
a 3-bit Gray code counter that has two inputs: reset, which sets the counter to
000, and inc, which makes the counter go to the next value in the sequence.
Note that the code is cyclic, so that the value after 100 in the sequence is 000.

B.15 [25] <§B.2, B.6> We wish to add a yellow light to our traffic light exam
ple. We will do this by changing the clock to run at 0.25 Hz (a four-second
clock cycle time), which is the duration of a yellow light. To prevent the green
and red lights from cycling too fast, we add a 30-second timer. The timer has
a single input called Ti111erReset, which restarts the timer, and a single output,
called Ti111erSignal that indicates that the 30-second period has expired. Also,
we must redefine the traffic signals to include yellow. We do this by defining
two output signals for each light: green and yellow. If the output NSgreen is
asserted, the green light is on; if the output NSyellow is asserted, the yellow
light is on. If both signals are off, the red light is on. Do not assert both the green
and yellow signals at the same time, since American drivers will certainly be
confused, even if the European drivers understand what this means! Draw the
graphical representation for the finite state machine for this improved control
ler. Choose names for the states that are different from the names of the out
puts !

B.16 [15] <§B.6> Write down the next-state and output-function tables for the
traffic light controller described in Exercise B.15.

B.17 [15] <§B.2, B.6> Assign state numbers to the states in the traffic light ex
ample and use the tables of Exercise B.16 to write a set of logic equations for
each of the outputs, including the next-state outputs.

B.18 [15] <§B.3, B.6> Implement the logic equations of Exercise B.17 as a PLA.

A P P E N D I X

A custom format such as this
is slave to the architecture of

Mapping Control

to Hardware

the hardware and the instruction set
it serves. The format must strike
a proper compromise between ROM
size, ROM-output decoding,
circuitry size, and machine
execution rate.

Jim McKevit et. al.
8086 Design Report, Internal Memorandum, 1977

C.1 Introduction C-i

C.2 Implementing Finite State Machine Control C -4

C.3 Implementing the Next-State Function with a Sequencer C-15

C.4 Translating a Microprogram to Hardware C-23

C.5 Concluding Remarks C-27

C.6 Exercises C-28

Introduction

There are several different techniques for implementing the control unit. The
usefulness of these techniques depends on the complexity of the control, char
acteristics such as the average number of next states for any given state, and
the implementation technology.

The most straightforward way to implement the control function is with a
block of logic that takes as inputs the current state and the opcode field of the
Instruction register and produces as outputs the datapath-control signals and
the value of the next state. The initial representation may be either a finite state
diagram or a microprogram. In the latter case, each microinstruction repre
sents a state. In an implementation using a finite-state controller, the next-state
function will be computed with logic. Section C.2 constructs such an imple
mentation both for a ROM and a PLA.

An alternative method of implementation computes the next-state function
by using a counter that increments the current state to determine the next state.
When the next state doesn't follow sequentially, other logic is used to deter
mine the state. Section C.3 explores this type of implementation and shows
how it can be used for the finite-state control created in Chapter 5.

In Section C.4, we show how a microprogram representation of the control
is translated to control logic.

C-4 Appendix C Mapping Control to Hardware

• Implementing Finite State Machine Control

To implement the control as a finite state machine, we must first assign a
number to each of the 10 states; any state could use any number, but we will
use the sequential numbering for simplicity as we did in Chapter 5.
(Figure C.1 is a copy of the finite state diagram from Figure 5.47 on page 332,
reproduced for ease of access.) With 10 states we will need 4 bits to encode the
state number, and we call these state bits: S3, S2, Sl, SO. The current-state
number will be stored in a state register, as shown in Figure C.2. If the states
are assigned sequentially, state i is encoded using the state bits as the binary
number i. For example, state 6 is encoded as OllOtwo or S3 = 0, S2 = 1, Sl = 1,
SO = 0, which can also be written as

S3 · S2 · Sl · SO .

The control unit has outputs that specify the next state. These are written
into the state register on the clock edge and become the new state at the begin
ning of the next clock cycle following the active clock edge. We name these
outputs NS3, NS2, NSl, NSO. Once we have determined the number of inputs,
states, and outputs, we know what the basic outline of the control unit will
look like, as we show in Figure C.2.

The block labeled "control logic" in Figure C.2 is combinational logic. We
can think of it as a big table giving the value of the outputs in terms of the in
puts. The logic in this block implements the two different parts of the finite
state machine. One part is the logic that determines the setting of the datapath
control outputs, which depend only on the state bits. The other part of the con
trol logic implements the next-state function; these equations determine the
values of the next-state bits based on the current-state bits and the other inputs
(the 6-bit opcode) .

Figure C.3 shows the logic equations: the top portion showing the outputs,
and the bottom portion showing the next-state function. The values in this ta
ble were determined from the state diagram in Figure C.l . For each state in
which a control line is active an entry in the second column is made. Likewise,
the next state entries are made whenever one state is a successor to another. In
this table we use the abbreviation stateN to stand for current state N. Thus,
stateN is replaced by the term that encodes the state number N. We use
NextStateN to stand for the setting of the next-state outputs to N. This output
is implemented using the next-state outputs (NS). When NextStateN is active,
the bits NS[3-0] are set corresponding to the binary version of the value N. Of
course, since a given next-state bit is activated in multiple next states, the equa
tion for each state bit will be the OR of the terms that activate that signal. Like
wise, when we use a term such as (Op=' l w'), this corresponds to an AND of
the opcode inputs that specifies the encoding of the opcode l w in 6 bits, just as

C.2 Implementing Finite State Machine Control

0
MemRead

ALUSelA=O
lorD=O
IRWrite

ALUSelB=01
ALUOp=OO

PCWrite
PCSource=OO

FIGURE C.1 The finite state diagram that was developed in Chapter 5.

ALU0 p=01

PCWriteCond

PCSource=01

PCWrite

PCSource=10

C·S

C-6 Appendix C Mapping Control to Hardware

Control loglc

Inputs

Instruction register
opcode field

Outputs

State register

PCWrite
PCWriteCond
lorD
MemRead
MemWrite
IRWrite
MemtoRe
PC Source
Tar etWrite
ALU OP
ALUSelB
ALU Se IA
Re Write
Re Ost
NS3
NS2
NS1
NSO

FIGURE C.2 The control unit for MIPS will consist of some control logic and a register to
hold the state. The state register is written at the active clock edge and is stable during the clock
cycle.

we did for the simple control unit in Chapter 5 (see Figures 5.23 on page 296
and 5.30 on page 304). Translating the entries in Figure C.3 into logic equations
for the outputs is straightforward.

Example

C.2 Implementing Finite State Machine Control C-7

Output Current states Op

PCWrite stateO+state9

PCWriteCond states

lorD state3+state4+state5

MemRead stateO+state3+state4

MemWrite state5

I RWrite stateO

MemtoReg state4

PCSourcel state9

PCSourceO states

TargetWrite statel

ALUOpl state6+state 7

ALUOpO states

ALUSel81 state 1 +state2+state3+state4+state5

ALUSelBO stateO+statel

ALUSelA state2+state3+state4+state5+state6+state 7 +states

RegWrite state4+state 7

RegDst state?

NextStateO state4+state5+state7 +state8+state9

NextStatel stateO

NextState2 statel (Op=" iv ') + (Op= ' s w ')

NextState3 state2 (Op=· · 1·1 ')

NextState4 state3

NextState5 state2 (Op=' W ')

NextState6 statel (Op= 'R·type ')

NextState7 state6

NextStateS statel (Op= ':Jeq ')

NextState9 statel (Op= ' i "' ::J ')

FIGURE C.3 The logic equations for the control unit shown I n a shorthand form. Remem
ber that "+" stands for OR in logic equations. The state inputs and NextState entries outputs must
be expanded by using the state encoding. Any blank entry is a don't care.

Give the logic equation for the low-order next-state bit, NSO.

C-8 Appendix C Mapping Control to Hardware

The next-state bit NSO should be active whenever the next state has NSO =
1 in the state encoding. This is true for NextStatel, NextState3, NextStateS,
NextState7, and NextState9. The entries for these states in Figure C.3 supply
the conditions when these next-state values should be active. The equation
for each of these next states is given below. The first equation states that the
next state is 1, if the current state is O; the current state is 0 if each of the state
input bits is 0, which is what the rightmost product term indicates.

NextStatel = State 0 = S3 · S2 · Sl · SO
NextState3 = State2 · (Op[S-0] = 'LW')

- - - -- -- --

= S3 · S2 · Sl · SO · OpS · Op4 · Op3 · Op2 · Opl · OpO
NextStateS = State2 · (Op[S-0] = 'SW')

= S3 · S2 · Sl · SO · OpS · Op4 · Op3 · Op2 · Opl · OpO

NextState7 = State6 = S3 · S2 · Sl · SO
NextState9 = Statel · (Op[S-0] = 'MP')

= S3 · S2 · Sl · SO · OpS · Op4 · Op3 · Op2 · Opl · OpO

NSO is the logical sum of all these terms.

As we have seen, the control function can be expressed as a logic equation
for each output. This set of logic equations can be implemented in two ways:
corresponding to a complete truth table, or corresponding to a two-level logic
structure that allows a sparse encoding of the truth table. Before we look at
these implementations, let's look at the truth table for the complete control
function.

It is simplest if we break the control function defined in Figure C.3 into two
parts: the next-state outputs, which may depend on all the inputs, and the con
trol signal outputs, which depend only on the current-state bits. Figure C.4
shows the truth tables for all the datapath-control signals. Because these sig
nals actually depend only on the state bits, each of the entries in a table in
Figure C.4 actually represents 64 entries, with the 6 bits named Op having all
possible values; that is, the Op bits are don't-care bits in determining the data
path-control outputs. Figure C.S shows the truth table for the next-state bits
NS[3-0], which depend on the state input bits and the instruction bits, which
supply the opcode.

C.2 Implementing Finite State Machine Control C-9

m±m 1 0 0 1
�
b. Truth table for PCWriteCond.

0 1 0 1

0 1 0 0

a. Truth table for PCWrite. 0 1 0 1

0 0 1 1

c. Truth table for lorD.

0 0 0 0 � �
0 0 1 1 e. Truth table for MemWrite. f. Truth table for IRWrite.
0 1 0 0

d. Truth table for MemRead.

�
g. Truth table for MemtoReg. h. Truth table for PCSource1. i . Truth table for PCSourceO.

�
j. Truth table for TargetWrite. m±m 0 1 1 1

�
I. Truth table for ALUOpO.

k. Truth table for ALUOp1.

0 0 0 1

0 0 1 0 m±m 0 0 0 1

0 0 1 0

0 0 1 1

0 0 1 1 n. Truth table for ALUSelBO. 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

m. Truth table for ALUSelB1. 0 1 1 1

m±m 0 1 1 1
�

q. Truth table for RegDst.

1 0 0 0

o. Truth table for ALUSelA.

p. Truth table for RegWrite.

FIGURE C.4 The truth tables are shown for the 17 datapath-control signals that depend only on the current-state
Input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value
of the six Op bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case
of ALUSe!BO and IRWrite, these signals are both active only in state 0 (see tables b and 1) . These two signals could be
replaced by one signal. The same applies to PCWriteCond and ALUOpO. There are other opportunities for reducing the
logic needed to implement the control function by taking advantage of further similarities in the truth tables.

C-10 Appendix C Mapping Control to Hardware

A ROM Implementation

Probably the simplest way to implement the control function is to encode the
truth tables in a Read-Only Memory (ROM). The number of entries in the
memory for the truth tables of Figures C.4 and C.5 is equal to all possible val
ues of the inputs (the 6 opcode bits plus the 4 state bits), which is
2# mputs = 210 = 1024 . The inputs to the control unit become the address lines
for the ROM, which implements the control logic block that was shown in
Figure C.2 on page C-6. The width of each entry (or word in the memory) is
21 bits since there are 17 datapath-control outputs and 4 next-state bits. This
means the total size of the ROM is 210 x 21 = 21 Kbits .

The setting of the bits in a word in the ROM depends on which outputs are
active in that word. Before we look at the control words, we need to order the
bits within the control input (the address) and output words (the contents),
respectively. We will number the bits using the order in Figure C.2 on
page C-6, with the next-state bits being the low-order bits of the control word
and the current-state input bits being the low-order bits of the address. This
means that the PCWrite output will be the high-order bit (bit 20) of each mem
ory word and NSO will be the low-order bit. The high-order address bit will be
given by Op5, which is the first bit of the instruction, and the low-order ad
dress bit will be given by SO.

We can construct the ROM contents by building the entire truth table in a
form where each row corresponds to one of the 211 unique input combinations,
and a set of columns indicate which outputs are active for that input combina
tion. We don't have the space here to show all 1024 entries in the truth table.
However, by separating the datapath-control and next-state outputs we do,
since the datapath-control outputs depend only on the current state. The truth
table for the datapath-control outputs is shown in Figure C.6. We include only
the encodings of the state inputs that are in use (that is, values 0 through 9 cor
responding to the 10 states of the state machine)

The truth table in Figure C.6 directly gives the contents of the upper 17 bits
of each word in the ROM. The 4-bit input field gives the low-order four ad
dress bits of each word and the column gives the contents of the word at that
address.

The datapath-control signals depend only on the state input bits-the op
code inputs do not affect these outputs. If we did show a full truth table for the
datapath-control bits with both the state number and the opcode bits as inputs,
the opcode inputs would all be don't cares. When we construct the ROM, we
cannot have any don't cares, since the addresses into the ROM must be com
plete. Thus, the same datapath-control outputs will occur many times in the
ROM, since this part of the ROM is the same whenever the state bits are iden
tical, independent of the value of the opcode inputs.

C.2 Implementing Finite State Machine Control C-11

I

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated
from state 1 .

OpS Op4 OpJ Op2 Op1 OpO SJ S2 S1 so

0 0 0 0 0 0 0 0 0 1

1 0 1 0 1 1 0 0 1 0

x x x x x x 0 0 1 1

x x x x x x 0 1 1 0

b. The truth table for the NS2 output. which is active when the next state is 4, 5, 6, or 7. This
situation occurs when the current state is one of 1 , 2 , 3 , or 6.

OpS Op4 OpJ Op2 Op1 OpO SJ S2 S1 so

0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1

1 0 1 0 1 1 0 0 0 1

1 0 0 0 1 1 0 0 1 0

x x x x x x 0 1 1 0

c. The truth table for the NSl output. which is active when the next state is 2, 3, 6, or 7. The
next state is one of 2, 3. 6, or 7 only if the current state is one of 1, 2, or 6.

OpS Op4 OpJ Op2 Op1 OpO SJ S2 S1 so

x x x x x x 0 0 0 0

1 0 0 0 1 1 0 0 1 0

1 0 1 0 1 1 0 0 1 0

x x x x x x 0 1 1 0

0 0 0 0 1 0 0 0 0 1

d. The truth table for the NSO output, wh ich is active when the next state is 1, 3, 5, 7, or 9. This
happens only if the current state is one of 0, 1 , 2 . or 6.

FIGURE C.5 The four truth tables for the four next-state output bits (NS[3-0]). The next
state outputs depend on the value of Op[S-0), which is the opcode field, and the current state,
given by 5[3-0). The entries with 'X' are don't care terms. Each entry with a don't care term corre
sponds to two entries, one with that input at 0 and one with that input at 1. Thus an entry with n
don't care terms actually corresponds to 2'' truth table entries.

C·12

Example

Answer

Appendix C Mapping Control to Hardware

(lffiliIDB 0 ' umI!IJl2i'� D.�,,.��;��f,''!'. '(�;
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

PCWrite 1 0 0 0 0 0 0 0 0 1

PCWriteCond 0 0 0 0 0 0 0 0 1 0

lorD 0 0 0 1 1 1 0 0 0 0

MemRead 1 0 0 1 1 0 0 0 0 0

MemWrite 0 0 0 0 0 1 0 0 0 0

IRWrite 1 0 0 0 0 0 0 0 0 0

MemtoReg 0 0 0 0 1 0 0 0 0 0

PCSource1 0 0 0 0 0 0 0 0 0 1

PCSourceO 0 0 0 0 0 0 0 0 1 0

TargetWrite 0 1 0 0 0 0 0 0 0 0

ALUOp1 0 0 0 0 0 0 1 1 0 0

ALUOpO 0 0 0 0 0 0 0 0 1 0

ALUSelB1 0 1 1 1 1 1 0 0 0 0

ALU Se I BO 1 1 0 0 0 0 0 0 0 0

ALU Se IA 0 0 1 1 1 1 1 1 1 0

RegWrite 0 0 0 0 1 0 0 1 0 0

RegDst 0 0 0 0 0 0 0 1 0 0

FIGURE C.6 The truth table for the 17 datapath-control outputs, which depend only on
the state inputs. The values are determined from Figure C.4. Although there are 16 possible
values for the 4-bit state field, only 10 of these are used and are shown here. The 10 possible val
ues are shown at the top; each column shows the setting of the datapath-control outputs for the
state input value that appears at top of the column. For example, when the state inputs are 0011
(state 3), the active datapath-control outputs are IorD, MemRead, ALUSelBl, and ALUSelA.

For what ROM addresses will the bit corresponding to PCWrite, the high bit
of the control word, be 1?

PCWrite is high in states 0 and 9, this corresponds to addresses with the low
4-order bits being either 0 0 0 0 or 1 0 0 1 . The bit will be high in the memory
word independent of the inputs Op[S-0], so the addresses with the
bit high are 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 1 0 0 1 , 0 0 0 0 0 1 0000 , 0 0 0 0 0 1 1 0 0 1 , . . . ,

1 1 1 1 1 1 0 O 0 0, 1 1 1 1 1 1 1 0 0 1 . The general form of this is X X X X X X 0 0 0 0 or
X X X X X X 1 O O 1 , where X X X X X X is any combination of bits, and correspond to
the 6-bit opcode on which this output does not depend.

C.2 Implementing Finite State Machine Control C·13

lower 4 bits of the address Bits 2<>-4 of the word

0000 10010100000001000

0001 0000000001001 1000

0010 00000000000010100

0011 00110000000010100

0100 001100 10000010110

0101 00101000000010100

0110 00000000001000100

0111 00000000001000111

1000 01000000100100100

1001 10000001000000000

FIGURE C.7 The contents of the upper 17 bits of the ROM depend only on the state
inputs. These values are the same as those in Figure C.6, simply rotated 90°. This set of control
words would be duplicated 64 times for every possible value of the upper 6 bits of the address.

We will show the entire contents of the ROM in two parts to make it easier
to show. Figure C.7 shows the upper 17 bits of the control word; this comes di
rectly from Figure C.6. These datapath-control outputs depend only on the
state inputs, and this set of words would be duplicated 64 times in the full
ROM, as we discussed above. The entries corresponding to input values 1010
through 1 1 1 1 are not used and we do not care what they contain.

Figure C.8 shows the lower 4 bits of the control word corresponding to the
next-state outputs. The last column of the table in Figure C.8 corresponds to all
the possible values of the opcode that do not match the specified opcodes. In
state 0 the next state is always state 1, since the instruction was still being
fetched. After state 1, the opcode field must be valid. The table indicates this
by the entries marked illegal; we discuss how to deal with these illegal op
codes in section 5.6.

Not only is this representation as two separate tables a more compact way
to show the ROM contents, it is also a more efficient way to implement the
ROM. The majority of the outputs (17 of 21 bits) depend only on 4 of the 10 in
puts. The number of bits in total when the control is implemented as two sep
arate ROMs is 24 x 17 + 210 x 4 = 272 + 4096 = 4.3 Kbits, which is about one
fifth of the size of a single ROM, which requires 210 x 21 = 21 Kbits. There is
some overhead associated with any structured-logic block, but in this case the
additional overhead of an extra ROM would be much smaller than the savings.

Although this ROM encoding of the control function is simple, it is very
wasteful, even when divided into two pieces. For example, the values of the
Instruction register inputs are often not needed to determine the next state.
Thus the next-state ROM has many entries that are either duplicated or are

C-14 Appendix C Mapping Control to Hardware

0000 0001 0001 0001 0001 0001 0001

0001 0110 1001 1000 0010 0010 illegal

0010 xxxx xxxx xxxx 0011 0101 il legal

0011 0100 0100 0100 0100 0100 il legal

0100 0000 0000 0000 0000 0000 il legal

0101 0000 0000 0000 0000 0000 il legal

0110 0111 0111 0111 0111 0111 il legal

0111 0000 0000 0000 0000 0000 il legal

1000 0000 0000 0000 0000 0000 il legal

1001 0000 0000 0000 0000 0000 il legal

FIGURE C.8 This table contains the lower 4 bits of the control word (the NS outputs),
which depend on both the state Inputs, 5[3-0], and the opcode, Op [5-0], which corre
spond to the Instruction opcode. These values can be determined from Figure C.5. The opcode
name is shown under the encoding in the heading. The 4 bits of the control word whose address
is given by the current-state bits and Op bits are shown in each entry. For example, when the
state-input bits are 0 0 00, the output is always 0 0 0 1 , independent of the other inputs; when the
state is 2, the next state is don't care for three of the inputs, 3 for l w, and 5 for S W. Together with
the entries in Figure C.7, this table specifies the contents of the control unit ROM. For example,
the word at address 1 000 1 1 0 0 0 1 is obtained by finding the upper 17 bits in the table in
Figure C.7 using only the state input bits (0 0 0 1) and concatenating the lower 4 bits found by
using the entire address (0001 to find the row and 1 0 00 1 1 to find the column). The entry from
Figure C.7 yields 000000000 1 0 0 1 0000, while the appropriate entry in the table immediately
above is 0 0 1 0. Thus, the control word at address 1 00 0 1 1 0 0 0 1 is 0000000 0 0 1 0 0 1 00000010 .
The column labeled "any other value" applies only when the Op bits do match one of the speci
fied opcodes.

don't care. Consider the case when the machine is in state 0: There are 26 en
tries in the ROM (since the opcode field can have any value), and these entries
will all have the same contents (namely, the control word
1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0) . The reason that so much of the ROM is wasted is that
the ROM implements the complete truth table providing the opportunity to
have a different output for every combination of the inputs. But most combi
nations of the inputs either never happen or are redundant!

