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Introduction 

Welcome to this book! We're delighted to have this opportunity to convey the 
excitement of the world of computer systems. This is not a dry and dreary 
field, where progress is glacial and where new ideas atrophy from neglect. 
No! Computer systems have a vital and synergistic relationship to an impor
tant industry-responsible for 5% to 10% of the gross national product of the 
United States-and this unusual industry embraces innovation at a breath
taking rate. In the last decade there have been a half-dozen new machines 
whose introduction appeared to revolutionize the computing industry; these 
revolutions were cut short only because someone else built an even better 
computer. 

This race to innovate has led to unprecedented progress since computing's 
inception in the late 1940s. Had the transportation industry kept pace with the 
computer industry, for example, today we could travel coast to coast in 30 sec
onds for 50 cents. Take just a moment to contemplate how such an improve
ment would change society-living in Tahiti while working in San Francisco, 
going to Moscow for an evening at the Bolshoi ballet-and you can appreciate 
the implications of such a change. 

Computers have led to a third revolution for civilization, with the informa
tion revolution taking its place alongside the agricultural and the industrial 
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revolutions. The resulting multiplication of humankind's intellectual strength 
and reach naturally has affected the sciences as well. There is now a new vein 
of scientific investigation, with computational scientists joining theoretical 
and experimental scientists in the exploration of new frontiers in astronomy, 
biology, chemistry, physics, . . . .  

The computer revolution continues. Each time the cost of computing im
proves by another factor of 10, the opportunities for computers multiply. Ap
plications that were economically infeasible suddenly become practical. In the 
recent past, the following applications were "computer science fiction." 

• Automatic teller machines: A computer placed in the wall of banks to dis
tribute and collect cash was a ridiculous concept in the 1950s, when the 
cheapest computer cost at least $500,000 and was the size of a car. 

• Computers in automobiles: Until microprocessors improved dramatically 
in price and performance in the early 1980s, computer control of cars 
was ludicrous. Today, computers reduce pollution and improve fuel ef
ficiency via engine controls and increase safety through the prevention 
of dangerous skids and through the inflation of air bags to protect occu
pants in a crash. 

• Laptop computers: Who would have dreamed that advances in computer 
systems would lead to laptop computers, allowing students to bring 
computers to coffeehouses and on airplanes? 

• Human genome project: The cost of computer equipment to map human 
DNA sequences in the 1990s will be hundreds of millions of dollars. It's 
unlikely that anyone would have considered this project had the com
puter costs been 10 to 100 times higher, as they would have been 10 to 
20 years ago. 

Such hardware advances have allowed programmers to create infinitely use
ful software, and explain why computers are omnipresent. Today's science 
fiction computer applications include electronic libraries, the cashless society, 
automated intelligent highways, and genuinely ubiquitous computing-a 
pervasiveness which precludes the need to carry computers because they will 
be everywhere. Clearly, advances in this technology now affect almost every 
aspect of our society. 

Successful programmers have always been concerned about the perfor
mance of their programs, because getting results to the user quickly is critical 
in creating successful software. In the 1960s and 1970s, a primary constraint on 
computer performance was the size of the computer's memory. Thus pro
grammers often followed a simple credo: Minimize memory space to make 
programs fast. In the last decade advances in computer design and memory 
technology have greatly reduced the importance of small memory size. Pro
grammers interested in performance now need to understand the issues that 
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have replaced the simple memory model of the 1960s: the hierarchical nature 
of memories and the parallel nature of processors. Programmers who seek to 
build competitive versions of compilers, operating systems, databases, and 
even applications will therefore need to increase their knowledge of computer 
organization. 

We are honored to have the opportunity to explain what's inside this rev
olutionary machine, unraveling the software below your program and the 
hardware under the covers of your computer. By the time you finish this book, 
you will understand the secrets of programming a computer in its native 
tongue, the internal organization of computers and how it affects performance 
of your programs, and even how you would go about designing a computer 
of your own. 

This first chapter lays the foundation for the rest of the book. It introduces 
the basic ideas and definitions, places the major components of software and 
hardware in perspective, and introduces integrated circuits, the technology 
that fuels the computer revolution. 

• Below Your Program 

In Paris they simply stared when I spoke to them in French; I never did succeed in 
making those idiots understand their own language. 

Mark Twain, The Innocents Abroad, 1869 

To actually speak to an electronic machine, you need to send electrical signals. 
The easiest signals for machines to understand are on and off, and so the 
machine alphabet is just two letters. Just as the 26 letters of the English alpha
bet do not limit how much can be written, the two letters of the computer 
alphabet do not limit what computers can do. The two symbols for these two 
letters are the numbers 0 and 1 ,  and we commonly think of the machine lan
guage as numbers in base 2, or binary numbers. We refer to each "letter" as a 
binary digit or bit. Computers are slaves to our commands; hence, the name for 
an individual command is instruction. Instructions, which are just collections 
of bits that the computer understands, can be thought of as numbers. For 
example, the bits 

1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0  

tell one computer to add two numbers. Chapter 3 explains why we use num
bers for instructions and data; we don't want to steal that chapter's thunder, 
but using numbers for both instructions and data is a foundation of comput
ing. 
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The first programmers communicated to computers in binary numbers, but 
this was so tedious that they quickly invented new notations that were closer 
to the way humans think. At first these notations were translated to binary by 
hand, but this process was still tiresome. Using the machine to help program 
the machine, the pioneers invented programs to translate from symbolic nota
tion to binary. The first of these programs was named an assembler. This pro
gram translates a symbolic version of an instruction into the binary version. 
For example, the programmer would write 

a d d  A . B  

and the assembler would translate this notation into 

1 0 00 1 1 0 0 1 0 1 0 0 0 0 0  

This instruction tells the computer to add the two numbers A and B .  The 
name coined for this symbolic language, still used today, is assembly language. 

Although a tremendous improvement, assembly language is still far from 
the notation a scientist might like to use to simulate fluid flow or that an ac
countant might use to balance the books. Assembly language requires the pro
grammer to write one line for every instruction that the machine will follow, 
forcing the programmer to think like the machine. 

Such low-level thinking inspired a simple question: If we can write a pro
gram to translate from assembly language to binary instructions to simplify 
programming, what prevents us from writing a program that translates from 
some higher level notation down to assembly language? 

The answer was: nothing. Although more challenging to create than an as
sembler, this higher level translator was plausible. 

Programmers today owe their productivity, and their sanity, to this obser
vation. Programs that accept this more natural notation are called compilers, 
and the languages they compile are called high-level programming languages. 
They enable a programmer to write this high-level language statement: 

A + B 

The compiler would compile it into this assembly language statement: 

a d d A . B  

The assembler would translate this statement into the binary instruction that 
tells the computer to add the two numbers A and B: 

1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0  

Figure 1 .1  shows the relationships among these programs and languages. 
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High-level 
language 
program 
(in C) 

Assembly 
language 
program 
(for MIPS) 

Binary machine 
language 
program 
(for MIPS) 

s wa p ( i n t v [ J , i n t k )  
( i n t  temp : 

t emp = v [ k J : 
v [ k ] = v [ k+ l ] ; 
v [ k+ l ] = t emp : 

s w a p :  

C compiler 

mu 1 i 
a d d  
l w  
l w  
S W  
S W  
j r  

$ 2 , $ 5 , 4  
$ 2 , $ 4 , $ 2 
$ 1 5 , 0 ( $ 2 )  
$ 1 6 , 4 ( $ 2 )  
$ 1 6 , 0 ( $ 2 )  
$ 1 5 , 4 ( $ 2 )  
$ 3 1  

Assembler 

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1  
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 1 1 00 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
1 0 1 0 1 1 00 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 1 0 1 1 00 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 1 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

7 

FIGURE 1.1 C program compiled into assembly language and then assembled Into binary 
machine language. Although the translation from high-level language to binary machine lan
guage is shown in two steps, some compilers cut out the middleman and produce binary 
machine language directly. These languages and this program are examined in more detail in 
Chapter 3. 
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High-level programming languages offer several important benefits. First, 
they allow the programmer to think in a more natural language, using English 
words and algebraic notation, resulting in programs that look much more like 
text than like tables of cryptic symbols (see Figure 1 .1) .  Moreover, they allow 
languages to be designed according to their intended use. Hence, Fortran was 
designed for scientific computation, Cobol for business data processing, Lisp 
for symbol manipulation, and so on. The second advantage of programming 
languages is improved programmer productivity. One of the few areas of 
widespread agreement in software development is that it takes less time to de
velop programs when they are written in languages that require fewer lines to 
express an idea. Conciseness is a clear advantage of high-level languages over 
assembly language. The final advantage is that programming languages allow 
programs to be independent of the computer on which they were developed, 
since compilers and assemblers can translate high-level language programs to 
the binary instructions of any machine. These advantages are so strong that to
day little programming is done in assembly language. 

As programming matured, many of its practitioners saw that reusing pro
grams was much more efficient than writing everything from scratch. Hence 
programmers began to pool potentially widely used routines into libraries. 
One of the first of these subroutine libraries was for inputting and outputting 
data, which included, for example, routines to control printers, such as ensur
ing paper is in the printer before printing can begin. Such software controlled 
other input/ output devices, such as magnetic disks, magnetic tapes, and dis
plays. It soon became apparent that a set of programs could be run more effi
ciently if there was a separate program that supervised running those 
programs. As soon as one program completed, the supervising program 
would start the next program in the queue, thereby avoiding delays. These su
pervising programs, which soon included the input/ output subroutine librar
ies, are the basis for what we call operating systems today. Operating systems 
are programs that manage the resources of a computer for the benefit of the 
programs that run on that machine. 

Software came to be categorized by its use. Software that provides services 
that are commonly useful is called systems software. Operating systems, com
pilers, and assemblers are examples of systems software. In contrast to pro
grams aimed at programmers, applications software or just applications is the 
name given to programs aimed at computer users, such as spreadsheets or text 
editors. Figure 1 .2 shows the classical drawing mapping the hierarchical lay
ers of software and hardware. 

This simplified view has some problems. Should we really place compilers 
in the systems software level in Figure 1 .2? Compilers produce programs at 
both the applications and the systems level, and applications programs don't 
normally call on the compiler while they are running. A more realistic view of 
the nature of systems appears in Figure 1.3. It shows that software does not 
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FIGURE 1.2 A simplified view of hardware and software as hierarchical layers, classi· 
cally shown as concentric rings building up from the core of hardware to the software 
closest to the user. 

Applications 

software 

Software 

Compilers 

� 
gee 

Virtual 

memory 

� 

Systems 

software 

Operating 

systems 

File 

system 

� 

Assemblers 

1/0 device 

d rivers 

FIGURE 1.3 An example of the decomposability of computer systems. The terms in the 
middle of the chart, such as LaT EX and gee, are examples of Unix programs. The terms lower in 
the chart, such as virtual memory, will be introduced in Chapters 7 and 8. 
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consist of monolithic layers, but is composed of many programs that build on 
one another. Like the strands of a thick rope, each time you look carefully at 
what appears to be a single strand you find it is really composed of many finer 
components. 

• Under the Covers 

Now that we have looked below your program to uncover the underlying 
software, let's open the covers of the computer to learn about the underlying 
hardware. 

Figure 1 .4 shows a typical workstation with keyboard, mouse, screen, and 
a box containing even more hardware. What is not visible in the photograph 
is a network that connects the workstation to printers and disks. This photo
graph reveals two of the key components of computers: input devices, such as 
the keyboard and mouse, and output devices, such as the screen and printers. 
As the names suggest, input feeds the computer and output is the result of 
computation sent to the user. Some devices, such as networks and disks, pro
vide both input and output to the computer. 

Chapter 8 describes input/ output (I/O) devices in more detail, but let's 
take an introductory tour through the computer hardware, starting with the 
external I/0 devices. 

Anatomy of a Mouse 

I got the idea for the mouse while attending a talk at a computer conference. The 
speaker was so boring that I started daydreaming and hit upon the idea. 

Doug Engelbart 

Although many users now take mice for granted, the idea of a pointing 
device such as a mouse is less than 30 years old. Engelbart showed the first 
demonstration of a system with a mouse on a research prototype in 1967. The 
Alto, which was the inspiration for all workstations as well as for the Macin
tosh, included a mouse as its pointing device in 1973. By the 1980s, all work
stations and many personal computers included this device, and new user 
interfaces based on graphics displays and mice became popular. The mouse is 
actually quite simple, as the photograph in Figure 1 .5 shows. 

The mechanical version consists of a large ball that is mounted in such a 
way that it makes contact with a pair of wheels, one positioned on the x-axis 
and the other on the y-axis. These wheels either turn mechanical counters or 
turn a slotted wheel, through which a light-emitting diode (LED) shines on a 
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FIGURE 1.4 Photograph of a workstation. The cathode ray tube (CRT) screen is the primary 
output device, and the keyboard and mouse are the primary input devices. Photo courtesy of Sil
icon Graphics. 

FIGURE 1.5 Photograph of the Inside of a mechanical mouse. Mouse courtesy of Logitech. 



12 Chapter 1 Computer Abstractions and Technology 

FIGURE 1.6 A CRT dlsplay. A beam is shot by an electronic gun through the vacuum onto a 
phosphor-coated screen. The steering coil at the neck of the CRT aims the gun. Raster scan sys
tems, used in television and in almost all computers, paint the screen a line at a time as a series of 
dots, or pixels. The screen is refreshed 30 to 60 times per second. 

photosensor. In either scheme, moving the mouse rolls the large ball, which 
turns the x-wheel or the y-wheel or both, depending on whether the mouse is 
moved in the vertical, horizontal, or diagonal direction. Although there are 
many styles of interfaces for these pointing devices, moving each wheel essen
tially increments or decrements counters somewhere in the system. The 
counters serve to record how far the mouse has moved and in which direction. 

Through the Looking Glass 

Through computer displays I have landed an airplane on the deck of a moving car
rier, observed a nuclear particle hit a potential well, flown in a rocket at nearly the 
speed of light and watched a computer reveal its innermost workings. 

Ivan Sutherland, the "father" of computer graphics, quoted in 
"Computer Software for Graphics," Scientific American, 1984 

The most fascinating I/O device is probably the graphics display. Based on 
television technology, a raster cathode ray tube (CRT) display scans an image 
one line at a time, 30 to 60 times per second (Figure 1 .6). At this refresh rate, 
few people notice a flicker on the screen. The image is composed of a matrix 
of picture elements, or pixels, which can be represented as a matrix of bits, 
called a bit map. Depending on the size of screen and resolution, the display 
matrix ranges in size from 512 x 340 to 1560 x 1280 pixels. The simplest dis
play has 1 bit per pixel, allowing it to be black or white. For displays that sup
port over 100 different shades of black and white, sometimes called gray-scale 
displays, 8 bits per pixel are required. A color display might use 8 bits for 
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Frame buffer Raster scan CRT display 

Yo -+--...J.......j 
y 1 -+--+--+-< -

• I 

FIGURE 1.7 Each coordinate in the frame buffer on the left determines the shade of the 
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0,Y0) con
tains the bit pattern 0011, which is a lighter shade of gray on the screen than the bit pattern 1101 
in pixel (X1,Y 1)-

each of the three primary colors (red, blue, and green), for 24 bits per pixel, 
permitting millions of different colors to be displayed. 

The hardware support for graphics consists mainly of a raster refresh buffer, 
or frame buffer, to store the bit map. The image to be represented on-screen is 
stored in the frame buffer, and the bit pattern per pixel is read out to the graph
ics display at the refresh rate. Figure 1 .7 shows a frame buffer with 4 bits per 
pixel. 

The goal of the bit map is to faithfully represent what is on the screen. The 
challenges in graphics systems arise because the human eye is very good at de
tecting even subtle changes on the screen. For example, when the screen is be
ing updated, the eye can detect the inconsistency between the portion of the 
screen that has changed and that which hasn't. 

Opening the Box 

If we open the box containing the computer, we see a fascinating board of thin 
green plastic, covered with dozens of small gray or black rectangles. 
Figure 1 .8 shows the contents of the workstation in Figure 1 .4. The board is 
shown vertically on the left, with a tape reader and floppy disk drive shown 
on the right. The small rectangles on the board contain the devices that drive 
our advancing technology, integrated circuits or chips. The board is composed 
of three pieces: the piece connecting to the 1/0 devices mentioned above, the 
memory, and the processor. The memory is where the programs are kept when 
they are running; it also contains the data needed by the running programs. 
In Figure 1 .8, memory is found on the eight small boards that are attached 
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FIGURE 1.8 Inside a workstation. An exploded view of a workstation. The vertical board on 
the left is a printed circuit board (PC board) that contains most of the electronics of the computer; 
Figure 1 .11  is an overhead photograph of that board, rotated 90 degrees. The eight small boards 
attached to the main board contain the memory chips. The processor is below the memory 
boards; Figure 1 .18 is a photograph of the processor. To the right of the PC board in this worksta
tion is a tape reader and a floppy disk drive. Photo courtesy of Silicon Graphics. 

perpendicularly toward the front of the large board. Each small memory 
board contains 18 integrated circuits. The processor is the active part of the 
board, following the instructions of the programs to the letter. It adds num
bers, tests numbers, signals I/O devices to activate, and so on. Occasionally, 
people call the processor the CPU, for the more bureaucratic sounding central 
processor unit. The processor is the large square below the bottom memory 
boards and to the left in Figure 1 .8. 

Descending even lower into the hardware, Figure 1 .9 reveals details of the 
processor in Figure 1 .8. The processor comprises two main components: 
datapath and control, the respective brawn and brain of the processor. The 
datapath performs the arithmetic operations, and control tells the datapath, 
memory, and 1/0 devices what to do according to the wishes of the instruc
tions of the program. Chapters 4 and 5 explain the datapath and control for a 
straightforward implementation, and Chapter 6 describes the changes needed 
for a higher performance design. 
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FIGURE 1.9 Inside the processor chip used on the board shown In Figure 1.8. The right
hand side of the chip is the datapath. The upper-left-hand side is the control unit. The lower left 
contains the portion of the memory system called the Translation Lookaside Buffer, which we 
discuss in Chapter 7. This chip is called the MIPS R3000. Photo courtesy of MIPS Technology, Inc. 
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We have now identified the major components of any computer. When we 
come to an important point in this book, a point so important that we hope you 
will remember it forever, we emphasize it by identifying it as a "Big Picture" 
item. We have about a dozen Big Pictures in this book, with the first being the 
five components of a computer . 

• . 

The five classic components of a computer are input, 
output, memory, datapath, and control, with the last 
two sometimes combined and called the processor. 
Figure 1 .10 shows the standard organization of a 
computer. This organization is independent of hard
ware technology: You can place every piece of every 

computer, past and present, into one of these five categories. 

Processor 

FIGURE 1.10 The organization of a computer, showing the five claulc compo
nents. The processor gets instructions and data from memory; input writes data to 
memory, and output reads data from memory. Control sends the signals that determine 
the operations of the data path, memory, input, and output. 

Descending into the depths of any component of the hardware reveals 
insights into the machine. We have done this for the processor, so let's try 
memory. The board in Figure 1 .11 contains two kinds of memories: DRAM 
and cache. DRAM stands for dynamic random access memory. Several DRAMs 
are used together to contain the instructions and data of a program. In contrast 
to sequential access memories such as magnetic tapes, the RAM portion of the 
term DRAM means that memory accesses take the same amount of time no 
matter what portion of the memory is read. Cache memory consists of a small, 
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FIGURE 1.11 Clos•up of workstation processor board. This board uses the MIPS R4000 
processor, which is located on the right edge of the board in the middle. The R4000 contains high
speed cache memories on the processor chip. The main memory is contained on the small boards 
that are perpendicular to the motherboard in the upper left corner. The DRAM chips are mounted 
on these boards (called SIMMs for Single In-line Memory Module) and then plugged into the 
connectors. The connectors at the bottom of the photograph are for external 1/0 devices, such as 
the network (Ethernet), keyboard, and CRT display. Photo courtesy of Silicon Graphics. 

fast memory that acts as a buffer for the DRAM memory. (The nontechnical 
definition of cache is a safe place for hiding things.) 

The careful reader may have noticed a common theme in both the software 
and the hardware descriptions: delving into the depths of hardware or soft
ware reveals more information or, conversely, lower level details are hidden 
to offer a simpler model at higher levels. The use of such layers or abstractions 
is a principal technique for designing very sophisticated computer systems. 

One of the most important abstractions is the interface between the hard
ware and the lowest level software. Because of its importance, it is given a spe
cial name: the instruction set architecture, or simply architecture, of a machine. 
The instruction set architecture includes anything programmers need to know 
to make a binary machine language program work correctly, including in
structions, I/0 devices, and so on. (The components of an architecture are dis
cussed in Chapters 3, 4, 7, and 8.) 



18 Chapter 1 Computer Abstractions and Technology 

This standardized interface allows computer designers to talk about func
tions independently from the hardware that performs them. For example, we 
can talk about the functions of a digital clock-keeping time, displaying the 
time, setting the alarm-independently from the clock hardware-quartz 
crystal, LED displays, plastic buttons. Computer designers distinguish archi
tecture from an implementation of an architecture along the same lines: an im
plementation is hardware that obeys the architecture abstraction. These ideas 
bring us to another Big Picture. 

• . 

Both hardware and software consist of hierarchical 
layers, with each lower layer hiding details from the 
level above. This principle of abstraction is the way 
both hardware designers and software designers 
cope with the complexity of computer systems. One 
key interface between the levels of abstraction is the 

instruction set architecture: the interface between the hardware and 
low-level software. This abstract interface enables many implementa
tions of varying cost and performance to run identical software. 

A Safe Place for Data 

I think Silicon Valley was misnamed. If you look back at the dollars shipped in prod
ucts in the last decade, there has been more revenue from magnetic disks than from 
silicon. They ought to rename the place Iron Oxide Valley. 

Al Hoagland, one of the pioneers of magnetic disks, 1982 

Thus far we have seen how to input data, compute using the data, and dis
play data. If we were to lose power to the computer, however, everything 
would be lost, because the memory inside the computer is volatile; that is, it 
forgets when it loses power. In contrast, a cassette tape for a stereo doesn't 
forget the recorded music when you turn off the power. This is because the 
tape is magnetic and is thus a nonvolatile memory technology. To distinguish 
between the memory used to hold programs while they are running and this 
nonvolatile memory used to store programs between runs, the term primary 
memory or main memory is used for the former and secondary memory for the 
latter. The DRAMs of Figure 1 :11 are the main memory of that computer. 
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FIGURE 1.12 Photograph of a disk showing ten disk platters and the read/write heads. 
Photo courtesy of Storage Technology Corp. 

Magnetic disks have dominated secondary memory since 1965. As 
Figure 1 .12 shows, a magnetic hard disk consists of a collection of platters, 
which rotate on a spindle at 3600 to 5400 revolutions per minute. The metal 
platters are covered with magnetic recording material on both sides, similar to 
the material found on a cassette tape. Disk diameters vary by a factor of 10, and 
have been shrinking over the years. They range from 10.25 to 1 .3 inches, with 
disks of less than 1 inch in diameter to be available in the near future. Tradi
tionally, the widest disks have the highest performance, and the smallest disks 
have the lowest cost. To read and write information, a movable arm containing 
a small electromagnetic coil called a read/write head is located just above each 
surface. The use of mechanical components means that access times for mag
netic disks are much slower than for DRAMs: disks typically take 5 to 20 mil
liseconds, while DRAMs take 50 to 150 nanoseconds-making DRAMs about 
100,000 times faster. 

There are two major types of magnetic disks: floppy disks and hard disks. 
The basic concept at work in these disks is the same: a rotating platter coated 
with a magnetic recording material. The primary differences arise because the 
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floppy disk is made of a mylar substance that is flexible, while the hard disk 
uses metal. Floppy disks can be removed and carried around, while most hard 
disks today are not removable. Another removable medium is magnetic tape, 
which is cheaper than magnetic disks but slower still: It can take seconds to 
find data on a magnetic tape. 

In conclusion, the primary characteristics of magnetic disks versus main 
memory are 

• Nonvolatility, because they are magnetic. 

• Slower access time, because they are mechanical devices. 

• Lower cost for the same storage capacity, because the production costs 
for a given amount of storage are lower than for integrated circuits. 

Communicating to Other Computers 

There is an old network saying: Bandwidth problems can be cured with money. La
tency problems are harder because the speed of light is fixed-you can 't bribe God. 

David Clark, MIT 

We've explained how we can input, compute, display, and save data, but 
there is still one missing item found in today's computers: computer net
works. Just as the processor shown in Figure 1 .10 on page 16 is connected to 
memory and 1/0 devices, networks connect whole computers, allowing com
puter users to extend the power of computing by including communication. 
Networks have become so popular that they are the backbone of current com
puter systems; a new machine without an optional network interface would 
be ridiculed. Networked computers have several major advantages: 

• Communication: Information is exchanged between computers at high 
speeds. 

• Resource sharing: Rather than each machine having its own 1/0 devices, 
devices can be shared by computers on the network. 

• Nonlocal access: By connecting computers over long distances, users 
need not be near the computer they are using. 

Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular network is the Ethernet. Its 
length is limited to about a kilometer, and it takes at least a second to send 
1 million bytes of data. The network itself uses the same material that is used 
to connect households to cable television. Its length and speed makes the 
Ethernet useful to connect computers on the same floor of a building; hence, it 
is an example of what is generically called a local area network. 
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• Integrated Circuits: Fueling Innovation 

I thought [computers] would be a universally applicable idea, like a book is. But I 
didn 't think it would develop as fast as it did, because I didn't envision we'd be able 
to get as many parts on a chip as we finally got. The transistor came along unex
pectedly. It all happened much faster than we expected. 

J. Presper Eckert, co-inventor of ENIAC, speaking in 1991 .  

Processors and memory have improved at an incredible rate because com
puter designers have long embraced the latest in electronic technology to try 
to win the race of designing a better computer. Figure 1 . 13  shows the technol
ogies that have been used over time, with an estimate of the relative perfor
mance per unit cost for each technology. This section explores the technology 
that has fueled the computer industry since 1975 and will continue to do so 
for the foreseeable future. Since this technology shapes what computers will 
be able to do and how quickly they will evolve, we believe all computer pro
fessionals should be familiar with the basics of integrated circuits. 

A transistor is simply an on/ off switch controlled by electricity. The inte
grated circuit combined dozens to hundreds of transistors into a single chip. To 
describe the tremendous increase in the number of transistors from hundreds 
to millions, the adjectives very large scale are added to the term, creating the ab
breviation VLSI for very large scale integrated circuit. 

This rate of increasing integration has been remarkably stable. Figure 1 .14 
shows the growth in DRAM capacity since 1977. The industry has consistently 
quadrupled capacity every three years, resulting in an increase in excess of 
1000 times in just over 15 years! This remarkable rate of advance in cost/ 
performance and capacity of integrated circuits governs the design of hard
ware and software, underscoring the need to understand this technology.Let's 
start at the beginning. The manufacture of a chip begins with silicon, a sub
stance found in sand. Because silicon does not conduct electricity well, it is 
called a semiconductor. With a special chemical process, it is possible to add ma
terials to silicon that allow tiny areas to transform into one of three devices: 

• Excellent conductors of electricity (similar to copper or aluminum wire) 

• Excellent insulators from electricity (like plastic sheathing or glass) 

• Areas that can conduct or insulate under special conditions (as a switch) 

Transistors fall in the last category. A VLSI circuit, then, is just millions of 
combinations of conductors, insulators, and switches manufactured in a sin
gle, small package. 
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Year Technology used in computers Relative performance/un it cost 
1951 Vacuum tube 1 
1965 Transistor 35 
1975 Integrated circuit 900 
1990 Very large scale integrated circuit 400,000 

FIGURE 1.13 Relative performance per unit cost of technologies used in computers over 
time. (Source: Computer Museum, Boston) 
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FIGURE 1.14 Growth of capacity per DRAM chip over time. The y-axis is measured in K bits, 
where K = 1024 (210) .  The DRAM industry has quadrupled capacity every three years, a 60% 
increase per year, for more than 15 years. The one exception was the lM bit DRAM, which 
arrived a year earlier than expected. This 4x-every-3-years rule of thumb is called the DRAM 
growth rule. 

The manufacturing process for integrated circuits is critical to the cost of 
the chips and hence important to computer designers. The process starts with 
a silicon crystal ingot, which looks remarkably like a large sausage. Today in
gots are between 5 and 8 inches in diameter and about 12 inches long. An ingot 
is finely sliced into wafers no more than 0.1 inch thick. These wafers then go 
through a series of steps, during which patterns of chemicals are placed on 
each wafer, creating the transistors, conductors, and insulators discussed 
above. 

A single microscopic flaw in the wafer itself or in one of the dozens of pat
terning steps can result in that area of the wafer failing. These defects, as they 
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FIGURE 1.15 Photograph of a 6-inch wafer containing MIPS R4000 processors on the left 
and a &-Inch wafer containing MIPS R3000 processors on the right. The number of R3000 
dies per wafer on the right at 100% yield is 210. Each die is 0.8 cm by 0.9 cm and contains about 
125,000 transistors. Figure 1 .9 on page 15 is a photomicrograph of one of these R3000 dies. The 
number of R4000 dies per wafer on the left at 100% yield is 59. The die size is 1 .5 cm by 1 .1 cm, 
and each die contains about 1 .3 million transistors. A close-up of one R4000 die is seen in 
Figure 1 .16. The dozen partially rounded chips at the boundaries of the R3000 wafer are useless; 
they are included because it's easier to create the masks used to pattern the silicon. The "empty" 
rectangles in both wafers contain test circuits used to rapidly test the full wafer. The MIPS R4000 
wafer has 4 additional test circuits at the "corners." Photo courtesy of IDT. 

are called, make it virtually impossible to manufacture a perfect wafer. To 
cope with imperfection, several strategies have been used, the simplest of 
which is to place many independent components on a single wafer. The wafer 
is then chopped up or diced into these components, called dies or chips. Dicing 
enables you to discard only those dies that were unlucky enough to contain the 
flaws, rather than the whole wafer. This concept is quantified by the yield of a 
process, which is defined as the percentage of good dies from the total number 
of dies on the wafer. Figure 1 .15 is a photograph of two wafers containing 
single-chip processors before they have been diced. The wafer on the right 
contains copies of the chip shown in Figure 1.9. Figure 1 .16 shows an individ
ual die of the left-hand wafer. Figures 1 .17 and 1 . 18 (on page 25) show the 
packaged parts for each die. 
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FIGURE 1.16 Photograph of an R4000 die. The die size is 1 .5 cm by 1 . 1  cm, and each die con
tains about 1 .3 million transistors. The right-hand side of the die contains the datapath for the 
integer portion of the processor. The left-hand side contains the datapath for the floating point 
processor, which we discuss in Chapter 4. The control is in the middle of the die. The two large 
blocks on the top of the die are the caches, which are discussed in Chapter 7. Photo courtesy of 
MIPS Technology, Inc. 

Note that there are many more of the smaller dies per wafer than the larger 
dies: There are 210 dies in the 6-inch wafer on the right of Figure 1 .15 but only 
59 of the larger dies in the wafer on the left. Since a wafer costs about the same 
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FIGURE 1.17 Photograph of the packaged part of a die in Figure 1.9, the MIPS R3000. 
Photo courtesy of MIPS Technology, Inc. 

FIGURE 1.18 Photograph of three different versions of the R4000 processor, shown In 
die form at left. To reduce the cost of the part, a smaller package is used in lower end systems, 
while a large package is used in servers and multiprocessors. The large package has over 400 
pins, while the small has about 150 pins. The pins allow a wider path between the main memory 
and the processor, allowing faster transfers of data and the addressing of larger memories. Photo 
courtesy of MIPS Technology, Inc. 
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no matter what is on it, fewer dies mean higher costs. Costs are increased 
further because a larger die is much more likely to contain a defect and thus 
fail to work. Hence die costs rise very fast with increasing die area. 
(Exercises 1 .46 through 1 .52 explore wafer costs in more detail.) Clearly, com
puter designers must be familiar with the technology they are using to be sure 
that the added cost of larger chips is justified by enhanced performance. 

Computer designers must know both hardware and software technologies 
to build competitive computers. Silicon is the medium in which computer de
signers work, so they must understand the foundations of integrated circuit 
costs and performance. Designers must also learn the principles of the soft
ware that most strongly affect computer hardware, namely, compilers and op
erating systems. 

• Fallacies and Pitfalls 

The purpose of a section on fallacies and pitfalls, which will be found in every 
chapter, is to explain some commonly held misconceptions that you might 
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try 
to give a counterexample. We also discuss pitfalls, or easily made mistakes. 
Often pitfalls are generalizations of principles that are true in a limited con
text. The purpose of these sections is to help you avoid making these mistakes 
in the machines you may design or use. 

Fallacy: Computers have been built in the same, old-fashioned way for far too long, 
and this antiquated model of computation is running out of steam. 

For an antiquated model of computation, it surely is improving quickly. 
Figure 1 .19 plots the top performance per year of workstations between 1987 
and 1992. (Chapter 2 explains the proper way to measure performance.) The 
graph shows a line indicating an improvement of 54% per year. In contrast to 
the statement above, computers are improving in performance faster today 
than at any time in their history. 

Pitfall: Ignoring the inexorable progress of hardware when planning a new ma
chine. 

Suppose you plan to introduce a machine in three years, and you claim the 
machine will be a terrific seller because it's three times as fast as anything 
available today. Unfortunately, the machine will probably sell poorly, because 
the average performance growth rate for the industry will yield machines with 
the same performance. For example, assuming a 50% yearly growth rate in 
performance, a machine with performance x today can be expected to have 
performance l .53x = 3.4x in three years. Your machine would have no per-
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FIGURE 1.19 Performance increase of workstations, 1987-92. Here performance is given 
as approximately the number of times faster than the VAX-11/780, a commonly used yardstick. 
The colored line plots a rate of improvement of 54% per year; hence, a performance rating of 10 in 
one year must be followed by a rating of 15.4 ( 1 .54 x 10)  the following year and 23.7 ( 1.54 x 15.4 ) 
the year after. (These performance numbers are for the integer SPEC benchmarks; see Chapter 2, 
section 2.5 for more details on SPEC.) 

formance advantage! Many projects within computer companies are canceled, 
either because they ignore this rule or because the project is completed late and 
the performance of the delayed machine is below the industry average. This 
phenomenon may occur in any industry, but rapid improvements in cost/per
formance make it a major concern in the computer industry. 

Pitfall: Trying to predict price, performance, or price/performance more than five 
years into the future in this rapidly moving field. 

Figure 1 .20 is from a 197 4 book based on a government study that predicted 
the cost/performance of computers in the 1980s. Conventional wisdom was 
that the largest machines had the best cost/performance. This may have been 
true at the time, but it hasn't been true for more than a decade. Unforeseen in
novations between 1974 and 1991 include workstations, improved compilers, 
and reduced instruction set computers (see Chapter 3, section 3.14, Historical 
Perspective and Further Reading). In 1990 the Sun SPARCstation achieved a 
price/performance about 10 times better than these predictions, with the fol
lowing year's HP model 750 workstation at an even better price/performance. 
Another way of calibrating the inaccuracy of the prediction is that we would 
have to extend the curve to the year 2010 before finding computers with the 
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FIGURE 1.20 Prediction of computer price/performance In 1980& made In 1974. The y-axis is actually labeled 
$/MIPS. Although Turn recognized that large-scale integrated circuits would impact the cost/performance relationship, he 
predicted that it would further improve the cost/performance advantage of large machines instead of allowing small and 
inexpensive machines to match the performance of large machines. From Rein Turn, Computers in the 1980s (New 
York: Columbia University Press, 1974) : Figure 8, p. 80. 

cost/performance of a SPARCstation, and to add another 5 years to reach the 
level of cost/performance of the HP machine. 

II Concluding Remarks 

Where . . .  the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, 
computers in the future may have 1,000 vacuum tubes and perhaps weigh just 
1-1/2 tons. 

Popular Mechanics, March 1949, p. 258 

Although it is difficult to predict exactly what level of cost/performance com
puters will have in the future, it's a safe bet that they will be much better than 
they are today. To participate in these advances, computer designers and pro
grammers must understand a wider variety of issues. 
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Both hardware and software designers construct computer systems in hi
erarchical layers, with each lower layer hiding details from the level above. 
This principle of abstraction is fundamental to understanding today's comput
er systems, but it does not mean that designers can limit themselves to know
ing a single technology. Perhaps the most important example of abstraction is 
the interface between hardware and low-level software, called the instruction 
set architecture. Maintaining the instruction set architecture as a constant en
ables many implementations of that architecture-presumably varying in cost 
and performance-to run identical software. On the downside, the architec
ture may preclude introducing innovations that require the interface to 
change. 

Key technologies for processors in the 1990s are compilers and silicon. 
Clearly, to participate you must understand some of the characteristics of both. 
Equal in importance to an understanding of integrated circuit technology is an 
understanding of the expected rates of technological change. One example of 
this relationship is the DRAM tradition of a fourfold capacity increase every 
three years. While silicon fuels the rapid advance of hardware, new ideas in 
the organization of computers have multiplied price/performance. Two of the 
key ideas are exploiting parallelism in the processor, typically via pipelining, 
and exploiting locality of accesses to a memory hierarchy, typically via caches. 

Roadmap for this Book 

At the bottom of these abstractions are the five classic components of a 
computer: datapath, control, memory, input, and output (Figure 1 .21). These 
five components also serve as the framework for the rest of the chapters in 
this book: 

• Datapath: Chapters 4, 5, and 6 

• Control: Chapters 5 and 6 

• Memory: Chapter 7 

• Input: Chapter 8 

• Output: Chapter 8 

Chapter 6 describes how processor pipelining exploits parallelism, and 
Chapter 7 describes how the memory hierarchy exploits locality. The remain
ing chapters provide the introduction and the conclusion to this material. 
Chapter 2 covers performance and thus describes how to evaluate the whole 
computer. Chapter 3 describes instruction sets-the interface between com
pilers and the machine-and emphasizes the role of compilers and program
ming languages in using the features of the instruction set. Chapter 9 
concludes this coverage with a discussion on parallel processors. 
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Evaluating 
Performance 

FIGURE 1.21 The organization of a computer, showing the five classic components. To 
help the reader keep all this in perspective, the five components of a computer are shown on the 
front page of the following chapters, with the portion of interest to that chapter highlighted. 

• Historical Perspective and Further Reading 

An active field of science is like an immense anthill; the individual almost vanishes 
into the mass of minds tumbling over each other, carrying information from place 
to place, passing it around at the speed of light. 

Lewis Thomas, "Natural Science," in The Lives of a Cell, 1974 

A section devoted to an historical perspective closes each chapter in the text. 
We may trace the development of an idea through a series of machines or 
describe some important projects, and we provide references for the reader 
interested in probing further. This section provides historical background on 
some of the key ideas presented in this opening chapter. Its purpose is to give 
you the human story behind the technological advances and to place achieve-
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FIGURE 1.22 ENIAC, the world's first general-purpose electronic computer. Note the court 
tag in the lower, right hand corner; this is from the patent case mentioned on page 33. Photo cour
tesy of Charles Babbage Institute, University of Minnesota. 

ments in their historical context. By understanding the past, you may be bet
ter able to understand the forces that will shape computing in the future. 

The First Electronic Computers 

J. Presper Eckert and John Mauchly at the Moore School of the University of 
Pennsylvania built what is widely accepted to be the world's first operational 
electronic, general-purpose computer. This machine, called ENIAC (Elec
tronic Numerical Integrator and Calculator), was funded by the United States 
Army and became operational during World War II, but was not publicly dis
closed until 1946. ENIAC was a general-purpose machine used for computing 
artillery firing tables. This U-shaped computer was 80 feet long by 8.5 feet 
high and several feet wide (Figure 1 .22). Each of the twenty 10-digit registers 
was 2 feet long. In total, ENIAC used 18,000 vacuum tubes. 

In size, ENIAC was two orders of magnitude bigger than machines built to
day, yet it was more than four orders of magnitude slower, performing 1900 
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additions per second. ENIAC provided conditional jumps and was program
mable, clearly distinguishing it from earlier calculators. Programming was 
done manually by plugging cables and setting switches, and data was entered 
on punched cards. Programming for typical calculations required from half an 
hour to a whole day. ENIAC was a general-purpose machine, limited prima
rily by a small amount of storage and tedious programming. 

In 1944, John van Neumann was attracted to the ENIAC project. The group 
wanted to improve the way programs were entered and discussed storing pro
grams as numbers; van Neumann helped crystallize the ideas and wrote a 
memo proposing a stored-program computer called EDV AC (Electronic Dis
crete Variable Automatic Computer). Herman Goldstine distributed the 
memo and put van Neumann's name on it, much to the dismay of Eckert and 
Mauchly, whose names were omitted. This memo has served as the basis for 
the commonly used term van Neumann computer. Several early pioneers in the 
computer field believe that this term gives too much credit to van Neumann, 
who wrote up the ideas, and too little to the engineers, Eckert and Mauchly, 
who worked on the machines. For this reason, the term does not appear else
where in this book. 

In 1946, Maurice Wilkes of Cambridge University visited the Moore School 
to attend the latter part of a series of lectures on developments in electronic 
computers. When he returned to Cambridge, Wilkes decided to embark on a 
project to build a stored-program computer named EDSAC (for Electronic De
lay Storage Automatic Calculator). EDSAC, shown in Figure 1 .23, became op
erational in 1949 and was the world's first full-scale, operational, stored
program computer [Wilkes 1985] .  (A small prototype called the Mark I, built 
at the University of Manchester in 1948, might be called the first operational 
stored-program machine.) Section 3.4 in Chapter 3 explains the stored-pro
gram concept. 

In 1947, Eckert and Mauchly applied for a patent on electronic computers. 
The dean of the Moore School, by demanding that the patent be turned over to 
the university, may have helped Eckert and Mauchly conclude that they 
should leave. Their departure crippled the EDV AC project, delaying comple
tion until 1952. 

Goldstine left to join van Neumann at the Institute for Advanced Study 
(IAS) at Princeton in 1946. Together with Arthur Burks, they issued a report 
based on the memo written earlier [Burks 1946] .The paper was incredible for 
the period; reading it today, one would never guess this landmark paper was 
written more than 45 years ago, because it discusses most of the architectural 
concepts seen in modern computers. This paper led to the IAS machine built 
by Julian Bigelow. It had a total of 1024, 40-bit words and was roughly 10 times 
faster than ENIAC. The group thought about uses for the machine, published 
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FIGURE 1.23 EDSAC In 1949 was the first full-scale stored-program computer. Wilkes is 
the person in the front, kneeling and wearing glasses. Photo courtesy of The Computer Museum, 
Boston. 

a set of reports, and encouraged visitors. These reports and visitors inspired 
the development of a number of new computers. 

Recently, there has been some controversy about the work of John Atana
soff, who built a small-scale electronic computer in the early 1940s. His ma
chine, designed at Iowa State University, was a special-purpose computer that 
was never completely operational. Mauchly briefly visited Atanasoff before he 
built ENIAC. The presence of the Atanasoff machine, together with delays in 
filing the ENIAC patents (the work was classified and patents could not be 
filed until after the war) and the distribution of von Neumann's EDVAC pa
per, were used to break the Eckert-Mauchly patent. Though controversy still 
rages over Atanasoff's role, Eckert and Mauchly are usually given credit for 
building the first working, general-purpose, electronic computer [Stern 1980]. 

Another early machine that deserves some credit was a special-purpose 
machine built by Konrad Zuse in Germany in the late 1930s and early 1940s. 
Although Zuse had the design for a programmable computer ready, the Ger
man government decided not to fund scientific investigations taking more 
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than two years, because the bureaucrats expected the war would be won by 
that deadline. 

While work on ENIAC went forward, Howard Aiken was building an elec
tromechanical computer called the Mark-I at Harvard. He followed the Mark
I with a relay machine, the Mark-II, and a pair of vacuum tube machines, the 
Mark-III and Mark-IV. In contrast to earlier machines like EDSAC, which used 
a single memory for instructions and data, the Mark-III and Mark-IV had sep
arate memories for instructions and data. The machines were regarded as re
actionary by the advocates of stored-program computers; the term Harvard 
architecture was coined to describe machines with separate memories. This 
term is used today in a different sense to describe machines with a single main 
memory but with separate caches for instructions and data. 

The Whirlwind project was begun at MIT in 1947 and was aimed at appli
cations in real-time radar signal processing. Although it led to several inven
tions, its most important innovation was magnetic core memory. Whirlwind 
had 2048, 16-bit words of magnetic core. Magnetic cores served as the main 
memory technology for nearly 30 years. 

Commercial Developments 

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer 
Corporation. Their first machine, the BINAC, was built for Northrop and was 
shown in August 1949. After some financial difficulties, their firm was 
acquired by Remington-Rand, where they built the UNIVAC I (universal 
automatic computer), designed to be sold as a general-purpose computer 
(Figure 1 .24). First delivered in June 1951, UNIVAC I sold for about $1 million 
and was the first successful commercial computer-48 systems were built! 
This early machine, along with many other fascinating pieces of computer 
lore, may be seen at the Computer Museum in Boston, Massachusetts. 

IBM had been in the punched card and office automation business but 
didn't start building computers until 1950. The first IBM computer, the IBM 
701, shipped in 1952, and eventually 19 units were sold. In the early 1950s, 
many people were pessimistic about the future of computers, believing that 
the market and opportunities for these "highly specialized" machines were 
quite limited. 

In 1964, after investing $5 billion, IBM made a bold move with the an
nouncement of the System/360. An IBM spokesman said the following at the 
time: 

We are not at all humble in this announcement. This is the most important product 
announcement that this corporation has ever made in its history. It's not a comput
er in any previous sense. It's not a product, but a line of products . . .  that spans in 
performance from the very low part of the computer line to the very high. 
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FIGURE 1.24 UNIVAC I, the first commerclal computer In the United States. It correctly 
predicted the outcome of the 1952 presidential election, but its initial forecast was withheld from 
broadcast because experts doubted the use of such early results. Photo courtesy of the Charles 
Babbage Institute, University of Minnesota. 

Moving the idea of the architecture abstraction into commercial reality, IBM 
announced six implementations of the System/360 architecture that varied in 
price and performance by a factor of 25. Figure 1 .25 shows these models. IBM 
bet its company on the success of a computer family, and IBM won. The Sys
tem/360 and its successors dominated the large computer market. 

About a year later Digital Equipment Corporation (DEC) unveiled the 
PDP-8, the first commercial minicomputer shown in Figure 1 .26. This small ma
chine was a breakthrough in low-cost design, allowing DEC to offer a comput
er for under $20,000. Minicomputers were the forerunners of microprocessors, 
with Intel inventing the first microprocessor in 1971-the Intel 4004, shown in 
Figure 1 .27 (on page 38) as a photomicrograph. 

In 1963 came the announcement of the first supercomputer. This came not 
from the large companies nor even from the high tech centers. Seymour Cray 
led the design of the Control Data Corporation CDC 6600 in Minnesota. This 
machine developed many ideas that are beginning to be found in the latest mi
croprocessors. Cray later left CDC to form Cray Research Inc., in Wisconsin. In 
1976 he announced the Cray-1 (Figure 1 .28 on page 39). This machine was si
multaneously the fastest in the world, the most expensive, and the computer 
with the best cost/performance for scientific programs. 



a .  c. 

b. d. 

FIGURE 1.25 IBM System/360 computers: models 40, 50, 65, and 75. These four models varied in cost and performance by a factor of almost 10; it 
grows to 25 if we include models 20 and 30 (not shown). The clock rate, range of memory sizes, and approximate price for only the processor and memory 
of average size: (a) Model 40,1.6 MHz, 32 KB-256 KB, and $225,000; (b) Model 50, 2.0 MHz, 128 KB-256 KB, and $550,000; (c) Model 65, 5.0 MHz, 256 KB-
1 MB, and $1,200,000; and (d) Model 75, 5.1 MHz, 256 KB-1 MB, $1,900,000. Adding 1/0 devices typically increased the price by factors of 1 .8 to 3.5, with 
higher factors for cheaper models. Photos courtesy of International Business Machines Corporation. 
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FIGURE 1.26 The DEC PDP-8, the first commercial minicomputer, announced In 1965. 
Among other uses, the PDP-8 was used to stage the musical A Chorus Line. Photo courtesy of Dig
ital Equipment Corporation, Corporate Photo Library. 

While Seymour Cray was creating the world's most expensive computer, 
other designers around the world were looking at using the microprocessor to 
create a computer so cheap that you could have it at home. There is no single 
fountainhead for the personal computer, but in 1977 the Apple II (Figure 1 .29 on 
page 39) of Steve Jobs and Steve Wozniak set standards for low cost, high vol
ume, and high reliability that defined the personal computer industry. But 
even with a four-year head start, Apple's personal computers finished second 
in popularity. The IBM Personal Computer, announced in 1981, became the 
best selling computer of any kind; its success made the Intel 80x86 the most 
popular microprocessor and made the Microsoft Disk Operating System (MS
DOS) the most popular operating system. In 1990 Microsoft sold 12 million 
copies of DOS-2 million more than the best selling record album of 1990-
even though DOS costs ten times as much! 
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FIGURE 1.27 Mlcrophotograph of the Intel 4004 from 1971, the first microprocessor. 
Contrast this microprocessor, with just 2300 transistors and 0.3 by 0.4 cm in size, with the micro
processor in Figure 1 .16 on page 24. Photo courtesy of Intel Corp. 

Computer Generations 

Since 1952, there have been thousands of new computers using a wide range 
of technologies and having widely varying capabilities. To put these develop
ments in perspective, the industry has tended to group computers into gener
ations. This classification is often based on the implementation technology 
used in each generation, as shown in Figure 1 .30 (on page 40). Typically, each 
computer generation is eight to ten years in length, although the length and 
birth years-especially of recent generations-are debated. By convention, 
the first generation is taken to be commercial electronic computers, rather 
than the mechanical or electromechanical machines that preceded them. 

The fifth generation may well be defined on two fronts: portable commu
nications/ computing devices at the low end and parallel computers at the 
high end. Some computers of the future will be much more personal and 
portable: They will combine laptop computers, cellular phones, and pagers to 
provide electronic assistance that will be so valuable that no one will leave 
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FIGURE 1.28 Cray 1, the first commercial vector supercomputer in 1976. This machine 
had the unusual distinction of being both the fastest computer for scientific applications and the 
computer with the best price/performance for those applications. Viewed from the top, the com
puter looks like the letter C. Photo courtesy of Cray Research, Inc. 

FIGURE 1 .29 Shown here, the Apple llC Plus. The success of the original Apple, designed 
by Steve Wozniak, defined the personal computer industry in 1 977 and set standards 
of cost and reliability for the industry. Photo courtesy of Apple Computer, Inc. 
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FIGURE 1.30 Computer generations are usually determined by the change In dominant 
implementation technology. Typically, each generation offers the opportunity to create a new 
class of computers and for new computer companies to be created. Many researchers believe that 
parallel processing at the high end and portable computers at the low end will be the basis for the 
fifth computer generation. 

1000 124,500 1,900 48 $1,000,000 1 $4,533,607 1 
60 10,000 500,000 64 $1,000,000 263 $3,756,502 318 

8 500 330,000 4 $16,000 10,855 $59,947 13,135 
58 60,000 166,000,000 32,768 $4,000,000 21,842 $7,675,591 51,604 

1 150 240,000 256 $3,000 42,105 $3,702 154,673 
2 500 50,000,000 16,384 $7,400 3,556,188 $7,400 16,122,356 

FIGURE 1.31 Characteristic: of key commercial computers since 1950, in actual dollars and In 1991 dollars adjusted for 
Inflation. (Source: The Computer Museum, Boston, and Producer Price Index for Industrial Commodities.) In contrast to Figure 1 .25, in 
this figure the price of the IBM S360 model 50 includes I/0 devices. 

home without them. Parallel computers with tens to thousands of nodes, each 
with the pow�r of a workstation connected by very high-speed networks, are 
already replacing traditional supercomputers and mainframes at some instal
lations (see Chapter 9). The amazing possibility of the fifth generation is that 
the same microprocessor architecture will be driving both the high-end paral
lel machines and the low-end portable computers, possibly with different im
plementations aimed at high performance or low power. 

Figure 1 .31 summarizes the key characteristics of some machines men
tioned in this section. After adjusting for inflation, price/performance has im
proved by more than 16 million in 40 years. Readers interested in computer 
history should consult Annals of the History of Computing, a journal devoted to 
the history of computing. Several books describing the early days of comput
ing have also appeared, many written by the pioneers themselves. 
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Bell, C. G. [1984]. "The mini and micro industries," IEEE Computer 17:10 (October) 14-30. 

An insider's personal view of the computing industry, including computer generations. 
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Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. "Preliminary discussion of the logical 
design of an electronic computing instrument," Report to the U.S. Army Ordnance Department, 
p. l; also appears in Papers of John van Neumann, W. Aspray and A. Burks, eds., MIT Press, Cam
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97-146. 

A classic paper explaining computer hardware and software before the first stored-program computer was 
built. It simultaneously explained computers to the world and was a source of controversy because the first 
draft did not give credit to Eckert and Mauchly. 

Goldstine, H. H. [1972]. The Computer: From Pascal to van Neumann, Princeton University Press, 
Princeton, N .J. 

A personal view of computing by one of the pioneers who worked with van Neumann. 

Hennessy, J. L., and D. A. Patterson [1990]. "Performance and Cost," Chapter 2 of Computer 
Architecture: A Quantitative Approach, Morgan Kaufmann Publishers, San Mateo, Calif. 

This chapter contains much more detail on the cost of integrated circuits and explains the reasons for the 
difference between price and cost. 

Public Broadcasting System [1992]. The Machine That Changed the World, videotapes. 

These five one-hour programs include rare footage and interviews with pioneers of the computer industry. 

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass. 

Short biographies of 31 computer pioneers. 

Stern, N. [1980]. "Who invented the first electronic digital computer?" Annals of the History of 
Computing 2:4 (October) 375-76. 

A historian 's perspective on Atanasofj vs. Eckert and Mauchly. 

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass. 

A personal view of computing by one of the pioneers . • Exercises 

The relative time ratings of exercises are shown in square brackets after each 
exercise number. On average, an exercise rated [10] will take you twice as 
long as one rated [5]. Sections of the text that should be read before attempt
ing an exercise will be given in angled brackets, e.g., <§1 .4> means you 
should have read section 1 .4, Integrated Circuits: Fueling Innovation, to help 
you solve this exercise. If the solution to an exercise depends on others, they 
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will be listed in curly brackets, e.g., {ex. 1 .50) means that you should answer 
exercise 1 .50 before trying this exercise. 

Exercises 1.1 to 1.26 Find the word or phrase from the list below that best 
matches the description in the following questions. Use the letters to the left 
of words in the answer. Each answer should be used only once. 

a abstraction n DRAM (dynamic random access memory) 

b assembler 0 implementation 

c binary number p instruction 

d bit q instruction set architecture 

e cache integrated circuit 

CPU (central processor unit) s memory 

g chip operating system 

h compiler u processor 

computer family v semiconductor 

j control w supercomputer 

k datapath x transistor 

defect y VLSI (very large scale integrated circuit) 

m die z yield 

1.1 [2] Specific abstraction that the hardware provides the low-level soft
ware. 

1.2 [2] Active part of the computer, following the instructions of the pro
grams to the letter: It adds numbers, tests numbers, and so on. 

1.3 [2] Another name for processor. 

1.4 [2] Approach to the design of hardware or software; the system consists 
of hierarchical layers, with each lower layer hiding details from the level 
above. 

1.5 [2] Base 2 number. 

1.6 [2] Binary digit. 

1. 7 [2] Collection of implementations of the same instruction set architec
ture; they are available at the same time and vary in price and performance. 

1.8 [2] Component of the processor that performs arithmetic operations. 

1.9 [2] Component of the processor that tells the datapath, memory, and 
I/O devices what to do according to the instructions of the program. 

1.10 [2] Hardware that obeys the instruction set architecture abstraction. 
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1.11 [2] 

1.12 [2] 

High performance machine, costing more than $1 million. 

Individual command to a computer. 
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1.13 [2] 

1.14 [2] 

1.15 [2] 

Integrated circuit commonly used to construct main memory. 

Integrates dozens to hundreds of transistors into a single chip. 

Integrates hundreds of thousands to millions of transistors into a sin-
gle chip. 

1.16 [2] Location of programs when they are running, containing the data 
needed as well. 

1.17 [2] Microscopic flaw in a wafer. 

1.18 [2] Nickname for a die or integrated circuit. 

1.19 [2] On-off switch controlled by electricity. 

1.20 [2] Percentage of good dies from the total number of dies on the wafer. 

1.21 [2] Program that manages the resources of a computer for the benefit of 
the programs that run on that machine. 

1.22 [2] Program that translates a symbolic version of an instruction into the 
binary version. 

1.23 [2] Program that translates from a higher level notation to assembly lan
guage. 

1.24 [2] Rectangular component that results from dicing a wafer. 

1.25 [2] Small, fast memory that acts as a buffer for the main memory. 

1.26 [2] Substance that does not conduct electricity well. 

Exercises 1.27 to 1.44 Using the categories in the table below, classify the 
following examples. Use the letters to the left of words in the answer. Unlike 
the previous exercises, answers in this table may be used more than once. 

a 

b 

c 

d 

e 

1.27 

1.28 

1.29 

applications software 

high-level programming language 

input device 

integrated circuit 

minicomputer 

[ 1 ]  Apple II  

[1 ]  Assembler 

[1 ]  Compiler 

output device 

g personal computer 

h semiconductor 

supercomputer 

systems software 
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1.30 [ 1 ]  Cray 1 

1.31 [1 ]  DRAM 

1.32 [ 1 ]  Fortran 

1.33 [1 ]  IBM PC 

1.34 [ 1 ]  Keyboard 

1.35 [ 1 ]  Microprocessor 

1.36 [ 1 ]  Mouse 

1.37 [1 ]  Operating system 

1.38 [ 1 ]  Pascal 

1.39 [ 1 ]  PDP-8 

1.40 [1 ]  Printer 

1.41 [1 ]  Cathode Ray Tube Display 

1.42 [1]  Silicon 

1.43 [1 ]  Spreadsheet 

1.44 [1 ]  Text editor 

1.45 [10] In a magnetic disk, the disks containing the data are constantly ro
tating. On average it should take half a revolution for the desired data on the 
disk to spin under the read/write head. Assuming that the disk is rotating at 
3600 revolutions per minute, what is the average time for the data to rotate un
der the disk head? What is the time if the disk were spinning at 5400 RPM? 

In More Depth 

Our approach in this book is to include optional sections in exercises, leaving 
it up to the instructor whether to cover the material in class, leave students to 
read it on their own, or skip the material altogether. This first example gives 
more information on the cost of integrated circuits and is used in 
Exercises 1 .46 to 1 .52. 

The cost of an integrated circuit can be expressed in three simple equations: 

cost per die 

dies per wafer 

yield 

cost per wafer 
dies per wafer x yield 

wafer area 
die area 

1 

( 1 + defects per area x die area I 2) 2 
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The first equation is straightforward to derive. The second is an approxima
tion, since it does not subtract the area near the border of the round wafer that 
cannot accommodate the rectangular dies. The final equation is based on 
years of empirical observations of yields at integrated circuit factories, with 
the exponent related to the number of critical processing steps in the manu
facturing process. 

1.46 [10] Combine the three equations above to determine the cost per die in 
terms of die area. If you ignore constants, what is the approximate relationship 
between cost and die area? 

1.47 [15] Compare the estimate of the number of dies per wafer calculated in 
the formula above to the actual number given in the caption of Figure 1 .15 on 
page 23. Propose a formula that gives a more accurate estimate of the number 
of dies per wafer and give an explanation of your formula. 

1.48 [10] What is the approximate cost of a die in the wafer shown at left in 
Figure 1 . 15  on page 23? Assume that a 6-inch wafer costs $750 and that the de
fect density is 2 per square centimeter. Use the number of dies per wafer given 
in the figure caption. 

1.49 [10] This is the same as exercise 1 .48, but use the wafer shown at right in 
Figure 1 .15 on page 23 instead of the left-hand wafer. 

Exercises 1.50 to 1.52 DRAM chips have significantly increased in die 
size with each generation, yet yields have stayed about the same (43% to 
48%). Figure 1 .32 shows key statistics for DRAM production over the years. 

Capacity ( K  bits) 64 256 1024 4096 16384 

Year 1980 1983 1985 1989 1992 
Die Area (sq. cm.) 0.16 0.24 0.42 0.65 0.97 
Wafer Diameter (inches) 5 5 6 6 8 
Yield 48% 46% 45% 43% 48% 

FIGURE 1.32 History of DRAM capacity, die size, wafer size, and yleld. Provided by 
Howard Dicken of OM Data Inc. of Scottsdale, Arizona. 

1.50 [5] Given the increase in die area of DRAMS, what parameter must im
prove to maintain yield? 

1.51 [10] {ex. 1 .50) Derive a formula for the improving parameter found in 
Exercise 1 .50 from the other parameters. 

1.52 [10] <§1 .4> {ex. 1 .50, 1 .51 ) Using the formula in the answer to Exercise 
1 .51, what is the calculated improvement in that parameter between 1980 and 
1992? 
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• Introduction 

This chapter discusses how to measure, report, and summarize performance 
and describes the major factors that determine the performance of a com
puter. A primary reason for examining performance is that hardware perfor
mance is often key to the effectiveness of an entire system of hardware and 
software. Assessing the performance of such a system can be quite challeng
ing. The scale and intricacy of modern software systems, together with the 
wide range of performance improvement techniques employed by hardware 
designers, have made performance assessment much more difficult. It is sim
ply impossible to sit down with an instruction set manual and a significant 
software system and determine how fast the software will run on the 
machine. In fact, for different types of applications, different performance 
metrics may be appropriate and different aspects of a computer system may 
be the most significant in determining overall performance. 

Of course, in trying to choose among different computers, performance is 
almost always an important attribute. Accurately measuring and comparing 
different machines is critical to purchasers, and therefore to designers. The 
people selling computers know this as well. Often, salespeople would like you 
to see their machine in the best possible light, whether or not this light accu
rately reflects the needs of the purchaser's application. In some cases, claims 
are made about computers that don't provide useful insight for any real appli
cations. Hence, understanding how best to measure performance and the lim
itations of performance measurements is important in selecting a machine. 

Our interest in performance, however, goes beyond issues of assessing per
formance only from the outside of a machine. To understand why a piece of 
software performs as it does, why one instruction set can be implemented to 
perform better than another, or how some hardware feature affects perfor
mance, we need to understand what determines the performance of a ma
chine. For example, to improve the performance of a software system, we may 
need to understand what factors in the hardware contribute to the overall sys
tem performance and the relative importance of these factors. These factors 
may include how well the program uses the instructions of the machine, how 
well the underlying hardware implements the instructions, and how well the 
memory and I/0 systems perform. Understanding how to determine the per
formance impact of these factors is crucial to understanding the motivation be
hind the design of particular aspects of the machine, as we will see in the 
chapters that follow. 

The rest of this section describes different ways in which performance can 
be determined. In section 2.2 we describe the metrics for measuring perfor-
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Passenger Cruising range Cruising speed · Passenger throughput 
Ai rplane capacity (miles) ( m.p.h.) ( passengers x m.p.h.) 

Boeing 737-100 101 630 598 60,398 
Boeing 747 470 4150 610 286,700 
BAC/Sud Concorde 132 4000 1350 178,200 
Douglas DC-8-50 146 8720 544 79,424 

FIGURE 2.1 The capacity, range, and speed for a number of commercial airplanes. The last column shows the rate 
at which the airplane transports passengers, which is the capacity times the cruising speed (ignoring range and take-off 
and landing times). 

mance from the viewpoint of both a computer user and a designer. In 
section 2.3 we look at how these metrics are related and present the classical 
processor performance equation, which we will use throughout the text. 
Section 2.4 describes some popular performance metrics and why they are in
adequate. Sections 2.5 and 2.6 describe how best to choose benchmarks to eval
uate machines and how to accurately summarize the performance of a group 
of programs. Finally, in section 2.7 we'll examine some of the many pitfalls that 
have trapped designers and those who analyze and report performance. 

Defining performance 

When we say one computer has better performance than another, what do we 
mean? Although this question might seem simple, an analogy with passenger 
airplanes shows how subtle the question of performance can be. Figure 2.1 
shows some typical passenger airplanes, together with their cruising speed, 
range, and capacity. If we wanted to know which of the planes in this table 
had the best performance, we would first need to define performance. For 
example, considering different measures of performance we see that the plane 
with the highest cruising speed is the Concorde, the plane with the longest 
range is the DC-8, and the plane with the largest capacity is the 747. Let's sup
pose we define performance in terms of speed. This still leaves two possible 
definitions. You could define the fastest plane as the one with the highest 
cruising speed, taking a single passenger from one point to another in the 
least time. However, if you were interested in transporting 450 passengers 
from one point to another, the 747 would clearly be the fastest, as the last col
umn of the figure shows. Similarly, we can define computer performance in 
several different ways. 

If you were running a program on two different workstations, you'd say 
that the faster one is the workstation that gets the job done first. However, if 
you were running a computer center that had two large timeshared computers 
running jobs submitted by many users, you'd say that the faster computer was 
the one that completed the most jobs during a day. As an individual computer 
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user, you are interested in reducing response time-the time between the start 
and completion of a task-also referred to as execution time. Computer center 
managers are interested in increasing throughput-the total amount of work 
done in a given time. 

To illustrate the application of new ideas, specific examples are used 
throughout this text. We highlight the example and then provide an answer. 
Try working out the answer yourself, or-if you feel unsure about the ma
terial-just follow along. The examples that appear are similar in type to the 
problems that you will have an opportunity to tackle in the exercises at the 
end of each chapter. Here's our first example: 

Do the following changes to a computer system increase throughput, de
crease response time, or both? 

1 .  Replacing the processor in a computer with a faster version. 

2. Adding additional processors to a system that uses multiple proces
sors for separate tasks-for example, handling an airline reservations 
system. 

Decreasing response time almost always improves throughput. Hence, in 
case 1, both response time and throughput are improved. In case 2, no one 
task gets work done faster, so only throughput increases. If, however, the 
demand for processing in the second case were larger than the throughput, 
the system might force requests to queue up. In this case, increasing the 
throughput could also improve response time. Thus, in many real computer 
systems, changing either execution time or throughput often affects the 
other. 

In discussing the performance of machines, we will be primarily concerned 
with response time for the first few chapters. (In Chapter 8 on input/ output 
systems we will discuss throughput-related measures.) To maximize perfor
mance, we want to minimize response time or execution time for some task. 
Thus we can relate performance and execution time for a machine X: 

1 
Performance = x Execution time x 
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This means that for two machines X and Y, if the performance of X is greater 
than the performance of Y, we have 

Performance x > Performance y 

1 1 
------- > -------
Execution time x Execution time y 

Execution timey > Execution time x 

That is, the execution time on Y is longer than that on X, if X is faster than Y. 
In discussing a computer design, we often want to relate the performance 

of two different machines quantitatively. We will use the phrase "X is n times 
faster than Y" to mean 

Performance x 
= n 

Performance y 

If X is n times faster than Y, then the execution time on Y is n times longer than 
it is on X: 

Performance x Execution time y 

Performance y Execution time x 
n 

If machine A runs a program in 10 seconds and machine B runs the same pro
gram in 15 seconds, how much faster is A than B? 

We know that A is n times faster than B if 

Performance A 

Performance 8 
or 

Execution time 8 
Execution time A 

Thus the performance ratio is 

15 = 1 .5 
10  

and A is  therefore 1 .5 times faster than B .  

n 

n 
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In the above example, we could also say that machine B is 1 .5 times slower 
than machine A, since 

means that 

Performance A 
Performance 8 1.5 

Performance A = Performance 8 
1 .5 

For simplicity, we will normally use the terminology faster than when we try 
to compare machines quantitatively. Because performance and execution time 
are reciprocals, increasing performance requires decreasing execution time. 
To avoid the potential confusion between the terms increasing and decreasing, 
we usually say improve performance or improve execution time when we mean 
"increase performance" and "decrease execution time." • Measuring Performance 

Time is the measure of computer performance: the computer that performs 
the same amount of work in the least time is the fastest. Program execution 
time is measured in seconds per program. But time can be defined in different 
ways, depending on what we count. The most straightforward definition of 
time is called wall-clock time, response time, or elapsed time. This is the total time 
to complete a task, including disk accesses, memory accesses, input/ output 
(I/O) activities, operating system overhead-everything. However, comput
ers are often timeshared, and a processor may work on several programs 
simultaneously. In such cases, the system may try to optimize throughput 
rather than attempt to minimize the elapsed time for one program. Hence, we 
often want to distinguish between the elapsed time and the time that the pro
cessor is working on our behalf. CPU execution time or simply CPU time, 
which recognizes this distinction, is the time the CPU spends computing for 
this task and does not include time spent waiting for I/O or running other 
programs. (Remember, though, that the response time experienced by the 
user will be the elapsed time of the program, not the CPU time.) CPU time 
can be further divided into the CPU time spent in the program, called user 
CPU time, and the CPU time spent in the operating system performing tasks 
on behalf of the program, called system CPU time. Differentiating between sys
tem and user CPU time is difficult to do accurately, because it is often hard to 
assign responsibility for operating system activities to one user program 
rather than another. 
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The breakdown of the elapsed time for a task is reflected in the UNIX time 
command, which in one case returned 

9 0 . 7 u  1 2 . 9 s 2 : 3 9 6 5 %  

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time 
is 2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time 
that is CPU time is 

90.7 + 12.9 
159 

= 0.65 

or 65%. More than a third of the elapsed time in this example was spent wait
ing for 1/0, running other programs, or both. Sometimes we ignore system 
CPU time when examining CPU execution time because of the inaccuracy of 
operating systems' self-measurement and the inequity of including system 
CPU time when comparing performance between machines with different 
operating systems. On the other hand, system code on some machines is user 
code on others, and no program runs without some operating system running 
on the hardware, so a case can be made for using the sum of user CPU time 
and system CPU time as the measure of program execution time. 

For consistency, we maintain a distinction between performance based on 
elapsed time and that based on CPU execution time. We will use the term sys
tem performance to refer to elapsed time on an unloaded system, and use CPU 
performance to refer to user CPU time. We will concentrate on CPU performance 
in this chapter, although our discussions of how to summarize performance 
can be applied to either elapsed time or to CPU time measurements. 

Although as computer users we care about time, when we examine the de
tails of a machine it's convenient to think about performance in other metrics. 
In particular, computer designers may want to think about a machine by using 
a measure that relates to how fast the hardware can perform basic functions. 
Al�ost all computers are constructed using a clock that runs at a constant rate 
and determines when events take place in the hardware. These discrete time 
intervals are called clock cycles (or ticks, clock ticks, clock periods, clocks, cy
cles). Designers refer to the length of a clock period both as the time for a com
plete clock cycle (e.g., 10 nanoseconds, or 10 ns) and as the clock rate (e.g., 100 
megahertz, or 100 MHz), which is the inverse of the clock period. In the next 
section, we will formalize the relationship between the clock cycles of the 
hardware designer and the seconds of the computer user. 
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• Relating the Metrics 

Example 

Answer 

Users and designers often examine performance using different metrics. If we 
could relate these different metrics, we could determine the effect of a design 
change on the performance as seen by the user. Since we are confining our
selves to CPU performance at this point, the bottom-line performance mea
sure is CPU execution time. A simple formula relates the most basic metrics 
(clock cycles and clock cycle time) to CPU time: 

CPU execution time = CPU clock cycles x Clock cycle time 
for a program for a program 

Alternatively, because clock rate and clock cycle time are inverses: 

CPU execution time 
for a program 

CPU clock cycles for a program 
Clock rate 

This formula makes it clear that the hardware designer can improve perfor
mance by reducing either the length of the clock cycle or the number of clock 
cycles required for a program. As we will see in this chapter and later in 
Chapters 5, 6, and 7, the designer often faces a trade-off between the number 
of clock cycles needed for a program and the length of each cycle. Many tech
niques that decrease the number of clock cycles also increase the clock cycle 
time. 

Our favorite program runs in 10 seconds on computer A, which has a 100 MHz 
clock. We are trying to help a computer designer build a machine, B, that will 
run this program in 6 seconds. The designer has determined that a substantial 
increase in the clock rate is possible, but this increase will affect the rest of the 
CPU design, causing machine B to require 1 .2 times as many clock cycles as ma
chine A for this program. What clock rate should we tell the designer to target? 

Let's first find the number of clock cycles required for the program on A: 

CPU clock cycles A 
CPU timeA = 

Clock rate A 
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10 seconds = 
CPU clock cycles A 

100 x 106 cycles 
second 

6 cycles 
CPU clock cycles A = 10 seconds x 100 x 10 --

second 

CPU time for B can be found using this equation: 

1 .2 x CPU clock cycles A 
CPU time 8 = 

Clock rate 8 

1 .2 x 1000 x 106 cycles 
6 seconds = --------

Clock rate 8 
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1000 x 106cycles 

1 .2 x 1000 x 106 cycles 
Clock rate8 = ---------

6 seconds 
200 x 106 cycles 

d 
= 200 MHz 

sec on 

Machine B must therefore have twice the clock rate of A to run the program in 
6 seconds. 

Hardware 

Software 

Interface 

Throughout this text, you will see sections called Hardware 
Software Interfaces. These sections highlight important in
teractions between some aspect of the software (typically a 
program, compiler, or the operating system) and some hard
ware aspect of the computer. In addition to highlighting 
such interactions, they remind the reader that hardware and 
software design decisions interact in many different ways. 

The equations in our previous examples do not include any reference to the 
number of instructions needed for the program. However, since the compiler 
clearly generated instructions to execute, and the machine had to execute the 
instructions to run the program, the execution time must depend on the num
ber of instructions in a program. One way to think about execution time is that 
it equals the number of instructions executed multiplied by the average time 
per instruction. Therefore, the number of dock cycles required for a program 
can be written as 
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. Average clock cycles CPU clock cycles = Instructions for a program x per instruction 

The term clock cycles per instruction, which is the average number of clock cycles 
each instruction takes to execute, is often abbreviated as CPI. Since different 
instructions may take different amounts of time depending on what they do, 
CPI is an average of all the instructions executed in the program. CPI provides 
one way of comparing two different implementations of the same instruction 
set architecture, since the instruction count required for a program will, of 
course, be the same. 

Suppose we have two implementations of the same instruction set architecture. 
Machine A has a clock cycle time of 10 ns (nanoseconds) and a CPI of 2.0 for 
some program, and machine B has a clock cycle time of 20 ns and a CPI of 1.2 
for the same program. Which machine is faster for this program, and by how 
much? 

We know that each machine executes the same number of instructions for the 
program; let's call this number I. First, find the number of processor clock cycles 
for each machine: 

CPU clock cycles A = I x  2.0 

CPU clock cycles 8 = I x 1 .2 

Now we can compute the CPU time for each machine: 

Likewise, for B: 

CPU time A = CPU clock cycles A x Clock cycle time A 
= I x  2.0 x 10 ns = 20 x I ns 

CPU time 8 = I x 1 .2 x 20 ns = 24 x I ns 

Clearly, machine A is faster. The amount faster is given by the ratio of the exe
cution times: 
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CPU performance A Execution time 8 24 x I ns 
CPU performance 8 Execution time A 20 x I ns 
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= 1 .2 

We can conclude that machine A is 1 .2 times faster than machine B for this pro
gram. 

We can now write this basic performance equation in terms of instruction 
count (the number of instructions executed by the program), CPI, and clock cy
cle time: 

or 

CPU time = Instruction count x CPI x Clock cycle time 

C 
Instruction count x CPI 

PU time = 
Clock rate 

These formulas are particularly useful because they separate the three key 
factors that affect performance. We can use these formulas to compare two 
different implementations or to evaluate a design alternative if we know its 
impact on these three parameters. 

How can we determine the value of these factors in the performance equa
tion? We can measure the CPU execution time by running the program, and 
the clock cycle time is usually published as part of the documentation for a ma
chine. The instruction count and CPI can be more difficult to obtain. Of course, 
if we know the clock rate and CPU execution time, we need only the instruc
tion count or the CPI to determine the other. 

We can measure the instruction count by using software tools that profile 
the execution or by using a simulator of the architecture. Since the instruction 
count depends on the architecture, but not on the exact implementation, we 
can measure the instruction count without knowing all the details of the im
plementation. The CPI, however, depends on a wide variety of design details 
in the machine, including both the memory system and the processor structure 
(as we will see in Chapters 5, 6, and 7), as well as on the mix of instruction 
types executed in an application. CPI varies by application, as well as among 
implementations with the same instruction set. 

Designers often obtain CPI by a detailed simulation of an implementation. 
Sometimes it is possible to compute the CPU clock cycles by looking at the dif
ferent types of instructions and using their individual clock cycle counts. In 
such cases, the following formula is useful: 

11 
CPU clock cycles = L (CPI ; x C;) 

i = 1 
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• . 

Figure 2.2 shows the basic measurements at different 
levels in the computer and what is being measured in 
each case. We can see how these factors are combined 
to yield execution time measured in seconds: 

In . Clock cycles Seconds 
Time = structions x x -----

Instruction Clock cycle 

Always bear in mind that the only complete and reliable measure of 
computer performance is time. For example, changing the instruction 
set to lower the instruction count may lead to an organization with a 
slower clock cycle time that offsets the improvement in instruction 
count. Similarly, because CPI depends on instruction mix, the code 
that executes the fewest number of instructions may not be the 
fastest. 

- - �[!lj .. '""·�� .... ' t111:..1�&...1l!JJ 11:.. ••• . .. 
CPU execution time for a program Seconds for the program 

Instruction count Instructions executed for the program 

Clock cycles per instruction (CPI) 
A verage clock cycles 

I n struct ion 

Clock cycle time 
Seconds 

C lock cycle 

RGURE 2.2 The basic components of performance and how each Is measured. 

where C; is the count of the number of instructions of class i executed, CPI; is 
the average number of cycles per instruction for that instruction class, and n is 
the number of instruction classes. Remember that overall CPI for a program 
will depend on both the number of cycles for each instruction type and the 
frequency of each instruction type in the program execution. Thus, both the 
hardware used to execute a program and the program's characteristics affect 
the observed CPI. 

A compiler designer is trying to decide between two code sequences for a 
particular machine. The hardware designers have supplied the following 
facts: 
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A 1 
B 2 
c 3 
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For a particular high-level-language statement, the compiler writer is con
sidering two code sequences that require the following instruction counts: 

�-ff:��-��·./�'.'-:7-�"' ' Instruction c-o�n!s f,�r]Tn]itffiction'i c l�?s, <:_'fl 
i�cocie sequence . A: .. .· . . B1:� � .'� _ , ; c· _, ;,!-'� 

2 4 1 1 

Which code sequence executes the most instructions? Which will be faster? 
What is the CPI for each seq_,uence? 

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 
4 + 1 + 1 = 6 instructions. So sequence 1 executes fewer instructions. 

We can use the equation for CPU clock cycles based on instruction count 
and CPI to find the total number of clock cycles for each sequence: 

n 

CPU clock cycles = L (CPI ; x C ;) 
i = 1 

This yields: 

CPU clock cycles 1 = ( 2 x l ) + ( l x 2) + (2 x 3) = 2 + 2 + 6  = IO cycles 

CPU clock cycles 2 =  (4 x l ) + ( l x 2) + ( l x 3) = 4 + 2 + 3  = 9 cycles 

So code sequence 2 is faster, even though it actually executes one extra 
instruction. Since code sequence 2 takes fewer overall clock cycles but has 
more instructions, it must have a lower CPL The CPI values can be com
puted by 

CPI = 
CPU clock cycles 
Instruction count 

CPI 1 = 
CPU clock cycles 1 10 

- = 2 
Instruction count 1 5 

CPI 2 = 
CPU clock cycles 2 9 

- 1.5 
Instruction count 2 6 
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The above example shows the danger of using only one factor (instruction 
count) to assess performance. When comparing two machines, you must look 
at all three components, which combine to form execution time. If some of the 
factors are identical, like the clock rate in the above example, performance can 
be determined by comparing all the nonidentical factors. However, since CPI 
varies by instruction mix, both instruction count and CPI must be compared, 
even if clock rates are identical. Exercises 2.14 through 2.17 explore this further 
by asking you to evaluate a series of machine and compiler enhancements that 
affect clock rate, CPI, and instruction count. In the next section, we'll examine 
a common performance measurement that does not incorporate all the terms 
and can thus be misleading. 

II Popular Performance Metrics 

A number of popular measures have been devised in attempts to create a 
standard measure of computer performance. One result has been that simple 
metrics, valid in a limited context, have been heavily misused. All proposed 
alternatives to the use of time as the performance metric have led eventually 
to misleading claims, distorted results, or incorrect interpretations. In this sec
tion we discuss two of the most commonly used and abused metrics. 

MIPS and What's Wrong with It 

One alternative to time as the metric is MIPS, or million instructions per second. 
For a given program, MIPS is simply 

Thus 

Instruction count Instruction count 
MIPS = --------

Execution time x 106 CPU clocks x Cycle time x 106 
Instruction count x Clock rate 

Instruction count x CPI x 106 

MIPS = 
Clock rate 

CPI x 106 

Clock rate 

CPI x 106 

This last formula shows that MIPS is a measure of the instruction execution 
rate for a particular machine. This MIPS measurement is also called native 
MIPS to distinguish it from some alternative definitions of MIPS that we will 
look at shortly. 

We can relate MIPS to execution time by using this formula: 
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Thus 

Instruction count x CPI 
Execution time = ---------

Clock rate 

Instruction count 
Clock rate 6 
---- x lO 
CPI x 106 

Instruction count 
Execution time = 

MIPS x 106 

Instruction count 

MIPS x 106 
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Since MIPS is an instruction executi01� rate, MIPS specifies performance 
inversely to execution time; faster machines have a higher MIPS rating. The 
good news about MIPS is that it is easy to understand, and faster machines 
mean bigger MIPS, which matches intuition. 

There are three problems with using MIPS as a measure for comparing ma
chines. First, MIPS specifies the instruction execution rate but does not depend 
on the instruction set. We cannot compare computers with different instruction 
sets using MIPS, since the instruction counts will certainly differ. Second, MIPS 
varies between programs on the same computer; thus a machine cannot have 
a single MIPS rating. Finally and most importantly, MIPS can vary inversely 
with performance! There are many examples of this anomalous behavior; one 
is given below. 

Consider the machine with three instruction classes and CPI measurements 
from the last example on page 58. Now suppose we measure the code for 
the same program from two different compilers and obtain the following 
data: 

Instruction counts ( in  mil l ions) 
for each instruction class . 

Code from A B C · 

Compiler 2 10 1 1 

Assume that the machine's clock rate is 100 MHz. Which code sequence 
will execute faster according to MIPS? According to execution time? 
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We can use the following equation to find MIPS: 

Clock rate 
MIPS = ---

CPI x 106 

MIPS 
lOO MHz 

CPI x 106 

To find overall CPI for each compiler, we start with the following: 

CPI = CPU clock cycles 
Instruction count 

We can use an earlier formula for CPU clock cycles: 

II 
CPU clock cycles = L (CPI ; x C ;) 

i = 1 

After substituting into the first formula, we get: 

CPI _,_· =_1 ____ _ 

Instruction count 

We use this formula to compute the CPI values for the two code sequences: 

6 (5 x l + l x 2 + 1 x 3) x 10 10 
CPI 1 = = - = 1 428 

( 5 + 1 + 1 )  x 106 7 
. 

lOO MHz 
MIPS 1 = 

6 
= 70.0 

1 .428 x 10 

6 ( 10 x l + l x 2 + 1 x 3) x 10 15 
CPI 2 = = - = 1 .25 

( 10 + 1 + 1 ) x 106 12 

lOO MHz 
MIPS 2 = 

6 
= 80.0 

1 .25 x 10 

Hence, the code produced by Compiler 2 has a higher MIPS rating. Now 
let's compute execution time using the formula: 
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CPU time = 
Instruction count x CPI 

Clock rate 

CPU time 1 = 
( 5 + 1 + 1 )  x 106 x 1 .43 7 x 1 .43 

0.10 seconds 
100 x 106 100 

CPU time 2 = 
( 10 + 1 + 1 ) x 106 x 1 .25 12 x 1 .25 

0.15 seconds 
100 x 106 100 

So, Compiler 1 is clearly faster-contrary to what we would conclude from 
looking at MIPS! 

We could also compute the performance ratio from the MIPS measure
ments and the instruction counts, using the formula from above: 

Thus 

Execution time = 
Instruction count 

CPU time 1 

CPU time2 

MIPS x 10 6 

7 x  106 

69.9 x 106 

12 x 106 

80.0 x 106 

0.10 seconds 

0.15 seconds 

As examples such as this show, MIPS can fail to give a true picture of 
performance-even when comparing two versions of the same program on the 
same machine. One particularly misleading definition of MIPS is peak MIPS. 
Peak MIPS is obtained by choosing an instruction mix that minimizes the CPI, 
even if that instruction mix is totally impractical. In the example above, the 
peak MIPS ratings are the same for both machines: 100 MIPS. To achieve a 100 
MIPS rating with a 100 MHz clock, the CPI for the program must be 1. But the 
only program that can have a CPI of 1,  is a program consisting solely of type 
A instructions! Thus peak MIPS tells us very little about the machine: it does 
not indicate the actual MIPS rating, nor does it give any indication of actual 
performance. In addition, the instruction mix used for peak MIPS may be to
tally useless. Although peak MIPS is an essentially useless measure, many 
computer manufacturers have announced products using peak MIPS as a met
ric, often neglecting to include the word "peak"! 

If we were trying to compare two machines with dissimilar instruction sets, 
MIPS would be even more misleading, since the number of instructions re
quired could be very different; we'll see some examples of this in the next 
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chapter. To compensate for this weakness, many people have chosen a defini
tion of MIPS that is relative to some agreed-upon reference machine. Relative 
MIPS is defined as follows: 

where 

Time 
R 1 t. MIPS = 

reference X MIPS e a 1 v e . reference Time unrated 

Time reference = Execution time of a program on the reference machine 

Time unrated = Execution time of the same program on machine to be rated 

MIPS reference = Agreed-upon MIPS rating of the reference machine 

Relative MIPS tracks execution time only for a given program and a given 
input. Even when these are identified, it becomes harder to find a reference 
machine on which to run programs as the machine ages. (In the 1980s the dom
inant reference machine was the VAX-11 /780, which was called a 1-MIPS ma
chine and is now hard to find in operation.) Moreover, should the older 
machine be run with the newest release of the compiler and operating system, 
or should the software be fixed so the reference machine does not become fast
er over time? There is also the temptation to generalize from a relative MIPS 
rating obtained using one benchmark to a general statement about relative 
performance, even though there can be wide variations in performance of two 
machines across a complete set of benchmarks. 

In summary, the advantage of relative MIPS is small, since execution time, 
program, and program input still must be known to obtain meaningful infor
mation, just as it would if seconds were used. Furthermore, although no one 
would consider publishing an execution time without specifying the program 
and its input, nearly everyone who chooses to use relative MIPS eventually 
succumbs to the temptation either to publish MIPS ratings without additional 
information or to replace relative MIPS with native or peak MIPS. 

MFLOPS and What's Wrong with It 

Another popular alternative to execution time is million floating-point opera
tions per second, abbreviated megaFLOPS or MFLOPS but always pronounced 
"megaflops." The formula for MFLOPS is simply the definition of the acro
nym: 

MFLOPS 
Number of floating-point operations in a program 

Execution time x 106 
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A floating-point operation is an addition, subtraction, multiplication, or divi
sion operation applied to a number represented in a single or a double preci
sion floating-point representation. Such data items are heavily used in 
scientific calculations and are specified in programming languages using key 
words like float, real, double, or double precision. Chapter 4 discusses extensively 
both representation and operations on floating-point numbers. 

Clearly, a MFLOPS rating is dependent on the program. Different programs 
require the execution of different numbers of floating-point operations. Since 
MFLOPS were intended to measure floating-point performance, they are not 
applicable outside that range. Compilers, as an extreme example, have a 
MFLOPS rating near 0 no matter how fast the machine is, because compilers 
rarely use floating-point arithmetic. 

Because it is based on operations in the program rather than on instructions, 
MFLOPS has a stronger claim than MIPS to being a fair comparison between 
different machines. The key to this claim is that the same program running on 
different computers may execute a different number of instructions but will al
ways execute the same number of floating-point operations. Unfortunately, 
MFLOPS is not dependable because the set of floating-point operations is not 
consistent across machines, and the number of actual floating-point operations 
performed may vary. For example, the Cray-2 has no divide instruction, while 
the Motorola 68882 has divide, square root, sine, and cosine. Thus several 
floating-point operations are needed on the Cray-2 to perform a floating-point 
division; whereas, on the Motorola 68882, a call to the sine routine, which 
would require performing several floating-point operations on most ma
chines, would require only one operation. 

Another potential problem is that the MFLOPS rating changes according 
not only to the mixture of integer and floating-point operations but to the mix
ture of fast and slow floating-point operations. For example, a program with 
100% floating-point adds will have a higher rating than a program with 100% 
floating-point divides. The solution to both these problems is to define a meth
od of counting the number of floating-point operations in a high-level lan
guage program. This counting process can also weigh the operations, giving 
more complex operations larger weights, allowing a machine to achieve a high 
MFLOPS rating even if the program contains many floating-point divides. 
These MFLOPS might be called normalized MFLOPS. Of course, because of the 
counting and weighting, these normalized MFLOPS may be very different 
from the actual rate at which a machine executes floating-point operations. 

Like any other performance measure, the MFLOPS rating for a single pro
gram cannot be generalized to establish a single performance metric for a com
puter. The use of the same term to refer to everything from peak performance 
(the maximum MFLOPS rate possible for any code segment), to the MFLOPS 
rate for one benchmark, to a normalized MFLOPS rating only increases the 
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confusion. The worst of these variants of MFLOPS, peak MFLOPS, is unrelated 
to actual performance; the best variant is redundant to execution time, our 
principal measure of performance. Yet, unlike execution time, it is tempting to 
characterize a machine with a single MFLOPS rating without naming the pro
gram or input. 

II Choosing Programs to Evaluate Performance 

A computer user who runs the same programs day in and day out would be 
the perfect candidate to evaluate a new computer. The set of programs run 
would form a workload. To evaluate two computer systems, a user would sim
ply compare the execution time of the workload on the two machines. How
ever, most users are not in this situation. Instead, they must rely on other 
methods that measure the performance of a candidate machine, hoping that 
the methods will reflect how well the machine will perform with the user 's 
workload. This is usually done by evaluating the machine using a set of 
benchmarks, or programs chosen to measure performance. The benchmarks 
form a workload that the user hopes will predict the performance of the 
actual workload. 

Today it is widely understood that the best type of programs to use for 
benchmarks are real applications. These may be applications that the user em
ploys regularly or simply applications that are typical. For example, in an en
vironment where the users are primarily engineers, one might use a set of 
benchmarks containing several typical engineering or scientific applications. If 
the user community were primarily software development engineers, the best 
benchmarks would probably include such applications as a compiler or docu
ment processing system. Using real applications as benchmarks makes it much 
more difficult to find simple ways to speed up the execution of the benchmark. 
Should we find such techniques, they are likely to help not only the bench
mark, but other applications as well. 

The use of benchmarks whose performance depends on very small code 
segments encourages optimizations in either the architecture or compiler that 
target these segments. The compiler optimizations might recognize special 
code fragments and generate an instruction sequence that is particularly effi
cient for this code fragment. Likewise, a designer might try to make some se
quence of instructions run especially fast, because the sequence occurs in a 
benchmark. Recently, several companies have introduced compilers that take 
a specific option (e.g., the name of the benchmark or a code describing it 
uniquely) for certain well-known benchmarks. Whether the compiler would 
produce good code, or even correct code, when real application programs use 
these switches, is an open question. 
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FIGURE 2.3 SPEC performance ratios for the IBM Powerstatlon 550 using two different compilers. The higher 
numbers on matrix300 (and nasa7) result from applying an optimization technique to these two kernel-oriented bench
marks. For the enhanced compiler, special flags are passed to the compiler for both nasa7 and matrix300, which are not 
used for the other benchmarks. In both programs, the compiler transforms the program by blocking the matrix operations 
that are in the inner loops. These blocking transformations substantially lower the number of memory accesses required 
and transform the inner loops from having high cache miss rates to having almost negligible cache miss rates. Interestingly, 
the original motivation for including matrix300 was to exercise the computer's memory system; however, this optimiza
tion basically reorganizes the program to minimize memory usage. This data appeared in two SPEC reports during the fall 
and winter of 1991. 

Small programs or programs that spend almost all their execution time in a 
very small code fragment are especially vulnerable to such efforts. For exam
ple, the SPEC processor benchmark suite was chosen to use primarily real ap
plications (see section 2.9 for a further discussion of SPEC). However, the first 
release of SPEC suite included a benchmark called matrix300, which consists 
solely of a series of matrix multiplications. In fact, 99% of the execution time is 
in a single line of this benchmark. The fact that so much time is spent in one 
line doing the same computation many times has led several companies to 
purchase or develop special compiler technology to improve the running time 
of this benchmark. Figure 2.3 shows the performance ratios (inverse to execu
tion time) for one machine with two different compilers. The enhanced com
piler has essentially no effect on the running time of eight of the nine 
benchmarks, but it improves performance on matrix300 by a factor of more 
than nine. On matrix300, therefore, the program runs 729.8 times faster using 
the enhanced compiler than the reference time obtained from a VAX-11 /780-
but the more typical performance of the machine is much slower. The other 
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programs run from just over 30 times faster to just over 140 times faster. A user 
expecting a program to run 700 times faster than it does on a VAX-11 /780 
would likely be very disappointed! In 1992, there was a new release of the 
SPEC benchmark suite and matrix300 was dropped. 

So why doesn't everyone run real programs to measure performance? Small 
benchmarks are attractive when beginning a design, since they are small 
enough to compile and simulate easily, even by hand. They are especially 
tempting when designers are working on a novel machine because compilers 
may not be available until much later. Small benchmarks are also more easily 
standardized than large programs, hence numerous published results are 
available for small benchmark performance, but few for large ones. 

Although the use of such small benchmarks early in the design process may 
be justified, there is no valid rationale for using them to evaluate working com
puter systems. In the past, it was hard to obtain large applications that could 
be easily ported to a machine, but this is no longer true. Using small programs 
as benchmarks was an attempt to make fair comparisons among different ma
chines, but use of anything less than real programs after initial design studies 
is likely to give misleading results and lure the designer astray. 

Once we have selected a set of suitable benchmarks and obtained perfor
mance measurements, we can write a performance report. The guiding princi
ple in reporting performance measurements should be reproducibility-one 
should list everything another experimenter would need to duplicate the re
sults. This must include the version of the operating system, compilers, and 
the input, as well as the machine configuration. As an example, we include the 
system description section of a SPEC benchmark report in Figure 2.4. 

II Comparing and Summarizing Performance 

Once we have selected programs to use as benchmarks and agreed on 
whether we are measuring response time or throughput, you might think that 
performance comparison would be straightforward. However, we must still 
decide how to summarize the performance of a group of benchmarks. 
Although summarizing a set of measurements results in less information, 
marketers and even users often prefer to have a single number to compare 
performance. The key question is, How should a summary be computed? 
Figure 2.5, which is abstracted from an article about summarizing perfor
mance, illustrates some of the difficulties facing such efforts. 
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Model number: 
CPU: 
FPU: 
Number of CPUs: 
Cache size per CPU: 
Memory: 
Disk subsystem: 
Network interface: 

0 /S type and rev: 
Compiler rev: 

Other software: 
File system type: 
Firmware level :  

Tuning parameters: 
Background load: 
System state: 

Hardware 

Powerstation 550 
41.67 MHz POWER 4164 
Integrated 
1 
64K data/SK instruction 
64 MB 
2 - 400 MB SCSI 
NA 

Software 
AIX v3.1.5 
AIX XL C/6000 Ver. 1 .1 .5 
AIX XL Fortran Ver. 2 .2 
None 
AIX 
NA 

System 

None 
None 
Multiuser (single-user login) 

69 

FIGURE 2.4 Sydem description of the machine used to obtain the higher performance 
resuHs In Figure 2.3. A footnote attached to the entry for the Fortran compiler states: "AIX XL 
Fortran Alpha Version 2.2 used for testing." Although no tuning parameters are indicated, addi
tional footnotes describe a number of special flags passed to the compilers for the benchmarks. 

Computer A Compute; B�:": 
Program 1 (seconds) 1 10 

Program 2 (seconds) 1000 100 

Total time (seconds) 1001 110 

FIGURE 2.5 Execution times of two programs on two different machines. Taken from Fig
ure 1 of Smith (1988]. 

Using our definition of faster, the following statements hold for the program 
measurements in Figure 2.5: 

• A is 10 times faster than B for program 1 .  

• B is  10 times faster than A for program 2. 

Taken individually, each of these statements is true. Collectively, however, 
they present a confusing picture-the relative performance of computers A 
and B is unclear. 
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Total Execution Time: A Consistent Summary Measure 

The simplest approach to summarizing relative performance is to use total 
execution time of the two programs. Thus 

1001 
B is llO 

or 9 .1 times faster than A for programs 1 and 2. 
This summary tracks execution time, our final measure of performance. If 

the workload consists of running programs 1 and 2 an equal number of times, 
this statement would predict the relative execution times for the workload on 
each machine. 

The average of the execution times that tracks total execution time is the 
arithmetic mean (AM): 

1 
11 

AM = - � Time . 
n L... ' 

i = 1 

where Timei is the execution time for the ith program of a total of n in the 
workload. Since it is the mean of execution times, a smaller mean indicates a 
smaller average execution time and thus improved performance. 

The arithmetic mean tracks execution time by assuming that the programs 
in the workload are each run an equal number of times. Is that the right work
load? If not, we can assign a weighting factor W; to each program to indicate 
the frequency of the program in that workload. If, for example, 20% of the 
tasks in the workload were program 1 and 80% of the tasks in the workload 
were program 2, then the weighting factors would be 0.2 and 0.8. By summing 
the products of weighting factors and execution times, we can obtain a clear 
picture of the performance of the workload. This is called the weighted arith
metic mean. One method of weighting programs is to choose weights so that the 
execution time of each benchmark is equal on the machine used as the base. 
We will explore the weighted mean in more detail in Exercises 2.25 and 2.26. 

• Fallacles and Pltfalls 

Cost/performance fallacies and pitfalls have ensnared many a computer 
architect, including ourselves. Accordingly, this section suffers no shortage of 
relevant examples. We start with a pitfall that has trapped many designers 
and reveals an important relationship in computer design. 

Pitfall: Expecting the improvement of one aspect of a machine to increase perfor
mance by an amount proportional to the size of the improvement. 



2. 7 Fallacles and Pltfalls 71 

This pitfall has visited designers of both hardware and software. A simple 
design problem illustrates it well. Suppose a program runs in 100 seconds on 
a machine, with multiply operations responsible for 80 seconds of this time. 
How much do I have to improve the speed of multiplication if I want my pro
gram to run five times faster? 

The execution time of the program after I make the improvement is given 
by the following simple equation: 

Execution time after improvement = (Execution time affected by improvement ) ----------------- + Execution time unaffected 
Amount of improvement 

For this problem: 

80 seconds 
Execution time after improvement = + ( 100 - 80 seconds ) 

n 

Since we want the performance to be five times faster, the new execution time 
should be 20 seconds, giving 

80 seconds 
20 d 20 seconds = + secon s 

n 

80 seconds 
0 =  

n 

That is, there is no amount by which we can enhance multiply to achieve a 
fivefold increase in performance, if multiply accounts for only 80% of the 
workload. The performance enhancement possible with a given improvement 
is limited by the amount that the improved feature is used. This concept is 
referred to as Amdahl's Law. We'll see some other implications of this relation
ship in Exercises 2.32 through 2.35. 

A common theme in hardware design is a corollary of Amdahl's Law: Make 
the common case fast. This simple guideline reminds us that in many cases the 
frequency with which one event occurs may be much higher than another. 
Amdahl's Law reminds us that the opportunity for improvement is affected by 
how much time the event consumes. Thus, making the common case fast will 
tend to enhance performance better than optimizing the rare case. Ironically, 
the common case is often simpler than the rare case and hence is often easier 
to enhance. 

Fallacy: Hardware-independent metrics predict performance. 

Because accurately predicting and comparing performance is so difficult, 
many designers and researchers have tried to devise methods to assess perfor
mance that do not rely on measurements of execution time. These methods are 
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------------ CDC 6600 

- 85500 

Time Instructions Size 

FIGURE 2.6 As found on the cover of Assessing the Speed of Algol 60 by B. A. Wich
mann. The graph shows relative execution time, instruction count, and code size of programs 
written in Algol 60 for the Burroughs B5500 and the CDC 6600. The results are normalized to a 
reference machine, with a higher number indicating slower performance. The CDC 6600 was 
designed later than the B5500 and had a shorter clock cycle, but that accounts for only part of the 
difference. The CDC 6600 and B5500 are discussed further in the Historical Perspective sections 
of Chapters 1 and 3. 

frequently employed when designers compare different instruction sets to fac
tor out the effects of different implementations or software systems and arrive 
at conclusions about the performance obtainable for different instruction sets. 

One such method, which has been used in the past, is to use code size as a 
measure of speed. With this method, the instruction set architecture with the 
smallest program is fastest. The size of the compiled program is, of course, im
portant when memory space is at a premium, but it is not the same as perfor
mance. In fact, today, the fastest machines tend to have instruction sets that 
lead to larger programs but can be executed faster with less hardware. 

Evidence of the fallacy of using code size to measure speed can be found on 
the cover of the well-known book, shown in Figure 2.6. The CDC 6600's pro
grams are over three times as big, yet the CDC machine runs Algol 60 pro
grams almost six times faster than the Burroughs 85500, a machine designed 
for Algol 60. 

Compiler writers sometimes use code size to choose between two different 
code segments on the same architecture. While this is less misleading than try
ing to compare code size across architectures, the accuracy of predicting per
formance from code size can vary widely. 
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Pitfall: Comparing computers using only one or two of three performance metrics: 
clock rate, CPI, and instruction count. 

The processor performance equation shows why such comparisons can 
mislead. Again, Figure 2.6 provides an example: the CDC 6600 executes al
most 1 .5 times as many instructions as the Burroughs B5500, yet it is 6.5 times 
faster. Another example comes from increasing the clock rate while making 
design decisions that also result in a high overall CPI that offsets the clock rate 
advantage. The Intergraph Clipper ClOO had a clock rate of 33 MHz and a per
formance of 33 peak MIPS-the maximum performance rate for some sequence 
of instructions. Yet the Sun 4/280, with half the clock rate and half the peak 
MIPS rating, ran programs faster. Since the Clipper's instruction count is about 
the same as the Sun's, the former machine's CPI must be more than double that 
of the latter. 

Pitfall: Using peak performance to compare machines. 

When the Intel i860 was announced in February 1989, the product an
nouncement used the peak performance of the processor to compare perfor
mance against other machines. The i860 was able to execute up to two floating
point operations and one integer operation per clock. With a clock rate target 
of 50 MHz the i860 was claimed to offer 100 MFLOPS and 150 MOPS (millions 
of operations per second).  The first i860-based systems (using 40-MHz parts) 
became available for benchmarking during the first quarter of 1991 . By com
parison, a MIPS machine based on a 33-MHz R3000 processor, available at 
about the same time, had a peak performance of about 16 MFLOPS and 33 
MOPS. Although the peak performance claims might suggest that the i860-
based machine was more than five times faster than the R3000-based machine, 
the SPEC benchmarks showed that the R3000-based machine was actually 
about 15% faster! 

Fallacy: Synthetic benchmarks predict performance. 

Synthetic benchmarks are artificial programs that are constructed to try to 
match the characteristics of a large set of programs. The goal is to create a sin
gle benchmark program where the execution frequency of statements in the 
benchmark matches the statement frequency in a large set of benchmarks. 
Whetstone and Dhrystone are the most popular synthetic benchmarks. Whet
stone was based on measurements of ALGOL programs in a scientific and en
gineering environment. It was later converted to FORTRAN and became 
popular. Dhrystone, which was inspired by Whetstone, was created as a 
benchmark for systems programming environments and was based on a set of 
published frequency measurements. Dhrystone was originally written in Ada 
and later converted to C, after which it became popular. 

One major drawback of synthetic benchmarks is that no user would ever 
run a synthetic benchmark as an application, because these programs don't 
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compute anything a user would find remotely interesting. Furthermore, be
cause synthetic benchmarks are not real programs, they usually do not reflect 
program behavior, other than the behavior considered when they were creat
ed. Finally, compiler and hardware optimizations can inflate performance of 
these benchmarks, far beyond what the same optimizations would achieve on 
real programs. Of course, because these benchmarks are not natural programs, 
they may not reward optimizations of behavior that occur in real programs. 
Here are some examples of how Dhrystone may distort the importance of var
ious optimizations: 

• Optimizing compilers can easily discard 25% of the Dhrystone code; ex
amples include loops that are executed only once, making the loop over
head instructions unnecessary. To address these problems, the authors 
of the benchmark "require" both optimized and unoptimized code to be 
reported. In addition, they "forbid" the practice of inline-procedure ex
pansion optimization, because Dhrystone's simple procedure structure 
allows elimination of all procedure calls at almost no increase in code 
size. 

• One C compiler appears to include optimizations targeted just for Dhry
stone. If the proper option flag is set at compile time, the compiler turns 
the portion of the C version of this benchmark that copies a variable
length string of bytes (terminated by an end-of-string symbol) into a 
loop that transfers a fixed number of words, assuming the source and 
destination of the string is word-aligned in memory. Although an esti
mated 99.70% to 99.98% of typical string copies could not use this opti
mization, this single change can make a 20% to 30% improvement in 
Dhrystone's overall performance. 

The small size and simplistic structure of synthetic benchmarks makes them 
especially vulnerable to this type of activity. 

Pitfall: Using the arithmetic mean of normalized execution times to predict perfor
mance. 

This pitfall has trapped many researchers, including one of the authors. An 
inviting method of presenting machine performance is to normalize execution 
times to a reference machine, similar to the relative MIPS rating discussed ear
lier, and then take the average of the normalized execution times. However, if 
we average the normalized execution time values with an arithmetic mean, the 
result will depend on the choice of the machine we use as a reference. For 
example, in Figure 2.7 the execution times from Figure 2.5 are normalized to 
both A and B, and the arithmetic mean is computed. When we normalize to A, 
the arithmetic mean indicates that A is faster than B by 5.05/1 , which is the 
inverse ratio of the execution times. When we normalize to B, we conclude that 
B is faster by exactly the same ratio. Clearly, both these results cannot be correct! 
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Program 1 1 10 1 10 0.1 1 

Program 2 1000 100 1 0.1 10 1 

Arithmetic mean 500.5 55 1 5.05 5.05 1 

Geometric mean 31.6 31.6 1 1 1 1 

FIGURE 2.7 Execution times from Figure 2.5 normallzed to each machine. While the arith
metic means vary when we normalize to either A or B, the geometric means are consistent, inde
pendent of normalization. 

The difficulty arises from the use of the arithmetic mean of ratios. Instead, 
normalized results should be combined with the geometric mean. The formula 
for the geometric mean is 

n 

n IT Execution time ratio i 
i = 1 

where Execution time ratioi is the execution time, normalized to the reference 
machine, for the ith program of a total of n in the workload. Note the follow
ing: 

n IT a i means the product: a1 x a2 x . . .  x an 
i = 1 

The geometric mean is independent of which data series we use for normal-
ization because it has the property 

Geometric mean ( X ) (X . ) ---------'- = Geometric mean -' 
Geometric mean ( Y) Yi 

meaning that taking either the ratio of the means or the means of the ratios 
produces the same results. Thus the geometric mean produces the same 
result whether we normalize to A or B, as we can see in the bottom row of 
Figure 2.7 .When execution times are normalized, only a geometric mean can 
be used to consistently summarize the normalized results. 

Fallacy: The geometric mean of execution-time ratios tracks total execution time. 

The advantage of the geometric mean is that it is independent of the run
ning times of the individual programs, and it doesn't matter which machine is 
used for normalization. However, the drawback to using geometric means of 
execution times is that they violate our fundamental principle of performance 
measurement-they do not predict execution time. The geometric means in 
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Figure 2.7 suggest that for programs 1 and 2 the performance is the same for 
machines A and B. Yet, the arithmetic mean of the execution times, which we 
know tracks total execution time, suggests that machine B is 9.1 times faster 
than machine A! If we use total execution time as the performance measure, A 
and B would have the same performance only for a workload that ran the first 
program 100 times more often than the second program. 

In general, no workload for three or more machines will match the perfor
mance predicted by the geometric mean of normalized execution times. The 
ideal solution is to measure a real workload and weight the programs accord
ing to their frequency of execution. If this can't be done, normalizing so that 
equal time is spent on each program on some machine at least makes the rela
tive weightings explicit and predicts execution time of a workload with that 
mix. If results must be normalized to a specific machine, first summarize per
formance with the proper weighted measure and then do the normalizing. 

II Concluding Remarks 

Although we have focused on performance and how to evaluate it in this 
chapter, designing only for performance without considering cost is unrealis
tic. All computer designers must balance performance and cost. Of course, 
there exists a domain of high-performance design, in which performance is the 
primary goal and cost is secondary. Much of the supercomputer industry 
designs in this fashion. At the other extreme is low-cost design, where cost 
takes precedence over performance. Computers like the low-end IBM PC 
clones belong here. Between these extremes is cost/performance design, in 
which the designer balances cost against performance. Examples from the 
workstation industry typify the kinds of trade-offs that designers in this 
region must live with. 

We have seen in this chapter that there is a reliable method of determining 
and reporting performance, using the execution time of real programs as the 
metric. This execution time is related to other important measurements we can 
make by the following equation: 

Seconds Instructions Clock cycles Seconds 
= x x -----

Program Program Instruction Clock cycles 

We will use this equation and its constituent factors many times. Remember, 
though, that individually the factors do not determine performance: Only the 
product, which equals execution time, is a reliable measure of performance. 

Of course, simply knowing this equation is not enough to guide the design 
or evaluation of a computer. We must understand how the different aspects of 
a design affect each of these key parameters. This involves a wide variety of 
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issues from the effects of instruction set design on dynamic instruction count, 
to the impact of pipelining and memory systems on CPI, to the interaction be
tween the technology and organization that determine the clock rate. The art 
of computer design lies not in plugging numbers into a performance equation, 
but in accurately determining how design alternatives will affect performance 
and cost. 

Most computer users care about both cost and performance, and while un
derstanding the relationship among aspects of a design and its performance is 
challenging, determining the cost of various design features is often a more 
difficult problem. The cost of a machine is affected not only by the cost of the 
components, but by the costs of labor to assemble the machine, of research and 
development overhead, of sales and marketing, and of the profit margin. Fi
nally, because of the rapid change in implementation technologies, the most 
cost-effective choice today is often sub-optimal in six months or a year. 

Computer designs will always be measured by cost and performance and 
finding the best balance will always be the art of computer design, just as in 
any engineering task. 

• Historical Perspective and Further Reading 

From the earliest days of computing, designers have specified performance 
goals-ENIAC was to be 1000 times faster than the Harvard Mark I, and the 
IBM Stretch (7030) was to be 100 times faster than the fastest machine then in 
existence. What wasn't clear, though, was how this performance was to be 
measured. 

The original measure of performance was the time required to perform an 
individual operation, such as addition. Since most instructions took the same 
execution time, the timing of one was the same as the others. As the execution 
times of instructions in a machine became more diverse, however, the time re
quired for one operation was no longer useful for comparisons. To take these 
differences into account, an instruction mix was calculated by measuring the 
relative frequency of instructions in a computer across many programs. Mul
tiplying the time for each instruction by its weight in the mix gave the user the 
average instruction execution time. (If measured in clock cycles, average instruc
tion execution time is the same as average CPL) Since instruction sets were 
similar, this was a more precise comparison than add times. From average in
struction execution time, then, it was only a small step to MIPS. MIPS had the 
virtue of being easy to understand, hence it grew in popularity. 

The development of relative MIPS as a popular performance measurement 
demonstrates that benchmarking does not necessarily evolve in a logical fash
ion. In the 1970s, MIPS was being used as a way to compare the performance 
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of IBM 360/370 implementations. Because the measure was used to compare 
identical architectures (and hence identical instruction counts), it was a valid 
metric. The notion of relative MIPS came along as a way to extend the easily 
understandable MIPS rating. In 1977, when the VAX-11 /780 was ready to be 
announced, DEC ran small benchmarks that were also run on an IBM 370/158. 
IBM marketing referred to the 370/158 as a 1-MIPS computer and, since the 
programs ran at the same speed, DEC marketing called the VAX-11 /780 a 
1-MIPS computer. 

The popularity of the VAX-11/780 made it a popular reference machine for 
relative MIPS, especially since relative MIPS for a 1-MIPS reference machine is 
easy to calculate. If a machine was five times faster than the VAX-11 /780, its 
rating for that benchmark would be 5 relative MIPS. The 1-MIPS rating was 
widely believed for four years until Joel Erner of DEC measured the VAX-
11 /780 under a timesharing load. Erner found that the actual VAX-11/780 
MIPS rate was 0.5. Subsequent VAXs that run 3 million VAX instructions per 
second for some benchmarks were therefore called 6-MIPS machines because 
they run 6 times faster than the VAX-11 /780. In the late 1980s, DEC began us
ing VAX units of performance (VUP), meaning performance relative to that of the 
VAX-11 /780, so 6 relative MIPS became 6 VUPs. 

The 1970s and 1980s marked the growth of the supercomputer industry, 
which was defined by high performance on floating-point-intensive pro
grams. Average instruction time and MIPS were clearly inappropriate metrics 
for this industry; hence the invention of MFLOPS. Unfortunately, customers 
quickly forgot the program used for the rating, and marketing groups decided 
to start quoting peak MFLOPS in the supercomputer performance wars. 

As processors were becoming more sophisticated and relied on memory hi
erarchies and pipelining, a single execution time for each instruction no longer 
existed; neither execution time nor MIPS, therefore, could be calculated from 
the instruction mix and the manual. While it might seem obvious today that 
the right thing to do would have been to develop a set of real applications that 
could be used as standard benchmarks, this was a difficult task until relatively 
recent times. Variations in operating systems and language standards made it 
hard to create large programs that could be moved from machine to machine 
simply by recompiling. Instead, the next step was benchmarking using syn
thetic programs. The Whetstone synthetic program was created by measuring 
scientific programs written in Algol 60 (see Curnow and Wichman's [1976] de
scription). This program was converted to Fortran and was widely used to 
characterize scientific program performance. Whetsone performance is typi
cally quoted in Whetstones per second-the number of executions of one iter
ation of the Whetsone benchmark! Dhrystone was developed much more 
recently (see Weicker's [1984] description and methodology). 
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About the same time Whetstone was developed, the concept of kernel bench
marks gained popularity. Kernels are small, time-intensive pieces from real 
programs that are extracted and then used as benchmarks. This approach was 
developed primarily for benchmarking high-end machines, especially super
computers. Livermore Loops and Linpack are the best known examples. The 
Livermore Loops consist of a series of 21 small loop fragments. Linpack con
sists of a portion of a linear algebra subroutine package. Kernels are best used 
to isolate the performance of individual features of a machine and to explain 
the reasons for differences in the performance of real programs. Because scien
tific applications often use small pieces of code that execute for a long period 
of time, characterizing performance with kernels is most popular in this appli
cation class. Although kernels help illuminate performance, they often over
state the performance on real applications. For example, today's super
computers often achieve a high percentage of their peak performance on such 
kernels. However, when executing real applications, the performance often is 
only a small fraction of the peak performance. 

Another misstep on the way to developing better benchmarking methods, 
was the use of toy programs as benchmarks. Such programs typically have be
tween 10 and 100 lines of code and produce a result the user already knows be
fore running the toy program. Programs like Sieve of Erastosthenes, Puzzle, 
and Quicksort are popular because they are small, easy to compile, and run on 
almost any computer. These programs became quite popular in the early 
1980s, when universities were engaged in designing the early RISC machines. 
The small size of these programs made it easy to compile and run them on sim
ulators. Unfortunately, your authors have to admit that they played a role in 
popularizing such benchmarks, by using them to compare performance and 
even collecting sets of such programs for distribution. Even more unfortunate
ly, some people continue to use such benchmarks-much to our embarrass
ment! However, we can report that we have learned our lesson and we now 
understand that the best use of such programs is as beginning programming 
assignments. 

Almost every issue that involves measuring and reporting performance has 
been controversial, including the question of how to summarize performance. 
The methods used have included the arithmetic mean of normalized perfor
mance, the harmonic mean of rates, the geometric mean of normalized execu
tion time, and the total execution time. Several references listed in the next 
section discuss this question, including Smith's [1988] article, whose proposal 
is the approach used in section 2.6. 

A promising development in performance evaluation was the formation of 
the System Performance Evaluation Cooperative, or SPEC, group in 1988. 
SPEC comprises representatives of many computer companies-the founders 
being Apollo/Hewlett-Packard, DEC, MIPS, and Sun-who have agreed on a 
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set of real programs and inputs that all will run. It is worth noting that SPEC 
couldn't have come into being before portable operating systems and the pop
ularity of high-level languages. Now compilers, too, are accepted as a proper 
part of the performance of computer systems and must be measured in any 
evaluation. 

History teaches us that while the SPEC effort is useful with current comput
ers, it will not meet the needs of the next generation without changing. In 1991, 
a throughput measure was added, based on running multiple versions of the 
benchmark. It is most useful for evaluating timeshared usage of a uniprocessor 
or a multiprocessor. Other system benchmarks that include OS- and I/0-in
tensive activities have also been added. Another change, motivated in part by 
the kind of results shown in Figure 2.3, was the decision to drop matrix300 and 
to add more benchmarks. One result of the difficulty in finding benchmarks 
was that the initial version of the SPEC benchmarks (called SPEC89) contained 
six floating-point benchmarks but only four integer benchmarks. Calculating 
a single SPECMark, using the geometric mean of execution times normalized 
to a VAX-11 /780, meant that this measure favored machines with strong float
ing-point performance. 

In 1992, a new benchmark set (called SPEC92) was introduced. It incorpo
rated additional benchmarks, dropped matrix300, and provided separate 
means (SPECINT and SPECFP) for integer and floating-point programs. To ad
dress the lack of good benchmarks for supercomputing applications, an effort 
similar to SPEC, called the Perfect Club, was created by the University of Illi
nois. Like the SPEC benchmark set, the Perfect Club benchmarks consist of a 
selection of real applications, aimed at the scientific and engineering environ
ments. 

Creating and developing such benchmark sets has become difficult and 
time-consuming. Although SPEC was initially created as a good faith effort by 
a group of companies, it became important to competitive marketing and sales 
efforts. The selection of benchmarks and the rules for running them are made 
by representatives of the companies that compete by advertising test results. 
Conflicts between the companies' perspectives and those of consumers natu
rally arise. Perhaps in the future the decisions about such performance bench
marks should be made by, or at least include, a neutral group. 

To Probe Further 

Curnow, H. J., and B. A. Wichman [1976]. "A synthetic benchmark," The Computer J. 19 (1): 80. 

Describes the first major synthetic benchmark, Whetstone, and how it was created. 

Flemming, P. J., and J. J. Wallace [1986]. "How not to lie with statistics: The correct way to sum
marize benchmark results," Comm. ACM 29:3 (March) 218-21 .  

Describes some of the underlying principles in using different means to summarize performance results. 
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McMahon, F. M. [1986]. "The Livermore FORTRAN kernels: A computer test of numerical per
formance range," Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of 
California, Livermore, Calif. (December). 

Describes the Livermore Loops-a set of Fortran kernel benchmarks. 

Smith, J. E .  [1988]. "Characterizing computer performance with a single number," Comm. ACM 
31:10 (October) 1202--06. 

Describes the difficulties of summarizing performance with just one number and argues for total execution 
time as the only consistent measure. 

SPEC [1989]. "SPEC Benchmark Suite Release 1 .0," Santa Clara, Calif., October 2, 1989. 

Describes the SPEC benchmark suite. 

Weicker, R. P. [1984]. "Dhrystone: A synthetic systems programming benchmark," Comm. ACM 
27:10 (October) 1013-30. 

Describes the Dhrystone bencl1mark and its construction . 

• Exercises 

2.1 [5] <§2.1> We wish to compare the performance of two different 
systems: Sl and S2. System Sl costs $10,000 and System 2 costs $15,000. The 
following measurements have been made on these systems: 

We say one machine is more cost effective than another if the ratio of perfor
mance divided by cost is higher. 

One user cares only about the performance of program 1 .  Which machine is 
more cost effective for running only program 1?  By how much? 

2.2 [5] <§2.1>  Another user is concerned with throughput of the systems in 
Exercise 2.1, as measured with an equal workload of programs 1 and 2. Which 
system has better performance for this workload? By how much? Which sys
tem is more cost effective for this workload? By how much? 

2.3 [10] <§2.1> Yet another user has the following requirements for the sys
tems discussed in Exercise 2 .1 :  Program 1 must be executed 200 times each 
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hour. Any remaining time can be used for running program 2. If the system 
has enough performance to execute program 1 the required number of times 
per hour, performance is measured by the throughput for program 2. Which 
system is faster for this workload? Which system is more cost effective? 

2.4 [5] <§2.2-2.3> Consider the two systems and programs in Exercise 2.1 .  
The following additional measurements were made: 

20 x 106 

Find the instruction execution rate (instructions per second) for each machine 
when running program 1 .  

2.5 [5] <§2.2-2.3> I f  the clock rate of  system Sl  in  Exercise 2.1 is 20 MHz and 
the clock rate of system 52 in Exercise 2.1 is 30 MHz, find the clock cycles per 
instruction (CPI) for program 1 on both systems using the data in exercises 2.1 
and 2.4. 

2.6 [5] <§2.2-2.3> {ex. 2.5) Assuming the CPI for program 2 on each machine 
in Exercise 2.1 is the same as the CPI for program 1 found in Exercise 2.5, find 
the instruction count for program 2 running on each machine using the execu
tions times from Exercise 2 .1 .  

2. 7 [5]  <§2.2-2.3> Consider two different implementations, Ml and M2, of the 
same instruction set. There are four classes of instructions (A, B, C, and D) in 
the instruction set. 

Ml has a clock rate of 50 MHz. The average number of cycles for each instruc
tion class on Ml is as follows: 

Class CPI for this class 

A 1 

B 2 

c 3 

D 4 
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M2 has a clock rate of 75 MHz. The average number of cycles for each instruc
tion class on M2 is as follows: 

Class CPI for this c lass 
A 2 

B 2 

c 4 

D 4 

Assume peak performance is defined as the fastest rate that a machine could 
execute an instruction sequence chosen to maximize that rate. What are the 
peak performances of Ml and M2 expressed as instructions per second? 

2.8 [10] <§2.2-2.3> If the number of instructions executed in a certain pro
gram is divided equally among the classes of instructions in Exercise 2.7, how 
much faster is M2 than Ml? 

2.9 [5 ]  <§2.2-2.3> !ex. 2.8) Assuming the CPI values from Exercise 2 .7  and the 
instruction distribution from Exercise 2.8, at what clock rate would Ml have 
the same performance as the 75-MHz version of M2? 

2.10 [10] <§2.2-2.4> We are interested in two implementations of a machine, 
one with and one without special floating-point hardware. 

Consider a program, P, with the following mix of operations: 

floating-point multiply 10% 
floating-point add 15% 
floating-point divide 5% 
Integer instructions 70% 

Machine MFP (Machine with Floating Point) has floating-point hardware and 
can therefore implement the floating-point operations directly. It requires the 
following number of clock cycles for each instruction class: 

floating-point multiply 6 
floating-point add 4 
floating-point divide 20 
Integer instructions 2 
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Machine MNFP (Machine with No Floating Point) has no floating-point hard
ware and so must emulate the floating-point operations using integer instruc
tions. The integer instructions all take 2 clock cycles. The number of integer 
instructions needed to implement each of the floating-point operations is as 
follows: 

floating-point multiply 30 
floating-point add 20 
floating-point divide 50 

Both machines have a clock rate of 100 MHz. Find the native MIPS ratings for 
both machines. 

2.11 [10] <§2.2-2.4> If the machine MFP in Exercise 2.10 needs 300,000,000 in
structions for this program, how many integer instructions does the machine 
MNFP require for the same program? 

2.12 [5] <§2.2-2.4> {ex. 2.1 1 )  Assuming the instruction counts from Exercise 
2.11,  what is the execution time (in seconds) for the program in Exercise 2.10 
run on MFP and MNFP? 

2.13 [5] <§2.4> {ex. 2.12) Assuming that each floating-point operation counts 
as 1, and that MFP executes 300,000,000 instructions, find the MFLOPS rating 
for both machines in Exercise 2.10. 

2.14 [10] <§2.3-2.4> You are the lead designer of a new processor. The pro
cessor design and compiler are complete and now you must decide whether 
to produce the current design as it stands or spend additional time to improve 
it. 

You discuss this problem with your hardware engineering team and arrive at 
the following options: 

a. Leave the design as it stands. Call this base machine Mbase. It has a clock 
rate of 50 MHz, and the following measurements have been made using a 
simulator: 

A 2 40% 
B 3 25% 
c 3 25% 
D 5 10% 
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b. Optimize the hardware. The hardware team claims that it can improve the 
processor design to give it a clock rate of 60 MHz. Call this machine Mopt. 
The following measurements were made using a simulator for Mopt: 

A 2 40% 

8 2 25% 
c 3 25% 

D 4 10% 

What is the CPI for each machine? 

2.15 [5] <§2.3-2.4> {ex. 2.14) What are the native MIPS ratings for Mbase and 
MOpt in Exercise 2.14? 

2.16 [ 10] <§2.3-2.4> {ex. 2.14) How much faster is Mopt in Exercise 2.14 than 
Mbase? 

2.17 [5] <§2.3-2.4> The compiler team has heard about the discussion to en
hance the machine discussed in Exercises 2.14 -2.16 . The compiler team pro
poses to improve the compiler for the machine to further enhance 
performance. Call this combination of the improved compiler and the base 
machine Mcomp. The instruction improvements from this enhanced compiler 
have been estimated as follows: 

�ti'Q;;: �Perce���of;insyu�ti.o_n�. e�ecuted �-,y�� r.- .,,... r h '" .. ·:< -s � vs., base,mac . l!'le,�-._. .. :. -i: 
A 90% 

8 90% 
c 85% 

D 95% 

For example, if the base machine executed 500 class A instructions, Mcomp 
would execute 0.9 x 500 = 450 class A instructions for the same program. 

What is the CPI for Mcomp? 

2.18 [5] <§2.3-2.4> {ex. 2.14, 2.17) Using the data of Exercise 2.14, how much 
faster is Mcomp than Mbase? 

2.19 [10] <§2.3-2.4> {ex. 2.14, 2.17, 2.18) The compiler group points that it is 
possible to implement both the hardware improvements of Exercise 2.14 and 
the compiler enhancements described in Exercise 2.17. If both the hardware 



86 Chapter 2 The Role of Performance 

and compiler improvements are implemented, yielding machine Mboth, how 
much faster is Mboth than Mbase? 

2.20 [10] <§2.3-2.4> lex. 2.14, 2 .17, 2.18, 2.19}  You must decide whether to in
corporate the hardware enhancements suggested in Exercise 2.14 or the com
piler enhancements of Exercise 2.17 (or both) to the base machine described in 
Exercise 2.14. You estimate that the following time would be required to im
plement the optimizations described in Exercises 2.14, 2.17, and 2.19: 

Hardware 6 months Mo pt 
Compiler 6 months Mcomp 

Both 8 months Mboth 

Recall from Chapter 1 that CPU performance improves by approximately 50% 
per year, or about 3.4% per month. Assuming that the base machine has per
formance equal to that of its competitors, which optimizations (if any) would 
you choose to implement? 

2.21 [5] <§2.4, 2.6> The table below shows the number of floating-point oper
ations executed in two different programs and the runtime for those programs 
on three different machines: 

100,000,000 20 

Which machine is fastest according to total execution time? How much faster 
is it than the other two machines? 

2.22 [5] <§2.4, 2.6> Find the MFLOPS ratings for each program on each ma
chine in Exercise 2.21, assuming that each floating-point operation counts as 
1 FLOP. 

2.23 [5] <§2.6, 2.7> You wonder how the performance of the three machines 
in Exercise 2.22 would compare using other means to normalize performance. 

Which machine is fastest by the geometric mean? 

2.24 [15] <§2.6, 2.7> lex. 2.23} Find a workload for the two programs of Exer
cise 2.21 that will produce the same performance summary using total execu
tion time of the workload as the geometric mean of performance computed in 



2.10 Exercises 87 

Exercise 2.23. Give the workload as a percentage of executions of each pro
gram for the pairs of machines: A and B, B and C, and A and C. 

2.25 [15] <§2.6, 2.7> One user has told you that the two programs in Exercises 
2.22-2.23 constitute the bulk of his workload, but he does not run them equal
ly. The user wants to determine how the three machines compare when the 
workload consists of different mixes of these two programs. You know you 
can use the arithmetic mean to find the relative performance. 

Suppose the total number of FLOPS executed in the workload is equally 
divided among the two programs. That is, program 1 is run 10 times as often 
as program 2. Find which machine is fastest for this workload and by how 
much. How does this compare with the total execution time for a workload 
with equal numbers of program executions? 

2.26 [15] <§2.6, 2.7> An alternative weighting to that of Exercise 2.25 is to as
sume that equal amounts of time will be spent running each program on some 
machine. Which machine is fastest using the data of Exercise 2.21 and assum
ing a weighting that generates equal execution time for each benchmark on 
machine A? Which machine is fastest if we assume a weighting that generates 
equal execution time for each benchmark on machine B? How do these results 
compare with the unweighted performance summaries? 

2.27 [15] <§2.6> If performance is expressed as a rate, then a higher rating and 
a higher average indicate better performance. When performance is expressed 
as a rate, the average that tracks total execution time is the harmonic mean 
(HM): 

HM 
n 

n 1 L Rate . i = 1 1 

Each Rate; is l /Time ; , where Timei is the execution time for the ith of n pro
grams in the workload. Prove that the harmonic mean of a set of rates tracks 
execution time by showing that it is the inverse of the arithmetic mean of the 
corresponding execution times. 

2.28 [3 hours] <§2.5> Pick two computers, A and B, and run the Dhrystone 
benchmark and some substantial C program, such as the C compiler, calling 
this program P. Try running the two programs using no optimization and 
maximum optimization. Then calculate the following performance ratios: 

a. Unoptimized Dhrystone on machine A versus unoptimized Dhrystone 
on machine B. 
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b. Unoptimized P on A versus unoptimized P on B. 

c. Optimized Dhrystone on A versus optimized Dhrystone on B. 

d. Optimized P on A versus optimized P on B. 

e. Unoptimized Dhrystone versus optimized Dhrystone on machine A. 

f. Unoptimized P versus optimized P on A. 

g. Unoptimized Dhrystone versus optimized Dhrystone on B. 

h. Unoptimized P versus optimized P on B. 

We want to explore whether Dhrystone accurately predicts the performance 
of other C programs. If Dhrystone does predict performance, then the follow
ing equations should be true about the ratios: 

( a )  = ( b l  and ( c l  = ( d )  

If Dhrystone accurately predicts the value of compiler optimizations for real 
programs, then 

( e l  = ( f l  and ( g )  = ( h )  

Determine which of the above relationships hold. For the situations where the 
relationships are not close, try to find the explanation. Do features of the 
machines, the compiler optimizations, or the differences between P and Dhry
stone explain the answer? 

2.29 [3 hours] <§2.5> Perform the same experiment as in Exercise 2.33, replac
ing Dhrystone with Whetstone and choosing a floating-point program written 
in Fortran to replace P. 

2.30 [4 hours] <§2.4> Devise a program in C or Pascal that determines the 
peak MIPS rating for a computer. Run it on two machines to calculate the peak 
MIPS. Now run a real C or Pascal program such as a compiler on the two ma
chines. How well does peak MIPS predict performance of the real program? 

2.31 [4 hours] <§2.4> Devise a program in C or Fortran that determines the 
peak MFLOPS rating for a computer. Run it on two machines to calculate the 
peak MFLOPS. Now run a real floating-point program on both machines. How 
well does peak MFLOPS predict performance of the real floating-point pro
gram? 
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In More Depth: Amdahl's Law 

Amdahl's Law is sometimes given in another form that yields the speedup. 
Speedup is the measure of how a machine performs after some enhancement 
relative to how it previously performed. Thus, if some feature yields a 
speedup ratio of 2, performance with the enhancement is twice that before the 
enhancement. Hence, we can write 

Performance after improvement 
Speedup = -----------

Performance before improvement 
Execution time before improvement 
Execution time after improvement 

The earlier version of Amdahl's Law was given as 

Execution time after improvement = (Execution time affected by improvement ) ----------------- + Execution time unaffected 
Amount of improvement 

For the following problems, suppose we enhance a machine making all float
ing-point instructions run five times faster. Let's look at how speedup behaves 
when we incorporate the faster floating-point hardware. 

2.32 [5] <§2.7> If the execution time of some benchmark before the floating
point enhancement is 10 seconds, what will the speedup be if half of the 10 sec
onds is spent executing floating-point instructions? 

2.33 [ 10] <§2.7> We are looking for a benchmark to show off the new floating
point unit described above, and we want the overall benchmark to show a 
speedup of 3. One benchmark we are considering runs for 100 seconds with 
the old floating-point hardware. How much of the initial execution time 
would floating-point instructions have to account for to show an overall 
speedup of 3 on this benchmark? 
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2.34 [10] <§2.7> Assuming that we make floating point five times faster, plot 
the speedup from this change, versus the fraction of time in the original pro
gram spent doing floating-point operations on a graph of the following form: 

Cl. :J "O Q) Q) Cl. 
Cf) 

5.0 

4.0 

3.0 

2.0 

1.0 

0.00 0.25 0.50 0.75 1.00 

Fraction of time spent doing floating-point 
operations in the original 

2.35 [20] <§2.7> Amdahl's Law is often written as overall speedup as a func
tion of two variables: the size of the enhancement (or amount of improve
ment) and the fraction of the original execution time that the enhanced feature 
is being used. Derive this form of the equation from the two equations above. 
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11 •ntroduction 

To command a computer 's hardware, you must speak its language. The words 
of a machine's language are called instructions, and its vocabulary is called an 
instruction set. In this chapter you will see the instruction set of a real computer, 
both in the form written by humans and in the form read by the machine. Start
ing from a notation that looks like a restricted programming language, we 
refine it step-by-step until you see the real language of a real computer. 

You might think that the languages of machines would be as diverse as 
those of humans, but in reality machine languages are quite similar, more like 
regional dialects than like independent languages. Hence once you learn one, 
it is easy to pick up others. This similarity occurs because all computers are 
constructed from hardware technologies based on similar underlying princi
ples and because there are a few basic operations that all machines must pro
vide. Moreover, computer designers have a common goal: to find a language 
that makes it easy to build the hardware and the compiler while maximizing 
performance and minimizing cost. This goal is time-honored; the following 
quote was written before you could buy a computer, and it is as true today as 
it was in 1947. 

It is easy to see by formal-logical methods that there exist certain [instruction sets] 
that are in abstract adequate to control and cause the execution of any sequence of 
operations . . . .  The really decisive considerations from the present point of view, 
in selecting an [instruction set], are more of a practical nature: simplicity of the 
equipment demanded by the [instruction set], and the clarity of its application to 
the actually important problems together with the speed of its handling of those 
problems. 

Burks, Goldstine, and von Neumann, 1947 

The "simplicity of the equipment" is as valuable a consideration for the ma
chines of the 1990s as it was for those of the 1950s. The goal of this chapter is 
to teach an instruction set that follows this advice, showing both how it is rep
resented in the hardware and the relationship between high-level program
ming languages and this more primitive one. We are using the C programming 
language. Readers familiar with another language should refer to Appendix D 
for a short comparison of C with Pascal. 

By learning how instructions are represented, you will also discover the se
cret of computing: the stored-program concept. And you will exercise your 
"foreign language" skills by writing assembly programs and running them on 
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the simulator that comes with this book. We conclude with a look at the histor
ical evolution of instruction sets and an overview of other machine dialects. 

The chosen instruction set comes from MIPS Computer Company and is 
typical of instruction sets designed since the early 1980s. We reveal the MIPS 
instruction set a piece at a time, giving the rationale along with the machine 
structures. This step-by-step tutorial weaves the components with their expla
nations, making assembly language more palatable. To keep the overall pic
ture in mind, each section ends with a figure summarizing the MIPS 
instruction set revealed thus far, highlighting the portions presented in that 
section. 

• Operations of the Computer Hardware 

There must certainly be instructions for performing the fundamental arithmetic 
operations. 

Burks, Goldstine, and von Neumann, 1947 

Every computer must be able to perform arithmetic. The MIPS notation 
a d d a , b , c  

instructs a computer to add the two variables b and c and to put their sum in a .  
This notation is rigid in that each MIPS arithmetic instruction must always 

have exactly three variables. For example, suppose we want to place the sum 
of variables b, c, d, and e into variable a .  The following sequence of instruc
tions adds the variables: 

a d d  a ,  b ,  c ff T h e  s u m o f  b a n d  c i s  p l a c ed  i n  a .  
a d d  a ,  a ,  d ff T h e  s u m o f  b ,  c a n d  d i s  n ow i n  a .  
a d d  a ,  a ,  e ff T h e  s um o f  b ,  C ,  d a n d  e i s  n o w  i n  a .  

Thus it takes three instructions to take the sum of four variables. 
The words to the right of the sharp symbol (#) on each line above are com

ments for the human reader, and they are ignored by the computer. Note that 
unlike other programming languages, each line of this language can contain, 
at most, one instruction. Another difference is that comments terminate at the 
end of a line. 

The natural number of operands for an operation like addition is three: the 
two numbers being added together and a placeholder for the sum. Requiring 
every instruction to have exactly three operands, no more and no less, con
forms to the philosophy of keeping the hardware simple. Hardware for a vari
able number of operands is more complicated than hardware for a fixed 
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MIPS assembly language 

•-. . =-'' , •.• II "" l"t:tH11l111'::J l>'11;r.111 ... , ..... "'" 

3dd ad a , b - b + Always 3 operands A r l t hr.iet c .; O t r a c  ub  a .  b .  - b Al 1ays 3 operands 

FIGURE 3.1 MIPS architecture revealed In section 3.1. The real machine operands will be 
unveiled in the next section. Highlighted portions in such summaries show MIPS structures 
introduced in this section; for this first figure, all is new. 

number. This situation illustrates the first of four underlying principles of 
hardware design: 

Principle 1: Simplicity favors regularity. 

We can now show, in the two examples that follow, the relationship of pro
grams written in programming languages to programs in this more primitive 
notation. Figure 3.1 summarizes the portions of MIPS described in this section. 

This segment of a C program contains the five variables a ,  b, c, d, and e :  

a b + c ;  
d = a - e ;  

(Reminder: We are using the C programming language; readers familiar 
with another language should refer to Appendix D for a short comparison 
of C with Pascal.) The translation from C to MIPS instructions is performed 
by the compiler. Show the MIPS code produced by the C compiler. 

The C compiler could produce 

a d d  a ,  b ,  c 
s u b d , a , e  

These instructions are symbolic representations of what the processor 
understands; they are called assembly language instructions. 
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A more complex C statement contains the five variables f, g, h ,  i ,  and j :  

f = ( g  + h )  - ( i  + j ) ;  

What would the C compiler produce? 

The statement might be compiled into the following three MIPS instruc
tions: 

a d d  t O , g , h  # t empo r a ry v a r i a b l e t O  c o n t a i n s g+h  
add  t l , i  , j  # t e mp o r a ry v a r i a b l e t1  c o n t a i n s i +j 
s u b  f , t O , t l # f g e t s  t O - t l , o r  ( g+h ) - ( i +j )  

Note that the compiler created two new variables, t o  and t l , to express the 
program in the restricted three-operands-per-instruction notation of the 
machine. 

• Operands of the Computer Hardware 

Unlike programs in high-level languages, the operands of arithmetic instruc
tions cannot be any variables; they must be from a limited number of special 
locations called registers. Registers are the bricks of computer construction, for 
registers are primitives used in hardware design that are also visible to the pro
grammer when the computer is completed. The size of a register in the MIPS 
architecture is 32 bits; groups of 32 bits occur so frequently that they are given 
the name word in the MIPS architecture. 

One major difference between the variables of a programming language 
and registers is the limited number of registers, typically between 16 and 32 on 
current computers. MIPS has 32 registers, using the notation $ 0, $ 1 , . . .  , $ 3 1  to 
represent them. (See section 3.14 for the history of the number of registers.) 
The reason for this limit may be found in the second of our four underlying 
principles of hardware technology: 

Principle 2: Smaller is faster. 

A very large number of registers would increase the clock cycle time simply 
because it takes electronic signals longer when they must travel farther. Guide
lines such as "smaller is faster" are not absolutes; 31 registers may not be faster 
than 32. Yet the truth behind such observations causes computer designers to 
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take them seriously. In this case, the designer must balance the craving of pro
grams for more registers with the designer's desire to keep the clock cycle fast. 

Chapters 5 and 6 show the central role that registers play in hardware con
struction; as we shall see in this chapter, effective use of registers is a key to 
program performance. 

It is the compiler's job to associate program variables with registers. Take, 
for instance, the C statement from our earlier example: 

f = ( g  + h ) - ( i  + j ) ;  

The variables f, g, h ,  i ,  and j can be assigned to the registers $ 1 6, $ 1 7 ,  $ 1 8, 
$ 1 9 , and $ 2 0, respectively. What is the compiled MIPS assembly code? 

The compiled program is 

a d d $ 8 , $ 1 7 , $ 1 8  
a d d $ 9 , $ 1 9 , $ 2 0  
s u b  $ 1 6 , $ 8 , $ 9 

# r e g i s t e r  $ 8  c o n t a i n s g+h 
# r e g i s t e r  $9 c o n t a i n s i +j 
# f g e t s  $ 8 - $ 9 , o r  ( g+h ) - ( i +j )  

Registers $ 8 and $ 9 correspond to t 0 and t 1 in the earlier example. 

Programming languages have simple variables that contain single data ele
ments as in these examples, but they also have more complex data structures 
such as arrays. These complex data structures can contain many more data el
ements than there are registers in a machine. How can a computer represent 
and access such large structures? 

Recall the five components of a computer introduced in Chapter 1 and de
picted on the second page of this chapter (page 93) . The processor can store 
only a small amount of data in registers, but computer memory contains mil
lions of data elements. Hence data structures, like arrays, are kept in memory. 

As explained above, arithmetic operations occur only on registers in MIPS; 
thus MIPS must include instructions that transfer data between memory and 
registers. Such instructions are called data transfer instructions. To access a 
word in memory, the instruction must supply its address. Memory is really just 
a large, single-dimensional array, with the address acting as the index to that 
array. Addresses start at 0. For example, in Figure 3.2, the address of the third 
data element is 2, and the value of Memory[2] is 1000. 
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Processor Memory 

Address Data 

0 100 

1 10 

2 1000 

3 1 

99 

FIGURE 3.2 Memory addresses and contents of memory at those locations. This is a sim
plification of the MIPS addressing; Figure 3.3 shows MIPS addressing for sequential words in 
memory. 

The data transfer instruction that moves data from memory to a register is 
called load. The format of the load instruction is the name of the operation fol
lowed by the register to be loaded, then the start address of the array, and 
finally a register that contains the index of the element of the array to be load
ed. Thus the memory address of the array element is formed by the sum of the 
constant portion of the instruction and a register. The MIPS name for this in
struction is l w, standing for load word. 

Assume that A is an array of 100 elements and that the compiler has associ
ated the variables g, h, and i with the registers $ 1 7 , $ 1 8, and $ 1 9 .  Let's also 
assume that the array starts at address A s t  a r t .  Translate this C statement: 

g = h + A [ i ] ;  

The C assignment statement becomes 

l w  
a d d  

$ 8 , A s t a r t ( $ 1 9 l  
$ 1 7  , $ 1 8 , $ 8 

# T emp o r a ry r e g  $ 8  g e t s  A [ i ]  
# g = h + A [ i ] 
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The load instruction l w adds the starting address of the array A (named 
A s t  a r t here) to the index i in register $ 1 9  to form the address of element 
A [ i J .  The register added to the address is therefore called the index register. 
The processor then reads the value from memory at that address and places 
it into register $ 8, which is used as a temporary variable. The following add 
instruction can operate on the value in $ 8  (which equals A [  i J )  since it is in 
a register. The instruction adds A [ i J to h and puts the sum in the register 
corresponding to g .  

In addition to associating variables with registers, i t  is  up to 
the compiler to allocate data structures like arrays to loca
tions in memory. The compiler can then place the proper 
starting address into the data transfer instructions. 

Hardware 

Software 

Interface Since 8-bit bytes are useful in many programs, the MIPS 
architecture addresses individual bytes. The address of a 
word is therefore actually the same as one of the 4 bytes in a 

word. Hence, addresses of sequential words differ by 4. Figure 3.3 shows the 
actual addresses for Figure 3.2. (Appendix A, section A-9 on page A-45, shows 
the two ways to number bytes in a word.) 

Processor Memory 

Address Data 

0 100 

4 10 

8 1000 

12 1 

FIGURE 3.3 Actual MIPS memory addresses and contents of memory for those words. 
The changed addresses are highlighted to contrast to Figure 3.2. 
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Byte addressing also affects the index i .  To get the proper byte address in 
the code above, register $ 1 9  must have 4 x i so that the sum of $ 1 9  and 
As  t a r t  will select A [ i ] and not A [  i I 4 ] .  

The instruction complementary to load is called store; it transfers data from 
a register to memory. The format of a store is similar to that of a load: the 
name of the operation, followed by the register to be stored, then the starting 
address of the array, and finally a register that contains the index to the ele
ment of the array to be stored. The MIPS name is sw, standing for store word. 
Once again, the MIPS address is specified in part by a constant and in part by 
a register. 

Assume variable h is associated with register $ 1 8. To accommodate the byte 
addresses of MIPS, assume that register $ 1 9  now has the value 4 x i . Chap
ter 4 explains how to multiply in MIPS; for now assume the multiplication 
has already occurred. What is the MIPS assembly code for the C statement 
below? 

A [ i ] h + A [ i ] ;  

The C assignment statement becomes 

l w  $ 8 , A s t a r t ( $ 1 9 )  
a d d  $ 8 , $ 1 8 , $ 8 
s w  $ 8 , A s t a r t ( $ 1 9 )  

# T emp o r a ry r e g  $ 8  g e t s  A [ i ] 
# T empo r a ry r e g  $ 8  g e t s  h+A [ i ]  
# St o r e s  h+A [ i ] b a c k  i n t o  A [ i ] 

Instead of placing the sum of h and A [ i J into register $ 1 7 ,  as in the prior 
example, the sum is placed into temporary register $ 8  and then stored back 
into A [  i J .  

These are the instructions that transfer words between memory and regis
ters in the MIPS architecture. Other brands of computers use instructions in 
addition to load and store to transfer data; these alternatives are described in 
section 3.8. Figure 3.4 summarizes the portions of MIPS described in this sec
tion. 
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MIPS operands 

Name Example - ' - · Comments 

32 registers $0, $1, $2, . . .  , $31 Fast locations for data. In MIPS, data must be In rei;ilsters to perform arithmetic. 

230 memory 
Memory[ OJ . Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, 
Memory[4] ,  . . .  , so sequential words differ by 4. Memory holds data structures, such as arrays, 

words Memory( 4294967292] and spilled rei;iisters. 

MIPS assembly language 

Category Instruction . Example Meaning 
.-_ ·comments 

add a d d  S l , S 2 , S 3 $ 1  = $ 2  + $ 3  3 operands; data i n  ree:isters 
Arithmetic 

s ub subtract S l , S 2 , S 3  S l  = $ 2  - S 3  3 operands; data in ree:isters 

Data load word l w  $ 1 , 1 0 0 ( $ 2 ) S l  = Memory [ S 2+1 0 0 J  Data from memory to ree:ister 
transfer store word S W  $ 1 , 1 0 0 ( $ 2 ) Memory [ $ 2+1 0 0 J  - $ !  Data from register to memory 

FIGURE 3.4 MIPS architecture revealed through section 3.3. Highlighted portions show MIPS structures introduced 
in this section. 

Hardware 

Software 

Interface 

Many programs have more variables than machines have 
registers. Consequently, the compiler tries to keep the most 
frequently used variables in registers and places the rest in 
memory, using loads and stores to move variables between 
registers and memory. The process of putting less common-
ly used variables (or those needed later) into memory is 
called spillin� registers. 

The hardware principle relating size and speed suggests that memory must 
be slower than registers since registers are smaller. Titis is indeed the case; data 
accesses are faster if data is kept in registers instead of memory. Moreover, 
data in registers is easier to manipulate. A MIPS arithmetic instruction can 
read two registers, operate on them, and write the result. A MIPS data transfer 
instruction only reads one operand or writes one operand, without operating 
on it. Thus data in MIPS registers are both faster to access and easier to use. To 
achieve highest performance, MIPS compilers must use registers efficiently. 

Elaboration: A series of instructions can be used to extract a byte from a word, so 

load word and store word are sufficient for transferring bytes as well as words. Some 

programs use bytes frequently, however, so the full MIPS architecture has explicit 

instructions to load and store bytes. For the same reason, the full M I PS instruction set 
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also has explicit instructions to load and store 16-bit quantities, called halfwords. We 
cover only a subset of the MIPS instructions in this book to keep the instruction set as 
easy to understand as possible. Hence we omit byte and halfword data transfer instruc
tions from the text, although section A.10 starting on page A-47 includes the ful l  
instruction set . 

Representing Instructions in the Computer 

We are now ready to explain the difference between the way humans instruct 
machines and the way machines see instructions. But first, let's quickly review 
how a machine represents numbers. 

Humans are taught to think in base 10, but numbers may be represented in 
any base. For example, 123 base 10 = 1 111011  base 2. 

Numbers are kept in computer hardware as a series of high and low elec
tronic signals, and so they are considered base 2 numbers. (Just as base 10 
numbers are called decimal numbers, base 2 numbers are called binary num
bers.) A single digit of a binary number is thus the "atom" of computing, for 
all information is composed of binary digits or bits. This fundamental building 
block can be one of two values, which can be thought of as several alternatives: 
high or low, on or off, true or false, or 1 or 0. 

Instructions are also kept in the computer as a series of high and low elec
tronic signals and may be represented as numbers. In fact, each piece of an in
struction can be considered as an individual number, and placing these 
numbers side by side forms the instruction. For example, the MIPS instruction 

a d d  $ 8 , $ 1 7 , $ 1 8  

is represented as the following combination of decimal numbers: 

0 17 18 8 0 32 

Each of these segments of an instruction is called a field. The first and last 
fields (containing 0 and 32 in this case) in combination tell the MIPS computer 
that this instruction performs addition. The second field gives the number of 
the register that is the first source operand of the addition operation ( $ 1 7 )  and 
the third field gives the other source operand for the addition ($ 1 8) .  The fourth 
field contains the number of the register that is to receive the sum ( $8) .  The 
fifth field is unused in this instruction, so it is set to 0. Thus this instruction 
adds register $17 to register $18 and places the sum in register $8. 
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Of course, this instruction can also be represented as fields of binary num
bers as opposed to decimal: 

000000 10001 10010 01000 00000 100000 
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

This layout of the instruction is called the instruction format. As you can see 
from counting the number of bits, this MIPS instruction takes exactly 32 bits
the same size as a data word. In keeping with our design principle that sim
plicity favors regularity, all MIPS instructions are 32 bits long. 

MIPS fields are given names to make them easier to discuss: 

op rs rt rd sh amt funct 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

Here is the meaning of each name of the fields in MIPS instructions: 

• op: operation of the instruction 

• rs: the first register source operand 

• rt: the second register source operand 

• rd: the register destination operand; it gets the result of the operation 

• shamt: shift amount (This term is explained in Chapter 4; you will not 
need it until then.) 

• funct: function; this field selects the variant of the operation in the op 
field 

A problem occurs when an instruction needs longer fields than those shown 
above. For example, the load instruction must specify two registers and an 
address. If the address were to use one of the 5-bit fields in the format above, 
the address within the load instruction would be limited to only 25 or 32 mem
ory locations. This is too small to be a useful data address. 

Hence we have a conflict between the desire to keep all instructions the 
same length and the desire to have a single instruction format. This leads us to 
the third hardware design principle: 

Principle 3: Good design demands compromise. 

The compromise chosen by the MIPS designers is to keep all instructions 
the same length, thereby requiring different kinds of instruction formats for 
different kinds of instructions. For example, the format above is called the 
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add R 0 reg reg reg 0 32 n.a. 
sub R 0 reg reg reg 0 34 n.a. 
lw 35 reg reg n.a. n.a. n.a. address 
SW 43 reg reg n.a. n.a. n.a. address 

FIGURE 3.5 MIPS instruction encoding. In the table above, reg means a register number 
between 0 and 31, address means a 16-bit address, and n.a. (not applicable) means this field does 
not appear in this format. Note that a d d  and s u b  instructions have the same value in the op field; 
the hardware uses the funct field to decide whether to add or subtract. 

R-type (for register). A second type of instruction format is called I-type and is 
used by the data transfer instructions. The fields of this format are 

op rs rt address 

6 bits 5 bits 5 bits 16 bits 

Let's take a look at the load instruction from page 101:  

l w  $ 8 , A s t a r t ( $ 1 9 J # Temp o r a ry reg $8 g e t s  A [ i J 

Here, 19 is placed in the rs field, 8 is placed in the rt field, and A s t  a r t, the name 
of the starting address for the array A, is placed in the address field. Note that 
the meaning of the rt field has changed for this instruction: in a load instruc
tion, the rt field specifies the register to receive the result of the operation. 

Although multiple formats complicate the hardware, we can reduce the 
complexity by keeping the formats similar. For example, the first three fields 
of the R-type and I-type formats have the same names, with the fourth field in 
I-type equal to the length of the last three fields of R-type. 

In case you were wondering, the formats are distinguished by the values in 
the first field: each format is assigned a set of values in the first field (op) so 
that the hardware knows whether to treat the last half of the instruction as 
three fields (R-type) or as a single field (I-type). This distinguishing field (op) 
is traditionally known as the opcode. Figure 3.5 shows the numbers used in 
each field for the MIPS instructions covered so far. 
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We can now take an example all the way from what the programmer writes 
to what the machine executes. Using the register assignments from the prior 
example on page 101, including that register $ 1 9  has the value 4 x i , the C 
statement: 

A [ i ] = h + A [ i ] ;  

is compiled into: 

l w  $ 8 , A s t a r t C $ 1 9 )  
a d d  $ 8 , $ 1 8 , $ 8 
sw  $ 8 , A s t a r t C $ 1 9 )  

# T empo r a ry r e g  $ 8  g e t s  A [ i ] 
# T empo r a ry r e g  $ 8  g e t s  h + A [ i ]  
# S t o r e s  h + A [ i ] b a c k  i n t o  A [ i ] 

What is the MIPS machine language code for these three instructions? 

For convenience, let's first represent the machine language instructions us
ing decimal numbers. We need to pick the starting location or address for ar
ray A. Assume the location is 1200 in base 10 (or 0000 0100 1011 0000 base 2). 
Here are the three instructions: 

35 19 8 1200 

0 18 8 8 0 32 

43 19 8 1200 

The l w instruction is identified by 35 (see Figure 3.5) in the first field (op). 
The index register $19 is specified in the second field (rs), and the destina
tion register $8 is specified in the third field (rt). The starting address of the 
array is found in the final field (address). The add instruction that follows 
is specified with 0 in the first field (op) and 32 in the last field (funct). The 
three register operands ($18, $8, and $8) are found in the second, third, and 
fourth fields, respectively. The s w instruction is identified with 43 in the first 
field. The rest of this final instruction is identical to the l w instruction. 
The binary equivalent to the decimal form is 

100011 10011 01000 0000 0100 1011 0000 

000000 10010 01000 01000 I 00000 I 100000 

101011 10011 01000 0000 0100 1011 0000 
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Note the similarity of the binary representations of the first and last in
structions. The only difference is found in the third bit from the left. 

As we shall see in Chapters 5 and 6, the similarity of the binary representa
tions of related instructions simplifies hardware design. These instructions are 
another example of regularity in the MIPS architecture. Figure 3.6 summarizes 
the portions of MIPS described in this section. 

MIPS operands 

Name Example Comments 
���������������--������������������������-

32 $0, $1, $2, . . .  , $31 Fast locations for data. In MIPS, data must be in registers to perform 
registers arithmetic. MIPS register $0 always equals 0. 

230 Memory[ OJ, Accessed only by data transfer instructions in MIPS. MIPS uses byte 
memory Memory[4], . . .  , addresses, so sequential words differ by 4. Memory holds data structures, 
words Memory[ 4294967292] such as arrays, and spilled registers. 

MIPS assembly language 

add add $1,$2,$3 $1 = $2 + $3 3 operands; data in registers 
Arithmetic 

sub $1,$2,$3 $1 = $2 - $3 3 operands; data in registers subtract 

Data load word lw $1,100($2) $1 = Memory[$2+100] Data from memory to register 
transfer store word SW $1,100($2) Memory($2+100] = $1 Data from register to memory 

MIPS machine language 

s ub  R 0 2 3 1 34 s u b  $ 1 , $ 2 , $ 3 

l w  I 35 2 1 100 l w  $ 1 , 1 0 0 ( $ 2 ) 

S W  4 3  2 1 100 S W  $ 1 , 1 00 ( $ 2 )  

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits 
Format R R op rs rt rd sh amt funct Arithmetic instruction format 
Format I op rs rt address Data transfer format 

FIGURE 3.6 MIPS architecture revealed through section 3.4. Highlighted portions show MIPS structures introduced 
in this section. 
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Today's computers are built on two key principles: 

1 .  Instructions are represented as  numbers; and 

2. Programs can be stored in memory to be read or 
written just like numbers. 

This is the stored-program concept; its invention let the computing ge
nie out of its bottle. Figure 3.7 shows the power of the concept; specif
ically, memory can contain the C code for an editor program, the 
corresponding compiled machine code, the text that the compiled pro
gram is using, and even the compiler that generated the machine code. 

Processor 

Memory 
r - - - - - - - - - - - - - - - - -
1 Accounting program : : (Machine code) 1 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J r - - - - - - - - - - - - - - - - -
1 Editor program : : (Machine code) 1 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J r - - - - - - - - - - - - - - - - -
1 C compiler : : (Machine code) 1 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J 
; - - - - - - - - - - - - - - - - , 
1 Payroll data : � - - - - - - - - - - - - - - - - J  � - ---------- -----,  
1 Book text : � - - - - - - - - - - - - - - - - J  r - - - - - - - - - - - - - - - - ,  
1 C code for editor program : � - - - - - - - - - - - - - - - - J  

FIGURE 3.7 The stored-program concept. Stored programs allow a computer that 
performs accounting to become, in the blink of an eye, a computer that helps an author 
write a book. The switch happens simply by loading memory with programs and data 
and then telling the computer to begin executing at a given location in memory. Treat
ing instructions in the same way as data greatly simplifies both the memory hardware 
and the software of computer systems. Specifically, the memory technology needed for 
data can also be used for programs, and programs like compilers, for instance, can 
translate code written in a notation far more convenient for humans into code that the 
machine can understand. 
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Recall from Chapter 1 that the symbolic representation of in
structions is called the assembly language of a computer. To 
avoid confusion between the symbolic and numerical forms 
of programs, we traditionally call the numerical equivalent 
that the machine executes the machine language. The transla-
tion from assembly language to machine language is called 
assembly, and the program that translates is called an assem

bler. Figure 3.8 shows the translation hierarchy: A C  program is first translated 
into an assembly language program by the compiler, then the assembler trans
lates the assembly language program into machine language. The program 
that places the machine language program into memory for execution is called 
a loader (see section A.4 on page A-19). 

C program 

Assembly language program 

Machine language program 

LOI 

Memory 

FIGURE 3.8 A translatlon hierarchy. A high-level language program is first compiled into an 
assembly language program and then assembled into a machine language program. The loader 
then places the machine code into the proper memory locations for execution by the processor. 



110 Chapter 3 Instructions: Language of the Machine 

Assembly language is obviously a great improvement over writing num
bers. In addition to replacing symbols with numbers, assemblers treat com
mon variations of machine language instructions as if they were instructions 
in their own right. 

For example, the MIPS hardware makes sure that register $0 always has the 
value 0. That is, whenever register $0 is used, it supplies a 0, and the program
mer cannot change the value of register $0. Register $0 is used to create the as
sembly language instruction m o v e  that copies the contents of one register to 
another. Thus the MIPS assembler accepts this instruction even though it is not 
found in the MIPS architecture: 

m o v e  $ 8 , $ 1 8  # r e g i s t e r  $ 8  g e t s  r e g i s t e r  $ 1 8  

The assembler converts this assembly language instruction into the ma
chine language equivalent of the following instruction: 

a d d  $ 8 , $ 0 , $ 1 8  # r e g i s t e r  $ 8  g e t s  0 + r e g i s t e r  $ 1 8  

The MIPS assembler effectively increases the number of instructions avail
able to the assembly language programmers and to compilers. These instruc
tions need not be implemented in hardware; however, their appearance in 
assembly language simplifies programming. Such instructions are called 
pseudoinstructions. 

Elaboration: Representing decimal numbers in base 2 gives an easy way to repre
sent positive integers in computer words. Chapter 4 explains how negative numbers 
can be represented, but for now take our word that a 32-bit word can represent inte
gers between -2 3 1  and + 2 3 1 - 1  or -2,147,483,648 to +2,147,483,647. Such inte
gers are cal led two 's complement numbers. 

II Instructions for Making Decisions 

The utility of an automatic computer lies in the possibility of using a given sequence 
of instructions repeatedly, the number of times it is iterated being dependent upon the 
results of the computation. When the iteration is completed a different sequence of [in
structions] is to be followed, so we must, in most cases, give two parallel trains of [in
structions] preceded by an instruction as to which routine is to be followed. This choice 
can be made to depend upon the sign of a number (zero being reckoned as plus for ma
chine purposes). Consequently, we introduce an [instruction] (the conditional transfer 
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[instruction]) which will, depending on the sign of a given number, cause the proper 
one of two routines to be executed. 

Burks, Goldstine, and von Neumann, 1947 

What distinguishes a computer from a simple calculator is its ability to make 
decisions. Based on the input data and the values created during the compu
tation, different instructions are executed. Decision making is commonly rep
resented in programming languages using the if statement, sometimes 
combined with goto statements and labels. MIPS includes two decision making 
instructions, similar to an if statement with a goto: 

beq  r e g i s t e r l . r e g i s t e r 2 , L l  

This instruction means go to the statement labeled L1 if the value in registerl 
equals the value in register2. The mnemonic stands for branch equal. The sec
ond instruction is 

b n e  r e g i s t e r l , r e g i s t e r 2 , L l  

It means go to the statement labeled L 1  if the value in registerl does not equal 
the value in register2. The mnemonic stands for branch not equal. These two 
instructions are called conditional branches. 

In the following C code segment, f, g, h, i ,  and j are variables: 

i f  ( i  == j l  g o t o  L l ; 
f g + h ;  

L l : f = f - i ; 

Assuming that the five variables correspond to five registers $ 1 6  through 
$ 2 0, what is the compiled MIPS code? 

The compiled program is 

b e q  $ 1 9 , $ 2 0 . L l  
a d d  $ 1 6 , $ 1 7  , $ 1 8  

L l : s u b  $ 1 6 , $ 1 6 , $ 1 9  

# g o t o  L l  i f  i e q u a l s j 
# f g + h ( s k i pped  i f  i e q u a l s j )  
# f = f - i ( a l w a y s  e x e c u t e d ) .  
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Instructions are stored in memory in stored-program computers; hence, 
instructions must have memory addresses just like other words in memory. 
The label L1 thus corresponds to the address of the subtract instruction. No
tice that the assembler relieves the compiler or the assembly language pro
grammer from the tedium of calculating branch addresses, just as it does for 
calculating data addresses for loads and stores (see section A.1 on page A-3 
in Appendix A or the example on page 106). 

Hardware" 

Software 

Interface 

bne  
a d d  

j 
E l s e : s u b  

E x i t :  

Compilers frequently create branches and labels when they 
do not appear in the programming language. Using the 
same variables and registers from the previous example, the 
C code: 

i f  ( i -- j ) f = g + h : e l s e  f g - h :  

$ 1 9 , $ 2 0 . E l s e # g o to E l s e  i f  i "# j 
$ 1 6 , $ 1 7 , $ 1 8  # f = g + h ( s k i p p e d  i f  i � j ) 
E x i t lt g o  t o  E x i t  

$ 1 6 , $ 1 7 , $ 1 8  # f = g - h ( s k i pped  i f  j )  

Figure 3.9 shows the form of the C code that the compiler must translate 
into MIPS code. The second instruction above performs the "then" part of the 
if statement and the fourth instruction performs the "else" part. When i "* j ,  

the first instruction branches to the label E l s e, going around the "then" part. 
To avoid executing the fourth instruction when i = j ,  we must branch around 
it to the label E x i t .  This introduces another kind of branch, sometimes called 
an unconditional branch. This instruction says that the machine always follows 
the branch. To distinguish between conditional and unconditional branches, 
the MIPS name for this type of instruction is jump, abbreviated as j . 

Decisions are important both for choosing between two alternatives
found in if statements-and for iterating a computation-found in loops. The 
same assembly instructions are the building blocks in both cases. 
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i 

E l s e : 

f g + h f = g - h 

E x i t :  

FIGURE 3.9 Illustration of the options in the If statement above. The left box corresponds to 
the "then" part of the if statement and the right box corresponds to the "else" part. 

Here is a loop in C: 

L o o p : g = g + A [ i ] ;  
i = i + j ;  
i f  ( i  ! =  h )  g o t o  L o o p ; 

Assume A is an array of 100 elements and that the compiler associates the 
variables g, h, i ,  and j to the registers $ 1 7 , $ 1 8, $ 1 9, and $ 2 0,  respectively. 
Let's assume that the array starts at A s t  a r t .  Remember that byte addressing 
means we will need to multiply the index i by 4 before we can use it in the 
load instruction. Let's assume that 4 has already been placed in register $10 
and that the MIPS instruction mu l t (further described in Chapter 4), is avail
able for multiplies. What is the MIPS assembly code corresponding to this 
C segment? 
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Answer It becomes the following assembly language code: 

L o o p : m u l t 
l w  
a d d  
a d d  
b n e  

$ 9 , $ 1 9 , $ 1 0  
$ 8 , As t a r t ( $ 9 l  
$ 1 7 , $ 1 7  , $ 8 
$ 1 9 , $ 1 9 , $ 2 0  
$ 1 9 , $ 1 8 , L o o p  

# Tempo r a ry r e g  $ 9  
# Temp o r a ry r e g  $ 8  
# g = g + A [ i ] 
# i = i + j 
# g o t o  L o o p  i f  i # h 

Since the body of the loop modifies i ,  we must multiply its value by 4 
each time through the loop. (Section 3.11 shows how to avoid these multi
plies when writing loops like this one.) 

Hardware 

Software 

Interface 

Of course, programmers don't normally write loops with 
gotos, so it is up to the compiler to translate traditional loops 
into assembly language. This C segment: 

wh i l e  C s a v e [ i ] == k l 
i = i + j :  

could be translated into the MIPS instructions below, assuming that i ,  j ,  and 
k correspond to registers $ 1 9, $ 2 0, and $ 2 1 , the array s a v e  starts at S s t a r t ,  
and register $10 contains 4. 

