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Preface

Designing machines, vehicles, and structures that are safe, reliable, and economical requires
both efficient use of materials and assurance that structural failure will not occur. It is therefore
appropriate for undergraduate engineering majors to study the mechanical behavior of materials,
specifically such topics as deformation, fracture, and fatigue.

This book may be used as a text for courses on mechanical behavior of materials at the
junior or senior undergraduate level, and it may also be employed at the first-year graduate level
by emphasizing the later chapters. The coverage includes traditional topics in the area, such as
materials testing, yielding and plasticity, stress-based fatigue analysis, and creep. The relatively
new methods of fracture mechanics and strain-based fatigue analysis are also considered and are, in
fact, treated in some detail. For a practicing engineer with a bachelor’s degree, this book provides
an understandable reference source on the topics covered.

Emphasis is placed on analytical and predictive methods that are useful to the engineering
designer in avoiding structural failure. These methods are developed from an engineering mechanics
viewpoint, and the resistance of materials to failure is quantified by properties such as yield strength,
fracture toughness, and stress–life curves for fatigue or creep. The intelligent use of materials
property data requires some understanding of how the data are obtained, so their limitations and
significance are clear. Thus, the materials tests used in various areas are generally discussed prior to
considering the analytical and predictive methods.

In many of the areas covered, the existing technology is more highly developed for metals than
for nonmetals. Nevertheless, data and examples for nonmetals, such as polymers and ceramics, are
included where appropriate. Highly anisotropic materials, such as continuous fiber composites, are
also considered, but only to a limited extent. Detailed treatment of these complex materials is not
attempted here.

The remainder of the Preface first highlights the changes made for this new edition. Then
comments follow that are intended to aid users of this book, including students, instructors, and
practicing engineers.

WHAT IS NEW IN THIS EDITION?

Relative to the third edition, this fourth edition features improvements and updates throughout.
Areas that received particular attention in the revisions include the following:
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12 Preface

• The end-of-chapter problems and questions are extensively revised, with 35% being new or
significantly changed, and with the overall number increased by 54 to be 659. In each chapter, at
least 33% of the problems and questions are new or changed, and these revisions emphasize the
more basic topics where instructors are most likely to concentrate.

• New to this edition, answers are given near the end of the book for approximately half of the
Problems and Questions where a numerical value or the development of a new equation is
requested.

• The end-of-chapter reference lists are reworked and updated to include recent publications,
including databases of materials properties.

• Treatment of the methodology for estimating S-N curves in Chapter 10 is revised, and also
updated to reflect changes in widely used mechanical design textbooks.

• In Chapter 12, the example problem on fitting stress–strain curves is improved.
• Also in Chapter 12, the discussion of multiaxial stress is refined, and a new example is added.
• The topic of mean stress effects for strain-life curves in Chapter 14 is given revised and updated

coverage.
• The section on creep rupture under multiaxial stress is moved to an earlier point in Chapter 15,

where it can be covered along with time-temperature parameters.

PREREQUISITES

Elementary mechanics of materials, also called strength of materials or mechanics of deformable
bodies, provides an introduction to the subject of analyzing stresses and strains in engineering
components, such as beams and shafts, for linear-elastic behavior. Completion of a standard
(typically sophomore) course of this type is an essential prerequisite to the treatment provided
here. Some useful review and reference material in this area is given in Appendix A, along with
a treatment of fully plastic yielding analysis.

Many engineering curricula include an introductory (again, typically sophomore) course in
materials science, including such subjects as crystalline and noncrystalline structure, dislocations
and other imperfections, deformation mechanisms, processing of materials, and naming systems for
materials. Prior exposure to this area of study is also recommended. However, as such a prerequisite
may be missing, limited introductory coverage is given in Chapters 2 and 3.

Mathematics through elementary calculus is also needed. A number of the worked examples
and student problems involve basic numerical analysis, such as least-squares curve fitting, iterative
solution of equations, and numerical integration. Hence, some background in these areas is useful,
as is an ability to perform plotting and numerical analysis on a personal computer. The numerical
analysis needed is described in most introductory textbooks on the subject, such as Chapra (2010),
which is listed at the end of this Preface.

REFERENCES AND BIBLIOGRAPHY

Each chapter contains a list of References near the end that identifies sources of additional reading
and information. These lists are in some cases divided into categories such as general references,
sources of materials properties, and useful handbooks. Where a reference is mentioned in the text,
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the first author’s name and the year of publication are given, allowing the reference to be quickly
found in the list at the end of that chapter.

Where specific data or illustrations from other publications are used, these sources are identified
by information in brackets, such as [Richards 61] or [ASM 88], where the two-digit numbers
indicate the year of publication. All such Bibliography items are listed in a single section near
the end of the book.

PRESENTATION OF MATERIALS PROPERTIES

Experimental data for specific materials are presented throughout the book in numerous illustrations,
tables, examples, and problems. These are always real laboratory data. However, the intent is only
to present typical data, not to give comprehensive information on materials properties. For actual
engineering work, additional sources of materials properties, such as those listed at the ends of
various chapters, should be consulted as needed. Also, materials property values are subject to
statistical variation, as discussed in Appendix B, so typical values from this book, or from any other
source, need to be used with appropriate caution.

Where materials data are presented, any external source is identified as a bibliography item. If
no source is given, then such data are either from the author’s research or from test results obtained
in laboratory courses at Virginia Tech.

UNITS

The International System of Units (SI) is emphasized, but U.S. Customary Units are also included in
most tables of data. On graphs, the scales are either SI or dual, except for a few cases of other units
where an illustration from another publication is used in its original form. Only SI units are given
in most exercises and where values are given in the text, as the use of dual units in these situations
invites confusion.

The SI unit of force is the newton (N), and the U.S. unit is the pound (lb). It is often convenient
to employ thousands of newtons (kilonewtons, kN) or thousands of pounds (kilopounds, kip).
Stresses and pressures in SI units are thus presented in newtons per square meter, N/m2, which
in the SI system is given the special name of pascal (Pa). Millions of pascals (megapascals, MPa)
are generally appropriate for our use. We have

1 MPa = 1
MN

m2
= 1

N

mm2

where the latter equivalent form that uses millimeters (mm) is sometimes convenient. In U.S. units,
stresses are generally given in kilopounds per square inch (ksi).

These units and others frequently used are listed, along with conversion factors, inside the front
cover. As an illustrative use of this listing, let us convert a stress of 20 ksi to MPa. Since 1 ksi is
equivalent to 6.895 MPa, we have

20.0 ksi = 20.0 ksi

(
6.895

MPa

ksi

)
= 137.9 MPa
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Conversion in the opposite direction involves dividing by the equivalence value.

137.9 MPa = 137.9 MPa(
6.895 MPa

ksi

) = 20.0 ksi

It is also useful to note that strains are dimensionless quantities, so no units are necessary. Strains
are most commonly given as straightforward ratios of length change to length, but percentages are
sometimes used, ε% = 100ε.

MATHEMATICAL CONVENTIONS

Standard practice is followed in most cases. The function log is understood to indicate logarithms
to the base 10, and the function ln to indicate logarithms to the base e = 2.718 . . . (that is, natural
logarithms). To indicate selection of the largest of several values, the function MAX( ) is employed.

NOMENCLATURE

In journal articles and in other books, and in various test standards and design codes, a wide variety
of different symbols are used for certain variables that are needed. This situation is handled by using
a consistent set of symbols throughout, while following the most common conventions wherever
possible. However, a few exceptions or modifications to common practice are necessary to avoid
confusion.

For example, K is used for the stress intensity of fracture mechanics, but not for stress
concentration factor, which is designated k. Also, H is used instead of K or k for the strength
coefficient describing certain stress–strain curves. The symbol S is used for nominal or average
stress, whereas σ is the stress at a point and also the stress in a uniformly stressed member. Dual
use of symbols is avoided except where the different usages occur in separate portions of the book.
A list of the more commonly used symbols is given inside the back cover. More detailed lists are
given near the end of each chapter in a section on New Terms and Symbols.

USE AS A TEXT

The various chapters are constituted so that considerable latitude is possible in choosing topics
for study. A semester-length course could include at least portions of all chapters through 11, and
also portions of Chapter 15. This covers the introductory and review topics in Chapters 1 to 6,
followed by yield and fracture criteria for uncracked material in Chapter 7. Fracture mechanics is
applied to static fracture in Chapter 8, and to fatigue crack growth in Chapter 11. Also, Chapters 9
and 10 cover the stress-based approach to fatigue, and Chapter 15 covers creep. If time permits,
some topics on plastic deformation could be added from Chapters 12 and 13, and also from
Chapter 14 on the strain-based approach to fatigue. If the students’ background in materials science
is such that Chapters 2 and 3 are not needed, then Section 3.8 on materials selection may still be
useful.
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Particular portions of certain chapters are not strongly required as preparation for the remainder
of that chapter, nor are they crucial for later chapters. Thus, although the topics involved are
important in their own right, they may be omitted or delayed, if desired, without serious loss of
continuity. These include Sections 4.5, 4.6 to 4.9, 5.4, 7.7 to 7.9, 8.7 to 8.9, 10.7, 11.7, 11.9,
and 13.3.

After completion of Chapter 8 on fracture mechanics, one option is to proceed directly to
Chapter 11, which extends the topic to fatigue crack growth. This can be done by passing over
all of Chapters 9 and 10 except Sections 9.1 to 9.3. Also, various options exist for limited, but
still coherent, coverage of the relatively advanced topics in Chapters 12 through 15. For example,
it might be useful to include some material from Chapter 14 on strain-based fatigue, in which
case some portions of Chapters 12 and 13 may be needed as prerequisite material. In Chapter 15,
Sections 15.1 to 15.4 provide a reasonable introduction to the topic of creep that does not depend
heavily on any other material beyond Chapter 4.

SUPPLEMENTS FOR INSTRUCTORS

For classroom instructors, as at academic institutions, four supplements are available: (1) a set of
printable, downloadable files of the illustrations, (2) digital files of Microsoft Excel solutions for
all but the simplest example problems worked in the text, (3) a manual containing solutions to
approximately half of the end-of-chapter problems for which calculation or a difficult derivation
is required, and (4) answers to all problems and questions that involve numerical calculation or
developing a new equation. These items are posted on a secure website available only to documented
instructors.

Instructor resources for the International Edition are available at www.
pearsoninternationaleditions.com/dowling.

REFERENCES

ASTM. 2010. “American National Standard for Use of the International System of Units (SI): The Modern
Metric System,” Annual Book of ASTM Standards, Vol. 14.04, No. SI10, ASTM International, West
Conshohocken, PA.

CHAPRA, S. C. and R. P. CANALE. 2010. Numerical Methods for Engineers, 6th ed., McGraw-Hill,
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1
Introduction

1.1 INTRODUCTION
1.2 TYPES OF MATERIAL FAILURE
1.3 DESIGN AND MATERIALS SELECTION
1.4 TECHNOLOGICAL CHALLENGE
1.5 ECONOMIC IMPORTANCE OF FRACTURE
1.6 SUMMARY

OBJECTIVES

• Gain an overview of the types of material failure that affect mechanical and structural design.
• Understand in general how the limitations on strength and ductility of materials are dealt

with in engineering design.
• Develop an appreciation of how the development of new technology requires new materials

and new methods of evaluating the mechanical behavior of materials.
• Learn of the surprisingly large costs of fracture to the economy.

1.1 INTRODUCTION

Designers of machines, vehicles, and structures must achieve acceptable levels of performance and
economy, while at the same time striving to guarantee that the item is both safe and durable. To
assure performance, safety, and durability, it is necessary to avoid excess deformation—that is,
bending, twisting, or stretching—of the components (parts) of the machine, vehicle, or structure.
In addition, cracking in components must be avoided entirely, or strictly limited, so that it does not
progress to the point of complete fracture.

The study of deformation and fracture in materials is called mechanical behavior of materials.
Knowledge of this area provides the basis for avoiding these types of failure in engineering
applications. One aspect of the subject is the physical testing of samples of materials by applying
forces and deformations. Once the behavior of a given material is quantitatively known from
testing, or from published test data, its chances of success in a particular engineering design can
be evaluated.

19



20 Chapter 1 Introduction

The most basic concern in design to avoid structural failure is that the stress in a component
must not exceed the strength of the material, where the strength is simply the stress that causes a
deformation or fracture failure. Additional complexities or particular causes of failure often require
further analysis, such as the following:

1. Stresses are often present that act in more than one direction; that is, the state of stress is
biaxial or triaxial.

2. Real components may contain flaws or even cracks that must be specifically considered.
3. Stresses may be applied for long periods of time.
4. Stresses may be repeatedly applied and removed, or the direction of stress repeatedly

reversed.

In the remainder of this introductory chapter, we will define and briefly discuss various types
of material failure, and we will consider the relationships of mechanical behavior of materials to
engineering design, to new technology, and to the economy.

1.2 TYPES OF MATERIAL FAILURE

A deformation failure is a change in the physical dimensions or shape of a component that is
sufficient for its function to be lost or impaired. Cracking to the extent that a component is separated
into two or more pieces is termed fracture. Corrosion is the loss of material due to chemical
action, and wear is surface removal due to abrasion or sticking between solid surfaces that touch.
If wear is caused by a fluid (gas or liquid), it is called erosion, which is especially likely if the
fluid contains hard particles. Although corrosion and wear are also of great importance, this book
primarily considers deformation and fracture.

The basic types of material failure that are classified as either deformation or fracture are
indicated in Fig. 1.1. Since several different causes exist, it is important to correctly identify the
ones that may apply to a given design, so that the appropriate analysis methods can be chosen to
predict the behavior. With such a need for classification in mind, the various types of deformation
and fracture are defined and briefly described next.

Figure 1.1 Basic types of deformation and fracture.
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Figure 1.2 Axial member (a) subject to loading and unloading, showing elastic deformation
(b) and both elastic and plastic deformation (c).

1.2.1 Elastic and Plastic Deformation

Deformations are quantified in terms of normal and shear strain in elementary mechanics of
materials. The cumulative effect of the strains in a component is a deformation, such as a bend, twist,
or stretch. Deformations are sometimes essential for function, as in a spring. Excessive deformation,
especially if permanent, is often harmful.

Deformation that appears quickly upon loading can be classed as either elastic deformation or
plastic deformation, as illustrated in Fig. 1.2. Elastic deformation is recovered immediately upon
unloading. Where this is the only deformation present, stress and strain are usually proportional.
For axial loading, the constant of proportionality is the modulus of elasticity, E, as defined in
Fig. 1.2(b). An example of failure by elastic deformation is a tall building that sways in the wind and
causes discomfort to the occupants, although there may be only remote chance of collapse. Elastic
deformations are analyzed by the methods of elementary mechanics of materials and extensions of
this general approach, as in books on theory of elasticity and structural analysis.

Plastic deformation is not recovered upon unloading and is therefore permanent. The difference
between elastic and plastic deformation is illustrated in Fig. 1.2(c). Once plastic deformation begins,
only a small increase in stress usually causes a relatively large additional deformation. This process
of relatively easy further deformation is called yielding, and the value of stress where this behavior
begins to be important for a given material is called the yield strength, σo.

Materials capable of sustaining large amounts of plastic deformation are said to behave in a
ductile manner, and those that fracture without very much plastic deformation behave in a brittle
manner. Ductile behavior occurs for many metals, such as low-strength steels, copper, and lead,
and for some plastics, such as polyethylene. Brittle behavior occurs for glass, stone, acrylic plastic,
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Figure 1.3 Tension test showing brittle and ductile behavior. There is little plastic deformation
for brittle behavior, but a considerable amount for ductile behavior.

and some metals, such as the high-strength steel used to make a file. (Note that the word plastic
is used both as the common name for polymeric materials and in identifying plastic deformation,
which can occur in any type of material.)

Tension tests are often employed to assess the strength and ductility of materials, as illustrated
in Fig. 1.3. Such a test is done by slowly stretching a bar of the material in tension until it breaks
(fractures). The ultimate tensile strength, σu , which is the highest stress reached before fracture,
is obtained along with the yield strength and the strain at fracture, εf . The latter is a measure
of ductility and is usually expressed as a percentage, then being called the percent elongation.
Materials having high values of both σu and εf are said to be tough, and tough materials are
generally desirable for use in design.

Large plastic deformations virtually always constitute failure. For example, collapse of a steel
bridge or building during an earthquake could occur due to plastic deformation. However, plastic
deformation can be relatively small, but still cause malfunction of a component. For example, in
a rotating shaft, a slight permanent bend results in unbalanced rotation, which in turn may cause
vibration and perhaps early failure of the bearings supporting the shaft.

Buckling is deformation due to compressive stress that causes large changes in alignment of
columns or plates, perhaps to the extent of folding or collapse. Either elastic or plastic deformation,
or a combination of both, can dominate the behavior. Buckling is generally considered in books on
elementary mechanics of materials and structural analysis.

1.2.2 Creep Deformation

Creep is deformation that accumulates with time. Depending on the magnitude of the applied stress
and its duration, the deformation may become so large that a component can no longer perform its
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Figure 1.4 A tungsten lightbulb filament sagging under its own weight. The deflection
increases with time due to creep and can lead to touching of adjacent coils, which causes
bulb failure.

function. Plastics and low-melting-temperature metals may creep at room temperature, and virtually
any material will creep upon approaching its melting temperature. Creep is thus often an important
problem where high temperature is encountered, as in gas-turbine aircraft engines. Buckling can
occur in a time-dependent manner due to creep deformation.

An example of an application involving creep deformation is the design of tungsten lightbulb
filaments. The situation is illustrated in Fig. 1.4. Sagging of the filament coil between its supports
increases with time due to creep deformation caused by the weight of the filament itself. If too much
deformation occurs, the adjacent turns of the coil touch one another, causing an electrical short and
local overheating, which quickly leads to failure of the filament. The coil geometry and supports are
therefore designed to limit the stresses caused by the weight of the filament, and a special tungsten
alloy that creeps less than pure tungsten is used.

1.2.3 Fracture under Static and Impact Loading

Rapid fracture can occur under loading that does not vary with time or that changes only slowly,
called static loading. If such a fracture is accompanied by little plastic deformation, it is called a
brittle fracture. This is the normal mode of failure of glass and other materials that are resistant to
plastic deformation. If the loading is applied very rapidly, called impact loading, brittle fracture is
more likely to occur.

If a crack or other sharp flaw is present, brittle fracture can occur even in ductile steels or
aluminum alloys, or in other materials that are normally capable of deforming plastically by large
amounts. Such situations are analyzed by the special technology called fracture mechanics, which is
the study of cracks in solids. Resistance to brittle fracture in the presence of a crack is measured by
a material property called the fracture toughness, K I c, as illustrated in Fig. 1.5. Materials with high
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Figure 1.5 Fracture toughness test. K is a measure of the severity of the combination of
crack size, geometry, and load. KIc is the particular value, called the fracture toughness,
where the material fails.
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Figure 1.6 Decreased fracture toughness, as yield strength is increased by heat treatment,
for various classes of high-strength steel. (Adapted from [Knott 79]; used with permission.)

strength generally have low fracture toughness, and vice versa. This trend is illustrated for several
classes of high-strength steel in Fig. 1.6.

Ductile fracture can also occur. This type of fracture is accompanied by significant plastic
deformation and is sometimes a gradual tearing process. Fracture mechanics and brittle or ductile
fracture are especially important in the design of pressure vessels and large welded structures,
such as bridges and ships. Fracture may occur as a result of a combination of stress and chemical
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Figure 1.7 Stainless steel wires broken as a result of environmental attack. These were
employed in a filter exposed at 300◦C to a complex organic environment that included
molten nylon. Cracking occurred along the boundaries of the crystal grains of the material.
(Photos by W. G. Halley; courtesy of R. E. Swanson.)

effects, and this is called environmental cracking. Problems of this type are a particular concern
in the chemical industry, but also occur widely elsewhere. For example, some low-strength steels
are susceptible to cracking in caustic (basic or high pH) chemicals such as NaOH, and high-
strength steels may crack in the presence of hydrogen or hydrogen sulfide gas. The term stress-
corrosion cracking is also used to describe such behavior. This latter term is especially appropriate
where material removal by corrosive action is also involved, which is not the case for all types of
environmental cracking. Photographs of cracking caused by a hostile environment are shown in
Fig. 1.7. Creep deformation may proceed to the point that separation into two pieces occurs. This is
called creep rupture and is similar to ductile fracture, except that the process is time dependent.

1.2.4 Fatigue under Cyclic Loading

A common cause of fracture is fatigue, which is failure due to repeated loading. In general, one
or more tiny cracks start in the material, and these grow until complete failure occurs. A simple
example is breaking a piece of wire by bending it back and forth a number of times. Crack growth
during fatigue is illustrated in Fig. 1.8, and a fatigue fracture is shown in Fig. 1.9.

Prevention of fatigue fracture is a vital aspect of design for machines, vehicles, and structures
that are subjected to repeated loading or vibration. For example, trucks passing over bridges cause
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Figure 1.8 Development of a fatigue crack during rotating bending of a precipitation-
hardened aluminum alloy. Photographs at various numbers of cycles are shown for a test
requiring 400,000 cycles for failure. The sequence in the bottom row of photographs shows
more detail of the middle portion of the sequence in the top row. (Photos courtesy of
Prof. H. Nisitani, Kyushu Sangyo University, Fukuoka, Japan. Published in [Nisitani 81];
reprinted with permission from Engineering Fracture Mechanics, Pergamon Press, Oxford, UK.)

fatigue in the bridge, and sailboat rudders and bicycle pedals can fail in fatigue. Vehicles of all
types, including automobiles, tractors, helicopters, and airplanes, are subject to this problem and
must be extensively analyzed and tested to avoid it. For example, some of the parts of a helicopter
that require careful design to avoid fatigue problems are shown in Fig. 1.10.

If the number of repetitions (cycles) of the load is large, say, millions, then the situation is
termed high-cycle fatigue. Conversely, low-cycle fatigue is caused by a relatively small number of
cycles, say, tens, hundreds, or thousands. Low-cycle fatigue is generally accompanied by significant
amounts of plastic deformation, whereas high-cycle fatigue is associated with relatively small
deformations that are primarily elastic. Repeated heating and cooling can cause a cyclic stress due
to differential thermal expansion and contraction, resulting in thermal fatigue.
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Figure 1.9 Fatigue failure of a garage door spring that occurred after 15 years of service.
(Photo by R. A. Simonds; sample contributed by R. S. Alvarez, Blacksburg, VA.)

Cracks may be initially present in a component from manufacture, or they may start early in
the service life. Emphasis must then be placed on the possible growth of these cracks by fatigue, as
this can lead to a brittle or ductile fracture once the cracks are sufficiently large. Such situations are
identified by the term fatigue crack growth and may also be analyzed by the previously mentioned
technology of fracture mechanics. For example, analysis of fatigue crack growth is used to schedule
inspection and repair of large aircraft, in which cracks are commonly present.

Such analysis is useful in preventing problems similar to the fuselage (main body) failure in
1988 of a passenger jet, as shown in Fig. 1.11. The problem in this case started with fatigue cracks
at rivet holes in the aluminum structure. These cracks gradually grew during use of the airplane,
joining together and forming a large crack that caused a major fracture, resulting in separation of a
large section of the structure. The failure could have been avoided by more frequent inspection and
repair of cracks before they grew to a dangerous extent.

1.2.5 Combined Effects

Two or more of the previously described types of failure may act together to cause effects greater
than would be expected by their separate action; that is, there is a synergistic effect. Creep and
fatigue may produce such an enhanced effect where there is cyclic loading at high temperature. This
may occur in steam turbines in electric power plants and in gas-turbine aircraft engines.

Wear due to small motions between fitted parts may combine with cyclic loading to produce
surface damage followed by cracking, which is called fretting fatigue. This may cause failure at
surprisingly low stress levels for certain combinations of materials. For example, fretting fatigue
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Figure 1.10 Main mast region of a helicopter, showing inboard ends of blades, their
attachment, and the linkages and mechanism that control the pitch angles of the rotating
blades. The cylinder above the rotors is not ordinarily present, but is part of instrumentation
used to monitor strains in the rotor blades for experimental purposes. (Photo courtesy of
Bell Helicopter Textron, Inc., Ft. Worth, TX.)

could occur where a gear is fastened on a shaft by shrink fitting or press fitting. Similarly, corrosion
fatigue is the combination of cyclic loading and corrosion. It is often a problem in cyclically loaded
components of steel that must operate in seawater, such as the structural members of offshore oil
well platforms.

Material properties may degrade with time due to various environmental effects. For example,
the ultraviolet content of sunlight causes some plastics to become brittle, and wood decreases in
strength with time, especially if exposed to moisture. As a further example, steels become brittle if
exposed to neutron radiation over long periods of time, and this affects the retirement life of nuclear
reactors.

1.3 DESIGN AND MATERIALS SELECTION

Design is the process of choosing the geometric shape, materials, manufacturing method, and other
details needed to completely describe a machine, vehicle, structure, or other engineered item. This
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Figure 1.11 Fuselage failure in a passenger jet that occurred in 1988. (Photo courtesy of
J. F. Wildey II, National Transportation Safety Board, Washington, DC; see [NTSB 89] for
more detail.)

process involves a wide range of activities and objectives. It is first necessary to assure that the
item is capable of performing its intended function. For example, an automobile should be capable
of the necessary speeds and maneuvers while carrying up to a certain number of passengers and
additional weight, and the refueling and maintenance requirements should be reasonable as to
frequency and cost.