A PLA Implementation

We can reduce the amount of control storage required at the cost of using
more complex address decoding for the control inputs, which will encode
only the input combinations that are needed. The logic structure most often
used to do this is a programmed logic array (PLA), which we briefly mentioned

II

C.3 Implementing the Next-State Function with a Sequencer C·lS

earlier and illustrated in Figure 5.31 on page 305. In a PLA, each output is the
logical OR of one or more of minterms. A min term, also called a product term,
is simply a logical AND of one or more inputs. The inputs can be thought of
as the address for indexing the PLA, while the minterms select which of all
possible address combinations are interesting. A minterm corresponds to a
single entry in a truth table, such as those in Figure C.4 on page C-9, includ
ing possible don't care terms. Each output consists of an OR of these min
terms, which exactly corresponds to a complete truth table. However, unlike a
ROM, only those truth table entries that produce an active output are needed,
and only one copy of each minterm is required, even if the minterm contains
don't cares. Figure C.9 shows the PLA that implements this control function.

As we can see from the PLA in Figure C.9, there are 18 unique minterms-
10 that depend only on the current state and 8 others that depend on a combi
nation of the Op field and the current-state bits. The total size of the PLA is
proportional to (#inputs x #product terms) + (#outputs x #product terms),
as we can see symbolically from the figure. This means the total size of the PLA
in Figure C.9 is proportional to (10 x 18) + (21 x 18) = 558 . By comparison,
the size of a single ROM is proportional to 21Kbits, and even the two-part
ROM has a total of 4.3Kbits. Because the size of a PLA cell will be only slightly
larger than the size of a bit in a ROM, a PLA will be a much more efficient im
plementation for this control unit. Of course, just as we split the ROM in two,
we could split the PLA in two. This would yield one PLA whose size is pro
portional to (4 x 10) + (10 x 17) = 210 , and another PLA whose size is pro
portional to (10 x 8) + (4 x 8) = 112 . This would yield a total size
proportional to 312 PLA cells, about 55% of the size of a single PLA. This will
be considerably smaller than a two ROM implementation. The interested read
er should see Appendix B for more details on PLAs and their implementation.

Implementing the Next-State Function

with a Sequencer

Let's look carefully at the control unit we built in the last section. If you exam
ine the ROMs that implement the control in Figures C.7 and C.8, you can see
that much of the logic is used to specify the next-state function. In fact, for the
implementation using two separate ROMs, 4096 out of the 4368 bits (94%)
correspond to the next-state function! Furthermore, imagine what the control
logic would look like if the instruction set had many more different instruc
tion types, some of which required many clocks to implement. There would
be many more states in the finite state machine. In some states, we might be
branching to a large number of different states depending on the instruction
type (as we did in state 1 of the finite state machine in Figure C.1 on
page C-5). However, many of the states would proceed in a sequential
fashion, just as states 3 and 4 do in Figure C.l . For example, if we included

C·16 Appendix C Mapping Control to Hardware

Op5 _

Op4 �
Op3

Op2 �
Op1 �
OpO �
53 Y>
52 4>
5 1 �
so �

L-{)
PCWrite
PCWriteCon d
lorD
MemRead
MemWrite
IRWnte
MemtoReg
PC Sou reel
PCSourceO
TargetWrite
ALUOP1
ALUOPO
ALUSelB1
ALUSelBO
ALUSelA
RegWrite
RegDst
NS3
NS2
NS1
NSO

FIGURE C.9 This PLA Implements the control function logic for the multicycle implementation. The inputs to the
control appear on the left and the outputs on the right. The top half of the figure is the AND plane that computes all the
minterms. The minterms are carried to the OR plane on the vertical lines. Each colored dot corresponds to a signal that
makes up the minterm carried on that line. The sum terms are computed from these minterms with each grey dot repre
senting the presence of the intersecting minterm in that sum term. Each output consists of a single sum term.

C.3 Implementing the Next-State Function with a Sequencer C·17

floating point, we would see a sequence of many states in a row that imple
ment a multistep floating-point instruction. Alternatively, consider how the
control might look for a machine that can have multiple memory operands
per instruction. It would require many more states to fetch multiple memory
operands. The result of this would be that the control logic will be dominated
by the encoding of the next-state function. Furthermore, much of the logic
will be devoted to sequences of states with only one path through them that
look like states 2 through 4 in Figure C.l . With more instructions, these
sequences will consist of many more sequentially numbered states than for
our simple subset.

To encode these more complex control functions efficiently, we can use a
control unit that has a counter to supply the sequential next state. This often
eliminates the need to encode the next-state function explicitly in the control
unit. As shown in Figure C.10, an adder is used to increment the state, essen
tially turning it into a counter. The incremented state is always the state that
follows in numerical order. However, the finite state machine sometimes
"branches." For example, in state 1 of the finite state machine (see Figure C.1
on page C-5), there are four possible next states, only one of which is the se
quential next state. Thus, we need to be able to choose between the increment
ed state and a new state based on the inputs from the Instruction register and
the current state. Each control word will include control lines that will deter
mine how the next state is chosen.

Since each state in the finite state machine corresponds to a control word in
ROM or PLA, we can translate the finite state machine of Figure C.1 into a se
quence of control words. It is easy to implement the control output signal por
tion of the control word, since, if we use the same state numbers, this portion
of the control word will look exactly like the ROM contents shown in
Figure C.7 on page C-13. However, the method for selecting the next state dif
fers from the next-state function in the finite state machine.

With an explicit counter providing the sequential next state, the control
unit logic need only specify how to choose the state when it is not the sequen
tially following state. There are two methods for doing this. The first is a meth
od we have already seen, namely, the control unit explicitly encodes the next
state function. The difference is that the control unit need only set the next
state lines when the designated next state is not the state that the counter indi
cates. If the number of states is large and the next-state function that we need
to encode is mostly empty, this may not be a good choice, since the resulting
control unit will have lots of empty or redundant space. An alternative ap
proach is to use separate external logic to specify the next state, when the
counter does not specify the state. Many control units, especially those that im
plement large instruction sets, use this approach, and we will focus on speci
fying the control externally.

C-18 Appendix C Mapping Control to Hardware

Control unit

1 J I "" Adder /
I

PLA or ROM

Outputs

Input

t
I

State I
Address select logic I I t � a:

0

Instruction register
opcode field

PCWrite -
PCWriteCond
lorD
MemRead
MemWrite
IRWrite
Memt0Re11
PC Source
Tar11etWrite
ALUOP
ALUSelB
ALUSelA
Rel!Write

'- Re11Dst
AddCtl

FIGURE C.10 The control unit using an expllclt counter to compute the next state. In this
control unit, the next state is computed using a counter (at least in some states). By comparison,
Figure C.2 on page C-6 encodes the next state in the control logic for every state. In this control
unit, the signals labeled AddrCtl control how the next state is determined.

Although the nonsequential next state will come from an external table, the
control unit needs to specify when this should occur and how to find that next
state. There are two kinds of "branching" that we must implement in the ad
dress select logic. First, we must be able to jump to one of a number of states
based on the opcode portion of the Instruction register. This operation, called
a dispatch, is usually implemented by using a set of special ROMS or PLAs in
cluded as part of the address selection logic. An additional set of control out
puts, which we call AddrCtl, indicates when a dispatch should be done.

C.3 Implementing the Next-State Function with a Sequencer C·19

Looking at the finite state diagram (Figure C.1 on page C-5), we see that there
are two states in which we do a branch based on a portion of the opcode. Thus,
we will need two small dispatch tables. (Alternatively, we could also use a sin
gle dispatch table and a control output to choose which portion of the dispatch
table to select the address from.)

The second type of branching that we must implement consists of branch
ing back to state 0, which initiates the execution of the next MIPS instruction.
Thus there are four possible ways to choose the next state (three types of
branches, plus incrementing the current-state number), which can be encoded
in two bits. Let's assume that the encoding is as follows:

AddrCtl value Action

0 Set state to o
1 Dispatch with ROM 1

2 Dispatch with ROM 2

3 Use the incremented state

If we use this encoding, the address select logic for this control unit can be
implemented as shown in Figure C.11 .

To complete the control unit, we need only specify the contents of the dis
patch ROMs, and the values of the address-control lines for each state. We
have already specified the datapath-control portion of the control word using
the ROM contents of Figure C.7 on page C-13 (or the corresponding portions
of the PLA in Figure C.9 on page C-16). The next state counter and dispatch
ROMs take the place of the portion of the control unit that was computing the
next state, which was shown in Figure C.8 on page C-14. We are only imple
menting a portion of the instruction set, so the dispatch ROMs will be largely
empty. Figure C.12 shows the entries that must be assigned for this subset.
Section 5.6 of Chapter 5 discusses what to do with the entries in the dispatch
ROMs that do not correspond to any instruction.

Now we can determine the setting of the address selection lines (AddrCtl)
in each control word. The table in Figure C.13 shows how the address control
must be set for every state. This information will be used to specify the setting
of the AddrCtl field in the control word associated with that state.

The contents of the entire control ROM are shown in Figure C.14. The total
storage required for the control is quite small. There are ten control words each
19 bits wide for a total of 190 bits. In addition, the two dispatch tables are 4 bits
wide and each has 64 entries, for a total of 512 additional bits. This total of 702
bits beats the implementation that uses two ROMs with the next-state function
encoded in the ROMs (which requires 4.3K bits).

C·20 Appendix C Mapping Control to Hardware

1

Address select logic

PLA or ROM

State

Mux
3 2 1 0

Dispatch ROM 2

a.
0

0

Dispatch ROM 1

Instruction register
opcode field

AddrCtl

FIGURE C.11 This is the address select logic for the control unit of Figure C.10. A decoder
is used to change the two-bit address-control signal into one of four values. This selects which of
the four possible sources will supply the new state number.

Of course, the dispatch tables are sparse and could be more efficiently im
plemented with two small PLAs. The control ROM could also be replaced with
a PLA.

Optimizing the Control Implementation

We can further reduce the amount of logic in the control unit by two different
techniques. The first is logic minimization, which uses the structure of the logic
equations, including the don't-care terms, to reduce the amount of hardware
required. The success of this process depends on how many entries exist in
the truth table, and how those entries are related. For example, in this subset,
only the l w and s w opcodes have an active value for the signal Op5, so we can
replace the two truth table entries that test whether the input is l w or s w, by a
single test on this bit; similarly we can eliminate several bits used to index the
dispatch ROM, because this single bit can be used to find l w and s w in the first
dispatch ROM. Of course, if the opcode space were less sparse, opportunities

C.3 Implementing the Next-State Function with a Sequencer C·21

000000 R format 0110 10001 1 lw 0011

000010 jmp 1001 101011 SW 0101

000100 beq 1000

100011 lw 0010

101011 SW 0010

FIGURE C.12 The dispatch ROM• each have 28
= 64 entries that are 4 bits wide, since

that I• the number of bits In the state encoding. This figure only shows the entries in the
ROM that are of interest for this subset. The first column in each table indicates the value of Op,
which is the address used to access the dispatch ROM. The second column shows the symbolic
name, which is the opcode. The third column indicates the value at that address in the ROM.

�lllll11ltf:J- f•tt • , .. , ... ,,�mlt!Ii:J �mn.·r. . :-••
0 Use incremented state 3

1 Use dispatch ROM 1 1

2 Use dispatch ROM 2 2

3 Use incremented state 3

4 Replace state number by 0 0

5 Replace state number by O 0

6 Use incremented state 3

7 Replace state number by O 0

8 Replace state number by 0 0

9 Replace state number by 0 0

FIGURE C.13 The values of the address-control lines are set in the control word that cor
responds to each state.

for this optimization would be more difficult to locate. However, in choosing
the opcodes the architect can provide additional opportunities by choosing
related opcodes for instructions that are likely to share states in the control.

A different sort of optimization can be done by assigning the state numbers
in a finite state or microcode implementation to minimize the logic. This opti
mization, called state assignment, tries to choose the state numbers such that the
resulting logic equations contain more redundancy and can thus be simplified.
Let's consider the case of a finite state machine with an encoded next-state con
trol first, since it allows states to be assigned arbitrarily. For example, notice

C-22 Appendix C Mapping Control to Hardware

Eimm······ I .,. 1 .. u1 ullTTI'iTii•;ttr=,� ltf•r.ln·�lmtlOO
0 10010100000001000 11

1 00000000010011000 01

2 00000000000010100 10

3 00110000000010100 11

4 00110010000010110 00

5 00101000000010100 00

6 00000000001000100 11

7 00000000001000111 00

8 01000000100100100 00

9 10000001000000000 00

FIGURE C.14 The contents of the control memory for an implementation using an explicit
counter. The first column shows the state, while the second shows the datapath-control bits, and
the last column shows the address-control bits in each control word. Bits 18-2 are identical to
those in Figure C.7.

that in the finite state machine the signal RegWrite is active only in states 4 and
7. If we encoded those states as 8 and 9, rather than 4 and 7, we could rewrite
the equation for Reg Write as simply a test on bit S3 (which is only on for states
8 and 9). This allows us to combine the two truth table entries in part p of
Figure C.4 on page C-9 and replace them with a single entry, eliminating one
term in the control unit. Of course, we would have to renumber the existing
states 8 and 9, perhaps as 4 and 7. The same optimization can be applied in an
implementation that uses an explicit program counter, though we are more re
stricted. Because the next-state number is often computed by incrementing the
current-state number, we cannot arbitrarily assign the states. However, if we
keep the states where the incremented state is used as the next state in the
same order, we can reassign the consecutive states as a block. In an implemen
tation with an explicit next state counter, state assignment may allow us to
simplify the contents of the dispatch ROMs.

If we look again at the control unit in Figure C.10 on page C-18 it looks re
markably like a computer in its own right. The ROM or PLA can be thought of
as memory supplying instructions for the datapath. The state can be thought
of as an instruction address. Hence the origin of the name microcode or micro
programmed control. The control words are thought of as microinstructions that
control the datapath, and the State register is called the microprogram counter.
Figure C.15 shows a view of the control unit as microcode. The next section de
scribes how we map from a microprogram to microcode.

C.4 Translatlng a Microprogram to Hardware C-23

Control unit PC Write
,. PCWriteCond

lorD

Microcode memory MemRead Data path
MemWrite
IRWnte
MemtoRel!.

Outputs PCSource
Tarl!,etWrite
ALUOP
ALUSelB
ALUSelA
RegWrite

'- Ree;Dst

Input AddCtl

1 t J I

� Adder / I Microprogram counter I
I I Add�ess select logic I I I

� Ci'.
0

I Instruction register I opcode field

FIGURE C.15 The control unit as a microcode. The use of the word "micro" serves to distinguish between the program
counter in the datapath and the microprogram counter, and between the microcode memory and the instruction memory.

II Translating a Microprogram to Hardware

To translate the microprogram of section 5.5 into actual hardware, we need to
specify how each field translates into control signals. We can implement the
microprogram with either finite-state control or a microcode implementation
with an explicit sequencer. If we choose a finite state machine, we need to
construct the next-state function from the microprogram. Once this function

C-24 Appendix C Mapping Control to Hardware

is known, we can map a set of truth table entries for the next-state outputs. In
this section, we will show how to translate the microprogram assuming that
the next state is specified by a sequencer. From the truth tables we will con
struct, it would be straightforward to build the next-state function for a finite
state machine.

Assuming an explicit sequencer, we need to do two additional tasks to
translate the microprogram: assign addresses to the microinstructions and fill
in the contents of the dispatch ROMs. This process is essentially the same as
the process of translating an assembly language program into machine in
structions: the fields of the assembly language or microprogram instruction
are translated and labels on the instructions must be resolved to addresses.

Figure C.16 shows the various values for each microinstruction field that
controls the datapath and how these fields are encoded as control signals. If
the field corresponding to a signal that affects a unit with state (i.e., Memory,
Memory Register, ALU destination, or PCWriteControl) is blank, then no con
trol signal should be active. If a field corresponding to a multiplexor control
signal or the ALU operation control (i.e., ALUOp, SRCl, or SRC2) is blank, the
output is unused so the associated signals may be set as don't care.

The sequencing field can have four values: Fetch (meaning go to the Fetch
state), dispatch 1, dispatch 2, and seq. These four values are encoded to set the
2-bit address control just as they were in Figure C.17 on page C-26: Fetch = 0,
Dispatch 1 = 1 . Dispatch 2 = 2, Seq = 3. Finally, we need to specify the contents
of the dispatch tables to relate the dispatch entries of the sequence field to the
symbolic labels in the microprogram. We specify these in Figure C.12.

A microcode assembler would use the encoding of the sequencing field, the
contents of the symbolic dispatch tables in Figure C.17, the specification in
Figure C.16, and the actual microprogram in Figure 5 .51 on page 342 to gener
ate the microinstructions.

Since the microprogram is an abstract representation of the control, there is
a great deal of flexibility in how the microprogram is translated. For example,
the address assigned to many of the microinstructions can be chosen arbitrari
ly, the only restrictions are those imposed by the fact that certain microinstruc
tions must occur in sequential order (so that incrementing the State register
generates the address of the next instruction). Thus the microcode assembler
may reduce the complexity of the control by assigning the microinstructions
cleverly.

Organizing the Control to Reduce the Logic

For a machine with complex control, there may be a great deal of logic in the
control unit. The control ROM or PLA may be very costly. Although our sim
ple implementation had only a 21-bit microinstruction, there have been
machines with microinstructions that are hundreds of bits wide. Clearly, one
would like to reduce the number of microinstructions and the width. The

C.4 Translating a Microprogram to Hardware C·25

� � ... , . . .,r�� -.. .,,.JI 11111:.. 11• �----
Add ALUOp=OO ALU adds.

ALU control Fune. code ALUOp=lO ALU uses function code.

Subtract ALUOp=Ol ALU does subtract.

PC
SRC1

ALUSelA=O PC is the first operand.

rs ALUSelA=l Register rs is source.

1 ALUSelB=Ol Use 1 as the second ALU input.

Extend ALUSelB=lO Use the sign extend (IR[15--0]) as second input operand.
SRC2

Extshft ALUSelB=ll Use the sign-extended, shifted offset as second input.

rt ALUSelB=OO. Register rt is the second ALU input.

Target TargetWrite Write the ALUoutput to the register Target.

ALU destination rd RegWrite. Write the ALU output to the register number rd.
RegDst=l ,
MemtoReg=O.

Read PC MemRead, Read from memory; address is in PC.
lorD=O.

Memory Read ALU MemRead, lorD=l Read from memory; address is the ALU output.

Write ALU MemWrite, lorD=l Write to memory; address is the ALU output.

JR IRWrite Causes the JR to be written from memory.

Read rt No signals needed since rt is always source for a store.
Memory register

Write rt RegWrite, Causes the result from memory to be written in the register given
MemtoReg=l the rt field.
RegDst=O

ALU PC Sou rce=OO. Write the ALU output into the PC .
PCWrite

PC write control Target-<:ond. PCWriteCond , If ALU Zero output is active , then write the value in Target into the
PCSource=Ol PC.

Jump address PCWrite, Write the jump target address into the PC.
PCSource=lO

seq AddrCtl=ll The next microinstruction follows sequentially.

fetch AddrCtl=OO The next m icroinstruction is the one labeled Fetch .
Sequencing

dispatch 1 AddrCtl=Ol Use dispatch ROM 1 to choose next microinstruction.

dispatch 2 AddrCtl=lO Use dispatch ROM 2 to choose next microinstruction.

FIGURE C.16 Each microcode field translates to a set (possibly empty) of control signals to be set. These 23 dif
ferent values of the fields specify all the required combinations of the 19 control lines. Control lines that are not set which
correspond to actions are 0 by default. Multiplexor control lines are set to 0 if the output matters. If a multiplexor control
line is not explicitly set, its output is a don't care and is not used.

C-26 Appendix C Mapping Control to Hardware

Microcode dispatch tab1e:1

Opcode field Opcode _name Value · ·

000000 R format Rfo rma t l 1 000 1 1 l w LW2

0000 1 0 j m p J umpl 1 0 1 0 1 1 S W SW2

0 00 1 00 b e q B E O l

1 000 1 1 l w LWSWl

1 0 1 0 1 1 S W LWSWl

FIGURE C.17 The two microcode dispatch ROMs showing the contents i n symbolic form
and using the labels in the microprogram.

ideal approach to reducing control store is to first write the complete micro
program in a symbolic notation and then measure how control lines are set in
each microinstruction. By taking measurements we are able to recognize con
trol bits that can be encoded into a smaller field. For example, if no more than
one of 8 lines is set simultaneously in the same microinstruction, then they
can be encoded into a 3-bit field (log2 8 = 3). This change saves 5 bits in every
microinstruction and does not hurt CPI, though it does mean the extra hard
ware cost of a 3-to-8 decoder needed to generate the 8 control lines when they
are required at the datapath. It may also have some small clock cycle impact,
since the decoder is in the signal path. However, shaving 5 bits off control
store width will usually overcome the cost of the decoder, and the cycle time
impact will probably be small or nonexistent. This technique can be applied
to the microinstructions in this machine, since only 1 bit of the first 3 bits of
the control word is ever active (see Figure C.14 on page C-22).

This technique of reducing field width is called encoding. To further save
space, control lines may be encoded together if they are only occasionally set
in the same microinstruction; two microinstructions instead of one are then re
quired when both must be set. As long as this doesn't happen in critical rou
tines, the narrower microinstruction may justify a few extra words of control
store.

Microinstructions can be made narrower still if they are broken into differ
ent formats and given an opcode or format field to distinguish them. The format
field gives all the unspecified control lines their default values, so as not to
change anything else in the machine, and is similar to the opcode of an instruc
tion in a more powerful instruction set. For example, we could use a different
format for microinstructions that did memory accesses from those that did
register-register ALU operations, taking advantage of the fact that the memory
access control lines are not needed in microinstructions controlling ALU oper
ations.

Reducing hardware costs by using format fields usually has an additional
performance cost beyond the requirement for more decoders. A micropro-

C.5 Concluding Remarks C-27

gram using a single microinstruction format can specify any combination of
operations in a datapath and can take fewer clock cycles than a microprogram
made up of restricted microinstructions that cannot perform any combination
of operations in a single microinstruction. However, if the full capability of the
wider microprogram word is not heavily used, then much of the control store
will be wasted and the machine could be made smaller and faster by restrict
ing the microinstruction capability.