L o o p : 

E x i t :  

m u l t  
l w  
b n e  
a d d  
j 

$ 9 , $ 1 9 , $ 1 0  
$ 8 , S s t a r t C $ 9 l  
$ 8 , $ 2 1 , E x i t 
$ 1 9 , $ 1 9 , $ 2 0  
Loop 

# Tempo r a ry r e g  $ 9  = i *4 
# T empo r a ry r e g  $8 = s a v e [ i ] 
# g o t o  E x i t  i f  s a v e ( i ] # k 

# i = i + j 
# g o t o  L o o p  

(See Exercise 3 .11  for an optimization of  this sequence.) 

The test for equality or inequality is probably the most popular test, but 
sometimes it is useful to see if a variable is less than another variable. For ex
ample, a for loop may want to test to see if the index variable is less than 0. Such 
comparisons are accomplished in MIPS with an instruction that compares two 
registers and sets a third register to 1 if the first is less than the second; other
wise, it is set to 0. The instruction is called set on less than or s l t .  For example, 

s l t  $ 8 , $ 1 9 , $ 2 0  
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means that register $8 is set to 1 if the value in register $19 is less than the value 
in register $20; otherwise, register $8 is set to 0. 

Hardware 

S oftware 

Interface 

s l t 

MIPS compilers use the s l t, be q, b n e, and the fixed value of 
0 in register $0 to create all relative conditions. For example, 
let's take a look at the code to test if variable a (correspond
ing to register $ 1 6) is less than variable b ($ 1 7  ), branching to 
L e s s  if the condition holds. Assume that $ 1  is an available 
temporary register. The first step is to use the set on less than 
instruction and the temporary register: 

$ 1 , $ 1 6 , $ 1 7  It $ 1  g e t s  1 i f  $ 1 6< $ 1 7  ( a <b } 

Register $ l is set to 1 if a is less than b. Hence, a branch to see if register $ l 
is not equal to 0 will give us the effect of branching if a is less than b. Register 
$ 0  always contains 0, so this final test is accomplished using the b n e  instruc
tion and comparing register $ 1  to register $ 0 :  

b n e  $ 1 , $ 0 ,  L e s s It g o  t o  L e s s  i f  $ 1* $ 0  
It ( t h a t  i s .  i f  a < b )  

This pair of instructions, s l t and bne ,  implements a branch on less than, 
and, in fact, the MIPS assembler converts b l  t (branch on less than) into exactly 
these two instructions. Note again how an assembler can create instructions 
that are not implemented by the hardware. Heeding von Neumann's warning 
about the simplicity of the "equipment," the MIPS architecture doesn't include 
b l  t because it is too complicated; either it would stretch the clock cycle time 
or this instruction would take extra clock cycles per instruction. Two faster in
structions are more useful. 

To support such pseudoinstructions, the assembler must have a temporary 
register which can be used without fear of altering the program. Since compil
ers allocate registers, the MIPS compiler writers have promised to abstain from 
using register $1 so that it can be used by the MIPS assembler. 

Most programming languages have a case or switch statement that allows 
the programmer to select one of many alternatives depending on a single val
ue. One way to implement switch is via a sequence of conditional tests, turning 
the switch statement into a chain of if-then-else statements. But sometimes the 
alternatives may be efficiently encoded as a table of addresses of alternative in
struction sequences, and the program needs only to index the jump address table 
and then jump to the appropriate sequence. To support such situations, com-



116 Chapter 3 Instructions: Language of the Machine 

puters like MIPS include a Jump register instruction (j r ), meaning an uncondi
tional jump to the address specified in a register. 

This C version of a case statement is called a switch statement. The following 
C code chooses among four alternatives depending on whether k has the 
value 0, 1, 2, or 3. Assume the six variables f through k correspond to six 
registers $ 1 6  through $ 2 1  and that register $10 contains 4. What is the cor
responding MIPS code? 

s w i t c h  ( k )  ( 
c a s e  0 :  f + j ;  b r e a k ;  / *  k 0 * /  
c a s e  1 :  f g + h ;  b r e a k ;  / *  k 1 * /  
c a s e  2 :  f g h . b r e a k ;  / *  k 2 * /  
c a s e  3 :  f j ; b r e a k ;  / *  k 3 * /  

The following MIPS assembly language will work, provided four words in 
memory, starting at location J um p  T a b l e, have addresses corresponding to 
the labels LO,  L l ,  L 2 ,  and L 3, respectively. Since we are using the variable k 
to index into this array of words, we must first multiply by 4 to turn k into 
its byte address equivalent. 

L o o p : m u l t $ 9 , $ 1 0 , $ 2 1  # Tempo r a ry r e g  $ 9  = k*4 
l w  $ 8 , J um pT a b l e ( $ 9 )  # Temp  reg  $ 8  = J umpT a b l e [ k J 
j r  $ 8  # j u mp b a s e d  o n  r e g i s t e r  $ 8  

L O : a d d  $ 1 6 , $ 1 9 , $ 2 0  # k=O s o  f g e t s  i + j 
j E x i t # e n d  o f  t h i s c a s e  s o  g o t o  E x i t 

L l : a d d  $ 1 6 , $ 1 7 , $ 1 8  # k=l s o  f g e t s  g + h 
j E x i t # e n d  o f  t h i s c a s e  s o  g o t o  Ex i t  

L2 : s u b  $ 1 6 , $ 1 7  , $ 1 8  fl k=2 s o  f g e t s  g - h 
j E x i t # e n d  o f  t h i s  c a s e  s o  g o t o  E x i t  

L3 : s u b  $ 1 6 , $ 1 9 , $ 2 0  # k=3 s o  f g e t s  i - j 
E x i t :  fl e n d  o f  s w i t c h  s t a t e me n t  



3.5 Instructions for Making Decisions 117 

Machine language procedure A 

Machine language procedure B 
Machine language program 

O: Procedure A 
L nker 

Machine language procedu re C 
64: Procedure B 

112: Procedure C 
176: Procedure D 

Machine language procedure D 

FIGURE 3.10 A llnker allows separate compllatlon and assembly of portions of a whole 
program. It finds the addresses in the machine language procedures and corrects the addresses 
to refer to the actual memory locations. 

Hardware 

Software 

Interface 

What we have presented so far suggests that a single change 
to one line of one procedure requires compiling and assem
bling the whole program. Complete retranslation is a terrible 
waste of computing resources. This is particularly true for 
standard library routines, because programmers would be 
compiling and assembling routines that by definition almost 
never change. An alternative is to compile and assemble 

each procedure independently, so that a change to one line would require 
compiling and assembling only one procedure. This alternative implies a new 
systems program that would take all the independently assembled machine 
language programs and "stitch" them together. 

The challenge for this program is to place the independent modules end to 
end, fix the cross-references between modules, and, finally, to alter any ad
dresses within these independent modules to make them refer to the new in
struction addresses. Figure 3.10 shows an example. Such references occur in 
branch instructions, jump instructions, and data addresses, so the job of this 
program is much like that of an editor: It finds the old addresses and replaces 
them with the new addresses. Editing gives rise to the name of the 
program: link editor or linker for short. The reason a linker makes sense is that 
it is much faster to "patch" code than it is to recompile and reassemble. Many 
operating systems combine the linker with the loader, giving rise to the name 
linking loader. Sections A.3 on page A-17 and A.4 on page A-19 describe linkers 
and loaders in more detail. 
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MIPS operands 

Name Example Comments .. ,.,."I_ � 

$0, $1, $2, . . .  , $31 Fast locations for data. In MIPS, data must be in registers to perform 
32 registers arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for the 

assembler to handle pseudoinstructions. 

230 memory 
Memory( OJ, Accessed only by data transfer instructions in MIPS. MIPS uses byte 
Memory(4]. . . . .  addresses, so sequentia l  words differ by 4. Memory holds data structures, 

words Memory( 4294967292] such as arrays, and spilled registers. 

MIPS assembly language 

Category Instruction Example Meaning Comm1fots 
add add $1,$2,$3 $1 = $2 + $3 3 operands; data in registers 

Arithmetic 
subtract sub $1,$2,$3 $1 = $2 - $3 3 operands; data in registers 

Data load word lw $1,100($2) $1 = Memory($2+100] Data from memory to register 
transfer store word SW $1,100($2) Memory[$2+100] = $1 Data from register to memory 

branch on equal beq $1,$2,L if ($1 == $2) go to L Equal test and branch 
Conditional branch on not eq. bne $1,$2,L if ($1 I= $2) go to L Not equal test and branch Branch 

set on less than sit $1,$2,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; for beq,bne 

Unconditional jump j 10000 go to 10000 Jump to target address 
jump jump register jr $31 go to $31 For switch statements 

MIPS machine language 

sub R 0 2 3 1 34 sub $1,$2,$3 
lw 35 2 1 100 lw $1,100($2) 
SW 43 2 1 100 SW $1,100($2) 
beq 4 1 2 100 beq S l , $ 2 , 1 00 

bne 5 1 2 100 b n e  $ 1 . $ 2 , 1 0 0 

sit R 0 2 3 1 0 42 s t S l . S 2 , $ 3 

J 2 10000 . 0 000 C s e e  s e c t i on  3 . 
jr R 0 31 0 0 0 8 r $ 3  
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits 
Format R R op rs rt rd sh amt funct Arithmetic instruction format 
Format I I op rs rt address Data transfer, branch format 

FIGURE 3.11 MIPS architecture revealed through section 3.5. Highlighted portions show MIPS structures introduced 
in this section. The J format, used for jump instructions, is explained in section 3.7. 

Figure 3.1 1  summarizes the portions of MIPS described in this section. 
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Elaboration: Readers who might have heard about delayed branches, covered in 
Chapter 6,  should not worry: The MIPS assembler makes them invisible to the assem
bly language programmer. 

• Supporting Procedures In Computer Hardware 

A procedure or subroutine is one way that programmers structure programs, 
both to make them easier to understand and to allow code to be reused. An 
instruction set must provide a way to jump to a procedure and then return 
from the procedure to the instruction just after the calling point. Programmers 
must also have conventions governing how to pass parameters and how to 
support the nesting of procedure calls. 

First, let's look at the primitive operations that support procedures. MIPS 
provides an instruction that jumps to an address and simultaneously saves the 
address of the following instruction in register $ 3 1 .  The jump-and-link instruc
tion (j a l )  is simply written 

j a l  P r o c e d u r eAdd r e s s  

The link portion of the name means that a link is formed to the calling site to 
allow the procedure to return to the proper address. This link, stored in regis
ter $ 3 1 ,  is called the return address. 

We already have an instruction to do the return jump: 

j r $ 3 1  

The Jump register instruction, useful in the switch statement, jumps to the 
address stored in register $ 3 1-which is just what we want. 

Implicit in the instruction set is the need to have a register to hold the ad
dress of the current instruction being executed. The j a l  instruction just incre
ments this register to point to the next instruction before saving it in register 
$ 3 1 ,  and j r $ 3 1  simply copies $ 3 1  into that register. For historical reasons, 
this register is almost always called the program counter, abbreviated PC, al
though a more sensible name would have been Instruction Address register. 
MIPS follows tradition and calls it the PC. 

Suppose a procedure wanted to call another procedure. Then the program
mer would need to save the old value of register $ 3 1 ,  since the new j a l  would 
clobber the old return address. This is an example of where we need to spill 
registers to memory, as mentioned in the Hardware Software Interface on 
page 102. 

Since procedures can call procedures that call procedures, and so on, the 
ideal data structure for spilling registers is a stack-a last-in-first-out queue. A 
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stack needs a pointer to the top of the stack to show where the next procedure 
should place the registers to be spilled or where old register values can be 
found. The top of the stack is adjusted by the number of registers that are 
saved or restored. Stacks are so popular that they have their own buzzwords 
for transferring data to and from the stack: Placing data onto the stack is called 
a push, and removing data from the stack is called a pop. 

Assume procedure A has invoked procedure B, that procedure B is about to 
call procedure C, and that C calls no more procedures. Figure 3.12 on page 
122 shows the steps we must perform. Before calling C, procedure B must 
save its return address on the stack. The stack pointer, register $29, is adjust
ed to point to the new top of stack. Procedure C is then called, and the j a l  
instruction changes register $31 to contain C's return address. After proce
dure C returns to procedure B, the old return address is restored from the 
stack into register $31 .  The stack pointer is then changed back to the old top
of-stack location. What is the essential MIPS code to implement this calling 
protocol? 

Below is the basic MIPS assembly code segment. Assume that register $29 
contains the pointer to the top of the stack and one register, say $24, already 
has the value to adjust the top of stack. Recall that the MIPS assembly con
vention is to list labels on the left, indent the instruction to the right of the 
labels, and follow these with an optional comment that starts with the sharp 
symbol (#). 

A :  . . . 

j a l  B # c a l l B & s a v e  r e t u r n  a d d r e s s  i n  $ 3 1  

B :  . . .  
# n o w  r e a dy t o  c a l l  c 

a d d  $ 2 9 , $ 2 9 , $ 2 4  # a d j u s t  s t a c k  t o  ma k e  r oom  
# f o r  n e x t  i t e rn  

S W  $ 3 1 , 0 ( $ 2 9 )  # s a v e  t h e  r e t u r n  a d d r e s s  
j a l  c # c a  1 1  C & s a v e  r e t u r n  a d d r e s s  i n  

# $ 3 1 ; r e t u r n  f r om C t o  n e x t  i n s t r  
l w $ 3 1 , 0 ( $ 2 9 ) # r e s t o r e  B ' s  r e t u r n  a d d r e s s  . . .  
s u b  $ 2 9 , $ 2 9 , $ 2 4  # a d j u s t  s t a c k  t o  p o p  

# B ' s  r e t u r n  a d d r e s s  
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j r $ 3 1  
c :  . . .  

j r $ 3 1  

# r e t u r n  t o  r o u t i n e t h a t  c a l l ed B 

# r e t u r n  t o  r o u t i n e t h a t  c a l l e d C 
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A calls B using j a l  , saving the address of the following instruction in 
register $ 3 1 .  Before B calls C, the stack pointer is adjusted and register $31 
is saved. Procedure B then calls C, saving the address again in $ 3 1 .  Since 
procedure C calls no other procedure, it skips storing its return address on 
the stack. When C is finished, it returns to B by executing the Jump register 
instruction using register $ 3 1 , which in turn invokes the load instruction 
that follows the jump and link instruction in B. This load restores the proper 
return address into $ 3 1 ,  and the subtract adjusts the stack the other direc
tion. When B is finished, it returns to A using j r with register $ 3 1 ,  returning 
to the instruction just after the j a l  in procedure A. 

In addition to return addresses, we need a convention that governs passing 
the arguments, or parameters, passed to a procedure. The MIPS software con
vention is to put parameters in registers $4 through $7. If a procedure needs to 
call another procedure, these parameter registers can be saved and restored 
from the stack just like return addresses. In general, if a procedure modifies 
registers used by the current routine, there must be a convention for saving 
and restoring registers across procedure calls. The two standard conventions 
are: 

1 .  Caller save. The calling procedure (caller) is responsible for saving and 
restoring any registers that must be preserved across the call. The called 
procedure (callee) can then modify any register without constraint. 

2. Callee save. The callee is responsible for saving and restoring any regis
ters that it might use. The caller uses registers without worrying about 
restoring them after a call. 

Sections 3.9 and 3.10 use callee save, and Exercises 3.28 and 3.29 treat the 
subject in depth. Note that conventions are not generally limited to a single 
language. This allows compiled procedures written originally in Fortran to 
call procedures written originally in C, and vice versa. 

Figure 3.13 summarizes the portions of MIPS described in this section. 
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1. After A calls B 

$31 

B's return address 

$29 (Stack pointer) 

$29 (Stack pointer) 

3. After B calls C 

$31 

C's return address 

$29 (Stack pointer) 

• 

Memory 

B's return address 

Memory 

B's return address 

Memory 

B's return address 

Top of stack 

Bottom of stack 

New top of stack 

Bottom of stack 

Top of stack 

Bottom of stack 

New top of stack 

Bottom of stack 

FIGURE 3.12 Saving and restoring the return address on the stack. Procedure calls are 
nested. Since B calling C will clobber register $31, we must save the current value on the stack. 
Register $29 is the stack pointer that points to an area of memory containing the top of the stack, 
which is shown in color. Boldface color indicates items that have changed from the previous step. 



3.6 Supporting Procedures in Computer Hardware 123 

MIPS operands 

Name Example Comments 

$0, $1, $2, . . .  , $31 Fast locations for data. In MIPS, data must be in  registers to perform 
32 registers arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for 

the assembler to handle pseudoinstructions. 
Memory[ OJ. Accessed only by data transfer instructions. MIPS uses byte addresses, 

230 memory words Memory[ 4],  . . . , so sequential words differ by 4. Memory holds data structures, such as 
Memory[ 4294967292] arrays, and spilled registers, such as those saved on procedure calls. 

MIPS assembly language 

Category Instruction Example Meaning Comments 
add add $1,$2 ,$3 $1 = $2 + $3 3 operands; data in registers 

Arithmetic 
sub $1,$2,$3 $1 = $2 - $3 subtract 3 operands; data in registers 

load word lw $1,100($2) $1 = Memory($2+100] Data from memory to register 
Data Transfer 

SW $1, 100($2) Memory[$2+100] = $1 store word Data from register to memory 
branch on equal beq $1,$2,L if ($1 == $2) go to L Equal test and branch 

Conditional Branch branch on not eq. bne $1,$2,L if ($1 != $2) go to L Not equal test and branch 
set on less than sit $1,$2,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; for beq,bne 
jump j 10000 go to 10000 Jump to target address 

Unconditional Jump jump register jr $31 go to $31 For switch , procedure return 
jump and l ink jal 10000 $31 = PC + 4; go to 10000 For procedure call 

MIPS machine language 

sub 0 2 3 1 34 sub $1,$2,$3 
lw 35 2 1 100 lw $1,100($2) 
SW 43 2 1 100 SW $1,100($2) 
beq 4 1 2 100 beq $1,$2,100 
bne 5 1 2 100 bne $1,$2,100 
sit R 0 2 3 1 0 42 sit $1,$2,$3 

J 2 10000 10000 (see section 3. 7) 

jr  R 0 31 0 0 0 8 jr $31 
jal J 3 10000 jal 10000 (see section 3.7) 

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits 
Format R R op rs rt rd shamt funct Arithmetic instruction format 
Format I op rs rt address Data transfer, branch format 

FIGURE 3.13 MIPS architecture revealed through section 3.6. Highlighted portions show MIPS structures introduced 
in this section. The J format, used for jump and jump-and-link instructions, is explained in section 3.7. 
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Elaboration: What if there are more than four parameters? The MIPS convention is to 
place the extra parameters on the stack. The procedure then expects the first four 
parameters to be in registers $4 through $7 and the rest in  memory, addressable via 
the stack pointer. 

Parameters are passed in registers to make cal ls fast. Another chal lenge in making 
fast calls is avoiding saving and restoring registers . A M IPS software convention is to 
consider some registers as caller saved (not preserved across procedure call) and oth
ers as cal lee saved (preserved across procedure cal l ) .  The compiler a l locates short
l ived values to the former category of registers and long-l ived values to the latter, 
thereby reducing register saves and restores. Figure A.9 on page A-23 shows the con
vention . 

A final point to mention is that by historical precedent, stacks "grow" from higher 
addresses to lower addresses. Thus we must think of higher addresses as being at the 
bottom of Figure 3 .12 for it to follow this  convention.  This convention means that you 
push values onto the stack by subtracting from the stack pointer. Adding to the stack 
pointer shrinks the stack, thereby popping values off the stack. 

• other Styles of MIPS Addressing 

Designers of the MIPS architecture provided two more ways of accessing oper
ands. The first is to make it faster to access small constants and the second is to 
make branches more efficient. 

Constant or Immediate Operands 

Many times a program will use a constant in an operation-for example, incre
menting an index to point to the next element of an array, counting iterations 
of a loop, or adjusting a stack in a nested procedure call. In fact, in two pro
grams that have been studied, more than half of the arithmetic instructions 
have a constant as an operand: in the C compiler gee, 52% of arithmetic oper
ands are constant; in the circuit simulation program spice, it is 69%. 

With the instructions given so far, we would have to load a constant from 
memory to use it. (The constants would have been placed in memory when the 
program was loaded.) For example, to add the constant 4 to register $ 2 9, we 
could use the code 

l w  
a d d 

$ 2 4 , Add r C o n s t a n t4 ( $ 0 )  
$ 2 9 , $ 2 9 , $ 2 4  

# $ 2 4  = c o n s t a n t  4 
# $ 2 9  = $ 2 9  + $ 2 4  ( $ 2 4  = 4 )  

assuming that Add  r C o n  s t  a n t 4  is the memory address of the constant 4. 
An alternative that avoids memory accesses is to offer new versions of the 

arithmetic instructions in which one operand is a constant, with the novel con-
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straint that this constant is kept inside the instruction itself. Following the rec
ommendation urging regularity, we use the same format for these instructions 
as for the data transfer instructions. In fact, the I in the name of the I-type for
mat is for immediate, the traditional name for this type of operand. The MIPS 
field containing the constant is 16 bits long. 

The add instruction that has one constant operand is called add immediate or 
a d d i .  To add 4 to register 29 we just write 

a d  d i  $ 2 9 , $ 2 9 , 4  ff $ 2 9  = $ 2 9 + 4 

What is the corresponding MIPS machine code? 

This instruction is the following machine code (using decimal numbers): 

op rs rt immediate 

8 29 29 4 

In binary it is 

001000 11101 11101 0000 0000 0000 0100 

Immediate or constant operands are also popular in comparisons. Since reg
ister $ 0 always has 0, we can already compare to 0. To compare to other values, 
there is an immediate version of the set on less than instruction. To test if reg
ister $ 1 8  is less than the constant 10, we can just write: 

s l t i  $ 8 , $ 1 8 , 1 0 ff $ 8  = 1 i f  $ 1 8  < 1 0  
Similar to the prior example on page 115 (Hardware Software Interface), this 
instruction is followed by b n e $ 8 ,  $ 0 to branch if register $18 is less than the 
constant 10. 

Immediate addressing illustrates the final hardware design guideline, first 
mentioned in Chapter 2: 

Principle 4: Make the common case fast. 

Constant operands occur frequently, and by making constants part of arith
metic instructions they are much faster than if they were loaded from memory. 

Although constants are frequently short and fit into the 16-bit field, some
times they are too big. The MIPS instruction set includes the instruction load 
upper immediate ( l  u i )  specifically to set the upper 16 bits of a constant in a reg
ister, allowing a subsequent instruction to specify the lower 16 bits of the con
stant. Figure 3.14 shows the operation of l u i .  
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The mach ine language version of l u i  $ 8 , 2 5 5 :  

001111 00000 01000 0000 0000 1111 1111 
Contents of register 8 after executing l u i $ 8 , 2 5 5 :  

� 0000 0000 fi11 1111 0000 0000 0000 0000 
FIGURE 3.14 The effect of the lui instruction. The instruction l u i transfers the rightmost 16 bits of the draw
ing into the leftmost 16 bits of the register, filling the lower 16 bits with zeros. As we shall see in Chapter 4, this is 
like multiplying the constant by 2 16  before loading it into the register. 

Example 

Answer 

What is the MIPS assembly code to load this 32-bit constant into register 
$16? 

0 0 0 0  0 0 0 0  0 0 1 1 1 1 0 1  0 0 0 0  1 0 0 1  0 0 0 0  0 0 0 0  

First we would load the upper 1 6  bits, which is 6 1  in decimal, using l u i :  

l u i $ 1 6 ,  6 1  # 6 1  d e c i m a l  = 0 0 0 0  0 0 0 0  0 0 1 1  1 1 0 1  b i n a ry 

The value of register $16 afterward is 

0 0 0 0  0 0 0 0  0 0 1 1  1 1 0 1  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  

The next step is to add the lower 1 6  bits, whose decimal value is 2304: 

a d d i  $ 1 6 , $ 1 6 ,  2 3 0 4  if 2 3 0 4  d e c i m a l  = 0 0 0 0  1 0 0 1  0 0 0 0  0 0 0 0  

The final value in register $16 is the desired value: 

0 0 0 0  0 0 0 0  0 0 1 1  1 1 0 1  0 0 0 0  1 0 0 1  0 0 0 0  0 0 0 0  
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Hardware 

Software 

Interface 

Either the compiler or the assembler must break large con
stants into pieces and then reassemble them into a register. 
As you might expect, this size restriction may be a problem 
for memory addresses in loads and stores as well as for con
stants in immediate instructions. If this job falls to the assem-
bler, as it does for MIPS software, then the assembler must 

have a temporary register available in which to create the long values. This is 
another use for register $1, which was reserved to allow the assembler to ex
pand the set of branch instructions that it accepted (see the Hardware Software 
Interface on page 1 15). This means that the assembly language programmer 
can let the assembler handle large constants and large addresses. 

Addressing in Branches and Jumps 

The simplest addressing is found in the MIPS jump instructions. They use the 
final MIPS instruction format, called the /-type, which consists of 6 bits for the 
operation field and the rest of the bits for the address field. Thus, 

j 1 0 0 0 0  # g o t o  l o c a t i o n  1 0 0 0 0  

is assembled into this format: 

2 10000 

6 bits 26 bits 

where the value of the jump opcode is 2 and the jump address is 1 0  0 0 0 .  
Unlike the jump instruction, the conditional branch instruction must speci

fy two operands in addition to the branch address. Thus, 
b n e  $ 8 , $ 2 1 , E x i t  # g o t o  E x i t i f  $ 8  * $ 2 1  

is assembled into this instruction, leaving only 16 bits for the branch address: 

5 8 21 Exit 

6 bits 5 bits 5 bits 16 bits 

If addresses of the program had to fit in this 16-bit field, it would mean that 
no program could be bigger than 216 , which is far too small to be a realistic op
tion today. An alternative would be to specify a register that would always be 
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added to the branch address, so that a branch instruction would calculate the 
following: 

PC = register + branch address 

This allows the program to be as large as 232 
and still be able to use conditional 

branches, solving the branch address size problem. The question is then, 
which register? 

The answer comes from seeing how conditional branches are used. Condi
tional branches are found in loops and in if statements, so they tend to branch 
to a nearby instruction. For example, almost half of all conditional branches in 
gee and spice go to locations less than 16 instructions away. Since the program 
counter (PC) contains the address of the current instruction, we can branch 
within 216 

of the current instruction if we use the PC as the register to be added 
to the address. Almost all loops and if statements are much smaller than 216 , 
so the PC is the ideal choice. This form of branch addressing is called PC-rela
tive addressing. As we shall see in Chapter 5, it is convenient for the hardware 
to increment the PC early to point to the next instruction. Hence the MIPS ad
dress is actually relative to the address of the following instruction (PC + 4 ) as 
opposed to the current instruction (PC). 

Like most recent machines, MIPS uses PC-relative addressing for all condi
tional branches because the destination of these instructions is likely to be 
close to the branch. On the other hand, jump-and-link instructions invoke pro
cedures that have no reason to be near the call, and so they normally use other 
forms of addressing. Hence MIPS offers long addresses for procedure calls by 
using the Hype format for both jump and jump-and-link instructions. 

The while loop on page 1 14 was compiled into this MIPS assembler code: 

L o o p : m u l t $ 9 , $ 1 9 , $ 1 0  fl Tempo r a ry r e g  $ 9  = i *4 
l w  $ 8 , S s t a r t ( $ 9 )  fl Tempo r a ry r e g  $ 8  = s a v e [ i ] 
b n e  $ 8 , $ 2 1 , E x i t fl g o t o  E x i t i f  s a v e [ i ] "#- k 
a d d  $ 1 9 , $ 1 9 , $ 2 0  fl i = i + j 

j L o o p  fl g o t o  L o o p  
E x i t :  

If we assume that the loop is placed at location 80000 in memory and that 
the address S s  t a  r t  refers to location 1000, what is the MIPS machine code 
for this loop? 
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The assembled instructions and their addresses would look like this: 

80000 

80004 

80008 

80012 

80016 

80020 

0 

35 

5 

0 

2 

19 10 

9 8 

8 2 1  

19 20 

9 I 0 I 24 

1000 

8 

19 I 0 I 32 

80000 

Remember that MIPS uses byte addresses, so addresses of sequential 
words differ by 4, the number of bytes in a word. The b n e instruction on the 
third line adds 8 bytes to the address of the following instruction (80012), 
specifying the branch destination relative to that instruction (8) instead of 
using the full address (80020). The jump instruction on the last line does use 
the full address (80000), corresponding to the label L o o p . (The first line is 
a simplified version of the MIPS multiply instruction; see page 179 in 
Chapter 4 for details.) 

Hardware 

Software 

Interface 

Nearly every conditional branch is to a nearby location, but 
occasionally it branches far away, farther than can be repre
sented in the 16 bits of the conditional branch instruction. 
The assembler comes to the rescue just as it did with large 
addresses or constants: it inserts an unconditional jump to 
the branch target, and the condition is inverted so that the 
branch decides whether to skip the jump. For example, a 

branch on register $18 being equal to register $19 such as 

beq  $ 1 8 , $ 1 9 , L l  

can be replaced by this pair of  instructions that offers a much greater branch
ing distance: 

L 2 : 

b n e  $ 1 8 , $ 1 9 , L 2  
j L l  

We have seen two new forms of addressing in this section. Multiple forms 
of addressing are generically called addressing modes. The MIPS addressing 
modes are 
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1 .  Register addressing, where the operand is a register; 

2. Base or displacement addressing, where the operand is at the memory 
location whose address is the sum of a register and an address in the 
instruction; 

3. Immediate addressing, where the operand is a constant within the 
instruction itself; and 

4. PC-relative addressing, where the address is the sum of the PC and a con
stant in the instruction. 

Figure 3.15 shows how operands are identified for each addressing mode. The 
next section expands this list to show addressing modes found in other styles 
of computers. 

Figure 3.16 shows the MIPS architecture that is revealed in Chapter 3. The 
remaining hidden portion of MIPS deals mainly with arithmetic, covered in 
the next chapter. 

Elaboration: Since all M IPS instructions are 4 bytes long, M IPS stretches the d is
tance of the branch by having PC-relative addressing refer to the number of words to 
the next instruction instead of the number of bytes.  Thus the 16-bit field can branch 
four times as far by interpreting the field as a relative word address rather than as a rel
ative byte address. Thus the address field for b e q  and b n e  in Figure 3.16 should be 
25 instead of 100; we hide this detail for s impl icity. 

The 26-bit field in jump instructions is also a word address, meaning that it repre
sents a 28-bit byte address. Since the PC is 32 bits , 4 bits must come from someplace 
else. The MIPS jump instruction replaces only the lower 28 bits of the PC , leaving the 
upper 4 bits of the PC unchanged. The loader and l inker must be careful to avoid plac
ing a program across an address boundary of 256 MB (64 mi l l ion instructions), for oth
erwise a jump must be replaced by a Jump register instruction and other instructions 
to load the ful l  32-bit address into a register. 

Alternatives to the MIPS Approach 

Designers of instruction sets sometimes provide more powerful operations 
than those found in MIPS. The goal is generally to reduce the number of 
instructions executed by a program. The danger is that this reduction can 
occur at the cost of simplicity, increasing the time a program takes to execute 
because the instructions are slower. This slowness may be the result of a slower 
clock cycle time or of requiring more clock cycles than a simpler sequence (see 
section 2.8 on page 76). The following sections present several methods of 
reducing the number of executed instructions by using more powerful ways of 
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1. Register addressing 

op rs rt rd fun ct 

I 
register 

2 .  Base addressing 

op rs rt address 

register 

Memory 

3. Immediate addressing 

op rs rt immediate 

4. PC-relative addressing 

op rs rt address 

PC 

Memory 

FIGURE 3.15 Illustration of the four MIPS addressing modes. The operands are shaded in color. The oper
ands of modes 2 and 4 are locations in memory, whereas the operand for mode 1 is a register. For mode 3 the 
operand is 16 bits of the instruction itself. 
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Name 

32 registers 

230 
memory 
words 

Category 

Arithmetic 

Data 
Transfer 

Conditional 
Branch 

Uncondi-
tional Jump 

sub 
addi 
lw 
SW 

lu i  
beq 
bne 
sit 
slti 

jr 
jal 
Field size 
Format R 
Format I 
Format J 
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MIPS operands 

Example Comments 
Fast locations for data. In  MIPS, data must be in registers to perform 

$0, $1, $2, . . .  , $31 arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for 
the assembler to handle pseudoinstructions and large constants. 

Memory[ OJ, Accessed only by data transfer instructions. MIPS uses byte addresses, so 
Memory[4], . . .  , sequential words differ by 4. Memory holds data structures, such as arrays, 
Memory( 4294967292] and spilled registers, such as those saved on procedure calls. 

MIPS assembly language 

Instruction Example Meaning Comments 
add 
subtract 
add immediate 
load word 
store word 

load upper imm. 
branch on equal 
branch on not eq. 
set on less than 

set less than imm. 
jump 
jump register 
jump and l ink 

R 0 

8 
35 
43 

15 
4 

I 5 
R 0 

10 
2 

R 0 
3 

6 bits 
R op 

op 
J op 

add $1,$2,$3 
sub $1,$2,$3 
addi $1,$2, 100 
lw $1,100($2) 
SW $1,100($2) 

lui  $1 ,100 
beq $1,$2, 100 
bne $1,$2, 100 
sit $1,$2,$3 

slti $1,$2,100 
j 10000 
jr $31 
jal 10000 

$1 = $2 + $3 
$1 = $2 - $3 

$1 = $2 + 100 
$1 = Memory[$2+100] 
Memory($2+100] = $1 

$1 = 100 * 216 

if ($1 == $2) go to PC+4+100 
if ($1 != $2) go to PC+4+100 
if ($2 < $3) $1=1; else $1=0 

if ($2 < 100) $1=1; else $1=0 
go to 10000 
go to $31 
$31 = PC + 4; go to 10000 

MIPS machine language 

2 3 1 34 

2 1 100 
2 1 100 
2 1 100 
0 1 100 
1 2 100 
1 2 100 
2 3 1 0 42 
2 1 100 

10000 
31 0 0 0 8 

10000 
5 bits 5 bits 5 bits 5 bits 6 bits 

rs rt rd shamt funct 
rs rt address/immediate 

target address 

3 operands; data in registers 
3 operands; data in registers 

Used to add constants 
Data from memory to register 
Data from register to memory 

Loads constant in uooer 16 bits 
Equal test; PC relative branch 
Not equal test; PC relative 
Compare less than; for beq,bne 

Compare less than constant 
Jump to target address 
For switch,  procedure return 
For procedure call 

sub $1,$2,$3 

addi $1,$2,100 
lw $1, 100($2) 
SW $1,100($2) 

lui $1,100 
beq $1,$2 , 100 
bne $1,$2, 100 
sit $1,$2,$3 
slti $1,$2,100 

10000 
jr $31 
jal 10000 
All MIPS instructions 32 bits 
Arithmetic instruction format 
Transfer, branch, imm. format 
Jump instruction format 

FIGURE 3.16 MIPS architecture revealed In Chapter 3. Highlighted portions show portions from this section. 
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Autoincrement addressing (not found in MIPS) 

op rs rt address 

register 

Memory 

FIGURE 3.17 Illustration of autoincrement addressing mode. The operand is shaded in color. 

accessing operands and by using more powerful operations. Appendix E 
describes the VAX architecture, an example of such an alternative approach. 

Autoincrement and Autodecrement 

Imagine the case of a code sequence marching through an array of words in 
memory. A frequent pair of operations would be loading a word and then 
incrementing the Index register to point to the next word. The idea of autoin
crement addressing is to have a new version of data transfer instructions that 
will automatically increment the Index register to point to the next word each 
time data is transferred. Since the MIPS architecture uses byte addresses and 
words are 4 bytes, this new form would be equivalent to this pair of MIPS 
instructions: 

l w  
a d  d i  

$ 8 , S s t a r t ( $ 1 9 l  
$ 1 9 , $ 1 9 , 4  

# r e g  $ 8  g e t s  S [ $ 1 9 J  
# $ 1 9  = $ 1 9  + 4 

They would be replaced by a single hypothetical instruction, not found in MIPS, 
that might look like this: 

l w+ $ 8 , S s t a r t ( $ 1 9 )  # r eg $ 8=S [ $ 1 9 J ; $ 1 9  = $ 1 9+4 

Using the same notation as Figure 3.15, Figure 3.17 shows autoincrement 
addressing. 

Sometimes programs will march through memory in the other direction, 
and so autodecrement address may be provided as well. Autoincrement and au
todecrement addressing are also useful for stacks, since they are equivalent to 
primitives for push and pop. 
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Memory-Based Operands for Operations 

Another attempt to reduce the number of instructions executed also combines 
loads with arithmetic instructions, but in this case the idea is to have a version 
of the arithmetic instruction that can specify one of its operands to be in mem
ory. The goal is to replace this pair of MIPS instructions 

l w  $ 8 , A s t a r t ( $ 1 9 )  # T emp o r a ry r e g  $ 8  g e t s  A [ $ 1 9 J  
a d d  $ 1 6 , $ 1 7 , $ 8 # $ 1 6  = $ 1 7  + A [ i ] 

with a single add instruction that adds memory operand A [ $ 1 9  J directly to 
register $ 1 7  and then places the sum in register $ 1 6 .  This hypothetical instruc
tion, not found in MIPS, might look like this: 

a d d m  $ 1 6 , $ 1 7 , A s t a r t ( $ 1 9 )  # $ 1 6= $ 1 7 + M em o ry [ $ 1 9+A s t a r t ]  

Incorporating this instruction, thereby disregarding the advice on regulari
ty, means longer instructions to hold both a memory address field and the 
three register fields, and probably leads to multiple sizes of instructions. In the 
VAX architecture, each operand can be a register or a memory location, and 
the address of a memory operand can use more than a dozen different ad
dressing modes. Since many instructions have three memory addresses per in
struction, this combination leads to a large number of instruction lengths. 

Complex Operations 

The examples of more sophisticated operations above all dealt with ways of 
accessing operands. Another path to a more powerful instruction set is making 
the operations themselves more complex than the simple arithmetic primitives 
we have seen so far. Following this approach, the computer designer looks for 
instruction sequences that happen frequently and replaces them with a single 
instruction, hoping to improve performance by reducing the number of exe
cuted instructions. The designers of the VAX followed this approach; see 
Appendix E. One example would be a single instruction that does everything 
needed to call a procedure, including saving registers and adjusting the stack. 
(The Fallacy on page 147 explains the reasons not to do this. )  

Let's look at another example. The for loop found in most programming lan
guages allows the programmer to specify the starting value of the loop index, 
the ending value, and the amount the index should be incremented. Some ma
chines provide an increment-compare-and-branch instruction to try to match the 
needs of a for loop. Assuming that we want to increment register $19, compare 
to register $20, and then branch as long as register $ 1 9  is less, we would need 
the following MIPS instructions: 
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Lo o p :  

a d  d i  
s 1 t  
b n e  

$ 1 9 , $ 1 9 , 1  
$ 8 , $ 1 9 , $ 2 0  
$ 8 , $ 0 , L o o p  

# $ 1 9  = $ 1 9  + 1 
# $ 8  = 1 i f  $ 1 9  < $ 2 0  
# $ 8  * 0 me a n s  $ 1 9  < $ 2 0 , 
# s o  g o t o  L o o p  i f  $ 8  * $ 0  

A single instruction replacing these three would specify the register to be 
incremented, the register to be compared, and the branch address. This hypo
thetical instruction, once again not found in MIPS, might look like this: 

i c b $ 1 9 , $ 2 0 , L o o p# $ 1 9=$ 1 9+ 1 ; i f  $ 1 9 < $ 2 0  t h e n  g o t o  L o o p  

Hardware 

Software 

Interface 

In addition to going against the advice of simplicity, such so
phisticated operations may not exactly match what the com
piler needs to produce. For example, suppose that instead of 
incrementing by 1 the compiler wanted to increment by 4, or 
instead of branching on less than, the compiler wanted to 
branch if the index was less than or equal to the limit. Then 
the instruction just described would be a mismatch. When 

faced with such objections, the instruction set designer might then generalize 
the operation, adding another operand to specify the increment and perhaps 
an option on which branch condition to use. Then the danger is that a common 
case, say, incrementing by 1, will be slower than a sequence of simple 
operations. 

The path toward operation complexity is thus fraught with peril. To avoid 
these problems, designers have moved toward simpler instructions. Section 
3.12 demonstrates the pitfalls of complexity. 

• An Example to Put It All Together 

One danger of showing assembly language code in snippets is that the reader 
has no idea what a full assembly language program looks like. In this section 
and the next we derive the MIPS code from a procedure written in C. 
Section 3.10 uses this code in a longer example. 

Let's start with the code for the procedure s w a p  in Figure 3.18. (The Pascal 
version of this procedure is found on page D-8 in Appendix D.) This procedure 
simply swaps two locations in memory. When translating from C to assembly 
language, we follow these general steps: 
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s w a p ( i n t v [ J . i n t k l  
{ 

I 

i n t t e m p ; 

t e m p � v [ k ] ; 
v [ k ]  � v [ k+l ] ; 
v [ k+ l ] � t e mp ; 

FIGURE 3.18 A C  procedure that swaps two locations In memory. This procedure will be 
used in the sorting example in the next section. Appendix D shows the C and Pascal versions of 
this procedure side by side (page D-8). 

1 .  Allocate registers to program variables. 
2. Produce code for the body of the procedure. 

3. Preserve registers across the procedure invocation. 

This section describes the s w a p procedure in these three pieces, concluding by 
putting all the pieces together. 

Register Allocation 

As mentioned on page 121, the MIPS convention on parameter passing is to 
use registers $4, $5, $6, and $7. Since swap has just two parameters, v and k ,  
they will be found in registers $4 and $5. The only other variable is  t emp, which 
we associate with register $15. This register allocation corresponds to the vari
able declarations in the first half of the s w a p procedure. 

Code for the Body of the Procedure 

The remaining lines of C code in s w a p are 
t emp = v [ k ] ; 
v [ k ] = v [ k+l ] ;  
v [ k+l ] = temp ; 

A simplistic view is to translate them into these five MIPS instructions: 
a d d $ 2 , $ 4 , $ 5 if reg  $ 2  = v + k 

l w 
l w 

S W  
S W  

$ 1 5 ,  0 ( $ 2 )  
$ 1 6 ,  1 ( $ 2 )  

$ 1 6 ,  0 ( $ 2 )  
$ 1 5 , 1 ( $ 2 )  

if r e g  $ 2  h a s  t h e  a d d r e s s  o f  v [ k ] 
if r e g  $ 1 5  ( t emp ) = v [ k ]  
if reg  $ 1 6  = v [ k+l ] 
if r e f e r s  t o  n e x t  e l eme n t  o f  v 
if v [ k ] = r e g  $ 1 6  
if v [ k+ l J = reg  $ 1 5  ( t emp ) 
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Note that the register $2 contains the base of array, and we use the constant 
part of the instruction to select the element of the array. The code is not that 
simple, however. Recall that the memory address for MIPS refers to the byte 
address, and so words are really 4 bytes apart; both the index and the address 
are wrong! Hence we need to multiply the index k by 4 before adding it to the 
address, and we must increment the address of v [ k J by 4 instead of by 1 to get 
the address of v [ k + 1 J .  Forgetting that sequential word addresses differ by 4 instead 
of by 1 is a common mistake in assembly language programming. 

We assume an instruction that can multiply by a small constant for now 
(mu l i ), but we'll cover the real instructions in Chapter 4. We must also change 
the address from 1 to 4 in the data transfers that refer to v [ k + 1 J ,  since sequen
tial words are 4 bytes apart. The new version has the changes highlighted: 

m u l i $ 2 , $ 5 , 4  # r e g  $ 2  = k * 4 
a d d  $ 2 .  $ 4 . $ 2  # r e g  $ 2  = v + ( k * 4 ) 

l w  
l w  

S W  
S W  

$ 1 5 , 0 ( $ 2 )  
$ 1 6 , 4 ( $ 2 )  

$ 1 6 , 0 ( $ 2 )  
$ 1 5 , 4 ( $ 2 )  

# r e g  $ 2  h a s  t h e  a d d r e s s  o f  v [ k ]  
# r e g  $ 1 5  ( t emp ) = v [ k ] 
# r e g  $ 1 6  = v [ k+ l ] 
# r e fe r s  t o  n e x t  e l eme n t  o f  v 
# v [ k ] = r e g  $ 1 6  
# v [ k+l ] = re g $ 1 5  ( t emp ) 

Now we have allocated storage and written the code to perform the opera
tions of the procedure. The only missing code is the code that preserves regis
ters across the routine that calls s w a p.  

Preserving Registers Across Procedure Invocation 

Let's use callee save as our convention. Since we are changing registers $2, $15, 
and $16, we must first make room on the stack to save their original values. 
Register $29 contains the stack pointer, and we need to adjust it by 3 x 4 or 12 
bytes before we save the three words: 

a d d i  $ 2 9 , $ 2 9 , - 1 2  

The adjustment is negative because the MIPS convention is for the stack to 
grow from higher addresses to lower addresses. Now we save the old values: 

s w  $ 2 , 0 ( $ 2 9 ) # s a v e $ 2  o n  s t a c k  
s w  $ 1 5 , 4 ( $ 2 9 ) # s a v e $ 1 5  o n  s t a c k  
s w  $ 1 6 ,  8 (  $ 2 9 ) # s a v e  $ 1 6  on s t a c k  

At the end of the procedure we just restore the registers via three loads and 
then adjust the stack in the other direction. Since s w a p  calls no procedures, we 
skip saving and restoring the return address in register $31. We just place a 
Jump register instruction at the end of the code to return. 
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Sa v ing registers 

s wa p :  a d d i  
S W  
S W  
S W  

$ 2 9 , $ 2 9 , - 1 2  
$ 2 ,  0 ( $ 2 9 ) 

$ 1 5 , 4 ( $ 2 9 ) 
$ 1 6 ,  8 ( $ 2 9 ) 

fl m a k e  r o om on s t a c k  f o r  3 r e g  
fl s a v e $ 2  on s t a c k  

mu l i 

a d d  

l w  
l w  

S W  
S W  

l w  
l w  
l w  
a d d i  

fl s a v e $ 1 5  o n  s t a c k  
fl s a v e  $ 1 6  o n  s t a c k  

Procedure body 

$ 2 , $ 5 , 4 fl reg  $2  = k * 4 
$ 2 , $ 4 , $ 2  fl r e g  $ 2  = v + ( k*4 ) 

II r e g  $ 2  h a s  t h e  a d d r e s s  
$ 1 5 , 0 ( $ 2 )  fl r e g  $ 1 5  < t emp ) = v [ k ] 
$ 1 6 ,  4 ( $ 2 )  fl r e g  $ 1 6  = v [ k+l ] 

II r e f e r s  t o  n e x t  e l eme n t  
$ 1 6 , 0 ( $ 2 )  II v [ k ]  = r e g  $ 1 6  
$ 1 5 , 4 ( $ 2 )  fl v [ k + l ] = r e g  $ 1 5  ( t emp ) 

Restoring registers 

$ 2 , 0 ( $ 2 9 ) 
$ 1 5 , 4 ( $ 2 9 ) 
$ 1 6 ,  8 ( $ 2 9 ) 
$ 2 9 . $ 2 9 , 1 2  

fl r e s t o r e  $ 2  f r om s t a c k  
fl r e s t o re $ 1 5  f r om s t a c k  
fl r e s t o re $ 1 6  f r om s t a c k  
fl r e s t o r e s t a c k  p o i n t e r  

o f  v [ k ]  

o f  v 

FIGURE 3.19 MIPS assembly code of the procedure swap In Figure 3.18 on page 136. 

The Full Procedure 

We are now ready for the whole routine. To make it easier to follow, we iden
tify each block of code with its purpose in the procedure in Figure 3.19. This 
simple example shows the power of writing in high-level programming lan
guages versus assembly language: 8 lines of C code became 17  lines of MIPS 
assembly code. 

II A Longer Example 

To ensure that the reader appreciates the rigor of programming in assembly 
language, we'll try a second, longer example. In this case we'll build a routine 
that calls the s w a p  procedure from section 3.9. This program sorts an array of 
10,000 integers. Figure 3.20 shows the C version of the program, and the Pascal 
version is found on page D-8 in Appendix D. Once again we present this pro
cedure in several steps, concluding with the full procedure. 
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i n t v [ l O O O O ] ; 

s o r t  ( i n t v [ J . i n t n )  
( 

i n t i , j ;  
f o r  ( i  = O ;  i < n ;  i = i +l ) ( 

f o r  ( j  = i - 1 ;  j >=O && v [ j J > v [ j +l ] ;  
s w a p ( v , j ) ;  

139 

j - 1 )  ( 

FIGURE 3.20 A C procedure that performs a bubble sort on the array v. For readers unfa
miliar with C, the three parts of the first for statement are the initialization that happens before 
the first iteration (i = 0), the test if the loop should iterate again (i < n), and the operation that hap
pens at the end of each iteration (i = i + 1). Appendix D shows the C and Pascal versions of this 
procedure side by side (page D-8). 

Register Allocation 

The two parameters of the procedure s o  rt ,  v and n, are in the parameter reg
isters $4 and $5, and we assign register $19 to i and register $17 to j .  

Code for the Body of the Procedure 

The procedure body consists of two nested for loops and a call to swap that 
includes parameters. Let's unwrap the code from the outside to the middle. 

The Outer Loop 
The first translation step is the first for loop: 

f o r  ( i  = O ;  i < n ;  i = i + l ) { 
Recall that the C for statement has three parts: initialization, loop test, and iter
ation increment. It takes just one instruction to initialize i to 0, the first part of 
the for statement: 

a d d  $ 1 9 , $ 0 , $ 0  # i = O 

It also takes just one instruction to increment i ,  the last part of the for: 

a d d i  $ 1 9 .  $ 1 9 . 1 # i = i + 1 

The loop should be exited if i < n is not true, or, said another way, should be 
exited if i 2". n .  This test takes two instructions: 

f o r l t s t : s l t  $ 1 . $ 1 9 , $ 5  
b e q  $ 1 , $ 0 , e x i t l  

# r e g  $ 1  = 0 i f  $ 1 9  2". $ 5  ( i 2".n ) 
# g o  t o  e x i t l  i f  $ 1 9  2". $ 5  ( i 2".n ) 
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The set on less than instruction sets register $1 to 1  if $19 < $5 and 0 otherwise. 
Since we want to test if $19 ;:: $5, we branch if register $1 is zero. The bottom of 
the loop just jumps back to the loop test: 

e x  i t l : 
j f o r l t s t  ff j um p  t o  t e s t  o f  o u t e r  l o o p  

The skeleton code of the first for loop is then: 
a d d  $ 1 9 .  $ 0 , $ 0  ff i = O 

f o r  1 t s  t : s l t $ 1  . $ 1 9  . $ 5 ff r e g  $ 1  = 0 i f $ 1 9  ;:: $ 5 ( i ;::n ) 

e x i t l : 

b e q  $ 1 , $ 0 ,  ex i t l ff g o  t o  ex i t l i f  $ 1 9 ;:: $ 5  ( i ;::n )  

( b ody  o f  f i r s t  f o r  l o o p )  

a d d i  $ 1 9 . $ 1 9 . 1 
j f o r l  t s t  

ff i = i + 1 
ff j um p  t o  t e s t  o f  o u t e r  l o o p  

Voila! Exercise 3.11 explores writing faster code for similar loops. 

The Inner loop 
The second for loop looks like this in C: 

f o r  ( j  = i - 1 ;  j >=O &&  v [ j J > v [ j + l ] ; j = j - 1 )  { 

The initialization portion of this loop is again one instruction: 
a d d i  $ 1 7 . $ 1 9 . - 1 ff j = i - 1 

and the decrement of j is also one instruction: 
a d d i  $ 1 7 . $ 1 7 . - 1  ff j = j - 1 

The loop test has two parts. We exit the loop if either condition fails, so the first 
test must exit the loop if it fails (j < 0): 

f o r 2 t s t : s l t i $ 1 , $ 1 7 . O ff r e g  $ 1  = 1 i f  $ 1 7  < O ( j  < 0 )  
b n e  $ 1 , $ 0 , e x i t 2 ff g o  t o  e x i t 2 i f  $ 1 7  < 0 ( j  < 0 )  

This branch will skip over the second condition test. If it doesn't skip, j ;:: 0. 
The second test exits if v [ j J > v [ j + 1 J is not true, or exits if v [ j J :::; v [ j + 1 J .  

First we create the address by multiplying j by 4 (since we need a byte ad
dress) and add it to the base address of v :  

m u l i $ 1 5 , $ 1 7 , 4  ff r e g  $ 1 5  j * 4 
a d d  $ 1 6 ,  $ 4 , $ 1 5  ff r e g  $ 1 6  v + ( j *4 )  

Now we load v [ j J :  

l w  $ 24 , 0 ( $ 1 6 )  ff r e g  $ 2 4  = v [ j ] 

Since we know that the second element is just the following word, we add 4 to 
the address in register $16 to get v [ j + 1 J :  
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l w $ 2 5 , 4 ( $ 1 6 )  # r e g  $ 2 5  = v [ j + l ] 

The test of v [ j J � v [ j + 1 J is the same as v [ j + 1 J 2:v [ j J ,  so the two instructions 
of the exit test are 

s l t  $ 1 , $ 2 5 , $ 24 # r e g  $ l = 0 i f  $ 2 5  2: $ 24 
b e q  $ 1 , $ 0 , e x i t 2  # g o  t o  e x i t 2 i f  $ 2 5  2: $ 2 4  

The bottom of the loop jumps back to the full loop test: 

j f o r 2 t s t  # j ump  t o  t e s t  o f  i n n e r  l o o p  

Combining the pieces together, the second for loop looks like this: 
a d d i  $ 1 7 . $ 1 9 ,  - 1  # j = i - 1 

f o r 2 t s t : s l t i $ 1 , $ 1 7 , 0 # r e g  $ 1  = 1 i f  $ 1 7  < 0 ( j < O l 
b n e  $ 1 , $ 0 , e x i t 2 # g o  t o  ex i t 2 i f  $ 1 7  < 0 ( j < O l  
m u l i $ 1 5 ,  $ 1 7  , 4  # r e g  $ 1 5  j * 4 
a d d  $ 1 6 , $ 4 , $ 1 5  # r e g  $ 1 6  v + ( j *4 ) 
l w $ 2 4 ,  0 ( $ 1 6 )  # r e g  $ 2 4  v [ j ]  
l w $ 2 5 .  4 ( $ 1 6 )  # r e g  $ 2 5  v [ j + l ] 
s l t  $ 1 , $ 2 5 , $ 24 # r e g  $ 1  0 i f  $ 2 5  2: $ 24 
b e q  $ 1 , $ 0 , e x i t 2 # g o  t o  e x i t 2 i f  $ 2 5  2: $ 2 4  

( b ody  o f  s e c o n d  f o r  l o o p ) 

a d d i  $ 1 7 . $ 1 7 . - 1  # j = j - 1 
j f o r 2 t s t  # j ump  t o  t e s t  o f  i n n e r  l o o p  

e x i t 2 : 

The Procedure Call 
The next step is the body of the second for loop: 

s wa p ( v , j l ;  

Calling s w a p is easy enough: 
j a l  s w a p  

Passing Parameters 
The problem comes when we want to pass parameters, because the s o  r t  pro
cedure needs the values in registers $4 and $5, yet the s w a p  procedure needs to 
have its parameters placed in those same registers. One solution is to copy the 
parameters for s o r t  into other registers earlier in the procedure, making reg
isters $4 and $5 available for the call of s w a p .We first copy $4 and $5 into $18 
and $20 during the procedure: 

m o v e  $ 1 8 ,  $ 4  # c o py p a r a m e t e r  $ 4  i n t o  $ 1 8  
m o v e  $ 2 0 , $ 5  # c o py p a r a m e t e r  $ 5  i n t o  $ 2 0  
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(Remember that m o v e  is a pseudoinstruction provided by the assembly for the 
convenience of the assembly language programmer: see page 110.) Then we 
pass the parameters to s w a p with these two instructions: 

m o v e  $ 4 , $ 1 8  # f i r s t  s w a p  p a r a met e r  i s  v 
m o v e  $ 5 ,  $ 1 7  # s e c o n d  s w a p  pa r a m e t e r  i s  j 

Preserving Registers Across Procedure Invocation 

The only remaining code is the saving and restoring of registers using the 
callee save convention. Clearly we must save the return address in register $31, 
since s o r t  calls another procedure. The other registers we have used are $15, 
$16, $17, $18, $19, $20, $24, and $25. The prologue of the sort procedure is then 

a d d i  $ 2 9 , $ 2 9 , - 3 6  # ma k e r o o m  o n  s t a c k  f o r  9 r e g  
s w  $ 1 5 , 0 (  $ 2 9 ) # s a v e  $ 1 5  o n  s t a c k  
s w  $ 1 6 , 4 (  $ 2 9 ) # s a v e  $ 1 6  o n  s t a c k  
s w  $ 1 7 , 8 ( $ 2 9 ) # s a v e  $ 1 7  o n  s t a c k  
s w  $ 1 8 , 1 2 ( $ 2 9 )  # s a v e $ 1 8  o n  s t a c k  
s w  $ 1 9 , 1 6 ( $ 2 9 ) # s a v e  $ 1 9  on  s t a c k  
s w  $ 2 0 , 2 0 ( $ 2 9 ) # s a v e  $ 2 0  o n  s t a c k  
s w  $ 2 4 , 2 4 (  $ 2 9 ) # s a v e  $ 2 4  o n  s t a c k  
s w  $ 2 5 , 2 8 ( $ 2 9 ) # s a v e  $ 2 5  o n  s t a c k  
s w  $ 3 1 , 3 2 ( $ 2 9 ) # s a v e  $ 3 1  o n  s t a c k  

The tail of the procedure simply reverses all these instructions, then adds a j r 
to return. 

The Full Procedure 

Now we put all the pieces together in Figure 3.21, being careful to replace ref
erences to registers $4 and $5 in the for loops with references to registers $18 
and $20. Once again to make the code easier to follow, we identify each block 
of code with its purpose in the procedure. In this example, 11 lines of the s o r t 
procedure in C became the 44 lines in the MIPS assembly language. 

1S111n1"a11111n! Copying $18 into $4 in the passing parameters section was unneces
sary, since that was the old value of $4, but it is good practice to save al l  the parame
ters if you are going to cal l  another procedure. We could also streaml ine the procedure 
call overhead by using a combination of callee and caller save for procedures that don't 
call other procedures, such as s w a p .  Exercises 3.28 and 3.29 explore these options. 
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Arrays versus Pointers 

A challenging topic for any new programmer is understanding pointers. Com
paring assembly code that uses arrays and array indices to the assembly code 
that uses pointers offers insight into that difference. This section shows C and 
MIPS assembly versions of two procedures to clear a sequence of words in 
memory: one using array indices and one using pointers. Figure 3.22 shows 
the two C procedures. 

Let's start with the array version, c l  e a r  1 ,  focusing on the body of the loop 
and ignoring the procedure linkage code. We assume that the two parameters 
a r r a y  and s i z e  are found in the registers $4 and $5, and that i is allocated to 
register $2. 

The initialization of i ,  the first part of the for loop, is straightforward: 

m o v e  $ 2 , $ 0 # i = 0 ( r e g i s t e r  $ 0  = O J 
To set a r r a y  [ i J to 0 we must first get its address. Start by multiplying i by 4 
to get the byte address: 

l o o p l : m u l i $ 1 4 , $ 2 ,  4 # $ 1 4  = i * 4 

Since the starting address of the array is in a register, we must add it to the 
index to get the address of a r r a y  [ i J using an add instruction: 

a d d  $ 3 , $ 4 , $ 1 4 # $ 3  = a d d r e s s  o f  a r r a y [ i ] 

Finally we can store 0 in that address: 

sw $ 0 , 0 ( $ 3 )  # a r r a y [ i ] = 0 

This is the end of the body of the loop, so the next step is to increment i :  

a d d i  $ 2 , $ 2 , 1  # i = i + 1 

The loop test checks if i is less than s i z e : 

s l t  $ 1 , $ 2 , $ 5 # $ 1  = ( i  < s i z e )  
b n e  $ 1 , $ 0 , l o o p l  # i f ( i  < s i z e )  g o  t o  l o o p l  

We have now seen all the pieces of the procedure. Here is the MIPS code for 
clearing an array using indices: 

m o v e  $ 2 . $ 0  
l o o p l : m u l i $ 1 4 , $ 2 , 4  

a d d  $ 3 , $ 4 , $ 1 4 
S W  $ 0 , 0 ( $ 3 )  
a d d i  $ 2 , $ 2 , 1  
s l t $ 1 , $ 2 , $ 5 
b n e  $ 1 , $ 0 , l o o p l  

# i = 0 
# $ 1 4  = i * 4 
# $ 3  = a d d r e s s  o f  a r r ay [ i ]  
# a r r a y [ i J  = 0 
# i = i + 1 
# $ 1  = ( i  < s i z e )  
# i f ( i  < s i z e )  g o  t o  l o o p l  
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Saving registers 
s o r t : a d d i $ 2 9 , $ 2 9 , - 3 6  # m a k e  r o o m  on s t a c k  f o r  9 r e g  

S W  $ 1 5 ,  0 ( $ 2 9 ) # s a v e  $ 1 5  on s t a c k  
S W  $ 1 6 ,  4 ( $ 2 9 ) # s a ve $ 1 6  on s t a c k  
S W  $ 1 7 ,  8 ( $ 2 9 )  # s a v e $ 1 7  on s t a c k  
S W  $ 1 8 , 1 2 ( $ 2 9 ) # s a ve $ 1 8  on s t a c k  
S W  $ 1 9 , 1 6 ( $ 2 9 ) ii s a ve $ 1 9  on s t a c k  
S W  $ 2 0 , 2 0 ( $ 2 9 ) ii s a ve $ 2 0  o n  s t a c k  
S W  $ 2 4 . 2 4 ( $ 2 9 ) II s a ve $ 2 4  o n  s t a c k  
S W  $ 2 5 . 2 8 ( $ 2 9 ) II s a ve $ 2 5  o n  s t a c k  
S W  $ 3 1 , 32 ( $ 2 9 ) II s a v e  $ 3 1  o n  s t a c k  

• .r. 
•. :---.�'. .1 ::1 �!c;icec!ure. body " .,_ ··, . ' - .'!lo ·  

Move parameters 
move $ 1 8 .  $ 4  ft c o py p a r a me t e r  $ 4  i n t o  $ 1 8  
move $ 2 0 , $ 5  ft c o py p a r a me t e r  $ 5  i n t o  $ 2 0  

a dd $ 1 9 . $ 0 , $ 0  ft i = 0 
Outer loop f o r l  t s t : s l t  $ 1 , $ 1 9 ,  $ 2 0  ft reg  $ 1  = 0 i f  $ 1 9  � $ 2 0  ( i �n )  

b e q  $ 1 ,  $ 0 , ex i t l  ft go t o  e x i t l  i f  $ 1 9  � $ 2 0  ( i �n ) 
a d  d i  $ l 7 .  $ 1 9 , - 1  ft j = i - 1 

f o r 2 t s t :  s l t i  $ 1 , $ 1 7 . 0 ft r e g  $ 1  = 1 i f $ 1 7  < 0 C j < O  l 
b n e  $ 1 ,  $ 0 . ex i t 2 # g o  t o  e x i t 2  i f  $ 1 7  < 0 C j < O l  
mu l i $ 1 5 ,  $ 1 7 . 4 # r e g  $ 1 5  = j * 4 

Inner loop a d d  $ 1 6 , $ 1 8 ,  $ 1 5  If r eg $ 1 6  = v + ( j * 4 ) 
l w  $ 2 4 , 0 ( $ 1 6 )  ft reg $ 2 4  = v [ j  J 
l w  $ 2 5 , 4 ( $ 1 6 )  II reg $ 2 5  = v [ j + l ] 
s l t  $ 1 ' $ 2 5 ,  $ 24 ft r e g  $ 1  = 0 i f  $ 2 5  � $ 2 4  
beq $ 1 , $ 0 , e x i t 2 ft g o  t o  e x i t 2 i f  $ 2 5  � $ 2 4  

m o v e  $ 4 , $ 1 8  ft 1 s t p a r a me t e r  o f  s w a p  i s  v 
Pass parameters 

m o v e  $ 5 ,  $ 1 7  ft 2 n d  p a r a me t e r  o f  s w a p  i s  j and call 
j a l  s w a p  

a d d i  $ 1 7 , $ 1 7 ' - 1 ft j = j - 1 
Inner loop 

j f o r 2 t s t  ft j ump t o  t e s t  o f  i n n e r  l oo p  

e x i t 2 :  a d d i  $ 1 9 ,  $ 1 9 ,  1 # i = i + 1 
Outer loop 

j fo r l t s t  II j ump t o  t e s t  o f  o u t e r  l oo p  

. Restoring registers 

e x i t 1 : l w  $ 1 5 ,  0 ( $ 2 9 )  # r e s t o r e  $ 1 5  f r om s t a c k  
l w  $ 1 6 . 4 ( $ 2 9 ) ft r e s t o r e  $ 1 6  f r om s t a c k  
l w  $ 1 7 , 8 ( $ 2 9 ) ft r e s t o r e  $ 1 7  f r om s t a c k  
l w  $ 1 8 . 1 2 ( $ 2 9 ) ft r e s t o r e  $ 1 8  f r om s t a c k  
l w  $ 1 9 , 1 6 ( $ 2 9 )  # r e s t o r e  $ 1 9  f r om s t a c k  
l w  $ 2 0 , 2 0 ( $ 2 9 ) # r e s t o r e  $ 2 0  f r om s t a c k  
l w  $ 2 4 , 2 4 ( $ 2 9 ) ff r e s t o r e  $ 2 4  f r om s t a c k  
l w  $ 2 5 . 2 8 ( $ 2 9 ) # r e s t o r e  $ 2 5  f rom s t a c k  
l w  $ 3 1 . 3 2 ( $ 2 9 )  If r e s t o r e  $ 3 1  f r om s t a c k  
a d d i $ 2 9 , $ 2 9 , 3 6  If r e s t o r e  s t a c k  po i n t e r  

FIGURE 3.21 MIPS assembly version of procedure sort I n  Figure 3.20 on page 139. 
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c l e a r l ( i n t a r r a y [ ] .  i n t s i z e )  

I 
i n t i ; 

f o r  C i = O ;  i < s i z e ;  + 1 ) 
a r r a y [ i ]  O ;  

c l e a r 2 C i n t * a r r a y , i n t s i z e )  

I 
i n t * P ;  

f o r  C p  = & a r r ay [ O J : p < & a r r a y [ s i z e ] ; p 

* P = 0 : 
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p + 1 )  

FIGURE 3.22 Two C procedures for setting an array to all zeros. C l  e a  r 1 uses indexes while 
c l  e a r  2 uses pointers. The second procedure needs some explanation for those unfamiliar with 
C. The address of a variable is indicated by " & " and referring to the object pointed to by a pointer 
is indicated by "* " .  The declarations declare that array and p are pointers to integers. The first 
part of the for loop in c l  e a  r 2 assigns the first element of a r r a y  to the pointer p. The second part 
of the for loop tests to see if the pointer is pointing to the last element of a r r a y. Incrementing a 
pointer by one, in the last part of the for loop, means moving the pointer to the next sequential 
object of its declared size. Since p is a pointer to integers, the compiler will generate MIPS instruc
tions to increment p by 4, the number of bytes in a MIPS integer. The assignment in the loop 
places 0 in the object pointed to by p .  

(This code works as long as s i z e is  greater than 0.) 
The second procedure allocates the two parameters a r r a y  and s i z e to the 

registers $4 and $5 and allocates p to register $2. The code for the second pro
cedure starts with assigning the pointer p to the first element of the array: 

m o v e  $ 2 , $ 4 # p = a d d r e s s  o f  a r r a y [ O J  

The next code is the body of the for loop, which simply stores 0 into p :  

l o o p 2 : s w  $ 0 , 0 ( $ 2 )  # Memo ry [ p ]  = 0 

This is all of the body of the loop, so the next code is the iteration increment, 
which changes p to point to the next word: 

a d d i  $ 2 , $ 2 , 4  # p = p + 4 

Incrementing a pointer by 1 means moving the pointer to the next sequential 
object in C. Since p is a pointer to integers, the compiler increments p by 4. 

The loop test is next. The first step is calculating the address of the last ele
ment of a r r a y .  Start with multiplying s i z e by 4 to get its byte address: 

m u l i $ 1 4 , $ 5 , 4 # $ 1 4  = s i z e * 4 
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l o o p l : 
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and then we add the product to the starting address of the array to get the 
address of the last element of the array: 

a d d  $ 3 , $ 4 , $ 1 4  # $ 3  = a d d r e s s  of a r r ay [ s i z e J  

The loop test is simply to see if p is less than the last element of a r r ay :  

s l t  $ 1 , $ 2 , $ 3 # $ 1  = ( p < & a r r a y [ s i z e J ) 
b n e  $ l , $ 0 , l o o p 2  # i f ( p < & a r r ay [ s i z e J ) g o  t o  l o o p 2  

With all the pieces completed we can show a pointer version of the code to 
zero an array: 

m o v e  $ 2 , $ 4 # p = a d d r e s s  o f  a r r a y [ O J  
l o o p 2 : S W  $ 0 , 0 ( $ 2 )  # Memo ry [ p J  = 0 

a d d i  $ 2 , $ 2 , 4  # p = p + 4 
m u  l i $ 1 4 , $ 5 , 4 # $ 1 4  = s i z e * 4 
a d d  $ 3 , $ 4 , $ 1 4  # $ 3  = a d d r e s s  o f  a r r ay [ s i z e ]  
s l t  $ 1 , $ 2 , $ 3 # $ 1  = ( p < & a r r a y [ s i z e ] ) 
b n e  $ 1 , $ 0 , l o o p 2  # i f  ( p < & a r r a y [ s i z e ] ) g o  t o  l o o p 2  

As in the first example, this code assumes s i z e is greater than 0. 
Note that this program calculates the address of the end of the array every 

iteration of the loop even though it does not change. A faster version of the 
code moves this calculation outside the loop: 

m o v e  $ 2 , $ 4 # p = a d d r e s s  o f  a r r a y [ O J  
m u l i $ 1 4 , $ 5 , 4 # $ 1 4 = s i z e * 4 
a d d  $ 3 , $ 4 , $ 1 4  # $ 3  = a d d r e s s  o f  a r r ay [ s i z e ]  

l o o p 2 : s w  $ 0 , 0 ( $ 2 )  # Memo ry [ p J  = 0 
a d d i  $ 2 , $ 2 , 4 # p = p + 4 
s l t  $ 1 , $ 2 , $ 3 # $ 1  = ( p < & a r r a y [ s i z e J ) 
b n e  $ l , $ 0 , l o o p 2  # i f ( p < & a r r a y [ s i z e J ) g o  t o  l o o p 2  

Comparing the two code sequences side by side illustrates the difference 
between array indices and pointers (the changes introduced by the pointer 
version are highlighted) : 

move  $ 2 , $ 0 If i = 0 move $ 2 , $4  If p - & a r ray [ O J  
m u l  i 
a d d  
S W  
a d d i  
s l t  
b n e  

$ 1 4 , $ 2 , 4  If $ 1 4  = i * 4 mu l i $ 1 4 ,  S 5 , 4 # $ 14 = s 1 ze * 4 
$ 3 , $ 4 , $ 1 4  If $ 3  =& a r r a y [ i ]  add  $3 , $4 , $ 1 4  If $3  = & a r ray [s i ze ] 
$ 0 ,  0 ( $ 3 )  If a r r ay [ i J = O 1 oop2 : SW $0 , 0 ( $2 ) # Memory [ p ]  = o 
$ 2 , $ 2 , l  If i = i + 1 a d  d i  $ 2 , $2 , 4 # p - p + 4 
$ 1 , $ 2 , $ 5 If $ 1  = ( i < s i z e )  s l t $ 1 , $ 2 , $3 # $ l= ( p <&a rray [ s i ze J l 
$ 1 , $ 0 , l o o p l  If i f  ( )  g o  t o  l o o p l  bne $ l , $0 , l oop2 # i f ( ) go  to  l oop2 

The version on the left must have the multiply and add inside the loop because 
i is incremented and each address must be recalculated from the new index 
while the memory pointer version increments the pointer p directly. This 



3.12 Fallacies and Pitfalls 147 

reduces the instructions executed per iteration from 6 to 4. Many modern com
pilers will optimize the C code in c l  e a r  1 to produce code similar to the assem
bly code above on the right-hand side. 1111 Fallacles and Pitfalls 

Fallacy: More powerful instructions mean higher performance. 

Perhaps the most famous counterexample is an instruction in the VAX archi
tecture that supported an elaborate procedure call mechanism in a single 
instruction. This single instruction automatically saved the following items on 
the stack: the return address, the number of parameters, any registers that 
would be modified by the procedure, and the old value of the stack pointer. 

In addition, the c a  1 1  instruction updated the stack pointer and did some 
other bookkeeping before jumping to the procedure. The VAX also had an in
struction very similar to j a l  in MIPS. People found that using compiler con
ventions on parameter passing and register saving and replacing the 
sophisticated call instruction by simpler instructions like j a l  had the follow
ing effect: it made programs run 1 .2 times faster by avoiding the powerful in
struction! Clearly moving procedure call into hardware means you can't tailor 
the overhead to the program, and is overkill in most cases. 

Pitfall: Writing in assembly language in order to obtain the highest performance. 

At one time compilers for programming languages produced naive instruction 
sequences; the increasing sophistication of compilers means the gap between 
compiled code and code produced by hand is closing fast. In fact, to compete 
with current compilers, the assembly language programmer needs to thor
oughly understand the concepts in Chapters 6 and 7 on processor pipelining 
and memory hierarchy. 

This battle between compilers and assembly language coders is one situa
tion in which humans are losing ground. For example, C offers the program
mer a chance to give a hint to the compiler about which variables should be 
kept in registers versus spilled to memory. When compilers were poor at reg
ister allocation, such hints were vital to performance. In fact, some C textbooks 
spent a fair amount of time giving examples to effectively use register hints. 
Today's C compilers generally ignore such hints because the compiler does a 
better job at allocation than the programmer. 

As a specific counterexample, we ran the MIPS assembly language pro
grams in Figures 3.19 and 3.21 to compare performance to the C programs in 
Figures 3.18 and 3.20. Figure 3.23 shows the results. As you can see, the com
piled program is 1 .5 times faster than the assembled program. The compiler 
generally was able to create assembly language code that was tailored exactly 
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Assembly 37.9 seconds 

c 25.3 seconds 

FIGURE 3.23 Performance Comparison of the C and assembly language version of the 
sort and swap procedures in sections 3.9 and 3.10. The size of the array to be sorted was 
increased to 10,000 elements. The programs were run on a DECsystem 5900 with 128 MB of main 
memory and a 40-MHz R3000 processor using version 4.2a (Revision 47) of the Ultrix operating 
system. The C compiler was run with the -0 option. 

to these conditions, while the assembly language program was written in a 
slightly more general fashion to make it easier to modify and understand. The 
specific improvements of the C compiler were a more streamlined procedure 
linkage convention and changing the address calculations to move the multi
ply outside the inner loop. 

Even if the battle isn't lost yet, the dangers of writing in assembly language 
are longer time spent coding and debugging, the loss in portability, and the 
difficulty of maintaining such code. One of the few widely accepted axioms of 
software engineering is that coding takes longer if you write more lines, and it 
clearly takes many more lines to write a program in assembly language than 
in C. And once it is coded, the next danger is that it will become a popular pro
gram. Such programs always live longer than expected, meaning that some
one will have to update the code over several years and make it work with new 
releases of operating systems and new models of machines. Writing in higher 
level language instead of assembly language not only allows future compilers 
to tailor the code to future machines, it also makes the software easier to main
tain, and allows the program to run on more brands of computers. 

Pitfall: Forgetting that sequential word addresses in machines with byte address
ing do not differ by 1 .  

The first version of  our s w a p  code on page 136 made this mistake. Many an 
assembly language programmer has toiled over errors made by assuming that 
the address of the next word can be found by incrementing the address in a 
register by 1 instead of by the word size in bytes. Forewarned is forearmed! 

1111 Concludlng Remarks 

Less is more. 

Robert Browning, Andrea de/ Sarto, 1855 

The two principles of the stored-program computer are the use of instructions 
that are indistinguishable from numbers and the use of alterable memory for 
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programs. These principles allow a single machine to aid environmental scien
tists, financial advisers, and novelists in their specialties. The selection of a set 
of instructions that the machine can understand demands a delicate balance 
among the number of instructions needed to execute a program, the number 
of clock cycles needed by an instruction, and the speed of the clock. Four prin
ciples guide the designers of instruction sets in making that delicate balance: 

1 .  Simplicity favors regularity. Regularity motivates many features of the 
MIPS instruction set: keeping all instructions a single size, always 
requiring three register operands in arithmetic instructions, and keep
ing the register fields in the same place in each instruction format. 

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 reg
isters rather than many more. 

3. Good design demands compromise. One MIPS example was the compro
mise between providing for larger addresses and constants in instruc
tions and keeping all instructions the same length. 

4. Make the common case fast. Examples of making the common MIPS case 
fast include PC-relative addressing for conditional branches and imme
diate addressing for constants. 

Above this machine level is assembly language, a language that humans 
can read. The assembler translates it into the binary numbers that machines 
can understand, and it even "extends" the instruction set by creating symbolic 
instructions that aren't in the hardware. For instance, constants or addresses 
that are too big are broken into properly sized pieces, common variations of 
instructions are given their own name, and so on. 

The MIPS instructions we have covered so far are listed in Figure 3.24. Each 
category is associated with constructs that appear in programming languages: 

• The arithmetic instructions correspond to the operations found in as
signment statements. 

• Data transfer instructions are most likely to occur when dealing with 
data structures like arrays. 

• The conditional branches are used in if statements and in loops. 

• The unconditional jumps are used in procedure calls and returns and 
also for case/switch statements. 

More of the MIPS instruction set is revealed in Chapter 4, after we explain 
computer arithmetic. Appendix A (section A.10 on page A-47) describes the 
full MIPS architecture. 
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Arithmetic 

Data transfer 
Cond itional branch 
Jump 
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add , sub, add i  Operations i n  assignment statements 

lw, sw, J u i  References t o  data structures such a s  arrays 

beq , bne, s it, slti /f statements and loops 

j, jr, ja l  Procedure cal ls ,  returns, and case/switch statements 

48% 50% 

33% 41% 

1 7% 8% 

2% 1% 

FIGURE 3.24 MIPS Instruction categories, examples, correspondence to high-level program language constructs, 
and percentage of MIPS Instructions executed by category for two programs, gee and spice. Figure 3.16 on page 
132 shows more details of the MIPS architecture revealed in this chapter, and Figure 4.46 on page 248 shows the percentage 
of the individual MIPS instructions executed. 

These instructions are not born equal; the popularity of the few dominates 
the many. For example, Figure 3.24 shows the popularity of each class of in
structions for two programs, gee and spice. The varying popularity of instruc
tions plays an important role in the chapters on performance, datapath, 
control, and pipelining. 

II Historical Perspective and Further Reading 

accumulator: Archaic term for register. On-line use of it as a synonym for "reg
ister" is a fairly reliable indication that the user has been around quite a while . . . .  

Eric Raymond, The New Hacker's Dictionary, 1991 

Hardware was precious in the earliest stored-program computers. As a conse
quence, computer pioneers could not afford the number of registers found in 
today's machines. In fact, these machines had a single register for arithmetic 
instructions. Since all operations would accumulate in a single register, it was 
called the accumulator, and this style of instruction set is given the same label. 
For example, EDSAC in 1949 had a single accumulator. 

The three-operand format of the MIPS suggests that a single register is at 
least two registers shy of our needs. Having the accumulator as both a source 
operand and as the destination of the operand fills part of the shortfall, but it 
still leaves us one operand short. That final operand is found in memory. Ac
cumulator machines have the memory-based operand-addressing mode sug
gested earlier. It follows that the add instruction of an accumulator instruction 
set would look like this: 

a d d  2 0 0  
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This instruction means add the accumulator to the word in memory at address 
200 and place the sum back into the accumulator. No registers are specified 
because the accumulator is known to be both a source and a destination of the 
operation. 

What is the accumulator-style assembly code for this C code? 

A =  B + C ;  

It would be translated into the following instructions in an accumulator in
struction set: 

l o a d  A d d r e s s B  ff A c e  Memo ry [ Ad d r e s s B J , 
ff o r  A c e  = B 

a d d  Ad d r e s s C  ff A c e  B + M e m o ry [ Ad d r e s s C J ,  
ff o r  A c e  = B+C 

s t o r e A d d r e s s A  ff Memo ry [ Ad d r e s s A J  = A c c . 
ff o r  A = B+C 

All variables in a program are in memory in accumulator machines, in
stead of in registers as we saw for MIPS. One way to think about this is that 
variables are always spilled to memory in this style of machine. As you may 
imagine, it takes many more instructions to execute a program with a sin
gle-accumulator architecture. (See Exercises 3.25 and 3.26 for other compar
ative examples.) 

The next step in the evolution of instruction sets was the addition of regis
ters dedicated to specific operations. Hence, registers might be included to act 
as indices for array references in data transfer instructions, to act as separate 
accumulators for multiply or divide instructions, and to serve as the top-of
stack pointer. Perhaps the best known example of this style of instruction set 
is found in the Intel 8086, the computer at the core of the IBM Personal Com
puter. This style of instruction set is labeled extended accumulator or dedicated 
register or special-purpose register. Like the single-register accumulator ma
chines, one operand may be in memory for arithmetic instructions. Like the 
MIPS architecture, however, there are also instructions where all the operands 
are registers. 

The generalization of the dedicated register machine allows all the registers 
to be used for any purpose, hence the name general-purpose register. MIPS is an 
example of a general-purpose register machine. This style of instruction set 
may be further divided into those that allow one operand to be in memory as 
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Example 
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ED SAC 1 accumulator 1949 
I BM 701 1 accumulator 1953 
CDC 6600 8 load-store 1963 
IBM 360 16 register-memory 1964 
DEC PDP-8 1 accumulator 1965 
DEC PDP-11 8 register-memory 1970 
DEC VAX 16 register-memory, memory-memory 1977 
Motorola 68000 16 register-memory 1980 
M IPS 32 load-store 1985 
SPARC 32 load-store 1987 

FIGURE 3.25 Number of general-purpose registers in popular machines over the years. 

found in accumulator machines, called a register-memory architecture, and 
those that demand that operands always be in registers, called either a load
store or a register-register machine. The first load-store machine was the CDC 
6600 in 1963, considered by many to be the first supercomputer. MIPS is a 
more recent example of a load-store machine. Perhaps the best known register
memory instruction set is the IBM 360 architecture, first announced in 1964. 
This instruction set is still at the core of IBM's mainframe computers-respon
sible for a large part of the business of the largest computer company in the 
world. Register-memory architectures were the most popular in the 1960s and 
the first half of the 1970s. Figure 3.25 shows a history of the number of registers 
in some popular computers. 

Digital Equipment Corporation's VAX architecture took memory operands 
one step further in 1977. It allowed any combination of registers and memory 
operands to be used in an instruction. A style of machine in which all operands 
can be in memory is called memory-memory. (In truth the VAX instruction set, 
like almost all other instruction sets since the IBM 360, is a hybrid since it also 
has general-purpose registers; see Appendix E.) 

What is the memory-memory style assembly code for this C code? 

A =  B + C ;  
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It would be translated into the following instructions in a memory-memory 
instruction set: 

a d d  Add r e s s A , Ad d r e s s B , Ad d r e s s C  

(See Exercises 3.25 and 3.26 for more comparative examples. )  

While MIPS has a single 32-bit add instruction, the VAX has many versions 
of a 32-bit add to specify the number of operands and whether an operand is 
in memory or is in a register. In addition, each memory operand can be access
ed with more than 10 addressing modes. This combination of address modes 
and register, versus memory, operands means that there are thousands of vari
ants of a VAX add instruction. Clearly this variability makes VAX implemen
tations more challenging. 

When memory was scarce, it was also important to keep programs small, so 
machines like the Intel 8086, IBM 360, and VAX had variable-length instruc
tions, both to match the varying operand specifications and to minimize code 
size. Intel 8086 instructions are from 1 to 5  bytes long, IBM 360 instructions are 
2, 4, or 6 bytes long, and VAX instruction lengths are anywhere from 1 to 54 
bytes. If instruction memory space becomes precious once again, such tech
niques could return to popularity. 

In the 1960s, a few companies followed a radical approach to instruction 
sets. In the belief that it was too hard for compilers to utilize registers effective
ly, these companies abandoned registers altogether! Instruction sets were 
based on a stack model of execution, like that found in the older Hewlett-Pack
ard hand-held calculators. Operands are pushed on the stack from memory or 
popped off the stack into memory. Operations take their operands from the 
stack and then place the result back onto the stack. In addition to simplifying 
compilers by eliminating register allocation, stack machines lent themselves to 
compact instruction encoding, thereby removing memory size as an excuse 
not to program in high-level languages. 

What is the stack-style assembly code for this C code? 

A =  B + C ;  
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It would be translated into the following instructions in a stack instruction 
set: 

p u s h  Add r e s s C  
p u s h  Add r e s s B  
a d d 

p o p  Add r e s s A  

# T o p=To p+4 ; S t a c k [ T o p J =Memo ry [ Ad d r e s s C J  
# T o p=To p+4 ; S t a c k [ T o p J =Memo ry [ Ad d r e s s B J  
# S t a c k [ T o p - 4 J =S t a c k [ T o p ]  
# + S t a c k [ T o p - 4 J ; T o p=T o p - 4 ; 
# Memo ry [ Ad d r e s s A J =S t a c k [ T o p J ; 
# T o p=T o p - 4 ; 

To get the proper byte address, we use 4 to adjust the stack. The down
side of stacks as compared to registers is that it is hard to reuse data that has 
been fetched or calculated without repeatedly going to memory. (See Exer
cises 3.25 and 3.26 for other comparative examples.) 

In the 1960s little systems software was written in high-level languages. For 
example, virtually every commercial operating system before UNIX was pro
grammed in assembly language, and more recently even OS/2 was originally 
programmed at that same low level. Some people blamed the instruction sets 
rather than the programming languages and the compiler technology. Hence 
a machine design philosophy called high-level language computer architecture 
was advocated, with the goal of making the hardware more like the program
ming languages. More efficient programming languages and compilers, plus 
expanding memory, doomed this movement to a historical footnote. The Bur
roughs BSOOO was the commercial fountainhead of this philosophy, but today 
there is no significant commercial descendent of this 1960s radical. 

This language-oriented design philosophy was replaced in the 1980s by 
RISC, which stands for reduced instruction set computer. Improvements in pro
gramming languages, compiler technology, and memory size meant that less 
programming was being done at the assembly level, so instruction sets could 
be measured by how well compilers used them as opposed to how well assem
bly language programmers used them. 

For the reasons discussed earlier in this chapter, it was difficult both for the 
compiler to use the more complex operations and for the instruction set de
signer to avoid making such instructions so general that they were slower than 
simple instruction sequences. Virtually all new instruction sets since 1982 have 
followed this RISC philosophy of fixed instruction lengths, load-store instruc
tion set, limited addressing modes, and limited operations. MIPS, Sun SP ARC, 
Hewlett Packard HPP A, IBM Power PC, and DEC Alpha are all examples of 
RISC architectures. 
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To Probe Further 

Hennessy, J. L., and D. A. Patterson [ 1990]. Computer Architecture: A Quantitative Approach, Mor
gan Kaufmann Publishers, San Mateo, Calif. 

Chapters 3 and 4 describe Intel 80x86, IBM 360, VAX, and a generic RISC machine. The book also includes 
measurements of the frequency of instructions and operands. Appendix E surveys four RISC 
architectures: MIPS, SPARC, 88000, and i860. 

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, N.J. 

This book describes the MIPS architecture in greater detail than Appendix A. 

Levy, H., and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX, Digital Press, 
Boston. 

This book concentrates on the VAX, but also includes descriptions of the Intel 80x86, IBM 360, and CDC 
6600. 

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York. 

The Motorola 680x0 is the main focus of the book, but it covers the Intel 80x86 as well. Ill Exercises 

Appendix A describes the MIPS simulator that is helpful for these exercises. 

3.1 [3] <§3.2, 3.9> In some cases a simple instruction set like MIPS can synthe
size instructions found in richer instruction sets such as the VAX. The follow
ing VAX instruction decrements register $5: 

d e c l  $ 5  if r e g i s t e r  $ 5  = $ 5  - 1 

The operation is described in the comment of the instruction to help explain 
the operation. What is the single MIPS instruction, or if it cannot be repre
sented in a single instruction, the shortest sequence of MIPS instructions, that 
performs the same operation? 

3.2 [3] <§3.2, 3.9> This is the same as Exercise 3.1, except this VAX instruction 
clears register $5: 

c l  r l  $ 5  if r e g i s t e r  $ 5  = 0 

3.3 [3] <§3.3, 3.9> This is the same as Exercise 3.1,  except this VAX instruction 
clears memory location 1000: 

c l r l  1 0 0 0  if memo ry [ l O O O J  = 0 
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3.4 [5] <§3.2, 3.5, 3.9> This is the same as Exercise 3.1, except this VAX instruc
tion adds 1 to register $5, placing the sum back in register $5, compares the 
sum to register $6, and then branches to L1 if $5 < $6: 

a o b l s s  $ 6 , $ 5 , L l # $ 5  = $ 5  + 1 :  i f  ( $ 5 < $ 6 )  g o t o  L l  

3.5 [5] <§3.2, 3.5, 3.9> This is the same as Exercise 3.1, except this VAX instruc
tion subtracts 1 from register $5, placing the difference back in register $5, and 
then branches to L1 if $5 > 0: 

s o b g t r  $ 5 , L l # $ 5  = $ 5  - l ;  i f  ( $ 5 > 0 )  g o t o  L l  

3.6 [5] <§3.7> Show the single MIPS instruction or minimal sequence of in
structions for this C statement: 

a = b + 1 0 0 ; 

Assume a corresponds to register $11 and b corresponds to register $12. 

3.7 [ 10] <§3.7> Show the single MIPS instruction or minimal sequence of in
structions for this C statement: 

x [ l O J  = x [ l l ]  + c ;  

Assume c corresponds to register $13 and the array x begins at memory loca
tion 4,000,000ten· 

3.8 [10] <§3.2, 3.3, 3.5, 3.7> The following program tries to copy words from 
the address in register $4 to the address in register $5, counting the number of 
words copied in register $2. The program stops copying when it finds a word 
equal to 0. You do not have to preserve the contents of registers $3, $4, and $5. 
This terminating word should be copied but not be counted. 

l o o p : l w  $ 3 , 0 ( $ 4 )  # R e a d  n e x t  wo rd  f r om s o u r c e  
a d d i  $ 2 , $ 2 , l  if I n c r eme n t  c o u n t  w o r d s  c o p i ed  
S W  $ 3 , 0 ( $ 5 )  if W r i t e  t o  d e s t i n a t i o n  
a d d i  $ 4 , $ 4 , 1  # Ad v a n c e p o i n t e r  t o  n e x t  s o u r c e  
a d d i  $ 5 , $ 5 , 1  # Ad v a n c e p o i n t e r  t o  n e xt d e s t  
b n e  $ 3 , $ 0 ,  l o o p  # L o o p  i f  w o r d c o p i ed � z e r o  

There are multiple bugs in this MIPS program. Fix them and turn in a bug
free version of this program. Like many of the exercises in this chapter, the 
easiest way to write MIPS programs is to use the simulator described in 
Appendix A. (The preface describes how to get a copy of this program.) 

3.9 [ 15] <§3.4> Using the MIPS program in Exercise 3.8 (with bugs intact), de
termine the instruction format for each instruction and the decimal values of 
each instruction field. 
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3.10 [10] <§3.2, 3.3, 3.5, 3.7> {ex. 3.8} Starting with the corrected program in 
the answer to Exercise 3.8, write the C code segment that might have produced 
this code. Assume variable s o u r c e  corresponds to register $4, the variable 
d e s t i n a t i on  corresponds to register $5, and the variable c o u n t  corresponds 
to register $2. Show variable declarations, but assume that source and destina
tion have been initialized to the proper addresses. 

3.11 [10] <§3.5> This C segment 

w h i l e  ( s a v e [ i J  == k )  
i = i + j ;  

on page 114 uses both a conditional branch and an unconditional jump each 
time through the loop. Only poor compilers would produce code with this 
loop overhead. Rewrite the assembly code so that it uses at most one branch 
or jump each time through the loop. If the number of iterations of the loop is 
10, what is the number of instructions executed before and after the optimiza
tion? 

3.12 [3] <§3.5> There are six relative conditions between the values of two 
registers. Assuming that variable i corresponds to register $ 1 9  and variable j 
to $ 2 0, show the MIPS code for the condition corresponding to this C code: 

i f  ( i  == j )  g o t o  L l : 

3.13 [3] <§3.5> This is the same as Exercise 3.12, except use this C code: 

i f  ( i  ! =  j )  g o t o  L l : 

3.14 [3] <§3.5> This is the same as Exercise 3.12, except use this C code: 

i f  ( i  < j )  g o t o  L l ; 

3.15 [3] <§3.5> This is the same as Exercise 3.12, except use this C code: 

i f  ( i <= j )  g o t o  L 1 : 

3.16 [3] <§3.5> This is the same as Exercise 3.12, except use this C code: 

i f  ( i > j )  g o t o  L 1 ; 

3.17 [3] <§3.5> This is the same as Exercise 3.12, except use this C code: 

i f  ( i >= j )  g o t o  L 1 : 

3.18 [5] <3.5, 3.7> The instruction 

b e q  $ 2 , $ 3 , L l 

will compare the contents of $2 and $3 and branch to L1 if they are equal. 
Unfortunately, there is no single instruction that can be used to compare $2 
with an immediate value such as 14. Look at the format for branch instruc-
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tions and explain why. Write a sequence of MIPS instructions that will branch 
to L1 if $2 is equal to 14. Hint: It only takes two instructions. 

3.19 [30] <§3.5> Consider the following fragment of C code: 

f o r  ( i =O ; i <= l O O ; i = i + l ) 
{ a [ i ]  = b [ i J + c ; ) 

Assume that a and b are arrays of words at addresses 1500 and 2000, respec
tively. Register $15 is associated with variable i and $16 with c. Write the 
code for MIPS. How many instructions are executed during the running of 
this code? How many memory data references will be made during execu
tion? 

3.20 [ 10] <§3.13> When designing memory systems, it becomes useful to 
know the frequency of memory reads versus writes as well as the frequency of 
accesses for instructions versus data. Using the average instruction-mix infor
mation for MIPS for the program gee in Figure 3.24 on page 150, find 

a. the percentage of all memory accesses that are for data (vs. instructions) 

b. the percentage of all memory accesses that are reads (vs. writes). Assume 
that two-thirds of data transfers are loads. 

3.21 [ 10] <§3 .13> This is the same as Exercise 3.20, but replace the program 
gee with spice. 

3.22 [15] <§3.13> Suppose we have made the following measurements of av
erage CPI for instructions: 

Arithmetic 1.0 clock cycles 

Data transfer 1 .4 clock cycles 

Conditional branch 1 .7  clock cycles 

Jump 1.2 clock cycles 

Compute the effective CPI for MIPS. Average the instruction frequencies for 
gee and spice in Figure 3.24 on page 150 to obtain the instruction mix. 

3.23 [20] <§3.9> Several researchers have suggested that adding a register
memory addressing mode to a load/store machine might be useful. The idea 
is to replace sequences of 

by 

l w  $ 8 , a d d r ( $ 3 )  
a d d  $ 2 , $ 2 , $ 8 
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a d d m  $ 2 , a d d r ( $ 3 )  
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Assume the new instruction will cause the clock cycle to increase by 10%. Use 
the instruction frequencies for the gee benchmark from Figure 3.24 on page 
150, and assume that two-thirds of the moves are loads and the rest are stores. 
Assume the new instruction affects only the clock speed and not the CPI. 
What percentage of the loads must be eliminated for the machine with the 
new instruction to have at least the same performance? 

3.24 [10] <§3.9> Using the information in Exercise 3.23, write a multiple in
struction sequence in which a load of $8 followed immediately by the use of 
$8-in, say, an add-could not be replaced by a single instruction of the form 
proposed. 

In More Depth: 

Comparing Instruction Sets of Different Styles 

For the next three exercises, your task is to compare the memory efficiency of 
four different styles of instruction sets for two code sequences. The architec
ture styles are 

• Accumulator 

• Memory-Memory: All three operands of each instruction are in memory. 

• Stack: All operations occur on top of the stack. Only push and pop ac
cess memory, and all other instructions remove their operands from the 
stack and replace them with the result. The implementation uses a stack 
for the top two entries; accesses that use other stack positions are mem
ory references. 

• Load-Store: All operations occur in registers, and register-to-register in
structions have three operands per instruction. There are 16 general
purpose registers, and register specifiers are 4 bits long. 

To measure memory efficiency, make the following assumptions about all 
four instruction sets: 

• The opcode is always 1 byte (8 bits). 

• All memory addresses are 2 bytes (16 bits). 

• All data operands are 4 bytes (32 bits). 

• All instructions are an integral number of bytes in length. 

There are no other optimizations to reduce memory traffic, and the variables 
a ,  b, c, and d are initially in memory. 
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Using the assembly language mnemonics from section 3.14, write the best 
equivalent assembly language code for the high-level language fragments 
given. 

3.25 [15] <§3.14> Write the four code sequences for 

a = b + c ;  

For each code sequence, calculate the instruction bytes fetched and the mem
ory-data bytes transferred. Which architecture is most efficient as measured by 
code size? Which architecture is most efficient as measured by total memory 
bandwidth required (code + data)? 

3.26 [20] <§3.14> Write the four code sequences for 

a b + c ;  
b = a +  c ;  
d = a - b ;  

For each code sequence, calculate the instruction bytes fetched and the mem
ory-data bytes transferred (read or written). Which architecture is most effi
cient as measured by code size? Which architecture is most efficient as 
measured by total memory bandwidth required (code + data)? If the answers 
are not the same, why are they different? 

3.27 [5] <§3.14> Sometimes architectures are characterized according to the 
typical number of memory addresses per instruction. Commonly used terms 
are 0-, 1-, 2-, and 3-addresses per instruction. Associate the names above with 
each category. 

In More Depth: 

Register Conventions and Procedure Overhead 

Caller and callee save (page 121) are strategies to save and restore registers 
across procedure calls. MIPS software uses a combination of the two strategies, 
saving only registers $16 to $23 and $30 across procedure calls if they are mod
ified. This compiler convention reduces the amount of code to be written, low
ers the cost of calls, and standardizes linkage to simplify calling procedures 
written in different languages. In fact, some compilers use alternative names 
for the registers to reflect their different uses. Figure A.9 on page A-23 lists all 
register conventions and the alternative names. 

3.28 [15] <§3.9, A.6> Rewrite the swap procedure in Figure 3.19 on page 138 
using the conventions in Figure A.9 on page A-23 to reduce the saving and re
storing of registers. What is the change in number of instructions executed in 
the new version? 
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ASCII ASCI I  ASCII ASCI I  ASCI I  
value Character value Character value Character value Character value Character 

32 space 51 3 70 F 89 y 108 l 
33 ! 52 4 7 1  G 90 z 109 m 
34 " 53 5 72 H 91 [ 110 n 
35 # 54 6 73 I 92 \ 111 0 
36 $ 55 7 74 J 93 J 112 p 
37 % 56 8 75 K 94 � 113 q 

38 & 57 9 76 L 95 - 114 r 

39 ' 58 : 77 M 96 115 s 
40 ( 59 ' 78 N 97 a 116 t 
41 ) 60 < 79 0 98 b 117 u 
42 * 61 = 80 p 99 c 118 v 
43 + 62 > 81 Q 100 d 119 w 
44 ' 63 ? 82 R 101 e 120 x 
45 64 @ 83 s 102 f 121 y 
46 65 A 84 T 103 g 122 z 
47 I 66 B 85 u 104 h 123 l 
48 0 67 c 86 v 105 i 124 I 
49 1 68 D 87 w 106 j 125 } 
50 2 69 E 88 x 107 k 126 -

FIGURE 3.26 ASCII representation of characters. Values not shown include values useful in formatting characters. For 
example, 9 represents a tab character and 13 represents a carriage return. Other useful ASCII values are 8 for backspace and 
0 for Null, the value the programming language C uses to terminate the end of a string. 

3.29 [15] <§3.10, A.6> Rewrite the sort procedure Figure 3.21 on page 144 us
ing the conventions in Figure A.9 on page A-23 to reduce the saving and re
storing of registers. What is the change in number of instructions executed in 
the new version (not including the call of swap)? 

In More Depth: Characters and Strings 

While many programs work primarily with numbers, others work with char
acters. Most computers today use 8-bit bytes to represent characters, with the 
American Standard Code for Information Interchange (ASCII) being the rep
resentation that nearly everyone follows. Figure 3.26 summarizes ASCII. 

Because of the popularity of strings in some programs, MIPS provides spe
cial instructions to move bytes. Load byte ( l b )  loads a byte from memory, plac
ing it in the rightmost 8 bits of a register; the other 24 bits are set to 0. Store byte 
( s b) takes a byte from the rightmost 8 bits of a register and writes it to memory. 
Thus the sequence 
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l b  $ 3 , 0 ( $ 4 )  
s b  $ 3 , 0 ( $ 5 )  

copies a byte. 

# R e a d  byte  f r om s o u r c e  
# W r i t e  byte  t o  d e s t i n a t i o n  

Characters are normally combined into strings, which have a variable num
ber of characters. C uses the convention that a string is terminated by a byte 
with the value 0. 

3.30 [10] Compute the decimal byte values that form the null-terminated 
ASCII representation of the string (the "s" in "bits" is the last character). 

A by t e  i s  8 b i t s . 

3.31 [20] {ex. 3.8) Write a procedure, b c o py, in MIPS assembler language. The 
b c o py procedure takes two arguments: a pointer to a null-terminated source 
string in register $4 and a pointer to the destination string in register $5. It re
turns a count of the total number of non-null characters in the string in register 
$2. Hint: Look at the program copy in Exercise 3.8 for ideas. The easiest way 
to write a MIPS program is to use the simulator described in Appendix A. 

3.32 [30] {ex. 3.8, 3.3l }Both the program in the answer to Exercise 3.8 and the 
program in the answer to Exercise 3.31 copy bytes. Under what circumstances 
do they behave in exactly the same way? Assuming those circumstances hold, 
write formulas for the number of instructions executed for both programs as a 
function of the number of bytes copied. Describe what a hybrid program 
would have to do to determine when to invoke the faster copying program as 
a procedure. (The instructions you need to do this are described in the next 
chapter.) 

3.33 [30] Write a program in MIPS assembly language to convert an ASCII 
decimal string to an integer. Your program should expect register $4 to hold 
the address of a null-terminated string containing some combination of the 
digits 0 through 9. Your program should compute the integer value equivalent 
to this string of digits, then place the number in register $2. Your program need 
not handle negative numbers. If a non-digit character appears anywhere in the 
string, your program should stop with the value -1 in register $2. 

For example, if register $4 points to a sequence of three bytes SOten' 52tew 
oten (the null-terminated string "24"), then when the program stops, register 
$2 should contain the value 24ten· (The subscript "ten" means base 10.) 

3.34 [20] Write a procedure, b f i  n d, in MIPS assembler language. The proce
dure should take a single argument which is a pointer to a null-terminated 
string in register $4. The b f i  n d  procedure should locate the first b character in 
the string and return its address in register $2. If there are no b's in the string, 
then bfind should return a pointer to the null character at the end of the string. 
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For example, if the argument to b f i  n d  points to the string " i m b i b e," then the 
return value will be a pointer to the third character of the string. 

3.35 [20] {ex. 3.33) Write a procedure, b c o u n t, in MIPS assembler language. 
The b c o u n t  procedure takes a single argument, which is a pointer to a string 
in register $4, and it returns a count of the total number of b characters in the 
string in register $2. You must use your b f i  n d  procedure in Exercise 3.34 in 
your implementation of b c o u n t . 

3.36 [30] Write a procedure, i t o a ,  that will convert an integer argument into 
an ASCII decimal string. The procedure should take two arguments: the first 
is an integer in register $4 and the second is the address at which to write a re
sult string in register $5. Then i t o a  should convert its first argument to a null
terminated decimal ASCII string and store that string at the given result loca
tion. The return value from i t o a ,  in register $2, should be a count of the num
ber of non-null characters stored at the destination. 

In More Depth: The Single Instruction Computer 

The computer architecture in this book, MIPS, has one of the simpler instruc
tion sets in existence. However, it is possible to imagine even simpler instruc
tion sets. In this assignment you are to consider a hypothetical machine called 
SIC, for Single Instruction Computer. As its name implies, SIC has only one 
instruction: Subtract and Branch if Negative, or s b n for short. The sbn instruc
tion has three operands, each consisting of the address of a word in memory: 

s b n  a , b , c  # Mem [ a J  = Mem [ a J  - Mem [ b J ; i f  ( M em [ a J < O l  g o t o  c 

The instruction will subtract the number in memory location b from the 
number in location a and place the result back in a ,  overwriting the previous 
value. If the result is greater than or equal to 0, the computer will take its next 
instruction from the memory location just after the current instruction. If the 
result is less than 0, the next instruction is taken from memory location c .  SIC 
has no registers and no instructions other than sbn. 

Although it has only one instruction, SIC can imitate many of the operations 
of more complex instruction sets by using clever sequences of sbn instructions. 
For example, here is a program to copy a number from location a to location b :  

s t a r t : s b n temp . t emp , . + 1 # S e t s  t emp  t o  z e r o  
s b n temp . a ,  . + l # S e t s  t emp  t o  - a  
s b n b , b ,  . +l # S e t s  b t o  z e r o  
s b n b , t emp , . +l # S e t s  b t o  - t emp , w h i c h i s  a 

In the program above, the notation .+ 1 means "the address after this one," 
so that each instruction in this program goes on to the next in sequence wheth
er or not the result is negative. We assume Temp  to be the address of a spare 
memory word that can be used for temporary results. 
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3.37 [10] Write a SIC program to add a and b, leaving the result in a and leav
ing b unmodified. 

3.38 [20] Write a SIC program to multiply a by b, putting the result in c .  As
sume that memory location o n e  contains the number 1 .  Assume a and b are > 
0 and that it's OK to modify a or b .  Hint: What does this program compute? 

c = O ;  w h i l e  ( b  > 0 )  l b = b - l ;  c = c + a : l  
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• Introduction 

Computer words are composed of bits; thus words can be represented as 
binary numbers. Although the natural numbers 0, 1, 2, and so on can be rep
resented either in decimal or binary form, what about the other numbers that 
commonly occur? For example, 

• How are negative numbers represented? 

• What is the largest number that can be represented by a computer 
word? 

• What happens if an operation creates a number bigger than can be rep
resented? 

• What about fractions and real numbers? 

And underlying all these questions is a mystery: How does hardware really 
add, subtract, multiply, or divide numbers? 

The goal of this chapter is to unravel this mystery, including representation 
of numbers, arithmetic algorithms, hardware that follows these algorithms, 
and the implications of all this for instruction sets. These insights may even ex
plain quirks that you have already encountered with computers. (Readers 
who are familiar with signed binary numbers may wish to skip the next two 
sections and go to section 4.4 on page 179.) 

II Negative Numbers 

Numbers can be represented in any base; humans prefer base ten and, as we 
examined in Chapter 3, base two is best for computers. Because we will fre
quently be dealing with both decimal and binary numbers, to avoid confu
sion we will subscript decimal numbers with ten and binary numbers with 
two. 

In any number base the value of ith digit d is 

d x base
; 
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where i starts at 0 and increases from right to left. This leads to an obvious 
way to number the bits in the word: Simply use the power of the base for that 
bit. For example, 

1 0 1  l two 

represents 

( 1  x 2 3 ) + ( 0  x 2 2 ) + ( 1  x 2 1 ) + ( 1  X 2 ° l t e n 
( 1 X 8 )  + ( 0 X 4 )  + ( 1 X 2 )  + ( 1 X 1 ) t en 
8 + 0 + 2 + l t en 
1 1  t e n 

Hence the bits are numbered 0, 1, 2, 3, . . .  from right to left in a word. The 
drawing below shows the numbering of bits within a MIPS word and the 
placement of the number lOlltwo : 

3 1  3U 2 9  28 2 7  26 2 5  ?4 2 3  2 2  2 1  20 1 9 1 8  1 7  1 6  1 5  1 4  1 3  1 2  I I  1 0  9 8 7 6 5 4 3 2 I 0 I o o o o i o o o o l o o o o l o o o o i o o o o l o o o o i o o o o l 1 o 1 1 1 
(32 bits wide) 

Since words are drawn vertically as well as horizontally, leftmost and right
most may be unclear. Hence, the phrase least significant bit is used to refer 
to the rightmost bit (bit 0 above) and most significant  bit to the leftmost bit 
(bit 31) .  

The MIPS word is 32 bits long, so we can represent 232 different 32-bit pat
terns. It is natural to let these combinations represent the numbers from 0 to 
232 

- 1 (4,294,967,295ten) : 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O Otwo  O t en 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O l two l t e n 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O l O two 2 t e n 

1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  l l O l two 4 ,  2 9 4 , 9 6 7 , 2 9 3ten 
1 1 1 1  1 1 1 1  1 1 1 1 1 1 1 1  1 1 1 1  1 1 1  1 1 1 1  l l l O two 4 ,  2 9 4 , 9 6 7 , 2 9 4 t en 
1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1  l two 4 ,  2 9 4 , 9 6 7 , 2 9 5ten 

Computer programs calculate both positive and negative numbers, so we 
need a representation that distinguishes the positive from the negative. This 
representation should be divided as evenly as possible, since it would be awk
ward to be able to represent, say, 2000ten but not -2000ten· Since a 32-bit word 
has an even number of bit patterns, balanced representation seems straightfor
ward. It's not. The reason is that we need to represent zero plus an equal num
ber of positive and negative numbers. The alternative to unbalanced positives 
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and negatives is having two bit patterns to represent 0. The cure of two bit pat
terns that are different but both represent 0 is worse than the disease of unbal
ance, so 32-bit computers use the following unbalanced convention: 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O O two= O t en 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O l two=  l ten 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O l O two=  2 t e n 

O l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l O l two= 2 , 1 4 7  , 4 8 3 , 6 4 5 ten 
O l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l O two= 2 ,  1 4 7  , 4 83 , 64 6 ten 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  l l l l two=  2 , 1 4 7 , 4 83 , 6 4 7 ten 
1 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 O O O Otwo = - 2 , 1 4 7 , 483 , 648t e n  
1 0 0 0  0 0 0  0 0 0  0 0  0 0 0  0 0 0  0 0  0 000  0 0  0 0 0 0 0 1  two= - 2 , 1 4  7 , 483 , 6 4  7 t e n 
1 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 0 0 1  Otwo= - 2 ,  1 4  7 ,  483 , 646 t en 

l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  1 1 0 l two = - 3 ten 
l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  1 1 1 0 two = - 2 te n  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  l l l l tw o= - l ten  

The positive half of  the numbers, from 0 to 2,147,483,647ten (231-1), use the 
same representation as before. The following bit pattern (1000 . . . OOOOtwo) 
represents the most negative number -2,147,483,648ten (-231). It is followed by 
a declining set of negative numbers: -2,147,483,647ten (1000 . . .  OOOltwo) down 
to -lten (1111  . . .  1 1 1  ltwo)· There is, therefore, just one negative number, 
-2,147,483,648ten, that has no corresponding positive number. This conven
tion for representing signed binary numbers is called two's complement repre
sentation. It ensures that x + (-x) = 0. 

In addition to a single 0, two's complement representation has the advan
tage that all negative numbers have a 1 in the most significant bit. Consequent
ly, hardware need test only this bit to see if a number is positive or negative 
(with 0 considered positive) . This particular bit is often called the sign bit. By 
recognizing the role of the sign bit, we can represent positive and negative 
numbers in terms of the bit value times a power of 2 (here xi means the ith bit 
of x): 

(x31 x -231) + (x30 x 230) + (x29 x 229) + . . .  + (xl x 21) + (xO x 2°) 

The sign bit is multiplied by -231 and the rest of the bits are then multiplied 
by positive versions of their respective base values. 

What is the decimal value of this 32-bit two's complement number? 

1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  l l O O two 
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4.2 Negative Numbers 

Substituting into the bit values in the formula above: 

(1 x -231) + (1 x 230) + (1 x 229) + . . .  + (1 x 22) + (0 x 21) + (0 x 2°) 
= -231 + 230 + 229 + . . .  + 22 
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= -2,147,483,648ten + 2,147,483,644ten 
= -4ten 

Hardware 

Software 

Interface 

Unlike the numbers discussed above, memory addresses 
naturally start at 0 and continue to the largest address. Put 
another way, negative addresses make no sense. Thus, pro
grams want to deal sometimes with numbers that can be 
positive or negative and sometimes with numbers that can 
be only positive. Programming languages reflect this dis
tinction. C, for example, names the former integers (declared 

as i n t in the program) and the latter unsigned integers (u n s i g n ed i n t) . 
Comparison instructions must deal with this dichotomy. Sometimes a bit 

pattern with a 1 in the most significant bit represents a negative number and, 
of course, is less than any positive number, which must have a 0 in the most 
significant bit. With unsigned integers, on the other hand, a 1 in the most sig
nificant bit represents a number that is larger than any that begins with a 0. 
MIPS offers two versions of the set-on-less-than comparison to handle these al
ternatives. Set on less than ( s l t) and set on less than immediate ( s l t i ) work with 
signed integers. Unsigned integers are compared using set on less than unsigned 
( s l t u) and set on less than immediate unsigned ( s l t i  u ) .  

Suppose register $16  has the binary number 

1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  l l l l two 

and that register $17 has the binary number 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O l two 
What are the values of registers $8 and $9 after these two instructions? 

s l t $ 8 , $ 1 6 , $ 1 7  H s i g n e d  compa r i s o n  

s l t u  $ 9 , $ 1 6 , $ 1 7  H u n s i g n e d  comp a r i s o n  
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The value in register $16 represents -1 if it is an integer and 4,294,967,295ten 
if it is an unsigned integer. The value in register $17 represents 1 in either 
case. Then register $8 has the value 1, since -lten < lten, and register $9 has 
the value 0, since 4,294,967,295ten > l ten-

Before going on to addition and subtraction, let's examine a few shortcuts 
when working with two's complement numbers. The first shortcut is a quick 
way to negate a binary number. Simply invert every 0 to 1 and every 1 to 0, 
then add 1 to the result. This shortcut is based on the observation that the num
ber represented by inverting each bit is off by 1 from the two's complement 
negative of the number. 

Negate 2ten' and then check the result by negating -2ten-

2 t en = 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O l Otwo 

Negating this number by inverting the bits and adding 1 :  
l l l l  l l l l  l l l l  l ll l  l l l l  l l l l  l l l l  l l O l tw o 

+ 1 two 
����������������� 

1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1  Otwo  
- 2 t en 

Going the other direction, 
l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l O two 

is first inverted and then incremented: 

+ 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O l two 

1 two 
����������������� 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O l Otwo 
2 t e n 

The second shortcut tells us how to convert a binary number represented in 
n bits to a number represented with more than n bits. For example, the imme
diate field in the load, store, branch, add, and set-on-less-than instructions 
contains a two's complement 16-bit number, representing -32,768ten (-215) to 
32,767ten(215-1). To add the immediate field to a 32-bit register, the machine 
must convert that 16-bit number to its 32-bit equivalent. The shortcut is to take 
the most significant bit from the smaller quantity, the sign bit, and replicate it 
to fill the new bits of the larger quantity. The old bits are simply copied into 
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the right portion of the new word. This shortcut is commonly called sign exten
sion. 

Convert 16-bit binary versions of 2ten and -2ten to 32-bit binary numbers. 

The 16-bit binary version of the number 2 is 
0 0 0 0  0 0 0 0  0 0 0 0  O O l O two= 2 t e n 

It is converted to a 32-bit number by making 16 copies of the value in the 
most significant bit (0) and placing that in the left-hand half of the word. 
The right half gets the old value: 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O l O two= 2 t e n  

Let's negate the 16-bit version of 2 using the earlier shortcut. Thus, 
0 0 0 0  0 0 0 0  0 0 0 0  O O l O two 

becomes 

+ 
l l l l  l l l l  l l l l  l l O l two 

l two 

l l l l  l l l l  l l l l  l l l O two 

Creating a 32-bit version of the negative number means copying the sign 
bit 16 times and placing it on the left: 

l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l O twu= - 2 t e n  

This trick works because positive two's complement numbers can be 
thought of as having an infinite number of Os on the left and negative numbers 
have an infinite number of ls.  Placing a two's complement number in a word 
merely chops off those bits to make the number fit in a word, and sign exten
sion restores them. 

The main point of this section is that we need to represent both positive and 
negative integers within a computer word and, although there are pros and 
cons to any option, the overwhelming choice for the last 25 years has been 
two's complement. Figure 4.1 shows the additions to the MIPS assembly lan
guage revealed in this section. (MIPS machine language is illustrated on the 
endpapers of this book.) 
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MIPS operands 

Example Comments 
$0, $1, $2, . . .  ,$31 Fast locations for data. In MIPS, data must be in registers to perform 

arithmetic. MIPS register $0 always equals 0. Register $1 is reserved for the 
assembler to handle pseudoinstructions and large constants. 

Memory[ OJ. Accessed only by data transfer instructions. MIPS uses byte addresses, so 
Memory[4], . . .  , sequential words differ by 4. Memory holds data structures, such as arrays, 
Memory[ 4294967292] and spilled registers, such as those saved on procedure calls. 

Instruction 
add add 
subtract sub 
add immediate addi 
load word lw 
store word SW 

load upper lui  
imm. 
branch on beq 
equal 
branch on not bne 
eq. 
set on less sit 
than 
set less than slti 
imm. 

set on less situ 
than unsii;!ned 
set less than sltiu 
imm. unsigned 
jump j 
jump register jr 
jump and link jal 

MIPS assembly language 

Example 
$1,$2,$3 
$1,$2,$3 
$1,$2,100 
$1,100($2) 
$1,100($2) 
$1,100 

$1,$2,100 

$1,$2,100 

$1,$2,$3 

$1,$2,100 

$1,$2,$3 

$1,$2,100 

10000 
$31 
10000 

Meaning 
$1 = $2 + $3 
$1 = $2 - $3 
$1 = $2 + 100 
$1 = Memory[$2+100] 
Memory[$2+100] = $1 

$1 = 100 x 216 

if ($1 == $2) go to PC+4+100 

if ($1 != $2) go to PC+4+100 

if ($2 < $3) $1 = 1; else $1 = 0 

if ($2 < 100) $1 = 1; else $1 = o 

if ($2 < $3) $1 = 1; else $1 = O 

if ($2 < 100) $1 = 1; else $1 = 0 

go to 10000 
go to $31 
$31 = PC + 4;  go to 10000 

Comments ·, 
3 operands ;  data in registers 
3 operands; data in registers 
Used to add constants 
Data from memory to register 
Data from register to memory 
Loads constant in upper 16bits 

Equal test; PC relative branch 

Not equal test; PC relative 

Compare less than; 
2's comp. 
Compare < constant; 
2's comp. 
Compare less than; 
unsii;!ned numbers 
Compare less than constant; 
unsii;!ned numbers 
Jump to target address 
For switch, procedure return 
For procedure call 

FIGURE 4.1 MIPS architecture revealed thus far. Color indicates portions from this section added to the MIPS architec
ture revealed in Chapter 3 (Figure 3.16 on page 132). MIPS machine language is illustrated in the endpapers of this book. 

Elaboration: Two's complement gets its name from the rule that the sum of an n-bit 
number and its negative is 2n, hence the complement or negation of a two's comple
ment number x is 2n - x. One obvious alternative representation to two 's complement 
uses the leftmost bit as the sign , with the other 31 bits representing the number. This 
sign and magnitude representation has the drawback of having positive and negative 0. 
In  addition, it is harder to design an adder for sign and magnitude, as we shal l  see 
shortly. A third alternative is called one 's complement. The negative of a one's comple
ment is found by inverting each bit, from 0 to 1 and from 1 to 0. This representation is 
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s imi lar to two 's  complement except that it has two Os: 00 . . .  OOtwo is positive 0 and 
11 . . .  11two is negative 0. The most negative number 10 . . .  OOOtwo represents 
-2 ,147 ,483,647ten and so the positives and negatives are balanced . A final notation, 
which we wi l l  look at when we d iscuss floating point, is to make the most negative 
value be 00 . . . OOOtwo and the most positive value be 11 . . .  11two• with 0 typically 
having the value 10 . . .  OOtwo · This is cal led a biased notation,  for it biases the num
ber such that the number plus the bias is non-negative . 

As a final point, in order to save space, many programs display numbers using a 
h igher base than binary that converts easi ly to binary. Since almost a l l  computer data 
sizes are multiples of 4,  hexadecimal (base 16) numbers are popu lar. The 16 hexadec
imal d igits are 0, 1, 2, 3, 4, 5, 6, 7 ,  8, 9, a, b, c, d, e, and f. C uses the notation 
Oxnnnn to represent a hexadecimal  number. In this book, we wi l l  use either the sub
script hex or the C notation. 

II Addition and Subtraction 

Subtraction: Addition 's Tricky Pal 

Example 

Answer 

No. 10, Top Ten Courses for Athletes at a Football Factory 
David Letterman et al., Book of Top Ten Lists, 1990 

Addition is just what you would expect in computers. Digits are added bit by 
bit from right to left, with carries passed to the next digit to the left, just as 
you would do by hand. Subtraction uses addition: The appropriate operand 
is simply negated before being added. 

Let's try adding 6ten to 7ten and then subtracting 6ten from 7ten· 

+ 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O l l l two 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O l l O two 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  l l O l two 

The 4 bits to the right have all the action; Figure 4.2 shows the sums and 
carries. The carries are shown in parentheses, with the arrows showing how 
they are passed. 
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(0) 0 

(0) (1) (1) (0) 

0 0 1 1 

0 0 1 1 

(0) 0 (0) 1 (1) 1 (1) 0 

(Carries) 

1 

0 

(0) 1 

FIGURE 4.2 Binary addition, showing carries from right to left. The rightmost bit adds 1 
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the 
operation for the second digit to the right is O+ 1+1 .  This generates a 0 for this sum bit and a 
carry out of 1 .  The third digit is the sum of 1+1+1, resulting in a carry out of 1 and a sum bit of 
1. The fourth bit is 1 +O+O, yielding a 1 sum and no carry. 

Subtracting 6ten from 7ten can be done directly: 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 1 1  l two 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O l l Otwo  

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O l two 

or via addition using the two's complement representation of -6: 
0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 1 1  l two 

+ 1 1 1 1  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  1 0 1 0 two 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  O O O l two 

The one complexity in computer addition is the possibility of the sum being 
too large to represent properly. No matter how numbers are represented, it's 
possible that the sum of two 32-bit numbers will be too large to represent in 32 
bits. This event is called overflow. 

For example, the sum of these two signed numbers is too large for 32 bits: 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  l l l l two= 2 ,  1 4 7  , 4 83 , 6 4 7 t e n  
+ 0 0 0 0  0000  0000  0000  0000  0000  0000  O O l O two= 2 ten 

= l O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O l two= - 2 , 1 4 7 , 4 83 , 6 4 7 te n  

The sum of 2,147,483,647ten + 2 should be 2,147,483,649tew but instead we get 
the negative value -2,147,483,647ten· The problem is that we need 33 bits to 
represent 2,147,483,649ten in two's complement notation, but the word size is 
only 32 bits. Therefore, the result has only the lower 32 bits of the actual sum. 

Overflow can also occur in subtraction. For example, to subtract 2 from 
-2 ,147,483,647ten' we convert 2 to -2 and add it to -2,147,483,647ten: 
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Operation Operand A Operand B , Result
·
. 

A + B � 0 � 0 < O  

A + B < O  < O  � 0 

A - B  � 0 < 0  < O  

A - B  < O  � 0 � 0 

FIGURE 4.3 Overflow conditions for addition and subtraction. 

l O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O l tw o =  - Z . 1 4 7 . 4 8 3 , 6 4 7 t e n  
+ l  l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l l  l l l O two = - Z t e n  
= 0 1 1 1 1 1 1 1 1 1 1 1  l l l l  l l l l  l l l l  l l l l  l l l l tw o =  2 ,  1 4 7  , 4 8 3 , 6 4 7 t e n  
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Once again, the result of -2,147,483,647ten - 2 should be -2,147,483,649ten' but 
we cannot represent that result in 32 bits so we get the wrong positive value of 
2,147,483,647ten· 

When can overflow occur? When adding operands with different signs, 
overflow cannot occur. The reason is the sum must be no larger than one of the 
operands. For example, -10 + 4 = -6. Since the operands fit in 32 bits and the 
sum is no larger than an operand, the sum must fit in 32 bits as well. Therefore 
no overflow can occur when adding positive and negative operands. 

There are similar restrictions to the occurrence of overflow during subtract, 
but it's just the opposite principle: When the signs of the operands are the same, 
overflow cannot occur. To see this, remember that x - y = x + ( -y) , because 
we subtract by negating the second operand and then add. So, when we sub
tract operands of the same sign we end up by adding operands of different signs. 
From the prior paragraph, we know that overflow cannot occur in this case. 

Having examined when overflow cannot occur, we still haven't answered 
how to detect when it does occur. As we saw in the examples above, adding or 
subtracting two 32-bit numbers can yield a result that needs 33 bits to be fully 
expressed. The lack of a 33rd bit means that when overflow occurs the sign bit 
is being set with the value of the result instead of the proper sign of the result: 
Since we need just one extra bit, only the sign bit can be wrong. That is, over
flow occurs when adding two positive numbers and the sum is negative, or 
vice versa. And overflow occurs in subtraction when we subtract a negative 
number from a positive number and get a negative result, or when we subtract 
a positive number from a negative number and get a positive result. Figure 4.3 
shows the combination of operations, operands, and results that indicate an 
overflow. (Exercise 4.29 gives a shortcut for detecting overflow more simply in 
hardware.) 
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Software 

Interface 

The machine designer must decide how to handle arithmetic 
overflows. Although some languages like C leave the deci
sion up to the machine designer, languages like Ada and 
Fortran require that the program be notified. The program
mer or the programming environment must then decide 
what to do when overflow occurs. 

MIPS detects overflow with an exception, also called an interrupt on many 
computers. An exception or interrupt is essentially an unplanned procedure 
call. The address of the instruction that overflowed is saved in a register, and 
the computer jumps to a predefined address to invoke the appropriate routine 
for that exception. The interrupted address is saved so that in some situations 
the program can continue after corrective code is executed (see Chapter 7). 
MIPS includes a register called exception program counter (EPC) to contain the 
address of the instruction that caused the exception. The instruction move from 
system control (mf cO )  is used to copy EPC into a register so that MIPS software 
has the option of returning to the offending instruction via a Jump register in
struction. Chapter 5, section 5.6, covers exceptions in more detail; Chapters 7 
and 8 also describe situations where exceptions and interrupts occur. 

We have just seen how to detect overflow for two's complement numbers 
in a machine. What about unsigned integers? Clearly, unsigned integers exist 
that are too large to be represented in 32 bits, but they are normally not consid
ered to overflow. The reason is that unsigned integers are commonly used for 
memory addresses and, unlike natural numbers, they do have a finite limit in 
that memories are finite. In our MIPS machine, the maximum memory that a 
user can address directly is 4,294,967,296ten or 232 bytes. 

The machine designer must therefore provide a way to ignore overflow in 
some cases and to recognize it in others. The MIPS solution is to have two 
kinds of arithmetic instructions to recognize the two choices: 

• a d d  (a d d), a d d  i mme d i a t e  ( a d d  i ), and s u b t r a c t ( s u b) cause exceptions 
on overflow, and 

• a d d  u n s i g n e d ( a d d u ), a d d  i mmed i a te  u n s i g n e d  (a d d i u), and s u b 
t r a c t  u n s i g n e d  ( s  u b u) do not cause exceptions on overflow. 

Because C ignores overflows, the MIPS C compilers will always generate 
the unsigned versions of the arithmetic instructions a d d u, a d d i  u, and s u b u .  
The MIPS Ada compilers, however, pick the appropriate arithmetic instruc
tions, depending on the type of the operands. 
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The main point of this section is that, independent of the representation, the 
finite word size of computers means that arithmetic operations can create re
sults that are too large to fit in this fixed word size. It's easy to detect overflow 
in natural numbers, although these are almost always ignored because pro
grams don't want to detect overflow for address arithmetic, the most common 
use of natural numbers. Two's complement presents a greater challenge, yet 
some software systems require detection of overflow, so today all machines 
have a way to detect it. Figure 4.4 shows the additions to the MIPS architecture 
from this section. 

Elaboration: In the preceding text, we said that you copy EPC into a register via 
m f c O  and then return to the i nterrupt code via Jump register. This leads to an interest
ing question: How can you use Jump register to return to the interrupted code and yet 
restore the original values of a l l  registers? You either restore the old registers first, 
thereby destroying your return address from EPC, or you restore a l l  registers but the 
one with the return address so that you can jump-meaning an exception would result 
in changing one register at any time in the program execution! Neither option is satis
factory. To rescue the hardware from this d i lemma, MIPS programmers agreed to 
reserve registers $26 and $27 for the operating system;  these registers are not 

restored on exceptions. Just as the MIPS compilers avoid using register $1 so that the 
assembler can use it as a temporary register (see the Hardware Software Interface on 
page 115 in Chapter 3), compilers also abstain from using registers $26 and $27 to 
make them avai lable for the operating system .  Exception routines place the return 
address in one of these registers and then use Jump register to restore the address. 

• Loglcal Operations 

Insanity is often the logic of an accurate mind overtaxed. 

Oliver Wendell Holmes, The Autocrat of the Breakfast Table, 1 858 

Although the first computers concentrated on full words, it soon became clear 
that it was useful to operate on fields of bits within a word or even on individ
ual bits. Examining characters within a word, each of which are stored as 8 
bits, is one example of such an operation. It follows that instructions were 
added to simplify, among other things, the packing and unpacking of bits into 
words. 

One class of such operations is called shifts. They move all the bits in a word 
to the left or right, filling the emptied bits with Os. For example, if register $16 
contained 
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Chapter 4 Arithmetic for Computers 

MIPS operands 

Example Comments 
$0, $1, $2, . . .  ,$31 Fast locations for data. In MIPS, data must be in registers to perform arithmetic. 

MIPS register $0 always equals 0. Register $1 is reserved for the assembler to 
handle pseudoinstructions and large constants. 

Memory[ OJ, Accessed only by data transfer instructions. M IPS uses byte addresses, so 
Memory[4], . . .  , sequential words differ by 4. Memory holds data structures,  such as arrays, and 
Memory[ 4294967 292] spilled registers, such as those saved on procedure cal ls.  

Instruction 
add 
subtract 
add immediate 
add unsigned 

subtract u ns igned 

add i m mediate 
u n s igned 

Move from 
coorocessor ree.. 

load word 
store word 
load upper imm. 

branch on equal 
branch on not eq. 
set on less than 
set less than imm. 
set less than uns. 
set I. t. imm. uns. 
jump 
jump register 
jump and link 

MIPS assembly language 
Example 

add $1,$2,$3 
sub $1,$2,$3 
addi $1,$2,100 
addu $1.$2.$3 

subu $ 1 , $2 . $ 3  

addiu $ 1 , $ 2 .100 

mfcO $ 1 ,$epc 

Jw $1,100($2) 
SW $ 1,100($2) 
lui $1 ,100 

beq $1,$2,100 
bne $1,$2,100 
sit $1.$2,$3 
slti $1,$2,100 
situ $1,$2,$3 
sltiu $1,$2 ,100 
j 10000 
jr $31 
jal 10000 

Meaning 
$1 = $2 + $3 
$1 = $2 - $3 
$1 = $2 + 100 
$ 1  = $2 + $3 
$1 = $2 - $3 

$1 = $2 + 100 

$1 = $epc 

$1 = Memory($2+100) 
Memory[$2+100) = $1 

$1 = 100 x 216 

if ($1  == $2) go to PC+4+100 
if ($1 !:= $2) go to PC+4+100 
if ($2 < $3) $1 = 1; else $1 = O 

if ($2 < 100) $1 = 1; else $1 "' O 

if ($2 < $3) $1 = 1 ;  else $1 = O 

if ($2 < 100) $1 = 1; else $ 1 = 0  
go to 10000 
go to $31 
$31 = PC + 4; go to 10000 

Comments 
3 operands; except i on possible 

3 operands; exception possib l e 

+ constant; exception possib l e 

3 operands; no exceptions 
3 operands: no exceptions 

+ conslant; no exceptions 

Used to get copy of  Exception PC 

Data from memory to register 
Data from register to memory 
Loads constant in upper 16 bits 

Equal test; PC relative branch 
Not equal test; PC relative 
Compare less than; 2 's comp. 
Compare < constant; 2's comp. 
Compare less than; natural no. 
Compare < constant; natural 
Jump to target address 
For switch,  procedure return 
For procedure call 

FIGURE 4.4 MIPS architecture revealed thus far. Color indicates the portions revealed since Figure 4.1 on page 174. 
MIPS machine language is illustrated on the endpapers of this book. 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 0  0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  l l O l two 

and the instruction to shift left by 8 was executed, the new value would look 
like this: 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  1 1 0 1  0 0 0 0  O O O O two 
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To complement a shift left, there is a shift right. The two MIPS shift instruc
tions are called shift left logical ( s l l ) and shift right logical ( s r l ) . To perform the 
operation above, assuming that the result should go in register $10: 

s 1 1  $ 1 0 , $ 1 6 , 8  # r e g  $ 1 0  = r e g  $ 1 6  < <  8 b i t s  

In Chapter 3, we delayed explaining the shamt field in the R format. It stands 
for shift amount and is used in shift instructions. Hence, the machine language 
version of the instruction above is 

op rs rt rd sh amt funct 

0 0 16 10 8 0 

The encoding of s 1 1  is 0 in both the op and funct fields, rd contains $10, rt 
contains $16, and shamt contains 8. The rs field is unused, and thus is set to 0. 

Another useful operation that isolates fields is AND. (We capitalize the 
word to avoid confusion between the operation and the English conjunction.) 
AND is a bit-by-bit operation that leaves a 1 in the result only if both bits of the 
operands are 1. For example, if register $10 still contains 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0  O O O O two 

and register $9 contains 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 1 1 1 1 0 0  0 0 0 0  O O O O two 

then, after executing the MIPS instruction 
a n d  $ 8 , $ 9 , $ 1 0  # r e g  $ 8  = r e g  $ 9  & r e g  $ 1 0  

the value of register $8 would be 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  1 1 0 0 0 0 0 0  O O O O two 

As you can see, AND can be used to apply a mask to a set of bits to force Os 
where there is a 0 in the mask. To place a value into one of these seas of Os, 
there is the complement to AND called OR. It is a bit-by-bit operation that 
places a 1 in the result if either operand bit is a 1 .  To elaborate, if the registers 
$9 and $10 are unchanged from the preceding example, the result of the MIPS 
instruction 

o r  $ 8 , $ 9 , $ 1 0  # r e g  $ 8  = r e g  $ 9  I r e g  $ 1 0  

is this value in register $8 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 1 1 1 1 0 1  0 0 0 0  O O O O two 
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Logical ope ration s : 
· "' :'-':·�·)·\c.ol>�t_!>'7s"':;�;��M!P.s1!'l�����'f 1 

Shift Left « s 1 1  
Shift Right » s r l  

AN D & a n d . a n d i  

OR I o r .  o r i  

FIGURE 4.5 Logical operations and their corresponding operations In C and MIPS. 

Figure 4.5 shows the logical C operations and the corresponding MIPS in
structions. Constants are useful in logical operations as well as in arithmetic 
operations, so MIPS also provides the instructions and immediate ( a n d  i )  and or 
immediate ( o r  i ). This section describes the logical operations AND, OR, and 
shift found in every computer today. Figure 4.6 summarizes the MIPS instruc
tions for those operations. 

Elaboration: Since a n d  i and o r  i normally work with unsigned integers, the imme
diates are treated as unsigned integers as wel l ,  meaning that they are expanded to 32 
bits by adding leading Os instead of sign extension. The MIPS assembler creates 32-bit 
constants with the pair of instructions l u i and o r  i ; see Chapter 3, pages 125-126 
for an example of creating 32-bit constants using l u i and a d d  i . 

• Constructing an Arithmetic Logic Unit 

ALU n. [Arthritic Logic Unit or (rare) Arithmetic Logic Unit] A random-number 
generator supplied as standard with all computer systems. 

Stan Kelly-Bootle, The Devil's DP Dictionary, 1981 

The arithmetic logic unit or ALU is the brawn of the computer, the device that 
performs the arithmetic operations like addition and subtraction or logical 
operations like AND and OR This section constructs an ALU from the four 
hardware building blocks shown in Figure 4.7 (see Appendix B for more 
details on these building blocks). Cases 1, 2, and 4 in Figure 4.7 all have two 
inputs. We will sometimes use versions of these components with more than 
two inputs, confident that the reader can generalize from this simple exam
ple. (In any case, Appendix B provides examples with more inputs.) 
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MIPS operands 

�:f';lllllJr:J 1..-., ... 
$0, $1, $2, . . .  ,$31 Fast locations for data. In MIPS, data must be in registers to perform arithmetic. 

MIPS register $0 always equals 0. Register $1 is reserved for the assembler to 
handle pseudoinstructions and large constants. 

Memory[ OJ. Accessed only by data transfer instructions. MIPS uses byte addresses, so 
Memory[4], . . .  , sequential words differ by 4. Memory holds data structures, such as arrays, and 
Memory[ 4294967292] spilled registers, such as those saved on procedure calls. 

....... ... u .. "" 
add 
subtract 
add immediate 
add unsigned 
subtract unsigned 
add imm. unsign. 
Move fr. copr. reg. 
and 
or 
and immediate 
or immediate 
shift left logical 
shift right logical 

load word 
store word 
load upper imm. 

branch on equal 
branch on not eq. 
set on less than 
set less than imm. 
set less than uns. 
set I. t. imm. uns. 
jump 
jump register 
jump and link 

MIPS assembly language 

,- .;111 ... :... 
add $1,$2,$3 
sub $1,$2,$3 
addi $1,$2,100 
addu $1,$2,$3 
subu $1,$2,$3 
addiu $1,$2,100 
mfcO $1,$epc 
and $1,$2,$3 
or $1,$2,$3 
andi $1,$2,100 
Ori $1 ,$2, 100 
sll $1,$2,10 
srl $1,$2,10 

lw $1,100($2) 
SW $1, 100($2) 
lui $1 ,100 

beq $1,$2 ,100 
bne $1,$2,100 
sit $1,$2,$3 
slti $1,$2,100 
situ $1 ,$2,$3 
sltiu $1,$2,100 

j 10000 
jr $31 
jal 10000 

ll'� ·z111u : 
$1 = $2 + $3 
$ 1  = $2 - $3 
$1 = $2 + 100 
$ 1  = $2 + $3 
$1 = $2 - $3 
$1 = $2 + 100 
$1 = $epc 
$1 = $2 & $3 
$1 = $2 I $3 
$1 = $2 & 100 
$1 = $2 1 100 
$1 = $2 « 10 
$1 = $2 » 10 

$1 = Memory[$2+100] 
Memory[$2+100) = $1 

$1 = 100 x 216 

if ($1 == $2) go to PC+4+100 
if ($1 I= $2) go to PC+4+ 100 
if ($2 < $3) $1 = 1; else $1 = O 
if ($2 < 100) $1 = 1; else $1 = 0 
if ($2 < $3) $1 = 1; else $1 = O 
if ($2 < 100) $1 = 1; else $1 = O 

go to 10000 
go to $31 
$31 = PC + 4; go to 10000 

l ...... � ... � 

3 operands; exception possible 
3 operands; exception possible 
+ constant; exception possible 
3 operands; no exceptions 
3 operands; no exceptions 
+ constant; no exceptions 
Used to get of Exception PC 
3 reg. operands; Logical AND 
3 reg. operands; Logical OR 
Logical AND reg, constant 
Logical OR reg, constant 
Shift left by constant 
Shift right by constant 

Data from memory to register 
Data from register to memory 
Loads constant in upper 16bits 

Equal test; PC relative branch 
Not equal test; PC relative 
Compare less than; 2's comp. 
Compare < constant; 2's comp. 
Compare less than; natural num. 
Compare < constant; natural num. 
Jump to target address 
For switch, procedure return 
For procedure call 

FIGURE 4.6 MIPS architecture revealed thus far. Color indicates the portions since Figure 4.4 on page 180. MIPS 
machine language is illustrated on the endpapers of this book. 
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1. And gate (c = a  · b) 

2. Or gate (c = a + b) 

3. Inverter (C = a) 

4. Multiplexor 
(if d = = o c = a; 

else c = b) 

: =o-- c 

: =:[)- c  

a -(:>o---- c 

d 

·=tr, b 1 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

m 0 

m b 

FIGURE 4. 7 Four hardware building blocks used to construct an arithmetic logic unit. The 
name of the operation and an equation describing it appear on the left. In the middle is the sym
bol for the block we will use in the drawings. On the right are tables that describe the outputs in 
terms of the inputs. Using the notation from Appendix B, a .  b means "a AND b," a +  b means "a 
OR b," and a line over the top (e.g., ';;°J means invert. 

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let's 
assume that we will connect 32 1-bit ALUs to create the desired ALU. We'll 
therefore start by constructing a 1-bit ALU. 

A 1·bit ALU 

The logical operations are easiest, because they map directly onto the hard
ware components in Figure 4.7. The 1-bit logical unit for AND and OR looks 
like this: 
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Operation l 
Result 

The multiplexor on the right then selects a AND b or a OR b, depending on 
whether the value of Operation is 0 or 1 .  The line that controls the multiplexor 
is shown in color to distinguish it from the lines containing data. Notice that 
we have renamed the control and output lines of the multiplexor to give them 
names that reflect the function of the ALU. 

The next function to include is addition. From Figure 4.2 on page 176 we can 
deduce the inputs and outputs of a single-bit adder. First, an adder must have 
two inputs for the operands and a single-bit output for the sum. There must be 
a second output to pass on the carry, called Carryout. Since the CarryOut from 
the neighbor adder must be included as an input, we need a third input. This 
input is called Carryin . Figure 4.8 shows the inputs and the outputs of a 1-bit 
adder. Since we know what addition is supposed to do, we can specify the 
outputs of this "black box" based on its inputs, as Figure 4.9 demonstrates. 

From Appendix B, we know that we can express the output functions Car
ryOut and Sum as logical equations, and these equations can in turn be imple
mented with the building blocks in Figure 4.7. Let's do CarryOut; the table 
below shows the values of the inputs when CarryOut is a 1 :  

· . Inputs ·, 

a b Carryln 
. . . 

0 1 1 

1 0 1 

1 1 0 

1 1 1 
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Carryln 

a 

+ Sum 

b 

Carryout 

FIGURE 4.8 A l·blt adder. This adder is called a full adder; it is also called a (3,2) adder because 
it has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half 
adder. 

0 0 0 0 0 O + O + O = OOtwo 
0 0 1 0 1 0 + 0 + 1 = 01two 

0 1 0 0 1 0 + 1 + 0 = 01two 

0 1 1 1 0 0 + 1 + 1 = 10tw0 

1 0 0 0 1 1 + 0 + 0 = 01two 

1 0 1 1 0 1 + 0 + 1 = 10two 
1 1 0 1 0 1 + 1 + 0 = 10two 

1 1 1 1 1 1 + 1 + 1 = 11two 

FIGURE 4.9 Input and output specification for a l·blt adder. 

We can turn this truth table into a logical equation, as explained in 
Appendix B (Recall that a +  b means "a OR b" and that a · b means "a AND 
b".) : 

CarryOut = (b · Carryln ) + ( a · Carryln ) + ( a · b) + ( a · b · Carryln ) 

If a · b · Carryln is true, then one of the other three terms must also be true, so 
we can leave out this last term corresponding to the fourth line of the table. 
We can thus simplify the equation to 

CarryOut = (b · Carryln ) + ( a · Carryln ) + ( a · b) 
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Carryln 

Carryout 

FIGURE 4.10 Adder hardware for the carry out slgnal. The rest of the adder hardware is the 
logic for the Sum output given in the equation above. 

Figure 4.10 shows that the hardware within the adder black box for CarryOut 
consists of three AND gates and one OR gate. The three AND gates corre
spond exactly to the three parenthesized terms of the formula above for Car
ryOut, and the OR gate sums the three terms. 

The Sum bit is set when exactly one input is 1 or when allthree inputs are 
1. The Sum results in a messier Boolean equation (recall that a means NOT a): 

- -

Sum = ( a · b · Carry In) + ( a · b · Carry In) 

+ ( a · b · Carryln) + ( a · b · Carryln) 

The drawing of the logic for the Sum bit in the adder black box is left as an 
exercise for the reader (see Exercise 4.30). 

Figure 4.11 shows a 1-bit ALU derived by combining the adder with the ear
lier components. Sometimes designers also want the ALU to perform a few 
more simple operations, such as generating 0. The easiest way to add an oper
ation is to expand the multiplexor controlled by the Operation line and, for this 
example, to connect 0 directly to the new input of that expanded multiplexor. 

A 32-bit ALU 

Now that we have completed the 1 -bit ALU, the full 32-bit ALU is created by 
connecting adjacent "black boxes." Using xi to mean the ith bit of x, 
Figure 4.12 shows a 32-bit ALU. Just as a single stone can cause ripples to 
radiate to the shores of a quiet lake, a single carry out of the least significant 
bit (ResultO) can ripple all the way through the adder, causing a carry out of 
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Operation 
Carryln 

CarryOut 

Result 

FIGURE 4.11 A 1-blt ALU that performs AND, OR, and addition (see Figure 4.10). 

the most significant bit (Result31) .  Hence, the adder created by directly link
ing the carries of 1-bit adders is called a ripple carry adder. We'll see a faster 
way to connect the 1-bit adders later. 

Subtraction is the same as adding the negative version of an operand, and 
this is how adders perform subtraction. Recall that the shortcut for negating a 
two's complement number is to invert each bit (sometimes called the one's com
plement) and then add 1 (see page 174, Elaboration). In order t� invert each bit, 
we simply add a 2:1 multiplexor that chooses between b and b ,  as Figure 4.13 
shows. 

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure 4.12. The 
added multiplexor gives the option of b or its inverted value, depending on 
Binvert, but this is only one step in negating a two's complement number. No
tice that the least significant bit still has a Carryln signal, even though it's un
necessary for addition. What happens if we set Carryln to 1 instead of O? The 
adder will then calculate a + b + 1. By selecting the inverted version of b, we 
get exactly what we want: 

a + b + 1 = a + (b + 1 )  = a + ( -b ) = a - b 

The simplicity of the hardware design of a two's complement adder helps 
explain why two's complement representation has become the universal stan
dard for integer computer arithmetic. 
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aO 
ResultO 

bO 

al 

ALU1 Resultl 
bl 

a2 

ca�H Carryln 
ALU2 Result2 

b2 
Carryout 

t I 
a31 Carryln 

ALU31 Result31 
b31 

Carryout 

FIGURE 4.12 A 32-blt ALU constructed from 32 1·blt ALUs. CarryOut of the less significant bit 
is connected to the Carry In of the more significant bit. This organization is called ripple carry. 

Tailoring the 32-bit ALU to MIPS 

This set of operations-add, subtract, AND, OR- is found in the ALU of 
almost every computer. But the design of the ALU is incomplete. If we look at 
Figure 4.6 on page 183, we see that the operations of most MIPS instructions 
can be performed by this ALU. One instruction that still needs support is the 
set-on-less-than instruction. Recall that the operation produces 1 if Rs < Rt, 
and 0 otherwise. Consequently, set on less than will set all but the least signif
icant bit to 0, with the least significant bit set according to the comparison. 
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Binvert Operation 
Carryln 

a -+-------'----i 

Carryout 

Result 

FIGURE 4.13 A 1-blt ALU that performs AND, OR, and addition on a and b or a and b . By 
selecting b (Binvert = 1) and setting Carry In to 1, we get two's complement subtraction of b from 
a instead of addition of b to a. 

Thus, we need to expand the multiplexor to bring a value for the less than 
comparison for each bit of the ALU. Figure 4.14 shows the new 1-bit ALU 
with the expanded multiplexor. What remains to consider is how to compare 
and set the least significant bit for set-on-less-than instructions. 

What happens if we subtract Rt from Rs? If the difference is negative, then 
Rs < Rt since 

( Rs - Rt ) < 0 
=> ( (Rs - Rt )  + Rt ) < (O + Rt )  
=> ( 0 + Rs ) < ( 0 + Rt ) 
=> Rs <  Rt 

Then we want the least significant bit of set on less than to be a 1 if the dif
ference is negative and a 0 if it's positive. It would seem that this corresponds 
exactly to the sign-bit values: 1 means negative and 0 means positive. Follow
ing this line of argument, we need only connect the sign bit from the adder out
put to the least significant bit to get what we want. 

Unfortunately, the Result output from the most significant ALU bit for the 
less operation is not the output of the adder; the ALU output for the less oper
ation is the input value Less. Thus, we need a new ALU for the most significant 
bit which makes the adder output available in addition to the standard result 
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191 

Result 

FIGURE 4.14 A 1-bit ALU that performs AND, OR, and addition on a and b or b . It includes a 
direct input that is connected to perform the set-on-less-than operation (see Figure 4.16). 

output. Figure 4.15 shows the design, with this new adder output line called 
Set. As long as we need a special ALU for the most significant bit, we added 
the overflow detection logic since it is also associated with that bit. 

Unfortunately, the test of less than is a little more complicated than just 
described because of overflow; Exercise 4.25 on page 261 explores what must 
be done. Figure 4.16 shows the final organization of the 32-bit ALU. 

Notice that every time we want the ALU to subtract, we set both Carryln 
and Binvert to 1 .  For adds or logical operations, we want both control lines to 
be 0. We can therefore simplify control of the ALU by combining the Carryln 
and Binvert to a single control line called Bnegate. 

To further tailor the ALU to the MIPS instruction set, we must support con
ditional branch instructions. These instructions branch either if two registers 
are equal or if they are unequal. The easiest way to test equality with the ALU 
is to subtract b from a and then test to see if the result is 0, since 

( a - b  = 0) � a  = b  

Thus, if we add hardware to test if the result is 0, we can test for equality. 
The simplest way is to OR all the outputs together and then send that signal 
through an inverter: 
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Binvert 

a 

b 

Overflow 
detection 

Operation 
Carryln 

0 

1 

Result 
2 

----+-+ Set 

CarryOut 

FIGURE 4.15 A 1-blt ALU for the most significant bit. It includes a direct output from the 
adder for the less than comparison called Set. 

Zero = ( Result31 + Result30 + . . .  + Result2 + Resultl + ResultO ) 

Figure 4.17 shows the revised 32-bit ALU. 
Now that we have seen what is inside a 32-bit ALU, we will use the univer

sal symbol for a complete ALU, as shown in Figure 4.18. The 3 ALU Operation 
lines, consisting of the combination of the 1-bit Bnegate line and the 2-bit Op
eration line, make the ALU perform the desired operation: add, subtract, 
AND, OR, or set on less than. Figure 4.19 shows the ALU control lines and the 
corresponding ALU operation. 

Carry Lookahead 

The next question is, "How quickly can this ALU add two 32-bit oper
ands?" We can determine the a and b inputs, but the Carryln input 
depends on the operation in the adjacent 1-bit adder. If we trace all the 
way through the chain of dependencies, we get to the least significant 
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aO 
bO 

a1 
b1 
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a2 
b2 

0 

a31 
b31 
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I�--�T'" ALUO ResultO 

Less 
Carryout 

1----�-+ Result1 

1----�-+ Result2 

i-------+ Result31 
i-----� set 
1-------1-+ Overflow 
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FIGURE 4.16 A 32-blt ALU constructed from the 31 l·blt ALUs found In Figure 4.14 and 
one 1-blt ALU found In Figure 4.15. The Less inputs are connected to 0 except for the least sig
nificant bit, and that is connected to the Set output of the most significant bit. If the ALU performs 
a - b and we select the input 3 in the multiplexor in Figures 4.14 and 4.15, then Result = 0 . . .  001 if 
a < b, and Result = 0 . . .  000 otherwise. (The carryout of the most significant bit is useful in multi
word additions as carryin of upperwords.) 

bit, so the most significant bit of the sum must wait for the sequential 
evaluation of the 32 1 -bit adders. This sequential chain reaction is too 
slow to be used in time-critical hardware. There are a variety of schemes 
to anticipate the carry so that the worst-case scenario is a function of the 
log2 of the number of bits in the adder. These anticipatory signals are 
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Bnegate 

ao 
bO 

a1 
b1 

0 

a2 
b2 

0 

a31 
b31 

0 

Operation 

ResultO 

Result1 

Zero 

Result2 

Result31 

1--------. Set 
1-------i-------------+ Ove�ow 

FIGURE 4.17 The final 32-bit ALU. This adds a Zero detector to Figure 4.16, using the 1-bit ALU. 

faster because they go through fewer gates in sequence, but it takes 
many more gates in parallel to anticipate the proper carry. 

Appendix B mentions that any equation can be represented in two levels of 
logic, since the only external inputs are the two operands and the Carryln to 
the least significant bit of the adder. In theory, we could calculate the Carry In 
values to all the remaining bits of the adder in just two levels of logic. 
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Carryout 

Zero 
Result 
Overflow 
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FIGURE 4.18 The symbol commonly used to represent an ALU, as shown In Rgure 4.17. 
This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder. 
The control lines labeled ALUOperation include the Operation and Bnegate lines from 
Figure 4.17; their values and the ALU operation are found in Figure 4.19. 

ALU Control l i nes Function 
000 And 
001 Or 
010 Add 
110 Subtract 
111 Set-0n-less-than 

FIGURE 4.19 The values of the three ALU Control llnes Bnegate and Operation and the 
corresponding ALU operations. 

For example, the Carry In for bit 2 of the adder is the CarryOut of bit 1 of the 
adder, so the formula is 

Carryln2 = (bl · Carrylnl ) + ( a l · Carrylnl ) + ( a l · b l )  

Similarly, Carrylnl is defined as 
Carrylnl = (bO · CarrylnO ) + ( aO · CarrylnO ) + ( aO · bO) 

Substituting the definition of Carrylnl for the first equation results in this for
mula, where ci means Carrylni: 

c2 = ( a l · aO · bO) + (a l · aO · c O )  + ( a l · bO · c O )  
+ (bl · aO · bO)  + (bl · aO · cO )  + (bl · b O · cO )  + ( a l · bl )  

You can imagine how the equation expands a s  we get to higher bits in the 
adder; this complexity is reflected in the cost of the hardware for fast carry, 
making this simple scheme prohibitively expensive for wide adders. 
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Most fast-carry schemes limit the complexity of the equations to simplify 
the hardware, while still making substantial improvements over ripple carry. 
One such scheme is a carry-lookahead adder. The first step is to factor out some 
common terms from these complex logic equations. Two important factors are 
called generate (gi) and propagate (pi): 

gi = ai · bi 

pi = ai + bi 

The two terms are well-named: 

gi is true if bit i of the adder generates a Carryout independent of Carry In; 

pi is true if bit i of the adder propagates a Carry In to a CarryOut. 

The Carrylni is a 1 if either gi-l is 1 or both Pi-l is 1 and Carrylni-l is 1 .  Using 
propagate and generate we can express the Carryln signals more economi
cally; let's show it for 4 bits: 

cl = gO + (pO · c O )  

c2 = g 1 + ( p 1 · gO ) + ( p 1 · pO · c 0 ) 

c3 = g2 + (p2 · gl )  + (p2 · pl · gO )  + (p2 · pl · pO · cO )  

c4 = g3 + (p3 · g2 ) + (p3 · p2 · gl ) + (p3 · p2 · pl ·  gO ) 
+ (p3 · p2 · pl · pO · cO ) 

These equations just represent common sense: Carrylni is a 1 if some earlier 
adder generates a carry and all intermediary adders propagate a carry. 

Even this simplified form leads to large equations and, hence, considerable 
logic even for a 16-bit adder. In Chapter 1, we said computer systems cope 
with complexity by using levels of abstraction. Let's try abstraction here. First 
we consider this 4-bit adder with its carry-lookahead logic as a single building 
block. Then we must have two choices: either we just connect these abstrac
tions in ripple carry fashion or we create carry-lookahead signals for them. 

We'll need carry lookahead at the higher level to run fast. To perform carry 
lookahead for 4-bit adders, we need propagate and generate signals at this 
higher level. Here they are for the four 4-bit adder blocks: 

PO = p3 · p2 · pl · pO 

Pl = p7 · p6 · p5 · p4 

P2 = pl l · plO · p9 · p8 

P3 = pl5 · pl4 · pl3 · pl2 

That is, the propagate signal for the 4-bit abstraction (Pi) is true only if each of 
the bits in the group will propagate a carry. Similarly, the generate signal for 
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the 4-bit abstraction (Gi) is true only if all of the bits will generate a carry from 
the most significant bit of the group: 

GO = g3 + (p3 · g2 ) + (p3 · p2 · gl )  + (p3 · p2 · pl · gO ) 

Gl = g7 + (p7 · g6 ) + (p7 · p6 · gS ) + (p7 · p6 · pS · g4 ) 

G2 = gll + (pll · glO ) + (pll  · plO · g9 ) + (pll · plO · p9 · g8 ) 

G3 = glS + (plS · gl4 ) + (plS · pl4 · gl3 ) + (plS · pl4 · p13 · gl2 ) 

Then the equations at this higher level of abstraction for a 16-bit adder are 
very similar to those before: 

Cl = GO + (PO · cO ) 

C2 = Gl + (Pl · GO ) + (Pl · PO · cO ) 

C3 = G2 + (P2 · Gl ) + (P2 · Pl · GO ) + (P2 · Pl · PO ·  cO ) 

C4 = G3 + (P3 · G2 ) + (P3 · P2 · Gl ) + (P3 · P2 · Pl · GO )  
+ ( P3 · P2 · Pl · PO · cO ) 

Exercises 4.31 to 4.35 explore the speed differences between these carry 
schemes, different notations for multi-bit propagate and generate signals, and 
the design of a 64-bit adder. 

Summary 

The primary point of this section is that the traditional ALU can be con
structed from a multiplexor and a few gates that are replicated 32 times. To 
make it more useful to the MIPS architecture, we expand the traditional ALU 
with hardware to test if the result is 0, detect overflow, and perform the basic 
operation for set on less than. 

The logic equation for the Sum output of the fu l l  adder on page 187 
can be expressed more simply by using a more powerful gate than AND and OR. An 
exclusive OR gate is true if the two operands d isagree; that is ,  

x * y � 1 and x = y � 0 

I n  some technologies, exclusive OR is more efficient than two levels of AND and OR 
gates. Using the symbol EB to represent exclusive OR, here is the new equation: 

S u m = a EB b EB C a r r y l n  

We have now accounted for al l  but one of the arithmetic and logical operations for 
the M IPS instruction set: the ALU in Figure 4.18 omits support of shift i nstructions. It 
wou ld be possible to widen the ALU multiplexor to include a left shift by 1 bit or right 
shift by 1 bit. But hardware designers have created a circu it cal led a barrel shifter, 
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which can shift from 1 to 31 bits in no more time than it takes to add two 32-bit num
bers, so shifting is normally done outside the ALU . 

II MuHlpllcatlon 

Multiplication is vexation, Division is as bad; 
The rule of three doth puzzle me, And practice drives me mad. 

Anonymous, Elizabethan manuscript, 1570 

With the construction of the ALU and explanation of addition, subtraction, 
and shifts, we are ready to build the more vexing operation of multiply. 

But first let's review the multiplication of decimal numbers in longhand to 
remind ourselves of the steps and the names of the operands. For reasons that 
will become clear shortly, we limit this decimal example to using only the dig
its 0 and 1 .  Multiplying lOOOten by lOOlten: 

Multiplicand 
Multiplier 

Product 

1 O O O ten  
X l O O l t e n  

1 0 0 0  
0 0 0 0  

0 0 0 0  
1 0 0 0  

1 00 1 0 0 0 te n  

The first operand is  called the multiplicand and the second the multiplier. The 
final result is called the product. As you may recall, the algorithm learned in 
grammar school is to take the digits of the multiplier one at a time from right 
to left, multiplying the multiplicand by the single digit of the multiplier and 
placing the intermediate product at the appropriate place to the left of the 
earlier results. 

The first observation is that the number of digits in the product is consider
ably larger than the number in either the multiplicand or the multiplier. In fact, 
if we ignore the sign bits, the length of an n-bit multiplicand and an m-bit mul
tiplier is a product that is n+m bits long. Hence, like add, multiply must cope 
with overflow, because we normally want a 32-bit product as the result of mul
tiplying two 32-bit numbers. 

In this example we restricted the decimal digits to 0 and 1 .  With only two 
choices, each step of the multiplication is simple: 

Just place a copy of the multiplicand (1 x multiplicand) in the proper place 
if the multiplier digit is a 1, or 
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Multiplicand 
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Write ·--.... 
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Control 
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Multiplier 
Shift right 
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FIGURE 4.20 First version of the multlpllcatlon hardware. The Multiplicand register, ALU, 
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. The 
32-bit multiplicand starts in the right half of the Multiplicand register, and is shifted left 1 bit on 
each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts 
with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier 
registers and when to write new values into the Product register. 

place 0 (0 x multiplicand) if the digit is 0. 

Although the decimal example above happened to use only 0 and 1, multipli
cation of binary numbers must always use 0 and 1, and thus always offers 
only these two choices. 

Now that we have reviewed the basics of multiplication, the traditional next 
step is to provide the highly optimized multiply hardware. We break with tra
dition in the belief that the reader will gain better understanding by seeing the 
evolution of the multiply hardware and algorithm through three generations. 
The rest of this section presents successive refinements of the hardware and 
the algorithm until we have a version that you would really find in a comput
er. For now, let's assume that we are multiplying only positive numbers. 

First Iteration of the Multiplication Algorithm and Hardware 

The initial design mimics the algorithm we learned in grammar school; the 
hardware is shown in Figure 4.20. We have drawn the hardware so that data 
flows from top to bottom to more closely resemble the paper-and-pencil 
method. 

Let's assume that the multiplier is in the 32-bit Multiplier register and that 
the 64-bit Product register is initialized to 0. Since the basic algorithm shifts the 
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Multiplicand register left one digit each step so that it can be added to that 
step, moving the 32-bit multiplicand value from being aligned on the right to 
aligned on the left, we use a 64-bit Multiplicand register with the multiplicand 
starting in the right half of the register and 0 in the left half. This register is 
shifted left 1 bit each step to align the multiplicand with the sum being accu
mulated in the 64-bit Product register. 

Figure 4.21 shows the three basic steps needed for each bit. The least signif-

MultiplierO = 1 

1a. Add multiplicand to product and 
place the result in Product register 

Start 

Multipl ierO = O 

2. Shift the Multiplicand register left 1 bit 

3. Shift the Multiplier register right 1 bit 

Done 

FIGURE 4.21 The first multlpllcatlon algorithm, using the hardware shown In Figure 4.20. 
If the least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to 
the next step. Shift the multiplicand left and the multiplier right in the next two steps. These three 
steps are repeated 32 times. 
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icant bit of the multiplier (MultiplierO) determines whether the multiplicand is 
added to the Product register. The left shift in step 2 has the effect of moving 
the intermediate operands to the left, just as when multiplying by hand. The 
shift right in step 3 gives us the next bit of the multiplier to examine in the fol
lowing iteration. These three steps are repeated 32 times to obtain the product. 

Using 4-bit numbers to save space, multiply 21en x 3ten or OOlOtwo x OOlliv.·o· 

Figure 4.22 shows the value of each register for each of the steps labeled ac
cording to Figure 4.21, with the final value of 0000 OllOtwo or 6ten· Color is 
used to indicate the register values that change on that step, and the bit cir
cled is the one examined to determine the operation of the next step. 

Iteration Step Multipl ier Multiplicand Product 

0 Initial Values 00 1© 0000 0 0 1 0  0 0 0 0  0000 

1a: 1 =>Prod=Prod+Mcand 00 1 1  0000 0 0 1 0  0 0 0 0  0 0 1 0  

1 2: Sh ift left Mu ltiplicand 00 1 1 0000 0 1 0 0  0000 0 0 1 0  

3 :  Shift right Multiplier ooo© 0000 0 1 00 0000 0 0 1 0  

la: 1 =>Prod=Prod+Mcand 0001  0000 0 1 00 0000 0 1 1 0  

2 2: Sh ift left Multiplicand 0001  0000 1 000 0000 0 1 1 0 

3: Shift right Multiplier ooo@ 0000 1 000  0000 0 1 1 0  

1: O =>no operation 0000 0000 1 000 0000 0 1 1 0  

3 2: Shift left Multiplicand 0000 0001 0000 0000 0 1 1 0 

3: Shift right Multiplier ooo@ 000 1  0000 0000 0 1 1 0  

1: o =>no operation 0000 000 1  0000 0000 0 1 1 0  

4 2: Shift left Multiplicand 0000 0 0 1 0  0000 0000 0 1 1 0 

3: Shift right Multiplier 0000 00 1 0  0000 0000 0 1 1 0  

FIGURE 4.22 MuHlply example using Hrst algortttun In Figure 4.21. 

If each step took a clock cycle, this algorithm would require almost 100 clock 
cycles to multiply. The relative importance of arithmetic operations like mul
tiply varies with the program, but addition and subtraction may be anywhere 
from 5 to 100 times more popular than multiply. Accordingly, in many appli-
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Mull olicand 

64 bits 

Shift right •--.r 
Write •--"- Control 

-

Multiplier 
Shift right 

32 bits 

FIGURE 4.23 Second version of the multlpllcatlon hardware. Compare to the first version in 
Figure 4.20. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only 
the Product register left at 64 bits. Now the product is shifted right. These changes are high
lighted in color. 

cations, multiply can take multiple clock cycles without significantly affecting 
performance. Yet Amdahl's Law (see Chapter 2, page 71) reminds us that even 
a moderate frequency for a slow operation can limit performance. 

Second Iteration of the Multiplication Algorithm 

and Hardware 

Computer pioneers recognized that half of the bits of the multiplicand in the 
first algorithm were always 0, so only half could contain useful bit values. A 
full 64-bit ALU thus seemed wasteful and slow since half of the adder bits 
were adding 0 to the intermediate sum. 

The original algorithm shifts the multiplicand left with Os inserted in the 
new positions, so the least significant bits of the product can never change after 
they are formed. Instead of shifting the multiplicand left, they wondered, what 
if we shift the product to the right? Now the multiplicand would be fixed rela
tive to the product, and since we are adding only 32 bits, the adder need be 
only 32 bits wide. Figure 4.23 shows how this change halves the widths of both 
the ALU and the multiplicand. 