However, any engineered item must meet additional requirements: The design must be such that
it is physically possible and economical to manufacture the item. Certain standards must be met as
to esthetics and convenience of use. Environmental pollution needs to be minimized, and, hopefully,
the materials and type of construction are chosen so that eventual recycling of the materials used is
possible. Finally, the item must be safe and durable.

Safety is affected not only by design features such as seat belts in automobiles, but also by
avoiding structural failure. For example, excessive deformation or fracture of an automobile axle or
steering component can cause a serious accident. Durability is the capacity of an item to survive
its intended use for a suitably long period of time, so that good durability minimizes the cost of
maintaining and replacing the item. For example, more durable automobiles cost less to drive than
otherwise similar ones that experience more repairs and shorter life due to such gradually occurring
processes as fatigue, creep, wear, and corrosion. In addition, durability is important to safety, as
poor durability can lead to a structural failure or malfunction that can cause an accident. Moreover,
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more durable items require less frequent replacement, thus reducing the environmental impact of
manufacturing new items, including pollution, greenhouse gas emissions, energy use, depletion of
natural resources, and disposal and recycling needs.

1.3.1 Iterative and Stepwise Nature of Design

A flow chart showing some of the steps necessary to complete a mechanical design is shown in
Fig. 1.12. The logic loops shown by arrows indicate that the design process is fundamentally
iterative in nature. In other words, there is a strong element of trial and error where an initial design
is done and then analyzed, tested, and subjected to trial production. Changes may be made at any
stage of the process to satisfy requirements not previously considered or problems just discovered.
Changes may in turn require further analysis or testing. All of this must be done while observing
constraints on time and cost.

Each step involves a synthesis process in which all of the various concerns and requirements
are considered together. Compromises between conflicting requirements are usually necessary, and
continual effort is needed to maintain simplicity, practicability, and economy. For example, the
cargo weight limit of an aircraft cannot be made too large without causing unacceptable limits on
the weight of fuel that can be carried, and therefore also on flight distance. Prior individual or
organizational experience may have important influences on the design. Also, certain design codes
and standards may be used as an aid, and sometimes they are required by law. These are generally
developed and published by either professional societies or governmental units, and one of their
main purposes is to assure safety and durability. An example is the Bridge Design Specifications
published by the American Association of State Highway and Transportation Officials.

One difficult and sometimes tricky step in design is estimation of the applied loads (forces or
combinations of forces). Even rough estimates are often difficult to make, especially for vibratory
loads resulting from such sources as road roughness or air turbulence. It is sometimes possible to
use measurements from a similar item that is already in service, but this is clearly impossible if the
item being designed is unique. Once at least rough estimates (or assumptions) are made of the loads,
then stresses in components can be calculated.

The initial design is often made on the basis of avoiding stresses that exceed the yield strength
of the material. Then the design is checked by more refined analysis, and changes are made as
necessary to avoid more subtle modes of material failure, such as fatigue, brittle fracture, and creep.
The geometric shape or size may be changed to lower the magnitude or alter the distribution of
stresses and strains to avoid one of these problems, or the material may be changed to one more
suitable to resist a particular failure mode.

1.3.2 Safety Factors

In making design decisions that involve safety and durability, the concept of a safety factor is often
used. The safety factor in stress is the ratio of the stress that causes failure to the stress expected to
occur in the actual service of the component. That is,

X1 = stress causing failure

stress in service
(1.1)
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Figure 1.12 Steps in the design process related to avoiding structural failure. (Adapted from
[Dowling 87]; used with permission; c© Society of Automotive Engineers.)

For example, if X1 = 2.0, the stress necessary to cause failure is twice as high as the highest stress
expected in service. Safety factors provide a degree of assurance that unexpected events in service
do not cause failure. They also allow some latitude for the usual lack of complete input information
for the design process and for the approximations and assumptions that are often necessary. Safety
factors must be larger where there are greater uncertainties or where the consequences of failure are
severe.

Values for safety factors in the range X1 = 1.5 to 3.0 are common. If the magnitude of the
loading is well known, and if there are few uncertainties from other sources, values near the
lower end of this range may be appropriate. For example, in the allowable stress design method
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of the American Institute of Steel Construction, used for buildings and similar applications, safety
factors for design against yielding under static loading are generally in the range 1.5 to 2.0, with
1.5 applying for bending stress in the most favorable situations. Elsewhere, safety factors even as
low as 1.2 are sometimes used, but this should be contemplated only for situations where there
is quite thorough engineering analysis and few uncertainties, and also where failure has economic
consequences only.

For the basic requirement of avoiding excessive deformation due to yielding, the failure stress
is the yield strength of the material, σo, and the service stress is the largest stress in the component,
calculated for the conditions expected in actual service. For ductile materials, the service stress
employed is simply the net section nominal stress, S, as defined for typical cases in Appendix A,
Figs. A.11 and A.12. However, the localized effects of stress raisers do need to be included in the
service stress for brittle materials, and also for fatigue of even ductile materials. Where several
causes of failure are possible, it is necessary to calculate a safety factor for each cause, and the
lowest of these is the final safety factor. For example, safety factors might be calculated not only for
yielding, but also for fatigue or creep. If cracks or sharp flaws are possible, a safety factor for brittle
fracture is needed as well.

Safety factors in stress are sometimes supplemented or replaced by safety factors in life. This
safety factor is the ratio of the expected life to failure to the desired service life. Life is measured by
time or by events such as the number of flights of an aircraft:

X2 = failure life

desired service life
(1.2)

For example, if a helicopter part is expected to fail after 10 years of service, and if it is to be replaced
after 2 years, there is a safety factor of 5 on life. Safety factors in life are used where deformation
or cracking progresses gradually with time, as for creep or fatigue. As the life is generally quite
sensitive to small changes in stress, values of this factor must be relatively large, typically in the
range X2 = 5 to 20.

The use of safety factors as in Eq. 1.1 is termed allowable stress design. An alternative is
load factor design. In this case, the loads (forces, moments, torques, etc.) expected in service are
multiplied by a load factor, Y. The analysis done with these multiplied loads corresponds to the
failure condition, not to the service condition.

(load in service) × Y = load causing failure (1.3)

The two approaches give generally similar results, depending on the details of how they are applied.
In some cases, they are equivalent, so that X1 = Y . The load factor approach has the advantage
that it can be easily expanded to allow different load factors to be employed for different sources of
loading, reflecting different uncertainties in how well each is known.

1.3.3 Prototype and Component Testing

Even though mechanical behavior of materials considerations may be involved in the design process
from its early stages, testing is still often necessary to verify safety and durability. This arises
because of the assumptions and imperfect knowledge reflected in many engineering estimates of
strength or life.
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A prototype, or trial model, is often made and subjected to simulated service testing to
demonstrate whether or not a machine or vehicle functions properly. For example, a prototype
automobile is generally run on a test course that includes rough roads, bumps, quick turns, etc.
Loads may be measured during simulated service testing, and these are used to improve the initial
design, as the early estimate of loads may have been quite uncertain. A prototype may also be
subjected to simulated service testing until either a mechanical failure occurs, perhaps by fatigue,
creep, wear, or corrosion, or the design is proven to be reliable. This is called durability testing and
is commonly done for new models of automobiles, tractors, and other vehicles. A photograph of an
automobile set up for such a test is shown in Fig. 1.13.

For very large items, and especially for one-of-a-kind items, it may be impractical or
uneconomical to test a prototype of the entire item. A part of the item, that is, a component, may
then be tested. For example, wings, tail sections, and fuselages of large aircraft are separately tested
to destruction under repeated loads that cause fatigue cracking in a manner similar to actual service.
Individual joints and members of offshore oil well structures are similarly tested. Component testing
may also be done as a prelude to testing of a full prototype. An example of this is the testing of a new
design of an automobile axle prior to manufacture and the subsequent testing of the first prototype
of the entire automobile.

Various sources of loading and vibration in machines, vehicles, and structures can be simulated
by the use of digital computers, as can the resulting deformation and fracture of the material.

Figure 1.13 Road simulation test of an automobile, with loads applied at all four wheels and
the bumper mounts. (Photo courtesy of MTS Systems Corp., Eden Prairie, MN.)
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This technology is now being used to reduce the need for prototype and component testing, thus
accelerating the design process. However, computer simulations are only as good as the simplifying
assumptions used in analysis, and the limitations on input data, which are always present. Thus,
some physical testing will continue to be frequently needed, at least as a final check on the design
process.

1.3.4 Service Experience

Design changes may also be made as a result of experience with a limited production run of a new
product. Purchasers of the product may use it in a way not anticipated by the designer, resulting in
failures that necessitate design changes. For example, early models of surgical implants, such as hip
joints and pin supports for broken bones, experienced failure problems that led to changes in both
geometry and material.

The design process often continues even after a product is established and widely distributed.
Long-term usage may uncover additional problems that need to be corrected in new items. If the
problem is severe—perhaps safety related—changes may be needed in items already in service.
Recalls of automobiles are an example of this, and a portion of these involve problems of
deformation or fracture.

1.4 TECHNOLOGICAL CHALLENGE

In recent history, technology has advanced and changed at a rapid rate to meet human needs. Some of
the advances from 1500 A.D. to the present are charted in the first column of Table 1.1. The second
column shows the improved materials, and the third the materials testing capabilities that were
necessary to support these advances. Representative technological failures involving deformation
or fracture are also shown. These and other types of failure further stimulated improvements in
materials, and in testing and analysis capability, by having a feedback effect. Such interactions
among technological advances, materials, testing, and failures are still under way today and will
continue into the foreseeable future.

As a particular example, consider improvements in engines. Steam engines, as used in the
mid-1800s for water and rail transportation, operated at little more than the boiling point of water,
100◦C, and employed simple materials, mainly cast iron. Around the turn of the century, the
internal combustion engine had been invented and was being improved for use in automobiles
and aircraft. Gas-turbine engines became practical for propulsion during World War II, when
they were used in the first jet aircraft. Higher operating temperatures in engines provide greater
efficiency, with temperatures increasing over the years. At present, materials in jet engines must
withstand temperatures around 1800◦C. To resist the higher temperatures, improved low-alloy
steels and then stainless steels were developed, followed by increasingly sophisticated metal alloys
based on nickel and cobalt. However, failures due to such causes as creep, fatigue, and corrosion
still occurred and had major influences on engine development. Further increases in operating
temperatures and efficiency are now being pursued through the use of advanced ceramic and
ceramic composite materials. These materials have superior temperature and corrosion resistance.
But their inherent brittleness must be managed by improving the materials as much as possible,
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Table 1.1 Some Major Technological Advances from 1500 A.D., the Parallel Developments in
Materials and Materials Testing, and Failures Related to Behavior of Materials

Technological New Materials Materials Testing
Years Advance Introduced Advances Failures

1500’s Dikes (Stone, brick, Tension (L. da Vinci)
1600’s Canals wood, copper, Tension, bending

Pumps bronze, and cast (Galileo)
Telescope and wrought iron Pressure burst

in use) (Mariotte)
Elasticity (Hooke)

1700’s Steam engine Malleable cast Shear, torsion
Cast iron bridge iron (Coulomb)

1800’s Railroad industry Portland cement Fatigue (Wöhler) Steam boilers
Suspension bridge Vulcanized rubber Plasticity (Tresca) Railroad axles
Internal combustion Bessemer steel Universal testing Iron bridges

engine machines

1900’s Electric power Alloy steels Hardness (Brinell) Quebec bridge
1910’s Powered flight Aluminum alloys Impact (Izod, Boston molasses

Vacuum tube Synthetic plastics Charpy) tank
Creep (Andrade)

1920’s Gas-turbine Stainless steel Fracture (Griffith) Railroad wheels,
1930’s engine Tungsten carbide rails

Strain gage Automotive parts

1940’s Controlled fission Ni-base alloys Electronic testing Liberty ships
1950’s Jet aircraft Ti-base alloys machine Comet airliner

Transistor; computer Fiberglass Low-cycle fatigue Turbine generators
Sputnik (Coffin, Manson)

Fracture mechanics
(Irwin)

1960’s Laser HSLA steels Closed-loop F-111 aircraft
1970’s Microprocessor High-performance testing machine DC-10 aircraft

Moon landing composites Fatigue crack Highway bridges
growth (Paris)

Computer control

1980’s Space station Tough ceramics Multiaxial testing Alex. Kielland rig
1990’s Magnetic levitation Al-Li alloys Direct digital control Surgical implants

2000’s Sustainable energy Nanomaterials User-friendly Space Shuttle tiles
2010’s Extreme fossil fuel Bio-inspired test software Deepwater Horizon

extraction materials offshore oil rig

Source: [Herring 89], [Landgraf 80], [Timoshenko 83], [Whyte 75], Encyclopedia Britannica, news reports.
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while designing hardware in a manner that accommodates their still relatively low fracture
toughness.

In general, the challenges of advancing technology require not only improved materials, but
also more careful analysis in design and more detailed information on materials behavior than
before. Furthermore, there has recently been a desirable increased awareness of safety and warranty
issues. Manufacturers of machines, vehicles, and structures now find it appropriate not just to
maintain current levels of safety and durability, but to improve these at the same time that the other
technological challenges are being met.

1.5 ECONOMIC IMPORTANCE OF FRACTURE

A division of the U.S. Department of Commerce, the National Institute of Standards and Technology
(formerly the National Bureau of Standards), completed a study in 1983 of the economic effects
of fracture of materials in the United States. The total costs per year were large—specifically,
$119 billion in 1982 dollars. This was 4% of the gross national product (GNP), therefore
representing a significant use of resources and manpower. The definition of fracture used for the
study was quite broad, including not only fracture in the sense of cracking, but also deformation
and related problems such as delamination. Wear and corrosion were not included. Separate studies
indicated that adding these to obtain the total cost for materials durability would increase the total
to roughly 10% of the GNP. A study of fracture costs in Europe reported in 1991 also yielded an
overall cost of 4% of the GNP, and a similar value is likely to continue to apply to all industrial
nations. (See the paper by Milne, 1994, in the References.)

In the U.S. fracture study, the costs were considered to include the extra costs of designing
machines, vehicles, and structures, beyond the requirements of resisting simple yielding failure
of the material. Note that resistance to fracture necessitates the use of more raw materials, or
of more expensive materials or processing, to give components the necessary strength. Also,
additional analysis and testing are needed in the design process. The extra use of materials and other
activities all involve additional costs for manpower and facilities. There are also significant expenses
associated with fracture for repair, maintenance, and replacement parts. Inspection of newly
manufactured parts for flaws and of parts in service for developing cracks involves considerable cost.
There are also costs such as recalls, litigation, insurance, etc., collectively called product liability
costs, that add to the total.

The costs of fracture are spread rather unevenly over various sectors of the economy. In the U.S.
study, the sectors involving the largest fracture costs were motor vehicles and parts, with around 10%
of the total, aircraft and parts with 6%, residential construction with 5%, and building construction
with 3%. Other sectors with costs in the range of 2 to 3% of the total were food and related products,
fabricated structural products, nonferrous metal products, petroleum refining, structural metal, and
tires and inner tubes. Note that fatigue cracking is the major cause of fracture for motor vehicles
and for aircraft, the two sectors with the highest fracture costs. However, brittle and ductile fracture,
environmental cracking, and creep are also important for these and other sectors.

The study further found that roughly one-third of this $119 billion annual cost could be
eliminated through better use of then-current technology. Another third could perhaps be eliminated
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over a longer time period through research and development—that is, by obtaining new knowledge
and developing ways to put this knowledge to work. And the final roughly one-third would
be difficult to eliminate without major research breakthroughs. Hence, noting that two-thirds
of these costs could be eliminated by improved use of currently available technology, or by
technology that could be developed in a reasonable time, there is a definite economic incentive
for learning about deformation and fracture. Engineers with knowledge in this area can help
the companies they work for avoid costs due to structural failures and help make the design
process more efficient—hence more economical and faster—by early attention to such potential
problems. Benefits to society result, such as lower costs to the consumer and improved safety and
durability.

1.6 SUMMARY

Mechanical behavior of materials is the study of the deformation and fracture of materials. Materials
tests are used to evaluate the behavior of a material, such as its resistance to failure in terms of the
yield strength or fracture toughness. The material’s strength is compared with the stresses expected
for a component in service to assure that the design is adequate.

Different methods of testing materials and of analyzing trial engineering designs are needed for
different types of material failure. These failure types include elastic, plastic, and creep deformation.
Elastic deformation is recovered immediately upon unloading, whereas plastic deformation is
permanent. Creep is deformation that accumulates with time. Other types of material failure
involve cracking, such as brittle or ductile fracture, environmental cracking, creep rupture, and
fatigue. Brittle fracture can occur due to static loads and involves little deformation, whereas
ductile fracture involves considerable deformation. Environmental cracking is caused by a hostile
chemical environment, and creep rupture is a time-dependent and usually ductile fracture. Fatigue
is failure due to repeated loading and involves the gradual development and growth of cracks.
A special method called fracture mechanics is used to specifically analyze cracks in engineering
components.

Engineering design is the process of choosing all details necessary to describe a machine,
vehicle, or structure. Design is fundamentally an iterative (trial and error) process, and it is necessary
at each step to perform a synthesis in which all concerns and requirements are considered together,
with compromises and adjustments made as necessary. Prototype and component testing and
monitoring of service experience are often important in the later stages of design. Deformation
and fracture may need to be analyzed in one or more stages of the synthesis, testing, and actual
service of an engineered item.

Advancing and changing technology continually introduces new challenges to the engineering
designer, demanding more efficient use of materials and improved materials. Thus, the historical
and continuing trend is that improved methods of testing and analysis have developed along with
materials that are more resistant to failure.

Deformation and fracture are issues of major economic importance, especially in the motor
vehicle and aircraft sectors. The costs involved in avoiding fracture and in paying for its
consequences in all sectors of the economy are on the order of 4% of the GNP.
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N E W T E R M S A N D S Y M B O L S

allowable stress design
brittle fracture
component testing
creep
deformation
ductile fracture
durability; durability testing
elastic deformation
environmental cracking
fatigue
fatigue crack growth
fracture
fracture mechanics
fracture toughness, K I c

high-cycle fatigue

load factor, Y
load factor design
low-cycle fatigue
modulus of elasticity, E
percent elongation, 100εf

plastic deformation
prototype
safety factor, X
simulated service testing
static loading
synergistic effect
synthesis
thermal fatigue
ultimate tensile strength, σu

yield strength, σo
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PROBLEMS AND QUESTIONS

Section 1.2
1.1 Classify each of the following failures by identifying its category in Fig. 1.1, and explain the

reasons for each choice in one or two sentences:
(a) The plastic frames on eyeglasses gradually spread and become loose.
(b) A glass bowl with a small crack breaks into two pieces when it is immersed, while still

hot, into cold water.
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(c) Plastic scissors develop a small crack just in front of one of the finger rings.
(d) A copper water pipe freezes and develops a lengthwise split that causes a leak.
(e) The steel radiator fan blades in an automobile develop small cracks near the base of the

blades.
1.2 Repeat Prob. 1.1 for the following failures:

(a) A child’s plastic tricycle, used in rough play to make skidding turns, develops cracks
where the handlebars join the frame.

(b) An aluminum baseball bat develops a crack.
(c) A large steel artillery tube (barrel), which previously had cracks emanating from the

rifling, suddenly bursts into pieces. Classify both the cracks and the final fracture.
(d) The fuselage (body) of a passenger airliner breaks into two pieces, with the fracture

starting from cracks that had previously initiated at the corners of window cutouts in
the aluminum-alloy material. Classify both the cracks and the final fracture.

(e) The nickel-alloy blades in an aircraft turbine engine lengthen during service and
rub the casing.

1.3 Think of four deformation or fracture failures that have actually occurred, either from your
personal experience or from items that you have read about in newspapers, magazines, or
books. Classify each according to a category in Fig. 1.1, and briefly explain the reason for
your classification.

Section 1.3
1.4 As an engineer, you work for a company that makes mountain bicycles. Some bicycles that

have been in use for several years have had handlebars that failed by completely breaking off
where the handlebar is clamped into the stem that connects it to the rest of the bicycle. What
is the most likely cause of these failures? Describe some of the steps that you might take to
redesign this part and to verify that your new design will solve this problem.

1.5 Repeat Prob. 1.4 for failures in the cast aluminum bracket used to attach the rudder of a small
recreational sailboat.

1.6 Repeat Prob. 1.4 for failures of leaf springs in small boat trailers.
1.7 A plate with a width change is subjected to a tension load as in Fig. A.11(c). The tension

load is P = 3800 N, and the dimensions are w2 = 30, w1 = 14, and t = 6 mm. It is made of
a polycarbonate plastic with yield strength σo = 65 MPa. In a tension test, as in Fig. 1.3,
this material exhibits quite ductile behavior, finally breaking at a strain around εf = 110
to 150%. What is the safety factor against large amounts of deformation occurring in the
plate due to yielding? Does the value seem adequate? (Comment: Note that the stress units
MPa = N/mm2.)

1.8 A shaft with a circumferential groove is subjected to bending, as in Fig. A.12(c). The bending
moment is M = 150 N·m, and the dimensions are d2 = 22, d1 = 14, and ρ = 3 mm. It
is made of a titanium alloy with yield strength σo = 900 MPa. In a tension test, as in
Fig. 1.3, this material exhibits reasonably ductile behavior, finally breaking at a strain around
εf = 14%. What is the safety factor against large amounts of deformation occurring in the
shaft due to yielding? Does the value seem adequate? (Comment: Note that the stress units
MPa = N/mm2.)
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OBJECTIVES

• Review chemical bonding and crystal structures in solid materials at a basic level, and relate
these to differences in mechanical behavior among various classes of material.

• Understand the physical basis of elastic deformation, and employ this to estimate the
theoretical strength of solids due to their chemical bonding.

• Understand the basic mechanisms of inelastic deformations due to plasticity and creep.
• Learn why actual strengths of materials fall far below the theoretical strength to break

chemical bonds.

2.1 INTRODUCTION

A wide variety of materials are used in applications where resistance to mechanical loading is
necessary. These are collectively called engineering materials and can be broadly classified as
metals and alloys, polymers, ceramics and glasses, and composites. Some typical members of each
class are given in Table 2.1.

Differences among the classes of materials as to chemical bonding and microstructure affect
mechanical behavior, giving rise to relative advantages and disadvantages among the classes. The
situation is summarized by Fig. 2.1. For example, the strong chemical bonding in ceramics and
glasses imparts mechanical strength and stiffness (high E), and also temperature and corrosion
resistance, but causes brittle behavior. In contrast, many polymers are relatively weakly bonded
between the chain molecules, in which case the material has low strength and stiffness and is
susceptible to creep deformation.

40
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Table 2.1 Classes and Examples of Engineering Materials

Metals and Alloys Ceramics and Glasses

Irons and steels Clay products
Aluminum alloys Concrete
Titanium alloys Alumina (Al2O3)

Copper alloys; brasses, bronzes Tungsten carbide (WC)
Magnesium alloys Titanium aluminide (Ti3Al)
Nickel-base superalloys Silica (SiO2) glasses

Polymers Composites

Polyethylene (PE) Plywood
Polyvinyl chloride (PVC) Cemented carbides
Polystyrene (PS) Fiberglass
Nylons Graphite-epoxy
Epoxies SiC-aluminum
Rubbers Aramid-aluminum laminate (ARALL)

Figure 2.1 General characteristics of the major classes of engineering materials.

Starting from the size scale of primary interest in engineering, roughly one meter, there is a
span of 10 orders of magnitude in size down to the scale of the atom, which is around 10−10 m.
This situation and various intermediate size scales of interest are indicated in Fig. 2.2. At any given
size scale, an understanding of the behavior can be sought by looking at what happens at a smaller
scale: The behavior of a machine, vehicle, or structure is explained by the behavior of its component
parts, and the behavior of these can in turn be explained by the use of small (10−1 to 10−2 m) test
specimens of the material. Similarly, the macroscopic behavior of the material is explained by the
behavior of crystal grains, defects in crystals, polymer chains, and other microstructural features
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Figure 2.2 Size scales and disciplines involved in the study and use of engineering materials.
(Illustration courtesy of R. W. Landgraf, Howell, MI.)

that exist in the size range of 10−3 to 10−9 m. Thus, knowledge of behavior over the entire range
of sizes from 1 m down to 10−10 m contributes to understanding and predicting the performance of
machines, vehicles, and structures.

This chapter reviews some of the fundamentals needed to understand mechanical behavior of
materials. We will start at the lower end of the size scale in Fig. 2.2 and progress upward. The
individual topics include chemical bonding, crystal structures, defects in crystals, and the physical
causes of elastic, plastic, and creep deformation. The next chapter will then apply these concepts in
discussing each of the classes of engineering materials in more detail.