The narrow, but usually longer, approach is often called vertical microcode,
while the wide but short approach is called horizontal microcode. It should be
noted that the terms "vertical microcode" and "horizontal microcode" have no
universal definition-the designers of the 8086 considered its 21-bit microin
struction to be more horizontal than other single-chip computers of the time.
The related terms, maximally encoded and minimally encoded, are probably better
than vertical and horizontal.

• Concluding Remarks

We began this chapter by looking at how to translate a finite state diagram to
an implementation using a finite state machine. We then looked at explicit
sequencers that use a different technique for realizing the next-state function.
Although large microprograms are often targeted at implementations using
this explicit next state approach, we can also implement a microprogram with
a finite state machine. As we saw, both ROM and PLA implementations of the
logic functions are possible. The advantages of explicit versus encoded next
state and ROM versus PLA implementation are summarized below .

• .

Independent of whether the control is represented as
a finite state diagram or as a microprogram, transla
tion to a hardware control implementation is similar.
Each state or microinstruction asserts a set of control
outputs and specifies how to choose the next state.

The next-state function may be implemented by
either encoding it in a finite state machine or by using an explicit
sequencer. The explicit sequencer is more efficient if the number of
states is large and there are many sequences of consecutive states
without branching.

The control logic may be implemented with either ROMS or PLAs
(or even a mix). PLAs are more efficient unless the control function is
very dense. ROMs may be appropriate if the control is stored in a sep
arate memory, as opposed to within the same chip as the datapath.

C-28 Appendix C Mapping Control to Hardware

• Exercises

C.1 [5] <§C.2> lex. 5 .1 , 5.2l How many product terms are required in a PLA
that implements the single-cycle datapath for j a l assuming the control addi
tions described in Exercises 5.1-5.2 on page 357?

C.2 [10] <§C.2> lex. 5.5l Determine the number of product terms in a PLA that
implements the finite state machine for j a l constructed in Exercise 5.5 on page
357. The easiest method to do this is to construct the truth tables for any new
outputs or any outputs affected by the addition.

C.3 [5] <§C.2> lex. 5 .12l How many product terms are required in a PLA that
implements the single-cycle datapath and control for a d d i u assuming the con
trol additions you needed were found in Exercise 5.12 on page 359.

C.4 [10] <§C.2> lex. 5 .15l Determine the number of product terms in a PLA
that implements the finite state machine for a d d i u in Exercise 5.15 on page 359.
The easiest way to do this is to construct the additions to the truth tables for
a d d i u .

C.5 [20] <§C.3> lex. 5 .15l Implement the finite state machine o f Exercise 5.15
using an explicit counter to determine the next state. Fill in the new entries for
the additions to the Figure C.14 on page C-22. Also, add any entries needed to
the dispatch ROMs of Figure C.12 on page C-21 .

C.6 [15] <§C.2-C.5> lex. C .5 l Determine the size of the PLAs needed to imple
ment the multicycle machine assuming that the next-state function using a
counter. Implement the dispatch tables of Figure C.12 on page C-21 using two
PLAs, and the contents of the main control unit in Figure C.14 on page C-22
using another PLA. How does the total size of this solution compare to the sin
gle PLA solution with the next state encoded? What if the main PLAs for both
approaches are split into two separate PLAs, by factoring out the next state or
address select signals?

A P P E N D I X

Introducing C

to Pascal

Programmers

C is not a "very high level" language . . . and is
not specialized to any particular area of applica-
tion. But its absence of restrictions and its generality
make it more convenient and effective for many
tasks than supposedly more powerful languages.

Brian W. Kernighan and Dennis M. Ritchie
The C Programming Language, Preface, 1978

A primary motivation for . . . Pascal was
the need for a powerful and flexible language
that could be reasonably efficiently imple
mented on most computers.

Kathleen Jensen and Nlklaus Wirth
Pascal User Manual and Report, p. 165, 1975

D.1 Introduction D-3

D.2 Variable Declarations D-3

D.3 Assignment Statements D-4

D.4 Relational Expressions and Conditional Statements D-5

D.5 Loops D-6

D.6 Examples to Put it All Together D-7

D. 7 Exercises D-8

Introduction

This Appendix is meant for readers familiar with Pascal but not C. It is not
intended as a tutorial on how to write C programs, but as a way of allowing
the reader familiar with Pascal to better understand the small amount of C
code that appears in this book. Given the level of examples in this book, these
differences are primarily syntactic.

Variable Declarations

There is no standard Pascal type for unsigned integers or double precision
floating point. Also, Pascal ignores capitalization in variable names while

Appendix D Introducing C to Pascal Programmers

capitalization counts in C. For example, A p p l e and a p p l e are different vari
ables in C. Here are the corresponding standard types:

��""'"�rr.���'«l'��· -.,.-.:" .. -cr-. • .,-1'-�_&� ,,..a��r.o�.-r ... ,-. . .. --� ,,_-�l
Typi:� . . :f.�r\·}!:·, .�:. �.! � ':,c.:��cla!!l-�!?.n•-'ft :�:- �!l��!'IJde�!.<! r�t.i.�,

Integer i n t i n t e g e r

Single precision floating point f l o a t r e a l

Unsigned integer u n s i g n e d i n t ?
Double precision floating point d o u b l e ?

II Assignment Statements

The primary difference is that C uses the "=" while Pascal uses " : = " to indi
cate an assignment. Here are C examples from the book with their equivalents
in Pascal.

Examples in C Corresponding Pascal code
a = b + c : a b + c :

d = a - e : d a - e :

f = (g + h) - (i + j) : f (g + h) - (i + j) ;
g = h + p [i] : g h + p [i] :

P L i J = h + p [i] : p [i] h + p [i] :

In addition to standard arithmetic operators (+, - , *, /), C has some logical
operators sometimes found as library routines in other languages.

fr! fl'OgiC3(<>Pe'r3ti0'05"�:��c ·01>-e·;:ai�
' • • • •r '"<;'• -...,..- , � � Jl

Shift Left «
Shift Right »

AND &

OR I
XOR A

NOT -

Operators < < and > > are logical operations only on unsigned integers in C.

•

D.4 Relational Expressions and Condltlonal Statements D-5

Relational Expressions

and Conditional Statements

There is more difference in the if statements of the two programming lan
guages, both in the statements themselves and in the expressions that com
monly occur. C leaves off the keyword " t h e n " in the traditional if statement,
and since "

=
" is used to mean assignment, new symbols are used to mean

relational equality. The table below shows the mapping of the relational oper
ators in both languages:

Equal

Not equal ! = < >
Less than < <

Less than or equal <=
Greater than >
Greater than or equal > =) =

Here are tw o examples o f if statements.

i f (i =� j) f = g + h : i f i j then f g + h
e l s e f = g - h : e l se f g - h ·

i f (i == j) g o t o L l : j f i = t h e n g o t o 1 :
f = g + h ; f g + h :

l l : f i : 1 : f f - i .

C replaces the beg i n e n d of Pascal's compound statements with { l .
The case statement in Pascal is quite similar to the switch statement in C.

Each switching alternative in C starts with the keyword " c a s e " and ends with
the keyword " b r e a k ." Here are equivalent statements:

D-6

I •

Appendix D Introducing C to Pascal Programmers

s w i t c h (k) { c a s e k o f
c a s e 0 : f + j : b r e a k : 0 : f i + j ;
c a s e 1 : f = g + h . b r ea k : 1 ; f g + h :
c a s e 2 : f g - h ; b r e a k ; 2 : f g - h .
c a s e 3 ; f - j ; b r e a k ; 3 ; f - j :

} ; e n d :

Loops

The while loops are almost identical in the two languages. Here is an example:

i = i + j ;

Of course, while loops can be constructed from g o t o s :

L oo p : g = g + P [i J :
i = i + j ;
i f (i ! = h l g o t o L o o p :

2 : g : - g + P [i] :
i : = i + j ;
i f i < > h then goto 2 ;

The for statement may be the most unusual. In keeping with the philosophy
of no restrictions, the initialization, exit test, and per loop operation can be any
statements. They appear in three pieces in that order in the for statement:

D.6 Examples to Put It All Together D-7

In addition to the relational operators, there are logical relational operators
to connect conditions. Here they are in the two languages:

And && a n d

Or 1 1 o r

Not n o t

This example shows some of the power of the for statement; the compound
exit test requires nested statements in Pascal.

f o r (j = i - 1 : j >= 0
&& v [j] > v [j + l] :
I . . . l

j - 1)

3 :

f o r j : = i - 1 d own to 0 d o
i f v [j] > v [j + l] t h e n

beg i n . . . end
e l s e goto 3 :

II Examples to Put It All Together

Procedures in C and Pascal are quite similar. The primary difference is that
arrays are normally declared as types, with the type name used to declare
array variables:

s w a p (i n t v [J . i n t k l

I ;

i n t temp ;

t emp v [k] :
v [k] v [k + l] :
v [k + l J = temp :

�! --------
�t;.�-� ;Pascal

t y p e
n a m e s = a r ray [O . . 1 9] of i n tege r :

p roced u r e swa p (v a r v : n a me s ;
k : i n t e g e r) ;

v a r
t emp :

beg i n
t emp
v [k]
v [k +

end ;

i n tege r ;

: = v [k] ;
: = v [k + l J :

l] : = t emp

Appendix D Introducing C to Pascal Programmers

Here is a longer example: :

s o r t (i n t v [J , i n t n)

I

I :

i n t i . j :
f o r (i = 0 : i < n ; i = i + l l

fo r (j = i - 1 : j >= O & &
v [j] > v [j + l] : j = j - l l

swa p < v . j) ;

To Probe Further

p r o c ed u r e s o r t < v a r v : n a mes ;
n : i n teg e r) ;

v a r
i . j : i n t e ge r :

beg i n
f o r i : - 0 to n - 1 d o

f o r j : = i - 1 d ow n t o 0 d o
i f v Li] > v U + 1) t he n

swa p (v , j)
e l s e g o t o 4 :

4 . .
e n d ;

Kernighan, Brian W. and Dennis M. Ritchie [1988]. The C Programming Language, 2nd edition,
Prentice Hall, Englewood Cliffs, N.J.

This classic text is so widely used it's known as "K&R"; be sure to get the second edition. The first section,
which is a tutorial, is a good introduction to C for someone who knows how to program.

Tondo, Clovis L. and Scott E. Gimpel [1989]. The C Answer Book: Solutions to the Exercises in The C
Programming Language, 2nd edition, Prentice Hall, Englewood Cliffs, N.J.

The second edition of this book has the answers to the exercises in the second edition of K&R.

II Exercises

D.1 [5] Write a Pascal version of the C program for summing shown in Ap
pendix A, Figure A.5 on page A-8.

D.2 [5] Write a Pascal version of the first C procedure to set an array to zero,
Clearl, shown in Chapter 3, Figure 3.22 on page 145.

D.3 [10] Write a Pascal version of the second C procedure to set an array to
zero, Clear2, shown in Chapter 3, Figure 3.22 on page 145.

A P P E N D X

Another Approach

to Instruction Set

Architecture-VAX

In principle, there is no great challenge in
designing a large virtual address minicomputer
system The real challenge lies in two areas:
compatibility-very tangible and important; and
simplicity-intangible but nonetheless important.

William Strecker
"VAX-11 /780-A Virtual Address Extension to the PDP-11 Family,"
AFIPS Proc., National Computer Conference, 1978.

Entities should not be multiplied unnecessarily.

William of Occam
Quodlibeta Septem, 1320
(This quote is known as "Occam's Razor.")

E.1 Introduction E-3

E.2 VAX Operands and Addressing Modes E-4

E.3 Encoding VAX Instructions E-7

E.4 VAX Operations E-9

E.5 An Example to Put It All Together: swap E-11

E.6 A Longer Example: sort E-15

E. 7 Fallacies and Pitfalls E-19

E.8 Concluding Remarks E-22

E.9 Historical Perspective and Further Reading E-23

E.10 Exercises E-25

Introduction

The purpose of this appendix is to give you insight into an alternative to the
Reduced Instruction Set Computer (RISC) used in this book. To enhance your
understanding of instruction set architectures, we chose the VAX as the repre
sentative Complex Instruction Set Computers (CISC) because it is so different
from MIPS and yet still easy to understand. By seeing two such divergent
styles, we are confident that you will be able to learn other instruction sets on
your own.

At the time the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages in order to simplify
compilers. For example, because programming languages had loops, instruc
tion sets should have loop instructions. As VAX architect William Strecker
said ("VAX-11/780-A Virtual address Extension to the PDP-11 Family,"
AFIPS Proc., National Computer Conference, 1978):

A major goal of the V AX-11 instruction set was to provide for effective com
piler generated code. Four decisions helped to realize this goal: . . . 1) A
very regular and consistent treatment of operators 2) An avoidance of
instructions unlikely to be generated by a compiler 3) Inclusions of sev-
eral forms of common operators 4) Replacement of common instruction
sequences with single instructions. Examples include procedure calling,
multiway branching, loop control, and array subscript calculation.

E-4 Appendix E Another Approach to Instruction Set Architecture-VAX

Recall that DRAMs of the mid-1970s contained less than l /lOOOth the ca
pacity of today's DRAMs, so code space was also critical. Hence, another pre
vailing philosophy was to minimize code size, which is de-emphasized in
fixed-length instruction sets like MIPS. For example, MIPS address fields al
ways use 16 bits, even when the address is very small. In contrast, the VAX al
lows instructions to be a variable number of bytes, so there is little wasted
space in address fields.

Books the size of the one you are reading have been written just about the
VAX, so a VAX appendix cannot be exhaustive. Hence, the following sections
describe only a few of its addressing modes and instructions. To show the
VAX instructions in action, later sections show VAX assembly code for two C
procedures from Chapter 3. The general style will be to contrast these instruc
tions with the MIPS code that you are already familiar with .

• .

The differing goals for VAX and MIPS have led to
very different architectures. The VAX goals, simple
compilers and code density, led to the powerful ad
dressing modes, powerful instructions, and efficient
instruction encoding. The MIPS goals were high per
formance via pipelining, ease of hardware implemen

tation, and compatibility with highly optimizing compilers. The MIPS
goals led to simple instructions, simple addressing modes, fixed
length instruction formats, and a large number of registers.

• VAX Operands and Addressing Modes

The VAX is a 32-bit architecture, with 32-bit wide addresses and 32-bit wide
registers. Yet the VAX supports many other data sizes and types, as Figure E.1
shows. Unfortunately, VAX uses the name "word" to refer to 16-bit quantities;
in this text a word means 32 bits. Figure E.1 shows the conversion between
the MIPS data type names and the VAX names. Be careful when reading
about VAX instructions, as they refer to the names of the VAX data types.

The VAX provides 16 32-bit registers. The VAX assembler uses the notation
rO, r 1 , . . . , r 1 5 to refer to these registers, and we will stick to that notation.
Alas, 4 of these 16 registers are effectively claimed by the instruction set archi
tecture. For example, r 1 4 is the stack pointer (s p) and r 1 5 is the program

E.2 VAX Operands and Addressing Modes E-5

8 Integer Byte Byte

16 Integer Halfword Word

32 Integer Word Long word

32 Floating point Single precision F_floating

64 Integer Doubleword Quad word

64 Floating point Double precision D_floating or G_floating

Sn Character string Character Character

FIGURE E.1 VAX data types, their lengths, and names. The first letter of the VAX type (b, w,
I, f, q, d, g, c) is often used to complete an instruction name. Examples of move instructions
include mo v b, m o v w, mo v l , m o v f, m o v q , m o v d, m o v g , and m o v c 3 . Each move instruction trans
fers an operand of the data type indicated by the letter following mo v.

counter (p c) . Hence, r 1 5 cannot be used as a general-purpose register, and us
ing r 1 4 is very difficult because it interferes with instructions that manipulate
the stack. The other dedicated registers are r 1 2, used as the argument pointer
(a p), and r l 3 , used as the frame pointer (f p); their purpose will become clear
later. (Like MIPS, the VAX assembler accepts either the register number or the
register name.)

VAX addressing modes include those discussed in Chapter 3, which has all
the MIPS addressing modes: register, displacement, immediate, and PC-relative.
Moreover, all these modes can be used for jump addresses or for data address
es. Chapter 3 also has autoincrement and autodecrement addressing, mentioned
in section 3.8.

But that's not all the addressing modes. To reduce code size, the VAX has
three lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit
addresses called, respectively, byte displacement, word displacement, and long dis
placement addressing. Thus, an address can be not only as small as possible, but
also as large as necessary; large addresses need not be split, so there is no
equivalent to the MIPS l u i instruction (see page 125).

That's still not all the VAX addressing modes. Several have a deferred op
tion, meaning that the object addressed is only the address of the real object, re
quiring another memory access to get the operand. This addressing mode is
called indirect addressing in other machines.Thus, register deferred, autoincrement
deferred, and byte/word/long displacement deferred are other addressing modes to
choose from. For example, using the notation of the VAX assembler, r 1 means
the operand is register 1 and (r 1 l means the operand is the location in mem
ory pointed to by r 1 .

There is yet another addressing mode. Indexed addressing automatically
converts the value in an index operand to the proper byte address to add to the
rest of the address. Recall the s w a p example from Chapter 3 (page 125); we

E-6 Appendix E Another Approach to Instruction Set Architecture-VAX

Addressing mode Length of address
name Syntax Example Meaning specifier in bytes

Literal #value #-1 -1 1 (6-bit signed value)

I mmediate #value #100 100 1 + length of the
immediate

Register rn r3 r3 1

Register deferred (rn) (r3) Memory[r3] 1

Byte/word/long Displacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the
displacement displacement

Byte/word/long @displacement {rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the
displacement displacement
deferred

Indexed (scaled) Base mode [rx] (r3)[r4] Memory[r3 + r4 x d] 1 + length of base

(where d is data size in bytes) addressing mode

Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 + d 1

Autodecrement - (rn) -(r3) r3 = r3 - d; Memory[r3] 1

Autoincrement @(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 + d 1
deferred

FIGURE E.2 Definition and length of the VAX operand specifiers. The length of each addressing mode is 1 byte plus
the length of any displacement or immediate field needed by the mode. Literal mode uses a special 2-bit tag and the
remaining 6 bits encode the constant value. If the constant is too big, it must use the immediate addressing mode. Note the
length of an immediate operand is dictated by the length of the data type indicated in the opcode, not the value of the
immediate. The symbol d in the last four modes represents the length of the data in bytes; d is 4 for 32-bit add.

needed to multiply the index of a 4-byte quantity by 4 before adding it to a base
address. Indexed addressing, called scaled addressing on some computers, au
tomatically multiplies the index of a 4-byte quantity by 4 as part of the address
calculation.

To cope with such a plethora of addressing options, the VAX architecture
separates the specification of the addressing mode from the specification of the
operation. Hence, the opcode supplies the operation and the number of oper
ands, and each operand has its own addressing mode specifier. Figure E.2
shows the name, assembler notation, example, meaning, and length of the ad
dress specifier.

The VAX style of addressing means that an operation doesn't know where
its operands come from; a VAX a d d instruction can have three operands in reg
isters, three operands in memory, or any combination of registers and memory
operands.

Example

Answer

E.3 Encoding VAX Instructions E-7

How long is the following instruction?
a d d l 3 r l , 7 37 (r 2) , (r 3) [r4 J

The name a d d l 3 means a 32-bit add instruction with three operands. As
sume the length of the VAX opcode is 1 byte.

The first operand specifier-r 1- indicates register addressing and is 1 byte
long. The second operand specifier-7 3 7 (r 2) -indicates displacement ad
dressing and has two parts: the first part is a byte that specifies the word
displacement addressing mode and base register (r 2); the second part is the
2-byte long displacement (7 3 7). The third operand specifier-(r 3) [r4]
also has two parts: the first byte specifies register deferred addressing mode
((r 3)) , and the second byte specifies the Index register and the use of
indexed addressing ([r 4 J) .

Thus, the total length of the instruction is 1 + (1) + (1 +2) + (1+1) = 7 bytes.

In this example instruction, we show the VAX destination operand on the
left and the source operands on the right, just as we show MIPS code. The VAX
assembler actually expects operands in the opposite order, but we felt it would
be less confusing to keep the destination on the left for both machines. Obvi
ously, left or right orientation is arbitrary; the only requirement is consistency.

Elaboration: Because the PC is one of the 16 registers that can be selected in a VAX

addressing mode, 4 of the 22 VAX addressing modes are synthesized from other
addressing modes . Using the PC as the chosen register in each case, immediate

addressing is really autoincrement, PC-relative is displacement, absolute is autoincre
ment deferred, and relative deferred is d isplacement deferred.

• Encoding VAX Instructions

Given the independence of the operations and addressing modes, the encod
ing of instructions is quite different from MIPS.

VAX instructions begin with a single byte opcode containing the operation
and the number of operands. The operands follow the opcode. Each operand
begins with a single byte, called the address specifier, that describes the address
ing mode for that operand. For a simple addressing mode, such as register ad-

E-8 Appendix E Another Approach to Instruction Set Architectur-VAX

Byte address Contents at each byte Machine code

201 opcode containing a d d l 3 c1hex

202 index mode specifier for [r 4] 44h ex
203 register i nd i rect mode specifier for (r3 l 63hex
204 word displacement mode specifier using r 2 as base C2tiex

205 e111 e x
the 16-bit constant / 3 7

206 02hex

207 register mode specifier for r 1 51ti ex

FIGURE E.3 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4], assuming it
starts at address 201. To satisfy your curiosity, the right column shows the actual VAX encod
ing in hexadecimal notation (page 175 describes hexadecimal notation). Note that the 16-bit con
stant 7371en takes two bytes.

dressing, this byte specifies the register number as well as the mode (see the
rightmost column in Figure E.2). In other cases, this initial byte can be followed
by many more bytes to specify the rest of the address information.

As a specific example, let's show the encoding of the add instruction from
the example on page E-7:

a d d l 3 r l , 7 3 7 (r 2) , (r 3) [r4 J

Assume that this instruction starts at location 201 .
Figure E.3 shows the encoding. Note that the operands are stored in mem

ory in opposite order to the assembly code above. The execution of VAX in
structions begins with fetching the source operands, so it makes sense for them
to come first. Order is not important in fixed-length instructions like MIPS,
since the source and destination operands are easily found within a 32-bit
word.