Figure 4.24 shows the multiply algorithm inspired by this observation. This 
algorithm starts with the 32-bit Multiplicand and 32-bit Multiplier registers set 
to their named values and the 64-bit Product register set to 0. This algorithm 
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FIGURE 4.24 The second multlpllcatlon elgorlthm, using the herdw11re In FllUr• 4.23. In 
this version, the Product register is shifted right instead of shifting the Multiplicand. Color type 
shows the changes from Figure 4.21. 

only forms a 32-bit sum, so only the left half of the 64-bit Product register is 
changed during the addition. 
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•:.�1terition ; �·,.·�· .t .. ;· . •  -��-step_ ·,, · ' Multiplier Multiplicand Product 
t -'-. -..- ..,,..__ I , Y .. ' -r , - ' 

0 Initial Values 0 0 1© 0 0 1 0  0000  0000 

1a : 1 =>Prod=Prod+Mcand 0 0 1 1 0 0 1 0  0 0 1 0  0000 

1 2: Shift right Product 0 0 1 1 0 0 1 0  0 0 0 1  0000 

3: Shift right Multiplier oooQ) 0 0 1 0  0001  0000 

1a: 1 =>Prod=Prod+Mcand 0 0 0 1  0 0 1 0  00 1 1  0000 

2 2: Shift right Product 0 0 0 1  0 0 1 0  0 0 0 1  1 0 00 

3: Shift right Multiplier ooo@ 0 0 1 0  0 0 0 1  1 00 0  

1: O =>no operation 0000  0 0 1 0  0 0 0 1  1 00 0  

3 2: Shift right Product 0000  0 0 1 0  000  1 1 00 

3: Shift right Multiplier ooo@ 0 0 1 0  0000  1 1 00 

1: O =>no operation 0000  0 0 1 0  0000  1 1 00 

4 2: Shift right Product 0000 0 0 1 0  0000  0 1 1 0  

3: Shift right Multiplier 0000 0 0 1 0  0 0 0 0  0 1 1 0  

FIGURE 4.25 Multlply example using second algorlthm In Figure 4.24. 

Multiply OOlOtwo x 0011tw0using the algorithm in Figure 4.24. 

Figure 4.25 above shows the revised 4-bit example, again giving 0000 
OllOtwo· 

Final Version of the Multiplication Algorithm and Hardware 

The final observation of the frugal computer pioneers was that the Product 
register had wasted space that matched exactly the size of the multiplier: As 
the wasted space in the product disappears, so do the bits of the multiplier. In 
response, the third version of the multiplication algorithm combines the 
rightmost half of the product with the multiplier. Figure 4.26 shows the hard
ware. The least significant bit of the 64-bit Product register (ProductO) now is 
the bit to be tested. 

The algorithm starts by assigning the multiplier to the right half of the Prod
uct register, placing 0 in the upper half. Figure 4.27 shows the new steps. 
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FIGURE 4.26 Third version of the multlpllcatlon hardware. Comparing to the second version 
in Figure 4.23 on page 202, the separate Multiplier register disappeared. The multiplier is placed 
instead in the right half of the Product register. 

Multiply OOlOtwo x OOlltwo using the algorithm in Figure 4.27. 

Figure 4.28 below shows the revised 4-bit example for the final algorithm. 

Signed Multiplication 

So far we have dealt with positive numbers. The simplest way to convert this 
algorithm to signed numbers is to first convert the multiplier and multipli
cand to positive numbers and then remember the original signs. The algo
rithms should then be run for 31 iterations, leaving the signs out of the 
calculation. As we learned in grammar school, we need negate the product 
only if the original signs disagree. 

Booth's Algorithm 

A more elegant approach to multiplying signed numbers is called Booth's algo
rithm. It starts with the observation that with the ability to both add and sub
tract there are multiple ways to compute a product. Suppose we want to 
multiply 2ten by 6ten or OOlOtwo by Ol10tw0: 
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ProductO = 1 

la. Add multiplicand to the left half of 
the product and place the result in 
the left half of the Product register 

Start 

ProductO = O 

2. Shift the Product register right 1 bit 

Done 

FIGURE 4.27 The third multlpllcatlon algorithm. It needs only two steps because the Product 
and Multiplier registers have been combined. Color type shows changes from Figure 4.24. 

O O l Otwo 
x O l l Otwo 

+ 0 0 0 0  s h i ft ( 0  i n  m u l t i p l i e r )  
+ 0 0 1 0  a d d  ( 1  i n  m u l t i p l i e r )  
+ 0 0 1 0  a d d  ( 1  i n  m u l t i p l i e r )  
+ 0 0 0 0  s h i ft ( 0  i n  m u l t i p l i e r )  

OOOO l l O Otwo 
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Iteration Step Multiplicand Product 
0 Initial Values 0 0 1 0  0 0 0 0  0 0 1© 

la: 1 =>Prod=Prod+Mcand 0 0 1 0  0 0 1 0  001 1 
1 00 1 0  0 0 0 1  o oaj) 2:  Shift right Product 

la: 1 =>Prod=Prod+Mcand 00 1 0  00 1 1  0001  
2 00 1 0  000 1  l OcXg 2: Shift right Product 

1: o =>no operation 00 1 0  0001  1000  
3 00 1 0  0000 l l cXg  2 :  Shift right Product 

1: 0 =>no operation 0 0 1 0  0000 1 1 00 
4 0 0 1 0  2: Shift right Product 0000 0 1 1 0  

FIGURE 4.28 Multiply example using third algorithm In Figure 4.27. 

Booth observed that an ALU that could add or subtract could get the same 
result in more than one way. For example, since 

6 t e n 
0 1  l O two 

= - Z t e n + S t en • or = - O O l O two+ l O O O two 

we could replace a string of l s  in the multiplier with an initial subtract when 
we first see a 1 and then later add for the bit after the last one. For example, 

O O l O two 
x 0 1  l O two 
+ 0 0 0 0  s h i f t ( 0  i n  m u l t i p l i e r )  

0 0 1 0  s u b  ( f i r s t  1 i n  m u l t i p l i e r )  
+ 0 0 0 0  s h i f t ( m i d d l e o f  s t r i n g  o f  l s )  
+ 0 0 1 0  a d d  ( p r i o r  s t e p  h a d  l a s t  1 ) 

O O O O l l O O two 

Booth invented this approach in a quest for speed, believing that shifting 
was faster than addition. Indeed, for some patterns his algorithm would be 
faster; it's our good fortune that it handles signed numbers as well, and we'll 
prove this later. The key to Booth's insight is in his classifying groups of bits 
into the beginning, the middle, or the end of a run of ls: 

Middle of r u n  
End of run I 0 ( 1 1 1 1 1 1) 0 

,
,
Beginning of run 
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Of course, a string of Os already avoids arithmetic, so we can leave these 
alone. 

If we are limited to looking at just 2 bits, we can then try to match the situ
ation in the preceding drawing, according to the value of these 2 bits: 

Current bit Bit to the right Explanation Example 
1 0 Beginning of a run of 1 s 0000 1 1 1 1 OODtwo 
1 1 Middle of a run of l s  0000 1 1 1 1  OOOtwo 
0 1 End of a run of ls  000 0 1 1 1 1 000tw0 
0 0 Middle of a run of Os 0 000 1 1 1 1 000tw0 

Booth's algorithm changes the first step of the algorithm in Figure 4.27-
looking at 1 bit of the multiplier and then deciding whether to add the multi
plicand-to looking at 2 bits of the multiplier. The new first step, then, has four 
cases, depending on the values of the 2 bits. Let's assume that the pair of bits 
examined consists of the current bit and the bit to the right-which was the 
current bit in the previous step. The second step is still to shift the product 
right. The new algorithm is then 

1 .  Depending on the current and previous bits, do one of the following: 

0 0 :  a. Middle of a string of Os, so no arithmetic operation. 

0 1 :  b. End of a string of ls, so add the multiplicand to the left half of the 
product. 

1 0 : c. Beginning of a string of ls, so subtract the multiplicand from the 
left half of the product. 

1 1 : d. Middle of a string of ls, so no arithmetic operation. 

2. As in the previous algorithm, shift the Product register right 1 bit. 

Now we are ready to begin the operation, shown in Figure 4.29. It starts 
with a 0 for the mythical bit to the right of the rightmost bit for the first stage. 
The table below compares the two algorithms, with Booth's on the right. Note 
that Booth's operation is now identified according to the values in the 2 bits. 
By the fourth step the two algorithms have the same values in the Product reg
ister. 

The one other requirement is that shifting the product right must preserve 
the sign of the intermediate result, since we are dealing with signed numbers. 
The solution is to extend the sign when the product is shifted to the right. Thus, 
step 2 of the second iteration turns 1110 0011  Otwo into 1111  0001 l two instead of 
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1: 0 => no operation 0000 la: 00 => no operation 0000 1 
0 0 1 0  2 :  Shift right Product 2: Shift ri ht Product 
0 0 1 0  la: 1 = >  Prod = Prod + Mcand l C  le: 10 =>Prod = Prod - Mcand 00 1 1 

2 
0 0 1 0  2 :  Shift right Product 1 0 1  2 :  Shift right Product 1 .  
0 0 1 0  

3 
la: 1 => Prod = Prod + Mcand 1 1 1  ld: 11 => no operation 1 1 1 1  0 00 1  

0 0 1 0  2 :  Shift ri ht Product C l  2:  Shift right Product 1 1  1 0  ' 
0 0 1 0  1: O => no operation 0001  1 000 lb: 01 =>Prod = ·Prod + Mcand " l  1 000  

4 
0 0 1 0  2 :  Shift right Product 00 . .  2 :  Shift right Product 00 1 1 0 0  

FIGURE 4.29 Comparing algorithm I n  Figure 4.27 and Booth's algorithm for positive numbers. 

Example 

Answer 

0111 0001 ltwo· This shift is called an arithmetic right shift to differentiate it from 
a logical right shift. 

Let's try Booth's algorithm with negative numbers: 2ten x -3ten = --6ten or 
0010iw0 X 110liw0 = 1111 l0l01wo· 

Figure 4.30 shows the steps. Our example computes multiply 1 bit at a time, 
but it is possible to generalize Booth's algorithm to look at multiple bits for 
faster multiplies (see Exercise 4.39). 

0 
1.c: 10 => Prod = Prod - Mcand 0 0 1 0  1 1 1 0  1 1 0 1  0 1 
2: Shift right Product 0 0 1 0  1 1 1 1  0 1 1  1 
1.b: 01 => Prod = Prod + Mcand 0 0 1 0  000 1  0 1 1 0  1 

2 
2: Shift ri ht Product 00 1 0  0000 1 0 1  0 
1.c: 10 => Prod = Prod - Mcand 00 1 0  1 1 1 0 1 0 1 1  0 

3 
2: Shift right Product 00 1 0  1 1 1 1  0 1 0  
1.d: 1 1  => no operation 00 1 0  1 1 1 1  0 1 0 1  1 

4 
2: Shift right Product 00 1 0  1 1 1 1  1 0  0 1 

FIGURE 4.30 Booth'• algorithm wHh negative muHlpller example. 
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Example 

Answer 
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Hardware 

Software 

Interface 

Booth's observation about replacing arithmetic by shifts can 
be applied when multiplying by constants. Some compilers 
replace multiplications by short constants with a series of 
shifts, adds, and subtracts. Because 1 bit to the left represents 
a number twice as large in base 2, shifting the bits left has the 
same effect as multiplying by a power of 2, so almost every 
compiler will substitute a left shift for a multiplication by a 
constant that is a power of 2. 

Let's multiply Sten by 2ten using a left shift by 1 .  

Given that 

lOltwo = (1 X 22 ) + ( 0 X 21) + (1 X 2°hen = 4 + 0 + lten = Sten 
if we shift left one bit we get 

and 

1010two = (1 x 23) + (0 x 22) + (1 x 21) + (0 X 2°hen 
= 8 + 0 + 2 + oten = lOten 

S X 2\en = lOten 
Hence the MIPS s 1 1  instruction can be used for multiplies by powers 

of 2. 

For real multiplies, MIPS provides a separate pair of 32-bit registers to con
tain the 64-bit product, called Hi and Lo. To produce a properly signed or un
signed product, MIPS has two instructions: multiply (m u l  t) and multiply 
unsigned (mu l  t u) .  To fetch the normal 32-bit product, the programmer uses 
move from lo (mflo). The MIPS assembler allows multiply instructions to spec
ify three registers, issuing the m f l  o and mf h i  instructions to place the products 
into registers. 

Both multiply instructions ignore overflow, so it is up to the software to 
check to see if the product is too big to fit in 32 bits. To avoid overflow, Hi must 
be 0 for m u l  t u  or must be the replicated sign of Lo for m u l  t .  The instruction 
move from hi ( m f h i  ) transfers Hi to a register to test for overflow. 
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Now that we have seen Booth's algorithm work, we are ready to see why it 
works for two's complement signed integers. Let a be the multiplier and b be 
the multiplicand and we'll use ai to refer to bit i of a. Recasting Booth's algo
rithm in terms of the bit values of the multiplier yields this table: 

' 1 1 1 . " • · J _ Op.eration ' 

0 0 Do nothing 
0 1 Add b 

1 0 Subtract b 

1 1 Do nothing 

Instead of representing Booth's algorithm in tabular form, we can represent it 
as the expression: 

(ai-1 - ai) 
where the value of the expression means the following actions: 

0 do nothing, 
+1 add b, 
-1 subtract b. 

Since we know that shifting of the multiplicand left with respect to the 
Product register can be considered multiplying by a power of 2, Booth's algo
rithm can be written as the sum: 

(a_1 - a0) x b 
+ (ao - a1) x b x  21 
+ (a1 - a2) x b x 22 

+ (a29 - a30) x b x 230 
+ (a30 - ll31) x b x 231 

We can simplify this sum by noting that 

- a· x zi-l+ a· x zi = (-a· + 2a·) x zi-l = (2a· - a·) x zi-l = a· x zi-l I I I I I I I 

and by factoring out b from each term: 

b X ((a31 X -231) + (a30 X 230) + (a29 X 229) + . . .  + (a1 X 21) + (ao X 2°)) 
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The long formula in parentheses to the right of the first multiply operation is 
simply the two's complement representation of a (see page 170.) Thus the 
sum is further simplified to 

b x a  

Hence Booth's algorithm does in fact perform two's complement multiplica
tion of a and b. 

Summary 

Multiplication is accomplished by a simple shift and add hardware, derived 
from the paper-and-pencil method learned in grammar school. Compilers 
even replace multiplications by powers of 2 with shift instructions. Signed 
multiplication is more challenging, with Booth's algorithm rising to the chal
lenge with essentially a clever factorization of the two's complement number 
representation of the multiplier. 

Elaboration: The original reason for Booth 's algorithm was speed , because early 
machines could shift faster than they could add .  The hope was that this encoding 
scheme would increase the number of shifts . This algorithm is sensitive to particular 
bit patterns,  however, and may actually increase the number of adds or subtracts. For 
example, bit patterns that alternate 0 and 1 ,  called isolated 1s, w i l l  cause the hard
ware to add or subtract at each step. If all combinations occur with uniform distribu
tion, then on average there is no savings. Greater advantage comes from performing 
multiple bits per step, which we explore in Exercise 4.39 . 

• Division 

Divide et impera. 

Latin for "Divide and rule," Ancient political maxim cited by Machiavelli, 1532 

The reciprocal operation of multiply is divide, an operation that is even less 
frequent and even more quirky. It even offers the opportunity to perform a 
mathematically invalid operation: dividing by 0. 

Let's start with an example of long division using decimal numbers to recall 
the names of the operands and the grammar school division algorithm. For 
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reasons similar to those in the previous section, we limit the decimal digits to 
just 0 or 1 .  The example is dividing 1,001,0lOten by lOOOten: 

lOOlten Quotient 

Divisor lOOOten 1001010ten Dividend 

-1000 
10 
101 
1010 

-1000 
lOten Remainder 

The two operands (dividend and divisor) and the result (quotient) of divide 
are accompanied by a second result called the remainder. Here is another way 
to express the relationship between the components: 

Dividend = Quotient x Divisor + Remainder 

where the Remainder is smaller than the Divisor. Infrequently, programs use 
the divide instruction just to get the remainder, ignoring the quotient. Note 
that the size of the dividend is limited by the sum of the sizes of the divisor 
and quotient. 

The basic grammar school division algorithm tries to see how big a number 
can be subtracted, creating a digit of the quotient on each attempt. Our care
fully selected decimal example uses only the numbers 0 and 1, so it's easy to 
figure out how many times the divisor goes into the portion of the 
dividend: it's either 0 times or 1 time. Binary numbers contain only 0 or 1, so 
binary division is restricted to these two choices, thereby simplifying binary 
division. 

Once again textbooks traditionally jump to the refined division hardware, 
and once again we abandon tradition to offer insight into how that hardware 
evolved. The next three subsections examine three versions of the divide algo
rithm, refining the hardware requirements as we go. Let's assume that both 
the dividend and divisor are positive and hence the quotient and the remain
der are nonnegative. 

First Iteration of the Division Algorithm and Hardware 

Figure 4.31 shows hardware to mimic our grammar school algorithm. We 
start with the 32-bit Quotient register set to 0. Each step of the algorithm 
needs to move the divisor to the right one digit, so we start with the divisor 
placed in the left half of the 64-bit Divisor register and shift it right one bit 
each step to align it with the dividend. 
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-

Divisor 

Remainder 

64 bits 

Shift right 

-

Quotient 
Shift left 

32 bits 

FIGURE 4.31 First version of the division hardware. The Divisor register, ALU, and Remain
der register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor 
starts in the left half of the Divisor register and is shifted right 1 bit on each step. The remainder is 
initialized with the dividend. Control decides when to shift the Divisor and Quotient registers 
and when to write the new value into the Remainder register. 

Figure 4.32 shows three steps of the first division algorithm. Unlike a hu
man, the computer isn't smart enough to know in advance whether the divisor 
is smaller than the dividend. It must first subtract the divisor in step l; remem
ber that this is how we performed the comparison in the set-on-less-than in
struction. If the result is negative, the next step is to restore the original value 
by adding the divisor back to the remainder (step 2b ). The remainder and quo
tient will be found in their namesake registers after the iterations are complete. 



4. 7 Division 

Start 

1. Subtract the Divisor register from the 
Remainder register and place the 
result In the Remainder register 

Remainder � O Remainder < 0 

2a. Shift the Quotient register to the left 
setting the new rightmost bit to 1 

2b. Restore the original value by adding 
the Divisor register to the Remainder 

register and place the sum in the 
Remainder register. Also shift the 

Quotient register to the left, setting the 
new least significant bit to 0 

3. Shift the Divisor register right 1 bit 

No: < 33 repetitions 

Done 
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FIGURE 4.32 The first division algorithm, using the hardware In Figure 4.31. If the Remain
der is positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A neg
ative Remainder after this step means that the divisor did not go into the dividend, so step 2b 
generates a 0 in the quotient and adds the divisor to the remainder, thereby reversing the subtrac
tion of step 1 .  The final shift, in step 3, aligns the divisor properly, relative to the dividend for the 
next iteration. These steps are repeated 33 times; the reason for the apparent extra step will 
become clear in the next version of the algorithm. 
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Example Using a 4-bit version of the algorithm to save pages, let's try dividing 7ten 
by 2ten or 0000 01 1 1  two by OOlOtwo· 

Answer Figure 4.33 shows the value of each register for each of the steps, with the 
quotient being 3ten and the remainder l tcn· Notice that the test in step 2 of 
whether the remainder is positive or negative simply tests whether the sign 
bit of the Remainder register is a 0 or 1. The surprising requirement of this 
algorithm is that it takes n + 1 steps to get the proper quotient and 
remainder. 

1:  Rem = Rem - Div 0000  0 0 1 0  
1 2b: Rem<O => +Div, sll Q, QO = 0 0000  0 0 1 0  

3 :  shift Div right 0000  

1: Rem = Rem - Div 0000  0001  

2 2b: Rem < O => +Div, sll Q, QO = O 0000  0 0 0 1  

3 :  shift Div right 0000  0000  0 1 1 1  
1: Rem = Rem - Div 0000  0000  1 1  1 1  

3 2b: Rem < 0 => +Div, sll Q, QO = 0 0000  0000  0 1 1 1  
3: shift Div right 0000  0000  0 1 1 1  

1: Rem = Rem - Div 0000  0000  
4 2a: Rem :<: O => sll Q, QO = 1 0 0 0 1  0000  

3 :  shift Div right 0 0 0 1  0 0  0 1  0 0 1 1 

1: Rem = Rem - Div 0 0 0 1  0000  00 . 

5 2a: Rem ;:: O => sll Q, QO = 1 0 0 1 1 0000  0 0 1 0  0 0 0 1  
3: shift Div right 0 0 1 1  000  01  0 0 0 0  0 0 0 1  

FIGURE 4.33 Division example using fi rst  algorithm I n  Figure 4.32. 

Second Version of the Division Algorithm and Hardware 

Once again the frugal computer pioneers recognized that, at most, half the 
divisor has useful information, and so both the divisor and ALU could poten
tially be cut in half. Shifting the remainder to the left instead of shifting the 
divisor to the right produces the same alignment and accomplishes the goal 
of simplifying the hardware necessary for the ALU and the divisor. 
Figure 4.34 shows the simplified hardware for the second version of the algo
rithm. 
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Divisor 

64 bits 

Shift left ,.__ _ _, 
Write .----... Control 

-
Quotient 

Shift left 
32 bits 
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FIGURE 4.34 Second version of the division hardware. The Divisor register, ALU, and Quo
tient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to 
Figure 4.31 ,  the ALU and Divisor registers are halved and the remainder is shifted left. These 
changes are highlighted. 

The second improvement comes from noticing that the first step of the cur
rent algorithm cannot produce a 1 in the quotient bit; if it did, then the quotient 
would be too large for the register. By switching the order of the operations to 
shift and then subtract, one iteration of the algorithm can be removed. 
Figure 4.35 shows the changes in this refined division algorithm. The remain
der is now found in the left half of the Remainder register. 
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Start 

1 Shift the Remaina r ·Eis r I f1 1 bit 

2 Subtract the Divisor register from the 
len n or he Remainder register, and 
place the result in the 1en alf 1e 

Remainder register 

Remainder � O 

3a Shift the Quotient register to the left, 
setting the new rightmost bit to 1 

Done 

Remainder < O 

3 Restore the original value by adding 
the Divisor register to the I f h 

Remainder register and place the sum 
in the 1e h<il Remainder register. 

Also, shift the Quotient register to the left, 
setting the new least significant bit to O 

FIGURE 4.35 The second division algorithm, using the hardware In Figure 4.34. Unlike the 
first algorithm in Figure 4.32, only the left half of the remainder is changed, and the remainder is 
shifted left instead of the divisor being shifted right. Color type shows the changes from 
Figure 4.32. 



Example 
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4. 7 Division 

Divide 0000 Oll ltwo by OOIOtwo using the algorithm in Figure 4.35. 

The answer is summarized in Figure 4.36. 
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Ii . ' ,_ ' , � c L"f}';r,1 .-.� -_,, :/.Sf:;,_,, u .. ' ., ... tlln.UL.,. I._ .. . 1r;111111:... 
0 Initial Values 0 0 0 0  0 0 1 0  0 0 0 0  0 1 1 1  

1: shift Rem left 0 0 0 0  0 0 1 0  0 0 0 0  L .  
1 2: Rem = Rem - Div 0 0 0 0  0 0 1 0  (} 1 1 0  1 1 1 0 

3b: Rem < O => +Div. sll Q. QO = O 0 0 0 0  0 0 1 0  0 0 0 0  1 1 1 0  
1: shift Rem left 0 0 0 0  0 0 1 0  0 0 0 1  1 1  

2 2: Rem = Rem - Div O D D O  0 0 1 0  (}1 1 1  1 1 00 
3b: Rem < O => +Div, sl l Q, QO = o 0 0 0 0  0 0 1 0  0 0 0 1  1 1 0 0  
1 :  sh ift Rem left 0 0 0 0  0 0 1 0  0 0 1 1 1 0 0 

3 2: Rem = Rem - Div 0 0 0 0  0 0 1 0  (t)oo 1 1 00 0  
3a: Rem � O => sll Q ,  QO = 1 0 0 0 1  0 0 1 0 0 0 0 1  1 0 0 0  
1: shift Rem left 0 0 0 1  0 0 1 0  00 1 1  0 0 0 0  

4 2: Rem = Rem - Div 0 0 0 1 0 0 1 0  (00 0 1  0 0 0 0  
3a ;  Rem � O => s l l  Q, QO = 1 0 0 1 1  0 0 1 0  0 0 0 1 0 0 0 0  

FIGURE 4.38 Dtvlslon example uslni second algorithm In Figure 4.U. 

Final Version of the Division Algorithm and Hardware 

With the same insight and motivation as in the third version of the multiplica
tion algorithm, computer pioneers saw that the Quotient register could be 
eliminated by shifting the bits of the quotient into the Remainder instead of 
shifting in Os as in the preceding algorithm. Figure 4.37 shows the third ver
sion of the algorithm. We start the algorithm by shifting the Remainder left as 
before. Thereafter, the loop contains only two steps because the shifting of the 
Remainder register shifts both the remainder in the left half and the quotient 
in the right half (see Figure 4.38). The consequence of combining the two reg
isters and the new order of the operations in the loop is that the remainder 
will be shifted left one time too many. Thus the final correction step must shift 
back only the remainder in the left half of the register. 
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Start 

1. Shift the Remainder register left 1 bit 

2. Subtract the Divisor register from the 
left half of the Remainder register and 
place the result in the left half of the 

Remainder register 

Remainder � O 

3a. Shift the Remainder register to the 
left, setting the new rightmost bit to 1 

Remainder < O 

3b. Restore the original value by adding 
the Divisor register to the left half of the 

Remainder register and place the sum 
in the left half of the Remainder register. 
Also shift the Remainder register to the 
left, setting the new rightmost bit to O 

Done. Shift left half of Remainder right 1 bit 

FIGURE 4.37 The third division algorithm has Just two steps. The Remainder register shifts 
left, combining steps 1 and 3 in Figure 4.35 on page 218. 
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Divisor 

Remainder 

64 bits 

Shift left ---
Write --- Control 
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FIGURE 4.38 Third version of the division hardware. This version combines the Quotient reg
ister with the right half of the Remainder register. 

Use the third version of the algorithm to divide 0000 Ollltwo by OOlOtwo· 

Figure 4.39 shows how the quotient is created in the bottom of the Remain
der register and how both are shifted left in a single operation. 

Iteration Step Divisor Remainder 
I n itial Values 0 0 1 0  0000  0 1 1 1  

0 
0 0 1 0  Shift Rem left 1 0 1 . 

2: Rem = Rem - Div 0 0 1 0  (i)l 1 1 1 0 
1 

3b: Rem < 0 => + Div, sl l  R, RO = 0 0 0 1 0  : u t; l  1 

2: Rem = Rem - Div 0 0 1 0  (i)l L 1 1 0 0  
2 

3b: Rem < 0 => +Div, Sii R, RO = 0 0 0 1 0  . c  1 1 

2: Rem = Rem - Div 0 0 1 0  ©00 1 1 0 00 
3 0 0 1 0  .0 1 1  3a: Rem � O => sl l R ,  RO = 1 . 

2: Rem = Rem - Div 0 0 1 0  (00� � 0 0 0 1  
4 " 3a: Rem � O => sl l R, RO = 1 0 0 1 0  • v  1 

Shift left half of Rem right 1 0 0 1 0  1 0 0 _  0 0 1 1 

FIGURE 4.39 Division example using third algorithm In Figure 4.37. 
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Signed Division 

So far we have ignored signed numbers in division. The simplest solution is 
to remember the signs of the divisor and dividend and then negate the quo
tient if the signs disagree. 

The one complication is that we must also set the sign of the remainder. Re
member that the following equation must always hold: 

Dividend = Quotient x Divisor + Remainder 

To understand how to set the sign of the remainder, let's look at the exam
ple of dividing all the combinations of 7ten by 2ten· The first case is easy: 

+7 + +2: Quotient = +3, Remainder = +1 

Checking the results: 
7 = 3 x 2 + (+1) = 6 + 1  

If we change the sign of the dividend, the quotient must change as well: 
-7 + +2: Quotient = -3 

Rewriting our basic formula to calculate the remainder: 

So, 

Remainder = (Dividend - Quotient x Divisor ) 
= -7 - ( -3 x + 2) = -7- ( -6) = -1 

-7 + +2: Quotient = -3, Remainder = -1 

Checking the results again: 
-7 = -3 x 2 + (-1) = -6 - 1  

The reason the answer isn't a quotient of -4 and a remainder of + 1,  which 
would also fit this formula, is that the quotient and remainder must have the 
same signs no matter what the signs of the dividend and divisor. Clearly if -(x 
+ y) * (-x) + y, programming would be an even greater challenge! 

We calculate the other combinations by following the same logic: 
+7 + -2: Quotient = -3, Remainder = + 1 

-7 + -2: Quotient = +3, Remainder = -1 

Notice that a nonzero remainder always has the same sign as the dividend. 
So the correctly signed division algorithm makes the sign of the remainder the 
same as the dividend, and the quotient is negated if the signs of the operands 
are opposite. 
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The observant reader will recognize that the same hardware 
can be used for both multiply and divide. The only require
ment is a 64-bit register that can shift left or right and a 32-bit 
ALU that adds or subtracts. For example, MIPS uses the 
32-bit Hi and 32-bit Lo registers for both multiply and di-
vide. As we might expect from the algorithm above, Hi con
tains the remainder and Lo contains the quotient after the 

divide instruction. To handle both signed integers and unsigned integers, 
MIPS has two instructions: divide ( d i v )  and divide unsigned (d i v u) .  The MIPS 
assembler allows divide instructions to specify three registers, issuing the 
m f l  o and m f h  i instructions to place the results into registers. 

MIPS divide instructions ignore overflow, so software must determine if 
the quotient is too large. In addition to overflow, division can also result in an 
improper calculation: division by 0. Some machines distinguish these two 
anomalous events. MIPS software must check the divisor to discover division 
by 0 as well as overflow. 

Summary 

The commonality hardware support for multiply and divide allows MIPS to 
provide a single pair of 32-bit registers that are used both for multiply and 
divide. Figure 4.40 summarizes the additions to the MIPS architecture for the 
last two sections. 

Elaboration: The reason for needing an extra iteration for the first algorithm and the 
early shift in the second and th ird algorithms involves the placement of the dividend in 
the Remainder register. We expect to have a 32-bit quotient and a 32-bit d ivisor, but 
each is really a 31-bit integer plus a sign bit. The product would be 31 +31, or 62 bits 
plus a single sign bit; the hardware can then support only a 63-bit dividend . Given that 
registers are normally powers of 2, this means we must place the 63-bit dividend prop
erly in the 64-bit Remainder register. If we place the 63 bits to the right, we need to run 
the algorithm for an extra step to get to that last bit. A better solution is to shift early, 
thereby saving a step of the algorithm. 
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Name 

32 
registers 

230 

memory 
words 

Category 

Arithmetic 

Logica l 

Data 
transfer 

Cond i-
tional 

branch 

Uncondi-
tional  J u m p  

Chapter 4 Arithmetic for Computers 

MIPS operands 

Example Comments 
Fast locations for data. In MIPS. data must be in registers to perform 

$0, $ 1 ,  $2 . . . . .  $ 3 1 .  arithmetic. M I P S  register $0 always equals 0. Register $ 1  is reserved for the 
Hi , Lo assembler to handle pseudoinstructions and l arge constants. Hi and Lo are 

32-bit registers containing the results of multiply and divide . 

Memory[ O J .  Accessed only b y  data transfer instructions. MIPS uses byte addresses, so 
Memory[4 ) , .  . . . sequential words differ by 4. Memory holds data structures, such as arrays, 
Memory[ 4294967292] and spil led registers, such as those saved on procedure calls. 

Instruction 
add 

subtract 

add immedi ate 

add unsigned 

subtract unsigned 

add i m m .  u n s ign. 

Move fr. copr. reg. 

multiply 

multiply unsigned 

divide 

divide unsigned 

Move from H i  

Move from Lo 

and 

or 

and immediate 

or immediate 
shift left logical 

shift right logical 

load word 

store word 

load upper i m m .  

branch on eq ual  

branch on not eq . 

set on less than 

set less than imm. 

set less than uns. 

set I .  l. imm.  uns. 

j u m p  

jump register 

jump and l ink 

MIPS assembly Language 

Example 
add $ 1.$2,$3 

sub $ 1 . $ 2 . $3 

addi $ 1 , $ 2 . 100 

addu $ 1 ,$2,$3 

subu $ 1 . $2,$3 

addiu $ 1 , $2 . 100 

mfcO $ 1 , $epc 

mull $2.$3 

multu $2,$3 

div $2 ,$3 

divu $2,$3 

mfhi $1 

mflo $ 1  

and $ 1 ,$2,$3 

or $ 1 , $2,$3 

andi  $ 1 , $ 2 . 100 

ori $ 1 , $ 2 , 100 

S i l  $1 .$2.10 

sr l  $ 1 . $2 ,10 

lw $ 1 , 100($2) 

SW $ 1 , 100($2) 

lui $ 1 . 100 

beq $ 1 , $2, 100 

bne $ 1 , $ 2 , 100 

s it $ 1 ,$2 ,$3 

slti $ 1 , $2, 100 

situ $ 1 , $2 , $ 3  

s l t i u  $ 1 , $ 2 , 100 

j 10000 

jr $31 

ja l  10000 

Meaning 
$ 1  = $2 + $3 

$ 1  = $ 2 - $ 3  

$ 1 = $2 + 100 

$1 = $ 2  + $ 3  

$ 1  = $2 - $ 3  

$ 1 = $2 + 100 

$1 = $epc 

Hi, Lo = $2 x $ 3  

H i ,  Lo = $2 x $3 

Lo = $2 / $3,  H i  = $2 mod $3 

Lo = $2 / $3, H i  = $2 mod $3 

$ 1  = H i 

$ 1  = Lo 

$1 = $2 & $ 3  

$ 1  = $2 I $3 

$1 = $2 & 100 

$ 1 = $2 I 100 

$ 1 = $2 « 10 

$ 1 = $2 » 10 

$1 = Memory[ $2+100] 

Memory[$2+100] = $1 

$ 1 = 100 x 216 
if ( $ 1  == $2) go to PC+4+100 

i f  ($1 !=  $2) go to PC+4+100 

i f  ($2 < $3) $1 = 1: else $1 = o 
if ($2 < 100) $1 = 1 :  else $ 1  = O 

if ($2 < $3) $1 = 1;  else $ 1  = O 

if ($2 < 100) $1 = 1 ;  else $1 = 0 

go to 10000 

go to $31 

$31 = PC + 4 ;  go to 10000 

I Comments ' 
3 operands; exception possible 

3 operands; exception possible 

+ constant; exception possible 

3 operands; no exceptions 

3 operands; no exceptions 

+ constant; no exceptions 

Used to get Exception PC 

64-bit signed product in H i .  Lo 

64-b1t unsigned product in H i .  Lo 

Lo = quotient, Hi = remainder 

Unsigned Quotient and Rem . 

Used to get copy of H i  

Used t o  get copy of L o  

3 reg. operands: Logical AND 

3 reg. operands: Logical OR 

Logical AND reg, constant 

Logical OR reg. constant 

Shift left by constant 

Shift right by constant 

Data from memory to register 

Data from regi ster to me mory 

Loads constant i n  upper 16 bits 

Equal test: PC re lative branch 

Not equal test; PC relative 

Compare less than: 2's comp. 

Com pare < constant: 2's comp. 

Compare less than; natural no. 

Com pare < constant; natural 

Jump to target address 

For switch, procedure return 

For procedure cal l  

FIGURE 4.40 MIPS architecture revealed thus far. Color indicates the portions revealed since Figure 4.6 on page 1 83 .  
MIPS machine language is i l lustrated o n  the endpapers of t h i s  book. 
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• Floating Point 

Speed gets you nowhere if you're headed in the wrong direction. 

American proverb 

In addition to signed and unsigned integers, programming languages include 
numbers to represent numbers with fractions, which are called reals in mathe
matics. Here are some examples of reals: 

3.14159265 . .  ·ten (pi) 

2.71828 . .  ·ten (e) 

O.OOOOOOOOlten or l .Oten x 10-9 (seconds in a nanosecond) 

3,155,760,000ten or 3.15576ten x 109 (seconds in a century) 

Notice that in the last case, the number didn't represent a small fraction, but 
it was bigger than we could represent with a signed integer. The alternative 
notation for the last two numbers is called scientific notation, which has a single 
digit to the left of the decimal point. A number in scientific notation that has 
no leading Os is called a normalized number, which is the usual way to write it. 
For example, l .Ol1I' x 10-9 is in normalized scientific notation, but O.lten x 10-s 

and 10.0ten x 10- are not. 
Just as we can show decimal numbers in scientific notation, we can also 

show binary numbers in scientific notation: 

l .Otwo x rl 
The binary base replaces the decimal base so that we can adjust the exponent 
by 1 to keep the binary number in normalized form. 

Computer arithmetic that supports such numbers is called floating point, be
cause it represents numbers in which the decimal point is not fixed, as it is for 
integers. The programming language C uses the name float for such numbers. 
Just as in scientific notation, numbers are represented as a single digit to the 
left of the decimal point. In binary, the form is 

l .xxxxxxxxxtwo x 2YYYY 

(Although the computer represents the exponent in base 2 as well as the rest 
of the number, to simplify the notation we'll show the exponent in decimal.) 
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A standard scientific notation for reals in normalized form offers three ad
vantages. It simplifies exchange of data that includes floating-point numbers; 
it simplifies the floating-point arithmetic algorithms to know that numbers 
will always be in this form; and it increases the accuracy of the numbers that 
can be stored in a word, since the unnecessary leading Os are replaced by real 
numbers to the right of the decimal point. 

Hardware 

Software 

Interface 

Practicality dictates that floating-point numbers be compat
ible with the size of a word. Representation of a MIPS float
ing-point number is shown below, where s is the sign of the 
floating-point number (1 meaning negative), exponent is the 
value of the 8-bit exponent field (including the sign of the ex-
ponent), and significand is the 23-bit number in the fraction. 
This is called sign and magnitude representation, since the 

sign has a separate bit from the rest of the number. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

s exponent significand 

1 bit 8 bits 2 3  bits 

In general, floating point numbers are of the form: 
S E (-1)  x F x 2  

F involves the value in the significand field and E involves the value in the ex
ponent field; the exact relationship to these fields will be spelled out soon. 

The designer of arithmetic must find a compromise between the size of the 
significand and the size of the exponent, because a fixed word size means you 
must take a bit from one to add a bit to the other. This trade-off is between ac
curacy and range: Increasing the size of the significand enhances the number 
of bits to represent the significand, but increasing the size of the exponent in
creases the range of numbers that can be represented. As our guideline from 
Chapter 3 reminds us, good design demands compromise. 

These chosen sizes of exponent and significand give MIPS computer arith
metic an extraordinary range. Fractions as small as about 2.0ten x 10-33 and 
numbers as large as about 2.0ten x 1038 can be represented in a computer. Alas, 
extraordinary differs from infinite, so it is still possible for numbers to be too 
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large. Thus, overflow interrupts can occur in floating-point arithmetic as well 
as in integer arithmetic. Notice that overflow here means that the exponent is 
too large to be represented in the exponent field. 

Floating point offers a new kind of exceptional event as well. Just as pro
grammers will want to know when they have calculated a number that is too 
large to be represented, they will want to know if the fraction they are calcu
lating has become so small that it cannot be represented; either event could re
sult in a program giving incorrect answers. This situation occurs when the 
negative exponent is too large to fit in the exponent field. To contrast it from 
overflow, some people call this event underflow. 

To reduce the chances of underflow or overflow, most programming lan
guages offer a notation that has a larger exponent. In C this is called double, and 
operations on doubles are called double precision floating-point arithmetic; sin
gle precision floating-point is the name of the earlier format. MIPS double pre
cision allows numbers almost as small as about 2.0ten x 10-308 and almost as 
large as about 2.0ten x 10308. 

Hardware 

Software 

Interface 

The representation of a double prec1s10n floating-point 
number takes two MIPS words, as shown below, where s is 
still the sign of the number, exponent is the value of the 11-bit 
exponent field, and significand is the 52-bit number in the 
fraction. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

s exponent significand 

1 bit 11 bits 20 bits 

significand (cont'd) 

32 bits 

These formats go beyond MIPS. They are part of the IEEE 754 floating-point 
standard, found in virtually every computer invented since 1980. This standard 
has greatly improved both the ease of porting floating-point programs and the 
quality of computer arithmetic. 

To pack even more bits into the significand, IEEE 754 makes the leading 1 
bit of normalized binary numbers implicit. Hence, the significand is actually 
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24 bits long in single precision (implied 1 and a 23-bit fraction), and 53 bits long 
in double precision (1 +52). Since 0 has no leading 1 ,  it is given the reserved ex
ponent value 0 so that the hardware won't attach a leading 1 to it. Thus 
00 . . .  OOtwo represents O; the representation of the rest of the numbers uses the 
form from before with the hidden 1 added: 

( -1)  s x ( 1  + significand ) x 2E 

where the bits of the significand represent the fraction between 0 and 1 and E 
specifies the value in the exponent field, to be given in detail shortly. If we 
number the bits of the significand from left to right sl, s2, s3, . . .  , then the 
value is 

S -1 -2 -3 -4 E ( -1)  x ( 1  + ( sl x 2 ) + ( s2 x 2 ) + ( s3 x 2 · )  + ( s4 x 2 ) + . . .  ) x 2 

The designers of IEEE 754 also wanted a floating-point representation that 
could be easily processed by integer operations. This is why the sign is in the 
most significant bit, allowing a test of less than, greater than, or equal to 0 to 
be performed quickly. Placing the exponent before the significand simplifies 
integer sorting of floating-point numbers, since numbers with bigger expo
nents look larger than numbers with smaller exponents, as long as they have 
the same sign. 

Negative exponents pose a challenge to simplified sorting. If we use two's 
complement or any other notation in which negative exponents have a 1 in the 
most significant bit of the exponent field, a negative exponent will look like a 
big number. For example, l .Otwo x r1 would be represented as 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Remember that the leading 1 is implicit in the significand.) The value l .Otwo x 
2+1 would look like the smaller binary number: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The desirable notation must therefore represent the most negative exponent 
as 00 . . .  OOtwo and the most positive as 11  . . .  1 l two· This is called biased nota
tion, with the bias being the number subtracted from the normal, unsigned 
representation to determine the real value. 
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IEEE 754 uses a bias of 127 for single precision, so -1 is represented by the 
bit pattern of the value -1+127ten or 126ten = 011 1 1 1 10tw0, and + 1 is represent
ed by 1+127 or 128ten = 1000 OOOOtwo· This means that the value represented by 
a floating-point number is really 

(-l)s X (1 + significand) X 2(exponent-bias) 

The exponent bias for single precision is 127 and for double precision is 1023. 

Show the IEEE 754 binary representation of the numbers -0.75ten in single 
and double precision. 

The number -0.75ten is also -3/ 4ten or -3122ten· It is also represented by the 
fraction -lltwol22ten or -0.l ltwo· In scientific notation the value is -0.lltwo 
x 2° and in normalized scientific notation it is -1 . ltwo x T1. 

The general representation for a single precision number is 

(-1)5 X (1 + significand) X 2(exponent-127) 

and so we add the bias 127 to the exponent of -1 .ltwo x r1 

(-1)1 x (1 +.lOOO OOOO OOOO OOOO OOOO OOOtw0) x 2(126-127) 

The single precision, binary representation of -0.75ten is then 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 bit 8 bits 

The double precision representation is 

(-1 )1 x (1 + .1000000000000000000000000000 
000000000000000000000000 ) x 2(l022-l023) 

two 

23 bits 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 bit 11 bits 20 bits [ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o l 
32 bits 
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What decimal number is represented by this word? 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 

The sign bit is 1, the exponent field contains 129, and the significand field 
contains 1 x i-2 = 1 /4 or 0.25. Using the basic equation: 

(-l)s x (1 + significand) x 2(exponent-bias) 

= (-1)1 x (1 + 0.25) x 2(129-127) 

= -1 x 1 .25 x 22 

= -1 .25 x 4 
= -5.0 

In the next sections we will give the algorithms for floating-point addition 
and multiplication. At their core, they use the corresponding integer opera
tions on the significands, but extra bookkeeping is necessary to handle the ex
ponents and normalize the result. We first give an intuitive derivation of the 
algorithms in decimal, and then give a more detailed, binary version in the 
figures. 

E1�1E1i.1r:111Tif11n• In an attempt to increase range without removing bits from the signifi
cand , some computers before the IEEE 754 standard used a base other than 2. For 
example, the IBM 360 and 370 mainframe computers use base 16. Since changing 
the IBM exponent by 1 means shifting the significand by 4 bits, "normalized" base 16 
numbers can have up to 3 lead ing bits of Os. Hexadecimal digits mean that up to 3 bits 
must be dropped from the s ignificand, which leads to surprising problems in the accu
racy of floating-point arithmetic, as noted in the H istorical Perspective section on 
page 249. 

Floating-Point Addition 

Let's add numbers in scientific notation by hand to illustrate the problems in 
floating-point addition: 9.999ten x 101 + l .610ten x 10-1 . Assume that we can 
store only four decimal digits of the significand and two decimal digits of the 
exponent. 
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Step 1 .  To be able to add these numbers properly, we must align the decimal 
point of the number with the smaller exponent. Hence, we need a form 
of the smaller number, l .610tenx 10-1, that matches the larger expo
nent. We obtain this by observing that there are multiple representa
tions of an unnormalized floating-point number in scientific notation: 

l .610ten X 10-l = 0.1610ten X 10° 
= 0.01610ten X 101 

The number on the right is the version we desire, since its exponent 
matches the exponent of the larger number 9.999ten x 101 . Thus, the 
first step shifts the significand of the smaller number to the right until 
its corrected exponent matches that of the larger number. But we can 
represent only four decimal digits so, after shifting, the number is 
really: 

0.016ten X 101 

Step 2. Next comes the addition of the significands: 

9.999ten 

+ 0.016ten 

10.015ten 

The sum is 10.0lSten x 101 

Step 3. This sum is not in normalized scientific notation, so we need to correct 
it. Again, there are multiple representations of this number; we pick 
the normalized form: 

10.0lSten X 101 
= l .0015ten X 102 

Thus, after the addition we may have to shift the sum to put it into 
normalized form, adjusting the exponent appropriately. This example 
shows shifting to the right, but if one number were positive and the 
other were negative it would be possible for the sum to have many 
leading Os, requiring left shifts. Whenever the exponent is increased 
or decreased, we must check for overflow or underflow-that is, we 
must make sure that the exponent still fits in its field. 

Step 4. Since we assumed that the significand can be only 4 digits long (ex
cluding the sign), we must round the number. In our grammar school 
algorithm, the rules truncate the number if the digit to the right of the 
desired point is between 0 and 4 and add 1 to the digit if the number 
to the right is between 5 and 9. The number 

l .0015ten X 102 
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is rounded to four digits in the significand to 

1 .002ten X 102 

since the fourth digit to the right of the decimal point was between 5 
and 9. Notice that if we have bad luck on rounding, such as adding 1 
to a string of 9s, the sum may no longer be normalized and we would 
need to perform step 3 again. 

Figure 4.41 shows the algorithm for binary floating-point addition that fol
lows this decimal example. Steps 1 and 2 are similar to the example just 
discussed: adjust the significand of the number with the smaller exponent and 
then add the two significands. Step 3 normalizes the results, forcing a check for 
overflow or underflow. The test for overflow and underflow in step 3 depends 
on the precision of the operands. For single precision, the maximum exponent 
is 127 and the minimum exponent is -126. The limits for double precision are 
1023 and -1022. 

For simplicity, we assume truncation in step 4, one of four rounding options 
in IEEE 754 floating point. The accuracy of floating-point calculations depends 
a great deal on the accuracy of rounding so, although it is easy to follow, trun
cation leads away from accuracy. 

Try adding the numbers O.Sten and -0.4375ten in binary using the algorithm 
in Figure 4.41 . 

Let's first look at the binary version of the two numbers in normalized sci
entific notation, assuming that we keep 4 bits of precision: 

o.sten = l /2ten 1 12\en 
= O.ltwo = O.ltwo x 2° = l .OOOtwo x r1 

-0.4375ten = -7 / 16ten = -7 /2\en 
= -0.0ll ltwo = - 0.011 1two x 2° = -1 .110two x r2 

Now we follow the algorithm: 

Step 1 .  The significand of the smaller number (- 1 . l l two x r2) is shifted 
right until its exponent matches the larger number: 

-1.llOtwo x r2 = -0.lll two x T1 
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Step 2. Add the significands: 

l.Otwo x T1 + (--0.llltwo x T1) = O.OOltwo x T1 

Step 3. Normalize the sum, checking for overflow or underflow: 

O.OOltwo x T1 = O.OlOtwo x T2= O.lOOtwo x T3 

= l .OOOtwo x 2-4 

233 

Since 127 � -4 � -126, there is no overflow or underflow. (The bi
ased exponent would be -4+ 127 or 123, which is between 0 and 255, 
the smallest and largest biased exponents.)  

Step 4. Round the sum: 

l .OOOtwo x 2--4 

The sum already fits in 4 bits, so there is no need to round. 
This sum is then 

l .OOOtwo x 2-4 = O.OOOlOOOtwo = O.OOOltwo 
= 1 /2\en = l / 16ten = 0.0625ten 

This sum is what we would expect from adding 0.5ten to -0.4375ten· 

Many machines dedicate hardware to run floating-point operations as fast 
as possible. Figure 4.42 sketches the basic organization of hardware for float
ing-point addition. 

Floating-Point Multiplication 

Now that we have explained floating-point addition, let's try floating-point 
multiplication. We start by multiplying decimal numbers in scientific notation 
by hand: l .llOten x 1010 x 9.200ten x 10-5. Assume that we can store only four 
digits of the significand and two digits of the exponent. 

Step 1 .  Unlike addition, we calculate the exponent of the product by simply 
adding the exponents of the operands together: 

New exponent = 10 + (-5) = 5 

Let's do this with the biased exponents as well to make sure we 
obtain the same result. 10 + 127 = 137 and -5 + 127 = 122, so 
New exponent = 137 + 122 = 259 
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Start 

1. Compare the exponents of the two numbers. 
Shift the smaller number to the right until its 

exponent would match the larger exponent 

2. Add the significands 

3. Normalize the sum, either shifting right and 
incrementing the exponent or shifting left 

and decrementing the exponent 

Yes 

4. Round the significand to the appropriate 
number of bits 

No 

Done 

Exception 

FIGURE 4.41 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3. 
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Sign Exponent 

0 

Exponent 

difference 
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Significand Sign Exponent Significand 

0 

Shift right 

Shift left or right 

Rounding hardware 

Sign Exponent Significand 

FIGURE 4.42 Block diagram of an arithmetic unit dedicated to floating.point addition. The 
steps of Figure 4.41 correspond to each block, from top to bottom. First the exponent of one oper
and is subtracted from the other using the small ALU to determine which is larger and by how 
much. This difference controls the three multiplexors; from left to right they select the larger expo
nent, the significand of the smaller number, and the significand of the larger number. The smaller 
significand is shifted right and then the significands are added together using the big ALU. The 
normalization step then shifts the sum left or right and increments or decrements the exponent. 
Rounding then creates the final result. 
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This result is too large for the 8-bit exponent field, so something is 
amiss! The problem is with the bias, because we are adding the biases 
as well as the exponents: 
New exponent = (10 + 127) + (-5 +127) = (5 + 2 x 127) = 259 

Accordingly, to get the correct biased sum when we add biased num
bers, we must subtract the bias from the sum: 
New exponent = 137 + 122 - 127 = 259 - 127 = 132 = (5 + 127) 

and 5 is indeed the exponent we calculated initially. 

Step 2. Next comes the multiplication of the significands: 

l . l lOten 
X 9.200ten 

0000 
0000 

2220 
9990 

10212000ten 

There are three digits to the right of the decimal for each operand, so 
the decimal point is placed six digits from the right in the product sig
nificand: 
10.212000ten 

Assuming that we can keep only three digits to the right of the deci
mal point, the product is 10.212 x 105. 

Step 3. This product is unnormalized, so we need to correct it. Again, there 
are multiple representations of this number, so we must pick the nor
malized form: 

10.212ten X 105 
= l .0212ten X 106 

Thus, after the multiplication, the product can be shifted right one 
digit to put it in normalized form, adding 1 to the exponent. At this 
point, we can check for overflow and underflow. Underflow may 
occur if both operands are small-that is, if both have large negative 
exponents. 

Step 4. We assumed that the significand is only four digits long (excluding 
the sign), so we must round the number. The number 

l .0212ten X 106 

is rounded to four digits in the significand to 

l .021ten X 106. 
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Step 5. The sign of the product depends on the signs of the original operands. 
If they are both the same, the sign is positive; otherwise it's negative. 
Hence the product is 

+ l .021ten X 106. 

The sign of the sum in the addition algorithm was determined by 
addition of the significands, but in multiplication the sign of the 
product is determined by the signs of the operands. 

Once again, as Figure 4.43 shows, multiplication of binary floating-point 
numbers is quite similar to the steps we have just completed. We start with cal
culating the new exponent of the product by adding the biased exponents, be
ing sure to subtract one bias to get the proper result. Next is multiplication of 
significands, followed by an optional normalization step. The size of the expo
nent is checked for overflow or underflow, and then the product is rounded. 
If rounding leads to further normalization, we once again check for exponent 
size. Finally, set the sign bit to 1 if the signs of the operands were different 
(negative product) or to 0 if they were the same (positive product). 

Let's try multiplying the numbers O.Sten and -0.4375ten using the steps in 
Figure 4.43. 

In binary, the task is multiplying l .OOOtwo x T1 by - 1 . l lOtwo x T2. 

Step 1 .  Adding the exponents without bias: 

-l + (-2) = -3 

or, using the biased representation: 

(-1 + 127) + (-2 + 127) - 127 = (-1 - 2)+(127 + 127 - 127) 
= -3 + 127= 124 

Step 2. Multiplying the significands: 

l .OOOtwo 
X l .llOtwo 

0000 
1000 

1000 
1000 
lllOOOOtwo 
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The product is l . l lOOOOtwo x r3, but we need to keep it to 4 bits, 
so it is l . llOtwo x r3. 

Step 3. Now we check the product to make sure it is normalized and then 
check the exponent for overflow or underflow. The product is al
ready normalized and, since 127 � -3 � -126, there is no overflow 
or underflow. (Using the biased representation, 254 � 124 � 1, so 
the exponent fits.) 

Step 4. Rounding the product makes no change: 

1 . 1  lOtwo x r3 

Step 5. Since the signs of the original operands differ, make the sign of the 
product negative. Hence the product is 

-1 . llOtwo x r3 

Converting to decimal to check our results: 

-1 .llOtwo x T3 = -0.00lllOtwo = -0.00llltwo 

= -7 f25ten = -7 /32ten = -0.21875ten 

The product of O.Sten and -0.4375ten is indeed -0.21875ten-

Hardware 

Software 

Interface 

MIPS supports the IEEE single precision and double preci
sion formats with these instructions: 

• Floating-point addition, single ( a d d  . s) and addition, dou
ble ( a d d . d )  

• Floating-point subtraction, single ( s u b  . s )  and subtraction, 
double (s u b .  d )  

• Floating-point multiplication, single (m u l . s )  and multiplication, double 
(m u l . d ) 

• Floating-point division, single (d i v .  s) and division, double (d i v .  d )  

• Floating-point comparison, single ( e .  x .  s )  and comparison, double ( e .  x .  d), 
where x may be equal ( eq ), not equal (n e q), less than ( l  t ), less than or equal 
( l e ), greater than ( g t), or greater than or equal (ge )  

• Floating-point branch, true ( b e  1 t)  and branch,false ( b e  1 f) .  Floating-point 
comparison sets a bit to true or false, depending on the comparison con-
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Start 

1. Add the biased exponents of the two 
numbers, subtracting the bias from the sum 

to get the new biased exponent 

2. Multiply the significands 

3. Normalize the product if necessary, shifting 
it right and incrementing the exponent 

Yes 

4. Round the significand to the appropriate 
number of bits 

No 

5. Set the sign of the product to positive if the 
signs of the original operands are the same. 

If they differ make the sign negative 

Done 

239 

Exception 

FIGURE 4.43 Floating-point multipllcatlon. The normal path is to execute steps 3 and 4 once, 
but if rounding causes the sum to be unnormalized, we must repeat step 3. 
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dition, and a floating-point branch then decides whether or not to 
branch, depending on the condition. 

One issue that computer designers face in supporting floating-point arith
metic is whether to use the same registers used by the integer instructions or 
to add a special set for floating point. Because programs normally perform 
integer operations and floating-point operations on different data, separating 
the registers will only slightly increase the number of instructions needed to 
execute a program. The major impact is to create a separate set of data trans
fer instructions to move data between floating-point registers and memory. 
The MIPS designers decided to add separate floating-point registers-called 
$f0, $fl, $f2, . . .  -used either for single precision or double precision, and 
hence included in separate loads and stores for single precision and double 
precision floating-point registers: l . s, s .  s, l . d ,  and s .  d .  Thus, the MIPS 
code to load two single precision numbers from memory, add them, and then 
store the sum might look like this: 

l . s  $ f4 , x ( $ 2 9 ) 4f L o a d  3 2 - b i t  F . P .  n um b e r  i n t o  F4  
l . s  $ f 6 , y ( $ 2 9 )  4f L o a d  3 2 - b i t F . P .  n umbe r i n t o  F 6  
a d d . s  $ f 2 , $ f4 , $ f 6  4f F 2  = F4 + F 6  s i n g l e p r e c i s i o n 
s . s  $ f 2 , z ( $ 2 9 ) 4f S t o r e  3 2 - b i t  F . P .  n um b e r  f r om F 2  

Figure 4.44 summarizes the floating point portion of the MIPS architecture 
revealed in Chapter 4, with the additions to support floating point shown in 
color. 

Only 16 of the 32 M IPS floating-point registers can be used for single 
precision operations: $f0, $f2, $f4, . . .  , $f30. Double precision is computed using 
pairs of these registers. The odd number floating-point registers are used only to load 
and store the right half of 64-bit floating-point numbers. 

Accurate Arithmetic 

Unlike integers, which can represent exactly every number between the 
smallest and largest number, floating-point numbers are normally approxi
mations for a number they can't really represent. The reason is that an infinite 
variety of real numbers exists between, say, 0 and 1, but no more than 253 can 
be represented exactly in double precision floating point. The best we can do 
is get the floating-point representation close to the actual number. Thus, IEEE 
754 offers several modes of rounding to let the programmer pick the desired 
approximation. 
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MIPS floating-point operands 

$f0, $fl, $f2 • . . • . $f31 

Memory[ OJ, 
Memory[4], . . . .  
Memory[ 4294967292] 

MIPS floating pointer registers are used in pairs for double precision 
numbers.Odd numbered registers cannot be used for arithmetic or branch, 
JUSt for data transfer of the right "half" of double precision register pairs. 
Accessed only by data transfer instructions. M IPS uses byte addresses, so 
sequential words differ by 4. Memory holds data structures, such as 
arrays, and spilled registers, such as those saved on procedure calls. 

MIPS floating-point assembly language 

· category ___ TriSfoiC:TiOn{;��W�xa·m1>1e•: . .  ; - \�-·fi. jvieaning c� 
FP add single add.s $f2,$f4, $f6 $f2 = $f4 + $f6 Floating-Pt. add (single prec. ) 
FP subtract single sub.s $f2,$f4,$f6 $f2 = $f4 - $f6 Floating-Pt. sub (single prec. )  
FP multiply single mul.s $f2,$f4,$f6 $f2 = $f4 x $f6 Floating-Pt. multiply (s. prec. ) 

Arithmetic 
FP divide single div.s $f2,$f4,$f6 $f2 = $f4 I $f6 Floating-Pt. divide (s. prec. )  
FP add double add.d $f2.$f4,$f6 $f2 = $f4 + $f6 Floating-Pt. add (double prec. )  
FP subtr. double sub.d $f2,$f4,$f6 $f2 = $f4 - $f6 Floating-Pt. sub (double prec.) 
FP mult. double mul.d $f2,$f4,$f6 $f2 = $f4 x $f6 Floating-Pt. multiply (d. prec.) 

FP divide double d1v.d $f2,$f4,$f6 $t2 = $f4 / $f6 Floating-Pt. divide (d. prec. )  

Data load word copr. 1 lwcl $fl,100($2) $fl = Memory[$2+100] 32-bit data to FP register 
transfer store word copr. 1 swcl $fl,100($2) Memory[$2+100] = $fl 32-bit data to memory 

branch on FP true belt 100 if (cond==l) go to PC+4+100 PC relative branch if FP cond. 
branch on FP false bclf 100 if (cond==O) go to PC+4+100 PC relative branch if not cond. 

Condi-
c.lt.s $f2,$f4 if ($f2 < $f4) tional FP compare single Floating-Pt. compare less than 

branch (eq,ne,lt,le ,gt,ge) cond=l; else cond=O single precision 
FP comp. double c.lt.d $f2,$f4 If ($f2 < $f4) Floating-Pt. compare less than 
(eq,ne,lt,le ,gt,ge) cond=l; else cond=O double precision 

MIPS floating-point machine language 1.\1 ---�� -·--- �-��=>r.·-�.:o �r - •• ""'1' -· �-... •· • .,-•. '-• .  ' "" . , Name ,.., .. Format :· ., ;.i;,_ :. --:_;_..;'." .. �. : ... -'!.Example\· >� • •. . -,_., . .,.. ;_ :' -·� �-- ; '. • •• ·�·-�!'!1'!1_ents 
add.s R 17 16 6 4 2 0 add.s $f2,$f4,$f6 

sub.s R 17 16 6 4 2 1 sub.s $f2,$f4,$f6 
mul.s R 17 16 6 4 2 2 mul.s $f2,$f4,$f6 
d1v.s R 17 16 6 4 2 3 div.s $f2,$f4,$f6 
add.d R 17 17 6 4 2 0 add.d $f2,$f4,$f6 
sub.d R 17 17 6 4 2 1 sub.d $f2,$f4,$f6 
mul .d R 17 17 6 4 2 2 mul.d $f2,$f4,$f6 
div.d R 17 17 6 4 2 3 div.d $f2,$f4,$f6 

lwcl I 49 2 1 100 lwcl $fl,100($2) 
swcl I 57 2 1 100 swc1 $f1.100($2) 
belt I 17 8 1 100 belt 100 
bclf I 17 8 0 100 bclf 100 
c.lt.s R 17 16 4 2 0 60 c . lt.s $f2,$f4 

c.lt.d R 17 17 4 2 0 60 c. lt.d $f2, $f4 
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits 

FIGURE 4.44 MIPS floatlng point architecture revealed thus far. See Appendix A, section A.10 on page A-47 for more 
detail. 
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Rounding sounds simple enough, but to round accurately requires the 
hardware to include extra bits in the calculation. In the preceding examples, 
we were vague on the number of bits that an intermediate representation can 
occupy, but clearly if every intermediate result had to be truncated to the exact 
number of digits, there would be no opportunity to round. IEEE 754, therefore, 
always keeps 2 extra bits on the right during intermediate calculations, called 
guard and round, respectively. Let's do a decimal example to illustrate the 
value of these extra digits. 

Add 2.56tenx 10° to 2.34ten x 102 assuming that we have three significant 
decimal digits. Round to the nearest decimal number with three significant 
decimal digits, first with guard and round digits and then without them. 

First we must shift the smaller number to the right to align the exponents, 
so 2.56ten x 10° becomes 0.0256ten x 102. Since we have guard and round dig
its, we are able to represent the two least significant digits when we align 
exponents. The guard digit holds 5 and the round digit holds 6. The sum is 

2.3400ten 
+ 0.0256ten 

2.3656ten 

Thus the sum is 2.3656tenx 102. Since we have two digits to round, we want 
values 0 to 49 to round down and 51 to 99 to round up, with 50 being the tie 
breaker. Rounding the sum up with three significant digits yields 2.37ten x 
102. 

Doing this without guard and round digits drops two digits from the cal
culation. The new sum is then 

2.34ten 
+ 0.02ten 

2.36ten 

The answer is 2.36tenx 102, off by 1 in the last digit from the sum obtained 
above. 

Since the worst case for rounding would be when the actual number is 
halfway between two floating-point representations, accuracy in floating 
point is normally measured in terms of the number of bits in error in the 
least significant bits of the significand; the measure is called the number of 
units in the last place or ulp. If a number was off by 2 in the least significant 
bits, it would be called off by 2 ulps. IEEE 754 guarantees that the computer 
uses the number that is within one-half ulp. 
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Summary 

The big picture below reinforces the stored program concept from Chapter 3; 
the meaning of the information cannot be determined just by looking at the 
bits, for the same bits can represent a variety of objects. This section shows 
that computer arithmetic is finite and thus can disagree with natural arith
metic. For example, the IEEE standard 754 floating-point representation 

(-l)S x (1 + significand) x 2(exponent-bias) 

is almost always an approximation of the real number. Computer systems 
and programmers at times must take care to minimize this gap between com
puter arithmetic and arithmetic in the real world . 

• . 

Bit patterns have no inherent meaning. They may 
represent signed integers, unsigned integers, float
ing-point numbers, instructions, and so on. What is 
represented depends on the instruction that operates 
on the bits in the word. 

The major difference between computer numbers 
and numbers in the real world is that computer numbers have limited 
size, hence limited precision; it's possible to calculate a number too big 
or too small to be represented in a word. Programmers must remem
ber these limits and write programs accordingly. 

Elaboration: The IEEE 754 floating-point standard is filled with l ittle widgets to help 
the programmer try to maintain  accuracy, l ike the toggle switches in an airl ine cockpit. 
We' l l  cover a few here, but take a look at the references at the end of section 4.11 to 
learn more . 

There are four rounding modes: always round up (toward +=), always round down 
(toward -=), truncate, and round to nearest even. The final mode determines what to do 
if the number is exactly halfway in between. The Internal Revenue Service always rounds 
0.50 dol lars up ,  possibly to the benefit of the IRS.  A more equitable way would be to 
round up this case half the time and round down the other half. I EEE 754 says that if 
the bit to the left of the halfway case is odd , add 1; if it' s  even, truncate. This method 
always creates a 0 in the least significant bit, giving the rounding mode its name. 

Two extra d igits are always enough for the first three rounding modes. To always ob
tain the right rounding for the last case , the standard has a third bit in addition to guard 
and round ; it is set whenever there are nonzero bits to the right of the round bit. This 
sticky bit a l lows the computer to see the d ifference between 0.50 . . .  OOten and 
0.50 . . .  01tenwhen rounding. The sticky bit m ight be set, for example, during addition, 
when the smaller number is shifted to the right. 

The goal of such modes is to al low the machine to get the same results as if the 
intermediate results were calculated to infin ite precision and then rounded. 
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Other features of I EEE 754 are special symbols to represent unusual events. For ex
ample, instead of interrupting on a divide by 0, you can set the result to a bit pattern 
representing += or -00; the largest exponent is reserved for these special symbols. 
When the programmer prints the results, the program will print an infinity symbol. It even 
has a symbol for the result of invalid operations, such as 0/0 or subtracting infin ity from 
infin ity. This symbol is NaN, for Not A Number. Finally, in an attempt to squeeze every 
last bit of precision from a floating-point operation, the standard allows some numbers 
to be represented in unnormal ized form . Rather than having a gap between 0 and the 
smallest normal ized number, I EEE allows denormalized numbers. They have the same 
exponent as zero but a nonzero significand. They allow a number to degrade in signifi
cance unti l it becomes 0, called gradual underflow. 

Here are the encodings of IEEE 754 floating-point numbers: 

i'.'.f���-_Si,!lgle��re�isi�-�/·2:;:;; ;· ·�oubl,e�-�r�c.isi_ori��'.·" ;, �: . .  �:_Object Jipre�e.nt�� · · ,", 
Exponent Significand Exponent Significand 

0 0 0 0 0 

0 nonzero 0 nonzero Denormalized number 

1 to 254 anything 1 to 2046 anything Floating Point number 

255 0 2047 0 Infinity 

255 nonzero 2047 nonzero NaN (Not A Number) 

The possibi l ity of an occasional unnormal ized operand has given headaches to float
ing-point designers who are trying to bui ld fast floating-point units. Hence many comput
ers cause an exception if an operand is denormalized, letting software complete the 
operation. 

• Fallacles and Pitfalls 

Thus mathematics may be defined as the subject in which we never know what we 
are talking about, nor whether what we are saying is true. 

Bertrand Russell, Recent Words on the Principles of Mathematics, 1901 

Arithmetic fallacies and pitfalls generally stem from the difference between 
the limited precision of computer arithmetic and the unlimited precision of 
natural arithmetic. 
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Pitfall: Forgetting that floating-point addition is not associative. (Hence 
x + (y + z) * (x + y) + z. ) 
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Given the great range of numbers that can be represented in floating point, 
problems occur when adding two large numbers of opposite signs plus a small 
number. For example, suppose x = - I.Sten x 1038, y = I .Sten x 1038, and z = 1 .0, 
and that these are all single precision numbers. Then 

X + (y + z) = -I.Sten X 1038 + (1 .Sten X 1038 + 1 .0) 

= -I .Sten X 1038 + (I .Sten X 1038) = 0.0 

(x + y) + z= (- I .Sten X 1038 + I .Sten X 1038) + 1 .0 
= (O.Oten) + 1 .0 = 1 .0 

Since floating-point numbers have limited precision and result in approxima
tions of real results, I .Sten x 1038 is so much larger than l .Oten that I .Sten x 
1038 + 1 .0 is still I .Sten x 1038. That's why the sum of x, y, and z is 0.0 or 1 .0, 
depending on the order of the floating-point additions. 

Fallacy: Just as a left shift instruction can replace an integer multiply by a power 
of 2, a right shift is the same as an integer division by a power of 2. 

Recall that a binary number x, where xi means the ith bit, represents the num
ber: 

. . .  + (x3 x 23) + (x2 x 22) + (xl x 21) + (xO x 2°) 

Shifting the bits of x right by n bits would seem to be the same as dividing by 
2n. And this is true for unsigned integers. The problem is with signed inte
gers. For example, suppose we want to divide -Sten by 4ten; the quotient 
should be -1  ten· The two's complement representation of -Sten is 

1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 0  l l two 

According to this fallacy, shifting right by 2 should divide by 4ten (22): 
0 0 1 1 l l l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0two 

With a 0 in the sign bit, this result is clearly wrong. The value created by the 
shift right is actually 1 ,073,7 41,822ten instead of -lten· 

Perhaps the solution would be to have an arithmetic right shift (see 
page 208) that extends the sign bit instead of shifting in Os. A 2-bit arithmetic 
shift right of -Sten produces 

l l  l l l l  l l  l l  l l l l l  l l l  l l  l l l  l l l l  l l l  l Otwo 

The result is -2ten instead of -lten; close, but no cigar. 



246 Chapter 4 Arithmetic for Computers 

Ill Concludlng Remarks 

Computer arithmetic is distinguished from paper-and-pencil arithmetic by 
the constraints of limited precision. This limit may result in invalid operations 
through calculating numbers larger than the predefined limits. Such anoma
lies, called overflow or underflow, may result in exceptions or interrupts, 
emergency events similar to unplanned subroutine calls. Chapter 5 discusses 
exceptions in more detail. Floating-point arithmetic has the added challenge 
of being an approximation of real numbers, and care needs to be taken to 
ensure that the computer number selected is the representation closest to the 
actual number. The challenges of imprecision and limited representation are 
part of the inspiration for the field of numerical analysis. 

Over the years computer arithmetic has become largely standardized, 
greatly enhancing the portability of programs. Two's complement binary inte
ger arithmetic and IEEE 754 binary floating-point arithmetic are found in the 
vast majority of computers sold today. For example, every desktop computer 
sold since this book was first printed follows these conventions. 

A side effect of the stored program computer is that bit patterns have no 
inherent meaning. The same bit pattern may represent a signed integer, un
signed integer, floating-point number, instruction, and so on. It is the instruc
tion that operates on the word that determines its meaning. 

With the explanation of computer arithmetic in this chapter comes a de
scription of much more of the MIPS instruction set. Figure 4.45 lists the MIPS 
instructions covered in Chapters 3 and 4. For the rest of the book, we concen
trate on the left-hand side of the table-the integer instruction set excluding 
multiply and divide. Figure 4.46 on page 248 gives the popularity of each of 
these instructions for two programs: gee and spice. Note that the double pre
cision floating point is much more popular than single precision for this run
ning of the spice program-supporting evidence for the decision by MIPS 
designers to offer 16 separate double precision floating-point registers. 
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add a d d  R multiply mu l t  R 

add immediate a d d i  multiply unsigned mu l t u R 

add unsigned a d d u  R divide d i v  R 

add immediate unsigned a dd i u  divide WlSigned d i  v u  R 

subtract s ub R move from hi mf h i  R 

subtract unsigned s u bu R move from lo mfl  o R 

and a nd R move from system control (EPC) mfcO R 

and immediate a n d i  floating-point add single add . s  R 

or o r  R floating-point add double a d d . d  R 

or immediate o r i  floating-point subtract single s u b . s  R 

shift left logical s l  1 R floating-point subtract double s ub . d  R 

shift right logical s r l R floating-point multiply single m u l . s R 

load upper immediate 1 u i  floating-point multiply double m u l  . d  R 

load word l w  floating-point divide single d i v . s  R 

store word SW floating-point divide double d i v . d  R 

branch on equal beq load word to floating-point single l . s 

branch on not equal bne load word to floating-point double l . d 

jump j J store word to floating-point single s .  s 

jump and link j a l  J store word to floating-point double s . d  

jump register j r  R branch on floating-point true be l t  

set less than s l t  R branch on floating-point false bc l f  

set less than immediate s l t i floating-point compare single c . x . s  R 

set less than unsigned s l t u R (x = eq, neq, It, le, gt, ge) 
set less than immediate s l t  i u floating-point compare double c . x . d  R 
unsigned (x = eq, neq, It, le, gt, ge) 

FIGURE 4.4& Tiie MIPS Instruction Mt eoYeNd so ,_, This book concentrates on the instructions in the left column. 
Appendix A, section A.10 gives the full MIPS instruction set. 
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' . � � u•111Ul •�'·00 1 ' .  . � � 
add a d d  0% 0% multiply mu l t 0% 0% 

add imm. a d d i  0% 0% multiply unsigned m u l t u  0% 0% 

add unsigned a d d u  8% 1 3% divide d i v  0% 0% 

add imm. uns. a d d i u  16% 6% divide unsigned a i v u 0% 0% 

subtract s u b  0% oo,{, move from hi mfh i 0% 0% 

subtract unsigned s u b u  1 %  1 %  move from lo mf l o 0% 0% 

and a n d 2% 1 %  move from system control m f c O  0% 0% 

and imm. a n d i 2% 1 %  f.p. add single a d d . s 0% 0% 

or or 2% 0% f.p. add double a d d . d  0% 5% 

or imm. o r i  0% 1% f.p. subtract single s u b . s  0% 0% 

shift left logical s 1 1  8% 6% f.p. subtract double s u b . d  O'Jlo 3% 

shift right logical s r l 2% 1 %  f.p. multiply single m u l . s 0% 0% 

load upper irnm. l u i 2% 0% f.p. multiply double mu l .  d 0% 6% 

load word l w  22% 1 1 %  f.p. divide single d i v . s  0% 0% 

store word S W  1 1 %  5% f.p. divide double d i v . d  0% 3% 

branch on equal beq 8% 5% load word to f.p. single l . s 0% 0% 

branch on not eq. bne  8% 1 %  load word to f.p. double 1 .  d 0% 15% 

jump j 0% 0% store word to f.p. single s .  s 0% 3% 

jump and link j a l  1 %  1 %  store word to f.p. double s . d  0% 6% 

jump register j r  1 %  1 %  branch on f.p. true b e l t  0% 1% 

set less than s l t 3% 1 o;., branch on f.p. false bc l f  0% 1 %  

set less than imm. s l t i  1 %  0% f.p. compare single c . x . s  0% 0% 

set less than uns. s l t u 1 %  0% (x = eq, neg, It, le, gt, ge) 

set less t. imm. uns. s l t i u  1 %  0% f.p. compare double c . x . d  0% 2% 

Column Total 100% 55% Column Total 0% 45% 

FIGURE 4.48 The frequency of the MIPS Instructions for two programs, gee and spice. (Calculated from "pixie" out
put of the full MIPS instruction set and then converted to equivalent instructions from the MIPS subset in the table.) 
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II Historical Perspective and Further Reading 
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Gresham 's Law ("Bad money drives out Good") for computers would say "The Fast 
drives out the Slow even if the Fast is wrong. " 

W. Kahan, 1992 

At first it may be hard to imagine a subject of less interest than the correctness 
of computer arithmetic or its accuracy and harder still to understand why a 
subject so old and mathematical should be so controversial. Computer arith
metic is as old as computing itself, and some of the subject's earliest notions, 
like the economical re-use of registers during serial multiplication and divi
sion, still command respect today. Maurice Wilkes [1985] recalled a conversa
tion about that notion during his visit to the United States in 1946, before the 
earliest stored-program machine had been built: 

. . .  a project under von Neumann was to be set up at the Institute of 
Advanced Studies in Princeton . . .  Goldstine explained to me the princi
pal features of the design, including the device whereby the digits of the 
multiplier were put into the tail of the accumulator and shifted out as the 
least significant part of the product was shifted in. I expressed some ad
miration at the way registers and shifting circuits were arranged . . .  and 
Goldstine remarked that things of that nature came very easily to von 
Neumann. 

There is no controversy here; it can hardly arise in the context of exact inte
ger arithmetic so long as there is general agreement on what integer the correct 
result should be. However, as soon as approximate arithmetic enters the pic
ture, so does controversy, as if one person's negligible must be another's every
thing. 

The First Dispute 

Floating-point arithmetic kindled disagreement before it was ever built. John 
von Neumann refused to include it in the machine he built at Princeton. In an 
influential report coauthored in 1946 with H. H. Goldstine and A. W. Burks, 
he gave the arguments for and against floating point. In favor: 

. . .  to retain in a sum or product as many significant digits as possible 
and . . .  to free the human operator from the burden of estimating and in
serting into a problem "scale factors"-multiplication constants which 
serve to keep numbers within the limits of the machine. 

Floating point was excluded for several reasons: 

There is, of course, no denying the fact that human time is consumed in 
arranging for the introduction of suitable scale factors. We only argue 
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that the time consumed is a very small percentage of the total time we 
will spend in preparing an interesting problem for our machine. The first 
advantage of the floating point is, we feel, somewhat illusory. In order to 
have such a floating point, one must waste memory capacity which 
could otherwise be used for carrying more digits per word. It would 
therefore seem to us not at all clear whether the modest advantages of a 
floating binary point offset the loss of memory capacity and the increased 
complexity of the arithmetic and control circuits. 

The argument seems to be that most bits devoted to exponent fields would be 
bits wasted. Experience has proved otherwise. 

One software approach to accommodate reals without floating-point hard
ware was called floating vectors; the idea was to compute at runtime one scale 
factor for a whole array of numbers, choosing the scale factor so that the ar
ray's biggest number would barely fill its field. By 1951, James H. Wilkinson 
had used this scheme extensively for matrix computations. The problem 
proved to be that a program might encounter a very large value, and hence the 
scale factor must accommodate these rare large numbers. The common num
bers would thus have many leading Os, since all numbers had to use a single 
scale factor. Accuracy was sacrificed because the least significant bits had to be 
lost on the right to accommodate leading Os. This wastage became obvious to 
practitioners on early machines that displayed all their memory bits as dots on 
cathode ray tubes (like TV screens), because the loss of precision was visible. 
Where floating point deserved to be used, no practical alternative existed. 

Thus true floating-point hardware became popular because it was useful. 
By 1957, floating-point hardware was almost ubiquitous. A decimal floating
point unit was available for the IBM 650; and soon the IBM 704, 709, 7090, 
7094 . . . series would offer binary floating-point hardware for double as well 
as single precision. As a result, everybody had floating point, but every imple
mentation was different. 

Diversity Versus Portability 

Since roundoff introduces some error into almost all floating-point opera
tions, to complain about another bit of error seems picayune. So for twenty 
years nobody complained much that those operations behaved a little differ
ently on different machines. If software required clever tricks to circumvent 
those idiosyncracies and finally deliver results correct in all but the last sev
eral bits, such tricks were deemed part of the programmer 's art. For a long 
time, matrix computations mystified most people who had no notion of error 
analysis; perhaps this continues to be true. That may be why people are still 
surprised that numerically stable matrix computations depend upon the 
quality of arithmetic in so few places, far fewer than are generally supposed. 
Books by Wilkinson and widely used software packages like UNPACK and 
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EISPACK sustained a false impression, widespread in the early 1970s, that a 
modicum of skill sufficed to produce portable numerical software. 

Portable here means that the software is distributed as source-code in some 
.standard language to be compiled and executed on practically any commer
cially significant machine, and that it will then perform its task as well as any 
other program performs that task on that machine. Insofar as numerical soft
ware has often been thought to consist entirely of machine-independent math
ematical formulas, its portability has often been taken for granted; the mistake 
in that presumption will become clear shortly. 

Packages like LINP ACK and EISP ACK cost so much to develop-over a 
hundred dollars per line of Fortran delivered-that they could not have been 
developed without U. S. government subsidy; their portability was a precon
dition for that subsidy. But nobody thought to distinguish how various com
ponents contributed to their cost. One component was algorithmic-devise an 
algorithm that deserves to work on at least one computer despite its roundoff 
and over/underflow limitations. Another component was the software engi
neering effort required to achieve and confirm portability to the diverse com
puters commercially significant at the time; this component grew more 
onerous as ever more diverse floating-point arithmetics blossomed in the 
1970s. And yet scarcely anybody realized how much that diversity inflated the 
cost of such software packages. 

A Backward Step 

Early evidence that somewhat different arithmetics could engender grossly 
different software development costs was presented in 1964. It happened at a 
meeting of SHARE, the IBM mainframe users' group, at which IBM 
announced System/360, the successor to the 7094 series. One of the speakers 
described the tricks he had been forced to devise to achieve a level of quality 
for the S/360 library that was not quite so high as he had previously achieved 
for the 7094. 

Part of the trouble could have been foretold by von Neumann had he still 
been alive. In 1948 he and Goldstine had published a lengthy error analysis so 
difficult and so pessimistic that hardly anybody paid attention to it. It did pre
dict correctly, however, that computations with larger arrays of data would 
probably fall prey to roundoff more often. IBM S/360s had bigger memories 
than 7094s, so data arrays could grow bigger, and they did. To make matters 
worse, the S/360s had narrower single precision words (32 bits versus 36) and 
used a cruder arithmetic (hexadecimal or base 16 versus binary or base 2) with 
consequently poorer worst-case precision (21 significant bits versus 27) than 
old 7094s. Consequently, software that had almost always provided (barely) 
satisfactory accuracy on 7094s too often produced inaccurate results when run 
on S/360s. The quickest way to recover adequate accuracy was to replace old 
codes' single precision declarations with double precision before recompila
tion for the S/360. This practice exercised S/360 double precision far more 
than had been expected. 
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The early S/360s' worst troubles were caused by lack of a guard digit in 
double precision. This lack showed up in multiplication as a failure of identi
ties like 1 .0 * x = x, because multiplying x by 1 .0 dropped x's last hexadecimal 
digit (4 bits). Similarly, if x and y were very close but had different exponents, 
subtraction dropped off the last digit of the smaller operand before computing 
x - y. This last aberration in double precision undermined a precious theorem 
that single precision then (and now) honored: If 1 / 2  ::; x/y ::; 2, then no 
rounding error can occur when x - y is computed; it must be computed 
exactly. 

Innumerable computations had benefited from this minor theorem, most 
often unwittingly, for several decades before its first formal announcement 
and proof. We had been taking all this stuff for granted. 

The identities and theorems about exact relationships that persisted, de
spite roundoff, with reasonable implementations of approximate arithmetic 
were not appreciated until they were lost. Previously, all that had been 
thought to matter were precision (how many significant digits were carried) 
and range (the spread between over /underflow thresholds). Since the S/360s' 
double precision had more precision and wider range than the 7094s', soft
ware was expected to continue to work at least as well as before. But it didn't. 

Programmers who had matured into program managers were appalled at 
the cost of converting 7094 software to run on S/360s. A small subcommittee 
of SHARE proposed improvements to the S/360 floating point. This commit
tee was surprised and grateful to get a fair part of what they asked for from 
IBM, including all-important guard digits. By 1968, these had been retrofitted 
to S/360s in the field at considerable expense; worse than that was customers' 
loss of faith in IBM's infallibility. IBM employees who can remember the inci
dent still shudder. 

The People Who Built the Bombs 

Seymour Cray has been associated for decades with the CDC and Cray com
puters that were, when he built them, the world's biggest and fastest. He has 
always understood what his customers wanted most: speed. And he gave it to 
them even if, in so doing, he also gave them arithmetics more interesting than 
anyone else's. Among his customers have been the great government labora
tories like those at Livermore and Los Alamos, where nuclear weapons were 
designed. The challenges of "interesting" arithmetics were pretty tame to 
people who had to overcome Mother Nature's challenges. 

Perhaps all of us could learn to live with arithmetic idiosyncracy if only one 
computer's idiosyncracies had to be endured. Instead, when accumulating dif
ferent computers' different anomalies, software dies the Death of a Thousand 
Cuts. Here is an example from Cray's machines: 

i f  C x  == 0 . 0 )  y = 1 7 . 0  e l s e  y = z / x  
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Could this statement be stopped by a divide-by-0 error? On a CDC 6600 it 
could. The reason was a conflict between the 6600's adder, where x was com
pared with 0.0, and the multiplier and divider. The adder's comparison exam
ined x 's leading 13 bits, which sufficed to distinguish zero from normal 
nonzero floating-point numbers x. The multiplier and divider examined only 
12 leading bits. Consequently, tiny numbers x existed that were nonzero to the 
adder but zero to the multiplier and divider! To avoid disasters with these tiny 
numbers, programmers learned to replace statements like the one above by 

i f ( 1 . 0 * x == O . O l y = 1 7 . 0 e l s e y = z I x 

But this statement is unsafe to use in would-be portable software because it 
malfunctions obscurely on other computers designed by Cray, the ones mar
keted by Cray Research, Inc. If x is so huge that 2.0 * x would overflow, then 
1 .0  * x may overflow too! This happens because Cray computers check the 
product's exponent for overflow before the product's exponent has been nor
malized, just to save the delay of a single AND gate. In case you think the 
statement above is safe to use now for portable software, since computers of 
the CDC 6600 era are no longer commercially significant, you should be 
warned that it can lead to overflow on a Cray computer even if z is almost as 
tiny as x; the trouble here is that the Cray computes not z I x  but z * ( 1 I x  ) , 
and the reciprocal can overflow even though the desired quotient is unexcep
tionable. A similar difficulty troubles the Intel i860s used in its massively par
allel computers. The would-be programmer of portable code faces countless 
dilemmas like these whenever trying to program for the full range of existing 
computers. 

Rounding error anomalies that are far worse than the over/underflow 
anomaly just discussed also affect Cray computers. The worst error comes 
from the lack of a guard digit in add/subtract, an affliction of IBM S/360s. Fur
ther bad luck for software is occasioned by the way Cray economized his mul
tiplier; about one-third of the bits that normal multiplier arrays generate have 
been left out of his multipliers because they would contribute less than a unit 
to the last place of the final Cray-rounded product. Consequently, a Cray's 
multiplier errs by almost a bit more than might have been expected. This error 
is compounded when division takes three multiplications to improve an ap
proximate reciprocal of the divisor and then multiply the numerator by it. 
Square root compounds a few more multiplication errors. The fast way drove 
out the slow, even though the fast was occasionally slightly wrong. 

Making the World Safe for Floating Point, or Vice Versa 

William Kahan was an undergraduate at the University of Toronto in 1953 
when he learned to program its Ferranti-Manchester Mark 1 computer. 
Because he entered the field early, Kahan became acquainted with a wide 
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range of devices and a large proportion of the personalities active in comput
ing; the numbers of both were small at that time. He has performed computa
tions on slide rules, desktop mechanical calculators, tabletop analog 
differential analyzers, and so on; he used all but the earliest electronic com
puters and calculators mentioned in this book. 

Kahan's desire to deliver reliable software led to an interest in error analy
sis that intensified during two years of postdoctoral study in England, where 
he became acquainted with Wilkinson. In 1960, he resumed teaching at Toron
to, where an IBM 7090 had been acquired, and was granted free reign to tinker 
with its operating system, Fortran compiler, and runtime library. (He denies 
that he ever came near the 7090 hardware with a soldering iron but admits ask
ing to do so.) One story from that time illuminates how misconceptions and 
numerical anomalies in computer systems can incur awesome hidden costs. 

A graduate student in aeronautical engineering used the 7090 to simulate 
the wings he was designing for short takeoffs and landings. He knew such a 
wing would be difficult to control if its characteristics included an abrupt on
set of stall, but he thought he could avoid that. His simulations were telling 
him otherwise. Just to be sure that roundoff was not interfering, he had repeat
ed many of his calculations in double precision and gotten results much like 
those in single; his wings had stalled abruptly in both precisions. Disheart
ened, the student gave up. 

Meanwhile Kahan replaced IBM's logarithm program (ALOG) with one of 
his own, which he hoped would provide better accuracy. While testing it, Ka
han re-ran programs using the new version of ALOG. The student's results 
changed significantly; Kahan approached him to find out what had happened. 

The student was puzzled. Much as the student preferred the results pro
duced with the new ALOG-they predicted a gradual stall-he knew they 
must be wrong because they disagreed with his double precision results. The 
discrepancy between single and double precision results disappeared a few 
days later when a new release of IBM's double precision arithmetic software 
for the 7090 arrived. (The 7090 had no double precision hardware.) He went 
on to write a thesis about it and to build the wings; they performed as predict
ed. But that is not the end of the story. 

In 1963, the 7090 was replaced by a faster 7094 with double precision float
ing-point hardware but with otherwise practically the same instruction set as 
the 7090. Only in double precision and only when using the new hardware did 
the wing stall abruptly again. A lot of time was spent to find out why. The 7094 
hardware turned out, like the superseded 7090 software and the subsequent 
early S/360s, to lack a guard bit in double precision. Like so many program
mers on those machines and on Cray's, the student discovered a trick to com
pensate for the lack of a guard digit; he wrote the expression ( 0 . 5 - x )  + 0 . 5 
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in place of 1 .  0 - x. Nowadays we would blush if we had to explain why such 
a trick might be necessary, but it solved the student's problem. 

Meanwhile the lure of California was working on Kahan and his family; 
they came to Berkeley and he to the University of California. An opportunity 
presented itself in 1974 when accuracy questions induced Hewlett Packard's 
calculator designers to call in a consultant. The consultant was Kahan, and his 
work dramatically improved the accuracy of HP calculators, but that is anoth
er story. Fruitful collaboration with congenial co-workers, however, fortified 
him for the next and crucial opportunity. 

It came in 1976, when John F. Palmer at Intel was empowered to specify the 
"best possible" floating-point arithmetic for all of Intel's product line. The 8086 
was imminent, and an 8087 floating-point coprocessor for the 8086 was con
templated. (A coprocessor is simply an additional chip that accelerates a portion 
of the work of a processor; in this case, it accelerated floating-point computa
tion.) Palmer had obtained his Ph.D. at Stanford a few years before and knew 
who to call for counsel of perfection-Kahan. They put together a design that 
obviously would have been impossible only a few years earlier and looked not 
quite possible at the time. But a new Israeli team of Intel employees led by Rafi 
Nave felt challenged to prove their prowess to Americans and leaped at an op
portunity to put something impossible on a chip-the 8087. By now, floating
point arithmetics that had been merely diverse among mainframes had be
come anarchic among microprocessors, one of which might be host to a dozen 
varieties of arithmetic in ROM firmware or software. Robert G. Stewart, an en
gineer prominent in IEEE activities, got fed up with this anarchy and proposed 
that the IEEE draft a decent floating-point standard. Simultaneously, word 
leaked out in Silicon Valley that Intel was going to put on one chip some awe
some floating point well beyond anything its competitors had in mind. The 
competition had to find a way to slow Intel down, so they formed a committee 
to do what Stewart requested. 

Meetings of this committee began in late 1977 with a plethora of competing 
drafts from innumerable sources and dragged on into 1985 when IEEE Stan
dard 754 for Binary Floating Point was made official. The winning draft was 
very close to one submitted by Kahan, his student Jerome T. Coonen, and 
Harold S. Stone, a professor visiting Berkeley at the time. Their draft was 
based on the Intel design, with Intel's permission of course, as simplified by 
Coonen. Their harmonious combination of features, almost none of them new, 
had at the outset attracted more support within the committee and from out
side experts like Wilkinson than any other draft, but they had to win nearly 
unanimous support within the committee to win official IEEE endorsement, 
and that took time. 

In 1980, Intel became tired of waiting and released the 8087 for use in the 
IBM PC. In 1982, Motorola announced its 68881, which found a place in Sun 3s 
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and Macintosh Ils; Apple had been a supporter of the proposal from the begin
ning. Another Berkeley graduate student, George S. Taylor, had soon de
signed a high-speed implementation of the proposed standard for an early 
super-minicomputer (ELXSI 6400). The standard was becoming de facto be
fore its final draft's ink was dry. 

An early rush of adoptions gave the computing industry the false impres
sion that IEEE 754, like so many other standards, could be implemented easily 
by following a standard recipe. Not true. Only the enthusiasm and ingenuity 
of its early implementors made it look easy. In fact, to implement IEEE 754 cor
rectly demands extraordinarily diligent attention to detail; to make it run fast 
demands extraordinarily competent ingenuity of design. Had the industry's 
engineering managers realized this, they might not have been so quick to af
firm that, as a matter of policy, "We conform to all applicable standards." 

Today the computing industry is enmeshed in a host of standards that 
evolve continuously as technology changes. The floating-point standards IEEE 
754/854 (they are practically the same) stand in somewhat splendid isolation 
only because nobody wishes to repeat the protracted wrangling that sur
rounded their birth when, with unprecedented generosity, the representatives 
of hardware interests acceded to the demands of those few who represented 
the interests of mathematical and numerical software. Unfortunately, the com
piler-writing community was not represented adequately in the wrangling, 
and some of the features didn't balance language and compiler issues against 
other points. That community has been slow to make IEEE 754's unusual fea
tures available to the applications programmer. Humane exception handling 
is one such unusual feature; directed rounding another. Without compiler 
support, these features could atrophy. 

At present, IEEE 754/854 have been implemented to a considerable degree 
of fidelity in at least part of the product line of every North American comput
er manufacturer except Cray Research Inc., and that company has recently an
nounced that it too will conform "to some degree" by the mid 1990s to ease the 
transfer of data files and portable software between CRA Ys and the worksta
tions through which CRAY users have come to access their machines nowa
days. 

In 1989, the Association for Computing Machinery, acknowledging the 
benefits conferred upon the computing industry by IEEE 754, honored Kahan 
with the Turing Award. On accepting it, he thanked his many associates for 
their diligent support, and his adversaries for their blunders. So . . .  not all er
rors are bad. 

To Probe Further 

Readers interested in learning more about floating point will find two publi
cations by David Goldberg [1990, 1991] good starting points; they abound 
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with pointers to further reading. Several of the stories told above come from 
Kahan [1972, 1983]. The latest word on the state of the art in computer arith
metic is often found in the Proceedings of the latest IEEE-sponsored Sympo
sium on Computer Arithmetic, held every two or three years; the tenth was 
held in 1991. 

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. "Preliminary discussion of the logical 
design of an electronic computing instrument," Report to the U.S. Army Ordnance Dept., p. l; also 
in Papers of John van Neumann, W. Aspray and A. Burks, eds., MIT Press, Cambridge, Mass., and 
Tomash Publishers, Los Angeles, Calif. (1987) 97-146. 

This classic paper includes arguments against floating-point hardware. 

Goldberg, D. [1990]. "Computer Arithmetic," Appendix A of Computer Architecture: A Quantitative 
Approach, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San Mateo, Calif. 

A more advanced introduction to integer and floating-point arithmetic, with emphasis on hardware. It cov
ers pages 1 68 to 225 of this book in just 10 pages, leaving another 45 pages for advanced topics. 

Goldberg, D. [1991] .  "What every computer scientist should know about floating-point arith
metic," ACM Computing Surveys V23#1, pp. 5-48. 

Another good introduction to floating-point arithmetic by the same author, this time with emphasis on soft
ware. 

Kahan, W. [1972] .  "A survey of error-analysis," in Info. Processing 71 (Proc. IFIP Congress 71 in 
Ljubljana), vol. 2, pp. 1214-39, North-Holland Publishing, Amsterdam. 

This survey is a source of stories on the importance of accurate arithmetic. 

Kahan, W. [1983]. "Mathematics written in sand," Proc. Amer. Stat. Assoc. Joint Summer Meetings of 
1983, Statistical Computing Section, pp. 12-26. 

The title refers to silicon, and is another source of stories illustrating the importance of accurate arithmetic. 

Koren, I. [1993]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, N.J. 

A recent textbook aimed at seniors and first year graduate students that explains fundamental principles of 
basic arithmetic, as well as complex operations such as logarithmic and trigonometric functions. 

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass. 

This computer pioneer's recollections include the derivation of the standard hardware for multiply and 
divide developed by van Neumann. 
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II Exercises 

Never give in, never give in, never, never, never-in nothing, great or small, large 
or petty-never give in . . . .  

Winston Churchill, Address at Harrow School, October 29, 1941 

4.1 [15] <§3, 4.2, 4.8> The Big Picture on page 243 mentions that bits have no 
inherent meaning. Given the bit pattern 

1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0  0 0 0 0  0 0 0 0  0 0 0 0  

What does it represent, assuming that it is 

a. a two's complement integer? 

b. an unsigned integer? 

c. a single precision floating-point number? 

d. a MIPS instruction? 

4.2 [10] <§4.2, 4.4, 4.8> This exercise is similar to Exercise 4.1, but this time use 
the bit pattern 

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  

4.3 [3] <§4.2> Convert 512ten into a 32-bit two's complement binary number. 

4.4 [3] <§4.2> Convert -1 ,023ten into a 32-bit two's complement binary num
ber. 

4.5 [5] <§4.2> Convert -4,000,000ten into a 32-bit two's complement binary 
number. 

4.6 [5] <§4.2> What decimal number does this two's complement binary 
number represent: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0  l l O Otwo? 

4.7 [5] <§4.2> What decimal number does this two's complement binary 
number represent: 1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1  l two? 

4.8 [5] <§4.2> What decimal number does this two's complement binary 
number represent: 0 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  two? 

4.9 [5] <§4.2> What binary number does this hexadecimal number represent: 
7fff fffahex? What decimal number does it represent? 
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4.10 [5] <§4.2> What hexadecimal number does this binary number 
represent: 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0tw0? 

4.11 [5] <§4.8> Using the notation in the Hardware Software Interface sec
tions on pages 226 and 227, show the MIPS binary floating-point formats in 
single precision and double precision for lOten· 

4.12 [5] <§4.8> This exercise is similar to Exercise 4.11,  but this time replace 
the number lOten with 10.5ten· 

4.13 [ 10] <§4.8> This exercise is similar to Exercise 4.11,  but this time replace 
the number lOten with O.lten· 

4.14 [10] <§4.10> For the program gee (Figure 4.46 on page 248), find the 10 
most frequently executed MIPS instructions. List them in order of popularity, 
from most used to least used. Show the rank, name, and percentage of instruc
tions executed for each instruction. If there is a tie for a given rank, list all in
structions that tie with the same rank, even if this results in more than 10 
instructions. 

4.15 [10] <§4.10> This exercise is similar to Exercise 4.14, but this time replace 
the program gee with the program spice. 

4.16 <§4.10> {§4.14, 4.15} These questions examine the relative frequency of 
instructions in different programs. 

a. [5] Which instructions are found in both the answer to Exercise 4.14 and in 
the answer to Exercise 4.15? 

b. [5] What percentage of gee instructions executed is due to the instructions 
identified in Exercise 4.16a? 

c .  [5]  What percentage of gee instructions executed is due to the instructions 
identified in Exercise 4.14? 

d. [5] What percentage of spice instructions executed is due to the instruc
tions identified in Exercise 4.16a? 

e.  [5]  What percentage of spice instructions executed is due to the instruc
tions identified in Exercise 4.15? 

4.17 [ 10] <§4.10> {ex. 4.14, 4.15, 4.16} If you were designing a machine to ex
ecute the MIPS instruction set, what are the five instructions that you would 
try to make as fast as possible, based on the answers to Exercises 4.14 through 
4.16? Give your rationale. 

4.18 [15] <§2, 4.10> Using Figure 4.46 on page 248, calculate the average clock 
cycles per instruction (CPI) for the program gee. Figure 4.47 gives the average 
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Loads and stores 01.4 

Conditional branch 01.8 

Jumps 01.2 

Integer multiply 10.0 

Integer divide 30.0 

Floating-point add and subtract 02.0 

Floating-point mu ltiply, single precision 04.0 

Floating-po int multiply, double precision 05.0 

Floating-point divide, single precision 12.0 

Floating-point divide, double precision 19.0 

FIGURE 4.47 CPI for MIPS instruction categories. 

CPI per instruction category, taking into account cache misses and other ef
fects. Assume that instructions omitted from the table have a CPI of 1 .0. 

4.19 [15] <§2, 4.10> This exercise is similar to Exercise 4.18, but this time re
place the program gee with the program spice. 

4.20 [5] <§4.2> Why doesn't MIPS have a subtract immediate instruction? 

4.21 [ 10] <§4.2> Find the shortest sequence of MIPS instructions to determine 
the absolute value of a two's complement integer. Convert this instruction (ac
cepted by the MIPS assembler): 

a b s  $ 1 0 , $ 1 1  

This instruction means that register $10 has a copy of register $11 if register 
$11 is positive, and the two's complement of register $11 if $11 is negative. 

4.22 [10] <§4.3> Find the shortest sequence of MIPS instructions to determine 
if there is a carry out from the addition of two registers, say registers $11 and 
$12. Place a 0 or 1 in register $10 if carry out is 0 or 1, respectively. 

4.23 [15] <§4.3> {ex. 4.22) Find the shortest sequence of MIPS instructions to 
perform double precision integer addition. Assume that one 64-bit, two's com
plement integer is in registers $12 and $13 and another is in registers $14 and 
$15. The sum is to be placed in registers $10 and $11 .  In this example the most 
significant word of the 64-bit integer is found in the even-numbered registers, 
and the least significant word is found in the odd-numbered registers. 
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4.24 [20] <§4.6> Find the shortest sequence of MIPS instructions to perform 
double precision integer multiplication. Assume that one 64-bit, unsigned inte
ger is in registers $12 and $13 and another is in registers $14 and $15. The 
128-bit product is to be placed in registers $8, $9, $10 and $11 .  The most signif
icant word is found in the lower numbered registers, and the least significant 
word is found in the higher numbered registers in this example. Hint: Write 
out the formula for (a x 232 + b) x (c x 232 + d). 

4.25 [15] <§4.5> The ALU supported set on less than ( s l t)  using just the sign 
bit of the adder. Let's try a set-on-less-than operation using the values -7ten 
and 6ten· To make it simpler to follow the example, let's limit the binary repre
sentations to 4 bits: lOOltwo and OllOtwo· 

lOOltwo - 01 lOtwo = lOOltwo + 1010two = OOlltwo 

This result would suggest that -7 > 6, which is clearly wrong. Hence we must 
factor in overflow in the decision. Modify the 1-bit ALU in Figure 4.15 on 
page 192 to handle s l t correctly. Make your changes on a photocopy of this 
figure to save time. 

4.26 [15] <§4.4> Some computers have explicit instructions to extract an arbi
trary field from a 32-bit register and place it in the least significant bits of a reg
ister. The figure below shows the desired operation: 

31 0 

field 

31 - j bits 

31 0 

0 . . .  0 0 0 0  field 

32 - (j - i) bits j - i bits 

Find the shortest sequence of MIPS instructions that extracts a field for the 
constant values i = 7 and j = 19 from register $16 and places it in register $17. 

In More Depth: Logical Instructions 

The full MIPS instruction set has two more logical operations not mentioned 
thus far: x o r  and n o r. The operation x o r  stands for exclusive OR, and n o r  
stands for not OR. The table that follows defines these operations on a bit
by-bit basis. These instructions will be useful in the following two exercises. 
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0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 0 0 

4.27 [15] <§4.4> Show the minimal MIPS instruction sequence for a new in
struction called s w a p  that exchanges two registers. After the sequence com
pletes, the Destination register has the original value of the Source register, 
and the Source register has the original value of the Destination register. Con
vert this instruction: 

s w a p  r l O , r 2 0  

The hard part is that this sequence must use only these two registers! Hint: Try 
to use the new logical instructions: What is the value of (0 xor A)? (B xor B)? 

4.28 [5] <§4.4> Show the minimal MIPS instruction sequence for a new in
struction called n o t  that takes the one's complement of a Source register and 
places it in a Destination register. Convert this instruction (accepted by the 
MIPS assembler): 

n o t r 1 0 , r 2 0  

Hint: Try to use the new logical instructions. 

4.29 [20] <§4.5> A simple check for overflow during addition is to see if the 
Carry In to the most significant bit is not the same as the CarryOut of the most 
significant bit. Prove that this check is the same as in Figure 4.3 on page 177. 

4.30 [ 10] <§4.5> Draw the gates for the Sum bit of an adder, given the equa
tion on page 187. 

4.31 [5] <§4.5> Rewrite the equations on page 197 for a carry lookahead logic 
for a 16-bit adder using a new notation. First use the names for the Carryin sig
nals of the individual bits of the adder. That is, use c4, c8, cl2, . . .  instead of 
Cl, C2, C3, . . . .  Also, let Pi,j mean a propagate signal for bits i to j, and Gi,j 
mean a generate signal for bits i to j. For example, the equation 

C2 = G 1 + ( Pl · GO ) + ( Pl · PO · c 0 )  

can be rewritten as 

c8 = G 7_ 4 +  ( P 7• 4 · G 3, 0) + ( P 7_ 4 · P 3_ 0 · c0 )  

This more general notation is useful in creating wider adders. 
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4.32 [15] <§4.5> {ex. 4.31 )  Write the equations for a carry lookahead logic for 
a 64-bit adder using the new notation from Exercise 4.31 and using 16-bit 
adders as building blocks. 

4.33 [ 10] <§4.5> Now calculate the relative performance of adders. Assume 
that hardware corresponding to any equation containing only OR or AND 
terms, such as the equations for pi and gi on page 196, takes one time unit T. 
Equations that consist of the OR of several AND terms, such as the equations 
for cl, c2, c3, and c4 on page 196, take 2T. Calculate the numbers and perfor
mance ratio for 4-bit adders for both ripple carry and carry lookahead. If the 
terms in equations are further defined by other equations, then add the appro
priate delays for those intermediate equations, and continue recursively until 
the actual input bits of the adder are used in an equation. 

4.34 [ 15] <§4.5> {ex. 4.33) This exercise is similar to Exercise 4.33, but this time 
calculate the relative speeds of a 16-bit adder using ripple carry only, ripple 
carry of 4-bit groups that use carry lookahead, and the carry lookahead 
scheme on page 197. 

4.35 [15] <§4.5> {ex. 4.32, 4.33, 4.34) This exercise is similar to Exercises 4.33 
and 4.34, but this time calculate the relative speeds of a 64-bit adder using rip
ple carry only, ripple carry of 4-bit groups that use carry lookahead, ripple car
ry of 16-bit groups that use carry lookahead, and the carry-lookahead scheme 
from Exercise 4.32. 

In More Depth: Carry Save Adders 

The adder in Figure 4.8 on page 186 is called a (3,2) adder because each stage 
adds 3 bits and produces 2 output bits. This piece of hardware is simple and 
fast; the problem comes from trying to get the Carryln signal calculated in a 
timely fashion. When we are just adding two numbers together, there is little 
we can do with this observation, but when we are adding more than two 
operands, it is possible to reduce the cost of the carry. Perhaps the most likely 
case would be when trying to multiply more quickly by using many adders to 
add many numbers in a single clock cycle. Compared to the multiply algo
rithm in Figure 4.27 on page 206, such a scheme could multiply more than 10 
times faster. 

Assume we want to add four 4-bit numbers a, b, e, and J. Figure 4.48 shows 
how to use (3,2) adders to form two independent sums, called C' and S'. Note 
that the C' is shifted left 1 bit relative to S'. This technique of delaying carry 
propagation until the end of a sum of numbers is called carry save addition. To 
get the actual sum of these four numbers, we need to add C' and S' together 
using a normal adder. 
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b3 e3 f3 b2 e2 f2 bi e1 f1 bO eO fO 

s5 s4 s3 s2 s1 so 

a b e 

Carry save adder 

Carry save adder 

C' S' 

Normal adder 

s 

FIGURE 4.48 Carry save addition of four 4-blt numbers. The details are shown on the left, with the individual signals 
in lower case, and the higher level blocks are on the right in upper case. Note that the sum of 4 n-bit numbers can take n+2 
bits. 

4.36 [5] <§4.5> Assume the time delay through each 1-bit (3,2) adder is 2T. 
Calculate the time of adding four 4-bit numbers using three ripple carry 
adders versus the time using the carry save scheme in Figure 4.48. 

4.37 [ 10] <§4.5> {ex. 4.33, 4.34, 4.36) Calculate the delays to add four 16-bit 
numbers using full carry lookahead adders versus carry save with a carry loo
kahead adder forming the final sum. The time unit T in Exercises 4.33 and 4.36 
are the same. 

4.38 [20] <§4.5, 4.6> {ex. 4.33, 4.34, 4.36, 4.37} Combinational multipliers refer 
to using many adders to try to reduce the time of multiplication. This exercise 
estimates the cost and speed of a combinational multiplier to multiply two 
16-bit numbers. Assume that you have 16 intermediate terms M15, M14, . . .  , 
MO, called partial products, that contain the multiplicand ANDed with multipli
er bits m15, m14, . . .  , mO. First show the block organization of the 16-bit carry 
save adders to add these 16 terms, as shown on the right in Figure 4.48. Then 
calculate the delays to add these 16 numbers. Compare this time to the itera
tive multiplication scheme in Figure 4.27 on page 206 but only assume 16 iter
ations using a 16-bit adder that has full carry lookahead whose speed was 
calculated in Exercise 4.34. 

4.39 [30] <§4.6> The original reason for Booth's algorithm was to reduce the 
number of operations by avoiding operations when there were strings of Os 
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and ls. Revise the algorithm on page 208 to look at 3 bits at a time and compute 
the multiplicand 2 bits at a time. Fill in the following table to determine the 
2-bit Booth encoding: 

Current bits Previous bit Operation Reason 
ai+1 a i  ai-1 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Assume that you have both the multiplicand and 2 x multiplicand already in 
registers. Explain the reason for the operation on each line, and show a 6-bit 
example that runs faster using this algorithm. Hint: Try dividing to conquer; 
see what the operations would be in each of the eight cases in the table using 
a 2-bit Booth algorithm, and then optimize the pair of operations. 

4.40 [30] <§4.6, 4.7> The division algorithm in Figure 4.37 on page 220 is 
called restoring division, since each time the result of subtracting the divisor 
from the dividend is negative you must add the divisor back into the dividend 
to restore the original value. Recall that shift left is the same as multiplying by 
2. Let's look at the value of the left half of the Remainder again, starting with 
step 3b of the divide algorithm and then going to step 2: 

(Remainder + Divisor) x 2 - Divisor 

This value is created from restoring the Remainder by adding the Divisor, 
shifting the sum left, and then subtracting the Divisor. Simplifying the result 
we get 

Remainder x 2 + Divisor x 2 - Divisor = Remainder x 2 + Divisor 

Based on this observation, write a nonrestoring division algorithm using the 
notation of Figure 4.37 that does not add the Divisor to the Remainder in step 
3b. Show that your algorithm works by dividing 0000 Ollltwo by OOlOtwo· 

4.41 [5] <§4.8> Add 6.42ten x 101 to 9.Slten x 102, assuming that you have only 
three significant digits, first with guard and round digits and then without 
them. 
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4.42 [5] <§4.8> This exercise is similar to Exercise 4.41, but this time use the 
numbers 8.76ten x 101 and l .47ten x 102. 

4.43 [25] <§4.8> Derive the floating-point algorithm for division as we did for 
addition and multiplication on pages 230 through 240. First divide l .llOten x 
1010 by l .lOOten x 10-5, showing the same steps that we did in the example 
starting on page 233. Then derive the floating-point division algorithm using 
a format similar to the multiplication algorithm in Figure 4.43 on page 239. 

4.44 [30] <§4.8> The Elaboration on page 243 explains the four rounding 
modes of IEEE 754 and the extra bit, called the sticky bit, needed in addition to 
the 2 bits called guard and round. Guard is the first bit, round is the second bit, 
and sticky represents whether the remaining bits are 0 or not. Fill in the follow
ing table with logical equations that are functions of guard(g), round(r), and 
sticky(s) for the result of a floating-point addition that creates Sum. Let p be the 
proper number of bits in the significand for a given precision and Sump be the 
pth most significant bit of Sum. A blank box means that the p most significant 
bits of the sum are correctly rounded. If you place an equation in a box, a false 
equation means that the p bits are correctly rounded; a true equation means 
add 1 to the pth most significant bit of Sum. 

Rounding mode Sum C: 0 Sum < 0 

Toward -oo 

Toward +00 
Truncate 

Nearest Even 

4.45 [30] <§4.5> If you have access to a computer containing a MIPS proces
sor, write a loop in assembly language that sets registers $26 and $27 to an ini
tial value, and then loop for several seconds, checking the contents of these 
registers. Print the values if they change. See the Elaboration on page 1 79 for 
an explanation of why they change. Can you find a reason for the particular 
values you observe? 
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• Introduction 

In Chapter 2, we saw that the performance of a machine was determined by 
three key factors: instruction count, clock cycle time, and clock cycles per 
instruction. The compiler and the instruction set architecture, which we 
examined in Chapters 3 and 4, determine the instruction count required for a 
given program. However, both the clock cycle time and the number of clock 
cycles per instruction are determined by the implementation of the processor. 
In this chapter, we construct the datapath and control unit for two different 
implementations of the MIPS instruction set. 

We will be designing an implementation that includes the core of the MIPS 
instruction set, including: 

• The memory-reference instructions load word ( 1  w) and store word (sw) 

• The arithmetic-logical instructions a d d ,  s u b, a n d, o r, and s l t 
• The branch equal instruction ( b eq); and the jump instruction ( j ), which 

we add last. 

This subset does not include all the integer instructions (for example, mul
tiply and divide are missing), nor does it include any floating-point instruc
tions. However, the key principles used in creating a datapath and designing 
the control will be illustrated. The implementation of the remaining instruc
tions is similar. 

In examining the implementation, we will have the opportunity to see how 
the instruction set architecture determines many aspects of the implementa
tion, and how the choice of various implementation strategies affects the clock 
rate and CPI for the machine. Many of the key design principles introduced in 
earlier chapters can be illustrated by looking at the implementation. This in
cludes the guidelines Make the common case fast and Simplicity favors regularity. 
In addition, most of the concepts used to implement the MIPS subset in this 
chapter and the next are the same ideas that are used to construct a broad spec
trum of computers, from high-performance machines to general-purpose mi
croprocessors to special-purpose processors used with increasing frequency in 
products ranging from VCRs to automobiles. 

An Overview of the Implementation 

In Chapters 3 and 4, we looked at a core subset of MIPS instructions, includ
ing the integer arithmetic-logical instructions, the memory-reference instruc
tions, and the branch instructions. Much of what needs to be done to 
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implement these instructions is the same, independent of the exact type of 
instruction. For every instruction, the first two steps are identical: 

1. Send the program counter (PC) to a memory that contains the code to 
fetch the instruction. 

2. Read one or two registers using fields of the instruction to select the 
registers to read. For a load instruction we need to read only one regis
ter, but all other instructions require that we read two registers. 

After these two steps, the actions required to complete the instruction depend 
on the instruction type. However, for each of the three instruction types 
(memory-reference, arithmetic-logical, and branches), the actions are largely 
the same, independent of the exact opcode. Even across different instruction 
classes there are some similarities. For example, all instruction types use the 
ALU after reading the registers. The memory reference instructions use the 
ALU for an effective address calculation, the arithmetic-logical instructions 
for the opcode execution, and branches for comparison. As we can see, the 
simplicity and regularity of the instruction set simplifies the implementation 
by making the execution of many of the instruction types similar. 

After using the ALU, the actions required to complete the different instruc
tion types differ. A memory-reference instruction will need to access the mem
ory containing the data to complete a store or get a word that is being loaded. 
An arithmetic-logical instruction must write the data from the ALU back into 
a register. Lastly, for a branch instruction, we may need to change the next in
struction address based on the comparison. Figure 5.1 shows the high-level 
view of a MIPS implementation. In the remainder of the chapter, we refine this 
view to fill in the details, which requires that we add further functional units, 
increase the number of connections between units, and, of course, add a con
trol unit to control what actions are taken for different instruction types. Before 
we begin to create a more complete implementation, we need to discuss a few 
principles of logic design. 

A Word about Logic Conventions and Clocking 

To discuss the design of a machine, we must decide how the logic implement
ing the machine will operate and how the machine is clocked. This section 
reviews a few key ideas in digital logic that we will use extensively in this 
chapter. The reader who has little or no background in digital logic will find it 
helpful to read through Appendix B before continuing. 

Within a logic design, it is often convenient for the designer to change the 
mapping between a logically true or false signal and the high or low voltage 
level. Thus, in some parts of a design, a signal that is logically asserted may ac
tually be an electrically low signal, while in others an electrically high signal is 
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FIGURE 5.1 An abstract view of the implementation of the MIPS subset showing the major functional units and 
the major connections between them. All instructions start by using the program counter to supply the instruction 
address to the instruction memory. After the instruction is fetched, the register operands used by an instruction are speci
fied by fields of that instruction. Once the register operands have been fetched, they can be operated on to compute a mem
ory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a 
compare (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to the 
Result register. If the operation is a load or store, the ALU result is used as an address to either store a value from the regis
ters or load a value from memory into the registers. The result from the ALU or memory is written back into the register 
file. Branches require the use of the ALU output to determine the next instruction address, which requires some control 
logic, as we will see. 

asserted. To maintain consistency we will use the word asserted to indicate a 
signal that is logically high and assert to specify that a signal should be driven 
logically high. 

The functional units in the MIPS implementation consist of two different 
types of logic elements: elements that contain state and elements that operate 
on data values. The elements that operate on data values are all combinational, 
which means that their outputs depend only on the current inputs. Given the 
same input, a combinational element always produces the same output. The 
ALU shown in Figure 5.1  and discussed in detail in Chapter 4 is a combina
tional element. Given a set of inputs, it always produces the same output, be
cause it has no internal storage. 

Other elements in the design are not combinational, but instead contain 
state. An element contains state if it has some internal storage. We call these el
ements state elements, because, if we pulled the plug on the machine, we could 
restart it by loading the state elements with the values they contained before 
we pulled the plug. Furthermore, if we saved and restored the state elements, 
it would be as if the machine had never lost power. Thus, these state elements 
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completely characterize the machine. In Figure 5.1, the instruction and data 
memories as well as the registers are all examples of state elements. 

A state element has at least two inputs and one output. The required inputs 
are the data value, which is to be written, and the clock, which determines 
when the data input value is stored. The output provides the value that was 
written in the previous clock. For example, the simplest state element is a D
type flip-flop (see Appendix B), which has exactly these two inputs (a value 
and a clock) and one output. In addition to flip-flops, our MIPS implementa
tion also uses two other types of state elements: memories and registers, both 
of which appear in Figure 5.1 .  The clock is used only to determine when the 
state element should be written; a state element can be read at any time. 

Logic components that contain state are also called sequential, because their 
outputs depend on both their inputs and the contents of the internal state. For 
example, the output from the functional unit representing the registers de
pends on both the register numbers supplied and on what was written into the 
registers previously. The operation of both the combinational and sequential 
elements and their construction are discussed in more detail in Appendix B. 

A clocking methodology defines when signals can be read and when they can 
be written. It is important to distinguish the timing of reads from writes, be
cause, if a signal is written at the same time it is read, the value of the read 
could correspond to the old value, the newly written value, or even some mix 
of the two! Needless to say, computer designs cannot tolerate this unpredict
ability. A clocking methodology is designed to prevent this circumstance. 

For simplicity, we will assume an edge-triggered clocking methodology. An 
edge-triggered clocking methodology means that any values stored in the ma
chine are updated only on a clock edge. Thus, the state elements all update 
their internal storage on the clock edge. Because only state elements can store 
a data value, any collection of combinational logic must have its inputs coming 
from a set of state elements and its outputs written into a set of state elements. 
The inputs are values that came from a previous clock cycle, while the outputs 
are values that will be used in a following clock cycle. Figures 5.2 and 5.3 show 
two examples. In the simpler example shown in Figure 5 .2, the block of com
binational logic operates in a single clock cycle. In this case, all signals must 
propagate from state element 1, through the combinational logic, and to state 
element 2 in the time of one clock cycle, and state element 2 can be written at 
the end of every clock cycle. The time necessary for the signals to reach state 
element 2 defines the length of the clock cycle. 

The second example requires several clock cycles for the signals to propa
gate from state element 1 through the combinational logic to state element 2. 
In this case, the signal that controls the writing of the second state element 
must be controlled so that the internal storage in the state element is not up
dated on every clock, but only on certain clocks. The state element is still up-
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FIGURE 5.2 Combinational logic, state elements, and the clock are closely related. In a 
synchronous digital system, the clock determines when elements with state will write values into 
internal storage. Any inputs to a state element must reach a stable value (that is, have reached a 
value from which they will not change until after the clock edge) before the active clock edge 
causes the state to be updated. 

State State 
element element 

1 2 

Write Write 

Clock cycle J I 
FIGURE 5.3 State element 2 is not written on every clock, but only on a clock edge when 
the write signal is also asserted. This organization can be used to allow the combinational 
logic block to take several clock cycles to propagate from the inputs at state element 1. The output 
of state element 1 also must not change during the time the signal is propagating through the 
combinational logic. Thus, state element 1 must also have a controlled write signal. If, for exam
ple, it requires two clock periods to propagate through the combinational logic, then the write 
control for state element 1 must be deasserted during the clock cycle that precedes the clock cycle 
in which state element 2 is written. 

dated on a clock edge, but only if the write signal is also asserted, as shown in 
Figure 5.3. For this to work properly, it is critical that the output of state ele
ment 1 also does not change during the clock cycles in which the signal is prop
agating through the combinational logic. Both state elements will require write 
signals and these signals must be coordinated so that the clocking methodolo-
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FIGURE 5.4 An edge-triggered methodology allows a state element to be read and written 
In the same clock cycle without creating a race that could lead to Indeterminate data val
ues. Of course, the clock cycle still must be long enough so that the input values are stable when 
the active clock edge occurs. 

gy is consistent. This type of state element will be used extensively in the mul
ticycle design that we will explore in the second half of this chapter. For 
simplicity, we do not show the write signal when a state element is updated 
on every active clock edge. Although we will not show the clock signal explic
itly, remember that all state elements have the clock as an input. 

An edge-triggered methodology allows us to read the contents of a register, 
send the value through some combinational logic, and write the register in the 
same clock cycle, as shown in Figure 5.4. It doesn't matter whether we assume 
that all writes take place on the rising clock edge or on the falling clock edge, 
since the inputs to the combinational logic block cannot change except on the 
chosen clock edge. In Appendix B we briefly discuss additional timing con
straints (such as set-up and hold times) as well as other timing methodologies. 

Nearly all of these state and logic elements will have inputs and outputs 
that are 32 bits wide, since that is the width of most of the data handled by the 
processor. We will make it clear whenever a unit has an input or output that is 
other than 32 bits in width. The figures will indicate buses, which are signals 
wider than 1 bit, with thicker lines. Arrows help clarify the direction of the 
flow of data between elements. Color indicates a control signal as opposed to 
a signal that carries data; this distinction will become clearer as we proceed 
through this chapter. 

The MIPS Subset Implementation 

We will start with a simple implementation that uses a single long clock cycle 
for every instruction and follows the general form of Figure 5.1 .  In this first 
design, every instruction begins execution on one clock edge and completes 
execution on the next clock edge. 

While easier to understand, this approach is not really practical, since it 
would be slower than an implementation that allows different instruction 
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types to take different numbers of clock cycles, each of which could be shorter. 
After designing the control for this simple machine, we will look at an imple
mentation that uses multiple clock cycles for each instruction. This implemen
tation is more realistic but also requires more complex control. In this chapter, 
we will take the specification of the control to the level of logic equations and 
finite state machine specifications. From either representation, a modern com
puter-aided design (CAD) system can synthesize a hardware implementation. 
Before closing the chapter, we will discuss how exceptions (mentioned in 
Chapter 4) are implemented. 

• Bulldlng a Datapath 

A reasonable way to start a datapath design is to examine the major compo
nents required to execute each type of MIPS instruction. Let's start by looking 
at which datapath elements each instruction needs and build up the sections 
of the datapath for each instruction type from these elements. When we show 
the datapath elements initially, we will also show their control signals. After 
that, we will not include the control signals in the actual datapath until 
section 5.3, when we add the control unit. 

The first element we will need is a place to store the instructions of a pro
gram. A memory unit, which is a state element, is used to hold and supply in
structions given an address, as shown in Figure 5.5. The address of the 
instruction must also be kept in a state element, which we call the program 
counter, also shown in Figure 5.5. Lastly, we will need an adder to increment 
the PC to the address of the next instruction. This adder, which is combination
al, can be built from the ALU we designed in the last chapter simply by wiring 
the control lines so that the control always specifies an add operation. We will 
draw this ALU with the label Add, as in Figure 5.5, to indicate that it has been 
permanently made an adder and cannot perform the other ALU functions. 

To execute any instruction, we must start by fetching the instruction from 
memory. To prepare for executing the next instruction, we must also incre
ment the program counter so that it points at the next instruction, 4 bytes later. 
The datapath for this step, shown in Figure 5.6, uses the three elements from 
Figure 5.5. 

Now let's consider the R-format instructions. They all read two registers, 
perform an ALU operation on the contents of the registers, and write the re
sult. We call these instructions either R-type instructions or arithmetic-logical 
instructions (since they perform arithmetic or logical operations). This instruc
tion class includes a d d, s u b, a n d , o r, and s l  t; recall that a typical instance of 
such an instruction is a d d  $ 1  , $ 2 , $ 3, which reads $ 2 and $ 3 and writes $ 1 .  The 
processor's 32 registers are stored in a structure called a register file. A register 
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FIGURE 5.5 Two state elements are needed to store and acceu Instructions, and an 
adder Is needed to compute the next Instruction addreu. The state elements are the instruc
tion memory and the program counter. The instruction memory need only provide read access, 
because the datapath does not write instructions. (We will need to write the instruction memory 
when we load the program; this is not hard to add, and we ignore it for simplicity.) Since the 
instruction memory unit can only be read, we do not include a read control signal; this simplifies 
the design. Control signals, such as the write signal on the PC, are shown in color. The program 
counter is a 32-bit register that will be written under the control of a write signal. The adder is an 
ALU wired to always perform an add of its two 32-bit inputs and place the result on its output. 
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FIGURE 5.8 A portion of the datapath used for fetching Instructions and Incrementing the 
program counter. The fetched instruction is used by other parts of the datapath. 



278 Chapter 5 The Processor: Datapath and Control 

Register 
numbers 

Data { 

Read 
register 1 

Read 
register 2 

Read 
data 1 

Registers 
Write 
register 

Write 
data 

Read 
data 2 

Write 

a. Registers 

Data ALU ALU result 

b. ALU 

FIGURE 5.7 The two elements needed to Implement R.format ALU operations are the register Ille and the ALU. 
The register file contains all the registers and provides two read ports and one write port. The register file always provides 
the contents of the registers corresponding to the Read register inputs on the outputs, while the writes must be explicitly 
controlled with the write control signal. The inputs carrying the register number to the register file are all 5 bits wide, 
whereas the lines carrying data values are 32 bits wide. (The design of multiported register files is discussed in section B.5 
of Appendix B.) The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 3 
bits wide, using the ALU designed in the previous chapter (see Figure 4.18). We will need the Zero detection output of the 
ALU shortly to implement branches, and we will add it then. The overflow output will not be needed until section 5.6, 

when we discuss exceptions; we omit it until then. 

file is a collection of registers in which any register can be read or written by 
specifying the number of the register in the file. The register file contains the 
register state of the machine. In addition, we will need an ALU to operate on 
the values read from the registers. 

Because the R-format instructions have three register operands, we will 
need to read two data words from the register file and write one data word 
into the register file for each instruction. For each data word to be read from 
the registers, we need an input to the register file that specifies the register 
number to be read and an output from the register file that will carry the value 
that has been read from the registers. To write a data word, we will need two 
inputs: one to specify the register number to be written and one to supply the 
data to be written into the register. Thus, we need a total of four inputs (three 
for register numbers and one for data) and two outputs (both for data), as 
shown in Figure 5.7. The register file always outputs the contents of whatever 
register numbers are on the Read register inputs. Writes, however, are con
trolled by the write control signal, which must be asserted for a write to occur 
when the clock input falls. The register number inputs are 5 bits wide to spec
ify 1 of 32 registers ( 32 = 25 ), whereas the data input and two data outputs are 
each 32 bits wide. The ALU takes two 32-bit inputs and produces a 32-bit re-
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FIGURE 5.8 The datapath for R-type instructions. The ALU discussed in Chapter 4 can be 
controlled to provide all the basic ALU functions required for R-type instructions. 

sult. The ALU, shown in Figure 5.7, is controlled by the 3-bit signal described 
in Chapter 4. 

The datapath for these R-type instructions, which uses the register file and 
the ALU of Figure 5.7, is shown in Figure 5.8. Since the register numbers come 
from fields of the instruction, we show the instruction, which comes from 
Figure 5.6, as connected to the register inputs of the register file. 

Next, consider the MIPS load and store instructions, which have the gener
al form: l w  $ 1 , o f f s e t_v a l u e ( $ 2 )  or s w  $ 1 , o f f s e t_v a l u e ( $ 2 ) . These in
structions compute a memory address by adding the base register ( $ 2 )  to the 
16-bit signed, offset field contained in the instruction. If the instruction is a 
store, the value to be stored must also be read from the register file ($ 1 ) .  If the 
instruction is a load, the value read from memory must be written into the reg
ister file in the specified register ($ 1 ) .  Thus, we will need both the register file 
and the ALU, which are required for R-format instructions and shown in 
Figure 5.7. In addition, we will need a unit to sign-extend the 16-bit offset field 
in the instruction to a 32-bit signed value, and a data memory unit to read from 
or write to. The data memory must be written on store instructions; hence, it 
has both read and write control signals, as well as an input for the data to be 
written into memory. Figure 5.9 shows these two elements. 

Figure 5.10 shows how to combine these elements to build the datapath for 
a load word or a store word instruction, assuming that the instruction has al
ready been fetched. The register number inputs for the register file come from 
fields of the instruction, as does the offset value, which after sign extension be
comes the second ALU input. 

The beq  instruction has three operands, two registers that are compared for 
equality, and a 16-bit offset used to compute the branch target address relative 
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FIGURE 5.9 The two units needed to implement loads and stores are the data memory 
unit and the sign-extension unit, In addition to the register file and ALU of Figure 5.7. The 
memory unit is a state element with inputs for the read address, write address, and the write 
data, and a single output for the read result. There are separate read and write controls, although 
only one of these may be asserted on any given clock. The sign-extension unit has a 16-bit input 
that is sign-extended into a 32-bit result appearing on the output (see Chapter 4, page 172). 
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FIGURE 5.10 The datapath for a load or store that does a register access. It is followed by a memory address calcu
lation, then a read or write from memory, and a write into the register file if the instruction is a load. 
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to the branch instruction address. Its form is be  q $ 1  . $ 2 . o f f s e t .  To imple
ment this instruction, we must compute the branch target address by adding 
the sign-extended offset field of the instruction to the PC. As noted in an Elab
oration in Chapter 3, there are two details in the instruction set architecture to 
which we must pay attention. 

• The instruction set architecture specifies that the base for the branch ad
dress calculation is the address of the instruction following the branch. 
Since we compute PC + 4 (the address of the next instruction) in the in
struction fetch datapath, it is easy to use this value as the base for com
puting the branch target address. 

• The architecture also states that the offset field is shifted left 2 bits so that 
it is a word offset; this shift is helpful because it increases the effective 
range of the offset field by a factor of 4. 

To deal with the latter complication, we will need to shift the offset field by 
two. This is done in the datapath figures beginning with Figure 5.11, which 
shows the branch datapath. (Later on we will also need to adjust jump off
sets.) 

In addition to computing the branch target address, we must also deter
mine whether the next instruction is the instruction that follows sequentially 
or the instruction at the branch target address. When the condition is true (i.e., 
the operands are equal), the branch target address becomes the new PC, and 
we say that the branch is taken. If the operands are not equal, the incremented 
PC should replace the current PC (just as for any other normal instruction); in 
this case, we say that the branch is not taken. 

Thus, the branch must do two operations: compute the branch target ad
dress and compare the register contents. To compute the branch target ad
dress, we will need a sign-extension unit, just like that in Figure 5.9, and an 
adder. We must also modify the instruction fetch portion of the datapath. To 
perform the compare, we need to use the register file shown in Figure 5.7 to 
supply the two register operands (although we will not need to write into the 
register file). In addition, the comparison can be done using the ALU we de
signed in Chapter 4. Since that ALU provides an output signal that indicates 
whether the result was 0, we can send the two register operands to the ALU 
with the control set to do a subtract. If the Zero signal out of the ALU unit is 
asserted, we know that the two values are equal. Although the Zero output al
ways signals if the result is 0, we will be using it only to implement the equal 
test of branches. Later, we will show exactly how to connect the control signals 
of the ALU for use in the datapath. The datapath for a branch combines these 
elements, as shown in Figure 5 .11 .  
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FIGURE 5.11 The datapath for a branch uses an ALU for evaluatlon of the branch condl· 
tion and a separate adder for computing the branch target as the sum of the Incremented 
PC and the sign-extended, lower 16 bits of the Instruction (the branch displacement), 
shifted left 2 bits. The unit labeled Shift left 2 performs the shift adding 001wo to the bottom of 
the sign-extended offset field. Since we know that the offset was sign-extended from 16 bits, the 
shift will throw away only "sign bits." Control logic is used to decide whether the incremented 
PC or branch target should replace the PC, based on the Zero output of the ALU. 

The jump instruction operates by replacing a portion of the PC with the 
lower 26 bits of the instruction shifted left by two bits. This shift is accom
plished simply by concatenating 00 to the jump offset. 

Now that we have examined the datapaths needed for the individual in
struction types, we can combine them into a single datapath and add the con
trol to complete the implementation. The datapaths shown in Figures 5.6, 5.8, 
5.10, and 5 .11  will be the building blocks for two different implementations. In 
the next section we will create an implementation that uses a single clock cycle 
for every instruction. In section 5.4, we will look at an implementation that 
uses multiple clock cycles for every instruction. 
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• A Simple Implementation Scheme 

Example 

In this section, we look at what might be thought of as the simplest possible 
implementation of our MIPS subset. We build this simple datapath and con
trol by assembling the datapath segments of the last section and adding con
trol lines as needed. This simple implementation covers load word ( 1  w), store 
word (s w), branch equal ( be q), and the arithmetic-logical instructions a d d ,  
s u b, a n d , o r, and s l  t .  We will later enhance the design to include a jump 
instruction (j ) . 

Creating a Single Datapath 

Suppose we were going to build a datapath from the pieces we looked at in 
Figures 5.6, 5.8, 5 . 10, and 5.11 .  The simplest datapath might attempt to exe
cute all instructions in one clock cycle. This means that no datapath resource 
can be used more than once per instruction and that any element needed 
more than once must be duplicated. We therefore need a memory for instruc
tions separate from one for data. While some of the functional units will need 
to be duplicated when the individual datapaths of the previous section are 
combined, many of the elements can be shared by different instruction flows. 
To share a datapath element between two different instruction types, we may 
need to allow multiple connections to the input of an element and have a con
trol signal select among the inputs. This is commonly done with a device 
called a multiplexor, although this device might better be called a data selector. 
The multiplexor, which was introduced in the last chapter (Figure 4.7 on 
page 184), selects from among several inputs based on the setting of its con
trol lines. 

The arithmetic-logical (or R-type) instruction datapath of Figure 5.8 on 
page 279 and the memory instruction datapath of Figure 5.10 on page 280 
are quite similar. The key differences are 

• The second input to the ALU unit is either a register (if it's an R-type in
struction) or the sign-extended lower half of the instruction (if it's a 
memory instruction) . 

• The value written into the Result register comes from the ALU (for an 
R-type instruction) or the memory (for a load). 
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Show how to combine the two datapaths using multiplexors, without 
duplicating the functional units that are in common in Figures 5.8 and 5.10. 
Ignore the control of the multiplexors. 

To combine the two datapaths and use only a single register file and an 
ALU, we must support two different sources for the second ALU input, as 
well as two different sources for the data stored into the register file. Thus, 
one multiplexor is placed at the ALU input and another at the data input to 
the register file. Figure 5.12 shows the combined datapath. 

The instruction fetch portion of the datapath, shown in Figure 5.6 on 
page 277, can easily be added to the datapath in Figure 5.12. Figure 5.13 shows 
the result. The combined datapath includes a memory for instructions and a 
separate memory for data. This combined datapath requires both an adder 
and an ALU, since the adder is used to increment the PC, while the other ALU 
is used for executing the instruction in the same clock cycle. 

Now we can combine all the pieces to make a simple datapath for the MIPS 
architecture by adding the datapath for branches from Figure 5.11 .  Figure 5.14 
shows the datapath we obtain by composing the separate pieces. The branch 
instruction uses the main ALU for comparison of the register operands, so we 
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Registers Read 
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data 
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FIGURE 5.12 Combining the datapaths for the memory Instructions and the R·type Instructions. This example 
shows how a single datapath can be assembled from the pieces. The multiplexors and their connections are highlighted. 
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FIGURE 5.13 The Instruction fetch portion of the datapath from Figure 5.6 is appended to the datapath of 
Figure 5.12 that handles memory and ALU Instructions. The addition is highlighted. The result is a datapath that sup
ports many operations of the MIPS instruction set-branches and jumps are the major missing pieces. 

must keep the adder in Figure 5.11  for computing the branch target address. 
An additional multiplexor is required to select either the sequentially follow
ing instruction address (PC + 4) or the branch target address to be written into 
the PC. Because the PC will be written with one of these two values on every 
clock, we do not need an explicit write control signal. 

Now that we have completed this simple datapath, we can add the control 
unit. The control unit must be able to take inputs and generate a write signal 
for each state element, the selector control for each multiplexor, and the ALU 
control. The ALU control is different in a number of ways, and it will be useful 
to design it first before we design the rest of the control unit. 

The ALU Control 

Recall from Chapter 4 that the ALU has three control inputs. Only five of the 
possible eight input combinations are used. Figure 4.19 on page 195 showed 
the five following combinations: 
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000 And 

001 Or 

010 Add 

110 Subtract 

111 Set-on-less-than 

Depending on the instruction type, the ALU will need to perform one of these 
five functions. For load and store instructions, we use the ALU to compute 
the memory address by addition. For the R-type instructions, the ALU needs 
to perform one of five actions (subtract, add, AND, OR, or set-on-less-than), 
depending on the value of the 6-bit funct (or function) field in the low-order 
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register 

\1\lrite 
data 

M 

M 
u 
x 

Read 
data 

Data 
memory 

M 

FIGURE 5.14 The slmple datapath for the MIPS architecture combines the elements required by the different 
Instruction classes. This datapath can execute the basic instructions (load/store word, ALU operations, and branches) in 
a single clock cycle. The additions to Figure 5.13, which are needed to implement branches, are highlighted. 
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Instruction Instruction Desired ALU control 
opcode ALU Op operation Function code ALU action input 

LW 00 load word xxxxxx add 010 
SW 00 store word xxxxxx add 010 
Branch equal 01 branch equal xxxxxx subtract 110 
R-type 10 add 100000 add 010 
R-type 10 subtract 100010 subtract 110 
R-type 10 AND 100100 and 000 
R-type 10 O R  100101 or 001 
R-type 10 set-on-less-than 101010 set-on-less-than 111 

FIGURE 5.15 This table shows how the ALU control bits are set depending on the ALUOp 
control bits and the different function codes for the R·type instruction The opcode, listed 
in the first column, determines the setting of the ALUOp bits. All the encodings are shown in 
binary. Notice that when the ALUOp code is 00 or 01, the output fields do not depend on the 
function code field; in this case, we say that we "don't care" about the value of the function code, 
and the function field is shown as X X  X X  X X .  When the ALU Op value is 10, then the function code 
is used to set the ALU control input. 

bits of the instruction (see Chapter 3, page 104). For branch equal, the ALU 
must perform a subtraction. 

We can generate the 3-bit ALU control input using a small control unit that 
has as inputs the function field of the instruction and a 2-bit control field, 
which we call ALUOp. ALUOp indicates whether the operation to be per
formed should be add (00) for loads and stores, subtract (01) for b e q, or the op
eration encoded in the function field (10). The output of the ALU control unit 
is a 3-bit signal that directly controls the ALU by generating one of the five 
3-bit combinations shown on the previous page. In Figure 5.15 we show how 
to set the ALU control inputs based on the 2-bit ALUOp control and the 6-bit 
function code. For completeness, the relationship between the ALUOp bits 
and the instruction opcode is also shown. Later in this chapter we will see how 
the ALUOp bits are generated from the main control unit. 

There are several different ways to implement the mapping from the 2-bit 
ALUOp field and the 6-bit function code field to the three ALU operation con
trol bits. Because only a small number of the 64 possible values of the function 
field are of interest and the function field is used only when the ALUOp bits 
equal 10, we can use a small piece of logic that recognizes the subset of possible 
values and causes the correct setting of the ALU control bits. As a step in de
signing this logic, it is useful to create a truth table for the interesting combi
nations of the function code field and the ALUOp bits as we've done in 
Figure 5.16 ; this truth table shows how the 3-bit ALU control is set depending 
on these two input fields. Since the full truth table is very large ( 28 

= 256 en
tries) and the ALU control is unused for most of these input combinations, we 
show only the truth table entries for which the ALU control is needed. 
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0 0 x x x x x x 010 

x 1 x x x x x x 110 

1 x x x 0 0 0 0 010 

1 x x x 0 0 1 0 110 

1 x x x 0 1 0 0 000 

1 x x x 0 1 0 1 001 

1 x x x 1 0 1 0 111 

FIGURE 5.16 The truth table for the three ALU control bits (called Operation) as a func-
tion of the ALUOp and function code field. Only the entries for which the ALU control is not 
all zeroes are shown. Some don't care entries have been added. For example, the ALUOp does 
not use the encoding 11, so the truth table can contain entries lX and Xl, rather than 10 and 01. 
Also, when the function code field is used, the first two bits (FS and F4) of these instructions are 
always 10, so they are don't care terms and are replaced with XX in the truth table. 

Throughout this chapter, we will use this practice of showing only the truth 
table entries that have nonzero output values. (This practice has a disadvan
tage that we will discuss shortly.) 

Because in many instances we do not care about the values of some of the 
inputs and to keep the tables compact, we also include "don't care" terms. A 
don't care term in this truth table (represented by an X) indicates that the out
put is true, independent of the value of the corresponding input. For example, 
when the ALUOp bits are 00 ,  as in the first line of the table in Figure 5.16, we 
always set the ALU control to 0 1 0, independent of the function code. In this 
case, then, the function code inputs will be don't cares in this line of the truth 
table. Later, we will see examples of another type of don't care term. The read
er unfamiliar with the concept of don't care terms should see Appendix B for 
more information. 

Once the truth table has been constructed, it can be optimized and then 
turned into gates. This process is completely mechanical. Optimization takes 
advantage of the don't cares in the table. 

A logic block that implements the ALU control function will have three dis
tinct outputs (called Operation2, Operationl, and OperationO), each corre
sponding to one of the three bits of the ALU control. The logic function for 
each output is constructed by combining all the truth table entries that set that 
particular output. For example, the low-order bit of the ALU control (Opera
tionO) is set by the last two entries of the truth table in Figure 5.16. Thus, the 
truth table for OperationO will have these two entries. In addition, looking at 
the truth tables for each output individually allows us to minimize the logic 
required by exploiting commonalities among the terms associated with an out
put. Figure 5.17 shows the truth tables for each of the three ALU control bits. 
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ALUOp Function code fields · 
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ALUOpl ALUOpO FS F4 F3 F2 Fl FO 

1 x x x x x 1 x 

a. The truth table for Operation2 = 1. This table corresponds to the left bit of the Operation field 
in Figure 5.16. 

�·��F:' ALUOp Function code fields 
. ALtfop_l . AL_lJOpO FS F4 F3 F2 Fl FO 

x x x x x 0 

b. The truth table for Operation! = 1.  

ALUOp Function code fields 

x x 

ALUOpl ALUOpO FS F4 F3 F2 Fl FO 

1 x x x 1 x x x 

c. The truth table for OperationO = 1. 

FIGURE 5.17 The truth tables for the three ALU control lines. Only the entries for which the 
output is 1 are shown. The bits in each field are numbered from right to left starting with O; thus, 
FS is the most significant bit of the function field and FO is the least significant bit. Similarly, the 
names of the signals corresponding to the 3-bit operation code supplied to the ALU are Opera
tion2, Operation1, and OperationO (with the last being the least significant bit). Thus, the truth 
table above shows the input combinations for which the ALU control should be 010, 001, llO, or 
111 (the combinations 011, 100, and 101 are not used). The ALUOp bits are named ALUOpl and 
ALUOpO. The three output values depend on the 2-bit ALUOp field and, when that field is equal 
to 10, the 6-bit function code in the instruction. Accordingly, when the ALUOp field is not equal 
to 10, we don't care about the function code value (it is represented by an X). See Appendix B for 
more background on don't cares. 

We have also taken advantage of the common structure in each truth table to 
incorporate additional don't cares. For example, the five lines in the truth table 
of Figure 5.16 that set Operationl are reduced to just two entries in Figure 5.17. 
A logic minimization program will use the don't care terms to reduce the num
ber of gates and the number of inputs to each gate in a logic gate realization of 
these truth tables. 

From the simplified truth table in Figure 5.17, we can generate the logic 
shown in Figure 5.18, which we call the ALU control block. This process is 
straightforward and can be done with a computer-aided design (CAD) pro
gram. An example of how the logic gates can be derived from the truth tables 
is given in the legend to Figure 5.18. 
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FIGURE 5.18 The ALU control block generates the three ALU control bits, based on the 
function code and ALUOp bits. This logic is generated directly from the truth table in 
Figure 5.17. Only 4 of the 6 bits in the function code are actually needed as inputs, since the upper 
2 bits are always don't cares. Let's examine how this logic relates to the truth table of Figure 5.17. 
Consider the Operation2 output, which is generated by two lines in the truth table for Opera
tion2. The second line is the AND of two terms (Fl = 1 and ALUOpl = l ); the top two-input AND 
gate corresponds to this term. The other term that causes Operation2 to be asserted is simply 
ALUOpO. These two terms are combined with an OR gate whose output is Operation2. The out
puts OperationO and Operationl are derived in similar fashion from the truth table. 

This ALU control logic is simple because there are only three outputs, and 
only a few of the possible input combinations need to be recognized. If a large 
number of possible ALU function codes had to be transformed into ALU con
trol signals, this simple method would not be efficient. Instead, one could use 
a decoder, a memory, or a structured array of logic gates. These techniques are 
described in detail in Appendices B and C. 

Elaboration: In  genera l ,  a logic equation and truth table representation of a logic 
function are equivalent. (We d iscuss this in further detai l  in Appendix B . )  However, 
when a truth table on ly specifies the entries that result in nonzero outputs, it may not 
completely describe the logic function. A fu l l  truth table completely ind icates al l  don't 
care entries. For example, the encod ing 11 for ALUOp always generates a don't care in  
the output. Thus, a complete truth table would have XXX in  the output portion for a l l  
entries with 11 in  the ALUOp field.  These don't care entries allow us to replace the 
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Field 0 rs rt rd sh amt funct 

Bit positions 31-26 25-21 20-16 15-11 10-6 5-0 

a .  R-type instruction 

Field 35 or 43 rs rt address 

Bit positions 31-26 25-21 20-16 15-0 

b. Load or store instruction 

Field 4 rs rt address 

Bit positions 31-26 25-21 20-16 15-0 

c. Branch instruction 

FIGURE 5.19 The three Instruction classes (R·type, load and store, and branch) use two different Instruction for
mats. The jump instructions use another format, which we will discuss shortly. a. Instruction format for R-format 
instructions, which all have an opcode of 0. These instructions have three register operands: rs, rt, and rd. Fields rs and rt 
are sources, and rd is the destination. The ALU function is in the field funct and is decoded by the ALU control design in 
the previous section. The instructions with this form that we implement are add, sub, and, or, and sit. The shamt field is 
used only for shifts; we will ignore it. b. Instruction format for load (opcode=35) and store (opcode=43) instructions. The 
register rs is the base register that is added to the 16-bit address field to form the memory address. For loads, rt is the desti
nation register for the loaded value. For stores, rt is the source register whose value should be stored into 
memory. c. Instruction format for branch equal (opcode=4). The registers rs and rt are the source registers that are com
pared for equality. The 16-bit address field is shifted and added to the PC to compute the branch target address. 

ALUOp field 10 and 01 with 1X and X1, respectively. Incorporating the don't care terms 
and min imizing the logic is both complex and error-prone and , thus ,  is better left to a 
program. 

Designing the Main Control Unit 

Now that we have described how to design an ALU that uses the function 
code and a 2-bit signal as its control inputs, we can return to looking at the 
rest of the control. To start this process, let's identify all the control lines and 
the required instruction components for the datapath we constructed in 
Figure 5.14 on page 286. To understand how buses should be added to route 
the instruction pieces to the datapath, it is useful to review the formats of the 
three instruction types: the R-type, branch, and load/store instructions. 
These formats are shown in Figure 5.19. 

There are several major observations about this instruction format that we 
will rely on: 

• The op field, also called the opcode, is always contained in bits 31-26. We 
will refer to this field as Op[5-0] .  
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• The two registers to be read are always specified by the rs and rt fields, 
at positions 25-21 and 20-16. This is true for the R-type instructions, 
branch equal, and for store. 

• The base register for load and store instructions is always in bit posi
tions 25-21 (rs). 

• The 16-bit offset for branch equal, load, and store is always in positions 
15-0. 

• The destination register is in one of two places. For a load it is in bit 
positions 20-16 (rt), while for an R-type instruction it is in bit positions 
15-11  (rd). Thus, we will need to add a multiplexor to select which field 
of the instruction is used to indicate the register number to be written. 

Using this information, we can add the instruction labels and extra multi
plexor (for the Write register number input of the register file) to the simple 
datapath. Figure 5.20 shows these additions plus the ALU control block, the 
write signals for state elements, the read signal for the data memory, and the 
control signals for the multiplexors. Since all the multiplexors have two inputs, 
they each require a single control line. 

Figure 5.20 shows the seven single-bit control lines plus the 2-bit ALUOp 
control signal. We have already defined how the ALUOp control signal works, 
and it is useful to define what the seven other control signals do informally be
fore we determine how to set these control signals during instruction execu
tion. Figure 5.21 describes the function of these seven control lines. 

Now that we have looked at the function of each of the control signals, we 
can look at how to set them. The control unit can set all but one of the control 
signals, based solely on the opcode field of the instruction. The PCSrc control 
line is the exception. That control line should be set if the instruction is branch 
on equal (a decision that the control unit can make) and the Zero output of the 
ALU, which is used for equality comparison, is true. To generate the PCSrc 
signal, we will need to AND together a signal from the control unit, which we 
call Branch, with the Zero signal out of the ALU. 

These nine control signals can now be set on the basis of six input signals 
to the control unit, which are the opcode bits. The datapath with the control 
unit and the control signals are shown in Figure 5.22. 

Before we try to write a set of equations or a truth table for the control unit, 
it will be useful to try to define the control function informally. Because the set
ting of the control lines depends only on the opcode, we define whether each 
control signal should be 0, 1, or don't care (X), for each of the opcode fields of 
interest. Figure 5.23 defines how the control signals should be set for each op
code; this information follows directly from Figures 5.15, 5.21, and 5.22. 

With the information contained in Figures 5.21 and 5.23, we can design the 
control unit logic, but before we do that, let's look at how each instruction uses 
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FIGURE 5.20 The datapath of Figure 5.14 wHh all necessary multiplexors and all control lines Identified. The control lines are shown in color. 
The ALU control block has also been added 
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sig�@.! iamJil ���. ,} -��ffE�ct :when deasserted . Effect when asserted 
MemRead None Data memory contents at the read address are put on 

read data output. 
MemWrite None Data memory contents at address given by write 

address is replaced by value on write data input. 
ALUSrc The second ALU operand comes from the second The second ALU operand is the sign-extended lower 

register file output. 16-bits of the instruction. 
RegDst The register destination number for the Write The register destination number for the Write register 

register comes from the rt field. comes from the rd field. 
RegWrite None The register on the Write register input is written into 

with the value on the write data input. 
PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder that 

that computes the value of PC + 4. computes the branch target. 
MemtoReg The value fed to the register write data input The value fed to the register write data input comes from 

comes from the ALU. the data memory. 

FIGURE 5.21 The function of each of the seven control signals. When the 1-bit control to a two-way multiplexor is 
asserted, the multiplexor selects the input corresponding to 1 .  Otherwise, if the control is deasserted, the multiplexor 
selects the 0 input. Remember that the state elements all have the clock as an implicit input and that the clock is used in 
controlling writes. The clock is never gated externally to a state element, since this can create timing problems. (See Appen
dix B for further discussion of this problem.) 

the datapath. In the next few figures, we show the flow of three different in
struction types through the datapath. The asserted control signals and active 
datapath elements are highlighted in each of these. Note that a multiplexor 
whose control is 0 has a definite action, even if its control line is not highlight
ed. Multiple-bit control signals are highlighted if any constituent signal is as
serted. 

Let's begin with an R-type instruction, such as a d d  $ x .  $ y , $ z . Rather than 
looking at the entire datapath as one piece of combinational logic, it is easier 
to think of an instruction executing in a series of steps, focusing our attention 
on the portion of the datapath associated with each step. The four steps to ex
ecute an R-type instruction are 

1 .  An instruction is fetched from the instruction memory and the PC is 
incremented. Figure 5.24 shows this first step. The active units and 
asserted control lines are highlighted; those that are asserted in later 
steps of an R-type instruction are in gray, and those in light gray are 
those not active for an R-type instruction in any step. The same format 
is followed for the next three steps. 

2. Two registers, $ y and $ z, are read from the register file as shown in 
Figure 5.25 on page 298. The main control unit computes the setting of 
the control lines during this step also. 

3. The ALU operates on the data read from the register file, using the 



I • 

t: .!! 

4 

Read 
address 

Instruction memory 

Instruction 
(31--0) 

Instruction (31-26) 

,,-..,._ __ _, RegDst 
Branch 
MemRead 
MemtoReg 
ALUOp 

Control MemWnte 
ALUSrc 
Regwnte 

I Instruction (25-21) � I Read 
register 1 

I Instruction (20-16) I Read d��a� l-�+-11-�-+-� ... 
I register 2 

M 

Instruction (15-11) 

Instruction (15-0) 

Write 
Registers 

d�t�a� I I I I r 
register 

Write 
data 

16 

Instruction (5-0) 

Read 
address o

u ·--� 
M Write u address 

Write 
data 

Readnl data � 
Data 

memory 

FIGURE 5.22 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction. The outputs of 
the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for controlling read 
and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly branch 
(Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the 
ALU; the AND gate output controls the selection of the next PC. 
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Memto- Reg Mem Mem 
Instruction RegDst ALUSrc Reg Write Read Write Branch ALU0p1 ALUOpO 

R-format 1 0 0 1 0 0 0 1 0 
lw 0 1 1 1 1 0 0 0 0 
SW x 1 x 0 0 1 0 0 0 
beq x 0 x 0 0 0 1 0 1 

FIGURE 5.23 The setting of the control lines is completely determined by the opcode fields of the Instruction. 
The first row of the table corresponds to the R-format instructions ( a d d, s u b t r a c t, a n d, o r, and s l t).  For all instructions, 
the source register fields are rs and rt and the destination register field is rd; this defines how the signals ALUSrc and 
RegDst are set. Furthermore, an R-type instruction writes a register (RegWrite = 1 ), but neither reads nor writes data mem
ory. The ALUOp field for R-type instructions is set to 10 to indicate that the ALU control should be generated from the 
funct field. The second and third rows of this table give the control signal settings for l w and s w. These ALUSrc and 
ALUOp fields are set to perform the effective address calculation. The MemRead and MemWrite are set to perform the 
memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. The 
branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for 
branch is set for a subtract (ALU control = 01 ), which is used to test for comparison. Notice that the MemtoReg field is irrel
evant when the Reg Write signal is 0-since the register is not being written, the value of the data on the register data write 
port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don't care. This type of 
don't care must be added by the designer, since it depends on knowledge of how the datapath works. Don't cares can also 
be added to RegDst when RegWrite is 0. 

function code (bits 5-0 of the instruction) to generate the ALU function. 
Figure 5.26 on page 299 shows the operation of this step. 

4. The result from the ALU is written into the register file using bits 15-11 
of the instruction to select the destination register ( $ x) .  Figure 5.27 on 
page 300 shows the final step added to the previous three. 

Remember that this implementation is combinational. That is, it is not real
ly a series of four distinct steps. The datapath really operates in a single clock 
cycle, and the signals within the datapath can vary unpredictably during the 
clock cycle. The signals stabilize roughly in the order of the steps given above, 
because the flow of information follows this order. Thus, Figure 5.27 shows 
not only the action of the last step, but essentially the operation of the entire 
datapath when the clock cycle actually ends. 

We can illustrate the execution of a load word, such as l w $ x , o f f s e t  ( $y ) , 
in a style similar to Figure 5.27. Figure 5.28 on page 301 shows the active func
tional units and asserted control lines for a load. We can think of a load instruc
tion as operating in five steps (similar to the R-type executed in four): 

1 .  An instruction is fetched from the instruction memory and the PC is 
incremented. 

2. A register ( $y )  value is read from the register file. 

3. The ALU computes the sum of the value read from the register file and 
the sign-extended lower 16 bits of the instruction ( offs  et) .  
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4. The sum from the ALU is used as the address for the data memory. 

5. The data from the memory unit is written into the register file; the regis
ter destination is given by bits 20-16 of the instruction ( $ x) .  

Finally, we can illustrate the operation of the branch-on-equal instruction, 
such as b e q  $ x . $y . o f f s et ,  in the same fashion. It operates much like an 
R-format instruction, but the ALU output is used to determine whether the PC 
is written with PC + 4 or the branch target address. Figure 5.29 shows the four 
steps in execution: 

1 .  An instruction is fetched from the instruction memory and the PC is 
incremented. 

2. Two registers, $ x and $ y, are read from the register file. 

3. The ALU performs a subtract on the data values read from the register 
file. The value of PC + 4 is added to the sign-extended lower 16 bits of 
the instruction ( o f f s e t); the result is the branch target address. 

4. The Zero result from the ALU is used to decide which adder result to 
store into the PC. 

In the next section, we will examine machines that are truly sequential, 
namely, those in which each of these steps is a distinct clock cycle. 

Now that we have seen how the instructions operate in steps, let's continue 
with the control implementation. The control function can be precisely defined 
using the contents of Figure 5.23. The outputs are the control lines, the input is 
the 6-bit opcode field, Op [5-0]. Thus, we can create a truth table for each of 
the outputs. Before doing so, let's write down the encoding for each of the op
codes of interest in Figure 5.23, both as a decimal number and as a series of bits 
that are input to the control unit: 

(;.��-- . ! ·  '.' · · �·::.�:,,�?-�· i;� ..... :-i.-; ·. :.1' �:� .. ::;��� . ..... b.ll� � ... �:1'\!'-.,,:,..{o'�. :··:---:;.:� 
•· •• · )Opcode· m .,,_. . '"'. ... - - • .... pco e m. mary.,.. . ._ . , , . . , 

' ... - • • ...._ , , • .. r , �" L r f'" , � • Ji, , �, , • � " • • J • t 
�- Name'. · · . ��ci_r'nal • . · ·op��' ,' Op4 . .- , Op���· .• Op2·· · Op1· ._ :' OpO 
R-format Oien 0 0 0 0 0 0 

lw 351en 1 0 0 0 1 1 

SW 431en 1 0 1 0 1 1 

beq 41en 0 0 0 1 0 0 

Using this information, we can now describe the logic in the control unit in 
one large truth table that combines all the outputs as in Figure 5.30. It com-
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FIGURE 5.29 The datapath in operation for a branch equal instruction. After using the register file and ALU to perform the compare, the Zero 
output is used to select the next program counter from between the two candidates. 
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R-format lw SW beq 
Op5 0 1 1 0 

Op4 0 0 0 0 

Op3 0 0 1 0 
Inputs 

Op2 0 0 0 1 

Op1 0 1 1 0 

OpO 0 1 1 0 

RegDst 1 0 x x 

ALUSrc 0 1 1 0 

MemtoReg 0 1 x x 

RegWrite 1 1 0 0 

Outputs MemRead 0 1 0 0 

MemWrite 0 0 1 0 

Branch 0 0 0 1 

ALUOp1 1 0 0 0 

ALUOpO 0 0 0 1 

FIGURE 5.30 The control function for the slmple one-clock Implementation Is completely 
specified by this truth table. The top half of the table gives the combinations of input signals 
that correspond to the four opcodes that determine the control output settings. (Remember that 
Op [5-0] corresponds to bits 31-26 of the instruction, which is the opcode field.) The bottom por
tion of the table gives the outputs. Thus, the output RegWrite is asserted for two different combi
nations of the inputs. If we consider only the four opcodes shown in this table, then we can 
simplify the truth table by using don't ca�n the input portion. For example, we can detect 
an R-format instruction with the equation Op5 • Op2, since this is sufficient to distinguish the 
R-format instructions from l w, s w, and b e q .  We do take advantage of this simplification, since the 
rest of the MIPS opcodes are used in a full implementation. 

pletely specifies the control function, and we can implement it directly in gates 
in the same way that we implemented the ALU control unit. 

Implementing this simple control function with an unstructured collection 
of gates is reasonable because the control function is neither complex nor large. 
However, if most of the 64 possible opcodes were used and there were many 
more control lines, the number of gates would be much larger and each gate 
could have many more inputs. Since any function can be computed in two lev
els of logic, another way to implement a logic function is with a structured 
two-level logic array. Figure 5.31 shows such an implementation. It uses an ar
ray of AND gates followed by an array of OR gates. This structure is called a 
programmable logic array (PLA). A PLA is one of the most common ways to im
plement a control function. We will return to the topic of using structured logic 
elements to implement control later in this chapter; further discussion of this 
topic also appears in Appendices B and C. 



5.3 A Simple Implementation Scheme 

Inputs 

Op5 
Op4 
Op3 
Op2 
Op1 
OpO 

n 

R-fo rm at 

-

I 
� 

-

I 
Ll��w Llt 

lw SW 

-

I 
w n 

beq 

-

I 
� 

Outputs 

RegDst 

ALUSrc 

MemtoReg 

RegWrite 

MemRead 

MemWrite 

Branch 

ALUOp1 

ALUOpO 

305 

FIGURE 5.31 The structured Implementation of the control function as described by the 
truth table In Figure 5.30. The structure, called a programmable logic array (PLA) uses an 
array of AND gates followed by an array of OR gates. The inputs to the AND gates are the func
tion inputs and their inverses (bubbles indicate inversion of a signal). The inputs to the OR gates 
are the outputs of the AND gates (or, as a degenerate case, the function inputs and inverses). The 
output of the OR gates is the function outputs. 

Figure 5.22 includes the implementation of many of the instructions we 
looked at in Chapter 3. One class of key instructions missing is that of the 
jump instructions. Show how to extend the implementation of Figure 5.22 
to include the jump instruction. Describe how to set any new control lines. 
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The jump instruction looks somewhat like a branch instruction but com
putes the target PC differently and is not conditional. Like a branch, the 
low-order 2 bits of a jump address are always OOtwo· The next lower 26 bits 
of this 32-bit address come from the 26-bit immediate field in the instruc
tion, as shown in Figure 5.32. The upper 4 bits of the address that should re
place the PC come from the current PC. Thus, we can implement a jump by 
storing into the PC the concatenation of 

• the upper four bits of the current PC (these are bits 31-28), 

• the 26-bit immediate field of the jump instruction, and 

• the bits ootwo· 

Figure 5.33 on page 307 shows the addition of the control for j mp added 
to Figure 5.22. An additional multiplexor is used to select the source for the 
new PC value, which is either the incremented PC (PC + 4), the branch tar
get PC, or the jump target PC. One additional control signal is needed for 
the additional multiplexor. This control signal, called jump, is asserted only 
when the instruction is a jump-that is, when the opcode is 2. 

Field 2 address 
Bit positions 31-26 25-0 

FIGURE 5.32 Instruction format for the jump instruction {opcode = 2). The destination 
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC to 
the 26-bit address field in the jump instruction and adding 00 as the two low-order bits. 

What's Wrong with a Single-Cycle Implementation 

By definition, the clock cycle must have the same length for every instruction 
in this single-cycle design, and the CPI (see Chapter 2) will therefore be 1 .  Of 
course, the clock cycle is determined by the longest possible path in the 
machine. This path is almost certainly a load instruction, which uses five 
functional units in series: the instruction memory, the register file, the ALU, 
the data memory, and the register file. Although the CPI is 1, the overall per
formance of a single clock implementation is not likely to be very good, since 
several of the instruction types could fit in a shorter clock cycle. 
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FIGURE 5.33 Tbe simple control and datapath are extended to handle the Jmp Instruction. An additional multiplexor (at the upper right) is used 
to choose between target and either the branch target or the sequential instruction following this one. This multiplexor is controlled by the jump control 
signal. The jump instruction as defined in the MIPS instruction set actually uses the value of PC [31-28] for the jump target address rather than the 
value of these bits after the PC has been incremented by 4. This makes a difference only if the increment of the PC by 4 causes one of the high-order 
4 bits of the PC to change. For simplicity, we ignore this detai l  and use the incremented PC as the source for the upper 4 bits. 
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Assume that the operation time for the major functional units in this imple
mentation are 

• Memory units: 10 ns, 

• ALU and adders: 10 ns, 

• Register file (read or write): 5 ns. 

Assuming that the multiplexors, control unit, PC accesses, sign-extension 
unit, and wires have no delay, which of the following implementations 
would be faster and by how much? 

1 .  An implementation in which every instruction operates in one clock 
cycle of a fixed length. 

2. An implementation where every instruction executes in one clock cycle 
using a variable-length clock, which for each instruction is only as long 
as it needs to be. (Such an approach is not terribly practical, but it will 
allow us to see what is being sacrificed when all the instructions must 
execute in a single clock of the same length.) 

Use the instruction mix for gee that appears in Chapter 4, Figure 4.46 on 
page 248 to determine the performance of the alternatives. 

Let's start by comparing the CPU execution times. Recall from Chapter 2 
that 

CPU execution time = Instruction count x CPI x Clock cycle time 

Since CPI must be 1,  we can simplify this to 

CPU execution time = Instruction count x Clock cycle time 

We need only find the clock cycle time for the two implementations. The 
critical path for the different instruction types is as follows: 
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Load word Instruction Register ALU Memory Register 
fetch access access access 

Store word Instruction Register ALU Memory 
fetch access access 

Branch Instruction Register ALU 
fetch access 

Jump Instruction 
fetch 

Using these critical paths, we can compute the required length for each 
instruction type: 

R-format operations 10 5 10 0 5 30 ns 
Load word 10 5 10 10 5 40 ns 
Store word 10 5 10 10 35 ns 
Branch 10 5 10 0 25 ns 
Jump 10 10 ns 

So the clock cycle for a machine with a single clock for all instructions is 
40 ns, but a machine with a variable clock will have a cycle between 10 ns 
and 40 ns. 