2.2 BONDING IN SOLIDS

There are several types of chemical bonds that hold atoms and molecules together in solids. Three
types of bonds—ionic, covalent, and metallic—are collectively termed primary bonds. Primary
bonds are strong and stiff and do not easily melt with increasing temperature. They are responsible
for the bonding of metals and ceramics, and they provide the relatively high elastic modulus (E) in
these materials. Van der Waals and hydrogen bonds, which are relatively weak, are called secondary
bonds. These are important in determining the behavior of liquids and as bonds between the carbon-
chain molecules in polymers.

2.2.1 Primary Chemical Bonds

The three types of primary bonds are illustrated in Fig. 2.3. Ionic bonding involves the transfer
of one or more electrons between atoms of different types. Note that the outer shell of electrons
surrounding an atom is stable if it contains eight electrons (except that the stable number is two for
the single shell of hydrogen or helium). Hence, an atom of the metal sodium, with only one electron
in its outer shell, can donate an electron to an atom of chlorine, which has an outer shell with
seven electrons. After the reaction, the sodium atom has an empty outer shell and the chlorine atom
has a stable outer shell of eight electrons. The atoms become charged ions, such as Na+ and Cl−,
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Figure 2.3 The three types of primary chemical bond. Electrons are transferred in ionic
bonding, as in NaCl; shared in covalent bonding, as in water; and given up to a common
“cloud” in metallic bonding, as in magnesium metal.

Figure 2.4 Three-dimensional crystal structure of NaCl, consisting of two interpenetrating
FCC structures.

which attract one another and form a chemical bond due to their opposite electrostatic charges.
A collection of such charged ions, equal numbers of each in this case, forms an electrically neutral
solid by arrangement into a regular crystalline array, as shown in Fig. 2.4.

The number of electrons transferred may differ from one. For example, in the salt MgCl2 and
in the oxide MgO, two electrons are transferred to form an Mg2+ ion. Electrons in the next-to-last
shell may also be transferred. For example, iron has two outer shell electrons, but may form either
Fe2+ or Fe3+ ions. Many common salts, oxides, and other solids have bonds that are mostly or
partially ionic. These materials tend to be hard and brittle.

Covalent bonding involves the sharing of electrons and occurs where the outer shells are half
full or more than half full. The shared electrons can be thought of as allowing both atoms involved to
have stable outer shells of eight (or two) electrons. For example, two hydrogen atoms each share an
electron with an oxygen atom to make water, H2O, or two chlorine atoms share one electron to form
the diatomic molecule Cl2. The tight covalent bonds make such simple molecules relatively indepen-
dent of one another, so that collections of them tend to form liquids or gases at ambient temperatures.

Metallic bonding is responsible for the usually solid form of metals and alloys. For metals, the
outer shell of electrons is in most cases less than half full; each atom donates its outer shell electrons
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Figure 2.5 Diamond cubic crystal structure of carbon. As a result of the strong and
directional covalent bonds, diamond has the highest melting temperature, the highest
hardness, and the highest elastic modulus E, of all known solids.

to a “cloud” of electrons. These electrons are shared in common by all of the metal atoms, which
have become positively charged ions as a result of giving up electrons. The metal ions are thus held
together by their mutual attraction to the electron cloud.

2.2.2 Discussion of Primary Bonds

Covalent bonds have the property—not shared by the other two types of primary bonds—of being
strongly directional. This arises from covalent bonds being dependent on the sharing of electrons
with specific neighboring atoms, whereas ionic and metallic solids are held together by electrostatic
attraction involving all neighboring ions.

A continuous arrangement of covalent bonds can form a three-dimensional network to make
a solid. An example is carbon in the form of diamond, in which each carbon atom shares an
electron with four adjacent ones. These atoms are arranged at equal angles to one another in three-
dimensional space, as illustrated in Fig. 2.5. As a result of the strong and directional bonds, the
crystal is very hard and stiff. Another important continuous arrangement of covalent bonds is the
carbon chain. For example, in the gas ethylene, C2H4, each molecule is formed by covalent bonds,
as shown in Fig. 2.6. However, if the double bond between the carbon atoms is replaced by a single
bond to each of two adjacent carbon atoms, then a long chain molecule can form. The result is the
polymer called polyethylene.

Many solids, such as SiO2 and other ceramics, have chemical bonds that have a mixed
ionic–covalent character. The examples given previously of NaCl for ionic bonding and of diamond
for covalent bonding do represent cases of nearly pure bonding of these types, but mixed bonding
is more common.

Metals of more than one type may be melted together to form an alloy. Metallic bonding is the
dominant type in such cases. However, intermetallic compounds may form within alloys, often as
hard particles. These compounds have a definite chemical formula, such as TiAl3 or Mg2Ni, and
their bonding is generally a combination of the metallic and ionic or covalent types.

2.2.3 Secondary Bonds

Secondary bonds occur due to the presence of an electrostatic dipole, which can be induced by a
primary bond. For example, in water, the side of a hydrogen atom away from the covalent bond to
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Figure 2.6 Molecular structures of ethylene gas (C2H4) and polyethylene polymer. The
double bond in ethylene is replaced by two single bonds in polyethylene, permitting
formation of the chain molecule.

Figure 2.7 Oxygen-to-hydrogen secondary bonds between water (H2O) molecules.

the oxygen atom has a positive charge, due to the sole electron being predominantly on the side
toward the oxygen atom. Conservation of charge over the entire molecule then requires a negative
charge on the exposed portion of the oxygen atom. The dipoles formed cause an attraction between
adjacent molecules, as illustrated in Fig. 2.7.

Such bonds, termed permanent dipole bonds, occur between various molecules. They are
relatively weak, but are nevertheless sometimes sufficient to bind materials into solids, water ice
being an example. Where the secondary bond involves hydrogen, as in the case of water, it is
stronger than other dipole bonds and is called a hydrogen bond.

Van der Waals bonds arise from the fluctuating positions of electrons relative to an atom’s
nucleus. The uneven distribution of electric charge that thus occurs causes a weak attraction between
atoms or molecules. This type of bond can also be called a fluctuating dipole bond—distinguished
from a permanent dipole bond because the dipole is not fixed in direction as it is in a water molecule.
Bonds of this type allow the inert gases to form solids at low temperature.
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Figure 2.8 Hydrogen-to-chlorine secondary bonds between chain molecules in
polyvinyl chloride.

In polymers, covalent bonds form the chain molecules and attach hydrogen and other atoms
to the carbon backbone. Hydrogen bonds and other secondary bonds occur between the chain
molecules and tend to prevent them from sliding past one another. This is illustrated in Fig. 2.8
for polyvinyl chloride. The relative weakness of the secondary bonds accounts for the low melting
temperatures, and the low strengths and stiffnesses, of these materials.

2.3 STRUCTURE IN CRYSTALLINE MATERIALS

Metals and ceramics are composed of aggregations of small grains, each of which is an individual
crystal. In contrast, glasses have an amorphous or noncrystalline structure. Polymers are composed
of chainlike molecules, which are sometimes arranged in regular arrays in a crystalline manner.

2.3.1 Basic Crystal Structures

The arrangement of atoms (or ions) in crystals can be described in terms of the smallest grouping
that can be considered to be a building block for a perfect crystal. Such a grouping, called a unit
cell, can be classified according to the lengths and angles involved. There are seven basic types of
unit cell, three of which are shown in Fig. 2.9. If all three angles are 90◦ and all distances are the
same, the crystal is classed as cubic. But if one distance is not equal to the other two, the crystal
is tetragonal. If, in addition, one angle is 120◦ while the other two remain at 90◦, the crystal is
hexagonal. The four additional types are orthorhombic, rhombohedral, monoclinic, and triclinic.

For a given type of unit cell, various arrangements of atoms are possible; each such arrangement
is called a crystal structure. Three crystal structures having a cubic unit cell are the primitive cubic
(PC), body-centered cubic (BCC), and face-centered cubic (FCC) structures. These are illustrated
in Fig. 2.10. Note that the PC structure has atoms only at the corners of the cube, whereas the
BCC structure also has one in the center of the cube. The FCC structure has atoms at the cube
corners and in the center of each surface. The PC structure occurs only rarely, but the BCC structure
is found in a number of common metals, such as chromium, iron, molybdenum, sodium, and
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Figure 2.9 The general case of a unit cell in a crystal and three of the seven basic types.

Figure 2.10 Four crystal structures: primitive cubic (PC), body-centered cubic (BCC),
face-centered cubic (FCC), and hexagonal close-packed (HCP) structures.

tungsten. Similarly, the FCC structure is common for metals, as in silver, aluminum, lead, copper,
and nickel.

The hexagonal close-packed (HCP) crystal structure is also common in metals. Although the
unit cell is the one shown in Fig. 2.9, it is useful to illustrate this structure by using a larger grouping
that forms a hexagonal prism, as shown in Fig. 2.10. Two parallel planes, called basal planes, have
atoms at the corners and center of a hexagon, and there are three additional atoms halfway between
these planes, as shown. Some common metals having this structure are beryllium, magnesium,
titanium, and zinc.

A given metal or other material may change its crystal structure with temperature or pressure,
or with the addition of alloying elements. For example, the BCC structure of iron changes to FCC
above 910◦C, and back to BCC above 1390◦C. These phases are often called, respectively, alpha
iron, gamma iron, and delta iron, denoted α-Fe, γ -Fe, and δ-Fe. Also, the addition of about 10%
nickel or manganese changes the crystal structure to FCC, even at room temperature. Similarly,
HCP titanium is called α-Ti, whereas β-Ti has a BCC structure and occurs above 885◦C, although
it can also exist at room temperature as a result of alloying and processing.

2.3.2 More Complex Crystal Structures

Compounds formed by ionic or covalent bonding, such as ionic salts and ceramics, have more
complex crystal structures than elemental materials. This is due to the necessity of accommodating
more than one type of atom and to the directional aspect of even partially covalent bonds. However,
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Figure 2.11 Two-dimensional schematics of amorphous structure (left) and crystalline
structure (right) in a polymer.

the structure can often be thought of as an elaboration of one of the basic crystal structures. For
example, NaCl is an FCC arrangement of Cl− ions with Na+ ions at intermediate positions, so
these also form an FCC structure that is merged with the one for the Cl− ions. See Fig. 2.4. Many
important ionic salts and ceramics have this structure, including oxides such as MgO and FeO, and
carbides such as TiC and ZrC.

In the diamond cubic structure of carbon, half of the atoms form an FCC structure, and
the other half lie at intermediate positions, as required by the tetragonal bonding geometry, also
forming an FCC structure. (See Fig. 2.5.) Another solid with a diamond cubic structure is SiC,
in which Si and C atoms occupy alternate sites in the same structure as in Fig. 2.5. The ceramic
Al2O3 has a crystal structure with a hexagonal unit cell, with aluminum atoms occurring in two-
thirds of the spaces available between the oxygen atoms. Many ceramics have even more complex
crystal structures than these examples. Intermetallic compounds also have crystal structures that
range from fairly simple to quite complex. An example of one of the simpler ones is Ni3Al,
which has an FCC structure, with aluminum atoms at the cube corners and nickel atoms at the
face centers.

Polymers may be amorphous, in that the structure is an irregular tangle of chain molecules.
Alternatively, portions or even most of the material may have the chains arranged in a regular
manner under the influence of the secondary bonds between the chains. Such regions are said to
have a crystalline structure. This is illustrated in Fig. 2.11.

2.3.3 Defects in Crystals

Ceramics and metals in the form used for engineering applications are composed of crystalline
grains that are separated by grain boundaries. This is shown for a metal in Fig. 2.12, and also in
Fig. 1.7. Materials with such a structure are said to be polycrystalline materials. Grain sizes vary
widely, from as small as 1 μm to as large as 10 mm, depending on the material and its processing.
Even within grains, the crystals are not perfect, with defects occurring that can be classed as point
defects, line defects, or surface defects. Both grain boundaries and crystal defects within grains can
have large effects on mechanical behavior. In discussing these, it is useful to use the term lattice
plane to describe the regular parallel planes of atoms in a perfect crystal, and the term lattice site to
describe the position of one atom.

Some types of point defects are illustrated in Fig. 2.13. A substitutional impurity occupies a
normal lattice site, but is an atom of a different element than the bulk material. A vacancy is the
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Figure 2.12 Crystal grain structure in a magnesium alloy containing 12 wt% lithium.
This cast metal was prepared in a high-frequency induction melting furnace under an
argon atmosphere. (Photo courtesy of Milo Kral, University of Canterbury, Christchurch,
New Zealand; used with permission.)

Figure 2.13 Four types of point defect in a crystalline solid.

absence of an atom at a normally occupied lattice site, and an interstitial is an atom occupying a
position between normal lattice sites. If the interstitial is of the same type as the bulk material, it is
called a self interstitial; and if it is of another kind, it is called an interstitial impurity.

Relatively small impurity atoms often occupy interstitial sites in materials with larger atoms.
An example is carbon in solid solution in iron. If the impurity atoms are of similar size to those
of the bulk material, they are more likely to appear as substitutional impurities. This is the normal
situation where two metals are alloyed—that is, melted together. An example is the addition of 10
to 20% chromium to iron (and in some cases also of 10 to 20% nickel) to make stainless steel.
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Figure 2.14 The two basic types of dislocations: (a) edge dislocation, and (b) screw
dislocation. (From [Hayden 65] p. 63; used with permission.)

Line defects are called dislocations and are the edges of surfaces where there is a relative
displacement of lattice planes. One type is an edge dislocation, and the other is a screw dislocation,
both of which are illustrated in Fig. 2.14. The edge dislocation can be thought of as the border of
an extra plane of atoms, as shown in (a). The dislocation line shown identifies the edge of the extra
plane, and the special symbol indicated is sometimes used.

The screw dislocation can be explained by assuming that a perfect crystal is cut as shown
in Fig. 2.14(b). The crystal is then displaced parallel to the cut and finally reconnected into the
configuration shown. The dislocation line is the edge of the cut and hence also the border of
the displaced region. Dislocations in solids generally have a combined edge and screw character
and form curves and loops. Where many are present, complex tangles of dislocation lines
may form.

Grain boundaries can be thought of as a class of surface defect where the lattice planes change
orientation by a large angle. Within a grain, there may also be low-angle boundaries. An array of
edge dislocations can form such a boundary, as shown in Fig. 2.15. Several low-angle boundaries
may exist within a grain, separating regions of slightly different lattice orientation, which are called
subgrains.

There are additional types of surface defects. A twin boundary separates two regions of a crystal
where the lattice planes are a mirror image of one another. If the lattice planes are not in the proper
sequence for a perfect crystal, a stacking fault is said to exist.

2.4 ELASTIC DEFORMATION AND THEORETICAL STRENGTH

The discussion of bonding and structure in solids can be extended to a consideration of the
physical mechanisms of deformation, as viewed at the size scales of atoms, dislocations, and
grains. Recall from Chapter 1 that there are three basic types of deformation: elastic, plastic, and
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Figure 2.15 Low-angle boundary in a crystal formed by an array of edge dislocations.
(From [Boyer 85] p. 2.15; used with permission.)

creep deformation. Elastic deformation is discussed next, and this leads to some rough theoretical
estimates of strength for solids.

2.4.1 Elastic Deformation

Elastic deformation is associated with stretching, but not breaking, the chemical bonds between the
atoms in a solid. If an external stress is applied to a material, the distance between the atoms changes
by a small amount that depends on the material and the details of its structure and bonding. These
distance changes, when accumulated over a piece of material of macroscopic size, are called elastic
deformations.

If the atoms in a solid were very far apart, there would be no forces between them. As the
distance x between atoms is decreased, they begin to attract one another according to the type of
bonding that applies to the particular case. This is illustrated by the upper curve in Fig. 2.16. A
repulsive force also acts that is associated with resistance to overlapping of the electron shells of
the two atoms. This repulsive force is smaller than the attractive force at relatively large distances,
but it increases more rapidly, becoming larger at short distances. The total force is thus attractive
at large distances, repulsive at short distances, and zero at one particular distance xe, which is the
equilibrium atomic spacing. This is also the point of minimum potential energy.

Elastic deformations of engineering interest usually represent only a small perturbation about
the equilibrium spacing, typically less than 1% strain. The slope of the total force curve over this
small region is approximately constant. Let us express force on a unit area basis as stress, σ = P/A,
where A is the cross-sectional area of material per atom. Also, note that strain is the ratio of the
change in x to the equilibrium distance xe.

σ = P

A
, ε = x − xe

xe
(2.1)
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Figure 2.16 Variation with distance of the attractive, repulsive, and total forces
between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the
elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical
cohesive strength.

Since the elastic modulus E is the slope of the stress–strain relationship, we have

E = dσ

dε

∣∣∣∣
x=xe

= xe

A

d P

dx

∣∣∣∣
x=xe

(2.2)

Hence, E is fixed by the slope of the total force curve at x = xe, which is illustrated in Fig. 2.16.

2.4.2 Trends in Elastic Modulus Values

Strong primary chemical bonds are resistant to stretching and so result in a high value of E . For
example, the strong covalent bonds in diamond yield a value around E = 1000 GPa, whereas the
weaker metallic bonds in metals give values generally within a factor of three of E = 100 GPa.
In polymers, E is determined by the combination of covalent bonding along the carbon chains
and the much weaker secondary bonding between chains. At relatively low temperatures, many
polymers exist in a glassy or crystalline state. The modulus is then on the order of E = 3 GPa, but it
varies considerably above and below this level, depending on the chain-molecule structure and other
details. If the temperature is increased, thermal activation provides increased free volume between
chain molecules, permitting motion of increased lengths of chain. A point is reached where large
scale motions become possible, causing the elastic modulus to decrease, often dramatically. This
trend is shown for polystyrene in Fig. 2.17.

The temperature where the rapid decrease in E occurs varies for different polymers and is called
the glass transition temperature, Tg . Melting does not occur until the polymer reaches a somewhat
higher temperature, Tm , provided that chemical decomposition does not occur first. Above Tg , the
elastic modulus may be as low as E = 1 MPa. Viscous flow is now prevented only by tangling of
the long chain molecules and by the secondary bonds in any crystalline regions of the polymer.
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Figure 2.17 Variation of elastic modulus with temperature for polystyrene.
(Data from [Tobolsky 65].)

A polymer has a leathery or rubbery character above its Tg , as do vulcanized natural rubber and
synthetic rubbers at room temperature.

For single crystals, E varies with the direction relative to the crystal structure; that is, crystals
are more resistant to elastic deformation in some directions than in others. But in a polycrystalline
aggregate of randomly oriented grains, an averaging effect occurs, so that E is the same in
all directions. This latter situation is at least approximated for most engineering metals and
ceramics.

2.4.3 Theoretical Strength

A value for the theoretical cohesive strength of a solid can be obtained by using solid-state
physics to estimate the tensile stress necessary to break primary chemical bonds, which is the
stress σb corresponding to the peak value of force in Fig. 2.16. These values are on the order
of σb = E/10 for various materials. Hence, for diamond, σb ≈ 100 GPa, and for a typical metal,
σb ≈ 10 GPa.

Rather than the bonds being simply pulled apart in tension, another possibility is shear failure.
A simple calculation can be done to obtain an estimate of the theoretical shear strength. Consider
two planes of atoms being forced to move slowly past one another, as in Fig. 2.18. The shear
stress τ required first increases rapidly with displacement x , then decreases and passes through
zero as the atoms pass opposite one another at the unstable equilibrium position x = b/2. The stress
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Figure 2.18 Basis of estimates of theoretical shear strength, where it is assumed that entire
planes of atoms shift simultaneously, relative to one another.

changes direction beyond this as the atoms try to snap into a second stable configuration at x = b.
A reasonable estimate is a sinusoidal variation

τ = τb sin
2πx

b
(2.3)

where τb is the maximum value as τ varies with x ; hence, it is the theoretical shear strength.
The initial slope of the stress–strain relationship must be the shear modulus, G, in a manner

analogous to E for the tension case previously discussed. Noting that the shear strain for small
values of displacement is γ = x/h, we have

G = dτ

dγ

∣∣∣∣
x=0

= h
dτ

dx

∣∣∣∣
x=0

(2.4)

Obtaining dτ/dx from Eq. 2.3 and substituting its value at x = 0 gives τb:

τb = Gb

2πh
(2.5)

The ratio b/h varies with the crystal structure and is generally around 0.5 to 1, so this estimate is
on the order of G/10.

In a tension test, the maximum shear stress occurs on a plane 45◦ to the direction of uniaxial
stress and is half as large. Thus, a theoretical estimate of shear failure in a tension test is

σb = 2τb = Gb

πh
(2.6)

Since G is in the range E/2 to E/3, this estimate gives a value similar to the previously mentioned
σb = E/10 estimate based on the tensile breaking of bonds. Estimates of theoretical strength are
discussed in more detail in the first chapter of Kelly (1986).
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Table 2.2 Elastic Modulus and Strength of Single-Crystal
Whiskers and Strong Fibers and Wires

Elastic Modulus Tensile Strength Ratio
Material E , GPa (103 ksi) σu , GPa (ksi) E/σu

(a) Whiskers
SiC 700 (102) 21.0 (3050) 33
Graphite 686 (99.5) 19.6 (2840) 35
Al2O3 420 (60.9) 22.3 (3230) 19
α-Fe 196 (28.4) 12.6 (1830) 16
Si 163 (23.6) 7.6 (1100) 21
NaCl 42 (6.09) 1.1 (160) 38

(b) Fibers and wires
SiC 616 (89.3) 8.3 (1200) 74
Tungsten 405 (58.7) 24.0 (3500) 17

(0.26 μm diameter)
Tungsten 405 (58.7) 3.9 (570) 104

(25 μm diameter)
Al2O3 379 (55.0) 2.1 (300) 180
Graphite 256 (37.1) 5.5 (800) 47
Iron 220 (31.9) 9.7 (1400) 23
Linear polyethylene 160 (23.2) 4.6 (670) 35
Drawn silica glass 73.5 (10.7) 10.0 (1450) 7.4

Source: Data in [Kelly 86].

Theoretical tensile strengths around σb = E/10 are larger than the actual strengths of solids by
a large amount, typically by a factor of 10 to 100. This discrepancy is thought to be due mainly to the
imperfections present in most crystals, which decrease the strength. However, small whiskers can be
made that are nearly perfect single crystals. Also, thin fibers and wires may have a crystal structure
such that strong chemical bonds are aligned with the length direction. Tensile strengths in such
cases are indeed much higher than for larger and more imperfect samples of material. Strengths in
the range from E/100 to E/20, corresponding to one-tenth to one-half of the theoretical strength,
have been achieved in this way, lending credence to the estimates. Some representative data are
given in Table 2.2.

2.5 INELASTIC DEFORMATION

As discussed in the previous section, elastic deformation involves the stretching of chemical bonds.
When the stress is removed, the deformation disappears. More drastic events can occur which
have the effect of rearranging the atoms so that they have new neighbors after the deformation is
complete. This causes an inelastic deformation that does not disappear when the stress is removed.
Inelastic deformation that occurs almost instantaneously as the stress is applied is called plastic
deformation, as distinguished from creep deformation, which occurs only after passage of time
under stress.
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Figure 2.19 Shear deformation occurring in an incremental manner due to dislocation
motion. (Adapted from [Van Vlack 89] p. 265, c© 1989 by Addison-Wesley Publishing Co., Inc.,
by permission of Pearson Education, Inc., Upper Saddle River, NJ, and by permission of the
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI.)

2.5.1 Plastic Deformation by Dislocation Motion

Single crystals of pure metals that are macroscopic in size and which contain only a few dislocations
are observed to yield in shear at very low stresses. For example, for iron and other BCC metals, this
occurs around τo = G/3000, that is, about τo = 30 MPa. For FCC and HCP metals, even lower
values are obtained around τo = G/100,000, or typically τo = 0.5 MPa. Thus, shear strengths for
imperfect crystals of pure metals can be lower than the theoretical value for a perfect crystal of
τb = G/10 by at least a factor of 300 and sometimes by as much as a factor of 10,000.

This large discrepancy can be explained by the fact that plastic deformation occurs by motion of
dislocations under the influence of a shear stress, as illustrated in Fig. 2.19. As a dislocation moves
through the crystal, plastic deformation is, in effect, proceeding one atom at a time, rather than
occurring simultaneously over an entire plane, as implied by Fig. 2.18. This incremental process can
occur much more easily than simultaneous breaking of all the bonds, as assumed in the theoretical
shear strength calculation for a perfect crystal.

The deformation resulting from dislocation motion proceeds for edge and screw dislocations,
as illustrated in Fig. 2.20 and Fig. 2.21, respectively. The plane in which the dislocation line moves
is called the slip plane, and where the slip plane intersects a free surface, a slip step is formed. Since
dislocations in real crystals are usually curved and thus have both edge and screw character, plastic
deformation actually occurs by a combination of the two types of dislocation motion.

Plastic deformation is often concentrated in bands called slip bands. These are regions where
the slip planes of numerous dislocations are concentrated; hence, they are regions of intense plastic
shear deformation separated by regions of little shear. Where slip bands intersect a free surface,
steps are formed as a result of the combined slip steps of numerous dislocations. (See Fig. 2.22.)
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Figure 2.20 Slip caused by the motion of an edge dislocation.

Figure 2.21 Slip caused by the motion of a screw dislocation. (From [Felbeck 96] p. 114;
c© 1996 by Prentice Hall, Upper Saddle River, NJ; reprinted with permission.)