The first byte, at location 201, is the opcode. The next byte, at location 202,
is a specifier for the index mode using register r 4 . Like many of the other spec
ifiers, the left 4 bits of the specifier give the mode and the right 4 bits give the
register used in that mode. Since a d d l 3 is a 4-byte operation, r 4 will be multi
plied by 4 and added to whatever address is specified next. In this case it is reg
ister deferred addressing using register r3 . Thus bytes 202 and 203 combined
define the third operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement ad
dressing using register r 2 as the base register. This specifier tells the VAX that
the following two bytes, locations 205 and 206, contain a 16-bit address to be
added to r 2 .

The final byte o f the instruction gives the destination operand, and this
specifier selects register addressing using register r 1 .

E.4 VAX Operations E·9

Such variability in addressing means that a single VAX operation can have
many different lengths; for example, an integer add varies from 3 bytes to 19
bytes. VAX implementations must decode the first operand before they can
find the second, and so implementors are strongly tempted to take one clock
cycle to decode each operand; thus this sophisticated instruction set architec
ture can result higher clock cycles per instruction, even when using simple ad
dresses.

Ill VAX Operations

In keeping with its philosophy, the VAX has a large number of operations as
well as a large number of addressing modes. We review a few here to give the
flavor of the machine.

Given the power of the addressing modes, the VAX move instruction per
forms several operations found in other machines. It transfers data between
any two addressable locations and subsumes load, store, register-register
moves, and memory-memory moves as special cases. The first letter of the
VAX data type (b, w, 1, f, q, d, g, c in Figure E.1) is appended to the acronym
m o v to determine the size of the data. One special move, called move address,
moves the 32-bit address of the operand rather than the data. It uses the acro
nym m o v a .

The arithmetic operations of MIPS are also found in the VAX, with two ma
jor differences. First, the type of the data is attached to the name. Thus a d d b,

a d d w, and a d d l operate on 8-bit, 16-bit, and 32-bit data in memory or registers,
respectively; MIPS has a single add instruction that operates only on the full
32-bit register. The second difference is that to reduce code size, the add in
struction specifies the number of unique operands; MIPS always specifies
three even if one operand is redundant. For example, the MIPS instruction

a d d $ 1 , $ 1 , $ 2

takes 32 bits like all MIPS instructions, but the VAX instruction
a d d l 2 r l , r 2

uses r 1 for both the destination and a source, taking just 24 bits: 8 bits for the
opcode and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

(operation) (datatype) (�)

E·10 Appendix E Another Approach to Instruction Set Archltectur-VAX

The operation a d d works with data types byte, word, long, float, and double
and comes in versions for either 2 or 3 unique operands, so the following
instructions are all found in the VAX:

a d d b 2

a d d b 3

a d d w 2

a d dw3

a d d l 2

a d d l 3

a d d f 2

a d d f3

a d d d 2

a d d d 3

Accounting for all addressing modes (but ignoring register numbers and
immediate values) and limiting to just byte, word, and long, there are more
than 30,000 versions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions
that either replace sequences of instructions or take fewer bytes to represent a
single instruction. Here are four such examples (* means the data type):

t��:�A
·
x o�eration · ··- -· "::.� (xtimil1e;:�.:, ·."' -�� - --.·��·--,.,...,.-� :;' . >'�" �.e_ �] '

c l r * c l r l r 3 r3 = O

i n c * i n c l r3 r3 = r3 + 1

d e e * d e c l r 3 r3 = r3 - 1

p u s h * p u s h l r 3 s p = sp - 4 ; Memory[sp] = r3;

The push instruction is the last row is exactly the same as using the move
instruction with autodecrement addressing on the stack pointer:

mo v l - (s p) , r 3

Brevity is the advantage of p u s h l : it is one byte shorter since s p is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because
the branch instructions rely on condition codes. Condition codes are set as a
side-effect of an operation, and they indicate whether the result is positive,
negative, zero, or if an overflow occurred (see page 176 in Chapter 4). Most
instructions set the VAX condition codes according to their result; instructions
without results, such as branches, do not. The VAX condition codes are N
(Negative), Z (Zero), V (oVerflow), and C (Carry) . There is also a compare
instruction cmp * just to set the condition codes for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch in
structions include b e q l (=), b n e q (:�), b l s s (<), b l e q (�), b g t r(>), and b g eq {:?:),

which do just what you would expect. There are also unconditional branches
whose name is determined by the size of the PC-relative offset. Thus b r b

(branch byte) has an 8-bit displacement and b r w (branch word) has a 16-bit dis
placement.

E.5 An Example to Put It All Together: swap E·11

The final major category we cover here is the procedure call and return in
structions. Unlike the MIPS architecture, these elaborate instructions can take
dozens of clock cycles to execute. The next two sections show how they work,
but we need to explain the purpose of the pointers associated with the stack
manipulated by c a 1 1 s and r e t . The stack pointer, s p, is just like the stack point
er in MIPS; it points to the top of the stack.The argument pointer, a p, points to
the base of the list of arguments or parameters in memory that are passed to
the procedure. The frame pointer, f p, points to the base of the local variables of
the procedure that are kept in memory (the stack frame). The VAX call and re
turn instructions manipulate these pointers to maintain the stack in proper
condition across procedure calls and to provide convenient base registers to
use when accessing memory operands. As we shall see, call and return also
save and restore the general purpose registers as well as the program counter.

Figure E.4 gives a further sampling of the VAX instruction set.

II An Example to Put It All Together: swap

To see programming in VAX assembly language, we translate the C proce
dures s w a p and s o r t from Chapter 3; the C code for s w a p is reproduced in
Figure E.5. The next section covers s o r t .

Just as we did in section 3.9 o f Chapter 3 , we describe the swa p procedure
in these three general steps of assembly language programming:

1 . Allocate registers to program variables

2. Produce code for the body of the procedure

3. Preserve registers across the procedure invocation

The VAX code for these procedures is based on code produced by the VMS C
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so
this step of assembly language programming is more properly called "vari
able allocation." The standard VAX convention on parameter passing is to use
the stack. The two parameters, v [J and k, can be accessed using register a p,

the argument pointer: the address 4 (a p) corresponds to v [J and 8 (a p) corre
sponds to k . Remember that with byte addressing the address of sequential 4-
byte words differs by 4. The only other variable is t emp, which we associate
with register r3 .

E·12 Appendix E Another Approach to Instruction Set Architecture-VAX

·
,
ll)struction type Example Instruction meaning .. I : . '

Move data between byte, halfword, word, or doubleword operands; * is data type

mo v * Move between two operands

Data transfers mo v z b * Move a byte to a halfword or word, extending it with zeroes

mo v a * Move the 32-bit address of a n operand; data type i s last

p u s h * Push operand onto stack

Operations on integer or logical bytes, halfwords (16 bits}, words (32 bits); * i s data type

a d d *_ Add with 2 or 3 operands

c m p * Compare and set condition codes

Arithmetic, logical t s t * Compare to zero and set condition codes

a s h * Arithmetic shift

c l r * Clear

c v t b * Sign-extend byte to size of data type

Conditional and unconditional branches

b e q l . b n e q Branch equal , branch not equal

b l e q , b g e q Branch less than o r equal, branch greater than o r equal

Control b r o , b rw Unconditional branch with an 8-bit or 16-bit address

jmp J u m p using any addressing mode to specify target

a o b l e q Add one to operand; branch if result � second operand

c a s e - Jump based on case selector

Call/return from procedure

c a l l s Call procedure with arguments on stack (see section E.6)

Procedure c a l l g Call procedure with FORTRAN-style parameter l ist

j s b Jump to subroutine, saving return address (like MIPS j a l)

r e t Return from procedure call

Floating-point operations on D, F, G, and H formats

a d d d - Add double-precision D-format floating numbers

Floating point s ubd_ Subtract double-precision D-format floating numbers

mu l f Multiply single-precision F-format floating point

p o l y f Evaluate a polynomial using table of coefficients in F format

Special operations

Other e r e Calculate cyclic redundancy check

i n s q u e I nsert a queue entry into a queue

FIGURE E.4 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, 1, d, f, g, h,
and q. The underline, as in a d d d_, means there are 2-operand (a d d d 2) and 3-operand (a d d d 3) forms of this instruction.

E.5 An Example to Put It All Together: swap

s w a p (i n t v [J , i n t k l
I

i n t t emp ;
temp = v [k] ;
v [k] = v [k+ l] ;
v [k+ l] = temp ;

E-13

FIGURE E.5 A C procedure that swaps two locations in memory. This code is a copy of Fig
ure 3.18 on page 136. This procedure will be used in the sorting example in the next section.
Appendix D shows the C and Pascal versions of this procedure side-by-side (page D-5).

Code for the Body of the Procedure swap

The remaining lines of C code in swa p are
t e m p = v [k] ;
v [k] = v [k + l] ;
v [k + l] = t e mp ;

Since this program uses v [J and k several times, to make the programs run
faster the VAX compiler first moves both parameters into registers:

mo v l r 2 , 4 (a p l ; r 2 = v [J
mo v l r l , 8 (a p l ; r l = k

Note that we follow the VAX convention of using a semicolon to start a com
ment; the MIPS comment symbol # represents a constant operand in VAX
assembly language.

The VAX has indexed addressing, so we can use index k without convert-
ing it to a byte address. The VAX code is then straightforward:

m o v l r 3 , (r 2) [r l] r 3 (t emp) = v [k]
a d d l 3 r O , #1 , S (a p l r O = k + 1
mo v l (r 2) [r l] , (r 2) [r O J v [k] = v [r O J (v [k + l])
mo v l (r 2) [r 0] , r 3 v [k + l] = r 3 (t emp)

Unlike the MIPS code, which is basically two loads and two stores, the key
VAX code is one memory-to-register move, one memory-to-memory move,
and one register-to-memory move. Note that the a d d l 3 instruction shows the
flexibility of the VAX addressing modes: It adds the constant 1 to a memory
operand and places the result in a register.

Now we have allocated storage and written the code to perform the oper
ations of the procedure. The only missing item is the code that preserves reg
isters across the routine that calls swa p.

E·14 Appendix E Another Approach to Instruction Set Architecture-VAX

Preserving Registers Across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers c a 1 1 s and ret . This
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code
above, we see that the values in registers rO, r l , r 2, and r3 must be saved so
that they can later be restored. The ca 1 1 s instruction expects a 16-bit mask at
the beginning of the procedure to determine which registers are saved: if bit i
is set in the mask, then register i is saved on the stack by the c a l l s instruction.
In addition, c a l l s saves this mask on the stack to allow the return instruction
(r e t) to restore the proper registers. Thus the c a 1 1 s executed by the caller
does the saving, but the callee sets the call mask to indicate what should be
saved.

One of the operands for c a l l s gives the number of parameters being
passed, so that ca 1 1 s can adjust the pointers associated with the stack: the ar
gument pointer (a p), frame pointer (f p), and stack pointer (s p) . Of course,
ca 1 1 s also saves the program counter so that the procedure can return!

Thus, to preserve these four registers for s w a p, we just add the mask at the
beginning of the procedure, letting the c a 1 1 s instruction in the caller do all the
work:

. w o r d A m < r 0 , r l , r 2 , r 3 > ; s e t b i t s i n ma s k f o r 0 , 1 , 2 , 3

This directive tells the assembler to place a 16-bit constant with the proper
bits set to save registers rO though r3 .

The return instruction undoes the work of c a 1 1 s . When finished, r e t sets
the stack pointer from the current frame pointer to pop everything ca l l s

placed on the stack. Along the way, it restores the register values saved by
c a 1 1 s, including those marked by the mask and old values of the fp, a p, and
pc .

To complete the procedure swa p, we just add one instruction:
r e t ; r e s t o r e r e g i s t e r s a n d r e t u r n

The Full Procedure swap

We are now ready for the whole routine. Figure E.6 identifies each block of
code with its purpose in the procedure, with the MIPS code on the left and the
VAX code on the right. This example shows the advantage of the scaled
indexed addressing and the sophisticated call and return instructions of the
VAX in reducing the number of lines of code. The 17 lines of MIPS assembly
code became 8 lines of VAX assembly code. It also shows that passing param
eters in memory results in extra memory accesses.

Keep in mind that the number of instructions executed is not the same as
performance; the fallacies on pages 147 and E-21 make this point.

E.6 A Longer Example: sort E·15

MIPS versus VAX

. " : · · Saving register . · · · . · ·
� .. • : /. ;, P:. .

sw a p : a d d i $ 2 9 , $ 2 9 . - 1 2 s w a p : . w o r d "m< r 0 , r l , r 2 , r 3 >
S W $ 2 , 0 ($ 2 9)
SW $ 1 5 , 4 ($ 2 9)
SW $ 1 6 , 8 ($ 2 9)

mul i $ 2 . $ 5 , 4
a d d $ 2 , $ 4 , $ 2
l w $ 1 5 , 0 ($ 2)
l w $ 1 6 , 4 ($ 2)
S W $ 1 6 . 0 ($ 2)
SW $ 1 5 , 4 ($ 2)

l w $ 2 , 0 ($ 2 9)
l w $ 1 5 . 4 ($ 2 9)
l w $ 1 6 . 8 ($ 2 9)
a d d i $ 2 9 , $ 2 9 , 1 2

mo v l r 2 . 4 (a)
mo v l r l . 8 (a)
mo v l r 3 , (r 2) [r l]
a d d l 3 r 0 , # l , 8 (a p)
mo v l (r 2) [r l J . (r 2) [r O J
mo v l C r 2) [r 0 J . r 3

FIGURE E.6 MIPS versus VAX assembly code of the procedure swap In Figure E.5 on page E·13.

Elaboration: VAX software follows a convention of treating registers rO and r 1 as
temporaries which are not saved across a procedure cal l , so the VMS C compiler does
include registers rO and r 1 in the register saving mask. Also, the C compi ler should
have used r 1 instead of 8 (a p) in the a d d l 3 instruction ; such examples inspire com
puter architects to try to write compi lers!

II A Longer Example: sort

As in Chapter 3, we show the longer example of the sort procedure. Figure E.7
shows the C version of the program. Once again we present this procedure in
several steps, concluding with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure s o r t, v and n, are found in the stack in
locations 4 (a p l and 8 (a p) , respectively. The two local variables are assigned

E-16 Appendix E Another Approach to Instruction Set Architectur-VAX

i n t v [l O O O O J ;

s o r t (i n t v [J . i n t n)

{
i n t i . j ;

f o r (i = O ; i < n ; i = i + 1) {
f o r (j = i - l ; j >= 0 && v [j] > v [j + l] ;

s w a p C v , j) ;

j - 1) {

FIGURE E. 7 A C procedure that performs a bubble sort on the array v. This code is a copy of
Figure 3.20 on page 139. (See Appendix D for a Pascal version of s o r t .)

to registers: i to r6 and j to r4 . Because the two parameters are referenced
frequently in the code, the VMS C compiler copies the address of these param
eters into registers upon entering the procedure:

mo v a l r 7 , 8 (a p) ; m o v e a d d r e s s o f n i n t o r 7
mo v a l r 5 , 4 (a p) ; m o v e a d d r e s s o f v i n t o r 5

It would seem that moving the value of the operand to a register would be
more useful than its address, but once again we bow to the decision of the
VMS C compiler. Apparently the compiler cannot be sure that v and n don't
overlap in memory.

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to s w a p which
includes parameters. Let's unwrap the code from the outside to the middle.

The Outer Loop

The first translation step is the first for loop:
f o r (i = O ; i < n ; i = i + l) I

Recall that the C for statement has three parts: initialization, loop test, and
iteration increment. It takes just one instruction to initialize i to 0, the first
part of the for statement:

c l r l r 6 ; i = 0

It also takes just one instruction to increment i , the last part of the for:

i n c l r 6 ; i = i + 1

The loop should be exited if i < n is false, or said another way, exit the loop
if i � n . This test takes two instructions:
f o r l t s t : c m p l

b g e q
r 6 , (r 7) c omp a r e r 6 a n d memo ry [r 7 J (i : n)
e x i t l ; g o t o e x i t l i f r 6 � mem [r 7 J (i � n)

E.6 A Longer Example: sort E-17

Note that cmp l sets the condition codes for use by the conditional branch
instruction b g e q .

The bottom of the loop just jumps back to the loop test:

b r b f o r l t s t ; b r a n c h t o t e s t o f o u t e r l o o p
e x i t l :

The skeleton code of the first for loop is then:
c l r l r 6

f o r l t s t : c m p l r 6 , (r 7)
b g e q e x i t l

i = 0
c omp a r e r 6 a n d memory [r 7 J (i : n l
g o t o e x i t l i f r 6 � mem [r 7 J (i � n)

(b ody o f f i r s t f o r l o o p)

e x i t l :

i n c l
b r b

r 6
f o r l t s t

i = i + 1
b r a n c h t o t e s t o f o u t e r l o o p

Exercise 3.11 on page 157 explores writing faster code for the similar loops.

The Inner Loop

The second for loop is

f o r (j = i - 1 ; j >= 0 & & v [j J > v [j + 1 J ; j = j - 1) {

The initialization portion of this loop is again one instruction:
s u b l 3 r4 . r 6 . H l ; j = i - 1

and the decrement of j is also one instruction:
d e c l r4 ; j = j - 1

The loop test has two parts. We exit the loop if either condition fails, so first
test must exit the loop if it fails (j < 0):

f o r 2 t s t : b l s s e x i t 2 ; g o t o e x i t 2 i f r4 < 0 (j < 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit
of condition codes, with the conditions being set as a side effect of the prior
instruction. This branch skips over the second condition test.

The second test exits if v [j J > v [j + 1 J is false, or exit if v [j J ::; v [j + 1 J .
First we load v and put j + 1 into registers:

mo v l r 3 , (r 5) ; r 3 = Memo ry [r 5 J (r 3 = v)
a d d l 3 r 2 , r4 . # l ; r 2 = r4 + 1 C r 2 = j + 1)

Register indirect addressing is used to get the operand pointed to by r 5 .
Once again the index addressing mode means we can use indices without

converting to the byte address, so the two instructions for v [j J ::; v [j + 1 J are:
c m p l (r 3) [r4 J . (r 3) [r 2 J ; v [r4 J : v [r 2 J (v [j] : v [j + l])
b l e q ex i t 2 ; g o t o e x i t 2 i f v [j] ::; v [j + l]

E·18 Appendix E Another Approach to Instruction Set Archltectur-VAX

The bottom of the loop jumps back to the full loop test:

b r b f o r 2 t s t # j ump t o t e s t o f i n n e r l o o p

Combining the pieces, the second for loop looks like this:
s u b l 3 r 4 , r 6 , # 1 j = i - 1

f o r 2 t s t : b l s s e x i t 2 g o t o ex i t 2 i f r 4 < 0 (j < 0)
mo v l r 3 , (r 5) r 3 = Mem o ry [r 5 J (r 3 v)
a d d l 3 r 2 , r4 , # l r 2 = r 4 + 1 (r 2 = j + 1)
c m p l (r 3) [r4 J , (r 3) [r 2] ; v [r4 J : v [r 2 J
b l eq ex i t 2 g o t o e x i t 2 i f v [j] v [j + l]

(b ody o f s e c o n d f o r l o o p)

j = j - 1 d e c l
b r b

r4
f o r 2 t s t j u mp t o t e s t o f i n n e r l o op

e x i t 2 :

Notice that the instruction b l s s (at the top of the loop) is testing the condition
codes based on the new value of r 4 (j), set either by the s u b 1 3 before entering
the loop or by the d e c l at the bottom of the loop.

The Procedure Call

The next step is the body of the second for loop:

swa p (v , j) ;

Calling s w a p is easy enough:
c a l l s #2 . s w a p

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters

The C compiler passes variables on the stack, so we pass the parameters to
s w a p with these two instructions:

p u s h l (r 5) f i r s t s w a p p a r a me t e r i s v
p u s h l r 4 ; s e c o n d swa p p a r a me t e r i s j

Register indirect addressing is used to get the operand of the first instruction.

Preserving Registers Across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the
callee save convention. This procedure uses registers r 2 through r 7 , so we
add a mask with those bits set:

. wo r d A m < r 2 , r 3 , r4 , r 5 , r 6 , r 7 > ; s e t ma s k f o r r e g i s t e r s 2 - 7

E. 7 Fallacies and Pitfalls E·19

Since r e t will undo all the operations, we just tack it on the end of the proce
dure.

The Full Procedure sort

Now we put all the pieces together in Figure E.8. To make the code easier to
follow, once again we identify each block of code with its purpose in the pro
cedure and list the MIPS and VAX code side-by-side. In this example, 11 lines
of the s o r t procedure in C become the 44 lines in the MIPS assembly lan
guage and 20 lines in VAX assembly language. The biggest VAX advantages
are in register saving and restoring and indexed addressing.

Elaboration: The optimizing VMS C compiler did several tricks to improve this code,
including replacing the call of the s w a p procedure with the body of the code inside the
s o r t procedure, thereby avoiding the overhead of procedure cal l and return . Actual ly,
the M IPS C compiler uses a much more efficient register save/restore convention than
the one shown in Figure E.8, so the number of l ines of code for each architecture is
much closer than the figure suggests. Both compilers also use more efficient loops.
We show them in this form to make the code easier to follow.

II Fallacies and Pitfalls

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

Hans Hoffman, Search for the Real, 1967

Fallacy: It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of
hardware and software technologies. Over time those technologies are likely
to change, and decisions that may have been correct at one time later look like
mistakes. For example, in 1975 the VAX designers overemphasized the impor
tance of code-size efficiency and underestimated how important ease of
decoding and pipelining would be ten years later. And almost all architec
tures eventually succumb to the lack of sufficient address space. Avoiding
these problems in the long run, however, would probably mean compromis
ing the efficiency of the architecture in the short run.