We can find the average clock cycle length for a machine with a variable
length clock using the information above and an instruction frequency dis
tribution. This distribution can be computed from Chapter 4's Figure 4.46 
by summing the individual frequencies into categories: 22% loads, 11 % 
stores, 49% R-format operations, 16% branches, and 2% jumps. 

Thus, the average time per instruction with a variable clock is 

CPU clock cycle = 40 x 22% + 35 x 1 1  % + 30 x 49% + 25 x 16% + 10 x 2% 

= 31.6 ns 

Since the variable clock implementation has a shorter average clock 
cycle, it is clearly faster. Let's find the performance ratio: 
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CPU performance variable clock 

CPU performance single clock 

CPU performance variable clock 

CPU performance single clock 

CPU Execution time 
. 1 1 k smg e c oc 

CPU Execution time variable clock 

IC x CPU clock cycle . 1 1 k smg e c oc 

IC X CPU clock cycle variable clock 

CPU clock cycle single clock 

CPU clock cycle variable clock 

40 
= 1 .27 

31.6 

The variable clock implementation would be 1 .27 times faster. Unfortunate
ly, implementing a variable-speed clock for each instruction type is ex
tremely difficult, and the overhead for such an approach could be larger 
than any advantage gained. As we will see in the next section, an alternative 
is to use a shorter clock cycle that does less work and then vary the number 
of clock cycles for the different instruction types. 

The penalty for using the single-clock-cycle design with a fixed clock cycle 
is nontrivial, but might be considered acceptable for this small instruction set. 
However, if we tried to implement the floating-point unit or an instruction set 
with more complex instructions, or to use more sophisticated implementation 
techniques, this single-clock-cycle design wouldn't work well at all. Let's look 
at an example with floating point. 

Suppose we have a floating-point unit that requires 20 ns for a floating
point add time and 60 ns for a floating-point multiply. All the other func
tional unit times are as in the previous example, and a floating-point in
struction is like an arithmetic-logical instruction, except that it uses the 
floating point ALU rather than the main ALU. Using the instruction distri
bution for spice from Chapter 4, Figure 4.46 on page 248, find the perfor
mance ratio between an implementation in which the clock cycle is different 
for each instruction type and an implementation in which all instructions 
have the same clock cycle time. Assume that 

• Double-precision loads and stores take the same time as 32-bit loads 
and stores. 

• FP branch takes the same time as an integer branch. 
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• FP subtract and compare take the same time as FP add. 

• FP divide takes the same time as FP multiply. 

From the previous example, we know that 

CPU performance variable clock CPU clock cycle single clock 

CPU performance single clock CPU clock cycle variable clock 
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The cycle time for the single-cycle machine will be equal to the longest in
struction timing, which is floating-point multiply. The time for a floating
point multiply, and thus the clock cycle, is 10  + 5 + 60 + 5 = 80 ns . 

Consider a machine whose instructions have different cycle times. The 
time for a floating-point add instruction is 10  + 5 + 20 + 5 = 40 ns . If we sum 
up the individual instruction frequencies in Figure 4.46, we get 26% loads, 
14% stores, 31% R-format, 8% branches, 2% jumps, and 19% floating-point 
operations (of which 9% are multiplies or divides, and 10% are adds, sub
tracts, or compares). Thus, the average clock length will be 

CPU clock cycle = 40 x 26% + 35 x 14% + 30 x 31 % + 25 x 8% 

+ 10  x 2% + 80 x 9% + 40 x 10% = 38.0 ns 

The improvement in performance is 

CPU performance variable clock CPU clock cycle single clock 
---��������� = -���������� 

CPU performance single clock CPU clock cycle variable clock 

80 
- = 2.11 
38 

A variable clock would allow us to improve performance by more than 
two times. 

Similarly, if we had a machine with more powerful operations and address
ing modes, instructions could vary from three or four functional unit delays to 
tens or hundreds of functional unit delays. In addition, because we must as
sume that the clock cycle is equal to the worst-case delay for all instructions, 
we can't use implementation techniques that reduce the delay of the common 
case but do not improve the worst-case cycle time. For example, such a restric
tion would make a cache useless in this machine! A single-cycle implementa
tion thus violates our key design principle of making the common case fast. In 
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addition, with this single-cycle implementation, each functional unit can be 
used only once per clock; therefore, some functional units must be duplicated, 
raising the cost of the implementation. 

We can avoid these difficulties by using implementation techniques that 
have a shorter clock cycle-derived from the basic functional unit delays
and that require multiple clock cycles for each instruction. The next section ex
plores this alternative implementation scheme. In Chapter 6, we'll look at an
other implementation technique, called pipelining, that uses a datapath very 
similar to the one in this section. Pipelining overlaps the execution of multiple 
instructions to further increase performance. 

II A MuHlple Clock Cycle Implementation 

In an earlier example, we broke each instruction into a series of steps corre
sponding to the functional unit operations that were needed. We can use 
these steps to create a multicycle implementation. In a multicycle implementa
tion, each step in the execution will take one clock cycle. The multicycle imple
mentation allows a functional unit to be used more than once per instruction, 
as long as it is used on different clock cycles. This can help reduce the amount 
of hardware required. The ability to allow instructions to take different num
bers of clock cycles and the ability to share functional units within the execu
tion of a single instruction are the major advantages of a multicycle design. 
Figure 5.34 shows the abstract version of the multicycle datapath. Comparing 
this to the datapath for the single-cycle version shown in Figure 5.14 on 
page 286, we can see the following differences: 

• A single memory unit is used for both instructions and data. 

• A register is used to save the instruction after it is read. This Instruction 
register (IR) is required because the memory may be re-used to access 
data later in the instruction execution. 

There is a single ALU, rather than an ALU and two adders. 
Because several functional units are shared for different purposes, we need 

both to add multiplexors and to expand existing multiplexors. Since one mem
ory is used for both instructions and data, we need a multiplexor to select be
tween the two sources for a memory address, namely the PC (for instruction 
access) and the ALU result (for data access). Sharing the ALU requires the in
troduction of a multiplexor for the first ALU input, which can be either a reg
ister or the PC, and a change in the multiplexor on the second ALU input from 
a two-way to a four-way multiplexor, which requires two additional 
inputs: the constant 4 (used to increment the PC) and the sign-extended and 
shifted offset field used in the branch address computation. Figure 5.35 shows 
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FIGURE 5.34 The high-level view of the multlcycle datapath. This picture shows the key elements of the datapath: a 
shared memory unit, a single ALU shared among instructions, and the datapaths to connect these shared units. 
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FIGURE 5.35 Multlstate datapath for MIPS handles all basic Instructions. The additions versus the single-�lock data
path include a multiplexor for the memory read address, a multiplexor for the top ALU input, and an expansion of the 
multiplexor on the bottom ALU input to a four-way selector. These small additions allow us to remove two adders and a 
memory unit. 
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the details of the datapath with these additional multiplexors. Altogether, by 
introducing a register and three multiplexors, we are able to reduce the num
ber of memory units from two to one and eliminate two adders. Since registers 
and multiplexors are fairly small, this could yield a substantial reduction in the 
hardware cost. 

Because the datapath shown in Figure 5.35 takes multiple clock cycles per 
instruction, it will require a different set of control signals. We will need a 
write signal for each of the state elements: the memory, the PC, the general
purpose registers, and the Instruction register. We will also need a read signal 
for the memory. We can use the ALU control unit from earlier examples (Fig
ures 5.17 and 5.18) to control the ALU here as well. Finally, each of the two
input multiplexors requires a single control line, while the four-input multi
plexor requires two control lines. Figure 5.36 shows the datapath of 
Figure 5.35 with these control lines added. After we look at the sequencing of 
instructions we will see that additional control signals will be required to im
plement some instructions, specifically branches; these signals will control 
when the PC is written and what value is written into the PC. 

Before examining the steps to execute each instruction, it is useful to state 
informally what effect the control signals, which we have added, have when 
they are asserted and deasserted (just as we did for the single-cycle design in 
Figure 5.21 on page 294). Figure 5.37 shows what each control signal does 
when it is asserted and deasserted. The single-bit control signals appear in ta
ble a of the figure, and the two-bit control signals ALUSelB and ALUOp are 
defined in table b. 

li:lr1n11r1111111n� To reduce the number of signal l ines interconnecting the functional 
units, designers can use shared buses. A shared bus is a set of l ines that connect mul
tiple units; in most cases, they include multiple sources that can place data on the bus 
and multiple readers of the value.  Just as we reduced the number of functional units 
for the datapath, we can reduce the number of buses interconnecting these units by 
sharing the buses. For example, there are five sources coming to the ALU ; however, 
only two of them are needed at any one time. Thus, a pair of buses can be used to hold 
values that are being sent to the ALU . Rather than placing a large multiplexor in front of 
the ALU , a designer can use a shared bus and then ensure that only one of the sources 
is driving the bus at any point. 

Breaking the Instruction Execution into Clock Cycles 

Given this datapath, we now need to look at what should happen in each 
clock cycle of the multicycle execution, since this will determine what addi
tional datapath elements (temporary registers, for example) and what addi-
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Signal name Effect when deasserted Effect when asserted ,. . ·-
Mem Read None Contents of memory at the read address are put on read 

data output. 
MemWrite None Memory contents at the write address is  replaced by value 

on write data input 
ALUSelA The first ALU operand is the PC. The first ALU operand comes from the register given by the 

rs field. 
RegDst The register destination number for the The register destination number for the register write 

register write comes from the rt field. comes from the rd field. 
RegWrite None The register given by Write register number is written with 

the value on the write data input. 
MemtoReg The value fed to the register write data input The value fed to the register write data input comes from 

comes from the ALU . the Data memory. 
lorD The PC is used to supply the address to the The output of the ALU is used to supply the address to the 

memory unit. memory unit. 
IRWrite None The value from the memory unit is written into the 

Instruction rel!ister ( IR) .  

a .  The actions of the 1-bit control signals are defined. 

Signal name Value Effect ··- A ,. ..- *_. 

00 The second input to the ALU comes from the register given by the rt field. 

ALU Se IS  
01 The second input to the ALU is the constant 4. 
10 The second input to the ALU is the sign.extended lower 16 bits of the IR. 
11 The second input to the ALU is the sign.extended and shifted lower 16 bits of the IR 
00 The ALU performs an add operation . 

ALU Op 01 The ALU performs a subtract operation . 
10 The function code field of the instruction determine the ALU operation. 

b. The actions of the 2-bit control signals are defined. 

FIGURE 5.37 The action caused by the setting of each control slgnal. Table a describes the 1-bit control signals, while 
table b describes the 2-bit signals. Only those control lines that affect multiplexors have an action when they are 0. This 
information is similar to that in Figure 5.21 on page 294 for the single-cycle datapath, but adds the new control lines (ALU
SelA, IorD, IRWrite, and ALUSelB) and removes control lines that are no longer used or have been replaced Gump, Branch, 
and ALUSrc). 

tional control signals may be needed. We will need to introduce a register to 
hold a signal value whenever the following two conditions hold: 

1. The signal is computed in one clock cycle and used in another; and 

2. The inputs to the functional block that outputs this signal can change 
before the signal is written into a state element. 
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For example, we need to store the instruction into the Instruction register, 
because the functional unit (the memory) that produces the value changes its 
output before we complete all uses of the fields of the instruction. On the other 
hand, when the ALU is used in an R-type instruction, we need not store its out
put, even though we will not use the output until the next clock. This is be
cause the output of the ALU does not change (that is, it is stable) during the 
clock cycle when it is written into the register file. The ALU output is stable be
cause the inputs to the ALU come from the register file, and the output of the 
register file is determined by the rs and rt fields of the Instruction register, 
which is stable because it is a state element written only once per instruction 
execution. Thus, the functional units from the register file through the ALU 
constitute one block of combinational logic, whose inputs come from the In
struction register (a state element), and whose output is written into the regis
ter file (also a state element). This structure looks like the structure we saw 
abstractly in Figure 5.3 on page 274. Although the single-cycle implementa
tion always used state elements that were written every clock (as in Figure 5.4 
on page 275), our multicycle implementation will write the state element selec
tively, as in Figure 5.3. 

Our goal in breaking the execution into clock cycles should be to balance the 
amount of work done in each cycle, so that we minimize the clock cycle time. 
We can break the execution into five steps, each taking one clock cycle, which 
will be roughly balanced in length. For example, we will restrict each step to 
contain at most one ALU operation, or one register file access, or one memory 
access. With this restriction, the clock cycle could be as short as the longest of 
these operations. 

In the single-cycle datapath each instruction must use a set of datapath 
elements to carry out its execution. Many of the datapath elements operate in 
series, using the output of another element as an input. Some datapath ele
ments operate in parallel; for example, the PC is incremented and the instruc
tion is read at the same time. A similar situation exists in the multicycle 
datapath. All the operations listed in one step occur in parallel within one 
clock cycle, while successive steps operate in series in different clock cycles. 
The limitation of one ALU operation, one memory access, or one register file 
access determines what can fit in one step. The five execution steps and their 
actions are given below. 

1. Instruction fetch step: 

Fetch the instruction from memory and increment the program counter. 

I R  Memo ry [ P C J ; 

P C  P C  + 4 ;  
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Operation: Send the PC to the memory as the address, perform a read, and 
fetch the instruction into the Instruction register (IR), where it will be stored. 
To implement this step, we will need to assert the control signals MemRead 
and IRWrite, and set IorD to 0 to select the PC as the source of the address. We 
also increment the PC by 4 in this stage, which requires setting the ALUSelB 
signal to 01, the ALUSelA signal to 0, and ALUOp to 00 (to make the ALU 
add). Finally, we will also want to store the incremented instruction address 
back into the PC; we will add this path and control, when we have deter
mined the full control for the PC, including branches. The increment of the PC 
and the instruction memory access can occur in parallel. 

2. Instruction decode and register fetch step: 

In the previous step and in this one, we do not yet know what the instruction 
is, so we can perform only actions that are either applicable to all instructions 
(such as fetching the instruction in step 1), or are not harmful, in case the 
instruction isn't what we think it might be. Thus, in this step we can read the 
two registers indicated by the rs and rt instruction fields, since it isn't harmful 
to read them even if it isn't necessary. The register contents may be needed in 
later stages, so we name them A and B in the following description. The regis
ter outputs need not be saved in a temporary register, since the register num
ber inputs (and thus the register data outputs) are not changed throughout 
the execution of the instruction. 

We will also compute the branch target address with the ALU, which also 
is not harmful because we can ignore the value if the instruction turns out not 
to be a branch. Because we do not know whether this instruction is a branch 
(let alone whether the branch should be taken) and because we need to use the 
ALU for other purposes in later steps, we must save the computed branch tar
get address into a new register that we name Target. (We'll show the revised 
datapath and control once we have completed all five steps.) 

Performing these "optimistic" actions early has the benefit of decreasing the 
number of clock cycles needed to execute an instruction. We can do these op
timistic actions early because of the regularity of the instruction formats. For 
instance, if the instruction has two register inputs, they are always in the rs 
and rt fields; and if the instruction is a branch, the offset is always the low
order 16 bits: 

A R e g i s t e r [ I R [ 2 5 - 2 1 ] ] ;  

B Re g i s t e r [ I R [ Z 0 - 1 6 ] ] ;  

T a r g e t = P C + ( s i g n - e x t e n d  C I R [ l 5 - 0 J ) < <  2 ) ;  

Operation: Access the register file to read the registers using the rs and rt 
fields; this does not require setting any control lines. Compute the branch tar
get address and store the address in Target. This requires setting ALUSelB to 
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the value 11 (so that the offset field is both sign-extended and shifted), ALU
SelA to 0, and ALU Op to 00. In addition to adding the Target register, we will 
need to add a write control line for this register, which must be asserted dur
ing this step. The register accesses and computation of branch target occur in 
parallel. 

After this clock cycle, determining the action to take can depend on the in
struction contents. 

3. Execution, memory address computation, or branch completion: 

This is the first cycle during which the datapath operation is determined by 
the instruction type. In all cases, the ALU is operating on the operands pre
pared in the previous step, performing one of three functions, depending on 
the instruction type. We name the ALU result ALUoutput for use in later 
stages. Since the ALU inputs are stable, this value need not be saved in a reg
ister. However, any signals set in this cycle that affect the ALU result must be 
held constant until the ALU results are written into a register or are no longer 
needed. We specify the action to be taken depending on the instruction class: 

Memory reference: 

A L U o u t p u t  = A +  s i g n - e x t e n d  ( I R [ l 5 - 0 J ) ;  

Operation: The ALU is adding the operands to form the memory address. 
This requires setting ALUSelA to 1, which will use the first register file output 
as the first ALU input, and setting ALUSelB to 10, which will cause the output 
of the sign-extension unit to be used for the second ALU input. The ALUOp 
signals will need to be set to 00, forcing the ALU to add. 

Arithmetic-logical instruction (R-type): 

A L U o u t p u t  = A o p  B ;  

Operation: The ALU is performing the operation specified by the opcode on 
the two registers read in the previous cycle. This requires setting ALUSelA = 1 
and setting ALUSelB = 00, which together cause the register file outputs to be 
used as the ALU inputs. The ALUOp signals will need to be set to 10, so that 
the function code is used to determine the ALU control signal settings. 

Branch: 

i f ( A == B ) P C  = Ta r g e t  ; 

Operation: The ALU is used to do the equal comparison between the two reg
isters read in the previous step. The Zero signal out of the ALU is used to 
determine whether or not to branch. This requires setting ALUSelA = 1 and 
setting ALUSelB = 00, just as for an R-type instruction. The ALUOp signals 
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will need to be set to 01 to perform the subtract used for equality testing. A 
write signal will need to be triggered for updating the PC if the Zero output of 
the ALU is asserted. This will be specified later when we add the PC control. 

4. Memory access or R-type instruction completion step: 

During this step, loads and stores access memory and arithmetic-logical oper
ations write their result. We name the output of the memory memory-data, 
though it need not correspond to a register, since its output will be stable dur
ing the next clock cycle when it is written into a register. 

Memory reference: 

memo ry - d a t a  

o r  

Memo ry [ A L U o u t p u t J ; 

Memo ry [ A L U o u t p u t J  = B ;  

Operation: If the instruction is a load, data returns from memory, and we call 
the value memory-data. If the instruction is a store, then the data is written 
into memory. In either case, the address used is the one computed during the 
previous step and named ALU output. The ALU control signals set in the pre
vious cycle must be held stable during this cycle. For a store, the source oper
and, which we named B, was read in the step that occurred two clock cycles 
earlier. The signal MemRead (for a load) or MemWrite (for store) will need to 
be asserted. In addition, the signal IorD is set to 1 to force the memory 
address to come from the ALU, rather than the PC. 

Arithmetic-logical instruction (R-type): 

Reg [ I R [ l 5 - l l ] J  = A L U o u t p u t ; 

Operation: Place the result of the ALU operation into the Result register. The 
signal RegDst must be set to 1 to force the rd (bits 15-11) field to be used to 
select the register to write. RegWrite must be asserted, and MemtoReg must 
be set to 0, so that the output of the ALU is written (as opposed to the mem
ory data output). The signals ALUSelA, ALUSelB, and ALUOp do not change 
from the previous clock cycle. Recall that because writes are edge-tiggered, 
the write of the rd register cannot affect the data currently being read, even if 
the register destination is also an instruction source register. 

5. Write-back step: 

Re g [ I R [ Z 0 - 1 6 ] ] = memo ry d a t a ; 

Operation: Write the load data from memory into the register file. Here we set 
MemtoReg = 1, to write the result from memory, and RegWrite, to cause a 
write, and we make RegDst = 0, to choose the rt (bits 20-16) field as the regis-
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Action for R-type Action for memory· Action for 
Step name instructions reference instructions branches 

Instruction fetch IR = Memory[PC] 
PC = PC + 4; 

Instruction decode/ A =  Registers[IR[25-21]] 
register fetch B = Registers[IR[20-16]] 

Target = PC + (sign-extend (IR[15-0)) « 2) 

Execution,  address computation, ALUoutput = A op B ALUoutput = A + sign-extend if (A == B) then 
or branch completion ( IR[15-0]) PC = Target 
Memory access or R-type Reg[I R[15-11]) = memory-Oata = Memory(ALUoutput] 
completion ALUoutput or 

Memory [ALUoutput] = B 
Write-back Reg[IR[20-16]] = memory-data 

FIGURE 5.38 Summary of the steps taken to execute any Instruction type. Instructions take from 3 to 5 execution 
steps. The first two steps are independent of the instruction type. After these steps, an instruction takes from 1 to 3 more 
cycles to complete, depending on the instruction type. 

ter number. Again, the ALUSelA, ALUSelB, and ALUOp signals must be held 
stable until the end of this cycle. 

This five-step sequence is summarized in Figure 5.38. From this sequence 
we can determine what the control must do on each clock cycle. However, be
fore we can design the control unit, we must add the PC write control and mul
tiplexors necessary to select the correct value to write into the PC, as well as 
the Target register and its control. Since implementing the jump instruction re
quires dealing with the same two capabilities, let's also incorporate the control 
for the jump instruction at the same time. Including the jump instruction, there 
are three possible sources for the value to be written into the PC. These are 

• The ALUoutput, which is the source when the PC is incremented for a 
sequential instruction fetch. 

• The Target register, which is the source when the instruction is a taken 
conditional branch. We will also need a signal to write the register, 
called TargetWrite. 

• The lower 26 bits of the Instruction register (IR) shifted left by two and 
concatenated with the upper 4 bits of the PC, which is the source when 
the instruction is a jump. 

We encode these three possible sources using a 2-bit control signal, PCSource. 
The three possibilities above are encoded as 00, 01, and 10, corresponding to 
the sources ALUoutput (00), Target (01), and the IR (10). The signal PCSource 
then controls a 3-input multiplexor. 
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As we observed when we implemented the single-cycle control, the PC is 
written in two different ways. If the instruction is not a conditional branch 
(beq), the PC is written unconditionally. If the instruction is a conditional 
branch, the incremented PC is replaced with the value in Target, only if the 
ALU output signal Zero is also asserted. Thus, we need two PC write signals, 
which we will call PCWrite and PCWriteCond. The PCWriteCond signal and 
the Zero signal from the ALU are combined with an AND gate, which then is 
combined with PCWrite to create a write signal for the PC. 

Figure 5.39 shows the complete multicycle datapath and control unit, in
cluding the additional control signals, Target register, and multiplexor for im
plementing the PC updating. Figure 5.40 shows the effects of these additional 
control signals; together with Figure 5.37 these tables define the effects of all 
the control signals in the multicycle datapath of Figure 5.39. 

Defining the Control 

Now that we have determined what the control signals are and when they 
must be asserted, we can implement the control unit. To design the control 
unit for the single-cycle datapath, we used a set of truth tables that specified 
the setting of the control signals based on the instruction type; then we 
mapped those truth tables to the logic gates shown in Figure 5.31 . For the 
multicycle datapath, the control is more complex because the instruction is 
executed in a series of steps. The control for the multicycle datapath must 
specify both the signals to be set in any step and the next step in the sequence. 

In this subsection and in section 5.5, we will look at two different techniques 
to specify the control. The first technique is based on finite state machines that 
are usually represented graphically. The second technique, called micropro
gramming, uses a programming representation for control. Both of these tech
niques represent the control in a form that allows the detailed imple
mentation-using gates, ROMs, or PLAs-to be synthesized by a CAD system. 
In this chapter, we will focus on the design of the control and its representation 
in these two forms. For those interested in how these control specifications are 
translated into actual hardware, Appendix C continues the development of 
this chapter, translating the multicycle control unit to a detailed hardware im
plementation. The key ideas of control can be grasped from this chapter with
out examining the material in the Appendix. However, if you want to get 
down to the bits, Appendix C can show you how to do it! 

The first method we use to specify the multicycle control is a finite state ma
chine. A finite state machine consists of a set of states and directions on how to 
change states. The directions are defined by a next-state function, which maps 
the current state and the inputs to a new state. When we use a finite state ma
chine for control, each state also specifies a set of outputs that are asserted 
when the machine is in that state. The implementation of a finite state machine 



i • 

J:: � 

PC Source 

I I Target Wrote 

1 .-----------==±· ===l�=�§�R \ ���10 I 
MemWnte Control 

Read 
address 

Memory 
Write 
address 

MemOata ........ 
.-! Write 

data 

IRWnte 

Mem� 
ALUSelA 

RegWnte 

[�] j RegDst 

PC [31-28] 
� I I I I I I I 1 1  1 1 1\ 1:� 

Instruction 

Instruction 
[25-211 r;;-Re-ad-;----'-----

[31-26] instruction register 1 
[20-16) 

Instruction 

Read Read 

[25-0) 
register 2 data 1 r------1 
Write 

Redsters 

Instruction Npter :��Jon register d=�� Hr----.f, 

lnstructkm [15-0) r-lc!i:...}-
y 

Jump 
address 

FIGURE 5.39 This is the complete datapath for the multicycle Implementation together with the necessary control lines. The control lines of 
Figure 5.36 are attached to the control unit, and the control and datapath elements needed to effect changes to the PC are included. The major additions 
from Figure 5.36 include: the Target register (in the upper right-hand comer), the three-input multiplexor used to select the source of a new PC value 
(at the top right), two gates used to combine the PC write signals, and the control signals PCSource, PCWrite, PCWriteCond, and TargetWrite. The 
PCWriteCond signal is ANDed with the Zero output of the ALU to decide whether a branch should be taken; the resulting signal is ORed with the con
trol signal PCWrite, to generate the actual write control signal for the PC. In addition, the output of the IR is rearranged to send the lower 26 bits (the 
jump address) to the logic used to select the next PC. These 26 bits are concatenated with the high-order 4 bits of the current PC, and then shifted 2 bits 
to the left (this is equivalent to just concatenating two low-order 0 bits). 
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Signal Effect when 
name deasserted Effect when asserted 

PCWrite None The PC is written; the source is controlled by PCSource. 
PCWriteCond None The PC is written if the Zero output from the ALU is also active. 
TargetWrite None The output of the ALU is written into the register Target. 

a. The actions of the additional 1-bit control signals are defined. 

Signal 
name Value Effect 

00 The ALU output is sent to the PC for writing. 

PC Source 01 The contents of  the register Target are sent to the PC for writing. 
10 The jump target address (PC + 4(29-26] concatenated with 

IR[25--0] and shifted left two bits) is sent to the PC for writing. 

b. The actions of the additional 2-bit control signal, PCSource, are defined. 

FIGURE 5.40 The effect of the control signals, which determine how the PC is written. 
Table a describes the I-bit control signals, which control writing of the PC and the Target register. 
Table b describes the 2-bit signal that determines the source of a value written into the PC. This 
information together with the contents of Figure 5.37 define the operation of all the control sig
nals in the multicycle datapath. 

usually assumes that all outputs that are not explicitly asserted are deasserted, 
and the correct operation of the datapath often depends on the fact that a sig
nal is deasserted. For example, the RegWrite signal should be asserted only 
when a register is to be written; when it is not explicitly asserted, it must be 
de asserted. 

Multiplexor controls are slightly different, since they select one of the inputs 
whether they are 0 or 1 . Thus, in the finite state machine, we always specify the 
setting of all the multiplexor controls that we care about. When we implement 
the finite state machine with logic, setting a control to 0 may be the default and 
thus may not require any gates. A simple example of a finite state machine ap
pears in Appendix B, and readers unfamiliar with the concept of a finite state 
machine should examine Appendix B before proceeding. 

The finite state control essentially corresponds to the five steps of execution 
shown on pages 317 through 321; each state in the finite state machine will take 
one clock cycle. The finite state machine will consist of several parts. Since the 
first two steps of execution are identical for every instruction, the initial two 
states of the finite state machine will be common for all instructions. Steps 3 
through 5 differ, depending on the opcode. After the execution of the last step 
for a particular instruction type, the finite state machine will return to the 
initial state to begin fetching the next instruction. Figure 5.41 shows this 
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FIGURE 5.41 The high-level view of the finite state machine control. The first steps are inde
pendent of the instruction type; then a series of sequences that depend on the instruction opcode 
are used to complete each instruction type. After completing the actions needed for that instruc
tion type, the control returns to fetch a new instruction. Each box in this Figure may represent 
one to several states. The arc labeled Start marks the state in which to begin when the first 
instruction is to be fetched. 

abstracted representation of the finite state machine. To fill in the details of the 
finite state machine, we will first expand the instruction fetch and decode por
tion, then we will show the states (and actions) for the different instruction 
types. 

We show the first two states of the finite state machine in Figure 5.42, using 
a traditional graphic representation. We number the states to simplify the ex
planation, though the numbers are arbitrary. State 0, corresponding to step 1, 
is the starting state of the machine. 

The signals that are asserted in each state are shown within the state. The 
arcs between states define the next state, and are labeled with conditions that 
select a specific next state when multiple next states are possible. After state 1, 
the signals asserted may depend on the type of instruction. Thus, the finite 
state machine has four arcs exiting state 1, corresponding to the four instruc
tion types: memory reference, R-type, branch on equal, and jump. This pro
cess of branching to different states depending on the instruction is called 
decoding, since the choice of the next state, and hence the actions that follow, 
depend on the instruction type. 

The portion of the finite state machine needed to implement the memory 
reference instructions is shown in Figure 5.43. For the memory-reference in
structions, the first state after fetching the instruction and registers computes 
the memory address (state 2). To compute the memory address, the ALU input 
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Memory reference FSM 
(Figure 5.43) 

Instruction fetch 

0 
MemRead 

ALUSelA=O 
lorD=O 
IRWrite 

ALUSelB=01 
ALUOp=OO 

PCWrite 
PCSource=OO 

R-type FSM 
(Figure 5.44) 

Branch FSM 
(Figure 5.45) 

Instruction decode/ 

Register fetch 

1 

ALUSelA=O 
ALUSelB=11 
ALUOp=OO 
TargetWrite 

Jump FSM 
(Figure 5.46) 

FIGURE 5.42 The Instruction fetch and decode portion of every Instruction Is Identical. 
These states correspond to the top box in the abstract finite state machine in Figure 5.41 . In the 
first state we assert a number of signals to cause the memory to read an instruction and write it 
into the Instruction register (MemRead and IRWrite), and we set IorD to 0 to choose the PC as the 
address source. The signals PCWrite, PCSource, ALUSelA, ALUOp, and ALUSelB are set to com
pute PC + 4 and store it into the PC. In the next state, we compute the branch target address by 
setting ALUSelB to 11 (causing the shifted and sign-extended lower 16 bits of the IR to be sent to 
the ALU), setting ALUSelA to 0 and ALUOp to 00; we store the result in the Target register (using 
TargetWrite). There are four next states that depend on the type of the instruction, which is 
known during this state. If the instruction is either l w or s w, we go to one state, while the other 
arcs handle single instruction opcodes. The control unit input, called op, is used to determine 
which of these arcs to follow. 

multiplexors must be set so that the first input is the register corresponding to 
rs, while the second input is the sign-extended displacement field. After the 
memory address calculation, the memory should be read or written; this re
quires two different states. If the instruction opcode is l w, then state 3 (corre
sponding to the step Memory access) does the memory read (MemRead is 
asserted) .  If it is s w, state 5 does a memory write (MemWrite is asserted). In 
both states 3 and 5, the signal IorD is set to 1 to force the memory address to 
come from the ALU. After performing a write, the instruction sw has complet
ed execution, and the next state is state 0. However, if the instruction is a load, 
another state (state 4) is needed to write the result from the memory into the 
register file. 

The memory is kept in read mode with the same address (by asserting 
MemRead and IorD). These signals must be kept asserted across states because 
the output of the ALU and the memory are not saved in a register. If the con-
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3 

4 

From state 1 
(Op='LW') or (Op='SW') 

Memory address computation 
---

� 
II 
a. 
Q. Memory 

access 

MemRead 
ALUSelA=1 

Memory 

access 

lorD=1 
ALUSelB=10 
ALUOp=OO 

Write back step 
MemRead 

ALUSelA=1 
lorD=1 

RegWrite 
MemtoReg=1 

RegDst=O 
ALUSelB=10 
ALUOp=OO 

To state O 
(Figure 5.42) 
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FIGURE 5.43 The finite state machine for controlllng memory-reference instructions has 
four states. These states correspond to the box labeled "Memory access instructions" in 
Figure 5.41. After performing a memory address calculation, a separate sequence is needed for 
load and for store. The setting of the control signals ALUSelA, ALUSelB, and ALUOp is used to 
cause the memory address computation. These signals must be kept stable until the value is writ
ten into a register (if a load) or into memory (if a store). 

trol values changed, the output of the ALU and memory would change, and 
the value stored as a result of the load would be incorrect. With these values 
stable, setting the multiplexor controls MemtoReg = 1 and RegDst = 0 will 
send the memory output to be written into the register file, using rd as the reg-



328 Chapter 5 The Processor: Datapath and Control 

6 

From state 1 

{Op=R-type) 

Execut ion 

ALUSelA=1 
ALUSelB=OO 
ALU0p=10 

To state O 
(Figure 5.42) 

FIGURE 5.44 R·type Instructions can be Implemented with a simple two-state finite state 
machine. These states correspond to the box labeled R-type Instructions in Figure 5.41. The first 
state causes the ALU operation to occur, while the second state causes the ALU result to be writ
ten in the register file. The signals dealing with the ALU are stable during both cycles. The three 
additional signals asserted during state 7 cause the ALU output to be written into the register 
specified by the rd field of the Instruction register. 

ister number. After this state, corresponding to the Write-back step, the next 
state is state 0. 

To implement the R-type instructions requires a two-state finite state 
machine corresponding to the steps Execute and R-type completion. Figure 
5.44 shows this two-state portion of the finite state machine. State 6 asserts 
ALUSelA and leaves the ALUSelB signals deasserted; this forces the two 
registers that were read from the register file to be used as inputs to the ALU. 
Setting ALUOp to 10 causes the ALU control unit to use the function code to 
set the ALU control signals. In state 7, RegWrite is asserted to cause the register 
to write, and RegDst is asserted to cause the rd field to be used as the register 
number of the destination. 
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From state 1 

ALUSelA=1 
ALUSelB=OO 
ALU0p=01 

PCWriteCond 
PCSource=01 

To state O 
(Figure 5.42) 
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FIGURE 5.45 The branch Instruction requires a slngle state machine. The first three outputs 
that are asserted cause the ALU to compare the registers (ALUSelA, ALUSe!B, and ALUOp), 
while the signals PCSource and PCWriteCond perform the conditional write if the branch condi
tion is true. 

For branches, only a single additional state is necessary, because they com
plete execution during the third step of instruction execution. During this 
state, the control signals that cause the ALU to compare the two register values 
must be set, and the signals that cause the PC to be written conditionally with 
the address in the Target register are also set. To perform the comparison re
quires that we assert ALUSelA and set the ALUOp value to 01 (forcing a sub
tract). To control the writing of the PC, we assert PCWriteCond and set 
PCSource to 01, which will cause the value in the Target register to be written 
into the PC if the Zero bit out of the ALU is asserted. Figure 5.45 shows this 
single state machine. 

The last instruction type is jump; like branch, it requires only a single state 
(shown in Figure 5.46) to complete its execution. In this state, the signal 
PCWrite is asserted to cause the PC to be written. By setting PCSource to 10, 
the value supplied for writing will be the lower 26 bits of the Instruction reg
ister with OOtwo concatenated combined with the upper 4 bits of the PC. 

We can now put these pieces of the finite state machine together to form a 
specification for the control unit, as shown in Figure 5.47 on page 332. In each 
state, the signals that are asserted are shown. The next-state function depends 
on the opcode bits of the instruction, so we label the arcs corresponding to the 
next state function simply with the instruction opcode test they use on the in
put to the control unit (which is the opcode field of the IR). Given this imple-
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From state 1 

PCWrite 
PCSource=lO 

To state O 
(Figure 5.42) 

FIGURE 5.46 The jump Instruction requires a single state that asserts two control signals 
to write the PC with the lower 26 bits of the Instruction register shifted left two bits. 

mentation, and the knowledge that each state requires one clock cycle, we can 
find the CPI for a typical instruction mix. 

Using the control shown in Figure 5.47 and the gee instruction mix shown 
in the example starting on page 308, what is the CPI, assuming that each 
state requires one clock cycle? 

The mix is 22% loads, 11% stores, 49% R-format operations, 16% branches, 
and 2% jumps. The number of clock cycles for each instruction type is 

• Loads: 5, 

• Stores: 4, 

• R-format instructions:  4, 

• Branches: 3, and 

• Jumps: 3 . 
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The CPI is given by the following: 

CPI CPU clock cycles 

Instruction count 

L Instruction count i x CPI i 

Instruction count 

The ratio 

Instruction count i 
� x CPI £... Instruction count 1 

Instruction count i 

Instruction count 
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is simply the instruction frequency for the instruction class i. We can there
fore substitute to obtain 

CPI = 0.22 x 5 + 0. l l  x 4 + 0.49 x 4 + 0.16 x 3 + 0.02 x 3  

= 1 . 1  + 0.44 + 1 .96 + 0.48 + 0.06 = 4.04 

This CPI is considerably better than the worst-case CPI would have been 
if all the instructions took the same number of clock ticks (5). 

A finite state machine can be implemented with a register that holds the 
current state and a block of combinational logic that determines both the data
path signals to be asserted as well as the next state. Figure 5.48 shows how 
such an implementation might look. Appendix C describes in detail how the 
finite state machine is implemented using this structure. In section C.1, the 
combinational control logic for the finite state machine of Figure 5.47 is imple
mented both with a ROM (read-only memory) and a PLA (programmable log
ic array). (Also see Appendix B for a description of these logic elements.) In the 
next section of this chapter, we consider another way to represent control. Both 
of these techniques are simply different representations of the same control in
formation. 

11E:u,n1llrlll1tltlln� The style of finite state machine in Figure 5.4 7 is called a Moore 
machine, after Edward Moore. Its identifying characteristic is that the output depends 
only on the current state . An alternative style of machine is a Mealy machine, named 
after George Mealy. The Mealy machine al lows both the input and the current state to 
be used to determine the output. 
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Memory ad(iress 
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Memory 
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Write-back step 
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ALUSelA=1 

lorD=1 
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MemtoReg=1 
RegDst=O 

ALUSelB=10 
ALUOp=OO 
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I n struction fetd1 
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I n struction decode/ 
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completion 

FIGURE 5.47 The complete finite state machine control for the datapath shown In Figure 5.39. The labels on the 
arcs are conditions that are tested to determine which state is the next state; when the next state is unconditional, no label is 
given. The labels inside the nodes indicate the output signals asserted during that state; we always specify the setting of a 
multiplexor control signal if the correct operation requires it. Hence, in some states a multiplexor control will be set to 0. In 
Appendix C, we will examine how to turn this finite state machine into logic equations and look at how to implement 
those logic equations. 
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FIGURE 5.48 Finite state machine controllers are typically Implemented using a block of 
comblnatlonal logic and a register to hold the current state. The outputs of the combina
tional logic are the next-state number and the control signals to be asserted for the current state. 
The inputs to the combinational logic are the current state and any inputs used to determine the 
next state. In this case, the inputs are the register opcode bits . 

Microprogramming: 

Simplifying Control Design 

For the control of our simple MIPS subset, a graphical representation of the 
finite state machine, as in Figure 5.47, is certainly adequate. We can draw such 
a diagram on a single page and translate it into equations (see Appendix C) 
without generating too many errors. Consider an implementation of the full 
MIPS instruction set, which contains over 100 instructions (see Appendix A). 
In one implementation, instructions take from 1 cycle to over 20 cycles. 
Clearly, the control function will be much more complex. Or consider an 
instruction set with more instructions of widely varying types: The control 
unit could easily require thousands of states with hundreds of different 
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sequences. For example, the VAX instruction set has more than 20 addressing 
mode combinations, each of which can be used for any of up to five operands. 

In such cases, specifying the control unit with a graphical representation 
will be cumbersome, since the finite state machine can contain hundreds to 
thousands of states and even more arcs! The graphical representation-while 
useful for a small finite state machine-is hard to fit on a page, let alone under
stand, when it becomes very large. Programmers know this phenomenon 
quite well: As programs become large, additional structuring techniques (for 
example, procedures and modules) are needed to keep the programs compre
hensible. Of course, specifying complex control functions directly as equa
tions, without making any mistakes, becomes essentially impossible. 

Can we use some of the ideas from programming to help create a method 
of specifying the control that will make it easier to understand as well as to de
sign? Suppose we think of the set of control signals that must be asserted in a 
state as an instruction to be executed by the datapath. To avoid confusing the 
instructions of the MIPS instruction set with these low-level control instruc
tions, the latter are called microinstructions. Each microinstruction defines the 
set of datapath control signals that must be asserted in a given state. Executing 
a microinstruction has the effect of asserting the control signals specified by 
the microinstruction. 

In addition to defining which control signals must be asserted, we must 
also specify the sequencing-what microinstruction should be executed next? 
In the finite state machine shown in Figure 5.47 on page 332, the next state is 
determined in one of two different ways. Sometimes a single next state follows 
the current state unconditionally. For example, state 1 always follows state 0, 
and the only way to reach state 1 is via state 0. In other cases, the choice of the 
next state depends on the input. This is true in state 1, which has four different 
successor states. When we write programs, we also have an analogous situa
tion. Sometimes a group of instructions should be executed sequentially, and 
sometimes we need to branch. In programming, the default is sequential exe
cution, while branching must be indicated explicitly. In describing the control 
as a program, we will also assume that microinstructions written sequentially 
are executed in sequence, while branching must be indicated explicitly. The 
default sequencing mechanism can still be implemented using a structure like 
the one in Figure 5.48 on page 333; however, it is often more efficient to imple
ment the default sequential state using a counter. We will see how such an im
plementation looks at the end of this section. 

Designing the control as a program that implements the machine instruc
tions in terms of simpler microinstructions is called microprogramming. The key 
idea is to represent the asserted values on the control lines symbolically, so 
that the microprogram is a representation of the microinstructions, just as as
sembly language is a representation of the machine instructions. In choosing a 
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syntax for an assembly language, we usually represent the machine instruc
tions as a series of fields (opcode, registers, and offset or immediate field); like
wise, we will represent a microinstruction syntactically as a sequence of fields 
whose functions are related. 

Defining a Microinstruction Format 

The microprogram is a symbolic representation of the control that will be 
translated by a program to control logic. In this way, we can choose how 
many fields a microinstruction should have and what control signals are 
affected by each field. The format of the microinstruction should be chosen so 
as to simplify the representation, making it easier to write and understand the 
microprogram. For example, it is useful to have one field that controls the 
ALU and a set of three fields that determine the two sources for the ALU 
operation as well as the destination of the ALU result. In addition to readabil
ity, we would also like the microprogram format to make it difficult or impos
sible to write inconsistent microinstructions. A microinstruction is incon
sistent if it requires that a given control signal be set to two different values. 
We will see an example of how this could happen shortly. 

To avoid a format that allows inconsistent microinstructions, we can make 
each field of the microinstruction responsible for specifying a nonoverlapping 
set of control signals. To choose how to make this partition of the control 
signals for this implementation into microinstruction fields, it is useful to re
examine 

• Figure 5.37 on page 316, which shows the function of each data path con
trol signal, 

• The control signals that affect the PC (Figure 5.40 on page 324), and 

• Figure 5.39 on page 323, which shows all the control signals and how 
they affect the datapath. 

Signals that are never asserted simultaneously may share the same field. 
Figure 5.49 shows how the microinstruction can be broken into eight fields 
and defines the general function of each field. The first seven fields of the 
microinstruction control the datapath, while the Sequencing field (the eighth 
field) specifies how to select the next microinstruction. 

Microinstructions are usually placed in a ROM or a PLA (both described in 
Appendix B), so we can assign addresses to the microinstructions. The ad
dresses are usually given out sequentially, in the same way that we chose se
quential numbers for the states in the finite state machine. Three different 
methods are available to choose the next microinstruction to be executed: 

1 .  Increment the address of the current microinstruction to obtain the 
address of the next microinstruction. This is indicated in the micropro-
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Field name Function of field 
ALU control Specify the operation being done by the ALU during this clock. 
SRC1 Specify the source for the first ALU operand. 
SRC2 Specify the source for the second ALU operand. 
ALU destination Specify a register to be written from the ALU result. 
Memory Specify read or write and the address source. 
Memory register Specify the register destination (for a memory read) or the source of the 

values (for a memory write). 
PCWrite control Specify the writing of the PC. 
Sequencing Specify how to choose the next microinstruction to be executed. 

FIGURE 5.49 Each microinstruction contains these eight fields. The values for each field are 
shown in Figure 5.50. 

gram by putting S e q  in the Sequencing field. Since sequential execution 
of instructions is encountered often, many microprogramming systems 
make this the default and simply leave the entry blank as the default. 

2. Branch to the microinstruction that begins execution of the next MIPS 
instruction. We will label this initial microinstruction (corresponding to 
state 0) as F e t c h  and place the indicator F e t c h  in the Sequencing field 
to indicate this action. 

3. Choose the next microinstruction based on the control unit input. 
Choosing the next microinstruction on the basis of some input is called 
a dispatch. Dispatch operations are usually implemented by creating a 
table containing the addresses of the target microinstructions. This table 
is indexed by the control unit input and may be implemented in a ROM 
or in a PLA. There are often multiple dispatch tables; for this implemen
tation, we will need two dispatch tables, one to dispatch from state 1 
and one to dispatch from state 2. We indicate that the next microinstruc
tion should be chosen by a dispatch operation by placing D i  s p a t  c h  i ,  
where i is the dispatch table number, in the Sequencing field. 

Figure 5.50 gives a description of the values allowed for each field of the 
microinstruction and the effect of the different field values. Remember that 
the microprogram is a symbolic representation. This microinstruction format 
is just one example of many potential formats. 

Elaboration: Notice that both the Memory and ALU destination fields can specify a 
register to be written.  However, our datapath wi l l  not support this,  s ince it has only a 
s ingle register file write port. Typical ly, the m icroassembler wi l l  perform checks on the 
microinstruction fields to ensure that such inconsistencies are flagged as errors and 
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Lmll.lrnm:illl � -I 'lfil.lil !,_OilllllMUt ll��Clllo.:!l!lNI r.-.� 
Add Cause the ALU to  add. 

ALU control F u n e  c o d e  Use the instruction's function code to determine ALU contro l .  

S u b t  Cause the ALU to subtract. 

P C  
SRC1 

Use the PC as the first ALU input. 

r s  Register rs i s  the first ALU input. 

4 Use 4 for the second ALU input. 

E x t e n d  Use output o f  the sign-extension unit a s  the second ALU input. 
SRC2 

E x t s h f t  Use the output of the shift by 2 unit a s  the second ALU input. 

r t  Register rt i s  the second ALU input. 

ALU destination 
T a r g e t  ALU output is written into the register Target. 

rd ALU output is written into register rd. 

Re a d  P C  Read memory using the PC as address. 

Memory Re a d  A L U  Read memory using the ALU output a s  address. 

W r i t e  A L U  Write memory using the ALU output a s  address. 

I R  Data read from memory is written into the Instruction register. 

Memory register W r i t e  r t  Data read from memory i s  written into register rt .  
Re a d  r t  Data written into memory comes from register rt. 
A L U  Write the output o f  the ALU into the PC. 

PCWrite control Ta r g e t - c o n d  I f  the Zero output o f  the ALU i s  active, write the PC with the contents o f  the 
register Target. 

j u mp a dd r e s s  Write the PC with the jump address from the instruction. 

Seq  Choose the next microinstruction sequentially. 

Sequencing F e t c h  G o  to the first microinstruction to begin a new instruction. 

D i s p a t c h  i Dispatch using the ROM specified by i (1 or 2) .  

FIGURE 5.50 Each field of the microinstruction has a number of values that it can take on. The second column 
gives the possible values that are legal for the field, and the third column defines the effect of that value. Each field value is 
mapped to a particular setting of the datapath control lines; this mapping is described in Appendix C, section C.3. 

corrected .  An alternative is to structure the m icroinstruction format to avoid this .  We 
cou ld achieve this by making the register destination a separate field and describing 
whether the memory or ALU provided the value to be stored and which instruction field 
contained the register designator. Of course, th is  m ight make the m icroinstruction 
harder to read . Most microprogramming systems choose readabi l ity and require the 
m icrocode assembler to detect such errors. 
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Creating the Microprogram 

Now let's create the microprogram for the control unit. We will label the 
instructions in the microprogram with symbolic labels, which can be used to 
specify the contents of the dispatch tables (see Appendix C for a discussion of 
how the dispatch tables are defined and assembled). In writing the micropro
gram, there are two situations in which we may want to leave a field of the 
microinstruction blank. When a field that controls a functional unit or that 
causes state to be written (such as the Memory field or the ALU dest field) is 
blank, no control signals should be asserted. When a field only specifies the 
control of a multiplexor that determines the input to a functional unit, such as 
the SRCl field, leaving it blank means that we do not care about the input to 
the functional unit (or the output of the multiplexor). 

The easiest way to understand the microprogram is to break it into pieces 
that deal with each component of instruction execution, just as we did when 
we designed the finite state machine. The first component of every instruction 
execution is to fetch the instructions, decode them, and compute both the se
quential PC and branch target PC. These actions correspond directly to the 
first two steps of execution described on pages 317 through 321. The two mi
croinstructions needed for these first two steps are shown below: 

PC 4 Read PC IR ALU Seq 

PC Extshft Target Dispatch 1 

To understand what each microinstruction does, it is easiest to look at the 
effect of a group of fields. In the first microinstruction, the fields asserted and 
their effects are 

ALU control, SRC1, SRC2 

Memory and memory register 

PCWrite control 

Sequencing 

Compute PC + 4. 

Fetch instruction into IR. 

Causes the output of the ALU to be written 
into the PC. 

Go to the next microinstruction. 



ALU 
Label control 

LWSWl Add 

LW2 Add 

Add 

SW2 Add 
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For the second microinstruction, the registers will be read using the fields 
of the instruction register. The other operations controlled by the microin
struction are 

Fields Effect 

ALU control ,  SRCl, 
SRC2, ALU destination 

Store PC + sign-extension (IR[15--0)) « 2 into Target. 

Sequencing Use dispatch table 1 to choose the next microinstruction address. 

We can think of the dispatch operation as a case statement with the opcode 
field and the dispatch table 1 used to select one of four different microinstruc
tion sequences (memory reference, R-type instructions, branch, and jump). 
The microprogram for memory-reference instructions has four microinstruc
tions, as shown below. The first instruction does the memory address calcula
tion. A two-instruction sequence is needed to complete a load (memory read 
followed by register write), while the store requires only one microinstruction 
after the memory address calculation: 

ALU Memory PCWrite 
SRC1 SRC2 destination Memory register control Sequencing 

rs Extend Dispatch 2 

rs Extend Read ALU Seq 

rs Extend Read ALU Write rt Fetch 

rs Extend Write ALU Read rt Fetch 

Let's look at the fields of the first microinstruction in this sequence: 

Fields Effect 

ALU contro l ,  
SRC1, SRC2 

Sequencing 

Compute the memory address: Register (rs) + sign.extend (IR[15-0)) 

Use the second dispatch table to jump to either LW2 or SW2. 

The first microinstruction in the sequence specific to l w is labeled LW2. This 
microinstruction has the following effect: 

Fields Effect 

ALU control, SRCl ,  SRC2 The output of the ALU is still the memory address. 

Memory Read memory using the ALU output as the address. 

Sequencing Go to the next microinstruction. 
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The next microinstruction completes execution with a microinstruction that 
has the following effects: 

Fields Effect 
ALU control, SRC1, SRC2 The output of the ALU is still the memory address. 

Memory and memory register Read memory using the ALU output as the address 
and write the result into the register designated by rt. 

Sequencing Go to the microinstruction labeled F e t c h .  

Notice that since the fields of  the two microinstructions that complete a load 
word instruction do not conflict, we could combine these two microinstruc
tions into a single microinstruction of the form: 

This process is often performed by a microcode optimizer to reduce the num
ber of microinstructions. However, if we made this change, it would probably 
increase the length of the dock cycle, since both the memory access and regis
ter write would have to occur in a single microinstruction, and each microin
struction corresponds to a single clock cycle. Thus, when we try to optimize 
the microcode, either by hand or with a program, we must know what set of 
datapath actions can fit in the clock cycle that we are designing toward. 

The store microinstruction, labeled SW2, operates similarly to the load mi
croinstruction labeled L W2: 

Fields Effect 
ALU control, SRC1, SRC2 The output of the ALU is still the memory address. 

Memory and Memory register Write memory using the ALU output as the address and the 
register designated by rt as the value to write. 

Sequencing Go to the microinstruction labeled F e t c h .  

The microprogram sequence for R-type instructions consists o f  two 
microinstructions: the first performs the ALU operation, while the second 
writes the result into the register file: 
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Like the example of the load instruction above, we could combine these two 
microinstructions into a single microinstruction. However, this would mean 
that the ALU and register write back would occur in one clock cycle, possibly 
leading to a longer clock cycle and a slower machine. The first microinstruc
tion initiates the ALU operation: 

ALU control, 
SRC1, SRC2 

Sequencing 

The ALU operates on the register contents of the rs and rt registers, using the 
func field to specify the ALU operation. 

Go to the next microinstruction. 

The second microinstruction causes the ALU output to be written in the reg
ister file: 

ALU control ,  SRCl,  
SRC2 . ALU destination 

Sequencing 

The ALU continues the same operation. The ALU dest field 
specifies that rd is used to choose the destination register. 

Go to the microinstruction labeled Fetch . 

The microprogram sequence for branch requires one microinstruction: 

The asserted fields of this microinstruction are 

Fields Effect 
ALU contro l ,  The ALU subtracts the register operands to generate the Zero output. 
SRC1, SRC2 

PCWrite control Causes the PC to be written using the value in target, if the Zero output 
of the ALU is true. 

Sequencing Go to the microinstruction labeled Fetch. 

The jump microcode sequence also consists of one microinstruction: 
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ALU 
Label control 

Fetch Add 

Add 

LWSW1 Add 

LW2 Add 

Add 

SW2 Add 

Rformat1 Fune code 

Fune code 

BEQ1 Subt 

JUMP1 
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Only two fields of this microinstruction are asserted: 

Go to the microinstruction labeled Fetch.  

The entire microprogram appears in Figure 5.51. It consists of the 10 micro
instructions appearing above. This microprogram matches the 10-state finite 
state machine we designed earlier, since they were both derived from the same 
five-step execution sequence for the instructions. In more complex machines 
the microprogram sequence might consist of hundreds or thousands of micro
instructions. 

This microprogram is translated into microinstructions and dispatch tables, 
which can then be implemented in ROMs or PLAs. This process is directly 
analogous to the process of translating an assembly language program into 
machine instructions, or translating the finite state diagram of Figure 5.47 into 
hardware. The datapath control signals specified in each microinstruction can 
be implemented using the same logic structures that we used for implement
ing a finite state machine. 

Figure 5.48 on page 333 showed one method for implementing the sequenc
ing. Figure 5.52 shows another type of sequencer that uses an incrementer 
to choose the next control instruction. In this type of implementation, the 

ALU Memory PCWrite 
SRC1 SRC2 destination Memory register control Sequencing 

PC 4 Read PC IR  ALU Seq 

PC Extshft Target Dispatch 1 

rs Extend Dispatch 2 

rs Extend Read ALU Seq 

rs Extend Read ALU Write rt Fetch 

rs Extend Write ALU Read rt Fetch 

rs rt Seq 

rs rt rd Fetch 

rs rt Target-cond. Fetch 

jump address Fetch 

FIGURE S.S1 The microprogram for the control unit. The labels are used to determine the targets for the dispatch oper
ations. Dispatch 1 does a jump based on the IR to a label ending with a 1. The PCWrite control indicates whether the PC 
should be written conditionally (on the basis of the equal signal from the ALU) by including cond in the specification. 
There are three possible sources for the value that will be written into the PC: the ALU output, the branch target address 
register (Target), and the jump address target that comes from combining the lower 26 bits of the instruction and the PC. 
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FIGURE 5.52 A typical lmplementatlon of a microcode controller would use an expllclt 
lncrementer to compute the default sequential next state. A combination logic block 
would be used to set the datapath control based on the current state and also to determine how 
the next microinstruction would be chosen. The address select logic would contain the dispatch 
tables as well as the logic to select from among the alternative next states; the selection of the next 
microinstruction is controlled by the sequencing control outputs from the control logic. The com
bination of the current state register, incrementer, dispatch tables, and address select logic forms a 
sequencer that selects the next microinstruction. 

combinational control logic would determine the value of the datapath control 
lines, as well as how to select the next state. The address select logic would 
contain the dispatch tables and would, under the control of the address select 
outputs, determine the next microinstruction to execute. The type of sequencer 
shown in Figure 5.52 can be used to implement either a finite state or a micro
program control specification, and section C.2 of Appendix C describes how 
to generate such a sequencer in more detail. Section C.3 describes how a mi
croprogram can be translated to such an implementation. The choice of which 
way to represent the control and how to implement are independent decisions, 
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affected by both the structure of the control function and the technology used 
to implement the control. Before we can discuss what factors favor the differ
ent implementation mechanisms, we need to talk about one of the hardest as
pects of control: exceptions. • Exceptions 

Control is the most challenging aspect of processor design: it is both the 
hardest part to get right and the hardest part to make fast. The hardest part of 
control is implementing exceptions and interrupts-events other than branches 
or jumps that change the normal flow of instruction execution. An exception 
is an unexpected event from within the processor; arithmetic overflow is an 
example of an exception. An interrupt is an event that also causes an unex
pected change in control flow but comes from outside of the processor. Inter
rupts are used by 1/0 devices to communicate with the processor, as we will 
see in Chapter 8. Many architectures and authors do not distinguish between 
interrupts and exceptions, often using the older name interrupt to refer to both 
types of events. We follow the MIPS convention using the term exception to 
refer to any unexpected change in control flow without distinguishing 
whether the cause is internal and external; we use the term interrupt only 
when the event is externally caused. 

Interrupts were initially created to handle unexpected events like arith
metic overflow and to signal requests for service from I/O devices. The same 
basic mechanism was extended to handle internally-generated exceptions as 
well. Here are some examples showing whether the situation is generated 
internally by the processor or externally generated: 

Type of event From where? MIPS terminology · 
1/0 device request External Interrupt 
I nvoke the operating system Internal Exception 
from user program 
Arithmetic overflow Internal Exception 
Using an undefined instruction I nternal Exception 
Hardware malfunctions Either Exception or interrupt 

Many of the requirements to support exceptions come from the specific sit
uation that causes an exception to occur. Accordingly, we will return to this 
topic in Chapter 7, when we discuss memory hierarchies, and in Chapter 8, 
when we discuss 1/0. In this section, we deal with the control implementation 
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of two types of exceptions that arise from the portions of the instruction set 
and implementation that we have already discussed. 

Detecting exceptional conditions and taking the appropriate action is often 
on the critical timing path of a machine, which determines the clock cycle time 
and thus performance. Without proper attention to exceptions during design 
of the control unit, attempts to add exceptions to a complicated implementa
tion can significantly reduce performance, as well as complicate the task of 
getting the design correct. 

How Are Exceptions Handled? 
The two types of exceptions that our current implementation can generate are 
execution of an undefined instruction and an arithmetic overflow. The basic 
action that the machine must perform when an exception occurs is to save the 
address of the offending instruction in the exception program counter (EPC) 
and then transfer control to the operating system at some specified address. 
The operating system can then take the appropriate action, which may 
involve providing some service to the user program, taking some predefined 
action in response to an overflow, or stopping the execution of the program 
and reporting an error. After performing whatever action is required due to 
the exception, the operating system can terminate the program or may con
tinue its execution, using the EPC to determine where to restart the execution 
of the program. In Chapter 7, we will look more closely at the issue of restart
ing the execution. 

For the operating system to handle the exception, it must know the reason 
for the exception, in addition to the instruction that caused it. There are two 
main methods used to communicate the reason for an exception. The method 
used in the MIPS architecture is to include a Status register (called the Cause 
register), which holds a field that indicates the reason for the exception. A sec
ond method is to use vectored interrupts. In a vectored interrupt, the address to 
which control is transferred is determined by the cause of the exception. For 
example, to accommodate the two exception types listed above, we might de
fine the following: 

Arithmetic overflow 01000000 00000000 00000000 010000001wo 
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The operating system knows the reason for the exception by the address at 
which it is initiated. The addresses are separated by 32 instructions; thus, the 
operating system must record the reason for the exception and may perform 
some limited processing in this sequence. When the exception is not vectored, 
a single entry point can be used, and the operating system decodes the status 
register to find the cause. Other key issues in exception handling are related 
to the memory system and the capabilities of the operating system. 

We can perform the processing required for exceptions by adding a few ex
tra registers and control signals to our basic implementation and by slightly 
extending the finite state machine. Let's assume that we are implementing the 
exception system used in the MIPS architecture. (Implementing vectored ex
ceptions is no more difficult.) We will need to add two additional registers to 
the datapath: 

• EPC: A 32-bit register used to hold the address of the affected instruc
tion. 

• Cause: A register used to record the cause of the exception. In the MIPS 
architecture, this register is 32 bits, although some bits are currently un
used. Assume that the low-order bit of this register encodes the two 
possible exception sources mentioned above: undefined instruction=O 
and arithmetic overflow=l.  

We will need to add two control signals to cause the EPC and Cause registers 
to be written; call these EPCWrite and Cause Write. In addition, we will need a 
1-bit control signal to set the low-order bit of the Cause register appropriately; 
call this signal IntCause. Finally, we will need to be able to write the exception 
address into the PC; let's assume that this address is 0 1 0  0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  O O O O O O O O two · Currently, the PC is fed from the output of a 3-way 
multiplexor, which is controlled by the 2-bit signal PCSource (see Figure 5.39 
on page 323). We can change this to a 4-way multiplexor, with additional 
input wired to the constant value 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
O O O O O O O O two · Then PCSource i s  set to 11 (which was previously unused) to 
select the value 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  O O O O O O O O two to be written 
into the PC. 

Because the PC is incremented during the first cycle of every instruction, 
we cannot just write the value of the PC into the EPC, since the value in the PC 
will be the instruction address plus 4. However, we can use the ALU to sub
tract 4 from the PC and write the output into the EPC. This requires no addi
tional control signals or paths, since we can use the ALU to subtract, and the 
constant 4 is already a selectable ALU input. The data write port of the EPC, 
therefore, is connected to the ALU output. With these additions, the action to 
be taken on different types of exceptions can be accomplished by the finite 
state machine shown in Figure 5.53. To connect this finite state machine to the 
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FIGURE 5.53 This four-state machine handles the three aspects of exception processing. 
It sets the Cause register (states 10 and 11), gets the address of the offending instruction into the 
EPC (state 12), and sets the PC to the exception vector address (state 13). Each of states 10 and 11 
represents the starting point for an exception. The function of these states is to set the Cause reg
ister input correctly and to cause it to be written. In state 12, we use the ALU to compute PC - 4; 
the PC is the first ALU input, and the second is the digit4 (selected by ALUSelB = 01). The ALU 
subtracts (since ALUOp = 01), and the result is written into the EPC (EPCWrite). The PC is writ
ten with the exception vector address by setting control signals in state 13. 

finite state machine of the main control unit, we must determine how to detect 
exceptions and add arcs that transfer control from the main execution machine 
to this exception-handling finite state machine. 
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How Control Checks for Exceptions 
Now we have to design a method to detect these exceptions and to transfer 
control to the appropriate state in the exception finite state machine shown in 
Figure 5.53. Each of the two possible exceptions is detected differently: 

• Undefined Instruction: This is detected when no next state is defined 
from state 1 for the op value. We handle this exception by defining the 
next-state value for all op values other than l w, s w, 0 (R-type), j mp, and 
b e q  as state 10. We show this by symbolically using other to indicate that 
the op field does not match any of the opcodes that label arcs out of 
state 1 .  A modified finite state diagram is shown in Figure 5.54. 

• Arithmetic overflow: Chapter 4 included logic in the ALU to detect over
flow, and a signal called Overflow is provided as an output from the 
ALU. This signal is used in the modified finite state machine to specify 
an additional possible next state for state 7, as shown in Figure 5.54. 

By combining the finite state machines in Figures 5.53 and 5.54, we can ar
rive at a complete specification of the control for this MIPS subset with two 
types of exceptions. Remember that the challenge in designing the control of a 
real machine is to handle the variety of different interactions between instruc
tions and other exception-causing events in such a way that the control logic 
remains both small and fast. The complex interactions that are possible are 
what make the control unit the most challenging aspect of hardware design. 

EU1bc>rcc1tic>n: If you examine the finite state machine in Figure 5.54 closely, you can 
see that some problems could occur in the way the exceptions are handled. For exam
ple, in the case of arithmetic overflow, the instruction causing the overflow completes 
writing its result, because the overflow branch is in the state when the write completes. 
However, it's possible that the architecture defines the instruction as having no effect 
if the instruction causes an exception; this is what the MIPS instruction set architec
ture specifies. I n  Chapter 7, we wi l l  see that certain classes of exceptions require us to 
prevent the instruction from changing the mach ine state, and that this aspect of han
dl ing exceptions becomes complex and potential ly l im its performance. 
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FIGURE 5.54 This shows the finite state machine with the additions to handle exception detection. States 10 and 
11 are defined in the exception-handling extension to the base finite state machine appearing in Figure 5.53 on page 347. 
The branch out of state 1 labeled (Op=other) indicates the next state when the input does not match the opcode of any of l w, 
s w, 0 (R-type), j mp, or b e  q .  The branch out of state 7 labeled Overflow indicates the action to be taken when the ALU sig
nals an overflow. 
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• Fallacies and Pitfalls 

Pitfall: Microcode implementing a complex instruction may not be faster than a se
quence using simpler instructions. 

Most machines with a large and complex instruction set are implemented 
using a microcode stored in ROM. Surprisingly, on such machines, sequences 
of individual simpler instructions are sometimes as fast as or even faster than 
the custom microcode sequence for a particular instruction. How can this pos
sibly be true? At one time, microcode had the advantage of being fetched 
from a much faster memory than instructions in the program. Since caches 
came into use in 1968, microcode no longer has such a consistent edge in fetch 
time. Microcode does, however, still have the advantage of using internal 
temporary registers in the computation, which can be helpful on machines 
with few general-purpose registers. The disadvantage of microcode is that the 
algorithms must be selected before the machine is announced and can't be 
changed until the next model of the architecture. The instructions in a pro
gram, on the other hand, can utilize improvements in its algorithms at any 
time during the life of the machine. Along the same lines, the microcode 
sequence is probably not optimal for all possible combinations of operands. 

The VAX Index instruction provides an example of the above phenome
non. This instruction checks to see if the index is between two bounds, one of 
which is usually 0. The V AX-11 /780 microcode uses two compares and two 
branches to do this, while the standard instructions can perform the same 
check in one compare and one branch. The program can check the index 
against the upper limit using unsigned comparisons rather than two's comple
ment comparisons. This treats a negative index (less than zero and so failing 
the comparison) as if it were a very large number, thus exceeding the upper 
limit. (The algorithm can be used with nonzero lower bounds by first subtract
ing the lower bound from the index.) Replacing the Index instruction by a se
quence of VAX instructions to perform the necessary function always 
improves performance on the VAX-11/780. 

Fallacy: If there is space in control store, new instructions are free of cost. 

One of the benefits of a microprogrammed approach is that control store 
implemented in ROM is not very expensive. Moreover, if we use off-the-shelf 
parts for the ROM, there may be unused control store available to expand the 
instruction set. The analogy here is that of building a house and discovering, 
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near completion, that you have enough land and materials left to add a room. 
This room wouldn't be free, however, since there would be the costs of labor 
and maintenance for the life of the home. The temptation to add "free" 
instructions can occur only when the instruction set is not fixed, as is likely to 
be the case in the first model of a computer. Because upward compatibility of 
binary programs is a highly desirable feature, all future models of this 
machine will be forced to include these so-called free instructions, even if 
space is later at a premium. 

The extra instructions may also be costly to implement in future technolo
gies. For example, consider a large instruction set initially implemented with 
microcode. If a later implementation is done in VLSI, it may be difficult to 
place all the control store on the same chip as the rest of the processor. Placing 
the control off-chip is also unattractive, since it requires more pins and may 
slow down the clock. During the 1980s, VLSI implementations of the VAX en
countered exactly this problem and, eventually, some instructions were actu
ally removed from the VAX instruction set; programs that used such 
instructions generated exceptions that trapped to software to perform these in
structions. Lastly, additions to the instruction set may also ignore the cost of a 
longer development time to test the added instructions, as well as the possibil
ity of costs for repairing bugs in them after the hardware is shipped. 

• Concluding Remarks 

As we have seen in this chapter, both the datapath and control for a processor 
can be designed starting with the instruction set architecture and an under
standing of the basic characteristics of the technology. In section 5 .2, we saw 
how the datapath for a MIPS processor could be constructed based on the 
architecture and the decision to build a single-cycle implementation. Of 
course, the underlying technology also affects many design decisions by dic
tating what components can be used in the datapath, as well as whether a sin
gle-cycle implementation even makes sense. Along the same lines, in the first 
portion of section 5.4, we saw how the decision to break the clock cycle into a 
series of steps led to the revised multicycle datapath. In both cases, the top
level organization-a single-cycle or multicycle machine-together with the 
instruction set, prescribed many characteristics of the datapath design. 

Similarly, the control is largely defined by the instruction set architecture, 
the organization, and the datapath design. In the single-cycle organization, 
these three aspects essentially define how the control signals must be set. In 
the multicycle design, the exact decomposition of the instruction execution 
into cycles, which is based on the instruction set architecture, together with the 
datapath, define the requirements on the control. 
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Control is one of the most challenging aspects of computer design. A major 
reason for this is that designing the control requires an understanding of how 
all the components in the processor operate. To help meet this challenge, we 
examined two techniques for specifying control: finite state diagrams and mi
croprogramming. These control representations allow us to abstract the spec
ification of the control from the details of how to implement it. Using 
abstraction in this fashion is the major method we have to cope with the com
plexity of computer designs. 

Once the control has been specified, we can map it to detailed hardware. 
The exact details of the control implementation will depend on both the struc
ture of the control and on the underlying technology used to implement it. Ab
stracting the specification of control is also valuable because the decisions of 
how to implement the control are technology-dependent and likely to change 
over time. 

In the 1960s and 1970s, microprogramming was one of the most important 
techniques used in implementing machines. Through most of that period, ma
chines were implemented with discrete components or MSI (medium scale in
tegration-fewer than 1000 gates per chip), and designers had to choose 
between two types of implementations: hardwired control or microprogrammed 
control. Hardwired control was characterized by finite state machines using an 
explicit next state and implemented primarily with random logic. In this era, 
microprogrammed control used microcode to specify control that was then 
implemented with a microprogram sequencer (a counter) and ROMs. Hard
wired control received its name because the control was implemented in hard
ware and could not be easily changed. Microprograms implemented in ROM 
were also called firmware, because they could be changed somewhat more eas
ily than hardware, but not nearly as easily as software. 

The reliance on standard parts of low- to medium-level integration made 
these two design styles radically different. Microprogrammed approaches 
were attractive because implementing the control with a large collection of 
low-density gates was extremely costly. Furthermore, the popularity of rela
tively complex instruction sets demanded a large control unit, making a ROM
based implementation much more efficient. The hardwired implementations 
were faster, but too costly for most machines. Furthermore, it was very diffi
cult to get the control correct, and changing ROMs was easier than replacing a 
random logic control unit. Eventually, microprogrammed control was imple
mented in RAM, to allow changes late in the design cycle, and even in the field 
after a machine shipped. 

As architectures became more complex, so did the control. Designers also 
took advantage of the relative ease of adding new instruction set features to a 
microprogrammed machine, and instruction set complexity grew quickly. 
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Much has changed in the 40 years since Wilkes [1953] wrote the first paper 
on microprogramming. The most important changes are 

• Control units are implemented as integral parts of the processor, often 
on the same silicon die. They cannot be changed independent of the rest 
of the processor. Furthermore, given the right computer-aided design 
tools, the difficulty of implementing a ROM or a PLA is the same. 

• ROM, which was used to hold the microinstructions, is no longer faster 
than RAM, which holds the machine language program. A PLA imple
mentation of a control function is often much smaller than the ROM im
plementation, which may have many duplicate or unused entries. If the 
PLA is smaller, it is usually faster. 

• Instruction sets have become much simpler than they were in the 1960s 
and 1970s, leading to reduced complexity in the control. 

• Computer-aided design tools have improved so that control can be 
specified symbolically and, by using much faster computers, thorough
ly simulated before hardware is constructed. This makes it plausible to 
get the control logic correct without the need for fixes later. 

These changes have blurred the distinctions among different implementa
tion choices. Certainly, using an abstract specification of control is helpful. 
How that control is then implemented depends on its size, the underlying 
technology, and the available CAD tools. 

• Historical Perspective and Further Reading 

Maurice Wilkes learned computer design in a summer workshop from Eckert 
and Mauchly and then went on to build the first full-scale, operational, 
stored-program computer-the EDSAC. From that experience he realized the 
difficulty of control. He thought of a more centralized control using a diode 
matrix and, after visiting the Whirlwind computer in the U.S., wrote [Wilkes 
1985] :  

I found that it  did indeed have a centralized control based on the use of a matrix 
of diodes. It was, however, only capable of producing a fixed sequence of eight 
pulses-a different sequence for each instruction, but nevertheless fixed as far as 
a particular instruction was concerned. It was not, I think, until I got back to 
Cambridge that I realized that the solution was to turn the control unit into a 
computer in miniature by adding a second matrix to determine the flow of con
trol at the microlevel and by providing for conditional micro-instructions. 
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• . 

Control may be designed using one of several initial 
representations. The choice of sequence control, and 
how logic is represented, can then be determined 
independently; the control can then be implemented 
with one of several methods using a structured logic 
technique. Figure 5.55 shows the variety of methods 

for specifying the control and moving from the specification to an 
implementation using some form of structured logic: 

Initial Finite state Microprogram representation diagram 

Sequencing Explicit next Microprogram counter 
control state function + dispatch ROMS 

Logic Logic Truth 
representation equations tables 

Implementation Programmable Read only 
technique logic array memory 

FIGURE 5.55 Alternative methods for specifying and Implementing control. 
The arrows in this figure indicate po ible de ign paths: any path from the initial 
representation to the final implementation technology is viable. Traditionally, 
"hardwired control" means that the techniques on the left-hand side are u ed, and 
"microprogrammed control" means that the techniques on the right-hand side are 
used. 

Wilkes [1953] was ahead of his time in recognizing that problem. Unfortu
nately, the solution was also ahead of its time: To provide control, micro
programming relies on fast memory that was not available in the 1950s. Thus, 
Wilkes's ideas remained primarily academic conjecture for a decade, although 
he did construct the EDSAC 2 using microprogrammed control in 1958 with 
ROM made from magnetic cores. 

IBM brought microprogramming into the spotlight in 1964 with the IBM 
360 family. Before this event, IBM saw itself as a cluster of many small busi
nesses selling different machines with their own price and performance levels, 



5.9 Historical Perspective and Further Reading 355 

but also with their own instruction sets. (Recall that little programming was 
done in high-level languages, so that programs written for one IBM machine 
would not run on another.) Gene Amdahl, one of the chief architects of the 
IBM 360, said that managers of each subsidiary agreed to the 360 family of 
computers only because they were convinced that microprogramming made 
it feasible. To be sure of the viability of microprogramming, the IBM vice pres
ident of engineering even visited Wilkes surreptitiously and had a "theoreti
cal" discussion of the pros and cons of microcode. IBM believed that the idea 
was so important to its plans that it pushed the memory technology inside the 
company to make microprogramming feasible. 

Stewart Tucker of IBM was saddled with the responsibility of porting soft
ware from the IBM 7090 to the new IBM 360. Thinking about the possibilities 
of microcode, he suggested expanding the control store to include simulators, 
or interpreters, for older machines. Tucker [1967] coined the term emulation for 
this, meaning full simulation at the microprogrammed level. Occasionally, 
emulation on the 360 was actually faster than on the original hardware. 

Once the giant of the industry began using microcode, the rest soon fol
lowed. One difficulty in adopting microcode was that the necessary memory 
technology was not widely available, but that was soon solved by semicon
ductor ROM and later RAM. The microprocessor industry followed the same 
history, with the limited resources of the earliest chips forcing hardwired con
trol. But as the resources increased, the advantages of simpler design, ease of 
change, and the ability to use a wide variety of underlying implementations 
persuaded many to use microprogramming. 

With the increasing popularity of microprogramming came more sophisti
cated instruction sets. Over the years, most microarchitectures became more 
and more dedicated to support the intended instruction set, so that repro
gramming for a different instruction set failed to offer satisfactory perfor
mance. With the passage of time came much larger control stores, and it 
became possible to consider a machine as elaborate as the VAX with more than 
300 different instruction opcodes and more than a dozen memory addressing 
modes. The use of RAM to store the microcode also made it possible to debug 
the microcode and even fix some bugs once machines were in the field. The 
VAX architecture represented the high-water mark for instruction set architec
tures based on microcode implementations. Typical implementations of the 
full VAX instruction set required 400 to 500 Kb of control store. 

As 1994 begins, the VAX architecture has seen its last days. A new stream
lined architecture from Digital, called Alpha, has replaced the VAX. This new 
architecture is based on the same principles of design used in other RISC ar
chitectures, including the MIPS, SPARC, IBM Power PC, and the HP Precision 
architecture. With the disappearance of the VAX, traditional micro
programming, in which the control is implemented with one major control 
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store, will largely disappear from new processor designs. Even processors 
such as the Intel Pentium are employing large amounts of hardwired control, 
at least for the central core of the processor. 

Of course, control unit design will continue to be a major aspect of all com
puters, and the best way to specify and implement the control will vary, just 
as computers will vary from streamlined RISC architectures with simple con
trol to special-purpose processors with potentially large amounts of more 
complex and specialized control. 
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II Exercises 

5.1 [ 10] <§5.2-5.3> We wish to add the instruction j a l  (jump and link) to the 
single-cycle datapath described in this chapter (this instruction is described in 
Chapter 3, page 119. Add any necessary datapaths and control signals to the 
single-clock datapath of Figure 5 .33 on page 307. You can photocopy the 
existing datapath (or use Figure 5.22 on page 295, if you prefer) to make it 
less work to show the additions. 

5.2 [5] <§5.3> {ex. 5.1 ) Show the additions to the table in Figure 5.23 on page 
296 needed to set all the control lines that were added in Exercise 5.lfor the 
instruction j a l  . Remember to add the jump control line if it is needed to 
implement j a l  . 

5.3 [ 10] <§5.4> We wish to add the datapath parts and control needed to 
implement the j a l  instruction in the multiclock datapath and control. Show 
the additions to the datapath and control lines of Figure 5.39 on page 323 
needed to implement these instructions in the multicycle datapath. You can 
photocopy the existing datapath to make it less work to show the additions. 
Again, there are multiple solutions; choose the solution that minimizes the 
number of clock cycles for this added instruction. 

5.4 [5] <§5.4> {ex. 5.3) Show the steps in executing the j a l  instruction in the 
multiclock datapath, using the same breakdown of steps as used on pages 317 
through 321 . 

5.5 [5] <§5.4> {ex. 5.3, 5.4) Show the additions to the finite state machine of 
Figure 5.54 on page 349 to implement the j a l  instruction. 

5.6 [20] <§5.4> Your friends at c3 (Creative Computer Corporation) have 
determined that the critical path that sets the clock cycle length of the multi
cycle datapath is memory access for loads and stores (not for instructions). 
This has caused their newest implementation of the MIPS 30000 to run at a 
clock rate of 500 MHz rather than the target clock rate of 750 MHz. However, 
Clara at C3 has a solution. If all the cycles that access memory are broken into 
two clock cycles, then the machine can run at its target clock rate. Using the 
gee mixes shown in Chapter 4 (Figure 4.46 on page 248), determine how 
much faster the machine with the two-cycle memory accesses is compared 
with the 500-MHz machine with single-cycle memory access. Assume all 
jumps and branches take the same number of cycles and that the set instruc
tions and arithmetic immediate instructions are implemented as R-type 
instructions. 
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5.7 [15] <§5.1-5.4> For this problem use the gee data from 4.46 on page 248. 
Assume there are three machines: 

• Ml: The multiclock datapath of Chapter 5 with a 50-MHz clock. 

• M2: A machine like the multiclock datapath of Chapter 5, except that 
register updates are done in the same clock as a memory read or ALU 
operation. Thus, in Figure 5.54 on page 349 states 6 and 7 and states 3 
and 4 are combined. This machine has a 40-MHz clock, since the register 
update increases the length of the critical path. 

• M3: A machine like M2, except that effective address calculations are 
done in the same clock as a memory access. Thus, states 2, 3, and 4 can 
be combined, as can 2 and 5, as well as 6 and 7. This machine has a 25-
MHz clock, because of the long cycle created by combining address cal
culation and memory access. 

Find out which machine is fastest. Are there instruction mixes that would 
make another machine faster, and if so, what are they? 

5.8 [20] <§5.4> Suppose there were a MIPS instruction, called b c p, that copied 
a block of words from one address to another. Assume that this instruction 
requires that the starting address of the source block is in register $1 and the 
destination address is in $2, and the number of words to copy is in $3 (which 
is � 0). Furthermore, assume that the values of these registers as well as regis
ter $4 can be destroyed in executing this instruction (so that the registers can 
be used as temporaries to execute the instruction) . 

Write the MIPS assembly language program to implement block copy. How 
many instructions will be executed to perform a 100-word block copy? Using 
the CPI of the instructions in the multicycle implementation, how many 
cycles are needed for the 100-word block copy? 

5.9 [30] <§5.5> Microcode has been used to add more powerful instructions to 
an instruction set; let's explore the potential benefits of this approach. Give a 
microprogram to implement the b c p  instruction. To implement this instruc
tion, we will need to extend the microinstruction format. In the extended for
mat we allow the SRCl and SRC2 fields to contain either an explicit register 
designator, and the SRC2 field to contain a small constant (five bits in length). 
We also allow the ALU destination field to contain an explicit register speci
fier. Finally, we will need to have microinstructions that can conditionally 
branch, since implementing b c p  will require a loop. Assume the sequencing 
field is extended to allow a branch based on the 0 bit out of the ALU. The label 
specifies another microinstruction. 



5.10 Exercises 359 

How many microinstructions will be executed to copy a block of 100 words? 
How does this compare to the number of MIPS instructions required? Assum
ing each microinstruction takes one cycle, how does the cycle count of the 
microcode implementation compare the implementation using MIPS instruc
tions in Exercise 5.8. How do you explain the difference? 

5.10 [15] <§5.5> {ex. 5.9} To implement the b c p  instruction in Exercise 5.9, we 
needed to expand the microinstruction. Assume that each field of the microin
struction is encoded separately and that there will be at most 1024 microin
structions. Find the width of each field in the original and extended 
microinstruction and the total widths. Remember to include bits that describe 
fields that can have different types of values (e.g., SRCl in the extended 
microinstruction). 

5.11 [5] <§5.2-5.3> We wish to add the instruction a d d  i u (Add Immediate 
Unsigned) to the single-cycle datapath described in this chapter. This instruc
tion is described in Chapter 3. Add any necessary datapaths and control sig
nals to the single clock datapath of Figure 5 .22 on page 295. You can 
photocopy the existing datapath to make it faster to show the additions. 

5.12 [10] <§5.3> {ex. 5.11 } Show the additions to the table in Figure 5.23 on 
page 296 needed to set the control lines that were added in Exercise 5.11 for 
the instruction a d d  i u .  

5.13 5 ]  <§5.4> We wish to add the datapath parts and control needed to imple
ment the a d d  i u instruction in the multiclock data path and control. Show the 
additions to the datapath and control lines of Figure 5.39 on page 323 needed 
to implement this instruction in the multicycle datapath. 

5.14 [5] <§5.4> {ex. 5.13} Show the steps in executing the a d d i  u instruction in 
the multiclock datapath, using the same breakdown of steps as used in pages 
317 through 320. 

5.15 [ 10] <§5.4> {ex. 5.13, 5 .14} Show the additions to the finite state machine 
of Figure 5 .47 on page 332 needed to implement the a d d  i u instruction. 

5.16 [5] <§5.5, 5.8> {ex. 5.13, 5.14, 5 .15) Write the microcode sequences for the 
a d d  i u instruction. If you need to make any changes to the microinstruction 
format or field contents, indicate how the new format and fields will set the 
control outputs. 

5.17 [ 1  week] <§5.2, 5.3> Using a hardware simulation language such as Ver
ilog, implement a functional simulator for the single-cycle version. Build your 
simulator using an existing library of parts, if such a library is available. If the 
parts contain timing information, determine what the cycle time of your 
implementation will be. 
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5.18 [1 week] <§5.2, 5.4, 5.5> Using a hardware simulation language such as 
Verilog, implement a functional simulator for the multicycle version of the 
design. Build your simulator using an existing library of parts, if such a 
library is available. If the parts contain timing information, determine what 
the cycle time of your implementation will be. 

5.19 [2-3 months] <§5.1-5.3> Build a machine that implements the single
cycle machine in this chapter using standard parts. 

5.20 [2-3 months] <§5.1-5.8> Build a machine that implements the multicycle 
machine in this chapter using standard parts. 

5.21 [Discussion] <§5.5, 5.8, 5.9> Hypothesis: If the first implementation of an 
architecture uses microprogramming, it affects the instruction set architec
ture. Why might this be true? Can you find an architecture that will probably 
always use microcode? Why? Which machines will never use microcode? 
Why? What control implementation do you think the architect had in mind 
when designing the instruction set architecture? 

5.22 [Discussion] <§5.5, 5 .10> Wilkes invented microprogramming in large 
part to simplify construction of control. Since 1980, there has been an explo
sion of computer-aided design software whose goal is also to simplify con
struction of control. This has made control design much easier. Can you find 
evidence, either based on the tools or real designs, that support or refute this 
hypothesis? 

5.23 [Discussion] <§5.10> The MIPS instructions and the MIPS microinstruc
tions have many similarities. What would make it difficult for a compiler to 
produce MIPS microcode rather than macrocode? What changes to the 
microarchitecture would make the microcode more useful for this applica
tion? 
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Introduction 

Never waste time. 

American Proverb 

Pipelining is an implementation technique in which multiple instructions are 
overlapped in execution. Today, pipelining is key to making processors fast. 

A pipeline is like an assembly line: in both, each step completes one piece 
of the whole job. Workers on a car assembly line perform small tasks, such as 
installing seat covers. The power of the assembly line comes from many work
ers performing small tasks to collectively produce many cars per day. On a 
well-balanced assembly line, a new car exits the line in the time it takes to per
form one of the many steps. Note that the assembly line does not reduce the 
time it takes to complete an individual car; it increases the number of cars being 
built simultaneously and thus the rate at which cars are started and completed. 

As in a car assembly line, the work to be done in a pipeline for an instruction 
is broken into small pieces, each of which takes a fraction of the time needed 
to complete the entire instruction. Each of these steps is called a pipe stage or a 
pipe segment. The stages are juxtaposed to form a pipe-instructions enter at 
one end, are processed through the stages, and exit at the other end. Once 
again, pipelining does not reduce the time it takes to complete an individual 
instruction; it increases the number of simultaneously executing instructions 
and the rate at which instructions are started and completed. In the terms used 
in Chapter 2, page 50, pipelining improves instruction throughput rather than 
individual instruction execution time. 

Just as the throughput of a car assembly line is determined by how often a 
car exits the line, the throughput of an instruction pipeline is determined by 
how often an instruction exits the pipeline. Because they are hooked together, 
all the pipe stages must be ready to proceed at the same time; thus, the rate at 
which instructions exit the pipeline cannot exceed the rate at which they enter 
the pipeline. The time required to move an instruction one step down the pipe
line is ideally one clock cycle. The length of a clock cycle is determined by the 
time required for the slowest pipe stage, because all stages must proceed at the 
same rate. 

The goal of designers-whether of instruction pipelines or car assembly 
lines-is to balance the length of each stage; otherwise, there will be idle time 
during a stage. If the stages are perfectly balanced, then the time between in
structions on the pipelined machine-assuming ideal conditions-is equal to 
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Time between instructions ·reim· e<l 
T. b · · nonp1 1me etween mstruct10ns pipel'ned = b f . 1 Num er o pipe stages 

Under ideal conditions, the speedup from pipelining equals the number of 
pipe stages; a five-stage pipeline is five times faster. Usually, however, the 
stages are imperfectly balanced. In addition, pipelining involves some over
head. Thus the time per instruction on the pipelined machine will exceed the 
minimum possible, and speedup will be less than the number of pipeline 
stages. 

To make this discussion concrete, let's create a pipeline using the example 
components from Chapter 5 from the single-cycle implementation. In this ex
ample, and in the rest of this chapter, we limit our attention to seven 
instructions: load word ( l  w), store word ( sw), add ( a d d), subtract ( s u b), and 
( a n d ), or (o r), and branch equal ( b eq) .  The operation times for the major func
tional units in the implementation from Chapter 5, page 308 are 

• Memory units: 10 ns 

• ALU and adders: 10 ns 

• Register file (read or write): 5 ns 

Assuming that the multiplexors, control unit, PC accesses, and sign-extension 
unit have no delay, the time required for each of the seven instructions is 
shown in the table below: 

Instruction Register ALU Data Register Total 
Instruction type memory read operation memory write time 

Load word (l w) 10 ns 5 ns 10 ns 10 ns 5 ns 40 ns 

Store word ( s w) 10 ns 5 ns 10 ns 10 ns 35 ns 

R-format (add,  s u b ,  a n d ,  o r) 10 ns 5 ns 10 ns 5 ns 30 ns 

Branch (beq)  10 ns 5 ns 10 ns 25 ns 

Because the single-cycle design must allow for the worst-case instruction
the slowest instruction in the table above-the time required for every instruc
tion is 40 ns. The execution of a sequence of load instructions would be as 
shown on the top of the next page: 
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Instruction 
execution Time -------------------------+ 
order 

lw $1, 100($0) 

lw $2, 200($0) 

lw $3, 300($0) 

Instruction 
fetch 

Reg ALU Data 
fetch 

Reg 

--------------.! Instruction 
40 ns fetch 

Reg ALU 

40 ns 

Data 
fetch 

Reg 

Instruction 
R 

fetch 
eg 

40 ns 
Thus, the time between the first and fourth instructions is 3 x 40 ns or 120 ns. 

Instructions were divided into five steps in Chapter 5. This suggests that a 
five-stage pipeline would be a good starting place. Five stages means we exe
cute five instructions at a time, with one in each pipeline stage. Each pipe stage 
takes one clock cycle. A sequence of load instructions in the pipelined imple
mentation would then be 

Instruction 10 20 30 40 50 60 
execution Time 
order 

lw $1, 100($0) 
Instruction 

Reg ALU Data 
Reg 

fetch fetch 

Data lw $2, 200($0) 10 ns 
I nstruction 

Reg ALU Reg 
fetch fetch 

Instruction lw $3, 300($0) 10 ns Reg ALU Data 
Reg 

fetch fetch 

10 ns 

All the stages take a single clock cycle, so the clock cycle must be long 
enough to accommodate the slowest operation. Just as the single-cycle design 
must take the worst-case clock cycle of 40 ns even though some instructions 
can be as fast as 25 ns, the pipelined execution clock cycle must have the worst
case clock cycle of 10 ns even though some stages take only 5 ns. This is still a 
fourfold improvement. The formula above suggests that a five-stage pipeline 
could offer a fivefold improvement, or an 8-ns clock cycle; the difference is due 
to the imbalance in the length of the pipe stages. 

Although the example shows a fourfold improvement, the improvement in 
total execution time for the three instructions is more modest: 70 ns versus 120 
ns. To see why total execution time is less important, let's examine what would 
happen to the execution time if we increased the number of instructions. We 
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start by extending the drawings above to 1003 instructions. We would add 
1000 instructions to the left in the pipelined example; each instruction adds 10 
ns to the total execution time. The total execution time would be 1000 x 10 ns 
+ 70 ns, or 10,070 ns. In the nonpipelined example, we would add 1000 instruc
tion, each taking 40 ns, so total execution time would be 1000 x 40 ns + 120 ns, 
or 40,120 ns. Under these ideal conditions, the ratio of total execution times for 
real programs on nonpipelined to pipelined machines is close to the ratio of 
times between instructions: 

40,120 ns 
= 3.98 ""' 

40ns 
10,070 ns lOns 

Pipelining improves performance by increasing instruction throughput, as 
opposed to decreasing the execution time of an individual instruction, but instruc
tion throughput is the important metric because real programs execute bil
lions of instructions. 

Pipelining is a technique that exploits parallelism among the instructions in 
a sequential instruction stream. It has the substantial advantage that, unlike 
some speedup techniques (see Chapter 9), it can be invisible to the program
mer. In this chapter, we will first cover the concept of pipelining using the 
MIPS instruction subset from Chapter 5 ( 1  w, s w, a d d ,  s u b , a n d ,  o r, beq )  and a 
simplified version of its pipeline. We will then look at the problems that pipe
lining introduces and the performance attainable under typical situations. Lat
er in the chapter, we will examine advanced techniques that can be used to 
overcome the difficulties encountered in pipelined machines. 

II A Plpellned Datapath 

Figure 6.1 shows the single-cycle datapath from Chapter 5. Expanding from 
the example above, the division of an instruction into five stages means a five
stage pipeline, which in turn means that five instructions will be in execution 
during any single clock cycle. Thus, we must separate the datapath into five 
pieces, with each piece named corresponding to a stage of instruction execu
tion: 

1 .  IF: Instruction fetch 

2. ID: Instruction decode and register fetch 

3. EX: Execution and effective address calculation 

4. MEM: Memory access 

5. WB: Write back 
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Instruction decode/ 
register fetch 

Read register 1 

Read register 2 

Execute/ 
address calculation 

Write Registers 
d��a� I--_..._+.( register 

Write data 

16 

Memory access Write back 

Read address Data Read 1--....--r memory data Write address 

FIGURE 6.1 The slngle-cycle datapath from Chapter 5 (slmllar to Figure 5.20 on page 293). Each step of the instruc
tion can be mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-back 
step, which sends either the ALU result or the data from memory to the left to be written into the registers. 

In Figure 6.1 these five components correspond roughly to the way the 
datapath is drawn; instructions and data move generally from left to right 
through the five stages as they complete execution. Going back to our automo
tive analogy, cars get closer to complete assembly as they move through the 
line, and they never move backwards through the line. 

There are, however, two exceptions to this left-to-right flow of instructions: 

• The write-back stage, which places the result back into the register file 
in the middle of the datapath. 

• The selection of the next value of the PC, choosing between the incre-
mented PC and the branch address from the MEM stage. 

Data flowing from right to left does not affect the current instruction; only 
later instructions in the pipeline are influenced by these two data movements 
(see section 6.4). 
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FIGURE 6.2 Instructions being executed In the single-cycle datapath in Figure 6.1, assuming plpellned execution. 
This figure pretends that each instruction has its own datapath. The five pieces of this stylized datapath correspond to the 
portions of the datapath in Figure 6.1. IM represents the instruction memory and the PC in the instruction fetch stage, Reg 
stands for the registers and sign extender in the instruction decode/register fetch phase (ID), and so on. To maintain proper 
time order, this stylized datapath breaks the register file into two logical halves: registers read during register fetch (ID) 
and registers write during write back (WB). This dual use is represented by drawing the left half of the registers using 
dashed lines in the ID stage, when they are not being written, and the right half in dashed lines in the WB stage, when they 
are not being read. Notice that in pipelined execution the second instruction must read the new instruction from the mem
ory even though the first instruction depends on the instruction memory being stable for the entire instruction. Such con
flicts lead to the pipeline registers in Figure 6.3. 

One way to show what happens in pipelined execution is to pretend that 
each instruction has its own datapath, and then to place these datapaths on a 
timeline to show their relationship. Figure 6.2 shows the execution of the in
structions in the example from the previous section by displaying their private 
datapaths on a common timeline. We use a stylized version of the datapath in 
Figure 6.1 to show the relationships in Figure 6.2. 

Figure 6.2 seems to suggest that three instructions need three datapaths. Re
call that in Chapter 5 we added registers to hold data so that portions of the 
datapath could be shared during instruction execution; we use the same tech
nique here. For example, in Chapter 5 the instruction memory was used only 
by one instruction at a time for the duration of that instruction execution. With 
pipelining, as Figure 6.2 shows, the instruction memory is used during only 
one of the five stages of an instruction, allowing it to be shared by other in
structions during the other four stages. To retain the value of an individual in-
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FIGURE 6.3 The plpellned version of the datapath In Figure 6.1. The pipeline registers, in color, separate each pipeline 
stage. They are labeled by the stages that they separate; for example, the first is labeled "IF /ID" because it separates the 
instruction fetch and instruction decode stages. The registers must be wide enough to store all the data corresponding to 
the lines that go through them. For example, the IF / ID register must be 64 bits wide because it must hold both the 32-bit 
instruction fetched from memory and the incremented 32-bit PC address. 

struction for its other four stages, the value read from instruction memory 
must be saved in a register. Similar arguments apply to every pipeline stage, 
so we must place registers wherever there are dividing lines between stages in 
Figure 6.1 .  

Figure 6.3 shows the pipelined datapath with the pipeline registers high
lighted and named for the two stages separated by that register. All instruc
tions advance during each clock cycle from one pipeline register to the next. 

Notice that there is no pipeline register separating the write-back stage from 
the next instruction fetch. All instructions must update some state in the ma
chine, so a separate pipeline register is redundant for the state that is updated. 
For example, a load instruction will place its result in 1 of the 32 registers, and 
any later instruction that needs that data will simply read the appropriate reg
ister. Sections 6.4 and 6.5 describe what happens when there are dependencies 
between pipelined instructions; ignore them for now. 

To show how the pipelining works, throughout this chapter we show se
quences of figures to demonstrate operation over time. These extra pages 
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10/0. MEM/WS 

FIGURE 6.4 IF: the first pipe stage of an Instruction, with the active portions of the datapath In Figure 6.3 hlgh
llghted. Highlighting the right half of a register or memory, such as instruction memory, means it is read in this pipe stage. 
Highlighting the left half, such as the IF /ID register, means that it is written in this stage. The highlighting of a whole reg
ister, such as the PC, means that the register is both read and written in this pipe stage. As in Chapter 5, there is no confu
sion when reading and writing registers because the contents change only on the clock edge. 

would seem to require much more time from the reader. Fear not, for the se
quences take much less time to understand because the reader can compare to 
see what changes in each clock cycle. Figures 6.4 through 6.8, our first se
quence, show the active portions of the datapath highlighted as a load instruc
tion goes through the five stages of pipelined execution. We show a load first 
because it is active in all five stages. We highlight the right half of registers or 
memory when they are being read and highlight the left half when they are be
ing written. We show the instruction abbreviation l w with the name of the pipe 
stage that is active in each figure. The five stages are 

1 .  Instruction Fetch: Figure 6.4 shows the instruction being read from 
memory using the address in the PC and then placed in the IF /ID pipe
line register. (The IF / ID pipeline register is similar to the Instruction 
register in Figure 5.34 on page 313.) The PC address is incremented by 4 
and then loaded back into the PC to be ready for the next clock cycle. 
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FIGURE 6.5 ID: the second pipe stage of an Instruction, with the portions of the datapath In Figure 6.3 hlgh
llghted that are used in this pipe stage as In Figure 6.4. Note that although the load will need only the top register, 
the processor doesn't know what instruction is being loaded, so it both sign-extends the 16-bit constant and reads both reg
isters into the ID/EX pipeline register. The processor doesn't need all three operands for this instruction, but always load
ing all three can't hurt and makes control simpler. 

This incremented address is also saved in the IF /ID pipeline register in 
case it is needed later for an instruction, such as b e q; the computer can
not know which type of instruction is being fetched, so it must prepare 
for any instruction. 

2. Instruction Decode and Register Read: Figure 6.5 shows the instruction 
portion of the IF /ID pipeline register supplying the 16-bit immediate 
field that is sign-extended to 32 bits and the register numbers to read 
the two registers. All three values are all stored in the ID/EX pipeline 
register, along with the incremented PC address. Although, during this 
clock cycle, we will know the identity of the instruction being decoded 
and can store only what will be used in later clock cycles, it costs little 
to save everything. Hence, we again transfer everything that might be 
needed by any instruction during a later clock cycle. 
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FIGURE 6.6 EX: the third pipe stage of a load Instruction, highlighting the portions of the datapath In Figure 6.3 
used In this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM 
pipeline register. 

3. Execute and Effective Address Calculation: Figure 6.6 shows that the load 
instruction reads the contents of register 1 and the sign-extended 
immediate from the ID /EX pipeline register and adds them using the 
ALU. That sum is placed in the EX/MEM pipeline register. 

4. Memory: Figure 6.7 shows the load instruction reading the data mem
ory using the address from the EX/MEM pipeline register and loading 
the data into the MEM/WB pipeline register. 

5. Write Back: Figure 6.8 shows the final step: reading the data from the 
MEM/WB pipeline register and writing it into the registers in the mid
dle of the figure. 

This walk-through of the load instructions shows that any information 
needed in the next pipe stage must be passed to that stage via a pipeline reg
ister. Walking through a store instruction shows the similarity of instruction 
execution; moreover, the walk-through emphasizes the need to keep informa-
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FIGURE 6. 7 MEM: the fourth pipe stage of a load Instruction, highlighting the portions of the datapath In 
Figure 6.3 used In this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the 
data is placed in the MEM/WB pipeline register. 

tion used later in the execution of the instruction in the pipeline registers. Here 
are the five pipe stages of the store instruction: 

I .  Instruction Fetch: The instruction is read from memory using the 
address in the PC and then is placed in the IF /ID pipeline register. This 
stage occurs before the instruction is identified, so Figure 6.4 works for 
store as well as load. 

2. Instruction Decode and Register Read: The instruction in the IF /ID pipe
line register supplies the register numbers for reading two registers and 
extends the sign of the 16-bit immediate. These three 32-bit values are 
all stored in the ID /EX pipelining register. Figure 6.5 for load instruc
tions also shows the operations of the second stage for stores. These 
first two stages are executed by all instructions, since it is too early to 
know the type of the instruction. 

3. Execute and Effective Address Calculation: Figure 6.9 shows the third step; 
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FIGURE 6.8 WB: the final pipe stage of a load Instruction, highlighting the portions on the datapath in Figure 6.3 
used In this pipe stage. Data is read from the MEM/WB pipeline registers and written into the registers in the middle of 
the datapath. 

the effective address is placed in the EX/MEM pipeline register. 

4. Memory: Figure 6.10 shows the data being written to memory. Note 
that the register containing the data to be stored was read in an earlier 
stage and stored in ID /EX. The only way to make the data available 
during the MEM stage is to place the data into the EX/MEM pipeline 
register in the EX stage, just as we stored the effective address into 
EX/MEM. 

5. Write Back: Figure 6.11 shows the final step of the store. For this instruc
tion, nothing happens in the write-back stage. Since every instruction 
behind the store is already in progress, we have no way to accelerate 
those instructions. Hence an instruction passes through a stage even if 
there is nothing to do, because later instructions are already progress
ing at the maximum rate. 
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FIGURE 6.9 EX: the third pipe stage of a store Instruction. Unlike the third stage of the load instruction in Figure 6.6, 
the second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn't 
hurt to always write this second register into the EX/MEM pipeline register, we write the second register only on a store 
instruction to make the pipeline easier to understand. 

The store instruction illustrates that in order to pass something from an ear
ly pipe stage to a later pipe stage, the information must be placed in a pipeline 
register; otherwise the information is lost as the next instruction enters that 
pipeline stage. For the store instruction we needed to pass one of the registers 
read in the ID stage to the MEM stage, where it is stored in memory. The data 
was first placed in the ID /EX pipeline register and then passed to the 
EX/MEM pipeline register. 

Load and store illustrate a second key point: each component of the datap
ath-such as instruction memory, registers, ALU, and data memory-is used 
within a single pipeline stage. Hence these components, and their control, can 
be associated with a single pipeline stage. 

Now we can uncover a bug in the design of the load instruction. Can you 
see it? Which register is changed in the final stage of the load? More specifical
ly, which instruction supplies the write register number? The instruction in the 
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FIGURE 6.10 MEM: the fourth pipe stage of a store Instruction. In this stage, the data is written into data memory for 
the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipe
line register. 

IF /ID pipeline register supplies the write register number, yet this instruction 
occurs considerably after the load instruction! 

Hence, we need to preserve the register number in the load instruction. Just 
as store passed the register contents from the ID /EX to the EX/MEM pipeline 
registers for use in the MEM stage, load must pass the register number from the 
ID /EX through EX/MEM to the MEM/WB pipeline register for use in the WB 
stage. Another way to think about the passing of the register number is that, 
in order to share the pipelined datapath, we needed to preserve the instruction 
read during the ID stage, so each pipeline register contains a portion of the in
struction needed for that stage and later stages. 

Figure 6.12 shows the correct version of the datapath, passing the write reg
ister number first to the ID/EX register, then to the EX/MEM register, and fi
nally to the MEM/WB register. The register number is used during the WB 
stage to specify the register to be written. Figure 6.13 is a single drawing of the 
corrected datapath, highlighting all five stages of the load instruction in Fig-
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FIGURE 6.11 WB: the final pipe stage of a store instruction. Once the data is written in memory in the previous stage, 
there is nothing left for the store instruction to do, so nothing happens in this stage. 

ures 6.4 to 6.8. (See section 6.7 for an explanation of how to make the branch 
instruction work as expected.) 

Graphically Representing Pipelines 

Pipelining can be difficult to understand, since many instructions are simulta
neously executing in a single datapath in every clock cycle. To aid under
standing there are two basic styles of pipeline figures: multiple-clock-cycle 
diagrams, such as Figure 6.2 on page 369, and single-dock-cycle diagrams, 
such as Figures 6.4 through 6.11. Let's try showing a sequence of instructions 
using both styles of pipeline diagrams for this two-instruction sequence: 

l w  $ 1 0 , 9 ( $ 1 )  
s u b  $ 1 1 , $ 2 , $ 3  

Figure 6.14 shows the multiple-clock-cycle pipeline diagram for these two 
instructions. Time advances from left to right across the page in these dia
grams, and instructions advance from the top to the bottom of the page. A 
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FIGURE 6.12 The corrected pipellned datapath to properly handle the load Instruction. The write register number 
now comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage 
until it reaches the MEM/WB pipeline register. This new path is shown in color. 

representation of the pipeline stages is placed in each portion along the 
instruction axis, occupying the proper clock cycles. These stylized datapaths 
represent the five stages of our pipeline, but a rectangle naming each pipe 
stage works just as well. Figure 6.15 shows the more traditional version of the 
multiple-clock-cycle pipeline diagram. We use multiple-clock-cycle diagrams 
to give overviews of pipelining situations. 

Single-clock drawings show the state of the entire datapath during a single 
clock cycle, and usually all the instructions in the pipeline are identified by la
bels above their respective pipeline stages. We use this type of figure to show 
the details of what is happening within the pipeline during each clock cycle; 
typically, the drawings appear in groups to show pipeline operation over a se
quence of clock cycles for multiple instructions. Figures 6.16 to 6.18 show the 
single-clock cycle pipeline diagrams for these two instructions. 

These two views of the pipeline are equivalent, of course. Taking a single
clock vertical slice from a multiple-clock-cycle diagram shows the state of the 
pipeline in a single-clock-cycle diagram. One confusing aspect is the order of 
instructions in the two diagrams: the newest instruction is at the bottom of the 
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ID/EX EX/MEM MEM/WB 

FIGURE 6.13 The portion of the datapath In Figure 6.12 that Is used In all five stages of a load Instruction. 

multiple-clock-cycle diagram, and it is on the left in the single-clock-cycle dia
gram. 

Converting from a sequence of single-clock-cycle diagrams to a single 
multi-clock-cycle diagram is harder: You must rotate each single-clock draw
ing 90 degrees counter-clockwise to make it fit within a clock boundary, and 
then align the datapaths so that all stages of each instruction occqpy a single 
horizontal line (see Exercise 6.6). 

Elaboration: Because the PC communicates information between two instructions, as 
opposed to within a s ingle instruction, diagrams such as Figure 6.16 show the PC as 
an expl icit register. You could consider it as a pipeline register before the instruction 
fetch stage, or between the write-back stage of one instruction and the instruction 
fetch of the next instruction. The PC would then be drawn as an elongated rectangle 
l i ke the other pipeline registers. 
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FIGURE 6.14 Multlple-clock-c:ycle pipeline diagram of two instructions. See Figure 6.15 for the traditional way to 
draw this diagram, and Figures 6.16 to 6.18 for the single-clock-cycle pipeline diagrams for the same instructions. 

Program 
execution 
order 
(in instructions) j lw $10, 9($1) 

sub $11, $2, $3 

Time ( in clock cycles) ---------------------

cc 1 cc 2 cc 3 cc 4 cc 5 cc 6 

I Instruction Instruction Execution Data 
Write back fetch decode memory 

Instruction Instruction Execution Data Write back I fetch decode memory 

FIGURE 6.15 Tradltlonal multlple-clock-c:ycle pipeline diagram of two Instructions In Figure 6.14. 

• Pipelined Control 

In the 6600 Computer, perhaps even more than in any previous computer, the con
trol system is the difference. 

James Thornton, Design of a Computer: The Control Data 6600, 1970 

Just as we added control to the simple datapath in section 5.2, we now define 
control for the pipelined datapath. We start with a simple design that views 
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the problem through rose-colored glasses; in sections 6.4 through 6.8, we 
remove these glasses to reveal complexities of the real world such as 
branches. 

The first step is to label the control lines on the existing datapath. 
(Figure 6.19 shows those lines.) We borrow as much as we can from the control 
for the simple datapath in Figure 5 .20 on page 293. In particular, we use the 
same ALU control logic, branch logic, register number multiplexor, and con
trol lines. These functions are defined in Figure 5.15 on page 287, Figure 5.21 
on page 294, and Figure 5 .23 on page 296. (We reproduce the key information 
in Figures 6.20 through 6.22 to make the remaining text easier to follow.) 

As for the single clock cycle implementation discussed in Chapter 5, we as
sume that the PC is written on each clock cycle, so there is no separate write 
signal for the PC. By the same argument, there are no separate write signals for 
the pipeline registers (IF/ID, ID/EX, EX/MEM, and MEM/WB), since the 
pipeline registers are also written during each clock cycle. 

To specify control for the pipeline, we need only set the control values dur
ing each pipeline stage. Because each control line is associated with a compo
nent active in only a single pipeline stage, we can divide the control lines into 
five groups according to the pipeline stage: 

1 .  Instruction Fetch: The control signals to read instruction memory and to 
write the PC are always asserted, so there is nothing special to control 
in this pipeline stage. 

2. Instruction Decode/Register Fetch: As in the previous stage, the same 
thing happens at every clock cycle, so there are no optional control lines 
to set. 

3. Execution: The signals to be set are RegDst, ALUop, and ALUSrc (see 
Figures 6.20 and 6.22). The signals select the Result register, the ALU 
operation, and either a register or a sign-extended immediate for the 
ALU. 

4. Memory Stage: The control lines set in this stage are Branch, MemRead, 
and Mem Write. These signals are set by the branch equal, load, and 
store instructions, respectively. 

5. Write Back: The two control lines are MemtoReg, which decides between 
sending the ALU result or the memory value to the registers, and Reg
Write, which writes the chosen value. 

Since pipelining the datapath leaves the meaning of the control lines 
unchanged, we can use the same values per instruction as before. Figure 6.22 
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FIGURE 6.16 Slngle-cycle plpellne diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). The high
lighted portions of the datapath are active in that clock cycle. The load is fetched in clock cycle 1 and decoded in clock cycle 
2, with the subtract fetched in the second clock cycle. 
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FIGURE 8.17 Slngle-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In the third 
clock cycle in the top diagram, l w enters the EX stage. At the same time, s u b  enters ID. In the fourth clock cycle (bottom 
datapath), l w moves into MEM stage, reading memory using the address found in EX/MEM at the beginning of clock 
cycle 4. At the same time, the ALU subtracts and then places the difference into EX/MEM at the end of the clock cycle. 
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FIGURE 6.18 Sln,ie-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In clock 
cycle 5, lw completes by writing the data in MEM/WB into register 10 and s u b  sends the difference in EX/MEM to 
MEM/WB. In the next clock cycle, s u b  writes the value in MEM/WB to a register. 
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FIGURE 6.19 The pipelined datapath of Figure 6.13 with the control signals identified. This datapath borrows the control logic for PC source, reg
ister destination number, and ALU control from Chapter 5. Note that we now need the 6-bit function code of the instruction in the EX stage as input to 
ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6 least significant bits of the immediate 
field in the instruction, so the ID/EX pipeline register can supply them from the immediate field since sign extension leaves these bits unchanged. 
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LW 00 load word xxxxxx add 010 

SW 00 store word xxxxxx add 010 

Branch equal 01 branch equal xxxxxx subtract 110 

R-type 10 add 100000 add 010 

R-type 10 subtract 100010 subtract 110 

R-type 10 AND 100100 and 000 

R-type 10 OR 100101 or 001 

R-type 10 set-on-less-than 101010 set-on-less-than 111 

FIGURE 6.20 A copy of Figure 5.15 from page 287. This figure shows how the ALU control 
bits are set depending on the ALUOp control bits and the different function codes for the R-type 
instruction. 

: Signaf,name 
-

,;._· �Effect wtien deasserted'(O) ·�'.�=����.!!f.§t'-'h�serted !1!111111 
MemRead None. Data memory contents at the read address are put 

on read data output. 

MemWrite None_ Data memory contents at address given by write 
address are replaced by value on write data input 

ALUSrc The second ALU operand comes from the second The second ALU operand is the sign-extended 
register file output. lower 16 bits of the instruction . 

RegDst The register destination for the register write The register destination number for the register 
comes from the rt field. write comes from the rd field. 

RegWrite None. The register given by write register number input is 
written into with the value on the write data input. 

PCSrc The PC is replaced by the output of the adder that The PC is replaced by the output of the adder that 
computes the value of PC + 4. computes the branch target. 

MemtoReg The value fed to the register write data input The value fed to the register write data input 
comes from the ALU. comes from the data memory. 

FIGURE 6.21 A copy of Figure 1.21 from page 294. The function of each of seven control signals is defined. The ALU 
control lines (ALUop) are defined in the leftmost column of Figure 6.20. When a 1-bit control to a two-way multiplexor is 
asserted, the multiplexor selects the input corresponding to 1 .  Otherwise, if the control is deasserted, the multiplexor 
selects the 0 input. Note that PCSrc is controlled by an A N D  gate in Figure 6.19; if the branch signal and the ALU Zero signal 
are both set, then PCSrc is 1; otherwise it is 0. Control sets the branch signal only during a b e q  instruction; otherwise, 
PCSrc is set to 0. 

is the same as Figure 5.23 on page 296, except that the control lines have been 
grouped by pipeline stage. 

Implementing control means setting the nine control lines to these values in 
each stage for each instruction. The simplest way to do this is to extend the 



388 Chapter 6 Enhancing Performance with Pipelining 

Execution stage Memory stage Write back stage 
control lines control lines control l ines 

Reg ALU ALU ALU Mem Mem Reg Memto 
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l w  0 0 0 1 0 1 0 1 1 
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FIGURE 6.22 The values of the control lines are the same as In Figure 5.23 on page 296, but they have been shuf.. 
fled into three groups corresponding to the last three pipeline stages. 

Instruction 

I F/ ID ID/EX EX/MEM MEM/WB 

FIGURE 6.23 The control lines for the final three stages. Note that four of the nine control 
lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM 
pipeline register extended to hold the control lines; three are used during the MEM stage; and the 
last two are passed to MEM/WB for use in the WB stage. 

pipeline registers to include control information. Returning to our automotive 
analogy, imagine a note placed in the car frame saying "Install Corinthian 
leather interior"; this note would be passed along but ignored until it reached 
the upholstery stage. The note can be removed once the leather is installed. 

Since the optional control lines start with the EX stage, we can create the 
control information during instruction decode. Figure 6.23 shows that these 
control signals are then used in the appropriate pipeline stage as the instruc
tion moves down the pipeline, just as the write register number for loads 
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moves down the pipeline in Figure 6.12 on page 379. Figure 6.24 shows the full 
datapath with the extended pipeline registers and the control lines connected 
to the proper stage. 

Show these five instructions going through the pipeline: 
l w  $ 1 0 , 9 ( $ 1 )  
s u b  $ 1 1 , $ 2 , $ 3  
a n d $ 1 2 ,  $ 4 , $ 5  
o r  $ 1 3 , $ 6 , $ 7  
a d d  $ 1 4 , $ 8 , $ 9  

Label the instructions in the pipeline that precede the l w a s  b e f o r e  < l > , 
b e f o r e  < 2  >, . . .  , and the instructions after the a d d  as a f t e r  < l > , a f t e r  < 2 > , 

Figures 6.25 through 6.29 show these instructions proceeding through the 
nine clock cycles it takes them to complete execution, highlighting what is 
active in a stage and identifying the instruction associated with each stage 
during a clock cycle. 

Reviewing these figures carefully will give you insight into how pipelines 
work. A few items you may notice: 

• Although one instruction begins each clock cycle, an individual instruc
tion still takes five clock cycles to complete. 

• In Figure 6.27 you can see the sequence of the destination register num
bers from left-to-right at the bottom of the Pipeline Registers. The num
bers advance to the right during each clock cycle, with the MEM/WB 
pipeline register supplying the number of the register written during 
the WB stage. 

• Note that it takes four clock cycles before the five-stage pipeline is op
erating at full efficiency, as shown in Figure 6.27. 

• When a stage is inactive, the values of the control lines are deasserted 
(shown as 0 in the figures), to prevent anything from occurring. 
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• In contrast to Chapter 5, where sequencing of control required special 
hardware, sequencing of control is embedded by the pipeline structure 
itself. All instructions take the same number of clock cycles, and all con
trol information is computed during instruction decode and then 
passed along by the pipeline registers. 

II Data Hazards 

The example in the previous section shows the power of pipelined execution 
and how the hardware performs the task. It's now time to take off the rose
colored glasses and look at what happens with real programs. 

The instructions in Figures 6.25 through 6.29 were independent; none of 
them used the results calculated by any of the others. Let's look at a sequence 
with many dependencies, shown in color: 

s ub $ 2 , $ 1 , $ 3  # Re g i s t e r  $ 2  w r i t t e n  b y  s u b  
a n d  $ 1 2 , $ 2 , $ 5  # 1 s t  ope r a n d ( $ 2 )  d e p e n d s  o n  s u b 
o r  $ 1 3 , $ 6 ,  $ 2  # 2 n d  o p e r a n d ( $ 2 )  d e p e n d s  o n  s u b  
a d d  $ 1 4 , $ 2 , $ 2  # l s t ( $ 2 )  & 2 n d ( $ 2 )  d e p e n d  o n  s u b  
s w  $ 1 5 , 1 0 0 ( $ 2 ) # I n d e x ( $ 2 )  d e p e n d s  o n  s u b  

The last four instructions are all dependent on the result in register $2 of the 
first instruction. If register $2 had the value 10 before the subtract instruction 
and -20 afterwards, the programmer intends that -20 will be used in the 
instructions that refer to register $2. 

How would this sequence perform with our pipeline? Figure 6.30 illustrates 
the execution of these instructions. Like Figure 6.2 on page 369, a simplified 
version of the datapath is shown for each instruction, with each datapath 
aligned to the appropriate clock cycle; program execution goes down the page 
instruction by instruction and time marches across the page in clock cycles. To 
demonstrate the execution of this instruction sequence in our current pipeline, 
the top of Figure 6.30 shows the value of register $2 at the beginning of each 
clock cycle. 

To maintain proper time order, this stylized datapath breaks the register file 
into two logical halves: registers read during ID and registers write during 
WB. This split makes sense, because the halves are logically joined only when 
the same register is being read and written. For now it's helpful to think of the 
read half and write half as separate resources, but we'll address this factor 
shortly. 
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FIGURE 6.25 Clock cycles 1 and 2. The top datapath shows what is active in the first clock cycle, and the bottom shows 
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l w, are written into the ID /EX pipeline register. "X" means an unused field in l w. The number 10, representing the destina
tion register number of l w, is also placed in ID /EX. The top of the pipeline register shows the control values for l w to be 
used in the remaining stages. (page 392) 
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FIGURE 6.26 Clock cycles 3 and 4. In the top diagram, l w enters the EX stage in the third clock cycle, adding $1 and 9 to 
form the effective address in the EX/MEM pipeline register. At the same time, s u b  enters ID, reading registers $2 and $3, 
and the a n d  instruction starts IF. In the fourth clock cycle (bottom datapath), l w moves into MEM stage, reading memory 
using the value in EX/MEM as the effective address. In the same clock cycle, the ALU subtracts $3 from $2, places the dif
ference into EX/MEM, a n d  reads registers $4 and $5 during ID, and the o r  instruction enters IF. The two diagrams show 
the control signals being created in the ID stage and peeled off as they are used in subsequent pipe stages. (page 393) 
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FIGURE 6.27 Clock cycles 5 and 6. With a d d  entering IF in the top datapath, all instructions are engaged. The final 
instruction in this example, "after<i>" means the ith instruction after a d d .  By writing the data in MEM/WB into register 
10, l w completes; both the data and the register number are in MEM/WB. Then s u b  sends the difference in EX/MEM to 
MEM/WB, and the rest of the instructions move forward. In the next clock cycle, s u b  selects the value in MEM/WB to 
write to register number 11, again found in MEM/WB. The remaining instructions play follow-the-leader: the ALU calcu
lates the OR of $6 and $7 for the o r  instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the a d d  
instruction. (page 394) 
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FIGURE 8.28 Clock cycles 7 and 8. In the top datapath, the a d d  instruction brings up the rear, adding the values corre
sponding to registers $8 and $9 during the EX stage. The result is passed from EX/MEM to MEM/WB in the MEM stage 
for the o r  instruction, and the WB stages write the results in MEM/WB to register $12 to finish the a n d  instruction. Note 
that the control signals are deasserted (set to 0) in the ID stage, since no instruction is being executed. In the following clock 
cycle (lower drawing), the WB stage writes the result to register $13, thereby completing o r, and the MEM stage passes the 
sum in EX/MEM to MEM/WB. (page 395) 
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IF: atter<4> i ID: after<3> j EX: after<2> 
.------�--------� 

... ._ .... 
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i MEM: after<1> i WB: add $14, $8, $9 
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FIGURE 6.29 Clock cycle 9. The WB stage writes the sum in MEM/WB into register $14, completing a d d  and the five
instruction sequence. 

Figure 6.30 shows that the values read for register $2 would not be the result 
of the s u b  instruction unless the read occurred during clock cycle 6 or later. 
The only instruction that would use the correct value of -20 is the final store 
instruction; a n d ,  o r, and a d d  would all use the incorrect value 10. Using this 
style of drawing, such problems become apparent when a dependence line 
goes backwards in time. Thus, in Figure 6.30, we see problems with a n d , o r, 
and a d d  instructions because they are dependent on a value written later. 

Such dependencies are called data hazards, and they are one reason that 
high-performance pipelines are hard to design: for hardware, for software, or 
for both. 
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Time (in clock cycles) --------------. 

cc 1 

Value of register $2: 10 

Program 
execution 
order 
(in instructions) 

sub $2 . $1, $3 

and $12. $2 . $5 

or $13, $6, $2 

add $14, $2 . $2 

SW $15, 100:$2) 

cc 2 cc 3 

10 10 

cc 4 cc 5 cc 6 cc 7 CC B cc 9 

10 10 -20 -20 -20 -20 

FIGURE 6.30 Plpellned dependencies In a flv•lnstructlon sequence using slmpllfled datapaths to show the 
dependencies. All the dependent actions are shown in color, and "CC i" at the top of the figure means clock cycle i. The 
first instruction writes into $2, and all the following instructions read $2. This register is written in clock cycle 5, so the 
proper value is unavailable before clock cycle 6. The colored lines from the top datapath to the lower ones show the depen
dencies. Those that must go backwards in time are called pipeline data hazards. Note that the registers have read and write 
halves. 

Example For this code from the inner loop of the MIPS sort program, found in 
Figure 3.21 on page 144, draw a figure like Figure 6.30 showing the data 
hazards as backwards dependencies: 

a d d  $ 1 6 , $ 1 8 ,  $ 1 5  # r e g  $ 1 6  v + ( j *4 ) 
l w  $ 2 4 , 0 ( $ 1 6 )  # r e g  $ 2 4  v [ j ]  
l w  $ 2 5 , 4 ( $ 1 6 )  # r e g  $ 2 5  v [ j + l ] 
s l t  $ 1 , $ 2 5 , $ 2 4  # r e g  $ l = O i f $ 2 5  � $ 24 
b e q  $ 1 , $ 0 , e x i t 2 # g o  t o  e x i t 2  i f  $ 2 5  � $ 2 4  
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Answer Figure 6.31 shows the five data hazards. The first two revolve around the 
writing of register $16 by a d d  and the reading of it by the two loads. The 
third is the writing of $24 by the first l w and reading by s l t; the fourth is 
the writing of $25 by the second l w and the reading again by s l t; the final 
data hazard is the writing of $8 by s l t and the reading of it by beq .  

Time (in clock cycles) ---------------+ 

cc 1 

Value of register $16: 10 

Program 
execution 
order 
(in instructions) 

add $16. $18, $15 

lw $24. 0($16) 

lw $25. 4($16) 

sit $& $25. $24 

cc 2 cc 3 CC 4 cc 5 

10 10 10 10 

CC 6 cc 7 CC 8 CC 9 

-20 -20 -20 -20 

FIGURE 6.31 Plpellnecl dependencies In another five-instruction sequence. All the dependent actions are shown in 
color, and "CCi" at the top means clock cycle i. The first instruction writes into $16, and the next two loads read $16, caus
ing two data hazards. They in turn write $24 and $25 which are read by the S l t instruction, causing two more data haz
ards. The final data hazard is that the s l t writes $8 and b e q  reads $8. 
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Hardware 

Software 

Interface 

In the next two sections, we'll see hardware schemes for re
solving data hazards. One alternative strategy is to legislate 
data hazards out of existence: the compiler is forbidden to 
generate sequences such as the five instructions above. For 
example, the compiler would insert three independent in-
structions between the s u b  and the a n d  instructions, thereby 
making the hazard disappear. When no such instructions 

can be found, the compiler inserts instructions guaranteed to be independent: 
n o p  instructions. The abbreviation stands for "no operation," because n o p  nei
ther reads a register, modifies data, nor writes a result. The code below uses 
n o p  instructions to get the proper result: 

s u b  $ 2 , $ 1 , $ 3  
n o p  
n o p  
n o p  
a n d  $ 1 2 .  $ 2 ,  $ 5  
o r  $ 1 3 ,  $ 6 , $ 2  
a d d  $ 1 4 ,  $ 2 ,  $ 2  
S W  $ 1 5 , 1 00 ( $ 2 )  

Although this code works properly for this pipeline, these three n o  p 's occupy 
three dock cycles that do no useful work. Ideally, the compiler will find 
instructions to perform to help the computation, replacing these idle instruc
tions. Exercise 6.8 is an example of trying to schedule instructions to avoid haz
ards. 

• Control for Data Hazards: Stalls 

If at first you don't succeed, redefine success. 

A saying 

The simplest approach to resolving data hazards in hardware is to stall the 
instructions in the pipeline until the hazard is resolved. In the example in 
Figure 6.30, this means stalling the instructions following the initial s u b  
instruction until data can be read during clock cycle 6. Computer designers 
whimsically gave the nickname bubble to a stall of instructions in the pipeline, 
but remember that bubble is just a cute name for a pipeline stall. 
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With this strategy, one first detects a hazard and then stalls instructions in 
the pipeline (inserts bubbles) until the hazard is resolved. On closer inspection, 
we see that the hazard occurs exactly when an instruction tries to read a regis
ter in its ID stage that an earlier instruction intends to write in its WB stage. A 
notation that names the fields of the pipeline registers allows for a more pre
cise notation. For example, "IF / ID.ReadRegisterl"  refers to the number of the 
register found in the pipeline register IF / ID; that is, the first port of the register 
file. The first part of the name, to the left of the period, is the name of the pipe
line register; the second part is the name of the field in that register. Using this 
notation, the three pairs of hazard conditions are 

la.  
lb. 
2a. 
2b. 
3a. 
3b. 

ID /EX.WriteRegister 
ID/EX.WriteRegister 
EX/MEM.WriteRegister 
EX/MEM.WriteRegister 
MEM/WB.WriteRegister 
MEM/WB.WriteRegister 

= IF / ID.ReadRegisterl 
= IF / ID.ReadRegister2 
= IF /ID.ReadRegisterl 
= IF / ID.ReadRegister2 
= IF /ID.ReadRegisterl 
= IF /ID.ReadRegister2 

The hazard in the sequence on page 390 is on register $2, between the result of 
s u b $ 2 , $ 1  , $ 3 and the first read operand of a n d  $ 1 2  , $ 2 , $ 5 .  This hazard is 
detected when the a n d  instruction is in the ID stage and the prior instruction 
is in the EX stage, so this is hazard la: 

ID/EX.WriteRegister = IF/ ID.ReadRegisterl = $2. 

Classify the data hazards in this sequence from page 390: 
s u b  $ 2 . $ 1 , $ 3  II Re g i s t e r  $ 2  s e t  b y  s u b 
a n d  $ 1 2 ,  $ 2 , $ 5  II 1 s t o p e r a n d ( $ 2 l  s e t  b y  s u b  
o r  $ 1 3 .  $ 6 , $ 2  II 2 n d  o p e r a n d ( $ 2 l  s e t  b y  s u b  
a dd $ 1 4 ,  $ 2 , $ 2  II l s t ( $ 2 )  & 2 n d ( $ 2 )  s e t  by s u b  
s w  $ 1 5 ,  1 00 ( $ ? ) II I n d e x ( $ 2 )  s e t  b y  s u b  

As mentioned above, the s u b-a n d  hazard is type la. The remaining hazards: 

• The s u b-o r hazard is condition 2b: 
E X / M E M . W r i t e Reg i s t e r  = I F / I D . Re a d Reg i s t e r 2  = $ 2 ; 

• The first s u b-a d d  hazard is condition 3a: 
M EM / W B . W r i t e Re g i s t e r  = I F / I O . R e a d Reg i s t e r l  $ 2 ; 

• The second s u b- a d d  hazard is condition 3b: 
M E M / W B . W r i t e Re g i s t e r  = I F / I D . Re a d Re g i s t e r 2  $ 2 . 



Program 
execution 
order 
(in instructions) 

sub $2, $1, $3 

and $12, $2, $5 

or $13. $6, $2 

add $14, $2, $2 

SW $15, 100:$2) 
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There is no data hazard between s u b  and s w because s w reads $2 after s u b  
writes $2. 

If there is a data hazard, then stalling the dependent instruction in the ID 
stage until the instruction causing the dependency completes makes the haz
ard disappear. Figure 6.32 shows how inserting three bubbles before the ID 
stage of the a n d  instruction removes the problem in Figure 6.30. 

Because some instructions do not write registers, this policy is conservative; 
sometimes there will be unnecessary stalls. One solution is simply to check to 
see if the RegWrite signal will be active: examining the WB control field of the 
pipeline register during the ID, EX, and MEM stages determines if RegWrite is 
asserted. Finally, because the ID /EX register has two WriteRegister fields, we 
must also use the RegDst signal in the EX stage to select the proper register 
number for the write port. We'll show this in more detail below. 

Now that we can detect hazards, half of the problem is resolved-but we 
must still stall instructions. If the instruction in the ID stage is stalled, then the 
instruction in the IF stage must also be stalled; otherwise, we would lose the 
fetched instruction. Preventing these two instructions from making progress 
is accomplished simply by changing neither the PC register nor the IF /ID 
pipeline register. Provided these registers are preserved, the instruction in the 

Time (in clock cycles) ----------+ 

cc 1 cc 2 CC 3 cc 4 cc 5 cc 6 cc 7 CC 8 cc 9 

FIGURE 6.32 The pipelined instruction sequence of Figure 6.30 with three bubbles inserted to resolve the data 
hazard. Note that by resolving the data hazard for the a n d  instruction, the bubbles also resolve hazards for all instructions 
that follow the a n d  instruction. 
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IF stage will continue to be read using the same PC, and the registers in the ID 
stage will continue to be read using the same instruction in the IF /ID pipeline 
register. 

To stall the pipeline, we need to get the same effect as inserting n o  p instruc
tions, as in the Hardware/Software Interface section on page 399, but this time 
the n o p  "instructions" begin in the EX pipeline stage. In Figure 6.22 on page 
388, we see that deasserting all nine control signals (setting them to 0) in the 
EX, MEM, and WB stages will create a "do nothing" instruction. Hence, the 
easiest way to insert a bubble in the pipeline is to change the EX, MEM, and 
WB control fields of the ID /EX pipeline register to 0. These benign control val
ues are percolated forward at each clock cycle with the proper effect: no reg
isters or memories are written if the control values are all 0. Figure 6.32 is a 
shorthand representation of what really happens in the hardware. Just like an 
air bubble in a water pipe, a stall bubble proceeds down the instruction pipe 
and exits at the far end. The a n d  instruction sits in the IF /ID pipeline register 
for three cycles and launches three separate bubbles into the pipe, shown in 
Figure 6.33. 

Now that we know how to detect hazards and cause stalls in the pipeline, 
we can specify the hardware to implement stalls. Figure 6.34 highlights the 
modified datapath with a new Hazard Detection Unit controlling the writing of 
the PC and IF /ID registers plus the multiplexors that choose between the real 
control values and all Os. The Hazard Detection Unit stalls and deasserts the 
control fields if any of the three hazard tests below are true, relying on a few 
logic gates to implement these tests: 

1 .  EX hazard: 

ID/EX.RegWrite and 
((ID/EX.RegDst = 0 and ID/EX.WriteRegisterRt = IF/ID.ReadRegisterl )  or 
(ID/EX.RegDst = 1 and ID/EX.WriteRegisterRd = IF/ID.ReadRegisterl) or 
(ID/EX.RegDst = 0 and ID/EX.WriteRegisterRt = IF/ID.ReadRegister2) or 
(ID/EX.RegDst = 1 and ID/EX.WriteRegisterRd = IF/ID.ReadRegister2)) 

The first test is more complicated because we need to know if the oper
ation is a load or an R-format instruction (RegDst = 0 or 1) to select the 
proper destination register number (load uses WriteRegisterRt and 
R-format uses WriteRegisterRd). 

2. MEM hazard: 

EX/MEM.RegWrite and 
((EX/MEM.WriteRegister = IF /ID.ReadRegisterl) or 
(EX/MEM.WriteRegister = IF /ID.ReadRegister2)) 

Here the hazard is between instructions in the ID and MEM stages. 



Program 
execution 
order 
(in instructions) 

sub $2. $1, $3 

stall 

stall 

stall 

and $12, $2, $5 

or $13. $6. S2 

add $14. $2. $2 

SW $15, 100($2) 

6.5 Control for Data Hazards: Stalls 

Time (in clock cycles) -----------+ 

cc 1 cc 2 cc 3 CC 4 cc 5 

ml1���1 LU1fL. .. 
cc 6 
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cc 7 cc 8 cc 9 cc 10 cc 11 cc 12 

FIGURE 6.33 A version of Figure 6.32, showing the way stalls are really inserted into the pipeline. Since the 
dependencies go forward in time, there are no data hazards. Note that the three stall clock cycles, shown as bubbles in 
Figure 6.30, are similar to the n o  p instructions placed by the compiler in the example on page 399. 

3. WB hazard: 

MEM/WB.RegWrite and 
((MEM/WB.WriteRegister = IF /ID.ReadRegisterl )  or 
(MEM/WB.WriteRegister = IF /ID.ReadRegister2)) 

This WB hazard can be avoided, depending on what happens when a 
register is read and written in the same clock cycle: if the read delivers 
what is written, as is the case for many implementations of register 
files, the hazard will disappear. We assume it is a hazard in this section. 
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FIGURE 6.34 The Hazard Detection Unit stops the PC and IF /ID pipeline register from being written and selects 
Os for the control values in the ID/EX pipeline register if it detects a hazard. It uses the destination register number 
and write register signals from the last three pipeline registers to determine a hazard, the current instruction in the ID 
stage, plus the bit from the ID/EX pipeline register that selects the destination register. 

Example Find the hazards and show the stalls in the pipeline as a result of the haz
ards in this instruction sequence: 

s u b  $ 2 . $ 1 , $ 3  
a n d $ 4 , $ 2 , $ 5  
o r  $ 8 , $ 2 , $ 6  
a d d  $ 9 , $ 4 , $ 2  
s l t $ 1 , $ 6 , $ 7  
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There are data hazards for register $2 between the first two instructions and 
for register $4 between the second and fourth instructions. Although there 
are also dependencies on register $2 between s u b  and the third and fourth 
instructions, just as in Figure 6.33 the resolution of the data hazard for the 
second instruction also removes any hazards on that register for following 
instructions. 

Figures 6.35 through 6.40 show the events in clock cycles 2-13 in the ex
ecution of these instructions. In clock cycle 3, the Hazard Detection Unit 
sees the writing by the s u b  instruction of register $2 in the EX stage while 
the a n d  instruction in the ID stage is reading register $2. The HDU stalls the 
pipeline in clock cycles 4-6, allowing the s u b  instruction to write its result 
and the a n d instruction to read the new value. The next hazard is detected 
in clock cycle 8, when the write of register $4 by the a n d instruction in the 
MEM stage conflicts with the reading of register $4 by the a d d  instruction 
in the ID stage. After the new value is written (clock cycle 9), the a d d  reads 
the correct value in clock cycle 10, and the HDU allows the pipeline to con
tinue. 

Ell1bt:11rll!1ticlln: Just as we became less conservative on stal ls by checking to see if the 
first instruction real ly writes the register, a simi lar improvement occurs by preventing a 
match on ReadRegister2 for loads, because loads use only ReadRegister1. For exam
ple, this pair of assembly language instructions: 

a d d $ 8 , $ 1 , $ 2  
l w  $ 8 , 1 2 0 0 ( $ 5 )  

looks l ike this in machine language: 

op rs rt 

0 1 2 

35 5 8 

(rd) (shamt) address/funct 

8 0 32 

1200 

As you can see, the 8 in the rt field of the second instruction would lead to a stal l  if 

the second instruction was an R-format instruction; since it is a load , and the rt field 
gives the destination register, this combination should not sta l l .  Hence , we should pre
vent sta l ls  on matches of ReadRegister2 from loads. 

A further enhancement concerns register $0 in the MIPS architecture; $0 can never 
change from the value 0, so sta l ls  due to writing and reading register $0 should also 
be prevented. 

(Elaboration continues on page 412) 
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EX/MEM WnteReg1s1er ' ' I ' ' 
' ' MEM(WB.Wr1teReg1ster : 

Clo ck 3 I ' ' 
I ' ' ' ' ' 

FIGURE 6.35 Clock cycles 2 and 3 of the Instruction sequence In the example. The values of the significant control 
lines, registers, and register numbers are labeled in the figures. The a n d  instruction wants to read the value created by the 
s u b  instruction, so the Hazard Detection Unit stalls the a n d and o r  instructions in clock cycle 3 until the hazard is resolved 
in clock cycle 6 (see Figure 6.37). 
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FIGURE 6.36 Clock cycles 4 and 5 of the instruction sequence in the example. The stall continues in these two clock 
cycles as a result of the hazard. Note that although the correct value for register $2 is written by the end of clock cycle 5, the 
value read during that clock cycle and loaded into the ID JEX pipeline register is the old value. The pipeline must therefore 
stall one more clock cycle to allow the correct value to be loaded into the pipeline register. 
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FIGURE 6.37 Clock cycles 6 and 7 of the Instruction sequence In the example. The a n d instruction is allowed to 
proceed in clock cycle 6, with the rest of the instructions progressing as long as the HDU detects no hazards. Note that 
there is no instruction in the Datapath writing register $2 any longer, so the o r  instruction can proceed as well. 
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FIGURE 6.38 Clock cycles 8 and 9 of the Instruction sequence In the example. In clock cycle 8, register $ 4  is a haz
ard between the a n d  instruction in the MEM stage and a d d  instruction in the ID stage, so the HOU stalls the a d d  and s l t 
instructions in clock cycle 9. 
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FIGURE 6.39 Clock cycles 10 and 11 of the instruction sequence in the example. The stalled s l t and a d d  instruc
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FIGURE 8.40 Clock cycles 12 and 13 of the Instruction sequence In the example. The a d d  instruction stalled in 
Figure 6.39 completes in clock cycle 13. 
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A final remark is that the hazard checking occurs between the instruction in the ID 
stage and the instructions in their EX, MEM , and WB stages. Th is  checking occurs i n  
the middle of the clock cycle, and i t  works as  long as  the machine knows whether to 
zero the control l ines via the multiplexor by the end of the clock cycle.  The first hazard 
cou ld be simpler if we were wi l l i ng to look at the opcode bits during the ID stage to 
determine whether the destination register number was for a load or an R-format 
instruction. 

II Reducing Data Hazards: Forwarding 

There is less in this than meets the eye. 

Tallulah Bankhead, Remark to Alexander Wollcott, 1922 

Stalling the pipeline guarantees correct execution when the compiler gener
ates dependent instructions near each other, but the cost of correctness is 
lower performance. If we look more carefully at Figure 6.30 on page 397, we 
see that the value needed by the a n d  instruction as the input to the ALU in 
clock cycle 4 actually exists in the ALUResult field of the EX/MEM pipeline 
register of the s u b  instruction. Similarly, the input to the ALU for the follow
ing o r  instruction can be found in the MEM/WB pipeline register of the s u b  
instruction. If we change the register file so that it will supply the value writ
ten if the read and the write are to the same register, the datapath can supply 
the operand for the a d d  instruction as well. Using the same argument that we 
don't have to stall as long as there are no backwards dependencies, 
Figure 6.41 shows the dependencies between the pipeline registers and the 
inputs to the ALU for the same code sequence as in Figure 6.30. The change is 
that the dependency begins from a pipeline register rather than waiting for the 
WB stage to write the instruction set registers. The required data exists in the 
pipeline registers in time to be used by later instructions, suggesting a short
cut that might reduce performance losses from stalling. 

If we can take the inputs to the ALU from any pipeline registers rather than 
just ID/EX, the pipeline can proceed without stalls. This technique, using tem
porary results instead of waiting for the registers to be written, is called for
warding or bypassing. By adding multiplexors to the input of the ALU and by 
supplying control similar to the Hazard Detection Unit, we can run the pipe
line at full speed in the presence of these data hazards. 

For now, we will assume the only instructions we need to forward are the 
four R-format instructions: a d d,  s u b, a n d, and o r . Figure 6.42 shows a close
up of the ALU and pipeline register before and after adding forwarding. 
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Time (in clock cycles) 

cc 1 cc 2 cc 3 cc 4 cc 5 

10 10 10 10 10/-20 

x x x -20 x 
x x x x -20 
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cc 6 cc 7 cc 8 cc 9 

-20 -20 -20 -20 

x x x x 
x x x x 

FIGURE 6.41 The dependencies between the pipeline registers move forward in time, so it is possible to supply 
the Inputs to the ALU needed by the and Instruction and or instruction by forwarding the results found In the 
pipeline registers rather than stall. The values in the pipeline registers show that the desired value is available before it 
is written into the register. We assume that the register file forwards values that are read and written during the same clock 
cycle, so the a d d  does not stall, but the values come from the register file instead of a pipeline register. Register file for
warding is why clock cycle 5 shows register $2 having the value 10 at the beginning and -20 at the end of the clock cycle. 

Figure 6.43 shows the values of the control lines for the ALU multiplexors that 
select either the normal register values or one of the forwarded values. 

This forwarding control will be in the EX stage, because the ALU forward
ing multiplexors are found in that stage. Thus, we must pass the register num
bers from the ID stage via the ID /EX pipeline register, to determine whether 
to forward values. The two conditions for forwarding and the location of the 
result are as follows: 

1. EX hazard: 

if (EX/MEM.RegWrite 
and (EX/MEM.WriteRegister = ID/EX.ReadRegisterl)) ALUSelA = 01 
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FIGURE 6.42 On the top are the ALU and plpellne registers before adding forwarding. On the bottom, the multiplex
ors have been expanded to add the forwarding paths, and we show the Forwarding Unit. The new hardware is shown in 
color. 
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1· Mux control Source Explanation - .. � r �. -- 1-r� 
�". -.. 

ALUSelA = 00 ID/EX The first ALU operand comes from the normal registers. 

ALUSelA = 01 EX/MEM The first ALU operand is forwarded from the prior ALU result. 

ALUSelA = 10 MEM/WB The first ALU operand is forwarded from data memory or an earlier ALU result. 

ALUSelB = 00 ID/EX The second ALU operand comes from the normal registers. 

ALUSelB = 01 EX/MEM The second ALU operand is forwarded from the prior ALU result. 

ALUSelB = 10 MEM/WB The second ALU operand is forwarded from data memory or an earlier ALU result. 

FIGURE 6.43 The control values for the forwarding multiplexors In Figure 6.42. The signed immediate that is another 
input to the ALU is described in the elaboration at the end of this section. 

if (EX/MEM.RegWrite 
and (EX/MEM.WriteRegister = ID/EX.ReadRegister2)) ALUSelB = 01 

This case forwards the result from the previous instruction to either 
input of the ALU. 

2. MEM hazard: 

if (MEM/WB.RegWrite 
and (MEM/WB.WriteRegister = ID/EX.ReadRegisterl))  ALUSelA = 10 

if (MEM/WB.RegWrite 
and (MEM/WB.WriteRegister = ID/EX.ReadRegister2)) ALUSelB = 10 

This case has the same register number matching, but the forwarded 
value is determined by whether this instruction depends on an ALU 
operation (MemtoReg = 0) or a load instruction (MemtoReg = 1) .  

There is no third hazard, because we assume in this section that the register 
file supplies the correct result if the instruction in the ID stage reads the same 
register written by the instruction in the WB stage. This revised register file is 
another form of forwarding, but it occurs within the register file. 

One complication is that hazards can occur in both EX and MEM stages for 
the same ALU input. For example, when summing a vector of numbers in a 
single register, a sequence of instructions will all read and write to the same 
register. In this case, priority goes to the EX hazard, because it is found in the 
instruction nearest the instruction in the ID stage in the program execution or
der. Thus, the control for the MEM hazard would be: 

if (MEM/WB.RegWrite 
and (EX/MEM.WriteRegisterRt i= ID/EX.ReadRegisterl) 
and (MEM/WB.WriteRegister = ID/EX.ReadRegisterl))  ALUSelA = 10 
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if (MEM/WB.RegWrite 
and (EX/MEM.WriteRegisterRt =t= ID/EX.ReadRegister2) 
and (MEM/WB.WriteRegister = ID/EX.ReadRegister2)) ALUSelB = 10 

Figure 6.44 shows the hardware necessary to support forwarding multi
plexors on the inputs to the ALU controlled by the Forwarding Unit. 

Show how forwarding works with the instruction sequence from the previ
ous example: 

s u b  $ 2 , $ 1 , $ 3  
a n d  $ 4 , $ 2 , $ 5  
o r  $ 8 ,  $ 2 , $ 6  
a d d  $ 9 , $ 4 , $ 2  
s l t $ 1 , $ 6 , $ 7  

Figures 6.45 and 6.46 show the events in clock cycles 3-6 in the execution of 
these instructions. In clock cycle 4, the Forwarding Unit sees the writing by 
the s u b instruction of register $2 in the MEM stage while the a n d  instruction 
in the EX stage is reading register $2. The Forwarding Unit selects the 
EX/MEM pipeline register instead of the ID /EX pipeline register as the up
per input to the ALU to get the proper value for register $2. The following 
o r  instruction also reads register $2, so the Forwarding Unit selects the 
MEM/WB pipeline register for the upper input to the ALU in clock cycle 5. 
The following a d d  instruction reads both register $4, the target of the a n d  in
struction, and register $2, still the target of the s u b  instruction. In clock cycle 
6, the Forwarding Unit thus selects the MEM/WB pipeline register for the 
upper ALU input and the new ID/EX pipeline register for the lower ALU 
input. 

Comparing these figures to Figures 6.35 through 6.40 on pages 406 to 
411, we see that forwarding takes 8 clock cycles to complete the a d d  instruc
tion; stalling took 13 clock cycles to complete the same amount of work. This 
large reduction in clock cycles for the relatively small increase in hardware 
complexity is the reason why almost all pipelined machines today provide 
some form of forwarding. 

Adding forwarding removes the datapath hazards, because a hazard can be 
defined only with respect to particular hardware-hence the name Forward
ing Unit rather than Hazard Forwarding Unit. 
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FIGURE 6.44 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 6.34 on page 404, the additions are 
the multiplexors to the inputs to the ALU. This figure is also a stylized drawing, leaving out details from the full datapath such as the branch hardware 
and the sign-extension hardware. 
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FIGURE 6.45 Clock cycles 3 and 4 of the Instruction sequence In the example on page 416. The bold lines show 
ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The Forwarding Unit is high
lighted by shading it when it is forwarding data to the ALU. 
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FIGURE 6.46 Clock cycles 5 and 6 of the Instruction sequence In the example on page 416. The bold lines show 
ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The Forwarding Unit is high
lighted when it is forwarding data to the ALU. The a d d  completes in two more clock cycles. 
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Time (in clock cycles) ----------------+ 

cc 1 cc 2 cc 3 cc 4 cc 5 CC 6 cc 7 cc s cc 9 

FIGURE 6.47 A pipelined sequence of instructions, this time replacing the "sub" in Figure 6.41 with a load 
instruction. Since the dependence between the load and the following instruction ( a n d) goes backwards in time, this haz
ard cannot be solved by forwarding. Hence, this combination must result in a stall by the Hazard Detection Unit. 

Elaboration: There is another compl ication to the conditions for forwarding data. 
MIPS requires that register $0 never be changed, so every use of $0 must supply a 0 
as an operand. The conditions above thus work properly as long as I D/EX.ReadRegis
teri '#- 0 and I D/EX.ReadRegister2 '#- 0. 

One alternative to the explanation of forwarding in  this section is to determine the 
control of the multiplexors on the ALU i nputs during the ID stage, setting those values 
in  new control fields of the I D/EX pipel ine register. The hardware may be faster, 
because the time to select the ALU inputs is l ikely to be on the critical path. 

Forwarding with Loads and Stores 

Alas, there is one case when forwarding cannot save the day-when an 
instruction tries to read a register following a load instruction that writes the 
same register. Figure 6.47 illustrates the problem. The data is still being read 
from memory in clock cycle 4 while the ALU is performing the operation for 
the following instruction. In this case, something must still stall the pipeline 
for the combination of load followed by an instruction that reads its result. 
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Hence, we revive the Hazard Detection Unit. It operates during the ID 
stage, and it continues to work in the presence of the Forwarding Unit. Check
ing for load instructions by testing if the control signal ID/EX.MemRead is ac
tive, the Hazard Detection Unit control is now reduced to this single condition: 

if (ID/EX.RegWrite and ID/EX.MemRead and 
((ID/EX.WriteRegisterRt = IF/ID.ReadRegisterl) or 

(ID I EX. Wri teRegister Rt = IF I ID .ReadRegister2))) 
stall the pipeline 

Figure 6.48 highlights the pipeline connections for both the Hazard Detec
tion Unit and the Forwarding Unit. As before, the Forwarding Unit controls 
the ALU multiplexors to replace the value from a general purpose register 
with the value from the proper pipeline register. 

Hardware 

Software 

Interface 

• -

As another example of the trade-off between compiler and 
hardware complexity, the original MIPS processors avoided 
hardware to stall the pipeline by requiring software to fol
low the load with an instruction independent of that load. In 
the worst case, no p instructions were placed after loads . 

Although the hardware may or may not rely on the 
compiler to resolve hazard dependencies to ensure 
correct execution, the compiler must understand the 
pipeline to achieve the best performance. Otherwise, 
unexpected stalls will reduce the performance of the 
compiled code. 

Elaboration: The signed- immediate input to the ALU , needed by loads and stores, is 
missing from the datapath in Figure 6 .48. S ince central control decides between regis
ter and immediate, and since the Forwarding Unit chooses the pipel ine register for a 
register input to the ALU , the easiest solution is to add a 2 :1  multiplexor that chooses 
between the ALUSelB  mu ltiplexor output and the signed immediate. Figure 6.49 shows 
this addition. Note that this solution d iffers from what we learned in Chapter 5, where 
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FIGURE 6.48 Plpellned control overview, showing the two multiplexors for forwarding, the Hazard Detection Unit, and the Forwarding Unit. 
Although the ID and EX stages have been simplified-the sign-extended immediate and branch logic are missing-this drawing gives the essence of 
the forwarding hardware requirements. 
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FIGURE 6.49 A close-up of the datapath in Figure 6.42 on page 414 shows a 2:1 multiplexor, which has been 
added to select the signed Immediate as an ALU input. 

the multiplexor control led by l ine ALUSelB was expanded to include the immediate 
input. 

Forward ing helps with hazards when store instructions are dependent on other 
instructions. Connecting the ALUSelB output conta in ing store data to the EX/MEM 
pipel ine register forwards the proper value. This added multiplexor for immediates also 
avoids false matches for the condition mentioned in  the elaboration about stal ls on 
page 405. 

We can improve the performance of loads fol lowed by stores by adding more for
warding hardware. If we were to redraw Figure 6 .4 7 on page 420, replacing the a n d 
instruction that immediately fol lows l w with an s w, we wou ld see that it is possible to 
avoid a sta l l , s ince the data exists i n  the MEM/WB register of a load instruction in  time 
for its use in  the MEM stage of a store instruction. Exercise 6 .17 examines the 
changes to the datapath necessary to avoid  th is hazard. 
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• Branch Hazards 

Program 
execution 
order 
(in instructions) 

40 beq $1.  $3, 28 

44 and $12, $2. $5 

48 or $13. $6. $2 

52 add $14. $2, $2 

72 lw $4, 50($7) 

There are a thousand hacking at the branches of evil to one who is striking at 
the root. 

Henry David Thoreau, Walden, 1854 

Thus far we have limited our concern to hazards involving arithmetic opera
tions and data transfers. But another kind of pipeline hazard involves 
branches. Figure 6.50 shows a sequence of instructions and indicates when 
the branch would occur in this pipeline. An instruction must be fetched at 
every clock cycle to sustain the pipeline, yet in our design the decision about 
whether to branch doesn't occur until the Memory pipeline stage. This delay 
in determining the proper instruction to fetch is called a control hazard or 
branch hazard, in contrast to the data hazards we have just examined. 

Time (in clock cycles) -----------+ 

cc 1 cc 2 cc 3 cc 4 cc 5 CC 6 cc 7 cc 8 cc 9 

FIGURE 6.50 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 
44, . . .  ) are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage
clock cycle 4 for the b e q  instruction above-the three sequential instructions that follow the branch will be fetched and 
begin execution. Without intervention, those three following instructions will begin execution before b e q  branches to l w at 
location 72. 
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Returning to our analogy once again, suppose we ran out of Corinthian 
leather at the upholstery station. We call our suppliers in Spain, but they won't 
be able to supply the famous material for two months. We then tell the people 
at the front of the assembly line to stop sending cars needing that option. In the 
case of computers, this is similar to branching on a condition. The difficulty is 
that there may be many cars needing Corinthian leather already on the assem
bly line, and it's too late to stop them; we would set aside those partially com
pleted cars until the new shipment of Corinthian leather arrives. Similarly, we 
may need to set aside instructions that are fetched before we know the condi
tion of the branch. 

This section on control hazards is shorter than previous sections on data 
hazards. The reasons are that control hazards are relatively simple to under
stand, they occur much less frequently than data hazards, and there is nothing 
as effective against control hazards as forwarding for branches, hence we use 
simpler schemes. We look at two common schemes for resolving control haz
ards. 

Always Stall 

One solution is to stall until the branch is complete. This solution, shown in 
Figure 6.51, will encounter a penalty of several clock cycles for each branch. 
The drawback is that many times a conditional branch will decide against 
branching, and the work that would have been accomplished fetching and 
decoding the following instructions is exactly what will need to happen any
way. 

Assume Branch Not Taken 

A common improvement over stalling upon fetching a branch is to assume 
that the branch will not be taken and so will continue execution down the 
sequential instruction stream. If the branch is taken, the instructions that are 
being fetched and decoded must be discarded. Execution continues at the 
branch target. Figure 6.52 shows how this optimization changes the flow in 
Figure 6.51. If branches are untaken half the time, and it costs little to discard 
the instructions, this optimization halves the cost of control hazards. 

To discard instructions, we merely change the original control values to Os, 
much as in the stall approach. The difference is that we must also change the 
three instructions in the IF, ID, and EX stages when the branch reaches the 
MEM stage; for stalls, we just changed control to 0 in the ID stage and let them 
percolate right. Discarding instructions, then, means we must be able to flush 
instructions in the IF, ID, and EX stages of the pipeline. 

To flush instructions in the IF stage, we add a control line, called IF.Flush, 
that zeros the instruction field of the IF / ID pipeline register to flush the 
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Program 
execution 
order 
(in instructions) 

40 beq $1, $3, 28 

stall 

stall 

stall 

44 and $12, $2, $5 

48 or $13, $6, $2 

52 add $14. $2, $2 

Chapter 6 Enhancing Performance with Pipelining 

Time (in clock cycles) ----------+ 

cc 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 CC 8 CC 9 cc 10 cc 11 cc 12 

FIGURE 6.51 A branch with stalls to resolve the control hazard. The simplest solution is to stall all instructions that 
follow the branch until after the decision is clear, and then allow the proper instructions to execute. Stalling essentially 
increases the cost of a branch from one clock cycle to four clock cycles. 

fetched instruction. To flush instructions in the ID stage, we use the multiplex
or already in the ID stage that zeros control signals for stalls. A new control 
signal, called ID.Flush, is ORed with the stall signal from the Hazard Detection 
Unit to flush during ID. For the EX phase we use a new signal called EX.Flush 
to cause new multiplexors to zero the EX control lines. Control determines 
whether to send a flush signal depending on the instruction opcode and the 
value of the branch condition being tested. Figure 6.53 shows these changes. 
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Time (in clock cycles) --------------

cc 1 cc 2 cc 3 cc 4 cc s CC 6 cc 7 cc 8 

FIGURE 6.52 In contrast to Figure 6.51, when the branch Is not taken, the Instruction takes just one clock cycle. 
Only when the branch is taken does the instruction take four clock cycles. 

Example 

Answer 

Show what happens both when the branch is taken and when it's not taken 
in this instruction sequence, assuming the optimization on branches not 
taken: 

3 6  s u b  $ 1 0 , $ 4 , $ 8  
4 0  b e q  $ 1 , $ 3 , 2 8  # P C - r e l a t i v e  b r a n c h  t o  a d d r e s s  7 2  
4 4  a n d  $ 1 2 ,  $ 2 , $ 5  
48 o r  $ 1 3 , $ 2 , $ 6  
5 2  a d d  $ 1 4 , $ 4 , $ 2  
5 6  s l t  $ 1 5 ,  $ 6 , $ 7  

7 2  l w  $ 4 , 5 0 ( $ 7 ) 

If the branch in location 40 is untaken, the instructions proceed as in 
Figure 6.52. Figure 6.54 shows what happens when a branch is taken. 
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FIGURE 6.53 Datapath for branch, including hardware to flush the instructions that follow branch. Since the branch decision is made in the 
fourth pipeline stage, three instructions that follow the branch will be in the pipe at that time. The control lines IF.Flush, ID.Flush, and EX.Flush deas
sert the control lines in the first three stages. Figure 6.52 shows the timing of the operations for a branch. Although the new-PC mux appears in the 
MEM stage in this figure, the decision between a branch target address from an earlier instruction and PC+4 occurs in the IF stage. Also, although the 
flush lines are shown coming from the control unit in this figure, in reality they are coming from hardware that determines if a branch is taken, found 
in the MEM stage, such as the branch and gate in Figure 6.24 on page 391 .  
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add $14, $4, $2 ! or $13, $2, $6 ! and $12, $2, $5 sub $10 

'" 

Clock 5 

lw $4, 50($7) ! bubble ! bubble ! bubble beq 

FIGURE 6.54 The MEM stage of clock cycle 5 determines that a branch must be taken, so It selects 72 as the 
next PC address and zeros the control line values for the next clock cycle. Clock cycle 6 shows the instruction at 
location 72 being fetched and the three bubbles in the pipeline as a result of the taken branch. 
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Elaboration: This branch optimization scheme is just one form of branch prediction. In  
th is  case , we predict that the branch is untaken, flushing the pipel ine when we are 
wrong. With more hardware, it is possible to try other schemes of branch prediction.  
One approach to predicting when a branch wi l l  be taken is to look up the address of the 
instruction to see if a branch was taken the last time th is instruction was executed, 
and, if so, to begin fetching new instructions from the same place as the last time. 
Compiler-based approaches are also available; they use a techn ique called delayed 
branches. Exercises 6.20 through 6.22 explore th is solution to control hazards . 

• . 

Pipelining improves throughput but not the time per 
instruction: the five-stage pipeline still takes five 
clock cycles for the instruction to complete. Hence 
data and control dependencies in programs together 
with instruction latencies offer an upper limit to the 
benefit of pipelining because the processor must 

sometimes wait for the full execution time of an instruction for the 
dependency to be resolved. 

This upper limit can be raised, but not eliminated, by reducing 
control hazards via branch optimizations such as in Figure 6.52, and 
by reducing data hazards via compiler scheduling. 

• Exceptions 

To make a computer with automatic program-interruption facilities behave [se
quentially] was not an easy matter, because the number of instructions in various 
stages of processing when an interrupt signal occurs may be large. 

Fred Brooks Jr., Planning a Computer System: Project Stretch, 1962 

Another form of control hazard involves exceptions. For example, suppose 
the following instruction 

a d d  $ 1 , $ 2 , $ 1 

has an arithmetic overflow. We need to transfer control to the exception rou
tine immediately after this instruction, because we wouldn't want this invalid 
value to contaminate other registers or memory locations; the MIPS exception 
routine is at location 4000 0040hex (see Chapter 5, page 317). Just as we did for 
the taken branch in the previous section, we must flush the instructions that 
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follow the a d d  instruction from the pipeline and begin fetching instructions 
from the new address. We will use the same mechanism we used for taken 
branches, but this time the deasserting of control lines is invoked by the 
exception. To start fetching instructions from location 4000 0040hex' we simply 
add a third input to the PC multiplexor that sends 4000 0040hex to the PC. 

This example points out a problem with exceptions: If we do not stop exe
cution in the middle of the instruction, the programmer will not be able to see 
the original value of register $1 that helped cause the overflow, because it will 
be clobbered as the destination register of the a d d  instruction. Due to careful 
planning, the overflow exception is detected during the EX stage, hence we 
can use the EX.Flush signal to prevent instructions in the EX stage from writ
ing their results in the WB stage. 

The final step is to save the address of the offending instruction in the Ex
ception Program Counter (EPC), as we did in Chapter 5. In reality, we save the 
address + 4, so the exception handling routine must first subtract 4 from the 
saved value. Figure 6.55 shows a stylized version of the datapath, including 
the branch hardware and necessary accommodations to handle exceptions. 

Given this instruction sequence: 

4 0 hex  s u b  $ 1 1 , $ 2 , $ 4  
4 4 hex a n d  $ 1 2 , $ 2 , $ 5  
48hex o r  $ 1 3 . $ 2 .  $ 6  
4 c hex a d d  $ 1 , $ 2 ,  $ 1  
5 0 h ex s l t $ 1 5 ,  $ 6 , $ 7  
5 4 hex  l w  $ 1 6 , 5 0 ( $ 7 )  

Assume the instructions to be invoked on an exception begin like this: 
4 0 0 0 0 04 0 h ex S W  $ 2 5 , 1 0 0 0 ( $ 0 )  
4 0 0 0 0 044h e x  S W  $ 2 6 , 1 0 0 4 ( $ 0 )  

Show what happens in the pipeline if an overflow exception occurs in the 
a d d  instruction. 

Figure 6.56 shows the events, starting with the a d d  instruction in the EX 
stage. The overflow is detected during that phase and 4000 0040hex is forced 
into PC. Clock cycle 6 shows that the a d d  and following instructions are 
flushed, and the first instruction of the exception code is fetched. Note that 
the address of the instruction following the a d d  is saved: 4chex + 4 = 50hex· 
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FIGURE 6.55 The datapath with controls to handle exceptions. The changes from Figure 6.53 include a third input, with the value 4000 0040hev in 
the multiplexor that supplies the new PC value and a Trap PC register to save the address of the instruction that caused the exception. The 4000 0040hex 
input to the multiplexor is the initial address to begin fetching instructions in the event of an overflow exception. (Trap PC register is just above the 
ALU multiplexors.) Although the flush lines are shown coming from the control unit in this figure, in reality they are coming from hardware that deter
mines if a branch is taken, found in the MEM stage, such as the branch and gate in Figure 6.24 on page 391 .  
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FIGURE 6.56 Event in the result of an exception due to arithmetic overflow In the add instruction. The overflow is 
detected during the EX stage of clock 5, saving the address following the add in the TrapPC register (4c + 4 = 50hexl· Over
flow causes all the Flush signals to be set near the end of this clock cycle, deasserting all control values (setting them to 0). 
Clock cycle 6 shows the instructions converted to bubbles in the pipeline plus the fetching of the first instruction of the 
exception routine-s w $25,1000($0)-from instruction location 40000040hex· Note that the a n d  and o r  instructions still 
complete. (page 433) 
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Chapter 5 lists some other causes of exceptions: 

• I/ 0 device request 

• Invoking an operating system service from a user program 

• Using an undefined instruction 

• Hardware malfunction 

With five instructions active in any clock cycle, the challenge is to associate 
the exception with the appropriate instruction. The Cause register records all 
possible exceptions in a clock cycle, and the exception software must match 
the exception and the instruction. An important clue is knowing in which 
pipeline stage a type of exception can occur. For example, an undefined 
instruction is discovered in the ID stage, and invoking the operating system 
occurs in the EX stage. The hardware will associate the exception with the 
instruction in the proper stage, allowing earlier instructions to complete and 
flushing the rest. 

The difficulty of always associating the correct exception with the correct 
instruction in pipelined computers has led some computer designers to relax 
this requirement in noncritical cases. Such machines are said to have imprecise 
interrupts or imprecise exceptions. Hence, a machine with imprecise exceptions 
might not stop in time, so the EPC might contain 1000, when the offending in
struction was really at location 992 or even 1008. Exceptions are precise in 
MIPS, and the vast majority of machines today support precise interrupts or pre
cise exceptions. 

I/O device requests and hardware malfunctions are not associated with a 
specific instruction, so the implementation has some flexibility as to when to 
interrupt the pipeline. The hardware should pick the simplest instruction to 
associate with the I/O exception, but because the hardware is unstable when 
a malfunction happens, it may be wise to stop as many instructions as possible. 

One complication is that multiple exceptions can occur simultaneously. For 
example, if an arithmetic overflow was followed by an illegal instruction, we 
would see the overflow exception and the illegal instruction exception in the 
same clock cycle. The normal solution is to prioritize the exceptions so that it 
is easy to determine which is serviced first; this strategy works for pipelined 
machines as well. In the MIPS R3000, the hardware sorts exceptions so that the 
earliest instruction is interrupted. In this case it would be the arithmetic over
flow. Exceptions are collected in the Cause register, so that the hardware can 
interrupt based on later exceptions once the earliest one has been serviced. 
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• Performance of Pipelined Systems 

Example 

Answer 

The reason for designing pipelined processors is higher performance, and as 
we have seen, pipelining reduces the average execution time per instruction. 
Hazards limit the gains to be made from pipelining, but hardware and soft
ware techniques have been devised to circumvent these limits. 