For a given crystal structure, such as BCC, FCC, or HCP, slip is easier on certain planes,
and within these planes in certain directions. For metals, the most common planes and directions
are shown in Fig. 2.23. The preferred planes are those on which the atoms are relatively close
together, called close-packed planes, such as the basal plane for the HCP crystal. Similarly, the
preferred slip directions within a given plane are the close-packed directions in which the distances
between atoms is smallest. This is the case because a dislocation can more easily move if the
distance to the next atom is smaller. Also, atoms in adjacent planes project less into the spaces
between atoms in the close-packed planes than in other planes, so there is less interference with slip
displacement.
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Figure 2.22 Slip bands and slip steps caused by the motion of many dislocations resulting
from cyclic loading of AISI 1010 steel. (Photos courtesy of R. W. Landgraf, Howell, MI.)

Figure 2.23 Some slip planes and directions frequently observed for BCC, FCC, and HCP
crystal structures. Considering symmetry, there are additional combinations of slip plane and
direction similar to each of these, giving a total of twelve slip systems similar to each of (a),
(b), and (c), and three for each of the two cases in (d). (Adapted from [Hayden 65] p. 100;
used with permission.)

2.5.2 Discussion of Plastic Deformation

The result of plastic deformation (yielding) is that atoms change neighbors and return to a stable
configuration with new neighbors after the dislocation has passed. Note that this is a fundamentally
different process than elastic deformation, which is merely the stretching of chemical bonds. Elastic
deformation occurs as an essentially independent process along with plastic deformation. When
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Figure 2.24 Ultimate tensile strengths for irons and steels in various forms. Note that steels
are mostly composed of iron and contain small to moderate amounts of other elements.
(Data from [Boyer 85], [Hayden 65], and [Kelly 86].)

a stress that causes yielding is removed, the elastic strain is recovered just as if there had been no
yielding, but the plastic strain is permanent. (See Fig. 1.2.)

Metals used in load-resisting applications have strengths considerably above the very low
values observed in crystals of pure metals with some defects, but not nearly as high as the very high
theoretical value for a perfect crystal. This is illustrated in Fig. 2.24 for irons and steels, which are
composed mostly of iron. If there are obstacles that impede dislocation motion, the strength may be
increased by a factor of 10 or more above the low value for a pure metal crystal. Grain boundaries
have this effect, as does a second phase of hard particles dispersed in the metal. Alloying also
increases strength, as the different-sized atoms make dislocation motion more difficult. If a large
number of dislocations are present, these interfere with one another, forming dense tangles and
blocking free movement.

In nonmetals and compounds where the chemical bonding is covalent or partially covalent, the
directional nature of the bonds makes dislocation motion difficult. Materials in this class include
the crystals of carbon, boron, and silicon, and also intermetallic compounds and compounds formed
between metals and nonmetals, such as metal carbides, borides, nitrides, oxides, and other ceramics.
At ambient temperatures, these materials are hard and brittle and do not generally fail by yielding
due to dislocation motion. Instead, the strength falls below the high theoretical value for a perfect
crystal mainly because of the weakening effect of small cracks and pores that are present in the
material. However, some dislocation motion does occur, especially for temperatures above about
half of the (usually high) melting temperature, where Tm is measured relative to absolute zero.
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Figure 2.25 Accumulation of creep strain with time under constant stress, and partial
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Figure 2.26 Mechanism of creep by diffusion of vacancies within a crystal grain.

2.5.3 Creep Deformation

In addition to elastic and plastic deformation as already described, materials deform by mechanisms
that result in markedly time-dependent behavior, called creep. Under constant stress, the strain varies
with time, as shown in Fig. 2.25. There is an initial elastic deformation εe, and following this, the
strain slowly increases as long as the stress is maintained. If the stress is removed, the elastic strain
is quickly recovered, and a portion of the creep strain may be recovered slowly with time; the rest
remains as permanent deformation.

In crystalline materials—that is, in metals and ceramics—one important mechanism of creep is
diffusional flow of vacancies. Spontaneous formation of vacancies is favored near grain boundaries
that are approximately normal to the applied stress and is disfavored for parallel ones. This
results in an uneven distribution of vacancies and in vacancies diffusing, or moving, from regions
of high concentration to regions of low concentration, as illustrated in Fig. 2.26. As indicated,
movement of a vacancy in one direction is equivalent to movement of an atom in the opposite
direction. The overall effect is a change in the shape of the grain, contributing to a macroscopic
creep strain.

Some other creep mechanisms that operate in crystalline materials include special dislocation
motions that can circumvent obstacles in a time-dependent manner. There may also be sliding of
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grain boundaries and the formation of cavities along grain boundaries. Creep behavior in crystalline
materials is strongly temperature dependent, typically becoming an important engineering consid-
eration around 0.3 to 0.6Tm , where Tm is the absolute melting temperature.

Different creep mechanisms operate in amorphous (noncrystalline) glasses and in polymers.
One of these is viscous flow in the manner of a very thick liquid. This occurs in polymers at
temperatures substantially above the glass transition temperature Tg and approaching Tm . The
chainlike molecules simply slide past one another in a time-dependent manner. Around and below
Tg , more complex behavior involving segments of chains and obstacles to chain sliding become
important. In this case, much of the creep deformation may disappear slowly (recover) with time
after removal of an applied stress, as illustrated in Fig. 2.25. Creep is a major limitation on the
engineering application of any polymer above its Tg , which is generally in the range −100 to 200◦C
for common polymers.

Additional discussion on mechanisms of creep deformation is given in Chapter 15.

2.6 SUMMARY

Atoms and molecules in solids are held together by primary chemical bonds of three kinds: ionic,
covalent, and metallic. Secondary bonds, especially hydrogen bonds, also influence the behavior.
Covalent bonds are strong and directional and therefore resist deformation. This contributes to the
high strength and brittleness of ceramics and glasses, as these materials are bound by covalent or
mixed ionic–covalent bonds. Metallic bonds in metals do not have such a directionality and therefore
deform more easily. Polymers are composed of carbon-chain molecules formed by covalent bonds.
However, they may deform easily by relative sliding between the chain molecules where this is
prevented only by secondary bonds.

A variety of crystal structures exist in solid materials. Three of particular importance for metals
are the body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP)
structures. The crystal structures of ceramics are often elaborations of these simple structures, but
greater complexity exists due to the necessity in these compounds of accommodating more than
one type of atom. Crystalline materials (metals and ceramics) are composed of aggregations of
small crystal grains. Numerous defects, such as vacancies, interstitials, and dislocations are usually
present in these grains.

Elastic deformation, caused by the stretching of chemical bonds, disappears if the stress is
removed. The elastic modulus E is therefore higher if the bonding is stronger and is highest in
covalent solids such as diamond. Metals have a value of E about 10 times lower than that for highly
covalent solids, and polymers have a value of E that is generally lower by an additional factor of 10
or more, due to the influence of the chain-molecule structure and secondary bonds. Above the glass-
transition temperature for a given polymer, E is further lowered by a large amount, then becoming
smaller than for diamond by as much as a factor of 106.

Estimates of the theoretical tensile strength to break chemical bonds in perfect crystals give
values on the order of E/10. However, strengths approaching such a high value are realized only in
tiny, perfect single crystals and in fine wires with an aligned structure. Strengths in large samples of
material are much lower, as these are weakened by defects. In ceramics, the defects of importance
are small cracks and pores that contribute to brittle behavior.
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In metals, the defects that lower the strength are primarily dislocations. These move under
the influence of applied stresses and cause yielding behavior. In large single crystals containing
a few dislocations, yielding occurs at very low stresses that are lower than the theoretical value by a
factor of 300 or more. Strengths are increased above this value if there are obstacles to dislocation
motion, such as grain boundaries, hard second-phase particles, alloying elements, and dislocation
entanglements. The resulting strength for engineering metals in bulk form may be as high as one-
tenth of the theoretical value of E/10, that is, around E/100.

Materials are also subject to time-dependent deformation called creep. Such deformation is
especially likely at temperatures approaching melting. Physical mechanisms vary with material and
temperature. Examples include diffusion of vacancies in metals and ceramics and sliding of chain
molecules in polymers.

The necessarily brief treatment given in this chapter on structure and deformation in materials
represents only a minimal introduction to the topic. More detail is given in a number of excellent
books, a few of which are listed as references at the end of this chapter.

N E W T E R M S A N D S Y M B O L S

body-centered cubic (BCC) structure
close-packed planes, directions
covalent bond
diamond cubic structure
edge dislocation
face-centered cubic (FCC) structure
glass transition temperature, Tg

grain boundary
hexagonal close-packed (HCP) structure
interstitial
ionic bond
lattice plane; lattice site

melting temperature, Tm

metallic bond
polycrystalline material
screw dislocation
secondary (hydrogen) bond
slip plane
slip step
substitutional impurity
theoretical cohesive strength, σb ≈ E/10
theoretical shear strength, τb ≈ G/10
unit cell
vacancy
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PROBLEMS AND QUESTIONS

Section 2.4
2.1 Table 2.2(b) gives a value of E = 160 GPa for a fiber of linear polyethylene, in which the

polymer chains are aligned with the fiber axis. Why is this value so much higher than
the typical E = 3 GPa mentioned for polymers—in fact almost as high as the value for iron
and steel?

2.2 Consider Fig. 2.16, and assume that it is possible to make accurate measurements of the elastic
modulus E for high stresses in both tension and compression. Describe the expected variation
of E with stress.

2.3 Consider Fig. 2.16 and two atoms that are initially an infinite distance apart, x = ∞, at which
point the potential energy of the system is U = 0. If they are brought together to x = x1, the
potential energy is related to the total force P by

dU

dx

∣∣∣∣
x=x1

= P

Given this, qualitatively sketch the variation of U with x . What happens at x = xe? What is the
significance of x = xe in terms of the potential energy?

2.4 Using Table 2.2, compare the strengths of Al2O3 whiskers versus Al2O3 fibers, and also
compare the two diameters of tungsten wire with each other. Can you explain the large
differences observed?

2.5 Consult Callister (2010) or Shackelford (2009) in the References, or another materials science
or chemistry text, and study the crystal structure of carbon in the form of graphite. How
does the structure differ from that of diamond? Why is graphite in bulk form usually soft
and weak? And how could a whisker of such a material have the high strength and elastic
modulus indicated in Table 2.2(a)?

Section 2.5
2.6 Explain why slip in a crystal is easiest in close-packed planes, and within these planes, in

close-packed directions.
2.7 Explain why polycrystalline metals with an HCP crystal structure are generally more brittle

than polycrystalline BCC metals.
2.8 With a proper sequence of thermal processing, aluminum alloyed with 4% copper can be

caused to contain a large number of very small particles of the hard intermetallic compound
CuAl2. How would you expect the yield strength of such a processed alloy to differ from that
for pure aluminum? Answer the same question for the percent elongation? Why?

2.9 Cold working a metal by rolling it to a lesser thickness or hammering it introduces a large
number of dislocations into the crystal structure. Would you expect the yield strength to be



64 Chapter 2 Structure and Deformation in Materials

affected by this; and if so, should it increase or decrease, and why? Also, answer the same
question for the elastic modulus.

2.10 In metals, grain size d is observed to be related to yield strength by

σo = A + Bd−1/2

where A and B are constants for a given material. Does this trend make physical sense? Can
you explain qualitatively why this equation is reasonable? What physical interpretation can
you make of the constant A?

2.11 An important group of polymers called thermosetting plastics forms a network structure
by means of covalent bonds between the chain molecules. How would you expect these to
differ from other polymers as to the value of the elastic modulus and the resistance to creep
deformation, and why?

2.12 Consider creep by diffusion of vacancies in a polycrystalline metal or ceramic, as illustrated
in Fig. 2.26. Would you expect the resulting creep strain to vary with the crystal grain size of
the material? Do larger grains result in more rapid accumulation of creep strain, or in slower
accumulation of creep strain? Why?
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OBJECTIVES

• Become familiar with the four major classes of materials used to resist mechanical loading:
metals and alloys, polymers, ceramics and glasses, and composites.

• For each major class, gain a general knowledge of their characteristics, internal structure,
behavior, and processing methods.

• Learn typical materials, naming systems, and common uses, and develop an appreciation for
how uses of materials are related to their properties.

• Apply a general method for selecting a material for a given engineering component.

3.1 INTRODUCTION

Materials used for resistance to mechanical loading, which are here termed engineering materials,
can belong to any of four major classes: metals and alloys, polymers, ceramics and glasses,
and composites. The first three of these categories have already been discussed to an extent in
the previous chapter from the viewpoint of structure and deformation mechanisms. Examples of
members of each class are given in Table 2.1, and their general characteristics are illustrated in
Fig. 2.1.

65
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In this chapter, each major class of materials is considered in more detail. Groups of related
materials within each major class are identified, the effects of processing variables are summarized,
and the systems used for naming various materials are described. Metals and alloys are the dominant
engineering materials in current use in many applications, so more space is devoted to these than to
the others. However, polymers, ceramics and glasses, and composites are also of major importance.
Recent improvements in nonmetallic and composite materials have resulted in a trend toward these
replacing metals in some applications.

An essential part of the process of engineering design is the selection of suitable materials
from which to make engineering components. This requires at least a general knowledge of
the composition, structure, and characteristics of materials, as summarized in this chapter. For a
particular engineering component, the choice among candidate materials may sometimes be aided
by systematic analysis, for example, to minimize mass or cost. Such analysis is introduced near
the end of this chapter. Materials selection is also aided by specific prediction of strength, life,
or amount of deformation, as described in later chapters related to yielding, fracture, fatigue,
and creep.

3.2 ALLOYING AND PROCESSING OF METALS

Approximately 80% of the one-hundred-plus elements in the periodic table can be classed as
metals. A number of these possess combinations of availability and properties that lead to their
use as engineering metals where mechanical strength is needed. The most widely used engineering
metal is iron, which is the main constituent of the iron-based alloys termed steels. Some other
structural metals that are widely used are aluminum, copper, titanium, magnesium, nickel, and
cobalt. Additional common metals, such as zinc, lead, tin, and silver, are used where the stresses
are quite low, as in various low-strength cast parts and solder joints. The refractory metals, notably
molybdenum, niobium, tantalum, tungsten, and zirconium, have melting temperatures somewhat
or even substantially above that of iron (1538◦C). Relatively small quantities of these are used as
engineering metals for specialized applications, particularly where high strength is needed at a very
high temperature. Some properties and uses for selected engineering metals are given in Table 3.1.

A metal alloy is usually a melted-together combination of two or more chemical elements,
where the bulk of the material consists of one or more metals. A wide variety of metallic and
nonmetallic chemical elements are used in alloying the principal engineering metals. Some of
the more common ones are boron, carbon, magnesium, silicon, vanadium, chromium, manganese,
nickel, copper, zinc, molybdenum, and tin. The amounts and combinations of alloying elements used
with various metals have major effects on their strength, ductility, temperature resistance, corrosion
resistance, and other properties.

For a given alloy composition, the properties are further affected by the particular processing
used. Processing includes heat treatment, deformation, and casting. In heat treatment, a metal or
alloy is subjected to a particular schedule of heating, holding at temperature, and cooling that causes
desirable physical or chemical changes. Deformation is the process of forcing a piece of material
to change its thickness or shape. Some of the means of doing so are forging, rolling, extruding,
and drawing, as illustrated in Fig. 3.1. Casting is simply the pouring of melted metal into a mold
so that it conforms to the shape of the mold when it solidifies. Heat treatment and deformation or
casting may be used in combination, and particular alloying elements are often added because they
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Table 3.1 Properties and Uses for Selected Engineering Metals and their Alloys

Melting Elastic Typical
Metal Temp. Density Modulus Strength Uses; Comments

Tm ρ E σu
◦C g/cm3 GPa MPa

(◦F) (lb/ft3) (103 ksi) (ksi)

Iron (Fe) 1538 7.87 212 200 to 2500 Diverse: structures, machine and
and steel (2800) (491) (30.7) (30 to 360) vehicle parts, tools. Most widely

used engineering metal.

Aluminum 660 2.70 70 140 to 550 Aircraft and other lightweight
(Al) (1220) (168) (10.2) (20 to 80) structure and parts.

Titanium 1670 4.51 120 340 to 1200 Aircraft structure and engines;
(Ti) (3040) (281) (17.4) (50 to 170) industrial machine parts; surgical implants.

Copper 1085 8.93 130 170 to 1400 Electrical conductors; corrosion-
(Cu) (1985) (557) (18.8) (25 to 200) resistant parts, valves, pipes.

Alloyed to make bronze and brass.

Magnesium 650 1.74 45 170 to 340 Parts for high-speed machinery;
(Mg) (1200) (108) (6.5) (25 to 50) aerospace parts.

Nickel 1455 8.90 210 340 to 1400 Jet engine parts; alloying addition
(Ni) (2650) (556) (30.5) (50 to 200) for steels.

Cobalt 1495 8.83 211 650 to 2000 Jet engine parts; wear resistant
(Co) (2720) (551) (30.6) (95 to 300) coatings; surgical implants.

Tungsten 3422 19.3 411 120 to 650 Electrodes, light bulb filaments,
(W) (6190) (1200) (59.6) (17 to 94) flywheels, gyroscopes.

Lead 328 11.3 16 12 to 80 Corrosion resistant piping; weights,
(Pb) (620) (708) (2.3) (2 to 12) shot. Alloyed with tin in solders.

Notes: The values of Tm , ρ, and E are only moderately sensitive to alloying. Ranges for σu and uses include
alloys based on these metals. Properties ρ, E , and σu are at room temperature, except σu is at 1650◦C for
tungsten.
Source: Data in [Davis 98] and [Boyer 85].

influence such processing in a desirable way. Metals that are subjected to deformation as the final
processing step are termed wrought metals to distinguish them as a group from cast metals.

The details of alloying and processing are chosen so that the material has appropriate
temperature resistance, corrosion resistance, strength, ductility, and other required characteristics
for its intended use. Recalling that plastic deformation is due to the motion of dislocations, the
yield strength of a metal or alloy can usually be increased by introducing obstacles to dislocation
motion. Such obstacles can be tangles of dislocations, grain boundaries, distorted crystal structure
due to impurity atoms, or small particles dispersed in the crystal structure. Some of the principal
processing methods used for strengthening metals are listed, along with the type of obstacle, in
Table 3.2. We will now discuss each of these methods.
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Figure 3.1 Some methods of forming metals into useful shapes are (a) forging, which
employs compression or hammering; (b) rolling; (c) extrusion; and (d) drawing.

Table 3.2 Strengthening Methods for Metals and Alloys

Method Features That Impede Dislocation Motion

Cold work High dislocation density causing tangles

Grain refinement Changes in crystal orientation and other irregularities
at grain boundaries

Solid solution Interstitial or substitutional impurities
strengthening distorting the crystal lattice

Precipitation hardening Fine particles of a hard material precipitating
out of solution upon cooling

Multiple phases Discontinuities in crystal structure
at phase boundaries

Quenching and tempering Multiphase structure of martensite and Fe3C
precipitates in BCC iron

3.2.1 Cold Work and Annealing

Cold work is the severe deforming of a metal at ambient temperature, often by rolling or drawing.
This causes a dense array of dislocations and disorders the crystal structure, resulting in an increase
in yield strength and a decrease in ductility. Strengthening occurs because the large number of
dislocations form dense tangles that act as obstacles to further deformation. Hence, controlled
amounts of cold work can be used to vary the properties. For example, this is done for copper
and its alloys.
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Figure 3.2 Microstructures of 70% Cu, 30% Zn brass in three conditions: cold worked (top);
annealed one hour at 375◦C (bottom left); and annealed one hour at 500◦C (bottom right).
(Photos courtesy of Olin Corp., New Haven, CT.)

The effects of cold work can be partially or completely reversed by heating the metal to such
a high temperature that new crystals form within the solid material, a process called annealing. If
this is done following severe cold work, the recrystallized grains are at first quite small. Cooling the
material at this stage creates a situation where strengthening is said to be due to grain refinement,
because the grain boundaries impede dislocation motion. A long annealing time, or annealing at a
higher temperature, causes the grains to coalesce into larger sizes, resulting in a loss of strength,
but a gain in ductility. The microstructural changes involved in cold working and annealing are
illustrated in Fig. 3.2.

3.2.2 Solid Solution Strengthening

Solid solution strengthening occurs as a result of impurity atoms distorting the crystal lattice and
thus making dislocation motion more difficult. Note that alloying elements are said to form a solid
solution with the major constituent if their atoms are incorporated into the crystal structure in
an orderly manner. The atoms providing the strengthening may be located at either interstitial or
substitutional lattice positions. Atoms of much smaller size than those of the major constituent
usually form interstitial alloys, as for hydrogen, boron, carbon, nitrogen, and oxygen in metals.
Substitutional alloys may be formed by combinations of two or more metals, especially if the atomic
sizes are similar and the preferred crystal structures are the same.
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Figure 3.3 Effect of alloying on the yield strength of copper. Atomic sizes are given in
picometers (10−12 m), and yield strengths correspond to 1% strain. (Adapted from [French 50];
used with permission.)

As might be expected, the effect of a substitutional impurity is greater if the atomic size differs
more from that of the major constituent. This is illustrated by the effects of various percentages of
alloying elements in copper in Fig. 3.3. Zinc and nickel have atomic sizes that do not differ very
much from that of copper, so that the strengthening effect is small. But the small atoms of beryllium
and the large ones of tin have a dramatic effect.

3.2.3 Precipitation Hardening and Other Multiple Phase Effects

The solubility of a particular impurity species in a given metal may be quite limited if the
two elements have dissimilar chemical and physical properties, but this limited solubility usually
increases with temperature. Such a situation may provide an opportunity for strengthening due to
precipitation hardening. Consider an impurity that exists as a solid solution while the metal is held
at a relatively high temperature, but also assume that the amount present exceeds the solubility limit
for room temperature. Upon cooling, the impurity tends to precipitate out of solution, sometimes
forming a chemical compound in the process. The precipitate is said to constitute a second phase
as the chemical composition differs from that of the surrounding material. The yield strength may
be increased substantially if the second phase has a hard crystal structure that resists deformation,
and particularly if it exists as very small particles that are distributed fairly uniformly. Also, it is
desirable for the precipitate particles to be coherent with the parent metal, meaning that the crystal
planes are continuous across the precipitate particle boundary. This causes distortion of the crystal
structure of the parent metal over some distance beyond the particle, enhancing its effect in making
dislocation motion more difficult.

For example, aluminum with around 4% copper forms strengthening precipitates of the
intermetallic compound CuAl2. The means of achieving this is illustrated in Fig. 3.4. Slow cooling
allows the impurity atoms to move relatively long distances, and the precipitate forms along the
grain boundaries where it has little benefit. However, substantial benefit can be achieved by rapid
cooling to form a supersaturated solution and then reheating to an intermediate temperature for
a limited time. The reduced movement of the impurities at the intermediate temperature causes
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Figure 3.4 Precipitation hardening of aluminum alloyed with 4% Cu. Slow cooling from
a solid solution (a) produces grain boundary precipitates (b). Rapid cooling to obtain
a supersaturated solution (c) can be followed by aging at a moderate temperature to
obtain fine precipitates within grains (d), but overaging gives coarse precipitates (e).

Figure 3.5 Effects of precipitation (aging) time and temperature on the resulting yield
strength in aluminum alloy 6061. (Adapted from [Boyer 85] p. 6.7; used with permission.)

the precipitate to form as fairly uniformly scattered small particles. However, if the intermediate
temperature is too high, or the holding time too long, the particles coalesce into larger ones and
some of the benefit is lost, the particles being too far apart to effectively impede dislocation motion.
Thus, for a given temperature, there is a precipitation (aging) time that gives the maximum effect.
The resulting trends in strength are illustrated for a commercial aluminum alloy, where similar
precipitation hardening occurs, in Fig. 3.5.

If an alloy contains interspersed regions of more than one chemical composition, as for
precipitate particles, as just discussed, a multiple phase situation is said to exist. Other multiple
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phase situations involve needlelike or layered microstructural features, or crystal grains of more
than one type. For example, some titanium alloys have a two-phase structure involving grains
of both alpha (HCP) and beta (BCC) crystal structures. Multiple phases increase strength,
because the discontinuities in the crystal structure at the phase boundaries make dislocation
motion more difficult, and also because one phase may be resistant to deformation. The two-
phase (alpha–beta) structure just mentioned for titanium provides a portion of the strengthen-
ing for the highest strength titanium alloys. Also, the processing of steels by quenching and
tempering, which will be discussed in the next section, owes its benefits to multiple phase
effects.

3.3 IRONS AND STEELS

Iron-based alloys, also called ferrous alloys, include cast irons and steels and are the most widely
used structural metals. Steels consist primarily of iron and contain some carbon and manganese, and
often additional alloying elements. They are distinguished from nearly pure iron, which is called
ingot iron, and also from cast irons, which contain carbon in excess of 2% and from 1 to 3% silicon.
Irons and steels can be divided into various classes, depending on their alloy compositions and other
characteristics, as indicated in Table 3.3. Some examples of particular irons or steels and their alloy
compositions are given in Table 3.4.