E·20

Move
parameters

Outer
loop

Inner
loop

Pass parameters
and call

lnnter
loop

Outer
loop

Appendix E Another Approach to Instruction Set Archltectur-VAX

s o r t : a d d i
S W
S W
S W
S W
SW
S W
S W
S W
S W

m o v e
m o v e

a d d
f o r l l s t : s l t

beq

a d d i
f o r 2 t s t : s l t i

ex i t 2 :

e x i t 1 :

b n e
m u l i
a d d
l w
l w
s l t
b eq

m o v e
m o v e
.i a l

a d d i
j
a d d i
j

1 w
l w
l w
l w
l w
l w
l w
l w
l w
a d d i

MIPS versus VAX

Saving registers

$ 2 9 , $ 2 9 , - 36 s o r t : . wo r d Am< r 2 , r 3 . r 4 , r 5 . r 6 , r 7 >
$ 1 5 . 0 ($ 2 9)
$ l 6 ' 4 { $ 2 9)
$ l 7 ' 8 ($ 2 9)
$ 1 8 , 1 2 ($ 2 9)
$ 1 9 . 1 6 ($ 2 9)
$ 2 0 , 2 0 ($ 2 9)
$ 2 4 . 2 4 ($ 2 9)
$ 2 5 , 2 8 ($ 2 9)
$ 3 1 , 3 2 ($ 2 9)

Procedure body

$ 1 8 . $ 4 mo v a l
$ 20 . $ 5 mov a 1
$ 1 9 , $ 0 , $ 0 c l r l
$ 8 , $ l 9 ' $ 2 0 fo r l t s l : cm p l
$ 8 , $ 0 ' e x i t l b g e q

$ 1 7 ' $ 1 9 , - 1 s u b l 3
$ 8 , $ 1 7 , 0 f o r 2 t. s t :
$ 8 , $ 0 , ex i t 2 b l S S
$ 1 5 . $ l 7 ' 4 mo v l
$ 1 6 . $ 1 8 . $ 1 5
$ 2 4 , 0 ($ 1 6)
$ 2 5 . 4 ($ 1 6) a d d l 3
$ 8 , $ 2 J , $ 2 4 c m p l
$ 8 , $ 0 . e x i t 2 b l e q

$ 4 , $ 1 8 p u s h l
$ 5 , $ 1 7 p u s h l
s w a p c a l l s

$ 1 7 , $ 1 7 ' - 1 d e c l
f o r 2 L s l b r b

$ 1 9 , $ 1 9 , 1 ex i t 2 : i n c l
f o r l l s l b r b

Restoring registers

$ 1 5 , 0 ($ 2 9)
$ 1 6 , 4 ($ 2 9)
$ 1 7 , 8 ($ 29)
$ 1 8 , 1 2 ($ 2 9)
$ 1 9 , 1 6 ($ 2 9)
$ 2 0 , 2 0 ($ 2 9)
$ 2 4 , 2 4 ($ 2 9)
$ 2 5 . 28 ($ 2 9)
$ 3 1 , 3 2 ($ 2 9)
$ 2 9 , $ 2 9 . 3 6

r 7 , 8 (a p l
r 5 , 4 C a p l

r 6
r 6 , (r 7 l
e x i t l

r4 . r 6 . {f l
e x i t 2
r 3 . (r 5)

r 2 . r4 . # 1
(r 3 l [r4] , C r 3 l [r 2 J
e x i t. 2

(r 5 l
r4

112 . s w a p

r 4
f o r 2 t s t

r 6
fo r l t s t

FIGURE E.8 MIPS versus VAX assembly version of procedure sort in Figure E. 7 on page E·16.

E.7 Fallacies and Pitfalls E-21

4 -

3.5
Instructions executed 3 - - - - - - - - - - - - - - - - - - -

� 2.5

(/) 2
0..
� 1.5

1 -

0.5

0 .__ __ ___. ___ _._ ___ _._ ___ �---� --�---�---�--�

matrix nasa7 fpppp tomcatv l i
' t"" t"" f'"" t"

FIGURE E.9 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the
VAX is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from "Perfor
mance from Architecture: Comparing a RISC and CISC with Similar Hardware Organization," by D. Bhandarkar and D.
Clark in Proc. Symp. Architectural Support for Programming Languages and Operating Systems JV, 1991.)

Fallacy: An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature-the branches are not PC-rela
tive, and the address is too small in displacement addressing. Yet, the
machine has been an enormous success because it correctly handled several
new problems. First, the architecture has a large amount of address space.
Second, it is byte addressed and handles bytes well. Third, it is a general-pur
pose register machine. Finally, it is simple enough to be efficiently imple
mented across a wide performance and cost range.

The Intel 8086 provides an even more dramatic example. The 8086 architec
ture is the only widespread architecture in existence today that is not truly a
general-purpose register machine. Furthermore, the segmented address space
of the 8086 causes major problems both for programmers and compiler writ
ers. Finally, it is hard to implement. It has generally provided only half the per
formance of the RISC architectures for the last eight years, despite significant
investment by Intel. Nevertheless, the 8086 architecture-because of its selec
tion as the microprocessor in the IBM PC-has been enormously successful.

Fallacy: The architecture that executes fewer instructions is faster.

Designers of VAX machines performed a quantitative comparison of VAX and
MIPS for implementations with comparable organizations, the VAX 8700 and
the MIPS M2000. Figure E.9 show the ratio of the number of instructions exe-

E-22 Appendix E Another Approach to Instruction Set Architectur-VAX

cuted and the ratio of performance measured in clock cycles. MIPS executes
about twice as many instructions as the VAX while the MIPS M2000 has
almost three times the performance of the VAX 8700.

• Concluding Remarks

The Virtual Address eXtension of the PDP-11 architecture . . . provides a virtual
address of about 4.3 gigabytes which, even given the rapid improvement of memory
technology, should be adequate far into the future.

William Strecker, "V AX-11 /780-A Virtual address Extension to the PDP-11
Family," AFIPS Proc., National Computer Conference, 1978

We have seen that instruction sets can vary quite dramatically, both in how
they access operands and in the operations that can be performed by a single
instruction. Figure E.10 compares instruction usage for both architectures for
two programs; even very different architectures behave similarly in their use
of instruction classes.

A product of its time, the VAX emphasis on code density and complex op
erations and addressing modes conflicts with the current emphasis on easy de
coding, simple operations and addressing modes, and pipelined performance.

With more than 600,000 sold, the VAX architecture has had a very success
ful run. As this book is being printed, DEC is making the transition from VAX
to Alpha, a 64-bit address architecture very similar to MIPS .

• .

Orthogonality is key to the VAX architecture; the op
code is independent of the addressing modes which
are independent of the data types and even the num
ber of unique operands.Thus a few hundred opera
tions expand to hundreds of thousands of instructions
when accounting for the data types, operand counts,

and addressing modes.

E.9 Historical Perspective and Further Reading E·23

VAX 30% 40% 19% 89% gee
24% 35% 27% 86% MIPS

VAX 18% 23% 15% 23% 79%
spice

M IPS 4% 29% 35% 15% 83%

FIGURE E.10 The frequency of Instruction distribution for two programs on VAX and
MIPS.

II Historical Perspective and Further Reading

VAX: the most successful minicomputer design in industry history . . . the VAX
was probably the hacker's favorite machine . . . Especially noted for its large, as
sembler-programmer-friendly instruction set-an asset that became a liability after
the RISC revolution.

Eric Raymond, The New Hacker's Dictionary, 1991

In the mid-1970s, DEC realized that the PDP-11 was running out of address
space. The 16-bit space had been extended in several creative ways, but the
small address space was a problem that could only be postponed, not over
come.

In 1977, DEC introduced the VAX. Strecker described the architecture and
called the VAX "a Virtual Address eXtension of the PDP-11 ." One of DEC's
primary goals was to keep the installed base of PDP-11 customers. Thus, the
customers were to think of the VAX as a 32-bit successor to the PDP-11 . A 32-
bit PDP-11 was possible-there were three designs-but Strecker reports that
they were "overly compromised in terms of efficiency, functionality, program
ming ease." The chosen solution was to design a new architecture and include
a PDP-11 compatibility mode that would run PDP-11 programs without
change. This mode also allowed PDP-11 compilers to run and to continue to be
used. The VAX-11/780 resembled the PDP-11 in many ways. These are among
the most important:

1 . Data types and formats are mostly equivalent to those on the PDP-11.
The F and D floating formats came from the PDP-11. G and H formats
were added later. The use of the term "word" to describe a 16-bit quan
tity was carried from the PDP-11 to the VAX.

2. The assembly language was made similar to the PDP-ll 's.

3. The same buses were supported (Unibus and Massbus).

E·24 Appendix E Another Approach to Instruction Set Architecture-VAX

4. The operating system, VMS, was "an evolution" of the RSX-llM/IAS
OS (as opposed to the DECsystem 10/20 OS, which was a more
advanced system), and the file system was basically the same.

The VAX-11/780 was the first machine announced in the VAX series. It is
one of the most successful and heavily studied machines ever built. It relied
heavily on microprogramming (Chapter 5), taking advantage of the increasing
capacity of fast semiconductor memory to implement the complex instructions
and addressing modes. The VAX is so tied to microcode that we predict it will
be impossible to build the full VAX instruction set without microcode.

To offer a single-chip VAX in 1984, DEC reduced the instructions interpret
ed by microcode by trapping some instructions and performing them in soft
ware. DEC engineers found that 20% of VAX instructions are responsible for
60% of the microcode, yet are only executed 0.2% of the time. The final result
was a chip offering 90% of the performance with a reduction in silicon area by
more than a factor of five.

The cornerstone of DEC's strategy was a single architecture, VAX, running
a single operating system, VMS. This strategy worked well for over ten years.
Today, DEC is in the midst of a transition to the Alpha RISC architecture. Like
the transition from the PDP-1 1 to the VAX, Alpha offers the same operating
system, file system, and data types and formats of the VAX. Instead of provid
ing a VAX compatibility mode, the Alpha approach is to "compile" the VAX
machine code into the Alpha machine code. The transition will be fun to
watch.

To Probe Further

Levy, H., and R. Eckhouse (1989]. Computer Programming and Architecture: The VAX, Digital Press,
Boston.

This book concentrates on the VAX, but includes descriptions of other machines. II Exercises

E.1 [3] <§3.2, 3.9, E.4> The following VAX instruction decrements the location
pointed to be register r 5 :

d e c l (r 5)

What is the single MIPS instruction, or if it cannot be represented in a single
instruction, the shortest sequence of MIPS instructions, that performs the
same operation? What are the lengths of the instructions on each machine?

E.10 Exercises E·25

E.2 [5] <§3.2, 3.9, E.4> This exercise is the same as Exercise E.1, except this
VAX instruction clears a location using autoincrement deferred addressing:

c l r l @ (r 5) +

E.3 [5] <§3.2, 3.5, E.5> This exercise is the same as Exercise E.l, except this
VAX instruction adds 1 to register r 5, placing the sum back in register r 5, com
pares the sum to register r 6, and then branches to Ll if r 5 < r6 :

a o b l s s r 6 , r 5 , L l # r 5 = r 5 + l ; i f (r 5 < r6) g o t o L l .

E.4 [5] <§E.2> Show the single VAX instruction, or minimal sequence of in
structions, for this C statement:

a = b + 1 0 0 ;

Assume a corresponds to register r3 and b corresponds to register r4.

E.5 [10) <§E.2> Show the single VAX instruction, or minimal sequence of in
structions, for this C statement:

x [i + l] = x [i] + c ;

Assume c corresponds to register r 3, i to register r4, and x is an array of
32-bit words beginning at memory location 4,000,0001en·

Index

A

1-bit adder, 186 (fig.)
input/ output specifications, 186

1-bit ALU, 184-187
for most significant bit, 192
performing ADD, OR, addition, 188 (fig.), 190 (fig.), 191 (fig.)

4-bit adder, 196
generate signal for, 196-197
propagate signal for, 196

32-bit ALU, 187-188

32 1-bit ALU construction, 189 (fig.), 193 (fig.)
final, 194 (fig.)
for MIPS, 189-192

32-bit constants, 182
64-bit register, 223
aborts. (see interrupts)
abs.d instruction, A-65
abs instruction, A-51
abs.s instruction, A-66
abstractions, 17

interface between levels, 18
principle of, 18

accumulator, 150
extended, 151

Ack signal, 553
Ada, A-9

overflow and, 178
add.d instruction, 238, A-66
adders, 276, (see also addition)

1-bit, 186 (fig.)
(3, 2), 263
4-bit, 196
carry-lookahead, 196
carry out signal hardware, 187

function, 277 (fig.)
ripple carry, 188
two's compliment, 188

addi instruction, 125, 178, A-51
add immediate instruction. (see addi instruction)
add immediate unsigned instruction. (see addiu instruction)
add instruction, 178, 270, 276, 283, 365, A-51

forwarding clock cycles, 416
addition, 175, (see also division); multiplication; subtraction

binary, 176 (fig.)

carry save, 263
of 4-bit numbers, 264

floating-point, 230-233, 234 (fig.)
arithmetic unit dedicated to, 235 (fig.)

of significands, 231
addiu instruction, 178
AddrCtl, C-18, C-19

addresses, 98, (see also address space)
byte, 137
memory, 99 (fig.)
physical, 482
return, 119
size of, 515
translation, 482, 493, (see also virtual addresses; virtual memory)
virtual, 482 (fig.)
word, 130

addressing modes, 129, 131 (fig.), (see also specific types of addressing
modes)

list of, 130
VAX, E-5-E-6

address space, 481
single, 603

address specifier, E-7
add.s instruction, 238, A-66
addu instruction, 178, A-51
add unsigned instruction. (see. addu instruction)
Aiken, Howard, 34
aliasing, 493
ALOG, 254
Alto, 582
ALU, 182, 271, 276, (see also ALU control)

1-bit, 184-187, 189-192
32-bit, 187-192
64-bit, 202
adding 32-bit operands, 192-197
building blocks of, 184
construction, 197
function performance, 286
less operation output, 190
operation values, 195
in R-type instruction, 317
sharing, 312
signed-immediate input to, 421, 423 (fig.)
symbol representation, 195

ALU control, 285-291
bits, 187 (fig.)
block, 289, 290 (fig.)

1·2

ALU control (continued)
lines, 289

ALUOp, 287, 314, 318, 319, 320, 321, 328, 329, 382
bits, 289
field mapping, 287

ALUoutput, 319
ALUSelA, 318, 319, 320, 321, 328, 329
ALUSelB, 314, 318, 320, 321, 328, 423
ALUSrc, 382
Amdahl, Gene, 355, 642
Amdahl's Law, 71, 89, 478, 535, 604, 638, 639

make the common case fast corollary, 71
American Standard Code for Information Interchange. (see ASCII)
andi instruction, 182, A-52
and instruction, 270, 276, 283, 365, A-52

ID stage of, 401
AND operation, 181-182, B-5
AND plane, B-12
Annals of the History of Computing, 40
ANSI, 563
Apple II, 37, 39 (fig.)
applications software, 8
architecture, 17, (see also MIPS architecture)
arithmetic, (see also addition; division; floating-point; multiplica-

tion; overflow; rounding; subtraction)
instructions, 149, 150 (fig.), A-51-A-55
logic unit. (see ALU)
overflow exception, 348

arithmetic mean (AM), 70, 75
weighted, 70

ARP ANET network, 547
array indices, 143

pointers vs., 146
arrays, 143, (see also pointers)

of logic elements, B-17-B-18
setting, to zeros, 145 (fig.), 146

ASCII, 161
representation of characters, 161

assemblers, 6, 109, A-4, A-10-A-17, (see also object file)
directives, A-5
function of, A-10-A-11
microcode, C-24
MIPS, 110, 115
relocation information, A-14
syntax, A-48-A-50
for Unix systems, A-17

assembly, 109
assembly language, 6, 7 (fig.), 109, A-3

code, A-4 (fig.)
disadvantages, A-10
high-level languages vs., A-13
MIPS, 96, 102, 107, 118, 123, 132, 174, 180, 183, 224
syntax for, 335
when to use, A-8-A-10

Assessing the Speed of Algol 60, 72
Association for Computing Machinery, 256
asynchronous bus, 551-556, 553, 556, (see also buses)
Atanasoff, John, 33

Atlas computer, 525
atomic swap operation, 614
autodecrement addressing, 133
autoincrement addressing, 133
autoincrement deferred addressing, E-5
automatic teller machines (ATMs), 537
average memory access time (AMAT), 530

B

backpatching, A-12
backplane, 549

buses, 549, 550-551, 552 (fig.)
Bailey, David H., 637
bandwidth

bisection, 623

bus, 556--558, 564
higher memory, 474 (fig.)
l/0, 536
total network, 623

barrel shifter, 197-198
base addressing, 130, 131 (fig.)
bclf instruction, 238
belt instruction, 238
bczf instruction, A-57
bczt instruction, A-57
Bell, C.G., 602
Bell, Gordon, 644

Prize winners, 645 (fig.)
benchmarks, 66, (see also peak performance; performance)

Dhrystone, 73-7 4, 78
kernel, 79
selection of, 80
small, 68
SPEC processor, 67
synthetic, 73-74
toy programs as, 79
use of, 66
Whetstone, 73-74, 78-79

beq instruction, 1 1 1, 115, 270, 283, 365, A-58
datapath in operation for, 303 (fig.)
operands, 279
steps to executing, 302

beqz instruction, A-58
bge instruction, A-58
bgequ instruction, A-58
bgezal instruction, A-58, A-59
bgez instruction, A-58
bgt instruction, A-58
bgtu instruction, A-58
bgtz instruction, A-59
bias, 175
biased notation, 175
bidirectional links, 622
Bigelow, John, 32
Big picture, 16

arithmetic for computers, 243

Index

Index

assemblers, linkers, SPIM simulator, A-13

computer abstraction and technology, 18

computer components, 16

datapath and control, 354

enhancing performance with pipelining, 421, 431
instructions, 108

interfacing processors and peripherals, 563
l/O system performance, 579
mapping control to hardware, C-27

memory hierarchy design, 514

parallel processors, 634
principles of locality, 512

role of performance, 58
VAX and MIPS goals, 4, 5

BINAC, 34

binary digit, 5, 103
binary numbers, 5, 6, 103, (see also numbers)

converting from smaller size to large, 172-173

negating, 171
in scientific notation, 225

b instruction, A-57

bisection bandwidth, 623
bit map, 12

purpose, 13
bits, 5, 103

classifying groups of, 207

dirty, 490
done, 567
least significant, 169

line, B-28
most significant, 169
reference, 489

sign, 170
status, 611

sticky, 243, 266
use, 489

valid, 461
Blaauw, Gerrit, 442

ble instruction, A-59

bleu instruction, A-59
blez instruction, A-59
block(s), 456, (see also pages)

cache, 612
combinational, B-4
"control-logic," C-4
field selection, 461
finding, 508-510
fixed-size, 484
logic, state, B-4
modulo number, 459-460
multiword, 469, 471
placement, 502-508

strategy, 503
replacement, 510-511

LRU, 510
random, 510

transfers, 557
variable-size, 484

block size

increasing, 472-473

disadvantage of, 473
miss rate vs., 472 (fig.)

bit instruction, A-17, A-59

bltu instruction, A-59
bltzal instruction, A-59

bltz instruction, A-60
Bnegate control line, 191

bne instruction, 111, 115, A-17, A-60

bnez instruction, A-60

Boolean algebra, B-5-B-7
AND operator and, B-5

NOT operator and, B-5-B-6
OR operator and, B-5

Booth's algorithm, 205-212

first step cases, 208

with negative numbers, 209 (fig.)
for positive numbers, 209 (fig.)

recasting, 211
as the sum, 211

Branch, 292, 382

branch-delay slots, 449
branch equal instruction. (see beq instruction)
branches

addressing, 127-130

address select logic types, C-18

conditional, 111, 128, 129, 149, 150 (fig.)

datapath for, 282 (fig.)
delayed, 119, 443, 449, A-37

operations required of, 281

target address, 281

unconditional, 112
branch hazards. (see control hazards)

branch instruction, 291, A-57-A-61
pipeline impact on, 424 (fig.)

single state machine and, 329 (fig.)
VAX, E-10

branch not equal instruction. (see bne instruction)

branch prediction, 430
break instruction, A-69

breakpoint, A-41

setting, A-41
Brooks, Fred Jr., 442
Browning, Robert, 148
bubbles, 399, (see also pipeline stalls)

pipelined instruction sequence with, 401 (fig.)
buffers, (see also TLB)

DECStation 3100 write, 13 (fig.)
frame, 13
raster refresh, 13
store, 512
three-state, B-28, B-29 (fig.)
tri-state, B-28

Burks, Arthur, 32, 94, 111, 249, 521
Burroughs 5500, 72
bus arbitration, 559-562

centralized, parallel, 561

1·3

1-4

bus arbitration (continued)
daisy chain, 561

distributed, by collision detection, 562
distributed, by self-selection, 561-562

bus bandwidth, 556, 564

increasing, 556-558

buses, 275, 548-563, B-18, (see also bus arbitration; bus transac-

tions)

access to, 558-559

asynchronous, 551-556, 553, 556

backplane, 549, 550-551, 552 (fig.)

characteristics, 563, 619

contents of, 548
daisy chain, 561 (fig.), 562

design difficulties, 548

disadvantages of, 548
IBM PC, 552

1/0, 549, 550
latency of, 548

processor-memory, 549
SCSI, 552
shared, 314

standard, 549

standards for, 562-564
characteristics, 564 (fig.)

synchronous, 551-556, 553, 556, 558
types of, 549-551

bus masters, 559
multiple, 559

bus priority, 560
fairness and, 560

bus request, 559

bus transactions, 549

initial steps in, 560 (fig.)

read, 549

write, 549
bypassing. (see forwarding)

byte order, A-45

big-endian, A-45
little-endian, A-45

bytes
address, 137
size, 100

byte/word/long displacement deferred addressing, E-5

c
cache, 16-17, 458-481, 526, 635, (see also block(s); memory; mem-

ory hierarchy; set associative cache)
as a slave, 525

basics, 480-481
block, 612

finding, 469
in DECStation 3100, 466 (fig.)
direct mapped, 459, 460 (fig.)
file, 579
hit rate, 468

inconsistent, 467
index, 461

lower address portion, 463 (fig.)
memory system design and, 473-476
misses

handling, 464-465

reducing penalty of, 465
stalls and, 465

miss rates, 468

multilevel, 520
number of bits needed for, 464

performance, 476-448
read requests, 467

reference request contents, 462 (fig.)

referencing a word, 459 (fig.)
simulating, 515

snooping, 635
split, 469

store implementation in, 512

structure, 459
tags, 460
using four-word blocks, 470 (fig.)

virtually addressed, 493, 495
write requests, 467

cache-coherency, 608, (see also multiprocessors)
block size and, 612

bus-based, 616

multiprocessor, 610-612
protocols, 609

example, 612-614
write-invalidate, 613 (fig.)

steps, 616 (fig.)
callee

procedure, A-22
save, 121, 124
saved registers, A-26

caller

procedure, A-22
save, 121, 124
saved registers, A-26

call instruction, 147
capabilities, 526
capacity misses, 513
Carryln, 185, 194-195, 196
CarryOut, 185, 196

at 1, 185
CAS (Column Access Strobe), B-32
case statement, 115
cathod ray tube. (see CRT)
Cause register, 345, 346, 434, 569, 570, A-32 (fig.), A-33

fields, A-31

CauseWrite, 346
CDC 6600, 35, 72, 253, 442, 443 (fig.), 582
central processing unit. (see CPU)
c.eq.d instruction, A-66
c.eq.s instruction, A-66
channel controllers, 573
Charles V, 92

Index

Index

chips, 13, 23, (see also integrated circuits)
CISC machines, A-7, E-3

Clark, David, 20
clearl array, 143

clear2 vs., 145

c.le.d instruction, A-66
c.le.s instruction, A-66
clock, 53, 274 (fig.), B-18-B-21

cycle time, B-18
edge, 273

frequency, B-18

period, 53, B-18

rate, 53
signal, B-19 (fig.)

skew, B-40, B-41 (fig.), B-42

ticks, 53
variable, 309

implementation, 310

clock cycles, 53, (see also clock cycle time)
CPU, 57, 479

decreasing number of, 43
examples, 273-276
instruction execution in, 314-322

instruction length, 306
of instruction types, 310
length of, 364

measurement of, 58
memory-stall, 476-477, 517

per instruction. (see CPI)
required for program, 55-56

clock cycle time, 53, B-18
clocking methodology, 273

edge-triggered, 273, 275 (fig.)
two-phase, B-41-B-42

c.lt.d instruction, A-66
c.lt.s instruction, A-67
CM-1, 641, 642

CM-2, 599-601, 642
I/ 0 channel, 601
operation of, 599

organization, 600, 601 (fig.)

performance, 600

photo, 600 (fig.)
CM-5, 626-630, 644

computational node, 627
data network fat-tree topology, 628 (fig.)
features, 627
photo, 629
processing node, 627 (fig.)