The compiler writer must understand the pipeline of the target machine to 
achieve the best performance; otherwise, unexpected stalls may squander the 
advantages of pipelined performance. 

Find the hazard in this code from the body of the s w a p  procedure in 
Figure 3.18 on page 136: 

fl r e g  $ 2  h a s  t h e  a d d r e s s  o f  v [ k ]  
l w  $ 1 5 ,  0 ( $ 2 ) fl r e g  $ 1 5  ( t emp ) = v [ k J  
l w  $ 1 6 ,  4 ( $ 2 )  fl reg  $ 1 6  = v [ k+ l J 
S W  $ 1 6 , 0 ( $ 2 ) fl v [ k ]  = r e g  $ 1 6  
S W  $ 1 5 .  4 ( $ 2 )  fl v [ k+ l ] = reg  $ 1 5  ( t emp ) 

Reorder the instructions to avoid as many pipeline stalls as possible. 

The hazard occurs on register $16 between the second l w and the first sw. 
Without forwarding, we would need to find three independent instructions 
to place between them. Forwarding means that we need find only one, and 
swapping the second sw  is a perfect match: 

fl reg  $ 2  h a s  t he  a d d r e s s  o f  v [ k ] 
l w $ 1 5 ,  0 ( $ 2 ) fl r e g  $ 1 5  ( t emp ) = v [ k ]  
l w $ 1 6 , 4 ( $ 2 )  # reg  $ 1 6  = v [ k+ l ] 
S W  $ 1 5 ,  4 ( $ 2 )  ff v [ k+l ] = r e g  $ 1 5  ( t emp ) 
S W  $ 1 6 ,  0 ( $ 2 ) ff v [ k ]  = reg  $ 1 6  

Note that we do not create a new hazard, because there is still one in
struction between the write of register $15 by the load and the read of reg
ister $15 in the store. Thus, on a machine with forwarding, the reordered 
sequence takes four clock cycles to start these instructions. 
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Example Using the code in the example above, rewrite the code for a machine with
out forwarding, inserting nop instructions as necessary. 

Answer With comments showing the timing of the load of register $15, the code for 
the machine without forwarding would look like this: 

l w  $ 1 5 . 0 ( $ 2 ) # f e t c h  o f  l w  $ 1 5  
l w $ 1 6 , 4 ( $ 2 ) # d e c o d e  o f  l w  $ 1 5  
n o p  # l w  $ 1 5  c a l c u l a t e s  d a t a  a d d r e s s  
n o p  # l w  $ 1 5  c omp l e t e s  M E M  s t a g e  
S W  $ 1 5 , 4 ( $ 2 )  # l w  $ 1 5  w r i t e s  r e g  $ 1 5 , f e t c h  O f  S W  $ 1 5  
S W  $ 1 6 , 0 ( $ 2 )  # r e a d  o f  r e g  $ 1 5  f o r  s w  $ 1 5 , 4 ( $ 2 )  

The sequence takes six clock cycles on the machine without forwarding 
compared to four on the machine with forwarding. The benefits of forward
ing are so great that even if forwarding reduces the clock rate slightly due 
to the extra multiplexors, it will still likely lead to a faster machine. 

II Fallacies and Pltfalls 

Pitfall: Failure to consider instruction set design can adversely impact pipelining. 

Many of the difficulties of pipelining arise because of instruction set compli
cations. Here are some examples: 

• Variable instruction lengths and running times can lead to imbalance 
among pipeline stages, causing other stages to back up. They can also 
severely complicate hazard detection and the maintenance of precise ex
ceptions. 

• Sophisticated addressing modes can lead to different sorts of problems. 
Addressing modes that update registers, such as autoincrement, com
plicate hazard detection. Other addressing modes that require multiple 
memory accesses substantially complicate pipeline control and make it 
difficult to keep the pipeline flowing smoothly. 

Perhaps the best recent example is the DEC Alpha and the DEC NV AX. In 
comparable technology, the new instruction set architecture of the Alpha al
lowed an implementation whose performance is more than twice as fast as 
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FIGURE 6.57 The depth of plpellnlng versus the speedup obtained. The x axis shows the 
number of stages in the EX portion of the floating-point pipeline. A single-stage pipeline corre
sponds to 32 levels of logic, which might be appropriate for a single FP operation. This data is 
based on Table 2 in S. R. Kunkel and J. E. Smith, "Optimal pipelining in supercomputers," Proc. 
13th Symposium on Computer Architecture (June 1986), pages 404-414. 

NVAX. In another example, Bhandarkar and Clark [1991] compared the MIPS 
M/2000 and the VAX 8700 by counting clock cycles of the SPEC benchmarks; 
they concluded that, although MIPS M/2000 executes more instructions, the 
VAX on average executes 2.7 times as many clock cycles, so the MIPS is faster 
(see Figure E.9 on page E-21) .  

Fallacy: Increasing the depth of pipelining always increases performance. 

Three factors combine to limit the performance improvement gained by pipe
lining. First, data hazards in the code mean that increasing the pipeline depth 
increases the time per instruction, because a larger percentage of the cycles 
become stalls. Second, control hazards mean that increasing pipeline depth 
results in slower branches, thereby increasing the clock cycles for the pro
gram. Finally, clock skew and latch overhead combine to limit the decrease in 
clock period obtained by further pipelining. Figure 6.57 shows the trade-off 
between pipeline depth and performance for a floating-point pipeline. 

Fallacy: Pipelining is easy. 

Our books testify to the subtlety of correct pipeline execution. Our first book 
had a pipeline bug in its first edition, despite its being reviewed by more than 
100 people and being class-tested at 18 universities. The bug was uncovered 



438 Chapter 6 Enhancing Performance with Plpelinlng 

only when someone tried to build the computer in that book. Similarly, the 
alpha edition of this book had a bug involving forwarding and store instruc
tions, and this bug escaped the scrutiny of many reviewers and students. 
Beware! 

II Concluding Remarks 

Nine-tenths of wisdom consists of being wise in time. 

American Proverb 

Pipelining improves the average execution time per instruction. Depending 
on whether you start with a single-cycle or multiple-cycle datapath, this 
reduction can be thought of as decreasing the clock cycle time or as decreas
ing the number of clock cycles per instruction (CPI). We started with the sim
ple single-cycle datapath, so pipelining was presented as reducing the clock 
cycle time of the simple datapath. Figure 6.58 shows the effect on CPI and 

Multicycle 
data path 

(section 5.4) 

Slower 

Pipelined 
data path 

(Chapter 6) 

Single-cycle 
data path 

(section 5.3) 

Faster 

Instruction throughput 

( Instructions per clock cycle or 1/CPI) 

FIGURE 6.58 The performance consequences of simple (single-cycle) datapath and multi
cycle datapath from Chapter 5 and the pipelined execution model in Chapter 6. While the 
instructions per clock cycle (instruction throughput) is slightly larger in the simple datapath, the 
pipelined datapath is close and it uses a clock rate as fast as the multicycle datapath. 
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FIGURE 6.59 The basic relationship between the datapaths in Figure 6.58. The pipelined 
datapath is shown as multiple clock cycles for instruction latency because the execution time of 
an instruction is not shorter; it's the instruction throughput that is improved. 

clock rate for each of the datapaths from Chapters 5 and 6, with pipelining 
offering both a low CPI and a fast clock rate. 

Pipelining improves throughput, but not the inherent execution time, or la
tency, of instructions; the latency is similar in length to the multiple-clock cycle 
approach. Unlike that approach, which uses the same hardware repeatedly 
during instruction execution, pipelining starts an instruction every clock cycle 
by having dedicated hardware. Figure 6.59 shows the datapaths from 
Figure 6.58 placed according to the amount of sharing of hardware and in
struction latency. 

Latency introduces difficulties due to dependencies in programs, because a 
dependency means the machine must wait the full instruction latency for the 
hazard to be resolved. The cost of data dependencies can be reduced through 
the use of forwarding hardware, and the frequency of control dependencies 
can be reduced through both branch prediction hardware and compiler sched
uling. 

While striving for the fastest clock cycle time, hardware designers must also 
ensure correct execution of all instruction sequences. Compiler writers may or 
may not be asked to participate by limiting the types of sequences generated, 
but they must understand the pipeline to achieve best performance. Hardware 
and software techniques cannot completely remove the cost and frequency of 
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hazards; instruction latency and program dependencies bound the benefits of 
pipelined execution. 

Recent Developments 

More transistors per chip have meant that techniques formerly limited to 
mainframe and supercomputers have made their way down to single-chip 
computers. Functions that are sequential in recent workstations, but are pipe
lined in supercomputers like the Cray, are being pipelined in the current gen
eration of single-chip computers. These machines are sometimes called 
superpipelined processors, an informal term suggesting a deeper pipeline than 
the five-stage model discussed in this chapter. 

Another method of taking advantage of more transistors is to try to start or 
issue more than one instruction per clock cycle. Multiple issues allow the in
struction-execution rate to exceed the clock rate. Machines that issue multiple 
independent instructions per clock cycle have been called superscalar machines. 
In a superscalar machine, the hardware can issue a small number (say, two to 
four) of independent instructions in a single clock cycle. If the instructions in 
the instruction stream are dependent or don't meet certain criteria, however, 
only the first instruction in sequence is issued. Figure 6.60 compares a super
scalar pipeline to a superpipelined pipeline. 

The challenges to compiler writers for the two machines are similar. Super
scalar machines are sensitive to compilers avoiding pairs of dependent in
structions; superpipelined machines depend on compilers scheduling 
instructions into the longer delays for memory access and until the branch de
cision stage. 

What would a MIPS machine look like as a superscalar implementation? 
Let's assume that two instructions are issued per clock cycle. One of the in
structions could be a load, store, branch, or integer ALU operation, and the 
other could be any floating-point operation. Issuing two instructions per cycle 
will require fetching and decoding 64 instruction bits. To keep the decoding 
simple, we could require that the instructions be paired and aligned on a 64-
bit boundary. To make this worthwhile, however, we need either pipelined 
floating-point units or multiple independent units. Otherwise, floating-point 
instructions can only be fetched, and not issued, because all the floating-point 
units will be busy. 

Several difficulties may limit the effectiveness of a superscalar pipeline. In 
our simple MIPS pipeline, loads had a latency of one clock cycle; this prevent
ed one instruction from using the result without stalling. In the superscalar 
pipeline, the result of a load instruction cannot be used on the same clock cycle 
or on the next clock cycle. Hence, the next three instructions cannot use the 
load result without stalling. The consequences of a control hazard also become 
longer. Effectively exploiting the parallelism available in a superscalar ma-
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Instruction Instruction Execution Data Write back fetch decode memory 
Superscalar 

Instruction Instruction Execution Data Write back fetch decode memory 
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FIGURE 6.60 A superscalar pipeline vs. a superpipelined pipeline. This two-way superscalar 
fetches or issues two instructions every clock cycle and follows our traditional five-stage pipe
line. The superpipelined model is patterned after the pipeline in the MIPS R4000 and has eight 
stages. Although the superpipelined model should have a higher clock rate, little else can be said 
about the relative performance of these two approaches today. The success of superscalar 
machines is sensitive to compilers avoiding pairs of dependent instructions; the success of super
pipelined machines depends on compilers scheduling instructions into the longer delays for 
memory accesses and branches. 

chine requires more ambitious compiler techniques for scheduling instruc
tions as well as more complex instruction-decoding hardware. 

A microprocessor that is both superscalar and superpipelined is the DEC 
Alpha. This two-way superscalar machine has eight pipeline stages, yielding 
a clock rate of 200 Mhz. Putting this rate into perspective, the clock rate of the 
Cray C-90 supercomputer announced in 1991 is just 1 .25 times faster than the 
clock rate of this single chip processor found in single-chip computers an
nounced in 1992. Chapter 2 reminds us that clock rate is only one of three key 
performance parameters, but this is still an impressive achievement. 

II Hlstorical Perspective and Further Reading 

supercomputer: Any machine still on the drawing board. 

Stan Kelly-Bootle, The Devil's DP Dictionary, 1981 

This section describes some of the major advances in pipelining. 
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FIGURE 6.61 Photograph of the Stretch computer, one of the first pipelined computers. 
Photo courtesy of International Business Machines Corporation. 

It is generally agreed that one of the first general-purpose pipelined ma
chines was Strctclz, the IBM 7030 (Figure 6.61). Stretch followed the IBM 704 
and had a goal of being 100 times faster than the 704. The goals were a 
"stretch" of the state of the art at that time-hence the nickname. The plan was 
to obtain a factor of 1 .6 from overlapping fetch, decode, and execute, using a 
four-stage pipeline. Stretch was also a training ground for both the architects 
of the IBM 360, Gerrit Blaauw and Fred Brooks Jr., and the architect of the IBM 
RS/6000, John Cocke. 

CDC delivered the first CDC 6600 in 1964 (Figure 6.62). The CDC 6600 was 
unique in many ways. The interaction between pipelining and instruction set 
design was understood, and the instruction set was kept simple to promote 
pipelining. The CDC 6600 also used an advanced packaging technology. 
Thornton's book [1970] provides an excellent description of the entire ma
chine, from technology to architecture, and includes a foreword by Seymour 
Cray. (Unfortunately, this book is currently out of print.) The 6600 is consid
ered to be the first supercomputer; the core instructions of Cray's subsequent 
computers have many similarities to those of the original CDC 6600. 

The IBM 360/91 introduced many new concepts, including dynamic detec
tion of memory hazards and generalized forwarding (Figure 6.63). The ap
proach is normally named Tomasulo's algorithm, after an engineer who worked 
on the project. The team that created the 360/91 was led by Michael Flynn, 
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FIGURE 6.62 Photograph of the CDC-6600, the first supercomputer. Photo courtesy of 
Charles Babbage Institute, University of Minnesota. 

who was given the 1992 ACM Eckert-Mauchly Award, in part for his contri
butions to the IBM 360/91 .  

The RISC machines refined the notion of compiler-scheduled pipelines in 
the early 1980s. The concepts of delayed branches and delayed loads-com
mon in microprogramming-were extended into the high-level architecture. 
These instructions define away hazards: delayed loads mean that the new reg
ister value is unavailable for the next instruction, and delayed branches mean 
that the branch occurs after the following instruction, not before it (see Exercis
es 6.20 through 6.22) . 

An approach that predated superscalar that relies on similar compiler tech
nology is called long instruction word (LIW) or sometimes very long instruction 
word (VLIW). In this approach, several instructions are issued during each 
clock cycle as in the superscalar case, but in LIW the compiler guarantees that 
there are no dependencies between instructions that issue at the same time and 
that there are sufficient hardware resources to execute them, thereby simplify
ing the instruction decoding and issuing logic. A very practical advantage of 
superscalar over LIW designs is that superscalar processors can run without 
changing binary machine programs that run on more traditional architectures; 
LIW requires the source code for the programs to be available so that the pro
grams can be recompiled. LIW machines are rare today. 
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FIGURE 6.63 The IBM 360/91 pushed the state-of-the-art in pipelined execution when it 
was unveiled in 1966. Photo courtesy of International Business Machines Corporation. 

A number of papers have explored the trade-offs among alternative pipe
lining approaches. Jouppi and Wall [1989] examine the performance differenc
es between superpipelined and superscalar systems, concluding that their 
performance is similar, but that superpipelined machines may require less 
hardware to achieve the same performance. Recent machines are found in 
both camps: The MIPS R4000 is superpipelined, the IBM RS/6000 and Sun Su
perSPARC are superscalar, and the DEC Alpha is both superpipelined and su
perscalar. 

To Probe Further 

Bhandarkar, D., and D. W. Clark [1991] . "Performance from architecture: comparing a RISC and 
a CISC with similar hardware organizations," Proc. Fourth Conj on Architectural Support for Pro
gm111111i11g Languages and Operating Systems, IEEE/ ACM (April), Palo Alto, 310-19. 

A quantitative co111pariso11 of F<.lSC and CISC written by scholars who argued for CISCs as well as built 
them; they conclude tlzat MIPS is between 2 and 4 times faster than a VAX built with similar technology, 
with a 111ea11 of2.7; Figure E . 1 1  011 page E-23 is based on this paper. 
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Hennessy, J. L., and D. A. Patterson [1990]. Computer Architecture: A Quantitative Approach, Mor
gan Kaufmann Publishers, San Mateo, Calif. 

Chapter 6 goes into considerably more detail about pipelined machines, including dynamic hardware 
scheduling and superpipelined and superscalar machines. 

Jouppi, N. P., and D. W. Wall [1989]. "Available instruction-level parallelism for superscalar and 
superpipelined machines," Proc. Third Conf on Architectural Support for Programming Languages 
and Operating Systems, IEEE/ ACM (April), Boston, 272-82. 

A comparison of superpipelined and superscalar systems. 

Kogge, P. M. [1981 ]. The Architecture of Pipelined Computers, McGraw-Hill, New York. 

A formal text on pipelined control, with emphasis on underlying principles. 

Russell, R. M. [1978]. "The CRAY-1 computer system," Comm. of the ACM 21:1 (January) 63-72. 

A short summary of a classic computer, which uses vectors of operations to remove pipeline stalls. 

Smith, A., and J. Lee [1984]. "Branch prediction strategies and branch target buffer design," Com
puter 17:1 (January) 6-22. 

An early survey on branch prediction. 

Smith, J . E., and A. R. Plezkun [1988]. "Implementing precise interrupts in pipelined processors," 
IEEE Trans. on Computers 37:5 (May) 562-73. 

Covers the difficulties in interrupting pipelined computers. 

Thornton, J. E. [1970]. Design of a Computer: The Control Data 6600, Scott, Foresman, Glenview, Ill. 

A classic book describing a classic machine. II Exercises 

6.1 [5] <§6.2> For each pipeline register in Figure 6.3 on page 370, label each 
portion of the pipeline register by the name of the value that is loaded into the 
register, as explained on page 400. Also determine the length of each field in 
bits and the total length of the pipeline register. For example, the lower portion 
of the IF / ID pipeline register contains an instruction field that is 32 bits wide. 

6.2 [5] <§6.3> {ex. 6.1 )  Following the same procedure as in Exercise 6.1, show 
the additional widths of the pipeline registers for Figure 6.24 on page 391 .  

6.3 [20] <§6.3> Figure 6.64 i s  similar to Figure 6.27 on page 394, but the in
structions are unidentified. Your task is to determine as much as you can of 
the five instructions in the five pipeline stages. If you cannot fill in a field of an 
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FIGURE 6.64 The pipelined datapath for Exercise 6.3. Use the numeric labels to determine as many fields of each of the 
five instructions in the pipeline as possible. 

instruction, state why. Hint: Try writing as many of the 32 bits of each instruc
tion in binary before writing the instructions in assembly language notation; 
use the end pages to get the instruction values. 

6.4 [40] <§6.3> Using Figure 6.27 on page 394, determine the value of every 
field in the four pipeline registers in clock cycle 5. (These are the values at the 
beginning of the clock cycle.)  Assume that before the instructions are executed 
the state of the machine was as follows: 

• The PC has the value SOOten' the address of the l w instruction. 

• Every register has the initial value lOten plus the register number (e.g., 
register $8 has the initial value 18ten) . 

• Every memory word accessed as data has the initial value lOOOten plus 
the byte address of the word (e.g., Memory[8] has the initial value 
1008ten) . 
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Determine the value of every field, including those unidentified in the figure 
and those unnecessary for a specific instruction. If you believe a field value is 
impossible to determine from the information provided, explain why. 

6.5 [10] <§6.2> Using Figures 6.4 through 6 .11  on pages 371 through 378 as a 
guide, use colored pens or markers to show which portions of the datapath are 
active and which are inactive in each of the five stages of the a d d  instruction. 
We suggest that you photocopy figures to act as backgrounds to answer this 
exercise. Be sure to include a legend to explain your color scheme. (We hereby 
grant the book owner permission to violate the Copyright Protection Act in 
doing the exercises in Chapters 5 and 6!) 

6.6 [15] <§6.3> To be sure you understand the relationship between the two 
styles of drawing pipelines, draw the information in Figures 6.25 through 6.29 
on pages 392 through 396 in the style of Figure 6.30 on page 397. Be sure to 
highlight the active portions of the datapaths in this simpler figure. 

6.7 [ 10] <§6.4, 6.5, 6.6, 6.9> The example on page 435 shows how to maximize 
performance on our pipelined datapath with forwarding and stalls on a use 
following a load. Now look at the code in Exercise 3.8 on page 156. Rewrite this 
code to minimize performance on this datapath-that is, reorder the instruc
tions so that this sequence takes the most clock cycles to execute while still ob
taining the same result. Choose the code in Exercise 3.8 with the bugs intact or 
with the bugs fixed; the purpose of this exercise is to show the impact of in
struction scheduling. 

6.8 [20] <§6.4> Programs on pipelined machines often stall without forward
ing or compiler help. Start with this simple loop: 

mov  $ 5 ,  $ 0  
S u m : l w $ 1 0 , 1 0 0 0 ( $ 2 0 ) 

a d  d u  $ 5 , $ 5 , $ 1 0  
a d d i u  $ 2 0 , $ 2 0 , - 4 
b n e  $ 2 0 ' $ 0 , S u m  

and assume the pipeline structure o f  Figure 6.19 on  page 386.This datapath 
neither stalls nor forwards on hazards, so you must add n o  p instructions. 
Rewrite the code inserting as few n o p  instructions as needed for proper exe
cution; reorder the instructions, if possible, to minimize the number of nops 
while preserving correctness. Write a formula for the number of clock cycles 
to execute the loop as a function of N, the number of words copied. 

6.9 [30] <§6.4> {ex. 6.8} Compilers can help by unrolling loops and interleaving 
the code from different iterations. Making the same assumptions as Exercise 
6.8 and using the same initial program, try scheduling instructions to remove 
n o p  instructions. Assume that $20 contains 3 x N, where N is the number of 
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words to be added together. Show the code and write a formula for the num
ber of clock cycles to execute the optimized loop as a function of N. These tech
niques typically take more registers to get good performance, since formerly 
sequential computations will be interleaved and registers therefore cannot be 
reused as quickly. To see if this is true, count the number of registers used in 
each version of the code. How much faster is this version than that in Exercise 
6.8? Hint: Remember that $20 contains a multiple of 3; try replicating the code 
within the loop so that each time through the loop you do four loads and four 
adds. 

6.10 [20] <§6.4> This exercise is the same as Exercise 6.8, but replace the code 
with this code: 

C o py : l w  $ 1 0 , 1 0 0 0 ( $ 2 0 )  
S W  $ 1 0 , 2 0 0 0 ( $ 2 0 ) 
a d d i  u $ 2 0 , $ 2 0 , - 4 
b n e  $ 2 0 , $ 0 , C o py 

6.11 [30] <§6.4> {ex. 6.10) This exercise is the same as Exercise 6.9, but this 
time replace the code with the code found in Exercise 6.10. Assume that $20 
contains 3 x N, where N is the number of words to be copied. Show the code 
and write a formula for the number of clock cycles to execute the optimized 
loop as a function of N. How much faster is this version than that in Exercise 
6.10? 

6.12 [15] <§6.6> Following the suggestion of the elaboration on page 420, one 
alternative to forwarding control is to determine the control of the multiplex
ors on the ALU inputs during the ID stage, setting those values in new control 
fields of the ID/EX pipeline register. The hardware may be faster, because the 
time to select the ALU inputs is likely on the critical path. Redraw Figure 6.48 
on page 422 with this change. 

6.13 [5] <§6.5>List all of the inputs and outputs of the Hazard Detection Unit 
in Figure 6.34 on page 404. Give the names and the number of bits for each in
put and output. 

6.14 [15] <§6.5, C> {ex. 6.13) Using Appendix C and the answer to Exercise 
6.13, design the hardware to implement the Hazard Detection Unit. Hint: To 
decide if register numbers are equal, try using an exclusive OR gate (see the 
Elaboration on page 197 of Chapter 4 or the In More Depth section on page 261 
of Chapter 4). 

6.15 [15] <§6.6> List all the inputs and outputs of the Forwarding Unit in 
Figure 6.48 on page 422. Give the names and the number of bits for each input 
and output. 
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6.16 [30] <§6.6, C> {ex. 6.15) Using Appendix C and the answer to Exercise 
6.15, design the hardware to implement the Forwarding Unit. Hint: To decide 
if register numbers are equal, try using an exclusive OR gate (see the Elabora
tion on page 197 of Chapter 4 or the In More Depth section on page 261 of 
Chapter 4). 

6.17 [30] <§6.6, 6.9> The Elaboration that starts on page 421 suggests that we 
could remove the hazard for a load followed by a store that uses the same reg
ister. Show the changes to the datapath in Figure 6.47 on page 420 and change 
the logic equations starting on page 413 to remove this hazard. 

6.18 [20] <§6.6> Let's change the code sequence on page 416 by replacing 
s u b  $ 2 ,  $ 1 , $ 3  with l w $ 2 , $ 1 , 1 0 0 .  Show the state of the pipeline through an 
instruction sequence as in Figures 6.45 through 6.50 on pages 418 through 424. 
Assume that the datapath contains both the Forwarding Unit and the Hazard 
Detection Unit in Figure 6.48 on page 422. You may do much less drawing if 
you make several photocopies of Figure 6.48 and label the copies appropriate
ly. 

6.19 [ 10] <§6.2, 4.8> In this chapter we used pipelining to improve execution 
of all instructions. Pipelining can also improve performance of the execution 
phase of slow instructions. Figure 4.42 on page 235 shows a datapath for float
ing-point addition. Draw pipeline registers onto that figure, and then the pipe
line stages for floating-point addition, starting with instruction fetch. 

In More Depth: Delayed Branches 

An alternative scheme to branch prediction to reduce the cost of control haz
ards is called delayed branch. In a delayed branch, the execution cycle with a 
branch delay of length n is 

b r a n c h  i n s t r u c t i o n 
s e q u e n t i a l  s u c c e s s o r 1 
s e q u e n t i a l  s u c c e s s o r? 

s e q u e n t i a l  s u c c e s s o r
n 

b r a n c h  t a r g e t  i f  t a k e n  

The sequential successors are in the branch-delay slots. The job of the software 
is to make the successor instructions valid and useful. Most machines with 
delayed branch instructions are limited to a single-branch delay slot. 

6.20 [15] <§6.7> Using the example on page 427, rewrite the code to be as fast 
as possible using a new instruction b e q d, which means a branch equal instruc
tion with a single-branch delay slot. 
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6.21 [10] <§6.7> {ex. 6.20) Using the answer to Exercise 6.20, draw the execu
tion of the instructions as in Figure 6.54 on page 429. Once again, photocopy
ing may save time. 

6.22 [30] <§6.7> In which stage must the branch decision be made to reduce 
the branch delay to a single instruction? Redraw the datapath using new hard
ware that will reduce the branch delay to one cycle. 

6.23 [1 week] <§6.4, 6.5, 6.6> Using the simulator provided with this book, 
collect statistics on data hazards for a C program (supplied either by the in
structor or with the software). You will write a subroutine that is passed the 
instruction to be executed, and this routine must model the five-stage pipeline 
in this chapter. Have your program collect the following statistics: 

• Number of instructions executed. 

• Number of data hazards. 

• Number of hazards that result in stalls. 

• If the MIPS C compiler that you are using issues n o p  instructions to 
avoid hazards, count the number of n o  p instructions as well. 

Assuming that the memory accesses always take one clock cycle, calculate the 
average number of clock cycles per instruction. Classify n o p  instructions as 
stalls inserted by software, then subtract them from the number of instruc
tions executed in the CPI calculation. 

6.24 [1 month] <§5.3, 6.3-6.8> If you have access to a simulation system such 
as Verilog or ViewLogic, first design the single-cycle datapath and control 
from Chapter 5. Then evolve this design into a pipelined organization, as we 
did in this chapter. Be sure to run MIPS programs at each step to ensure that 
your refined design continues to operate correctly. 
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II Introduction 

From the earliest days of computing, programmers have wanted unlimited 
amounts of fast memory. The topics we will look at in this chapter all focus on 
aiding programmers by creating the illusion of unlimited fast memory. There 
are many techniques for making this illusion robust and enhancing its perfor
mance; accordingly, this chapter has more than its share of elaborations, 
which you should feel free to skip over. Before we look at how the illusion is 
actually created, let's consider a simple analogy that illustrates the key princi
ples and mechanisms that we use. 

Suppose you were a student writing a term paper on important historical 
developments in computer hardware. You are sitting at a desk in the engineer
ing or math library with a collection of books that you have pulled from the 
shelves and are examining. You find that several of the important machines 
that you need to write about are described in the books you have, but there is 
nothing about the EDSAC. So, you go back to the shelves and look for an ad
ditional book. You find a book on early British computers that covers EDSAC. 
Once you have a good selection of books on the desk in front of you, there is a 
good probability that many of the topics you need can be found in them, and 
you may spend a great deal of time just using the books on the desk without 
going back to the shelves. Having several books on the desk in front of you 
saves a lot of time compared to having only one book there and constantly 
having to go back to the shelves to return it and take out another. 

The same principle allows us to create the illusion of a large memory that 
we can access as fast as a very small memory. Just as you did not need to access 
all the books in the library at once with equal probability, a program does not 
access all of its code or data at once with equal probability. Otherwise, it would 
be impossible to make most memory accesses fast and still have large amounts 
of memory in machines, just as it would be impossible for you to fit all the li
brary books on your desk and still have a chance of finding what you wanted 
quickly. 

This principle of locality underlies both the way in which you did your work 
in the library and the way that programs operate. The principle of locality 
states that programs access a relatively small portion of their address space at 
any instant of time, just as you accessed a very small portion of the library's 
collection. There are two different types of locality: 

• Temporal locality (locality in time): If an item is referenced, it will tend to 
be referenced again soon. If you recently brought a book to your desk to 
look at, you will probably need to look at it again soon. 
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• Spatial locality (locality in space): If an item is referenced, items whose 
addresses are close by will tend to be referenced soon. When you 
brought out the book on early computers in England to find out about 
EDSAC, you found that you were also able to use that book to find out 
about several other early British computers. We'll see how spatial local
ity is used in memory hierarchies a little later in this chapter. 

Just as accesses to books on the desk naturally exhibit locality, locality in 
programs arises from simple and natural program structures. For example, 
most programs contain loops, so that instructions and data are likely to be ac
cessed repeatedly, showing high amounts of temporal locality. Since instruc
tions are normally accessed sequentially, programs show high spatial locality. 
Accesses to data also exhibit a natural spatial locality. For example, accesses to 
elements of an array or a record will naturally have high degrees of spatial lo
cality. 

We take advantage of the principle of locality by implementing the memory 
of a computer as a memory hierarchy. A memory hierarchy consists of multiple 
levels of memory with different speeds and sizes. The fastest memories are 
more expensive per bit than the slower memories and thus are usually smaller. 
Main memory is implemented from DRAM (dynamic random access memo
ry), while levels closer to the CPU (caches) will use SRAM (static random ac
cess memory). DRAM is less costly per bit than SRAM, although it is 
substantially slower. The price difference arises because DRAM uses fewer 
transistors per bit of memory, and DRAMs thus have larger capacities for the 
same silicon areas; the speed difference arises from several factors described 
in section B.5 of Appendix B. 

Because of the differences in cost and access time, it is advantageous to 
build memory as a hierarchy of levels, with the faster memory close to the pro
cessor and the slower, less expensive memory below that, as shown in 
Figure 7. 1 .  The goal is to present the user with as much memory as is available 
in the cheapest technology, while providing access at the speed offered by the 
fastest memory. This corresponds directly to what you did in the library: the 
books on the desk were faster to access, but you didn't have space to keep all 
the books on the desk. Today, the three major technologies used to construct 
memory hierarchies are SRAM, DRAM, and disk. The access time and price 
per bit vary widely among these technologies, as the table below shows, using 
typical values for 1993: 

Memory technology Typical access time $ per MByte in 1993 

SRAM 8-35 ns $100-$400 

DRAM 90-120 ns $25-$50 

Magnetic disk 10,000,000-20,000,000 ns $1-$2 
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Speed CPU Size Cost: $/bit 

Fastest I Memory I Smallest H ighest 

B 
Slowest B Biggest Lowest 

FIGURE 7.1 The basic structure of a memory hierarchy. By implementing the memory sys
tem as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the 
hierarchy, but can be accessed as if it were all built from the fastest memory. 

Just as you often found the information in a book on your desk, the princi
ple of temporal locality means that most of the time we will find the data item 
that we want in the faster memory, since it is likely that the data item was ac
cessed recently. The memory system is organized as a hierarchy: a level closer 
to the processor is a subset of any level further away, and all the data is stored 
at the lowest level. By comparison, the books on your desk form a subset of the 
library you are working in, which is in turn a subset of all the libraries on cam
pus. Furthermore, as we move away from the processor the levels take pro
gressively longer to access, just as we might encounter in a hierarchy of 
campus libraries. 

A memory hierarchy can consist of multiple levels, but data is copied be
tween only two adjacent levels at a time, so we can focus our attention on just 
two levels. The upper level-the one closer to the processor-is smaller and 
faster (since it uses more expensive technology) than the lower level. The min
imum unit of information that can be either present or not present in the two
level hierarchy is called a block, as shown in Figure 7.2; in our library analogy, 
a block of information is one book. 

If the data requested by the processor appears in some block in the upper 
level, this is called a hit (analogous to your finding the information in one of 
the books on your desk). If the data is not found in the upper level, the request 
is called a miss. The lower level in the hierarchy is then accessed to retrieve the 
block containing the requested data. (Continuing our analogy, you get up 
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Processor 

Data are transferred 

FIGURE 7 .2 Every pair of levels in the memory hierarchy can be thought of as having an 
upper and lower level. Within each level, the unit of information that is present or not is called 
a block. Usually we transfer an entire block when we copy something between levels. 

from your desk and go over to the shelves to look for the desired information.) 
The hit rate, or hit ratio, is the fraction of memory accesses found in the upper 
level; it is often used as a measure of the performance of the memory hierar
chy. The miss rate (1 .0 - hit rate) is the fraction of memory accesses not found 
in the upper level. 

Since performance is the major reason for having a memory hierarchy, the 
speed of hits and misses is important. Hit time is the time to access the upper 
level of the memory hierarchy, which includes the time needed to determine 
whether the access is a hit or a miss (that is, the time needed to look through 
the books on the desk). The miss penalty is the time to replace a block in the up
per level with the corresponding block from the lower level, plus the time to 
deliver this block to the processor (or, the time to get another book from the 
shelves and place it on the desk). Because the upper level is smaller and built 
using faster memory parts, the hit time will be much smaller than the time to 
access the next level in the hierarchy, which is the major component of the miss 
penalty. (The time to examine the books on the desk is much smaller than the 
time to get up and go look for something in a book on the shelves.) 

As we will see in this chapter, the concepts used to build memory systems 
affect many other aspects of a computer, including how the operating system 
manages memory and 1 /0, how compilers generate code, and even how ap
plications use the machine. Of course, because all programs spend much of 
their time accessing memory, the memory system is necessarily a major factor 
in determining performance. Since memory systems are so critical, there has 
been a lot of work on them and very sophisticated mechanisms have been de-
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veloped. In this chapter, we will see the major conceptual ideas, although 
many simplifications and abstractions have been used to keep the material 
manageable in length and complexity. We could easily have written hundreds 
of pages on memory systems, as a number of recent doctoral theses have dem
onstrated . 

• . 

Programs exhibit both temporal locality, the tendency 
to re-use recently accessed data items, and spatial 
locality, the tendency to reference data items that are 
close to other recently accessed items. Memory hier
archies take advantage of temporal locality by keeping 
more recently accessed data items closer to the pro

cessor. Memory hierarchies take advantage of spatial locality by mov
ing blocks consisting of multiple contiguous words in memory to 
upper levels of the hierarchy. 

A memory hierarchy uses smaller and faster memory technologies 
close to the processor. Thus accesses that hit in the highest level of the 
hierarchy can be processed quickly. Accesses that miss go to lower 
levels of the hierarchy, which are larger but slower. If the hit rate is 
high enough, the memory hierarchy has an access time close to that of 
the highest (and fastest) level and a size equal to that of the lowest 
(and largest) level. 

• Caches 

Cache: a safe place for hiding or storing things. 

Webster's New World Dictionary of the American Language, 
Third College Edition (1988) 

In our library example, the desk acted as a cache-a safe place to store things 
(books) that we needed to examine. Cache was the name chosen to represent 
the level of the memory hierarchy between the CPU and main memory in the 
first commercial machine. Today, although this remains the dominant use of 
the word cache, the term is also used to refer to any storage managed to take 
advantage of locality of access. Caches first appeared in research machines in 
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X4 X4 

X1 X1 

Xn - 2 Xn - 2 

Xn - 1 Xn - 1 

X5 X5 

Xn 

X3 X3 

a.  Before the reference to Xn. b. After the reference to Xn. 

FIGURE 7 .3 The cache just before and just after a reference to a word Xn that Is not lnl· 
tlally In the cache. This reference causes a miss that forces the cache to fetch Xn from memory 
and insert it into the cache. 

the early 1960s and in production machines later in that same decade; virtu
ally every general-purpose machine built today, from the fastest to the slow
est, includes a cache. 

In this section, we begin by looking at a very simple cache in which the pro
cessor requests are each one word and the blocks also consist of a single word. 
Figure 7.3 shows such a simple cache, before and after requesting a data item 
that is not initially in the cache. Before the request, the cache contains a collec
tion of recent references Xl, X2, . . .  , Xn-1, and the processor requests a word 
Xn that is not in the cache. This request results in a miss, and the word Xn is 
brought from memory into cache. 

Looking at the scenario in Figure 7.3, we can see that there are two ques
tions we must answer: How do we know if a data item is in the cache? And, if 
it is, how do we find it? The answers to these two questions are related. If each 
word can go in exactly one place in the cache, then we will know how to find 
the word if it is in the cache. The simplest way to assign a location in the cache 
for each word in memory is to assign the cache location based on the address 
of the word in memory. This cache structure is called direct mapped, since each 
memory location is mapped to exactly one location in the cache. The typical 
mapping between addresses and cache locations for a direct mapped cache is 
usually simple. For example, almost all direct mapped caches use the 
mapping: 

Address of the block modulo number of blocks in the cache 
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000 001 010 011 100 101 110 111 

00001 00101 01001 01101 10001 10101 11001 11101 

FIGURE 7 .4 A direct mapped cache with 8 entries showing the addresses of memory 
words between 0 and 30 that map to the same cache locations. Because there are 8 words 
in the cache, an address X maps to the cache word X modulo 8. That is, the low-order log2(8) = 3 
bits are used as the cache index. Thus, addresses OOOOltwo, 0100ltw0, lOOOltwo, and llOOltwo all 
map to entry OOltwo of the cache, while addresses 00101two' OllOltwo' 10101two' and lllOltwo all 
map to entry lOltwo of the cache. 

This mapping is attractive because if the number of entries in the cache is a 
power of 2, then modulo can be computed simply by using only the low
order log2 (cache size in blocks) bits of the address; hence the cache may be 
accessed directly with the low-order bits. For example, Figure 7.4 shows a 
direct mapped cache of eight words and the memory addresses between 
1 (0000ltw0) and 29 (lllOl two) that map to locations 1 (OOltwo) and 5 (101tw0) 
in the cache. 

Because each cache location can contain the contents of a number of differ
ent memory locations, how do we know whether the data in the cache corre
sponds to a requested word? That is, how do we know whether a requested 
word is in the cache or not? We can plan for this by adding a set of tags to the 
cache. The tags contain the information required to identify whether a word in 
the cache corresponds to the requested word. 

We also need a way to recognize that a cache block does not have valid in
formation. For instance, when a processor starts up, the cache will be empty, 
and the tag fields will be meaningless. Some of the cache entries in Figure 7.3 
are empty; we need to know that the tag should be ignored for such entries. 
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The most common procedure is to add a valid bit to indicate whether an entry 
contains a valid address. If the bit is not set, there cannot be a match on this 
address. 

For the rest of this section, we will focus on explaining how reads work in a 
cache and how the cache control works for reads. In general, handling reads is 
a little simpler than handling writes, since reads do not have to change the con
tents of the cache. After seeing the basics of how reads work and how cache 
misses can be handled, we'll examine the cache designs for two real machines 
and detail how these caches handle writes. 

Figure 7.5 shows the contents of an eight-word direct mapped cache as it 
responds to a string of requests from the processor. Since there are eight blocks 
in the cache, the low-order 3 bits of an address give the block number. Here is 
the action for each reference: 

Decimal address Binary address Hit or miss Assigned cache block 
of reference of reference in cache (where found or placed) 

22 10110two Miss (7.5b) (101 10iwo mod 8) = 110iwo 

26 11010two M iss (7 .5c) (11010iw0 mod 8) = 010iw0 
22 10110two H it ( 10 1 10iw0 mod 8) = 110iw0 

26 110101wo Hit (1 1010iw0 mod 8) = 010iw0 

16 10000two Miss (7 .5d) ( 10000iw0 mod 8) = 000iw0 

4 00100two Miss (7.5e) (00 100iw0 mod 8) = 100iw0 

16 10000two Hit (10000iw0 mod 8) = 000iw0 
18 10010two Miss (7 .5f) (10010iwo mod 8) = 010iw0 

When the word at address 18 (10010tw0) is brought into the cache in block 2 
(OlOtwo), the word at address 26 (11010tw0), which was in the cache in block 2 
(010tw0), must be replaced by the newly requested data. This behavior allows 
a cache to take advantage of temporal locality: Recently accessed words re
place less-recently referenced words. This is directly analogous to needing a 
book from the shelves and having no more space on your desk-some book 
already on your desk must be returned to the shelves. In a direct mapped 
cache, there is only one place to put the newly requested item and hence only 
one choice of what to replace. 

We know where to look in the cache for each possible address: The low-or
der bits of an address can be used to find the unique cache entry to which the 
address could map. Figure 7.6 shows how an address is divided into a cache 
index, which is used to select the block and a tag field, which is used to com
pare with the entry in the tag field of the cache. Because a given address can 
appear in exactly one location, the tag need only correspond to the upper por-
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000 N 000 N 
001 N 001 N 
010 N 010 N 
011 N 011 N 
100 N 100 N 

101 N 101 N 

110 N 110 y 10two Memory(10110twol 
111 N 111 N 

a. The initial state of the cache after power-on. b. After handling a miss of address (l0l l01w0)· 

000 N 000 y 10two Memory ( 10000twol 
001 N 001 N 
010 y 11two Memory (11010twol 010 y 1 1two Memory (11010two) 

011 N 011 N 

100 N 100 N 
101 N 101 N 
110 y 10two Memory (101101wol 110 y 10two Memory (10110two) 

111 N 111 N 

c. After handling a miss of address (l 1010twof d. After handling a miss of address (10000tw0). 

000 y 10two Memory (10000two) 000 y 10two Memory (10000twol 

001 N 001 N 
010 y 11two Memory (110101wol 010 y 10two Memory (10010two) 

011 N 011 N 
100 y OOtwo Memory (00100two) 100 y OOtwo Memory (00100twol 
101 N 101 N 

110 y 10two Memory (10110two) 110 y 10two Memory (10110twol 
111 N 111 N 

e. After handling a miss of address (001001w0). f. After handling a miss of address (100101w0). 

FIGURE 7.5 The cache contents are shown after each reference request that misses with the index and tag fields 
shown in binary. The cache is initially empty with all valid bits (V entry in cache) turned off (N). The processor requests 
the following addresses: 10110two(miss), 11010two(miss), 10110two(hit), 11010two (hit), lOOOOtwo(miss), OOlOOtwo(miss), 
lOOOOtwo(hit), and 10010two(miss). The figures show the cache contents after each miss in the sequence has been handled. 
When address 10010two(18) is referenced, the entry for address 11010two(26) must be replaced, and a reference to 11010two 
will cause a subsequent miss. Remember that the tag field will contain only the upper portion of the address. The full 
address of a word contained in cache block i with tag field j for this cache is 8 x j + i, or equivalently the concatenation of 
the tag field j and the index i. You can see this by looking at the block address in the Data field of any cache entry and the 
corresponding index and tag. For example, in cache f above, index 010 has tag 10 and corresponds to address 10010. 
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FIGURE 7.6 For this cache, the lower portion of the address Is used to select a cache 
entry consisting of a data word and a tag. The tag from the cache is compared against the 
upper portion of the address to determine1JVhether the entry in the cache corresponds to the 
requested address. Because the cache has 2 or 1024 words, and a block size of 1 word, 10 bits 
are used to index the cache, leaving 32 - 10 - 2 = 20 bits to be compared against the tag. If the tag 
and upper 20 bits of the address are equal and the valid bit is on, then the request hits in the 
cache, and the word is supplied to the processor. Otherwise, a miss occurs. 

tion of the address, which is not used to index the cache. Thus, the index of a 
cache block, together with the tag contents of that block, uniquely specify the 
memory address of the word contained in the cache block. Because the bits in 
the index field are used as an address to access the cache, the total number of 
entries in the cache must be a power of 2. In the MIPS architecture, the least 
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significant 2 bits of every address specify a byte within a word and are not 
used to select the word in the cache. 

The total number of bits needed for a cache is a function of the cache size 
and the address size, because the cache includes both the storage for the data 
and for the tags. Assuming the 32-bit byte address of MIPS, a direct mapped 
cache of size 2n words with one-word blocks will require a tag field whose 
width is 32 - ( n  + 2) bits wide, because 2 bits are used for the byte offset and 
n bits are used for the index. The total number of bits in a direct mapped cache 
is 2n x (block size + tag size + valid field size ) . Since the block size is 1 word 
(32 bits) and the address width is 32-bits, the number of bits in such a cache 
is: 2'1 x (32 + ( 32 - n - 2) + 1 ) = 2n x ( 63 - n) . 

How many total bits are required for a cache with 64 Kbytes of data? 

We know that 64 Kbytes is 16K words, which is 214 words. Thus the total 
cache size is 

214 x (32 + (32 - 14 - 2) + 1 ) = 214 x 49 = 784 x 210 
= 784 Kbits 

or almost 100 KB for a 64 KB cache. For this cache, the total number of bits 
in the cache is about 1.5 times as many as needed just for the storage of the 
data. 

Handling Cache Misses 

Before we look at the cache of a real system, let's see how the control unit 
deals with cache misses. The control unit must detect a miss and process the 
miss by fetching the data from memory (or a lower level cache) . If the cache 
reports a hit, the machine continues using the data as if nothing had hap
pened. Consequently, we can use the same basic control that we developed in 
Chapter 5 and enhanced to accommodate pipelining in Chapter 6. The memo
ries in the datapath used in Chapters 5 and 6 are simply replaced by caches. 

Modifying the control to take a hit into account is trivial; misses, however, 
require some extra work. Let's look at how instruction misses are handled for 
either the multicycle or pipelined datapath; the same approach can be easily 
extended to handle data misses. If an instruction access results in a miss, then 
the contents of the Instruction register are not valid, and the actions that are 
performed on the next clock cycle (reading the registers) will be useless. Luck
ily, as we observed in Chapter 5, performing these actions is harmless. Of 
course, when we do fetch the correct instruction, we will need to reread the 
registers using the register designators from the actual instruction. 
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To perform the actions needed for a cache miss on an instruction read, we 
must be able to instruct the lower level in the memory hierarchy to perform a 
read. Since the program counter is incremented in the first clock cycle of exe
cution, the address of the instruction that generates the cache miss is equal to 
the value of the program counter minus 4. We can compute this value using 
the ALU. Once we have the address, we need to instruct the main memory to 
perform a read. We wait for the memory to respond (since the access will take 
multiple cycles), and then write the word into the cache. We can now define 
the steps to be taken on an instruction cache miss: 

1. Compute the value of PC - 4. 

2. Instruct the main memory to perform a read and wait for the memory 
to complete its access. 

3. Write the cache entry, putting the data from memory in the data portion 
of the entry, writing the upper bits of the address (from the ALU) into 
the tag field, and turning the valid bit on. 

4. Restart the instruction execution at the first step, which will re-fetch the 
instruction, this time finding it in the cache. 

The processing of a cache miss creates a stall, similar to the pipeline stalls 
discussed in Chapter 6 but somewhat simpler. For a cache miss we can stall the 
entire machine while we wait for memory; when memory responds, we sim
ply continue. Pipeline stalls are more complex, because we must continue ex
ecuting some instructions while we stall others. 

The control of the data cache is essentially identical: On a miss, we simply 
stall the processor until the memory responds with the data. In the rest of this 
section we describe two different caches from real machines, and we examine 
how they handle both reads and writes. In section 7.4, we will describe more 
techniques for handling writes. 

121111h1,,r=1't1111n° To reduce the penalty of cache misses, designers employ two tech
niques, one which we d iscuss here and another that we wi l l  d iscuss later. To reduce 
the number of cycles that a processor is stal led for a cache miss, we can allow a pro
cessor to continue executing instructions whi le the cache miss is handled. This strat
egy does not help for instruction misses, because we cannot fetch new instructions to 
execute. In the case of data m isses, however, we can al low the machine to continue 
fetching and executing instructions until the loaded word is required. While this addi
tiona l  effort may save cycles, it w i l l  probably not save very many cycles, because the 
loaded data wi l l  l i kely be needed very shortly. 
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FIGURE 7. 7 The caches In the DECstation 3100 each contain 16K blocks with one word 
per block. This means that the index is 14 bits and that the tag contains 16 bits. 

An Example Cache: The DECstation 3100 

The DECStation 3100 is a workstation that uses a MIPS R2000 as the processor 
and a very simple cache implementation. The processor has a pipeline similar 
to that discussed in Chapter 6. When operating at peak speed, the processor 
requests both an instruction word and a data word on every clock. To satisfy 
the demands of the pipeline without stalling, separate instruction and data 
caches are used. Each cache is 64 KB or 16K words with a one-word block. 
Figure 7.7 shows the organization of the DS 3100 data cache. 
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Read requests for the cache are straightforward. Because there are separate 
data and instruction caches, separate control signals will be needed to read 
and write each cache. (Remember that we need to write into the instruction 
cache when a miss occurs.) Thus, the steps for a read request to either cache 
are as follows: 

1 .  Send the address to the appropriate cache. The address comes either 
from the PC (for an instruction read) or from the ALU (for a data 
access). 

2. If the cache signals hit, the requested word is available on the data lines. 
If the cache signals miss, we send the full address to the main memory. 
When the memory returns with the data, we write it into the cache. 

Writes work somewhat differently. Suppose on a store instruction, we 
wrote the data into only the data cache (without changing main memory); 
then, after the write into the cache, memory would have a different value from 
that in the cache. In such a case, the cache and memory are said to be inconsis
tent. The simplest way to keep the main memory and the cache consistent is to 
always write the data into both the memory and the cache. This scheme, which 
the DECStation 3100 uses, is called write-through. Later in this chapter, we will 
see another way to handle writes into a cache. 

The other key aspect to understand about writes is what occurs on a write 
miss. Because the data word in the cache is being written by the processor, 
there is no reason to read a word from memory; it would just be overwritten 
by the processor. In fact, for this simple cache we can always just write the 
word into the cache, updating both the tag and data. We do not need to con
sider whether a write hits or misses in the cache. This leads to the following 
simple scheme for processing writes, used on the DECStation 3100: 

1. Index the cache using bits 15 - 2 of the address. 

2. Write both the tag portion (using bits 31 - 16 of the address) and the 
data portion with the word. 

3. Also write the word to main memory using the entire address. 

Although this design handles writes very simply, it would not provide very 
good performance. With a write-through scheme, every write causes the data 
to be written to main memory. These writes will take a long time and could 
slow down the machine considerably. In gee, for example, 11 % of the instruc
tions are stores. In the DECStation 3100, the CPI without cache misses for a 
program like gee is about 1 .2, so spending 10 cycles on every write would lead 
to a CPI of 1 .2 + 10 x 1 1  % == 2 .3 , reducing performance by a factor of nearly 2. 

One solution to this problem is to use a write buffer. A write buffer stores the 
data while it is waiting to be written to memory. After writing the data into the 
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FIGURE 7 .8 Instruction and data miss rates for the DECStation 3100 when executing two 
different programs. The combined miss rate is the effective miss rate seen. It is obtained by 
weighting the instruction and data individual miss rates by the frequency of instruction and data 
references. Remember that data misses include only data reads, because writes cannot miss in the 
DECStation 3100 cache. 

cache and into the write buffer, the processor can continue execution. The 
write buffer can accommodate a fixed number of words, usually from 1 to less 
than 10. When a write to main memory completes, the entry in the write buffer 
is freed up. If the write buffer is full when the processor reaches a write, the 
processor must stall until there is an empty position in the write buffer. Of 
course, if the rate at which the memory can complete writes is less than the rate 
at which the processor is generating writes, no amount of buffering can help, 
because writes are being generated faster than the memory system can accept 
them. 

The rate at which writes are generated may also be less than the rate at 
which the memory can accept them, and stalls may still occur. This can happen 
when the writes occur in bursts, even if on average the frequency of stores is 
low. To reduce the occurrence of such stalls, machines may increase the depth 
of the write buffer. For example, the DECStation 3100 write buffer is four 
words deep. 

What sort of cache miss rates are attained with a cache like that used by the 
DECStation 3100? Figure 7.8 shows the miss rates for the instruction and data 
cache for two programs, which we have seen before. The combined miss rate 
is the effective rate for each program after accounting for the differing frequen
cy of instruction and data accesses. 

Remember that although miss rate is an important characteristic of cache 
designs, the ultimate measure will be the effect of the memory system on pro
gram execution time; we'll see how miss rate and execution time are related 
shortly. First we must explore how the memory system can take advantage of 
spatial locality. 

Elaboration: A combined cache of the total size equal to the sum of the two spl it 
caches wi l l  usual ly have a better hit rate . This is true because the combined cache 
does not rigidly divide the number of entries that may be used by instructions from 
those that may be used by data. Nonetheless, many machines use a split instruction 
and data cache to increase the bandwidth from the cache. 
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Here are some measurements for the DECStation 3100 for the program gee, and for 
a combined cache whose size is equal to the total of the two caches on the 3100: 

• Total cache size: 128 KB 

• Split cache effective m iss rate: 5.4% 

• Combined cache miss rate: 4.8% 

The miss rate of the spl it cache is only sl ightly worse. 
For many systems, the advantage of doubling the cache bandwidth, by supplying 

both an instruction and data word on every cache access, eas i ly overcomes the d isad
vantage of a sl ightly increased miss rate . This is another reminder that we cannot use 
m iss rate as the sole measure of cache performance. 

Taking Advantage of Spatial Locality 

The cache we have described so far, while simple, does nothing to take advan
tage of spatial locality in requests, since each word is in its own block. As we 
noted in section 7.1, spatial locality exists naturally in programs. To take 
advantage of spatial locality, we want to have a cache block that is larger than 
one word in length. When a miss occurs, we will then fetch multiple words 
that are adjacent and carry a high probability of being needed shortly. 
Figure 7.9 shows a cache that holds 64 KB of data, but with blocks of four 
words (16 bytes) each. Compared with Figure 7.6 on page 463, which shows 
the same total size cache with a one-word block, an extra block index field 
occurs in the address of the cache in Figure 7.9. This block index field is used 
to control the multiplexor (shown at the bottom of the figure), which selects 
the requested word from the four words in the indexed block. The total num
ber of tags in the cache with a multiword block is smaller, because each tag is 
used for four words. This improves the efficiency of memory use in the cache. 

How do we find the cache block for a particular address? We can use the 
same mapping that we used for a cache with a one-word block: address of the 
block modulo number of blocks in the cache. The block address is simply the 
word address divided by the number of words in the block (or equivalently, 
the byte address divided by the number of bytes in the block). 

Consider a cache with 64 blocks and a block size of 16 bytes. What block 
number does byte address 1200 map to? 

With 16 bytes per block, byte address 1200 is block address l l��o J = 75 
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which maps to cache block number (75 modulo 64) = 11 .  An equivalent way 
to compute the cache block number is ( word address ) 

d bl k 
modulo (blocks in cache ) . 

wor s per oc 

Address (showing bit positions) 

19 18 17 16 15 14 13 12 . . . 7 6 5 4 3 2 1 0 

I I B�e:I offset 

l16 ... 12 ... 2 Da .... I'- ta 

Index Block offset 

16 bits 128 bits 

Tag Data 

4K 
entries 

... 16 ... 32 ... 32 ... 32 ... 32 .... .... ..... ... ... 
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l l • • ( Mux "\ 
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FIGURE 7.9 A 64 KB cache using four-word (16 byte) blocks. The tag field is 16 bits wide and the index field is 12 bits 
wide, while a 2-bit field (bits 3-2) are used to index the block and select the word from the block using a 4-to-1 multiplexor. 
In practice, the low-order bits of the address (bits 2 and 3 in this case) are used to enable only those RAMs that contain the 
desired word. This eliminates the need for the multiplexor. This technique works because the values of the block offset bits 
are known at the same time as the rest of the address bits. 
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1 6.1% 2 .1% 5.4% 
gee 

4 2.0% 1.7% 1.9% 
1 1.2% 1.3% 1.2% 

spice 
4 0.3% 0.6% 0.4% 

FIGURE 7 .10 The miss rates for gee and spice with a cache like that in the DecStatlon 
3100 with a block size of either one word or four words. With the four-word block, we 
include write misses, which do not incur any penalty for the one-word block and are not 
included in that case. 

Read misses are processed the same way for a multiword block as for a 
single-word block; a miss always brings back the entire block. Write hits and 
misses, however, must be handled differently than they were in the DECSta
tion 3100 cache. Because the block contains more than a single word, we can
not just write the tag and data. To see why this is true, assume that there are 
two memory addresses X and Y, that both map to cache block C, and that C 
currently contains Y. Now consider writing to address X by simply overwrit
ing the data and tag in cache block C. After the write, block C will have the tag 
for X, but the data portion of block C will contain one word of X and three 
words of Y! 

We can solve this problem by writing the data while performing a tag com
parison, just as if the request were a read. If the tag of the address and the tag 
in the cache entry are equal, we have a write hit and can continue. If the tags 
are unequal, we have a write miss and must fetch the block from memory. Af
ter the block is fetched and placed into the cache, we can rewrite the word that 
caused the miss into the cache block. Unlike the case with a one-word block, 
write misses with a multi word block will require reading from memory. 

The reason for increasing the block size was to take advantage of spatial lo
cality to improve performance. So how does a larger block size affect perfor
mance? In general, the miss rate falls when we increase the block size. This is 
easiest to see with an example. Suppose the following byte addresses are re
quested by a program: 16, . . .  , 24, . . .  , 20 and none of these addresses is in the 
cache. Spatial locality tells us that some pattern of this form is highly probable, 
although the order of the references may vary. If the cache has a four-word 
block, then the miss to address 16 will cause the block containing addresses 16, 

20, 24, and 28 to be loaded into the cache. Only one miss is encountered for the 
three references, provided that an intervening reference doesn't bump the 
block out of the cache. With a one-word block, two additional misses are re
quired because each miss brings in only a single word. Figure 7.10 shows the 
miss rates for the programs gee and spice with one- and four-word blocks. The 



472 Chapter 7 Large and Fast: Exploiting Memory Hierarchy 

40% 

35% 

30% 
1 KB 

s 
25% 

� 
"' 20% "' 
� 

15% 

10% - - - - - - - - - - - - - - - - - - - - - - - - -
8 KB 

5% ---������� • .._.������ .. • 16 KB 

64 KB 
0% 

4 256 KB 16 64 256 

Block size (bytes) 

FIGURE 7 .11 Miss rate versus block size. For a small 1 KB cache, a large 256-byte block size 
causes a higher miss rate than the smaller block sizes. This data was collected for a direct mapped 
cache using traces (SAVEO) collected by Agarwal for the VAX. More details can be found in Agar
wal, A. Analysis of Cache Performance for Operating Systems and Multiprogramming, Ph.D. Thesis, 
Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May 1987). 

instruction cache miss rates drop at a rate that is nearly equal to the increase in 
block size; this is because the instruction references have better spatial locality. 
The improvement in the data cache miss rate is up to a factor of two. 

The miss rate may actually go up, if the block size is made very large, com
pared with the cache size, because the number of blocks that can be held in the 
cache will become small, and there will be a great deal of competition for those 
blocks. As a result, a block will be bumped out of the cache before many of its 
words are accessed. As Figure 7.llshows, increasing the block size usually de
creases the miss rate. However, the spatial locality among the words in a block 
decreases with a very large block, consequently, the improvements in the miss 
rate become smaller-and the miss rate can eventually even increase. 

A more serious problem associated with just increasing the block size is that 
the cost of a miss increases. The miss penalty is determined by the time re
quired to fetch the block from the next lower level of the hierarchy and load it 
into the cache. The time to fetch the block has two parts: the latency to the first 
word and the transfer time for the block. Clearly, unless we change the mem
ory system, the transfer time will increase as the block size grows. Since the 
time to process a miss increases proportionally to the block size, the miss pen
alty also grows. Furthermore, the improvement in the miss rate starts to de-
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crease as the blocks become larger. The result is that the increase in the miss 
penalty overwhelms the decrease in the miss rate for large blocks, and cache 
performance thus decreases. Of course, if we design the memory to transfer 
larger blocks more efficiently, we can increase the block size and obtain further 
improvements in cache performance. We discuss this topic in the next section. 

EU•1>e>ra11111>n: The major disadvantage of increasing the block size is that the cache 
miss penalty increases. Although it is hard to do anyth ing about the latency component 
of the m iss penalty, we m ay be able to hide some of the transfer time so that the miss 
penalty is effectively smal ler. The simplest method for doing this,  called early restart, is  
s imply to resume execution as soon as the requested word of the block is returned, 
rather than wait for the entire block. Many machines use this technique for instruction 
access, where it works best. I nstruction accesses are largely sequentia l ,  so if the 
memory system can del iver a word every clock cycle, the processor may be able to 
restart operation when the requested word is returned, with the memory system del iv
ering new instruction words just in time. This techn ique is usual ly less effective for 
data caches, because it is l ikely that the words wil l  be requested from the block in a 
less predictable way, and the probabi l ity that the processor wil l  need another word from 
a d ifferent cache l ine before the transfer completes is high . If the processor cannot 
access the data cache because a transfer is ongoing, then it must stal l .  

An even more sophisticated scheme i s  to organize the memory so that the 
requested word is transferred from the memory to the cache first. The remainder of the 
l ine is then transferred, starting with the address after the requested word and wrap
ping around to the beginning of the block. This technique, cal led requested word first, 

can be s l ightly faster than early restart, but it is l imited by the same properties that 
l imit early restart. 

Designing the Memory System to Support Caches 

Cache misses are satisfied from main memory, which is constructed from 
DRAMs. In Chapter 1 ,  we saw that DRAMs are designed with the primary 
emphasis on density rather than access time. Although it is difficult to reduce 
the latency to fetch the first word from memory, we can reduce the miss pen
alty if we increase the bandwidth from the memory to the cache. This allows 
larger block sizes to be used while still maintaining a low miss penalty, simi
lar to that for a smaller block. 

To understand the impact of different organizations for memory, let's de-
fine a set of hypothetical memory access times: 

• 1 clock cycle to send the address 

• 10 clock cycles for each DRAM access initiated 

• 1 clock cycle to send a word of data 
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Cache 

Bus 

Memory 

b. Wide memory organization 

Memory Memory Memory Memory 
bank O bank 1 bank 2 bank 3 

c. Interleaved memory organization 

a. One-word-wide memory organization 

FIGURE 7 .12 The primary method of achieving higher memory bandwidth Is to Increase the physlcal or loglcal 
width of the memory system. In this figure there are two ways in which the memory bandwidth is improved. The sim
plest design, (a), uses a memory where all components are one word wide; (b) shows a wider memory, bus, and cache; 
while (c) shows a narrow bus and cache with an interleaved memory. 

If we have a cache block of four words and a one-word-wide bank of 
DRAMs, the miss penalty would be 1 + 4 x 10 + 4 x 1 = 45 clock cycles. Thus, 
the number of bytes transferred per clock cycle for a single miss would be 

4 x 4  
- = 0.36 

45 

Figure 7.12 shows three options for designing the memory system. The first 
option follows what we have been assuming so far: memory is one word 
wide, and all accesses are made sequentially. The second option increases the 
bandwidth to memory by widening the memory and the buses between the 
processor and memory; this allows parallel access to all the words of the block. 
The third option, called interleaving, increases the bandwidth by widening the 
memory but not the interconnection bus. Thus, we still pay a cost to transmit 
each word, but we can avoid paying the cost of the access latency more than 



7.2 Caches 475 

once. Let's look at how much these other two options improve the 45-cycle 
miss penalty that we would see for option a in Figure 7.12. 

Increasing the width of the memory and the bus will increase the memory 
bandwidth proportionally, decreasing the transfer time portion of the miss 
penalty. With a main memory width of two words, the miss penalty drops 
from 45 clock cycles to 1 + 2 x 10 + 2 x 1 = 23 clock cycles. With a four-word
wide memory, the miss penalty is just 12 clock cycles. The bandwidth for a sin
gle miss is then 0.6956 (or 0.70) of a byte per clock cycle for a memory that is 
two words wide, and 1 .33 bytes per clock cycle when the memory is four 
words wide. The major cost of this enhancement is in the wider bus; a second
ary cost is in additional buffers at the memory. 

Instead of making the entire path between the memory and cache wider, the 
memory chips can be organized in banks to read or write multiple words in 
one access time rather than reading and writing a single word each time. Each 
bank could be one word wide so that the width of the bus and the cache need 
not change, but sending addresses to several banks permits them all to read si
multaneously. This scheme, which is called interleaving, retains the advantage 
of incurring the full memory latency only once. For example, with four banks, 
the time to get a four-word block would consist of 1 cycle to transmit the ad
dress to the banks, 10 cycles for all four banks to access memory, and 4 cycles 
to send the four words back to the cache. This yields a miss penalty of 
1 + 1 x 10 + 4 x 1 = 15 clock cycles. This is an effective bandwidth per miss of 
just over 1 byte per clock, or about three times the bandwidth for the one
word-wide memory and bus. Banks are also valuable on writes. Each bank can 
write independently, quadrupling the write bandwidth and leading to fewer 
stalls in a write-through cache. As we will see, there is an alternative strategy 
for writes that makes interleaving even more attractive. 

l:laHlc>r11tlc>n: As capacity per memory chip increases, there are fewer chips in the 
same-sized memory system .  Memory chips are organized to produce a smal l  number 
of output bits, usual ly 1 to 8, with 1 being the most popular. We describe the organiza
tion of a RAM as d x w, where d is the number of addressable locations (the depth) and 
w is the output (or width of each location) .  Thus, the most popular 4 Mbit DRAMs are 
4M x 1. As memory chip densities grow, the width of a memory chip remains constant, 
but the depth increases (see Appendix B for further discussion of DRAMs). Because of 
<this,  multiple banks become much less attractive, because the minimum memory con
figuration increases quickly. For example, a 16 MB main memory with banks each 32 
bits wide takes 128 memory chips of 1 Mb x 1 chips ,  easi ly organized into four banks 
of 32 memory chips. But if 4 Mb x 1-bit memory chips are used for 16 MB, there can 
be only one bank with a width of 32 bits. This is the main disadvantage of interleaved 
memory banks. 

Another possibi l ity for improving the rate at which we transfer data from the memory 
to the caches is to take advantage of the structure of DRAMs.  DRAMs are organized as 
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Total access time to Column access 
Year introduced Chip size S per MByte a new row/column time to existing row 

1980 64 Kbit 1500 250 ns 150 ns 
1983 256 Kbit 500 185 ns 100 ns 
1985 1 Mbit 200 135 ns 40 ns 
1989 4 Mbit 50 1 10 ns 40 ns 
1992 16 Mbit 15 90 ns 30 ns 

FIGURE 7.13 DRAM sizes increase by multiples of four approximately once every three years. The improvements 
in access time have been slower but continuous, and cost almost tracks density improvements, although cost is often 
affected by other issues, such as availability and demand. Column access time usually determines the time to perform a 
page mode access. DRAMs are almost always available in xl configurations initially (e.g., 4 Mbit x 1). Wider configurations 
(e.g., 1 Mbit x 4) usually track availability of the xl configuration by close to a year, and they cost more. Two major reasons 
for this are that the package for the xl configuration is cheaper and it is the commodity product. 

square arrays, and access time is divided into row access and column access. DRAMs 
buffer a row of bits inside the DRAM for column access. They also come with optional 
timing signals that allow repeated accesses to the buffer without a row-access time. 
One common version of this capabi l ity is called page mode. I n  page mode, the buffer 
acts l ike a SRAM; by changing column address, random bits can be accessed in the 
buffer until the next row access or refresh time. This capability changes the access 
time significantly, since the access time to bits in the row is much lower. Figure 7 .13 
shows how the density, cost, and access time of DRAMS have changed over the years. 

The advantage of these optimizations is that they use the circuitry already on the 
DRAMs, adding l ittle cost to the system whi le achieving a significant improvement in 
bandwidth. (The same is true of interleaving.) Furthermore, these DRAM options allow 
us to increase the bandwidth without incurring system disadvantages in terms of 
expandabil ity and minimum memory size that are associated with wider memories or 
interleaving. The internal architecture of DRAMs and how these optimizations are 
implemented are described in section 8 .5 of Appendix 8. 

Cache Performance 

CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the mem
ory system. Normally, we assume that the cost of cache accesses that are hits 
are part of the normal CPU execution cycles. Thus, 

CPU time = (CPU execution clock cycles + Memory-stall clock cycles ) 
x Clock cycle time 

The memory-stall clock cycles come primarily from cache misses, and we 
make that assumption here. We also restrict the discussion to a simplified 
model of the memory system. In real processors, the stalls generated by reads 
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and writes can be quite complex and accurate performance prediction usually 
requires very detailed simulations of the processor and memory system. 

Memory-stall clock cycles can be defined as the sum of the stall cycles com
ing from reads plus those coming from writes: 

Memory-stall clock cycles = Read-stall cycles + Write-stall cycles 

The read-stall cycles can each be defined in terms of the number of read 
accesses per program, the miss penalty in clock cycles for a read, and the read 
miss rate: 

Read-stall cycles 
Reads ---- x Read miss rate x Read miss penalty 

Program 

Writes are more complicated. For a write-through scheme, we have two 
sources of stalls: write misses, which require that we fetch the block before 
continuing the write; and write buffer stalls, which occur when the write 
buffer is full when a write occurs. Thus, the cycles stalled for writes equals the 
sum of these two: 

. ( Writes . . . . ) Wnte-stall cycles = x Wnte miss rate x Wnte miss penalty 
Program 

+ Write buffer stalls 

In many cache organizations, the read and write miss penalties are the 
same (the time to fetch the block from memory). If we assume that the write 
buffer stalls are negligible (or fold them into the stalls for write cache misses), 
we can combine the reads and writes by using a single miss rate and the miss 
penalty: 

Memory-stall clock cycles 

We can also write this as 

Memory-stall clock cycles 

Memory accessess ------- x Miss rate x Miss penalty 
Program 

Instructions Misses 1 ----- x x Miss pena ty 
Program Instruction 

Let's consider a simple example to help us understand the impact of cache 
performance on machine performance. 

Assume an instruction cache miss rate for gee of 5% and a data cache miss 
rate of 10%. If a machine has a CPI of 4 without any memory stalls and the 
miss penalty is 12 cycles for all misses, determine how much faster a ma
chine would run with a perfect cache that never missed. Use the instruction 
frequencies for gee from Chapter 4, Figure 4.46 on page 248. 
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The number of memory miss cycles for instructions in terms of the Instruc
tion count (IC) is 

Instruction miss cycles = IC x 5% x 12 = 0.6 x IC 
We know that the frequency of loads and stores is 33%. Therefore, we 

can find the number of memory miss cycles for data references: 

Data miss cycles = IC x 33'Yo x 10% x 12 = 0.4 x IC 

Thus, the total number of memory stall cycles is 0.6 IC + 0.4 IC = 1 .0 IC. 
This is one cycle of memory stall per instruction. Accordingly, the CPI with 
memory stalls is 4 + 1 = 5. Since there is no change in instruction count or 
clock rate, the ratio of the CPU execution times is 

CPU time with stalls 
CPU time with perfect cache 

IC x CPI stall x Clock Cycle 

IC x CPI perfect X Clock cycle 

CPI stall 5 
-

CPI perfect 4 

5 
The performance with the perfect cache is better by 4. 1 .25 . 

What happens if the processor is made faster, but the memory system stays 
the same? The amount of time spent on memory stalls will take up an increas
ing fraction of the execution time; Amdahl's Law, which we examined in 
Chapter 2, reminds us of this fact. A few simple examples show how serious 
this problem can be. Suppose we speed up the machine in the previous exam
ple by reducing its CPI from 4 to 2 without changing the clock rate. The system 
with cache misses would then have a CPI of 2 + 1 = 3, and the system with the 
perfect cache would be 

3 
- = 1 .5 times faster. 
2 

The amount of execution time spent on memory stalls would have risen 
from 

1 1 
20°/c t = 33% . 

5 
= 0 0 3 

Similarly, increasing the clock rate without changing the memory system 
also increases the performance lost due to cache misses, as the next example 
shows. 
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Suppose we increase the performance of the machine in the previous exam
ple by doubling its clock rate. Since the main memory speed is unlikely to 
change, assume that the absolute time to handle a cache miss does not 
change. How much faster will the machine be with the faster clock, assum
ing the same miss rate as the previous example? 

Measured in the faster clock cycles, the new miss penalty will be twice as 
long, or 24 clock cycles. Hence: 

Total miss cycles per instruction = (5% x 24) + 33% x ( 10% x 24) = 2.0 

This means that the faster machine with cache misses will have a CPI of 4 + 
2 = 6, compared to a CPI with cache misses of 5 for the slower machine. 

Using the formula for CPU time from the previous example, we can 
compute the relative performance as: 

Performance with fast clock Execution time with slow clock 
Performance with slow clock Execution time with fast clock 

IC x CPI x Clock cycle 

IC x CPI x 
Clock cycle 

5 5 
-

1 3 6 x -
2 

2 

This means the machine with the faster clock is 1 .67 times faster rather than 
2 times faster, which it would have been without the increased effect of 
cache misses. 

As these examples illustrate, cache behavior penalties increase as a machine 
becomes faster. Furthermore, if a machine improves both clock rate and CPI, 
it suffers a double hit: 

1 .  The lower the CPI, the more pronounced the impact of stall cycles. 

2. The main memory system is unlikely to improve as fast as processor 
cycle time. When calculating CPI, the cache miss penalty is measured in 
CPU clock cycles needed for a miss. Therefore, a higher CPU clock rate 
leads to a larger miss penalty, if the main memories of two machines 
have the same absolute access times. 
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Thus, the importance of cache performance for CPUs with low CPI and high 
clock rates is greater; and, consequently, the danger of neglecting cache 
behavior in assessing the performance of such machines is greater. 

The previous examples and equations assume that the hit time is not a fac
tor in determining cache performance. Although, clearly, if the hit time in
creases, the total time to access a word from the memory system will increase, 
possibly causing an increase in the processor cycle time. Although we will see 
additional examples of this shortly, one example is increasing the cache size. 
A larger cache could clearly have a longer access time, just as if your desk in 
the library was very large (say 10' by 10'), it would take longer to locate a book 
on the desk. At some point, the increase in hit time for a larger cache could 
dominate the improvement in hit rate, leading to a decrease in processor per
formance. An example of this behavior is shown in the Fallacies and Pitfalls in 
section 7.1. 

Summary: The Basics of Caches 

In this section, we started by examining the simplest of caches: a direct 
mapped cache with a one-word block. In such a cache, both hits and misses 
are simple, since a word can go in exactly one location and there is a separate 
tag for every word. To keep the cache and memory consistent, a write
through scheme can be used, so that every write into the cache also causes 
memory to be updated. 

To take advantage of spatial locality, a cache must have a block size larger 
than one word. The use of a larger block decreases the miss rate and improves 
the efficiency of the cache by reducing the amount of tag storage relative to the 
amount of data storage in the cache. Although a larger block size decreases the 
miss rate, it can also increase the miss penalty. If the miss penalty increased 
linearly with the block size, larger blocks could easily lead to lower perfor
mance. To avoid this, the bandwidth of main memory is increased to transfer 
cache blocks more efficiently. The two common methods for doing this are 
making the memory wider and interleaving. In both cases, we reduce the time 
to fetch the block by minimizing the number of timE1s we must start a new 
memory access to fetch a block. These schemes may also reduce the transfer 
time to move the block from the memory to the cache. 

The last part of the section examined cache performance. Since the total 
number of cycles spent on a program is the sum of the processor cycles and the 
memory stall cycles, the memory system can have a significant effect on pro
gram execution time. In fact, as processors get faster (either by lowering CPI 
or increasing the clock rate), the relative effect of the memory stall cycles in
creases, making a good memory system critical to achieving high perfor
mance. The number of memory stall cycles depends on both the miss rate and 
the miss penalty. The challenge, as we will see in section 7.4, is to reduce one 
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of these factors without significantly affecting other critical factors in the mem
ory hierarchy. • Virtual Memory 

. . .  a system has been devised to make the core drum combination appear to the pro
grammer as a single level store, the requisite transfers taking place automatically. 

Kilburn et al., One-level storage system, 1962 

In the previous section, we saw how caches served as a method for providing 
fast access to recently used portions of a program's code and data. Similarly, 
the main memory can act as a "cache" for the secondary storage, usually 
implemented with magnetic disks. This technique is called virtual memory. 
There are two major motivations for virtual memory: to allow efficient shar
ing of memory among multiple programs and to remove the programming 
burdens of a small, limited amount of main memory. 

Consider a collection of programs running at once on a machine. The total 
memory required by all the programs may be much larger than the amount of 
physical memory available on the machine, but only a fraction of this memory 
is actively being used at any point in time. Main memory need contain only the 
active portions of the programs, just as a cache contains only the active portion 
of one program. This allows us to efficiently share the processor as well as the 
main memory. 

A second motivation is to allow user programs to exceed the size of primary 
memory. Formerly, if a program became too large for physical memory, it was 
up to the programmer to make it fit. Programmers divided programs into 
pieces and then identified the pieces that were mutually exclusive. These over
lays were loaded or unloaded under user program control during execution, 
with the programmer ensuring that the program never tried to access an over
lay that was not loaded and that the overlays loaded never exceeded the total 
size of the memory. As one can well imagine, this responsibility was a substan
tial burden on programmers. Virtual memory, which was invented to relieve 
programmers of this difficulty, automatically manages the two levels of the 
memory hierarchy represented by main memory and secondary storage. 

Of course, we cannot know which programs will share the physical memo
ry with other programs when we compile them. In fact, the programs sharing 
the physical memory can even change dynamically while the programs are 
running. Because of this, we would like to compile each program into its own 
address space, that is, a separate range of memory locations accessible only to 
this program. Because multiple user programs share a single physical memo-
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Virtual addresses Physical addresses 

Disk addresses 

FIGURE 7 .14 In virtual memory, pages are mapped from one set of addresses, called vir
tual addresses, to another set called physical addresses. The processor generates virtual 
addresses while the memory is accessed using physical addresses. Both the virtual memory and 
the physical memory are broken into pages, so that a virtual page is really mapped to a physical 
page. Of course, it is also possible for a virtual page to be absent from physical memory and not 
be mapped to a physical address as soon, residing instead on disk. Physical pages can be shared 
by having two virtual addresses point to the same physical address. This capability is used to 
allow two different programs to share data or code. 

ry, which the operating system must also share, we must be able to protect the 
programs from one another. Both the translation of each program's address 
space and the protection of the address space from other programs are provid
ed by virtual memory. 

Although the concepts at work in virtual memory and in caches are the 
same, their differing historical roots have led to the use of different terminolo
gy. A virtual memory block is called a page, and a virtual memory miss is 
called a page fault. With virtual memory, the CPU produces a virtual address, 
which is translated by a combination of hardware and software to a physical ad
dress, which in turn can be used to access main memory. Figure 7.14 shows the 
virtual addressed memory with pages mapped to physical memory. This pro
cess is called memory mapping or address translation. Today, the two memory hi
erarchy levels controlled by virtual memory are DRAMs and magnetic disks. 
If we return to our library analogy, we can think of a virtual address as the title 
of a book and a physical address as the location of that book in the library 
(which might be given by the Library of Congress number) .  
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Virtual address 

31 30 29 28 27 15 14 13 12 11 10 9 8 . . . . . . 3 2 1 0 

Virtual page number Page offset 

Physical page number Page offset 

Physical address 

483 

FIGURE 7.15 Mapping from a virtual to a physical address. The page size is 212 = 4 KB. The 
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in 
it. This means that main memory can have at most 1 gigabyte, while the virtual address space is 
4GB. 

Virtual memory also simplifies loading the program for execution. Virtual 
memory provides relocation, because the virtual addresses used by a program 
are mapped to different physical addresses before they are used to access 
memory. This mapping allows us to load the program into any location in 
physical memory. Furthermore, all virtual memory systems in use today relo
cate the program as a set of fixed-size blocks (pages), thereby eliminating the 
need to find a contiguous block of memory to allocate to a program; instead, 
the operating system need only find sufficient pages in physical memory. For
merly, relocation and allocation problems required special hardware and spe
cial support in the operating system; today, virtual memory also provides this 
function. 

In virtual memory, the address is broken into a virtual page number and a 
page offset. Figure 7.15 shows the translation of the virtual page number to a 
physical page number. The physical page number constitutes the upper portion 
of the physical address, while the page offset, which is not changed, consti
tutes the lower portion. The number of bits in the page offset field determines 
the page size. The number of pages addressable with the virtual address need 
not match the number of pages addressable with the physical address. 

Many design choices in virtual memory systems are motivated by the high 
cost of a miss. A page fault will take hundreds of thousands of cycles to pro
cess. (The table on page 455 shows the relative speeds of main memory and 
disk.). This enormous miss penalty, dominated by the time to get the first 
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word for typical page sizes, leads to several key decisions in designing virtual 
memory systems: 

• Pages should be large enough to amortize the high access time. Sizes 
from 4 KB to 16 KB are typical, and designers are considering sizes as 
large as 64 KB. 

• Organizations that reduce the page fault rate are attractive. The primary 
technique used here is to allow flexible placement of pages. 

• Misses in a virtual memory system can be handled in software, because 
the overhead will be small compared to the access time to disk. Further
more, the software can afford to use clever algorithms for choosing how 
to place pages, because even small reductions in the miss rate will pay 
for the cost of such algorithms. 

• Using write-through to manage writes in virtual memory will not work, 
since writes take too long. Instead, we need a scheme that reduces the 
number of disk writes. 

The next few sections address these factors in virtual memory design. 

S:b1h•'llr:111t1�,n· The discussion of virtual memory in this book focuses on paging, 

which uses fixed-size blocks. There is also a variable-size block scheme cal led segmen

tation. In segmentation, an address consists of two parts: a segment number and a 
segment offset. The segment register is mapped to a physical address, and the offset 
is added to find the actual physical address. Because the segment can vary in size ,  a 
check is also needed to make sure that the offset is within the segment. The major 
use of segmentation is to support more powerful methods of protection and sharing in 
an address space. Most operating system textbooks contain extensive discussions of 
segmentation compared to paging and of the use of segmentation to logical ly share the 
address space. The major disadvantage of segmentation is that it spl its the address 
space into logically separate pieces that must be manipulated as a two-part 
address: the segment number and the offset. Paging, in contrast, makes the boundary 
between page number and offset invisible to programmers and compi lers. 

Segments have also been used as a method to extend the address space, without 
changing the word size of the machine. Such attempts have been unsuccessful 
because of the awkwardness and performance penalties inherent in a two-part 
address of which programmers and compi lers must be aware. 

Many architectures d ivide the address space into large fixed-size blocks that s im
p l ify protection between the operating system and user programs and increase the effi
ciency of implementing paging. Although these d ivisions are often cal led segments, 
th is mechan ism is much simpler than variable-block segmentation and is not visible to 
user programs; we discuss it in more detail shortly. 
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Placing a Page and Finding It Again 

Because of the incredibly high penalty for a miss, designers would like to 
reduce the number of misses by optimizing the page placement. If we allow a 
virtual page to be mapped to any physical page, the operating system can 
then choose to replace any page it wants when a page fault occurs. For exam
ple, the operating system can use a sophisticated algorithm to try to choose a 
page that will not be needed for a long time. Thus, virtual memory systems 
allow a virtual page to be mapped to any physical page. This mapping is 
called fully associative, since any page (or block) can be associated with any 
location in the physical memory (or cache). Correspondingly, our task in the 
library is much easier if we can place a book anywhere on the desk than if 
each book could go in only one location, since the set of books we can have on 
the desk is more flexible. 

If a page can reside anywhere, we need a mechanism to find it. This mech
anism is a structure called a page table. A page table, which resides in memory, 
is indexed with the page number from the virtual address and contains the 
corresponding physical page number. Each program has its own page table, 
which maps the virtual address space of the program to physical memory. In 
our library analogy, the page table corresponds to a mapping between book ti
tles and library locations. Just as the card catalog may contain entries for books 
in another library on campus rather than the local branch library, we will see 
that the page table may contain entries for pages not present in memory. To 
indicate the location of the page table in memory, the hardware includes a 
register that points to the start of the page table; we call this the page table reg
ister. Assume (for now) that the page table is in a fixed and contiguous area of 
memory. 

Figure 7.16 uses the page table register, the virtual address, and the indicat
ed page table to show how the hardware can form a physical address. A valid 
bit is used in each page table entry, just as we did in a cache. If the bit is off, the 
page is not present in physical memory and a page fault occurs. If the bit is on, 
the page is valid and the entry contains the physical page number. Because the 
page table contains a mapping for every possible virtual page, no tags are re
quired. 
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Virtual address 
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I 
FIGURE 7 .18 The page table Is Indexed with the vlrtual page number to obtain the corresponding portion of the 
physical address. The starting address of the page table is given by the page table pointer. In this figure, the page size is 
212 bytes = 4 KB. The virtual address space is 232 or 4 GigaBytes, and the physical address space is 230 bytes, which allows 
main memory of up to 1 GigaByte. The number of entries in the page table will be 220 or 1 million entries. The valid bit for 
each entry indicates whether the mapping is legal. If it is off, then the page is not present in memory. 
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Hardware 

Software 

Interface 

The page table, together with the program counter and the 
registers, specifies the state of a program. If we want to allow 
another program to use the CPU, we must save this state. 
Later, after restoring this state, the program can continue ex
ecution. We often refer to this state as a process. The process 
is considered active when it is in possession of the CPU and; 
otherwise, it is considered inactive. The operating system can 

make a process active by loading the process's state, including the program 
counter, which will initiate execution at the value of the saved program 
counter. The process's address space, and hence all the data it can access in 
memory, is defined by its page table, which resides in memory. Rather than 
save the entire page table, the operating system simply loads the page table 
register to point to the page table of the process it wants to make active. 

Page Faults 

If the valid bit for a virtual page is off, a page fault occurs. The operating sys
tem must be given control. This is done with the exception mechanism, the 
details of which we discuss later in this section. Once the operating system 
gets control, it must find the page in the next level of the hierarchy (usually 
magnetic disk) and decide where to place the requested page in physical 
memory. The virtual address alone does not immediately tell us where the 
page is on disk. Returning to our library analogy, we cannot find the location 
of a library book on the shelves just by knowing its title. Instead, we go to the 
catalog and look up the book, obtaining an address for the location on the 
shelves (for example, the Library of Congress number). Likewise, in a virtual 
memory system, we must keep track of the location on disk of each page in 
the virtual address space. Because we do not know ahead of time when a 
page will be chosen to be replaced, the operating system usually creates the 
space on disk for all the pages of a process when it creates the process. At that 
time, it also creates a data structure to record where each virtual page is 
stored on disk. This data structure may be part of the page table, or may be an 
auxiliary data structure indexed in the same way as the page table. 
Figure 7.17  shows the organization when a single table holds either the physi
cal page number or the disk address. 

Assuming that all the pages in physical memory are in use, the operating 
system must choose a page to replace. Because we want to minimize the num
ber of page faults, most operating systems try to choose a page that they hy-
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FIGURE 7 .17 The page table maps each page in virtual memory to either a page In physical memory or a page 
stored on disk, which is the next level in the hierarchy. The virtual page number is used to index the page table. If the 
valid bit is on, the page table supplies the physical page number (i.e., the starting address of the page in memory) corre
sponding to the virtual page. If the valid bit is off, the page currently resides only on disk, at a specified address. In many 
systems, the table of physical page addresses and disk page addresses, while logically one table, are stored in two separate 
data structures. Dual tables are justified in part because we must keep the disk addresses of all the pages, even if they are 
currently in main memory. 

pothesize will not be needed in the near future. Relying on the principle of 
temporal locality, the operating system can search for the least recently used 
(LRU) page, making the assumption that a page that has not been used in a 
long time is less likely to be needed than a more recently accessed page. 

For example, suppose the most recent page references (in order) were 10, 12, 
9, 7, 11 ,  10, and then we referenced page 8, which was not present in memory. 
The LRU page is page 12; in LRU replacement, we would replace page 12 in 
physical memory with page 8. If the next reference also generated a page fault, 
we would replace page 9, since it would be the LRU among the pages present 
in memory. 
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To help the operating system estimate the LRU pages, some 
machines provide a use bit or reference bit, which is set when
ever a page is accessed. The operating system periodically 
clears the use bits and later records them so it can determine 
which pages were touched during a particular time period. 
By keeping track in this way, the operating system can select 
a page that is among the least recently referenced. If this bit 

is not provided by the hardware, the operating system must find another way 
to estimate which pages have been accessed. 

Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table 
entry, the total page table size is 

32 2 20 2 bytes 
- = 2 pages x 2 -- = 4 MB 
212 page 

That is, we would need to use 4 MB of memory for each program in execution at any 
time. On a machine with tens to hundreds of active programs and a fixed-size page 
table, most or al l  of the memory would be tied up in page tables! To reduce the size of 
the page table, two d ifferent techniques are used. Both techniques try to reduce the 
amount of page table storage needed to map the amount of physical memory in use. 

The simplest technique is to keep a bounds register that l imits the size of the page 
table for a given process. If the virtual page number becomes larger than the contents 
of the l imit register, entries must be added to the page table. This al lows the page 
table to grow as a process consumes more space. Thus, the page table wil l  only be 
large if the process is using many pages of virtual address space. This technique 
requires that the address space expand in only one direction. 

Allowing growth in only one d i rection is not sufficient, since most languages require 
two areas whose size is expandable. One area holds the stack and the other area 
holds the heap. Because of this, it is convenient to divide the page table and let it grow 
from the highest address down, as well as from the lowest address up. This means 
that there wi l l  be two separate page tables and two separate l imits. The use of two 
page tables breaks the address space into two segments. The high-order bit of an 
address determines the segment and thus which page table to use for that address. 
Since the segment is specified by the high-order address bit, each segment can be as 
large as one-half of the address space. A l imit register for each segment specifies the 
current size of the segment, which grows in units of pages. This type of segmentation 
is used by many architectures, including the MIPS architecture. Un l ike the type of seg
mentation d iscussed in the Elaboration on page 484, this form of segmentation is 
invisible to the appl ications program, although not to the operating system. 
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Another approach to reducing the page table size is to apply a hashing function to 
the virtual address so that the page table data structure need be only the size of the 
number of physical pages in main memory. Such a structure is cal led an inverted page 

table. Of course, the look-up process is s l ightly more complex with an inverted page 
table, because we can no longer just i ndex the page table. 

Lastly, most modern systems also al low the page tables to be paged. Although this 
sounds tricky, it works by using the same basic ideas of virtual memory and simply 
al lowing the page tables to reside in the virtual address space. In  addition , there are 
some smal l  but critical problems, such as a never-ending series of page faults, that 
must be avoided. How these problems are overcome is both very detai led and typically 
highly machine specific; these topics are covered in many operating system textbooks. 

What About Writes? 

In a cache, the difference between the access time to the cache and main mem
ory is tens of cycles, and write-through schemes can be used, although we 
need a write buffer to hide the latency of the write from the processor. In a vir
tual memory system, writes to the next level of the hierarchy (disk) take hun
dreds of thousands of cycles; therefore, building a write buffer to allow the 
system to write-through to disk would be completely impractical. The alter
native strategy is called write back. In a write-back scheme, individual writes 
are accumulated into a page. When the page is replaced in the memory, it is 
copied back into the next level of the memory hierarchy, hence, the other 
name for this scheme, copy back. 

Hardware 

Software 

Interface 

A write-back scheme has another major advantage in a vir
tual memory system. Because the disk transfer time is small 
compared with its access time, copying back an entire page 
is much more efficient than writing individual words back 
to the disk. A write-back operation, while more efficient 
than transferring individual words, is still costly. Thus, we 
would like to know whether a page needs to be copied back 

when we choose to replace it. To track whether a page has been written since 
it was read into the memory, a dirty bit is added to the page table. The dirty bit 
is set when the page is first written. If the operating system chooses to replace 
the page, the dirty bit indicates whether the page needs to be written out be
fore its location in memory can be given to another page. 
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Making Address Translation Fast: The TLB 

Page tables are so large that they must be stored in main memory. This means 
that every memory access takes at least twice as long: one memory access to 
obtain the physical address and a second access to get the data. The key to 
improving access performance is to rely on locality of reference to the page 
table. When a translation for a virtual page number is used, it will probably 
be needed again in the near future, because the references to the words on 
that page have both temporal and spatial locality. Accordingly, modern 
machines include a special cache that keeps track of recently used transla
tions. As mentioned earlier, this special address translation cache is referred 
to as a translation-lookaside buffer, or TLB. The TLB corresponds to that little 
piece of paper we typically use to record the location of a set of books we look 
up in the card catalog; rather than continually searching the entire catalog, we 
record the location of several books and use the scrap of paper as a cache. 

A TLB is a cache that holds only page table mappings. Thus, each tag entry 
in the TLB holds a portion of the virtual page number, and each data entry of 
the TLB holds a physical page number. Because we will no longer access the 
page table on every reference, instead accessing the TLB, the TLB will need to 
include other bits, such as the reference bit and the dirty bit. Figure 7.18 shows 
how the TLB acts as a cache for the page table references. 

On every reference, we look up the virtual page number in the TLB. If we 
get a hit, the physical page number is used to form the address, and the corre
sponding reference bit is turned on. If the processor is performing a write, the 
dirty bit is also turned on. If a miss in the TLB occurs, we must determine 
whether it is a page fault or merely a TLB miss. Because the TLB has many few
er entries than the number of pages in physical memory, TLB misses will be 
much more frequent than true page faults. On a TLB miss, if the page exists in 
memory, the translation can be loaded from the page table into the TLB and 
the reference can be tried again. If the page is not present in memory, a page 
fault has occurred and the operating system must be notified with an excep
tion. TLB misses can be handled either in hardware or software. In practice, 
there is little performance difference between the two approaches, because the 
basic operations that must be performed are the same in either case. 

When a TLB miss occurs and the missing translation has been retrieved 
from the page table, we will need to select a TLB entry to replace. Because the 
use and dirty bits are contained in the TLB entry, we need to copy these bits 
back to the page table entry when we replace an entry. These bits are the only 
portion of the TLB entry that can be changed. Using a write-back strategy (that 
is, copying these entries back at miss time rather than whenever they are writ
ten) is very efficient, since we expect the TLB miss rate to be small. Some sys
tems use other techniques to approximate the use and dirty bits, eliminating 
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FIGURE 7.18 The TLB acts as a cache on the page table for the entries that map to physlcal pages only. The TLB 
contains a subset of the virtual-to-physical page mappings that are in the page table. (The TLB mappings are shown in 
color.) Because the TLB is a cache, it must have a tag field. If there is no matching entry in the TLB for a page, the page table 
must be examined. The page table either supplies a physical page number for the page (which can then be used to build a 
TLB entry) or indicates that the page resides on disk, in which case a page fault occurs. Since the page table has an entry for 
every virtual page (it is not a cache, in other words), no tag field is needed. 

the need to write into the TLB except to load a new map entry on a miss; the 
MIPS R2000 and R3000 use such a scheme, as we will see shortly. 

Some typical values for a TLB might be 

Block size 1-2 page-table entries (typically 4-8 bytes each) 
Hit time 1/2 to 1 clock cycle 
Miss penalty 10-30 clock cycles 
Miss rate 0.01%-1% 
TLB size 32-1,024 entries 
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In addition to these parameters, the mapping of translations to entries in the 
TLB varies widely. Many systems use fully associative TLBs because a fully 
associative mapping has a lower miss rate; furthermore, since the TLB is 
small, the cost of a fully associative mapping is not too high (we'll return to 
this topic in section 7.4). With a fully associative mapping, choosing the entry 
to replace becomes tricky. Since TLB misses are much more frequent than 
page faults and must be handled more cheaply, we cannot afford an expen
sive software algorithm, as we can for page faults. Some TLB designs main
tain support for LRU in the hardware, but the cost of LRU support increases 
with the size of a fully associative TLB. As a result, many systems provide 
some support for randomly choosing an entry to replace. We'll examine such 
replacement schemes in section 7.4. 

Now let's take a closer look at the TLB in the DECStation 3100, and then 
look at all the steps involved in satisfying a memory request. The processor in 
the DECStation 3100 is a MIPS R2000, which includes the TLB on the micro
processor. The processor uses 4 KB pages; thus the virtual page number is 20 
bits long, as shown in Figure 7.16 on page 486. The physical address is the 
same size as the virtual address. The TLB contains 64 entries, is fully associa
tive, and is shared between the instruction and data references. Each entry is 
64 bits wide and contains a 20-bit tag (which is the virtual page number for that 
TLB entry), the corresponding physical page number (also 20 bits), a valid bit, 
a dirty bit, and several other bookkeeping bits. When a TLB miss occurs, the 
hardware saves the page number of the reference and the matching TLB entry 
(if such an entry exists) in a pair of special registers. These registers help the 
operating system efficiently handle the TLB miss in software, using a few spe
cial instructions that can access and update the TLB. A miss can take as few as 
10 cycles, but on average takes about 16 cycles. The hardware maintains an in
dex that indicates the recommended entry to replace; the recommended entry 
is chosen randomly. Figure 7.19 shows the TLB and one of the caches, while 
Figure 7.20 shows the steps in processing a read or write request. 

There are several d ifferent ways to combine address translation and 
cache access. In Figure 7 . 19 ,  the virtual address must first go through the TLB to form 
a physical address that is used to access the cache. As a result, the amount of time to 
access memory must accommodate both a TLB access and a cache access; of course, 
these accesses can be pipelined. Alternatively, the machine can index the cache with 
an address that is completely or partially virtual (called a virtually addressed cache). 

When the cache is accessed with such an address and pages are shared between pro
grams (which may access them with d ifferent virtual addresses) ,  there is the possibil ity 
of aliasing. Aliasing occurs when the same object has two names-in this case, two vir
tual addresses for the same page. This creates a problem in that a word on such a 
page may be cached in two d ifferent locations, each corresponding to different virtual 
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FIGURE 7 .19 The TLB and cache Implement the process of going from a virtual address to a data Item In the Dec
Station 3100. This figure shows the organization of the TLB and one of the caches in the DECStation 3100. This diagram 
focuses on a read; Figure 7.20 describes how to handle writes. While the cache is direct mapped, the TLB is fully associa
tive. Implementing a fully associative TLB requires that every TLB tag be compared against the index value, since the entry 
of interest can be anywhere in the TLB. We return to this topic in section 7.4 
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FIGURE 7.20 Processing a read or a write through the DECStatlon 3100 TLB and cache. If the TLB generates a hit, 
the cache can be accessed with the resulting physical address. If the operation is a write, the cache entry is overwritten and 
the data is sent to the write buffer; remember, though, that a cache write miss cannot occur for the DECStation 3100 cache, 
which uses one-word blocks and a write-through cache. For a read, the cache generates a hit or miss and supplies the data 
or causes a stall while the data is brought from memory. In actuality, the TLB does not contain a true dirty bit; instead, it 
uses the write protection bit to detect the first write. How this works will be explained in the next section. Notice that a TLB 
hit and a cache hit are independent events; this is examined further in the exercises at the end of this chapter. 

addresses. This would al low one program to write the data without the other program 
being aware that the data had changed. Virtually addressed caches introduce either 
design l im itations on the cache and TLB to avoid al iases or require the operating sys
tem to take steps to ensure that al iases do not occur. 
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Implementing Protection with Virtual Memory 

Although each process has its own virtual address space, the physical mem
ory is shared among multiple user processes and also with the operating sys
tem. Nevertheless, we do not want a renegade process to be able to write into 
the address space of another user process or into the operating system. For 
example, if the program that maintains student grades is running on a 
machine at the same time as the programs of the students in the first pro
gramming course, we wouldn't want the errant program of a beginner to 
write over someone's grades. We also want to prevent one process from read
ing the data of another process. For example, we wouldn't want one student 
program to read the grades while they were in the processor's memory. Once 
we begin sharing physical memory, we must provide the ability for a process 
to protect its data both from reading and writing by another process. 

Remember that each process has its own virtual address space. Thus, if the 
operating system keeps the page tables organized so that the independent vir
tual pages map to disjoint physical pages, one process will not be able to access 
another's data. Of course, this also requires that a user process not be able to 
change the page table mapping. The operating system can assure this if it pre
vents the user process from modifying its own page tables. Yet the operating 
system must be able to modify the page tables. 

Hardware 

Software 

Interface 

To enable the operating system to implement protection in 
the virtual memory system, the hardware must provide at 
least the three basic capabilities summarized below. 

1 .  Support at least two modes that indicate whether the 
running process is a user process or an operating system 
process, variously called a kernel process, a supervisor 
process, or an executive process. 

2. Provide a portion of the CPU state that a user process can read but not 
write. This includes the user/supervisor mode bit(s) and the page table 
pointer. 

3. Provide mechanisms whereby the CPU can go from user mode to 
supervisor mode, and vice versa. The first direction is typically accom
plished by a system call exception, implemented as a special instruction 
(syscall in the MIPS instruction set) that transfers control to a dedicated 
location in supervisor code space. As with any other exception, the pro
gram counter from the point of the system call is saved, and the CPU is 
placed in supervisor mode. The return to user mode from the exception 
will restore the state of the process that generated the exception. 

With these mechanisms the operating system can change the page tables as 
well as prevent a user process from changing them, ensuring that a user pro
cess can access only the storage provided to it by the operating system. 
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Processes may want to share information in a limited way. For example, the 
operating system may want to allow the user process to read some information 
about the process, such as running time, but may not want the user program 
to modify this data. Similarly, two user programs may want to share data for 
reading but not for writing. Accordingly, most systems provide the ability to 
distinguish between reading and writing a page, protecting them separately. 
This is usually done with a write protection bit, or separate read and write bits. 
This bit is included in each page table entry and is checked on every access. 

Hardware 

Software 

Interface 

To allow another process, say Pl, to read a page owned by 
process P2, P2 would ask the operating system to create a 
page table entry for a virtual page in Pl's address space that 
points to the same physical page that P2 wants to share. The 
operating system could use the write protection bit to pre-
vent Pl from writing the data, if that was P2' s wish. Any bits 
that determine the access rights for a page must be included 

in both the page table and TLB, because the page table is accessed only on a 
TLB miss. 

Elaboration: When the operating system decides to change from running process 
P1 to running process P2 (called a context switch or process switch), it must ensure 
that P2 cannot get access to the page tables of P1, because that would compromise 
protection. If there is no TLB, it suffices to change the page table register to point to 
P2's page table (rather than to P1's) ; with a TLB, we must clear the TLB entries that 
belong to Pi-both to protect the data of P1 and to force the TLB to load the entries for 
P2. If the process switch rate were high, this could be quite inefficient. For example, P2 
might load only a few TLB entries before the operating system switched back to PL 
Unfortunately, P1 would then find that all  its TLB entries were gone and would have to 
go through TLB m isses to reload them. This problem arises because the virtual 
addresses used by P1 and P2 are the same, and we must clear out the TLB to avoid 
confusing these addresses. A common alternative is to extend the virtual address 
space by adding a process identifier or task identifier. This smal l  field identifies the cur
rently running process ;  it is kept in a register loaded by the operating system when it 
switches processes. The process identifier is added to the tag portion of the TLB, so 
that a TLB hit occurs only if both the page number and the process identifier match. 
This e l iminates the need to clear the TLB except on rare occasions. 
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Handling Page Faults and TLB Misses 

While the translation of virtual to physical addresses with a TLB is straight
forward when we get a TLB hit, handling TLB misses and page faults is more 
complex. A TLB miss occurs when no entry in the TLB matches a virtual 
address. A TLB miss can indicate one of two possibilities: 

1 .  The page is present in memory, and we need only create the missing 
TLB entry. 

2. The page is not present in memory, and we need to transfer control to 
the operating system to deal with a page fault. 

How do we know which of these two circumstances has occurred? When we 
process the TLB miss we will look for a page table entry to bring into the TLB; 
if the matching page table entry has a valid bit that is turned off, then the cor
responding page is not in memory and we have a page fault, rather than just a 
TLB miss. If the valid bit is on, we can simply retrieve the physical page num
ber from the page table entry and use it to create the TLB entry. A TLB miss 
can be handled in software or hardware, because it will require only a short 
sequence of operations to copy a valid page table entry from memory into the 
TLB. 

Handling a page fault requires using the exception mechanism to interrupt 
the active process, transferring control to the operating system, and later re
suming execution of the interrupted process. A page fault will be recognized 
sometime during the clock cycle used to access memory. To restart the instruc
tion after the page fault is handled, the program counter of the instruction that 
caused the page fault must be saved. Just as in Chapters 5 and 6, the exception 
program counter (EPC) is used to hold this value. In addition, the page fault 
exception must be asserted early enough to change the state immediately fol
lowing the clock cycle when the memory access occurs. If the page fault was 
not recognized until later, a load instruction could overwrite a register, and 
this could be disastrous when we try to restart the instruction. For example, for 
the instruction l w $ 1  . 0 ( $ 1  ) , the machine must be able to prevent the write 
back from occurring; otherwise, it could not properly restart the instruction, 
since the contents of $ 1  would have been destroyed. A similar complication 
arises on stores. We must prevent the write into memory from actually com
pleting when there is a page fault; this is usually done by deasserting the write 
control line to the memory. 

Once the process that generated the page fault has been interrupted and the 
operating system has control, it uses the Exception cause register to diagnose 
the cause of the exception. Because the exception is a page fault, the operating 
system knows that extensive processing will be required. Thus, it saves the en
tire state of the active process. This includes all the general-purpose and float
ing-point registers, the page table address register, the EPC, and the exception 
cause register. The virtual address that caused the fault depends on whether 
the fault was an instruction or data fault. The address of the instruction that 
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generated the fault is in the EPC. If it was an instruction page fault, the EPC 
contains the virtual address of the faulting page; otherwise, the faulting virtual 
address can be computed by examining the instruction (whose address is in 
the EPC) to find the base register and offset field. 

Once the operating system knows the virtual address that caused the page 
fault, it must complete three steps: 

1 .  Look up the page table entry using the virtual address and find the 
location of the referenced page on disk. 

2. Choose a physical page to replace; if the chosen page is dirty, it must be 
written out to disk first. 

3. Start a read to bring the referenced page in from disk into the chosen 
physical page. 

Of course, this last step will take hundreds of thousands of cycles (so will the 
second if the replaced page is dirty); accordingly, the operating system will 
usually select another process to execute in the CPU until the disk access com
pletes. Because the operating system has saved the state of the process, it can 
freely give control of the processor to another process. 

When the read of the page from disk is complete, the operating system can 
restore the state of the process that originally caused the page fault and execute 
an instruction that returns from the exception. This instruction will reset the 
processor from kernel to user mode, as well as restore the program counter. 
The user process then re-executes the instruction that faulted, accesses the re
quested page successfully, and continues execution. 

Hardware 

Software 

Interface 

Between the time we begin executing the exception handler 
in the operating system and the time that the operating sys
tem has saved all the state of the process, the operating sys
tem is particularly vulnerable.  For example, if another 
exception occurred when we were processing the first ex-
ception in the operating system, the control unit would over
write the exception program counter, making it impossible 

to return to the instruction that caused the page fault! We can avoid this by 
providing the ability to both mask out and enable exceptions. When an excep
tion first occurs, we set a bit that masks all other exceptions; this could happen 
at the same time we set the supervisor mode bit. The operating system will 
then save just enough state to allow it to recover if another exception occurs 
(namely, the exception program counter and Cause register). The operating 
system can then re-enable exceptions. These steps make sure that exceptions 
will not cause the processor to lose any state and thereby be unable to restart 
execution of the interrupting instruction. 
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Page fault exceptions are difficult to implement due to a combination of 
three characteristics: They occur in the middle of instructions; the instruction 
cannot be completed before handling the exception; and, after handling the ex
ception, the instruction must be restarted as if nothing had occurred. 

Making instructions restartable, so that the exception can be handled and the 
instruction later continued, is relatively easy in an architecture like the MIPS. 
Because each instruction writes only one data item and this write occurs at the 
end of the instruction cycle, we can simply prevent the instruction from com
pleting (by not performing the write) and restart the instruction at the begin
ning. 

For machines with much more complex instructions that may touch many 
memory locations and write many data items, making instructions restartable 
is much harder. Processing one instruction may generate several page faults in 
the middle of the instruction. For example, some machines have block move 
instructions that touch thousands of data words. In such machines instruc
tions often cannot be restarted from the beginning, as we do for MIPS instruc
tions. Instead, the instruction must be interrupted and later continued 
midstream in its execution. Resuming an instruction in the middle of its exe
cution usually requires saving some special state, processing the exception, 
and restoring that special state. Making this work properly requires careful 
and detailed coordination between the exception handling code in the operat
ing system and the hardware. 

Because the TLB is the subset of the page map that is accessed on every cy
cle, protection violations are also seen as TLB exceptions. The operating sys
tem can handle these with the same basic hardware that it uses to deal with 
TLB misses and page faults. A special set of values in the Cause register may 
be used to indicate protection violations, as opposed to a TLB miss. The oper
ating system can access the TLB or page table entry that matched the virtual 
page so that it can examine the process's access rights and report the appropri
ate error. 

Ela1b1Jr111tlc1n: Handl ing TLB misses in software is analogous to handl ing page 
faults: Both a TLB m iss and a page fault are signaled by the same event. To speed up 
processing of  a s imple TLB miss that wi l l  be much more frequent than a true page 
fault, two d ifferent values for the Cause register are generated by a TLB miss. One set
ting indicates that there was no matching TLB entry, whi le another setting indicates 
that the TLB entry exists but that the page is not present in memory (the TLB valid bit 
really contains the page table valid bit). On a MIPS R2000/3000 processor, these two 
events are distinguished. Because the exception for TLB entry missing is much more 
frequent, the operating system loads the TLB from the page map without examining the 
entry and restarts the instruction when such an exception occurs. If the entry is 
inval id ,  another exception occurs, and the operating system recognizes that a page 
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fault has occurred. This method makes the frequent case of a TLB miss fast, at a sl ight 
performance penalty for the infrequent case of a page fault. 

Summary: Virtual Memory 

Virtual memory is the name for the level of memory hierarchy that manages 
caching between the main memory and disk. Because the misses, called page 
faults, are so expensive, several techniques are used to reduce the miss rate: 

1 .  Blocks, called pages, are made large to take advantage of spatial locality 
and to reduce the miss rate. 

2. The mapping between virtual addresses and physical addresses, which 
is implemented with a page table, is made fully associative so that a vir
tual page can be placed anywhere in physical memory. 

3. The operating system uses techniques, such as LRU and a reference bit, 
to choose which pages to replace. 

Writes to disk are also expensive, so virtual memory uses a write-back scheme 
and also tracks whether a page is unchanged (with a dirty bit) to avoid writ
ing unchanged pages back to disk. 

Because virtual memory creates another address space (the virtual address 
space), it allows the virtual memory to be larger than the physical memory. In 
addition, because the physical memory is shared by multiple processes, the 
virtual memory system must also implement protection, so that processes can 
only access their own pages. By restricting access to the page table, so that only 
the operating system can change the mapping, we can safely share the memo
ry and CPU among processes. 

If a CPU had to access a page table resident in memory to translate every 
access, virtual memory would have too much overhead. Instead, a TLB caches 
the translations from the page table. Each address is then translated from a vir
tual address to a physical address using the translations in the TLB. 

Caches, virtual memory, and TLBs all rely on a common set of principles 
and policies, as the next section shows. 

• A Common Framework for Memory Hierarchies 

By now, you've recognized that the different types of memory hierarchies 
share a great deal in common. Although many of the aspects of memory hier
archies differ quantitatively, many of the policies and features that determine 
how a hierarchy functions qualitatively are similar. Figure 7.21 shows how 
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Typical values Typical values for Typical values 
Feature for caches paged memory for a TLB 

Total size in blocks 250-10 ,000 2,000- 250,000 32 -1024 
Total size in bytes 4 KB-4 MB 8 MB- 1 GB 128-8000 
Block size in bytes 4-256 4 KB-16 KB 4-16 
Miss penalty in clocks 10- 100 100,000- 1,000,000 10-50 
Miss rates 0.1%-20% 0.00001%-0.0001% 0.01%-1% 

FIGURE 7.21 The key quantitative design parameters that characterize the thr- major 
memory hierarchies in a machine. These are typical values for these levels as of 1993. 
Although the range of values is wide, this is partially because many of the values that have 
shifted over time are related; for example, as caches become larger to overcome larger miss penal
ties, block sizes also grow. 

some of the quantitative characteristics of memory hierarchies can differ. In 
the rest of this section, we will discuss the common operational aspects of 
memory hierarchies and how these determine their behavior. We will exam
ine these policies as a series of four questions that apply between any two lev
els of a memory hierarchy, athough for simplicity we will primarily use 
terminology for caches. 

Question 1: Where Can a Block Be Placed? 

When we looked at the cache hierarchy, we saw the simplest placement 
scheme: A block could go in exactly one place in the upper level of the hierar
chy. This placement scheme is called direct mapped. In a virtual memory sys
tem, we saw that a page could be placed anywhere in the physical memory, a 
scheme called fully associative. In fact, there is really a spectrum of design 
points from direct mapped to fully associative. 

The middle range of designs is called set associative. In a set associative 
cache, there are a fixed number of locations (at least two) where each block can 
be placed; a set associative cache with n locations for a block is called an n-way 
set associative cache. An n-way set associative cache consists of a number of 
sets, each of which consists of n blocks. Each block in the memory maps to a 
unique set in the cache given by the index field, and a block can be placed in 
any element of that set. Given this, a set associative placement combines direct 
mapped placement and fully associative placement: A block is directly 
mapped into a set, and then all the blocks in the set are searched for a match. 

Remember that in a direct mapped cache, the position of a block is given by 
Block number modulo number of blocks in the cache 

In a set associative cache, the set containing a block is given by 
Block number modulo number of sets in the cache 
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FIGURE 7 .22 Placement of a block whose address Is 12 varies for direct mapped, set 
associative, and fully associative caches. In direct mapped placement, there is only one 
cache block where memory block 12 can be found and that block is given by (12 modulo 8) = 4. In  
a two-way set associative cache, there would be four sets, and memory block 12 must be in  set 
(12 mod 4) = O; the memory block could be in either element of the set. In a fully associative 
placement, the block for block address 12 can appear in any of the eight blocks. 

Since the block may be placed in any element of the set, all the elements of the 
set must be searched. In a fully associative cache, the block can go anywhere 
and all the blocks in the cache must be searched. Figure 7.22 shows where 
block 12 can be placed in a cache with eight blocks total, according to the 
block placement policy for a direct mapped, two-way set associative, and 
fully associative cache. Although we discuss the use of set associativity with 
caches, TLBs often use set associative placement. 

We can think of every block placement strategy as a variation on set asso
ciativity. A direct mapped cache is simply a one-way set associative 
cache: Each cache entry holds one block and forms a set with one element. A 
fully associative cache with m entries is simply an m-way set associative cache; 
it has one set with m blocks and an entry can reside in any block within that 
set. Figure 7.23 shows the possible associativity structures for an eight-block 
cache. 

The advantage of increasing the degree of associativity is that it usually de
creases the miss rate, as the next example shows. 
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(Direct mapped) 
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2-way set associative 

Set Tag Data Tag Data 
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4-way set associative 

Tag Data Tag Data Tag Data Tag Data 
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8-way set associative (Fully associative) 

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data 

FIGURE 7 .23 An eight-block cache configured as direct mapped, two-way set associative, 
four-way set associative, and fully associative. The total size of the cache in blocks is equal to 
the number of sets times the associativity (or set size). Thus, for a fixed cache size, increasing the 
associativity decreases the number of sets, while the number of elements per set increases. With 
eight blocks, an eight-way set associative cache is the same as a fully associative cache, although 
for realistically sized caches, these two organizations would usually look rather different. 

There are three small caches, each consisting of four one-word blocks. One 
cache is fully associative, a second is two-way set associative, and the third 
is direct mapped. Assuming that the replacement policy used is least recent
ly used, find the number of misses for each cache organization given the fol
lowing sequence of block addresses: 0, 8, 0, 6, 8 .  
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The direct mapped case is easiest. First, let's determine to which cache block 
each block address maps. 

Block address Cache block 
0 (0 modulo 4) = O 
4 (4 modulo 4) = O 
6 (6 modulo 4) = 2 
8 (8 modulo 4) = O 

Now we can fill in the cache contents after each reference, using a blank 
entry to mean that the block is invalid: 

• • •, ,. • • � "'7"'� r f -r:<•.�..,... T • - _.,;- -..,..· � ·· T- _..,...,. �� �r�· • ·  • r 

Ald;es
'
s.of m�;,:;c,;\-;: - · Hlt · · , Contents· of cache .blocks after reference 

·. · bloc_l{ accessed , _ · or m iss '... O" ... · � 1 . ._ 2 
· 

3 

0 Miss Memory[ OJ 
8 Miss Memory[8] 
0 Miss Memory[ OJ 
6 Miss Memory[ OJ Memory[6] 
8 Miss Memory[8] 

The direct mapped cache generates five misses. 

:,1 .; 

The set associative cache has two sets (with indices 0 and 1 )  with two ele
ments per set. Let's first determine to which set each block address maps. 

810C:i<,address .. . .  ·cache. li1oci<.;;; 
0 (0 modulo 2) = O 
4 (4 modulo 2) = 0 

6 (6 modulo 2) = O 
8 (8 modulo 2) = O 

Because we have a choice of which entry in a set to replace on a miss, we 
need a replacement rule. Set associative caches usually employ LRU re
placement, which we used when we examined virtual memory. Thus, the 
contents of the set associative cache after each reference look like 
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0 Miss Memory( OJ 

8 Miss Memory( OJ Memory( BJ 

0 Hit Memory( OJ Memory[ SJ 

6 Miss Memory( OJ Memory[6) 

8 Miss Memory(OI Memory[ SJ 

The two-way set associative cache has a total of four misses, one less than 
the direct mapped cache. 

The fully associative cache has four cache blocks (in a single set); any 
memory block can be stored in any cache block. Its performance is best: 

8 Miss Memory[OJ Memory(BJ 

0 Hit Memory[OJ Memory(B] 

6 Miss Memory[ OJ Memory(8] Memory(6] 

8 Hit Memory[OJ Memory[SJ Memory[6] 

The fully associative cache clearly has the best performance, with only 
three misses. For this string of references, this is the best we can do because 
three unique addresses are accessed. Notice that if we had eight blocks in 
the cache, there would be no replacements in the two-way set associative 
cache (check this for yourself) and it would have the same number of misses 
as the fully associative cache. Similarly, if we had 16 blocks all three caches 
would have the same number of misses. This shows us that cache size and 
associativity are not independent in determining cache performance. 

If this example used a cache with multiword blocks and the memory ad
dresses were given in words, we could use the same function to compute 
the cache block after converting the memory addresses to block addresses 
by simply dividing the memory word address by the number of words in 
the block. 

How much of a reduction in the miss rate is achieved by associativity? 
Figure 7.24 shows the improvement for the programs gee and spice with a pair 
of 64 KB caches (split instruction and data) with a four-word block, and asso
ciativity ranging from direct-mapped to four-way. On gee, going from one
way to two-way associativity improves the effective combined miss rate by 
about 20%, but there is no further improvement in going to four-way associa-
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FIGURE 7 .24 The min rates for gee and spice with a cache llke that In the DecStatlon 
3100 but with a block size of four words and auoclatlvlty varylni from on•way to four
way. 
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FIGURE 7 .25 The min rates for each of five cache sizes Improve as the associativity 
Increases. While the benefit of going from one-way (direct mapped) to two-way set associative 
is significant, the benefits of further associativity shrink. There is little improvement in going 
from four-way to eight-way set associative. This data was generated from traces of the VAX run
ning the Ultrix operating system and a multiprogrammed workload. It uses 32-byte blocks and 
LRU replacement. 

tivity. The low miss rates for spice leave little opportunity for improvement by 
associativity. 

The advantage of set associativity in improving the miss rate gets smaller as 
the cache (or other level in the hierarchy) gets larger. Figure 7.25 shows the 
miss rate for caches from one-way to eight-way set associative for five differ-
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Tag Index Block Offset 

FIGURE 7 .26 The three portions of an address In a set associative or direct mapped 
cache. The tag is used to check all the blocks in the set, and the index is used to select the set by 
comparing against the blocks. The block offset is the address of the desired data within the block. 

ent size caches. The incremental benefit of each additional degree of associa
tivity shrinks. A fully associative cache would have a miss rate only slightly 
better than that of the eight-way set associative design. The advantage of asso
ciativity is clearly an improved miss rate. The potential disadvantages are in
creased cost and slower access time, as we will see in the next section. 

Question 2: How Is a Block Found? 

We have seen how to find a block in a virtual memory system: We simply 
index the page table. Similarly, in a direct mapped cache, we index the cache 
to find the one block of interest. Let's consider the task of finding a block in a 
cache that is set associative. Each block in the cache includes an address tag 
that gives the block address. The tag of every cache block that might contain 
the desired information is checked to see if it matches the block address from 
the CPU. Figure 7.26 shows how the address is decomposed. The index value 
is used to select the set containing the address of interest, and the tags of all 
the blocks in the set must be searched. Because speed is of the essence, all the 
tags in the selected set are searched in parallel. A serial search would make 
the hit time of a set associative cache too slow. 

If the total size is kept the same, increasing the associativity increases the 
number of blocks per set, which is the number of simultaneous compares 
needed to perform the search in parallel: Each increase by a factor of two in 
associativity doubles the number of blocks per set and halves the number of 
sets. Accordingly, each factor of two increase in associativity decreases the size 
of the index by 1 bit and increases the size of the tag by 1 bit. In a fully associa
tive cache, there is effectively only 1 set, and all the blocks must be checked in 
parallel. Thus, there is no index, and the entire address, excluding the block 
offset, is compared against the tag of every block. In other words, we search 
the entire cache without any indexing. 

In a direct mapped cache, such as that shown in Figure 7.4 on page 460, only 
a single comparator is needed, because the entry can be in only one block, and 
we access the cache simply by indexing. In a four-way set associative cache, 
shown in Figure 7.27, four comparators are needed, together with a 4-to-1 
multiplexor to choose among the four potential members of the selected set. 
The cache access consists of indexing the appropriate set and then searching 
the elements of the set. The costs of an associative cache are the extra compar-
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FIGURE 7 .27 The lmplementatlon of a four-way set associative cache requires four comparators and a 4-to-1 mul
tlplexor. The comparators determine which element of the selected set (if any) matches the tag. The output of the compar
ators is used to select the data from one of the four indexed sets, using a multiplexor. In some implementations, the output 
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the output. The 
output enable signal comes from the comparators, causing the element that matches to drive the data outputs. This elimi
nates the need for the multiplexor. 
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ators and any delay imposed by having to do the compare and select from 
among the elements of the set. 

The choice among direct mapped, set associative, or fully associative map
ping in any memory hierarchy will depend on the cost of a miss versus the cost 
of implementing associativity, both in time and in extra parts. In virtual mem
ory systems, three facts are important in making the choice: 

1 .  Miss rates are crucial since the miss penalty is so high. 

2. The mapping is implemented in software with no cycle time impact. 

3. The large page size means the page table size overhead is small. 

Therefore, virtual memory systems always use fully associative placement. 
Set associative placement is often used for caches and TLBs, where the access 
combines indexing and the search of a small set. Many recent systems have 
used direct mapped caches because of their advantage in access time and sim
plicity. The advantage in access time occurs because finding the requested 
block does not depend on a comparison. Large caches never use fully associa
tive placement, because of the cost and hit time penalties, coupled with the 
small performance advantage over a set associative cache. The use of a full 
map, like a page table for virtual memory, is not practical for a cache, because 
the map would be very large (with considerably more entries than a page 
table), and could not be accessed quickly. 

Question 3: Which Block Should Be Replaced 

on a Cache Miss? 

When a miss occurs in an associative cache, we must decide which block to 
replace. In a fully associative cache, all blocks are candidates for replacement. 
If the cache is set associative, we must choose among the blocks in the set. Of 
course, replacement is easy in a direct mapped cache, because there is only 
one candidate. 

There are two primary strategies employed for selecting which block to re
place: 

• Random: Candidate blocks are randomly selected, possibly using some 
hardware assistance. 

• Least recently used (LRU): The block replaced is the one that has been un
used for the longest time. 

A virtue of random selection is that it is simple to build in hardware. As the 
number of blocks to keep track of increases, LRU becomes increasingly expen
sive and, in practice, is only approximated. In a two-way set associative cache, 
random replacement has a miss rate about 1 . 1  times higher than LRU replace
ment. As the caches become larger, the miss rate for both replacement 
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strategies falls, and the absolute difference becomes small. LRU replacement 
shows a wider advantage with larger degrees of associativity, but it is also 
harder to implement. In virtual memory, some form of LRU is always approx
imated since even a tiny reduction in the miss rate can be important when the 
cost of a miss is enormous. 

Question 4: What Happens on a Write? 

A key characteristic of any memory hierarchy is how it deals with writes. We 
have already seen the two basic options: 

• Write through: The information is written to both the block in the cache 
and to the block in the lower level of the memory hierarchy (main mem
ory for a cache). The caches in section 7.2 used this scheme. 

• Write back (also called copy back): The information is written only to the 
block in the cache. The modified block is written to the lower level of the 
hierarchy only when it is replaced. Virtual memory systems always use 
write back, for the reasons discussed in section 7.3. 

Both write back and write through have their advantages. The key advan
tages of write back are 

• Individual words can be written by the processor at the rate the cache, 
rather than the memory, can accept them. 

• Multiple writes within a block require only one write to the lower level 
in the hierarchy. 

• When blocks are written back, the system can make effective use of a 
wide lower level, since the entire block is written. We also want to wid
en this interface to improve the handling of read misses. 

With write through, the advantages are 

• Read misses are cheaper, because they never require writes to the lower 
level. 

• Write through is easier to implement than write back, although to be 
practical in a high-speed system, a write-through cache will need to use 
a write buffer. 

In virtual memory systems, only a write-back policy is practical because of 
the long latency of a write to the lower level of the hierarchy (disk). As CPUs 
continue to increase in performance at a faster rate than DRAM-based main 
memory, the rate at which writes are generated by a processor will exceed 'the 
rate at which the memory system can process them, even allowing for physi
cally and logically wider memories. As a consequence, it is likely that more 
and more caches will use a write-back strategy in the future. 
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While caches, TLBs, and virtual memory may uu
tially look very different, they rely on the same two 
principles of locality and can be understood by look
ing at how they deal with four questions: 

Question 1: Where can a block be placed? 
Answer 1: One place (direct mapped), a few places (set asso

ciative), or any place (fully associative). 

Question 2: How is a block found? 
Answer 2: There are three methods: indexing (as in a direct 

mapped cache), limited search (as in a set associa
tive cache), and full search (as in a fully associa
tive cache). Note that a page table is indexed, but 
provides fully associative placement. This is possi
ble because a page table is a full map--every pos
sible index is included in the page table. 

Question 3: What block is replaced on a miss? 
Answer 3: Typically, either the least recently used or a ran

dom block. 

Question 4: How are writes handled? 
Answer 4: Each level in the hierarchy can use either write 

through or write back. 

Elaboration: Actual ly implementing stores efficiently in a cache that uses a write
back strategy is more complex than in a write-through cache. In a write-back cache, we 
must write the block back to memory if the data in the cache is d irty and we have a 
cache miss. If we simply overwrote the block on a store before we knew whether the 
store had hit in the cache (as we would for a write-through cache), we would destroy the 
contents of the block, which is not backed up in memory. 

This means that stores in a write-back cache either require two cycles (a cycle to 
check for a hit followed by a cycle to actually perform the write) or requ ire an extra 
buffer, cal led a store buffer, to hold that data-effectively allowing the store to take 
only one cycle by pipel in ing it. 
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The Three C's: An Intuitive Model for Understanding 

the Behavior of Memory Hierarchies 
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In this section, we look at a model that provides good insight into the sources 
of misses in a memory hierarchy and how the misses will be affected by 
changes in the hierarchy. We will explain the ideas in terms of caches, 
although the ideas carry over directly to any other level in the hierarchy. In 
this model, all misses are classified into one of three categories: 

• Compulsory misses: The first access to a block is not in the cache, so the 
block must be brought into the cache. These are also called cold start 
misses. 

• Capacity misses: If the cache cannot contain all the blocks needed during 
execution of a program, capacity misses will occur due to blocks being 
discarded and later retrieved. 

• Conflict misses: If the block-placement strategy is set associative or direct 
mapped, conflict misses (in addition to compulsory and capacity miss
es) will occur, because a block can be discarded and later retrieved if too 
many blocks map to its set. These are also called collision misses. 

Figure 7.28 shows how the miss rate divides into the three sources. These 
sources of misses can be directly attacked by changing some aspect of the 
cache design. Since conflict misses arise directly from contention for the same 
cache block, a fully associative placement avoids all conflict misses. Associa
tivity, however, may slow access time (as we will see shortly), leading to lower 
overall performance. 

Capacity misses can easily be reduced by enlarging the cache; indeed, cach
es have been growing steadily larger for many years. Of course, when we 
make the cache larger we must also be careful about increasing the access time, 
which could lead to slower overall performance. 

Because compulsory misses are generated by the first reference to a block, 
the primary way for the cache system to reduce the number of compulsory 
misses is to increase the block size. This will reduce the number of references 
required to touch each block of the program once, because the program will 
consist of fewer cache blocks. Increasing the block size too much can have a 
negative effect on performance, because of the increase in the miss penalty. 

The decomposition of misses into the three C's is a useful qualitative model. 
In real cache designs, many of the design choices interact and changing one 
cache characteristic will often affect several components of the miss rate. De
spite such shortcomings, this model is a useful way to gain insight into the per
formance of cache designs. 
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FIGURE 7.28 The miss rate can be broken into the three sources of misses. The total miss rate and source compared 
to cache size are shown. The conflict portion is shown for associativities from one-way to eight-way . 

• . 

The challenge in designing memory hierarchies is 
that every change that potentially improves the miss 
rate can also negatively affect overall performance as 
the table below summarizes. This combination of 
the positive and negative effects of each design 
parameter is what makes the design of memory 

hierarchy challenging. 

Increase size 
Increase associativity 

Increase block size 

Decreases capacity misses May increase access time 
Decreases miss rate due to May increase access time 
conflict misses 
Decreases miss rate for a May increase miss penalty 
wide range of block sizes 
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• Fallacies and Pitfalls 

As one of the most naturally quantitative aspects of the computer architec
ture, memory hierarchy would seem to be less vulnerable to fallacies and pit
falls. Not only have there been many fallacies propagated and pitfalls 
encountered, but some have led to major negative outcomes. We start with a 
pitfall that often traps students in exercises and exams. 

Pitfall: Forgetting to account for byte addressing or the cache block size in simu
lating a cache. 

When simulating a cache (by hand or machine), we need to make sure we 
account for the effect of byte addressing or multiword blocks in determining 
which cache block a given address maps into. For example, if we have a cache 
with a size of 32 bytes and a block size of 4 bytes, the byte address 36 maps into 
block 1 of the cache, since byte address 36 is block address 9 and (9 modulo 8) 
= 1 .  On the other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4. Make sure the problem clearly states the base of the address. 

In like fashion, we must account for the block size. Suppose we have a cache 
with 256 bytes and a block size of 32 bytes: Which block does the byte address 300 fall into? Byte address 300 is block address 

l 330� J =

9 . 

The number of blocks in the cache is l 2:26 J = 8 , 

Block number 9 falls into cache block number (9 modulo 8) = 1 .  
This mistake catches many people, including authors (in earlier drafts) and 

instructors who forget whether they intended the addresses to be in words, 
bytes, or block numbers. Remember this pitfall when you tackle the exercises. 

Pitfall: Selecting too small an address space. 

Just five years after DEC designed the new PDP-11 computer family, it was 
apparent that its creation had a major flaw-the size of its addresses. Address 
size limits the program length, since the size of a program and the amount of 
data needed by the program must be less than 2address size . The reason the ad
dress size is so hard to change is that it determines the minimum width of any
thing that can contain an address: PC, register, memory word, and effective
address arithmetic. If there is no plan to expand the address from the start, the 
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chances of successfully changing address size are so slim that it normally 
means the end of that computer family. Bell and Strecker put it like this: 

There is only one mistake that can be made in computer design that is dif
ficult to recover from-not having enough address bits for memory ad
dressing and memory management. The PDP-11 followed the unbroken 
tradition of nearly every known computer. [Bell, C. G., and W. D. Strecker. 
"Computer structures: What have we learned from the PDP-11?," Proc. 
Third Annual Symposium on Computer Architecture (January 1976), Pitts
burgh, Penn., 1-14] 

The IBM 360 series was announced six years prior to the PDP-11 and contin
ues to sell well with only minor extensions. The reason is that the 360 had a 
24-bit address space, and it was possible to extend its address space to 32 bits, 
the natural word size for the machine. Similarly, the VAX, introduced as a 32-
bit replacement for the PDP-11, has survived longer, selling over 100,000 
units. 

A partial list of successful general-purpose machines that eventually 
starved to death for lack of address bits includes the PDP-8, PDP-10, PDP-11, 
Intel 8086, Intel 80186, Intel 80286 (although the 80386 provided a 16-bit back
ward compatibility mode), AMI 6502, Zilog Z80, Cray-1, and Cray X-MP. In 
fact, as this book was being written, Digital announced a new architecture of
fering a 64-bit address space that will replace the VAX. The consensus is that 
32 bits of address space is rapidly becoming too little: The R4000 implements 
a 64-bit version of the MIPS architecture, and 64-bit versions of the SPARC ar
chitecture and the IBM Power architecture are under development. 

Pitfall: Using miss rate as the only metric for evaluating a memory hierarchy. 

As we just discussed, miss rate can be a misleading metric when other cache 
parameters are ignored. Let's consider a specific example. Suppose that we 
were running the workload used for the measurements in Figure 7.25 on page 
507. Increasing the direct mapped cache size from 32 KB to 64 KB reduces the 
miss rate from 5.0% to about 4.0%. Suppose the machine with the larger cache 
has a clock cycle time of 20 ns, while the machine with the smaller cache has a 
clock cycle time of 17 ns, and we assume that the CPI without memory stalls is 
the same. If the miss penalty is 200 ns and there are 1 .5 memory references per 
instruction, the machine with the larger cache is actually slower, despite its su
perior cache hit rate. To see this, use the following equation: 

CPU time = ( CPU execution clock cycles + Memory-stall clock cycles ) 

x Clock cycle time 
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where the memory stall cycles are given using the equation from page 477: 

Instructions Misses 
Memory-stall clock cycles = x . x Miss penalty 

Program Instruction 

The term misses per instruction combines the instruction and data miss rates 
into a single term: 

Misses ( Data references ) 
= Instruction miss rate + Data miss rate x ------

Instruction Instruction 

For the smaller cache (using IC to stand for instruction per program): 

Memory-stall clock cycles = IC x ( 0.05 + ( 0.05 x 0.5) ) 

x I Absolute miss penalty l I Clock cycle time 

= IC x 0.075 x l 200 1 = 0.9 x IC 
Memory-stall clock cycles I 17 

For the machine with the larger cache: 

Memory-stall clock cycles = IC x ( 0.04 + ( 0.04 x 0.5) ) 

x I Absolute miss penalty l 
I Clock cycle time 

Memory-stall clock cycles = IC x 0.06 x 1 2
2
°
0
° l = 0.6 x IC 

Now we can put these pieces into the CPU time equation. Let the CPI without 
memory stalls be C. Then the number of CPU clock cycles is C x IC . This 
leads to the following CPU execution time for the machine with the smaller 
cache: 

CPU time = (CPU execution clock cycles + Memory-stall clock cycles ) 
x Clock cycle time 

CPU time ( (C x IC )  + ( 0.9 x IC ) ) x 17 ns 
17 x C x IC + 15 x IC = ( 17C + 15)  IC 

Now, for the larger cache we obtain: 

CPU time = ( C  x IC + 0.6 x IC ) x 20 ns 
= 20 x C x IC + 18 x IC = (20C + 18) IC 

Thus, the machine with the larger cache has a longer execution time and is 
actually slower. The next fallacy discusses a common misconception that fol
lows similar lines. 
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Pitfall: Choosing a set associative cache over a direct mapped cache solely because 
the set associative cache has a better miss rate. 

As we just saw, the cache access time strongly influences the CPU clock rate. 
If the impact on clock rate to implement set associativity exceeds the perfor
mance improvement from the lower miss rate, the set associative cache will 
have worse performance than a direct mapped cache. The data in Figures 7.10 
and 7.25 clearly show that this can occur. 

In the mid-1980s, many designers recognized this danger and selected 
direct mapped placement. The advantages of direct mapped caches include 
lower costs, faster hit times, and therefore smaller average access times for 
large, direct mapped caches. Of course, this choice is highly dependent on the 
implementation technology, and the best choice may change from design to 
design or over time. In the early 1990s, the migration of first-level caches onto 
the processor chip has reduced the overhead required to implement set asso
ciativity and has led some designers to choose set associativity for these small, 
on-chip caches. 

Pitfall: Extending an address space by adding segments on top of a flat address 
space. 

During the 1970s, many programs grew so large that not all the code and 
data could be addressed with just a 16-bit address. Machines were then re
vised to offer 32-bit addresses, either through a flat 32-bit address space or by 
adding 16 bits of segment to the existing 16-bit address. From a marketing 
point of view, adding segments that were programmer-visible and that forced 
the programmer and compiler to decompose programs into segments could 
solve the addressing problem. Unfortunately, there is trouble any time a pro
gramming language wants an address that is larger than one segment, such as 
indices for large arrays, unrestricted pointers, or reference parameters. More
over, adding segments can turn every address into two words-one for the 
segment number and one for the segment offset--causing problems in the use 
of addresses in registers. As this book is being completed, the limits of 32-bit 
addresses are being reached. Some architectures, such as the MIPS R4000, DEC 
Alpha, and SUN SP ARC, have chosen to support 64-bit flat address spaces. 
Others, such as HP PA-RISC are providing an extended address space via seg
mentation, although this may change in the near future. Still other architec
tures, such as the VAX, will come to an end rather than try to make the leap to 
a larger address space. 
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• Concluding Remarks 

100,000% 

10,000% 

1,000% 

The difficulty of building a memory system to keep pace with faster CPUs is 
underscored by the fact that the raw material for main memory, DRAMs, is 
essentially the same in the fastest computers as it is in the slowest (and cheap
est). It is the principle of locality that gives us a chance to overcome the long 
latency of memory access-and the soundness of this strategy is demon
strated at all levels of the memory hierarchy. Although these levels of the 
hierarchy look quite different in quantitative terms, they follow similar strate
gies in their operation and exploit the same properties of locality. 

Because CPU speeds continue to increase faster than either DRAM access 
times or disk access times, memory will increasingly be a factor that limits per
formance. Processors continue to increase in performance at a spectacular rate, 
and DRAMs show every sign of continuing their fourfold improvement in 
density every three years. The access time of DRAMs, however, is improving at 
a much slower rate-about 7% per year. Figure 7.29 plots optimistic and pes-

CPU (fast) 

CPU (slow) 

Year 

FIGURE 7 .29 Using their 1980 performance as a ba-llne, the performance of DRAM• and processors Is plotted 
over time. The DRAM baseline is 64 KB in 1980, with three years to the next generation. The slow processor line assumes 
a 19% improvement per year until 1985 and a 50% improvement thereafter. The fast processor line assumes a 26% perfor
mance improvement between 1980 and 1985 and 100% per year thereafter. Note that the vertical axis must be on a logarith
mic scale to record the size of the processor-DRAM performance gap. 
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simistic processor performance projections against the steady 7% annual per
formance improvement in DRAM speeds. The processor-DRAM performance 
gap is clearly becoming a problem. 

Recent Trends 

The challenge in designing memory hierarchies to close this growing gap, as 
we noted in The Big Picture on page 514, is that all the hardware design 
choices for memory hierarchies have both a positive and negative effect on 
performance. This means that for each level of the hierarchy there is an opti
mal performance point, which must include some misses. If this is the case, 
how can we overcome the growing gap between CPU speeds and lower lev
els of the hierarchy? This question is currently the topic of much research. 
One possible answer is to increase the number of levels in the hierarchy, using 
multilevel caches. For example, a two-level cache would add another cache 
between the first-level cache and the main memory. We can then design each 
cache to satisfy different criteria. For example, the first-level cache can be 
small enough to match the clock cycle time of a fast processor, while the sec
ond-level cache can be large enough to achieve very high hit rates. This flexi
bility has led to the adoption of two-level caches in a number of machines 
announced since 1990. Many recent high-end workstations and microproces
sor-based servers now use two-level caches, with the first-level cache being 
on the processor chip. 

The parameters of second-level caches may be quite different from those of 
first-level caches. The foremost difference between the two levels is that the 
speed of the first-level cache usually affects the clock rate of the processor, 
while the speed of the second-level cache affects only the miss penalty of the 
first-level cache. We can consider, therefore, many alternatives in the second
level cache that would be inappropriate for the first-level cache. Size is one ex
ample. Second-level caches are usually much larger than primary caches. For 
example, the Silicon Graphics Crimson workstation uses a 1 MB secondary 
cache, which is as large as the main memory of many workstations from the 
1980s! 

Another attempt to reduce the processor-DRAM performance gap is to re
assess the interface on the DRAM chips. Several efforts are under way to rede
sign that interface to offer much higher bandwidth than standard DRAMs, in 
part by supplying a clock to DRAM chips to synchronize transfers and in part 
by increasing the number of pins on the DRAMS. In the next several years, we 
will know if computer designers will pay the higher costs of specialized 
DRAMs to get the higher performance of new interfaces. 

Another possible direction is to seek software help. Efficiently managing 
the memory hierarchy using a variety of program transformation and hard
ware facilities is a major focus of research in compilers. Two different ideas are 
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being explored. One idea is to reorganize the program to enhance its spatial 
and temporal locality. This approach focuses on loop-oriented programs that 
use large arrays as the major data structure; large linear algebra problems are 
a typical example. By restructuring the loops that access the arrays, substan
tially improved locality-and, therefore, cache performance-can be obtained. 
Another direction is to try to use compiler-directed pre/etching. In prefetching, 
a block of data is brought into the cache before it is actually referenced. The 
compiler tries to identify data blocks needed in the future and, using special 
instructions, tells the memory hierarchy to move the blocks into the cache. 
When the block is actually referenced it is found in the cache, rather than caus
ing a cache miss. 

As we will see in Chapter 9, memory systems are also a central design issue 
for parallel processors. The growing importance of the memory hierarchy in 
determining system performance in both uniprocessor and multiprocessor 
systems means that this important area will continue to be a focus of both de
signers and researchers for some years to come. 

Historical Perspective and Further Reading 

Ideally one would desire an indefinitely large memory capacity such that any par
ticular . . .  word would be immediately available . . . .  We are . . .  forced to recognize 
the possibility of constructing a hierarchy of memories, each of which has greater 
capacity than the preceding but which is less quickly accessible. 

A. W. Burks, H. H. Goldstine, and J. von Neumann, 
Preliminary Discussion of the Logical Design 

of an Electronic Computing Instrument, 1946 

The developments of most of the concepts in this chapter have been driven by 
revolutionary advances in the technology we use for memory. Before we dis
cuss how memory hierarchies were developed, let's take a brief tour of the 
development of memory technology. In this section, we focus on the technolo
gies for building main memory and caches; Chapter 8 will provide some of 
the history of developments in disk technology. 

The ENIAC had only a small number of registers (about 20) for its storage 
and implemented these with the same basic vacuum tube technology that it 
used for building logic circuitry. However, the vacuum tube technology was 
far too expensive to be used to build a larger memory capacity. Eckert came up 
with the idea of developing a new technology based on mercury delay lines. 
In this technology, electrical signals were converted into vibrations that were 
sent down a tube of mercury, reaching the other end where they were read out 
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FIGURE 7.30 The mercury delay lines in the EDSAC. This technology made it possible to build 
the first stored program computer. The young engineer in this photograph is none other than 
Maurice Wilkes, the lead architect of the EDSAC. Photo courtesy of The Computer Museum, Bos
ton. 

and recirculated. One mercury delay line could store about 0.5K bits. Al
though these bits were accessed serially, the mercury delay line was about a 
hundred times more cost-effective than vacuum tube memory. The first 
known working mercury delay lines were developed at Cambridge for the 
EDSAC. Figure 7.30 shows the mercury delay lines of the EDSAC, which had 
32 tanks and a total of 512 36-bit words. 

Despite the tremendous advance offered by the mercury delay lines, they 
were terribly unreliable and still rather expensive. The breakthrough came 
with the invention of core memory by J. Forrester at MIT as part of the Whirl
wind project, in the early 1950s. Core memory uses a ferrite core, which can be 
magnetized, and once magnetized, acts as a store (just as a magnetic recording 
tape stores information) . A set of wires running through the center of the core 
make it possible to read the value stored on any ferrite core. The Whirlwind 
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FIGURE 7 .31 A core memory plane from the Whirlwind containing 256 cores arranged In a 
16x16 array. Core memory was invented for the Whirlwind, which was used for air defense 
problems, and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder and 
president of Digital for 20 years, built the machine that tested these core memories; it was his first 
computer.) Photo courtesy of The Computer Museum, Boston. 

eventually included a core memory with 2048 16-bit words, or a total of 32 K 
bits. Core memory was a tremendous advance: It was cheaper, faster, much 
more reliable, and had higher density. 

Core memory was so much better than the alternatives that it became the 
dominant memory technology only a few years after its invention and re
mained so for nearly 20 years. The technology that replaced core memory was 
the same one that we now use both for logic and memory: the integrated cir
cuit. While registers were built out of transistorized memory in the 1960s, and 
IBM machines used transistorized memory for microcode store and caches in 
1970, building main memory out of transistors remained prohibitive until the 
development of the integrated circuit. With the integrated circuit, it became 
possible to build a DRAM (dynamic random access memory-see Appendix B 
for a description). The first DRAMS were built at Intel in 1970, and the ma
chines using DRAM memories (as a high-speed option to core) came shortly 
thereafter; they used lK-bit DRAMs. Figure 7.32 shows an early DRAM board. 
By the late 1970s, core memory became a historical curiosity. Just as core mem
ory technology had allowed a tremendous expansion in memory size, DRAM 
technology allowed a comparable expansion. In the 1990s, many personal 
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FIGURE 7.32 An early DRAM board. This board uses 18 Kbit chips. Photo courtesy of Interna
tional Business Machines Corporation. 

FIGURE 7.33 A modern 1 MB SIMM, using 1 Mbit chips. This SIMM, used in a Macintosh, 
sells for about $25/MB. Photo courtesy of MIPS Technology, Inc. 

computers have as much memory as the largest machines using core memory 
ever had. 

Modern DRAMs are often packaged with multiple chips on a little board 
(called SIMMs). The SIMM shown in Figure 7.33 contains a total of 1 MB and 
sells for about $25 in 1993. While DRAMs will remain the dominant memory 
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technology for some time to come, dramatic innovations in the packaging of 
DRAMs to provide both higher bandwidth and greater density are ongoing. 

The Development of Memory Hierarchies 

Although the pioneers of computing foresaw the need for a memory hierar
chy and coined the term, the automatic management of two levels was first 
proposed by Kilburn and his colleagues and demonstrated at the University 
of Manchester with the Atlas computer, which implemented virtual memory. 
This was the year before the IBM 360 was announced. IBM planned to include 
virtual memory with the next generation (System/370), but the operating sys
tem wasn't up to the challenge in 1970. Virtual memory was announced for 
the 370 family in 1972, and it was for this machine that the term translation
lookaside buffer was coined. The only computers today without virtual mem
ory are a few supercomputers, and even they may add this feature in the near 
future. 

The problems of inadequate address space have plagued designers repeat
edly. The architects of the PDP-11  identified a small address space as the only 
architectural mistake that is difficult to recover from. When the PDP-11 was 
designed, core memory densities were increasing at a very slow rate, and the 
competition from 100 other minicomputer companies meant that DEC might 
not have a cost-competitive product if every address had to go through the 
16-bit datapath twice. Hence the decision to add just four more address bits 
than the predecessor of the PDP-11 .  The architects of the IBM 360 were aware 
of the importance of address size and planned for the architecture to extend to 
32 bits of address. Only 24 bits were used in the IBM 360, however, because the 
low-end 360 models would have been even slower with the larger addresses. 
Unfortunately, the expansion effort was greatly complicated by programmers 
who stored extra information in the upper eight "unused" address bits. 

Many of the early ideas in memory hierarchies originated in England. Just 
a few years after the Atlas paper, Wilkes [1965] published the first paper de
scribing the concept of a cache, calling it a slave: 

The use is discussed of a fast core memory of, say, 32,000 words as slave to 
a slower core memory of, say, one million words in such a way that in prac
tical cases the effective access time is nearer that of the fast memory than 
that of the slow memory. 

This two-page paper describes a direct mapped cache. While this was the 
first publication on caches, the first implementation was probably a direct 
mapped instruction cache built at the University of Cambridge by Scarrott and 
described at the 1965 IFIP Congress. It was based on tunnel diode memory, the 
fastest form of memory available at the time. 
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Subsequent to that publication, IBM started a project that led to the first 
commercial machine with a cache, the IBM 360/85. Gibson at IBM recognized 
that memory-accessing behavior would have a significant impact on perfor
mance. He described how to measure program behavior and cache behavior 
and showed that the miss rate varies between programs. Using a sample of 20 
programs (each with 3 million references-an incredible number for that 
time), Gibson analyzed the effectiveness of caches using average memory
access time as the metric. Conti, Gibson, and Pitkowsky described the result
ing performance of the 360/85 in the first paper to use the term cache. Since this 
early work, it has become clear that caches are one of the most important ideas 
not only in computer architecture, but in software systems as well. The idea of 
caching has found applications in operating systems, networking systems, 
databases, and compilers, to name a few. There are thousands of papers on the 
topic of caching, and it continues to be an important area of research. 

Protection Mechanisms 

Architectural support for protection has varied greatly over the past 20 years. 
In early machines, before virtual memory, protection was very simple at best. 
In the 1970s, more elaborate mechanisms that supported different protection 
levels (called rings) were invented. In the late 1970s and early 1980s, very 
elaborate mechanisms for protection were devised and later built; these 
mechanisms supported a variety of powerful protection schemes that allowed 
controlled instances of sharing, in such a way that a process could share data 
while controlling exactly what was done to the data. The most powerful 
method, called capabilities, created a data object that described the access 
rights to some portion of memory. These capabilities could then be passed to 
other processes, thus granting access to the object described by the capability. 
Supporting this sophisticated protection mechanism was both complex and 
costly, because creation, copying, and manipulation of capabilities required a 
combination of operating system and hardware support. Recent machines all 
support a simpler protection scheme based on virtual memory, similar to that 
discussed in section 7.3. 

To Probe Further 

Conti, C., D. H. Gibson, and S. H. Pitowsky [1968). "Structural aspects of the System/360 Model 
85, part I: General organization," IBM Systems J. 7:1, 2-14. 

Describes the first commercial machine to use a cache and its resulting performance. 

Hennessy, J., and D. Patterson [1990). Computer Architecture: A Quantitative Approach, Morgan 
Kaufmann Publishers, San Mateo, Calif., Chapter 8. 

For more in-depth coverage of a variety of topics including protection, register windows, improving write 
performance, virtually addressed caches, multilevel caches, and cache coherency. 
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Kilburn, T., D. B. G. Edwards, M. J. Lanigan, F. H. Sumner [1962]. "One-level storage system," 
IRE Transactions on Electronic Computers EC-11 (April) 223-35. Also appears in D. P. Siewiorek, C. 
G. Bell, and A. Newell, Computer Structures: Principles and Examples, McGraw-Hill, New York, 
135-48, 1982. 

This classical paper is the first proposal for virtual memory. 

Przybylski, S. A. (1990]. Cache and Memory Hierarchy Design: A Performance-Directed Approach, 
Morgan Kaufmann Publishers, San Mateo, Calif. 

A thorough exploration of multi-level memory hierarchies and their performance. 

Smith, A. J. [1982]. "Cache memories," Computing Surveys 14:3 (September) 473-530. 

The classic survey paper on caches. This paper defined the terminology for the field and has served as a ref
erence for many computer designers. 

Tanenbaum, A. [1991] .  Operating Systems Principles, Addison-Wesley, Reading, Mass. 

An operating system textbook with a good discussion of virtual memory. 

Wilkes, M. (1965]. "Slave memories and dynamic storage allocation," IEEE Trans. Electronic Com
puters EC-14:2 (April) 270-71. 

The first, classic, paper on caches . 

• Exercises 

7.1 [ 10] <§7.2> Here is a string of address references given as word 
addresses: 1, 4, 8, 5, 20, 17, 19, 56, 9, 11 ,  4, 43, 5, 6, 9, 17. Assuming a direct 
mapped cache with 16 one-word blocks that is initially empty, label each ref
erence in the list as a hit or miss and show the final contents of the cache. 

7.2 [ 10] <§7.2> Using the reference string listed in Exercise 7.1, show the hits 
and misses and final cache contents for a direct mapped cache with four-word 
blocks and a total size of 16  words. 

7.3 [ 10] <§7.2, 7.4> Using the reference string listed in Exercise 7.1, show the 
hits and misses and final cache contents for a two-way set associative cache 
with one-word blocks and a total size of 16 words. Assume LRU replacement. 

7.4 [10] <§7.2, 7.4> Using the reference string listed in Exercise 7.1, show the 
hits and misses and final cache contents for a fully associative cache with one
word blocks and a total size of 16 words. Assume LRU replacement. 

7.5 [ 10] <§7.2, 7.4> Using the reference string listed in Exercise 7.1, show the 
hits and misses and final cache contents for a fully associative cache with four
word blocks and a total size of 16  words. Assume LRU replacement. 

7 .6 [15] <§7.2> Cache Cl is direct mapped with 16 one-word blocks. Cache C2 
is direct mapped with 4 four-word blocks. Assume that the miss penalty for 
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Cl is 8 clock cycles and the miss penalty for C2 is 1 1  clock cycles. Assuming 
that the caches are initially empty, find a reference string for which C2 has a 
lower miss rate but spends more cycles on cache misses than Cl .  Use word 
addresses. 

7. 7 [15] <§7.2> For the caches in Exercise 7.6, find a reference string for which 
C2 has more misses than Cl. Use word addresses. 

7.8 [ 10] <§7.2> Compute the number of bytes in the cache in Figure 7.9. 

7 .9 [15] <§7.3> Consider a virtual memory system with the following proper
ties: 

• 40-bit virtual address 

• 16 KB pages 

• 36-bit physical address 

What is the total size of the page table for each process on this machine, 
assuming that the valid, protection, dirty, and use bits take a total of 4 bits and 
that all the virtual pages are in use. Assume that disk addresses are not stored 
in the page table. 

7.10 [15] <§7.3> Assume that the virtual memory system of Exercise 7.9 is im
plemented with a two-way set associative TLB with a total of 256 TLB entries. 
Show the virtual to physical mapping with a figure like the top half of 
Figure 7.19 on page 494. Make sure to label the width of all fields and signals. 

7 .11 [15] <§7.2, 7.4> Assume that the cache for the system described in Exer
cise 7.9 is two-way set associative and has eight-word blocks and a total size 
of 16 KB. Show the cache organization and access using the same format as 
Figure 7.27 on page 509. 

7 .12 [10] <§7.2> Find a method to eliminate the AND gate on the valid bit in 
Figure 7.6 on page 463. Hint: you need to change the comparison. 

7.13 [20] <§7.2, 7.4> Consider three machines with different cache configura
tions: 

1 .  Cache 1 :  Direct mapped with one-word blocks. 

2. Cache 2: Direct mapped with four-word blocks. 

3. Cache 3: 2-way set associative with four-word blocks. 

The following miss rate measurements have been made: 

1 .  Cache 1: Instruction miss rate is 4%; data miss rate 8%. 

2. Cache 2: Instruction miss rate is 2%; data miss rate 5%. 
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3. Cache 3: Instruction miss rate is 2%; data miss rate 4%. 

For these machines, one-half of the instructions contain a data reference. 
Assume that the cache miss penalty is 6 + Block size in words . The CPI for 
this workload was measured on a machine with cache 1 and was found to 
be 2.0. 

Determine which machine spends the most cycles on cache misses. 

7.14 [5] <§7.2> {ex. 7.13} The clock rates for the machines in Exercise 7.13 are 
10 ns for the first and second machine and 12 ns for the third machine. Deter
mine which machine is the fastest and which is the slowest. 

7 .15 [10] <§7.2> Consider a memory hierarchy using one of the three organi
zations for main memory shown in Figure 7.12 on page 474. Assume that the 
cache block size is 16 words, that the width of organization b of the figure is 
four words, and the number of banks in organization c is four. If the main 
memory latency for a new access is 10 cycles and the transfer time is one cycle, 
what are the miss penalties for each of these organizations? 

7.16 [10] <§7.2> {ex. 7.15 }  Suppose a processor with a 16-word block size has 
an effective miss rate per instruction of 0.5%. Assume the CPI without cache 
misses is 1 .2. How much faster is this processor when using the wide memory 
described in Exercise 7.15 compared to the narrow or interleaved memories 
described in the exercise? 

7.17 [20] <§7.2-7.4> In a memory hierarchy like that of Figure 7.19 that in
cludes a TLB and a cache organized as shown, a memory reference can en
counter three different types of misses: a cache miss, a TLB miss, and a page 
fault. Consider all the combinations of these three events with one or more oc
curring (seven possibilities). For each possibility, state whether this event can 
actually occur and under what circumstances. 

7.18 [3 hours] <§7.2-7.4> Use a cache simulator to simulate several different 
cache organizations for the first 1 million references in a trace of gee. Both din
ero (a cache simulator) and the gee traces are available-see the preface. As
sume an instruction cache of 32 KB and a data cache of 32 KB using the same 
organization. You should choose at least two kinds for associativity and two 
block sizes. Draw a diagram like that in Figure 7.27 showing the data cache or
ganization with the best hit rate. 

7.19 [4 hours] <§7.2-7.4> We want to use a cache simulator to simulate sev
eral different TLB and virtual memory organizations. Use the first 1 million 
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references of gee for this evaluation. We want to know the TLB miss rate for 
each of the following TLBs and page sizes: 

1 .  64-entry TLB with full associativity and 4 KB pages 

2. 32-entry TLB with full associativity and 8 KB pages 

3. 64-entry TLB with 8-way associativity and 4 KB pages 

4. 128-entry TLB with 4-way associativity and 4 KB pages 

In More Depth 

To capture the fact that the time to access data for both hits and misses affects 
performance, designers often use average memory access time (AMAT) as a 
way to examine alternative cache designs. Average memory access time is the 
average time to access memory considering both hits and misses and the fre
quency of different accesses; it is equal to the following: 

AMAT = Time for a hit + Miss rate x Miss penalty 

AMAT is useful as a figure of merit for different cache systems. 

7.20 [10] <§7.2> Find the AMAT for a machine with a 10-ns clock, a miss pen
alty of 20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache 
access time including hit detection of 1 clock cycle. Assume that the read and 
write miss penalties are the same and ignore other write stalls. 

7.21 [10] <§7.2> Suppose we can improve the miss rate to 0.03 misses per ref
erence by doubling the cache size. This causes the cache access time to increase 
to 1 .2 clock cycles. Using the AMAT as a metric, determine if this is a good 
trade-off. 

7.22 [10] <§7.2> If the cache access time determines the processor's clock cy
cle time, which is often the case, AMAT may not correctly indicate whether 
one cache organization is better than another. If the machine's clock cycle time 
must be changed to match that of a cache, is this a good trade-off? Assume the 
machines are identical except for the clock rate and number of cache miss cy
cles; assume 1 .5 references per instruction and a CPI without cache misses of 
2. The miss penalty is 20 cycles for both machines. 

7.23 [1 day] <§7.2, 7.4> You are commissioned to design a cache for a MIPS 
R3000 system. It has a 32-bit physical byte address and requires separate in
struction and data caches. The RAMs have an access time of 15 ns, and a size 
of 32 K x 8 bits, and you have a total of 16 RAMs to use. The miss penalty for 
the memory system is 8 + 2 x Block size in words . Using set associativity adds 
2 ns to the cache access time. Using the first 1 million references of gee, find the 
best I and D cache organizations, given the available RAMs. 
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II Introduction 

As in processors, many of the characteristics of input/output (1/0) systems are 
driven by technology. For example, the properties of disk drives affect how 
the disks should be connected to the processor, as well as how the operating 
system interacts with the disks. 1/0 systems, however, differ from processors 
in several important ways. Although processor designers often focus prima
rily on performance, designers of 1/0 systems must consider issues such as 
expandability and resilience in the face of failure as much as they consider 
performance. Second, performance in an 1/0 system is a more complex mea
surement than for a processor. For example, with some devices we may care 
primarily about access latency, while with others throughput is crucial. Fur
thermore, performance depends on many aspects of the system: the device 
characteristics, the connection between the device and the rest of the system, 
the memory hierarchy, and the operating system. Figure 8.1 shows the struc-

Processor 

Main 
memory 

Interrupts 

Memory-1/0 bus 

1/0 1/0 
controller controller 

Graphics 
output 

1/0 
controller 

Network 
r 

) 

FIGURE 8.1 Typical collection of 1/0 devices. The connections between the I/O devices, processor, 
and memory are usually called buses. Communication among the devices and the processor use both 
protocols on the bus and interrupts, as we will see in this chapter. 
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ture of a system with its 1/0. All of the components from the individual 1/0 
devices to the processor to the system software will affect the performance of 
tasks that include 1/0. 

The difficulties in assessing and designing 1/0 systems have often relegat
ed 1/0 to second-class status. Research focuses on processor design; compa
nies present performance using primarily processor-oriented measures; 
courses in every aspect of computing, from programming to computer archi
tecture, often ignore 1/0 or give it scanty coverage; and textbooks leave the 
subject to near the end, making it easier for students and instructors to skip it! 

This situation doesn't make sense: imagine how you'd like to use a com
puter without 1/0! Furthermore, in an era when machines from low-end PCs 
to the fastest mainframes and even supercomputers are being built from the 
same basic microprocessor technology, 1/0 capability is often one of the most 
distinctive features of the machines. Many of the recent developments in the 
computer industry are exciting as much for their new 1/0 capabilities as for 
their processor power. This is because machines interact with people through 
1/0. 

If these concerns are still not convincing, our discussion of Amdahl's Law 
in Chapter 2 should remind us that ignoring 1/0 is dangerous. A simple ex
ample demonstrates this. 

Suppose we have a benchmark that executes in 100 seconds of elapsed time, 
where 90 seconds is CPU time and the rest is 1/0 time. If CPU time im
proves by 50°/c, per year for the next five years but 1/0 time doesn't improve, 
how much faster will our program run at the end of five years? 

We know that 

Elapsed time = CPU time + 1/0 time 

100 = 90 + 1/0 time 

I/ 0 time = 10 seconds 

The new CPU times and the resulting elapsed times are computed in the fol
lowing table: 
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After n years 

0 

1 

2 

3 

4 

5 

CPU time 
90 seconds 

9 0  
- = 6 0  seconds 
1 . 5  

6 0  
- = 4 0  seconds 
1 . 5  

4 0  
- = 2 7 seconds 
1 . 5  

2 7  
- = 1 8  seconds 
1 . 5  

1 8  
- = 1 2  seconds 
1 . 5  

1/0 time 
10 seconds 

10 seconds 

10 seconds 

10 seconds 

10 seconds 

10 seconds 

Elapsed time 
100 seconds 

70 seconds 

50 seconds 

37 seconds 

28 seconds 

22 seconds 

The improvement in CPU performance over five years is 

90 
= 7.5 

12 

However, the improvement in elapsed time is only 
100 

= 4.5 
22 

% 1/0 time 
10% 

14% 

20% 

27% 

36% 

45% 

and the I/0 time has increased from 10% to 45% of the elapsed time. 

How we should assess I/0 performance often depends on the application. 
In some environments, we may care primarily about system throughput. In 
these cases, 1/0 bandwidth will be most important. Even 1/0 bandwidth can 
be measured in two different ways: 

1. How much data can we move through the system in a certain time? 

2. How many 1/0 operations can we do per unit time? 

Which measurement is best may depend on the environment. For example, 
in many supercomputer applications, most I/0 requests are for long streams 
of data, and transfer bandwidth is the important characteristic. In another en
vironment, we may wish to process a large number of small, unrelated access
es to an 1/0 device. An example of such an environment might be a tax
processing office of the National Income Tax Service (NITS). NITS mostly 
cares about processing a large number of forms in a given time; each tax form 
is stored separately and is fairly small. A system oriented toward large file 
transfer may be satisfactory, but an 1/0 system that can support the simulta-
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neous transfer of many small files may be cheaper and faster for processing 
millions of tax forms. 

In other applications, we care primarily about response time, which you 
will recall is the total elapsed time to accomplish a particular task. If the 1/0 
requests are extremely large, response time will depend heavily on band
width, but in many environments most accesses will be small, and the 1/0 sys
tem with the lowest latency per access will deliver the best response time. On 
single-user machines such as workstations and personal computers, response 
time is the key performance characteristic. 

A large number of applications, especially in the vast commercial market 
for computing, require both high throughput and short response times. Exam
ples include automatic teller machines (ATMs), airline reservation systems, or
der entry and inventory tracking systems, file servers, and machines for 
timesharing. In such environments, we care about both how long each task 
takes and how many tasks we can process in a second. The number of ATM re
quests you can process per hour doesn't matter if each one takes 15 minutes
you won't have any customers left! Similarly, if you can process each ATM re
quest quickly, but only handle a small number of requests at once, you won't 
be able to support many ATMs or the cost of the computer per ATM will be 
very high. 

If 1/0 is truly important, how should we compare 1/0 systems? This is a 
complex question, because 1/0 performance depends on many aspects of the 
system and different applications stress different aspects of the 1/0 system. 
Furthermore, a design can trade response time for throughput, or vice versa, 
making it impossible to measure just one aspect in isolation. For example, re
sponse time is generally minimized by handling a request as early as possible, 
while greater throughput can be achieved if we try to handle related requests 
together. Accordingly, we may increase throughput on a disk by grouping re
quests that access locations that are close together. Such a policy will increase 
the response time for some requests. As a result, throughput may improve, but 
average response time will probably increase. 

Before discussing the aspects of I/O devices and how they are connected, 
let's look briefly at some performance measures for 1/0 systems . 