A wide variation in properties exists for various steels, as illustrated in Fig. 3.6. Pure iron
is quite weak, but is strengthened considerably by the addition of small amounts of carbon.
Additional alloying with small amounts of niobium, vanadium, copper, or other elements permits
strengthening by grain refinement, precipitation, or solid solution effects. If sufficient carbon is

Table 3.3 Commonly Encountered Classes of Irons and Steels

Class Distinguishing Features Typical Uses Source of Strengthening

Cast iron More than 2% C Pipes, valves, gears, Ferrite-pearlite structure
and 1 to 3% Si engine blocks as affected by free graphite

Plain-carbon Principal alloying Structural and machine Ferrite-pearlite structure if
steel element is carbon parts low carbon; quenching and

up to 1% tempering if medium to
high carbon

Low-alloy Metallic elements High-strength Grain refinement, precipitation,
steel totaling up to 5% structural and and solid solution if low

machine parts carbon; otherwise quenching
and tempering

Stainless At least 10% Cr; Corrosion resistant Quenching and tempering if
steel does not rust piping and nuts and < 15% Cr and low Ni; otherwise

bolts; turbine blades cold work or precipitation

Tool steel Heat treatable to Cutters, drill bits, Quenching and tempering, etc.
high hardness dies
and wear resistance
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Table 3.4 Some Typical Irons and Steels

Principal Alloying Elements, Typical % by Weight

Description Identification UNS No. C Cr Mn Mo Ni Si V Other

Ductile ASTM A395 F32800 3.5 — — — — 2 — —
cast iron

Low-carbon AISI 1020 G10200 0.2 — 0.45 — — 0.2 — —
steel

Medium-carbon AISI 1045 G10450 0.45 — 0.75 — — 0.2 — —
steel

High-carbon AISI 1095 G10950 0.95 — 0.4 — — 0.2 — —
steel

Low-alloy AISI 4340 G43400 0.40 0.8 0.7 0.25 1.8 0.2 — —
steel

HSLA steel ASTM A588-A K11430 0.15 0.5 1.1 — — 0.2 0.05 0.3 Cu

Martensitic AISI 403 S40300 0.15 12 1.0 — 0.6 0.5 — —
stainless steel

Austenitic AISI 310 S31000 0.25 25 2.0 — 20 1.5 — —
stainless steel

Precipitation 17-4 PH S17400 0.07 17 1.0 — 4 1.0 — 4 Cu
hardening 0.3 (Nb + Ta)
stainless steel

Tungsten AISI T1 T12001 0.75 3.8 0.25 — 0.2 0.3 1.1 18 W
high-speed
tool steel

18 Ni ASTM A538-C K93120 0.01 — — 5 18 — — 9 Co, 0.7 Ti
maraging steel

added for quenching and tempering to be effective, a major increase in strength is possible.
Additional alloying and special processing can be combined with quenching and tempering and/or
precipitation hardening to achieve even higher strengths.

3.3.1 Naming Systems for Irons and Steels

A number of different organizations have developed naming systems and specifications for various
irons and steels that give the required alloy composition and sometimes required mechanical
properties. These include the American Iron and Steel Institute (AISI), the Society of Automotive
Engineers (SAE International), and the American Society for Testing and Materials (ASTM
International). In addition, SAE and ASTM have cooperated to develop a new Unified Numbering
System (UNS) that gives designations not only for irons and steels, but also for all other metal
alloys. See the Metals Handbook: Desk Edition (Davis, 1998) for an introduction to various naming
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Figure 3.6 Effects of alloying additions and processing (x-axis) on the yield strength of steel.
Alloying iron with carbon and other elements provides substantial strengthening, but even
higher strengths can be achieved by heat treating with quenching and tempering. The highest
strengths are obtained by combining alloying with special processing, such as ausforming or
maraging. (Adapted from an illustration courtesy of R. W. Landgraf, Howell, MI.)

systems, and the current publication on the UNS System (SAE, 2008) for a description of those
designations and their equivalence with other specifications.

The AISI and SAE designations for various steels are coordinated between the two organiza-
tions and are nearly identical. Details for common carbon and low-alloy steels are given in Table 3.5.
Note that in this case there is usually a four-digit number. The first two digits specify the alloy
content other than carbon, and the second two give the carbon content in hundredths of a percent.
For example, AISI 1340 (or SAE 1340) contains 0.40% carbon with 1.75% manganese as the only
other alloying element. (Percentages of alloys are given on the basis of weight.)

The UNS system has a letter followed by a five-digit number. The letter indicates the category
of alloy, such as F for cast irons, G for carbon and low-alloy steels in the AISI–SAE naming system,
K for various special-purpose steels, S for stainless steels, and T for tool steels. For carbon and low-
alloy steels, the number is in most cases the same as that used by AISI and SAE, except that a zero
is added at the end. Thus, AISI 1340 is the same steel as UNS G13400.

Some particular classes of irons and steels will now be considered.

3.3.2 Cast Irons

Cast irons in various forms have been used for more than two thousand years and continue to be
relatively inexpensive and useful materials. The iron is not highly refined subsequent to extraction
from ore or scrap, and it is formed into useful shapes by melting and pouring into molds. The
temperature required to melt iron in a furnace is difficult to achieve. As a result, prior to the modern
industrial era, there was also considerable use of wrought iron, which is heated and forged into
useful shapes, but never melted in processing. Several different types of cast iron exist. All contain
large amounts of carbon, typically 2 to 4% by weight, and also 1 to 3% silicon. The large amount
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Table 3.5 Summary of the AISI–SAE Designations for Common Carbon and
Low-Alloy Steels

Designation1 Approx. Alloy Content, % Designation Approx. Alloy Content, %

Carbon steels Nickel–molybdenum steels
10XX Plain carbon 46XX Ni 0.85 or 1.82; Mo 0.25
11XX Resulfurized 48XX Ni 3.50; Mo 0.25
12XX Resulfurized and

rephosphorized
15XX Mn 1.00 to 1.65

Manganese steels Chromium steels
13XX Mn 1.75 50XX(X) Cr 0.27 to 0.65

51XX(X) Cr 0.80 to 1.05
52XXX Cr 1.45

Molybdenum steels Chromium–vanadium steels
40XX Mo 0.25 61XX Cr 0.6 to 0.95; V 0.15
44XX Mo 0.40 or 0.52

Chromium–molybdenum steels Silicon–manganese steels
41XX Cr 0.50 to 0.95; 92XX Si 1.40 or 2.00;

Mo 0.12 to 0.30 Mn 0.70 to 0.87;
Cr 0 or 0.70

Nickel–chromium–molybdenum steels Boron steels2

43XX Ni 1.82; Cr 0.50 YYBXX B 0.0005 to 0.003
or 0.80; Mo 0.25

47XX Ni 1.45; Cr 0.45;
Mo 0.20 or 0.35

81XX Ni 0.30; Cr 0.40; Mo 0.12
86XX Ni 0.55; Cr 0.50; Mo 0.20
87XX Ni 0.55; Cr 0.50; Mo 0.25
94XX Ni 0.45; Cr 0.40; Mo 0.12

Notes: 1Replace “XX” or “XXX” with carbon content in hundredths of a percent, such as AISI
1045 having 0.45% C, or 52100 having 1.00% C. 2Replace “YY” with any two digits from
earlier in table to indicate the additional alloy content.

of carbon present exceeds the 2% that can be held in solid solution at elevated temperature, and in
most cast irons the excess is present in the form of graphite.

Gray iron contains graphite in the form of flakes, as seen in Fig. 3.7 (left). These flakes easily
develop into cracks under tensile stress, so that gray iron is relatively weak and brittle in tension. In
compression, the strength and ductility are both considerably higher than for tension. Ductile iron,
also called nodular iron, contains graphite in the more nearly spherical form of nodules, as seen in
Fig. 3.7 (right). This is achieved by careful control of impurities and by adding small amounts of
magnesium or other elements that aid in nodule formation. As a result of the different form of the
graphite, ductile iron has considerably greater strength and ductility in tension than gray iron.

White iron is formed by rapid cooling of a melt that would otherwise form gray iron. The
excess carbon is in the form of a multiphase network involving large amounts of iron carbide,
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Figure 3.7 Microstructures of gray cast iron (left) and ductile (nodular) cast iron (right).
The graphite flakes on the left are the heavy dark bands, and the graphite nodules on the
right are the dark shapes. In gray iron (left), the fine lines are a pearlitic structure similar
to that in mild steel. (Photos courtesy of Deere and Co., Moline, IL.)

Fe3C, also called cementite. This very hard and brittle phase results in the bulk material also being
hard and brittle. For malleable iron, special heat treatment of white iron is used to obtain a result
similar to ductile iron. In addition, various alloying elements are used in making special-purpose cast
irons that have improved response to processing or desirable properties, such as resistance to heat
or corrosion.

3.3.3 Carbon Steels

Plain-carbon steels contain carbon, in amounts usually less than 1%, as the alloying element that
controls the properties. They also contain limited amounts of manganese and (generally undesirable)
impurities, such as sulfur and phosphorus. The more specific terms low-carbon steel and mild steel
are often used to indicate a carbon content of less than 0.25%, such as AISI 1020 steel. These steels
have relatively low strength, but excellent ductility. The structure is a combination of BCC iron,
also called α-iron or ferrite, and pearlite. Pearlite is a layered two-phase structure of ferrite and
cementite (Fe3C), as seen in Fig. 3.8 (left). Low-carbon steels can be strengthened somewhat by
cold working, but only minor strengthening is possible by heat treatment. Uses include structural
steel for buildings and bridges, and sheet metal applications, such as automobile bodies.

Medium-carbon steels, with carbon content around 0.3 to 0.6%, and high-carbon steels, with
carbon content around 0.7 to 1% and greater, have higher strengths than low-carbon steels, as a
result of the presence of more carbon. In addition, the strength can be increased significantly by heat
treatment using the quenching and tempering process, increasingly so for higher carbon contents.
However, high strengths are accompanied by loss of ductility—that is, by more brittle behavior.
Medium-carbon steels have a wide range of uses as shafts and other components of machines and
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Figure 3.8 Steel microstructures: ferrite-pearlite structure in normalized AISI 1045 steel (left),
with ferrite being the light-colored areas, and pearlite the striated regions; quenched and
tempered structure in AISI 4340 steel (right). (Left photo courtesy of Deere and Co., Moline, IL.)

vehicles. High-carbon steels are limited to uses where their high hardness is beneficial and the low
ductility is not a serious disadvantage, as in cutting tools and springs.

In quenching and tempering, the steel is first heated to about 850◦C so that the iron changes to
the FCC phase known as γ -iron or austenite, with carbon being in solid solution. A supersaturated
solution of carbon in BCC iron is then formed by rapid cooling, called quenching, which can be
accomplished by immersing the hot metal into water or oil. After quenching, a structure called
martensite is present, which has a BCC lattice distorted by interstitial carbon atoms. The martensite
exists either as groupings of parallel thin crystals (laths) or as more randomly oriented thin plates,
surrounded by regions of austenite.

As-quenched steel is very hard and brittle due to the two phases present, the distorted crystal
structure, and a high dislocation density. To obtain a useful material, it must be subjected to a second
stage of heat treatment at a lower temperature, called tempering. This causes removal of some of
the carbon from the martensite and the formation of dispersed particles of Fe3C. Tempering lowers
the strength, but increases the ductility. The effect is greater for higher tempering temperatures and
varies with carbon content and alloying, as illustrated in Fig. 3.9. The microstructure of a quenched
and tempered steel is shown in Fig. 3.8 (right).

3.3.4 Low-Alloy Steels

In low-alloy steels, also often called simply alloy steels, small amounts of alloying elements totaling
no more than about 5% are added to improve various properties or the response to processing.
Percentages of the principal alloying elements are given for some of these in Table 3.5. As examples
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Figure 3.9 Effect of tempering temperature on the yield strength for several steels. These
data are for 13 mm diameter samples machined from material heat treated as 25 mm diameter
bars. (Data from [Boyer 85] p. 4.21.)

of the effects of alloying, sulfur improves machineability, and molybdenum and vanadium promote
grain refinement. The combination of alloys used in the steel AISI 4340 gives improved strength and
toughness—that is, resistance to failure due to a crack or sharp flaw. In this steel, the metallurgical
changes during quenching proceed at a relatively slow rate so that quenching and tempering is effec-
tive in components as thick as 100 mm. Note that the corresponding plain-carbon steel, AISI 1040,
requires very rapid quenching that cannot be achieved except within about 5 mm of the surface.

Various special-purpose low-alloy steels are used that may not fit any of the standard AISI–SAE
designations. Many of these are described in the ASTM Standards, where requirements are placed
on mechanical properties in addition to alloy content. Some of these are classified as high-strength
low-alloy (HSLA) steels, which have a low carbon content and a ferritic-pearlitic structure, with
small amounts of alloying resulting in higher strengths than in other low-carbon steels. Examples
include structural steels as used in buildings and bridges, such as ASTM A242, A441, A572, and
A588. Note that use of the term “high-strength” here can be somewhat misleading, as the strengths
are high for a low-carbon steel, but not nearly as high as for many quenched and tempered steels.
The low-alloy steels used for pressure vessels, such as ASTM A302, A517, and A533, constitute an
additional group of special-purpose steels.

3.3.5 Stainless Steels

Steels containing at least 10% chromium are called stainless steels because they have good corrosion
resistance; that is, they do not rust. These alloys also frequently have improved resistance to high
temperature. A separate system of AISI designations employs a three-digit number, such as AISI
316 and AISI 403, with the first digit indicating a particular class of stainless steels. The correspond-
ing UNS designations often use the same digits, such as S31600 and S40300 for the two just listed.
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The 400-series stainless steels have carbon in various percentages and small amounts of metallic
alloying elements in addition to the chromium. If the chromium content is less than about 15%, as
in types 403, 410, and 422, the steel in most cases can be heat treated by quenching and tempering
to have a martensitic structure, so that it is called a martensitic stainless steel. Uses include tools
and blades in steam turbines. However, if the chromium content is higher, typically 17 to 25%,
the result is a ferritic stainless steel that can be strengthened only by cold work, and then only
modestly. These are used where high strength is not as essential as high corrosion resistance, as in
architectural use.

The 300-series stainless steels, such as types 304, 310, 316, and 347, contain around 10 to 20%
nickel in addition to 17 to 25% chromium. Nickel further enhances corrosion resistance and results
in the FCC crystal structure being stable even at low temperatures. These are termed austenitic
stainless steels. They either are used in the annealed condition or are strengthened by cold work,
and they have excellent ductility and toughness. Uses include nuts and bolts, pressure vessels and
piping, and medical bone screws and plates.

Another group is the precipitation-hardening stainless steels. These are strengthened as the
name implies, and they are used in various high-stress applications where resistance to corrosion
and high temperature are required, as in heat-exchanger tubes and turbine blades. An example is
17-4 PH stainless steel (UNS S17400), which contains 17% chromium and 4% nickel—hence its
name—and also 4% copper and smaller amounts of other elements.

3.3.6 Tool Steels and Other Special Steels

Tool steels are specially alloyed and processed to have high hardness and wear resistance for use in
cutting tools and special components of machinery. Most contain several percent chromium, some
have quite high carbon contents in the 1 to 2% range, and some contain fairly high percentages of
molybdenum and/or tungsten. Strengthening generally involves quenching and tempering or related
heat treatments. The AISI designations are in the form of a letter followed by a one- or two-digit
number. For example, tool steels M1, M2, etc., contain 5 to 10% molybdenum and smaller amounts
of tungsten and vanadium; and tool steels T1, T2, etc., contain substantial amounts of tungsten,
typically 18%.

The tool steel H11, containing 0.4% carbon, 5% chromium, and modest amounts of other
elements, is used in various high-stress applications. It can be fully strengthened in thick sections
up to 150 mm and retains moderate ductility and toughness even at very high yield strengths around
2100 MPa and above. This is achieved by the ausforming process, which involves deforming the
steel at a high temperature within the range where the austenite (FCC) crystal structure exists.
An extremely high dislocation density and a very fine precipitate are introduced, which combine
to provide additional strengthening that is added to the usual martensite strengthening due to
quenching and tempering. Ausformed H11 is one of the strongest steels that has reasonable ductility
and toughness.

Various additional specialized high-strength steels have names that are nonstandard trade
names. Examples include 300 M, which is AISI 4340 modified with 1.6% silicon and some
vanadium, and D-6a steel used in aerospace applications. Maraging steels contain 18% nickel
and other alloying elements, and they have high strength and toughness due to a combination of
a martensitic structure and precipitation hardening.
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Figure 3.10 Effects of alloying additions and processing (x-axis) on the yield strength
of aluminum alloys. Pure aluminum can be strengthened by cold work, and alloying
increases strength due to solid-solution hardening. The higher strength alloys are heat
treated to produce precipitation hardening. (Adapted from an illustration courtesy of
R. W. Landgraf, Howell, MI.)

3.4 NONFERROUS METALS

Quenching and tempering to produce a martensitic structure is the most effective means of
strengthening steels. In the common nonferrous metals, martensite may not occur; and where it
does occur, the effect is not as large as in steels. Hence, the other methods of strengthening, which
are generally less effective, must be used. The higher strength nonferrous metals often employ
precipitation hardening.

For example, consider the strength levels achievable in aluminum alloys, as illustrated by
Fig. 3.10. Annealed pure aluminum is very weak and can be strengthened only by cold work.
Adding magnesium provides solid-solution strengthening, and the resulting alloy can be cold
worked. Further strengthening is possible by precipitation hardening, which is achieved by various
combinations of alloying elements and aging treatments. However, the highest strength available is
only about 25% of that for the highest strength steel. Aluminum is nevertheless widely used, as in
aerospace applications, where its light weight and corrosion resistance are major advantages that
offset the disadvantage of lower strength than some steels.

We will now discuss the nonferrous metals that are commonly used in structural applications.

3.4.1 Aluminum Alloys

For aluminum alloys produced in wrought form, as by rolling or extruding, the naming system
involves a four-digit number. The first digit specifies the major alloying elements as listed in
Table 3.6. Subsequent digits are then assigned to indicate specific alloys, with some examples being
given in Table 3.7. The UNS numbers for wrought alloys are similar, except that A9 precedes the
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Table 3.6 Naming System for Common Wrought Aluminum
Alloys

Other Frequent Heat
Series Major Additions Additions Treatable

1XXX None None No

2XXX Cu Mg, Mn, Si, Li Yes

3XXX Mn Mg, Cu No

4XXX Si None Most no

5XXX Mg Mn, Cr No

6XXX Mg, Si Cu, Mn Yes

7XXX Zn Mg, Cu, Cr Yes

Processing Designations Common TX Treatments

-F As fabricated -T3 Cold worked, then
naturally aged

-O Annealed -T4 Naturally aged

-H1X Cold worked -T6 Artificially aged

-H2X Cold worked, then -T8 Cold worked, then
partially annealed artificially aged

-H3X Cold worked, then -TX51 Stress relieved
stabilized by stretching

-TX Solution heat
treated,
then aged

four-digit number. Following the four-digit number, a processing code is used, as in 2024-T4, as
detailed in Table 3.6.

For codes involving cold work, HXX, the first number indicates whether only cold work is
used (H1X), or whether cold work is followed by partial annealing (H2X) or by a stabilizing heat
treatment (H3X). The latter is a low-temperature heat treatment that prevents subsequent gradual
changes in the properties. The second digit indicates the degree of cold work, HX8 for the maximum
effect of cold work on strength, and HX2, HX4, and HX6 for one-fourth, one-half, and three-fourths
as much effect, respectively.

Processing codes of the form TX all involve a solution heat treatment at a high temperature to
create a solid solution of alloying elements. This may or may not be followed by cold work, but the
material is always subsequently aged, during which precipitation hardening occurs. Natural aging
occurs at room temperature, whereas artificial aging involves a second stage of heat treatment, as
in Fig. 3.4. Additional digits following HXX or TX describe additional variations in processing,
such as T651 for a T6 treatment in which the material is also stretched up to 3% in length to relieve
residual (locked-in) stresses.
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Table 3.7 Some Typical Wrought Aluminum Alloys

Principal Alloying Elements, Typical % by Weight

Identification UNS No. Cu Cr Mg Mn Si Other

1100-O A91100 0.12 — — — — —

2014-T6 A92014 4.4 — 0.5 0.8 0.8 —

2024-T4 A92024 4.4 — 1.5 0.6 — —

2219-T851 A92219 6.3 — — 0.3 — 0.1 V, 0.18 Zr

3003-H14 A93003 0.12 — — 1.2 — —

4032-T6 A94032 0.9 — 1.0 — 12.2 0.9 Ni

5052-H38 A95052 — 0.25 2.5 — — —

6061-T6 A96061 0.28 0.2 1.0 — 0.6 —

7075-T651 A97075 1.6 0.23 2.5 — — 5.6 Zn

The alloy content determines the response to processing. Alloys in the 1XXX, 3XXX, and
5XXX series, and most of those in the 4XXX series, do not respond to precipitation-hardening
heat treatment. These alloys achieve some of their strength from solid-solution effects, and all can
be strengthened beyond the annealed condition by cold work. The alloys capable of the highest
strengths are those that do respond to precipitation hardening, namely the 2XXX, 6XXX, and 7XXX
series, with the exact response to this processing being affected by the alloy content. For example,
2024 can be precipitation hardened by natural aging, but 7075 and similar alloys require artificial
aging.

Aluminum alloys produced in cast form have a similar, but separate, naming system. A four-
digit number with a decimal point is used, such as 356.0-T6. Corresponding UNS numbers have A0
preceding the four-digit number and no decimal point, such as A03560.

3.4.2 Titanium Alloys

The density of titanium is considerably greater than that of aluminum, but still only about 60% of
that of steel. In addition, the melting temperature is somewhat greater than for steel and far greater
than for aluminum. In aerospace applications, the strength-to-weight ratio is important, and in this
respect the highest strength titanium alloys are comparable to the highest strength steels. These
characteristics and good corrosion resistance have led to an increase in the application of titanium
alloys since commercial development of the material began in the 1940s.

Because only about 30 different titanium alloys are in common use, it is sufficient to identify
these by simply giving the weight percentages of alloying elements, such as Ti-6Al-4V or Ti-10V-
2Fe-3Al. Three categories exist: the alpha and near alpha alloys, the beta alloys, and the alpha–beta
alloys. Although the alpha (HCP) crystal structure is stable at room temperature in pure titanium,
certain combinations of alloying elements, such as chromium along with vanadium, cause the beta
(BCC) structure to be stable, or they result in a mixed structure. Small percentages of molybdenum
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or nickel improve corrosion resistance; and aluminum, tin, and zirconium improve creep resistance
of the alpha phase.

Alpha alloys are strengthened mainly by solid-solution effects and do not respond to heat
treatment. The other alloys can be strengthened by heat treatment. As in steels, a martensitic
transformation occurs upon quenching, but the effect is less. Precipitation hardening and the
effects of complex multiple phases are the principal means of strengthening alpha–beta and
beta alloys.

3.4.3 Other Nonferrous Metals

A wide range of copper alloys are employed in diverse applications as a result of their electrical
conductivity, corrosion resistance, and attractiveness. Copper is easily alloyed with various other
metals, and copper alloys are generally easy to deform or to cast into useful shapes. Strengths are
typically lower than for the metals already discussed, but still sufficiently high that copper alloys
are often useful as engineering metals.

Percentages of alloying elements range from relatively small to quite substantial, such as 35%
zinc in common yellow brass. Copper with approximately 10% tin is called bronze, although this
term is also used to describe various alloys with aluminum, silicon, zinc, and other elements.
Copper alloys with zinc, aluminum, or nickel are strengthened by solid-solution effects. Beryllium
additions permit precipitation hardening and produce the highest strength copper alloys. Cold
work is also frequently used for strengthening, often in combination with the other methods. A
variety of common names are in use for various copper alloys, such as beryllium copper, naval
brass, and aluminum bronze. The UNS numbering system with a prefix letter C is used for
copper alloys.

Magnesium has a melting temperature near that of aluminum, but a density only 65% as great,
making it only 22% as dense as steel and the lightest engineering metal. This silvery-white metal is
most commonly produced in cast form, but is also extruded, forged, and rolled. Alloying elements
do not generally exceed 10% total for all additions, the most common being aluminum, manganese,
zinc, and zirconium. Strengthening methods are roughly similar to those for aluminum alloys. The
highest strengths are about 60% as large, resulting in comparable strength-to-weight ratios. The
naming system in common use is generally similar to that for aluminum alloys, but differs as to
the details. A combination of letters and numbers that identifies the specific alloy is followed by a
processing designation, such as AZ91C-T6.

Superalloys are special heat-resisting alloys that are used primarily above 550◦C. The major
constituent is either nickel or cobalt, or a combination of iron and nickel, and percentages of alloying
elements are often quite large. For example, the Ni-base alloy Udimet 500 contains 48% Ni, 19%
Cr, and 19% Co, and the Co-base alloy Haynes 188 has 37% Co, 22% Cr, 22% Ni, and 14% W, with
both also containing small percentages of other elements. Nonstandard combinations of trade names
and letters and numerals are commonly used to identify the relatively small number of superalloys
that are in common use. Some examples, in addition to the two just described, are Waspaloy, MAR-
M302, A286, and Inconel 718.