Cobol, 8
Cocke, John, 442

coherency problem, 575
collision, 591

misses, 513
combinational elements, 272
combinational logic, 274 (fig.), B-3, B-8-B-18

block inputs, B-20 (fig.)
comments, 95

communication, network computers and, 20

comparison instructions, A-56-A-57

compilers, 6, 8-9, 29, A-6
assembly language coders and, 147

compilation speed and, A-7

C translation and, 96
gee, A-22

MIPS, A-22
optimizations, 66

programmers vs., A-9
in systems software level, 9 (fig.)

compiling, 6, 7 (fig.)
compulsory misses, 513

computer-aided design (CAD), 276, 289, B-39

computer(s), (see also specific types of computers)
arithmetic, 246

commercial, characteristics, 40 (fig.)

communicating to, 20
components, 18
digital, B-4

embedded, A-8
first electronic, 31-34

generations, 38, 40 (fig.)

hardware. (see hardware)
key principles of, 108

organization of, 30 (fig.)

parallel, 38, 40

price I performance prediction, 28
systems, 8-10, 9 (fig.)

Conant, James B., 640

condition codes, E-10

conflict misses, 513

constant bit density, 546
constant-manipulating instructions, A-55
constants, 124-125

32-bit, 182
multiplying by, 210

context switch, 497

1·5

control, 14, 15 (fig.), 344, (see also control function; control hazards;
control lines)

alternative methods for, 354 (fig.)
ALU, 285-291

Big picture of, 354
checking for exceptions, 348-349
in computer design, 352
defining, 322-333
definition of, 351
design, 333-334
for exceptions, 432 (fig.)

finite state, 324, 332 (fig.)
forwarding, 413
hardwired, 352

for hazards, 399-412
main, unit, 291-306

microprogrammed, 352, C-22
multicycle, 322

multiplexor, 324
off-chip, 351

1·6

control (continued)
optimizing, implementation, C-20-C-22

organizing, to reduce logic, C-24-C-27
pipelined, 381-390

overview, 422 (fig.)

word, C-10, C-22

address-control lines in, C-21 (fig.)

lower bits, C-13, C-14 (fig.)
control function

definition, 302
logic, PLA implementation and, C-16 (fig.)

parts, C-8

PLA implementation and, C-14-C-15

ROM implementation and, C-10-C-14
structured implementation of, 305 (fig.)

truth table, 304 (fig.)

control hazards, 424-430, (see also hazard tests)
always stalling and, 425

assuming branch not taken and, 425-430
branch with stalls and, 426 (fig.)

exceptions and, 430-434

controller

channel, 573
disk, 544

implementation, 333
I/0, 573

microcode, 343 (fig.)
time, 544
traffic light, B-38 (fig.)

control lines, 293 (fig.), (see also control)
buses and, 553

for final three stages, 388
labeling, 382

optional, 388

in pipelined control, 382
setting of, 296 (fig.)

values, 388 (fig.)

control signals, 275, 334, (see also control)

action caused by setting of, 316
determining how pc is written, 324 (fig.)
function of, 294 (fig.)

partition of, 335
pipelined datapath and, 386 (fig.)

connected to control portion of pipeline registers, 391

control unit, (see also control; main control unit)
address select logic for, C-20 (fig.)
cache misses and, 464

with counter, C-17
logic equations for, C-4, C-7 (fig.)

implementation of, C-8
as microcode, C-22-C-23 (fig.)
microprogram for, 338-344
for MIPS, C-6 (fig.)
techniques for implementing, C-3
using explicit counter, C-18 (fig.)

Coonen, Jerome T., 255

C operations, 182, (see also C programming)
coprocessor, 255

coprocessor 0, A-30

copy back, 490, 511
CPI, 56, 438

measurement of, 58

for MIPS instruction categories, 260

obtaining, 57

stall cycles and, 479

Index

C programming, 94, (see also sort procedure, C programming)
assignment statements, 0-4
conditional statements in, 0-5-0-6
loops in, 0-6-0-7

procedures in, 0-7

relational expressions in, 0-5-0-6
routine, A-8 (fig.)
variable declarations in, 0-3-0-4

standard types of, 0-4
CPU, 14, (see also CPU time)

clock cycles, 57, 479

execution time, 54, 58
performance, 53, 54

improvement, 536

CPU time, 52, 476-477, 516-517, (see also CPU)
system, 52

user, 52
Cray-I, 35, 39 (fig.)

characteristics of, 40
Cray-2, 65

Cray C-90, 441
Cray computers, 602

overflow on, 253

rounding errors and, 253

Cray, Seymour, 35, 252, 532
CRT, 12

display, 12 (fig.)
cvt.d.s instruction, A-67

cvt.d.w instruction, A-67
cvt.s.d instruction, A-67

cvt.s.w instruction, A-67

cvt.w.s instruction, A-67
c.x.d instruction, 238
c.x.s instruction, 238
cycles, 53
cylinder, 542

D

daisy chain bus, 561 (fig.), (see also buses)
multiple, 562
protocol followed by device on, 562

dance hall, 620
data alignment, A-48
data bus width, 446
data hazards, 390-399, 396, 397, (see also hazard tests)

clock cycle 9 and, 396 (fig.)

clock cycles 1 and 2 and, 392 (fig.)

clock cycles 3 and 4 and, 393 (fig.)
clock cycles 5 and 6 and, 394 (fig.)

Index

clock cycles 7 and 8 and, 395 (fig.)
control for, 399-412
reducing, 412-424

data layout directives, A-14
data memory unit, 280 (fig.)
data movement instructions, A-64-A-65
data parallelism, 597
datapath, 14, 15 (fig.)

adding, for branches, 284
for branches, 282
building, 276-282
combining, 284 (fig.)
with control unit, 295 (fig.)
creating single, 283-285
for fetching instructions, 277 (fig.)
to handle load instruction, 379-380 (fig.)
instruction fetch portion of, 284, 285 (fig.)
jump instruction and, 307
for load or store, 280 (fig.)
for MIPS architecture, 286 (fig.)
multicycle, 313 (fig.)

with control lines, 315 (fig.)
for MIPS, 313 (fig.)
pipelined performance consequences, 438 (fig.)

for multicycle implementation, 323
with multiplexors and control lines, 293 (fig.)
in operation for beq instruction, 303 (fig.)
pipelined, 367-381, 370 (fig.)

with control signals identified, 386 (fig.)
for R-type instructions, 279 (fig.)
single-cycle, 369 (fig.)

pipeline performance consequences, 438 (fig.)
data rate, 538

I/ 0 devices and, 540
DataRdy signal, 553
data selector, 283

data transfer, 570-573
instructions, 149, 150 (fig.)
interrupt driven, 570

DEC, 35, 602, (see also VAX)
Alpha, 154, 436, 441, 444, 518
NVAX, 436
PDP-8, 35, 37 (fig.), 40
PDP-11, 516, 525, 582, E-22, E-23

decimal numbers, 103, (see also numbers)
decoders, B-9, (see also combinational logic)

three-bit, B-9 (fig.)
three-to-eight, B-9
two-level, B-32

column access, B-32
row access, B-32

decoding, 325
DECStation 3100, 466-469

cache, 466 (fig.)
read requests, 467

measurements, 469
miss rates, 468 (fig.)
processing read or write through, 495 (fig.)

TLB in, 493
virtual address to data item in, 494 (fig.)
write buffer, 468
write requests, 467

delayed branches, 443, 449, A-37
delayed loads, 443
DeMorgan's Law, B-6
DeMorgan's theorems, B-10
design

cost/performance, 76
high-performance, 76
low-cost, 76
principle. (see hardware, design principles)

Devil's DP Dictionary, The, 182
D flip-flop, B-22-B-25, (see also flip-flops)

array of, B-24
with falling-edge trigger, B-24 (fig.)
hold time, B-24, B-25 (fig.)
operation of, B-24 (fig.)
set-up time, B-24, B-25 (fig.)

Dhrystone benchmark, 73-74, 78
dies, 23

costs of, 26
per wafer, 44

Digital Equipment Corporation. (see DEC)
direct mapped block placement, 502, 503 (fig.)
direct mapped cache, 502

eight-block, 504 (fig.)
three address portions for, 508

direct memory access. (see OMA)
directories, 635
disk arrays, 592, (see also arrays)
disk controller, 544
disks, magnetic. (see magnetic disks)
dispatch, 336

as case statement, 339
operation, C-18
tables, 336, 342, 343

displacement addressing, 130, E-5
types of, E-5

div.d instruction, 238, A-67
dividend, 213
div instruction, 223, A-52

1·7

division, 212-224, (see also addition; multiplication; remainder;
subtraction)

algorithm, first version, 215 (fig.)
example, 216 (fig.)

algorithm, second version, 218 (fig.)
example, 219 (fig.)

algorithm, third version, 220 (fig.)
example, 221 (fig.)

hardware, first version, 214 (fig.)
hardware, second version, 217 (fig.)
hardware, third version, 221
long division example, 212-213
nonrestoring, 265
restoring, 265
signed, 222-223

1-8

divisor, 213
Divisor register, 213

div.s instruction, 238, A-68
divu instruction, 223, A-52

D latch, B-22-B-24, (see also latches)

DMA, 571
for hard disk interface, 573
memory system and, 574-575

multiple, devices, 572

processors, 573
transfer chains, 57 4
transfer steps, 572

virtual memory and, 574-575
don't cares, 290, B-15, (see also combinational logic)

input, B-16

output, B-16

types of, B-16

double precision, 227

integer multiplication, 261
doubles, 227
DRAM, 16, 455, 473, 475-476, 523-525, B-30-B-33, (see also mem-

ory; SRAM; virtual memory)
I-transistor, B-32 (fig.)
4Mxl, B-33 (fig.)

32Kx8, B-31 (fig.)
access time, 455, 519

board, early, 524 (fig.)

capacity, 630

chip interface, 520
growth in capacity of, 22 (fig.)

page mode, 476
performance, 519 (fig.)

price per bit, 455

refreshed charge, B-31

sizes, 476 (fig.)

speed, 19

structure, 475-476
two-level decoder, B-32

dynamic data, A-20
dynamic random access memory. (see DRAM)

E

early start, 473
Eckert, J. Presper, 21, 31
Eckert-Mauchly patent, 32
edge-triggered clocking, B-18, B-21 (fig.)

advantage of, B-20-B-21
edge-triggered timing, B-39-B-41, (see also level-sensitive timing)

clock length, B-40 (fig.)

clock skew and, B-40, B-41 (fig.)
drawbacks, B-41

EDSAC, 32, 33 (fig.), 353
mercury delay lines, 522 (fig.)

EDSAC 2, 354
EDVAC, 32
EISPACK, 250, 251

elapsed time, 52

ELXSI 6400, 256
embedded computer, A-8
emulation, 355
encoder, B-9

encoding, C-26, (see also microcode)

maximum, C-27
minimum, C-27

Engelbart, Doug, 10, 582
ENIAC, 31 (fig.), 521

described, 31-32
EPC register, 346, A-33
EPCWrite, 346

eq instruction, 238
error-correcting codes (ECC), B-34

error correction, B-33-B-35

detection and, B-34

distance-3 code and, B-34-B-35
parity code and, B-33

Ethernet, 20, 547, 563, 582, 591

controllers, 582

evolution-revolution spectrum, 640, 641 (fig.)

EWcar signal, B-37
EWgreen signal, B-37

EWlite signal, B-37

Exabyte EXB-120, 581 (fig.)
exception handler, 499

exception instructions, A-69-A-70
exception program counter (EPC), 178, 345, 430, 498

data write port, 346
exceptions, 178, 344-349, A-30-A-34, (see also interrupts)

causes of, 434

control hazards and, 430-434
controls for handling, 432 (fig.)

detecting, 348-349
handling of, 345-347

imprecise, 434

methods for communicating reasons for, 345

multiple simultaneous, 434
overflow, 430
page fault, 500
precise, 434
processing aspects, 347 (fig.)

Index

as result of arithmetic overflow in add instruction, 433 (fig.)
system call, 496
TLB, 500

types of, 348
execution time, 50, (see also performance; response time)

after improvement, 71
average instruction, 77

faster, 69
MIPS and, 60-61
normalized, 75
ratio, 75
total, 70
two program example, 69

EX hazard
forwarding and, 413, 415

Index

stalling and, 402
expansion factor, A-10
EX pipe stage, 367

control hazards and, 425
exceptions and, 434
for load instruction, 373 (fig.)
overflow exceptions and, 430
in pipelined control, 382
stalling and, 402, 412
for store instruction, 374-375, 376 (fig.)

exponent, 226, 227
negative, 228
product calculation, 233

F

fallacies, 26, (see also pitfalls)
cost/performance, 70-76

Fallacy
Amdahl's Law doesn't apply to parallel computers, 638--{i39
An architecture with flaws cannot be successful, E-21
Computers using antiquated computation model, 26
Geometric mean of ratios tracks total execution time, 75-76
Hardware-independent metrics predict performance, 71-72
If space in control store, new instructions are cost free, 350
Increasing pipelining depth always increases performance, 437
It is possible to design a flawless architecture, E-19
Magnetic storage is on its last legs and will be shortly replaced,

576
More powerful instructions mean higher performance, 147
Peak performance tracks observed performance, 639
Pipelining is easy, 437
Right shift instruction is same as integer division by power of

two, 245
Synthetic benchmarks predict performance, 73-74
The architecture that executes fewer instructions is faster, E-21-

E-22
false sharing, 612
fields, 103

names of, 104
file caches, 579
finite state machine, 322, B-35-B-39

control, 325 (fig.), 332 (fig.)
implementation, C-4-C-15

controller implementation, 333
for controlling memory-reference instructions, 327
with exception detection, 349 (fig.)
implementation of, 322-324, 331
implemented with a state register, B-39 (fig.)
internal storage, B-36 (fig.)
next state determination, 334
next-state function, B-35
output function, B-35
R-type instructions and, 328 (fig.)
synchronous, B-35

firmware, 352
flip-flops, B-22-B-25, (see also latches)

D, B-22
with falling-edge trigger, B-24 (fig.)
operation of, B-24 (fig.)

in metastable state, B-43
fllv instruction, A-54
float, 225
floating point, 225-244, (see also arithmetic)

addition, 230-233, 234 (fig.)
arithmetic unit dedicated to, 235 (fig.)

exclusion of, 249-250
hardware, 250
instructions, A-65-A-69
multiplication, 233-240, 239 (fig.)
performance, 633
registers, 240
supported instructions, 238

floating-point accelerator (FPA), 599
floating-point operation, 65
floating vectors, 250
floppy disks, 19, 542
flushing, 575

Flynn, Michael, 442-443
for loops, 114, 134, (see also loops)

nested, 139-140
format field, C-26, C-27
Forrester, J., 522
Fortran, 8, A-24

overflow and, 178
forwarding, 412

conditions for, 413-415
control, 413
disadvantage of, 420
example, 416

clock cycles 3 and 4 of, 418 (fig.)
clock cycles 5 and 6 of, 419 (fig.)

with loads and stores, 420-424
modified datapath for, 417 (fig.)
multiplexors, 415

Forwarding Unit, 416
pipeline connections for, 421, 422 (fig.)

frame buffer, 13 (fig.)
front-end machine, 600--{iOl
fully associative block placement, 502, 503 (fig.)
fully associative cache, 506

blocks in, 510
eight-block, 504 (fig.)
performance, 506

funct field, 104
FutureBus bus, 563, 564

G

gates, B-7-B-8
AND, B-7-B-8, B-14
NOR, B-21

cross-coupled, B-22 (fig.)
OR, B-7-B-8, B-14

1·9

1·10

ge instruction, 238
geometric mean, 75

formula for, 75
Gibson, D.H., 526
gi (generate), 196
global pointer, A-21, (see also pointers)
Goldstine, Herman, 32, 94, 1 1 1, 249, 251, 521
Goodyear MPP, 642

photo, 644 (fig.)
goto statement, 111
Gray code, B-46
gray-scale displays, 12-13
gt instruction, 238
guard, 242, 266

H
halfwords, 103
handshaking, 553
handshaking protocol, 553--554

asynchronous, 554 (fig.)
implementing, 557 (fig.)

hard disks, 19-20, 542-546, (see also floppy disks; magnetic disks)
advantages, 542
densities, 545
organization of, 543 (fig.)

hardware
design principles, 96, 97, 104, 125

good design demands compromise, 104, 149
make the common case fast, 104, 149, 270
simplicity favors regularity, 96, 149, 270
smaller is faster, 97, 149

operands of, 97-103
operations of, 95--97

harmonic mean, 87
Harvard architecture, 34
Hazard Detection Unit, 402, 404 (fig.), 412, 421

pipeline connections for, 421, 422 (fig.)
hazards. (see control hazards; data hazards)
hazard tests, 402-403

EX hazard, 402, 413, 415
for forwarding, 413-415
MEM hazard, 402, 415
WB hazard, 402-403

helical scan tape, 580
Hewlett Packard

HP 9000, 40
HPPA, 154
PA-RISC, 518
Precision architecture, 356
W. Kahan and, 255

hexadecimal, 175
high-impedance state, B-29
high-level programming languages, 6, A-6

architecture, 154
benefits of, 8

Hillis, Danny, 644

hit, 456, (see also miss)
double, 479
rate, 457, 468
time, 457
write, 471

Hoagland, Al, 18
HP 9000, 40

I

!AS (Institute for Advanced Study), 32
IBM, 602

360/85, 526
360/91, 442, 444 (fig.)
370, 567
650, 250
701, 34
3330 disk, 577
7030, 442
7090, 254
7094 series, 250, 251, 252
entrance into computers, 34
Personal Computer, 37, 40, 255
Power PC, 154, 356
Powerstation 550, 67
RS/6000, 444, 551

Index

System/360, 34--35, 36 (fig.), 40, 153, 251-252, 355, 442, 516, 525,
582

guard digit and, 252
icb instruction, 134, 135
!CL DAP, 642
ID pipe stage, 367, 369

control hazards and, 425, 426
exceptions and, 434
for load instruction, 372 (fig.)
in pipelined control, 382
stalling and, 402, 412
stalling dependent instruction in, 401
for store instruction, 37 4

IEEE 754/854 floating-point standard, 256
IEEE 754 floating-point standard, 227-228

features, 243-244
history, 255
number encodings, 244
single precision bias, 229

IEEE, 563
IF pipe stage, 367

control hazards and, 42
for load instruction, 371-372 (fig.)
in pipelined control, 382
stalling and, 402
for store instruction, 375

if statement, 1 1 1
options, 113 (fig.)

if-then-else statements, 115
Illiac IV, 642

control unit, 643 (fig.)