1/0 Performance Measures: Some 

Examples from Disk and File Systems 

Assessment of an 1/0 system must take into account a variety of factors. Per
formance is one of these, and in this section, we give some examples of mea
surements proposed for determining the performance of disk systems. These 
benchmarks are affected by a variety of system features, including the disk 
technology, how disks are connected, the memory system, the processor, and 
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the file system provided by the operating system. Overall, the state of bench
marking on the I/O side of computer systems remains quite primitive com
pared with the extensive activity lately seen in benchmarking processor 
systems. Perhaps this situation will change as designers realize the impor
tance of I/0 and the inadequacy of our techniques to evaluate it. 

Supercomputer 1/0 Benchmarks 

Supercomputer I/O is dominated by accesses to large files on magnetic disks. 
Many supercomputer installations run batch jobs, each of which may last for 
hours. In these situations, I/O consists of one large read followed by writes to 
snapshot the state of the computation should the computer crash. As a result, 
supercomputer I/O in many cases consists more of output than input. The 
overriding supercomputer I/O measure is data throughput: the number of 
bytes per second that can be transferred between a supercomputer's main 
memory and disks during large transfers. 

Transaction Processing 1/0 Benchmarks 

Transaction processing (TP) applications involve both a response time require
ment and a performance measurement based on throughput. Furthermore, 
most of the I/O accesses are small. Because of this, TP applications are chiefly 
concerned with J/0 rate, measured as the number of disk accesses per second, 
as opposed to data rate, measured as bytes of data per second. TP applications 
generally involve changes to a large data base with the system meeting some 
response time requirements as well as gracefully handling certain types of 
failures. These applications are extremely critical and cost-sensitive. For 
example, banks normally use TP systems because they are concerned about a 
range of characteristics. These include making sure transactions aren't lost, 
handling transactions quickly, and minimizing the cost of processing each 
transaction. Although reliability in the face of failure is an absolute require
ment in such systems, both response time and throughput are critical to 
building cost-effective systems. 

A number of transaction processing benchmarks have been developed. The 
best known benchmark, called TPC-B, has a number of variations. The basic 
benchmark simulates a transaction system such as a network of ATMs. Perfor
mance is rated as throughput with the additional requirement that only trans
actions serviced within a predetermined, constant response time count toward 
the service rate. The throughput measure is transactions per second or TPS; in 
1993, the TPS for high-end, one-processor machines is about 300. 

Depending on how cleverly the transaction processing system is designed, 
each transaction results in between 2 and 10 disk I /Os and takes between 5,000 
and 20,000 CPU instructions per disk I/O. What makes this benchmark partic-
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ularly challenging is that the size of the database is scaled up as the TPS rate 
increases. This reflects how real systems operate and prevents the database 
from becoming totally memory resident on very large machines. The follow
ing table shows how the number of ATMs and the database size scale with the 
target TPS rate: 

fl'."':.'..JP-S� i. --;f NUm0ber CJf. ATMS'jj!.Account-file· size·
:� 

• � �· � • ........ ,c;.: " • •• r .•• '- , .... - J:. ·� -. ...,. ...-... - - � 

10 1000 0.1 GB 

100 10.000 1.0 GB 

1000 100,000 10.0 GB 

10,000 1 ,000,000 100.0 GB 

File System 1/0 Benchmarks 

File systems, which are stored on disks, have a different access pattern. For 
example, measurements of UNIX file systems in an engineering environment 
have found that 80% of accesses are to files of less than 10 KB and that 90% of 
all file accesses are to data with sequential addresses on the disk. Further
more, 67% of the accesses were reads, 27% were writes, and 6% were read
write accesses. Such measurements have led to the creation of synthetic file
system benchmarks. One of the most popular of such benchmarks has five 
phases, using 70 files with a total size of 200 KB: 

• MakeDir: Constructs a directory subtree that is identical in structure to 
the given directory subtree. 

• Copy: Copies every file from the source subtree to the target subtree. 

• ScanDir: Recursively traverses a directory subtree and examines the 
status of every file in it. 

• ReadAll: Scans every byte of every file in a subtree once. 

• Make: Compiles and links all the files in a subtree. 

• Types and Characteristics of If O Devices 

1/0 devices are incredibly diverse. Three characteristics are useful in organiz
ing this wide variety: 

• Behavior: Input (read once), output (write only, cannot be read), or stor
age (can be reread and usually rewritten).  

• Partner: Either a human or a machine is at the other end of the 1/0 de
vice, either feeding data on input or reading data on output. 
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Device Behavior Partner Data rate ( K B/sec) 

Keyboard I n put Human 0.01 

Mouse I n put H uman 0.02 

Voice input I n put H u man 0.02 

Scanner I n put Human 200.00 

Voice output Output H u man 0.60 

Line printer Output Human 1.00 

Laser printer Output Human 100.00 

Graphics display Output Human 30,000.00 

Network-terminal I n put or output Machine 0.05 

Network-LAN I n put or output Machine 200.00 

Floppy disk Storage Machine 50.00 

Optical disk Storage Machine 500 00 

Magnetic tape Storage Machine 2000.00 

Magnetic disk Storage Machine 2000.00 

FIGURE 8.2 The diversity of 1/0 devices. 1/0 devices can be distinguished by whether they 
serve as input, output, or storage devices, their communication partner (people or other comput
ers), and their peak communication rates. The data rates span six orders of magnitude. Note that 
a network can be an input or an output device, but cannot be used for storage. For historical rea
sons, disk and memory sizes as well as transfer rates are always quoted in base two, so that 1 KB 
= 1024 bytes. Networks, on the other hand, specify transfer rates in decimal, so that 10 Mb = 10 
million bits per second. 

• Data rate: The peak rate at which data can be transferred between the 
I/O device and the main memory or processor. It is useful to know what 
maximum demand the device may generate. 

For example, a keyboard is an input device used by a human with a peak data 
rate of about 10 bytes per second. Figure 8.2 shows some of the I/0 devices 
connected to computers. 

In Chapter 1, we briefly discussed four important and characteristic I/O 
devices: mice, graphics displays, disks, and networks. We use mice, disks, 
and networks as examples to illustrate how I/O devices interface to processors 
and memories, but before we do that it will be useful to discuss these devices 
in more detail than in Chapter 1 .  

Mouse 

The interface between a mouse and a system can take one of two forms: the 
mouse either generates a series of pulses when it is moved (using the LED 
and detector described in Chapter 1 to generate the pulses), or it increments 
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+20 in Y EJ +20 in Y 
-20 in X +20 in X 

B 
Initial EJ position 

of mouse 

-20 in Y B -20 in Y 
-20 in X +20 in X 

FIGURE 8.3 Moving the mouse In the horizontal direction or vertlcal direction causes the 
X or Y counter, respectlvely, to Increment or decrement. Moving it along a diagonal causes 
both counters to change. Since the ball doesn't move when the mouse is not contacting the sur
face, it may be picked up and moved without changing the counters. When the mouse uses 
pulses to communicate its movement, there are four types of pulses: +X, -X, + Y, and -Y. Rather 
than generate a change in the counter value, the mouse generates the appropriate number of 
pulses on each of the four pulse signal lines. The value 20 is an arbitrary count that measures how 
far the mouse has moved. 

and decrements counters. Figure 8.3 shows how the counters change when 
the mouse is moved and describes how the interface would operate if it gen
erated pulses instead. The processor can periodically read these counters, or 
count up the pulses, and determine how far the mouse has moved since it 
was last examined. The system then moves the cursor on the screen appropri
ately. This motion appears smooth because the rate at which you can move 
the mouse is slow compared with the rate at which the processor can read the 
mouse status and move the cursor on the screen. 

Most mice also include one or more buttons, and the system must be able 
to detect when a button is depressed. By monitoring the status of the button, 
the system can also differentiate between clicking the button and holding it 
down. Of course, the mapping between the counters and the button position 
and what happens on the screen is totally controlled by software. That's why, 
for example, the rate at which the mouse moves across the screen and the rate 
at which single and double clicks are recognized can usually be set by the user. 
Similarly, software interpretation of the mouse position means that the cursor 
doesn't jump completely off the screen when the mouse is moved a long dis
tance in one direction. This method of having the system monitor the status of 
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the mouse by reading signals from it is a common way to interface lower per
formance devices to machines; it is called polling, and we'll revisit it in 
section 8.5. 

Magnetic Disks 

As mentioned in Chapter 1, there are two major types of magnetic 
disks: floppy disks and hard disks. Both types of disks rely on a rotating plat
ter coated with a magnetic surface and use a moveable read/write head to 
access the disk. Disk storage is nonvolatile, meaning that the data remains 
even when power is removed. Because the platters in a hard disk are metal 
(or, recently, glass), they have several significant advantages over floppy 
disks: 

• The hard disk can be larger, because it is rigid. 

• The hard disk has higher density, because it can be controlled more pre
cisely. 

• The hard disk has a higher data rate, because it spins faster. 

• Hard disks can incorporate more than one platter. 

For the rest of this section we will focus on hard disks, and we use the term 
magnetic disk to mean hard disk. 

A magnetic disk consists of a collection of platters (2 to 20), each of which 
has two recordable disk surfaces, as shown in Figure 8.4. The stack of platters 
is rotated at 3600 to 5400 RPM and has a diameter of from just over an inch to 
just over 10 inches. Each disk surface is divided into concentric circles, called 
tracks. There are typically 500 to 2000 tracks per surface. Each track is in turn 
divided into sectors that contain the information; each track may have 32 to 128 
sectors, and the sector is the smallest unit that can be read or written. The se
quence recorded on the magnetic media is a sector number, a gap, the infor
mation for that sector including error correction code (see Appendix B, page 
B-33), a gap, the sector number of the next sector, and so on. Traditionally, all 
tracks have the same number of sectors and hence the same number of bits. 
The wider disks have usually offered the best performance and the smaller di
ameter disks have the best cost per megabyte. 

As we saw in Chapter 1 ,  to read and write information the read/write 
heads must be moved so that they are over the correct location. The disk arms 
for each surface are connected together and move in conjunction, so that every 
arm is over the same track of every surface. The term cylinder is used to refer 
to all the tracks under the arms at a given point on all surfaces. 

To access data, the operating system must direct the disk through a three
stage process. The first step is to position the arm over the proper track. This 
operation is called a seek, and the time to move the arm to the desired track is 
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FIGURE 8.4 Disks are organized Into platters, tracks, and sectors. Both sides of a platter are 
coated so that information can be stored on both surfaces. Floppy disks have the same organiza
tion, but consist of only one platter. 

called seek time. Disk manufacturers report minimum seek time, maximum 
seek time, and average seek time in their manuals. The first two are easy to 
measure, but the average is open to wide interpretation because it depends on 
the seek distance. The industry has decided to calculate average seek time as 
the sum of the time for all possible seeks divided by the number of possible 
seeks. Average seek times are usually advertised as 12 ms to 20 ms, but, de
pending on the application and scheduling of disk requests, the actual average 
seek time may be only 25% to 33% of the advertised number, due to locality of 
disk references. This locality arises both because of successive access to the 
same file and because the operating system tries to schedule such access to
gether. 

Once the head has reached the correct track, we must wait for the desired 
sector to rotate under the read/write head. This time is called the rotation la
tency or rotational delay. The average latency to the desired information is half
way around the disk. Because the disks rotate at 3600 RPM to 5400 RPM, the 
average rotation time is between 
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and 

0.5 rotation 
Average rotational latency = 

3600 RPM 
0.5 rotation 

seconds 
3600 RPM / ( 60 . ) 

mmute 
0.0083 sec = 8.3 ms 

0.5 rotation 
Average rotational latency = 

5400 RPM 
0.5 rotation 

seconds 
5400 RPM / ( 60 . ) 

mmute 
0.0056 sec = 5.6 ms 

Smaller diameter disks are attractive because they can spin at higher rates 
without excessive power consumption, thereby reducing rotational latency. 

The last component of a disk access, transfer time, is the time to transfer a 
block of bits, typically a sector. This is a function of the transfer size, the rota
tion speed, and the recording density of a track. Transfer rates in 1992 are typ
ically 2 to 4 MB per second. 

The detailed control of the disk and the transfer between the disk and the 
memory is usually handled by a disk controller. The controller adds the final 
component of disk-access time, the controller time, which is the overhead the 
controller imposes in performing an 1/0 access. The average time to perform 
an 1/0 operation will consist of these four times plus any wait time incurred 
because other processes are using the disk. 

What is the average time to read or write a 512-byte sector for a typical disk 
rotating at 4500 RPM? The advertised average seek time is 20 ms, the trans
fer rate is 2 MB/sec, and the controller overhead is 2 ms. Assume that the 
disk is idle so that there is no waiting time. 

Average disk access is equal to average seek time + average rotational delay 
+ transfer time + controller overhead. Using the advertised average seek 
time, the answer is 

0.5 KB 
20 ms + 6.7 ms + + 2 ms = 20 + 6.7 + 0.2 + 2 = 28.9 ms 

2.0 MB/sec 
If the measured average seek time is 25% of the advertised average time, 

the answer is 

5 ms + 6.7 ms + 0.2 ms + 2 ms = 13.9 ms 
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Notice that when we consider average measured seek time, as opposed to 
average advertised seek time, the rotational latency can be the largest com
ponent of the access time. 

Disk densities have continued to increase for more than 30 years. The im
pact of this compounded improvement in density and the reduction in 
physical size of a disk drive has been amazing, as Figure 8.5 shows. The 
aims of different disk designers have led to a wide variety of drives being 
available at any particular time. Figure 8.6 shows the characteristics of five 
different magnetic disks from three manufacturers. Large-diameter drives 
have many more megabytes to amortize the cost of electronics, so the tradi
tional wisdom was that they had the lowest cost per megabyte. But this ad
vantage is offset for the small drives by the much higher sales volume, 
which lowers manufacturing costs: In 1993, disks cost between $1 .00 and 
$2.00 per megabyte, almost independent of width. The small drives also 
have advantages in power and volume. 

FIGURE 8.5 Six magnetic disks, varying In diameter from 14 inches down to 1.8 Inches. 
These disks were introduced over more than a decade ago and hence are not intended to be rep
resentative of the best 1993 capacity of disks of these diameters. This photograph does, however, 
accurately portray their relative physical sizes. The widest disk is the DEC R81, containing four 
14-inch diameter platters and storing 456 MB. It was manufactured in 1985. The 8-inch diameter 
disk comes from Fujitsu, and this 1984 disk stores 130 MB on six platters. The Micropolis RD53 
has five 5.25-inch platters and stores 85 MB. The IBM 0361 also has five platters, but these are just 
3.5 inches in diameter. This 1988 disk holds 320 MB. The Conner CP 2045 has two 2.5-inch plat
ters containing 40 MB, and was made in 1990. The smallest and newest disk is the Integral 1820. 
This single 1 .8-inch platter contains 20 MB and was made in 1992. (Photographed by Peg Skor
pinski.) 
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Disk diameter (inches) 10.88 5.25 3.50 2.50 1 .80 

Formatted data capacity (MB) 22, 700 1350 1000 63 21 

MTIF (hours) 50,000 250,000 400,000 45,000 100,000 

Number of arms/box 12 1 1 1 1 

Maximum I/Os/second/arm 50 55 55 35 35 

Maximum I/Os/second/box 600 55 55 35 35 

Rotation speed (RPM) 3600 3600 4318 3600 3600 

Transfer rate (MB/sec) 4.2 3-4.2 4 2.3 1.9 

Power /box (watts) 2900 37 12 3 2 

MB/watt 8 37 102 2 1  10.5 

Volume (cu. ft.) 97 1 0.13 0.08 0.02 

MB/cu. ft. 234 1350 7692 1050 1050 

FIGURE 8.6 Characteristics of five magnetic disks. There is a dramatic variation from the 
enormous capacity of the large IBM 3090, intended for mainframes, to the tiny Integral disk, suit
able for portable computers. Although the capacity and I/O rates of the large-diameter disks are 
much greater, and the smallest disks take much less space, the IBM 0663 (in the middle) offers the 
best storage density per watt and per cubic foot. The entry MTTF is the mean time to failure, which 
is a common measure of reliability. 

Elaboration: Each track has the same number of bits, and the outer tracks are longer. 
The outer tracks thus record information at a lower density per inch of track than do 
tracks closer to the center of the disk. Recording more sectors on the outer tracks than 
on the inner tracks, cal led constant bit density, is becoming more widespread with the 
advent of inte l l igent interface standards such as SCSI (see section 8.4). The rate at 
which an inch of track moves under the head varies: it is faster on the outer tracks. 
Accordingly, if the number of bits per inch is constant, the rate at which bits must be 
read or written varies, and the electronics must accommodate this factor when con
stant bit density is used . 

Networks 

Networks are the major medium used to communicate between computers. 
The table below shows key characteristics of typical networks: 

Distance 0.01 to 10,000 kilometers 

Speed 0.001 MB/sec to 100 MB/sec 

Topology Bus, ring, star, tree 

Shared lines None (point-to-point) or shared (multidrop) 
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We'll illustrate these characteristics with three examples. 
The RS232 standard provides a 0.3- to 19.2-Kbit-per-second terminal net

work. A central computer connects to many terminals over slow but cheap ded
icated wires. These point-to-point connections form a star from the central 
computer, with each terminal ranging from 10 to 100 meters in distance from 
the computer. 

The local area network, or LAN, is what is commonly meant today when peo
ple mention a network, and Ethernet is what most people mean when they 
mention a LAN. (Ethernet has in fact become such a common term that it is of
ten used as a generic term for LAN.) The Ethernet is essentially a 10,000 Kbit
per-second, one-wire bus that has no central control. Messages, or packets, are 
sent over the Ethernet in blocks that vary from 64 bytes to 1518 bytes and take 
0.1 ms and 1 .5 ms to send, respectively. An Ethernet is essentially a bus with 
multiple masters and a scheme for determining who gets bus control; we'll 
discuss how the distributed control is implemented in the Exercises. Because 
the Ethernet is a bus, only one sender can be transmitting at any time; this lim
its the bandwidth. In practice, this is not usually a problem because the utili
zation is fairly low. Of course, some LANs become overloaded through poor 
capacity planning, and response time and throughput can degrade rapidly at 
higher utilization. 

Long-haul networks cover distances of 10 to 10,000 kilometers. The first and 
most famous long-haul network was the ARP ANET (named after its funding 
agency, the Advanced Research Projects Agency of the U.S. government). It 
transferred data at 56 Kbits per second and used point-to-point dedicated lines 
leased from telephone companies. The host computer talked to an interface 
message processor (IMP), which communicated over the telephone lines. The 
IMP took information and broke it into 1-Kbit packets, which could take sep
arate paths to the destination node. At each hop a packet was stored (for recov
ery in case of failure) and then forwarded to the proper IMP according to the 
address in the packet. The destination IMP reassembled the packets into a 
message and then gave it to the host. Most networks today use this packet
switched approach, in which packets are individually routed from source to 
destination. 

The bandwidths of networks are probably growing faster than the band
width of any other type of device at present. High-speed networks using cop
per and coaxial cable offer 100 Megabit/second bandwidths, while optical 
fiber offers bandwidths up to 1 Gigabit/ second. The challenge in putting these 
networks into use lies primarily in building systems that can efficiently inter
face to these media and sustain these bandwidths between two programs that 
want to communicate. Accomplishing this requires that all the pieces of the 
1/0 system, from the operating system to the memory system to the bus to the 
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device interface, be able to accommodate these bandwidths. This is truly a top
to-bottom systems challenge . 

Buses: Connecting 1/0 Devices to 

Processor and Memory 

In a computer system, the various subsystems must have interfaces to one 
another. For example, the memory and processor need to communicate, as do 
the processor and the I/O devices. This is commonly done with a bus. A bus is 
a shared communication link, which uses one set of wires to connect multiple 
subsystems. The two major advantages of the bus organization are versatility 
and low cost. By defining a single connection scheme, new devices can easily 
be added, and peripherals can even be moved between computer systems 
that use the same kind of bus. Furthermore, buses are cost effective, because a 
single set of wires is shared in multiple ways. 

The major disadvantage of a bus is that it creates a communication bottle
neck, possibly limiting the maximum I/O throughput. When I/O must pass 
through a single bus, the bandwidth of that bus limits the maximum I/O 
throughput. In commercial systems, where I/O is very frequent, and in super
computers, where the I/O rates must be very high because the processor per
formance is high, designing a bus system capable of meeting the demands of 
the processor as well as connecting large numbers of I/O devices to the ma
chine presents a major challenge. 

One reason bus design is so difficult is that the maximum bus speed is 
largely limited by physical factors: the length of the bus and the number of de
vices. These physical limits prevent us from running the bus arbitrarily fast. 
Within these limits, there are a variety of techniques we can use to increase the 
performance of the bus; however, these techniques may adversely affect other 
performance metrics. For example, to obtain fast response time for I/O opera
tions, we must minimize the bus latency by streamlining the communication 
path. On the other hand, to sustain high I/O data rates, we must maximize the 
bus bandwidth. The bus bandwidth can be increased by using more buffering 
and by communicating larger blocks of data, both of which increase the bus la
tency! Clearly, these two goals, low latency and high bandwidth, can lead to 
conflicting design requirements. Finally, the need to support a range of devic
es with widely varying latencies and data transfer rates also makes bus design 
challenging. 

A bus generally contains a set of control lines and a set of data lines. The 
control lines are used to signal requests and acknowledgments, and to indicate 
what type of information is on the data lines. The data lines of the bus carry 
information between the source and the destination. This information may 
consist of data, complex commands, or addresses. For example, if a disk wants 



8.4 Buses: Connecting 1/0 Devices to Processor and Memory 549 

to write some data into memory from a disk sector, the data lines will be used 
to indicate the address in memory in which to place the data as well as to carry 
the actual data from the disk. The control lines will be used to indicate what 
type of information is contained on the data lines of the bus at each point in the 
transfer. Some buses have two sets of signal lines to separately communicate 
both data and address in a single bus transmission. In either case, the control 
lines are used to indicate what the bus contains and to implement the bus pro
tocol. And because the bus is shared, we also need a protocol to decide who 
uses it next; we will discuss this problem shortly. 

Let's consider a typical bus transaction. A bus transaction includes two 
parts: sending the address and receiving or sending the data. Bus transactions 
are typically defined by what they do to memory. A read transaction transfers 
data from memory (to either the processor or an I/O device), and a write trans
action writes data to the memory. Clearly, this terminology is confusing. To 
avoid this, we'll try to use the terms input and output, which are always de
fined from the perspective of the processor. Figure 8.7 shows the steps in a typ
ical output operation, in which data will be read from memory and sent to the 
device. Figure 8.8 shows the steps in an input operation where data is read 
from the device and written to memory. In both figures, the active portions of 
the bus and memory are shown in color, and a read or write is shown by shad
ing the unit, as we did in Chapter 6. 

Types of Buses 

Buses are traditionally classified as one of three types: processor-memory buses, 
I/O buses, or backplane buses. Processor-memory buses are short, generally high 
speed, and matched to the memory system so as to maximize memory-pro
cessor bandwidth. I/O buses, by contrast, can be lengthy, can have many 
types of devices connected to them, and often have a wide range in the data 
bandwidth of the devices connected to them. I/O buses do not typically inter
face directly to the memory, but use either a processor-memory or a back
plane bus to connect to memory. Backplane buses are designed to allow 
processors, memory, and I/0 devices to coexist on a single bus; they balance 
the demands of processor-memory communication with the demands of I/O 
device-memory communication. Backplane buses received their name 
because they were often built into the backplane, an interconnection structure 
within the chassis; processor, memory, and I/O boards would then plug into 
the backplane using the bus for communication. 

Processor-memory buses are often design-specific, while both I/0 buses 
and backplane buses are frequently re-used in different machines. In fact, 
backplane and I/O buses are often standard buses that are used by many differ
ent computers manufactured by different companies. By comparison, proces
sor-memory buses are often proprietary, although in many recent machines 
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FIGURE 8.7 The three steps of an output operation. In  each step the active participants in  the 
communication are shown in color. Notice that the data lines of the bus can carry both an address 
(as in step a) and data (as in step c). (a) First step in an output operation that reads from memory. 
The control lines indicate a read request, while the data lines contain the address. (b) Second step 
in an output operation. The memory is accessing the data. (c) Third and final step in an output 
operation. The memory transfers the data using the data lines of the bus, signaling that the data is 
available with the control lines. The device stores the data as it appears on the bus. 

they may be the backplane bus, and the standard or 1/0 buses plug into the 
processor-memory bus. In many recent machines, the distinction among these 
bus types, especially between backplane buses and processor-memory buses, 
may be very minor. 

During the design phase, the designer of a processor-memory bus knows 
all the types of devices that must connect to the bus, while the 1/0 or back
plane bus designer must design the bus to handle unknown devices that vary 
in latency and bandwidth characteristics. Normally, an 1/0 bus presents a 
fairly simple and low-level interface to a device, requiring minimal additional 
electronics to interface to the bus. A backplane bus usually requires additional 
logic to interface between the bus and a device or between the backplane bus 
and a lower level 1/0 bus. A backplane bus offers the cost advantage of a 
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FIGURE 8.8 An Input operation takes less active time because the device does not need 
to wait for memory to access data. In the steps shown, we assume that the device did wait for 
memory to indicate its readiness, but even this will not be true in some systems. As in the previ
ous figures, the active participants in each step in the communication are shown in color. The 
shading on the memory in step (b) indicates that it is writing. (a) First step in an input operation. 
The control lines indicate a write request for memory, while the data lines contain the address. 
(b) When the memory is ready, it signals the device, which then transfers the data. Typically, the 
memory will store the data as it receives it. The device need not wait for the store to be com
pleted. 

single bus. Figure 8.9 shows a system using a single backplane bus, a system 
using a processor-memory bus with attached 1/0 buses, and a system using 
all three types of buses. Machines with a separate processor-memory bus nor
mally use a bus adapter to connect the 1/0 bus to the processor-memory bus. 
Some high-performance, expandable systems use an organization that com
bines the three buses: the processor-memory bus has one or more bus adap
tors that interface a standard backplane bus to the processor-memory bus. 1/0 
buses, as well as device controllers, can plug into the backplane bus. The IBM 
RS/6000 and Silicon Graphics multiprocessors use this type of organization. 
This organization offers the advantage that the processor-memory bus can be 
made much faster than a backplane or 1/0 bus and that the 1/0 system can be 
expanded by plugging many 1/0 controllers or buses into the backplane bus, 
which will not affect the speed of the processor-memory bus. 

Synchronous and Asynchronous Buses 

The substantial differences between the circumstances under which a proces
sor-memory bus and an 1/0 bus or backplane bus are designed lead to two 
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FIGURE 8.9 Many machines use a slngle backplane bus for both processor-memory and 
1/0 traffic. Some high-performance machines use a separate processor-memory bus that 1/0 
buses "plug" into. Some systems make use of all three types of buses, organized in a hierarchy. 
(a) A single bus used for processor to memory communication, as well as communication 
between 1/0 devices and memory. The bus used in an IBM PC has this structure. (b) A separate 
bus is used for processor-memory traffic. To communicate data between memory and 1/0 
devices, the 1/0 buses interface to the processor-memory bus, using a bus adapter. The bus 
adapter provides speed-matching between the buses. In an Apple Macintosh-II, the processor 
memory bus is a NuBus (a backplane bus) that has 1/0 devices that interface directly as well as 
an 1/0 bus that plugs into the NuBus; the latter is a SCSI bus. (c) A separate bus is used for pro
cessor-memory traffic. A small number of backplane buses tap into the processor-memory bus. 
The processor-memory buses interface to the lower level 1/0 bus. This is usually done with a 
single-chip controller, such as a SCSI bus controller. An advantage of this organization is the 
small number of taps into the high-speed processor-memory bus. (page 552) 
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different schemes for communication on the bus: synchronous and asynchro
nous. If a bus is synchronous, it includes a clock in the control lines and a fixed 
protocol for communicating that is relative to the clock. For example, for a 
processor-memory bus performing a read from memory, we might have a 
protocol that transmits the address and read commands on the first clock 
cycle, using the address lines to indicate the type of request. The memory 
might then be required to respond with the data word on the fifth clock. This 
type of protocol can be implemented easily in a small finite state machine. 
Because the protocol is predetermined and involves little logic, the bus can 
run very fast and the interface logic will be small. Synchronous buses have 
two major disadvantages, however. First, every device on the bus must run at 
the same clock rate. Second, because of clock-skew problems, synchronous 
buses cannot be long if they are fast (see Appendix B for a discussion of clock 
skew). Processor-memory buses are often synchronous because the devices 
communicating are close, small in number, and prepared to operate at high 
clock rates. 

An asynchronous bus is not clocked. Because it is not clocked, an asynchro
nous bus can accommodate a wide variety of devices, and the bus can be 
lengthened without worrying about clock skew or synchronization problems. 
To coordinate the transmission of data between sender and receiver, an asyn
chronous bus uses a handshaking protocol. A handshaking protocol consists of a 
series of steps in which the sender and receiver proceed to the next step only 
when both parties agree. The protocol is implemented with an additional set 
of control lines. 

A simple example will illustrate how asynchronous buses work. Let's con
sider a device requesting a word of data from the memory system. Assume 
that there are three control lines: 

1. ReadReq: Used to indicate a read request for memory. The address is 
put on the data lines at the same time. 

2. DataRdy: Used to indicate that the data word is now ready on the data 
lines. In an output transaction, the memory will assert this signal since 
it is providing the data. In an input transaction, an 1/0 device would 
assert this signal, since it would provide data. In either case, the data is 
placed on the data lines at the same time. 

3. Ack: Used to acknowledge the ReadReq or the DataRdy signal of the 
other party. 

In an asynchronous protocol, the control signals ReadReq and DataRdy are 
asserted until the other party (the memory or the device) indicates that the 
control lines have been seen and the data lines have been read; this indication 
is made by asserting the Ack line. This complete process is called handshaking. 
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The steps in the protocol begin immediately after the device signals a request by raising ReadReq 
and putting the address on the Data l ines: 

1. When Memory sees the ReadReq line, it reads the address from the data bus and raises Ack 
to indicate it has been seen. 

2. 1/0 device sees the Ack l ine high and releases the ReadReq and data lines. 
3. Memory sees that ReadReq is low and drops the Ack l ine to acknowledge the Readreq signal. 
4. This step starts when the memory has the data ready. It places the data from the read request 

on the data lines and raises DataRdy. 
5. The 1/0 device sees DataRdy, reads the data from the bus, and signals that it has the data by 

raising Ack. 
6. The memory sees the Ack signal, drops DataRdy, and releases the data lines. 
7. Finally, the 1/0 device, seeing DataRdy go low, drops the Ack line, which indicates that the 

transmission is completed. 

A new bus transaction can now begin. 

FIGURE 8.10 The asynchronous handshaking protocol consists of seven steps to read a 
word from memory and receive It In an 1/0 device. The signals in color are those asserted by 
the I/0 device, while the memory asserts the signals shown in black. The arrows label the seven 
steps and the event that triggers each step. The symbol showing two lines (high and low) at the 
same time on the data lines indicates that the data lines have valid data at this point. (The symbol 
indicates that the data is valid, but the value is not known.) 

Figure 8.10 shows how such a protocol operates by depicting the steps in the 
communication. 

An asynchronous bus protocol works like a pair of finite state machines 
that are communicating in such a way that a machine does not proceed until it 
knows that another machine has reached a certain state; thus, the two ma
chines are coordinated. 

The handshaking protocol does not solve all the problems of communicat
ing between a sender and receiver that have different clocks. An additional 
problem arises when we sample an asynchronous signal (such as ReadReq).  
This problem, called a synchronization failure, can lead to unpredictable 
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behavior; it can be overcome with devices called synchronizers, which are de
scribed in Appendix B. 

Show how the control for an input transaction from an I /O device to mem
ory (as in Figure 8.8) can be implemented as a pair of finite state machines. 

Figure 8.11 shows the two finite state machine controllers that implement 
the handshaking protocol of Figure 8.10. 

If a synchronous bus can be used, it is usually faster than an asynchronous 
bus because of the overhead required to perform the handshaking. An exam
ple demonstrates this. 

We want to compare the maximum bandwidth for a synchronous and an 
asynchronous bus. The synchronous bus has a clock cycle time of 50 ns, and 
each bus transmission takes 1 clock cycle. The asynchronous bus requires 40 
ns per handshake. The data portion of both buses is 32 bits wide. Find the 
bandwidth for each bus when performing one-word reads from a 200-ns 
memory. 

First, the synchronous bus, which has 50-ns bus cycles. The steps and times 
required for the synchronous bus are as follows: 

1 .  Send the address to memory: 50 ns. 

2. Read the memory: 200 ns. 

3. Send the data to the device: 50 ns. 

Thus, the total time is 300 ns. This yields a maximum bus bandwidth of 
4 bytes every 300 ns, or 

4 bytes 
300 ns 

4 MB 
0.3 seconds 

13.3 
MB 

second 
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At first glance, it might appear that the asynchronous bus will be much 
slower, since it will take seven steps, each at least 40 ns, and the step corre
sponding to the memory access will take 200 ns. If we look carefully at 
Figure 8.10, we realize that several of the steps can be overlapped with the 
memory access time. In particular, the memory receives the address at the 
end of step 1 and does not need to put the data on the bus until the begin
ning of step 5; steps 2, 3, and 4 can overlap with the memory access time. 
This leads to the following timing: 

Step 1: 40 ns 

Steps 2, 3, 4: maximum (3 x 40 ns, 200 ns) = 200 ns 

Steps 5, 6, 7: 3 x 40 ns = 120 ns 

Thus, the total time to perform the transfer is 360 ns, and the maximum 
bandwidth is 

4 bytes 

360 ns 

4 MB MB 
-- = 11 .1  --
0.36 second 

Accordingly, the synchronous bus is only about 20% faster. Of course, to 
sustain these rates, the device and memory system on the asynchronous bus 
will need to be fairly fast to accomplish each handshaking step in 40 ns. 

Even though a synchronous bus may be faster, the choice between a syn
chronous and an asynchronous bus has implications not only for data band
width but also for an 1/0 system's capacity in terms of physical distance and 
the number of devices that can be connected to the bus. Asynchronous buses 
scale better with technology changes and can support a wider variety of device 
response speeds. It is for these reasons that 1/0 buses are often asynchronous, 
despite the increased overhead. 

Increasing the Bus Bandwidth 

Although much of the bandwidth of a bus is decided by the choice of a syn
chronous or asynchronous protocol and the timing characteristics of the bus, 
several other factors affect the bandwidth that can be attained by a single 
transfer. The most important of these are 

l .  Data bus width: By increasing the width of the data bus, transfers of 
multiple words require fewer bus cycles. 

2. Separate versus multiplexed address and data lines: Our example in 
Figure 8.8 used the same wires for address and data; including separate 
lines for addresses will make the performance of writes faster, because 
the address and data can be transmitted in one bus cycle. 
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1/0 Device Memory 

FIGURE 8.11 These finite state machines Implement the control for the handshaking pro
tocol Illustrated In Figure 8.10. The numbers in each state correspond to the steps shown in 
Figure 8.10. The first state of the I/O device (upper left comer) starts the protocol, just as in Fig
ure 8.10. Each state in the finite state machine effectively records the state of both the device and 
memory. This is how they stay synchronized during the transaction. 

3. Block transfers: Allowing the bus to transfer multiple words in back-to
back bus cycles without sending an address or releasing the bus will 
reduce the time needed to transfer a large block. 

Each of these design alternatives will increase the bus performance for a 
single bus transfer. The cost of implementing one of these enhancements is one 
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or more of the following: more bus lines, increased complexity, or increased 
response time for requests that may need to wait while a long block transfer 
occurs. 

Elaboration:Another method for increasing the effective bus bandwidth when multi
ple parties want to communicate on the bus is to release the bus when it is not being 
used for transmitting information. Consider the example of a memory read that we 
examined in Figure 8.10. What happens to the bus whi le the memory access is occur
ring? In this  s imple protocol ,  the device and memory continue to hold the bus during 
the memory access time when no actual transfer is taking place. An alternative proto
col, which releases the bus, would operate l ike this:  

1.  The device signals the memory and transmits the request and address. 

2.  After the memory acknowledges the request, both the memory and device 
release all control l ines. 

3. The memory access occurs, and the bus is  free for other uses during this 
period. 

4.  The memory signals the device on the bus to indicate that the data is avai lable. 

5. The device receives the data via the bus and signals that it has the data, so the 
memory system can release the bus. 

For the synchronous bus in the example above , such a scheme would occupy the bus 
for only 100 of the 300 ns required for the complete bus transaction. 

This type of protocol is called a split transaction protocol. The advantage of such a 
protocol is that, by freeing the bus during the time data is not being transmitted, the 
protocol al lows another requestor to use the bus. This can improve the effective bus 
bandwidth for the entire system, if the memory is sophisticated enough to handle mul
tiple, overlapping transactions. 

With a split transaction, however, the time to complete one transfer is probably 
increased because the bus must be acquired twice . Split transaction protocols are also 
more expensive to implement, primarily because of the need to keep track of the other 
party in a communication. In a split transaction protocol , the memory system must 
contact the requestor to in itiate the reply portion of the bus transaction, so the identity 
of the requestor must be transmitted and retained by the memory system.  

Obtaining Access to the Bus 

Now that we have reviewed some of the many design options for buses, we 
can deal with one of the most important issues in bus design: How is the bus 
reserved by a device that wishes to use it to communicate? We touched on 
this question in several of the above discussions, and it is crucial in designing 
large 1/0 systems that allow 1/0 to occur without the processor's continuous 
and low-level involvement. 
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Why is a scheme needed for controlling bus access? Without any control, 
multiple devices desiring to communicate could each try to assert the control 
and data lines for different transfers! Just as chaos reigns in a classroom when 
everyone tries to talk at once, multiple devices trying to use the bus simulta
neously would result in confusion. 

Chaos is avoided by introducing one or more bus masters into the system. 
A bus master controls access to the bus: it must initiate and control all bus re
quests. The processor must be able to initiate a bus request for memory and 
thus is always a bus master. The memory is usually a slave-since it will re
spond to read and write requests but never generate its own requests. 

The simplest system possible has a single bus master: the processor. Hav
ing a single bus master is similar to what normally happens in a classroom
all communication requires the permission of the instructor. In a single master 
system, all bus requests must be controlled by the processor. The steps in
volved in a bus transaction with a single master bus are shown in Figure 8.12. 
The major drawback of this approach is that the processor must be involved in 
every bus transaction. A single sector read from a disk may require the proces
sor to get involved hundreds to thousands of times, depending on the size of 
each transfer. Because devices have become faster and capable of transferring 
at much higher bandwidths, involving the processor in every bus transaction 
has become less and less attractive. 

The alternative scheme is to have multiple bus masters, each of which can 
initiate a transfer. If we want to allow several people in a classroom to talk 
without the instructor having to recognize each one, we must have a protocol 
for deciding who gets to talk next. Similarly, with multiple bus masters, we 
must provide a mechanism for arbitrating access to the bus so that it is used in 
a cooperative rather than a chaotic way. 

Bus Arbitration 

Deciding which bus master gets to use the bus next is called bus arbitration. 
There are a wide variety of schemes for bus arbitration; these may involve 
special hardware or extremely sophisticated bus protocols. In a bus arbitra
tion scheme, a device (or the processor) wanting to use the bus signals a bus 
request and is later granted the bus. After a grant, the device can use the bus, 
later signaling to the arbiter that the bus is no longer required. The arbiter can 
then grant the bus to another device. Most multiple-master buses have a set of 
bus lines for performing requests and grants. A bus release line is also needed 
if each device does not have its own request line. Sometimes the signals used 
for bus arbitration have physically separate lines, while in other systems the 
data lines of the bus are used for this function (though this prevents overlap
ping of arbitration with transfer). 
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FIGURE 8.12 The lnltlal steps In a bus transaction with a single master (the processor). A 
set of bus request lines is used by the device to communicate with the processor, which then ini
tiates the bus cycle on behalf of the requesting device. The active lines and units are shown in 
color in each step. Shading is used to indicate the source of a read (memory) or destination of a 
write (the disk). After step c, the bus cycle continues like a normal read transaction, as in Figure 
8.7. (a) First, the device generates a bus request to indicate to the processor that the device 
wants to use the bus. (b) The processor responds and generates appropriate bus control sig
nals. For example, if the device wants to perform output from memory, the processor asserts the 
read request lines to memory. (c) The processor also notifies the device that its bus request is 
being processed; as a result, the device knows it can use the bus and places the address for the 
request on the bus. 

Arbitration schemes usually try to balance two factors in choosing which 
device to grant the bus. First, each device has a bus priority, and the highest pri
ority device should be serviced first. Second, we would prefer that any device, 
even one with low priority, never be completely locked out from the bus. This 
property, called fairness, ensures that every device that wants to use the bus is 
guaranteed to get it eventually. In addition to these factors, more sophisticated 
schemes aim at reducing the time needed to arbitrate for the bus. Because ar
bitration time is overhead and increases latency, it should be reduced and 
overlapped with bus transfers whenever possible. 
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FIGURE 8.13 A daisy chain bus u-• a bus grant line that chains through each device 
from highest to lowest priority. If the device has requested bus access, it uses the grant line to 
determine access has been given to it. Because the grant line is passed on only if a device does not 
want access, priority is built into the scheme. The name daisy chain arises from the structure of 
the grant line that chains from device to device. The detailed protocol used by a daisy chain is 
described in an elaboration on page 562. 

Bus arbitration schemes can be divided into four broad classes: 

• Daisy chain arbitration: In this scheme, the bus grant line is run through 
the devices from highest priority to lowest (the priorities are determined 
by the position on the bus). A high-priority device that desires bus ac
cess simply intercepts the bus grant signal, not allowing a lower priority 
device to see the signal. Figure 8.13 shows how a daisy chain bus is or
ganized. The advantage of a daisy chain bus is simplicity; the disadvan
tages are that it cannot assure fairness-a low-priority request may be 
locked out indefinitely-and the use of the daisy chain grant signal also 
limits the bus speed. The VME bus, a standard backplane bus, uses mul
tiple daisy chains for arbitration. 

• Centralized, parallel arbitration: These schemes use multiple request 
lines, and the devices independently request the bus. A centralized ar
biter chooses from among the devices requesting bus access and notifies 
the selected device that it is now bus master. The disadvantage of this 
scheme is that it requires a central arbiter, which may become the bot
tleneck for bus usage. 

• Distributed arbitration by self-selection: These schemes also use multiple 
request lines, but the devices requesting bus access determine who will 
be granted access. Each device wanting bus access places a code indicat
ing its identity on the bus. By examining the bus, the devices can deter
mine the highest priority device that has made a request. There is no 
need for a central arbiter; each device determines independently wheth-
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er it is the high-priority requestor. This scheme, however, does require 
more lines for request signals. The NuBus, which is the backplane bus 
in Apple Macintosh Ils, uses this scheme. 

• Distributed arbitration by collision detection: In this scheme, each device 
independently requests the bus. Multiple simultaneous requests result 
in a collision. The collision is detected and a scheme for selecting among 
the colliding parties is used. Ethernets, which use this scheme, are fur
ther described in Exercise 8.20 on page 591. 

The suitability of different arbitration schemes is determined by a variety of 
factors including how expandable the bus must be both in terms of the num
ber of I/O devices and the bus length, how fast the arbitration should be, and 
what degree of fairness is needed. 

protocol followed by a device on a daisy chain bus is 

1. Signal the request l ine. 

2 .  Wait for a transition on the grant l ine from low to high, indicating that the bus is 
being reassigned. Intercept the grant signal, and do not al low lower priority 
devices to see it. Drop the winning device's request. 

3.  Use the bus. 

4 .  Signal that the bus is no longer requ i red by asserting the release l ine. 

By watching for a transition on the grant l ine, rather than just a level ,  we prevent the 
device from taking the bus away from a lower priority device that bel ieves it has been 
granted bus access. To improve fairness in a daisy chain scheme, we can simply make 
the rule that a device that has just used the bus cannot reacqu ire the bus until it sees 
the bus request l ine go low. Since a device wil l  not release the request l ine until its 
request is satisfied, a l l  devices w i l l  have an opportunity to use the bus before any sin
gle device uses it twice. Some bus systems-VME, for example-use multiple daisy 
chains with a separate set of request and grant l ines for each daisy chain and a priority 
encoder to select from among the multiple requests. 

Bus Standards 

Most computers allow users to add additional and even new types of periph
erals. The I/O bus serves as a way of expanding the machine and connecting 
new peripherals. To make this easier, the computer industry has developed 
several bus standards. The standards serve as a specification for the computer 
manufacturer and for the peripheral manufacturer. A bus standard ensures 
the computer designer that peripherals will be available for a new machine, 
and it ensures the peripheral builder that users will be able to hook up their 
new equipment. 
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The different bus characteristics allow the creation of 
buses optimized for a wide range of different devices, 
number of devices, and bandwidth demands. • . 

Figure 8.14 shows some of the design alternatives 
we have discussed and what choices might be made in 
low-cost versus high-performance systems. In gener

al, higher cost systems use wider and faster buses with more sophisti
cated protocols-typically a synchronous bus for the reasons we saw 
in the example on page 555. In contrast, a low-cost system favors a bus 
that is narrower and does not require intelligence among the devices 
(hence a single master), and is asynchronous so that low-speed devic
es can interface inexpensively . 

. , .,option!'"�,; ;.-.-� •High pertormanc·e ·4 � \.  · .;:.: :�'l'.ow�cosi'>.' '.'r· . • � · � .... �.,...).,.__ , J -4 .  .. . .. .. _. 1 ,  � .... ' _ _._ .. .... . .. ·" ' ""'  .. 
Bus width Separate address and data lines Multiplex address and data lines 

Data width Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits) 

Transfer size Multiple words require less bus Single-word transfer is simpler 
overhead 

Bus masters Multiple masters (requires Single master (no arbitration) 
arbitration) 

Clocking Synchronous Asynchronous 

FIGURE 8.14 The 1/0 bus cta.ractertstlcs determine the performance of 1/0 
transfers, the number of 1/0 buses that c an be connected, and the cost of co. 
nectlng devices. Shorter buses can be faster, but will not be as expandable. Similarly, 
wider buses can have higher bandwidth but will be more expensive. Split transaction 
buses are another way to increase bandwidth at the expense of cost (see the Elabora
tion on page 558). 
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Machines sometimes become so popular that their 1/0 buses become de 
facto standards, as is the case with the IBM PC-AT bus. Once a bus standard is 
heavily used by peripheral designers, other computer manufacturers incorpo
rate that bus and offer a wide range of peripherals. Sometimes standards are 
created by groups that are trying to address a common problem. The intelligent 
peripheral interface (IPI), small computer system interface (SCSI), and Ethernet are 
examples of standards that arose from the cooperation of manufacturers. 
Sanctioning bodies like ANSI or IEEE also create and approve standards. The 
Futurebus standard was created by an IEEE standards committee. 
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Characteristic VME Bus Nu Bus Future Bus IPI SCSI 

Bus type Backplane Backplane Backplane 1/0 1/0 
Bus width (signals) 128 96 96 16 8 
Address/data Not multiplexed Multi plexed Multiplexed N/A N/A 
multiplexed? 
Data width (primary) 16-32 bits 32 bits 32 bits 16 bits 8 bits 
Number of bus masters Multiple Multiple Multiple Single Multiple 
Arbitration Multiple daisy Distributed Distributed NA Self-selection 

chain self-selection self-selection 
Clocking Asynchronous Synchronous Asynchronous Asynchronous Either 
Bandwidth, 150-ns 12-9 M B/sec 13.2 MB/sec 15.5 MB/sec 25.0 MB/sec 5.0 MB/sec or 
memory, single word 1 .5 MB/sec 
Bandwidth, 150-ns 13.6 MB/sec 26.4 MB/sec 20.8 M B/sec 25.0 MB/sec 5_0 MB/sec or 
memory, multiple 1.5 MB/sec 
words ( infinite length) 
Maximum number of 21 16 20 8 7 
devices 
Maximum bus length 0_5 meter 0.5 meter 0.5 meter 50 meters 25 meters 
Standard name I EEE 1014 pending I EEE 896.1 ANSI X3-129 ANSI X3.131 

FIGURE 8.16 Key ch•acterlstlcs of five different bus standards. The first three buses are backplane buses and the 
last two are 1/0 buses. For the backplane buses, the bandwidth calculations assume a fully loaded bus and are given for 
both single-word transfers and block transfers of unlimited length; measurements are shown assuming 150 ns access time. 
All these buses can perform single-word or multiword transfers. The bandwidth for the 1/0 buses is given as their maxi
mum data transfer rate. The SCSI standard offers either asynchronous or synchronous 1/0; the asynchronous version 
transfers at 1 .5 MB/sec and the synchronous at 5 MB/sec. 

Figure 8.15 summarizes the key characteristics of several bus standards. 
Two different types of buses are included in this figure. The first three (VME, 
NuBus, and FutureBus) are general-purpose, backplane buses designed for in
terconnecting processors, memory, and 1/0 devices. The last two (IPI and 
SCSI) are 1/0 buses. Connecting these buses to memory requires a controller 
that interfaces the devices on the I /  0 bus to a processor-memory bus. The con
troller coordinates transfers from a device on the 1/0 bus to the memory via 
the processor-memory bus. 

Bus bandwidth for a general-purpose bus containing memory is not simply 
a single number. Because of bus overhead, the size of the transfer affects band
width significantly. Since the bus usually transfers to or from memory, the 
speed of the memory also affects the bandwidth. 

Buses provide the electrical interconnect among 1/0 devices, processors, 
and memory, and also define the lowest level protocol for communication. 
Above this basic level, we must define hardware and software protocols for 
controlling data transfers between 1/0 devices and memory, and for the pro
cessor to specify commands to the I /  0 devices. These topics are covered in the 
next section. 
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Interfacing 1/0 Devices to the Memory, 

Processor, and Operating System 

A bus protocol defines how a word or block of data should be communicated 
on a set of wires. This still leaves several other tasks that must be performed 
to actually cause data to be transferred from a device and into the memory 
address space of some user program. This section focuses on these tasks and 
will answer such questions as: 

• How is a user 1/0 request transformed into a device command and 
communicated to the device? 

• How are data actually transferred to or from a memory location? 

• What is the role of the operating system? 

As we will see when we answer these questions, the operating system plays 
a major role in handling 1/0, acting as the interface between the hardware and 
the program that requests 1/0. 

The responsibilities of the operating system arise from three characteristics 
of 1/0 systems: 

1 .  The 1/0 system is shared by multiple programs using the processor. 

2. 1/0 systems often use interrupts (externally generated exceptions) to 
communicate information about 1/0 operations. Because interrupts 
cause a transfer to kernel or supervisor mode, they must be handled by 
the operating system (OS). 

3. The low-level control of an 1/0 device is complex because it requires 
managing a set of concurrent events and because the requirements for 
correct device control are often very detailed. 

Hardware 

Software 

Interface 

The three characteristics of 1/0 systems above lead to sever
al different functions the OS must provide: 

• The OS guarantees that a user's program accesses only 
the portions of an 1 /0 device to which the user has 
rights. For example, the OS must not allow a program to 
read or write a file on disk if the owner of the file has not 
granted access to this program. In a system with shared 

1/0 devices, protection could not be provided if user programs could per-
form 1/0 directly. 

• The OS provides abstractions for accessing devices by supplying rou
tines that handle low-level device operations. 
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• The OS handles the interrupts generated by 1/0 devices, just as it han
dles the exceptions generated by a program. 

• The OS tries to provide equitable access to the shared I/0 resources, as 
well as schedule accesses in order to enhance system throughput. 

To perform these functions on behalf of user programs, the operating sys
tem must be able to communicate with the 1/0 devices and to prevent the user 
program from communicating with the 1/0 devices directly. Three types of 
communication are required: 

1 .  The OS must be able to give commands to the 1/0 devices. These com
mands include not only operations like read and write, but other opera
tions to be done on the device, such as a disk seek. 

2. The device must be able to notify the OS when the 1/0 device has com
pleted an operation or has encountered an error. For example, when a 
disk has completed a seek, it will notify the OS. 

3. Data must be transferred between memory and an 1/0 device. For 
example, the block being read on a disk read must be moved from disk 
to memory. 

In the next few sections, we will see how these communications are per
formed. 

Giving Commands to 1/0 Devices 

To give a command to an 1/0 device, the processor must be able to address 
the device and to supply one or more command words. Two methods are 
used to address the device: memory-mapped 1/0 and special 1/0 instructions. 
In memory-mapped I/O, portions of the address space are assigned to 1/0 
devices. Reads and writes to those addresses are interpreted as commands to 
the 1/0 device. 

For example, a write operation can be used to send data to an 1/0 device 
where the data will be interpreted as a command. When the processor places 
the address and data on the memory bus, the memory system ignores the op
eration, because the address indicates a portion of the memory space used for 
1/0. The device controller, however, sees the operation, records the data, and 
transmits it to the device as a command. User programs are prevented from is
suing 1/0 operations directly, because the OS does not provide access to the 
address space assigned to the 1/0 devices and thus the addresses are protect
ed by the address translation. Memory-mapped 1/0 can also be used to trans-
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mit data by writing or reading to select addresses. The device uses the address 
to determine the type of command and the data may be provided by a write or 
obtained by a read. In any event, the address accessed by the instructions en
codes both the device identity and the type of transmission between processor 
and device. 

Actually performing a read or write of data to fulfill a program request usu
ally requires several separate 1/0 operations. Furthermore, the processor may 
have to interrogate the status of the device between individual commands to 
determine whether the command completed successfully. For example, the 
DEC LPll  line printer has two 1/0 device registers-one for status informa
tion and one for data to be printed. The Status register contains a done bit, set 
by the printer when it has printed a character, and an error bit, indicating that 
the printer is jammed or out of paper. Each byte of data to be printed is put into 
the Data register. The processor must then wait until the printer sets the done 
bit before it can place another character in the buffer. The processor must also 
check the error bit to determine if a problem has occurred. Each of these oper
ations requires a separate 1/0 device access. 

l!Utbc>rcc1tlc>n: The alternative to memory-mapped 1/0 is to use dedicated 1/0 instruc
tions in the processor. These 1/0 instructions can specify both the device number and 
the command word (or the location of the command word in memory). The processor 
communicates the device address via a set of wires normally included as part of the 
1/0 bus. The actual command can be transmitted over the data l ines in the bus. Exam
ples of computers with 1/0 instructions are the Intel 80x86 and the IBM 370 comput
ers. By making the 1/0 instructions i l legal to execute when not in kernel or supervisor 
mode, user programs can be prevented from accessing the devices d irectly. 

Communicating with the Processor 

The process of periodically checking status bits to see if it is time for the next 
1/0 operation, as in the previous example, is called polling. Polling is the sim
plest way for an 1/0 device to communicate with the processor. The 1/0 
device simply puts the information in a Status register, and the processor 
must come and get the information. The processor is totally in control and 
does all the work. A mouse is an input-only device that is usually accessed by 
polling. 

The disadvantage of polling is that it can waste a lot of processor time be
cause processors are so much faster than 1/0 devices. The processor may read 
the Status register many times, only to find that the device has not yet complet
ed a comparatively slow 1/0 operation, or that the mouse has not budged 
since the last time it was polled. When the device has completed an operation, 
we must still read the status to determine whether it was successful. 
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Let's determine the impact of polling overhead for three different devices. 
Assume that the number of clock cycles for a polling operation is 100 and 
that the processor executes with a 50-MHz clock. 

Determine the fraction of CPU time consumed for the following three 
cases, assuming that you poll often enough so that no data is ever lost: 

1. The mouse must be polled 30 times per second to ensure that we do not 
miss any movement made by the user. 

2. The floppy disk transfers data to the processor in 16-bit units and has a 
data rate of 50 KB/second. No data transfer can be missed. 

3. The hard disk transfers data in one-word chunks and can transfer at 
2 MB I second. Again, no transfer can be missed. 

First the mouse: 

Clock cycles per second for polling = 30 x 100 = 3000 cycles per second 

Fraction of the processor clock cycles consumed = 3000 
= 0.006% 

50 x 106 

Polling can clearly be used for the mouse without much performance im
pact on the processor. 

For the floppy disk, the rate at which we must poll is 

50 
KB 

second 

2 
bytes 

polling access 

= 25K 
polling accesses 

= 25 x 2
10polling accesses 

second second 

Thus, we can compute the number of cycles (converting from K to 1024, as 
well): 

Cycles per second for polling = 25 x 2
10 x 100 

5 = 25.6 x 10 clock cycles per second 

25.6 x 105 
Fraction of the processor consumed = 6 = 5% 

50 x 10 
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This amount of overhead is substantial, but might be tolerable in a low-end 
system with only a few 1/0 devices like this floppy disk. 

In the case of the hard disk, we must poll at a rate equal to the data rate 
in words, which is SOOK times per second (2 MB per second/ 4 bytes per 
transfer). Thus, 

Cycles per second for polling = 500 x 2
10 x 100 

6 = 51 .2 x 10 cycles per second 

51.2 x 106 
Fraction of the processor consumed = = 100% 

50 x 10
6 

Thus the processor is totally consumed by polling the disk. Clearly, polling 
will not be acceptable for a hard disk on this machine. 

The overhead in a polling interface was recognized long ago, leading to the in
vention of interrupts to notify the processor when an 1/0 device requires at
tention from the processor. Interrupt-driven 1/0, which is used by almost all 
systems for at least some devices, employs 1/0 interrupts to indicate to the 
processor that an 1/0 device needs attention. When a device wants to notify 
the processor that it has completed some operation or needs attention, it caus
es the processor to be interrupted. 

An 1/0 interrupt is just like the exceptions we saw in Chapters 5, 6, and 7, 
with two important exceptions: 

1 .  An 1/0 interrupt is asynchronous with respect to the instruction execu
tion. That is, the interrupt is not associated with any instruction and 
does not prevent the instruction completion. This is very different from 
either page fault exceptions or exceptions such as arithmetic overflow. 
Our control unit need only check for a pending 1/0 interrupt at the 
time it starts a new instruction. 

2. In addition to the fact that an 1/0 interrupt has occurred, we would like 
to convey further information such as the identity of the device gener
ating the interrupt. Furthermore, the interrupts represent devices that 
may have different priorities and whose interrupt requests have differ
ent urgencies associated with them. 

To communicate information to the processor, such as the identity of the 
device raising the interrupt, a system can use either vectored interrupts or an 
exception Caµse register. When the interrupt is recognized by the processor, 
the device can send either the vector address or a status field to place in the 
Cause register. As a result, when the OS gets control it knows the identity of 
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the device that caused the interrupt and can immediately interrogate the de
vice. An interrupt mechanism eliminates the need for the processor to poll the 
device and instead allows the processor to focus on executing programs. 

To deal with the different priorities of the 1/0 devices, most interrupt 
mechanisms have several levels of priority. These priorities indicate the order in which 
the processor should process them. Both internal ly generated exceptions and 1/0 inter
rupts have priorities; typical ly, 1/0 interrupts have lower priority than internal excep
tions. There may be multiple 1/0 interrupt priorities, with h igh-speed devices 
associated with the h igher priorities. If the exception mechanism is vectored (see 
Chapter 5, section 5.6),  the vector address for a fast device wi l l  correspond to the 
higher priority interrupt. If a Cause register is used , then the register contents for a 
faster device are set for the higher priority interrupt. 

Transferring the Data between a Device and Memory 

We have seen two different methods that enable a device to communicate 
with the processor. These two techniques, polling and 1/0 interrupts, form 
the basis for two methods of implementing the transfer of data between the 
1/0 device and memory. Both these techniques work best with lower band
width devices, where we are more interested in reducing the cost of the 
device controller and interface than in a providing a high-bandwidth transfer. 
Both polling and interrupt-driven transfers put the burden of moving data 
and managing the transfer on the processor. After looking at these two 
schemes, we will examine a scheme more suitable for higher performance 
devices or collections of devices. 

We can use the processor to transfer data between a device and memory 
based on polling. Consider our mouse example. The processor can periodical
ly read the mouse counter values and the position of the mouse buttons. If the 
position of the mouse or one of its buttons has changed, the operating system 
can notify the program associated with interpreting the mouse changes. 

An alternative mechanism is to make the transfer of data interrupt driven. In 
this case, the OS would still transfer data in small numbers of bytes from or to 
the device. But because the 1/0 operation is interrupt driven, the OS simply 
works on other tasks while data is being read from or written to the device. 
When the OS recognizes an interrupt from the device, it reads the status to 
check for errors. If there are none, the OS can supply the next piece of data, for 
example, by a sequence of memory-mapped writes. When the last byte of an 
1/0 request has been transmitted and the 1/0 operation is completed, the OS 
can inform the program. The processor and OS do all the work in this process, 
accessing the device and memory for each data item transferred. Let's see how 
an interrupt-driven 1/0 interface might work for the floppy disk. 



8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating System 571 

Suppose we have the same floppy disk and processor we used in the exam
ple on page 568. Assume that it wants to transfer 16-bit quantities at a rate 
of 50 KB per second. The overhead for each transfer, including the interrupt, 
is 100 clock cycles. Find the fraction of the processor consumed when the 
floppy disk is active. 

The rate at which we must interrupt the processor when the disk is transfer
ring: 

50 
KB 

second 

2 
bytes 

polling access 

Thus, 

= 25K 
polling accesses 

= 25 x 2
10 polling accesses 

second second 

10 Cycles per second for floppy = 25 x 2 x 100 
5 

= 25.6 x 10 cycles per second 

Fraction of the processor consumed during a transfer 

25.6 x 105 
= 5% 

50 x 106 

Of course, the floppy disk is not busy 100% of the time, and the processor 
is undisturbed when the disk is idle, since no polling is required. For exam
ple, if the floppy disk is actively transferring only 10% of the time, the over
head is only 0.5%. This absence of overhead when the 1/0 is inactive is the 
major advantage of an interrupt-driven interface versus polling. 

Interrupt-driven 1/0 relieves the processor from having to wait for every 
1/0 event, although if we used this metho� for transferring data from or to a 
hard disk, the overhead could still be intolerable, since it would consume 100% 
of the processor when the disk was transferring. For high-bandwidth devices 
like hard disks, the transfers consist primarily of relatively large blocks of data 
(hundreds to thousands of bytes). So computer designers invented a mecha
nism for off-loading the processor and having the device controller transfer 
data directly to or from the memory without involving the processor. This 
mechanism is called direct memory access (OMA). The interrupt mechanism is 
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still used by the device to communicate with the processor, but only on com
pletion of the 1/0 transfer or when an error occurs. 

OMA is implemented with a specialized controller that transfers data be
tween an 1/0 device and memory independent of the processor. The OMA 
controller becomes the bus master and directs the reads or writes between it
self and memory. There are three steps in a OMA transfer: 

1. The processor sets up the OMA by supplying the identity of the device, 
the operation to perform on the device, the memory address that is the 
source or destination of the data to be transferred, and the number of 
bytes to transfer. 

2. The OMA starts the operation on the device and arbitrates for the bus. 
When the data is available (from the device or memory), it transfers the 
data. The OMA device supplies the memory address for the read or 
write. If the request requires more than one transfer on the bus, the 
OMA unit generates the next memory address and initiates the next 
transfer. Using this mechanism, a OMA unit can transfer an entire disk 
sector that may be thousands of bytes in length without bothering the 
processor. Many OMA controllers contain some buffering to allow 
them to deal flexibly with delays either in transfer or those incurred 
while waiting to become bus master. 

3. Once the OMA transfer is complete, the controller interrupts the pro
cessor, which can then determine by interrogating the OMA device or 
examining memory whether the entire operation completed success
fully. 

There may be multiple OMA devices in a computer system. For example, 
in a system with a single processor-memory bus and multiple 1/0 buses, each 
I/  0 bus controller will often contain a OMA processor that handles any trans
fers between a device on the 1 /0 bus and the memory. Let's see how much of 
the processor is consumed using OMA to handle our hard disk example. 

Suppose we have the same processor and hard disk as our earlier example 
on page 568. Assume that the initial set-up of a OMA transfer takes 1000 
clock cycles for the processor, and assume the handling of the interrupt at 
OMA completion requires 500 clock cycles for the processor. The hard disk 
has a transfer rate of 2 MB/second and uses OMA. If the average transfer 
from the disk is 4KB, what fraction of the 50-MHz processor is consumed if 
the disk is actively transferring 100% of the time? Ignore any impact from 
bus contention between the processor and OMA controller. 
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Each OMA transfer takes 

4 KB 3 
---- = 

2 
x 10- seconds 2 MB 

second 

So if the disk is constantly transferring, it requires 

1000 + 500 
cycles 

_____ tr_a_n_s_fe_r_ = 750 x 103 clock cycles 
2 

x 10-3 seconds second 
transfer 

Since the processor runs at 50 MHz: 

Fraction of processor consumed 
3 750 x 10 

= 15 x 10-3 
= 1.5% 

50 x 10
6 

Unlike either polling or interrupt-driven I/ 0, OMA can be used to interface 
a hard disk without consuming all the processor cycles for a single 1/0. In ad
dition, the disk will not be actively transferring data most of the time, and this 
number will be considerably lower. Of course, if the processor is also contend
ing for memory, it will be delayed when the memory is busy doing a OMA 
transfer. By using caches, the processor can avoid having to access memory 
most of the time, thereby leaving most of the memory bandwidth free for use 
by I/ 0 devices. 

Elt1Ell!1ra1t101111: To further reduce the need to interrupt the processor and occupy it in 
handling an 1/0 request that may involve doing several actual operations, the 1/0 con
troller can be made more intell igent. Inte l l igent control lers are often called f/O proces

sors (as well as 1/0 controllers or channel controllers). These special ized processors 
basical ly execute a series of 1/0 operations, called an 1/0 program. The program may 
be stored in the 1/0 processor, or it may be stored in memory and fetched by the 1/0 
processor. When using an 1/0 processor, the operating system typical ly sets up an 1/0 
program that indicates the 1/0 operations to be done as wel l  as the size and transfer 
address for any reads or writes. The 1/0 processor then takes the operations from the 
1/0 program and interrupts the processor only when the entire program is completed. 
DMA processors are essential ly special-purpose processors (usually single-chip and 
nonprogrammable) ,  whi le 1/0 processors are often implemented with general-purpose 
microprocessors, which run a special ized 1/0 program.  
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Direct Memory Access and the Memory System 

When OMA is incorporated into an 1/0 system, the relationship between the 
memory system and processor changes. Without OMA, all accesses to the 
memory system come from the processor and thus proceed through address 
translation and cache access as if the processor generated the references. With 
OMA, there is another path to the memory system-one that does not go 
through the address translation mechanism or the cache hierarchy. This dif
ference generates some problems in both virtual memory systems and sys
tems with caches. These problems are usually solved with a combination of 
hardware techniques and software support. 

Hardware 

Software 

Interface 

In a system with virtual memory, should OMA work with 
virtual addresses or physical addresses? The obvious prob
lem with virtual addresses is that the OMA unit will need to 
translate the virtual addresses to physical addresses. The 
major problem with OMA in regard to physical addresses is 
that a transfer cannot easily cross a page boundary. If an I/O 
request crossed a page boundary, then the memory locations 

to which it was being transferred would not be contiguous in the physical 
memory. This is because the memory locations would correspond to multiple 
virtual pages, each of which could be mapped to any physical page. Conse
quently, if we use physical addresses, we must constrain all OMA transfers to 
stay within one page. 

One method to allow the system to initiate OMA transfers that cross page 
boundaries is to make the OMA work on virtual addresses. In such a system, 
the OMA unit has a small number of map entries that provide virtual-to-phys
ical mapping for a transfer. The operating system provides the mapping when 
the 1/0 is initiated. By using this mapping, the OMA unit need not worry 
about the location of the virtual pages involved in the transfer. 

Another technique is for the operating system to break the OMA transfer 
into a series of transfers, each confined within a single physical page. The 
transfers are then chained together and handed to an I /  0 processor or intelli
gent OMA unit that executes the entire sequence of transfers; alternatively, the 
operating system can individually request the transfers. 

Whichever method is used, the operating system must still cooperate by not 
moving pages around while a OMA transfer involving that page is in progress. 

The difficulties in having OMA in a virtual memory system arise because 
pages have both a physical and a virtual address. OMA also creates problems 
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for systems with caches because there can be two copies of a data item: one in 
the cache and one in memory. Because the DMA processor issues memory re
quests directly to the memory rather than through the cache, the value of a 
memory location seen by the DMA unit and the processor may differ. Consid
er a read from disk that the DMA unit places directly into memory. If some of 
the locations into which the DMA writes are in the cache, the processor will re
ceive the old value when it does a read. Similarly, if the cache is write-back, the 
OMA may read a value directly from memory when a newer value is in the 
cache, and the value has not been written back. This is called the stale data prob
lem or coherency problem. 

Hardware 

Software 

Interface 

This problem is avoided by using one of three major tech
niques. One approach is to route the 1/0 activity through 
the cache. This ensures that reads see the latest value while 
writes update any data in the cache. Routing all 1/0 through 
the cache is expensive and potentially has a large negative 
performance impact on the processor, since the 1/0 data is 
rarely used immediately and may displace useful data that a 

running program needs. A second choice is to have the OS selectively invali
date the cache for an 1/0 read or force write-backs to occur for an 1/0 write 
(often called cache flushing). This approach has no hardware drawbacks and is 
probably more efficient if the software can perform the function easily and ef
ficiently. Because this flushing of large parts of the cache need only happen on 
DMA block accesses, it will be relatively infrequent. The third approach is to 
provide a hardware mechanism for selectively flushing (or invalidating) cache 
entries. Hardware invalidation to ensure cache coherence is typical in multi
processor systems, and the same technique can be used for 1/0; we discuss 
this topic in detail in Chapter 9. 

We have looked at three different methods for transferring data between 
an 1/0 device and memory. In moving from polling to an interrupt-driven to 
a OMA interface, we shift the burden for managing an 1/0 operation from the 
processor to a progressively more intelligent 1/0 controller. These methods 
have the advantage of freeing up processor cycles. Their disadvantage is that 
they increase the cost of the 1/0 system. Because of this, a given computer sys
tem can choose which point along this spectrum is appropriate for the 1/0 de
vices connected to it. 
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• Fallacles and Pitfalls 

Pitfall: Using the peak transfer rate of a portion of the I/0 system to make perfor
mance projections or performance comparisons. 

Many of the components of an 1/0 system, from the devices to the controllers 
to buses, are specified using their peak bandwidths. In practice, these peak 
bandwidth measurements are often based on unrealistic assumptions about 
the system or are unattainable due to other system limitations. For example, 
in quoting bus performance, the peak transfer rate is often specified using a 
memory system that is impossible to build. A VME bus has a peak bandwidth 
of about 28 MB/second with an impossible 0 access time memory and 13.6 
MB I second with a 150-ns memory. Similarly, if we compared the transfer rate 
of Futurebus to VME with 0-ns access time memories, we would conclude 
that Futurebus has almost four times the bandwidth of VME. But with 150-ns 
memories, Futurebus has only 1 .5 times the bandwidth. In addition to these 
gaps between peak and actual performance, Amdahl's Law reminds us that 
the throughput of an 1/0 system will be limited by the lowest performance 
component in the 1/0 path. 

Fallacy: Magnetic storage is on its last legs and will be replaced shortly. 

This is both a fallacy and a pitfall. Such claims have been made constantly 
for the past 20 years, though the string of failed alternatives in recent years 
seems to have reduced the level of claims for the death of magnetic storage. 
Among the unsuccessful candidates proposed to replace magnetic storage 
have been magnetic bubble memories, optical storage, and photographic stor
age. None of these systems has matched the combination of characteristics that 
favor magnetic disks: nonvolatility, low cost, reasonable access time, and high 
reliability. Magnetic storage technology continues to improve at the same pace 
it has sustained over the past 25 years. 

Possibly the biggest challenge for magnetic storage will come from semi
conductor memory. Because semiconductor memory continues to decrease in 
price faster than magnetic storage and because it is much faster, it is likely that 
semiconductor memory will play an even larger role in future machines. Non
volatile forms of semiconductor memory (flash memories, for example) are 
also likely to grow in importance. 

Pitfall: Moving functions from the CPU to the I/O processor expecting to improve 
performance without a careful analysis. 

There are many examples of this pitfall trapping people, although I/O pro
cessors, when properly used, can certainly enhance performance. A frequent 
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instance of this fallacy is the use of intelligent 1/0 interfaces, which, because 
of the higher overhead to set up an 1/0, can turn out to have worse latency 
than a processor-directed 1/0 activity (although if the processor is freed up 
sufficiently, system throughput may still increase). Frequently, performance 
falls when the 1/0 processor has much lower performance than the main pro
cessor. Consequently, a small amount of main processor time is replaced with 
a larger amount of peripheral processor time. Workstation designers have 
seen both these phenomena repeatedly. 

A more serious problem can occur when the migration of an 1/0 feature 
changes the instruction set architecture or system architecture in a program
mer-visible way. This forces all future machines to have to live with a decision 
that made sense in the past. If CPUs improve in cost/performance more rap
idly than the 1/0 processor (and this will likely be the case), then moving the 
function may result in a slower machine in the next computer. 

The most telling example comes from the IBM 360. It was decided that the 
performance of the ISAM system, an early database system, would improve if 
some of the record searching occurred in the disk controller itself. A key field 
was associated with each record, and the device searched each key as the disk 
rotated until it found a match. It would then transfer the desired record. This 
technique requires an extra large gap between records when a key is present. 

The speed at which a track can be searched is limited by the speed of the 
disk and of the number of keys that can be packed on a track. On an IBM 3330 
disk, the key is typically 10 characters; the gap is equivalent to 191 characters 
if there is a key, and 135 characters when no key is present. If we assume that 
the data is also 10 characters and that the track has nothing else on it, a 13,165-
byte track can contain 

13,165 
191 + 10 + 10 

= 62 key-data records 

The time per key search is 

16.7 ms ( 1 revolution ) 
62 

= 0.27 ms/key search 

In place of this scheme, we could put several key-data pairs in a single 
block and have smaller inter-record gaps. Assuming that there are 15 key-data 
pairs per block and that the track has nothing else on it, then 

13165 13165 
135 + 300 

= 30 blocks of key-data pairs 
135 + 15 x ( 10 + 10) 

The revised performance is then 

16.7 ms ( 1 revolution ) 
30 x 15 

"" 0.04 ms/key search 
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Of course, the disk-based search would look better if the keys were much 
longer. 

As processors got faster, the CPU time for a search became trivial, while the 
time for a search using the hardware facility improved very little. While the 
strategy made early machines faster, programs that use the search-key opera
tion in the 1/0 processor run up to six times slower on today's machines! 

• Concluding Remarks 

1/0 systems are evaluated on several different characteristics: the variety of 
1/0 devices supported; the maximum number of I/O devices; cost; and per
formance, measured both in latency and in throughput. These goals lead to 
widely varying schemes for interfacing 1/0 devices. In the low end, schemes 
like buffering and even OMA can be avoided to minimize cost. In midrange 
systems, buffered OMA is likely to be the dominant transfer mechanism. In 
the high end, latency and bandwidth may both be important, and cost may be 
secondary. Multiple paths to I/O devices with limited buffering often charac
terize high-end 1/0 systems. Increasing the bandwidth with both more and 
wider connections eliminates the need for buffering at an increase in cost. 
Typically, being able to access the data on an 1/0 device at any time (high 
availability) becomes more important as systems grow. As a result, redun
dancy and error correction mechanisms become more and more prevalent as 
we enlarge the system. 

The design of I/ 0 systems is complicated because the limiting factor in I/ 0 
system performance can be any of several critical resources in the 1/0 path, 
from the operating system to the device. Furthermore, independent requests 
from different programs interact in the 1/0 system, making the performance 
of an 1/0 request dependent on other activity that occurs at the same time. 
Lastly, design techniques that improve bandwidth often negatively impact la
tency, and vice versa. For example, adding buffering usually increases the sys
tem cost and also the system bandwidth. But it also increases latency by 
placing additional hardware between the device and memory. It is this combi
nation of factors, including some that are unpredictable, that makes designing 
1/0 systems and improving their performance challenging not only for archi
tects but also for OS designers and even applications programmers building 
1/0-intensive applications. 

Future Directions in 1/0 Systems 

What does the future hold for 1/0 systems? The rapidly increasing perfor
mance of processors strains 1/0 systems, whose physical components cannot 
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• . 

The performance of an 1/0 system, whether mea
sured by bandwidth or latency, depends on all the el
ements in the path between the device and memory, 
including the operating system that generates the 1/0 
commands. The bandwidth of the buses, the memory, 
and the device determine the maximum transfer rate 

from or to the device. Similarly, the latency depends on the device la
tency, together with any latency imposed by the memory system or 
buses. The effective bandwidth and response latency also depend on 
other 1/0 requests that may cause contention for some resource in the 
path. Finally, the operating system is a bottleneck. In some cases, the 
OS takes a long time to deliver an 1/0 request from a user program to 
an 1/0 device, leading to high latency. In other cases, the operating 
system effectively limits the 1/0 bandwidth because of limitations in 
the number of concurrent 1/0 operations it can support. In some cas
es, the memory system and operating system, rather than the device, 
are the major bottlenecks. 
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improve in performance as fast as processors. To hide the growing gap 
between the speed of processors and the access time to secondary storage 
(primarily disks), main memory is used as a cache for secondary storage. 
These file caches, which rely on spatial and temporal locality in access to sec
ondary storage, are maintained by the operating system. The use of file caches 
allows many file accesses to be handled from memory rather than from disk. 

Magnetic disks are increasing in capacity quickly, but access time is im
proving only slowly. One reason for this is that the opportunities for magnetic 
disks are growing faster in the low end of the market than in the high end, and 
the low end is driven primarily by the demand for lower cost per megabyte. 
This market has helped shrink the size of the disk from the 14-inch platters of 
the mainframe disk to the 1.3-inch disks developed for laptop and palmtop 
computers. 

One future candidate for optimizing storage is not a new technology, but a 
new organization of disk storage-arrays of small and inexpensive disks. The 
argument for arrays is that since price per megabyte is independent of disk 
size, potential throughput can be increased by having many disk drives and, 
hence, many disk arms. Simply spreading data over multiple disks automati
cally forces accesses to several disks. (While arrays improve throughput, laten
cy is not necessarily reduced.) Adding redundant disks to the array offers the 
opportunity for the array to discover a failed disk and automatically recover 
the lost information. Arrays may thus enhance the reliability of a computer 
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system as well as performance. This redundancy has inspired the acronym 
RAID for these arrays: redundant arrays of inexpensive disks. 

The next level of the storage hierarchy below magnetic disks promises to 
offer extraordinary increases in capacity in the next several years. The driving 
force may well be the helical scan tape. Found in 8-mm video cameras and 4-mm 
digital audio tapes, helical scan tape records at an angle to the tape rather than 
parallel, as in longitudinally recorded tapes. The tape still moves at the same 
speed, but the fast-spinning tape head records bits much more densely-a fac
tor of about 50 to 100 denser than longitudinally recorded tapes. And because 
the medium was created for consumer products, the improvement in cost per 
bit over time has been even greater than for traditional magnetic tapes used 
solely by the computer industry. 

Advances in tape capacity are being enhanced by advances on two other 
fronts: compression and robots. Faster processors have enabled systems to be
gin using compression to multiply storage capacity. Factors of 2 to 3 are com
mon, with compression of 20:1 possible for certain types of data such as 
images. The second enhancement is inexpensive robots to automatically load 
and store tapes, offering a new level in the hierarchy between on-line magnetic 
disks and off-line magnetic disks on shelves. This "robo-line" storage means ac
cess to terabytes of information at the delay of tens of seconds, without the in
tervention of a human operator. Figure 8.16 is a photograph of a tape "robot." 

Computer networks are also making great strides, mainly by taking advan
tage of the properties of optical fibers to send information. Optical fiber will be 
the foundation of the National Research and Educational Network (NREN), 
which will be installed in the middle of the 1990s. This nationwide network 
will transfer data at 1 gigabit per second, or a factor of 20 faster than the cur
rent Internet. This opens the possibility of nationwide networks operating at 
speeds formerly associated with the backplanes within a single cabinet. 

Such advances offer "computing science fiction" scenarios that would have 
seemed absurd just a few years ago. For example, if all the books in the Library 
of Congress were converted to ASCII, they would occupy just 10 terabytes (al
though the pictures might take even more, depending on their number and 
resolution). Helical scan tapes, tape robots, compression, and high-speed net
works could be the building blocks of an electronic library. All the information 
on all the books in the world available at your fingertips for the cost of a large 
minicomputer. And parallel processing, discussed in the next chapter, will al
low this information to be indexed so that all books could be searched by con
tent rather than by title. Electronic libraries would change the lives of anyone 
with a library card, and the technology to create them is within our grasp. 
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FIGURE 8.16 The Exabyte EXB-120 holds 116 8-mm helical scan tapes. Each tape holds 10 
.. pbytes, yleldlng a total capacity of over a terabyte. The EXB-120 costs about as much as 
two to four workstations. Photo courtesy of the Exabyte Corporation. 

• Historical Perspective and Further Reading 

The history of 1/0 systems is a fascinating one. Many of the most interesting 
artifacts of early computers are their 1/0 devices. The sealed Winchester disk, 
which today completely dominates disk technology, is a relatively new inven
tion. Prior to that, most hard disks were removable. In fact, the earliest rotat
ing storage devices were drums and fixed-head disks. A drum had a 
cylindrical surface coated with a magnetic film. It used a large number of 
read/write heads positioned over each track on the drum. Drums were rela
tively high-speed 1/0 devices often used for virtual memory paging or for 
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creating a file cache to slower speed devices. Large (2 to 3 feet in diameter) 
fixed-head disks were also in use in the 1960s. Moving-head disks became the 
dominant high-speed magnetic storage in the 1970s, though their high cost 
meant that magnetic tape continued to be used extensively until later in the 
decade. Winchester disks grew rapidly in popularity in the 1980s, completely 
replacing removable disks by the middle of the decade. 

The 1970s saw the invention of a number of remarkable 1/0 devices. Per
haps one of the most unusual was a film storage device that stored data opti
cally on small strips of photographic film. These film storage devices could not 
only read and write film, but actually kept the filmstrips stored in the device 
(which was about 5 feet by 4 feet by 3 feet), retrieving them mechanically. 

The early IBM 360s pioneered many of the ideas that we use in 1/0 systems 
today. The 360 was the first machine to make heavy use of DMA, and it intro
duced the notion of 1/0 programs that could be interpreted by the device. 
Chaining of 1/0 programs was a key feature. The concept of channels intro
duced in the 360 corresponds to the 1/0 bus of today. 

The trend for high-end machines has been toward use of programmable 
1/0 processors. The original machine to use this concept was the CDC 6600, 
which used 1/0 processors called peripheral processors. 

The forerunner of today's workstations as well as the Macintosh and other 
systems using windows was the Alto, developed at Xerox Palo Alto Research 
Center in 1973 [Thacker et al. 1982].  This machine integrated the needs of the 
1/0 functions into the microcode of the processor. This included support for 
the bit-mapped graphics display, the disk, and the network. The network for 
the Alto was the first Ethernet [Metcalfe and Boggs 1976] . The Alto also sup
ported the first laser printer, configured as a print server accessible over the 
Ethernet. Similarly, disk servers were also built. The mouse, invented earlier 
by Doug Engelbart of SRI, was a key part of the Alto. The 16-bit processor used 
a writable control store, which enabled researchers to program in support for 
the 1/0 devices. The single microprogrammed engine drove the graphics dis
play, mouse, disks, network, and, when there was nothing else to do, ran the 
user's program. 

While today we associate microprocessors with the personal computer rev
olution, they were originally developed to meet the demand for special-pur
pose controllers. Since the invention of the microprocessor, designers have 
developed many 1/0 controllers that adapt a microprocessor to a specific task. 
These include everything from DMA controllers to SCSI controllers to com
plete Ethernet controllers on a single chip. 

The first multivendor bus may have been the PDP-11 Unibus in 1970. DEC 
encouraged other companies to build devices that would plug into its bus, and 
many companies did. A more recent example is SCSI, which stands for small 
computer systems interface. This bus, originally called SASI, was invented by 
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Shugart and was later standardized by the IEEE. This open system approach 
to buses contrasts with proprietary buses using patented interfaces, which 
companies adopt to forestall competition from plug-compatible vendors. The 
use of proprietary buses also raises the costs and lowers the availability of 1/0 
devices that plug into proprietary buses, because such devices must have an 
interface designed exclusively for that bus. 

Ongoing development in the areas of tape robots, head-mounted displays, 
gloves for complete tactile feedback, and computer screens that you write on 
with pens are indications that the incredible developments in 1/0 technology 
are likely to continue in the future. 
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• Exercises 

8.1 [10] <§8.1-8.2> Here are two different 1/0 systems intended for use in 
transaction processing: 

• System A can support 1000 1/0 operations per second. 

• System B can support 750 I /  0 operations per second. 

The systems use the same processor that executes 50 million instructions per 
second. Assume that each transaction requires 5 1/0 operations and that each 
1/0 operation requires 10,000 instructions. Ignoring response time and 
assuming transactions may be arbitrarily overlapped, what is the maximum 
transaction per second rate that each machine can sustain? 

8.2 [ 15] <§8.1-8.2> {ex. 8.1 )  The latency of an 1/0 operation for the two sys
tems in Exercise 8.1 differs. The latency for an 1/0 on System A is equal to 20 
ms, while for System B the latency is 18 ms for the first 500 I/Os per second 
and 25 ms per 1/0 for each 1/0 between 500 and 750 1/0 per second. In the 
workload, every tenth transaction depends on the immediately preceding 
transaction and must wait for its completion. What is the maximum transac
tion rate that still allows every transaction to complete in 1 second and does 
not exceed the 1 /0 bandwidth of the machine? For simplicity, assume all 
transaction requests arrive at the beginning of a 1-second interval. 

8.3 [10] <§8.4> Suppose we have a memory system that uses a 50-MHz clock. 
The memory transmits 8-word requests at the rate of 1 word per cycle. For 
reads from memory, the accesses occur as follows: 

1 .  1 cycle to accept the address, 

2. 3 cycles of latency, and 

3. 8 clock cycles to transmit the 8 words. 
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For writes to memory, accesses occur as follows: 

1 .  1 cycle to accept the address, 

2. 2 cycles of latency, 

3. 8 clock cycles to transmit the 8 words, and 

4. 3 cycles to recover and write the error correction code. 
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Find the maximum bandwidth in megabytes per second for an access pattern 
consisting of 

a. All reads from memory. 

b. All writes to memory. 

c. A mix of 65% reads from memory and 35% writes to memory. 

8.4 [15] <§8.4> {ex. 8.3} The memory system and bus system of Exercise 8.3 
were originally designed to support a processor with 8-word cache blocks. A 
new processor is designed that has 16-word cache blocks. There are two alter
native organizations for the memory and bus: 

1. Use the 8-word organization described in Exercise 8.3 and perform two 
separate 8-word accesses for each miss. 

2. Convert the memory system to provide 16 words by initiating two sep
arate 8-word accesses. For reads, the system transmits the first 8 words 
while fetching the second 8. For writes, the transmission of the second 8 
words can begin immediately after receipt of the first 8 words. 

Using the access steps from Exercise 8.3, find the maximum bandwidth sus
tainable for each of these mechanisms assuming that reads and writes occur 
with equal frequency. 

8.5 [15] <§8.4> Consider two different bus systems: 

• Bus 1 is a 64-bit-wide multiplexed address and data bus. Transmitting 
an address or a 64-bit data item takes one bus cycle. Reads or writes to 
the memory incur a three-cycle latency. Starting with the fourth cycle, 
the memory system can accept or deliver up to 8 words at a rate of 2 
words every bus cycle. 

• Bus 2 is a bus with separate 32-bit address and 32-bit data. Each trans
mission takes one bus cycle. A read to the memory incurs a three-cycle 
latency, then, starting with the fourth cycle, the memory system can de
liver up to 8 words at a rate of 1 word every bus cycle. For a write, the 
first word is transmitted with the address; after a three-cycle latency up 
to 7 additional words may be transmitted at the rate of 1 word every bus 
cycle. 
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Evaluate these buses assuming only 1 word requests where 60% of the 
requests are reads and 40% are writes. Find the maximum bandwidth that 
each bus and memory system can provide in words per bus cycle. 

8.6 [15] <§8.4> Assume that the memory requests in Exercise 8.5 are all 8 
words long. Find the maximum bandwidth that each bus and memory system 
can provide to the processor in words per bus cycle. 

8. 7 [20] <§8.4> Assume the bus and memory systems in Exercise 8.5 are used 
to handle disk access, where 75% of the accesses are input operations (memory 
writes) and 25% are output operations (memory reads). The disks transfer data 
at 2 MB per second and have 8 word buffers, so that data can be transferred 8 
words at a time. Find the maximum number of simultaneous disk transfers 
that can be sustained for each bus system if the bus is clocked at 50 MHz and 
1/0 is allowed to consume 100% of the bus and memory bandwidth. 

8.8 [15] <§8.4> We need to interface an 1/0 device with the memory system 
described in Exercise 8.3 using an asynchronous bus. Assume the same type of 
handshaking protocol as Figure 8.10 on page 554 uses. Show the steps in the 
asynchronous protocol for reading a block of 8 words from memory. Assume 
as in Exercise 8.3 that the memory latency is incurred only once. 

8.9 [15] <§8.4> {ex. 8.8) Let's determine the maximum bandwidth that can be 
sustained for the asynchronous bus and memory system of Exercise 8.8. As
sume each handshaking step takes 20 ns and memory access takes 60 ns. Allow 
the maximum overlap among memory access and handshaking, as in the ex
ample on page 555. Assume the memory lines are buffered so that the access 
for the next word can start immediately. Find the maximum bandwidth for 8-
word reads from memory to the device. How does this compare to the rates 
that could be sustained with a synchronous interface? 

8.10 [20] <§8.3-8.5> Here are a variety of building blocks used in an I/ 0 sys
tem that has a synchronous processor-memory bus running at 50 MHz, and 
one or more 1/0 adapters that interface 1/0 buses to the processor-memory 
bus. 

• Memory system: The memory system has a 32-bit interface and handles 
four word transfers. For writes to memory, the memory system accepts 
a word every clock cycle for four clock cycles and then takes an addi
tional four clock cycles before the words have been stored and it can ac
cept another transaction. 

• DMA interfaces: The 1/0 adapters use OMA to transfer the data be
tween the 1/0 buses and the processor-memory bus. The OMA unit ar
bitrates for the processor-memory bus and sends/receives four word 
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blocks from/ to the memory system. The OMA controller can accommo
date up to 8 disks. Initiating a new 1/0 operation (including the seek 
and access) takes 2 ms during which another 1/0 cannot be initiated by 
this controller (but outstanding operations can be handled). 

• The I/O bus: The 1/0 bus is a synchronous bus with a sustainable band
width of 4 MB per second; each transfer is one word long. 

• The disks: The disks have a measured average seek plus rotational laten
cy of 20 ms. The disks have a read/write bandwidth of 2 MB per second, 
when they are transferring. 

Find the time required to read a 16 KB sector from a disk to memory, assum
ing this is the only activity on the bus. 

8.11 [15] <§8.3-8.5> {ex. 8.10) For the 1/0 system described in Exercise 8.10, 
find the maximum instantaneous bandwidth at which data can be transferred 
from disk to memory using as many disks as needed; how many disks and 1/0 
buses (the minimum of each) do you need to achieve the bandwidth? Since 
you need only achieve this bandwidth for an instant, latencies need not be con
sidered. 

8.12 [20] <§8.3-8.5> {ex. 8 .10, 8.1 1 )  Assume all accesses in the 1/0 system de
scribed in Exercise 8.10 are 4 KB block reads. If there are a total of 6 1/0 buses 
(and OMA controllers), find the maximum number of I /  Os the system can sus
tain in steady state assuming the reads are uniformly distributed to the disks. 
What is the sustained 1/0 bandwidth? 

8.13 [15] <§8.3-8.5> {ex. 8.10, 8 .11,  8.12) Find the size for 1/0 block reads that 
will allow the organization in Exercise 8.12 to saturate the 1/0 buses (the size 
should be a power of 2). How many 1/0 operations per second can the system 
perform and what is the 1/0 bandwidth? 

8.14 [15] <§8.4-8.5, 7.2, 7.4> Consider a 50-MHz processor that uses the mem
ory system of Exercise 8.3 to handle cache misses. Assume the processor has a 
write-back cache and the following measurements have been made: 

• The cache miss rate is 0.05 misses per instruction. 

• Forty percent of the misses require a write-back operation, while the 
other 60% require only a read. 

Assuming the processor is stalled for the duration of a miss (including the 
write-back time if a write-back is needed), find the number of cycles per 
instruction spent handling cache misses. 
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8.15 [15] <§7.4, 8.4> We are considering changing the block size of the cache 
in the processor of Exercise 8.14 to 16 words. We would like to use one of the 
two memory and bus systems described in Exercise 8.4. With a 16-word block, 
the miss rate is reduced to 0.03 misses per instruction. The fraction of write
back operations will not be affected. The processor will still be stalled for the 
duration of a miss. Find the cycles per instruction spent handling cache misses 
for the 16-word block size using the two different bus systems. 

8.16 [2 days to 1 week] <§8.5, Appendix A> This assignment uses SPIM to 
build a simple set of 1/0 routines that will perform 1/0 to the terminal using 
polling. First, you need to build two 1/0 routines, whose C declarations and 
descriptions are shown below: 

v o i d p r i n t  ( c h a r * s t r i n g ) ;  

p r  i n t takes a single argument, which is the address of a NULL-terminated 
ASCII string. All of the characters of the string except the null terminating 
character should be output by p r  i n t . It should print the characters one at a 
time, waiting for each character to be output before sending the next one. It 
should not return until all the characters have been output. The procedure 
p r  i n t should work for strings of any length. This version of p r  i n t should not 
use interrupts; just test the "ready" bit of the transmitter control register con
tinuously until the device is ready. 

c h a r g e t c h a r ( ) ;  

The procedure g e t  c h  a r takes no arguments and returns a character result. If 
g e t  c h  a r waits until a character has been typed on the terminal, then it should 
return the character's value in $2 (the result register). Do not use interrupts; 
simply test the ready bit continuously until a character has arrived. 

Write a main program that uses these two procedures to read a line from the 
terminal, which will be terminated by a carriage return. Then print the entire 
line to the terminal including a carriage return and line feed. All your code 
should obey the conventions in Appendix A for procedure calling, stack 
usage, and register usage. 

8.17 [3 days-1 week] <§8.5, Appendix A> Your assignment is to build an in
terrupt-driven mechanism for buffered 1/0 to and from the terminal. This ex
ercise handles output only, but the next one handles input. 

For the output only portion, there are three parts to the program: 

1 .  A main program, which repeatedly calls procedure p r i n t  to print the 
string " I  k n ow w h a t  I a m  d o i n g . "  
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2. The procedure p r i n t, which stores the output characters in a buffer 
shared by it and the interrupt routine. 

3. The interrupt routine, which copies characters from the output buffer to 
the transmitter. 

You need to write all three routines. The routine p r  i n t and the interrupt rou
tine should communicate by using a shared circular buffer with space for 32 
characters. The p r  i n t procedure should take a string as argument and add 
the characters of the string to the output buffer one at a time, advancing as 
soon as there is space in the buffer. Keep in mind that p r  i n t should not 
manipulate the terminal device registers directly except to make sure that 
transmitter interrupts are enabled. Furthermore, p r  i n t should contain addi
tional code to deal with a full output buffer. The main program generates 
characters much faster than they can be output, so the buffer will quickly fill 
up. In a real system, if the output buffer fills up, the operating system will 
stop running the current user's process and switch to a different process. Your 
program doesn't need to support multiple users, so p r  i n t can take a simpler 
approach: it just checks the buffer over and over again until eventually it isn't 
full anymore. The buffer is full when the next position in which p r  i n t wants 
to insert a character has not been emptied by the interrupt routine. 

After writing print, write the interrupt routine called by p r i n t . Here is a list 
of things the interrupt routine must do: 

1 .  I f  the transmitter i s  not ready, then the interrupt routine should not do 
anything. (You shouldn't have gotten an interrupt in the first place if 
the transmitter isn't ready, but it's a good idea to check anyway.) 

2. If the output buffer isn't empty, copy the next character from the output 
buffer to the Transmitter Data register and adjust the buffer pointers. 

3. If the output buffer is empty, turn off the interrupt-enable bit in the 
Transmitter Control register. Otherwise continuous interrupts will 
occur. Each time it deposits a character in the buffer, p r  i n t will need to 
turn this bit on. 

4. Don't forget that you must save and restore any registers that you use 
in the interrupt routine, even temporary registers like register $8 and 
register $9. This is necessary because interrupts can occur at any time 
and those registers could have been in use at the time of the interrupt. 
You must save the registers on the stack. The only exceptions to this 
rule are registers $26 and $27, which are reserved for use by interrupt 
routines; these registers need not be saved and restored. One of these 
registers can be used to return from the interrupt routine back to the 
code that was interrupted. 
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Test your code by writing the routine main that calls p r  i n t to print the string. 
It should output lines continuously, with each line containing the characters 
01 k n ow w h a t  I a m  d o i n g . " . 

8.18 [3 days-1 week] <§8.5, Appendix A> {ex. 8.17} Extend the code you've 
already written to handle interrupt-driven input. This program should do in
put in the same way as the previous program did output: by using a buffer to 
communicate between the routine g e t c h a  r and the interrupt routine. Be 
aware that g e t c h a  r returns a character from the buffer, waiting in a loop if no 
characters are present. Similarly, the interrupt routine will add characters as 
they are typed, discarding characters if the buffer is full when they arrive. In 
this an 8-entry buffer should work well. 

Use these two routines to read characters from the terminal and output them 
to the terminal. Try typing characters rapidly to make sure your program can 
handle the output or the input buffer filling up. For example, if you type two 
or three characters rapidly, the output buffer may fill up. However, no output 
should be lost: the print procedure will simply have to spin for a bit, during 
which time additional input characters will be buffered in the input buffer. If 
you type eight or ten characters very rapidly, then the input buffer will proba
bly fill up. When this happens, your interrupt routine will have to discard 
characters: the program should continue to function, but there won't be any 
output of the discarded input characters you typed. Once the output catches 
up with the input, your program should accept input again just as if the input 
buffer had never filled up. 

8.19 [1 day to 1 week] <§8.2-8.4> Take your favorite computer and write pro
grams that achieve the following: 

l .  Maximum bandwidth from and to a single disk. 

2. Maximum bandwidth from and to multiple disks. 

3. The maximum number of 512-byte transactions from and to a single 
disk. 

4. The maximum number of 512-byte transactions from and to multiple 
disks. 

What is the percentage of the bandwidth that you achieve compared to what 
the 1/0 device manufacturer claims? Also, record processor utilization in 
each case for the programs running separately. Next, run all four together and 
see what percentage of the maximum rates you can achieve. From this, can 
you determine where the system bottlenecks lie? 
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In More Depth: Ethernet 

An Ethernet is essentially a standard bus with multiple masters (each com
puter can be a master) and a distributed arbitration scheme using collision 
detection. Most Ethernets are implemented using coaxial cable as the 
medium. When a particular node wants to use the bus, it first checks to see 
whether some other node is using the bus; if not, it places a carrier signal on 
the bus, and then proceeds to transmit. A complication can arise because the 
control is distributed and the devices may be physically far apart. As a result, 
two nodes can both check the Ethernet, find it idle, and begin transmitting at 
once; this is called a collision. A node detects collisions also by listening to the 
network when transmitting, to see whether a collision has occurred. A colli
sion is detected when the node finds that what it hears on the Ethernet differs 
from what it transmitted. When collisions occur, both nodes stop transmitting 
and delay a random time interval before trying to resume using the net
work-just as two polite people do when they both start talking at the same 
time! Consequently, the number of nodes on the network is limited-if too 
many collisions occur, the performance will be poor. In addition, constraints 
imposed by the requirement that collisions be detected by all nodes limit the 
length of the Ethernet and the number of connections to the network. 
Although this idea sounds like it might not work, it actually works amazingly 
well and has been central to the enormous growth in the use of local area net
works. 

8.20 [3 days to 1 week] <§8.3-8.4> Write a program that simulates an Ether
net. Assume the following network system characteristics: 

• A transmission bandwidth of 10 Mbits per second. 

• A latency for a signal to travel the entire length of the network and re
turn to its origin of 15 microseconds. This is also the time to detect a col
lision. 

Make the following assumptions about the 100 hosts on the network: 

• The packet size is 1000 bytes. 

• Each host tries to send a packet after T seconds of computation, where 
T is exponentially distributed with mean M. Note that the host begins 
its T seconds of computation only after successfully transmitting a 
packet. 

• If a collision is detected, the host waits a random amount of time chosen 
from an exponential distribution with a mean of 60 microseconds. 
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Simulate and plot the sustained bandwidth of the network compared to the 
mean time between transmission attempts (M). Also, plot the average wait 
time between trying to initiate a transmission and succeeding in initiating it 
(compared to M). 

Ethernets actually use an exponential back-off algorithm that increases the 
mean of the back-off time on successive collisions. Assume that the mean of 
the distribution from which the host chooses how much to delay is doubled 
on successive collisions. How well does this work? Is the bandwidth higher 
than when a single distribution is used? Can the initial mean be lower? 

In More Depth: Disk Arrays 

As mentioned in section 8.7, one direction for future disk systems is to use 
arrays of smaller disks that provide more bandwidth through parallel access. 
In most disk arrays, all the spindles are synchronized-sector 0 in every disk 
rotates under the head at the exact same time-and the arms on all the disks 
are always over the same track. Furthermore, the data is "striped" across the 
disks in the array, so that consecutive sectors can be read in parallel. Let's 
explore how such a system might work. 

8.21 <§8.3-8.5> [20) Assume that we have the following two magnetic-disk 
configurations: a single disk and an array of four disks. Each disk has 16 sec
tors/ track, each sector holds lK bytes, and it revolves at 3600 RPM. Assume 
the seek time is 10 ms. The delay of the disk controller is 2 ms per transaction, 
either for a single disk or for the array. Assume the performance of the 1/0 sys
tem is limited only by the disks and controller. Remember that the consecutive 
sectors on the single disk system will be spread one sector per disk in the array. 
Compare the performance in I/Os per second of these two disk organizations, 
assuming the requests are random reads, half of which are 4KB and half of 
which are 16KB of data from sequential sectors. The sectors may be read in any 
order; for simplicity, assume that the rotational latency is one-half the revolu
tion time for the single disk read of four sectors and the disk array read of 16 
sectors. Challenge: Can you work out the actual average rotational latency in 
these two cases? 

8.22 <§8.3-8.5> [10) {ex. 8.21 ) Using the same disk systems as Exercise 8.21, 
with the same access patterns, determine the performance in megabytes per 
second for each system. 
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11 •ntroductlon 

II 

Future computers of all sizes will embrace parallelism even more than they 
do today. We believe that the exploitation of parallel machines will provide an 
exciting opportunity in this decade. Those who understand applications, 
algorithms, and architecture will be prepared for this opportunity. 

As parallelism can appear at many levels, it is useful to categorize the alter
natives. In 1966, Flynn proposed a simple model of categorizing computers 
that is still useful today. Scrutinizing the most constrained component of the 
machine, he counted the number of parallel instruction and data streams and 
then labeled the computer with this count: 

1. Single instruction stream, single data stream (SISD, the uniprocessor) 

2. Single instruction stream, multiple data streams (SIMD) 

3. Multiple instruction streams, single data stream (MISD) 

4. Multiple instruction streams, multiple data streams (MIMD) 

Some machines are hybrids of these categories, of course, but we stick with 
this classic model because it is simple, easy to understand, and gives a good 
first approximation. It is also-perhaps because of its understandability-the 
most widely used scheme. 

Your first question about the model should be, "Single or multiple com
pared with what?" A machine that adds a 32-bit number in one clock cycle 
would seem to have multiple data streams when compared with a bit-serial 
computer that takes 32 clock cycles to add. Flynn chose computers popular 
during that time, the IBM 704 and IBM 7090, as the model of SISD; today, the 
MIPS implementations in Chapters 5 and 6 would be fine reference points. 

Having established the reference point for SISD, we move to the next 
class: SIMD. 

SIMD Computers-Single Instruction 

Stream, Multiple Data Streams 

The cost of a general multiprocessor is, however, very high and further design op
tions were considered which would decrease the cost without seriously degrading 
the power or efficiency of the system. The options consist of recentralizing one of the 
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three major components . . .  Centralizing the [control unit] gives rise to the basic 
organization of [an] . . .  array processor such as the Illiac IV. 

Bouknight et al., "The Illiac IV system," Proc. IEEE 60:4, 369-379, 1972 

SIMD computers operate on vectors of data. For example, when a single 
SIMD instruction adds 64 numbers, the SIMD hardware sends 64 data 
streams to 64 ALUs to form 64 sums within a single clock cycle. 

The virtues of SIMD are that all the parallel execution units are synchro
nized and they all respond to a single instruction that emanates from a single 
program counter (PC). From a programmer's perspective, this is close to the 
already familiar SISD. Although every unit will be executing the same instruc
tion, each execution unit has its own address registers, and so each unit can 
have different data addresses. 

The original motivation behind SIMD was to amortize the cost of the control 
unit over dozens of execution units. Another advantage is the reduced size of 
program memory-SIMD needs only one copy of the code that is being simul
taneously executed, while MIMD may need a copy in every processor. Virtual 
memory and increasing capacity of DRAM chips have reduced the importance 
of this advantage. 

Real SIMD computers have a mixture of SISD and SIMD instructions. There 
is typically a SISD host computer to perform sequential operations such as 
branches or address calculations. The SIMD instructions are broadcast to all 
the execution units, each with its own set of registers and memory. Execution 
units rely on interconnection networks to exchange data. 

SIMD works best when dealing with arrays in for loops. Hence, for massive 
parallelism to work in SIMD, there must be massive data, or data parallelism. 
SIMD is at its weakest in case or switch statements, where each execution unit 
must perform a different operation on its data, depending on what data it has. 
Execution units with the wrong data are disabled so that units with proper 
data may continue. Such situations essentially run at 1 I nth performance, 
where n is the number of cases. 

Let's sketch an SIMD program to better understand this style of architec
ture. Suppose we want to sum 100,000 numbers on a SIMD computer with 
100 execution units. 
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The first step is to split 100,000 numbers into 100 subsets, one subset per ex
ecution unit. The front end processor places each subset of numbers into the 
local memory of each of the execution units. If the 100,000 numbers are in 
the array A in the host, then let's call the name of the local array A l .  

The next step is to get the sum of each subset. This step, the first piece of 
SIMD code, is simply a loop that every execution unit follows; read a word 
from local memory and add it to a local variable: 
s u m = O ;  
f o r  ( i  = O ;  i < 1 0 0 0 ; i = i + 1 )  / * l o o p  o v e r  e a c h  a r r a y * /  

s u m  = s um + A l [ i  J ;  / *  s u m  t h e  l o c a l  a r r a y s  * /  

The last step is adding these 100 partial sums. The hard part is that each 
partial sum is located in a different execution unit. Hence, we must use the 
interconnection network to send partial sums for the final summing. Rather 
than sending all the partial sums to a single processor, which would result 
in sequentially adding the partial sums, we divide to conquer. First, half of 
the execution units send their partial sums to the other half of the execution 
units, where two partial sums are added together. Then one quarter of the 
execution units (half of the half) send this new partial sum to the other quar
ter of the execution units (the remaining half of the half) for the next round 
of sums. This halving, sending, and receiving continues until there is a sin
gle sum of all numbers. Let P n  represent the number of the execution unit, 
s e n d  ( x ,  y )  be a routine that sends over the interconnection network to ex
ecution unit number x the value y, and r e c  e i v e ( ) be a function that accepts 
a value from the network for this execution unit. 

The SIMD code for summing the distributed partial sums is then 

l i m i t = 1 0 0 ; 
h a l f = 1 0 0 ; / * 1 0 0 e x e c u t i o n  u n i t s  i n  S I M O * /  
r e p e a t  

h a l f = ( h a l f+ l ) / 2 ;  / *  s e n d  v s . r e c e i v e  d i v i d i n g l i n e * /  
i f  ( P n >= h a l f  & &  P n  < l i m i t )  s e n d ( P n - h a l f . s um ) ;  
i f  ( P n < ( l i m i t / 2 - 1 ) )  s um = s um + r e c e i v e ( ) ;  
l i m i t = h a l f ;  / * u p p e r  l i m i t o f  s e n d e r s * /  

u n t i l ( h a l f == l ) ;  / * e x i t  w i t h  f i n a l  s um * /  

This loop divides the execution units into senders and receivers, with the 
senders passing their sums to the execution unit whose number is the send
er's execution unit number modulo half the number of units. Care must be 
taken when there are an odd number to sum. 

The complete SIMD program consists of the two code segments above. 

A basic trade-off in SIMD machines is processor performance versus 
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U. I l l inois llliac IV 64 64 5 MHz 64 0.125 2,560 1972 

ICL DAP 4,096 1 5 MHz 0 2 2 ,560 1980 

Goodyear MPP 16,384 1 10 MHz 0 2 20,480 1982 

Thinking CM-2 65,536 1 7 MHz 2048 512 16,384 1987 
Machines (optional) 

Maspar MP-1216 16,384 4 25 MHz 0 256 or 1024 23,000 1989 

FIGURE 9.1 Characteristics of five SIMD computers. Number of FPUs means number of floating-point units. 

number of processors. The machines in the marketplace today emphasize a 
high degree of parallelism over performance of the individual processors. The 
Connection Machine 2 (CM-2), for example, offers 65,536 single-bit-wide pro
cessors, while the Illiac IV had 64 64-bit processors. Figure 9.1 lists the charac
teristics of some well-known SIMD computers. 

The Connection Machine 2 from Thinking Machines 

The Connection Machine 2 (CM-2) consists of up to 65,536 processors, with 
each processor having a single-bit ALU, four 1-bit registers, 64K bits of mem
ory, and a connection to a network that allows any processor to talk to any 
other. Figure 9.2 is a photograph of the CM-2. An additional floating-point 
accelerator (FPA) is optional, and it is shared by 32 of the 1-bit processors, 
resulting in 2048 FPAs in a CM-2. Since floating point is so much faster using 
the FPA, it is more accurate for floating-point problems to think of the CM-2 
as having 2048 powerful processors, rather than 65,536 weak ones. There are 
only four types of chips in the CM-2: a custom chip containing 16  of the 1-bit 
processors, commercial DRAMs, a custom chip to act as the interface to the 
FPA, and an off-the-shelf FPA chip. Thus, a full system has 4096 custom pro
cessor chips, which include the communication interface to other processors, 
22,528 DRAM chips (including extra memory for error correction), 2048 cus
tom FPA interface chips, and 2048 standard FPA chips. 

The basic CM-2 operation reads 2 bits from the local memory and one from 
a register, computes two separate 1-bit results, and stores one back to local 
memory and one to a register. The CM-2 stores the result conditionally, de
pending on the value of a third 1-bit register. The clock cycle is determined by 
the time to read memory. Arithmetic is performed 1 bit at a time, with the pro
gram for a 32-bit add taking about 21 microseconds. 

Putting this in perspective, the MIPS R2000 of the same time period took 
just 0.066 microseconds to perform a 32-bit add when the operands are all reg-
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FIGURE 9.2 Photograph of the CM-2. Photo courtesy of Thinking Machines Corporation. 

isters; if the operands were in the cache an add would take on average about 
0.198 microseconds. Although R2000 could perform a single 32-bit add about 
100 times (21 /0.198) to 300 times (21 /0.066) faster, the CM-2 performs 65,536 
additions at once. Thus, the CM-2 can perform about 200 (65,536/300) to 600 
(65,536/100) times as many 32-bit adds per second as the R2000. 

With 16 processors per chip, the network connecting the processors togeth
er has two logical pieces: within chips and between chips. Within the chip, ev
ery processor has a dedicated link to each of the other processors. The network 
that connects the chips together is called a Boolean n-cube; with 4096 or 212, 
chips, it is a 12-cube. Section 9.6 describes this network in more detail, but 
small versions of this topology are easy to imagine: a 2-cube is simply a square 
with processors at the four corners and a 3-cube is simply a cube with proces
sors at the eight corners. 

At the time the machine was announced, the clock rate was 7 MHz, the 
memory per node was 64K bits, and the FPA was 32 bits wide internally and 
ran at 7 MHz. Later versions tracked technology with increases in the proces
sor clock rate, the memory capacity, and the width and clock rate of the FPA. 

Figure 9.3 shows the organization of the CM-2. The CM-2 is connected to a 
traditional SISD machine, called a front end, via a sequencer. The front end exe-
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FIGURE 9.3 Organization of the CM·2. The CM-2 can have multiple front-end computers and 
data vaults. 

cutes the program, sending SIMD instructions to the sequencer when they are 
encountered. The sequencer is something like the microprogram controller of 
Chapter 5, except that instead of sending the microinstruction to a single data
path as in Chapter 5, the CM-2 sequencer broadcasts its instructions to all 
65,536 processors and 2048 FPAs. 

The CM-2 also has an 1/0 channel for every 8192 processors. This can be 
connected to a custom frame buffer or to a disk array to offer high 1/0 band
width as an alternative to going through the front end. 

Elaboration: Although MISD fills out Flynn's classification , it is d ifficult to envision. A 
single instruction stream is s impler than multiple instruction streams, but mu ltiple 
instruction streams with multiple data streams (MIMD) are easier to imagine than mul
tiple instructions with a s ingle data stream (MISD).  
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MIMD Computers-Multiple Instruction 

Streams, Multiple Data Streams 

Multis are a new class of computers based on multiple microprocessors. The small 
size, low cost, and high performance of microprocessors allow design and construc
tion of computer structures that offer significant advantages in manufacture, price
performance ratio, and reliability over traditional computer families . . .  Multis are 
likely to be the basis for the next, the fifth, generation of computers. 

C. G. Bell, "Multis: A new class of multiprocessor computers," 
Science 228 (April 26, 1985), p.463 

Computer architects have always sought the El Dorado of computer 
design: To create powerful computers simply by connecting many existing 
smaller ones. This is the idea behind MIMDs. The user orders as many proces
sors as the budget allows and receives a commensurate amount of perfor
mance. MIMDs are also scalable: the hardware and software are designed to 
be sold with a variable number of processors, with current machines varying 
by a factor of more than 20. Since software is scalable, some MIMDs can sup
port operation in the presence of broken hardware; that is, if a single proces
sor fails in a MIMD with n processors, the system provides continued service 
with n - 1 processors. Finally, MIMDs may have the highest absolute perfor
mance-faster than the fastest uniprocessor. 

The good news is that MIMD has established a beachhead. While the micro
processor has improved dramatically in performance, making it the most cost
effective uniprocessor, it is generally agreed that if you can't handle a time
shared workload on a single-chip SISD, then a MIMD composed of many sin
gle-chip SISDs is probably more effective than building a high-performance 
SISD from a more exotic technology. 

Small companies like Sequent offer low-end MIMDs; large companies like 
IBM, DEC, and Cray Research deliver the high-end MIMDs. Moreover, virtu
ally all current file servers can be ordered with multiple processors. Conse
quently, multiprocessors now embody a significant market, responsible for a 
majority of mainframes, virtually all supercomputers, and an increasing frac
tion of file servers. 

MIMDs define high performance as high throughput for independent tasks. 
This is in contrast to running a single task on multiple processors. We use the 
term parallel processing program to refer to a single program that runs on multi
ple processors simultaneously. Although parallel processing programs may 
not yet be important commercially for more than a small percentage of users, 
we can expect that the percentage will increase in the future. 
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Here are two key questions that drive the designs of MIMDs: 

• How do parallel processors share data? 

• How do parallel processors coordinate? 

The answers to the first question fall in two main camps. Processors with a 
single address space, sometimes called shared-memory processors, offer the pro
grammer a single memory address space that all processors share. Processors 
communicate through shared variables in memory, with loads and stores ca
pable of accessing any memory location. As processors operating in parallel 
normally will share data, they also need to coordinate when operating on 
shared data; otherwise, one processor could start working on data before an
other is finished with it. This coordination is called synchronization. When shar
ing is supported with a single address space, there must be a separate 
mechanism for synchronization. One approach uses a lock: only one processor 
at a time can acquire the lock, and other processors interested in shared data 
must wait until the original processor unlocks the variable. Locking is de
scribed in section 9.5. 

An alternative model for communicating data uses message sending for com
municating among processors. As an extreme example, processors on differ
ent workstations communicate by sending messages over a local area network. 
Provided the system has routines to send and receive messages, coordination 
is built-in with message sending since one processor knows when it sends a 
message and the receiving processor knows when the message arrives. The re
ceiving processor can then send a message back to the sender saying the mes
sage has arrived, if the sender needs that confirmation. 

MIMDs are constructed in two basic styles: processors connected by a sin
gle bus, and processors connected by a network. We will examine these two 
styles in detail in following sections, but first let's look at the general issues in 
programming MIMDs. 

II Programming MIMDs 

I don't know what the programming language of the future will look like, but I know 
it will be called Fortran. 

Anonymous 

The bad news is that it remains to be seen how many important applications 
will run faster on MIMDs via parallel processing. The obstacle is not the price 
of the SISD used to compose MIMDs, the flaws in topologies of interconnec
tion networks, nor the unavailability of appropriate programming languages; 
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the difficulty has been that too few important application programs have 
been rewritten to complete tasks sooner on parallel processors. Because it is 
even harder to find applications that can take advantage of many processors, 
the challenge is greater for large-scale MIMDs. 

But why is this so? Why should parallel processing programs be so much 
harder to develop than sequential programs? One reason is that it is difficult 
to write MIMD programs that are fast, especially as the number of processors 
increases. As an analogy, think of the communication overhead for a task done 
by one person compared to the overhead for a task done by a committee, es
pecially as the size of the committee increases. Although n people may have 
the potential to finish any task n times faster, the communication overhead for 
the group may prevent it; n-fold speedup becomes especially unlikely as n in
creases. (Imagine the change in communication overhead if a committee 
grows from 10 people to 1000 people to 1,000,000.) 

Another reason why it is difficult to write parallel processing programs is 
that the programmer must know a good deal about the hardware. On a uni
processor, the high-level language programmer writes the program largely ig
noring the underlying machine organization-that's the job of the compiler. 
But, so far at least, the parallel processing programmer had better know the 
underlying organization to write programs that are fast and capable of run
ning with a variable number of processors. Moreover, such parallel programs 
are not portable to other MIMDs. 

Although this second obstacle is beginning to lessen, our discussion in 
Chapter 2 reveals a third obstacle: Amdahl's Law. It reminds us that even 
small parts of a program must be parallelized to reach their full potential; thus, 
coming close to linear speedup involves discovering new algorithms that are 
inherently parallel. 

Suppose you want to achieve linear speedup with 100 processors. What 
fraction of the original computation can be sequential? 

Amdahl's Law (page 71) says 

Execution time after improvement = 

Execution time affected by improvement 
E . . ff d 

f 
+ xecuhon time una ecte 

Amount o improvement 
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Substituting for the goal of linear speedup with 100 processors means the 
execution time is reduced by 100: 

Execution time after improvement 
100 

Execution time affected by improvement . . ff d 
100 

+ Execution time una ecte 

Solving for the unaffected execution time: 

. . ff d 
Execution time after improvement 

Execution time una ecte = 
100 

Execution time affected by improvement 
-

100 
= 0 

Accordingly, to achieve linear speedup with 100 processors, none of the 
original computation can be sequential. Put another way, to get a speedup 
of 99 from 100 processors means the percentage of the original program that 
was sequential would have to be 0.01 % or less. 

Yet there are applications with substantial parallelism. 

Suppose you want to perform two sums: one is a sum of two scalar vari
ables and one is a matrix sum of a pair of two-dimensional arrays, size 1000 
by 1000. What speedup do you get with 1000 processors? 

If we assume performance is a function of the time for an addition t, then 
there is 1 addition that does not benefit from parallel processors and 
1,000,000 additions that do. If the time before is 1,000,001 t, 

Execution time before improvement = 

Execution time affected by improvement 
E . . ff d 

A f . 
+ xecuhon hme una ecte 

mount o improvement 

1,000,000t 
Execution time before improvement = 

1000 
+ 1 t  

1001 
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Speedup is then 

s d 
1,000,001 

= 999 pee up = 
1001 

Even if there were 100 sums of scalar variables to one sum of a pair of 1000 
by 1000 arrays, the speedup would still be 909. 

Massive Parallelism 

The term massively parallel is widely used but rarely defined, but no one 
would define a computer with less than 100 processors as massively parallel. 
Even with such a conservative dividing line, parallel processing using more 
than 100 processors is not yet important in everyday computing. Ideally, we 
should have a simple model that allows programmers to more easily create 
portable programs that achieve good performance on real parallel processors 
and to enable researchers to invent new algorithms that will work well on 
many parallel processors. Unfortunately, traditional theoretical models for 
parallel computation do not accurately predict performance of current com
mercial parallel processors. 

The need for new portable algorithms for massively parallel machines un
derlines our belief that parallel machines offer an exciting challenge for the fu
ture, predicated on a clear understanding of applications, algorithms, and 
architecture. 

Single Program Multiple Data 

While the search for algorithms and models continues, progress has been 
made on the general approach to programming; we are converging on a Sin
gle Program Multiple Data (SPMD). It was conceivable to write 1000 different 
programs for 1000 different processors in an MIMD machine, but in practice 
this proved to be impossible. Today MIMD programmers write a single 
source program and think of the same program running on all processors. 

The SIMD and MIMD camps realized that synchronization simplified pro
gramming, but MIMD advocates feared that they gave up too much by requir
ing every instruction on every processor to be synchronized. Given 
independent memories, however, processors interact only during communi
cation. Thus, if processors operate in MIMD-style when not communicating, 
and in SIMD-style when communicating, then this compromise eliminates 
weaknesses of SIMD while maintaining its simplified programming model. Of 
course, not all communications need to be synchronized, but this generaliza
tion is the essence of the insight. SPMD offers the programming advantages of 
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SIMD without suffering either the inflexibility of the problem domain or the 
inability to utilize off-the-shelf processors. 

In addition to a standard style of programming, scientific programmers 
seem to be headed for agreement on a programming language. The choice ap
pears to be a version of Fortran that supports array operators and allows hints 
to the compiler on memory allocation to try to keep the data near the proces
sor. Alas, for non-scientific programs, the language of choice remains unclear. 
The current popular languages are versions of C or C++ extended with com
munication procedures and a preprocessor to support parallel constructs, but 
there is no consensus yet, as there is in the Fortran community, of the features 
to be included in such a language. 

• MIMDs Connected by a Single Bus 

Sequent 
Si l icon Graphics 
Sun 

The high performance and low cost of the microprocessor inspired renewed 
interest in multiprocessors in the 1980s. Figure 9.4 lists the characteristics of 
some commercial single-bus computers. Several microprocessors can usefully 
be placed on a common bus because 

• Each microprocessor is much smaller than a multichip processor, so 
busses can be shorter. 

• Caches can lower bus traffic. 

• Mechanisms were invented to keep caches and memory consistent for 
multiprocessors, just as caches and memory are kept consistent for I/O. 

Traffic per processor and the bus bandwidth determine the useful number 
of processors in such a multiprocessor. Figure 9.5 is a drawing of a generic sin
gle-bus multiprocessor. The caches replicate data in their faster memories both 
to reduce the latency to the data and to reduce the memory traffic on the bus. 

Symmetry 30 32 16 MHz 30 240 53 

4/360 16 32 40 MHz 16 512 320 1990 

4/640 4 32 40 MHz 4 768 320 1991 

FIGURE 9.4 Characteristics of three MIMD computers connected by a single backplane bus. Number of FPUs 
means number of floating-point units. Communications bandwidth for these machines is the bus bandwidth. 
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Processor Processor Processor 

Single bus 

Memory 1/0 

FIGURE 9.5 A slngle-bus multlprocessor. Typical size is between 2 and 32 processors. 

Recall from Chapter 8 that 1/0 can experience inconsistencies in the value 
of data between the version in memory and the version in the cache. This cache
coherency problem applies to multiprocessors as well as 1/0. 

Let's consider the parallel summing program we sketched in the example 
on page 597, but this time for a single-bus MIMD computer; let's assume we 
have 10 processors to sum the 100,000 numbers. 

The first step again would be to split the set of numbers into subsets of the 
same size. This time we do not allocate the subsets to a different memory, 
since there is a single memory for this machine; we just give different start
ing addresses to each processor. P n  is the number of the processor, between 
0 and 9. All processors start the program by running the loop that sums 
their subset of numbers: 

s um [ P n ]  = 0 ;  
f o r  ( i  = l O O O O * P n ; i < l O O O O * ( P n+l ) ;  i = i + 1 )  

s u m [ P n ]  = s um [ P n J  + A [ i ] ;  / * s um t h e  a s s i g ned  a r e a s * /  
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This loop uses load instructions to bring the correct subset of numbers to the 
caches of each processor from the common main memory. 

The next step is again to add these many partial sums, and once again 
we divide to conquer. Half of the processors add pairs of partial sums, then 
a quarter add pairs of the new partial sums, and so on until we have the 
final sum. We want each processor to have its own version of the loop 
counter variable i ,  so we must indicate that it is a "private" variable. 

There are two important differences in this second step from the SIMD 
program. First, the partial sums are not sent and received; the requesting 
processor just loads from the address to get a copy of the partial sum. The 
hardware guarantees that the correct value will be supplied. The second 
difference is that the cooperating processors must synchronize to be sure 
the result is ready. With SIMD, each instruction is issued in lock step to all 
units, so there is no need to synchronize before sending and receiving re
sults; with MIMD processors, there is no such implicit coordination, so 
there must be explicit synchronization at key points in the program. In this 
example, the two processors must synchronize before the "consumer" pro
cessor tries to read the result from the memory location written by the "pro
ducer" processor; otherwise, the consumer may read the old value of the 
data. Here is the code ( h a l f is private also): 

h a l f = 1 0 ;  / *  1 0  p r o c e s s o r s  i n  s i n g l e - b u s  M I M D * /  
r e pe a t  

s y n c h ( ) ;  / * w a i t  f o r  c o m p l e t i o n  o f  p a r t i a l  s um s * /  
i f ( h a  l f %  2 ! = 0 & & P n == 0 ) s u m  [ 0 J = s um [ 0 J + s um [ h a  l f - 1 J ; 
h a l f = h a l f / 2 ; / * d i v i d i n g l i n e o n  w h o  s um s * /  
i f  C P n < h a l f )  s um [ P n ] = s um [ P n ]  + s um [ P n + h a l f ] ;  

u n t i l ( h a l f == 1 ) ;  ! * ex i t  w i t h  f i n a l  s um i n  S um [ O J  * /  

We have used what is called a barrier synchronization primitive; proces
sors wait at the barrier until every processor has reached it. Then they pro
ceed. Barrier synchronization allows all processors to rapidly synchronize. 
This function can be implemented either in software with the lock synchro
nization primitive, described on pages 614 to 616, or with special hardware 
that combines each processor "ready" signal into a single global signal that 
all processors can test. 

Unlike I/0, which rarely uses multiple data copies (a situation to be avoid
ed whenever possible), as this example suggests, multiple processors require 
copies of the same data in multiple caches. Alternatively, accesses to shared 
data could be forced always to go around the cache to memory, but that would 
be too slow and it would require too much bus bandwidth; performance of a 
multiprocessor program depends on the performance of the system when 
sharing data. The protocols to maintain coherency for multiple processors 
are called cache-coherency protocols. The next few subsections explain cache-



610 Chapter 9 Parallel Processors 

Processor Processor Processor 

Single bus 

Memory 1/0 

FIGURE 9.6 A single-bus multiprocessor using snooping cache coherency. The extra set of 
tags, shown in color, are used to handle snoop requests. The tags are duplicated to reduce the 
demands of snooping on the caches. 

coherency protocols, methods of synchronizing processors using cache coher
ency, and the Sequent Symmetry multiprocessor as an example of a single-bus 
MIMD. 

Multiprocessor Cache Coherency 

The most popular protocol to maintain cache coherency is called 
snooping: Figure 9.6 shows how caches access memory over a common bus. 
All cache controllers monitor or snoop on the bus to determine whether or not 
they have a copy of the shared block. 

Snooping became popular with machines of the 1980s, which used single 
buses to main memory. These uniprocessors were extended by adding multi
ple processors on that bus to give easy access to the shared memory. Caches 
were then added to improve the performance of each processor, leading to 
schemes to keep the caches up-to-date by snooping on the information over 
that shared bus. 

Maintaining coherency has two components: reads and writes. Multiple 
copies are not a problem when reading, but a processor must have exclusive 
access to write a word. Processors must also have the most recent copy when 
reading an object, so all processors must get new values after a write. Thus, 
snooping protocols must locate all the caches that share an object to be written. 
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The consequence of a write to shared data is either to invalidate all other copies 
or to update the shared copies with the value being written. 

The status bits already in a cache block are expanded for snooping proto
cols, and that information is used in monitoring bus activities. On a read miss, 
all caches check to see if they have a copy of the requested block and then take 
the appropriate action, such as supplying the data to the cache that missed. 
Similarly, on a write, all caches check to see if they have a copy and then act, 
either invalidating or updating their copy to the new value. 

Since every bus transaction checks cache-address tags, one might assume 
that it interferes with the processor. It would interfere if not for duplicating the 
address-tag portion of the cache (not the whole cache) to get an extra read port 
for snooping; see Figure 9.6. This way, snooping rarely interferes with the pro
cessor's access to the cache. When there is interference, the processor will like
ly stall because the cache is unavailable. 

Snooping protocols are of two types, depending on what happens on a 
write: 

• Write-invalidate: The writing processor causes all copies in other caches 
to be invalidated before changing its local copy; it is then free to update 
the local data until another processor asks for it. The writing processor 
issues an invalidation signal over the bus, and all caches check to see if 
they have a copy; if so, they must invalidate the block containing 
the word. Thus, this scheme allows multiple readers but only a single 
writer. 

• Write-update: Rather than invalidate every block that is shared, the writ
ing processor broadcasts the new data over the bus; all copies are then 
updated with the new value. This scheme, also called write broadcast, 
continuously broadcasts writes to shared data while write invalidate 
deletes all other copies so that there is only one local copy for subse
quent writes. 

Write-update is like write-through because all writes go over the bus to 
update copies of the shared data. Write invalidate uses the bus only on the 
first write to invalidate the other copies, and hence subsequent writes do not 
result in bus activity. Consequently, write-invalidate has similar benefits to 
write-back in terms of reducing demands on bus bandwidth, while write
update has the advantage of making the new values appear in caches sooner, 
which can reduce latency. 

Commercial cache-based multiprocessors use write-back caches because 
write-back reduces bus traffic and thereby allows more processors on a single 
bus. To preserve that precious communications bandwidth, all commercial 
machines also use write-invalidate as the standard protocol. 
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Interface 

One insight is that block size plays an important role in 
cache coherency. For example, take the case of snooping on 
a cache with a block size of eight words, with a single word 
alternatively written and read by two processors. The proto
col that only broadcasts or sends one word has an advantage 
over a scheme that transfers the full block. 

Large blocks can also cause what is called false sharing: When two unrelated 
shared variables are located in the same cache block, the full block is ex
changed between processors even though the processors are accessing differ
ent variables (see Exercises 9.3 and 9.4). Compiler research is underway to 
reduce cache miss rates by allocating highly correlated data to the same cache 
block. Success in this effort could increase the desirability of large blocks for 
multiprocessors. 

Measurements to date indicate that shared data has lower spatial and tem
poral locality than other types of data. Thus, shared data misses often domi
nate cache behavior even though they may be just 10% to 40% of the data 
references. 

Elaboration: In a multiprocessor using cache coherency over a s ingle bus, what hap
pens if two processors try to write to the same shared data word in the same clock 
cycle? The bus arbiter decides which processor gets the bus first, and this processor 
wil l  i nval idate or update the other processor's copy depending on the protocol. The sec
ond processor then does its write. This sequential operation makes writes to d ifferent 
words in the same block work correctly. 

An Example of a Cache-Coherency Protocol 

To illustrate the intricacies of a cache-coherency protocol, Figure 9.7 shows a 
finite state transition diagram for a write-invalidation protocol based on a 
write-back policy. Each cache block is in one of three states: 

1 .  Read only: This cache block is clean (not written) and may be shared. 

2. Read/Write: This cache block is dirty (written) and is not shared. 

3. Invalid: This cache block does not have valid data. 

The three states of the protocol are duplicated in the figure to show transi
tions based on processor actions as opposed to transitions based on bus oper-
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Processor read miss  

Processor write miss 

Another processor has a read 
miss or a write miss for 

this block (seen on bus). 
Write back old block 

Processor 

Processor write 
(hit or miss) 

Cache state transitions 
using signals from processor 

Invalidate or 
another processor 
has a write miss 

for this block 
(seen on bus) 

Cache state transitions 
using signals from bus 

FIGURE 9.7 A wrlte-lnvalldate, cache-coherency protocol. The upper part of the diagram 
shows state transitions based on actions of the processor associated with this cache; the lower 
part shows transitions based on actions of other processors seen as operations on the bus. There 
is only o�ate machine in a cache, although there are two represented here to clarify when a 
transition occurs. The black arrows and actions specified in black text would be found in caches 
without coherency, with the colored arrows and actions added to achieve cache coherency. In 
contrast to what is shown here, some protocols call writes to clean data a write miss, so that there 
is no separate signal for invalidation. 
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ations. This is done only for purposes of illustration; there is really only one 
finite state machine per cache, with stimuli coming either from the attached 
processor or from the bus. 

Transitions in the state of a cache block happen on read misses, write miss
es, or write hits; read hits do not change cache state. Let's start with a read 
miss. When the processor has a read miss that maps onto a block, it will change 
the state of that block to Read Only and write back the old block if the block 
was in the Read/Write state (dirty). All the caches in the other processors mon
itor the read miss to see if this block is in their cache. If one has a copy and it is 
in the Read/Write state, then the block is changed to the Invalid state. (Some 
protocols would change the state to Read Only.) The read miss is then satisfied 
by reading from memory. 

Now let's try writes. To write a block, the processor acquires the bus, sends 
an invalidate signal, writes into that block and places it in the Read/Write 
state. Because other caches monitor the bus, all caches check to see if they have 
a copy of that block; if they do, they invalidate it. 

As you might imagine, there are many variations on cache coherency that 
are much more complicated than this simple model. The variations include 
whether or not the other caches try to supply the block if they have a copy, 
whether or not the block must be invalidated on a read miss, as well as wheth
er writes invalidate or update the results as discussed earlier. 

Synchronization Using Coherency 

One of the major requirements of a single-bus multiprocessor is to be able to 
coordinate processes that are working on a common task. Typically, a pro
grammer will use lock variables to coordinate or synchronize the processes. 
The challenge for the architect of a multiprocessor is to provide a mechanism 
to decide which processor gets the lock and to provide the operation that 
locks a variable. Arbitration is easy for single-bus multiprocessors, since the 
bus is the only path to memory: the processor that gets the bus locks out all 
other processors from memory. If the processor and bus provide an atomic 
swap operation, programmers can create locks with the proper semantics. The 
adjective atomic is key, for it means that a processor can both read a location 
and set it to the locked value in the same bus operation, preventing any other 
processor from reading or writing memory. 

Figure 9.8 shows a typical procedure for locking a variable using an atomic 
swap instruction. Assume that 0 means unlocked ("go") and 1 means locked 
("stop"). A processor first reads the lock variable to test its state. A processor 
keeps reading and testing until the value indicates that the lock is unlocked. 
The processor then races against all other processors that were similarly spin 
waiting to see who can lock the variable first. All processors use an atomic 
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FIGURE 9.8 Steps to acquire a lock to synchronize processes and then to release the 
lock on exit from the key section of code. 

swap instruction that reads the old value and stores a 1 ("stop") into the lock 
variable. The single winner will see the 0 ("go"), and the losers will see a 1 that 
was placed there by the winner. (The losers will continue to write the variable 
with the locked value of l ,  but that doesn't change its value.) The winning pro-
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Spins, testing if lock = O Spins, testing if lock = O None 

2 Sets lock to O and O Spins, testing if lock = O 
sent over bus 

Spins, testing if lock = 0 Write-invalidate of lock variable 
from PO 

3 Cache miss Cache miss Bus decides to service P2 cache 
miss 

4 

5 

6 

7 

8 

(Waits while bus busy) 

Lock = O 

Lock = O Cache miss for P2 satisfied 

Swap: reads lock and sets to Cache miss for P1 satisfied 
1 

Swap: reads lock and sets to Value from swap = O and 1 Write-invalidate of lock variable 
1 sent over bus from P2 

Value from swap = 1 and 1 Owns the lock, so can update Write-invalidate of lock variable 
sent over bus shared data from P1 

Spins, testing if lock = O None 

FIGURE 9.9 Cache-coherency steps and bus traffic for three processors, PO, Pl, and P2. This figure assumes write
invalidate coherency. PO starts with the lock (step 1). PO exits and unlocks the lock (step 2). Pl and P2 race to see which 
reads the unlocked value during the swap (steps 3-5). P2 wins and enters the critical section (steps 6 and 7), while Pl spins 
and waits (steps 7 and 8). 

cessor then executes the code that updates the shared data. When the winner 
exits, it stores a 0 ("go") into the lock variable, thereby starting the race all over 
again. 

Let's examine how the spin lock scheme of Figure 9.8 works with bus-based 
cache coherency. One advantage of this algorithm is that it allows processors 
to spin wait on a local copy of the lock in their caches. This reduces the amount 
of bus traffic; Figure 9.9 shows the bus and cache operations for multiple pro
cessors trying to lock a variable. Once the processor with the lock stores a 0 
into the lock, all other caches see that store and invalidate their copy of the lock 
variable. Then they try to get the new value for the lock of 0. (With write-up
date cache coherency, the caches would update their copy rather than first in
validate and then load from memory.) This new value starts the race to see 
who can set the lock first. The winner gets the bus and stores a 1 into the lock; 
the other caches replace their copy of the lock variable containing 0 with a l . 

They read that the variable is already locked and must return to testing and 
spinning. 

This scheme has difficulty scaling up to many processors because of the 
communication traffic generated when the lock is released. 

The Sequent Symmetry Multiprocessor 

Several research projects and companies investigated the single-bus multi
processors in the 1980s. One example is Sequent Computer Systems, Inc., 
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FIGURE 9.10 Photograph of the Sequent Symmetry. Photo courtesy of Sequent Computer 
Systems, Inc. 

founded to build multiprocessors based on standard microprocessors and the 
UNIX operating system. In 1986, Sequent began to design the Symmetry mul
tiprocessor, assuming a microprocessor four to five times faster than the pro
cessor in an earlier system. Figure 9.10 is a photograph of the Sequent 
Symmetry. The goal was to support as many processors as possible using the 
1/0 controllers developed for the earlier system. This meant the bus had to 
remain compatible, although the new memory and bus system had to deliver 
roughly four to five times more bandwidth than the older system. Figure 9.11 
shows the organization of the machine. 

The goal of higher memory-system bandwidth with a similar bus was at
tacked on four levels. First, the cache was increased to 64 KB, increasing the hit 
rate and therefore the effective memory bandwidth as seen by the processor. 
Second, the cache policy was changed from write-through to write-back to re
duce the number of write operations on the shared bus. To maintain cache co
herency with write-back, Symmetry used a write-invalidate scheme. The third 
change was to double the bus width to 64 bits, thereby doubling the bus band
width to 53 MB/sec. The final change was to have each memory controller in
terleave memory as two banks, allowing the memory system to match the 
bandwidth of the wider bus. The memory system can have up to six control
lers with up to 240 MB of main memory. 

One experiment evaluated the Symmetry as a timeshared (multipro
grammed) multiprocessor running ten independent programs, comparing 
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FIGURE 9.11 The Sequent Symmetry multiprocessor has up to 30 microprocessors, each with 84 KB of two-way 
set associative, write-back caches connected over the shared system bus. Up to six memory controllers also talk to 
this 64-bit-wide bus, plus some interfaces for I/O. In addition to a special-purpose disk controller, there is an interface for 
the system console, Ethernet network, and SCSI I/0 bus (see Chapter 8), as well as another interface for Multibus. I/O 
devices can be attached either to SCSI or to Multibus, as the customer desires. (Although all interfaces are labeled "Bus 
adapter," each is a unique design.) For more details on cache behavior of this machine, see T. Lovett and S. Thakkar, "The 
Symmetry multiprocessor system," in Proc. 1988 International Conference on Parallel Processing, 303-310. 

write-through and write-back cache policies. The experiment ran n copies of 
the program on n processors. This study found that with write-through, about 
half the programs started to stray from linearly increasing throughput at 6 to 
8 processors, yet with write-back, all but one of the ten programs stayed near 
linear for up to 28 processors. (The single failure was caused by hot spots in 
the operating system rather than by the write-back coherency protocol.) 

Notice that in this style of parallel processor, memory access times are 
uniform: for all processors, the time of a memory access is equally fast (in the 
local cache) or slow (in main memory). This is in contrast to the network-con
nected machines discussed in the next section. Hence, the label uniform memory 
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access is applied to machines in which the time for a memory access is uniform; 
nonuniform memory access applies to other machines. In the next section, we will 
discuss examples of nonuniform access computers. 

• MIMDs Connected by a Network 

Single-bus designs are attractive, but limited because the three desirable bus 
characteristics are incompatible: high bandwidth, low latency, and unlimited 
length. There is also a limit to the bandwidth of a single memory module 
attached to a bus. Thus, a single bus imposes practical constraints on the 
number of processors that can be connected to it; to date, the largest number 
of processors connected to a single bus in a commercial computer is 30. 

If the goal is to connect many more processors together, then the computer 
designer needs to use more than a single bus. Figure 9.12 shows how this can 
be organized. Note that in Figure 9.5 on page 608, the connection medium
the bus-is between the processors and memory, whereas in Figure 9.12, 
memory is attached to each processor and the connection medium-the net
work-is between these combined nodes. For single-bus systems the medium 
is used on every memory access, while in the latter case it is used only for in
terprocessor communication. 

Processor Processor Processor 

Memory Memory Memory 

t t t 
Network 

FIGURE 9.12 The organization of a network-connected multiprocessor. Typical size is 
between 32 and 1024 processors. Note that, in contrast to Figure 9.5, the multiprocessor connec
tion is no longer between memory and the processor. MIMDs have also been built with the net
work between the processors and memory; the Cray XMP and YMP multiprocessors are perhaps 
the best known examples, but this placement is currently out of favor. 
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This brings us to a debate about the organization of memory in large-scale 
parallel processors. The debate unfortunately often centers on a false 
dichotomy: shared memory versus distributed memory. Shared memory really 
means a single address space, implying implicit communication with loads 
and stores. The real opposite of a single address is multiple private address spac
es, implying explicit communication with sends and receives. Distributed 
memory refers to the physical location of the memory. If physical memory is 
divided into modules, with some placed near each processor, as in Figure 9.12, 
then physical memory is distributed. The real opposite of distributed memory 
is centralized memory, where access time to a physical memory location is the 
same for all processors because every access goes over the interconnect, as in 
Figure 9.5. This style of machine is sometimes called dance hall, with the pro
cessors all on one side and the memories all on the other, invoking the image 
of a school dance with the boys on one side of the floor and the girls on the 
other. 

Single address space versus multiple address spaces and distributed mem
ory versus centralized memory are orthogonal issues: MIMDs can have a sin
gle address space and a distributed physical memory or multiple private 
address spaces and a centralized physical memory. The proper debates con
cern the pros and cons of a single address space, of explicit communication, 
and of distributed physical memory. 

For large-scale parallel machines, the argument about distribution of phys
ical memory was recently resolved; every large-scale machine distributes 
physical memory, as the cost/performance advantage of keeping some mem
ory near each processor is too great to ignore. Another argument is that it is 
much easier to construct a machine that can scale by a factor of 100 if the mem
ory and the processor are on the same unit being replicated. In such organiza
tions, the local memory is much faster than nonlocal memory, varying from 3 
to 10 times faster with hardware support; it is even slower if messages are sent. 
Programmers of large-scale parallel machines try to minimize accesses to non
local memory. These parallel processors are called nonuniform memory access 
machines. 

In machines without a single global address, communication is explicit; the 
programmer or the compiler must send messages to ship data to another node 
and must receive messages to accept data from another node. 

Let's try our summing example again for a network-connected MIMD with 
100 processors using multiple address spaces. 
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Since this computer has multiple address spaces just like a SIMD, the code 
might be similar to that version. Like the SIMD code and in contrast to the 
single-bus MIMD code, the first step is distributing the 100 subsets to each 
of the local memories. The processor containing the 100,000 numbers sends 
the subsets to each of the 100 processor-memory nodes. 

Now let's examine the SIMD code to see what changes need to be made 
to run on the network-connected MIMD: 
s um = O ;  
f o r  C i = O ;  i < 1 0 0 0 ; i + 1 )  / * l o o p  o v e r  e a c h  a r r a y * /  

s um = s um + A l [ i ] ;  / * s um t h e  l o c a l  a r r a y s * /  
l i m i t = 1 0 0 ; 
h a l f = 1 0 0 ; / * 1 0 0 p r o c e s s o r s  i n  t h i s n e tw o r k - M I M D * /  
r e p e a t  

h a l f  ( h a l f+ l ) / 2 ; / * s e n d  v s . r e c e i v e  d i v i d i n g l i n e * /  
i f  C P n >= h a l f  & &  P n  < l i m i t )  s e n d ( P n - h a l f . s um ) ;  
i f  C P n < ( l i m i t / 2 - 1 ) )  s um = s u m + r e c e i v e ( ) ;  
l i m i t = h a l f ;  / * u p p e r l i m i t o f  s e n d e r s * /  

u n t i l ( h a l f == l ) ;  / * e x i t w i t h  f i n a l  s um * /  
The first three lines sum the subset of numbers in each node. This code 

works fine as is. The last seven lines perform the sum of the partial sums 
from multiple address spaces. The only potential problem with the code 
above is synchronization; in SIMD, each instruction is executed in all units 
at the same time, but there is no such lockstep operation in MIMD. This 
code divides all processors into senders or receivers and each receiving pro
cessor gets only one message, so we can presume that a receiving processor 
will stall until it receives a message. Thus, send and receive can be used as 
primitives for synchronization as well as for communication, as the proces
sors are aware of the transmission of data. With these assumptions, this 
SIMD code works without modification on the network-connected MIMD. 

Figure 9.13 shows the characteristics of several network-connected MIMDs. 
Since the number of pins per chip is limited, not all processors can be connect
ed directly. This restriction has inspired a whole zoo of topologies for consid
eration in the design of the network. In the next subsection, we'll look at the 
characteristics of some of the key alternatives of network designs. 

Network Topologies 

The straightforward way to connect processor-memory nodes is to have a 
dedicated communication link between every node. Between the high 
cost/performance of this fully connected network and the low cost/perfor
mance of a bus are a set of networks that constitute a wide range of trade-offs 
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Intel iPSC/2 128 16 16 MHz 128 512 MB 896 345 1988 

nCube nCube/ten 1024 32 10 MHz 1024 512 MB 10,240 640 1987 

Intel Delta 540 32 40 MHz 540 17,280 MB 21,600 640 1991 

Thinking CM-5 1024 32 33 MHz 4096 32,768 MB 5120 5120 1991 
Machines 

FIGURE 9.13 Characteristics of four MIMD computers connected by a network. Number of FPUs means number of 
floating-point units. All these machines have distributed physical memory and multiple private address spaces. 

in cost/performance. Network costs include the number of switches, the 
number of links on a switch to connect to the network, the width (number of 
bits) per link, and length of the links when the network is mapped into a 
physical machine. For example, on a machine that scales between tens and 
thousands of processors, some links may be metal rectangles within a chip 
that are a few millimeters long, and others may be cables that must stretch 
several meters from one cabinet to another. Network performance is multifac
eted as well. It includes the latency on an unloaded network to send and 
receive a message, the throughput in terms of the maximum number of mes
sages that can be transmitted in a given time period, delays caused by conten
tion for a portion of the network, and variable performance depending on the 
pattern of communication. Another obligation of the network may be fault 
tolerance, for very large systems may be required to operate in the presence of 
broken components. 

Networks are normally drawn as graphs, with each arc of the graph repre
senting a link of the communication network. The processor-memory node is 
shown as the black square and the switch is shown as a colored circle. In this 
section, all links are bidirectional; that is, information can flow in either direc
tion. All networks consist of switches whose links go to processor-memory 
nodes and to other switches. The first improvement over a bus is a network 
that connects a sequence of nodes together: 

This topology is called a ring. Since some nodes are not directly connected, 
some messages will have to hop along intermediate nodes until they arrive at 
the final destination. 
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Unlike a bus, a ring is capable of many simultaneous transfers. Because 
there are numerous topologies to chose from, performance metrics are needed 
to distinguish these designs. Two are popular. The first is total network band
width, which is the bandwidth of each link multiplied by the number of links. 
This represents the very best case. For the ring network above with P proces
sors, the total network bandwidth would be P times the bandwidth of one link; 
the total network bandwidth of a bus is just the bandwidth of that bus, or 1 
times the bandwidth of that link. 

To balance this best case, we include another metric that is closer to the 
worst case: the bisection bandwidth. This is calculated by dividing the machine 
into two parts, each with half the nodes. Then you sum the bandwidth of the 
links that cross that imaginary dividing line. The bisection bandwidth of a ring 
is 2 times the link bandwidth and it is 1 time the link bandwidth for the bus. If 
a single link is as fast as the bus, the ring is only twice as fast as a bus in the 
worst case, but it is P times faster in the best case. 

Since some network topologies are not symmetric, the question arises of 
where to draw the imaginary line when bisecting the machine. This is a worst
case metric, so the answer is to choose the division that yields the most pessi
mistic network performance; stated alternatively, calculate all possible bisec
tion bandwidths and pick the smallest. 

At the other extreme from a ring is a fully connected network, where every 
processor has a bidirectional link to every other processor. For fully connected 
networks, the total network bandwidth is (P x P-1)/2 and the bisection band
width is (P /2)2. 

The tremendous improvement in performance of fully connected networks 
is offset by the tremendous increase in cost. This inspires engineers to invent 
new topologies that are between the cost of rings and the performance of fully 
connected networks. The evaluation of success depends in large part on the 
nature of the communication in the workload of parallel programs run on the 
machine. 

The number of different topologies that have been discussed in publications 
would be difficult to count, but the number that have been used in commercial 
parallel processors is just a handful. Figure 9.14 illustrates two of the popular 
topologies. Real machines frequently add extra links to these simple topolo
gies to improve performance and reliability. Figure 9.15 summarizes these dif
ferent topologies using the two metrics of this section for 64 nodes. 

An alternative to placing a processor at every node in a network is to leave 
only the switch at some of these nodes. The switches are smaller than proces
sor-memory-switch nodes, and thus may be packed more densely, thereby 
lessening distance and increasing performance. Such networks are frequently 
called multistage networks to reflect the multiple steps that a message may trav
el. Types of multistage networks are as numerous as single-stage networks; 
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a. 20 grid or mesh of 16 nodes b. N-cube tree of 8 nodes (8 = 23 so n = 3) 

FIGURE 9.14 Network topologies that have appeared in commercial parallel processors. 
The colored circles represent switches and the black squares represent processor-memory nodes. 
Even though a switch has many links, generally only one goes to the processor. The Boolean n
cube topology is an n-dimensional interconnect with 2" nodes, requiring n links per switch (plus 
one for the processor) and thus n nearest neighbor nodes. Frequently these basic topologies have 
been supplemented with extra arcs to improve performance and reliability. For example, the 
switches in the left and right columns of the 20 grid could be connected through the unused 
ports on each switch, making four horizontal rings. 

Performance Total network bandwidth 1 64 
Bisection bandwidth 1 2 

Cost Ports per switch n.a. 3 
Total number of links 1 128 

112 
8 
5 

176 

192 
32 

7 
256 

2016 
1024 

64 
2080 

FIGURE 9.15 Relative cost and performance of several interconnects for 64 nodes. Note 
that any network topology that scales the bisection bandwidth linearly must scale the number of 
network links faster than linearly. Figure 9.16a is an example of a fully connected network. 

Figure 9.16 illustrates two of the popular multistage organizations. A fully con
nected or crossbar network allows any node to communicate with any other node 
in one pass through the network. An Omega network uses less hardware than 
the crossbar network (2n log2 n vs. n2 switches), but contention can occur be
tween messages, depending on the pattern of communication. For example, 
the Omega network in Figure 9.16 cannot send a message from PO to P6 at the 
same time it sends a message from Pl to P7. 

Implementing Network Topologies 

This simple analysis of all the networks in this section ignores important 
practical considerations in the construction of a network. The distance of each 
link affects the cost of communicating at a high clock rate-generally, the 
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a. Cross bar b. Omega network 

A c 

B D 

c. Omega network switch box 

FIGURE 9.16 Popular multistage network topologies for 8 nodes. The switches in these drawings are simpler than in 
earlier drawings because the links are unidirectional; data comes in at the bottom and exits out the right link.The switch 
box in (c) can pass A to C and B to D or B to C and A to D. The crossbar uses n2 switches, where n is the number of proces
sors while the Omega network uses n/2 log2 n of the large switch boxes, each of which is logically composed of 4 of the 
smaller switches. In this case the crossbar uses 64 switches versus 12 switch boxes or 48 switches in the Omega network. 
The crossbar, however, can support any combination of messages between processors while the Omega network cannot. 

longer the distance, the more expensive it is to run at a high clock rate. Shorter 
distances also make it easier to assign more wires to the link, as the power to 
drive many wires from a chip is less if the wires are short. Shorter wires are 
also cheaper than long wires. A final practical limitation is that the three
dimensional drawings must be mapped onto chips and boards which are 
essentially two-dimensional media. The bottom line is that topologies that 
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U. I l l inois l l l iac IV 64 2D grid 64 5 MHz 40 2560 320 1972 
ICL DAP 4096 2D grid 1 5 MHz 0.6 2560 40 1980 
Goodyear MPP 16,384 2D grid 1 10 MHz 1.2 20,480 160 1982 
Thinking CM-2 1024 to 4096 12-cube 1 7 MHz 1 65,536 1024 1987 
Machines 
nCube nCube/ten 1 to 1024 10-cube 1 10 MHz 1.2 10,240 640 1987 
Intel iPSC/2 16 to 128 7-cube 1 16 MHz 2 896 345 1988 
Mas par MP-1216 32 to 512 2D grid + 1 25 MHz 3 23,000 1300 1989 

multistage 
Omega 

Intel Delta 540 2D grid 16 40 MHz 40 21,600 640 1991 
Thinking CM-5 32 to 1024 Multistage 4 40 M Hz 20 20,480 5120 1991 
Machines fat tree 

FIGURE 9.17 Characteristics of networks of some parallel processors mentioned in this chapter. The Maspar 
machine packs 32 4-bit processors per node chip, and the CM-2 packs 16 1-bit processors per node chip. The 2D grid of the 
Intel Delta is 16 rows by 35 columns. 

appear elegant when sketched on the blackboard may look awkward when 
constructed from chips, cables, boards, and boxes. To put this section in per
spective, Figure 9.17 lists the networks used in the parallel processors used in 
this book. Note that this figure includes SIMDs as well as MIMDs. In the fol
lowing subsection, we describe a network-connected MIMD in more detail. 

The Connection Machine 5 from Thinking Machines 

One system design goal of the CM-5, which was introduced by Thinking 
Machines Corporation in 1991, was to scale to 1 teraFLOPs-one million 
megaFLOPS-which would require thousands of processors, given the avail
able technologies. As a result, the design emphasizes the scalability of all 
aspects of the system, particularly the data network. The CM-5 attaches both 
processing nodes and I/O devices to the data network, allowing both compu
tation and I/O bandwidth to scale as required by the customer. Thus, users 
could have a machine with 1024 processors and connections for 32 disk sys
tems, or 32 processors and 1024 disk systems. Initial orders for the machine 
varied between 32 and 1024 processors. 

The CM-5 bridges traditional SIMD and MIMD architectures by supple
menting the traditional data network with a second network, called the control 
network, which directly supports SIMD communication operations. This al
lows the CM-5 to take advantage of the SIMD software technology developed 
for the CM-2, as well as supporting other MIMD programming styles. 
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Memory 
Memory Memory 

8 Mbytes 8 Mbytes 
8 Mbytes (optional) (optional) 

I I I 
Vector unit Vector unit Vector unit 
(optional) (optional) (optional) 

I I I I 
Memory 

controller 

t 64-bit bus t t 
RISC CM-5 

microprocessor, network 
cache interface 

t t 
To CM-5 internal communications networks 

Memory 
8 Mbytes 
(optional) 

I 
Vector unit 
(optional) 

I 

627 

64-bit paths 
(plus ECC) 

FIGURE 9.18 The CM-5 processing node. The base configuration has between 8 and 32 MB of 
memory, while the vector units only come with 32 MB. The RISC microprocessor chosen is 
SPARC. 

Because of the desire to build very large systems, the CM-5 designers in
cluded a number of features to enhance the overall system reliability. First, the 
CM-5 is designed to operate in the presence of processor or network failures, 
minimizing the performance effects of hardware failures. Second, the CM-5 in
cludes a third network, called the diagnostics network, which is capable of run
ning manufacturing quality tests on the components while they are in the 
system. Finally, the CM-5 includes many mechanisms to detect runtime fail
ures in a timely manner. These include error correcting codes on data stored 
in processor memory, and checks on the sanity of network messages as they 
pass through each switch. 

The CM-5 computation node consists of a SP ARC microprocessor with an 
optional vector execution unit, up to 32 MB of memory, and a network inter
face. Figure 9.18 illustrates the node. The SPARC processor controls the node 
and makes use of the slave vector units for operations on large floating-point 
or integer arrays. A vector unit executes SIMD-like instructions of a single op
eration on a collection of data. Instead of using multiple execution units as in 
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FIGURE 9.19 The CM·S data network fat-tree topology for 16 nodes or 1/0 devices. The 
colored circles in are switches and the squares at the bottom are processor-memory nodes. Some 
lines are in color to make the fat tree easier to understand. In this fat-tree implementation, the 
switches have four downward connections and two or four upward connections; in this figure, 
switches have two upward connections. This three-dimensional view shows the increase in band
width over a simple tree as you move up from the nodes at the bottom. 

SIMD, vector processors use a single unit that is heavily pipelined. All other 
computations are performed by the SP ARC processor itself. The node memory 
is addressable by both the vector units and the SP ARC processor. 

The vector units are optimized for streaming 64-bit data from their memory 
bank through their internal IEEE floating-point and integer AL Us. The vector 
units include internal registers for storage of temporary variables, and are ca
pable of generating their own independent memory addresses. Each vector 
unit is capable of a peak rate of 32 megaflops, giving the CM-5 computation 
node an aggregate peak rate of 128 megaflops. 

The network interface attaches the node to both the data network and con
trol network, and allows direct user access to both networks without being en
cumbered by the operating system overhead. The elaboration at the end of this 
section gives the details on how the CM-5 does this. 

The CM-5 data network is a tree-based topology, but has bandwidth added 
higher in the tree to match the requirements of common communications pat
terns. This topology, commonly called a fat tree, is shown in Figure 9.19. Data 
travels between nodes in messages which can hold 1 to 4 data words. The 
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FIGURE 9.20 The Thinking Machines' CM·S, announced in 1991, scales from 32 proces
sors up to 16,384 processors. The machine in the photograph has 768 processors. The largest 
initial order was for 1024 processors. If someone has $100,000,000 in 1993, Thinking Machines 
will build a machine with a peak performance of over one teraFLOPS. Photo courtesy of Think
ing Machines Corporation. 

nodes are numbered starting at 0, and nodes address messages to other nodes 
by this numeric address. The fat-tree topology provides many different paths 
between a given pair of nodes. The switches in the tree use randomization 
techniques to evenly spread the message load across the possible paths, and 
use switching strategies which avoid message deadlock and guarantee equal 
access to the network to all nodes. 

Figure 9.20 is a photograph of the CM-5. 

Elaboration: Giving users the abi l ity to send and receive messages without invoking 
the operating system would seem to defeat protection mechanisms necessary in  a 
mu ltiuser system. This is not the case i n  the CM-5 because of several mechanisms. 
First, messages for the operating system are tagged so that they cause an interrupt 
upon arrival at the destination, thereby invoking the operating system kernel in each 
node. Thus the user cannot subvert messages for the operating system. Second, the 
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CM-5 operating system schedules al l  the processors in a particular section of the 
machine to be running the same program, and the CM-5 hardware and operating sys
tem prevent messages from leaving a section, called a partition. Moreover, the com
plete state of the network in a partition can be saved and restored when a processor is 
swapped in and out. Because of this,  a user program cannot send or receive messages 
intended for other programs. Final ly, portions of the network interface that support 
these mechanisms are protected from the user, so a user program is l imited to send
ing and receiving user messages. 

• Future Directions for Parallel Processors 

Uniprocessor performance is improving at an unprecedented rate, with 
microprocessors leading the way. Figure 1 .19 on page 27 shows that the fast
est microprocessors have increased in performance by 50% per year every 
year since 1987. This rapid rate of change does not come free: estimates of the 
cost of development of the recent MIPS R4000 include 30 engineers for three 
years, requiring about $30 million to develop the chip, another $10 million to 
fabricate it, and 50,000 hours on machines rated at 20 MIPS to simulate the 
chip. The effort needed to reach such high levels of performance, combined 
with the relatively low cost of purchasing such microprocessors, led Cray 
Research, Intel, and Thinking Machines to use off-the-shelf microprocessors 
in their new large-scale parallel processors. 

Memory capacity has improved at a high rate for a considerably longer time 
than for processors. Figure 1 . 14  on page 22 shows that DRAMs have increased 
their capacity fourfold every three years. Once again, the tremendous devel
opment investment, combined with the low cost of purchasing DRAMs, has 
led almost all computer manufacturers, including parallel processor compa
nies, to build their memories from DRAMs. 

A final technology is the interconnection network. The bandwidth of the in
terconnection network has improved because of improvements in the speed of 
logic, improvements in the packaging of parallel processors, and simply by in
creasing the number of wires in the links that make up the interconnection net
work. For example, Intel improved its peak bandwidth per link from 0.5 
MB/second in the iPSC in 1986 to 40 MB/second in the Delta in 1991, in part 
by increasing the number of bits per link from 1 to 16. 

Thus, the three technologies available to parallel processor designers are 
fast microprocessors, high-capacity DRAMs, and increasing network band
width; interestingly, are all improving at comparable rates. 
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Facts of Life for Large-Scale Parallel Processors 

These exciting opportunities are constrained by some "facts of life" for the 
parallel processor designer. The first fact of life is that because the nodes are 
very similar to the core of a workstation, the cost of a large-scale parallel pro
cessor node is comparable to the cost of a workstation. As the most expensive 
supercomputer costs less than $25,000,000 for processor and memory and as 
the price of workstations has remained between $5000 and $10,000, even if 
such machines could match workstation prices the largest parallel processors 
will have between 2500 and 5000 nodes. This does not include the cost of the 
interconnection network, leading to even fewer nodes. Furthermore, many 
computers are purchased for scientific applications at a much lower price; 
thus, these machines have far fewer nodes than the practical maximum. For 
example, Los Alamos National Labs purchased a CM-5 with 1024 nodes, the 
Army High Performance Computer Research Center purchased a CM-5 with 
512 nodes, and both the University of California and the University of Wis
consin have parallel processors with 128 nodes. Accordingly, while a practical 
limit of the number of processors is 1000 to 10,000 in the 1990s, for many cus
tomers and applications, 100 to 1000 processors will be sufficient. 

While this number is smaller than many researchers assumed it would be, 
it is still large enough to give pause to the parallel processor designer, who 
must be very sensitive to the cost of a node. An extra $1000 per node, when 
multiplied by 1000, costs the designer's company $1,000,000, with the in
creased price to the customer on the order of $4,000,000. 

The topology of the interconnection network is important in the construc
tion of a machine that can scale from 100 to 10,000 nodes, and the best topology 
for 100 to 500 nodes may not be the choice for 1000 to 10,000 nodes. Thus, the 
topology may vary with the maximum number of nodes and the packaging 
choices for that machine. The good news is that there are many good intercon
nection network topologies to choose from; the bad news is that, given these 
fine alternatives and the importance of the topology to the cost of the machine, 
there is unlikely to be a single topology that all parallel processor companies 
will follow. For example, the nCube/2 uses a hypercube topology, the Intel 
Delta uses a two-dimensional grid, and the TMC CM-5 uses a fat tree 
(Figure 9.19). 
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Hardware 

Software 

Interface 

The lack of a standard topology is less of an obstacle to por
table parallel processor programs than one might first sus
pect. One reason is that the software overhead to send a 
message is so large that it masks the effects of the topology. 
In other words, these costs are so high that the time to send 
a message to the nearest neighbor node is similar to the time 
to send to the furthest neighbor. Figure 9.21 shows the over

head cost to send a message for several parallel processors. The overhead is 
high in some cases because the protocols are designed to send large messages, 
so that sometimes by pipelining them, the latency is seen only once. Such pipe
lined routing is called wormhole routing. Other reasons for the high overhead 
are invoking the operating system on sending or receiving a message and a 
slow interface between the processor and the network. 

The second reason for the lesser importance of topologies is that cost-effec
tive fault tolerance is incompatible with topology-dependent algorithms, be
cause by definition a broken link or node means that sometimes messages will 
follow different paths than the programmer would expect from the network 
topology. Fault tolerance is critical because a machine with 10,000 nodes, each 
similar to a workstation, should have a mean time between failures that is 
10,000 times worse than a workstation. Thus, with large parallel processors, 
the question is not whether anything is broken at any point in time, but rather 
how many components are broken. Parallel processors must work in the pres
ence of broken network links and broken nodes; hence large parallel proces-

Message overhead in Clock cycle 
Machine processor clock cycles rate Year 

nCube 6400 40 MHz 1987 

nCube, optimized software 1000 40 MHz 1987 

Intel iPSC/860 1500 33 MHz 1990 

CM-5 3600 40 MHz 1991 

CM-5, optimized software 132 40 MHz 1991 

FIGURE 9.21 Measured message overhead on several parallel processors. This does not 
include the latency of the network; just the time to launch a message. The optimized software 
uses active messages which operate at the kernel level in most machines, while the unoptimized 
software is what came from the manufacturer (T. von Eicken et al., Active Messages: A Mechanism 
for Integrated Communication and Computation, 19th Annual Symposium on Computer Architec
ture, Gold Coast, Australia, May 1992, 256-266). While we can expect the overhead to drop, it is 
likely to remain significant. 
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sors are not amenable to topology-specific algorithms even if the overhead of 
communication is reduced. 

Taken in combination, these elements deflate the value of topology-specific 
algorithms: 

• The lack of a standard topology combined with the importance of por
table parallel processor programs to the success of the industry; 

• the high overhead of communication, making the latency virtually the 
same for messages independent of the distance between nodes; and 

• operation in the presence of broken links and broken nodes. 

Two other facts of life for the parallel processor designer are summarized 
more quickly. As we saw in Figure 7.13 on page 476 in Chapter 7, DRAMs are 
getting bigger but not faster, so caches are very important to bridging the gap 
between DRAM speed and processor speed; virtually all new microprocessors 
come with caches on the chip. For this reason, locality of reference will be im
portant to get the best performance per node, just as it is for workstations. The 
second point is that floating-point performance is critical for the parallel pro
cessors. Floating-point applications created a need for vector supercomputers, 
and they sustained the vector supercomputer industry which in turn led to 
more of these applications. Hence the natural software applications for paral
lel processors are floating-point intensive applications. 