Although nickel and cobalt have melting temperatures just below that of iron, superalloys have
superior resistance to corrosion, oxidation, and creep compared with steels. Many have substantial
strengths even above 750◦C, which is beyond the useful range for low-alloy and stainless steels.
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This accounts for their use in high-temperature applications, despite the high cost due to the
relative scarcity of nickel, chromium, and cobalt. Superalloys are often produced in wrought form,
and Ni-base and Co-base alloys are also often cast. Strengthening is primarily by solid-solution
effects and by various heat treatments, resulting in precipitation of intermetallic compounds or metal
carbides.

3.5 POLYMERS

Polymers are materials consisting of long-chain molecules formed primarily by carbon-to-carbon
bonds. Examples include all materials commonly referred to as plastics, most familiar natural
and synthetic fibers, rubbers, and cellulose and lignin in wood. Polymers that are produced or
modified by man for use as engineering materials can be classified into three groups: thermoplastics,
thermosetting plastics, and elastomers.

When heated, a thermoplastic softens and usually melts; then, if cooled, it returns to its original
solid condition. The process can be repeated a number of times. However, a thermosetting plastic
changes chemically during processing, which is often done at elevated temperature. It will not melt
upon reheating, but will instead decompose, as by charring or burning. Elastomers are distinguished
from plastics by being capable of rubbery behavior. In particular, they can be deformed by large
amounts, say 100% to 200% strain or more, with most of this deformation being recovered after
removal of the stress. Examples of polymers in each of these groups are listed, along with typical
uses, in Table 3.8.

After chemical synthesis based primarily on petroleum products, polymers are made into useful
shapes by various molding and extrusion processes, two of which are illustrated in Fig. 3.11. For
thermosetting plastics and elastomers that behave in a similar manner, the final stage of chemical
reaction is often accomplished by the application of temperature and/or pressure, and this must
occur while the material is being molded into its final shape.

Polymers are named according to the conventions of organic chemistry. These sometimes
lengthy names are often abbreviated by acronyms, such as PMMA for polymethyl methacrylate.
In addition, various trade names and popular names, such as Plexiglas, Teflon, and nylon, are often
used in addition to, or in place of, the chemical names.

An important characteristic of polymers is their light weight. Most have a mass density similar
to that of water, around ρ = 1 g/cm3, and few exceed ρ = 2 g/cm3. Hence, polymers are typically half
as heavy as aluminum (ρ = 2.7 g/cm3) and much lighter than steel (ρ ≈ 7.9 g/cm3). Most polymers
in unmodified form are relatively weak, with ultimate tensile strengths typically in the range 10 to
200 MPa.

In the discussion that follows, we first consider the basic molecular structure of typical polymers
in each group. This provides the background for later discussion of how the details of molecular
structure affect the mechanical properties.

3.5.1 Molecular Structure of Thermoplastics

Many thermoplastics have a molecular structure related to that of the hydrocarbon gas ethylene,
C2H4. In particular, the repeating unit in the chain molecule is similar to an ethylene molecule,
except that the carbon-to-carbon bond is rearranged as illustrated previously in Fig. 2.6. The
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Table 3.8 Classes, Examples, and Uses of Representative Polymers

Polymer Typical Uses

(a) Thermoplastics: ethylene structure
Polyethylene (PE) Packaging, bottles, piping
Polyvinyl chloride (PVC) Upholstery, tubing, electrical insulation
Polypropylene (PP) Hinges, boxes, ropes
Polystyrene (PS) Toys, appliance housings, foams
Polymethyl methacrylate Windows, lenses, clear shields, bone cement

(PMMA, Plexiglas, acrylic)
Polytetrafluoroethylene Tubing, bottles, seals

(PTFE, Teflon)
Acrylonitrile butadiene Telephone and appliance housings,

styrene (ABS) toys

(b) Thermoplastics: others
Nylon Gears, tire cords, tool housings
Aramids (Kevlar, Nomex) High-strength fibers
Polyoxymethylene (POM, Gears, fan blades, pipe fittings

acetal)
Polyetheretherketone (PEEK) Coatings, fans, impellers
Polycarbonate (PC) Safety helmets and lenses

(c) Thermosetting plastics
Phenol formaldehyde Electrical plugs and switches, pot handles

(phenolic, Bakelite)
Melamine formaldehyde Plastic dishes, tabletops
Urea formaldehyde Buttons, bottle caps, toilet seats
Epoxies Matrix for composites
Unsaturated polyesters Fiberglass resin

(d) Elastomers
Natural rubber; Shock absorbers, tires

cis-polyisoprene
Styrene-butadiene rubber Tires, hoses, belts

(SBR)
Polyurethane elastomers Shoe soles, electrical insulation
Nitrile rubber O-rings, oil seals, hoses
Polychloroprene (Neoprene) Wet suits, gaskets

molecular structures of some of the simpler polymers of this type are illustrated by giving their
repeating unit structures in Fig. 3.12.

Polyethylene (PE) is the simplest case, in that the only modification to the ethylene molecule
is the rearranged carbon-to-carbon bond. In polyvinyl chloride (PVC), one of the hydrogen atoms
is replaced by a chlorine atom, whereas polypropylene (PP) has a similar substitution of a methyl
(CH3) group. Polystyrene (PS) has a substitution of an entire benzene ring, and PMMA is based
on two substitutions, as shown. Polytetrafluoroethylene (PTFE), also known as Teflon, has four
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Figure 3.11 Forming of plastics by (a) compression molding and (b) transfer molding. (From
[Farag 89] p. 91; used with permission.)

fluorine substitutions. Ethylene-based thermoplastics are by far the most widely used plastics, with
PE, PVC, PP, and PS accounting for more than half the weight of plastics usage.

However, other classes of thermoplastics that are used in smaller quantities are more suitable
for engineering applications where high strength is needed. The engineering plastics include the
nylons, the aramids such as Kevlar, polyoxymethylene (POM), polyethylene terephthalate (PET),
polyphenylene oxide (PPO), and polycarbonate (PC). Their molecular structures are generally more
complex than those of the ethylene-based thermoplastics. The repeating unit structures of two of
these, nylon 6 and polycarbonate, are shown as examples in Fig. 3.12. Other nylons, such as nylon
66 and nylon 12, have more complex structures than nylon 6. Kevlar belongs to the polyamide group,
along with the nylons, and has a related structure involving benzene rings, so that it is classed as an
aromatic polyamide, that is, an aramid.

3.5.2 Crystalline Versus Amorphous Thermoplastics

Some thermoplastics are composed partially or mostly of material where the polymer chains are
arranged into an orderly crystalline structure. Examples of such crystalline polymers include PE,
PP, PTFE, nylon, Kevlar, POM, and PEEK. A photograph of crystal structure in polyethylene is
shown as Fig. 3.13.
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Figure 3.12 Molecular structure of several linear polymers. All but the last two are related
to the polyethylene structure by simple substitutions, R, R1 and R2, or F.

Figure 3.13 Crystal structure of polyethylene. Layers similar to that shown in the diagram
are seen edge-on in the photo, being arranged in a radiating pattern to form the
prominent crystalline features called spherulites. (Photo courtesy of A. S. Holik,
General Electric Co., Schenectady, NY. Diagram reprinted with permission from [Geil 65];
c© 1965 by the American Chemical Society.)
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Table 3.9 Typical Values of Glass Transition and
Melting Temperatures for Various Thermoplastics and
Elastomers

Transition Melting
Polymer Tg,

◦C Tm,◦C

(a) Amorphous thermoplastics
Polyvinyl chloride (PVC) 87 212
Polystyrene (atactic) 100 ≈ 180
Polycarbonate (PC) 150 265

(b) Primarily crystalline thermoplastics
Low-density polyethylene (LDPE) −110 115
High-density polyethylene (HDPE) −90 137
Polyoxymethylene (POM) −85 175
Polypropylene (PP) −10 176
Nylon 6 50 215
Polystyrene (isotactic) 100 240
Polyetheretherketone (PEEK) 143 334
Aramid 375 640

(c) Elastomers
Silicone rubber −123 −54
Cis-polyisoprene −73 28
Polychloroprene −50 80

Source: Data in [ASM 88] pp. 50–54.

If the chain molecules are instead arranged in a random manner, the polymer is said to be
amorphous. Examples of amorphous polymers include PVC, PMMA, and PC. Polystyrene (PS) is
amorphous in its atactic form where the benzene ring substitution is randomly located within each
repeating unit of the molecule, but is crystalline in the isotactic form where the substitution occurs
at the same location in each repeating unit. This same situation occurs for other polymers as well,
due to the regular structure of the isotactic form promoting crystallinity. If the side groups alternate
their positions in a regular manner, the polymer is said to be syndiotactic, with a crystalline structure
being likely in this case also.

Amorphous polymers are generally used around and below their respective glass transition
temperatures Tg , some values of which are listed in Table 3.9. Above Tg , the elastic modulus
decreases rapidly, and time-dependent deformation (creep) effects become pronounced, limiting
the usefulness of these materials in load-resisting applications. Their behavior below Tg tends to be
glassy and brittle, with the elastic modulus being on the order of E = 3 GPa. Amorphous polymers
composed of single-strand molecules are said to be linear polymers. Another possibility is that there
is some degree of branching, as shown in Fig. 3.14.

Crystalline polymers tend to be less brittle than amorphous polymers, and the stiffness and
strength do not drop as dramatically beyond Tg . For example, such differences occur between the
amorphous and crystalline forms of PS, as illustrated in Fig. 3.15. As a result of this behavior, many
crystalline polymers can be used above their Tg values. Crystalline polymers tend to be opaque to
light, whereas amorphous polymers are transparent.



Section 3.5 Polymers 89

Figure 3.14 Polymer chain structures that are (a) linear, (b) branched, or (c) cross-linked.
(From [Budinski 96] pp. 63–64; c© 1996 by Prentice Hall, Upper Saddle River, NJ; reprinted
with permission.)

Figure 3.15 Elastic modulus versus temperature for amorphous, lightly cross-linked,
and crystalline polystyrene. For amorphous samples (A) and (C), the chain lengths
correspond to average molecular weights of 2.1 × 105 and 3.3 × 105, respectively.
(Adapted from [Tobolsky 65] p. 75; reprinted by permission of John Wiley & Sons, Inc.;
copyright c© 1965 by John Wiley & Sons, Inc.)

3.5.3 Thermosetting Plastics

The molecular structure of a thermosetting plastic consists of a three-dimensional network. Such
a network may be formed by frequent strong covalent bonds between chains, called cross-links,
as illustrated in Fig. 3.14(c). In some cases, most repeating units have three carbon–carbon bonds
to other units, so that the cross-linking is maximized. This is the case for phenol formaldehyde
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Figure 3.16 Molecular structures of a phenolic thermosetting plastic and of a synthetic similar
to natural rubber, cis-polyisoprene. In the phenolics, carbon–carbon bonds form cross-links,
whereas in polyisoprene cross-links are formed by sulfur atoms.

(phenolic), the structure of which is shown in Fig. 3.16. The common plastic Bakelite is a phenolic.
Some other common thermosetting polymers are the epoxy adhesives and polyester resins used for
fiberglass.

The cross-linking (thermosetting) chemical reaction occurs during the final stage of processing,
which is typically compression molding at elevated temperature. Following this reaction, the
resulting solid will neither soften nor melt upon heating, but will usually decompose or burn instead.
The network structure results in a rigid and strong, but brittle, solid.

Recall that thermal expansion and the resulting increased free volume produces the glass
transition temperature (Tg) effect in thermoplastics, above which deformation may occur by relative
sliding between chain molecules. This situation contrasts with that for a thermosetting plastic where
relative motion between the molecules is prevented by strong and temperature-resistant covalent
bonds. As a result, there is no distinct Tg effect in highly cross-linked thermosetting plastics.

3.5.4 Elastomers

Elastomers are typified by natural rubber, but also include a variety of synthetic polymers with
similar mechanical behavior. Some elastomers, such as the polyurethane elastomers, behave in
a thermoplastic manner, but others are thermosetting materials. For example, polyisoprene is a
synthetic rubber with the same basic structure as natural rubber, but lacking various impurities found
in natural rubber. This structure is shown in Fig. 3.16. Adding sulfur and subjecting the rubber to
pressure and a temperature around 160◦C causes sulfur cross-links to form, as shown. A greater
degree of cross-linking results in a harder rubber. This particular thermosetting process is called
vulcanization.

Although cross-linking results in the rigid network structure of thermosetting plastics, typical
elastomers behave in a very different manner because the cross-links occur much less frequently
along the chains, specifically at intervals on the order of hundreds of carbon atoms. Also, the
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Figure 3.17 Stress–strain curves for unvulcanized and vulcanized natural rubber. (Data from
[Hock 26].)

cross-links and the main chains themselves are flexible in elastomers, rather than stiff as in the
thermosetting plastics. This flexibility exists because the geometry at the carbon-to-carbon double
bond causes a bend in the chain, which has a cumulative effect over long lengths of chain, such that
the chain is coiled between cross-link points. Upon loading, these coils unwind between the cross-
link attachment points, and after removal of the stress, the coils recover, resulting in the macro-
scopic effect of recovery of most of the deformation. Typical deformation response is shown in
Fig. 3.17.

The initial elastic modulus is very low, as it is associated only with uncoiling the chains,
resulting in a value on the order of E = 1 MPa. Some stiffening occurs as the chains straighten.
This low value of E contrasts with that for a glassy polymer below its Tg , where elastic deformation
is associated with stretching the combination of covalent and secondary chemical bonds involved,
resulting in a value of E on the order of 1000 times higher.

3.5.5 Strengthening Effects

The molecular structures of polymers are affected by the details of their chemical synthesis, such as
the pressure, temperature, reaction time, presence and amount of catalysts, and cooling rate. These
are often varied to produce a wide range of properties for a given polymer. Any molecular structure
that tends to retard relative sliding between the chainlike molecules increases the stiffness and
strength. Longer chain molecules—that is, those with a greater molecular weight—have this effect,
as longer chains are more prone to becoming entangled with one another. Stiffness and strength are
similarly increased by more branching in an amorphous polymer, by greater crystallinity, and by
causing some cross-linking to occur in normally thermoplastic polymers. All of these effects are
most pronounced above Tg , where relative sliding between chain molecules is possible.

For example, one variant of polyethylene, called low-density polyethylene (LDPE), has a
significant degree of chain branching. These irregular branches interfere with the formation of an
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Figure 3.18 Effect of degree of cross-linking on the elastic modulus E of a synthetic similar
to natural rubber. (From [Ashby 06] p. 272; reprinted with permission of Elsevier, Oxford, UK;
c© 2006 M. F. Ashby and D. R. H. Jones.)

orderly crystalline structure, so that the degree of crystallinity is limited to about 65%. In contrast,
the high-density variant HDPE has less branching, and the degree of crystallinity can reach 90%. As
a result of the structural differences, LDPE is quite flexible, whereas HDPE is stronger and stiffer.

An extreme variation in the properties of rubber is possible by varying the amount of
vulcanization, resulting in different degrees of cross-linking. The effect on the elastic modulus
(stiffness) of the synthetic rubber polyisoprene is shown in Fig. 3.18. Unvulcanized rubber is soft
and flows in a viscous manner. Cross-linking by sulfur at about 5% of the possible sites yields a
rubber that is useful in a variety of applications, such as automobile tires. A high degree of cross-
linking yields a hard and tough material called ebonite that is capable of only limited deformation.

3.5.6 Combining and Modifying Polymers

Polymers are seldom used in pure form, often being combined with one another or with other
substances in various ways. Alloying, also called blending, involves melting two or more polymers
together so that the resulting material contains a mixture of two or more chain types. This mixture
may be fairly uniform, or the components may separate themselves into a multiphase structure.
For example, PVC and PMMA are blended to make a tough plastic with good flame and chemical
resistance.
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Figure 3.19 Microstructure of rubber modified polystyrene, in which the dark-colored
particles and networks are rubber, and all light-colored areas inside and outside of particles
are polystyrene. The originally equiaxial particles were elongated somewhat when cut to
prepare the surface. (Photo courtesy of R. P. Kambour, General Electric Co., Schenectady, NY.)

Copolymerization is another means of combining two polymers, in which the ingredients and
other details of the chemical synthesis are chosen so that the individual chains are composed of
two types of repeating units. For example, styrene–butadiene rubber is a copolymer of three parts
butadiene and one part styrene, both of which occur in most individual chain molecules. ABS plastic
is a combination of three polymers, called a terpolymer. In particular, the acrylonitrile–styrene
copolymer chain has side branches of butadiene polymer.

Among the nonpolymer substances added to modify the properties of polymers are plasticizers.
These generally have the objective of increasing toughness and flexibility, while often decreasing
strength in the process. Plasticizers are usually high-boiling-point organic liquids, the molecules
of which distribute themselves through the polymer structure. The plasticizer molecules tend
to separate the polymer chains and allow easier relative motion between them—that is, easier
deformation. For example, plasticizers are added to PVC to make flexible vinyl, which is used
as imitation leather.

Polymers are often modified or filled by adding other materials in the form of particles of
fibers. For example, carbon black, which is similar to soot, is usually added to rubber, increasing its
stiffness and strength, in addition to the effects of vulcanization. Also, rubber particles are added to
polystyrene to reduce its brittleness, with the resulting material being called high-impact polystyrene
(HIPS). The microstructure of a HIPS material is shown in Fig. 3.19. If the added substance has the
specific purpose of increasing strength, it is called a reinforcement. For example, chopped glass
fibers are added as reinforcement to various thermoplastics to increase strength and stiffness.

Reinforcement may also take the form of long fibers or woven cloth made of high-strength
fibers, such as glass, carbon in the form of graphite, or Kevlar. These are often used in a matrix of
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a thermosetting plastic. For example, fiberglass contains glass fibers in the form of mats or woven
cloth, and these are embedded in a matrix of unsaturated polyester. Such a combination is a com-
posite material, which topic is considered further in a separate section near the end of this chapter.

3.6 CERAMICS AND GLASSES

Ceramics and glasses are solids that are neither metallic nor organic (carbon-chain based) materials.
Ceramics thus include clay products, such as porcelain, china, and brick, and also natural stone and
concrete. Ceramics used in high-stress applications, called engineering ceramics, are often relatively
simple compounds of metals, or the metalloids silicon or boron, with nonmetals such as oxygen,
carbon, or nitrogen. Carbon in its graphite or diamond forms is also considered to be a ceramic.
Ceramics are predominantly crystalline, whereas glasses are amorphous. Most glass is produced by
melting silica (SiO2), which is ordinary sand, along with other metal oxides, such as CaO, Na2O,
B2O3, and PbO. In contrast, ceramics are usually processed not by melting, but by some other means
of binding the particles of a fine powder into a solid. Specific examples of ceramics and glasses and
some of their properties are given in Table 3.10. The microstructure of a polycrystalline ceramic is
shown in Fig. 3.20.

Engineering ceramics have a number of important advantages compared with metals. They are
highly resistant to corrosion and wear, and melting temperatures are typically quite high. These
characteristics all arise from the strong covalent or ionic–covalent chemical bonding of these
compounds. Ceramics are also relatively stiff (high E) and light in weight. In addition, they are
often inexpensive, as the ingredients for their manufacture are typically abundant in nature.

As discussed in the previous chapter in connection with plastic deformation, slip of crystal
planes does not occur readily in ceramics, due to the strength and directional nature of even
partially covalent bonding and the relatively complex crystal structures. This results in ceramics
being inherently brittle, and glasses are similarly affected by covalent bonding. In ceramics, the
brittleness is further enhanced by the fact that grain boundaries in these crystalline compounds are
relatively weaker than in metals. This arises from disrupted chemical bonds, where the lattice planes
are discontinuous at grain boundaries, and also from the existence of regions where ions of the same
charge are in proximity. In addition, there is often an appreciable degree of porosity in ceramics,
and both ceramics and glasses usually contain microscopic cracks. These discontinuities promote
macroscopic cracking and thus also contribute to brittle behavior.

The processing and uses of ceramics are strongly influenced by their brittleness. As a
consequence, recent efforts aimed at developing improved ceramics for engineering use involve
various means of reducing brittleness. Noting the advantages of ceramics, as just listed, success in
this area would be of major importance, as it would allow increased use of ceramics in applications
such as automobile and jet engines, where lighter weights and operation at higher temperatures both
result in greater fuel efficiency.

Various classes of ceramics will now be discussed separately as to their processing and uses.

3.6.1 Clay Products, Natural Stone, and Concrete

Clays consist of various silicate minerals that have a sheetlike crystal structure, an important
example being kaolin, Al2O3–2SiO2–2H2O. In processing, the clay is first mixed with water to
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Table 3.10 Properties and Uses for Selected Engineering and Other Ceramics

Melting Elastic
Ceramic Temp. Density Modulus Typical Strength Uses

Tm ρ E
◦C g/cm3 GPa σu , MPa (ksi)

(◦F) (lb/ft3) (103 ksi) Tension Compression

Soda-lime glass 730 2.48 74 ≈ 50 1000 Windows, containers
(1350) (155) (10.7) (7) (145)

Type S glass (fibers) 970 2.49 85.5 4480 — Fibers in aerospace
(1780) (155) (12.4) (650) composites

Zircon porcelain 1567 3.60 147 56 560 High-voltage electrical
(2850) (225) (21.3) (8.1) (81) insulators

Magnesia, MgO 2850 3.60 280 140 840 Refractory brick,
(5160) (225) (40.6) (20.3) (122) wear parts

Alumina, Al2O3 2050 3.89 372 262 2620 Spark plug insulators,
(99.5% dense) (3720) (243) (54) (38) (380) cutting tool inserts,

fibers for composites

Zirconia, ZrO2 2570 5.80 210 147 2100 High-temperature
(4660) (362) (30.4) (21.3) (304) crucibles, refractory

brick, engine parts

Silicon carbide, SiC 2837 3.10 393 307 2500 Engine parts,
(reaction bonded) (5140) (194) (57) (44.5) (362) abrasives, fibers

for composites

Boron carbide, B4C 2350 2.51 290 155 2900 Bearings, armor,
(4260) (157) (42) (22.5) (420) abrasives

Silicon nitride, Si3N4 1900 3.18 310 450 3450 Turbine blades,
(hot pressed) (3450) (199) (45) (65) (500) fibers for composites,

cutting tool inserts

Dolomitic limestone — 2.79 69.0 19.2 283 Building stone,
(Hokie stone) (174) (10.0) (2.79) (41.0) monuments

Westerly granite — 2.64 49.6 9.58 233 Building stone,
(165) (7.20) (1.39) (33.8) monuments

Notes: Data are for materials in bulk form except for type S glass. Temperatures given for the two forms of
glass correspond to softening, with complete melting occurring above this.
Source: Data in [Farag 89] p. 510, [Ashby 06] p. 180, [Coors 89], [Gauthier 95] p. 104, [Karfakis 90],
[Musikant 90] p. 24, and [Schwartz 92] p. 2.75.
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Figure 3.20 Surface (left) of near-maximum-density Al2O3, with grain boundaries visible. In a
polished section (right), grain boundaries cannot be seen, but pores are visible as black areas.
(Left photo same as in [Venkateswaran 88]; reprinted by permission of the American Ceramic
Society. Right photo courtesy of D. P. H. Hasselman, Virginia Tech, Blacksburg, VA.)

the consistency of a thick paste and then formed into a cup, dish, brick, or other useful shape. Firing
at a temperature in the range 800 to 1200◦C then drives off the water and melts some of the SiO2

to form a glass that binds the Al2O3 and the remaining SiO2 into a solid. The presence or addition
of small amounts of minerals containing sodium or potassium enhances formation of the glass by
permitting a lower firing temperature.

Natural stone is of course used without processing other than cutting it into useful shapes. The
prior processing done by nature varies greatly. For example, limestone is principally crystalline
calcium carbonate (CaCO3) that has precipitated out of ocean water, and marble is the same mineral
that has been recrystallized (metamorphosed) under the influence of temperature and pressure.
Sandstone consists of particles of silica sand (SiO2) bound together by additional SiO2, or by
CaCO3, which is present due to precipitation from water solution. In contrast, igneous rocks such
as granite have been melted and are multiphase alloys of various crystalline minerals.

Concrete is a combination of crushed stone, sand, and a cement paste that binds the other
components into a solid. The modern cement paste, called Portland cement, is made by firing
a mixture of limestone and clay at 1500◦C. This forms a mixture of fine particles involving
primarily lime (CaO), silica (SiO2), and alumina (Al2O3), where these are in the form of tricalcium
silicate (3CaO–SiO2), dicalcium silicate (2CaO–SiO2), and tricalcium aluminate (3CaO–Al2O3).
When water is added, a hydration reaction starts during which water is chemically bound to these
minerals by being incorporated into their crystal structures. During hydration, interlocking needle-
like crystals form that bind the cement particles to each other and to the stone and sand. The
reaction is rapid at first and slows with time. Even after long times, some residual water remains
in small pores, between layers of the crystal structure, and chemically adsorbed to the surface of
hydrated paste.