Index

immediate addressing, 130, 131 (fig.), E-5, E-7
immediate operand. (see I-type instruction format)
implementations, 18, (see also multicycle implementation)

ROM-based, 352
simple, 283-312
single-cycle problems, 306--312

increment-compare-and-branch. (see icb instruction)
indexed addressing, E-5

index register, 100
indirect addressing, E-5
input devices, 10
input operation, 549, 551 (fig.)
input/output. (see I/O)
instruction architecture, 281
instruction count, 57, (see also instructions)

measure of, 57
using one, 60

instruction execution, 314, (see also instructions)
in clock cycles, 314-322
execution, memory address computation, branch completion

step, 319-320
instruction decode and register fetch step, 318-319
instruction fetch step, 317-318
memory access or R-type instruction completion step, 320
step summary, 321 (fig.)
write-back step, 320-321

instruction format, 104, (see also instructions)
instruction classes and, 291
MIPS, A-50-A-70
observations, 291-292
types of, 104-105

instruction mix, 77, 78
Instruction register (IR), 312, 317
instructions, 5, 94, (see also specific instructions)

arithmetic and logical, A-51-A-55
average time per, 56
branch and jump, A-57-A-61
comparison, 171, A-56--A-57
constant-manipulating, A-55
data movement, A-64-A-65
data transfer, 98
discarding, 425
distribution of, on VAX and MIPS, E-22 (fig.)
exception and interrupt, A-69-A-70
execution time of, 364
floating-point, A-65--A-69
frequency of, 248

on VAX and MIPS, E-23 (fig.)
instruction fetch and decode portion of, 326 (fig.)
length of, 104
load, A-61-A-62
memory-reference, 325, 327
pipelined sequence of, 420 (fig.)
representing, in computer, 103-110
restartable, 500
stalling, 399, 401
store, A-63-A-64
throughput of, 364, 367

instruction set, 94, (see also instructions)
architecture, 17, 29

maintaining as constant, 29
design principles, 149
history of, 151-154
MIPS, 95, 247
pipelining difficulties and, 436
VAX, 152, 334

IntCause, 346
integers, 171

double-precision, multiplication, 261
unsigned, 171, 261

overflow and, 178
integrated circuits, 13, 21-26

manufacturing process, 22
very large scale, 21

Intel
80x86, 567
4004, 35, 38 (fig.)
Delta, 631
i860, 73

intelligent peripheral interface (IPI), 563
interconnection network, 630

topology, 631
interface message processor (IMP), 547
Intergraph Clipper ClOO, 73
interleaving, 474-475

disadvantages of, 475
International Business Machines. (see IBM)
interrupt-driven I/0, 569, 571
interrupt handler, A-31-A-32, (see also interrupts)

example, A-32-A-33
interrupt instructions, A-69-A-70
interrupts, 178, 344, A-30-A-34, (see also exceptions)

imprecise, 434
precise, 434
vectored, 345

int instruction, 171
l/O bandwidth, 536
I/0 benchmarks, (see also benchmarks)

file system, 539
supercomputer, 538
transaction processing, 538-539

l/0 buses, 549, 550, (see also buses)
I/0 controllers, 573, (see also controller)
I/ 0 devices, 539

behavior, 539
characteristics, 539-540
collection of, 534 (fig.)
connecting, 548-563
data rate, 540
diversity, 540 (fig.)
giving commands to, 566--567
partner, 539
priorities of, 570
types of, 540-548

l/0 instructions, 566, 567, (see also instructions)
I/0 interrupt, 569, 570, (see also interrupts)

1·11

1·12

l/O performance, 536, (see also performance)
measures, 537-539

I/O processors, 573
I/ 0 rate, 538

I/ 0 requests, 536
l/O systems, 534

assessing, 535
characteristics of, 565
designing, 535, 578
future directions of, 578-580
history of, 581-583
performance, 579

IPi bus, 564
IRWrite, 318
ISAM system, 577
issues, 440

multiple, 440
I-type instruction format, 105, (see also R-type instructions)

J

jal instruction, 119, A-60
jalr instruction, A-60
j instruction, 112, 270, 283, A-60, (see also unconditional jumps)

addressing, 127-130
conditional, 121
instruction format for, 306
operation of, 282
single state and, 330 (fig.)

Jobs, Steve, 37
jr instruction, 116, A-61

in switch statement, 119
J-type instruction format, 127, (see also I-type instruction format;

R-type instructions)
jump address table, 115
jump-and-link. (see jal instruction)
jump instructions, A-57-A-61, (see also j instruction)
jump register. (see jr instruction)
jumps, unconditional, 149, 150 (fig.)

K
Kahan, W., 246, 253-255
Karnaugh maps, B-17
Kelly-Bootle, Stan, 182, 441
kernels, 79
Kernighan, Brian, D-2
Kilburn, T., 525
KSR-1, 636

L

labels, A-3, (see also assemblers)
external, A-11

global, A-11
local, A-11
routine with, A-7 (fig.)
str, A-11

la instruction, A-61
latches, B-22-B-25, (see also flip-flops)

alternating use of, B-42
closed, B-23
D, B-22

with NOR gates, B-23 (fig.)
operation, B-23 (fig.)

S-R, B-21, B-22
transparent, B-23

latency, 439

lb instruction, A-61
!bu instruction, A-61
Id instruction, A-61
l.d instruction, A-68
LED, 10-12
le instruction, 238

Index

level-sensitive timing, B-41-B-42, (see also edge-triggered timing)
two-phase clocking and, B-41-B-42

lexemes, A-12

lh instruction, A-61
lhu instruction, A-61
libraries. (see subroutine libraries)
light-emitting diode (LED), 10-12
li instruction, A-55
link editor, 117
linkers, 117, A-4, A-17-A-18

function of, A-18
linking loader, 117

Linpack, 79, 250, 251
Lisp, 8

overflow and, 178
Livermore laboratory, 252
Livermore Loops, 79
load byte (lb), 161
loader, 109
load instruction, 99, A-61-A-62, (see also store instruction)

base register for, 292
datapath for, 379-380 (fig.)
in EX pipe stage, 373 (fig.)
five-step operation of, 296, 302
forwarding and, 420
in ID pipe stage, 372 (fig.)
in IF pipe stage, 371-372 (fig.)
implementing, 280 (fig.)
in MEM pipe stage, 373, 374 (fig.)
operation of, 301 (fig.)
in WB pipe stage, 373, 375 (fig.)

load-store machine, 152, 159
load upper immediate. (see Jui instruction)
load word. (see lw instruction)
local-area network (LAN), 20, 547
locality, 454, (see also memory hierarchy)

principles of, 512
spacial, 455, 480

Index

temporal, 454, 456
lock, 603

steps to acquire, 615 (fig.)
variables, 614

logic, (see also combinational logic)
address select, 343
block, 288

state of, B-4
digital, 271
elements, 272

arrays of, B-17-B-18
inputs/ outputs of, 275

minimization, C-20
sequential, B-4

components, 273
two-level, B-10-B-14

logical instructions, A-51-A-55
logical operations, 179-182

C and MIPS corresponding operations, 182
long instruction word (LIW), 443
loop index, 134
loops, 112

in C programming, D-6-D-4.7
for, 114, 139-140
unrolling, 448
while, 128

Los Alamos laboratory, 252
Ls instruction, A-68
It instruction, 238
Jui instruction, 125, A-55

effects of, 126 (fig.)
lwcz instruction, A-62
lw instruction, 99, 270, 279, 283, 365, A-62
lwl instruction, A-62
lwr instruction, A-62

M

machine language, 5, 7 (fig.), 109, A-3

MIPS, 107, 118, 127, 132
code, A-5 (fig.)
floating-point, 241

Macintosh Ils, 256
McKevit, Jim, C-2
macros, A-4, A-15

formal parameter, A-16
magnetic disks, 19-20, 542-546, 545 (fig.), 576, (see also floppy

disks; hard disks)
arm, 20
arrays of, 579-580
characteristics, 546 (fig.)
floppy, 19, 542
hard, (fig.)19, 542-546
off-line, 580
on-line, 580
types of, 19-20, 542

main control unit, 291-306, (see also control unit)

main memory, 18, (see also memory)
magnetic disks vs., 20

mapping, memory, 482
fully associative, 485
from virtual to physical address, 483 (fig.)

Mark I-IV computers, 34
Maspar MP-1 and MP-2, 642
massively parallel, 606
matrix300, 67
Mauchly, John, 31, (see also Eckert-Mauchly patent)
Mealy, George, 331
Mealy machine, 331, B-36
megaFLOPS. (see MFLOPS)
MEM hazard

control for, 415-416
forwarding and, 415
stalling and, 402

1-13

memory, 4-5, 13, 14 (fig.), 454-430, (see also cache; DRAM; mem-

ory hierarchy; SRAM; virtual memory)
addresses, 99 (fig.), 100 (fig.)
cache only, 636
centralized, 620
chips, 475
core, 522-524
data corruption in, B-33
distributed, 620
division of, A-20-A-21
higher, bandwidth, 474 (fig.)
inconsistent, 467
layout, A-20 (fig.)
magnetic core, 34
main, 18, 636
mapping, 482
primary, 18, 481
secondary, 18
shared, 620
slave, 559
stalls, 465, 478
system design, 474
transferring data between, 98
types of, 18
usage, A-19-A-21
word in, 98

memory-data, 320
memory elements, B-21-B-35, (see also memory; memory hierar-

chy)
DRAMs, B-30-B-33
error correction, B-33-B-35
flip-flops, B-22-B-25
latches, B-22-B-25
register files, B-25-B-26
SRAMs, B-27-B-30
unlocked, B-21

memory hierarchy, 455, (see also locality)
behavior, 513-514
block placement choices, 510
designing, 514, 520
design parameters, 502 (fig.)

1·14

memory hierarchy (continued)
framework for, 501-514
levels, 456, 457 (fig.)
lower level, 456
spacial locality and, 458
structure, 456 (fig.)
temporal locality and, 458
upper level, 456
write characteristic, 511

memory-mapped l/0, 566, A-34-A-36
alternative, 567
four device registers, A-35 (fig.)
Receiver Control register, A-34
Receiver Data register, A-35

Transmitter Control register, A-35

Transmitter Data register, A-35-A-36
memory-memory machine, 152, 159
memory-stall clock cycles, 476-477, 517, (see also clock cycles)

read-stall cycles and, 477
write-stall cycles and, 477

MEM pipe stage, 367, 423
control hazards and, 429 (fig.)
for load instruction, 373, 374 (fig.)
in pipelined control, 382
stalling and, 402, 412
for store instruction, 375, 377 (fig.)

MemRead signal, 318, 320, 326, 382
MemtoReg signal, 320, 382
Mem Write signal, 320, 326, 382
mercury delay lines, 522
metastability, B-43, B-44 (fig.)
metrics, 54

hardware-independent, 71-72
performance, 60-66
relating, 54-60

mfcO instruction, 178
mfcl.d instruction, A-65
mfcz instruction, A-65
mfhi instruction, 210, 223, A-64
mfloi instruction, A-64
mflo instruction, 210, 223
MFLOPS, 64, 78

formula for, 64
normalized, 65
peak, 66
problems, 65
rating, 65-66
sustained, 645

MFP (Machine with Floating Point), 83
microassembler, 336
microcode, C-22, (see also encoding)

assembler, C-24
controller, 343 (fig.)
disadvantage of, 350
field translation, C-25 (fig.)
horizontal, C-27
optimizer, 340
vertical, C-27

microinstructions, 334, C-22, (see also microcode)
addresses of, 335
combining, 341
execution of, 335-336
fields of, 335, 336 (fig.)

values, 337 (fig.)
format definition, 335-337
function of, 338-341

narrowing, C-26
microprocessors

first, 35
multiple, on single bus, 607
SPARC, 627

microprogram, (see also microcode; microprogramming)
for control unit, 342 (fig.)
creating, 338-344
for memory-reference instructions, 339
for R-type instructions, 340
translating, C-23-C-27
translation of, 342

microprogramming, 322, 334, (see also microprogram)
changes in, 353
history of, 353-356
in simplifying control design, 333-344

Microsoft Disk Operating System, 37

Index

million floating-point operations per second. (see MFLOPS)
million instructions per second. (see MIPS (million instructions

per second))
MIMD computer, 596, 602-603

characteristics, 607 (fig.)
design, 603
network-connected, 619-630

characteristics, 622 (fig.)
performance, 602
programming, 603-607
with single bus connection, 607-619

styles of, 603
minicomputer, 35, (see also specific types of minicomputers)
minterm, C-15

unique, C-15
MIPS architecture, 60, 77-78, (see also MIPS R2000; MIPS R3000;

MIPS R4000)
32-bit ALU for, 189-192
addressing modes, 131 (fig.)
alternatives, 130-142
ALUs and, 183
assembler, 110, 115
assembly language, 96, 102, 107, 118, 124, 132, 174, 180, 183, 224

floating-point, 241
datapath for, 286 (fig.)
decision-making instructions in, 118
floating-point, 241
global pointer register, A-21
goals of, E-4
instruction categories, 150
instruction encoding, 105 (fig.), A-50
instruction frequency, 248
instruction representation in, 107

Index

instruction set, 95, 247
logical operations and, 180
M/2000, 437, E-21-E-22
machine language, 107, 118, 123, 132

code, A-5 (fig.)
floating-point, 241

memory addresses, 100 (fig.)
multiplication/division and, 224
negative numbers and, 174
operands, 102, 107, 118, 123, 132, 174, 180, 183, 224

floating-point, 241
overflow detection, 178
processors, A-19-A-20
ratings, 61--M
registers, 97, 102

usage convention and, A-23 (fig.), A-26
relative, 64, 77
subset implementation, 272, 275-276
supporting procedures in, 123
word in, 97, 98

MIPS (million instructions per second)
1-MIPS machines, 78
6-MIPS machines, 78
execution time, 60---01
formula for, 60
peak, 63
problems with, 61

MIPS R2000, 466, 493, 599---000
addressing modes, A-48
assembler syntax, A-48-A-50
assembly language, A-47-A-70
CPU and FPU, A-47 (fig.)

MIPS R3000, 23 (fig.), 25 (fig.)
MIPS R4000, 23 (fig.), 444, 518, 630

die, 24 (fig.)
different versions of, 25 (fig.)

MIPS RISC Architecture, A-37
MISD computer, 596

miss, 456, (see also hit; miss rate)
capacity, 513
collision, 513
compulsory, 513
conflict, 513
decomposition of, 513
handling, 464--465
instruction, 464
penalty, 457

latency component, 473
read, 471
stall and, 465
TLB, 491

handling, 497-501
processing speed up of, 500

virtual memory, 482, 484
miss rate, 457, 468, (see also miss)

block size vs., 472 (fig.)
with DECStation 3100 cache, 307 (fig.)
for five cache sizes, 507 (fig.)

for one/four word block size, 471 (fig.)
of split cache, 469
three miss sources and, 514 (fig.)

MNFP (Machine with No Floating Point), 84
modules, A-4, A-17

references, A-4
Moore, Edward, 331
Moore machine, 331, B-36
Moore school, 31-32
motherboard, 14
Motorola

68881, 255

68882, 65
mouse, 10, 11 (fig.), 540-542, 582

anatomy of, 10-12
moving, 541 (fig.)

mov.d instruction, A-68
move instruction, A-64
mov.s instruction, A-68
MS-DOS, 37
mtcz instruction, A-65
mthi instruction, A-64
mtlo instruction, A-64
MTTF (mean time to failure), 546
mul.d instruction, 238, A-68
mu! instruction, A-52
mulo instruction, A-52
mulou instruction, A-53
mul.s instruction, 238, A-68
multicomputers, 643
multicycle control, 322
multicycle implementation, 312

datapath for, 323
mult instruction, 210, A-53
multiple-clock-cycle diagram, 378, 381 (fig.)

converting from single-clock-cycle diagrams to, 380
multiplexor, 283, 312, B-8-B-9, (see also combinational logic)

arrayed 32 times, B-19 (fig.)
controls, 324
expanding existing, 312

forwarding, control values, 415 (fig.)
four-input, 314
two-input, B-8 (fig.)

multiplicand, 198
Multiplicand register, 200

32-bit, 202

1-15

multiplication, 198-212, (see also addition; division; subtraction)
algorithm, first, 200 (fig.)

example, 201 (fig.)
algorithms, comparing, 209 (fig.)
algorithm, second, 202 (fig.), 203 (fig.)

example, 204 (fig.)
algorithm, third, 206

example, 207 (fig.)
of binary floating-point numbers, 237
floating-point, 233-240, 239 (fig.)
hardware, first version, 199 (fig.)
signed, 205, 212

1·16

multiplication (continued)
of significands, 236

multiplier, 198
least significant bit of, 200-201

Multiplier register, 199
32-bit, 202

multiprocessors, 643, (see also cache-coherency)
cache-based, 611
cache coherency, 610-612
network-connected, 619 (fig.)
Sequent Symmetry, 610, 616--619
single-bus, 608 (fig.)

with snooping cache coherency, 610 (fig.)
multu instruction, 210, A-53

N
NaN, 244
National Income Tax Service (NITS), 536
National Research and Education Network (NREN), 580
Nave, Rafi, 255
nCube/2, 631
negative numbers, 168-175
neg.d instruction, A-68
neg instruction, A-53
neg.s instruction, A-68
negu instruction, A-53
neq instruction, 238
networks, 546-548, (see also network topologies)

advantages of, 20
bidirectional links and, 622
characteristics of, 546
control, 626
costs, 622
cross bar, 624-625 (fig.)
diagnostics, 627
fully connected, 621, 623, 624-625 (fig.)
interconnection, 630, 631
local area, 547
long-haul, 547
multistage, 623
packet-switched, 547
switches in, 622
terminal, 547

network topologies, 621-624
fat tree, 628
implementing, 624-626
multistage, 625 (fig.)
in parallel processors, 624 (fig.)

next-state function, 322, B-35, B-38
explicit vs. encoded, C-27
sequencer implementation, C-15-C-22

nonuniform memory access, 619
machines, 620

nonvolatile memory technology, 18
nop instruction, 402, 421, A-70

nor instruction, 261, A-53

not instruction, 262, A-53
NOT operator, B-5
NScar signal, B-37
NSgreen signal, B-37
Nslite signal, B-36
NuBus bus, 564
numbers

base, 168

binary, 5, 6, 103
computer, 243
decimal, 103
denormalized, 244
floating-point, 226
as instructions, 5
negative, 168-175
two's complement, 110

0

object file, A-4, A-13 (fig.), (see also assemblers)
data segment, A-13
debugging information, A-14
format, A-13-A-14
header, A-13
relocation information, A-13
symbol table, A-13
text segment, A-13

one's compliment representation, 174
opcode, 105, 291, C-26
operands

constant, 124-125
memory-based, 134

operating systems, 8
in loading program, A-19

operations
AND, 181-182
complex, 134-135
logical, 179-182
memory-based, 134
OR, 181-182

op field, 104
optical fiber, 580
ori instruction, 182, A-53
or instruction, 270, 276, 283, 365, A-53
OR operation, 181-182, B-5
OR plane, B-12
OS (operating system), 565

functions, 565-566
output devices, 10
output operation, 549

three steps of, 550 (fig.)
output. (see 1/0)
overflow, 176, (see also underflow)

Ada, 178
conditions, 177 (fig.)
divide instructions and, 223
floating point and, 227

Index

Index

p

handling, 178
on Cray computers, 253
in programming languages, 178
in subtraction, 176-177
unsigned integers and, 178

packets, 547
page faults, 482, 487-490, (see also pages; page table; virtual mem-

ory)
cause of, 499
exceptions, 500
handling, 497-501
instruction, 498

page offset, 483
pages, 484, (see also blocks; page faults; virtual memory)

finding, 485-487
LRU, 488-489
placing, 485-487

page table, 485, (see also page fault; pages; virtual memory)
changing, 497
indexing of, 486 (fig.), 508
location, 485
page mapping in, 488 (fig.)
reducing size of, 489, 490
register, 485
two, 489

paging, 484
Palmer, John F., 255
PALs, B-14
parallel processing program, 602

development of, 604
parallel processors, (see also processors)

broken components in, 632-633
constraints of, 631
costs, 631
future directions for, 630-637
large-scale, addressing in, 634-636, 637 (fig.)
memory organization in, 620
message overhead on, 632 (fig.)
network characteristics, 626 (fig.)
organization of, 634 (fig.)
programs for, 634

parameters, 121
parity code, B-33
partitions, 630
PC-relative addressing, E-5, E-7
PC. (see program counter (PC))
resource, 329, 346
PCSrc control line, 292
PCWrite, 322
PCWriteCond, 322, 329
peak performance, 639, (see also benchmarks; performance)

for 12 Perfect Club Benchmarks, 639 (fig.)
for Cray YMP and IPSC/860, 640

Perfect Club, 80, 639 (fig.)

performance, 48, (see also benchmarks; peak performance)
calculating, 51-52
comparing and summarizing, 68-70
components of, 58
cost-performance, 27-28
CPU, 53

defining, 49-52
equation factors, 57

importance of, 48
improving, 52
measuring, 52-53

programs for evaluating, 66-68
ratio example, 67
system, 53

peripheral processors, 582, (see also processors)
personal computer, 37
physical addresses, 482
physical page number, 483
pipelined control, 381-390

overview, 422 (fig.)
pipelined datapath, 367-381
pipelined dependencies, 397 (fig.), 398 (fig.)
pipelined systems, performance, 435-436
pipeline registers, 400, 412

before forwarding, 414 (fig.)
dependencies between, 413 (fig.)

pipelines, (see also pipeline stalls; pipelining)
data hazards. (see data hazards)
figure styles, 378
five-stage, 366
graphically representing, 378--381
impact on branch instruction, 424 (fig.)
superscalar, 440

pipeline stalls, 399
example, 404-405

clock cycles 2 and 3 of, 406 (fig.)
clock cycles 4 and 5 of, 407
clock cycles 6 and 7 of, 408 (fig.)
clock cycles 8 and 9 of, 409 (fig.)
clock cycles 10 and 11 of, 410 (fig.)
clock cycles 12 and 13 of, 411 (fig.)

insertion of, 403 (fig.)
pipelining, 364, (see also pipelines)

depth vs. obtained speedup, 437 (fig.)
difficulties, 436
performance improvement, 367
throughput and, 439
time per instruction and, 431

pipe segment, 364

pipe stage, 364, 368 (fig.)

pi (propagate), 196
Pitfall

1-17

Choosing set associative cache solely for better miss rate, 518
Comparing computers using only one of performance metrics,

73
Expecting improvement in one aspect of machine performance

to increase performance proportionally, 70-71

1-18

Pitfall (continued)
Extending addresses space by adding segments on flat address

space, 518
Failure to consider instruction set design can impact pipelining,

436
Forgetting floating-point addition is not associative, 245
Forgetting sequential word addresses do not differ by 1, 148
Forgetting to account for byte addressing, 515
Ignoring inexorable progress of hardware, 26
Measuring parallel processor performance by linear speedup

vs. execution time, 537-538
Microcode implementing a complex instruction may not be

faster, 350
Moving functions from CPU to 1/0 processor performance

improvement, 576-578
Predicting price-performance more than 5 years, 27
Selecting too small an address space, 515-516