A Common Building Block 

There was considerably more diversity in the parallel processors of the 1980s, 
but the technological opportunities and facts of life of the 1990s are driving 
commercial parallel processors toward a common hardware organization. 
Figure 9.22 shows the four components of this organization: DRAM-based 
main memory, microprocessors, an interconnection network, and network 
interfaces between the processor-memory pairs and the interconnection net
work. We believe this organization will dominate commercial parallel proces
sors at least for the rest of this decade, for the reasons discussed above. 
Current examples of this popular organization include the Cray Research 
T3D, Intel Delta and Paragon, nCube parallel processors, Thinking Machines' 
CM-5, and the Transputer-based parallel processors. These companies and 
machines dominate today's large-scale parallel processor industry. 

For all these reasons, we believe designers of the massively parallel proces
sors of the 1990s are much more likely to limit the largest machine to thou
sands of 64-bit processors rather than to millions of 1-bit processors. 
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DRAM memory 

M icroprocessor 

Network interface 

DRAM memory 

M icroprocessor 

Network i nterface 

network 

FIGURE 9.22 The common organization of parallel processors for the 1990s. This organi
zation characterizes most parallel processors. For example, it covers the Cray Research MPPP, 
Intel Paragon, nCube, Thinking Machines CM-5, and Transputer-based parallel processors, such 
as the Meiko Computing Surface or the Parsytec GC. 

A key characteristic of programs for parallel machines 
is frequency of synchronization and communication. 
Large-scale parallel machines have distributed physi
cal memory; the higher bandwidth and lower over
head of local memory compared to nonlocal memory 
strongly rewards parallel processing programmers 

who utilize locality. 

Addressing in Large-Scale Parallel Processors 

With widespread agreement on distributed memory, the next question facing 
future machines is communication. For the hardware designer the simplest 
solution is to offer only send and receive instead of the implicit communica
tion that is possible as part of any load or store. Send and receive also have 
the advantage of making it easier for the programmer to optimize 
communication: It's simpler to overlap computation with communication by 
using explicit sends and receives rather than implicit loads and stores. 
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On the other hand, loads and stores normally have much lower communi
cation overhead than do sends and receives. And some applications will have 
references to remote information that is only occasionally and unpredictably 
accessed, so it is much more efficient to use an address to remote data rather 
than to retrieve it in case it might be used. Adding a single address space to 
sends and receives so that communication is possible as part of any load or 
store is harder, although it is comparable to the virtual memory system al
ready found in most processors (see Chapter 7). A uniprocessor uses page ta
bles to decide if an address points to data in local memory or on a disk; this 
translation system might be modified to decide if the address points to local 
data, to data in another processors's memory, or to disk. 

Caches are important to performance no matter how communication is per
formed, so we want to allow the shared data to appear in the cache of the pro
cessor that owns the data as well as in the processor that requests the data. 
Thus, the single global address resurrects cache coherency, since there are 
multiple copies of the same data with the same address in different processors. 
Clearly the bus-snooping protocols of section 9.5 won't work here, as there is 
no single bus on which all memory references are broadcast. 

An alternative to bus snooping is directories. In directory-based protocols 
there is logically a single directory that keeps the state of every block in main 
memory. Information in the directory can include which caches have copies 
of the block, whether it is dirty, and so on. Of course, directory entries can be 
distributed so that different requests can go to different memories, thereby re
ducing contention and allowing a scalable design. Directories retain the char
acteristic that the sharing status of a block is always in a single known location, 
making a large-scale parallel processor plausible. 

Designers of snooping caches and directories face similar issues; the only 
difference is the mechanism that detects when there is a write to shared data. 
Instead of watching the bus to see if there are requests that require that the lo
cal cache be updated or invalidated, the directory controller sends explicit 
commands to each processor that has a copy of the data. Such messages can 
then be sent over the network. 
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Note that with a single address space, the data could be 
placed arbitrarily in memories of different processors. This 
has two negative performance consequences. The first is that 
the miss penalty would be much longer because the request 
must go over the network. The second is that the network 
bandwidth would be consumed moving data to the proper 
processors. For programs that have low miss rates, this may 

not be significant. On the other hand, programs with high miss rates will have 
much lower performance when data is assigned randomly. If the programmer 
or the compiler allocates data to the processor that is likely to use it, then this 
performance pitfall is removed. Unlike private memory organizations, this al
location only needs to be good, since missing data can still be fetched. Such le
niency simplifies the allocation problem. 

Another possible solution is to add a second level of coherence to the main 
memory for every processor. This directory would allow blocks of main mem
ory to migrate, relieving the programmer or the compiler of memory alloca
tion. As long as main memory blocks are not frequently shipped back and 
forth repeatedly, this scheme may achieve the performance of intelligent allo
cation of memory at the cost of considerably more hardware complexity. This 
scheme is called cache only memory and is used by the Kendall Square Re
search KSR-1 .  

Figure 9.23 summarizes the coherency options for a single address space. 

"Superclusters" 

The similarity of the parallel processing nodes and workstations suggests that 
parallel processing of the future may use off-the-shelf computers. If high
speed local area networks connect desktop computers through a high-band
width central switch and the message sending overhead can be reduced on 
workstations, then the distinction between parallel processors and clusters of 
workstations may vanish later in the decade. Parallel processing in the year 
2000 may simply be software that uses idle workstations on the network. 
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FIGURE 9.23 Options for a single address space in a large-scale parallel processor. The colored rectangles represent 
the replicated data. (a) Coherence at cache level using directories in a network-connected parallel processor. The original 
data is in memory and the copies are replicated only in the caches. (b) Coherence at memory level using directories in a net
work connected parallel processor. The copies are replicated in remote memory and in the caches. The scheme in (b) is sim
ilar to the scheme used in the Kendall Square Research parallel processor, the KSR-1. As long as memory is coherent, the 
data can be safely cached. If the data in a memory is invalidated, then corresponding blocks in the cache must be invali
dated as well. 

• Fallacies and Pltfalls 

Number 9: Quote performance in terms of processor utilization, parallel speedups 
or MFLOPS per dollar. 

David H. Bailey, "Twelve ways to fool the masses when giving performance 
results on parallel supercomputers," Supercomputing Review, 1991 

The many assaults on parallel processing have uncovered numerous fallacies 
and pitfalls. We cover three here. 

Pitfall: Measuring performance of parallel processors by linear speedup versus ex
ecution time. 

"Mortar shot" graphs-plotting performance compared to the number of pro
cessors showing linear speedup, a plateau, and then a falling-off-have long 
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been used to judge the success of parallel processors. Although scalability is 
one facet of a parallel program, it is an indirect measure of performance. The 
primary question to be asked concerns the power of the processors being 
scaled: a program that linearly improves performance to equal 100 Intel 
8086s may be slower than the sequential version on a workstation. Be espe
cially careful of floating-point-intensive programs, as processing elements 
without floating-point hardware assist may scale wonderfully but have poor 
collective performance. 

Measuring results using linear speedup compared to the execution time can 
mislead the programmer as well as those hearing the performance claims of 
the programmer. Many programs with poor speedup are faster than programs 
which show excellent speedup as the number of processors increases. 

Comparing execution times is fair only if you are comparing the best algo
rithms on each machine. (Of course, you can't subtract time for idle processors 
when evaluating a parallel processor, so CPU time is an inappropriate metric 

· for parallel processors.) Comparing the identical code on two machines may 
seem fair, but it is not; the parallel program may be slower on a uniprocessor 
than a sequential version. Sometimes, developing a parallel program will lead 
to algorithmic improvements, so that comparing the previously best-known 
sequential program with the parallel code-which seems fair-compares in
appropriate algorithms. To reflect this issue, sometimes the terms relative 
speedup (same program) and true speedup (best programs) are used. 

Fallacy: Amdahl's Law doesn't apply to parallel computers. 

In 1987 the head of a research organization claimed that Amdahl's Law had 
been broken by a MIMD machine. To try to understand the basis of the media 
reports, let's see the quote that gave us Amdahl's Law [1967, p. 483]:  

A fairly obvious conclusion which can be drawn at this point is that the ef
fort expended on achieving high parallel processing rates is wasted unless 
it is accompanied by achievements in sequential processing rates of very 
nearly the same magnitude. 

This statement must still be true; the neglected portion of the program must 
limit performance. One interpretation of the law leads to the following 
lemma: portions of every program must be sequential, so there must be an 
economic upper bound to the number of processors-say 100. By showing 
linear speedup with 1000 processors, this lemma is disproved and hence the 
claim that Amdahl's Law was broken. 

The approach of the researchers was to change the input to the 
benchmark: Rather than going 1000 times faster, they computed 1000 times 
more work in comparable time. For their algorithm, the sequential portion of 
the program was constant, independent of the size of the input, and the rest 



9.8 Fallacies and Pitfalls 639 

Harmon ic mean 
MFLOPS of the 

Peak MFLOPS Perfect Club Percent of peak 
Machine rating benchmarks MFLOPS 

Cray X-MP/416 940 14.8 1% 

I BM 3090-6005 800 8.3 1% 

NEC SX/2 1300 16.6 1% 

FIGURE 9.24 Peak performance and harmonic mean of actual performance for the 12 
Perfect Club Benchmarks. These results are for the programs run unmodified. When tuned by 
hand, performance of the three machines moves to 24.4, 11.3, and 18.3 MFLOPS, respectively. 
This is still 2'1o or less of peak performance. 

was fully parallel-hence, linear speedup with 1000 processors. Simply scal
ing the size of applications, without also scaling floating-point accuracy, the 
number of iterations, the 1/0 requirements, and the way applications deal 
with error may be naive. Many applications will not calculate the correct result 
if the problem size is increased unwittingly. 

We see no reason why Amdahl's Law doesn't apply to parallel processors. 
What this research does point out is the importance of having benchmarks that 
can grow large enough to demonstrate performance of large-scale parallel pro
cessors. 

Fallacy: Peak performance tracks observed performance. 

One definition of peak performance is "performance that a machine is guar
anteed not to exceed." Alas, the supercomputer industry uses this metric in 
marketing, and its fallacy is being exacerbated with parallel machines. Not 
only are industry marketers using the nearly unattainable peak performance 
of a uniprocessor node (Figure 9.24), but they are then multiplying it by the 
total number of processors, assuming perfect speedup! Amdahl's Law sug
gests how difficult it is to reach either peak; multiplying the two together also 
multiplies the sins. Figure 9.25 compares the peak to sustained performance 
on two benchmarks; the 128 processor iPSC achieves only 3% to 9% of peak 
performance. Clearly peak performance does not track observed perfor
mance. (The iPSC cost one-tenth of the Cray, so it is has better cost/perfor
mance.) 

Such performance claims can confuse the manufacturer as well as the user 
of the machine. The danger is that the manufacturer will develop software li
braries with success judged as percentage of peak performance measured in 
megaflops compared to less time, or that hardware will be added that increas
es peak node performance but is difficult to use. 
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Cray YMP ( 8  Procs) Intel iPSC/860 ( 128 Procs) 

MFLOPS % Peak MFLOPS % Peak 

Peak 2666 100% 7680 100% 

30 FFT PDE 1795 67% 696 9% 

LU Pseudo App 1705 64% 224 3% 

FIGURE 9.25 Peak versus observed performance for Cray YMP and Intel IPSC/860. The 
prices are estimated at $25,000,000 for the Cray versus $2,500,000 for the iPSC, so the iPSC has 
better price/performance. This table was derived from the talk, "Performance Results for the 
NAS Parallel Benchmarks" given by David H. Bailey at Supercomputing '91 in Albuquerque, 
New Mexico, on November 14, 1991. 

Concluding Remarks-Evolution versus 

Revolution in Computer Architecture 

The stumbling way in which even the ablest of the scientists in every generation 
have had to fight through thickets of erroneous observations, misleading generali
zations, inadequate formulations, and unconscious prejudice is rarely appreciated 
by those who obtain their scientific knowledge from textbooks. 

James B. Conant, Science and Common Sense, 1951 

Reading conference and journal articles from the last 25 years can leave one 
discouraged; so much effort has been expended with so little impact. Opti
mistically speaking, these papers act as gravel and, when placed logically 
together, form the foundation for the next generation of computers. From a 
more pessimistic point of view, if 90% of the ideas disappeared, no one would 
notice. 

One reason for this predicament is what could be called the "von Neumann 
syndrome." By hoping to invent a new model of computation that will revolu
tionize computing, researchers are striving to become the von Neumann of the 
21st century. Another reason is taste: researchers often select problems that no 
one else cares about. Even if important problems are selected, there is fre
quently a lack of experimental evidence to demonstrate convincingly the value 
of the solution. Moreover, when important problems are selected and the so
lutions are demonstrated, the proposed solutions may be too expensive rela
tive to their benefit. Sometimes this expense is measured as straightforward 
cost/performance-the performance enhancement does not merit the added 
cost. More often the expense of innovation comes from being too disruptive to 
computer users. Figure 9.26 shows what we mean by the evolution-revolution 
spectrum of computer architecture innovation. To the left are ideas that are in-
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FIGURE 9.26 The evolution-revolution spectrum of computer architecture. The first four 
columns are distinguished from the last column in that applications and operating systems may 
be ported from other computers rather than written from scratch. For example, RISC is listed in 
the closer to the spectrum because user compatibility is only at the level of high-level languages 
(HLLs), while microprogramming allows binary compatibility, and parallel processing MIMDs 
require changes to algorithms and extending HLLs. Timeshared MIMD means MIMDs justified 
by running many independent programs at once, while parallel processing MIMD means 
MIMDs intended to run a single program faster. 

visible to the user (presumably except better cost, better performance, or both); 
this is the evolutionary end of the spectrum. At the other end are revolutionary 
architecture ideas. These are the ideas that require new applications from 
programmers who must learn new programming languages and models of 
computation, and must invent new data structures and algorithms. 

Revolutionary ideas are easier to publish than evolutionary ideas, but to be 
adopted they must have a much higher payoff. Caches are an example of an 
evolutionary improvement. Within five years after the first publication about 
caches, almost every computer company was designing a machine with a 
cache. The Reduced Instruction Set Computer (RISC) ideas were nearer to the 
middle of the spectrum, for it took closer to ten years for most companies to 
have a RISC product. An example of a revolutionary computer architecture is 
the Connection Machine-1 . Every program that runs efficiently on that ma
chine was either substantially modified or written especially for it, and pro
grammers need to learn a new style of programming for it. Thinking Machines 
was founded in 1983, but only a few companies offer machines like the CM-1, 
and that company has significantly evolved away from the original architec
ture. Note that Thinking Machines is older than most RISC companies, and yet 
the RISC technology is practically universal. 



642 Chapter 9 Parallel Processors 

Projects that the computer industry ignores may be valuable if they docu
ment the lessons learned for future efforts. The sin is not in having a novel 
architecture that is commercially unsuccessful, but in neglecting to quantita
tively evaluate the strengths and weaknesses of the novel ideas. Failures of 
past research projects do not mean that the ideas are dead forever. Changes in 
technology may rejuvenate an idea that previously had the wrong trade-offs 
or rejuvenate an idea that was ahead of the technology. 

When contemplating the future-and inventing your own contributions to 
the field-remember the evolution-revolution spectrum. Acceptance of hard
ware ideas means acceptance by software people; therefore, hardware people 
must learn more about software. And if software people want good machines, 
they must learn more about hardware to be able to communicate with and 
thereby influence hardware designers. Also, keep in mind the principles of 
computer organization found in this book; these will surely guide computers 
of the future, just as they have guided computers of the past. 

-liiil Historical Perspective and Further Reading 

For over a decade prophets have voiced the contention that the organization of a sin
gle computer has reached its limits and that truly significant advances can be made 
only by interconnection of a multiplicity of computers in such a manner as to per
mit cooperative solution . . . .  Demonstration is made of the continued validity of 
the single processor approach . . .  

Gene Amdahl, "Validity of the single processor approach to achieving large scale 
computing capabilities," Spring Joint Computer Conference, 1 967 

The earliest ideas on SIMD predate the Illiac IV (seen in Figure 9.27), perhaps 
the most infamous of the supercomputer projects. Although successful in 
pushing several technologies useful in later projects, the Illiac IV failed as a 
computer. Costs escalated from the $8 million estimated in 1966 to $31 million 
by 1972, despite the construction of only a quarter of the planned machine. 
Actual performance was at best 15 MFLOPS compared to initial predictions of 
1000 MFLOPS for the full system (see Falk [1976]) .  Delivered to NASA's Ames 
Research in 1972, the computer took three more years of engineering before it 
was operational. For better or worse, computer architects are not easily dis
couraged; SIMD successors of the Illiac IV include the ICL OAP, Goodyear 
MPP (Figure 9.28), Thinking Machines CM-1 and CM-2, and Maspar MP-1 
and MP-2. 

It is difficult to distinguish the first parallel processor. The first computer 
from the Eckert-Mauchly Corporation, for example, had duplicate units to im-
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FIGURE 9.27 The llllac IV control unit followed by Its 64 processing elements. It was per
haps the most infamous of supercomputers. The project started in 1965 and ran its first real appli
cation in 1976. The 64 processors used a 13-MHz clock, and their combined main memory size 
was 1 megabyte: 64 x 16KB. The Illiac IV was the first machine to teach us that software for par
allel machines dominates hardware issues. Photo courtesy of NASA Ames Research Center. 

prove reliability. After several laboratory attempts at parallel processors, the 
first successful commercial parallel processors appeared in the 1980s. Bell 
[1985] suggests the key to success was that the smaller size of the microproces
sor allowed the memory bus to replace the interconnection network hardware, 
and that portable operating systems meant that parallel processor projects no 
longer required the invention of a new operating system. He distinguishes 
parallel processors with multiple private address by calling them multicomput
ers, reserving the term multiprocessor for machines with a single address space. 

There is a vast amount of information on parallel processors: conferences, 
journal papers, and even books seem to be appearing faster than any single 
person can absorb the ideas. One good source is the Supercomputing confer
ence, held annually since 1988. The papers cover applications, algorithms, and 
architecture, a mix that we think bodes well for the future. Textbooks on par-
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FIGURE 9.28 The Goodyear MPP with 16,384 processors. It was delivered May 2, 1983 to 
NASA Goddard Space Center and was operational the next day. It was decommissioned on 
March 1, 1991. 

allel computing have been written by Almasi and Gottlieb [1989], Hockney 
and Jesshope [1988], and Hwang [1993] . 

It is hard to predict the future, yet Gordon Bell has made two predictions 
for 1995. The first is that a computer capable of sustaining a TeraFLOPS 
(TFLOPS)-one million MFLOPS-will be constructed by 1995, using either a 
MIMD with 4K to 32K nodes or a SIMD with several million processing ele
ments [Bell 1989].  To put this prediction in perspective, each year the Gordon 
Bell Prize acknowledges advances in parallelism, including the fastest real 
program (highest MFLOPS). Figure 9.29 shows the winners of the prize. Ma
chines and programs will have to improve by a factor of 3 each year for the 
fastest program to achieve 1 TFLOPS in 1995. So far they are on track. In 1991 
Thinking Machines announced the CM-5, a computer that can scale to 1 
TFLOPS-provided someone is willing to pay well in excess of $100,000,000 to 
buy one. 

The second Bell prediction concerns the number of data streams in super
computers shipped in 1995. Danny Hillis of Thinking Machines believes that 
while supercomputers with a small number of data streams may be best-sell
ers, the biggest machines will have many data streams, and these will perform 
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1988 400 Cray X-MP 4 8 

1989 1680 Cray Y-MP 8 16 

1990 5600 CM-2 65,536 2048 

1991 14,200 CM-2 65,536 2048 

FIGURE 9.29 Winners of Gordon Bell Prize for highest floating-point performance for a 
real application program. The 1991 example is for 32-bit floating-point operations, while the 
others are for 64-bit floating-point operations. 

the bulk of the computations. Bell bet Hillis that in the last quarter of 1995, 
more sustained MFLOPS will be shipped in machines using few data streams 
(::::JOO) as opposed to many data streams (:::::1000). This bet concerns only super
computers, defined as machines costing more than $1,000,000 and used for sci
entific applications. Sustained MFLOPS is defined for this bet as the number 
of floating-point operations per month, so the availability of machines affects 
their rating. The loser must write and publish an article explaining why his 
prediction failed; your authors will act as judge and jury. 

To Probe Further 

Almasi, G. 5., and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/Cummings, Redwood 
City, Calif. 

A textbook covering parallel computers. 

Amdahl, G. M., [1967]. "Validity of the single processor approach to achieving large scale com
puting capabilities," Proc. AFIPS Spring Joint Computer Conf 30, Atlantic City, N. J. (April) 483-
485. 

Written in response to the claims of the llliac IV, this three-page article describes Amdahl's Law and gives 
the classic reply to arguments for abandoning the current form of computing. 

Bell, C. G. [1989]. "The future of high performance computers in science and engineering," Comm. 
ACM 32:9 (September) 1091-1101. 

Reviews the trends in computing and speculates on the future of SIMD and MIMD. 

Falk, H. [1976]. "Reaching for the Gigaflop," IEEE Spectrum 13:10 (October) 65-70. 

Chronicles the sad story of the Illiac IV: four times the cost and less than one-tenth the performance of 
original goals. 

Flynn, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909. 

Classic article showing SISD/SIMD/MISD/MIMD classifications. 
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Hockney, R. W., and C.  R. Jesshope [1988]. Parallel Computers-2, Architectures, Programming and 
Algorithms, Adam Hilger Ltd., Bristol, England, and Philadelphia. 

Another textbook covering parallel computers. 

Hord, R. M. [1982]. The Illiac-IV, the First Supercomputer, Computer Science Press, Rockville, Md. 

A historical accounting of the Illiac IV project. 

Hwang, K. [1993]. Advanced Computer Architecture with Parallel Programming, McGraw-Hill, New 
York. 

Another textbook covering parallel computers. 

Moldovan, D. I. [1993]. Parallel Processing from Applications to Systems, Morgan Kaufmann Pub
lishers, San Mateo, Calif. 

An introduction to multiprocessor architectures, including the structure of parallel processors and parallel 
algorithms. 

Seitz, C. [1985]. "The Cosmic Cube," Comm. ACM 28:1 (January) 22-31. 

A tutorial article on a parallel processor connected via a hypertree. The Cosmic Cube is the ancestor of the 
Intel supercomputers. 

Slotnick, D. L. [1982]. "The conception and development of parallel processors-A personal 
memoir," Annals of the History of Computing, 4:1 (January) 20-30. 

Recollections of the beginnings of parallel processing by the architect of the Illiac IV 

Exercises 

9.1 [15] <§9.2, 9.3> What trends favor MIMD over SIMD, and vice versa? 
Consider synchronization and utilization of memory and processors. 

9.2 [15] <§9.7> Figure 9.21 shows how communication in a large-scale paral
lel processor can take hundreds of clock cycles. What hardware and software 
techniques might reduce this time? How can you change the architecture or 
the programming model to make a computer more immune to such delays? 

9.3 [5] <§9.5> Count the number of transactions on the bus for the following 
sequence of activities involving shared data. Assume that both processors use 
write-back caches and write-update cache coherency and use a block size of 
one word. Assume that all the words in both caches are clean. 

1 Processor 1 Write 100 

2 Processor 2 Write 104 

3 Processor 1 Read 100 

4 Processor 2 Read 104 
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9.4 [ 10] <§9.5> False sharing can lead to unnecessary bus traffic and delays. 
Follow the directions for Exercise 9.3, except change the block size to four 
words. 

9.5 [15] <§9.6> Another possible network topology is a three-dimensional 
grid. Draw the topology as in Figure 9.14 for 64 nodes. What is the bisection 
bandwidth of this topology? 

9.6 [ 10] <§9.6> The fat tree used in the CM-5 has four children instead of two 
as in the binary tree. Recall that the processors are only on the leaves of the tree 
with the parents only being switches. Compare the worst-case latency for a 
machine with 1024 processors for a binary tree and a fat tree. 

9.7 [15] <§9.10> Construct a scenario whereby a truly revolutionary architec
ture-pick your favorite candidate-will play a significant role. Significant is 
defined as 10% of the computers sold, 10% of the users, 10% of the money 
spent on computers, or 10% of some other figure of merit. 

9.8 [2 hours] <§9.2> The CM-2 uses 64K 1-bit processors in SIMD mode. Bit
serial operations may easily be simulated 32 bits per operation by a 32-bit
wide SISD, at least for logical operations. The CM-2 takes about 500 ns for such 
operations. If you have access to a fast SISD, calculate how long add and AND 
take on 64K 1-bit numbers. Find a way to make them run fast on the SISD. 

9.9 [2 hours] <§9.2> A popular use of the CM-2 is to operate on 32-bit data us
ing multiple steps with the 64K 1-bit processors. The CM-2 takes about 21 mi
croseconds for a 32-bit AND or add. Simulate this activity on a fast SISD; 
calculate how long it takes to add and AND 64K 32-bit numbers. 

9.10 [1 week] <§9.8> Super-linear performance improvement means a pro
gram on n processors is more than n times faster than the equivalent 
uniprocessor. One argument for super-linear speedup is that time spent ser
vicing interrupts or switching contexts is reduced when you have many pro
cessors, because only one needs service interrupts and there are more 
processors to be shared by users. Measure the time spent on a workload in 
handling interrupts or context switching on a uniprocessor versus a parallel 
processor. This workload may be a mix of independent jobs for a multipro
gramming environment or a single large job. Does the argument hold? 

9.11 [1 week] <§9.5, 9.6> A parallel processor is typically marketed using pro
grams that can scale performance linearly with the number of processors. Port 
programs written for one parallel processor to the other and measure their ab
solute performance and how it changes as you change the number of proces
sors. What changes must be made to improve performance of the ported 
programs on each machine? What is performance according to each program? 
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9.12 [ 1  week] <§9.5, 9.6> Instead of trying to create fair benchmarks, invent 
programs that make one parallel processor look terrible compared with the 
others, and also programs that always make one look better than others. What 
are the key performance characteristics of each program and machine? 

9.13 [1 week] <§9.5, 9.6> Parallel processors usually show performance in
creases as you increase the number of processors, with the ideal being n times 
speedup for n processors. The goal of this exercise is to create a biased bench
mark that gets worse performance as you add processors. For example, this 
means that 1 processor on the parallel processor would run the program fast
est, 2 would be slower, 4 would be slower than 2, and so on. What are the key 
performance characteristics for each organization that give inverse linear 
speedup? 

9.14 [1 week] <§9.6, 9.7> Networked workstations may be considered paral
lel processors, albeit with slow communication relative to computation. Port 
parallel processor benchmarks to a network using remote procedure calls for 
communication. How well do the benchmarks scale on the network versus the 
parallel processor? What are the practical differences between networked 
workstations and a commercial parallel processor? 
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Introduction 

Encoding instructions as binary numbers is natural and efficient for comput
ers. Humans, however, have a great deal of difficulty understanding and 
manipulating these numbers. People read and write symbols (words) much 
better than long sequences of digits. Chapter 3 showed that we need not 
choose between numbers and words because computer instructions can be 
represented in many ways. Humans can write and read symbols and comput
ers can execute the equivalent binary numbers. This appendix describes the 
process by which a human-readable program is translated into a form that a 
computer can execute, provides a few hints about writing assembly pro
grams, and explains how to run these programs on SPIM, a simulator that 
executes MIPS programs. 

Assembly language is the symbolic representation of a computer's binary en
coding-machine language. Assembly language is more readable than machine 
language because it uses symbols instead of bits. The symbols in assembly lan
guage name commonly occurring bit patterns, such as opcodes and register 
specifiers, so people can read and remember them. In addition, assembly lan
guage permits programmers to use labels to identify and name particular 
memory words that hold instructions or data. 
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FIGURE A.1 The process that produces an executable flle. An assembler translates a file of 
assembly language into an object file, which is linked with other files and libraries into an execut
able file. 

A tool called an assembler translates assembly language into binary instruc
tions. Assemblers provide a friendlier representation than a computer's zeros 
and ones that simplifies writing and reading programs. Symbolic names for 
operations and locations are one facet of this representation. Another facet is 
programming facilities that increase a program's clarity. For example, macros, 
discussed in section A.2, enable a programmer to extend the assembly lan
guage by defining new operations. 

An assembler reads a single assembly language source file and produces an 
object file containing machine instructions and bookkeeping information that 
helps combine several object files into a program. Figure A.1 illustrates how a 
program is built from modules. Most programs consist of several files-also 
called modules-that are written, compiled, and assembled independently. A 
program may also use prewritten routines supplied in a program library. A 
module typically contains references to subroutines and data defined in other 
modules and in libraries. The code in a module cannot be executed when it 
contains unresolved references to labels in other object files or libraries. Another 
tool called a linker combines a collection of object and library files into an exe
cutable file, which a computer can run. 

To see the advantage of assembly language, consider the following se
quence of figures, all of which contain a short subroutine that computes and 
prints the sum of the squares of integers from 0 to 100. Figure A.2 shows the 
machine language that a MIPS computer executes. With considerable effort, 
you could use the opcode and instruction format tables in Chapters 3 and 4 to 
translate the instructions into a symbolic program similar to Figure A.3. This 
form of the routine is much easier to read because operations and operands are 
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0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0  
1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0  
1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0  
1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  
1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0  
1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0  
1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1  
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1  
1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0  
0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1  
0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1  
1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 
0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0  
1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0  
0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1  

A·S 

FIGURE A.2 MIPS machine language code for a routine to compute and print the sum of 
the squares of Integers between O and 100. 

written with symbols, rather than with bit patterns. However, this assembly 
language is still difficult to follow because memory locations are named by 
their address, rather than by a symbolic label. 

Figure A.4 shows assembly language that labels memory addresses with 
mnemonic names. Most programmers prefer to read and write this form. 
Names that begin with a period, for example . d a t a  and . g l o b  l ,  are assembler 
directives that tell the assembler how to translate a program but do not produce 
machine instructions. Names followed by a colon, such as s t  r or ma i n , are la
bels that name the next memory location. This program is as readable as most 
assembly language programs (except for a glaring lack of comments), but it is 
still difficult to follow because many simple operations are required to accom
plish simple tasks and because assembly language's flat structure and lack of 
control-flow constructs provide few hints about the program's operation. By 
contrast, the C routine in Figure A.5 is both shorter and clearer since variables 
have mnemonic names and the loop is explicit rather than constructed with 
branches. (Readers unfamiliar with C should look at Appendix D.) In fact, the 
C routine is the only one that the author wrote. The other forms of the program 
were produced by a C compiler and assembler. 
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a d d i u  $ 2 9 , $ 2 9 , - 32 
S W  $ 3 1 , 2 0 ( $ 2 9 ) 
S W  $ 4 , 3 2 ( $ 2 9 )  
S W  $ 5 '  36 ( $ 2 9 ) 
S W  $ 0 ,  24 ( $ 2 9 ) 
S W  $ 0 ,  28 ( $ 2 9 ) 
l w $ 1 4 ' 2 8 (  $ 2 9 ) 
l w $ 2 4 , 2 4 ( $ 2 9 ) 
m u l t u  $ 1 4 ,  $ 1 4  
a d d i u  $ 8 , $ 1 4 ,  1 
s l t  i $ 1 , $ 8 ,  1 0 1  
S W  $ 8 ,  28 ( $ 2 9 )  
m f l o $ 1 5  
a d  d u  $ 2 5 , $ 2 4 , $ 1 5  
b n e  $ 1 , $ 0 , 9 
S W  $ 2 5 , 2 4 ( $ 2 9 )  
l u i $ 4 ' 4 0 9 6  
l w  $ 5 ,  24 ( $ 2 9 ) 
j a l  1 0488 1 2  
a d d i u  $ 4 ' $ 4 ' 1 0 7 2  
l w  $ 3 1 , 2 0 ( $ 2 9 ) 
a d d i u  $ 2 9 , $ 2 9 , 32  
j r $ 3 1  
move  $ 2 , $ 0  

FIGURE A.3 The same routine written In assembly language. However, the code for the rou
tine does not label memory locations nor include comments. 

In general, assembly language plays two roles (see Figure A.6). The first 
role is the output language of compilers. A compiler translates a program writ
ten in a high-level language (such as C or Pascal) into an equivalent program in 
machine or assembly language. The high-level language is called the source 
language and the compiler's output is its target language. 

Assembly language's other role is as a language in which to write pro
grams. This role used to be the dominant one. Today, however, because of 
larger main memories and better compilers, most programmers write in a 
high-level language and rarely, if ever, see the instructions that a computer ex
ecutes. Nevertheless, assembly language is still important to write programs 
in which speed or size are critical or to exploit hardware features that have no 
analogues in high-level languages. 

Elaboration: Compi lers can produce machine language directly instead of relying on 
an assembler. These compi lers typically execute much faster than those that invoke an 
assembler as part of compilation. However, a compiler that generates machine lan
guage must perform many tasks that an assembler normally handles, such as resolv-
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. t e x t  

. a l i g n 2 

. g l o b  l m a i n  
m a i n :  

s u b u  $ 2 9 , $ s p ,  3 2  
S W  $ 3 1 , 2 0 ( $ 2 9 ) 
s d  $ 4 ,  3 2 ( $ 2 9 ) 
S W  $ 0 ,  2 4 ( $ 2 9 ) 
S W  $ 0 , 28 ( $ 2 9 ) 

l o o p : 
l w  $ 1 4 ,  28 ( $ 2 9 ) 
m u l  $ 1 5 , $ 1 4 ,  $ 1 4  
l w $ 2 4 , 2 4 ( $ 2 9 ) 
a d  d u  $ 2 5 , $ 2 4 , $ 1 5  
S W  $ 2 5 , 2 4 ( $ 2 9 ) 
a d  d u  $8 , $ 1 4 ,  1 
S W  $ 8 ,  2 8 ( $ 2 9 ) 
b l e $ 8 ,  1 0 0 , l o o p  
l a  $ 4 , s t r  
l w $ 5 ,  24 ( $ 2 9 ) 
j a l  p r i  n t f  
m o v e  $ 2 ' $ 0  
l w $ 3 1 , 2 0 ( $ 2 9 ) 
a d  d u  $ 2 9 , $ 2 9 , 32  
j $ 3 1  

. d a t a  

. a l i g n 0 
s t r :  

. a s c  i i  z " T h e  s u m  f r om 0 . .  1 0 0  i s  %d \ n "  

FIGURE A.4 The same routine written In assembly language with labels, but no com
ments. The commands that start with periods are assembler directives (see pages A-48-A-50) . 

. t e x t  indicates that succeeding lines contain instructions. . d a t a  indicates that they c<;?ntain 
data . . a l  i g n n indicates that the items on the succeeding lines should be aligned on a 2 byte 
boundary. Hence, . a l i g n 2 means the next i tern should be on a word boundary. . g l ob l ma i n 
declares that main is a global symbol that should be visible to code stored in other files. Finally, 
. a s  c i i z stores a null-terminated string in memory. 

i ng addresses and encoding instructions as binary numbers. The trade-off is between 
compi lation speed and compiler simplic ity. 

Although this appendix focuses on MIPS assembly language, assembly 
programming on most other machines is very similar. The additional instruc
tions and address modes in CISC machines, such as the VAX (see 
Appendix E), can make assembly programs shorter but do not change the pro-
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# i n c l u d e  < s t d i o . h > 

i n t 
m a i n  ( i n t  a r g c ,  c h a r  * a r g v [ J )  
{ 

i n t i ; 
i n t s u m = 0 ;  

f o r  ( i = 0 ;  i <= 1 0 0 ; = i + 1 l s um = s u m  + i * i ; 
p r i n t f  ( " T h e  s um f r om 0 . .  1 0 0  i s  % d \ n " . s um ) ; 

FIGURE A.5 The routine written In the C programming language. 

Compiler Assembler Linker 

t 
Assembly language program 

Computer 

FIGURE A.6 Assembly language Is either written by a programmer or Is the output of a 
compller. 

cess of assembling a program or provide assembly language with the advan
tages of high-level languages such as type-checking and structured control 
flow. 

When to Use Assembly Language 

The primary reason to program in assembly language, as opposed to an avail
able high-level language, is that the speed or size of a program is critically 
important. For example, consider a computer that controls a piece of machin
ery such as a car 's brakes. A computer that is incorporated in another device, 
such as a car, is called an embedded computer. This type of computer needs to 
respond rapidly and predictably to events in the outside world. Because a 
compiler introduces uncertainty about the time cost of operations, program
mers may find it difficult to ensure that a high-level language program 
responds within a definite time interval-say, 1 millisecond after a sensor 
detects that a tire is skidding. An assembly language programmer, on the 
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other hand, has tight control over which instructions execute. In addition, in 
embedded applications, reducing a program's size, so that it fits in fewer 
memory chips, reduces the cost of the embedded computer. 

Despite these considerations, some embedded appl ications are writ
ten in a high-level language. Many of these appl ications are large and complex pro
grams that must be extremely rel iable. Assembly language programs are longer and 
more difficult to write and read than high-level language programs. This greatly 
increases the cost of writing an assembly language program and make it extremely dif
ficult to verify the correctness of this type of program. In fact, these considerations led 
the Department of Defense, which pays for many complex embedded systems, to 
develop Ada, a new high-level l anguage for writing embedded systems. 

A hybrid approach, in which most of a program is written in a high-level 
language and time-critical sections are written in assembly language, builds 
on the strengths of both languages. Programs typically spend most of their 
time executing a small fraction of the program's source code. This observation 
is just the principle of locality that underlies caches (see section 7.2 in 
Chapter 7). Program profiling measures where a program spends its time and 
can find the time-critical parts of a program. In many cases, this portion of the 
program can be made faster with better data structures or algorithms. Some
times, however, significant performance improvements only come from re
coding a critical portion of a program in assembly language. 

This improvement is not necessarily an indication that the high-level lan
guage's compiler has failed. Compilers typically are better than programmers 
at producing uniformly high-quality machine code across an entire program. 
Programmers, however, understand a program's algorithms and behavior at 
a deeper level than a compiler and can expend considerable effort and ingenu
ity improving small sections of the program. In particular, programmers often 
consider several procedures simultaneously while writing their code. Compil
ers typically compile each procedure in isolation and must follow strict con
ventions governing the use of registers at procedure boundaries. By retaining 
commonly used values in registers, even across procedure boundaries, pro
grammers can make a program run faster. Another major advantage of assem
bly language is the ability to exploit specialized instructions, for example, 
string copy or pattern-matching instructions. Compilers, in most cases, cannot 
determine that a program loop can be replaced by a single instruction. How
ever, the programmer who wrote the loop can replace it easily with a single in
struction. 

In the future, a programmer's advantage over a compiler is likely to be
come increasingly difficult to maintain as compilation techniques improve 
and machines' pipelines increase in complexity (see section 3.10 in Chapter 3). 
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The final reason to use assembly language is that no high-level language is 
available on a particular computer. Many older or specialized computers do 
not have a compiler, so a programmer's only alternative is assembly language. 

Drawbacks of Assembly Language 

Assembly language has many disadvantages that strongly argue against its 
widespread use. Perhaps its major disadvantage is that programs written in 
assembly language are inherently machine-specific and must be totally 
rewritten to run on another computer architecture. The rapid evolution of 
computers discussed in Chapter 1 means that architectures become obsolete. 
An assembly language program remains tightly bound to its original architec
ture, even after the computer is eclipsed by new, faster, and more cost-effec
tive machines. 

Another disadvantage is that assembly language programs are longer than 
the equivalent programs written in a high-level language. For example, the C 
program in Figure A.4 is 1 1  lines long, while the assembly program in 
Figure A.4 is 31 lines long. In more complex programs, the ratio of assembly to 
high-level language (its expansion factor) can be much larger than the factor of 
three in this example. Unfortunately, empirical studies have shown that pro
grammers write roughly the same number of lines of code per day in assembly 
as in high-level languages. This means that programmers are roughly x times 
more productive in a high-level language, where x is the assembly language 
expansion factor. 

To compound the problem, longer programs are more difficult to read and 
understand and they contain more bugs. Assembly language exacerbates the 
problem because of its complete lack of structure. Common programming id
ioms, such as if-then statements and loops, must be built from branches and 
jumps. The resulting programs are hard to read because the reader must re
construct every higher-level construct from its pieces and each instance of a 
statement may be slightly different. For example, look at Figure A.4 and an
swer these questions: What type of loop is used? What are its lower and upper 
bounds? II Assemblers 

An assembler translates a file of assembly language statements into a file of 
binary machine instructions and binary data. The translation process has two 
major parts. The first step is to find memory locations with labels so the rela
tionship between symbolic names and addresses is known when instructions 
are translated. The second step is to translate each assembly statement by 
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combining the numeric equivalents of opcodes, register specifiers, and labels 
into a legal instruction. As shown in Figure A.1, the assembler produces an 
output file, called an object file, which contains the machine instructions, 
data, and bookkeeping information. 

An object file typically cannot be executed because it references procedures 
or data in other files. A label is external (also called global) if the labeled object 
can be referenced from files other than the one in which it is defined. A label 
is local if the object can be used only within the file in which it is defined. In 
most assemblers, labels are local by default and must be explicitly declared 
global. Subroutines and global variables require external labels since they are 
referenced from many files in a program. Local labels hide names that should 
not be visible to other modules-for example, static functions in C, which can 
only be called by other functions in the same file. In addition, compiler-gener
ated names-for example, a name for the instruction at the beginning of a 
loop-are local so the compiler need not produce unique names in every file. 

Consider the program in Figure A.4 on page A-7. The subroutine has an 
external (global) label m a i n . It also contains two local labels-1 o o p  and 
s t  r-that are only visible with this assembly language file. Finally, the 
routine also contains an unresolved reference to an external label p r  i n t f, 
which is the library routine that prints values. What are the local and global 
labels in Figure A.4? 

The local labels are l o o p  and s t  r and the global label is ma i n .  

Since the assembler processes each file in a program individually and in 
isolation, it only knows the addresses of local labels. The assembler depends 
on another tool, the linker, to combine a collection of object files and libraries 
into an executable file by resolving external labels. The assembler assists the 
linker by providing lists of labels and unresolved references. 

However, even local labels present an interesting challenge to an assem
bler. Unlike names in most high-level languages, assembly labels may be used 
before they are defined. In the example, in Figure A.4, the label s t  r is used by 
the l a instruction before it is defined. The possibility of a forward reference, like 
this one, forces an assembler to translate a program in two steps: first find all 
labels and then produce instructions. In the example, when the assembler sees 
the l a instruction, it does not know where the word labeled s t  r is located or 
even whether s t  r labels an instruction or datum. 
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An assembler's first pass reads each line of an assembly file and breaks it 
into its component pieces. These pieces, which are called lexemes, are individ
ual words, numbers, and punctuation characters. For example, the line 

b l e $ 8 , 1 0 0 , l o o p  

contains 6 lexemes: the opcode b l  e, the register specifier $ 8, a comma, the 
number 100, a comma, and the symbol l oop .  

I f  a line begins with a label, the assembler records in its symbol table the 
name of the label and the address of the memory word that the instruction oc
cupies. The assembler then calculates how many words of memory the in
struction on the current line will occupy. By keeping track of the instructions' 
sizes, the assembler can determine where the next instruction goes. To com
pute the size of a variable-length instruction, like those on the VAX, an assem
bler has to examine it in detail. On the other hand, fixed-length instructions, 
like those on MIPS, only require a cursory examination. The assembler per
forms a similar calculation to compute the space required for data statements. 
When the assembler reaches the end of an assembly file, the symbol table 
records the location of each label defined in the file. 

The assembler uses the information in the symbol table during a second 
pass over the file, which actually produces machine code. The assembler again 
examines each line in the file. If the line contains an instruction, the assembler 
combines the binary representations of its opcode and operands (register spec
ifiers or memory address) into a legal instruction. The process is similar to the 
one used in section 3.4 in Chapter 3. Instructions and data words that refer
ence an external symbol defined in another file cannot be completely assem
bled (they are unresolved) since the symbol's address is not in the symbol 
table. An assembler does not complain about unresolved references since the 
corresponding label is likely to be defined in another file. 

l!Utbc>rill1tlc>n: If an assembler's speed is important, this two-step process can be 
done in one pass over the assembly file with a technique known as backpatching. In its 
pass over the file, the assembler bui lds a (possibly incomplete) binary representation 
of every instruction. If the instruction references a label that has not yet been defined, 
the assembler records the label and instruction in a table. When a label is defined, the 
assembler consults this table to find a l l  instructions that contain a forward reference 
to the labe l .  The assembler goes back and corrects their binary representation to i ncor
porate the address of the label. Backpatching speeds assembly, because the assem
bler only reads its input once. However, it requ i res an assembler to hold the entire 
binary representation of a program in memory so instructions can be backpatched. 
This requirement can l im it the size of programs that can be assembled. 
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• Assembly language is a programming language. Its 
principal difference from high-level languages such 
as BASIC, Pascal, and C is that assembly language 
provides only a few, simple types of data and control 
flow. Assembly language programs do not specify the 
type of value held in a variable. Instead, a program

mer must apply the appropriate operations (e.g., integer or floating
point addition) to a value. In addition, in assembly language pro
grams must implement all control flow with goto's. Both factors make 
assembly language programming for any machine-MIPS or VAX 
(see Appendix E)-more difficult and error-prone than writing in a 
high-level language. 

Object File Format 

Assemblers produce object files. An object file on Unix contains six distinct 
sections (see Figure A.7): 

• The object file header describes the size and position of the other pieces of 
the file. 

• The text segment contains the machine language code for routines in the 
source file. These routines may be unexecutable because of unresolved 
references. 

• The data segment contains a binary representation of the data in the 
source file. The data also may be incomplete because of unresolved ref
erences to labels in other files. 

• The relocation information identifies instructions and data words that de
pend on absolute addresses. These references must change if portions of 
the program are moved in memory. 

• The symbol table associates addresses with external labels in the source 
file and lists unresolved references. 

Object file 
header 

Text 
segment 

Data Relocation 
segment information 

Symbol 
table 

Debugging 
information 

FIGURE A. 7 Object Fiie. A Unix assembler produces an object file with six distinct sections. 
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• The debugging information contains a concise description of the way in 
which the program was compiled, so a debugger can find which instruc
tion addresses correspond to lines in a source file and print the data 
structures in readable form. 

The assembler produces an object file that contains a binary representation 
of the program and data and additional information to help link pieces of a 
program. This relocation information is necessary because the assembler does 
not know which memory locations a procedure or piece of data will occupy af
ter it is linked with the rest of the program. Procedures and data from a file are 
stored in a contiguous piece of memory, but the assembler does not know 
where this memory will be located. The assembler also passes some symbol ta
ble entries to the linker. In particular, the assembler must record which exter
nal symbols are defined in a file and what unresolved references occur in a file . 

..:111rh1,1r:111111'n* For convenience, assemblers assume each file starts at the same 
address (for example, location 0) with the expectation that the l inker wil l  relocate the 
code and data when they are assigned locations in memory. The assembler produces 
relocation information, which contains an entry describing each instruction or data 
word in the file that references an absolute address. On MIPS,  only the subroutine cal l ,  
load , and store instructions reference absolute addresses. Instructions that use PC-rel
ative addressing, such as branches, need not be relocated. 

Additional Facilities 

Assemblers provide a variety of convenience features that help make assem
bler programs short and easier to write, but do not fundamentally change 
assembly language. For example, data layout directives allow a programmer to 
describe data in a more concise and natural manner than its binary represen
tation. 

In Figure A.4, the directive 
. a s c i i z  " T h e  s u m f r o m  0 . .  1 0 0  i s  %d \ n "  

stores characters from the string in memory. Contrast this line with the al
ternative of writing each character as its ASCII value (Figure 3.26 in 
Chapter 3 describes the ASCII encoding for characters) : 

. by t e  84 , 1 04 ,  1 0 1 . 3 2 , 1 1 5 , 1 1 7 , 1 0 9 , 3 2  

. by t e  1 0 2 , 1 1 4 ,  1 1 1 . 1 0 9 , 3 2 , 48 , 3 2 , 4 6  

. by t e  4 6 , 3 2 , 4 9 , 48 , 4 8 , 3 2 , 1 0 5 , 1 1 5  

. by t e  3 2 , 3 7 , 1 0 0 , 1 0 , 0 
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The . a s  c i i z directive is easier to read because it represents characters as 
letters, not binary numbers. An assembler can translate characters to their 
binary representation much faster and more accurately than a human. Data 
layout directives specify data in a human-readable form that the assembler 
translates to binary. Other layout directives are described in section A.10 on 
pages A-48-A-50. Define the sequence of bytes produced by this directive: 

. a s c i i z  " T h e  q u i c k  b r own f o x  j um p s  o v e r  t h e  l a zy  d o g "  

. by t e  84 , 1 04 , 1 0 1 , 3 2 , 1 1 3 ,  1 1 7 , 1 0 5 , 9 9  
. by t e  1 0 7 , 3 2 , 9 8 , 1 1 4 ,  1 1 1 , 1 1 9 , 1 1 0 , 3 2  
. by t e  1 0 2 , 1 1 1 , 1 2 0 , 3 2 , 1 0 6 , 1 1 7 , 1 0 9 , 1 1 2  
. by t e  1 1 5 ,  3 2 , 1 1 1 , 1 1 8 ,  1 0 1 , 1 1 4 ,  3 2 , 1 1 6  
. by t e  1 0 4 , 1 0 1 , 3 2 , 1 08 ,  9 7 , 1 2 2 , 1 2 1 , 3 2  
. by t e  1 0 0 , 1 1 1 . 1 0 3 , 0 

Macros are a pattern-matching and replacement facility that provide a sim
ple mechanism to name a frequently used sequence of instructions. Instead of 
repeatedly typing the same instructions every time they are used, a program
mer invokes the macro and the assembler replaces the macro call with the cor
responding sequence of instructions. Macros, like subroutines, permit a 
programmer to create and name a new abstraction for a common operation. 
Unlike subroutines, however, macros do not cause a subroutine call and return 
when the program runs since a macro call is replaced by the macro's body 
when the program is assembled. After this replacement, the resulting assem
bly is indistinguishable from the equivalent program written without macros. 

As an example, suppose that a programmer needs to print many numbers. 
The library routine p r  i n t f accepts a format string and one or more values 
to print as its arguments. A programmer could print the integer in register 
$ 7 with the following instructions: 

. d a t a  
i n t_s t r :  . a s c i i z " % d " 

. t e x t  
l a  $ 4 ,  i n t s t r  

m o v  $ 5 ,  $ 7  

j a l  p r i n t f  

# L o a d  s t r i n g  a d d r e s s  
# i n t o  f i r s t  a r g ( 4 )  
# L o a d  v a l u e  i n t o  
# s e c o n d  a r g ( 5 )  
# C a l l t h e  p r i n t f  r o u t i n e 
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The . d a t a  directive tells the assembler to store the string in the program's 
data segment and the . t e x t  directive tells the assembler to store the instruc
tions in its text segment. 

However, printing many numbers in this fashion is tedious and produc-
es a verbose program that is difficult to understand. An alternative is to in
troduce a macro, p r i n t_ i n t ,  to print an integer: 

. d a t a  
i n t s t r : . a s c i i z  " % d "  

. t e x t  

. ma c r o p r i n t_i n t ( $ a r g )  
l a  $ 4 . i n t_s t r  # L o a d  s t r i n g  a d d r e s s  i n t o  

m o v  $ 5 ,  $ a r g 

j a l  p r i n t f  
. e n d_ma c r o  

p r i n t_i n t ( $ 7 )  

# f i r s t  a r g ( 4 )  
# L o a d  ma c r o ' s  p a r a me t e r  
# ( $ a rg )  i n t o  s e c o n d  a r g ( 5 )  
# C a l l t h e  p r i n t f  r o u t i n e  

The macro has a formal parameter, $ a  r g ,  that names the argument to macro. 
When the macro is expanded, the argument from a call is substituted for the 
formal parameter throughout the macro's body. Then the assembler replac
es the call with the macro's newly expanded body. In the first call on 
p r i n t_ i n t, the argument is $ 7, so the macro expands to the code: 

l a  $ 4 , i n t_s t r  
m o v  $ 5 ,  $ 7  
j a l  p r i n t f  

In a second call on p r i n t_ i n t, say p r i n t_ i n t ( $ 8  ) , the argument is $8,  so 
the macro expands to: 

l a  $ 4 , i n t_s t r  
mov  $ 5 ,  $ 8  
j a l  p r i n t f  

What does the call p r i n t_ i n t ( $ 4 )  expand to? 

l a  $ 4 , i n t_s t r  
mov  $ 5 , $ 4  
j a l  p r i n t f  
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This example illustrates one drawback of macros. A programmer who uses 
this macro must be aware that p r  i n t_ i n t uses register $ 4 and so cannot 
correctly print the value in that register. 

Elaboration: Assemblers conditionally assemble pieces of code, which permits a 
programmer to i nclude or exclude groups of instructions when a program is assembled. 
This feature is particularly useful when several versions of a program d iffer by a small 
amount. Rather than keep these programs in separate files-which greatly complicates 
fixing bugs in the common code-programmers typical ly merge the versions into a s in
gle file. Code particular to one version is conditionally assembled, so it can be 
excluded when other versions of the program are assembled. 

If macros and conditional assembly are usefu l ,  why do assemblers for Un ix systems 
rarely, if ever, provide them? One reason is that most programmers on these systems 
write programs in h igher-level languages l i ke C. Most of the assembly code is produced 
by compi lers, which find it more convenient to repeat code rather than define macros. 
Another reason is that other tools on Unix-such as c p p ,  the C preprocessor, or m4 ,  a 
general macro processor-can provide macros and conditional assembly for assembly 
language programs. 

Hardware 

Software 

Interface 

Some assemblers also implement pseudoinstructions, which 
are instructions provided by an assembler, but not imple
mented in hardware. Chapter 3 contains many examples of 
how the MIPS assembler synthesizes pseudoinstructions 
and addressing modes from the spartan MIPS hardware in-
struction set. For example, section 3.5 in Chapter 3 describes 
how the assembler synthesizes the b l  t instruction from two 

other instructions: s 1 t and b ne .  By extending the instruction set, the MIPS as
sembler makes assembly language programming easier without complicating 
the hardware. Many pseudoinstructions could also be simulated with macros, 
but the MIPS assembler can generate better code for these instructions because 
it can use a dedicated register ( $ 1 )  and is able to optimize the generated code. 

Linkers 

Separate compilation permits a program to be split into pieces that are stored in 
different files. Each file contains a logically related collection of subroutines 
and data structures that form a module in a larger program. A file can be com-
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piled and assembled independently of other files, so changes to one module 
do not require recompiling the entire program. As we discussed above, sepa
rate compilation necessitates the additional step of linking to combine object 
files from separate modules and fix their unresolved references. 

The tool that merges these files is the linker. It performs three tasks: 

• Searches the program libraries to find library routines used by the pro
gram. 

• Determines the memory locations that code from each module will oc
cupy and relocates its instructions by adjusting absolute references. 

• Resolves references among files. 

A linker's first task is to ensure that a program contains no undefined la
bels. The linker matches the external symbols and unresolved references from 
a program's files. An external symbol in one file resolves a reference from an
other file if both refer to a label with the same name. Unmatched references 
mean a symbol was used, but not defined anywhere in the program. 

Unresolved references at this stage in the linking process do not necessarily 
mean a programmer made a mistake. The program could have referenced a li
brary routine whose code was not in the object files passed to the linker. After 
matching symbols in the program, the linker searches the system's program li
braries to find predefined subroutines and data structures that the program 
references. The basic libraries contain routines that read and write data, allo
cate and deallocate memory, and perform numeric operations. Other libraries 
contain routines to access a database or manipulate terminal windows. A pro
gram that references an unresolved symbol that is not in any library is errone
ous and cannot be linked. When the program uses a library routine, the linker 
extracts the routine's code from the library and incorporates it into the pro
gram text segment. This new routine, in turn, may depend on other library 
routines, so the linker continues to fetch other library routines until no external 
references are unresolved or a routine cannot be found. 

If all external references are resolved, the linker next determines the mem
ory locations that each module will occupy. Since the files were assembled in 
isolation, the assembler could not know where a module's instructions or data 
will be placed relative to other modules. When the linker places a module in 
memory, all absolute references must be relocated to reflect its true location. 
Since the linker has relocation information that identifies all relocatable refer
ences, it can efficiently find and backpatch these references. 

The linker produces an executable file that can run on a computer. Typical
ly, this file has the same format as an object file, except that it contains no un
resolved references or relocation information. 
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• Loading 

A program that links without an error can be run. Before being run, the pro· 
gram resides in a file on secondary storage, such as a disk. On Unix systems, 
the operating system kernel brings a program into memory and starts it run
ning. To start a program, the operating system performs the following steps: 

1 .  Reads the executable file's header to determine the size of the text and 
data segments. 

2. Creates a new address space for the program. This address space is 
large enough to hold the text and data segments, along with a stack seg
ment (see section A.5). 

3. Copies instructions and data from the executable file into the new 
address space. 

4. Copies arguments passed to the program onto the stack. 

5. Initializes the machine registers. In general, most registers are cleared, 
but the stack pointer must be assigned the address of the first free stack 
location (see section A.5). 

6. Jumps to a start-up routine that copies the program's arguments from 
the stack to registers and calls the program's m a i n  routine. If the m a i n  
routine returns, the start-up routine terminates the program with the 
exit system call. 

Memory Usage 

The next few sections elaborate the description of the MIPS architecture pre
sented earlier in the book. Earlier chapters focused primarily on hardware 
and its relationship with low-level software. These sections focus primarily 
on how assembly language programmers use MIPS hardware. These sections 
describe a set of conventions followed on many MIPS systems. For the most 
part, the hardware does not impose these conventions. Instead, they represent 
an agreement among programmers to follow the same set of rules so that soft
ware written by different people can work together and make effective use of 
MIPS hardware. 

Systems based on MIPS processors typically divide memory into three 
parts (see Figure A.8). The first part, near the bottom of the address space 
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7fffffff16 
Stack segment 

! 
t 

Dynamic data 
- - - - - - - - - - -

Static data Data segment 

1000000016 
Text segment 

40000015 Reserved 

FIGURE A.8 Layout of memory. 

(starting at address 400000hex), is the text segment, which holds the program's 
instructions. 

The second part, above the text segment is the data segment, which is further 
divided into two parts. Static data (starting at address lOOOOOOOhex) contains ob
jects whose size is known to the compiler and whose lifetime-the interval 
during which a program can access them-is the program's entire execution. 
For example, in C, global variables are statically allocated since they can be ref
erenced anytime during a program's execution. The linker both assigns static 
objects to locations in the data segment and resolves references to these ob
jects. 

Immediately above static data is dynamic data. This data, as its name im
plies, is allocated by the program as it executes. In C programs, the ma 1 1  o c  li
brary routine finds and returns a new block of memory. Since a compiler 
cannot predict how much memory a program will allocate, the operating sys
tem expands the dynamic data area to meet demand. As the upward arrow in 
the figure indicates, m a  1 1  o c expands the dynamic area with the s b r k system 
call, which causes the operating system to add more pages to the program's 
virtual address space (see section 7.3 in Chapter 7) immediately above the dy
namic data segment. 

The third part, the program stack segment, resides at the top of the virtual 
address space (staring at address 7fffffffhex). Like dynamic data, the maximum 
size of a program's stack is not known in advance. As the program pushes val
ues on the stack, the operating system expands the stack segment down, to
wards the data segment. 



A.6 Procedure Call Convention A·21 

This three-part division of memory is not the only possible one. However, 
it has two important characteristics: the two dynamically expandable seg
ments are as far apart as possible, and they can grow to use a program's entire 
address space. 

Hardware 

Software 

Interface 

Because the data segment begins far above the program at 
address lOOOOOOOh•x' load and store instructions cannot di
rectly reference data objects with their 16-bit offset fields (see 
section 3.4 in Chapter 3). For example, to load the word in 
the data segment at address 10008000hex into register $ 2 re
quires two instructions: 

l u i $ 1 6 .  O x l OO O  # Ox l OO O  mea n s  1 000 b a s e  1 6  o r  4096 b a s e  1 0  

l w  $ 2 , Ox8000 ( $ 1 6 ) 11 Oxl O O O O O O O  + OxBOOO  = O x l 0008000 

(The Ox before a number means that it  is  a hexadecimal value. For example, 
Ox8000  is 8000hex or 32768.) 

To avoid repeating the l u i instruction at every load and store, MIPS sys
tems typically dedicate a register ($ 28)  as a global pointer to the static data seg
ment. This register contains address 10008000h•x' so load and store instructions 
can use their signed 16-bit offset fields to access the first 64KB of the static data 
segment. With this global pointer, we can rewrite the example as a single 
instruction: 

l w  $ 2 , 0 ( $ 28 )  

Of course, the global pointer register makes addresses 10000000hex-10010000hex faster to access than other heap locations. The MIPS compiler usu
ally stores global variables in this area because these variables are more fre
quently accessed than other global data. 

• Procedure Call Convention 

Conventions governing the use of registers are necessary when procedures in 
a program are compiled separately. To compile a particular procedure, a com
piler must know which registers it may use and which registers are reserved 
for other procedures. Rules for using registers are called register-use or proce
dure call conventions. As the name implies, these rules are, for the most part, 
conventions followed by software rather than rules enforced by hardware. 
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However, most compilers and programmers try very hard to follow these 
conventions, because violating them causes insidious bugs. 

The calling convention described in this section is the one used by gee com
piler. The native MIPS compiler uses a more complex convention that is slight
ly faster. 

The MIPS CPU contains 32 general purpose registers that are numbered 0-
31.  Register $ 0 always contains the hardwired value 0. 

• Registers $ a t  (1 ), $ k 0 (26), and $ k 1 (27) are reserved for the assembler 
and operating system and should not be used by user programs or com
pilers. 

• Registers $ a  0-$ a 3 ( 4-7) are used to pass the first four arguments to rou
tines (remaining arguments are passed on the stack). Registers $ v 0  and 
$ v 1 (2, 3) are used to return values from functions. 

• Registers $ t 0-$ t 9  (8-15, 24, 25) are caller-saved registers that are used 
to hold temporary quantities that need not be preserved across calls (see 
section 3.6 in Chapter 3). 

• Registers $ s 0-$ s 7 (16-23) are callee-saved registers that hold long-lived 
values that should be preserved across calls. 

• Register $ g p (28) is a global pointer that points to the middle of a 64K 
block of memory in the static data segment. 

• Register $ s p (29) is the stack pointer, which points to the first free loca
tion on the stack. Register $ f p (30) is the frame pointer. The j a l  instruc
tion writes register $ r a (31), the return address from a procedure call. 
These two registers are explained in the next section. 

The two-letter abbreviations and names for these registers-for example 
$ s p for the stack pointer-reflect the registers' intended uses in the procedure 
call convention. In describing this convention, we will use the names instead 
of register numbers. The table in Figure A.9 lists the registers and describes 
their intended uses. 

Procedure Calls 

This section describes the steps that occur when one procedure (the caller) 
invokes another procedure (the callee). Programmers who write in a high
level language (like C or Pascal) never see the details of how one procedure 
calls another because the compiler takes care of this low-level bookkeeping. 
However, assembly language programmers must explicitly implement every 
procedure call and return. 
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zero 0 Constant O 

at 1 Reserved for assembler 

vO 2 Expression evaluation and results of a function 

vl 3 Expression evaluation and results of a function 

ao 4 Argument 1 

al 5 Argument 2 

a2 6 Argument 3 

a3 7 Argument 4 

to 8 Temporary (not preserved across cal l) 

tl 9 Temporary (not preserved across call) 

t2 10 Temporary (not preserved across cal l) 

t3 11 Temporary (not preserved across call) 

t4 12 Temporary (not preserved across call) 

t5 13 Temporary (not preserved across cal l) 

t6 14 Temporary (not preserved across cal l )  

t7 15 Temporary (not preserved across call) 

so 16 Saved temporary (preserved across call) 

sl 17 Saved temporary (preserved across call) 

s2 18 Saved temporary (preserved across call) 

s3 19 Saved temporary (preserved across call) 

s4 20 Saved temporary (preserved across call) 

s5 2 1  Saved temporary (preserved across call) 

s6 22 Saved temporary (preserved across call) 

s7 23 Saved temporary (preserved across call) 

t8 24 Temporary (not preserved across call) 

t9 25 Temporary (not preserved across cal l )  

kO 26 Reserved for OS kernel 

kl 27 Reserved for OS kernel 

gp 28 Pointer to global area 

sp 29 Stack pointer 

fp 30 Frame pointer 

ra 31 Return address (used by function call) 

FIGURE A.9 MIPS registers and usage convention. 
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Most of the bookkeeping associated with a call is centered around a block 
of memory called a procedure call frame. This memory is used for a variety of 
purposes: 

• To hold values passed to a procedure as arguments. 

• To save registers that a procedure may modify, but which the proce
dure's caller does not want changed. 

• To provide space for variables local to a procedure. 

In most programming languages, procedure calls and returns follow a 
strict last-in, first-out (LIFO) order so this memory can be allocated and deal
located on a stack, which is why these blocks of memory are sometimes called 
stack frames. 

A programming language that does not permit recursive procedures
procedures that call themselves either d irectly or indirectly through a chain of calls
need not al locate frames on a stack. In a nonrecursive language, each procedure 's  
frame may be statically allocated since only one invocation of  a procedure can be 
active at a time. Older versions of Fortran prohibited recursion because statical ly-al lo
cated frames produced faster code on some older machines. However, on load-store 
architectures l ike MIPS, stack frames may be just as fast because a frame pointer reg
ister points d irectly to the active stack frame, which permits a s ingle load or store 
instruction to access values in the frame. In addition, recursion is a valuable program
m ing technique. 

Figure A.10 shows a typical stack frame. The frame consists of the memory 
between the frame pointer ( Hp), which points to the first word of the frame, 
and the stack pointer ( $ s p ), which points to the first stack word after the frame. 
The stack grows down from higher memory addresses, so the frame pointer 
points above the stack pointer. The executing procedure uses the frame point
er to quickly access values in its stack frame. For example, an argument in the 
stack frame can be loaded into register $ 2 with the instruction: 

l w  $ 2 , 0 ( $ f p ) 

A stack frame may be built in many different ways; however, the caller and 
callee must agree on the sequence of steps. The steps below describe the calling 
convention used on most MIPS machines. This convention comes into play at 
three points during a procedure call: immediately before the caller invokes 
the callee, just as the callee starts executing, and immediately before the callee 
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Argument 6 
Argument 5 

$fp -
Saved registers 

H igher memory addresses 

Stack 
grows 

Local variables ! 
Lower memory addresses 

$sp -

A·25 

FIGURE A.10 Layout of a stack frame. The frame pointer ( $ f p) points to the first word in the 
currently executing procedure's stack frame. The stack pointer ( $ s p) points to the first free word 
on the stack after the frame. The first four arguments are passed in registers, so the fifth argument 
is the first one stored on the stack. 

returns to the caller. In the first part, the caller puts the procedure call argu
ments in standard places and invokes the callee to: 

1. Pass arguments. By convention, the first four arguments are passed in 
registers $ a  0-$ a 3 .  Any remaining arguments are pushed on the stack 
and appear at the beginning of the called procedure's stack frame. 

2. Save caller-saved registers. The called procedure can use these registers 
( $ a 0- $ a 3  and $ t 0-$ t 9) without first saving their value. If the caller 
expects to use one of these registers after a call, it must save its value 
before the call. 

3. Execute a j a l  instruction (see section 3.6 of Chapter 3), which jumps to 
the callee's first instruction and saves the return address in register $ r a .  

Before a called routine starts running, it must take the following steps to set 
up its stack frame: 

1 .  Allocate memory for the frame by subtracting the frame's size from the 
stack pointer. 

2. Save callee-saved registers in the frame. A callee must save the values 
in these registers ( $  s 0-$ s 7 ,  $ f p, and $ r a )  before altering them since the 
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caller expects to find these registers unchanged after the call. Register 
$ fp is saved by every procedure that allocates a new stack frame. How
ever, register $ r a only needs to be saved if the callee itself makes a call. 
The other callee-saved registers that are used also must be saved. 

3. Establish the frame pointer by adding the stack frame's size to $ s p and 
storing the sum in register Hp.  

Hardware 

Software 

Interface 

The MIPS register-use convention provides callee- and call
er-saved registers because both types of registers are advan
tageous in different circumstances. Callee-saved registers 
are better used to hold long-lived values, such as variables 
from a user's program. These registers are only saved during 
a procedure call if the callee expects to use the register. On 
the other hand, caller-saved registers are better used to hold 

short-lived quantities that do not persist across a call, such as immediate val
ues in an address calculation. During a call, the callee can also use these regis
ters for short-lived temporaries. 

Finally, the callee returns to the caller by executing the following steps: 

1 .  If the callee is a function that returns a value, it places the returned 
value in register $ v 0 .  

2 .  Restore all callee-saved registers that were saved upon procedure entry. 

3. Pop the stack frame by subtracting the frame size from $ s p .  

4. Return by jumping to the address in register $ r a .  

Procedure Call Example 

As an example, consider the C routine: 

ma i n  C )  
\ 

p r i n t f  ( " T h e  f a c t o r i a l  o f  1 0  i s  %d \ n " ,  f a c t  ( 1 0 ) ) ;  

i n t f a c t  ( i n t n )  
\ 

i f ( n < l ) 
r e t u r n  C l ) ;  
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e l s e  
r e t u r n  ( n  * f a c t  ( n  - l ) ) ;  

} 
which computes and prints 10! (the factorial of 10, 10! = 10 x 9 x . . .  x 1 ) . 
f a c t  is a recursive routine that computes n! by multiplying n times ( n - 1 )  . 
The assembly code for this routine illustrates how programs manipulate stack 
frames. 

Upon entry, the routine m a i n  creates its stack frame and saves the two 
callee-saved registers it will modify: $ f p and $ r a .  The frame is larger than re
quired for these two registers. The minimum size of a stack frame is 24 bytes 
for procedures not containing a call. This frame holds four argument registers 
($ a 0-$ a 3) and the return address $ r a , padded to a double-word boundary (24 
bytes) . 

. t e x t  

. g l  o b l  m a i n  
m a i n :  

s u b u  $ s p , $ s p , 3 2 # S t a c k  f r a m e  i s  3 2  b y t e s  l o n g  
S W  $ r a , 2 0 ( $ s p )  # S a v e  r e t u r n  a d d r e s s  
S W  $ f p , 1 6 ( $ s p )  ff S a v e o l d  f r a me p o i n t e r  
a d  d u  $ f p , $ s p , 3 2 ff S e t  u p  f r a me p o i n t e r  

The routine m a i n  then calls the factorial routine and passes it the single argu
ment 10. After f a c t  returns, main calls the library routine p r  i n t f  and passes 
it both a format string and the result returned from f a  c t :  

l i $ a 0 , 1 0 ff P u t  a r g um e n t  ( 1 0 )  i n  $ a 0  
j a l  f a c t  ff C a  1 1  f a c t o r i a l  f u n c t i o n  

l a  $ a 0 , $ L C ff P u t  f o rm a t  s t r i n g  i n  $ a 0  
m o v e  $ a l , $ v 0  ff M o v e  f a c t r e s u l t t o  $ a l  
j a l  p r i  n t f  ff C a  1 1  t h e  p r i n t  f u n c t i o n 

Finally, after printing the factorial, m a i n  returns. But first, it must restore 
the registers it saved and pop its stack frame: 

$ L C :  

l w  
l w  
a d  d u  
j r  

. r d a t a  

. a s c i i 

$ r a , 2 0 ( $ s p ) 
$ f p , 1 6 ( $ s p ) 
$ s p , $ s p , 3 2 
$ r a 

# Re s t o r e  r e t u r n  a d d r e s s  
# Re s t o r e  f r a m e  p o i n t e r  
# P o p  s t a c k  f r a m e  
ff Ret u r n  t o  c a l l e r 

" T h e  f a c t o r i a l  o f  1 0  i s  % d \ n \ O O O "  
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The factorial routine is similar in structure to m a i n . First, it creates a stack 
frame and saves the callee-saved registers it will use. In addition to saving 
$ r a and Hp, f a c t  also saves its argument ( $ a 0), which it will use for the 
recursive call: 

. t ext  
f a c t : 

s u b u $ s p , $ s p , 3 2 # S t a c k  f r ame  i s  3 2  bytes  l o n g  
S W  $ r a , 2 0 ( $ s p )  # S a v e r e t u r n  a d d re s s  
S W  $ f p , 1 6 ( $ s p ) # S a v e f r a me p o i n t e r  
a d  d u  $ f p , $ s p , 3 2 # S e t  u p  f r a me p o i n t e r  

S W  $ a 0 , 0 ( $ f p ) # S a v e a r g um e n t  ( n )  

The heart of the f a c t  routine performs the computation from the C pro
gram. It tests if the argument is greater than zero. If not, the routine returns the 
value 1 .  If the argument is greater than zero, the routine recursively calls itself 
to compute fa  c t  ( n - 1 )  and multiplies that value times n :  

l w  $ 2 , 0 ( $ f p ) # L o a d  n 
b g t z  $ 2 , $ L 2 # B r a n c h  i f  n > 0 
l i $ 2 , 1  # Re t u r n 1 
j $ L 1  # J ump  t o  c o d e  t o  r e t u r n  

$ L 2 :  
l w  $ 3 , 0 ( $ f p ) # L o a d  n 
s u b u  $ 2 , $ 3 , 1  # C o m p u t e  n - 1 
m o v e  $ a 0 , $ 2 ff M o v e  v a l u e  t o  $ a 0  
j a l  f a c t  ff C a  1 1  f a c t o r i a l  f u n c t i o n  

l w  $ 3 , 0 ( $ f p ) ff L o a d  n 
m u l  $ 2 , $ 2 , $ 3 ff C o m p u t e  f a c t ( n - 1 )  * n 

Finally, the factorial routine restores the callee-saved registers and returns 
the value in register $ 2 :  

$ L 1 : ff Res u l t i s  i n  $ 2  
l w  $ r a . 2 0 ( $ s p )  ff Re s t o r e $ r a 
l w  $ f p ,  1 6 ( $ s p )  ff Re s t o r e $ f p  
a d  d u  $ s p , $ s p , 3 2  ff P o p  s t a c k  
j $ r a  ff Ret u r n  t o  c a l l e r 
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Figure A.11 shows the stack at the call: f a c t  ( 7 l .  m a  i n runs first, so its 
frame is deepest on the stack. m a i n  calls f a c t  ( 1 0 ) , whose stack frame is 
next on the stack. Each invocation recursively invokes f a c t  to compute the 
next-lowest factorial. The stack frames parallel the LIFO order of these calls. 
What does the stack look like when the call to f a c t  ( 1 0  l returns? 

Stack 

Old $ra 
Old $fp main 

Old $ra 
Old $fp fact (10) 
Old $a0 

Old $ra 
Old $fp fact (9) 
Old $a0 

Old $ra 
Old $fp 
Old $a0 

Old $ra 
Old $fp 
Old $a0 

fact (8) l SU.ok g<�' 
fact (7) 

FIGURE A.11 Stack frames during the call of fact(7). 

Stack 

Old $ra 
Old $fp main 

The difference between the M IPS compi ler and the gee compiler is that 
the M IPS compiler usually does not use a frame pointer, so this register is avai lable as 
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another cal lee-saved register $ s 8. This change saves a couple of instructions in the 
procedure cal l  and return sequence. However, it compl icates code generation because 
a procedure must access its stack frame with $ s p, whose value changes during the 
procedure 's  execution as values are pushed on the stack. 

• Exceptions and Interrupts 

Section 5.6 of Chapter 5 describes the MIPS exception facility, which responds 
both to exceptions caused by errors during an instruction's execution and to 
external interrupts caused by 1/0 devices. This section describes exception 
and interrupt handling in more detail. In MIPS processors, a part of the CPU 
called coprocessor 0 records the information the software needs to handle 
exceptions and interrupts. The MIPS simulator SPIM does not implement all 
of coprocessor O's registers, since many are not useful in a simulator or are 
part of the memory system, which SPIM does not implement. However, SPIM 
does provide the following coprocessor 0 registers: 

Register Register ,: ; . •  ,,,., : ,_ · ,. · ' >" -
narie number Usage • · 

BadVAddr 

Status 

Cause 

EPC 

8 

12 

13 

14 

Register containing the memory address at which memory reference 
occurred 

Interrupt mask and enable bits 

Exception type and pending interrupt bits 

Register containing address of instruction that caused exception 

These four registers are part of coprocessor O's register set and are accessed by 
the l w c O, m f cO ,  mt c O, and s w c O  instructions. After an exception, register E P C  
contains the address of the instruction that was executing when the exception 
occurred. If the instruction made a memory access that caused the exception, 
register B a d V A d d r contains the referenced memory location's address. The 
two other registers contain many fields and are described below. 

Figure A.12 shows the Status register fields implemented by the MIPS sim
ulator SPIM. The i n t e r r  u p  t ma s k  field contains a bit for each of the five hard
ware and three software possible interrupt levels. A bit that is 1 allows 
interrupts at that level. A bit that is 0 disables interrupts at that level. The low 
6 bits of the Status register implement a three-deep stack for the k e r n e l  I u s e r  
and i n t e r r  u p  t e n  a b  l e bits. The k e r n e l  I u s e r  bit is 0 if a program was in the 
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FIGURE A.12 The Status register. 
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kernel when an exception occurred and 1 if it was running in user mode. If the 
i n t e r r u p t  e n  a b  l e bit is 1 ,  interrupts are allowed. If it is 0, they are disabled. 
When an interrupt occurs, these six bits are shifted left by two bits, so the cur
rent bits become the previous bits and the previous bits become the old bits 
(the old bits are discarded). The current bits are both set to 0 so the interrupt 
handler runs in the kernel interrupts disabled. 

Figure A.13 shows the Cause register fields implemented by SPIM. The five 
p e n d i n g i n t e r r u p t  bits correspond to the five interrupt levels. A bit becomes 
1 when an interrupt at its level has occurred but has not been serviced. The Ex
ception code register describes the cause of an exception with the following 
codes: 

·: Number · Name Description 
� --�-'-'-��>�--�·��·��������--������������ 

0 INT External i nterru pt 

4 ADDRL Address error exception {load or instruction fetch) 

5 ADD RS Address error exception {store) 

6 IBUS Bus error on instruction fetch 

7 DBUS Bus error on data load or  store 

8 SYSCALL Syscall exception 

9 BKPT Breakpoint exception 

10 RI Reserved instruction exception 

12 OVF Arithmetic overflow except ion 

Exceptions and interrupts cause a MIPS processor to jump to a piece of 
code, at address 80000080hex (in the kernel, not user address space), called an 
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FIGURE A.13 The Cause register. 
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interrupt handler. This code examines the exception's cause and jumps to an ap
propriate point in the operating system. The operating system responds to an 
exception either by terminating the process that caused the exception or by 
performing some action. A process that causes an error, such as executing an 
unimplemented instruction, is killed by the operating system. On the other 
hand, exceptions such as page-faults are requests from a process to the operat
ing system to perform a service, such as bringing in a page from disk. The op
erating system processes these requests and resumes the process. The final 
type of exceptions are interrupts from external devices. These generally cause 
the operating system to move data to or from an 1/0 device and resume the 
interrupted process. The code in the example below is a simple interrupt han
dler, which invokes a routine to print a message at each exception (but not in
terrupts). This code is similar to the interrupt handler used by the SPIM 
simulator described in the Example that follows. 

The interrupt handler first saves registers $ a  0 and $ a  1 ,  which it later uses 
to pass arguments, The interrupt handler cannot store the old values from 
these registers on the stack, as would an ordinary routine, because the cause 
of the interrupt might have been a memory reference that used a bad value 
(such as 0) in the stack pointer. Instead the interrupt handler stores these 
registers in two memory locations: (s a v e  0 and s a v e  1 ). If the interrupt rou
tine itself could be interrupted, two locations would not be enough since the 
second interrupt would overwrite values saved during the first interrupt. 
However, this simple interrupt handler finishes running before it enables 
interrupts, so the problem does not arise . 

. k t e x t  O x 8 0 0 0 0 0 8 0  

S W  $ a 0  s a v e O # H a n d l e r  i s  n o t  r e - e n t r a n t  a n d  c a n ' t  u s e  

S W  $ a l  s a v e l  # s t a c k  t o  s a v e  $ a 0 ,  $ a l  

# D o n ' t  n e e d  t o  s a v e  $ k 0 / $ k l 



A. 7 Exceptions and lntem1pts A-33 

The interrupt handler then moves the C a u s e  and E P C  registers into CPU 
registers. The C a  u s e  and E P C  registers are not part of the CPU register set. 
Instead, they are registers in coprocessor 0, which is the part of the CPU that 
handles interrupts. The instruction mf c O  $ k O , $ 1 3  moves coprocessor O's 
register 13 (the Cause register) into CPU register $ k O .  Note that the inter
rupt handler need not save registers $ k 0 and $ k 1 because user programs are 
not supposed to use these registers. The interrupt handler uses the value 
from the Cause register to test if the exception was caused by an interrupt 
(see the preceding table). If so, the exception is ignored. If the exception was 
not an interrupt, the handler calls p r i  n t_ex c p  to print a warning message. 

m f c O  $ k O  $ 1 3  # M o v e  C a u s e  i n t o  $ k 0 
m f c O  $ k 1 $ 1 4  # M o v e  E P C  i n t o  $ k l  

s g t  $ v 0 $ k 0 O x 4 4  # I g n o r e  i n t e r r u p t s  
b g t z  $ v 0  d o n e  

m o v  $ a 0 , $ k 0 # M o v e  C a u s e  i n t o  $ a 0  
m o v  $ a l , $ k 1 # M o v e  E P C  i n t o  $ a l  
j a l  p r i n t_e x c p  # P r i n t  e x c e pt i o n e r r o r  mes s a g e  

Before returning, the interrupt handler restores registers $ a  0 and $ a  1 .  It 
then executes the r f e (return from exception) instruction, which restores 
the previous interrupt mask and kernel/ user bits in the Status register. This 
switches the processor state back to what it was before the exception and 
prepares to resume program execution. The interrupt handler then returns 
to the program by jumping to the instruction following the one that caused 
the exception. 

d o n e : 
l w  $ a 0  s a v e O  
l w  $ a l  s a v e l  
a d d i u $ k 1 $ k l  4 # D o  n o t  r e e x e c u t e  

# f a u l t i n g  i n s t r u c t i o n 
r f  e # Re s t o r e  i n t e r r u p t  s t a t e  
j r  $ k l  

. k d a t a  
s a v e O : . w o r d 0 
s a v e l : . w o r d 0 

On real MIPS processors, the return from an interrupt handler is more 
complex. The r f e i nstruction must execute in the delay slot of the j r instruction that 
returns to the user program so that no interrupt-handler instruction executes with the 
user program's interrupt mask and kernel/user bits. In addition, the interrupt handler 
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cannot always jump to the instruction fol lowing E P C .  For example, if the instruction that 
caused the exception was in a branch instruction's delay slot (see Chapter 6) ,  the next 
instruction may not be the fol lowing instruction in memory. 

• Input and Output 

SPIM simulates one I/O device: a memory-mapped terminal. When a pro
gram is running, SPIM connects its own terminal (or a separate console win
dow in the X-window version x s p i  m) to the processor. A MIPS program 
running on SPIM can read the characters that you type. In addition, if the 
MIPS program writes characters to the terminal, they appear on SPIM's ter
minal or console window. One exception to this rule is control-C: this charac
ter is not passed to the program, but instead causes SPIM to stop and return 
to command mode. When the program stops running (for example, because 
you typed control-C or because the program hit a breakpoint), the termi
nal is reconnected to s p i  m so you can type SPIM commands. To use 
memory-mapped I/O (see below), s p i m or x s p i m must be started with the 

- ma p p ed_ i o flag. 
The terminal device consists of two independent units: a receiver and a 

transmitter. The receiver reads characters from the keyboard. The transmitter 
writes characters to the display. The two units are completely independent. 
This means, for example, that characters typed at the keyboard are not auto
matically "echoed" on the display. Instead, a program must explicitly echo a 
character by reading it from the receiver and writing it to the transmitter. 

A program controls the terminal with four memory-mapped device regis
ters, as shown in Figure A.14. "Memory-mapped" means that each register ap
pears as a special memory location. The Receiver Control register is at location 
ffffOOOOhex· Only two of its bits are actually used. Bit 0 is called "ready": if it is 
1, it means that a character has arrived from the keyboard but has not yet been 
read from the Receiver Data register. The ready bit is read-only: writes to it 
are ignored. The ready bit changes from 0 to 1 when a character is typed at the 
keyboard, and it changes from 1 to 0 when the character is read from the Re
ceiver Data register. 

Bit 1 of the Receiver Control register is the keyboard "interrupt enable." 
This bit may be both read and written by a program. The interrupt enable is 
initially 0. If it is set to 1 by a program, the terminal requests an interrupt at 
level 0 whenever the ready bit is 1. However, for the interrupt to affect the pro
cessor, interrupts must also be enabled in the Status register (see section A.7). 
All other bits of the Receiver Control register are unused. 
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FIGURE A.14 The termlnal Is controlled by four device registers, each of which appears 
as a memory location at the given address. Only a few bits of these registers are actually 
used. The others always read as Os and are ignored on writes. 

The second terminal device register is the Receiver Data register (at address 
ffff0004hex) .  The low-order eight bits of this register contain the last character 
typed at the keyboard. All other bits contain Os. This register is read-only and 
changes only when a new character is typed at the keyboard. Reading the Re
ceiver Data register resets the ready bit in the Receiver Control register to 0. 

The third terminal device register is the Transmitter Control register (at ad
dress ffff0008hex). Only the low-order two bits of this register are used. They be
have much like the corresponding bits of the Receiver Control register. Bit 0 is 
called "ready" and is read-only. If this bit is 1, the transmitter is ready to accept 
a new character for output. If it is 0, the transmitter is still busy writing the pre
vious character. Bit 1 is "interrupt enable" and is readable and writable. If this 
bit is set to 1 ,  then the terminal requests an interrupt on level one whenever the 
ready bit is 1 .  

The final device register i s  the Transmitter Data register (at address 
ffffOOOchex) . When a value is written into this location, its low-order eight bits 
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(i.e., an ASCII character as in Figure 3.26 in Chapter 3) are sent to the console. 
When the Transmitter Data register is written, the ready bit in the Transmitter 
Control register is reset to 0. This bit stays 0 until enough time has elapsed to 
transmit the character to the terminal; then the ready bit becomes 1 again. The 
Transmitter Data register should only be written when the ready bit of the 
Transmitter Control register is 1 .  If the transmitter is not ready, writes to the 
Transmitter Data register are ignored (the write appears to succeed but the 
character is not output). 

Real computers require time to send characters over the serial lines that 
connect terminals to computers. These time lags are simulated by SPIM. For 
example, after the transmitter starts to write a character, the transmitter's 
ready bit becomes 0 for a while. SPIM measures time in instructions executed, 
not in real clock time. This means that the transmitter does not become ready 
again until the processor executes a certain number of instructions. If you stop 
the machine and look at the ready bit, it will not change. However, if you let 
the machine run, the bit eventually changes back to 1 .  • SPIM 

SPIM is a software simulator that runs programs written for MIPS 
R2000/R3000 processors. SPIM's name is just MIPS spelled backwards. SPIM 
can read and immediately execute assembly language files or (on some sys
tems) MIPS executable files. SPIM is a self-contained system for running 
MIPS programs. It contains a debugger and provides a few operating system
like services. SPIM is much slower than a real computer (100 or more times). 
However, its low cost and wide availability cannot be matched by real hard
ware! 

An obvious question is, Why use a simulator when many people have 
workstations that contain MIPS chips that are significantly faster than SPIM? 
One reason is that these workstations are not universally available. Another 
reason is rapid progress towards new and faster computers renders these ma
chines obsolete (see Chapter 1) .  The current trend is to make computers faster 
by executing several instructions concurrently. This makes architectures more 
difficult to understand and program. The MIPS architecture may be the epito
me of a simple, clean RISC machine. 

In addition, simulators can provide a better environment for programming 
than an actual machine because they can detect more errors and provide more 
features than an actual computer. For example, SPIM has an X-window inter
face that works better than most debuggers on the actual machines. 

Finally, simulators are a useful tool in studying computers and the pro
grams that run on them. Because they are implemented in software, not sili-



A.9 SPIM A-37 

con, simulators can be easily modified to add new instructions, build new 
systems such as multiprocessors, or simply to collect data. 

Simulation of a Virtual Machine 

The MIPS architecture, like that of many RISC computers, is difficult to pro
gram directly because of delayed branches, delayed loads, and restricted 
address modes. This difficulty is tolerable since these computers were 
designed to be programmed in high-level languages and present an interface 
appropriate for compilers rather than assembly language programmers. A 
good part of the programming complexity results from delayed instructions. 
A delayed branch requires two cycles to execute (see section 6.7 of Chapter 6). 
In the second cycle, the instruction immediately following the branch exe
cutes. This instruction can perform useful work that normally would have 
been done before the branch. It can also be a n o p  (no operation). Similarly, 
delayed loads require two cycles so the instruction immediately following a 
load cannot use the value loaded from memory (see section 6.2 of Chapter 6). 

MIPS wisely chose to hide this complexity by having its assembler imple
ment a virtual machine. This virtual computer appears to have nondelayed 
branches and loads and a richer instruction set than the actual hardware. The 
assembler reorganizes (rearranges) instructions to fill the delay slots. It also 
simulates the additional, pseudoinstructions with short sequences of actual in
structions. 

By default, SPIM simulates the richer virtual machine. However, it can also 
simulate the bare hardware. Below, we describe the virtual machine and only 
mention in passing features that do not belong to the actual hardware. In do
ing so, we follow the convention of MIPS assembly language programmers 
(and compilers), who routinely use the extended machine. (For a description 
of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, 
Prentice Hall, 1992.) 

Getting Started with SPIM 

The rest of this appendix contains a complete and rather detailed description 
of SPIM. Many details should never concern you; however, the sheer volume 
of information can obscure the fact that SPIM is a simple, easy-to-use pro
gram. This section contains a quick tutorial on SPIM that should enable you 
to load, debug, and run simple MIPS programs. 

SPIM comes in two versions. The plain version is called s p i  m. It runs on any 
type of terminal. It operates like most programs of this type: you type a line of 
text, hit the r e t u r n key, and s p i  m executes your command. 

The fancier version of SPIM is called x s  p i  m. It uses the X-window system, 
so you must have a bit-mapped display to run it. x s p i m, however, is a much 
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easier program to learn and use because its commands are always visible on 
the screen and because it continually displays the machine's registers. 

Since most people use and prefer x s p i  m, this section only discusses that 
program. If you plan to use s p i  m, do not skip this section. Read it first and then 
look at the SPIM Command-Line Options (starting on page A-41) to see how 
to accomplish the same thing with s p i  m commands. 

To start x s p i  m, type x s p i  m in response to your system's prompt ('%'): 

% x s p i m  

On your system, x s p i  m may be kept in an unusual place and you may need 
to execute a command first to add that place to your search path. Your instruc
tor should tell you how to do this. 

When x s p i  m starts up, it pops up a large window on your screen. 
Figure A.15 shows a picture of this window. The window is divided into five 
panes: 

• The top pane is called the register display. It shows the values of all reg
isters in the MIPS CPU and FPU. This display is updated whenever your 
program stops running. 

• The pane below contains the control buttons to operate x s p i  m. These but
tons are discussed below, so we can skip the details for now. 

• The next pane, called the text segments, displays instructions both from 
your program and the system code that is loaded automatically when 
x s p i  m starts running. Each instruction is displayed on a line that looks 
like 

[ 0 x 0 0 4 0 0 0 0 0 J  O x 8 f a 4 0 0 0 0  l w  $ 4 , 0 ( $ 2 9 ) : 89 : l w  $ a 0 , 0 ( $ s p )  

The first number on the line, in square brackets, is the hexadecimal 
memory address of the instruction. The second number is the instruc
tion's numerical encoding, again displayed as a hexadecimal number. 
The third item is the instruction's mnemonic description. Everything 
following the semicolon is the actual line from your assembly file that 
produced the instruction. The number 89 is the line number in that file. 
Sometimes nothing is on the line after the semicolon. This means that 
the instruction was produced by SPIM as part of translating a pseudo
instruction. Look down a line or two to find the pseudoinstruction that 
you wrote. 

• The next pane, called the data segments, displays the data loaded into 
your program's memory and the data on the program's stack. 

• The bottom pane is the SPIM messages that x s p i  m uses to write messag
es. This is where error messages appear. 
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uplm 
PC 00000000 EPC - 00000000 C a u s e  

L O  
= 00000000 B a d V a d d r  - 00000000 Sta t u s  = 00000000 H I  = 00000000 - 00000000 

RO ( r O l  = 00000000 R8 ( t 0 )  
R l  C a t >  = 000000 00 R 9  ( t l ) 
R 2  ( v 0 )  - 00000000 R I O  ( t 2 l  
RJ ( v l ) = 00000000 R l l  ( t 3 ) 
R4 C a O l  = 00000000 R l Z  ( t4 ) 
R S  ( a l  J = 00000000 R l 3  ( t S )  
R6 ( a 2 l  = 00000000 R l 4  ( t 6 )  
R 7  ( a 3 )  = 00000000 R l 5  ( t l l  

F PO = 0 . 000000 F P 8  FP2  = 0 . 000000 F P l O  
F P 4  = 0 . 000000 F P 1 2  FP6  - 0 . 000000 F P 1 4  

I - quit 1 I load 1 I 
I prtnt 1 I breakpt 1 I 

[ 0x0040000 0 ]  Ox8f a 4 00 0 0  
[ Ox004000 0 4 J  O x 2 7 a 5 0004 
[ Ox00400008 ] Ox24a60004 
[ 0x0040000c ] Ox0004 1 0BO 

General registers 
= 00000000 R l 6  ( S O )  = 00000000 R 2 4  ( t 8 )  -
= 00000000 R l 7  ( s l l  = 00000000 R25 ( s 9 )  -
= 00000000 R l 8  ( s 2 )  = 00000000 R26 ( k0 )  = 
= 00000000 R l 9  ( s 3 )  = 00000000 R27 ( k 1 )  -
- 00000000 R 2 0  ( s 4 )  = 00000000 R 2 8  ( g p )  -
-· 00000000 R 2 1  ( S 5 )  = 00000000 R29 ( s p )  -
= 00000000 R22 ( S 6 )  = 00000000 R 3 0  C s8 )  -- 00000000 R23 ( s 7 ) = 00000000 R31 ( r a ) = 

Double floating point registers 
= 0 . 000000 = 0 . 000 000 - 0 . 000000 
= 0 . 000000 

F P l 6  
F P 1 8  
F P 2 0  
F P 2 2  

= 0 . 000000 F P 2 4  -
= 0 . 000000 FP26 = 
= 0 . 000000 F P 28 = - 0 . 000000 FPJO -

Single floating point registers 

1 I 1 I - 1 I •V..-1 run •• .. 

help 1 [ terminal l [ mode 1 
Text Segments 

l w  $ 4 . O C S 2 9 ) ; 89 : l w  S a O ,  O C S s p l  
a d d i u  $ 5 ,  S 2 9 . 4 ; 90 : a d d i u  S a l . S s p .  
a d d i u  $ 6 ,  S S .  4 : 9 1 : a dd i u  S a 2 ,  S a l , 
s l l $ 2 ,  $ 4 , 2 : 92 : s 1 1  S v O . S a O ,  2 
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00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

0 . 000000 
0 . 000000 
0 . 000000 
0 . 000000 

4 
4 

[ 0x004000 1 0 ]  Ox00 c 2 3 0 2 1  a dd u $ 6 .  s 6 .  $ 2 : 9 3 : a d d u  S a 2 . $ a 2 , $ v 0  
[ 0 x004000 1 4 J  OxOcO OOOOO j a l  OxOOOOOOOO [ ma i n ]  : 94 : j a l  ma i n  
[ O x004000 1 8 ]  Ox3402000a ori  $ 2 ,  S O .  1 0  : 9 5 : 1 i $ v 0  1 0  
[ O x004000 l c ]  OxOOOOOOOc s y s c a l l  : 9 6 :  s y s c a l l 

Data Segments 

[ O x l OOOOOO O J  . . .  [ Ox l O O l OO O O J  OxOOOOOOOO 
[ 0x l 00 1 0 004 ] O x 7 4 7 06 5 6 3  O x 2 0 6 e 6 f  6 9  O x 6 3 6 f  2 0 0 0  
[ 0x l 00 1 0 0 1 0 J  Ox 7 2 7 2 7 5 6 3  O x 6 1 206465 O x 6 9 2 0 6 4 6 e  O x 7 2 6 f 6 e 6 7  
[ O x l 00 1 0 0 2 0 J  Ox000a6465 O x 4 9 5 b 2 0 2 0  O x 7 2 6 5 7 4 6e O x 7 4 7 0 7 5 7 2  
[ 0 x l 00 1 0 0 3 0 ]  Ox000020Sd O x 20200000 O x 6 1 6e555b O x 6 e 6 7 696c 
[ O x l 0 0 1 0 040 J O x 6 1 2 0 6 4 6 5  O x 6 S 7 26464 Ox6 9 2 0 7 3 7 3  Ox6e69206e 
[ O x l O O l O O S O J  O x 64 2 f 7 4 7 3  O x 2 06 1 7 4 6 1  O x 6 3 7 4 6566 Ox002 05d68 
[ 0 x l 0 0 1 0 0 6 0 J  O x 5 5 5 b 2 0 2 0  O x 6 96 c 6 1 6 e Ox64656e67 O x 6 4 6 4 6 1 2 0 
[ O x l 0 0 1 0 0 7 0 )  O x 7 3 7 3 6 5 7 2  Ox 206e6920 O x 7 2 6 f 7 4 7 3  O x 0 0 2 0 5 d 6 5  

S P I M  Ve r s i o n 5 . 2  o f  D e c emb e r  3 1 . 1 99 ?  
C o py r i g h t  ( c )  1 9 9 0 - 9 2  by J ames R .  L a r u s  ( l a ru s @c s . w i s c . ed u ) 
A 1 1  R i g h t s  R e s e r v ed . . 
See t h e  f i l e  README f o r  a f u l l copy r i g h t  n o t i c e .  

FIGURE A.15 SPIM's X·window Interface: xspim. 

mailto:larus@cs.wisc.edu
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Let's see how to load and run a program. The first thing to do is to click on 
the L O A D  button (the second one in the first row of buttons) with the left mouse 
key. Your click tells x s p i  m to pop up a small prompt window that contains a 
box and two or three buttons. Move your mouse so the cursor is over the box 
and type the name of your file of assembly code. Then click on the button la
beled A S S E M B L Y  F I L E .  If you change your mind, click on the button labeled 
A B O RT C O M M A N D  and x s p i m  gets rid of prompt window. When you click on 
A S  s E M B L Y  F I L E, x s p i  m gets rid of the prompt window, then loads your program 
and redraws the screen to display its instructions and data. Now move the 
mouse to put the cursor over the scrollbar to the left of the text segments and 
click the left mouse button on the white part of this scrollbar. A click scrolls the 
text pane down so you can find all instructions in your program. 

To run your program, click on the R U N  button in x s p i m's control button 
pane. It pops up a prompt window with two boxes and two buttons. Most of 
the time, these boxes contain the correct values to run your program, so you 
can ignore them and just click on o K. This button tells x s p i  m to run your pro
gram. Notice that when your program is running, x s p i  m blanks out the register 
display pane because the registers are continually changing. You can always 
tell whether x s p i  m is running by looking at this pane. If you want to stop your 
program, make sure the mouse cursor is somewhere over x s p i  m's window 
and type control-C. This causes x s p i  m to pop up a prompt window with two 
buttons. Before doing anything with this prompt window, you can look at reg
isters and memory to find out what your program was doing. When you un
derstand what happened, you can either continue the program by clicking on 
C O N T I N U E  or stop your program by clicking on A B O RT C O M M A N D. 

If your program reads or writes from the terminal, x s p i  m pops up another 
window called the console. All characters that your program writes appear on 
the console and everything that you type as input to your program should be 
typed in this window. 

Suppose your program does not do what you expect. What can you do? 
SPIM has two features that help debug your program. The first, and perhaps 
the most useful, is single-stepping, which allows you to run your program an 
instruction at a time. Click on the button labeled s t e p  and another prompt 
pops up. This prompt contains two boxes and three buttons. The first box asks 
for the number of instructions to step every time you click the mouse. Most of 
the time, the default value of 1 is a good choice. The other box asks for argu
ments to pass to the program when it starts running. Again, most of the time 
you can ignore this box because it contains an appropriate value. The button 
labeled ST E P  runs your program for the number of instructions in the top box. 
If that number is 1, x s p i  m executes the next instruction in your program, up
dates the display, and returns control to you. The button labeled C O N T I N U E  
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stops single-stepping and continues running your program. Finally, A B O RT 

C O M M A N D  stops single-stepping and leaves your program stopped. 
What do you do if your program runs for a long time before the bug arises? 

You could single-step until you get to the bug, but that can take a long time 
and it is easy to get so bored and inattentive that you step past the problem. A 
better alternative is to use a breakpoint, which tells x s p i m to stop your program 
immediately before it executes a particular instruction. Click on the button in 
the second row of buttons marked B R E A K P O I N T S .  The x s  p i  m program pops up a 
prompt window with one box and many buttons. Type in this box the address 
of the instruction at which you want to stop. Or, if the instruction has a global 
label, you can just type the name of the label. This is a particularly convenient 
way to stop at the first instruction of a procedure. To actually set the break
point, click on A D D .  You can then run your program. When SPIM is about to ex
ecute the breakpointed instruction, x s p i  m pops up a prompt with the 
instruction's address and two buttons. The C O N T I N U E  button continues running 
your program and A B O RT C OM M A N D  stops your program. If you want to delete a 
breakpoint, type in its address and click on D E L E T E .  Finally, L I  ST tells x s  p i  m to 
print (in the bottom pane) a list of all breakpoints that are set. 

Single-stepping and setting breakpoints will probably help you find a bug 
in your program quickly. How do you fix it? Go back to the editor that you 
used to create your program and change it. To run the program again, you 
need a fresh copy of SPIM, which you get in two ways. Either you can exit from 
x s p i  m by clicking on the O U  I T  button, or you can clear x s p i  m and reload your 
program. If you reload your program, you must clear out the memory so rem
nants of your previous program do not interfere with your new program. To 
do this, click on the button labeled C L E A R. Hold the left mouse key down and a 
two-item menu will pop up. Move the mouse so the cursor is over the item la
beled M E M O R Y  & R E G I S T E R S and release the key. This causes x s p i m to clear its 
memory and registers and return the processor to the state it was in when 
x s p i  m first started. You can now load and run your new program. 

The other buttons in x s p i  m perform functions that are occasionally useful. 
When you are more comfortable with x s p i  m, you should look at the descrip
tion below to see what they do and how they can save you time and effort. 

SPIM Command-Line Options 

Both versions of SPIM-s p i m, the terminal version, and x s p i m, the X ver
sion-accept the following command-line options: 

- b a r e Simulate a bare MIPS machine without pseudoinstructions or the 
additional addressing modes provided by the assembler. Implies 
- q u i e t .  

- a s  m Simulate the virtual MIPS machine provided by the assembler. This 



A-42 Appendix A Assemblers, Linkers, and the SPIM Simulator 

is the default. 

- n o t  r a p  Do not load the standard exception handler and start-up code. 
This exception handler handles exceptions. When an exception occurs, 
SPIM jumps to location 80000080hcXI which must contain code to service 
the exception. In addition, this file contains start-up code that invokes 
the routine ma i n . Without the start-up routine, SPIM begins execution 
at the instruction labeled s t a r t .  

- t r a p  Load the standard exception handler and start-up code. This is the 
default. 

- n o  q u i  e t  Print a message when an exception occurs. This is the default. 

- q u i  et  Do not print a message at exceptions. 

- n om a p p e d_i o Disable the memory-mapped I/O facility (see 
section A.8). This is the default. 

- m a pped_i o Enable the memory-mapped I/O facility (see section A.8). 
Programs that use SPIM syscalls (see section on System Calls, 
page A-45) to read from the terminal cannot also use memory-mapped 
I/O. 

- f i l e Load and execute the assembly code in the file. 

- e x e c u t e  Load and execute the code in the MIPS executable file a.out. 
This command is only available when SPIM runs on a system contain
ing a MIPS processor. 

- s < s e g >  s i z e Sets the initial size of memory segment seg to be size 
bytes. The memory segments are named: t e x t, d a t a ,  s t a c k, kt ext ,  
and k d a t a .  The text  segment contains instructions from a program. 
The d a t a  segment holds the program's data. The s t a c k  segment holds 
its runtime stack. In addition to running a program, SPIM also executes 
system code that handles interrupts and exceptions. This code r e s i d e s  
in a separate part of the address space called the kernel. The k t e x t  seg
ment holds this code's instructions and k d a t a  holds its data. There is 
no k s  t a c k  segment since the system code uses the same stack as the 
program. For example, the pair of arguments - s d a t a 2 0 0 0 0 0 0 starts 
the user data segment at 2,000,000 bytes. 

- l < s e g > s i z e Sets the limit on how large memory segment seg can 
grow to be size bytes. The memory segments that can grow are d a t a , 
s t a c k, and k d a t a .  
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Terminal Interface (spim) 

The simpler version of SPIM is called s p i  m. It does not require a bitmapped 
display and can be run from any terminal. Although s p i  m may be more diffi
cult to learn, it operates just like x s p i  m and provides the same functionality. 

The s p i  m terminal interface provides the following commands: 

ex i t Exit the simulator. 

r e a d  " f  i 1 e "  Read file of assembly language into SPIM. If the file has 
already been read into SPIM, the system must be cleared (see r e  i n i -

t i  a 1 i z e, below) or global symbols will be multiply defined. 

1 o a d  " f i  1 e "  Synonym for r e a d .  

e x e c u t e  " a  . o u t "  Read the MIPS executable file a.out into SPIM. This 
command is only available when SPIM runs on a system containing a 
MIPS processor. 

r u n  < a d d  r > Start running a program. If the optional address addr is pro
vided, the program starts at that address. Otherwise, the program starts 
at the global symbol __ s t  a rt ,  which is usually the default startup code 
that calls the routine at the global symbol m a i n . 

s t e p  < N >  Step the program for N (default: 1 )  instructions. Print instruc-
tions as they execute. 

c o n t  i n u  e Continue program execution without stepping. 

p r  i n t $ N Print register N. 

p r  i n t $ f N Print floating point register N. 

p r  i n t a d d  r Print the contents of memory at address addr. 

p r  i n  t_sym Print the symbol table, i.e., the addresses of the global (but 
not local) symbols. 

r e  i n i t i a 1 i z e Clear the memory and registers. 

b r e a k p o i  n t a d d  r Set a breakpoint at address addr. addr can be either a 
memory address or symbolic label. 

d e  1 e t  e a d d  r Delete all breakpoints at address addr. 

1 i s t  List all breakpoints. 

Rest of line is an assembly instruction that is stored in memory. 

< n 1 > A newline re-executes previous command. 

? Print a help message. 
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Most commands can be abbreviated to their unique prefix, e.g., ex, r e, l ,  
r u, s ,  p .  More dangerous commands, such as r e i n i t i a l i z e, require a longer 
prefix. 

X·Window Interface (xspim) 

The tutorial, "Getting Started with SPIM" (page A-37), explains the most 
common x s p i  m commands. However, x s p i  m has other commands that are 
occasionally useful. This section provides a complete list of the commands. 

The X version of SPIM, x s p i  m, looks different but operates in the same 
manner as s p i  m. The X window has five panes (see Figure A.4). The top pane 
displays the registers. These values are continually updated, except while a 
program is running. 

The next pane contains buttons that control the simulator: 

q u i  t Exit from the simulator. 

l o a d  Read a source or executable file into SPIM. 

r u n  Start the program running. 

s t e p  Single-step a program. 

c l  e a r  Reinitialize registers or memory. 

s e t  v a l u e  Set the value in a register or memory location. 

p r i n t  Print the value in a register or memory location. 

b r e a k  p o i  n t Set or delete a breakpoint or list all breakpoints. 

h e  l p Print a help message. 

t e r m  i n a l Raise or hide the console window. 

mode  Set SPIM operating modes. 

The next two panes display the memory. The top one shows instructions 
from the user and kernel text segments. (These instructions are real-not pseu
do-MIPS instructions. SPIM translates assembler pseudoinstructions to 1-3 
MIPS instructions. Each source instruction appears as a comment on the first 
instruction to which it is translated.) The first few instructions in the text seg
ment are the default start-up code (__s t a r t) that loads a r g c  and a r g v  into 
registers and invokes the ma i n  routine. The lower of these two panes displays 
the data and stack segments. Both panes are updated as a program executes. 

The bottom pane is used to display SPIM messages. It does not display out
put from a program. When a program reads or writes, its 1/0 appears in a sep
arate window, called the Console, which pops up when needed. 
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Surprising Features 

Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator 
and certain things are not identical to an actual computer. The most obvious 
differences are that instruction timing and the memory systems are not identi
cal. SPIM does not simulate caches or memory latency, nor does it accurately 
reflect floating-point operation or multiply and divide instruction delays. 

Another surprise (which occurs on the real machine as well) is that a 
pseudoinstruction expands to several machine instructions. When you single
step or examine memory, the instructions that you see are different from the 
source program. The correspondence between the two sets of instructions is 
fairly simple since SPIM does not reorganize instructions to fill delay slots. 

Byte Order 

Processors can number bytes within a word so the byte with the lowest num
ber is either the leftmost or rightmost one. The convention used by a machine 
is its byte order. MIPS processors can operate with either big-endian byte order: 

or little-endian byte order: 

SPIM operates with both byte orders. SPIM's byte order is the same as the 
byte order of the underlying machine that runs the simulator. For example, on 
a DECstation 3100, SPIM is little-endian, while on a Macintosh, HP Bobcat, or 
Sun SP ARC, SPIM is big-endian. 

System Calls 

SPIM provides a small set of operating system-like services through the sys
tem call ( sy s  c a l  l ) instruction. To request a service, a program loads the sys
tem call code (see Figure A.16) into register $ v 0  and arguments into registers 
$ a  0 . . .  $ a  3 (or $ f 1 2  for floating-point values). System calls that return values 
put their results in register $ v 0  (or $ f 0 for floating-point results). For exam
ple, the following code prints " t h e  a n s we r = 5":  
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Service . Systef!1 call c_ode ''· '.Argu.ments Result 

print_int 1 $ a 0 = integer 

print_ float 2 $ f 1 2  = float 

prinLdouble 3 $ f l  2 = double 

print_ string 4 $ ao = string 

read_int 5 integer ( in  $ v 0) 

read_ float 6 float (in HO) 

read_ double 7 double (in $ f 0) 

read_stri ng 8 $ a  0 = buffer, $a 1 = length 

sbrk 9 $ a 0  = amount address (in $ vO)  

exit 10 

FIGURE A.16 System services . 

. d a t a  
s t r :  

. a s c i i z  " t h e  a n s w e r  = 

. t e x t  
l i $ v 0 , 4 # s y s t em c a  1 1  c o d e  f o r  p r i n t_s t r  
l a  $ a 0 , s t r  # a d d r e s s  o f  s t r i n g  t o  p r i n t  
s y s c a l l # p r i n t  t h e  s t r i n g  

l i $ v 0 , 1 # s y s t em c a l l c o d e  f o r  p r i n t_ i n t 
l i $ a 0 , 5 # i n t e g e r  t o  p r i n t  
s y s c a l l  # p r i n t  i t  

The p r  i n t_ i n t system call is passed an integer and prints it on the console. 
p r i  n t_f l  o a t  prints a single floating-point number; p r i  n t_d o u b l  e prints a 
double precision number; and p r  i n t_s t r  i n g is passed a pointer to a null-ter
minated string, which it writes to the console. 

I 

The system calls r e a d_ i n t, r e a d_ f l o a t, and r e a  d_d o u b  l e  read an entire 
line of input up to and including the newline. Characters following the num- · 

her are ignored. r e  a d_s t r  i n g has the same semantics as the Unix library rou
tine f g e t s .  It reads up to n - 1  characters into a buffer and terminates the 
string with a null byte. If fewer than n - 1 characters are on the current line, 
r e  a d_s t r  i n g reads up to and including the newline and again null-terminates 
the string. Warning: Programs that use these syscalls to read from the terminal 
should not use memory-mapped 1/0 (see section A.8). 

Finally, s b r k returns a pointer to a block of memory containing n addition
al bytes, and e x  i t stops a program from running. 
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Memory 

-------- -------
CPU Coprocessor 1 (FPU) 

Registers 

$0 

� ..... 

$31 

I Arithmetic I I Multiply 
unit divide 

� 
Coprocessor 0 (traps and memory) 

registers 

BadVAddr � Status c 

FIGURE A.17 MIPS R2000 CPU and FPU. 

II MIPS R2000 Assembly Language 

Registers 

$0 

$31 

Arithmetic 
unit 

A-47 

A MIPS processor consists of an integer processing unit (the CPU) and a col
lection of coprocessors that perform ancillary tasks or operate on other types 
of data such as floating-point numbers (see Figure A.17) .  SPIM simulates two 
coprocessors. Coprocessor 0 handles exceptions, interrupts, and the virtual 
memory system. SPIM simulates most of the first two and entirely omits 
details of the memory system. Coprocessor 1 is the floating-point unit. SPIM 
simulates most aspects of this unit. 
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Addressing Modes 

MIPS is a load/store architecture, which means that only load and store 
instructions access memory. Computation instructions operate only on values 
in registers. The bare machine provides only one memory-addressing 
mode: c ( r x ) , which uses the sum of the immediate c and register r x as the 
address. The virtual machine provides the following addressing modes for 
load and store instructions: 

Format Address computation 

(register) contents of register 

imm immediate 

imm (register) immediate + contents of register 

symbol address of symbol 

symbol imm address of symbol + or - immediate 

symbol imm (register) address of symbol + or - (immediate + contents of register) 

Most load and store instructions operate only on aligned data. A quantity 
is aligned if its memory address is a multiple of its size in bytes. Therefore, a 
halfword object must be stored at even addresses and a full word object must 
be stored at addresses that are a multiple of 4. However, MIPS provides some 
instructions to manipulate unaligned data ( l w l ,  l w r, s w l ,  and s w r ) . 

Assembler Syntax 

Comments in assembler files begin with a sharp sign (ff). Everything from the 
sharp sign to the end of the line is ignored. 

Identifiers are a sequence of alphanumeric characters, underbars (_), and 
dots ( . ) that do not begin with a number. Instruction opcodes are reserved 
words that cannot be used as identifiers. Labels are declared by putting them 
at the beginning of a line followed by a colon, for example: 

. d a t a  
i t em : . w o r d 1 

. t e x t  

. g l o b l  ma i n  
ma i n :  l w  $ t 0 , i t e m  

1F M u s t  be  g l o b a l  

Numbers are base 1 0  by default. If they are preceded by Ox, they are inter
preted as hexadecimal. Hence, 256 and OxlOO denote the same value. 
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Strings are enclosed in double-quotes ("). Special characters in strings fol
low the C convention: 

• newline \n 

• tab \t 

• quote \"  

SPIM supports a subset of  the assembler directives of  the MIPS assembler 
directives: 

. a l i g n n Align the next datum on a2n byte boundary. For example, 

. a l i g n 2 aligns the next value on a word boundary . .  a l i g n 0 turns off 
automatic alignment of . h a l f , . wo r d,  . f l  o a t, and . d o u b l e directives 
until the next . d a t a  or . kd a t  a directive . 

. a s  c i i s t  r Store the string s t  r in memory, but do not null-terminate it. 

. a s  c i i  z s t  r Store the string s t  r in memory and null-terminate it. 

. byte  b l . . . . .  b n  Store the n values in successive bytes of memory . 

. d a t a  < a d d  r > Subsequent items are stored in the data segment. If the 
optional argument addr is present, subsequent items are stored starting 
at address addr . 

. d o  u b l  e d 1 , . . .  , d n Store the n floating-point double precision num
bers in successive memory locations . 

. e x t e r n  sym  s i z e Declare that the datum stored at sym  is s i z e bytes 
large and is a global symbol. This directive enables the assembler to 
store the datum in a portion of the data segment that is efficiently 
accessed via register $ g p . 

. f l  o a t  f l  . . . . . f n Store the n floating-point single precision numbers 
in successive memory locations . 

. g l o b l  sym  Declare that symbol sym  is global and can be referenced 
from other files . 

. h a  l f h 1 , . . .  , h n Store the n 16-bit quantities in successive memory 
halfwords . 

. k d a t a  < a d d  r > Subsequent data items are stored in the kernel data seg
ment. If the optional argument addr is present, subsequent items are 
stored starting at address addr . 

. k t  e x t  < a d d  r > Subsequent items are put in the kernel text segment. In 
SPIM, these items may only be instructions or words (see the . w o r d  

directive below).  I f  the optional argument addr is present, subsequent 
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items are stored starting at address addr . 

. s e t  n o  a t  . s e t  a t  The first directive prevents SPIM from complaining 
about subsequent instructions that use register $ 1 .  The second directive 
reenables the warning. Since pseudoinstructions expand into code that 
uses register $ 1 , programmers must be very careful about leaving val
ues in this register . 

. s p a c e n Allocate n bytes of space in the current segment (which must 
be the data segment in SPIM) . 

. t e x t  < a d d  r > Subsequent items are put in the user text segment. In 
SPIM, these items may only be instructions or words (see the . word  

directive below). I f  the optional argument addr is present, subsequent 
items are stored starting at address addr . 

. w o r d  w 1 , . . .  , w n Store the n 32-bit quantities in successive memory 
words. 

SPIM does not distinguish various parts of the data segment ( . d a t a , . r d a t a , 

and . s d a t a ) . 

Encoding MIPS Instructions 

Figure A.18 explains how a MIPS instruction is encoded in a binary number. 
Each column contains instruction encodings for a field (a contiguous group of 
bits) from an instruction. The numbers at the left margin are values for a field. 
For example, the j opcode has a value of 2 in the opcode field. The text at the 
top of a column names a field and specifies which bits it occupies in an 
instruction. For example, the o p  field is contained in bits 26 to 31 of an instruc
tion. This field encodes most instructions. However, some groups of instruc
tions use additional fields to distinguish related instructions. For example, the 
different floating-point instructions are specified by bits 0 to 5. The arrows 
from the first column show which opcodes use these additional fields. 

Instruction Format 

The rest of this appendix describes both the instructions implemented by 
actual MIPS hardware and the pseudoinstructions provided by the MIPS 
assembler. The two types of instructions are easily distinguished. Actual 
instructions depict the fields in their binary representation. For example, in: 

a d d Rd , R s , 
Rt  

0 

6 

Rs Rt 

5 5 

Rd 0 Ox20 Addition (with overflow) 

5 5 6 

the a d d instruction consists of six fields. Each field's size in bits is the small 
number below the field. This instruction begins with 6 bits of zeros. Register 



10 16 0 (31:26) 
0 00 
1 01 
2 02 j 
3 03 jal 
4 04 beq 
5 05 bne 
6 06 blez 
7 07 bgtz 
8 08 addi 
9 09 addiu 

10 Oa slti 
11 Ob sltiu 
12 Oc andi 
13 Od ori 
14 Oe xori 
15 Of lui 
16 10 Z = O 
17 1 1  Z = 1 
18 12 Z = 2 · 
19 13 Z = 3  
20 14 
21 15 
22 16 
23 17 
24 18 
25 19 
26 la 
27 lb 
28 le 
29 ld 
30 le 
31 1f 
32 20 lb 
33 21 lh 
34 22 lwl 
35 23 lw 
36 24 lbu 
37 25 lhu 
38 26 lwr 
39 27 
40 28 s 
41 29 sh 
42 2a swl 
43 2b SW 
44 2c 
45 2d 
46 2e swr 
47 2f 
48 30 lwc 
49 31 lwc1 
so 32 lwc2 
51 33 lwc3 
52 34 
53 35 
54 36 
55 37 
56 38 swc 
57 39 swc1 
58 3a swc2 
59 3b swc3 
60 3c 
61 3d 
62 3e 
63 3f 

-� . 
� 

•r 
rs 

125:21> 
0 mfcz 
1 
2 cfcz 
3 
4 mtcz 
5 
6 ctcz 
7 � 
8 
9 

10 
11 ... 
12 
13 
14 
15 
16 copz -
17 copz ... 
18 copz 
19 copz 
20 copz 
21 copz 
22 copz 
23 cooZ 
24 copz 
25 copz 
26 copz 
27 copz 
28 copz 
29 copz 
30 copz 
31 ,..,.,.nz 

,.. I (16:16) 1,. 
0 bczf 0 
1 bczt 1 

2 
3 
4 
5 
6 - 7 . 
8 
9 

10 
11 
12 
13 

if z = 0 14 
15 
16 
17 

if z =l, if z = 1, 18 
f=d f=s 19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 •II' nn 
31 

10 - 0 . 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

.� 28 
29 

funct rt 30 
4:0 120:16) 31 

0 bltz 32 
tlbr 1 bgez 33 
tlbwi 2 34 

3 35 
4 36 
5 37 

tlbwr 6 38 
7 39 

tlbp 8 40 
9 41 

10 42 
1 1  43 
12 44 
13 45 
14 46 
15 47 

rte 16 bltzal 48 
17 bgezal 49 
18 so 
19 51 
20 52 
21 53 
22 54 
23 55 
24 56 
25 57 
26 58 
27 59 
28 60 
29 61 
nn 'n 
31 63 

funct(5:0) 
slT 

srl 
sra 
sllv 

srlv 
srav 
Jr 
jalr 

syscall 
break 

mfh1 
mthi 
mflo 
mtlo 

mult 
multu 
div 
divu 

add 
addu 
sub 
subu 
and 
or 
xor 
nor 

sit 
situ 

1 0 nct(5:0) 

,-+ 0 a 
1 sub.f 
2 mul.f 
3 div.f 
4 
5 abs.f 
6 mov.f 7 1-n:..::e=:.:. ''----1 
8 
9 

1 0 
1 1 
1 2 
1 3 
1 4 
1 
1 
5 1------4 6 

1 7 
1 8 
1 9 
2 0 
2 1 
22 
23 ....._ __ __. 

4 2 
25 
2 6 
2 7 
2 8 
2 9 
3 0 
3 
3 

1
1------1 

2 
3 

3 

3 
34 

5 

3 
3 

36 
7 
8 

cvt.s. 
cvt.d.f 

cvt.w.f 

3 9 1------1 40 
4 1 
42 
4 3 
44 
4 5 
4 6 
4 
4 

7 1------1 8 
4 9 

5 
5 
5 

so 
1 
2 
3 

54 
5 5 

c . .  
c.un.f 
c.eq.f 
c.ueq.f 
c.olt.f 
c.ult.f 
c.ole.f 
c.ule.f 

56 c.s . 
5 
5 

7 c.ngle.f 
8 c.seq.f 

5 9 c.ngl.f 
60 c.lt.f 
6 
6 

1 c.nge.f 
2 c.le. f 

63 u....��'-_J 

FIGURE A.18 MIPS opc:ocle 1111111· The values of each field are shown to its left. The first column shows the values in base 10 and the second 
shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except for 6 op 
values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by pointers. The last field (funct) uses 'f" to mean 
"s" if rs = 16 and op = 17 or "d" if rs = 17 and op = 17. The second field (rs) uses "Z" to mean "O", "1", "2", or "3" if op = 16, 17, 18, or 19, 
respectively. U rs = 16, the operation is �ified elsewhere: if z = 0, the operations are specified in the fourth field (bits 4 to O); if z = 1, then 
the operations are in the last field with! = s. U rs = 17 and z = 1, then the operations are in the last field with/= d. (page A-51) 
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specifiers begin with a capital "R," so the next field is a 5-bit register specifier 
called Rs .  This is the same register that is the second argument in the symbolic 
assembly at the left of this line. Another common field is Imm16, which is a 16-
bit immediate number. 

Pseudoinstructions follow roughly the same conventions, but omit instruc
tion encoding information. In these instructions, Rd e s t  and Rs  r e  are registers 
and S r  e 2 is either a register or an immediate value. 

In general, the assembler and SPIM translate a more general form of an in
struction (e.g., a d d  $ 3 , $ 4 , O x 5 5) to a specialized form (e.g., a d d i  $ 3 , $ 4 , 

0 x 5 5 ) . 

Arithmetic and Logical Instructions 

a b s  Rd e s t , 
R s  r e  

Absolute value 

Put the absolute value of register Rs re in register Rd e s t . 

a d d  Rd , R s , 0 Rs Rt Rd 0 Ox20 Addition (with overflow) 
Rt  

6 5 5 5 5 6 

a d  d u  Rd , R s , 0 Rs Rt Rd 0 Ox21 Addition (without overflow) 
Rt 

6 5 5 5 5 6 

Put the sum of registers R s  and Rt  into register Rd .  

a d d i  Rt , R s , 8 Rs Rt Imm Addition immediate (with 
I mm overflow) 

6 5 5 16 

a d d i u Rt , R s , 9 Rs Rt Imm Addition immediate (without 
I mm overflow) 

6 5 5 16 

Put the sum of register Rs and the sign-extended immediate into register Rt .  

and  Rd , R s . 
Rt  

0 

6 

Rs Rt 

5 5 

Rd 0 

5 5 

Ox24 AND 

6 
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Put the logical AND of registers Rs  and Rt into register Rd .  

a n d i  Rt . R s . 
I mm 

Oxc 

6 

Rs 

5 

Rt Imm AND immediate 

5 16 

A-53 

Put the logical AND of register R s  and the zero-extended immediate into reg
ister Rt .  

d i v  Rs . Rt  0 Rs Rt 0 Ox1a Divide (with overflow) 

6 5 5 10 6 

d i v u  Rs . Rt 0 Rs Rt 0 Ox1b Divide (without overflow) 

6 5 5 10 6 

Divide register R s  by register Rt .  Leave the quotient in register l o  and the re
mainder in register h i .  Note that if an operand is negative, the remainder is 
unspecified by the MIPS architecture and depends on the convention of the 
machine on which SPIM is run. 

d i v Rde s t . Rs r e l . 
S r e 2  

d i v u  Rde s t . Rs r e l , 
S r e 2  

Divide (with overflow) 

Divide (without overflow) 

Put the quotient of register R s  r e l  and S r e 2  into register Rd e s t .  

m u l  R d  e s t . Rs  r e l . 
S r e 2  

m u l o Rd e s t . R s r e l , 
S r e 2  

mu l o u Rd e s t . R s r e l . S r e 2  

Multiply (without overflow) 

Multiply (with overflow) 

Unsigned multiply (with 
overflow) 
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Put the product of register R s r e  1 and S r c 2 into register Rd e s t .  

m u l t R s ,  Rt 0 Rs Rt 0 Ox18 Multiply 

6 5 5 10 6 

m u l t u  Rs ,  Rt 0 Rs Rt 0 Ox19 Unsigned multiply 

6 5 5 10 6 

Multiply registers R s and Rt .  Leave the low-order word of the product in reg
ister l o and the high-order word in register h i  . 

n e g  Rd e s t . R s r c 

n e g u  Rd e s t , R s r c 

Negate value (with overflow) 

Negate value (without 
overflow) 

Put the negative of register R s r e  into register Rd e s t . 

n o r  Rd , R s ,  
Rt 

0 

6 

Rs Rt 

5 5 

Rd 0 

5 5 

Ox27 NOR 

6 

Put the logical NOR of registers Rs and Rt into register Rd . 

n o t  Rd e s t , R s r c NOT 

Put the bitwise logical negation of register R s r e  into register Rd e s t .  

o r  Rd , R s ,  Rt l
.___

o
��-

Rs
�.__

R
_

t
��

Rd
�,___

o
�_

o
_
x
_
2
_
5
� 

OR 

6 5 5 5 5 6 

Put the logical OR of registers Rs and I mm into register Rt .  

o r i Rt ,  R s ,  
I mm 

Oxd 

6 

Rs 

5 

Rt Imm OR immediate 

5 16 
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Put the logical OR of register Rs  and the zero-extended immediate into register 
Rd .  

r em  Rd e s t . R s r c l . 
R s r c 2  

r emu  Rde s t . R s r c l , R s r c 2  

Remainder 

U nsigned remainder 

Put the remainder of register Rs r c 1 divided by register S r  c 2 into register Rd -
e s t .  Note that if an operand is negative, the remainder is unspecified by the 
MIPS architecture and depends on the convention of the machine on which 
SPIM is run. 

r o l  Rd e s t , R s  r e l , R s r c 2  Rotate left 

r o r  Rd e s t . R s  r e l , R s r c 2  Rotate right 

Rotate register Rs r c 1 left (right) by the distance indicated by S r  c 2 and put the 
result in register Rd e s t .  

s 1 1  Rd , Rt , 0 Rs Rt Rd Sa 0 Shift left logical 
S a  

6 5 5 5 5 6 

s 1 1  v Rd . Rt . 0 Rs Rt Rd 0 4 Shift left logical variable 
Rs  

6 5 5 5 5 6 

s r a Rd . Rt . 0 Rs Rt Rd Sa 3 Shift right arithmetic 
S a  

6 5 5 5 5 6 

s r a  v Rd . Rt , I 0 Rs Rt Rd 0 7 Shift right arithmetic variable 
Rs  

6 5 5 5 5 6 

s r l Rd . Rt , 0 Rs Rt Rd Sa 2 Shift right logical 
S a  

6 5 5 5 5 6 
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s r l v Rd . Rt . 0 Rs Rt Rd 0 6 Shift right logical variable 
R s  

6 5 5 5 5 6 

Shift register Rt left (right) by the distance indicated by immediate S a  (Rs ) and 
put the result in register Rd .  

s u b  Rd . R s , 0 Rs Rt Rd 0 Ox22 Subtract (with overflow) 
Rt 

6 5 5 5 5 6 

s u b u  Rd , R s . 0 Rs Rt Rd 0 Ox23 Subtract (without overflow) 
R t  

6 5 5 5 5 6 

Put the difference of registers Rs  and Rt into register Rd .  

x o r  Rd . R s . 0 Rs Rt Rd 0 Ox26 XOR 
Rt 

6 5 5 5 5 6 

Put the logical XOR of registers R s  and R t  into register Rd .  

x o r i  Rt , R s , 
I mm 

Oxe 

6 

Rs 

5 

Rt Imm XOR immediate 

5 16 

Put the logical XOR of register Rs  and the zero-extended immediate into reg
ister Rd .  

Constant-Manipulating Instructions 

l i  Rdes t .  I mm load immediate 

Move the immediate i mm into register Rd e s t .  

l u i Rt , I mm Oxf Rs Rt Imm Load upper immediate 

6 5 5 16 

Load the lower halfword of the immediate I mm into the upper halfword of reg
ister Rt .  The lower bits of the register are set to 0. 
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Comparison Instructions 

s e q  Rde s t , R s r c l , R s r c 2  Set equal 

Set register Rd e s t  to 1 if register Rs r c 1 equals S r  c 2 and to 0 otherwise. 

s g e  Rd e s t , R s r c l , R s r c 2  

s g e u  Rd e s t , R s r c l , R s r c 2  

Set greater than equal 

Set greater than equal 
unsigned 

Set register Rd e s t  to 1 if register Rs r c 1 is greater than or equal to S r  c 2 and to 
0 otherwise. 

s g t  Rde s t . R s  r e l , R s r c 2  Set greater than 

s g t u  Rd e s t , R s r c l . R s r c 2  Set greater than unsigned 

Set register Rd e s t  to 1 if register Rs r c 1 is greater than S r  c 2 and to 0 otherwise. 

s l e  Rd e s t , R s  r e l , R s  r c 2  Set less than equal 

s l e u Rd e s t , R s r c l , R s r c 2  Set less than equal unsigned 

Set register Rd e s t  to 1 if register Rs r c 1 is less than or equal to S r  c 2 and to 0 
otherwise. 

s l t  Rd , R s , 0 Rs Rt Rd 0 Ox2a Set less than 
Rt 

6 5 5 5 5 6 

s l t u Rd , R s , 0 Rs Rt Rd 0 Ox2b Set less than unsigned 
Rt 

6 5 5 5 5 6 
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Set register Rd to 1 if register Rs  is less than Rt and to 0 otherwise. 

s l t  i Rd , R s , Oxa Rs Rd Imm Set less than immediate 
I mm 

6 5 5 16 

s l t  i u Rd , Rs , Oxb Rs Rd Imm Set less than unsigned 
I mm immediate 

6 5 5 16 

Set register Rd to 1 if register Rs  is less than the sign-extended immediate and 
to 0 otherwise. 

s n e  Rde s t , R s r c l , R s r c 2  Set not equal 

Set register Rd e s t  to 1 if register Rs r c 1 is not equal to S r  c 2 and to 0 otherwise. 

Branch and Jump Instructions 

Branch instructions use a signed 16-bit instruction offset field; hence they can 
jump 215 - 1 instructions (not bytes) forward or 215 instructions backwards. 
The jump instruction contains a 26-bit address field. 

In the descriptions below, the offsets are not specified. Instead, the instruc
tions branch to a label. This is the form used in most assembly language pro
grams because the distance between instructions is difficult to calculate when 
pseudoinstructions expand into several real instructions. 

b l a b e l  Branch instruction 

Unconditionally branch to the instruction at the label. 

b c z t  l a b e l  Oxlz 8 1 Offset Branch coprocessor z true 

6 5 5 16 

b c z f  l a b e l  Oxlz 8 0 Offset Branch coprocessor z false 

6 5 5 16 
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Conditionally branch the number of instructions specified by the offset if z's 
condition flag is true (false). z is 0, 1, 2, or 3. 

b e q  R s , Rt , 
l a b e l  

4 

6 

Rs 

5 

Rt Offset Branch on equal 

5 16 

Conditionally branch the number of instructions specified by the offset if reg
ister R s  equals Rt .  

beqz  Rs r e . l a b e l  Branch on equal zero 

Conditionally branch to the instruction at the label if R s  r e  equals 0. 

b g e  R s r e , S r e 2 , l a b e l  

b g e u  R s  r e , S r e 2 , l a b e l  

Branch on greater than equal 

Branch on greater than equal 
unsigned 

Conditionally branch to the instruction at the label if register Rs r e  1 is greater 
than or equal to S r e 2 .  

b g e z  Rs , l a b e l  .... I 
_

1
_....__

R
_
s

_.__
1

__. ___ 
o
_
ff
_
se

_
t 
__ 

__, Branch on greater than equal 
zero 

6 5 5 16 

Conditionally branch the number of instructions specified by the offset if reg
ister R s  is greater than or equal to 0. 

b g e z a l 
R s . l a b e l  

1 Rs J Ox11 I Offset Branch on greater than equal 
�-�--�-�------� zero and l ink 

6 5 5 16 

Conditionally branch the number of instructions specified by the offset if reg
ister R s  r e  is greater than or equal to 0. Save the address of the next instruction 
in register 31.  

bgt Rs r e l , S r e 2 , l a be l 

b g t u  Rs r e l , S r e 2 , l a be l 

Branch on greater than 

Branch on greater than 
unsigned 
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Conditionally branch to the instruction at the label if register Rs  r e  1 is greater 
than S r c2 .  

b gtz  Rs , l a b e l
�
I _1 _ 

_.__
R
_
s

_.__
o

__.. ___ 
o

_
ffs

_
e
_
t __ _, Branch on greater than zero 

6 5 5 16 

Conditionally branch the number of instructions specified by the offset if reg
ister Rs  is greater than 0. 

b l e Rs r c l . S r c 2 , l a b e l  

b l e u  R s r c l . S r c 2 , l a b e l  

Branch on less than equal 

Branch on less than equal 
unsigned 

Conditionally branch to the instruction at the label if register Rs r c 1 is less than 
or equal to S r c 2 .  

b l e z  Rs . l a b e l
�
! _6 _ 

_.__
Rs

_.___
o

__.. 
___ o

_
ffs

_
e
_
t __ _, 

6 5 5 16 

Branch on less than equal 
zero 

Conditionally branch the number of instructions specified by the offset if reg
ister Rs  is less than or equal to 0. 

Branch on greater than equal 
�-�--.__ 

_ 
_.__ 

______ __, zero and l ink 

Branch on less than and l ink 

Conditionally branch the number of instructions specified by the offset if reg
ister Rs  is greater than or equal to 0 or less than 0, respectively. Save the ad
dress of the next instruction in register 31 .  

b l t Rs r c l , S r c 2 , l a b e l  Branch on less than 

b l t u  Rs r c l , S r c 2 , l a b e l  Branch on less than unsigned 
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Conditionally branch to the instruction at the label if register Rs  r c 1 is less than 
S r c 2 .  

b l t z  Rs , l a b e l
�
I �1�

_..__
R
_
s

_.__
�o

�
�

�
�o

_
ff
_
se

_
t�

�� 
Branch on less than zero 

6 5 5 16 

Conditionally branch the number of instructions specified by the offset if reg
ister Rs  is less than 0. 

b n e  Rs . l a b e l  5 Rs 0 Offset Branch on not equal 

6 5 5 16 

Conditionally branch the number of instructions specified by the offset if reg
ister Rs is not equal to 0. 

b n e z  R s r c , l a b e l  Branch on not equal zero 

Conditionally branch to the instruction at the label if register Rs  r e  is not equal 
to 0. 

j l a b e l  2 Target Jump 

6 26 

Unconditionally jump to the instruction at Target. 

j a l  l a b e l  3 Target Jump and l ink 

6 26 

Unconditionally jump to the instruction at Target. Save the address of the next 
instruction in register Rd .  

j a l  r Rs  , Rd 0 Rs 0 Rd 0 9 Jump and l ink register 

6 5 5 5 5 6 
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Unconditionally jump to the instruction whose address is in register Rs .  Save 
the address of the next instruction in register Rd (which defaults to 31) .  

j r Rs 0 Rs 0 8 Jump register 

6 5 16 5 

Unconditionally jump to the instruction whose address is in register R s  r e .  

Load Instructions 

l a  Rde s t , a d d r e s s  Load address 

Load computed address-not the contents of the location-into register Rd e s t . 

l b  R t , Ox20 Rs Rt Offset Load byte 
a d d r e s s  

6 5 5 16 

l b u Rt , Ox24 Rs Rt Offset Load unsigned byte 
a d d r e s s  

6 5 5 16 

Load the byte at address into register Rt .  The byte is sign-extended by l b, but 
not by l bu .  

l d  Rde s t , a d d r e s s  Load doubleword 

Load the 64-bit quantity at address into registers Rd e s t  and Rd e s t  + 1 .  

l h Rt , Ox21 Rs Rt Offset Load halfword 
a d d r e s s  

6 5 5 16 

l h u R t , Ox25 Rs Rt Offset Load unsigned halfword 
a d d r e s s  

6 5 5 16 
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Load the 16-bit quantity (halfword) at address into register Rt .  The halfword is 
sign-extended by l h, but not by l h u .  

l w Rt . 
a d d r e s s  

Ox23 Rs 

6 5 

Rt Offset Load word 

5 16 

Load the 32-bit quantity (word) at address into register Rt .  

l wcz Rt , 
a d d r e s s  

Ox3Z I Rs 

6 5 

Rt Offset Load word coprocessor 

5 16 

Load the word at address into register Rt of coprocessor z (0-3). 

l w l Rt , Ox22 Rs Rt Offset Load word left 
a d d r e s s  

6 5 5 16 

l w r Rt . Ox23 Rs Rt Offset Load word right 
a d d r e s s  

6 5 5 16 

Load the left (right) bytes from the word at the possibly unaligned address into 
register Rt .  

u l h Rde s t . a d d r e s s  

u l h u  Rd e s t , a d d r e s s  

Unal igned load halfword 

Unal igned load halfword 
unsigned 

Load the 16-bit quantity (halfword) at the possibly unaligned address into reg
ister Rd e s t . The halfword is sign-extended by the u l  h ,  but not the u l  h u, in
struction 

u l w Rde s t , a d d r e s s  Unal igned load word 

Load the 32-bit quantity (word) at the possibly unaligned address into register 
Rd e s t .  
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Store Instructions 

s b  Rt , 
a d d r e s s  

Ox28 Rs 

6 5 

Rt Offset 

5 16 

Store the low byte from register Rt at address. 

sd Rs r e . a d d r e s s  

Store byte 

Store double-word 

Store the 64-bit quantity in registers Rs  r e  and Rs  re  + 1 at address. 

s h  Rt , 
a d d r e s s  

Ox29 Rs 

6 5 

Rt Offset Store halfword 

5 16 

Store the low halfword from register Rt at address. 

S W  Rt . 
a d d r e s s  

Ox2b Rs 

6 5 

Rt Offset 

5 16 

Store the word from register Rt at address. 

swez R t , 
a d d r e s s  

lox3(1-Z)I Rs 

6 5 

Rt Offset 

5 16 

Store word 

Store word coprocessor 

Store the word from register Rt of coprocessor z at address. 

s w l  Rt , Ox2a Rs Rt Offset Store word left 
a d d r e s s  

6 5 5 16 

s w r  R t , Ox2e Rs Rt Offset Store word right 
a d d r e s s  

6 5 5 16 

Store the left (right) bytes from register Rt at the possibly unaligned address. 

u s h  Rs r e . a d d r e s s  Unal igned store halfword 
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Store the low halfword from register R s  r e  at the possibly unaligned address. 

u s w  R s r e . a d d r e s s  Unal igned store word 

Store the word from register R s  r e  at the possibly unaligned address. 

Data Movement Instructions 

m o v e  Rd e s t , R s r e  Move 

Move register R s  r e  to Rd  e s t . 

The multiply and divide unit produces its result in two additional registers, 
h i  and l o . These instructions move values to and from these registers. The 
multiply, divide, and remainder pseudoinstructions that make this unit ap
pear to operate on the general registers move the result after the computation 
finishes. 

m f h i  Rd 0 0 Rd 0 Ox10 Move from hi 

6 10 5 5 6 

m f l  o i  Rd 0 0 Rd 0 Ox12 Move from lo 

6 10 5 5 6 

Move the h i ( l o) register to register Rd .  

mt h i  0 Rs 0 Ox11 Move to hi 

6 5 15 6 

mt l o  0 Rs 0 Ox13 Move to lo 

6 5 15 6 

Move register R s  to the h i  ( l o )  register. 



A·66 Appendix A Assemblers, Linkers, and the SPIM Simulator 

Coprocessors have their own register sets. These instructions move values 
between these registers and the CPU's registers. 

m f cz Rd e s t , 
C P s r e  

Ox1Z I 0 

6 5 

Rt 

5 

Rd 0 Move from coprocessor z 

5 11 

Move coprocessor z' s register C P s r c to CPU register Rd e s t .  

m f c l . d  Rd e s t ,  F R s r c l  Move double from 
coprocessor 1 

Move floating-point registers F R s r c l  and F R s r c l  + 1 to CPU registers Rd e s t  
and Rd e s t  + 1 .  

Rt Rd 0 mtcz C P d e s t , Ox1z I 4 
R s r c  '--����'---�-'----������---' 

6 5 5 5 11 

Move to coprocessor z 

Move CPU register R s  r c to coprocessor z' s register C P d e  s t .  

Floating-Point Instructions 

The MIPS has a floating-point coprocessor (numbered 1) that operates on sin
gle precision (32-bit) and double precision (64-bit) floating-point numbers. 
This coprocessor has its own registers, which are numbered $ f 0-$ f 3 1 .  

Because these registers are only 32-bits wide, two of them are required to hold 
doubles. To simplify matters, floating-point operations, even single precision 
operations, only use even-numbered registers. 

Values are moved in or out of these registers one word (32-bits) at a time 
by l w e  1 ,  s w c l ,  m t c  1 ,  and mf  c 1 instructions described above or by the l . s, l . d, 
s .  s ,  and s .  d pseudoinstructions described below. The flag set by floating
point comparison operations is read by the CPU with its b c l  t and b c l  f in

structions. 
In the actual instructions below,fmt is 0 for single precision and 1 for dou

ble precision. In the pseudoinstructions below, F Rd e s t  is a floating-point reg
ister (e.g., $ f 2 ) .  

a b s  . d F d , F s Ox11 

6 

1 

5 

0 

5 

Fs Fd 

5 5 

5 
6 

Floating-point absolute value 
double 
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a b s . s F d , F s Ox11 

6 

0 

5 

0 

5 

Fs Fd 

5 5 

5 

6 

A-67 

Floating-point absolute value 
single 

Compute the absolute value of the floating-point double (single) in register F s  
and put it in register F d .  

a d d . d  Fd , F s ,  Ox11 1 Ft Fs Fd 0 Floating-point addition double 
F t  

6 5 5 5 5 6 

a d d . s  Fd , F s , Ox11 0 Ft Fs Fd 0 Floating-point addition single 
F t  

6 5 5 5 5 6 

Compute the sum of the floating-point doubles (singles) in registers F s and F t  
and put it in register F d .  

c . eq . d  F s , F t l Ox11 1 Ft Fs Fd IFcl 2 Compare equal double 

6 5 5 5 5 2 4 

c . eq . s  F s ,  F t l Ox11 0 Ft Fs Fd H 2 Compare equal single 

Compare the floating-point double in register F s  against the one in Ft and set 
the floating-point condition flag true if they are equal. 

c .  l e .  d F s , F t l Ox11 1 Ft Fs 0 IFcl 2 Compare less than equal 
double 

6 5 5 5 5 2 4 

c .  l e .  s F s , F t l Ox11 0 Ft Fs 0 IFcl 2 Compare less than equal 
single 

6 5 5 5 5 2 4 

Compare the floating-point double in register F s against the one in F t  and set 
the floating-point condition flag true if the first is less than or equal to the sec
ond. 

c .  l t .  d F s , F t
�
l 

_
o

_
x1

_
1
�_

1
_�F

_
t�_

F
_
s�-

o�l
_
Fc�l_o

_
x�c I Compare less than double 

6 5 5 5 5 2 4 
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c .  l t . s F s ,  F t ! Ox11 0 Ft Fs 0 H Oxc I Compare less than single 

6 5 5 5 5 2 4 

Compare the floating-point double in register F s against the one in Ft and set 
the condition flag true if the first is less than the second. 

c v t . d . s  Fd , Ox11 1 0 Fs Fd Ox21 Convert single to double 
F s  

6 5 5 5 5 6 

c v t . d . w  Fd , Ox11 0 0 Fs Fd Ox21 Convert integer to double 
F s  

6 5 5 5 5 6 

Convert the single precision floating-point number or integer in register F s to 
a double precision number and put it in register F d .  

c v t . s . d  Fd , Ox11 1 0 Fs Fd Ox20 Convert double to single 
F s  

6 5 5 5 5 6 

c v t . s . w Fd . Ox11 0 0 Fs Fd Ox20 Convert integer to single 
F s  

6 5 5 5 5 6 

Convert the double precision floating-point number or integer in register F s to 
a single precision number and put it in register F d .  

c v t . w . d  Fd , Ox11 1 0 Fs Fd Ox24 Convert double to integer 
F s  

6 5 5 5 5 6 

c v t . w . s  Fd , Ox11 0 0 Fs Fd Ox24 Convert single to integer 
F s  

6 5 5 5 5 6 

Convert the double or single precision floating-point number in register F s to 
an integer and put it in register Fd .  

d i v . d  Fd , F s , Ox11 1 Ft Fs Fd 3 Floating-point divide double 
Ft  

6 5 5 5 5 6 
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d i  v . s F d , F s , Ox11 0 Ft Fs Fd 3 
F t  ��������������� 

6 5 5 5 5 6 

A·69 

Floating-point divide single 

Compute the quotient of the floating-point doubles (singles) in registers F s 

and F t  and put it in register F d .  

l . d  F d e s t , a d d r e s s  Load floating-point double 

l . s  F d e s t , a d d r e s s  Load floating-point single 

Load the floating-point double (single) at a d d r e s s  into register F d e s  t .  

m o v . d  F d , F s  I Ox11 1 0 Fs Fd 6 Move floating-point double 

6 5 5 5 5 6 

m o v . s  F d , F s  I Ox11 0 0 Fs Fd 6 Move floating-point single 

6 5 5 5 5 6 

Move the floating-point double (single) from register F s to register F d .  

m u l  . d F d , F s .  I Ox11 1 Ft Fs Fd 2 I Floating-point multiply double 
F t  

6 5 5 5 5 6 

m u l  . s F d . F s , Ox11 0 Ft Fs Fd 2 Floating-point multiply single 
F t  

6 5 5 5 5 6 

Compute the product of the floating-point doubles (singles) in registers F s and 
F t  and put it in register F d .  

n e g . d  F d .  F s .  I Ox11 1 Ft Fs Fd 7 negate double 
F t  

6 5 5 5 5 6 

n e g . s  F d .  F s .  I Ox11 0 Ft Fs Fd 7 negate single 
F t  

6 5 5 5 5 6 
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Negate the floating-point double (single) in register F s and put it in register F d .  

s . d  Fd e s t , a d d r e s s  Store floating-point double 

s . s  F d e s t , a d d r e s s  Store floating-point single 

Store the floating-point double (single) in register F d e s  t at a d d r e s s .  

s u b . d  Fd , F s . J Ox11 1 Ft Fs Fd 1 Floating-point subtract double 
Ft  

6 5 5 5 5 6 

s u b . s  Fd . F s .  I Ox11 0 Ft Fs Fd 1 Floating-point subtract single 
Ft  

6 5 5 5 5 6 

Compute the difference of the floating-point doubles (singles) in registers F s 
and F t  and put it in register Fd .  

Exception and Interrupt Instructions 

r f  e 

6 1 

Restore the S t  a t  u s  register_ 

s y s  c a  1 1  0 

6 

0 

19 

0 

20 

Ox20 Return from exception 

6 

Oxc System call 

6 

Register $ v 0  contains the number of the system call (see Figure A.16) pro
vided by SPIM. 

b r e a k 0 

6 

code 

20 

Oxd Break 

6 
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Cause exception code. Exception 1 is reserved for the debugger. 

n o p  0 0 0 0 0 0 No operation 

6 5 5 5 5 6 

Do nothing. 

1111 Concluding Remarks 

Programming in assembly language requires a programmer to trade off help
ful features of high-level languages-such as data structures, type checking, 
and control constructs-for complete control over the instructions that a com
puter executes. External constraints on some applications, such as response 
time or program size, require a programmer to pay close attention to every 
instruction. However, the cost of this level of attention is assembly language 
programs that are longer, more time-consuming to write, and more difficult to 
maintain than high-level language programs. 

Moreover, three trends are reducing the need to write programs in assem
bly language. The first trend is toward the improvement of compilers. Modern 
compilers produce code that is typically comparable to the best handwritten 
code and is sometimes better. The second trend is the introduction of new pro
cessors that are not only faster, but in the case of processors that execute mul
tiple instructions simultaneously, also more difficult to program by hand. In 
addition, the rapid evolution of the modern computer favors high-level lan
guage programs that are not tied to a single architecture. Finally, we witness a 
trend toward increasingly complex applications-characterized by complex 
graphic interfaces and many more features than their predecessors. Large ap
plications are written by teams of programmers and require the modularity 
and semantic checking features provided by high-level languages. 

To Probe Further 

Kane, G., and Heinrich, J. [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, N.J. 

The last word on the MIPS instruction set and assembly language programming on these machines. 

Aho, A., Sethi, R., and Ullman, J. [1985]. Compilers: Principles, Techniques, and Tools, Addison
Wesley, Reading, Mass. 

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compil
ers. 
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II Exercises 

A.1 [5] <§A.5> Section A.5 described how memory is partitioned on most 
MIPS systems. Propose another way of dividing memory that meets the same 
goals. 

A.2 [10] <§A.6> Write and test a MIPS assembly language program to com
pute and print the first 100 prime numbers. A number n is prime if no numbers 
except 1 and n divide it evenly. You should implement two routines: 

• t e s  t_p r i me ( n l Return 1 if n is prime and 0 if n is not prime. 

• ma i n  ( l Iterate over the integers, testing if each is prime. Print the 
first 100 numbers that are prime. 

Test your programs by running them on SPIM. 

A.3 [5] <§A.6> Rewrite the code for f a c t  to use fewer instructions. 

A.4 [5] <§A.7> Is it ever safe for a user program to use registers k O  or k l ?  

A.S [15] <§A.7> Section A.7 contains code for a very simple exception han
dler. One serious problem with this handler is that it disables interrupts for a 
long time. This means that interrupts from a fast 1/0 device may be lost. Write 
a better exception handler that is interruptable and enables interrupts as 
quickly as possible. 

A.6 [15] <§A.7> The simple exception handler always jumps back to the in
struction following the exception. Write a better handler that uses the E P C  reg
ister to determine which instruction should be executed after the exception. 
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I always loved that word, Boolean. 

Claude Shannon 
IEEE Spectrum, April 1992, p. 72 
(Shannon's master's thesis showed that the algebra 
invented by George Boole in the 1800s could represent the 
workings of electrical switches.) 
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Introduction 

This appendix provides a brief discussion of the basics of logic design. It does 
not replace a course in logic design nor does it enable the reader to design sig
nificant working logic systems. For readers with little or no exposure to logic 
design, however, this appendix will provide sufficient background to under
stand all the material in this book. In addition, for those looking to under
stand some of the motivation behind how computers are implemented, this 
material will serve as a useful introduction. For readers whose curiosity is 
aroused and not sated by this appendix, the references at the end provide sev
eral additional sources of information. 

Section B.2 introduces the basic building blocks of logic, namely gates. Sec
tion B.3 uses these building blocks to construct simple combinational logic sys
tems, which contain no memory. Readers with some exposure to logic or 
digital systems will probably be familiar with the material in these first two 
sections. Section B.4 is a short introduction to the topic of clocking, which is 
necessary to discuss how memory elements work. Section B.5 introduces 
memory elements; it describes both the characteristics that are important to 
understanding how they are used in Chapters 5 and 6, and the background 
that motivates many of the aspects of memory hierarchy design in Chapter 7. 
Section B.6 describes the design and use of finite state machines, which are se-
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quential logic blocks. Readers who intend to read Appendix C should thor
oughly understand the material in Sections B.2 through B.6, while those who 
intend to read only the material on control in Chapters 5 and 6 can skim the 
appendices, but should have some familiarity with all the material except Sec
tion B.7. Section B.7 is intended for the reader who wants a deeper understand
ing of clocking methodologies and timing. It explains the basics of how edge
triggered clocking works, introduces another clocking scheme, and briefly 
describes the problem of synchronizing asynchronous inputs. 

II Gates, Truth Tables, and Logic Equations 

The electronics inside a modern computer are digital. Digital electronics oper
ate with only two voltage levels of interest: a high voltage and a low voltage. 
All other voltage values are temporary and occur while transitioning between 
the values. As mentioned in Chapter 3, this is a key reason why computers 
use binary numbers, since a binary system matches the underlying abstrac
tion inherent in the electronics. In various logic families, the values and rela
tionships between the two voltage values differ. Thus, rather than refer to the 
voltage levels, we talk about signals that are (logically) true, or are 1 ,  or are 
asserted; or signals that are (logically) false, or 0, or deasserted. The values 0 and 
1 are called complements or inverses of one another. 

Logic blocks are categorized as one of two types, depending on whether 
they contain memory. Blocks without memory are called combinational; the 
output of a combinational block depends only on the current input. In blocks 
with memory, the outputs can depend on both the inputs and the value stored 
in memory, which is called the state of the logic block. In this section and the 
next, we will focus only on combinational logic. After introducing different 
memory elements in section B.5, we will describe how sequential logic, which 
is logic including state, is designed. 

Truth Tables 

Because a combinational logic block contains no memory, it can be completely 
specified by defining the values of the outputs for each possible set of input 
values. Such a description is normally given as a truth table. For a logic block 
with n inputs, there are 2n entries in the truth table, since there are that many 
possible combinations of input values. Each entry specifies the value of all the 
outputs for that particular input combination. 
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Consider a logic function with three inputs, A, B, and C and three outputs, 
0, E, and F. The function is defined as follows: 0 is true if at least one input 
is true, E is true if exactly two inputs are true, and F is true only if all three 
inputs are true. Show the truth table for this function. 

The truth table will contain 23 = 8 entries. Here it is: 

A , . " 
0 
0 
0 
0 
1 
1 
1 
1 

· . .° Inputs 

·-. : · . .  B . .  

0 
0 
1 
1 
0 
0 
1 
1 

'• . :"� ':.. . �� -:·:-�:� r:i�·-"·-:-.: • • · • ..: �.· •t,.. .:::J",-'" "'"":'-'; .. ; A .. -, .. -;, �:�· , .. ,l· 
. _ Outputsz��! -J. · ,.,_'..,. ·. <";_ 

' ·C · · '.· ;:.i·�·'D �: . >. "-.·1E'· : ·_.; . .,_··;.�if' . ' �:,.� ,.·, , ... ·.·"!'-).",&;• >.1111 &..;.... • .k:e"-�·__. � ',.:.'".L:t'1 S .. }',\Y.£ � :,._ :..r::.;.4;. � 

0 0 0 0 

1 1 0 0 

0 1 0 0 

1 1 1 0 

0 1 0 0 

1 1 1 0 

0 1 1 0 
1 1 0 1 

Truth tables can completely describe any combinational logic function; 
however, they grow in size quickly and may not be easy to understand. Some
times we want to construct a logic function that will be 0 for many input com
binations, and we use a shorthand of specifying only the truth table entries for 
the nonzero outputs. This approach is used in Chapter 5 and Appendix C. 

Boolean Algebra 

Another approach is to express the logic function with logic equations. This is 
done with the use of Boolean algebra (named after Boole, a 19th-century math
ematician). In Boolean algebra, all the variables have the values 0 or 1 and, in 
typical formulations, there are three operators. 

• The OR operator is written as +, as in A + B. The result of an OR operator 
is 1 if either of the variables is 1 .  The OR operation is also called a logical 
sum, since its result is 1 if either operand is 1 .  

• The AND operator is written as  · , as  in A · B . The result of  an AND 
operator is 1 only if both inputs are 1 .  The AND operator is also called 
logical product, since its result is 1 only if both operands are 1 .  

• The unary operator NOT, written as A . The result of  a NOT operator is 
1 only if the input is zero. Applying the operator NOT to a logical value 
results in an inversion or negation of the value (i.e., if the input is 0 the 
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output is 1, and vice versa). 

There are several laws of Boolean algebra that are helpful in manipulating 
logic equations. 

• Identity law: A + 0 = A and A · 1 = A . 

• Zero and One laws: A + 1 = 1 and A · 0 = 0 . 

• Inverse laws: A + A  = 1 and A · A = 0 . 

• Commutative laws: A + B = B + A  and A · B = B · A . 

• Associative laws: A +  ( B  + C ) = (A  + B )  + C  and 
A · ( B  · C )  = (A · B )  · C .  

• Distributive laws: A · ( B  + C ) = (A · B )  + (A ·  C )  and 
A + ( B · C ) = (A + B ) · (A + C ) .  

In addition, there are two other useful laws, called DeMorgan's Laws, that are 
the subject of Exercise B.6. 

Any logic function can be written as a series of equations with an output on 
the left-hand side of each equation and a formula consisting of variables and 
the three operators above on the right-hand side. 

Show the logic equations for the logic function described in the previous ex
ample. 

Here's the equation for D_: 

D = A + B + C  

F is equally simple: 

F = A · B · C 

E is a little tricky. Think of it in two parts: what must be true for E to be true 
(two of the three inputs must be true), and what cannot be true (all three 
cannot be true). Thus we can write E as 

E = ( (A · B )  + (A · C )  + ( B  · C ) ) · (A · B · C )  
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We can also derive E by realizing that E is true only if exactly two of the in
puts are true. Then we can write E as an OR of the three possible terms that 
has two true inputs and one false input: 

E = (A · B · C ) + (A · C · B ) + ( B · C · A ) 

Proving that these two expressions are equivalent is the task of 
Exercise B.7. 

Gates 

Logic blocks are built from gates that implement basic logic functions. For 
example, an AND gate implements the AND function and an OR gate imple
ments the OR function. Since both AND and OR are commutative and asso
ciative, an AND or an OR gate can have multiple inputs, with the output 
equal to the AND or OR of all the inputs. The logical function NOT is imple
mented with an inverter that always has a single input. The standard repre
sentation of these three logic building blocks is shown in Figure B.l .  

Rather than draw inverters explicitly, a common practice is to add "bub
bles" to the inputs or output of a gate to cause the logic value on that input line 
or output line to be inverted. For example, Figure B.2 shows the logic diagram 

FIGURE B.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from left 
to right. The signals to the left of each symbol are the inputs, while the output appears on the 
right. The AND and OR gates both have two inputs. Inverters have a single input. 

A ---{)>o 
B -----1 

FIGURE B.2 Logic gate implementation of A + B using explicit inverts on the left and 
-

using bubbled inputs and output on the right. This logic function can be simplified to A · B . 
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for the function A + B , using explicit inverters on the left and using bubbled 
inputs and outputs on the right. 

Any logical function can be constructed using AND gates, OR gates, and 
inversion; Exercises B.2 through B.5 give you the opportunity to try imple
menting some common logic functions with gates. In the next section we'll see 
how an implementation of any logic function can be constructed using this 
knowledge. 

In fact, all logic functions can be constructed with only a single gate type, if 
that gate is inverting. The two common inverting gates are called NOR and 
NANO and correspond to inverted OR and AND gates, respectively. NOR 
and NANO gates are called universal, since any logic function can be built us
ing this one gate type. Exercises B.10 and B.11 ask you to prove this fact. 

II Combinational Logic 

In this section we look at a couple of basic logic building blocks that we use 
heavily, and we discuss the design of structured logic that can be automati
cally implemented from a logic equation or truth table by a translation pro
gram. Lastly, we discuss the notion of an array of logic blocks. 

Multiplexors 

One basic logic function that we saw quite often in Chapters 4, 5, and 6 is the 
multiplexor. A multiplexor might more properly be called a selector, since its 
output is one of the inputs that is selected by a control. Consider the two
input multiplexor. As shown on the left side of Figure B.3, this multiplexor 
has three inputs: two data values and a selector (or control) value. The 

A 
A 

u c 

B 
c 

B 

s s 

FIGURE B.3 A two-input multiplexor, on the left, and its implementation with gates, on 
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one 
selector input (5), as well as an output C. 
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0 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 
OutO 

Out1 0 1 0 0 0 0 0 0 1 0 0 

Out2 0 1 1 0 0 0 0 1 0 0 0 

Decoder 
Out3 

1 0 0 0 0 0 1 0 0 0 0 
Out4 

Out5 1 0 1 0 0 1 0 0 0 0 0 
Out6 1 1 
Out? 

0 0 1 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 

a. A 3-bit decoder. b.  The truth table.  

FIGURE 8.4 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called OutO to Out7. Only the 
output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the 
decoder says that the input signal is 3 bits wide. 

selector value determines which of the inputs becomes the output. We can 
represent Jhe logic function computed by a two-input multiplexor as 
C = (A · S )  + ( B · S ) , which is shown in gate form on the right side of Fig
ure B.3. Multiplexors can be created with an arbitrary number of data inputs. 
If there are n data inputs there will need to be I log 2n l selector inputs. To 
associate the inputs with selector values, we often label the data inputs 
numerically (i.e., 0, 1, 2, 3, . . . , n-1) and interpret the data selector inputs as a 
binary number. When there are only two inputs, the selector is a single signal 
that selects one of the inputs if it is true (1) and the other if it is false (0). 

Decoders 

Another logic block that we will use in building larger components is a 
decoder. The most common type of decoder has an n-bit input and 2n outputs 
where only one output is asserted for each input combination. This decoder 
translates the n-bit input into a signal that corresponds to the binary value of 
the n-bit input. The outputs are thus usually numbered, say OutO, 
Outl, . . .  , Outm. If the value of the input is i, then Outi will be true and all 
other outputs will be false. Figure B.4 shows a 3-bit decoder and the truth 
table. This decoder is called a 3-to-8 decoder since there are 3 inputs and 8 (23) 
outputs. There is also a logic element called an encoder that performs the 
inverse function of a decoder, taking 2n inputs and producing an n-bit output. 
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Two-level Logic and PLAs 

As pointed out in the previous section, any logic function can be imple
mented with only AND, OR, and NOT functions. In fact, a much stronger 
result is true. Any logic function can be written in a canonical form, where 
every input is either a true or complemented variable and there are only two 
levels of gates-one being AND and the other OR-with a possible inversion 
on the final output. Such a representation is called a two-level representation 
and there are two forms, called sum-of-products and product-of-sums. A sum of 
products representation is a logical sum (OR) of products (terms using the 
AND operator); whereas, a product of sums is just the opposite. In our earlier 
example we had two equations for the output E: 

E = ( (A · B ) + (A · C ) + ( B · C ) )  · (A · B · C ) 
and 

E = (A · B · C ) + (A ·  C · B )  + ( B · C · A ) 

This second equation is in a sum-of-products form: it has two levels of logic 
and the only inversions are on individual variables. The first equation has 
three levels of logic. 

We can also write E as a product of sums: 

E = (A + B + C )  · (A + C + B ) · ( B + C + A )  

To derive this form , you need to use DeMorgan 's theorems, which are d iscussed in 
Exercise B.6. Exercise B.8 asks you to derive the product of sums representation from 
the sum of products using DeMorgan 's theorems. 

In this text, we use the more common sum-of-products form. It is easy to 
see that any logic function can be represented as a sum of products by con
structing such a representation from the truth table for the function. Each truth 
table entry for which the function is true corresponds to a product term. The 
product term consists of a logical product of all the inputs or the complements 
of the inputs, depending on whether the entry in the truth table has a 0 or 1 
corresponding to this variable. The logic function is the logical sum of the 
products term where the function is true. This is more easily seen with an ex
ample. 
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Answer 
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Show the sum-of-products representation for the following truth table. 

Inputs Output 

A B c D 

0 0 0 0 
0 0 1 1 

0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

There are four product terms, since the function is true (1) for four different 
input combinations. These are 

A · B · C 

A · B · C 

A · B · C 

A · B · C 

Thus, we can write the function for D as the sum of these terms: 

D = (A · B  · C ) + (A · B  · C ) + (A · B  · C ) + (A · B  · C ) 

Note that only those truth table entries for which the function is true gener
ate terms in the equation. 

We can use this relationship between a truth table and a two-level repre
sentation to generate a gate-level implementation of any set of logic functions. 
A set of logic functions corresponds to a truth table with multiple output col
umns, as we saw in the example on page B-5. Each output column represents 
a different logic function, which may be directly constructed from the truth ta
ble. 

The sum-of-products representation corresponds to a common structured
logic implementation called a programmable logic array (or PLA). A PLA has a 
set of inputs and corresponding input complements (which can be implement
ed with a set of inverters), and two stages of logic. The first stage is an array of 
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Inputs AND gates 

OR gates Outputs 

FIGURE B.5 The basic form of a PLA consists of an array of AND gates followed by an 
array of OR gates. Each entry in the AND gate array is a product term consisting of any number 
of inputs or inverted inputs. Each entry in the OR gate array is a sum term consisting of any num
ber of these product terms. 

AND gates that form a set of product terms (sometimes called minterms); each 
product term can consist of any of the inputs or their complements. The second 
stage is an array of OR gates, each of which forms a logical sum of any number 
of the product terms. Figure B.5 shows the basic form of a PLA. 

A PLA can directly implement the truth table of a set of logic functions with 
multiple inputs and outputs. Since each entry where the truth table is true re
quires a product term, there will be a corresponding row in the PLA. Each out
put corresponds to a potential row of OR gates in the second stage. The 
number of OR gates corresponds to the number of truth table entries for which 
the output is true. The total size of a PLA, such as that shown in Figure B.5, is 
equal to the sum of the size of the AND gate array (called the AND plane) and 
the size of the OR gate array (called the OR plane). Looking at Figure B.5, we 
can see that the size of the AND gate array is equal to the number of inputs 
times the number of different product terms, and the size of the OR gate array 
is the number of outputs times the number of product terms. 

A PLA has two characteristics that help make it an efficient way to imple
ment a set of logic functions. One, only the truth table entries that produce a 
true value for at least one output have any logic gates associated with them. 
Two, each different product term will have only one entry in the PLA, even if 
the product term is used in multiple outputs. Let's look at an example. 
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Consider the set of logic functions defined in the example on page B-5. 
Show a PLA implementation of this example. 