Clay products, natural stone, and concrete are used in great quantities for familiar purposes,
including their major use in buildings, bridges, and other large stationary structures. All are quite
brittle and have poor strength in tension, but reasonable strength in compression. Concrete is very
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economical to use in construction and has the important advantage that it can be poured as a slurry
into forms and hardened in place into complex shapes. Improved concretes continue to be developed,
including some exotic varieties with quite high strength achieved by minimizing the porosity or by
adding substances such as metal or glass particles or fibers.

3.6.2 Engineering Ceramics

The processing of engineering ceramics composed of simple chemical compounds involves
first obtaining the compound. For example, alumina (Al2O3) is made from the mineral bauxite
(Al2O3–2H2O) by heating to remove the hydrated water. Other engineering ceramics, such as
ZrO2, are also obtainable directly from naturally available minerals. But some, such as WC, SiC,
and Si3N4, must be produced by appropriate chemical reactions, starting from constituents that are
available in nature. After the compound is obtained, it is ground to a fine powder if it is not already
in this form. The powder is then compacted into a useful shape, typically by cold or hot pressing. A
binding agent, such as a plastic, may be used to prevent the consolidated powder from crumbling.
The ceramic at this stage is said to be in a green state and has little strength. Green ceramics are
sometimes machined to obtain flat surfaces, holes, threads, etc., that would otherwise be difficult
to achieve.

The next and final step in processing is sintering, which involves heating the green ceramic,
typically to around 70% of its absolute melting temperature. This causes the particles to fuse and
form a solid that contains some degree of porosity. Improved properties result from minimizing the
porosity—that is, the volume percentage of voids. This can be done by using a gradation of particle
sizes or by applying pressure during sintering. Small percentages of other ceramics may be added to
the powder to improve response to processing. Also, small to medium percentages of other ceramics
may be mixed with a given compound to tailor the properties of the final product.

One variation on the sintering process that aids in minimizing voids is hot isostatic pressing.
This involves enclosing the ceramic in a sheet metal enclosure and placing this in a vessel that is
pressurized with a hot gas. Some additional methods of processing that are sometimes used are
chemical vapor deposition and reaction bonding. The former process involves chemical reactions
among hot gases that result in a solid deposit of ceramic material onto the surface of another
material. Reaction bonding combines the chemical reaction that forms the ceramic compound with
the sintering process.

Engineering ceramics typically have high stiffness, light weight, and very high strength in
compression. Although all are relatively brittle, their strength in tension and fracture toughness
may be sufficiently high that their use in high-stress structural applications is not precluded if the
limitations of the material are considered in the details of the component design. Increased use of
ceramics in the future is likely, due to their high-temperature capability.

3.6.3 Cermets; Cemented Carbides

A cermet is made from powders of a ceramic and a metal by sintering them together. The metal
surrounds the ceramic particles and binds them together, with the ceramic constituent providing
high hardness and wear resistance. Cemented carbides, as made into cutting tools, are the most
important cermets. In this case, tungsten carbide (WC) is sintered with cobalt metal in amounts
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Figure 3.21 Diamond cubic crystal structure of silica, SiO2, in its high-temperature cristobalite
form. The crystal structure at ambient temperatures is a more complex arrangement of the
basic tetrahedral unit shown on the right.

ranging from 3 to 25%. Other carbides are also used in the same manner, namely, TiC, TaC, and
Cr3C2, typically in combination with WC. The most frequent binder metal is cobalt, but nickel and
steel are also employed.

The metal matrix of cemented carbides provides useful toughness, but limits resistance to
temperature and oxidation. Ordinary ceramics, such as alumina (Al2O3) and boron nitride (BN),
are also used for cutting tools and have advantages, compared with cemented carbides, of greater
hardness, lighter weight, and greater resistance to temperature and oxidation. But the extra care
needed in working with brittle ceramics leads to the prevalence of cemented carbides, except where
ceramics cannot be avoided. Some of the advantages of ceramics can be obtained by chemical vapor
deposition of a coating of a ceramic onto a cemented carbide tool. Ceramics used in this manner
include TiC, Al2O3, and TiN.

3.6.4 Glasses

Pure silica (SiO2) in crystalline form is a quartz mineral, the crystal structure of one of which is
illustrated in Fig. 3.21. However, when silica is solidified from a molten state, an amorphous solid
results. This occurs because the molten glass has a high viscosity due to a chainlike molecular
structure, which limits the molecular mobility to the extent that perfect crystals do not form upon
solidification. The three-dimensional crystal structure in Fig. 3.21 is depicted in a simplified two-
dimensional form in Fig. 3.22. A perfect crystal, as formed from solution in nature, is represented
by (a). Glass formed from molten silica has a network structure that is similar, but highly imperfect,
as in (b).

In processing, glasses are sometimes heated until they melt and are then poured into molds
and cast into useful shapes. Alternatively, they may be heated only until soft and then formed by
rolling (as for plate glass) or by blowing (as for bottles). Forming is made easier by the fact that
the viscosity of glass varies gradually with temperature, so that the temperature can be adjusted
to obtain a consistency that is appropriate to the particular method of forming. However, for pure
silica, the temperatures involved are around 1800◦C, which is inconveniently high. The temperature
for forming can be lowered to around 800 to 1000◦C by adding Na2O, K2O, or CaO. These oxides
are called network modifiers, because the metal ions involved tend to form nondirectional ionic
bonds with oxygen atoms, resulting in terminal ends in the structure, as illustrated by Fig. 3.22(c).
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Figure 3.22 Simplified two-dimensional diagram of the structure of silica in the form of
(a) quartz crystal, (b) glass, and (c) glass with a network modifier. (Part (b) adapted from
[Zachariasen 32]; published 1932 by the American Chemical Society. Part (c) adapted from
[Warren 38]; reprinted by permission of the American Ceramic Society.)

Table 3.11 Typical Compositions and Uses of Representative Silica Glasses

Major Components, % by Weight

Glass SiO2 Al2O3 CaO Na2O B2O3 MgO PbO Uses; Comment

Fused silica 99 — — — — — — Furnace windows

Borosilicate 81 2 — 4 12 — — Cookware,
(Pyrex) laboratory ware

Soda-lime 72 1 9 14 — 3 — Windows, containers

Leaded 66 1 1 6 1 — 15 Tableware; also contains
9% K2O

Type E 54 14 16 1 10 4 — Fibers in fiberglass

Type S 65 25 — — — 10 — Fibers for aerospace
composites

Source: Data in [Lyle 74] and [Schwartz 92] p. 2.56.

This change in the molecular structure also causes the glass to be less brittle than pure silica glass.
Commercial glasses contain varying amounts of the network modifiers, as indicated by typical
compositions in Table 3.11.

Other oxides are added to modify the optical or electrical properties, color, or other character-
istics of glass. Some oxides, such as B2O3, can form a glass themselves and may result in a two-
phase structure. Leaded glass contains PbO, in which the lead participates in the chain structure.
This modifies the glass to increase its resistivity and also gives a high index of refraction, which
contributes to the brilliance of fine crystal. The addition of Al2O3 increases the strength and stiffness
of the glass fibers used in fiberglass and other composite materials.
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Figure 3.23 Composites reinforced by (a) particles, (b) chopped fibers or whiskers, and
(c) continuous fibers. (Adapted from [Budinski 96] p. 121; c© 1996 by Prentice Hall, Upper
Saddle River, NJ; reprinted with permission.)

3.7 COMPOSITE MATERIALS

A composite material is made by combining two or more materials that are mutually insoluble by
mixing or bonding them in such a way that each maintains its integrity. Some composites have
already been discussed, namely, plastics modified by adding rubber particles, plastics reinforced by
chopped glass fibers, cemented carbides, and concrete. These and many other composite materials
consist of a matrix of one material that surrounds particles or fibers of a second material, as shown
in Fig. 3.23. Some composites involve layers of different materials, and the individual layers
may themselves be composites. Materials that are melted (alloyed) together are not considered
composites, even if a two-phase structure results, nor are solid solutions or precipitate structures
arising from solid solutions. Some representative types and examples of composite materials and
their uses are listed in Table 3.12.

Materials of biological origin are usually composites. Wood contains cellulose fibers sur-
rounded by lignin and hemicellulose, all of which are polymers. Bone is composed of the
fibrous protein collagen in a ceramic-like matrix of the crystalline mineral hydroxylapatite,
Ca5(PO4)3OH.

Composite materials have a wide range of uses, and their use is rapidly increasing. Man-made
composites can be tailored to meet special needs such as high strength and stiffness combined
with light weight. The resulting high-performance (and expensive) materials are increasingly being
used in aircraft, space, and defense applications, and also for high-grade sports equipment, as in
golf club shafts and fishing rods. More economical composites, such as glass-reinforced plastics,
are continually finding new uses in a wide range of products, such as automotive components,
boat hulls, sports equipment, and furniture. Wood and concrete, of course, continue to be major
construction materials, and new composites involving these and other materials have also come into
recent use in the construction industry.

Various classes of composite materials will now be discussed.

3.7.1 Particulate Composites

Particles can have various effects on a matrix material, depending on the properties of the
two constituents. Ductile particles added to a brittle matrix increase the toughness, as cracks
have difficulty passing through the particles. An example is rubber-modified polystyrene, the
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Table 3.12 Representative Types and Examples of Composite Materials

Reinforcing Type Matrix Type Example Typical Use

(a) Particulate composites
Ductile polymer Brittle polymer Rubber in Toys, cameras

or elastomer polystyrene
Ceramic Ductile metal WC with Co metal Cutting tools

binder
Ceramic Ceramic Granite, stone, and Bridges, buildings

silica sand in
Portland cement

(b) Short-fiber, whisker composites
Strong fiber Thermosetting Chopped glass in Auto body panels

plastic polyester resin
Ceramic Ductile metal SiC whiskers in Al alloy Aircraft structural

panels

(c) Continuous-fiber composites
Ceramic Thermosetting Graphite in epoxy Aircraft wing flaps

plastic
Ceramic Ductile metal Boron in Al alloy Aircraft structure
Ceramic Ceramic SiC in Si3N4 Engine parts

(d) Laminated composites
Stiff sheet Foamed polymer PVC and ABS sheets Canoes

over ABS foam core
Composite Metal Kevlar in epoxy Aircraft structure

between Al alloy
layers (ARALL)

microstructure of which has already been illustrated in Fig. 3.19. Another ductile particle composite
made from two polymers is shown broken open in Fig. 3.24.

Particles of a hard and stiff (high E) material added to a ductile matrix increase its strength and
stiffness. An example is carbon black added to rubber. As might be expected, hard particles generally
decrease the fracture toughness of a ductile matrix, and this limits the usefulness of some composites
of this type. However, the composite may still be useful if it has other desirable properties that
outweigh the disadvantages of limited toughness, such as the high hardness and wear resistance of
cemented carbides.

If the hard particles in a ductile matrix are quite small and limited in quantity, the reduction
in toughness is modest. In a metal matrix, a desirable strengthening effect similar to that of
precipitation hardening can be achieved by sintering the metal in powder form with ceramic particles
of size on the order of 0.1 μm. This is called dispersion hardening. The volume fraction of particles
seldom exceeds 15%, and the amount may be as small as 1%. Aluminum reinforced in this manner
with Al2O3 has improved creep resistance. Tungsten is similarly dispersion hardened with small
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Figure 3.24 Fracture surface of polyphenylene oxide (PPO) modified with high-impact
polystyrene particles. (Photo courtesy of General Electric Co., Pittsfield, MA.)

amounts of oxide ceramics, such as ThO2, Al2O3, SiO2, and K2O, so that it has sufficient creep
resistance for use in lightbulb filaments. Note that particles introduced in this manner will not have
a coherent crystal structure with the parent material.

3.7.2 Fibrous Composites

Strong and stiff fibers can be made from ceramic materials that are difficult to use as structural
materials in bulk form, such as glass, graphite (carbon), boron, and silicon carbide (SiC). When
these are embedded in a matrix of a ductile material, such as a polymer or a metal, the resulting
composite can be strong, stiff, and tough. The fibers carry most of the stress, whereas the matrix
holds them in place. Fibers and matrix can be seen in the photograph of a broken open composite
material in Fig. 3.25. Good adhesion between fibers and matrix is important, as this allows the
matrix to carry the stress from one fiber to another where a fiber breaks or where one simply ends
because of its limited length. Fiber diameters are typically in the size range 1 to 100 μm.

Fibers are used in composites in a variety of different configurations, two of which are shown
in Fig. 3.23. Short, randomly oriented fibers result in a composite that has similar properties in all
directions. Chopped glass fibers used to reinforce thermoplastics are of this type. Whiskers are a
special class of short fiber that consist of tiny, elongated, single crystals that are very strong because
they are dislocation free. Diameters are 1 to 10 μm or smaller, and lengths are 10 to 100 times
larger than the diameter. For example, randomly oriented SiC whiskers can be used to strengthen
and stiffen aluminum alloys.

Long fibers can be woven into a cloth or made into a mat of intertwined strands. Glass fibers
in both of these configurations are used with polyester resins to make common fiberglass. High-
performance composites are often made by using long, straight, continuous fibers. Continuous fibers
all oriented in a single direction provide maximum strength and stiffness parallel to the fibers. Since
such a material is weak if stressed in the transverse direction, several thin layers with different fiber
orientations are usually stacked into a laminate, as shown in Fig. 3.26. For example, composites
with a thermosetting plastic matrix, often epoxy, are assembled in this manner by using partially
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Figure 3.25 Fracture surface showing broken fibers for a composite of Nicalon-type SiC fibers
in a CAS glass–ceramic matrix. (Photo by S. S. Lee; material manufactured by Corning.)

Figure 3.26 Laminated composites. Sheets having various fiber directions, as shown in (a),
may be bonded together. The ARALL laminate (b) is constructed with aluminum sheets
bonded to sheets of composite, with the latter being made of Kevlar fibers in an epoxy matrix.

cured sheets, which are called prepregs because they have been previously impregnated with the
epoxy resin. Appropriate heat and pressure are applied to complete the cross-linking reaction, while
at the same time bonding the layers into a solid laminate. Fibers commonly used in this manner with
an epoxy matrix include glass, graphite, boron, and the aramid polymer Kevlar. The microstructure
of a laminated composite can be seen in Fig. 3.27.

For polymer matrix fibrous composites, strengths comparable to those of structural metals are
obtained, as shown in Fig. 3.28(a). The values for ordinary polyester matrix fiberglass and the
lower strength structural metals are similar. But for epoxy reinforced with long fibers of S-glass or
graphite, the strength rivals that of the stronger steels. Values of stiffness (E) for high-performance
laminates are comparable to those for aluminum, but less than for steel. However, in considering
materials for weight-critical applications such as aircraft structure, it is more relevant to consider the
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Figure 3.27 Microstructure of a graphite reinforced polymer composite, showing fibers
normal to the sectioned surface, and others approximately parallel, as imaged by the
Nomarski DIC technique. The matrix is a thermosetting polymer with a toughening agent.
(Photo courtesy of George F. Vander Voort, Vander Voort Consulting, Wadsworth, IL; used
with permission.)

strength-to-weight ratio and the stiffness-to-weight ratio. On this basis, high-performance fibrous
composites are superior to structural metals in both strength and stiffness. This is illustrated for
strength by Fig. 3.28(b).

Due to the limitations of the matrix, polymer matrix composites have limited resistance to
high temperature. Composites with an aluminum or titanium matrix have reasonable temperature
resistance. These metals are sometimes used with continuous straight fibers of silicon carbide of
fairly large diameter, around 140 μm. Other fiber types and configurations are also used.

For high-temperature applications, ceramic matrix composites have been developed. These
materials have a matrix that is already strong and stiff, but which is brittle and has a low fracture
toughness. Whiskers or fibers of another ceramic can act to retard cracking by bridging across small
cracks that exist and holding them closed so that their growth is retarded. For example, whiskers of
SiC in a matrix of Al2O3 are used in this manner. Continuous fibers can also be used, such as SiC
fibers in a matrix of Si3N4. Some intermetallic compounds, such as Ti3Al and NiAl, have ceramic-
like properties, but also a helpful degree of ductility at high temperature that encourages their use
as matrix materials for temperature-resistant composites.

3.7.3 Laminated Composites

A material made by combining layers is called a laminate. The layers may differ as to the fiber
orientation, or they may consist of different materials. Plywood is a familiar example of a laminate,
the layers differing as to grain direction and perhaps also as to type of wood. As already noted,
unidirectional composite sheets are frequently laminated, as in Fig. 3.26(a). Aramid–aluminum
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Figure 3.28 Comparison of strength for various classes of structural metals and polymer
matrix composites, showing ranges for (a) tensile strength, and (b) tensile strength per
unit weight. (Data from [Farag 89] pp. 174–176.)

laminate (ARALL) has layers of an aluminum alloy and a composite with unidirectional Kevlar
fibers in an epoxy matrix. See Fig. 3.26(b).

Where stiffness in bending is needed along with light weight, layers of a strong and stiff material
may be placed on either side of a lightweight core. Such sandwich materials include aluminum
or fibrous composite sheets bonded on each side of a core that is made of a stiff foam. Another
possibility is a core made of a honeycomb of aluminum or other material.

3.8 MATERIALS SELECTION FOR ENGINEERING COMPONENTS

An engineering component, such as a beam, shaft, tension member, column, or machine part, must
not deform excessively or fail by fracture or collapse. At the same time, the cost and often the weight
must not be excessive. The most basic consideration in avoiding excessive deformation is to limit
the deflection due to elastic strain. For a given component geometry and applied load, the resistance
to elastic deflection—that is, the stiffness—is determined by the elastic modulus E of the material.
As to strength, the most basic requirement is to avoid having the stress exceed the failure strength
of the material, such as the yield strength σo from a tension test.

Consider the general situation in which an engineering component must meet one or more
requirements related to its performance, such as a maximum permissible deflection and/or a
given safety factor against yielding in the material. Further, assume that any of several candidate
materials may be chosen. It is often possible in such situations to perform a systematic analysis
that will provide a ranking of materials for each performance requirement, thus providing an
organized framework for making the final choice. Such methodology will be introduced in
this section.

Before we proceed, note that materials properties such as the elastic modulus and yield strength
will be considered in detail in the next chapter from the viewpoint of obtaining their values from
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Table 3.13 Selected Typical Materials for Selection Examples and Problems

Elastic Modulus Strength Density Relative
Material Type Example E, GPa σc, MPa ρ, g/cm3 Cost, Cm

Structural (mild) steel AISI 1020 steel 203 2601 7.9 1

Low alloy steel AISI 4340 steel 207 11031 7.9 3

High strength 7075-T6 Al 71 4691 2.7 6
aluminum alloy

Titanium alloy Ti-6Al-4V 117 11851 4.5 45

Engineering polymer Polycarbonate (PC) 2.4 621 1.2 5

Wood Loblolly pine 12.32 882 0.51 1.5

Economical composite Glass cloth in epoxy 21 3803 2.0 10
(GFRP)

High-performance Graphite fiber in epoxy 76 9303 1.6 200
composite laminate (CFRP)

Notes: 1Yield strengths σo in tension are listed for metals and polymers. 2Elastic modulus and ultimate
strength in bending are given for loblolly pine. 3Ultimate tensile strength σu is provided for composites.
Sources: Tables 4.2, 4.3, and 14.1; author’s synthesis of miscellaneous data.

laboratory tests. However, for our present purposes, it will be sufficient to employ the simple
definitions given in Section 1.2.1. The elastic modulus E is specifically a measure of the stiffness
of the material under axial loading. For shear stress and strain, which are important for torsional
loading, it is replaced by the similarly defined shear modulus G. The yield strength σo is mainly
relevant to ductile materials, where this stress characterizes the beginning of relatively easy further
deformation. For brittle materials, there is no clear yielding behavior, and the most important
strength property is the ultimate tensile strength σu . (See Fig. 1.3.) In addition, we will need to
employ some results from elementary mechanics of materials, specifically equations for stresses
and deflections for simple component geometries. Such equations for selected cases are given in
Appendix A at the end of this book, especially in Figs. A.1, A.4, and A.7.

A few representative structural engineering materials from various classes and some of their
properties are listed in Table 3.13. We will use this list in examples and problems related to materials
selection. There are, of course, many thousands of engineering materials or variations of a given
material. Hence, selections from this list should be regarded only as a rough indication of what
class or classes of material might be considered in more detail for a given situation.

3.8.1 Selection Procedure

Consider the case of a cantilever beam having a circular cross section and a load at the end, as
in Fig. 3.29. Assume that the function of the beam requires that it have a particular length L and
be capable of carrying a particular load P . Further, let it be required that the maximum stress be
below the failure strength of the material, σc = σo or σu , by a safety factor X , which might be on
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d = 2r
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Figure 3.29 Cantilever beam.

the order of 2 or 3. Weight is critical, so the mass m of the beam must be minimized. Finally, the
diameter, d = 2r , of the cross section may be varied to allow the material chosen to meet the various
requirements just noted.

A systematic procedure can be followed that allows the optimum material to be chosen in this
and other analogous cases. To start, classify the variables that enter the problem into categories as
follows: (1) requirements, (2) geometry that may vary, (3) materials properties, and (4) quantity to
be minimized or maximized. For the beam example, with ρ being the mass density, these are

1. Requirements: L , P , X
2. Geometry variable: r
3. Material properties: ρ, σc

4. Quantity to minimize: m

Next, express the quantity Q to be minimized or maximized as a mathematical function of the
requirements and the material properties, in which the geometry variable does not appear:

Q = f1 (Requirements) f2 (Material) (3.1)

For the beam example, Q is the mass m, so that the functional dependencies needed are

m = f1(L , P, X) f2(ρ, σc) (3.2)

with the beam radius r not appearing. Note that all the quantities in f1 are constants for a given
design, whereas those in f2 vary with material.

For the procedure to work, the equation for Q must be expressed as the product of two separate
functions f1 and f2, as indicated. Fortunately, this is usually possible. The geometry variable cannot
appear, as its different values for each material are not known at this stage of the procedure.
However, it can be calculated later for any desired values of the requirements. Once the desired
Q = f1 f2 is obtained, it may be applied to each candidate material, and the one with smallest or
largest value of Q chosen, depending on the situation.
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Example 3.1
For the beam of Fig. 3.29 and the materials of Table 3.13, proceed as follows:

(a) Perform the materials selection for minimum mass.
(b) Calculate the beam radius r that is required for each material. Assume values of

P = 200 N, L = 100 mm, and X = 2.

Solution (a) To obtain the specific mathematical expression for Eq. 3.2, start by expressing
the mass as the product of the beam volume and the mass density:

m = (πr2L)ρ

The beam radius r needs to be eliminated and the other variables brought into the equation. This
can be accomplished by noting that the maximum stress in the beam is

σ = Mmaxc1

Iz

where this is the standard expression for stress due to bending, as obtained from Fig. A.1(b) in
Appendix A.

For a circular cross section, the distance c1 = r . The area moment of inertia from Fig. A.2(b)
and the maximum bending moment from Fig. A.4(c) are

Iz = πr4

4
, Mmax = P L

Substituting for Mmax, c1, and Iz in the equation for stress σ gives

σ = (P L)(r)

(πr4/4)
= 4P L

πr3

The highest permissible stress is the materials failure strength divided by the safety factor:

σ = σc

X

Combining the last two equations and solving for r then gives

r =
(

4P L X

πσc

)1/3

Finally, substituting this expression for r into the equation for m gives

m = π Lρ

(
4P L X

πσc

)2/3

, m = [ f1][ f2] =
[
π

(
4P X

π

)2/3

L5/3

][
ρ

σ
2/3
c

]
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Table E3.1

ρ

σ
2/3
c

Rank for Radius
Cmρ

σ
2/3
c

Rank for
Material Min. Mass r , mm Min. Cost

Structural steel 0.194 8 5.81 0.194 2

Low-alloy steel 0.0740 6 3.59 0.222 3

Aluminum alloy 0.0447 5 4.77 0.268 4

Titanium alloy 0.0402 4 3.50 1.81 7

Polymer 0.0766 7 9.37 0.383 6

Wood 0.0258 2 8.33 0.0387 1

Glass–epoxy 0.0381 3 5.12 0.381 5

Graphite–epoxy 0.0168 1 3.80 3.36 8

Notes: Units are g/cm3 for ρ and MPa for σc. The strength σc is the
yield strength for metals, and the ultimate strength for wood, glass, and
composites. Ranks are 1 = best, etc., for minimum mass or cost.

where the second form has been manipulated to obtain the desired separate f1 and f2, as set off
by brackets.

Since all of the quantities in f1 have fixed values, the mass will be minimized if the f2
expression is minimized. For example, for AISI 1020 steel,

f2 = ρ

σ
2/3
c

= 7.9 g/cm3

(260 MPa)2/3
= 0.194

The similarly calculated values for the other materials are listed in the first column of
Table E3.1.

The ranking of materials as to mass (1 = best, etc.) is given in the second column. On this
basis, the graphite–epoxy composite is the best choice and wood the second best.

(b) Values of the required beam radius r may be calculated from the equation just developed
with the given values of P , L , and X , along with σc for each material. For AISI 1020 steel, this
gives

r =
(

4P L X

πσc

)1/3

=
[

4(200 N)(100 mm)(2)

π(260 N/mm2)

]1/3

= 5.81 mm

The similarly calculated values for the other materials are listed in the third column of
Table E3.1.