Using AM of execution times to predict performance, 74
Using miss rate as only metric for evaluating memory hierar-

chy, 516-517
Using peak performance to compare machines, 73
Using peak transfer rate of a portion of 1/0 system, 576
Write in assembly language to obtain highest performance, 147

pitfalls, 26, (see also fallacies)
cost/performance, 70-76

PLA, 304, 305 (fig.), 331, B-10-B-14, B-11, C-14-C-15, (see also com-
binational logic)

characteristics, B-12
control function implementation, C-14-C-15
form of, B-12 (fig.)
for implementing logic function, B-13 (fig.)
ROMs and, B-15
ROM vs, C-27
truth tables and, B-12

using dots, B-14 (fig.)
pointers, 143, (see also arrays)

argument, E-11
array indices vs., 146
in code to zero arrays, 146
frame, E-11
global, 121
stack, 124, E-11

polling, 567
disadvantage of, 567

pop, 120
prefetching, 521
primary memory, 18
print_int macro, A-16-A-17
procedure call frame, A-24
procedure calls, 122, A-22-A-26

conventions, A-21-A-30
example, A-26-A-30
LIFO order, A-24
in sort procedure, 141

procedures, 119
in C programming, D-7
swapping two locations in memory, E-13

process, 487, 497

active, 487
identifier, 497
inactive, 487
switch, 497
user, 496
virtual address space and, 496

processor-memory buses, 549, (see also buses)
processors, 14, 15 (fig.), (see also parallel processors)

communicating with, 567-570
components, 14
DMA, 573
1/0, 573
MIPS, A-19-A-20
performance time, 519 (fig.)
peripheral, 582
shared-memory, 603

product, 198

partial, 264

shifting, to right, 202
sign, 237
unnormalized, 236

product-of-sums definition, B-10
Product register, 199, 204
product term, C-15
program counter (PC), 119, 128, 271, 276, 346

relative addressing, 128, 130, 131 (fig.)
value sources for, 321

program library, A-4
programmable logic array. (see PLA)
PROMs, B-14
protection implementation, 496-497

hardware and, 496
history of, 526

Index

pseudoinstructions, 110, A-17, A-37, A-50-A-51, (see also instruc
tions)

push instruction, 120
Puzzle, 79

Q

Quicksort, 79
quotient, 213
Quotient register, 213, 219

R

RAID (redundant arrays of inexpensive disks), 580
RAMs, (see also ROM)

nibble-mode, B-33
page-mode, B-33
static-column-mode, B-33

RAS (Row Access Strobe), B-32
raster refresh buffer, 13
Raymond, Eric, 150, 168, E-23
rd field, 104

Index

ReadReq signal, 553

read/write head, 19
reals, 225

scientific notation for, 226

receiver, A-34

recursive procedures, A-24

reduced instruction set computer (RISC), 154, 641

references, A-4, (see also modules)

external, A-18
forward, A-11

relocated, A-18
unresolved, A-4

refresh

buffer, 13
rate, 12

RegDst signal, 382
register addressing, 130, 131 (fig.), E-5
register deferred addressing, E-5

register files, 276-278, B-25-B-27, (see also registers)
with 2 read ports and 1 write port, B-26 (fig.)
reading, B-25
two read ports for, B-26 (fig.)

write port implementation, B-27 (fig.)
writing, B-25

register-memory architecture, 152
register-register machine, 152
registers, 97, (see also pipeline registers; register files; specific regis-

ters)
bounds, 489

contents, passing, 377

dedicated, 151
destination, 292

floating point, 240
general-purpose, 151, 152 (fig.)

index, 100
instruction address, 119
MIPS, 97, 102
numbers, passing, 377
parameter, 121

special-purpose, 151
spilling, 102
Target, 318

register-use conventions. (see procedure calls, conventions)
RegWrite signal, 320, 401, C-22
relative speedup, 638
relocation, 483
remainder, 213

setting sign of, 222
shifting, to left, 216

Remainder register, 217
rem instruction, A-54
remu instruction, A-54
reproducibility, 68
requested word first, 473
response time, 50, 52, (see also execution time)

minimizing, 50-51
return address, 119
rfe instruction, A-69

ring topology, 622
RISC (reduced instruction set computer), 154, 641

Ritchie, Dennis, D-2

"robo-line" storage, 580
rol instruction, A-54

ROM (read-only memory), 331, B-14-B-15, (see also RAMs)

control contents, C-19

control memory contents, C-22 (fig.)

control store in, 350
dispatch, C-19, C-21 (fig.)

microcode, C-26 (fig.)
height, B-15
next-state, C-13-C-14

PLAs vs., B-15

PLAs vs, C-27

programmable, B-14

shape, B-15
truth tables in, C-10-C-14
width, B-15

ror instruction, A-54

rotational delay, 543
rotational latency, 543-544

round, 242, 266

rounding, 242
modes, 243

rs field, 104

rt field, 104

1-19

R-type instructions, 104-105, 276, 291, (see also I-type instruction
format; J-type instruction format)

datapath for, 279 (fig.)

elements for implementation, 278
execution steps, 294-296

first step of, 297 (fig.)
fourth step of, 300 (fig.)

implemented with finite state machine, 328 (fig.)

register operands, 278
second step of, 298 (fig.)

third step of, 299 (fig.)
Russell, Bertrand, 244

s
sb instruction, A-63
sbn instruction, 163
scaled addressing, E-6
Scarrott, 525
scientific notation, 225

normalized, 231
for reals, 226

SCSI bus, 564
sct.w.d instruction, A-67
sd instruction, A-63
s.d instruction, A-69

secondary memory, 18, (see also memory)
sectors, 542
seek operation, 542
seek time, 543

1·20

segmentation, 484, 489
segment number, 484
segment offset, 484
semiconductor, 21
separate compilation, A-17
seq instruction, A-56
sequencer, 600-601

next-state function implementation with, C-15--C-22
Sequent, 602
Sequent Symmetry multiprocessor, 610, 616-619

microprocessors, 618 (fig.)
photo, 617 (fig.)

set associative block placement, 502, 503 (fig.)

uses, 510
set associative cache, 502, (see also cache)

blocks in, 510
costs of, 508, 510
eight-block, 504 (fig.)
finding block in, 508
four-way, 508

implementation, 509 (fig.)
three address portions for, 508

set on less than. (see sit instruction)
sge instruction, A-56
sgeu instruction, A-56
sgt instruction, A-56
sgtu instruction, A-56
shamt field, 104, 181
Shannon, Claude, B-2
SHARE, 251, 252
shift left logical. (see sll instruction)
shift right logical. (see srl instruction)
shifts, 179

arithmetic right, 209
sh instruction, A-63
Sieve of Erastosthenes, 79
signals, (see also specific signals)

asserted, B-4
complements, B-4
deasserted, B-4

sign and magnitude representation, 174, 226
sign bit, 170
sign extension, 173
sign-extension unit, 280 (fig.)
significand, 226, 227

addition of, 231
multiplication of, 236

silicon, 21, 29
Silicon Graphics

Crimson workstation, 520
microprocessors, 551

SIMD computer, 596-599
characteristics, 599 (fig.)
code for distributing partial sums, 598
code for network-connected MIMD, 621
instructions, 597
for loops and, 597
vector data operation, 597

virtues of, 597
SIMMs (Single In-line Memory Modules), 17

modern lMB, 524 (fig.)
single-clock-cycle diagram, 378, 379

for clock cycles 1 and 2, 383 (fig.)
for clock cycles 3 and 4, 384 (fig.)
for clock cycles, 5 and 6, 385 (fig.)
converting to multi-clock-cycle diagram, 380

Single Instruction Computer (SIC), 163
single precision, 227

exponent bias, 229
IBM S/360 and, 251
loading, numbers, 240

single program multiple data. (see SPMD)
SISD computer, 596
sle instruction, A-56
sleu instruction, A-56
sll instruction, 181, A-54
slti instruction, 171, A-57
sit instruction, 114, 115, 171, 270, 276, 283, A-17, A-56
sltiu instruction, 171, A-57
situ instruction, 171, A-56
small computer system interface (SCSI), 563, 582
snooping, 610

bus, 635
caches, 635
protocol types, 611

software, portable, 250-251
sort procedure, 139

C language, 139
inner loop code, 140-141
MIPS assembly version, 144
outer loop code, 139-140
passing parameters, 141-142
performance comparison, 148
preserving registers, 142
procedure call, 141
prologue, 142
register allocation, 139

sort procedure, C programming
code for body of, E-16-E-18
complete, E-19
inner loop, E-17-E-18
MIPS vs. VAX for, E-20 (fig.)
outer loop, E-16-E-17
passing parameters, E-18
preserving registers, E-18-E-19
procedure call, E-18
register allocation for, E-15-E-16

source file, A-4
source language, A-6
spatial locality, 455, 480, (see also locality)

enhancing, 521
SPEC, 79

for IBM Powerstation 550, 67
SPEC89, 80
SPEC92, 80

SPECFP, 80

Index

Index

SPECINT, 80
SPECMark, 80
speedup, 89

formula for, 89
speedup. (see relative speedup; true speedup)
spice program, 124

SPIM simulator, A-3, A-30-A-34, A-36-A-46, (see also spim (plain
version); xspim)

byte orders, A-45
command-line options, A-41-A-42
computer vs., A-45
getting started with, A-37-A-41
instruction format, A-50-A-70
I/0 simulation, A-34-A-36
MIPS assembler support, A-49
name, A-36
speed, A-36
system call instruction, A-45-A-46
versions, A-37
virtual machine and, A-37
X-window interface. (see xspim)

spim (plain version), A-37, (see also SPIM simulator; xspim)
terminal interface commands, A-43-A-44

spin waiting, 614

split transaction protocol, 558
SPMD, 606-607
sra instruction, A-54
SRAM, 455, B-27-B-30, (see also memory; SRAM)

4x2 structure, B-30 (fig.)
32Kx8, B-28 (fig.)
access time, 455
chip configuration, B-27
height, B-27
price per bit, 455
read access time, B-28
width, B-27
writes, B-28

srav instruction, A-54
srl instruction, 181, A-54
srlv instruction, A-55
s.s instruction, A-69
stack frames, A-24, A-29 (fig.), E-1 1, (see also stacks)

layout, A-24 (fig.)
set up, A-25

stack model execution, 153, 159
stack pointer, 124
stacks, 119, 120, (see also stack frames; stack pointer; stack seg

ment)
placing data on, 120
saving/restoring on, 122

stack segment, A-20
stale data problem, 575
stalls, 465, (see also pipeline stalls)
stalls 465, execution time, 478
state assignment, B-38, C-21
state elements, 272-275, 274 (fig.), (see also states, control)

function, 277 (fig.)
inputs/ outputs, 273

state machine. (see finite state machine)
states, control, C-4

control word and, C-17
static data, A-20

static random access memory. (see SRAM)
Status register, 345, 567, A-31 (fig.), A-34

fields, A-30
Stewart, Robert G., 255
Stone, Harold S., 255
store buffer, 512
store byte (sh) instruction, 161-162
stored-program concept, 108

principles of, 149
store instruction, 101, A-63-A-64, (see also load instruction)

base register for, 292

EX pipe stage for, 374-374, 376 (fig.)
ID pipe stage for, 374
IF pipe stage for, 374
implementing, 280

MEM pipe stage for, 375, 377 (fig.)

WB pipe stage for, 375, 378 (fig.)
store word instruction. (see sw instruction)
Strecker, William, E-2, E-3, E-22
Stretch computer, 442 (fig.)
sub.d instruction, 238, A-69
sub instruction, 178, 270, 276, 283, 365, A-55
subroutine libraries, 8

input/output, 8
subroutines. (see procedures)
sub.s instruction, 238, A-69
Subtract and Branch instruction. (see sbn instruction)
subtraction, 175, (see also addition; division; multiplication

overflow in, 176-177
subu instruction, 178
Sum bit, 187
sum-of-products definition, B-10
Sun

4/280, 73
3, 255
SPARCstation, 27, 518
SuperSP ARC, 444

"superclusters," 636
supercomputers, 35
super-linear performance, 647, (see also performance)
superpipelined machines, 440
superpipelined pipeline, 440, (see also pipelines; pipelining)

superscalar pipeline vs, 441 (fig.)
superscalar machines, 440
superscalar pipeline, 440

superpipelined pipeline vs, 441 (fig.)
Sutherland, Ivan, 12
swap procedure, 135, (see also procedures)

assembly code for, 138 (fig.)
C language, 136
code, 136-137
code for, E-13
complete, E-14-E-15
MIPS vs. VAX code for, E-15 (fig.)

1-21

1·22

swap procedure (continued)

performance comparison, 148

preserving registers, 137

procedure calls and, 137
register allocation, 136, E-11-E-12

swcz instruction, A-63

sw instruction, 101, 270, 279, 283, 365, A-63

switch statement, 115

example, 1 16
swl instruction, A-63

swr instruction, A-63

symbol table, A-12

object file, A-13
synchronization, 603, (see also cache-coherency)

barrier, 609
lock and, 603, 614-615

message sending and, 603

using coherency, 614-616

synchronizers, 555, B-43
building, B-43

failure, B-43
metastability and, B-44 (fig.)

synchronous bus, 551-556, 553, 556, 558

synchronous system, B-20

synthetic benchmarks, 73-74

drawbacks, 73-74
syscall instruction, A-45, A-46, A-70

system

CPU time, 52

performance, 53
System Performance Evaluation Cooperative. (see SPEC)
systems software, 8

T

tags, 460
field selection, 461

target language, A-6
Target register, 322, 326
task identifier, 497
Taylor, George S., 256
temporal locality, 454, (see also locality)

enhancing, 521

principle of, 456
TeraFLOPS, 644
Thinking Machines, 626-630, 642
Thomas, Lewis, 30
Thornton, James, 381
three-state buffer, B-28, B-29 (fig.)
throughput, 50

improving, 50
pipelining and, 364

ticks, 53
time, 52
timing methodologies, B-39-B-44

edge-triggered, B-39-B-41

level-sensitive, B-41-B-42

TLB, 15 (fig.), 491, 497, 525

in DECStation 3100, 493

entry, 491

exceptions, 500

misses, 491, 493
handling, 497-501

processing speed up of, 500
page table and, 492 (fig.)
typical values, 492

virtual page number in, 491

Tomasulo's algorithm, 442

topology-specific algorithms, 633
total network bandwidth, 623

TPC-B, 538

TPS (transactions per second), 538-539

tracks, 542, 546
traffic light controller, B-38 (fig.)

transaction processing (TP), 538
transfer time, 544
transistors, 21
translation hierarchy, 109

translation-lookaside buffer. (see TLB)
transmitter, A-34

tri-state buffer, B-28

true speedup, 638
truncation, 232
truth table, 288, B-4-B-5

control function, 305 (fig.)

for datapath-control outputs, C-12 (fig.)

for datapath-control signals, C-6 (fig.)
full, 290
for next-state output bits, C-11 (fig.)

for three ALU control bits, 288 (fig.)

for three ALU control lines, 289 (fig.)
without don't cares, B-16-B-17

Tucker, Stewart, 355

Twain, Mark, 5

two-level representation, B-10

two's compliment representation, 170
name, 174

u

shortcuts, 172-173
two's compliment adder, 188
in words, 173

ulh instruction, A-62
ulhu instruction, A-62

ulps (units in last place), 242

ulw instruction, A-62
unconditional jumps, 149, 150 (fig.)
undefined instruction exception, 348
underflow, 227, (see also overflow)

gradual, 244

uniform memory access, 618-619

UNIVAC I, 34, 35 (fig.), 40
Unix

Index

Index

assemblers for, A-13 (fig.), A-17
tools on, A-17

ush instruction, A-63
usw instruction, A-64

v
"variable allocation," E-11
VAX-11/780, 67-68, 78, E-23-E-24, (see also VAX)

microcode, 350
VAX-11 instruction set, E-3
VAX, 153, 516, 518, A-7, E-3-E-24, (see also VAX-11/780; VAX

8700; VAX instructions)

8700, 437
addressing modes, E-5-E-6
architecture, 152, E-4, E-22
C compiler, E-14
disappearance of, 355-356
goals of, E-4
Index instruction, 350
instruction set, 152, 334
introduction of, E-23
operands, E-4-E-7
operand specifiers, E-6 (fig.)
operations, E-9
registers, E-4
units of performance (YUPS), 78

VAX 8700, E-21-E-22
VAX and MIPS goals, 4, 5
VAX instructions, (see also VAX)

argument pointer, E-11
branch, E-10
branch byte, E-10
branch word, E-10
call and return, E-11
classes of, E-12 (fig.)

compare, E-10

encoding, E-7-E-9, E-8 (fig.)

frame pointer, E-11
move, E-9
move address, E-9
names of, E-9-E-10
for preserving registers, E-14
push, E-10
stack pointer, E-11

vectored interrupts, 345, (see also interrupts)
very long instruction word (VLIW), 443
virtual addresses, 482 (fig.), (see also addresses)
virtually addressed cache, 493, 495
virtual machine, A-37

virtual memory, 481-501, (see also cache; memory; page faults;
pages)

design, 483--484
fully associative placement and, 510
invention of, 481

miss, 482, 484
protection implementation with, 496--497
summary, 501

virtual page, (see also pages)
mapping, 485
number, 483

in TLB, 491
VLSI (very large scale integrated circuit), 21, 351
VME bus, 562-564
VMS, E-24

C compiler, E-19

volatile memory, 18
von Neumann computer, 32
von Neumann, John, 32, 94, 111, 249, 251, 521
"von Neumann syndrome," 640
YUP, 78

w
wafers, 22, 23 (fig.)

costs of, 24
defects of, 22-23
diced, 23
dies per, 44

wall-clock time, 52
WB pipe stage, 367, 369

for load instruction, 373, 375 (fig.)
in pipelined control, 382
stalling and, 402, 412
for store instruction, 375, 378 (fig.)

weighted arithmetic mean, 70
Whetstone benchmark, 73-74, 78-79
while loop, 128, (see also loops)
Whirlwind project, 34, 522-523

core memory plane, 523 (fig.)
Whitehead, Alfred North, 1
Wilkes, Maurice, 32, 249, 353-354, 355, 452, 525
word, 97, (see also halfwords)

accessing, in memory, 98
address, 130
R-format instructions and, 278

workload, 66, 76
workstation, 10, 11 (fig.)

inside, 14 (fig.)
performance increase of, 27
processor board, 17 (fig.)

wormhole routing, 632
Wozniak, Steve, 37
write back, 490, 511, 512

advantages, 490, 511
write-invalidate protocol, 611
write-through, 467, 511, 512

advantages, 511
write-update protocol, 611

1·23

1-24

x
xori instruction, A-55
xor instruction, 261, A-55
xspim, A-37-A-38, (see also SPIM simulator; spim (plain version))

commands, A-44

y

control buttons pane, A-38
data segments pane, A-38
loading and running program on, A-40

pop-up window, A-38, A-39 (fig.)
program debugging and, A-40-A-41
program terminal reads/writes and, A-40
register display pane, A-38
SPIM messages pane, A-38
starting, A-38
text segments pane, A-38

yield, 23

z
Zuse, Konrad, 33-34

Index

i
I
i

MIPS operands

32 $0, $1, $2, . . . ' $31,
Fast locations for data. In M IPS , data must be in registers to perform
arithmetic. MIPS register $0 always equals 0. Register $1 is reserved
for the assembler to handle pseudoinstructions and large constants. Hi
and Lo are 32-bit registers containing the results of multiply and divide.

registers Hi, Lo

2 30
memory
words

Category

Arithmetic

Logical

Data
transfer

I. Accessed only by data transfer instructions. MIPS uses byte addresses,
Memory[O],Memory [4l. · · · ·

so sequential words d iffer by 4. Memory holds data structures, such as
Memory(4294967292] ,.

arrays, and spilled registers, such as those saved on procedure cal ls. ----------
MIPS assembly language

Instruction Example Meaning
add add $1,$2,$3 $ 1 = $2 + $3

subtract sub $1,$2,$3 $1 = $2 - $3

add immed iate addi $1.$2,100 $1 = $2 + 100

' add unsigned addu $1,$2,$3 I $1 = $2 + $3

subtract unsigned subu $1,$2,$3 I $1 = $2 - $3

add imm. unsign. addiu $1,$2, 100 I $1 = $2 + 100

Move fr. copr. reg. l mfcO $1.$epc $1 = $epc

multiply

multiply unsigned

d ivide

d ivide unsigned

Move from Hi

Move from Lo

and

or

and immediate

or immediate

shift left logical

shift right logical

load word

store word

load u pper imm.

branch on equal

branch on not eq.

mult $2 ,$3

multu $2,$3

I div $2,$3

divu $2,$3

mfh i $1

mflo $1

and $1,$2,$3

or $1,$2,$3

and i $1 ,$2,100

ori $1,$2, 100

sll $1,$2 ,10

sr l $1,$2,10

lw $ 1 , 100($2)

SW $1,100($2)

lui $1,100

beq $1,$2,100

bne $1 ,$2,100

I Hi, Lo = $2 ¥ $3

Hi, Lo = $2 ¥ $3

Lo = $2 -;. $3. Hi = $2 mod $3

Lo = $2 -;. $3, Hi = $2 mod $3

$1 = Hi

$1 = Lo

$1 = $2 & $3

$1 = $2 I $3

$1 = $2 & 100

$1 = $2 1 100

$1 = $2 « 10

$1 = $2 » 10

$1 = Memory [$2+100]

Memory ($2+100] = $1

$1 = 100 x 2 16

if ($1==$2) go to PC+4+100x4

if ($1! =$2) go to PC+4+100x4

Comments
3 operands; exception possible

3 operands; exception possible

+ constant: exception possible

3 operands : no exceptions

3 operands ; no· exceptions i
+ constant; no exceptions

Used to get exception PC

64-bit signed product in Hi , Lo

64-bit unsigned product in Hi, Lo

Lo = quotient. Hi = remainder

Unsigned quotient and remainder

Used to get copy of Hi

, Use to get copy of Lo I 3 register operands; logical AND

3 register operands; logical OR

Logical AND register, constant

Logical OR register, constant

Shift left by constant

Sh ift right by constant

Data from memory to register I
Data from register to memory _J
Loads constant in upper 16 bits l
Equal test; PC relative branch I
Not equal test; PC relative j Conditional set on less than sit $1,$2 ,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; Zs complement

branch set less than imm. slti $1.$2,100 if ($2 < 100) $1=1: else $1=0 Compare < constant; 2 's comp.

set less than uns. situ $1,$2,$3

set l .t . imm. uns. sltiu $1,$2,100

jump j 10000
Unconditional

jump regis�er jr $31 jump
jump and l ink jat 10000

if ($2 < $3) $1=1; else $1=0 Compare less than; natural number

if ($2 < 100) $1=1; else $1=0 Compare < constant; natural

go to 10000 Jump to target address

I go to $31 For switch, procedure return . . . --·------r
$31 = PC + 4; go to 10000 For procedure call

Main MIPS assembly language instruction set. The floating-point instructions are shown in Figure 4.44 on page 241. Appendix A
gives the full MIPS assembly language instruction set.

I