Here is the truth table we constructed earlier: 

:t . 
Inputs " outputs

. ! .< .. 

"·1' ';'A_, B .i___ � -!..__ ____ - -�� -

0 0 
0 0 
0 1 

0 1 

1 0 
1 0 

1 1 
1 1 

. c --
0 
1 
0 
1 
0 
1 
0 
1 

D E "::·� f' _ __:__ � -
0 0 0 
1 0 0 

1 0 0 

1 1 0 

1 0 0 
1 1 0 

1 1 0 
1 0 1 

Since there are seven unique product terms with at least one true value in 
the output section, there will be seven columns in the AND plane. The num
ber of rows in the AND plane is three (since there are three inputs), and 
there are also three rows in the OR plane (since there are three outputs). Fig
ure B.6 shows the resulting PLA with the product terms corresponding to 
the truth table entries from top to bottom. 

I nputs 

A �...-�--e��..-�--e��.-� ...... �--e 

B �+.11---+-+-�-H11---+-+-�+-e>---+..._�+-e 
C �-t-ti-.--t--H.--t-ti-.--t--1-11--+-t-+--+-H11--++• 

FIGURE B.6 The PLA for implementing the logic function described above. 

Outputs 

D 

E 
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Inputs 

A 

B 

c 

4> 
4> 
4>-
OR plane 

AN D plane 

Ou tputs 
D 

E 

F 

FIGURE B. 7 A PLA drawn using dots to Indicate the components of the product terms and 
sum terms In the array. Rather than use inverters on the gates, usually all the inputs are run the 
width of the AND plane in both true and complement forms. A dot in the AND plane indicates 
that the input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the 
corresponding product term appears in the corresponding output. 

Rather than drawing all the gates, as we did in Figure B.6, designers often 
show just the position of AND gates and OR gates. Dots are used on the inter
section of a product term signal line and an input line or an output line when 
a corresponding AND gate or OR gate is required. Figure B.7 shows how the 
PLA of Figure B.6 would look when drawn in this way. The contents of a PLA 
are fixed when the PLA is created, although there are also forms of PLA-like 
structures, called PALs, that can be programmed electronically when a design
er is ready to use them. 

ROMs 

Another form of structured logic that can be used to implement a set of logic 
functions is a read-only memory, commonly called a ROM. A ROM is called a 
memory because it has a set of locations that can be read; however, the con
tents of these locations are fixed, usually at the time the ROM is created. There 
are also programmable ROMs (PROMs) that can be programmed electrically, 
when a designer knows their contents. There are also erasable PROMs; these 
devices require a slow erasure process using ultraviolet light, and thus are 
used as read-only memories, except during the design and debugging pro
cess. 
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A ROM has a set of input address lines and a set of outputs. The number of 
addressable entries in the ROM determines the number of address lines: if the 
ROM contains 211 addressable entries, called the height, then there are n input 
lines. The number of bits in each addressable entry is equal to the number of 
output bits and is sometimes called the width of the ROM. The total number of 
bits in the ROM is equal to the height times the width. The height and width 
are sometimes collectively referred to as the shape of the ROM. 

A ROM can encode a collection of logic functions directly from the truth ta
ble. For example, if there are n functions with m inputs, we need a ROM with 
m address lines (and 2m entries), with each entry being n bits wide. The entries 
in the input portion of the truth table represent the addresses of the entries in 
the ROM, while the contents of the output portion of the truth table constitute 
the contents of the ROM. If the truth table is organized so that the sequence of 
entries in the input portion constitute a sequence of binary numbers (as have 
all the truth tables we have shown so far), then the output portion gives the 
ROM contents in order as well. In the previous example starting on page B-13, 
there were three inputs and three outputs. This leads to a ROM with 23 = 8 en
tries, each 3 bits wide. The contents of those entries in increasing order by ad
dress are directly given by the output portion of the truth table that appears on 
page B-13. 

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a 
full output word for every possible input combination. A PLA is only partially 
decoded. This means that a ROM will always contain more entries. For the ear
lier truth table on page B-13, the ROM contains entries for all eight possible in
puts, whereas the PLA contains only the seven active product terms. As the 
number of inputs grows, the number of entries in the ROM grows exponential
ly. In contrast, for most real logic functions the number of product terms grows 
much more slowly (see the examples in Appendix C). This difference makes 
PLAs generally more efficient for implementing combinational logic func
tions. RO Ms have the advantage of being able to implement any logic function 
with the matching number of inputs and outputs. This advantage makes it eas
ier to change the ROM contents if the logic function changes, since the size of 
the ROM need not change. 

Don't Cares 

Often in implementing some combinational logic, there are situations where 
we do not care what the value of some output is, either because another out
put is true or because a subset of the input combinations determine the values 
of the outputs. Such situations are referred to as don't cares. Don't cares are 
important because they make it easier to optimize the implementation of a 
logic function. 
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There are two types of don't cares: output don't cares and input don't 
cares, both of which can be represented in a truth table. Output don't cares arise 
when we don't care about the value of an output for some input combination. 
They appear as X's in the output portion of a truth table. When an output is a 
don't care for some input combination, the designer or logic optimization pro
gram is free to make the output true or false for that input combination. Input 
don't cares arise when an output depends on only some of the inputs, and they 
are also shown as X's, though in the input portion of the truth table. 

Consider a logic function with inputs A, B, and C defined as follows. 

• If A or C is true, then output D is true, whatever the value of B. 

• If A or B is true, then output E is true, whatever the value of C. 

• Output F is true if exactly one of the inputs is true, although we don't 
care about the value of F, whenever D and E are both true. 

Show the full truth table for this function and the truth table using don't 
cares. How many product terms are required in a PLA for each of these? 

Here's the full truth table, without don't cares: 

�'---'1"-i'��fl�/"" .. "' 
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1 
1 

��111';;,7.._...,;,,�:'.· ;;._;·, '•, 
�� :.;q ::i r:�,�. ,.. i';i' 1� . ....  rn 

0 0 0 
0 1 1 
1 0 0 
1 1 1 
0 0 1 
0 1 1 
1 0 1 
1 1 1 
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0 0 
0 1 
1 1 
1 0 
1 1 
1 0 
1 0 
1 1 

This requires seven product terms without optimization. The truth table 
written with output don't cares looks like: 
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0 0 0 0 0 0 

0 0 1 1 0 1 

0 1 0 0 1 1 

0 1 1 1 1 x 

1 0 0 1 1 x 

1 0 1 1 1 x 

1 1 0 1 1 x 

1 1 1 1 1 x 

This truth table can be further simplified to yield: 

0 0 0 0 0 0 

0 0 1 1 0 1 

0 1 0 0 1 1 

x 1 1 1 1 x 

1 x x 1 1 x 

This simplified truth table requires a PLA with four minterms, or it can be 
implemented in discrete gates with one two-input AND gate and three OR 
gates (two with three inputs and one with two inputs). This compares to the 
original truth table that had seven minterms and would require four AND 
gates. 

Logic minimization is critical to achieving efficient implementations. One 
tool useful for hand minimization of random logic is Karnaugh maps. Kama ugh 
maps represent the truth table graphically so that product terms that may be 
combined are easily seen. Nevertheless, hand optimization of significant logic 
functions using Kamaugh maps is impractical, due both to the size of the maps 
and their complexity. Fortunately, the process of logic minimization is highly 
mechanical and can be performed by design tools. In the process of minimiza
tion the tools take advantage of the don't cares, so specifying them is impor
tant. The textbook references at the end of this appendix provide further 
discussion on logic minimization, Kamaugh maps, and the theory behind 
such minimization algorithms. 

Arrays of Logic Elements 

Many of the combinational operations to be performed on data have to be 
done to an entire word (32-bits) of data. Thus we often want to build an array 
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of logic elements, which we can represent simply by showing that a given 
operation will happen to an entire collection of inputs. For example, we saw 
on page B-8 what a one-bit multiplexor looked like, but inside a machine, 
much of the time we want to select between a pair of buses. A bus is a collec
tion of data lines that is treated together as a single logical signal. (The term 
bus is also used to indicate a shared collection of lines with multiple sources 
and uses, especially in Chapter 8, where I/O buses were discussed.) 

For example, in the MIPS instruction set the result of an instruction that is 
written into a register can come from one of two sources. A multiplexor is used 
to choose which of the two buses (each 32 bits wide) will be written into the 
Result register. The one-bit multiplexor, which we showed earlier, will need to 
be replicated 32 times. We indicate that a signal is a bus rather than a single 
one-bit line by showing it with a thicker line in a figure. Most buses are 32 bits 
wide; those that are not are explicitly labeled with their width. When we show 
a logic unit whose inputs and outputs are buses, this means that the unit must 
be replicated a sufficient number of times to accommodate the width of the in
put. Figure B.8 shows how we draw a multiplexor that selects between a pair 
of 32-bit buses and how this expands in terms of 1-bit-wide multiplexors. 
Sometimes we need to construct an array of logic elements, where the inputs 
for some elements in the array are outputs from earlier elements. For example, 
this is how a multibit wide ALU is constructed. In such cases, we must explic
itly show how to create wider arrays, since the individual elements of the array 
are no longer independent, as they are in the case of a 32-bit-wide multiplexor. II Clocks 

Before we discuss memory elements and sequential logic, it is useful to dis
cuss briefly the topic of clocks. This short section introduces the topic and is 
similar to the discussion found at the beginning of Chapter 5. More details on 
clocking and timing methodologies are presented in section B.7. 
Clocks are needed in sequential logic to decide when an element that contains 
state should be updated. A clock is simply a free-running signal with a fixed 
cycle time; the clock frequency is simply the inverse of the cycle time. As shown 
in Figure B.9, the clock cycle time or clock period is divided into two 
portions: when the clock is high and when the clock is low. In this text, we 
use only edge-triggered clocking. This means that all state changes occur on a 
clock edge. We use an edge-triggered methodology because it is simpler to 
explain. Depending on the technology, it may or may not be the best choice 
for a clocking methodology. 

In an edge-triggered methodology, either the rising edge or the falling 
edge of the clock is active and causes state changes to occur. As we will see in 
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a. A 32-bit wide 2-to-1 multiplexor. 
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b. The 32-bit wide multiplexor is actually an array of 32 1-bit 
multiplexors. 

FIGURE B.8 A multlplexor Is arrayed 32 times to perform a Hlectlon between two 32·blt Inputs. Note that there is 
still only one data selection signal used for all 32-bit multiplexors. 

_ ____. ----� �""'"' "" 
Clock period Rising edge 

FIGURE B.9 A clock sl1&nal osclllates between hll&h and low values. The clock period is the 
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is 
active and causes state to be changed. 
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FIGURE B.10 The inputs to a combinational logic block come from a state element, and 
the outputs are written into a state element. The clock edge determines when the contents 
of the state elements are updated. 

the next section, the state elements in an edge-triggered design are implement
ed so that the contents of the state elements only change on the active clock 
edge. The choice of which edge is active is influenced by the implementation 
technology and does not affect the concepts involved in designing the logic. 

The major constraint in a clocked system, also called a synchronous system, 
is that the signals that are written into state elements must be valid when the 
active clock edge occurs. A signal is valid if it is stable (i.e., not changing) and 
the value will not change again until the inputs change. Since combinational 
circuits cannot have feedback, if the inputs to a combinational logic unit are 
not changed, the outputs will eventually become valid. Figure B.10 shows the 
relationship among the state elements and the combinational logic blocks in a 
synchronous, sequential logic design. The state elements, whose outputs 
change only on the clock edge, provide valid inputs to the combinational logic 
block. To ensure that the values written into the state elements on the active 
clock edge are valid, the clock must have a long enough period so that all the 
signals in the combinational logic block stabilize. This constraint sets a lower 
bound on the length of the clock period. In the rest of this appendix, as well as 
in Chapters 5 and 6, we usually omit the clock signal, since we are assuming 
that all state elements are updated on the same clock edge. Some state ele
ments will be written on every clock edge, while others will be written only 
under certain conditions (such as a register being updated). In such cases, we 
will have an explicit write signal for that state element. The write signal must 
still be gated with the clock so that the update occurs only on the clock edge if 
the write signal is active. We will see how this is done and used in the next sec
tion. 

One other advantage of an edge-triggered methodology is that it is possible 
to have a state element that is used as both an input and output to the same 
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FIGURE B.11 An edge-triggered methodology allows a state element to be read and writ· 
ten In the same clock cycle without creating a race that could lead to undermined data 
values. Of course, the clock cycle must still be long enough so that the input values are stable 
when the active clock edge occurs. 

combinational logic block, as shown in Figure B.1 1 .  In practice, care must be 
taken to prevent races in such situations and to ensure that the clock period is 
long enough; this topic is discussed further in section B.7. 

Now that we have discussed how clocking is used to update state elements, 
we can discuss how to construct the state elements. 

• Memory Elements 

In this section we discuss the basic principles behind memory elements, start
ing with flip-flops and latches, moving on to registers files, and finally to 
memories. All memory elements store state: the output from any memory 
element depends both on the inputs and on the value that has been stored 
inside the memory element. Thus, all logic blocks containing a memory ele
ment contain state and are sequential. 

The simplest type of memory elements are unclocked; that is, they do not 
have any clock input. Although we only use clocked memory elements in this 
text, an unclocked latch is the simplest memory element, so let's look at this 
circuit first. Figure B.12 shows an S-R latch (set-reset latch), built frQ_m a pair of 
NOR gates (OR gates with inverted outputs). The outputs Q and Q represent 
the value of the stored state and its complement. When neither S nor R are as
serted, the cross-.f_oupled NOR gates act as inverters and store the previous 
values of Q and Q . For example, if the ou_!put, Q, is true, then the bottom in
verter produces a false output (which is Q ), which becomes the input to the 
top inverter, which produces a true output, �hich is Q, and so on. If S is assert
ed then the output Q will.Pe asserted and Q will be deasserted, while if R is 
asserted, then the output Q will be asserted and Q�ill be deasserted. When S 
and R are both deasserted the last values of Q and Q will continue to be stored 
in the cross-coupled structure. Asserting S and R simultaneously can lead to 
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FIGURE B.12 A pair of cross-coupled NOR gates can �ore an internal val�e. The value 
stored on the Q_utput Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. 
If either R or Q are asserted Q will be deasserted and vice-versa. 

incorrect operation: Depending on how S and R are deasserted, the latch may 
oscillate or become metastable (this is described in more detail in section B.7). 

This cross-coupled structure is the basis for more complex memory ele
ments that allow us to store data signals. These elements contain additional 
gates used to store signal values and to cause the state to be updated only in 
conjunction with a clock. The next section shows how these elements are built. 

Flip-Flops and Latches 

Flip-flops and latches are the simplest memory elements. In both flip-flops and 
latches the output is equal to the value of the stored state inside the element. 
Furthermore, unlike the S-R latch described above, all the latches and flip
flops we will use from this point on are clocked, which means they have a 
clock input and the change of state is triggered by that clock. The difference 
between a flip-flop and a latch is the point at which the clock causes the state 
to actually change. In a clocked latch the state is changed whenever the 
appropriate inputs change and the clock is asserted, whereas in a flip-flop, the 
state is changed only on a clock edge. Since throughout this text we use an 
edge-triggered timing methodology where state is only updated on clock 
edges, we need only use flip-flops. Flip-flops are often built from latches, so 
we start by describing the operation of a simple clocked latch and then dis
cuss the operation of a flip-flop constructed from that latch. 

For computer applications, the function of both flip-flops and latches is to 
store a signal. A D latch or D flip-flop stores the value of its data input signal in 
the internal memory. Although there are many other types of latches and flip
flops, the D type is the only basic building block that we will need. A D latch 
has two inputs and two outputs. The inputs are the data value to be stored 
(called D) and a clock signal (called C) that indicates when the latch should 
read the value on the D input and store it. Ihe outputs are simply the value of 
the internal state (Q) and its complement ( Q). When the clock input C is assert
ed, the latch is said to be open, and the value of the output (Q) becomes the val-



8.5 Memory Elements B·23 

FIGURE B.13 A D latch implemented with NOR gates. A NOR gate acts as an inverter, if the 
other input is zero. Thus, the cross-coupled pair of NOR gates acts to store the state value unless 
the clock input, C, is asserted, in which case the value of input D replaces the value of Q and is 
stored. The value of input D must be stable when the clock signal C changes from asserted to 
deasserted. 

D _J  
c ____ _, L 
Q -----' 

FIGURE B.14 Operation of a D latch assuming the output is initially deasserted. When the 
clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D 
input. 

ue of the input D. When the clock input C is deasserted, the latch is said to be 
closed, and the value of the output (Q) is whatever value was stored the last 
time the latch was open. 

Figure B.13 shows how a D latch can be implemented with two additional 
gates added to the cross-coupled NOR gates. Since when the latch is open the 
value of Q changes as D changes, this structure is sometimes called a transpar
ent latch. Figure B.14 shows how this D latch works, assuming that the output 
Q is initially false and that D changes first. 

As mentioned earlier, we use flip-flops as the basic building block rather 
than latches. Flip-flops are not transparent: their outputs change only on the 
clock edge. A flip-flop can be built so that it triggers on either the rising (posi
tive) or falling (negative) clock edge; for our designs we can use either type. 
Figure B.15 shows how a falling-edge D flip-flop is constructed from a pair of 
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FIGURE B.15 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open 
and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the 
first latch is closed, but the second latch, called the slave, is open and gets its input from the out
put of the master latch. 

D _J 
c ----- L 
Q _______ ___, 

FIGURE B.16 Operation of a D flip-flop with a falling-edge trigger, assuming the output is 
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q out
put stores the value of the D input. 

D latches. In a D flip-flop, the output is stored when the clock edge occurs. Fig
ure B.16 shows how this flip-flop operates. 

Because the D input is sampled on the clock edge, it must be valid for a pe
riod of time immediately before and immediately after the clock edge. The 
minimum time that the input must be valid before the clock edge is called the 
set-up time; the minimum time during which it must be valid after the clock 
edge is called the hold time. Thus the inputs to any flip-flop (or anything built 
using flip-flops) must be valid during a window that begins at time tset-up be
fore the clock edge and ends at thold after the clock edge, as shown in Figure 
B.17. Section B.7 talks about clocking and timing constraints in more detail. 

We can use an array of D flip-flops to build a register that can hold a multi
bit datum, such as a byte or word. We used registers throughout our datapaths 
in Chapters 5 and 6. 
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Set-up time Hold time 

FIGURE B.17 Set-up and hold time requirements for a D flip-flop with a falling-edge trig· 
ger. The input must be stable a period of time before the clock edge, as well as after the clock 
edge. The minimum time the signal must be stable before the clock edge is called the set-up time, 
while the minimum time the signal must be stable after clock is called the hold time. Failure to 
meet these minimum requirements can result in a situation where the output of the flip-flop may 
not even be predictable, as described in section B.7. Hold times are usually either 0 or very small 
and thus not a cause of worry. 

Register Files 

One structure that is central to our datapath is a register file. A register file con
sists of a set of registers that can be read and written by supplying a register 
number to be accessed. A register file can be implemented with a decoder for 
each read or write port and an array of registers built from D flip-flops. 
Because reading a register does not change any state, we need only supply a 
register number as an input, and the only output will be the data contained in 
that register. For writing a register we will need three inputs: a register num
ber, the data to write, and a clock that controls the writing into the register. In 
Chapters 5 and 6, we used a register file that has two read ports and one write 
port. This register file is drawn as shown in Figure B.18. The read ports can be 
implemented with a pair of multiplexors, each of which is as wide as the 
number of bits in the register file. Figure B.19 shows the implementation of 
two register read ports for a 32-bit-wide register file. 

Implementing the write port is slightly more complex since we can only 
change the contents of the designated register. We can do this by using a de
coder to generate a signal that can be used to determine which register to 
write. Figure B.20 shows how to implement the write port for a register file. It 
is important to remember that the flip-flop changes state only on the clock 
edge. In Chapters 5 and 6, we hooked up write signals for the register file ex
plicitly and assume the clock shown in Figure B.20 is attached implicitly. 

What happens if the same register is read and written during a clock cycle? 
Because the write of the register file occurs on the clock edge, the register will 
be valid during the time it is read, as we saw earlier in Figure B.10. The value 
returned will be the value written in an earlier clock cycle. If we want a read 
to return the value currently being written, additional logic in the register file 
or outside of it is needed. Chapter 6 makes extensive use of such logic. 
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FIGURE B.18 A register flle with 2 read ports and 1 write port has 5 inputs and 2 outputs. 
The control input Write is shown in color. 
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FIGURE B.19 The Implementation of two read ports for a register file with n registers can 
be done with a pair of n-to-1 multiplexors each 32 bits wide. The register read number sig
nal is used as the multiplexor selector signal. Figure B.20 shows how the write port is imple
mented. 
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FIGURE B.20 The write port for a register file Is Implemented with a decoder that Is used 
with the write signal to generate the C input to the registers. All three inputs (the register 
number, the data, and the write signal) will have set-up and hold-time constraints that ensure 
that the correct data is written in to the register file. 

SRAMs 

Registers and register files provide the basic building block for small memo
ries, but larger amounts of memory are built using either SRAMs (static ran
dom access memories) or DRAMs (dynamic random access memories). In this 
section, we discuss SRAMs, which are somewhat simpler, while the next sec
tion discusses DRAMs. SRAMs are simply integrated circuits that are mem
ory arrays with (usually) a single access port that can provide either a read or 
a write. SRAMs have a fixed access time to any datum, though the read and 
write access characteristics often differ. 

A SRAM chip has a specific configuration in terms of the number of ad
dressable locations, as well as the width of each addressable location. For ex
ample, a 256Kxl SRAM provides 256K entries, each of which is 1 bit wide. 
Thus, it will have 18 address lines (since 256K = 21 8), a single data output line, 
and a single data input line. A 32Kx8 SRAM has the same total number of bits, 
but will have 15 address lines to address 32K entries each of which holds an 8-
bit wide datum; thus there are 8 data output and 8 data input lines. As with 
ROMs, the number of addressable locations is often called the height, with the 
number of bits per unit called the width. For a variety of technical reasons, the 
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FIGURE B.21 A 32Kx8 SRAM showing the 15 address (32K = 2
15

) and 8 data inputs, the 
three control lines, and the 8 data outputs. 

newest and fastest SRAMs are typically available in narrow configurations: xl 
and x4. Figure B.21 shows the input and output signals for a 32Kx8 SRAM. 

To initiate a read or write access, the Chip select signal must be made ac
tive. For reads, we must also activate the Output enable signal that controls 
whether or not the datum selected by the address is actually driven on the 
pins. The Output enable is useful for connecting multiple memories to a sin
gle-output bus and using Output enable to determine which memory drives 
the bus. The SRAM read access time is usually specified as the delay from the 
time that Output enable is true and the address lines are valid until the time 
that the data is on the output lines. Typical read access times for SRAMs in 
1993 vary from about 8 ns for the fastest CMOS parts to 35 ns parts, which, 
while slower, are usually cheaper and often denser. The largest SRAMs avail
able in 1993 have over 1 million bits of data. 

For writes, we must supply the data to be written and the address, as well 
as signals to cause the write to occur. When both the Write enable and Chip 
select are true, the data on the data input lines is written into the cell specified 
by the address. There are set-up-time and hold-time requirements for the ad
dress and data lines, just as there were for D flip-flops and latches. In addition, 
the Write enable signal is not a clock edge but a pulse with a minimum width 
requirement. The time to complete a write is specified by the combination of 
the set-up times, the hold times, and the Write enable pulse width. 

Large SRAMs cannot be built in the same way we build a register file, be
cause unlike a register file where a 32-to-1 multiplexor might be practical, the 
64K to 1 multiplexor that would be needed for a 64Kxl SRAM is totally im
practical. Rather than use a giant multiplexor, large memories are implement
ed with a shared output line, called a bit line, which multiple memory cells in 
the memory array can assert. To allow multiple sources to drive a single line, 
a three-state buffer (or tri-state buffer) is used. A three-state buffer has two 
inputs: a data signal and an Output enable. The single output from a three-
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FIGURE B.22 Four three-state buffers are used to form a multiplexor. Only one of the four 
Select inputs can be asserted. A three-state buffer with a deasserted Output enable, has a high
impedance output that allows a three-state buffer whose Output enable is asserted to drive the 
shared output line. 

state buffer is equal to the asserted or deasserted input signal if the Output en
able is asserted, and is otherwise in a high-impedance state that allows another 
three-state buffer whose Output enable is asserted to determine the value of a 
shared output. Figure B.22 shows a set of three-state buffers wired to form a 
multiplexor with a decoded input. It is critical that the Output enable of at 
most one of the three-state buffers be asserted; otherwise, the three-state buff
ers may try to set the output line differently. By using three-state buffers in the 
individual cells of the SRAM, each cell that corresponds to a particular output 
can share the same output line. The use of a set of distributed three-state buff
ers is a more efficient implementation than a large centralized multiplexor. 
The three-state buffers are incorporated into the flip-flops that form the basic 
cells of the SRAM. Figure B.23 shows how a small 4x2 SRAM might be built, 
using D latches with an input called Enable that controls the three-state out
put. 

The design in Figure B.23 eliminates the need for an enormous multiplexor; 
however, it still requires a very large decoder and a correspondingly large 
number of word lines. For example, in a 16Kx8 SRAM, we would need a 14-to-
16K decoder and 16K word lines (which are the lines used to enable the indi
vidual flip-flops) ! To circumvent this problem, large memories are organized 
as rectangular arrays and use a two-step decoding process. Figure B.24 shows 
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FIGURE B.23 The basic structure of a 4x2 SRAM consists of a decoder that selects which pair of cells to acti· 
vate. The activated cells use a three-state output connected to the vertical bit lines that supply the requested data. The 
address that selects the cell is sent on one of a set of vertical address lines, called the word lines. For simplicity, the Output 
Enable and Chip Select signals have been omitted, but they could easily be added with a few AND gates. 

how a 32Kx8 SRAM might be organized using a two-step decode. As we will 
see, the two-level decoding process is quite important in understanding how 
DRAMs operate. 

DRAMs 

In a Static RAM (SRAM) the value stored in a cell is kept on a pair of inverting 
gates, and as long as power is applied the value can be kept indefinitely. In a 
Dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a 
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FIGURE B.24 Typical organization of a 32Kx8 SRAM as an array of 512x64 arrays. The first decoder generates the 
addresses for 8 512x64 arrays; then a set of multiplexors is used to select one bit from each 64-bit-wide array. This is a much 
easier design than a single-level decode that would need either an enormous decoder (15 to 32K) or a gigantic multiplexor 
(32K to 1) .  

capacitor. A single transistor is then used to access this stored charge, either to 
read the value or to overwrite the charge stored there. Because DRAMs use 
only a single transistor per bit of storage, they are much denser and cheaper 
per bit. By comparison, SRAMs require four to six transistors per bit. In 
DRAMs, the charge is stored on a capacitor, so it cannot be kept indefinitely 
and must periodically be refreshed. That is why this memory structure is called 
dynamic, as opposed to the static storage in an SRAM cell. To refresh the cell, 
we merely read its contents and write it back. The charge can be kept for sev
eral milliseconds, which might correspond to close to a million clock cycles. 
Today, single-chip memory controllers often handle the refresh function inde
pendently of the processor. If every bit had to be read out of the DRAM and 
then be written back individually, with large DRAMs containing multiple 
megabytes, we would constantly be refreshing the DRAM, leaving no time 
for accessing it. Fortunately, DRAMs also use a two-level decoding structure 
and this allows us to refresh an entire row (which shares a word line) with a 
read cycle followed immediately by a write cycle. Typically, refresh opera
tions consume 1 to 2% of the active cycles of the DRAM, leaving the remain
ing 98% to 99% of the cycles available for reading and writing data. 
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FIGURE B.25 A 1-transistor DRAM cell contains a capacitor that stores the cell contents 
and a transistor used to access the cell. 

F:b'llh1'llr:111ti1'n� How does a DRAM read and write the signal stored in a cel l? The tran
sistor inside the cell is a switch , cal led a pass transistor, that al lows the value stored 
on the capacitor to be accessed either for reading or writing. Figure B.25 shows how 
the single-transistor cell looks. The pass transistor acts l i ke a switch: when the signal 
on the word l ine is asserted , the switch is open, connecting the capacitor to the bit 
l i ne .  If the operation is a write, then the value to be written is placed on the bit line. If 
the value is a 1, the capacitor wil l  be charged. If the value is a 0,  then the capacitor wi l l  
be d ischarged. Reading is sl ightly more complex, since the DRAM must detect a very 
smal l  charge stored in the capacitor. Before activating the word l ine for a read, the bit 
l ine is charged to the voltage that is halfway between the low and high voltage. Then, by 
activating the word l ine,  the charge on the capacitor is read out onto the bit l ine. This 
causes the bit l i ne to move sl ightly towards the high or low d i rection,  and this change is 
detected with a sense ampl ifier, which can detect small changes in voltage. 

DRAMs use a two-level decoder, as shown in Figure B.26, consisting of a 
row access, followed by a column access. The row access chooses one of a number 
of rows and activates the corresponding word line. The contents of all the col
umns in the active row are then stored in a set of latches. The column access 
then selects the data from the column latches. To save pins and reduce the 
package cost, the same address lines are used for both the row and column ad
dress; a pair of signals called RAS (Row Access Strobe) and CAS (Column Ac
cess Strobe) are used to signal the DRAM that either a row or column address 
is being supplied. Refresh is performed by simply reading the columns into 
the column latches and then writing the same values back. Thus an entire row 
is refreshed in one cycle. The two-level addressing scheme, combined with the 
internal circuitry, make DRAM access times much longer (by a factor of 5 to 
10) than SRAM access times. In 1993, typical DRAM access times range from 
70 to 120 ns. The much lower cost per bit makes DRAM the choice for main 
memory, while the faster access time makes SRAM the choice for caches. 
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FIGURE B.26 A 4Mx1 DRAM is built with a 2048x2048 array. The row access uses 11 bits to 
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from 
these 2048 latches. The RAS and CAS signals control whether the address lines are sent to the row 
decoder or column multiplexor. 

You might observe that a 4Mxl DRAM actually accesses 2048 bits on every 
row access and then throws away 2047 of those during a column access. 
DRAM designers have used the internal structure of the DRAM as a way to 
provide higher bandwidth out of a DRAM. This is done by allowing the col
umn address to change without changing the row address, resulting in an ac
cess to other bits in the column latches. Page-mode and static-column-mode 
RAMs both provide the ability to change access multiple bits out of a row by 
changing the column address only. (The difference is whether CAS must also 
be reasserted or not.) Nibble-mode RAMs internally generate the next three col
umn addresses, thus providing four bits (called a nibble) for every row access. 
As we demonstrated in Chapter 7, these modes can be used to boost the band
width available out of main memory to match the needs of the processor and 
caches. 

Error Correction 

Because of the potential for data corruption in large memories, most com
puter systems use some sort of error-checking code to detect possible corrup
tion of data. One simple code that is heavily used is a parity code. In a parity 
code the number of ls in a word is counted; the word has odd parity if the 
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number of ls is odd and even otherwise. When a word is written into mem
ory, the parity bit is also written (1 for odd, 0 for even). Then, when the word 
is read out, the parity bit is read and checked. If the parity of the memory 
word and the stored parity bit do not match, an error has occurred. A one-bit 
parity scheme can detect at most one bit of error in a data item; if there are 
two bits of error, then a 1-bit parity scheme will not detect any errors, since 
the parity will match the data with two errors. (Actually, a 1-bit parity scheme 
can detect any odd number of errors; however, the probability of having three 
errors is much lower than the probability of having two, so, in practice, a 1-bit 
parity code is limited to detecting a single bit of error.) Of course, a parity 
code cannot tell which bit in a data item is in error. 

A 1-bit parity scheme is an error-detecting code; there are also error-correct
ing codes (ECC) that will detect and allow correction of an error. For large main 
memories, many systems use a code that allows the detection of up to 2 bits of 
error and the correction of a single bit of error. These codes work by using 
more bits to encode the data; for example, the typical codes used for main 
memories require 7 or 8 bits for every 128 bits of data. 

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look at 
the data plus the parity bit, no 1-bit change is sufficient to generate another legal com
bination of the data plus parity. For example, if we change a bit in the data, the parity 
wi l l  be wrong, and vice versa. Of course, if we change 2 bits (any two data bits or one 
data bit and the parity bit), the parity wi l l  match the data and the error cannot be 
detected. Hence, there is a distance of two between legal combinations of parity and 
data. 

To detect more than one error or correct an error we need a distance-3 code, which 
has the property that any legal combination of the bits in the error correction code and 
the data have at least 3 bits differing from any other combination. Suppose we have 
such a code and we have one error in the data. In that case the code plus data wi l l  be 
1 bit away from a legal combination and we can correct the data to that legal combina
tion. If we have two errors, we can recognize that there is an error, but we cannot cor
rect the errors. Let's look at an example. Here are the data words and a d istance-3 
error correction code for a 4-bit data item. 

Data Code bits Data Code bits ��������-������� �������� 

0000 000 1000 111 

0001 011 1001 100 

0010 101 1010 010 

0011 110 1011 001 

0100 110 1100 001 

0101 101 1101 010 

0110 011 1110 100 

0111 000 1111 111 
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To see how this works, let 's choose a data word , say 0110, whose error correction 
code is 011. Here are the four 1-bit error possibi l ities for this data: 1110, 0010, 
0100 , and 0111. Now look at the data item with the same code (011), which is the 
entry with the value 0001. If the error correction decoder received one of the four pos
sible data words with an error, it would have to choose between correcting to 0110 or 
0001. While these four words with error have only 1 bit changed from the correct pat
tern of 0110, they each have 2 bits that are different from the alternate correction of 
0001. Hence the error correction mechanism can easily choose to correct to 0110, 
s ince a s ingle error is much lower probabil ity. To see that two errors can be detected, 
s imply notice that al l  the combinations with 2 bits changed have a d ifferent code. The 
one re-use of the same code is with 3 bits different, but if we correct a 2-bit error, we 
wi l l  correct to the wrong value,  since the decoder wi l l  assume that on ly a single error 
has occurred . If we want to correct 1-bit errors and detect, but not erroneously correct, 
2-bit errors, we need a d istance-4 code . 

Although we d istingu ished between the code and data in our explanation,  in truth, 
an error correction code treats the combination of code and data as a s ingle word in a 
larger code (7 bits in this example). Thus it deals with errors in the code bits in the 
same fashion as errors in the data bits. 

While the above example requ ires n - 1 bits for n bits of data, the number of bits 
requ i red grows slowly, so that for a d istance-3 code, a 64-bit word needs 7 bits and a 
128-bit word needs 8. This type of code is cal led a Hamming code, after R. Hamming, 
who described a method for creating such codes. 

• Finite State Machines 

As we saw earlier, digital logic systems can be classified as combinational or 
sequential. Sequential systems contain state stored in memory elements inter
nal to the system. Their behavior depends both on the set of inputs supplied 
and on the contents of the internal memory, or state of the system. Thus a 
sequential system cannot be described with a truth table. Instead, a sequential 
system is described as a finite state machine (or often just state machine). A finite 
state machine has a set of states and two functions called the next-state func
tion and the output function. The set of states correspond to all the possible val
ues of the internal storage. Thus, if there are n bits of storage, there are 2n 
states. The next-state function is a combinational function that, given the 
inputs and the current state, determines the next state of the system. The out
put function produces a set of outputs from the current state and the inputs. 
Figure B.27 shows this diagrammatically. 

The state machines we discuss here and in Chapter 5 are synchronous. This 
means that the state changes together with the clock cycle and a new state is 
computed once every clock. Thus, the state elements are updated only on the 
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FIGURE B.27 A state machine consists of internal storage that contains the state and two combinational 
functions: the next-state function and the output function. Often, the output function is restricted to take only the 
current state as its input; this does not change the capability of a sequential machine, but does affect its internals. 

clock edge. We use this methodology in this section and throughout Chapters 
5 and 6, and we do not usually show the clock explicitly. We use state ma
chines throughout Chapters 5 and 6 to control the execution of the processor 
and the actions of the datapath. 

To illustrate how a finite state machine operates and is designed, let's look 
at a simple and classic example: controlling a traffic light. (Chapters 5 and 6 
contain more detailed examples of using finite state machines to control pro
cessor execution.) When a finite state machine is used as a controller, the out
put function is often restricted to depend on just the current state. Such a finite 
state machine is called a Moore machine. This is the type of finite state machine 
we use throughout this book. If the output function can depend on both the 
next state and the current input, the machine is called a Mealy machine. These 
two machines are equivalent in their capabilities and one can be turned into 
the other mechanically. 

Our example concerns the control of a traffic light at an intersection of a 
north-south bound route and an east-west route. For simplicity, we will con
sider only the green and red lights; adding the yellow light is left for an exer
cise. We want the lights to cycle no faster than 30 seconds in each direction, so 
we will use a 0.033-Hz clock so that the machine cycles between states at no 
faster than once every 30 seconds. There are two output signals. 

• NSlite: When this signal is asserted, the light on the north-south road is 
green; when this signal is deasserted the light on the north-south road 
is red. 
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• EWlite: When this signal is asserted, the light on the east-west road is 
green; when this signal is deasserted the light on the east-west road 
is red. 

In addition, there are two inputs: NScar and EWcar. 

• NScar: Indicates that a car is over the detector placed in the roadbed in 
front of the light on the north-south road (going north or south). 

• EWcar: Indicates that a car is over the detector placed in the roadbed in 
front of the light on the east-west road (going east or west). 

The traffic light should change from one direction to the other only if a car is 
waiting to go in the other direction; otherwise, the light should continue to 
show green in the same direction as the last car that crossed the intersection. 

To implement this simple traffic light we need two states. 

• NS green: the traffic light is green in the north-south direction. 

• EWgreen: the traffic light is green in the east-west direction. 

We also need to create the next-state function, which can be specified with a 
table. 

Notice that we didn't specify in the algorithm what happens when a car 
approaches from both directions. In this case, the next-state function given 
above changes the state to ensure that a steady stream of cars from one direc
tion cannot lock out a car in the other direction. 

The finite state machine is completed by specifying the output function. 
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EWcar 

FIGURE B.28 The graphical representation of the two-state traffic light controller. We sim

plified the logic functions on the state transitions. For example, the transition from NSgreen to 

EWgreen in the next state table is ( NScar · EWcar ) + ( NScar · EWcar ) ,  which is equivalent 

to EWcar. 

Before we examine how to implement this finite state machine, lets look at 
a graphical representation, which is often used for finite state machines. In this 
representation, nodes are used to indicate states. Inside the node we place a list 
of the outputs that are active for that state. Directed arcs are used to show the 
next-state function, with labels on the arcs specifying the input condition as 
logic functions. The graphical representation for this finite state machine is 
shown in Figure B.28. 

A finite state machine can be implemented, with a register to hold the cur
rent state and a block of combinational logic that computes the next-state func
tion and the output function. Figure B.29 shows how a finite state machine 
with four bits of state and, thus, up to 16 states, might look. To implement the 
finite state machine in this way, we must first assign state numbers to the 
states. This process is called state assignment. For example, we could assign NS
green to state 0 and EWgreen to state 1 .  The state register would contain a sin
gle bit. The next-state function would be given as 

NextState = (CurrentState · EWcar ) + (CurrentState · NScar ) 

where CurrentState is the contents of the state register (0 or 1) and NextState 
is the output of the next-state function that will be written into the state regis
ter at the end of the clock cycle. The output function is also simple: 

NSlite = CurrentState 

EWlite = CurrentState 
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FIGURE B.29 A finite state machine Is Implemented with a state register that holds the 
current state and a comblnatlonal loglc block to compute the next state and output func
tions. The latter two functions are often split apart and implemented with two separate blocks of 
logic, which may require fewer gates. 

The combinational logic block is often implemented using structured logic, 
such as a PLA. A PLA can be constructed automatically from the next-state 
and output-function tables. In fact, there are computer-aided-design (CAD) 
programs that take either a graphical or textual representation of a finite state 
machine and produce an optimized implementation automatically. In Chap
ters 5 and 6, finite state machines were used to control processor execution. 
Appendix C will discuss the detailed implementation of these controllers 
with both PLAs and ROMs. II Timing Methodologles 

Throughout this appendix and in the rest of the text we use an edge-triggered 
timing methodology. This timing methodology has the advantage that it is 
simpler to explain and understand than a level-triggered methodology. In this 
section we explain this timing methodology in a little more detail and also 
introduce level-sensitive clocking. We conclude this section by briefly discuss
ing the issue of asynchronous signals and synchronizers, an important prob
lem for digital designers. 

The purpose of this section is to introduce the major concepts in clocking 
methodology. The section makes some important simplifying assumptions; 



B-40 

_J 

Appendix B The Basics of Logic Design 

D Q t-------F 
Fl i p-flop 

c 

tcombinational 

------1 0 Q 

tsetup 

Fl i p-flop 

c 

FIGURE B.30 In an edge-triggered design the clock must be long enough to allow signals to be valid for the 
required set-up time before the next clock edge. The time for a flip-flop input to propagate to the flip-flip outputs is 
tprop; the signal then takes tcombinational to travel through the combinational logic and must be valid tsetup before the next 
clock edge. 

the reader interested in understanding timing methodology in more detail 
should look at one of the references listed at the end of this appendix. 

We use an edge-triggered timing methodology because it is simpler to ex
plain and has fewer rules required for correctness. In particular, if we assume 
that all clocks arrive at the same time, we are guaranteed that a system with 
edge-triggered registers between blocks of combinational logic can operate 
correctly without races, if we simply make the clock long enough. A race oc
curs when the contents of a state element depend on the relative speed of dif
ferent logic elements. In an edge-triggered design, the clock cycle must be long 
enough to accommodate the path from one flip-flop through the combination
al logic to another flip-flop where it must satisfy the set-up time requirement. 
Figure B.30 shows this requirement for a system using rising-edge triggered 
flip-flops. In such a system the clock period (or cycle time) must be at least as 
large as 

t prop + t combinatorial + t 
setup 

for the worst case values of these three delays. The simplifying assumption is 
that the hold-time requirements are satisfied. Satisfying the hold-time 
requirements in most designs is not a problem, since the propagation time 
( tprop ) is always larger than the hold time for a flip-flop. 

One additional complication that must be considered in edge-triggered de
signs is clock skew. Clock skew is the difference in absolute time between when 
two state elements see a clock edge. Clock skew arises because the clock signal 
will often use two different paths, with slightly different delays, to reach two 
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FIGURE B.31 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the differ
ence in when the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward and change the 
input to the second flip-flop before the clock arrives at the second flip-flop. 

different state elements. If the clock skew is large enough, it may be possible 
for a state element to change and cause the input to another flip-flop to change 
before the clock edge is seen by the second flip-flop. Figure B.31 illustrates this 
problem, ignoring set-up time and flip-flop propagation delay. To avoid incor
rect operation the clock period is increased to allow for the maximum clock 
skew. Thus, the clock period must be longer than 

t
prop 

+ t
combinatorial + f

setup + tskew · 

With this constraint on the clock period, the two clocks can also arrive in the 
opposite order, with the second clock arriving t

skew earlier, and the circuit 
will work correctly. Designers reduce clock skew problems by carefully rout
ing the clock signal to minimize the difference in arrival times. In addition, 
smart designers also provide some margin by making the clock a little longer 
than the minimum; this allows for variation in components as well in the 
power supply. Since clock skew can also affect the hold-time requirements, 
minimizing the size of the clock skew is important. 

Edge-triggered designs have two drawbacks: they require extra logic and 
they may sometimes be slower. Just looking at the D flip-flop versus the level
sensitive latch that we used to construct the flip-flop shows that edge-trig
gered design requires more logic. An alternative is to use level-sensitive clock
ing. Because state changes in a level-sensitive methodology are not 
instantaneous, a level-sensitive scheme is slightly more complex and requires 
additional care to make it operate correctly. 

Level-Sensitive Timing 

In a level-sensitive timing methodology, the state changes occur at either high 
or low levels, but they are not instantaneous as they are in an edge-triggered 
methodology. Because of the noninstantaneous change in state, races can eas
ily occur. To ensure that a level-sensitive design will also work correctly if the 
clock is slow enough, designers use two-phase clocking, which makes use of 
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FIGURE B.32 A two-phase clocking scheme showing the cycle of each clock and the non· 
overlapping periods. 
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FIGURE B.33 A two-phase timing scheme with alternating latches showing how the system operates on both 
clock phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of combinational 
inputs has a stable input during <jl2 and its output is latched by <Jlz. The second (rightmost) combinational block operates in 
just the opposite fashion with stable inputs during <jl2. Thus the delays through the combinational blocks determine the 
minimum time that the respective clocks must be asserted. The size of the nonoverlapping period is determined by the 
maximum clock skew and the minimum delay of any logic block. 

two nonoverlapping clocks. The clocks, typically called <jl1 and <jl2, are con
structed so that at most one of the clock signals is high at any given time, as 
shown in Figure B.32. We can use these two clocks to build a system that has 
level sensitive latches and is free from any race conditions, just as the edge
triggered designs were. 

One simple way to design such a system is to alternate the use of latches 
that are open on <jl1 with latches that are open on <jl2. Because both clocks are 
not asserted at the same time, a race cannot occur. If the input to a combina
tional block is a <jl1 clock, then its output is latched by a <jl2 clock, which is open 
only during <jl2 when the input latch is closed and hence has a valid output. Fig
ure B.33 shows how a system with two-phase timing and alternating latches 
operates. As in an edge-triggered design, we must pay attention to clock skew, 
particularly between the two clock phases. By increasing the amount of non
overlap between the two phases, we can reduce the potential margin of error. 
Thus the system is guaranteed to operate correctly if each phase is long 
enough and there is large enough nonoverlap between the phases. 
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FIGURE B.34 A synchronizer build from a D flip-flop is used to sample an asynchronous 
signal to produce an output that is synchronous with the clock. This "synchronizer" will 
not work properly' 

Asynchronous Inputs and Synchronizers 

By using a single clock or a two-phase clock, we can eliminate race condi
tions, if clock skew problems are avoided. Unfortunately, it is impractical to 
make an entire system function with a single clock and still keep the clock 
skew small. While the CPU may use a single clock, 1/0 devices will probably 
have their own clock. In Chapter 8, we showed how an asynchronous device 
may communicate with the CPU through a series of handshaking steps. To 
translate the asynchronous input to a synchronous signal that can be used to 
change the state of a system, we need to use a synchronizer, whose inputs are 
the asynchronous signal and a clock and whose output is a signal synchro
nous with the input clock. 

Our first attempt to build a synchronizer uses an edge-triggered D flip-flop, 
whose D input is the asynchronous signal, as shown in Figure B.34. Because 
we communicate with a handshaking protocol (as we will see in Chapter 8), it 
does not matter whether we detect the asserted state of the asynchronous sig
nal on one clock or the next, since the signal will be held asserted until it is ac
knowledged. Thus, you might think that this simple structure is enough to 
sample the signal accurately, which would be the case except for one small 
problem. 

The problem is a situation called metastability. Suppose the asynchronous 
signal is transitioning between high and low when the clock edge arrives. 
Clearly, it is not possible to know whether the signal will be latched as high or 
low. That problem we could live with. Unfortunately, the situation is 
worse: when the signal that is sampled is not stable for the required set-up 
and hold times, the flip-flop may go into a metastable state. In such a state, the 
output will not have a legitimate high or low value, but will be in the indeter
minate region between them. Furthermore, the flip-flop is not guaranteed to 
exit this state in any bounded amount of time. Some logic blocks that look at 
the output of the flip-flop may see its output as 0, while other may see it as 1 .  
This situation is  called a synchronizer failure. In  a purely synchronous system, 
synchronizer failure can be avoided by ensuring that the set-up and hold times 
for a flip-flop or latch are always met, but this is impossible when the input is 
asynchronous. Instead, the only solution possible is to wait long enough be
fore looking at the output of the flip-flop to ensure that its output is stable, and 
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FIGURE B.35 This synchronizer will work correctly if the period of metastability that we 
wish to guard against is less than the clock period. Although the output of the first flip-flop 
will may be metastable, it will not be seen by any other logic element until the second clock, 
when the second D flip-flop samples the signal, which by that time should no longer be in a 
metastable state. 

that it has exited the metastable state, if it ever entered it. How long is long 
enough? Well, the probability that the flip-flop will stay in the metastable state 
decreases exponentially, so after a very short time the probability that the flip
flop is in the metastable state is very low; however, the probability never 
reaches O! So designers wait long enough that the probability of a synchronizer 
failure is very low, and the time between such failures will be years or even 
thousands of years. For most flip-flop designs, waiting for a period that is sev
eral times longer than the set-up time makes the probability of synchroniza
tion failure very low. If the clock rate is longer than the potential metastability 
period (which is likely), then a safe synchronizer can be built with two D flip
flops, as shown in Figure B.35. The reader interested in reading more about 
these problems should look into the references. 

To Probe Further 

There are a number of good texts on logic design. Here are some you might 
like to look into. 

Katz, Randy H. [1993]. Modern Logic Design. Benjamin/Cummings, Redwood City. 

A general text on logic design. 

McCluskey, E. J . [1986]. Logic Design Principles. Prentice Hall, Englewood Cliffs, New Jersey. 

Contains extensive discussions of hazards, optimization principles, and testability. 

Mead, C., and L. Conway [1980]. Introduction to VLSI Ssystems. Addison-Wesley, New York. 

Discusses the design of VLSI systems using nMOS technology. 

Proser, F. P., and 0. E. Winkel [1987]. The Art of Digital Design. 2nd edition. Prentice Hall, Engle
wood Cliffs, New Jersey. 

A general text on logic design. 

Wakerly, J. F. [1990]. Digital Design: Principles and Practices. Prentice Hall, Englewood Cliffs, New 
Jersey. 

A general text on logic design. 
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II Exercises 

B.1 [10] <§B.2> Show that there are 2n entries in a truth table for a function 
with n inputs. 

B.2 [10] <§B.2> One logic function that is used for a variety of purposes (in
cluding within adders and to compute parity) is exclusive-or. The output of a 
two-input exclusive-or function is true only if exactly one of the inputs is true. 
Show the truth table for a two-input exclusive OR function and implement this 
function using AND gates, OR gates, and inverters. 

B.3 [10] <§B.2, B.5> Construct the truth table for a four-input even-parity 
function (see page B-33 for a description of parity). 

B.4 [10] <§B.2, B.5> Implement the four-input even-parity function with AND 
and OR gates using bubbled inputs and outputs. 

B.5 [10] <§B.2, B.3, B.5> Implement the four-input even-parity function with 
a PLA. 

In More Depth 

In addition to the basic laws we discussed on pages B-5 and B-6, there are two 
important theorems, called DeMorgan's theorems, which are 

A + B = A · B and A · B = A + B 

B.6 [10] <§B.2> Prove DeMorgan's theorems with a truth table of the form: 

A B A B A · B  i + i  A+i A · B  

0 0 

0 1 

1 0 

1 1 

B. 7 [15] <§B.2> Prove that the two equations for E in the example starting on 
B-6 are equivalent by using DeMorgan's theorems and the axioms shown on 
page B-6. 

B.8 [15] <§B.2-B.3> Derive the product of sums representation for E shown 
on B-10 starting with the sum-of-products representation. You will need to use 
DeMorgan's theorems. 

B.9 [30] <§B.2-B.3> Give an algorithm for constructing the sum-of-products 
representation for an arbitrary logic equation consisting of AND, OR, and 
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NOT. The algorithm should be recursive and should not construct the truth ta
ble in the process. 

B.10 [15] <§B.2> Prove that the NOR gate is universal by showing how to 
build the AND, OR, and NOT functions using a two-input NOR gate. 

B.11 [15] <§B.2> Prove that the NANO gate is universal by showing how to 
build the AND, OR, and NOT functions using a two-input NANO gate. 

B.12 [15] <§B.2, B.3> Prove that a two-input multiplexor is also universal by 
showing how to build the AND, OR, and NOT functions using a multiplexor. 

B.13 [15] <§B.2, B.5> Construct a 3-bit counter using three D flip-flops and a 
selection of gates. The inputs should consist of a signal that resets the counter 
to 0, called reset, and a signal to increment the counter, called inc. The outputs 
should be the value of the counter. When the counter has value 7 and is incre
mented, it should wrap around and become 0. 

B.14 [20] <§B.3, B.5> A Gray code is a sequence of binary numbers with the 
property that no more than one bit changes in going from one element of the 
sequence to another. For example, here is a 3-bit binary Gray code: 000, 001 , 
01 1 ,  010, 110, 1 11 , 101, and 100. Using three D flip-flops and a PLA, construct 
a 3-bit Gray code counter that has two inputs: reset, which sets the counter to 
000, and inc, which makes the counter go to the next value in the sequence. 
Note that the code is cyclic, so that the value after 100 in the sequence is 000. 

B.15 [25] <§B.2, B.6> We wish to add a yellow light to our traffic light exam
ple. We will do this by changing the clock to run at 0.25 Hz (a four-second 
clock cycle time), which is the duration of a yellow light. To prevent the green 
and red lights from cycling too fast, we add a 30-second timer. The timer has 
a single input called Ti111erReset, which restarts the timer, and a single output, 
called Ti111erSignal that indicates that the 30-second period has expired. Also, 
we must redefine the traffic signals to include yellow. We do this by defining 
two output signals for each light: green and yellow. If the output NSgreen is 
asserted, the green light is on; if the output NSyellow is asserted, the yellow 
light is on. If both signals are off, the red light is on. Do not assert both the green 
and yellow signals at the same time, since American drivers will certainly be 
confused, even if the European drivers understand what this means! Draw the 
graphical representation for the finite state machine for this improved control
ler. Choose names for the states that are different from the names of the out
puts ! 

B.16 [ 15] <§B.6> Write down the next-state and output-function tables for the 
traffic light controller described in Exercise B.15. 

B.17 [15] <§B.2, B.6> Assign state numbers to the states in the traffic light ex
ample and use the tables of Exercise B.16 to write a set of logic equations for 
each of the outputs, including the next-state outputs. 

B.18 [15] <§B.3, B.6> Implement the logic equations of Exercise B.17 as a PLA. 
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is slave to the architecture of 

Mapping Control 

to Hardware 

the hardware and the instruction set 
it serves. The format must strike 
a proper compromise between ROM 
size, ROM-output decoding, 
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execution rate. 

Jim McKevit et. al. 
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Introduction 

There are several different techniques for implementing the control unit. The 
usefulness of these techniques depends on the complexity of the control, char
acteristics such as the average number of next states for any given state, and 
the implementation technology. 

The most straightforward way to implement the control function is with a 
block of logic that takes as inputs the current state and the opcode field of the 
Instruction register and produces as outputs the datapath-control signals and 
the value of the next state. The initial representation may be either a finite state 
diagram or a microprogram. In the latter case, each microinstruction repre
sents a state. In an implementation using a finite-state controller, the next-state 
function will be computed with logic. Section C.2 constructs such an imple
mentation both for a ROM and a PLA. 

An alternative method of implementation computes the next-state function 
by using a counter that increments the current state to determine the next state. 
When the next state doesn't follow sequentially, other logic is used to deter
mine the state. Section C.3 explores this type of implementation and shows 
how it can be used for the finite-state control created in Chapter 5. 

In Section C.4, we show how a microprogram representation of the control 
is translated to control logic. 
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• Implementing Finite State Machine Control 

To implement the control as a finite state machine, we must first assign a 
number to each of the 10 states; any state could use any number, but we will 
use the sequential numbering for simplicity as we did in Chapter 5. 
(Figure C.1 is a copy of the finite state diagram from Figure 5.47 on page 332, 
reproduced for ease of access.) With 10 states we will need 4 bits to encode the 
state number, and we call these state bits: S3, S2, Sl, SO. The current-state 
number will be stored in a state register, as shown in Figure C.2. If the states 
are assigned sequentially, state i is encoded using the state bits as the binary 
number i. For example, state 6 is encoded as OllOtwo or S3 = 0, S2 = 1, Sl = 1,  
SO = 0, which can also be written as 

S3 · S2 · Sl · SO . 

The control unit has outputs that specify the next state. These are written 
into the state register on the clock edge and become the new state at the begin
ning of the next clock cycle following the active clock edge. We name these 
outputs NS3, NS2, NSl, NSO. Once we have determined the number of inputs, 
states, and outputs, we know what the basic outline of the control unit will 
look like, as we show in Figure C.2. 

The block labeled "control logic" in Figure C.2 is combinational logic. We 
can think of it as a big table giving the value of the outputs in terms of the in
puts. The logic in this block implements the two different parts of the finite 
state machine. One part is the logic that determines the setting of the datapath
control outputs, which depend only on the state bits. The other part of the con
trol logic implements the next-state function; these equations determine the 
values of the next-state bits based on the current-state bits and the other inputs 
(the 6-bit opcode) . 

Figure C.3 shows the logic equations: the top portion showing the outputs, 
and the bottom portion showing the next-state function. The values in this ta
ble were determined from the state diagram in Figure C.l .  For each state in 
which a control line is active an entry in the second column is made. Likewise, 
the next state entries are made whenever one state is a successor to another. In 
this table we use the abbreviation stateN to stand for current state N. Thus, 
stateN is replaced by the term that encodes the state number N. We use 
NextStateN to stand for the setting of the next-state outputs to N. This output 
is implemented using the next-state outputs (NS). When NextStateN is active, 
the bits NS[3-0] are set corresponding to the binary version of the value N. Of 
course, since a given next-state bit is activated in multiple next states, the equa
tion for each state bit will be the OR of the terms that activate that signal. Like
wise, when we use a term such as (Op=' l w'), this corresponds to an AND of 
the opcode inputs that specifies the encoding of the opcode l w in 6 bits, just as 
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0 
MemRead 

ALUSelA=O 
lorD=O 
IRWrite 

ALUSelB=01 
ALUOp=OO 

PCWrite 
PCSource=OO 

FIGURE C.1 The finite state diagram that was developed in Chapter 5. 

ALU0 p=01 

PCWriteCond 

PCSource=01 

PCWrite 

PCSource=10 

C·S 
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Control loglc 

Inputs 

Instruction register 
opcode field 

Outputs 

State register 

PCWrite 
PCWriteCond 
lorD 
MemRead 
MemWrite 
IRWrite 
MemtoRe 
PC Source 
Tar etWrite 
ALU OP 
ALUSelB 
ALU Se IA 
Re Write 
Re Ost 
NS3 
NS2 
NS1 
NSO 

FIGURE C.2 The control unit for MIPS will consist of some control logic and a register to 
hold the state. The state register is written at the active clock edge and is stable during the clock 
cycle. 

we did for the simple control unit in Chapter 5 (see Figures 5.23 on page 296 
and 5.30 on page 304). Translating the entries in Figure C.3 into logic equations 
for the outputs is straightforward. 
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Output Current states Op 

PCWrite stateO+state9 

PCWriteCond states 

lorD state3+state4+state5 

MemRead stateO+state3+state4 

MemWrite state5 

I RWrite stateO 

MemtoReg state4 

PCSourcel state9 

PCSourceO states 

TargetWrite statel 

ALUOpl state6+state 7 

ALUOpO states 

ALUSel81 state 1 +state2+state3+state4+state5 

ALUSelBO stateO+statel 

ALUSelA state2+state3+state4+state5+state6+state 7 +states 

RegWrite state4+state 7 

RegDst state? 

NextStateO state4+state5+state7 +state8+state9 

NextStatel stateO 

NextState2 statel (Op=" iv ' ) + (Op= ' s w ' ) 

NextState3 state2 (Op=· · 1·1 ' )  

NextState4 state3 

NextState5 state2 (Op=' W ' )  

NextState6 statel (Op= 'R·type ' )  

NextState7 state6 

NextStateS statel (Op= ':Jeq ' )  

NextState9 statel (Op= ' i "' ::J ' )  

FIGURE C.3 The logic equations for the control unit shown I n  a shorthand form. Remem
ber that "+" stands for OR in logic equations. The state inputs and NextState entries outputs must 
be expanded by using the state encoding. Any blank entry is a don't care. 

Give the logic equation for the low-order next-state bit, NSO. 
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The next-state bit NSO should be active whenever the next state has NSO = 
1 in the state encoding. This is true for NextStatel, NextState3, NextStateS, 
NextState7, and NextState9. The entries for these states in Figure C.3 supply 
the conditions when these next-state values should be active. The equation 
for each of these next states is given below. The first equation states that the 
next state is 1, if the current state is O; the current state is 0 if each of the state 
input bits is 0, which is what the rightmost product term indicates. 

NextStatel = State 0 = S3 · S2 · Sl · SO 
NextState3 = State2 · (Op[S-0] = 'LW' ) 

- - - -- -- --

= S3 · S2 · Sl · SO · OpS · Op4 · Op3 · Op2 · Opl · OpO 
NextStateS = State2 · (Op[S-0] = 'SW' ) 

= S3 · S2 · Sl · SO ·  OpS · Op4 · Op3 · Op2 · Opl · OpO 

NextState7 = State6 = S3 · S2 · Sl · SO 
NextState9 = Statel · (Op[S-0] = 'MP' ) 

= S3 · S2 · Sl · SO · OpS · Op4 · Op3 · Op2 · Opl · OpO 

NSO is the logical sum of all these terms. 

As we have seen, the control function can be expressed as a logic equation 
for each output. This set of logic equations can be implemented in two ways: 
corresponding to a complete truth table, or corresponding to a two-level logic 
structure that allows a sparse encoding of the truth table. Before we look at 
these implementations, let's look at the truth table for the complete control 
function. 

It is simplest if we break the control function defined in Figure C.3 into two 
parts: the next-state outputs, which may depend on all the inputs, and the con
trol signal outputs, which depend only on the current-state bits. Figure C.4 
shows the truth tables for all the datapath-control signals. Because these sig
nals actually depend only on the state bits, each of the entries in a table in 
Figure C.4 actually represents 64 entries, with the 6 bits named Op having all 
possible values; that is, the Op bits are don't-care bits in determining the data
path-control outputs. Figure C.S shows the truth table for the next-state bits 
NS[3-0], which depend on the state input bits and the instruction bits, which 
supply the opcode. 
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m±m 1 0 0 1 
� 
b. Truth table for PCWriteCond. 

0 1 0 1 

0 1 0 0 

a. Truth table for PCWrite. 0 1 0 1 

0 0 1 1 

c. Truth table for lorD. 

0 0 0 0 � � 
0 0 1 1 e. Truth table for MemWrite. f. Truth table for IRWrite. 
0 1 0 0 

d. Truth table for MemRead. 

� 
g. Truth table for MemtoReg. h. Truth table for PCSource1. i .  Truth table for PCSourceO. 

� 
j. Truth table for TargetWrite. m±m 0 1 1 1 

� 
I. Truth table for ALUOpO. 

k. Truth table for ALUOp1. 

0 0 0 1 

0 0 1 0 m±m 0 0 0 1 

0 0 1 0 

0 0 1 1 

0 0 1 1 n. Truth table for ALUSelBO. 0 1 0 0 

0 1 0 0 0 1 0 1 

0 1 0 1 0 1 1 0 

m. Truth table for ALUSelB1. 0 1 1 1 

m±m 0 1 1 1 
� 

q. Truth table for RegDst. 

1 0 0 0 

o. Truth table for ALUSelA. 

p. Truth table for RegWrite. 

FIGURE C.4 The truth tables are shown for the 17 datapath-control signals that depend only on the current-state 
Input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value 
of the six Op bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case 
of ALUSe!BO and IRWrite, these signals are both active only in state 0 (see tables b and 1) .  These two signals could be 
replaced by one signal. The same applies to PCWriteCond and ALUOpO. There are other opportunities for reducing the 
logic needed to implement the control function by taking advantage of further similarities in the truth tables. 
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A ROM Implementation 

Probably the simplest way to implement the control function is to encode the 
truth tables in a Read-Only Memory (ROM). The number of entries in the 
memory for the truth tables of Figures C.4 and C.5 is equal to all possible val
ues of the inputs (the 6 opcode bits plus the 4 state bits), which is 
2# mputs = 210 = 1024 . The inputs to the control unit become the address lines 
for the ROM, which implements the control logic block that was shown in 
Figure C.2 on page C-6. The width of each entry (or word in the memory) is 
21 bits since there are 17 datapath-control outputs and 4 next-state bits. This 
means the total size of the ROM is 210 x 21 = 21 Kbits . 

The setting of the bits in a word in the ROM depends on which outputs are 
active in that word. Before we look at the control words, we need to order the 
bits within the control input (the address) and output words (the contents), 
respectively. We will number the bits using the order in Figure C.2 on 
page C-6, with the next-state bits being the low-order bits of the control word 
and the current-state input bits being the low-order bits of the address. This 
means that the PCWrite output will be the high-order bit (bit 20) of each mem
ory word and NSO will be the low-order bit. The high-order address bit will be 
given by Op5, which is the first bit of the instruction, and the low-order ad
dress bit will be given by SO. 

We can construct the ROM contents by building the entire truth table in a 
form where each row corresponds to one of the 211 unique input combinations, 
and a set of columns indicate which outputs are active for that input combina
tion. We don't have the space here to show all 1024 entries in the truth table. 
However, by separating the datapath-control and next-state outputs we do, 
since the datapath-control outputs depend only on the current state. The truth 
table for the datapath-control outputs is shown in Figure C.6. We include only 
the encodings of the state inputs that are in use (that is, values 0 through 9 cor
responding to the 10 states of the state machine) 

The truth table in Figure C.6 directly gives the contents of the upper 17 bits 
of each word in the ROM. The 4-bit input field gives the low-order four ad
dress bits of each word and the column gives the contents of the word at that 
address. 

The datapath-control signals depend only on the state input bits-the op
code inputs do not affect these outputs. If we did show a full truth table for the 
datapath-control bits with both the state number and the opcode bits as inputs, 
the opcode inputs would all be don't cares. When we construct the ROM, we 
cannot have any don't cares, since the addresses into the ROM must be com
plete. Thus, the same datapath-control outputs will occur many times in the 
ROM, since this part of the ROM is the same whenever the state bits are iden
tical, independent of the value of the opcode inputs. 
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I 

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated 
from state 1 .  

OpS Op4 OpJ Op2 Op1 OpO SJ S2 S1 so 

0 0 0 0 0 0 0 0 0 1 

1 0 1 0 1 1 0 0 1 0 

x x x x x x 0 0 1 1 

x x x x x x 0 1 1 0 

b. The truth table for the NS2 output. which is active when the next state is 4, 5, 6, or 7. This 
situation occurs when the current state is one of 1 ,  2 ,  3 ,  or 6. 

OpS Op4 OpJ Op2 Op1 OpO SJ S2 S1 so 

0 0 0 0 0 0 0 0 0 1 

1 0 0 0 1 1 0 0 0 1 

1 0 1 0 1 1 0 0 0 1 

1 0 0 0 1 1 0 0 1 0 

x x x x x x 0 1 1 0 

c. The truth table for the NSl output. which is active when the next state is 2, 3, 6, or 7. The 
next state is one of 2, 3. 6, or 7 only if the current state is one of 1, 2, or 6. 

OpS Op4 OpJ Op2 Op1 OpO SJ S2 S1 so 

x x x x x x 0 0 0 0 

1 0 0 0 1 1 0 0 1 0 

1 0 1 0 1 1 0 0 1 0 

x x x x x x 0 1 1 0 

0 0 0 0 1 0 0 0 0 1 

d. The truth table for the NSO output, wh ich is active when the next state is 1, 3, 5, 7, or 9. This 
happens only if the current state is one of 0, 1 ,  2 .  or 6. 

FIGURE C.5 The four truth tables for the four next-state output bits (NS[3-0]). The next
state outputs depend on the value of Op[S-0), which is the opcode field, and the current state, 
given by 5[3-0). The entries with 'X' are don't care terms. Each entry with a don't care term corre
sponds to two entries, one with that input at 0 and one with that input at 1. Thus an entry with n 
don't care terms actually corresponds to 2'' truth table entries. 
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Answer 
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(lffiliIDB 0 ' umI!IJl2i'� D.�,,.��;��f,''!'. '(�; 
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

PCWrite 1 0 0 0 0 0 0 0 0 1 

PCWriteCond 0 0 0 0 0 0 0 0 1 0 

lorD 0 0 0 1 1 1 0 0 0 0 

MemRead 1 0 0 1 1 0 0 0 0 0 

MemWrite 0 0 0 0 0 1 0 0 0 0 

IRWrite 1 0 0 0 0 0 0 0 0 0 

MemtoReg 0 0 0 0 1 0 0 0 0 0 

PCSource1 0 0 0 0 0 0 0 0 0 1 

PCSourceO 0 0 0 0 0 0 0 0 1 0 

TargetWrite 0 1 0 0 0 0 0 0 0 0 

ALUOp1 0 0 0 0 0 0 1 1 0 0 

ALUOpO 0 0 0 0 0 0 0 0 1 0 

ALUSelB1 0 1 1 1 1 1 0 0 0 0 

ALU Se I BO 1 1 0 0 0 0 0 0 0 0 

ALU Se IA 0 0 1 1 1 1 1 1 1 0 

RegWrite 0 0 0 0 1 0 0 1 0 0 

RegDst 0 0 0 0 0 0 0 1 0 0 

FIGURE C.6 The truth table for the 17 datapath-control outputs, which depend only on 
the state inputs. The values are determined from Figure C.4. Although there are 16 possible 
values for the 4-bit state field, only 10 of these are used and are shown here. The 10 possible val
ues are shown at the top; each column shows the setting of the datapath-control outputs for the 
state input value that appears at top of the column. For example, when the state inputs are 0011 
(state 3), the active datapath-control outputs are IorD, MemRead, ALUSelBl, and ALUSelA. 

For what ROM addresses will the bit corresponding to PCWrite, the high bit 
of the control word, be 1? 

PCWrite is high in states 0 and 9, this corresponds to addresses with the low 
4-order bits being either 0 0 0 0  or 1 0 0 1 .  The bit will be high in the memory 
word independent of the inputs Op[S-0], so the addresses with the 
bit high are 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 1 0 0 1 ,  0 0 0 0 0 1 0000 ,  0 0 0 0 0 1 1 0 0 1 , . . .  , 

1 1 1 1 1 1  0 O 0 0, 1 1 1 1 1 1 1  0 0 1 .  The general form of this is X X X  X X  X 0 0 0 0 or 
X X  X X  X X  1 O O 1 , where X X  X X  X X  is any combination of bits, and correspond to 
the 6-bit opcode on which this output does not depend. 
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lower 4 bits of the address Bits 2<>-4 of the word 

0000 10010100000001000 

0001 0000000001001 1000 

0010 00000000000010100 

0011 00110000000010100 

0100 001100 10000010110 

0101 00101000000010100 

0110 00000000001000100 

0111 00000000001000111 

1000 01000000100100100 

1001 10000001000000000 

FIGURE C.7 The contents of the upper 17 bits of the ROM depend only on the state 
inputs. These values are the same as those in Figure C.6, simply rotated 90°. This set of control 
words would be duplicated 64 times for every possible value of the upper 6 bits of the address. 

We will show the entire contents of the ROM in two parts to make it easier 
to show. Figure C.7 shows the upper 17 bits of the control word; this comes di
rectly from Figure C.6. These datapath-control outputs depend only on the 
state inputs, and this set of words would be duplicated 64 times in the full 
ROM, as we discussed above. The entries corresponding to input values 1010 
through 1 1 1 1  are not used and we do not care what they contain. 

Figure C.8 shows the lower 4 bits of the control word corresponding to the 
next-state outputs. The last column of the table in Figure C.8 corresponds to all 
the possible values of the opcode that do not match the specified opcodes. In 
state 0 the next state is always state 1, since the instruction was still being 
fetched. After state 1, the opcode field must be valid. The table indicates this 
by the entries marked illegal; we discuss how to deal with these illegal op
codes in section 5.6. 

Not only is this representation as two separate tables a more compact way 
to show the ROM contents, it is also a more efficient way to implement the 
ROM. The majority of the outputs (17 of 21 bits) depend only on 4 of the 10 in
puts. The number of bits in total when the control is implemented as two sep
arate ROMs is 24 x 17 + 210 x 4 = 272 + 4096 = 4.3 Kbits, which is about one
fifth of the size of a single ROM, which requires 210 x 21 = 21 Kbits. There is 
some overhead associated with any structured-logic block, but in this case the 
additional overhead of an extra ROM would be much smaller than the savings. 

Although this ROM encoding of the control function is simple, it is very 
wasteful, even when divided into two pieces. For example, the values of the 
Instruction register inputs are often not needed to determine the next state. 
Thus the next-state ROM has many entries that are either duplicated or are 
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0000 0001 0001 0001 0001 0001 0001 

0001 0110 1001 1000 0010 0010 illegal 

0010 xxxx xxxx xxxx 0011 0101 il legal 

0011 0100 0100 0100 0100 0100 il legal 

0100 0000 0000 0000 0000 0000 il legal 

0101 0000 0000 0000 0000 0000 il legal 

0110 0111 0111 0111 0111 0111 il legal 

0111 0000 0000 0000 0000 0000 il legal 

1000 0000 0000 0000 0000 0000 il legal 

1001 0000 0000 0000 0000 0000 il legal 

FIGURE C.8 This table contains the lower 4 bits of the control word (the NS outputs), 
which depend on both the state Inputs, 5[3-0], and the opcode, Op [5-0], which corre
spond to the Instruction opcode. These values can be determined from Figure C.5. The opcode 
name is shown under the encoding in the heading. The 4 bits of the control word whose address 
is given by the current-state bits and Op bits are shown in each entry. For example, when the 
state-input bits are 0 0 00, the output is always 0 0 0 1 ,  independent of the other inputs; when the 
state is 2, the next state is don't care for three of the inputs, 3 for l w, and 5 for S W. Together with 
the entries in Figure C.7, this table specifies the contents of the control unit ROM. For example, 
the word at address 1 000 1 1 0 0 0 1  is obtained by finding the upper 17 bits in the table in 
Figure C.7 using only the state input bits (0 0 0 1 )  and concatenating the lower 4 bits found by 
using the entire address (0001 to find the row and 1 0 00 1 1  to find the column). The entry from 
Figure C.7 yields 000000000 1 0 0 1 0000, while the appropriate entry in the table immediately 
above is 0 0 1 0. Thus, the control word at address 1 00 0 1 1 0 0 0 1  is 0000000 0 0 1 0 0 1 00000010 .  
The column labeled "any other value" applies only when the Op bits do match one of  the speci
fied opcodes. 

don't care. Consider the case when the machine is in state 0: There are 26 en
tries in the ROM (since the opcode field can have any value), and these entries 
will all have the same contents (namely, the control word 
1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0) .  The reason that so much of the ROM is wasted is that 
the ROM implements the complete truth table providing the opportunity to 
have a different output for every combination of the inputs. But most combi
nations of the inputs either never happen or are redundant! 

A PLA Implementation 

We can reduce the amount of control storage required at the cost of using 
more complex address decoding for the control inputs, which will encode 
only the input combinations that are needed. The logic structure most often 
used to do this is a programmed logic array (PLA), which we briefly mentioned 
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earlier and illustrated in Figure 5.31 on page 305. In a PLA, each output is the 
logical OR of one or more of minterms. A min term, also called a product term, 
is simply a logical AND of one or more inputs. The inputs can be thought of 
as the address for indexing the PLA, while the minterms select which of all 
possible address combinations are interesting. A minterm corresponds to a 
single entry in a truth table, such as those in Figure C.4 on page C-9, includ
ing possible don't care terms. Each output consists of an OR of these min
terms, which exactly corresponds to a complete truth table. However, unlike a 
ROM, only those truth table entries that produce an active output are needed, 
and only one copy of each minterm is required, even if the minterm contains 
don't cares. Figure C.9 shows the PLA that implements this control function. 

As we can see from the PLA in Figure C.9, there are 18 unique minterms-
10 that depend only on the current state and 8 others that depend on a combi
nation of the Op field and the current-state bits. The total size of the PLA is 
proportional to (#inputs x #product terms ) + (#outputs x #product terms), 
as we can see symbolically from the figure. This means the total size of the PLA 
in Figure C.9 is proportional to (10 x 18) + (21 x 18) = 558 . By comparison, 
the size of a single ROM is proportional to 21Kbits, and even the two-part 
ROM has a total of 4.3Kbits. Because the size of a PLA cell will be only slightly 
larger than the size of a bit in a ROM, a PLA will be a much more efficient im
plementation for this control unit. Of course, just as we split the ROM in two, 
we could split the PLA in two. This would yield one PLA whose size is pro
portional to ( 4 x 10) + ( 10  x 17) = 210 , and another PLA whose size is pro
portional to ( 10 x 8) + ( 4 x 8) = 112 . This would yield a total size 
proportional to 312 PLA cells, about 55% of the size of a single PLA. This will 
be considerably smaller than a two ROM implementation. The interested read
er should see Appendix B for more details on PLAs and their implementation. 

Implementing the Next-State Function 

with a Sequencer 

Let's look carefully at the control unit we built in the last section. If you exam
ine the ROMs that implement the control in Figures C.7 and C.8, you can see 
that much of the logic is used to specify the next-state function. In fact, for the 
implementation using two separate ROMs, 4096 out of the 4368 bits (94%) 
correspond to the next-state function! Furthermore, imagine what the control 
logic would look like if the instruction set had many more different instruc
tion types, some of which required many clocks to implement. There would 
be many more states in the finite state machine. In some states, we might be 
branching to a large number of different states depending on the instruction 
type (as we did in state 1 of the finite state machine in Figure C.1 on 
page C-5). However, many of the states would proceed in a sequential 
fashion, just as states 3 and 4 do in Figure C.l .  For example, if we included 
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PCWrite 
PCWriteCon d 
lorD 
MemRead 
MemWrite 
IRWnte 
MemtoReg 
PC Sou reel 
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ALUOP1 
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ALUSelB1 
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RegWrite 
RegDst 
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FIGURE C.9 This PLA Implements the control function logic for the multicycle implementation. The inputs to the 
control appear on the left and the outputs on the right. The top half of the figure is the AND plane that computes all the 
minterms. The minterms are carried to the OR plane on the vertical lines. Each colored dot corresponds to a signal that 
makes up the minterm carried on that line. The sum terms are computed from these minterms with each grey dot repre
senting the presence of the intersecting minterm in that sum term. Each output consists of a single sum term. 
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floating point, we would see a sequence of many states in a row that imple
ment a multistep floating-point instruction. Alternatively, consider how the 
control might look for a machine that can have multiple memory operands 
per instruction. It would require many more states to fetch multiple memory 
operands. The result of this would be that the control logic will be dominated 
by the encoding of the next-state function. Furthermore, much of the logic 
will be devoted to sequences of states with only one path through them that 
look like states 2 through 4 in Figure C.l .  With more instructions, these 
sequences will consist of many more sequentially numbered states than for 
our simple subset. 

To encode these more complex control functions efficiently, we can use a 
control unit that has a counter to supply the sequential next state. This often 
eliminates the need to encode the next-state function explicitly in the control 
unit. As shown in Figure C.10, an adder is used to increment the state, essen
tially turning it into a counter. The incremented state is always the state that 
follows in numerical order. However, the finite state machine sometimes 
"branches." For example, in state 1 of the finite state machine (see Figure C.1 
on page C-5), there are four possible next states, only one of which is the se
quential next state. Thus, we need to be able to choose between the increment
ed state and a new state based on the inputs from the Instruction register and 
the current state. Each control word will include control lines that will deter
mine how the next state is chosen. 

Since each state in the finite state machine corresponds to a control word in 
ROM or PLA, we can translate the finite state machine of Figure C.1 into a se
quence of control words. It is easy to implement the control output signal por
tion of the control word, since, if we use the same state numbers, this portion 
of the control word will look exactly like the ROM contents shown in 
Figure C.7 on page C-13. However, the method for selecting the next state dif
fers from the next-state function in the finite state machine. 

With an explicit counter providing the sequential next state, the control 
unit logic need only specify how to choose the state when it is not the sequen
tially following state. There are two methods for doing this. The first is a meth
od we have already seen, namely, the control unit explicitly encodes the next
state function. The difference is that the control unit need only set the next 
state lines when the designated next state is not the state that the counter indi
cates. If the number of states is large and the next-state function that we need 
to encode is mostly empty, this may not be a good choice, since the resulting 
control unit will have lots of empty or redundant space. An alternative ap
proach is to use separate external logic to specify the next state, when the 
counter does not specify the state. Many control units, especially those that im
plement large instruction sets, use this approach, and we will focus on speci
fying the control externally. 
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Control unit 
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PLA or ROM 

Outputs 
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State I 
Address select logic I I t � a: 
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Instruction register 
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PCWrite -
PCWriteCond 
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FIGURE C.10 The control unit using an expllclt counter to compute the next state. In this 
control unit, the next state is computed using a counter (at least in some states). By comparison, 
Figure C.2 on page C-6 encodes the next state in the control logic for every state. In this control 
unit, the signals labeled AddrCtl control how the next state is determined. 

Although the nonsequential next state will come from an external table, the 
control unit needs to specify when this should occur and how to find that next 
state. There are two kinds of "branching" that we must implement in the ad
dress select logic. First, we must be able to jump to one of a number of states 
based on the opcode portion of the Instruction register. This operation, called 
a dispatch, is usually implemented by using a set of special ROMS or PLAs in
cluded as part of the address selection logic. An additional set of control out
puts, which we call AddrCtl, indicates when a dispatch should be done. 
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Looking at the finite state diagram (Figure C.1 on page C-5), we see that there 
are two states in which we do a branch based on a portion of the opcode. Thus, 
we will need two small dispatch tables. (Alternatively, we could also use a sin
gle dispatch table and a control output to choose which portion of the dispatch 
table to select the address from.) 

The second type of branching that we must implement consists of branch
ing back to state 0, which initiates the execution of the next MIPS instruction. 
Thus there are four possible ways to choose the next state (three types of 
branches, plus incrementing the current-state number), which can be encoded 
in two bits. Let's assume that the encoding is as follows: 

AddrCtl value Action 

0 Set state to o 
1 Dispatch with ROM 1 

2 Dispatch with ROM 2 

3 Use the incremented state 

If we use this encoding, the address select logic for this control unit can be 
implemented as shown in Figure C.11 .  

To complete the control unit, we need only specify the contents of the dis
patch ROMs, and the values of the address-control lines for each state. We 
have already specified the datapath-control portion of the control word using 
the ROM contents of Figure C.7 on page C-13 (or the corresponding portions 
of the PLA in Figure C.9 on page C-16). The next state counter and dispatch 
ROMs take the place of the portion of the control unit that was computing the 
next state, which was shown in Figure C.8 on page C-14. We are only imple
menting a portion of the instruction set, so the dispatch ROMs will be largely 
empty. Figure C.12 shows the entries that must be assigned for this subset. 
Section 5.6 of Chapter 5 discusses what to do with the entries in the dispatch 
ROMs that do not correspond to any instruction. 

Now we can determine the setting of the address selection lines (AddrCtl) 
in each control word. The table in Figure C.13 shows how the address control 
must be set for every state. This information will be used to specify the setting 
of the AddrCtl field in the control word associated with that state. 

The contents of the entire control ROM are shown in Figure C.14. The total 
storage required for the control is quite small. There are ten control words each 
19 bits wide for a total of 190 bits. In addition, the two dispatch tables are 4 bits 
wide and each has 64 entries, for a total of 512 additional bits. This total of 702 
bits beats the implementation that uses two ROMs with the next-state function 
encoded in the ROMs (which requires 4.3K bits). 
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FIGURE C.11 This is the address select logic for the control unit of Figure C.10. A decoder 
is used to change the two-bit address-control signal into one of four values. This selects which of 
the four possible sources will supply the new state number. 

Of course, the dispatch tables are sparse and could be more efficiently im
plemented with two small PLAs. The control ROM could also be replaced with 
a PLA. 

Optimizing the Control Implementation 

We can further reduce the amount of logic in the control unit by two different 
techniques. The first is logic minimization, which uses the structure of the logic 
equations, including the don't-care terms, to reduce the amount of hardware 
required. The success of this process depends on how many entries exist in 
the truth table, and how those entries are related. For example, in this subset, 
only the l w and s w  opcodes have an active value for the signal Op5, so we can 
replace the two truth table entries that test whether the input is l w or s w, by a 
single test on this bit; similarly we can eliminate several bits used to index the 
dispatch ROM, because this single bit can be used to find l w and s w in the first 
dispatch ROM. Of course, if the opcode space were less sparse, opportunities 
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000000 R format 0110 10001 1  lw 0011 

000010 jmp 1001 101011 SW 0101 

000100 beq 1000 

100011 lw 0010 

101011 SW 0010 

FIGURE C.12 The dispatch ROM• each have 28 
= 64 entries that are 4 bits wide, since 

that I• the number of bits In the state encoding. This figure only shows the entries in the 
ROM that are of interest for this subset. The first column in each table indicates the value of Op, 
which is the address used to access the dispatch ROM. The second column shows the symbolic 
name, which is the opcode. The third column indicates the value at that address in the ROM. 

�lllll11ltf:J- f•tt • , .. , ... ,,�mlt!Ii:J �mn.·r. . :-•• 
0 Use incremented state 3 

1 Use dispatch ROM 1 1 

2 Use dispatch ROM 2 2 

3 Use incremented state 3 

4 Replace state number by 0 0 

5 Replace state number by O 0 

6 Use incremented state 3 

7 Replace state number by O 0 

8 Replace state number by 0 0 

9 Replace state number by 0 0 

FIGURE C.13 The values of the address-control lines are set in the control word that cor
responds to each state. 

for this optimization would be more difficult to locate. However, in choosing 
the opcodes the architect can provide additional opportunities by choosing 
related opcodes for instructions that are likely to share states in the control. 

A different sort of optimization can be done by assigning the state numbers 
in a finite state or microcode implementation to minimize the logic. This opti
mization, called state assignment, tries to choose the state numbers such that the 
resulting logic equations contain more redundancy and can thus be simplified. 
Let's consider the case of a finite state machine with an encoded next-state con
trol first, since it allows states to be assigned arbitrarily. For example, notice 
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Eimm······ I .,. 1 .. u1 ullTTI'iTii•;ttr=,� ltf•r.ln·�lmtlOO 
0 10010100000001000 11 

1 00000000010011000 01 

2 00000000000010100 10 

3 00110000000010100 11 

4 00110010000010110 00 

5 00101000000010100 00 

6 00000000001000100 11 

7 00000000001000111 00 

8 01000000100100100 00 

9 10000001000000000 00 

FIGURE C.14 The contents of the control memory for an implementation using an explicit 
counter. The first column shows the state, while the second shows the datapath-control bits, and 
the last column shows the address-control bits in each control word. Bits 18-2 are identical to 
those in Figure C.7. 

that in the finite state machine the signal RegWrite is active only in states 4 and 
7. If we encoded those states as 8 and 9, rather than 4 and 7, we could rewrite 
the equation for Reg Write as simply a test on bit S3 (which is only on for states 
8 and 9). This allows us to combine the two truth table entries in part p of 
Figure C.4 on page C-9 and replace them with a single entry, eliminating one 
term in the control unit. Of course, we would have to renumber the existing 
states 8 and 9, perhaps as 4 and 7. The same optimization can be applied in an 
implementation that uses an explicit program counter, though we are more re
stricted. Because the next-state number is often computed by incrementing the 
current-state number, we cannot arbitrarily assign the states. However, if we 
keep the states where the incremented state is used as the next state in the 
same order, we can reassign the consecutive states as a block. In an implemen
tation with an explicit next state counter, state assignment may allow us to 
simplify the contents of the dispatch ROMs. 

If we look again at the control unit in Figure C.10 on page C-18 it looks re
markably like a computer in its own right. The ROM or PLA can be thought of 
as memory supplying instructions for the datapath. The state can be thought 
of as an instruction address. Hence the origin of the name microcode or micro
programmed control. The control words are thought of as microinstructions that 
control the datapath, and the State register is called the microprogram counter. 
Figure C.15 shows a view of the control unit as microcode. The next section de
scribes how we map from a microprogram to microcode. 
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FIGURE C.15 The control unit as a microcode. The use of the word "micro" serves to distinguish between the program 
counter in the datapath and the microprogram counter, and between the microcode memory and the instruction memory. 

II Translating a Microprogram to Hardware 

To translate the microprogram of section 5.5 into actual hardware, we need to 
specify how each field translates into control signals. We can implement the 
microprogram with either finite-state control or a microcode implementation 
with an explicit sequencer. If we choose a finite state machine, we need to 
construct the next-state function from the microprogram. Once this function 
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is known, we can map a set of truth table entries for the next-state outputs. In 
this section, we will show how to translate the microprogram assuming that 
the next state is specified by a sequencer. From the truth tables we will con
struct, it would be straightforward to build the next-state function for a finite 
state machine. 

Assuming an explicit sequencer, we need to do two additional tasks to 
translate the microprogram: assign addresses to the microinstructions and fill 
in the contents of the dispatch ROMs. This process is essentially the same as 
the process of translating an assembly language program into machine in
structions: the fields of the assembly language or microprogram instruction 
are translated and labels on the instructions must be resolved to addresses. 

Figure C.16 shows the various values for each microinstruction field that 
controls the datapath and how these fields are encoded as control signals. If 
the field corresponding to a signal that affects a unit with state (i.e., Memory, 
Memory Register, ALU destination, or PCWriteControl) is blank, then no con
trol signal should be active. If a field corresponding to a multiplexor control 
signal or the ALU operation control (i.e., ALUOp, SRCl, or SRC2) is blank, the 
output is unused so the associated signals may be set as don't care. 

The sequencing field can have four values: Fetch (meaning go to the Fetch 
state), dispatch 1, dispatch 2, and seq. These four values are encoded to set the 
2-bit address control just as they were in Figure C.17 on page C-26: Fetch = 0, 
Dispatch 1 = 1 .  Dispatch 2 = 2, Seq = 3. Finally, we need to specify the contents 
of the dispatch tables to relate the dispatch entries of the sequence field to the 
symbolic labels in the microprogram. We specify these in Figure C.12. 

A microcode assembler would use the encoding of the sequencing field, the 
contents of the symbolic dispatch tables in Figure C.17, the specification in 
Figure C.16, and the actual microprogram in Figure 5 .51 on page 342 to gener
ate the microinstructions. 

Since the microprogram is an abstract representation of the control, there is 
a great deal of flexibility in how the microprogram is translated. For example, 
the address assigned to many of the microinstructions can be chosen arbitrari
ly, the only restrictions are those imposed by the fact that certain microinstruc
tions must occur in sequential order (so that incrementing the State register 
generates the address of the next instruction). Thus the microcode assembler 
may reduce the complexity of the control by assigning the microinstructions 
cleverly. 

Organizing the Control to Reduce the Logic 

For a machine with complex control, there may be a great deal of logic in the 
control unit. The control ROM or PLA may be very costly. Although our sim
ple implementation had only a 21-bit microinstruction, there have been 
machines with microinstructions that are hundreds of bits wide. Clearly, one 
would like to reduce the number of microinstructions and the width. The 
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� � ... , . . .,r�� -.. .,,.JI 11111:.. 11• �----
Add ALUOp=OO ALU adds. 

ALU control Fune. code ALUOp=lO ALU uses function code. 

Subtract ALUOp=Ol ALU does subtract. 

PC 
SRC1 

ALUSelA=O PC is the first operand. 

rs ALUSelA=l Register rs is source. 

1 ALUSelB=Ol Use 1 as the second ALU input. 

Extend ALUSelB=lO Use the sign extend ( IR[15--0]) as second input operand. 
SRC2 

Extshft ALUSelB=ll Use the sign-extended, shifted offset as second input. 

rt ALUSelB=OO. Register rt is the second ALU input. 

Target TargetWrite Write the ALUoutput to the register Target. 

ALU destination rd RegWrite. Write the ALU output to the register number rd. 
RegDst=l ,  
MemtoReg=O. 

Read PC MemRead, Read from memory; address is in  PC. 
lorD=O. 

Memory Read ALU MemRead, lorD=l Read from memory; address is the ALU output. 

Write ALU MemWrite, lorD=l Write to memory; address is the ALU output. 

JR IRWrite Causes the JR to be written from memory. 

Read rt No signals needed since rt is always source for a store. 
Memory register 

Write rt RegWrite, Causes the result from memory to be written in the register given 
MemtoReg=l the rt field. 
RegDst=O 

ALU PC Sou rce=OO. Write the ALU output into the PC . 
PCWrite 

PC write control Target-<:ond. PCWriteCond , If ALU Zero output is active , then write the value in Target into the 
PCSource=Ol PC. 

Jump address PCWrite, Write the jump target address into the PC. 
PCSource=lO 

seq AddrCtl=ll The next microinstruction follows sequentially. 

fetch AddrCtl=OO The next m icroinstruction is the one labeled Fetch .  
Sequencing 

dispatch 1 AddrCtl=Ol Use dispatch ROM 1 to choose next microinstruction. 

dispatch 2 AddrCtl=lO Use dispatch ROM 2 to choose next microinstruction.  

FIGURE C.16 Each microcode field translates to a set (possibly empty) of control signals to be set. These 23 dif
ferent values of the fields specify all the required combinations of the 19 control lines. Control lines that are not set which 
correspond to actions are 0 by default. Multiplexor control lines are set to 0 if the output matters. If a multiplexor control 
line is not explicitly set, its output is a don't care and is not used. 
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Microcode dispatch tab1e:1 

Opcode field Opcode _name Value · · 

000000 R format Rfo rma t l  1 000 1 1  l w  LW2 

0000 1 0  j m p  J umpl  1 0 1 0 1 1 S W  SW2 

0 00 1 00 b e q  B E O l  

1 000 1 1  l w  LWSWl 

1 0 1 0 1 1  S W  LWSWl  

FIGURE C.17 The two microcode dispatch ROMs showing the contents i n  symbolic form 
and using the labels in the microprogram. 

ideal approach to reducing control store is to first write the complete micro
program in a symbolic notation and then measure how control lines are set in 
each microinstruction. By taking measurements we are able to recognize con
trol bits that can be encoded into a smaller field. For example, if no more than 
one of 8 lines is set simultaneously in the same microinstruction, then they 
can be encoded into a 3-bit field (log2 8 = 3). This change saves 5 bits in every 
microinstruction and does not hurt CPI, though it does mean the extra hard
ware cost of a 3-to-8 decoder needed to generate the 8 control lines when they 
are required at the datapath. It may also have some small clock cycle impact, 
since the decoder is in the signal path. However, shaving 5 bits off control
store width will usually overcome the cost of the decoder, and the cycle time 
impact will probably be small or nonexistent. This technique can be applied 
to the microinstructions in this machine, since only 1 bit of the first 3 bits of 
the control word is ever active (see Figure C.14 on page C-22). 

This technique of reducing field width is called encoding. To further save 
space, control lines may be encoded together if they are only occasionally set 
in the same microinstruction; two microinstructions instead of one are then re
quired when both must be set. As long as this doesn't happen in critical rou
tines, the narrower microinstruction may justify a few extra words of control 
store. 

Microinstructions can be made narrower still if they are broken into differ
ent formats and given an opcode or format field to distinguish them. The format 
field gives all the unspecified control lines their default values, so as not to 
change anything else in the machine, and is similar to the opcode of an instruc
tion in a more powerful instruction set. For example, we could use a different 
format for microinstructions that did memory accesses from those that did 
register-register ALU operations, taking advantage of the fact that the memory 
access control lines are not needed in microinstructions controlling ALU oper
ations. 

Reducing hardware costs by using format fields usually has an additional 
performance cost beyond the requirement for more decoders. A micropro-
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gram using a single microinstruction format can specify any combination of 
operations in a datapath and can take fewer clock cycles than a microprogram 
made up of restricted microinstructions that cannot perform any combination 
of operations in a single microinstruction. However, if the full capability of the 
wider microprogram word is not heavily used, then much of the control store 
will be wasted and the machine could be made smaller and faster by restrict
ing the microinstruction capability. 

The narrow, but usually longer, approach is often called vertical microcode, 
while the wide but short approach is called horizontal microcode. It should be 
noted that the terms "vertical microcode" and "horizontal microcode" have no 
universal definition-the designers of the 8086 considered its 21-bit microin
struction to be more horizontal than other single-chip computers of the time. 
The related terms, maximally encoded and minimally encoded, are probably better 
than vertical and horizontal. 

• Concluding Remarks 

We began this chapter by looking at how to translate a finite state diagram to 
an implementation using a finite state machine. We then looked at explicit 
sequencers that use a different technique for realizing the next-state function. 
Although large microprograms are often targeted at implementations using 
this explicit next state approach, we can also implement a microprogram with 
a finite state machine. As we saw, both ROM and PLA implementations of the 
logic functions are possible. The advantages of explicit versus encoded next 
state and ROM versus PLA implementation are summarized below . 

• . 

Independent of whether the control is represented as 
a finite state diagram or as a microprogram, transla
tion to a hardware control implementation is similar. 
Each state or microinstruction asserts a set of control 
outputs and specifies how to choose the next state. 

The next-state function may be implemented by 
either encoding it in a finite state machine or by using an explicit 
sequencer. The explicit sequencer is more efficient if the number of 
states is large and there are many sequences of consecutive states 
without branching. 

The control logic may be implemented with either ROMS or PLAs 
(or even a mix). PLAs are more efficient unless the control function is 
very dense. ROMs may be appropriate if the control is stored in a sep
arate memory, as opposed to within the same chip as the datapath. 
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• Exercises 

C.1 [5] <§C.2> lex. 5 .1 ,  5.2l How many product terms are required in a PLA 
that implements the single-cycle datapath for j a l  assuming the control addi
tions described in Exercises 5.1-5.2 on page 357? 

C.2 [ 10] <§C.2> lex. 5.5l Determine the number of product terms in a PLA that 
implements the finite state machine for j a l  constructed in Exercise 5.5 on page 
357. The easiest method to do this is to construct the truth tables for any new 
outputs or any outputs affected by the addition. 

C.3 [5] <§C.2> lex. 5 .12l  How many product terms are required in a PLA that 
implements the single-cycle datapath and control for a d d  i u assuming the con
trol additions you needed were found in Exercise 5.12 on page 359. 

C.4 [ 10] <§C.2> lex. 5 .15l  Determine the number of product terms in a PLA 
that implements the finite state machine for a d d  i u in Exercise 5.15 on page 359. 
The easiest way to do this is to construct the additions to the truth tables for 
a d d  i u .  

C.5 [20] <§C.3> lex. 5 .15l Implement the finite state machine o f  Exercise 5.15 
using an explicit counter to determine the next state. Fill in the new entries for 
the additions to the Figure C.14 on page C-22. Also, add any entries needed to 
the dispatch ROMs of Figure C.12 on page C-21 .  

C.6 [ 15] <§C.2-C.5> lex. C .5 l  Determine the size of  the PLAs needed to imple
ment the multicycle machine assuming that the next-state function using a 
counter. Implement the dispatch tables of Figure C.12 on page C-21 using two 
PLAs, and the contents of the main control unit in Figure C.14 on page C-22 
using another PLA. How does the total size of this solution compare to the sin
gle PLA solution with the next state encoded? What if the main PLAs for both 
approaches are split into two separate PLAs, by factoring out the next state or 
address select signals? 
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Introducing C 

to Pascal 

Programmers 

C is not a "very high level" language . . .  and is 
not specialized to any particular area of applica-
tion. But its absence of restrictions and its generality 
make it more convenient and effective for many 
tasks than supposedly more powerful languages. 

Brian W. Kernighan and Dennis M. Ritchie 
The C Programming Language, Preface, 1978 

A primary motivation for . . .  Pascal was 
the need for a powerful and flexible language 
that could be reasonably efficiently imple
mented on most computers. 

Kathleen Jensen and Nlklaus Wirth 
Pascal User Manual and Report, p. 165, 1975 
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Introduction 

This Appendix is meant for readers familiar with Pascal but not C. It is not 
intended as a tutorial on how to write C programs, but as a way of allowing 
the reader familiar with Pascal to better understand the small amount of C 
code that appears in this book. Given the level of examples in this book, these 
differences are primarily syntactic. 

Variable Declarations 

There is no standard Pascal type for unsigned integers or double precision 
floating point. Also, Pascal ignores capitalization in variable names while 
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capitalization counts in C. For example, A p p l  e and a p p  l e are different vari
ables in C. Here are the corresponding standard types: 

��""'"�rr.���'«l'��· -.,.-.:" .. -cr-. • .,-1'-�_&� ,,..a��r.o�.-r ... ,-. . .. --� ,,_-�l 
Typi:� . .  :f.�r\·}!:·, .�:. �.! � ':,c.:��cla!!l-�!?.n•-'ft :�:- �!l��!'IJde�!.<! r�t.i.�, 

Integer i n t i n t e g e r  

Single precision floating point f l  o a t  r e a l 

Unsigned integer u n s i g n e d  i n t ? 
Double precision floating point d o u b l e  ? 

II Assignment Statements 

The primary difference is that C uses the "=" while Pascal uses " : = "  to indi
cate an assignment. Here are C examples from the book with their equivalents 
in Pascal. 

Examples in C Corresponding Pascal code 
a = b + c :  a b + c :  

d = a - e :  d a - e :  

f = ( g + h )  - ( i  + j )  : f ( g + h )  - ( i + j ) ;  
g = h + p [ i ] : g h + p [ i ] : 

P L  i J = h + p [ i ] : p [ i ] h + p [ i ] : 

In addition to standard arithmetic operators ( +, - , *, /), C has some logical 
operators sometimes found as library routines in other languages. 

fr! fl'OgiC3( <>Pe'r3ti0'05"�:��c ·01>-e·;:ai� 
' • • • •r ... .. '"<;'• -...,..- , � � Jl 

Shift Left « 
Shift Right » 

AND & 

OR I 
XOR A 

NOT -

Operators < < and > > are logical operations only on unsigned integers in C. 
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Relational Expressions 

and Conditional Statements 

There is more difference in the if statements of the two programming lan
guages, both in the statements themselves and in the expressions that com
monly occur. C leaves off the keyword " t h e n "  in the traditional if statement, 
and since "

=
" is used to mean assignment, new symbols are used to mean 

relational equality. The table below shows the mapping of the relational oper
ators in both languages: 

Equal 

Not equal ! = < >  
Less than < < 

Less than or equal <= 
Greater than > 
Greater than or equal > =  ) =  

Here are tw o  examples o f  if statements. 

i f  ( i =� j ) f = g + h :  i f  i j then f g + h 
e l s e f = g - h :  e l se  f g - h ·  

i f  ( i == j ) g o t o  L l : j f  i = t h e n  g o t o  1 :  
f = g + h ;  f g + h :  

l l : f i :  1 :  f f - i . 

C replaces the beg i n e n d  of Pascal's compound statements with { l .  
The case statement in Pascal is quite similar to the switch statement in C. 

Each switching alternative in C starts with the keyword " c a s e "  and ends with 
the keyword " b r e a k ."  Here are equivalent statements: 
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s w i t c h  ( k )  { c a s e  k o f  
c a s e  0 :  f + j : b r e a k :  0 :  f i + j ; 
c a s e  1 : f = g + h .  b r ea k :  1 ; f g + h :  
c a s e  2 :  f g - h ; b r e a k ;  2 :  f g - h .  
c a s e  3 ;  f - j ; b r e a k ; 3 ;  f - j :  

} ; e n d : 

Loops 

The while loops are almost identical in the two languages. Here is an example: 

i = i + j ;  

Of course, while loops can be constructed from g o t o s :  

L oo p : g = g + P [ i J :  
i = i + j ;  
i f  ( i ! = h l g o t o  L o o p : 

2 :  g : - g + P [ i ] : 
i : =  i + j ;  
i f  i < >  h then goto 2 ;  

The for statement may be the most unusual. In keeping with the philosophy 
of no restrictions, the initialization, exit test, and per loop operation can be any 
statements. They appear in three pieces in that order in the for statement: 
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In addition to the relational operators, there are logical relational operators 
to connect conditions. Here they are in the two languages: 

And && a n d  

Or 1 1  o r  

Not n o t  

This example shows some of the power of  the for statement; the compound 
exit test requires nested statements in Pascal. 

f o r  ( j = i - 1 : j >= 0 
&& v [ j ]  > v [ j  + l ] : 
I . . .  l 

j - 1 )  

3 :  

f o r  j : =  i - 1 d own to 0 d o  
i f  v [ j ] > v [ j  + l ]  t h e n  

beg i n  . . .  end  
e l s e goto 3 :  

II Examples to Put It All Together 

Procedures in C and Pascal are quite similar. The primary difference is that 
arrays are normally declared as types, with the type name used to declare 
array variables: 

s w a p  ( i n t v [ J . i n t k l  

I ;  

i n t temp ; 

t emp v [ k ] : 
v [ k ]  v [ k  + l ] :  
v [ k  + l J  = temp : 

�! --------
�t;.�-� ;Pascal 

t y p e  
n a m e s = a r ray [ O  . .  1 9 ]  of i n tege r :  

p roced u r e  swa p ( v a r  v :  n a me s ; 
k :  i n t e g e r ) ;  

v a r  
t emp : 

beg i n  
t emp 
v [ k ]  
v [ k  + 

end ; 

i n tege r ; 

: =  v [ k ] ; 
: =  v [ k  + l J :  

l ]  : = t emp 
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Here is a longer example: :  

s o r t  ( i n t  v [ J ,  i n t n )  

I 

I :  

i n t i . j :  
f o r  ( i  = 0 :  i < n ;  i = i + l l  

fo r ( j = i - 1 :  j >= O & &  
v [ j ]  > v [ j  + l ] :  j = j - l l  

swa p < v . j ) ;  

To Probe Further 

p r o c ed u r e  s o r t < v a r  v :  n a mes ; 
n :  i n teg e r ) ; 

v a r  
i . j :  i n t e ge r :  

beg i n  
f o r  i : - 0 to n - 1 d o  

f o r  j : = i - 1 d ow n t o  0 d o  
i f  v Li]  > v U  + 1)  t he n  

swa p ( v , j ) 
e l s e  g o t o  4 :  

4 . .  
e n d ; 

Kernighan, Brian W. and Dennis M. Ritchie [1988]. The C Programming Language, 2nd edition, 
Prentice Hall, Englewood Cliffs, N.J. 

This classic text is so widely used it's known as "K&R"; be sure to get the second edition. The first section, 
which is a tutorial, is a good introduction to C for someone who knows how to program. 

Tondo, Clovis L. and Scott E.  Gimpel [1989]. The C Answer Book: Solutions to the Exercises in The C 
Programming Language, 2nd edition, Prentice Hall, Englewood Cliffs, N.J. 

The second edition of this book has the answers to the exercises in the second edition of K&R. 

II Exercises 

D.1 [5] Write a Pascal version of the C program for summing shown in Ap
pendix A, Figure A.5 on page A-8. 

D.2 [5] Write a Pascal version of the first C procedure to set an array to zero, 
Clearl, shown in Chapter 3, Figure 3.22 on page 145. 

D.3 [10] Write a Pascal version of the second C procedure to set an array to 
zero, Clear2, shown in Chapter 3, Figure 3.22 on page 145. 



A P P E N D  X 

Another Approach 

to Instruction Set 

Architecture-VAX 

In principle, there is no great challenge in 
designing a large virtual address minicomputer 
system . . . .  The real challenge lies in two areas: 
compatibility-very tangible and important; and 
simplicity-intangible but nonetheless important. 

William Strecker 
"VAX-11 /780-A Virtual Address Extension to the PDP-11 Family," 
AFIPS Proc., National Computer Conference, 1978. 

Entities should not be multiplied unnecessarily. 

William of Occam 
Quodlibeta Septem, 1320 
(This quote is known as "Occam's Razor.") 
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Introduction 

The purpose of this appendix is to give you insight into an alternative to the 
Reduced Instruction Set Computer (RISC) used in this book. To enhance your 
understanding of instruction set architectures, we chose the VAX as the repre
sentative Complex Instruction Set Computers (CISC) because it is so different 
from MIPS and yet still easy to understand. By seeing two such divergent 
styles, we are confident that you will be able to learn other instruction sets on 
your own. 

At the time the VAX was designed, the prevailing philosophy was to create 
instruction sets that were close to programming languages in order to simplify 
compilers. For example, because programming languages had loops, instruc
tion sets should have loop instructions. As VAX architect William Strecker 
said ("VAX-11/780-A Virtual address Extension to the PDP-11  Family," 
AFIPS Proc., National Computer Conference, 1978): 

A major goal of the V AX-11  instruction set was to provide for effective com
piler generated code. Four decisions helped to realize this goal: . . .  1) A 
very regular and consistent treatment of operators . . . .  2) An avoidance of 
instructions unlikely to be generated by a compiler . . . .  3) Inclusions of sev-
eral forms of common operators . . . .  4) Replacement of common instruction 
sequences with single instructions. Examples include procedure calling, 
multiway branching, loop control, and array subscript calculation. 
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Recall that DRAMs of the mid-1970s contained less than l /lOOOth the ca
pacity of today's DRAMs, so code space was also critical. Hence, another pre
vailing philosophy was to minimize code size, which is de-emphasized in 
fixed-length instruction sets like MIPS. For example, MIPS address fields al
ways use 16 bits, even when the address is very small. In contrast, the VAX al
lows instructions to be a variable number of bytes, so there is little wasted 
space in address fields. 

Books the size of the one you are reading have been written just about the 
VAX, so a VAX appendix cannot be exhaustive. Hence, the following sections 
describe only a few of its addressing modes and instructions. To show the 
VAX instructions in action, later sections show VAX assembly code for two C 
procedures from Chapter 3. The general style will be to contrast these instruc
tions with the MIPS code that you are already familiar with . 

• . 

The differing goals for VAX and MIPS have led to 
very different architectures. The VAX goals, simple 
compilers and code density, led to the powerful ad
dressing modes, powerful instructions, and efficient 
instruction encoding. The MIPS goals were high per
formance via pipelining, ease of hardware implemen

tation, and compatibility with highly optimizing compilers. The MIPS 
goals led to simple instructions, simple addressing modes, fixed
length instruction formats, and a large number of registers. 

• VAX Operands and Addressing Modes 

The VAX is a 32-bit architecture, with 32-bit wide addresses and 32-bit wide 
registers. Yet the VAX supports many other data sizes and types, as Figure E.1 
shows. Unfortunately, VAX uses the name "word" to refer to 16-bit quantities; 
in this text a word means 32 bits. Figure E.1 shows the conversion between 
the MIPS data type names and the VAX names. Be careful when reading 
about VAX instructions, as they refer to the names of the VAX data types. 

The VAX provides 16 32-bit registers. The VAX assembler uses the notation 
rO,  r 1 ,  . . . , r 1 5  to refer to these registers, and we will stick to that notation. 
Alas, 4 of these 16 registers are effectively claimed by the instruction set archi
tecture. For example, r 1 4  is the stack pointer ( s p) and r 1 5  is the program 
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8 Integer Byte Byte 

16 Integer Halfword Word 

32 Integer Word Long word 

32 Floating point Single precision F_floating 

64 Integer Doubleword Quad word 

64 Floating point Double precision D_floating or G_floating 

Sn Character string Character Character 

FIGURE E.1 VAX data types, their lengths, and names. The first letter of the VAX type (b, w, 
I, f, q, d, g, c) is often used to complete an instruction name. Examples of move instructions 
include mo v b, m o v w, mo v l ,  m o v f, m o v q ,  m o v d, m o v g ,  and m o v c 3 .  Each move instruction trans
fers an operand of the data type indicated by the letter following mo v. 

counter ( p c) .  Hence, r 1 5  cannot be used as a general-purpose register, and us
ing r 1 4  is very difficult because it interferes with instructions that manipulate 
the stack. The other dedicated registers are r 1 2, used as the argument pointer 
( a p), and r l 3 , used as the frame pointer ( f p); their purpose will become clear 
later. (Like MIPS, the VAX assembler accepts either the register number or the 
register name.) 

VAX addressing modes include those discussed in Chapter 3, which has all 
the MIPS addressing modes: register, displacement, immediate, and PC-relative. 
Moreover, all these modes can be used for jump addresses or for data address
es. Chapter 3 also has autoincrement and autodecrement addressing, mentioned 
in section 3.8. 

But that's not all the addressing modes. To reduce code size, the VAX has 
three lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit 
addresses called, respectively, byte displacement, word displacement, and long dis
placement addressing. Thus, an address can be not only as small as possible, but 
also as large as necessary; large addresses need not be split, so there is no 
equivalent to the MIPS l u i instruction (see page 125). 

That's still not all the VAX addressing modes. Several have a deferred op
tion, meaning that the object addressed is only the address of the real object, re
quiring another memory access to get the operand. This addressing mode is 
called indirect addressing in other machines.Thus, register deferred, autoincrement 
deferred, and byte/word/long displacement deferred are other addressing modes to 
choose from. For example, using the notation of the VAX assembler, r 1 means 
the operand is register 1 and ( r 1 l means the operand is the location in mem
ory pointed to by r 1 .  

There is yet another addressing mode. Indexed addressing automatically 
converts the value in an index operand to the proper byte address to add to the 
rest of the address. Recall the s w a p  example from Chapter 3 (page 125); we 
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Addressing mode Length of address 
name Syntax Example Meaning specifier in bytes 

Literal #value #-1 -1 1 (6-bit signed value) 

I mmediate #value #100 100 1 + length of the 
immediate 

Register rn r3 r3 1 

Register deferred (rn) (r3) Memory[r3] 1 

Byte/word/long Displacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the 
displacement displacement 

Byte/word/long @displacement {rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the 
displacement displacement 
deferred 

Indexed (scaled) Base mode [rx] (r3)[r4] Memory[r3 + r4 x d] 1 + length of base 

(where d is data size in bytes) addressing mode 

Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 + d 1 

Autodecrement - (rn) -(r3) r3 = r3 - d; Memory[r3] 1 

Autoincrement @(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 + d 1 
deferred 

FIGURE E.2 Definition and length of the VAX operand specifiers. The length of each addressing mode is 1 byte plus 
the length of any displacement or immediate field needed by the mode. Literal mode uses a special 2-bit tag and the 
remaining 6 bits encode the constant value. If the constant is too big, it must use the immediate addressing mode. Note the 
length of an immediate operand is dictated by the length of the data type indicated in the opcode, not the value of the 
immediate. The symbol d in the last four modes represents the length of the data in bytes; d is 4 for 32-bit add. 

needed to multiply the index of a 4-byte quantity by 4 before adding it to a base 
address. Indexed addressing, called scaled addressing on some computers, au
tomatically multiplies the index of a 4-byte quantity by 4 as part of the address 
calculation. 

To cope with such a plethora of addressing options, the VAX architecture 
separates the specification of the addressing mode from the specification of the 
operation. Hence, the opcode supplies the operation and the number of oper
ands, and each operand has its own addressing mode specifier. Figure E.2 
shows the name, assembler notation, example, meaning, and length of the ad
dress specifier. 

The VAX style of addressing means that an operation doesn't know where 
its operands come from; a VAX a d d  instruction can have three operands in reg
isters, three operands in memory, or any combination of registers and memory 
operands. 
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How long is the following instruction? 
a d d l 3 r l , 7 37 ( r 2 ) , ( r 3 ) [ r4 J  

The name a d d l  3 means a 32-bit add instruction with three operands. As
sume the length of the VAX opcode is 1 byte. 

The first operand specifier-r 1- indicates register addressing and is 1 byte 
long. The second operand specifier-7 3 7  ( r 2  ) -indicates displacement ad
dressing and has two parts: the first part is a byte that specifies the word
displacement addressing mode and base register ( r 2); the second part is the 
2-byte long displacement ( 7 3 7 ). The third operand specifier-( r 3 )  [ r4  ]
also has two parts: the first byte specifies register deferred addressing mode 
( ( r 3 ) ) , and the second byte specifies the Index register and the use of 
indexed addressing ( [ r 4 J ) .  

Thus, the total length of the instruction is  1 + (1) + (1 +2) + (1+1)  = 7 bytes. 

In this example instruction, we show the VAX destination operand on the 
left and the source operands on the right, just as we show MIPS code. The VAX 
assembler actually expects operands in the opposite order, but we felt it would 
be less confusing to keep the destination on the left for both machines. Obvi
ously, left or right orientation is arbitrary; the only requirement is consistency. 

Elaboration: Because the PC is one of the 16 registers that can be selected in a VAX 

addressing mode, 4 of the 22 VAX addressing modes are synthesized from other 
addressing modes . Using the PC as the chosen register in each case, immediate 

addressing is really autoincrement, PC-relative is displacement, absolute is autoincre
ment deferred, and relative deferred is d isplacement deferred. 

• Encoding VAX Instructions 

Given the independence of the operations and addressing modes, the encod
ing of instructions is quite different from MIPS. 

VAX instructions begin with a single byte opcode containing the operation 
and the number of operands. The operands follow the opcode. Each operand 
begins with a single byte, called the address specifier, that describes the address
ing mode for that operand. For a simple addressing mode, such as register ad-
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Byte address Contents at each byte Machine code 

201 opcode containing a d d l  3 c1hex 

202 index mode specifier for [ r 4 ]  44h ex 
203 register i nd i rect mode specifier for ( r3 l 63hex 
204 word displacement mode specifier using r 2 as base C2tiex 

205 e111 e x  
the 16-bit constant / 3 7 

206 02hex 

207 register mode specifier for r 1 51ti ex  

FIGURE E.3 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4], assuming it 
starts at address 201. To satisfy your curiosity, the right column shows the actual VAX encod
ing in hexadecimal notation (page 175 describes hexadecimal notation). Note that the 16-bit con
stant 7371en takes two bytes. 

dressing, this byte specifies the register number as well as the mode (see the 
rightmost column in Figure E.2). In other cases, this initial byte can be followed 
by many more bytes to specify the rest of the address information. 

As a specific example, let's show the encoding of the add instruction from 
the example on page E-7: 

a d d l 3 r l , 7 3 7 ( r 2 ) , ( r 3 ) [ r4 J  

Assume that this instruction starts at location 201 . 
Figure E.3 shows the encoding. Note that the operands are stored in mem

ory in opposite order to the assembly code above. The execution of VAX in
structions begins with fetching the source operands, so it makes sense for them 
to come first. Order is not important in fixed-length instructions like MIPS, 
since the source and destination operands are easily found within a 32-bit 
word. 

The first byte, at location 201, is the opcode. The next byte, at location 202, 
is a specifier for the index mode using register r 4 .  Like many of the other spec
ifiers, the left 4 bits of the specifier give the mode and the right 4 bits give the 
register used in that mode. Since a d d l  3 is a 4-byte operation, r 4  will be multi
plied by 4 and added to whatever address is specified next. In this case it is reg
ister deferred addressing using register r3 .  Thus bytes 202 and 203 combined 
define the third operand in the assembly code. 

The following byte, at address 204, is a specifier for word displacement ad
dressing using register r 2 as the base register. This specifier tells the VAX that 
the following two bytes, locations 205 and 206, contain a 16-bit address to be 
added to r 2 .  

The final byte o f  the instruction gives the destination operand, and this 
specifier selects register addressing using register r 1 .  
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Such variability in addressing means that a single VAX operation can have 
many different lengths; for example, an integer add varies from 3 bytes to 19 
bytes. VAX implementations must decode the first operand before they can 
find the second, and so implementors are strongly tempted to take one clock 
cycle to decode each operand; thus this sophisticated instruction set architec
ture can result higher clock cycles per instruction, even when using simple ad
dresses. 

Ill VAX Operations 

In keeping with its philosophy, the VAX has a large number of operations as 
well as a large number of addressing modes. We review a few here to give the 
flavor of the machine. 

Given the power of the addressing modes, the VAX move instruction per
forms several operations found in other machines. It transfers data between 
any two addressable locations and subsumes load, store, register-register 
moves, and memory-memory moves as special cases. The first letter of the 
VAX data type (b, w, 1, f, q, d, g, c in Figure E.1)  is appended to the acronym 
m o v  to determine the size of the data. One special move, called move address, 
moves the 32-bit address of the operand rather than the data. It uses the acro
nym m o v a .  

The arithmetic operations of MIPS are also found in the VAX, with two ma
jor differences. First, the type of the data is attached to the name. Thus a d  d b, 

a d d  w, and a d d  l operate on 8-bit, 16-bit, and 32-bit data in memory or registers, 
respectively; MIPS has a single add instruction that operates only on the full 
32-bit register. The second difference is that to reduce code size, the add in
struction specifies the number of unique operands; MIPS always specifies 
three even if one operand is redundant. For example, the MIPS instruction 

a d d  $ 1 , $ 1 , $ 2  

takes 32 bits like all MIPS instructions, but the VAX instruction 
a d d l 2 r l , r 2  

uses r 1 for both the destination and a source, taking just 24 bits: 8 bits for the 
opcode and 8 bits each for the two register specifiers. 

Number of Operations 

Now we can show how VAX instruction names are formed: 

( operation ) ( datatype ) ( � ) 
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The operation a d d  works with data types byte, word, long, float, and double 
and comes in versions for either 2 or 3 unique operands, so the following 
instructions are all found in the VAX: 

a d d b 2  

a d d b 3  

a d d w 2  

a d dw3 

a d d l 2 

a d d l 3 

a d d f 2  

a d d f3 

a d d d 2  

a d d d 3  

Accounting for all addressing modes (but ignoring register numbers and 
immediate values) and limiting to just byte, word, and long, there are more 
than 30,000 versions of integer add in the VAX; MIPS has just 4! 

Another reason for the large number of VAX instructions is the instructions 
that either replace sequences of instructions or take fewer bytes to represent a 
single instruction. Here are four such examples (* means the data type): 

t��:�A
·
x o�eration · ··- -· "::.� (xtimil1e;:�.:, ·."' -�� - --.·��·--,.,...,.-� :;' . >'�" �.e_ �] ' 

c l r *  c l  r l r 3  r3 = O 

i n c *  i n c l  r3 r3  = r3  + 1 

d e e *  d e  c l  r 3  r3 = r3 - 1  

p u s h *  p u s h l  r 3  s p  = sp - 4 ;  Memory[sp] = r3; 

The push instruction is the last row is exactly the same as using the move 
instruction with autodecrement addressing on the stack pointer: 

mo v l - ( s p )  , r 3 

Brevity is the advantage of p u s h  l : it is one byte shorter since s p is implied. 

Branches, Jumps, and Procedure Calls 

The VAX branch instructions are related to the arithmetic instructions because 
the branch instructions rely on condition codes. Condition codes are set as a 
side-effect of an operation, and they indicate whether the result is positive, 
negative, zero, or if an overflow occurred (see page 176 in Chapter 4). Most 
instructions set the VAX condition codes according to their result; instructions 
without results, such as branches, do not. The VAX condition codes are N 
(Negative), Z (Zero), V (oVerflow), and C (Carry) . There is also a compare 
instruction cmp * just to set the condition codes for a subsequent branch. 

The VAX branch instructions include all conditions. Popular branch in
structions include b e  q l ( = ), b n e q (:�), b l  s s ( <), b l  e q (�), b g t  r(> ), and b g eq {:?:), 

which do just what you would expect. There are also unconditional branches 
whose name is determined by the size of the PC-relative offset. Thus b r b  

(branch byte) has an 8-bit displacement and b r w  (branch word) has a 16-bit dis
placement. 
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The final major category we cover here is the procedure call and return in
structions. Unlike the MIPS architecture, these elaborate instructions can take 
dozens of clock cycles to execute. The next two sections show how they work, 
but we need to explain the purpose of the pointers associated with the stack 
manipulated by c a  1 1  s and r e t .  The stack pointer, s p, is just like the stack point
er in MIPS; it points to the top of the stack.The argument pointer, a p, points to 
the base of the list of arguments or parameters in memory that are passed to 
the procedure. The frame pointer, f p, points to the base of the local variables of 
the procedure that are kept in memory (the stack frame). The VAX call and re
turn instructions manipulate these pointers to maintain the stack in proper 
condition across procedure calls and to provide convenient base registers to 
use when accessing memory operands. As we shall see, call and return also 
save and restore the general purpose registers as well as the program counter. 

Figure E.4 gives a further sampling of the VAX instruction set. 

II An Example to Put It All Together: swap 

To see programming in VAX assembly language, we translate the C proce
dures s w a p  and s o r t from Chapter 3; the C code for s w a p  is reproduced in 
Figure E.5. The next section covers s o r t .  

Just as  we  did in section 3.9 o f  Chapter 3 ,  we  describe the swa p procedure 
in these three general steps of assembly language programming: 

1 .  Allocate registers to program variables 

2. Produce code for the body of the procedure 

3. Preserve registers across the procedure invocation 

The VAX code for these procedures is based on code produced by the VMS C 
compiler using optimization. 

Register Allocation for swap 

In contrast to MIPS, VAX parameters are normally allocated to memory, so 
this step of assembly language programming is more properly called "vari
able allocation." The standard VAX convention on parameter passing is to use 
the stack. The two parameters, v [ J and k, can be accessed using register a p, 

the argument pointer: the address 4 ( a p )  corresponds to v [ J and 8 ( a  p )  corre
sponds to k .  Remember that with byte addressing the address of sequential 4-
byte words differs by 4. The only other variable is t emp, which we associate 
with register r3 .  



E·12 Appendix E Another Approach to Instruction Set Architecture-VAX 

· 
,
ll)struction type Example Instruction meaning .. I : . ' 

Move data between byte, halfword, word, or doubleword operands; * is data type 

mo v *  Move between two operands 

Data transfers mo v z b * Move a byte to a halfword or word, extending it with zeroes 

mo v a *  Move the 32-bit address of a n  operand; data type i s  last 

p u s h * Push operand onto stack 

Operations on integer or logical bytes, halfwords (16 bits}, words (32 bits); * i s  data type 

a d d *_ Add with 2 or 3 operands 

c m p *  Compare and set condition codes 

Arithmetic, logical t s t *  Compare to zero and set condition codes 

a s h * Arithmetic shift 

c l r *  Clear 

c v t b * Sign-extend byte to size of data type 

Conditional and unconditional branches 

b e q l . b n e q  Branch equal ,  branch not equal 

b l e q , b g e q  Branch less than o r  equal, branch greater than o r  equal 

Control b r o ,  b rw Unconditional branch with an 8-bit or 16-bit address 

jmp  J u m p  using any addressing mode to specify target 

a o b l e q  Add one to operand; branch if result � second operand 

c a s e  - Jump based on case selector 

Call/return from procedure 

c a l l s  Call procedure with arguments on stack (see section E.6) 

Procedure c a l l g Call procedure with FORTRAN-style parameter l ist 

j s b Jump to subroutine, saving return address (like MIPS j a l )  

r e t  Return from procedure call 

Floating-point operations on D, F, G, and H formats 

a d d d  - Add double-precision D-format floating numbers 

Floating point s ubd_ Subtract double-precision D-format floating numbers 

mu l f  Multiply single-precision F-format floating point 

p o l y f  Evaluate a polynomial using table of coefficients in F format 

Special operations 

Other e r e Calculate cyclic redundancy check 

i n s q  u e  I nsert a queue entry into a queue 

FIGURE E.4 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, 1, d, f, g, h, 
and q. The underline, as in a d d d_, means there are 2-operand ( a d d d 2 )  and 3-operand (a d d d 3) forms of this instruction. 
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s w a p ( i n t v [ J , i n t k l  
I 

i n t t emp ; 
temp = v [ k ] ; 
v [ k ]  = v [ k+ l ] ; 
v [ k+ l ] = temp ; 

E-13 

FIGURE E.5 A C procedure that swaps two locations in memory. This code is a copy of Fig
ure 3.18 on page 136. This procedure will be used in the sorting example in the next section. 
Appendix D shows the C and Pascal versions of this procedure side-by-side (page D-5). 

Code for the Body of the Procedure swap 

The remaining lines of C code in swa p are 
t e m p = v [ k ] ; 
v [ k ]  = v [ k  + l ] ; 
v [ k  + l ]  = t e mp ; 

Since this program uses v [ J and k several times, to make the programs run 
faster the VAX compiler first moves both parameters into registers: 

mo v l  r 2 , 4 ( a p l  ; r 2  = v [ J  
mo v l  r l , 8 ( a p l  ; r l  = k 

Note that we follow the VAX convention of using a semicolon to start a com
ment; the MIPS comment symbol # represents a constant operand in VAX 
assembly language. 

The VAX has indexed addressing, so we can use index k without convert-
ing it to a byte address. The VAX code is then straightforward: 

m o v l  r 3 , ( r 2 ) [ r l ]  r 3  ( t emp ) = v [ k ]  
a d d l 3 r O , #1 , S ( a p l  r O  = k + 1 
mo v l  ( r 2 ) [ r l ] , ( r 2 ) [ r O J  v [ k ] = v [ r O J  ( v [ k  + l ] )  
mo v l  ( r 2 ) [ r 0 ] , r 3 v [ k  + l ]  = r 3  ( t emp ) 

Unlike the MIPS code, which is basically two loads and two stores, the key 
VAX code is one memory-to-register move, one memory-to-memory move, 
and one register-to-memory move. Note that the a d d l  3 instruction shows the 
flexibility of the VAX addressing modes: It adds the constant 1 to a memory 
operand and places the result in a register. 

Now we have allocated storage and written the code to perform the oper
ations of the procedure. The only missing item is the code that preserves reg
isters across the routine that calls swa p.  
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Preserving Registers Across Procedure Invocation of swap 

The VAX has a pair of instructions that preserve registers c a  1 1  s and ret .  This 
example shows how they work. 

The VAX C compiler uses a form of callee convention. Examining the code 
above, we see that the values in registers rO, r l ,  r 2, and r3 must be saved so 
that they can later be restored. The ca  1 1  s instruction expects a 16-bit mask at 
the beginning of the procedure to determine which registers are saved: if bit i 
is set in the mask, then register i is saved on the stack by the c a l  l s instruction. 
In addition, c a l  l s saves this mask on the stack to allow the return instruction 
( r e t) to restore the proper registers. Thus the c a  1 1  s executed by the caller 
does the saving, but the callee sets the call mask to indicate what should be 
saved. 

One of the operands for c a l  l s gives the number of parameters being 
passed, so that ca  1 1  s can adjust the pointers associated with the stack: the ar
gument pointer (a p), frame pointer (f p), and stack pointer (s p) . Of course, 
ca  1 1  s also saves the program counter so that the procedure can return! 

Thus, to preserve these four registers for s w a p, we just add the mask at the 
beginning of the procedure, letting the c a  1 1  s instruction in the caller do all the 
work: 

. w o r d A m < r 0 , r l , r 2 , r 3 >  ; s e t  b i t s  i n  ma s k  f o r  0 , 1 , 2 , 3 

This directive tells the assembler to place a 16-bit constant with the proper 
bits set to save registers rO  though r3 .  

The return instruction undoes the work of  c a  1 1  s .  When finished, r e t  sets 
the stack pointer from the current frame pointer to pop everything ca l l s 

placed on the stack. Along the way, it restores the register values saved by 
c a  1 1  s, including those marked by the mask and old values of the fp,  a p, and 
pc .  

To complete the procedure swa p, we just add one instruction: 
r e t  ; r e s t o r e  r e g i s t e r s  a n d  r e t u r n  

The Full Procedure swap 

We are now ready for the whole routine. Figure E.6 identifies each block of 
code with its purpose in the procedure, with the MIPS code on the left and the 
VAX code on the right. This example shows the advantage of the scaled 
indexed addressing and the sophisticated call and return instructions of the 
VAX in reducing the number of lines of code. The 17 lines of MIPS assembly 
code became 8 lines of VAX assembly code. It also shows that passing param
eters in memory results in extra memory accesses. 

Keep in mind that the number of instructions executed is not the same as 
performance; the fallacies on pages 147 and E-21 make this point. 
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MIPS versus VAX 

. " : · · Saving register . · · · . · · 
� .. • : /. ;, ..... P:. . 

sw a p :  a d d i  $ 2 9 , $ 2 9 . - 1 2  s w a p :  . w o r d  "m< r 0 , r l , r 2 , r 3 >  
S W  $ 2 , 0 ( $ 2 9 ) 
SW $ 1 5 , 4 ( $ 2 9 ) 
SW $ 1 6 , 8 ( $ 2 9 ) 

mul  i $ 2 .  $ 5 , 4  
a d d  $ 2 ,  $ 4 , $ 2 
l w  $ 1 5 ,  0 ( $ 2 )  
l w  $ 1 6 ,  4 ( $ 2 )  
S W  $ 1 6 .  0 ( $ 2 )  
SW $ 1 5 ,  4 ( $ 2 )  

l w  $ 2 ,  0 ( $ 2 9 ) 
l w  $ 1 5 .  4 ( $ 2 9 )  
l w  $ 1 6 .  8 ( $ 2 9 ) 
a d d i  $ 2 9 , $ 2 9 , 1 2  

mo v l  r 2 . 4 (  a )  
mo v l  r l . 8 ( a )  
mo v l  r 3 , ( r 2 ) [ r l ]  
a d d l 3 r 0 ,  # l , 8 ( a p )  
mo v l  ( r 2 ) [ r l J . ( r 2 ) [ r O J  
mo v l  C r 2 ) [ r 0 J . r 3 

FIGURE E.6 MIPS versus VAX assembly code of the procedure swap In Figure E.5 on page E·13. 

Elaboration: VAX software follows a convention of treating registers rO  and r 1 as 
temporaries which are not saved across a procedure cal l ,  so the VMS C compiler does 
include registers rO and r 1 in the register saving mask. Also, the C compi ler should 
have used r 1 instead of 8 ( a p ) in the a d d l 3 instruction ; such examples inspire com
puter architects to try to write compi lers! 

II A Longer Example: sort 

As in Chapter 3, we show the longer example of the sort procedure. Figure E.7 
shows the C version of the program. Once again we present this procedure in 
several steps, concluding with a side-by-side comparison to MIPS code. 

Register Allocation for sort 

The two parameters of the procedure s o r t, v and n, are found in the stack in 
locations 4 ( a  p l  and 8 ( a p ) , respectively. The two local variables are assigned 
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i n t v [ l O O O O J ; 

s o r t ( i n t v [ J . i n t n )  

{ 
i n t i . j ;  

f o r  ( i  = O ;  i < n ;  i = i + 1 )  { 
f o r  ( j  = i - l ;  j >= 0 && v [ j ]  > v [ j  + l ] ;  

s w a p C v , j ) ;  

j - 1 )  { 

FIGURE E. 7 A C procedure that performs a bubble sort on the array v. This code is a copy of 
Figure 3.20 on page 139. (See Appendix D for a Pascal version of s o  r t .) 

to registers: i to r6 and j to r4 .  Because the two parameters are referenced 
frequently in the code, the VMS C compiler copies the address of these param
eters into registers upon entering the procedure: 

mo v a l  r 7  , 8 ( a p )  ; m o v e  a d d r e s s  o f  n i n t o  r 7  
mo v a l  r 5 , 4 ( a p )  ; m o v e  a d d r e s s  o f  v i n t o  r 5  

It would seem that moving the value of the operand to a register would be 
more useful than its address, but once again we bow to the decision of the 
VMS C compiler. Apparently the compiler cannot be sure that v and n don't 
overlap in memory. 

Code for the Body of the sort Procedure 

The procedure body consists of two nested for loops and a call to s w a p  which 
includes parameters. Let's unwrap the code from the outside to the middle. 

The Outer Loop 

The first translation step is the first for loop: 
f o r  ( i  = O ;  i < n ;  i = i + l )  I 

Recall that the C for statement has three parts: initialization, loop test, and 
iteration increment. It takes just one instruction to initialize i to 0, the first 
part of the for statement: 

c l  r l  r 6  ; i = 0 

It also takes just one instruction to increment i ,  the last part of the for: 

i n c l  r 6  ; i = i + 1 

The loop should be exited if i < n is false, or said another way, exit the loop 
if i � n .  This test takes two instructions: 
f o r l t s t :  c m p l  

b g e q  
r 6 , ( r 7 )  c omp a r e r 6  a n d  memo ry [ r 7 J  ( i : n )  
e x i t l  ; g o  t o  e x i t l  i f  r 6  � mem [ r 7 J  ( i  � n )  
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Note that cmp  l sets the condition codes for use by the conditional branch 
instruction b g e q .  

The bottom of  the loop just jumps back to the loop test: 

b r b  f o r l t s t  ; b r a n c h  t o  t e s t  o f  o u t e r  l o o p  
e x i  t l : 

The skeleton code of the first for loop is then: 
c l  r l  r 6  

f o r l t s t : c m p l  r 6 , ( r 7 )  
b g e q  e x i t l  

i = 0 
c omp a r e r 6  a n d  memory [ r 7 J  ( i : n l  
g o  t o  e x i t l  i f  r 6  � mem [ r 7 J  ( i  � n )  

( b ody  o f  f i r s t  f o r  l o o p )  

e x i  t l : 

i n c l  
b r b  

r 6  
f o r l t s t  

i = i + 1 
b r a n c h  t o  t e s t  o f  o u t e r  l o o p  

Exercise 3.11 on page 157 explores writing faster code for the similar loops. 

The Inner Loop 

The second for loop is 

f o r  ( j = i - 1 ; j >= 0 & &  v [ j J > v [ j + 1 J ; j = j - 1 ) { 

The initialization portion of this loop is again one instruction: 
s u b l 3 r4 . r 6 . H l  ; j = i - 1 

and the decrement of j is also one instruction: 
d e  c l  r4  ; j = j - 1 

The loop test has two parts. We exit the loop if either condition fails, so first 
test must exit the loop if it fails (j < 0): 

f o r 2 t s t : b l s s e x i t 2  ; g o  t o  e x i t 2  i f  r4  < 0 ( j  < 0 )  

Notice that there is no explicit comparison. The lack of comparison is a benefit 
of condition codes, with the conditions being set as a side effect of the prior 
instruction. This branch skips over the second condition test. 

The second test exits if v [ j J > v [ j + 1 J is false, or exit if v [ j J ::; v [ j + 1 J .  
First we load v and put j + 1 into registers: 

mo v l  r 3 , ( r 5 )  ; r 3  = Memo ry [ r 5 J  ( r 3 = v )  
a d d l 3 r 2 , r4 . # l  ; r 2  = r4  + 1 C r 2 = j + 1 )  

Register indirect addressing is used to get the operand pointed to by r 5 .  
Once again the index addressing mode means we can use indices without 

converting to the byte address, so the two instructions for v [ j J ::; v [ j + 1 J are: 
c m p l  ( r 3 ) [ r4 J . ( r 3 ) [ r 2 J ; v [ r4 J  : v [ r 2 J  ( v [ j ] : v [ j  + l ] ) 
b l e q  ex i t 2 ; g o  t o  e x i t 2  i f  v [ j ] ::; v [ j  + l ]  
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The bottom of the loop jumps back to the full loop test: 

b r b  f o r 2 t s t  # j ump  t o  t e s t  o f  i n n e r  l o o p  

Combining the pieces, the second for loop looks like this: 
s u b l 3 r 4 , r 6 ,  # 1  j = i - 1 

f o r 2 t s t :  b l s s  e x i t 2 g o  t o  ex i t 2 i f  r 4  < 0 ( j < 0 )  
mo v l  r 3 , ( r 5 ) r 3  = Mem o ry [ r 5 J  ( r 3 v )  
a d d l 3 r 2 , r4 , # l  r 2  = r 4  + 1 ( r 2 = j + 1 )  
c m p l  ( r 3 ) [ r4 J , ( r 3 ) [ r 2 ] ; v [ r4 J  : v [ r 2 J  
b l eq ex i t 2 g o  t o  e x i t 2 i f  v [ j ] v [ j + l ] 

( b ody  o f  s e c o n d  f o r  l o o p ) 

j = j - 1 d e  c l  
b r b  

r4  
f o r 2 t s t  j u mp t o  t e s t  o f  i n n e r  l o op  

e x i t 2 : 

Notice that the instruction b l  s s (at the top of the loop) is testing the condition 
codes based on the new value of r 4  (j ), set either by the s u b 1 3  before entering 
the loop or by the d e  c l  at the bottom of the loop. 

The Procedure Call 

The next step is the body of the second for loop: 

swa p ( v , j ) ;  

Calling s w a p is easy enough: 
c a l l s  #2 . s w a p  

The constant 2 indicates the number of parameters pushed on the stack. 

Passing Parameters 

The C compiler passes variables on the stack, so we pass the parameters to 
s w a p with these two instructions: 

p u s h l  ( r 5 )  f i r s t  s w a p  p a r a me t e r i s  v 
p u s h l  r 4  ; s e c o n d  swa p p a r a me t e r i s  j 

Register indirect addressing is used to get the operand of the first instruction. 

Preserving Registers Across Procedure Invocation of sort 

The only remaining code is the saving and restoring of registers using the 
callee save convention. This procedure uses registers r 2 through r 7 ,  so we 
add a mask with those bits set: 

. wo r d A m < r 2 , r 3 , r4 , r 5 , r 6 , r 7 > ; s e t  ma s k  f o r  r e g i s t e r s  2 - 7  
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Since r e t  will undo all the operations, we just tack it on the end of the proce
dure. 

The Full Procedure sort 

Now we put all the pieces together in Figure E.8. To make the code easier to 
follow, once again we identify each block of code with its purpose in the pro
cedure and list the MIPS and VAX code side-by-side. In this example, 11 lines 
of the s o r t  procedure in C become the 44 lines in the MIPS assembly lan
guage and 20 lines in VAX assembly language. The biggest VAX advantages 
are in register saving and restoring and indexed addressing. 

Elaboration: The optimizing VMS C compiler did several tricks to improve this code, 
including replacing the call of the s w a p  procedure with the body of the code inside the 
s o  r t  procedure,  thereby avoiding the overhead of procedure cal l  and return . Actual ly, 
the M IPS C compiler uses a much more efficient register save/restore convention than 
the one shown in Figure E.8, so the number of l ines of code for each architecture is 
much closer than the figure suggests. Both compilers also use more efficient loops. 
We show them in this form to make the code easier to follow. 

II Fallacies and Pitfalls 

The ability to simplify means to eliminate the unnecessary so that the necessary 
may speak. 

Hans Hoffman, Search for the Real, 1967 

Fallacy: It is possible to design a flawless architecture. 

All architecture design involves trade-offs made in the context of a set of 
hardware and software technologies. Over time those technologies are likely 
to change, and decisions that may have been correct at one time later look like 
mistakes. For example, in 1975 the VAX designers overemphasized the impor
tance of code-size efficiency and underestimated how important ease of 
decoding and pipelining would be ten years later. And almost all architec
tures eventually succumb to the lack of sufficient address space. Avoiding 
these problems in the long run, however, would probably mean compromis
ing the efficiency of the architecture in the short run. 
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s o r t : a d d i  
S W  
S W  
S W  
S W  
SW 
S W  
S W  
S W  
S W  

m o v e  
m o v e  

a d d  
f o r l l s t : s l t  

beq 

a d d i 
f o r 2 t s t : s l t i 

ex i t 2 :  

e x i  t 1 : 

b n e  
m u l  i 
a d d  
l w 
l w  
s l t  
b eq 

m o v e  
m o v e  
.i a l  

a d d i 
j 
a d d i  
j 

1 w 
l w  
l w  
l w  
l w 
l w 
l w  
l w  
l w  
a d d i  

MIPS versus VAX 

Saving registers 

$ 2 9 , $ 2 9 ,  - 36 s o r t : . wo r d  Am< r 2 , r 3 . r 4 , r 5 . r 6 , r 7 >  
$ 1 5 .  0 ( $ 2 9 ) 
$ l 6 '  4 { $ 2 9 ) 
$ l 7 '  8 ( $ 2 9 ) 
$ 1 8 , 1 2 ( $ 2 9 )  
$ 1 9 . 1 6 ( $ 2 9 ) 
$ 2 0 , 2 0 ( $ 2 9 )  
$ 2 4 . 2 4 ( $ 2 9 )  
$ 2 5 , 2 8 ( $ 2 9 ) 
$ 3 1 , 3 2 ( $ 2 9 )  

Procedure body 

$ 1 8 .  $ 4  mo v a l  
$ 20 .  $ 5  mov a  1 
$ 1 9 ,  $ 0 ,  $ 0  c l  r l  
$ 8 , $ l 9 '  $ 2 0  fo r l t s l : cm p l  
$ 8 , $ 0 '  e x i t l  b g e q 

$ 1 7 ' $ 1 9 ,  - 1 s u b l 3 
$ 8 , $ 1 7 , 0 f o r 2 t. s t :  
$ 8 ,  $ 0 , ex i t 2 b l  S S  
$ 1 5 .  $ l 7 ' 4 mo v l  
$ 1 6 .  $ 1 8 .  $ 1 5  
$ 2 4 , 0 ( $ 1 6 )  
$ 2 5 . 4 ( $ 1 6 )  a d d l 3 
$ 8 , $ 2 J , $ 2 4  c m p l  
$ 8 , $ 0 .  e x i t 2 b l e q 

$ 4 , $ 1 8  p u s h  l 
$ 5 ,  $ 1 7  p u s h  l 
s w a p  c a l l s  

$ 1 7 , $ 1 7 '  - 1  d e c l  
f o r 2 L s l b r b  

$ 1 9 ,  $ 1 9 ,  1 ex i t 2 :  i n c l  
f o r l l s l  b r b  

Restoring registers 

$ 1 5 ,  0 ( $ 2 9 ) 
$ 1 6 ,  4 ( $ 2 9 ) 
$ 1 7 , 8 ( $ 29 )  
$ 1 8 , 1 2 ( $ 2 9 )  
$ 1 9 , 1 6 ( $ 2 9 )  
$ 2 0 , 2 0 ( $ 2 9 )  
$ 2 4 , 2 4 ( $ 2 9 ) 
$ 2 5 . 28 ( $ 2 9 ) 
$ 3 1 , 3 2 ( $ 2 9 ) 
$ 2 9 , $ 2 9 . 3 6  

r 7 , 8 ( a p l  
r 5 , 4 C a p l  

r 6  
r 6 , ( r 7 l 
e x i t l  

r4 . r 6 . {f l 
e x i t 2  
r 3 . ( r 5 )  

r 2 . r4 . # 1  
( r 3 l [ r4 ] , C r 3 l [ r 2 J  
e x i t. 2  

( r 5  l 
r4 

112 . s w a p  

r 4  
f o r 2 t s t  

r 6  
fo r l t s t  

FIGURE E.8 MIPS versus VAX assembly version of procedure sort in Figure E. 7 on page E·16. 
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FIGURE E.9 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using 
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the 
VAX is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from "Perfor
mance from Architecture: Comparing a RISC and CISC with Similar Hardware Organization," by D. Bhandarkar and D. 
Clark in Proc. Symp. Architectural Support for Programming Languages and Operating Systems JV, 1991.) 

Fallacy: An architecture with flaws cannot be successful. 

The IBM 360 is often criticized in the literature-the branches are not PC-rela
tive, and the address is too small in displacement addressing. Yet, the 
machine has been an enormous success because it correctly handled several 
new problems. First, the architecture has a large amount of address space. 
Second, it is byte addressed and handles bytes well. Third, it is a general-pur
pose register machine. Finally, it is simple enough to be efficiently imple
mented across a wide performance and cost range. 

The Intel 8086 provides an even more dramatic example. The 8086 architec
ture is the only widespread architecture in existence today that is not truly a 
general-purpose register machine. Furthermore, the segmented address space 
of the 8086 causes major problems both for programmers and compiler writ
ers. Finally, it is hard to implement. It has generally provided only half the per
formance of the RISC architectures for the last eight years, despite significant 
investment by Intel. Nevertheless, the 8086 architecture-because of its selec
tion as the microprocessor in the IBM PC-has been enormously successful. 

Fallacy: The architecture that executes fewer instructions is faster. 

Designers of VAX machines performed a quantitative comparison of VAX and 
MIPS for implementations with comparable organizations, the VAX 8700 and 
the MIPS M2000. Figure E.9 show the ratio of the number of instructions exe-
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cuted and the ratio of performance measured in clock cycles. MIPS executes 
about twice as many instructions as the VAX while the MIPS M2000 has 
almost three times the performance of the VAX 8700. 

• Concluding Remarks 

The Virtual Address eXtension of the PDP-11 architecture . . .  provides a virtual 
address of about 4.3 gigabytes which, even given the rapid improvement of memory 
technology, should be adequate far into the future. 

William Strecker, "V AX-11 /780-A Virtual address Extension to the PDP-11  
Family," AFIPS Proc., National Computer Conference, 1978 

We have seen that instruction sets can vary quite dramatically, both in how 
they access operands and in the operations that can be performed by a single 
instruction. Figure E.10 compares instruction usage for both architectures for 
two programs; even very different architectures behave similarly in their use 
of instruction classes. 

A product of its time, the VAX emphasis on code density and complex op
erations and addressing modes conflicts with the current emphasis on easy de
coding, simple operations and addressing modes, and pipelined performance. 

With more than 600,000 sold, the VAX architecture has had a very success
ful run. As this book is being printed, DEC is making the transition from VAX 
to Alpha, a 64-bit address architecture very similar to MIPS . 

• . 

Orthogonality is key to the VAX architecture; the op
code is independent of the addressing modes which 
are independent of the data types and even the num
ber of unique operands.Thus a few hundred opera
tions expand to hundreds of thousands of instructions 
when accounting for the data types, operand counts, 

and addressing modes. 
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VAX 30% 40% 19% 89% gee 
24% 35% 27% 86% MIPS 

VAX 18% 23% 15% 23% 79% 
spice 

M IPS 4% 29% 35% 15% 83% 

FIGURE E.10 The frequency of Instruction distribution for two programs on VAX and 
MIPS. 

II Historical Perspective and Further Reading 

VAX: the most successful minicomputer design in industry history . . . the VAX 
was probably the hacker's favorite machine . . .  Especially noted for its large, as
sembler-programmer-friendly instruction set-an asset that became a liability after 
the RISC revolution. 

Eric Raymond, The New Hacker's Dictionary, 1991 

In the mid-1970s, DEC realized that the PDP-11 was running out of address 
space. The 16-bit space had been extended in several creative ways, but the 
small address space was a problem that could only be postponed, not over
come. 

In 1977, DEC introduced the VAX. Strecker described the architecture and 
called the VAX "a Virtual Address eXtension of the PDP-11 ."  One of DEC's 
primary goals was to keep the installed base of PDP-11 customers. Thus, the 
customers were to think of the VAX as a 32-bit successor to the PDP-11 .  A 32-
bit PDP-11 was possible-there were three designs-but Strecker reports that 
they were "overly compromised in terms of efficiency, functionality, program
ming ease." The chosen solution was to design a new architecture and include 
a PDP-11 compatibility mode that would run PDP-11 programs without 
change. This mode also allowed PDP-11 compilers to run and to continue to be 
used. The VAX-11/780 resembled the PDP-11 in many ways. These are among 
the most important: 

1 .  Data types and formats are mostly equivalent to those on the PDP-11. 
The F and D floating formats came from the PDP-11.  G and H formats 
were added later. The use of the term "word" to describe a 16-bit quan
tity was carried from the PDP-11 to the VAX. 

2. The assembly language was made similar to the PDP-ll 's. 

3. The same buses were supported (Unibus and Massbus). 
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4. The operating system, VMS, was "an evolution" of the RSX-llM/IAS 
OS (as opposed to the DECsystem 10/20 OS, which was a more 
advanced system), and the file system was basically the same. 

The VAX-11/780 was the first machine announced in the VAX series. It is 
one of the most successful and heavily studied machines ever built. It relied 
heavily on microprogramming (Chapter 5), taking advantage of the increasing 
capacity of fast semiconductor memory to implement the complex instructions 
and addressing modes. The VAX is so tied to microcode that we predict it will 
be impossible to build the full VAX instruction set without microcode. 

To offer a single-chip VAX in 1984, DEC reduced the instructions interpret
ed by microcode by trapping some instructions and performing them in soft
ware. DEC engineers found that 20% of VAX instructions are responsible for 
60% of the microcode, yet are only executed 0.2% of the time. The final result 
was a chip offering 90% of the performance with a reduction in silicon area by 
more than a factor of five. 

The cornerstone of DEC's strategy was a single architecture, VAX, running 
a single operating system, VMS. This strategy worked well for over ten years. 
Today, DEC is in the midst of a transition to the Alpha RISC architecture. Like 
the transition from the PDP-1 1 to the VAX, Alpha offers the same operating 
system, file system, and data types and formats of the VAX. Instead of provid
ing a VAX compatibility mode, the Alpha approach is to "compile" the VAX 
machine code into the Alpha machine code. The transition will be fun to 
watch. 

To Probe Further 

Levy, H., and R. Eckhouse (1989]. Computer Programming and Architecture: The VAX, Digital Press, 
Boston. 

This book concentrates on the VAX, but includes descriptions of other machines. II Exercises 

E.1 [3] <§3.2, 3.9, E.4> The following VAX instruction decrements the location 
pointed to be register r 5 :  

d e c l ( r 5 )  

What is the single MIPS instruction, or if it cannot be represented in a single 
instruction, the shortest sequence of MIPS instructions, that performs the 
same operation? What are the lengths of the instructions on each machine? 



E.10 Exercises E·25 

E.2 [5] <§3.2, 3.9, E.4> This exercise is the same as Exercise E.1, except this 
VAX instruction clears a location using autoincrement deferred addressing: 

c l  r l  @ ( r 5 ) +  

E.3 [5] <§3.2, 3.5, E.5> This exercise is the same as Exercise E.l, except this 
VAX instruction adds 1 to register r 5, placing the sum back in register r 5, com
pares the sum to register r 6, and then branches to Ll if r 5  < r6 :  

a o b l s s  r 6 , r 5 , L l # r 5  = r 5  + l ;  i f  ( r 5 < r6 ) g o t o  L l . 

E.4 [5] <§E.2> Show the single VAX instruction, or minimal sequence of in
structions, for this C statement: 

a = b + 1 0 0 ; 

Assume a corresponds to register r3 and b corresponds to register r4.  

E.5 [10) <§E.2> Show the single VAX instruction, or minimal sequence of in
structions, for this C statement: 

x [ i  + l ] = x [ i ]  + c ; 

Assume c corresponds to register r 3, i to register r4, and x is an array of 
32-bit words beginning at memory location 4,000,0001en· 
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throughput of, 364, 367 

instruction set, 94, (see also instructions) 
architecture, 17, 29 

maintaining as constant, 29 
design principles, 149 
history of, 151-154 
MIPS, 95, 247 
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Jobs, Steve, 37 
jr instruction, 116, A-61 

in switch statement, 119 
J-type instruction format, 127, (see also I-type instruction format; 

R-type instructions) 
jump address table, 115 
jump-and-link. (see jal instruction) 
jump instructions, A-57-A-61, (see also j instruction) 
jump register. (see jr instruction) 
jumps, unconditional, 149, 150 (fig.) 

K 
Kahan, W., 246, 253-255 
Karnaugh maps, B-17 
Kelly-Bootle, Stan, 182, 441 
kernels, 79 
Kernighan, Brian, D-2 
Kilburn, T., 525 
KSR-1, 636 

L 

labels, A-3, (see also assemblers) 
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multiplication (continued) 
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Pitfall (continued) 
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format; J-type instruction format) 

datapath for, 279 (fig.) 

elements for implementation, 278 
execution steps, 294-296 

first step of, 297 (fig.) 
fourth step of, 300 (fig.) 
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segmentation, 484, 489 
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enhancing, 521 
SPEC, 79 

for IBM Powerstation 550, 67 
SPEC89, 80 
SPEC92, 80 

SPECFP, 80 

Index 



Index 

SPECINT, 80 
SPECMark, 80 
speedup, 89 

formula for, 89 
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layout, A-24 (fig.) 
set up, A-25 

stack model execution, 153, 159 
stack pointer, 124 
stacks, 119, 120, (see also stack frames; stack pointer; stack seg

ment) 
placing data on, 120 
saving/restoring on, 122 

stack segment, A-20 
stale data problem, 575 
stalls, 465, (see also pipeline stalls) 
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SuperSP ARC, 444 

"superclusters," 636 
supercomputers, 35 
super-linear performance, 647, (see also performance) 
superpipelined machines, 440 
superpipelined pipeline, 440, (see also pipelines; pipelining) 

superscalar pipeline vs, 441 (fig.) 
superscalar machines, 440 
superscalar pipeline, 440 

superpipelined pipeline vs, 441 (fig.) 
Sutherland, Ivan, 12 
swap procedure, 135, (see also procedures) 

assembly code for, 138 (fig.) 
C language, 136 
code, 136-137 
code for, E-13 
complete, E-14-E-15 
MIPS vs. VAX code for, E-15 (fig.) 
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swap procedure (continued) 

performance comparison, 148 

preserving registers, 137 

procedure calls and, 137 
register allocation, 136, E-11-E-12 

swcz instruction, A-63 

sw instruction, 101, 270, 279, 283, 365, A-63 

switch statement, 115 

example, 1 16 
swl instruction, A-63 

swr instruction, A-63 

symbol table, A-12 

object file, A-13 
synchronization, 603, (see also cache-coherency) 

barrier, 609 
lock and, 603, 614-615 

message sending and, 603 

using coherency, 614-616 

synchronizers, 555, B-43 
building, B-43 

failure, B-43 
metastability and, B-44 (fig.) 

synchronous bus, 551-556, 553, 556, 558 

synchronous system, B-20 

synthetic benchmarks, 73-74 

drawbacks, 73-74 
syscall instruction, A-45, A-46, A-70 

system 

CPU time, 52 

performance, 53 
System Performance Evaluation Cooperative. (see SPEC) 
systems software, 8 

T 

tags, 460 
field selection, 461 

target language, A-6 
Target register, 322, 326 
task identifier, 497 
Taylor, George S., 256 
temporal locality, 454, (see also locality) 

enhancing, 521 

principle of, 456 
TeraFLOPS, 644 
Thinking Machines, 626-630, 642 
Thomas, Lewis, 30 
Thornton, James, 381 
three-state buffer, B-28, B-29 (fig.) 
throughput, 50 

improving, 50 
pipelining and, 364 

ticks, 53 
time, 52 
timing methodologies, B-39-B-44 

edge-triggered, B-39-B-41 

level-sensitive, B-41-B-42 

TLB, 15 (fig.), 491, 497, 525 

in DECStation 3100, 493 

entry, 491 

exceptions, 500 

misses, 491, 493 
handling, 497-501 

processing speed up of, 500 
page table and, 492 (fig.) 
typical values, 492 

virtual page number in, 491 

Tomasulo's algorithm, 442 

topology-specific algorithms, 633 
total network bandwidth, 623 

TPC-B, 538 

TPS (transactions per second), 538-539 

tracks, 542, 546 
traffic light controller, B-38 (fig.) 

transaction processing (TP), 538 
transfer time, 544 
transistors, 21 
translation hierarchy, 109 

translation-lookaside buffer. (see TLB) 
transmitter, A-34 

tri-state buffer, B-28 

true speedup, 638 
truncation, 232 
truth table, 288, B-4-B-5 

control function, 305 (fig.) 

for datapath-control outputs, C-12 (fig.) 

for datapath-control signals, C-6 (fig.) 
full, 290 
for next-state output bits, C-11 (fig.) 

for three ALU control bits, 288 (fig.) 

for three ALU control lines, 289 (fig.) 
without don't cares, B-16-B-17 

Tucker, Stewart, 355 

Twain, Mark, 5 

two-level representation, B-10 

two's compliment representation, 170 
name, 174 

u 

shortcuts, 172-173 
two's compliment adder, 188 
in words, 173 

ulh instruction, A-62 
ulhu instruction, A-62 

ulps (units in last place), 242 

ulw instruction, A-62 
unconditional jumps, 149, 150 (fig.) 
undefined instruction exception, 348 
underflow, 227, (see also overflow) 

gradual, 244 

uniform memory access, 618-619 

UNIVAC I, 34, 35 (fig.), 40 
Unix 

Index 
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assemblers for, A-13 (fig.), A-17 
tools on, A-17 

ush instruction, A-63 
usw instruction, A-64 

v 
"variable allocation," E-11 
VAX-11/780, 67-68, 78, E-23-E-24, (see also VAX) 

microcode, 350 
VAX-11 instruction set, E-3 
VAX, 153, 516, 518, A-7, E-3-E-24, (see also VAX-11/780; VAX 

8700; VAX instructions) 

8700, 437 
addressing modes, E-5-E-6 
architecture, 152, E-4, E-22 
C compiler, E-14 
disappearance of, 355-356 
goals of, E-4 
Index instruction, 350 
instruction set, 152, 334 
introduction of, E-23 
operands, E-4-E-7 
operand specifiers, E-6 (fig.) 
operations, E-9 
registers, E-4 
units of performance (YUPS), 78 

VAX 8700, E-21-E-22 
VAX and MIPS goals, 4, 5 
VAX instructions, (see also VAX) 

argument pointer, E-11 
branch, E-10 
branch byte, E-10 
branch word, E-10 
call and return, E-11 
classes of, E-12 (fig.) 

compare, E-10 

encoding, E-7-E-9, E-8 (fig.) 

frame pointer, E-11 
move, E-9 
move address, E-9 
names of, E-9-E-10 
for preserving registers, E-14 
push, E-10 
stack pointer, E-11 

vectored interrupts, 345, (see also interrupts) 
very long instruction word (VLIW), 443 
virtual addresses, 482 (fig.), (see also addresses) 
virtually addressed cache, 493, 495 
virtual machine, A-37 

virtual memory, 481-501, (see also cache; memory; page faults; 
pages) 

design, 483--484 
fully associative placement and, 510 
invention of, 481 

miss, 482, 484 
protection implementation with, 496--497 
summary, 501 

virtual page, (see also pages) 
mapping, 485 
number, 483 

in TLB, 491 
VLSI (very large scale integrated circuit), 21, 351 
VME bus, 562-564 
VMS, E-24 

C compiler, E-19 

volatile memory, 18 
von Neumann computer, 32 
von Neumann, John, 32, 94, 111, 249, 251, 521 
"von Neumann syndrome," 640 
YUP, 78 

w 
wafers, 22, 23 (fig.) 

costs of, 24 
defects of, 22-23 
diced, 23 
dies per, 44 

wall-clock time, 52 
WB pipe stage, 367, 369 

for load instruction, 373, 375 (fig.) 
in pipelined control, 382 
stalling and, 402, 412 
for store instruction, 375, 378 (fig.) 

weighted arithmetic mean, 70 
Whetstone benchmark, 73-74, 78-79 
while loop, 128, (see also loops) 
Whirlwind project, 34, 522-523 

core memory plane, 523 (fig.) 
Whitehead, Alfred North, 1 
Wilkes, Maurice, 32, 249, 353-354, 355, 452, 525 
word, 97, (see also halfwords) 

accessing, in memory, 98 
address, 130 
R-format instructions and, 278 

workload, 66, 76 
workstation, 10, 11 (fig.) 

inside, 14 (fig.) 
performance increase of, 27 
processor board, 17 (fig.) 

wormhole routing, 632 
Wozniak, Steve, 37 
write back, 490, 511, 512 

advantages, 490, 511 
write-invalidate protocol, 611 
write-through, 467, 511, 512 

advantages, 511 
write-update protocol, 611 
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x 
xori instruction, A-55 
xor instruction, 261, A-55 
xspim, A-37-A-38, (see also SPIM simulator; spim (plain version)) 

commands, A-44 

y 

control buttons pane, A-38 
data segments pane, A-38 
loading and running program on, A-40 

pop-up window, A-38, A-39 (fig.) 
program debugging and, A-40-A-41 
program terminal reads/writes and, A-40 
register display pane, A-38 
SPIM messages pane, A-38 
starting, A-38 
text segments pane, A-38 

yield, 23 

z 
Zuse, Konrad, 33-34 
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MIPS operands 

32 $0, $1, $2, . . .  ' $31, 
Fast locations for data. In M IPS , data must be in  registers to perform 
arithmetic. MIPS register $0 always equals 0. Register $1 is reserved 
for the assembler to handle pseudoinstructions and large constants. Hi  
and Lo are 32-bit registers containing the results of multiply and divide. 

registers Hi, Lo 

2 30 
memory 
words 

Category 

Arithmetic 

Logical 

Data 
transfer 

I. Accessed only by data transfer instructions. MIPS uses byte addresses, 
Memory[O],Memory [4l. · · · · 

so sequential words d iffer by 4. Memory holds data structures, such as 
Memory(4294967292] ,. 

arrays, and spilled registers, such as those saved on procedure cal ls. ----------
MIPS assembly language 

Instruction Example Meaning 
add add $1,$2,$3 $ 1  = $2 + $3 

subtract sub $1,$2,$3 $1 = $2 - $3 

add immed iate addi $1.$2,100 $1 = $2 + 100 

' add unsigned addu $1,$2,$3 I $1 = $2 + $3 

subtract unsigned subu $1,$2,$3 I $1 = $2 - $3 

add imm. unsign. addiu $1,$2, 100 I $1 = $2 + 100 

Move fr. copr. reg. l mfcO $1.$epc $1 = $epc 

multiply 

multiply unsigned 

d ivide 

d ivide unsigned 

Move from Hi 

Move from Lo 

and 

or 

and immediate 

or immediate 

shift left logical 

shift right logical 

load word 

store word 

load u pper imm. 

branch on equal 

branch on not eq. 

mult $2 ,$3 

multu $2,$3 

I div $2,$3 

divu $2,$3 

mfh i $1 

mflo $1 

and $1,$2,$3 

or $1,$2,$3 

and i $1 ,$2,100 

ori $1,$2, 100 

sll $1,$2 ,10 

sr l  $1,$2,10 

lw $ 1 , 100($2) 

SW $1,100($2) 

lui $1,100 

beq $1,$2,100 

bne $1 ,$2,100 

I Hi, Lo = $2 ¥ $3 

Hi, Lo = $2 ¥ $3 

Lo = $2 -;. $3. Hi = $2 mod $3 

Lo = $2 -;. $3, Hi = $2 mod $3 

$1 = Hi 

$1 = Lo 

$1 = $2 & $3 

$1 = $2 I $3 

$1 = $2 & 100 

$1 = $2 1 100 

$1 = $2 « 10 

$1 = $2 » 10 

$1 = Memory [$2+100] 

Memory ($2+100] = $1 

$1 = 100 x 2 16 

if ($1==$2) go to PC+4+100x4 

if ($1! =$2) go to PC+4+100x4 

Comments 
3 operands; exception possible 

3 operands; exception possible 

+ constant: exception possible 

3 operands : no exceptions 

3 operands ; no· exceptions i 
+ constant; no exceptions 

Used to get exception PC 

64-bit signed product in Hi ,  Lo 

64-bit unsigned product in Hi, Lo 

Lo = quotient. Hi = remainder 

Unsigned quotient and remainder 

Used to get copy of Hi 

, Use to get copy of Lo I 3 register operands; logical AND 

3 register operands; logical OR 

Logical AND register, constant 

Logical OR register, constant 

Shift left by constant 

Sh ift right by constant 

Data from memory to register I 
Data from register to memory _J 
Loads constant in upper 16 bits l 
Equal test; PC relative branch I 
Not equal test; PC relative j Conditional set on less than sit $1,$2 ,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; Zs complement 

branch set less than imm. slti $1.$2,100 if ($2 < 100) $1=1: else $1=0 Compare < constant; 2 's  comp. 

set less than uns. situ $1,$2,$3 

set l .t .  imm. uns. sltiu $1,$2,100 

jump j 10000 
Unconditional 

jump regis�er jr $31 jump 
jump and l ink jat 10000 

if ($2 < $3) $1=1; else $1=0 Compare less than; natural number 

if ($2 < 100) $1=1; else $1=0 Compare < constant; natural 

go to 10000 Jump to target address 

I go to $31 For switch, procedure return . . . --·------r 
$31 = PC + 4; go to 10000 For procedure call 

Main MIPS assembly language instruction set. The floating-point instructions are shown in Figure 4.44 on page 241. Appendix A 
gives the full MIPS assembly language instruction set. 

I 