3.8.2 Discussion

In selecting a material, there may be additional requirements or more than one quantity that needs
to be maximized or minimized. For example, for the preceding beam example, there might be a
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maximum permissible deflection. Application of the selection procedure to this situation gives a
new f2 = f2(ρ, E) and a different ranking of materials. Hence, a compromise choice that considers
both sets of rankings may be needed.

Cost is almost always an important consideration, and the foregoing selection procedure can
be applied, with Q being the cost. Since costs of materials vary with time and market conditions,
current information from materials suppliers is needed for an exact comparison of costs. Some rough
values of relative cost are listed for the materials in Table 3.13. These relative costs are obtained by
rationing the cost to that of ordinary low-carbon structural steel (mild steel). Values are given in
terms of relative cost per unit mass, Cm . The material ranking in terms of cost will seldom agree
with that based on performance, so compromise is usually required in making the final selection.

Other factors besides stiffness, strength, weight, and cost usually also affect the selection
of a material. Examples include the cost and practicality of manufacturing the component from
the material, space requirements that limit the permissible values of the geometry variable, and
sensitivity to hostile chemical and thermal environments. Concerning the latter, particular materials
are subject to degradation in particular environments, and these combinations should be avoided.
Information on environmental sensitivity is included in materials handbooks, such as those listed at
the end of this chapter.

In addition to deflections due to elastic strain, there are situations in which it is important
to consider deflections, or even collapse, due to plastic strain or creep strain. Also, fracture may
occur by means other than the stress simply exceeding the materials yield or ultimate strength. For
example, flaws may cause brittle fracture, or cyclic loading may lead to fatigue cracking at relatively
low stresses. Materials selection must consider such additional possible causes of component failure.
Note that plasticity, creep, fracture, and fatigue are covered in later chapters in this book, starting
with Chapter 8.

The general type of systematic materials selection procedure considered in this section is
developed in detail in the book by Ashby (2011), and it is also employed in the CES Selector 2009
materials database.

Example 3.2
For the beam problem of Ex. 3.1, extend the analysis to a consideration of cost.

Solution This can be accomplished by minimizing the quantity

Q = Cmm

where Cm is the relative cost per unit mass from Table 3.13. Using the expression obtained for
mass m near the end of Ex. 3.1, we find that this Q is

Q = [ f1(L , P, X)]

[
Cmρ

σ
2/3
c

]

where f1 is the same as before, and the quantity to be minimized is the expression in the second
brackets. Values of this new f2 are added to Table E3.1, along with a new ranking.
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If cost is indeed important, the previous choice of graphite–epoxy composite would probably
have to be eliminated as it is the most costly. Wood is now the highest ranking material, and mild
steel is the second highest. If both light weight and cost are important, then wood is the clear
choice. If wood is unsuitable for some reason, then either glass–epoxy composite or an aluminum
alloy might be chosen as representing a reasonable compromise.

3.9 SUMMARY

A number of metals have combinations of properties and availability that result in their use as load-
resisting engineering materials. These include irons and steels, and aluminum, titanium, copper, and
magnesium. Pure metals in bulk form yield at quite low stresses, but useful levels of strength can
be obtained by introducing obstacles to dislocation motion through such means as cold work, solid-
solution strengthening, precipitation hardening, and the introduction of multiple phases. Alloying
with various amounts of one or more additional metals or nonmetals is usually needed to achieve
this strengthening and to otherwise tailor the properties to obtain a useful engineering metal.

In steels, small amounts of carbon and other elements in solid solution provide some
strengthening without heat treatment. For carbon contents above about 0.3%, substantially greater
strengthening can be obtained from heat treating by the quenching and tempering process. Small
percentages of alloying elements, such as Ni, Cr, and Mo, enhance the strengthening effect. Special
steels, such as stainless steels and tool steels, typically include fairly substantial percentages of
various alloying elements.

Considering aluminum alloys, the highest strengths in this lightweight metal are obtained by
alloying and heat treatment that causes precipitation hardening (aging) to be effective. Magnesium
is strengthened in a similar manner and is noteworthy as being the lightest engineering metal.
Titanium alloys are somewhat heavier than aluminum, but have greater temperature resistance.
They are strengthened by a combination of the various methods, including multiple phase effects in
the alpha–beta alloys. Superalloys are corrosion- and temperature-resistant metals that have large
percentages of two or more of the metals nickel, cobalt, and iron.

Polymers have long chainlike molecules, or a network structure, based on carbon. Compared
to metals, they lack strength, stiffness, and temperature resistance. However, these disadvantages
are offset to an extent by light weight and corrosion resistance, leading to their use in numerous
low-stress applications. Polymers are classified as thermoplastics if they can be repeatedly melted
and solidified. Some examples of thermoplastics are polyethylene, polymethyl methacrylate, and
nylon. Contrasting behavior occurs for thermosetting plastics, which change chemically during
processing and thereafter cannot be melted. Examples include phenolics and epoxies. Elastomers,
such as natural and synthetic rubbers, are distinguished by being capable of deformations of at least
100% to 200%, and of then recovering most of this deformation after removal of the stress.

A given thermoplastic is usually glassy and brittle below its glass transition temperature, Tg .
Above the Tg of a given polymer, the stiffness (E) is likely to be very low unless the material has
a substantially crystalline structure. Stiffness and strength in polymers is also enhanced by longer
lengths of the chain molecules, by chain branching in amorphous polymers, and by cross-linking
between chains. Thermosetting plastics have a molecular structure that causes a large number of
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cross-links, or a network structure, to form during processing. Once these covalent bonds are
formed, the material cannot later be melted—this explains the thermosetting behavior. Vulcanizing
of rubber is also a thermosetting process, in which case sulfur atoms form bonds that link chain
molecules.

Ceramics are nonmetallic and inorganic crystalline solids that are generally chemical com-
pounds. Clay products, porcelain, natural stone, and concrete are fairly complex combinations of
crystalline phases, primarily silica (SiO2) and metal oxides, and CaCO3 in the case of some natural
stones, bound together by various means. High-strength engineering ceramics tend to be fairly
simple chemical compounds, such as metal oxides, carbides, or nitrides. Cermets, such as cemented
carbides, are ceramic materials sintered with a metal phase that acts as a binder. Glasses are amor-
phous (noncrystalline) materials consisting of SiO2 combined with varying amounts of metal oxides.

All ceramics and glasses tend to be brittle, compared with metals. However, many have
advantages, such as light weight, high stiffness, high compressive strength, and temperature
resistance, that cause them to be the most suitable materials in certain situations.

Composites are combinations of two or more materials, with one generally acting as a matrix
and the other as reinforcement. The reinforcement may be in the form of particles, short fibers,
or continuous fibers. Composites include many common man-made materials, such as concrete,
cemented carbides, and fiberglass, and other reinforced plastics, as well as biological materials,
notably wood and bone. High-performance composites, as used in aerospace applications, generally
employ high-strength fibers in a ductile matrix. The fibers are often a ceramic or glass, and the
matrix is typically a polymer or a lightweight metal. However, even a ceramic matrix is made
stronger and less brittle by the presence of reinforcing fibers.

It is often useful to combine layers to make a laminated composite. The layers may differ as to
fiber direction, or they may consist of more than one type of material, or both. High-performance
composite laminates may be advantageous for use in situations such as aerospace structure, as their
strength and stiffness are both quite high compared with those of metals on a unit-weight basis.

Materials selection for engineering design requires an understanding of materials and their
behavior, and also detailed information as found in handbooks or provided by materials suppliers.
Systematic analysis as described in Section 3.8 may be useful.

The survey of engineering materials given in this chapter should be considered to be only a
summary. Numerous sources of more detailed information exist, some of which are given in the
References section of this chapter. Companies that supply materials are also often a useful source
of information on their particular products.

N E W T E R M S A N D S Y M B O L S

alpha–beta titanium alloy
annealing
austenite
casting
cast iron
cemented carbide
cementite, Fe3C

ceramic
cermet
coherent precipitate
cold work
composite material
copolymer
cross-linking
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deformation processing
dispersion hardening
ductile (nodular) iron
elastomer
ferrite
fibrous composite
glass
grain refinement
gray iron
heat treatment
intermetallic compound
laminate
low-alloy steel
martensite
materials selection
network modifier
particulate composite
pearlite

plain-carbon steel
plasticizer
precipitation hardening
quenching and tempering
reinforced plastic
second phase
sintering
solid-solution strengthening
stainless steel
steel
superalloy
thermoplastic
thermosetting plastic
tool steel
vulcanization
whisker
wrought metals
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PROBLEMS AND QUESTIONS

Sections 3.2 to 3.4
3.1 Examine several small metal tools or parts. Try to determine whether each was formed by

forging, rolling, extrusion, drawing, or casting. Consider the overall shape of the object, any
surface features that exist, and even words that are marked on the part.

3.2 Nickel and copper are mutually soluble in all percentages as substitutional alloys with an FCC
crystal structure. The effect of up to 30% nickel on the yield strength of copper is shown in
Fig. 3.3. Draw a qualitative graph showing how you expect the yield strength of otherwise
pure Cu-Ni alloys to vary as the nickel content is varied from zero to 100%.

3.3 Briefly explain why austenitic stainless steels cannot be strengthened by quenching and
tempering.

3.4 In the development of human technology, the stone age was followed by a bronze age, which
in turn was followed by an iron age. Why not a brass age? (Note that copper alloyed with 35%
zinc gives a typical brass. Also, copper alloyed with 10% tin gives a typical bronze.) Why did
the iron age not occur immediately after the stone age?

3.5 Explain why beryllium metal is a good choice for the hexagonal sections of the primary mirror
for the James Webb Space Telescope, scheduled by NASA to be launched in 2014. Start by
finding values of some of the basic properties of beryllium, such as its melting temperature
Tm , density ρ, elastic modulus E , and coefficient of thermal expansion α, as well as general
information about this telescope.

Section 3.5
3.6 In your own words, explain why thermosetting plastics do not have a pronounced decrease in

the elastic modulus, E , at a glass transition temperature, Tg.

3.7 For the polymers in Table 3.9, plot Tg versus Tm after converting both to absolute temperature.
Use a different plotting symbol for each class of polymers. Does there appear to be a correla-
tion between Tg and Tm? Are there different trends for the different classes of polymers?

3.8 Engineering plastics in bulk form typically have elastic moduli in the range E = 2 to 3 GPa.
However, for Kevlar fibers, the value can be as high as 120 GPa. Explain how this is possible.

3.9 Ultrahigh molecular weight polyethylene (UHMWPE) is used for bearing surfaces in joint
replacement surgery. Consult one or more references, and/or do an Internet search, on this
subject. Determine in more detail how and where UHMWPE is used in the human body,
and identify its special characteristics that make it suitable for such use. Then write a few
paragraphs summarizing what you have found.
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Section 3.6
3.10 For S-glass in Table 3.11, explain why some oxides commonly used in glass are not included

and why the percentage of Al2O3 is high. How would you expect the strength of S-glass fibers
to compare with those of E-glass?

3.11 Consider the data for strength of Al2O3, SiC, and glass in both bulk and fiber form in
Tables 3.10 and 2.2(b), respectively. Explain the large differences between the strengths in
tension and compression for these materials in bulk form, and also explain why the strengths
of fibers in tension are so much greater than for bulk material.

3.12 The ancient Romans employed a volcanic ash called pozzolana to make a material somewhat
similar to the modern Portland cement concrete. Consult sources beyond this textbook and
write two or three paragraphs about how this material differed from modern concrete, and
how it was similar, and the Roman’s degree of success in using it as a building material.

Section 3.7
3.13 Compute strength-to-density and stiffness-to-density ratios, σu/ρ and E/ρ, for the first five

metals in Table 3.1 and for the SiC and Al2O3 whiskers and fibers in Table 2.2(a) and (b). Use
the upper limits of strength for the metals. For SiC and Al2O3, use densities from Table 3.10
as approximate values. Plot σu/ρ versus E/ρ, using different plotting symbols for metals,
fibers, and whiskers. What trends do you observe? Discuss the significance of these trends
in view of the possibility of making metal matrix composites containing, say, 50% fibers or
whiskers by volume.

3.14 Concisely discuss the differences between precipitation hardening and dispersion hardening.

Section 3.8
3.15 Consider the beam of circular cross section of Fig. 3.29 and Ex. 3.1. As before, the radius r of

the cross section may vary with material, and the beam is required to have length L and carry
load P . However, in this case, the strength requirement is replaced by a requirement that the
deflection not exceed a particular value vmax.

(a) Select a material from Table 3.13 such that the mass is minimized.
(b) Repeat the selection with cost being minimized.
(c) Briefly discuss your results, and suggest one or more materials that represent a

reasonable choice, where both light weight and cost are important.
3.16 Consider a tension member that is part of the structure of a personal aircraft. For a preliminary

materials selection, assume that the member has a square cross section of side h that may vary
with material choice. The length L is fixed. There are two functional requirements. First, a
force P must be resisted such that there is a safety factor X against the material exceeding
its failure strength. Second, the deflection due to force P must not exceed a given length
change �L . Make a compromise choice among the materials of Table 3.13 that considers these
requirements, light weight, cost, and any other considerations that you believe are important.
Briefly justify your choice.

3.17 A column is a structural member that resists a compressive force. If a column fails, it does so
by buckling—that is, by suddenly deflecting sideways. For relatively long, thin columns, this
occurs at a critical load of
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Pcr = π2 E I

L2

where E is the elastic modulus of the column material and I is the moment of inertia of the
cross-sectional area. Assume that the cross section is a thin-walled tube of wall thickness t
and inner radius r1, with the proportions t = 0.2r1 being maintained, as the section size is
allowed to vary with material choice. The column must have a particular length L and resist
a load P that is lower than Pcr by a safety factor X . Noting that the relative importance of
light weight and cost may vary with the application, make a preliminary selection of column
materials from Table 3.13 for the following:

(a) A structural compression member in a space station.
(b) A support for the second floor above the garage in a private residence.

3.18 A spherical pressure vessel that must hold compressed air is to be designed with a given
inner radius r1, and the wall thickness t may vary with material choice. The vessel must resist
a pressure p such that there is a safety factor X against the material exceeding its failure
strength.

(a) Considering weight and cost, and any other factors that you believe to be important,
make a preliminary materials selection from Table 3.13 for this application.

(b) Calculate the vessel thickness required for each material. Assume a vessel inner
radius of r1 = 2 m, a pressure of p = 0.7 MPa, and a safety factor on the material
strength of X = 3. Comment on the values obtained. Why are some much larger than
others?

3.19 A leaf spring in the suspension system of an experimental vehicle is a beam of length
L = 0.5 m, with a rectangular cross section, as shown in Fig. P3.19. This part, as currently
designed with a low-alloy steel, has a width t = 60 mm and a depth h = 5 mm. However,
if possible, it is desirable to replace this steel with another material to reduce the weight
of the component. To avoid redesigning other related parts, the t dimension should not be
changed, but h can be varied, as long as it does not exceed 12 mm. The spring stiffness must
be k = P/v = 50 kN/m. Also, the spring hits a limit to its motion at vmax = 30 mm, at which
point the stress should not be so large that the safety factor against material failure is less than
X = 1.4.

(a) First, considering only the k = 50 kN/m requirement, determine which materials in
Table 3.13 would provide a lighter weight component.

(b) Next, for each material, calculate the h necessary to meet the k = 50 kN/m require-
ment, and also the safety factor relative to σc at vmax = 30 mm. Eliminate any materials
that do not meet h ≤ 12 mm and X ≥ 1.4.

(c) Finally, compare the alloy steel design with the use of each of the remaining candidates,
considering cost and any other factors that you believe to be important.

3.20 A beam is simply supported at its ends, has a length L = 1.50 m, and is subjected to a
uniformly distributed load w = 2.00 kN/m, as in Fig. A.4(b). The beam is a hollow box
section, as in Fig. A.2(d), with proportions b2 = h2 and b1 = h1 = 0.70h2. There are two
design requirements: The safety factor against yielding or other failure of the material must
be at least X = 3.0, and the midspan deflection must not exceed 25 mm. Using properties from
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Table 3.13, consider making the beam from one of three materials, AISI 4340 steel, 7075-T6
Al, or glass–epoxy composite.

(a) What beam size h2 is required for each material to meet the X = 3 requirement?
(b) What size h2 is required for each material to avoid a deflection greater than 25 mm?
(c) Considering both requirements, what is the required size h2 for each choice of material?
(d) Which choice of material is the most economical? The lightest weight?

Section 3.9
3.21 Examine a bicycle and attempt to identify the materials used for six different parts. How is

each material appropriate for use in the part where it is found? (You may wish to visit a bicycle
shop or consult a book on bicycling.)

3.22 Look at one or more catalogs that include toys, sports equipment, tools, or appliances. Make
a list of the materials named, and guess at a more precise identification where trade names or
abbreviated names are used. Are any composite materials identified?



4
Mechanical Testing: Tension
Test and Other Basic Tests
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OBJECTIVES

• Become familiar with the basic types of mechanical tests, including tests in tension,
compression, indentation hardness, notch impact, bending, and torsion.

• Analyze data from tension tests to determine materials properties, including both engineering
properties and true stress–strain properties.

• Understand the significance of the properties obtained from basic mechanical tests, and
explore some of the major trends in behavior that are seen in these tests.

4.1 INTRODUCTION

Samples of engineering materials are subjected to a wide variety of mechanical tests to measure
their strength or other properties of interest. Such samples, called specimens, are often broken or
grossly deformed in testing. Some of the common forms of test specimen and loading situation are
shown in Fig. 4.1. The most basic test is simply to break the sample by applying a tensile force, as in
(a). Compression tests (b) are also common. In engineering, hardness is usually defined in terms of
resistance of the material to penetration by a hard ball or point, as in (c). Various forms of bending
test are also often used, as is torsion of cylindrical rods or tubes.

The simplest test specimens are smooth (unnotched) ones, as illustrated in Fig. 4.2(a). More
complex geometries can be used to produce conditions resembling those in actual engineering

118
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(a) (b)

(c)

(d)

(e)

(f)
(g)

Figure 4.1 Geometry and loading situations commonly employed in mechanical testing of
materials: (a) tension, (b) compression, (c) indentation hardness, (d) cantilever bending,
(e) three-point bending, (f) four-point bending, and (g) torsion.

(a) (b) (c)

Figure 4.2 Three classes of test specimen: (a) smooth or unnotched, (b) notched, and
(c) precracked.

components. Notches that have a definite radius at the end may be machined into test specimens, as
in (b). (The term notch is used here in a generic manner to indicate any notch, hole, groove, slot,
etc., that has the effect of a stress raiser.) Sharp notches that behave similar to cracks are also used,
as well as actual cracks that are introduced into the specimen prior to testing, as in (c).

To understand mechanical testing, it is first necessary to briefly consider materials testing
equipment and standard test methods. We will then discuss tests involving tension, compression,
indentation, notch impact, bending, and torsion. Various more specialized tests are discussed in
later chapters in connection with such topics as brittle fracture, fatigue, and creep.

4.1.1 Test Equipment

Equipment of a variety of types is used for applying forces to test specimens. Test equipment ranges
from very simple devices to complex systems that are controlled by digital computer.

Two common configurations of relatively simple devices called universal testing machines are
shown in Fig. 4.3. These general types of testing machine first became widely used from 1900 to
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Figure 4.3 Schematics of two relatively simple testing machine designs, called universal
testing machines. The mechanical system (top) drives two large screws to apply the force,
and the hydraulic system (bottom) uses the pressure of oil in a piston. (From [Richards 61]
p. 114; reprinted by permission of PWS-Kent Publishing Co., Boston, MA.)
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1920, and they are still frequently employed today. In the mechanical-screw-driven machine (top
diagram), rotation of two large threaded posts (screws) moves a crosshead that applies a force to the
specimen. A simple balance system is used to measure the magnitude of the force applied. Forces
may also be applied by using the pressure of oil pumped into a hydraulic piston (bottom diagram). In
this case, the oil pressure provides a simple means of measuring the force applied. Testing machines
of these types can be used for tension, compression, or bending, and torsion machines based on a
similar level of technology are also available.

The introduction of the Instron Corp. testing machine in 1946 represented a major step, in that
rather sophisticated electronics, based initially on vacuum tube technology, came into use. This is
also a screw-driven machine with a moving crosshead, but the electronics, used both in controlling
the machine and in measuring forces and displacements, makes the test system much more versatile
than its predecessors.

Around 1958, transistor technology and closed-loop automation concepts were employed by the
forerunner of the present MTS Systems Corp. to develop a high-rate test system that used a double-
action hydraulic piston, as illustrated in Fig. 4.4. The result is called a closed-loop servohydraulic
test system. Desired variations of force, strain, or testing machine motion (stroke) can be enforced

Figure 4.4 Modern closed-loop servohydraulic testing system. Three sensors are employed:
(a) load cell, (b) extensometer, and (c) LVDT. (Adapted from [Richards 70]; used with
permission.)
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upon a test specimen. Note that the only active motion is that of the actuator rod and piston
combination. Hence, the stroke of this actuator replaces the crosshead motion in the older types
of testing machines.

The closed-loop servohydraulic concept is the basis of the most advanced test systems in use
today. Integrated electronic circuitry has increased the sophistication of these systems. Also, digital
computer control and monitoring of such test systems has steadily developed since its introduction
around 1965.

Sensors for measuring forces and displacements by means of electrical signals are important
features of testing machines. Linear variable differential transformers (LVDTs) were used in
this manner relatively early for measuring displacements, which in turn give strains in test
specimens. Wire strain gages were developed in 1937, and the wire elements were replaced
by thin foil elements, starting around 1952. Strain gages change their resistance when the
material to which they are bonded is deformed, and this change can be converted to an electrical
voltage that is proportional to the strain. They can be used to construct load cells for measuring
applied force and extensometers for measuring displacements on test specimens. The Instron
and closed-loop servohydraulic testing machines require electrical signals from such sensors.
Strain gages are the type of transducer primarily used at present, but LVDTs are also often
employed.

Besides the general-purpose test equipment just described, various types of special-purpose test
equipment are also available. Some of these will be discussed in later chapters as appropriate.

4.1.2 Standard Test Methods

The results of materials tests are used for a variety of purposes. One important use is to obtain values
of materials properties, such as the strength in tension, for use in engineering design. Another use is
quality control of material that is produced, such as plates of steel or batches of concrete, to be sure
that they meet established requirements.

Such application of measured values of materials properties requires that everyone who makes
these measurements does so in a consistent way. Otherwise, users and producers of materials will
not agree as to standards of quality, and much confusion and inefficiency could occur. Perhaps even
more important, the safety and reliability of engineered items requires that materials properties be
well-defined quantities.

Therefore, materials producers and users and other involved parties, such as practicing
engineers, governmental agencies, and research organizations, have worked together to develop
standard test methods. This activity is often organized by professional societies, with the American
Society for Testing and Materials (ASTM International) being the most active organization in this
area in the United States. Many of the major industrial nations have similar organizations, such as
the British Standards Institution (BSI). The International Organization for Standardization (ISO)
coordinates and publishes standards on a worldwide basis, and the European Union (EU) publishes
European Standards that are generally consistent with those of ISO.

A wide variety of standard methods have been developed for various materials tests, including
all of the basic types discussed in this chapter and other, more specialized, tests considered in later
chapters. The Annual Book of ASTM Standards is published yearly and consists of more than 80
volumes, a number of which include standards for mechanical tests. The details of the test methods
differ, depending on the general class of material involved, such as metals, concrete, plastics, rubber,
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Table 4.1 Volumes in the ASTM Standards
Containing Basic Mechanical Test Methods

Class of Material or Item Volume(s)

Iron and steel 01.01 to 01.08
Aluminum and magnesium alloys 02.02
Metals test methods 03.01
Concrete 04.02
Stone and rock 04.07 to 04.09
Wood and plywood 04.10
Plastics 08.01 to 08.03
Rubber 09.01 to 09.02
Medical devices 13.01
Ceramics, glass, and composites 15.01 to 15.03

and glass. The ASTM standards are organized according to such classes of material, with Table 4.1
identifying the volumes that contain standards for mechanical testing.

Volume 03.01 contains numerous test standards for metals, including a variety of basic
mechanical tests. Other mechanical testing standards are included in the volumes for more specific
classes of material, along with standards of other types. For each class of material, there are one or
more standard methods for tests in tension, compression, and bending, and also often for hardness,
impact, and torsion. Volume 13.01 contains standards for materials and devices used in medicine,
such as mechanical tests for bone cement, bone screws, fixation devices, and components of artificial
joints. The various national organizations, the EU, and ISO have standards that parallel those of
ASTM in many areas, with the details for a given test sometimes differing among these.

Test standards give the procedures to be followed in detail, but the theoretical basis of the test
and background discussion are not generally given. Hence, one purpose of this book is to provide
the basic understanding needed to apply materials test standards and to make intelligent use of the
results.

Measured values of any property of a given material, such as its elastic modulus, yield strength,
or hardness, are subject to statistical variation. This issue is often addressed in test standards, and it
is discussed in Appendix B of this book. Note that multiple measurements of a given property are
needed to obtain an average value and to characterize the statistical scatter about this average.

4.2 INTRODUCTION TO TENSION TEST

A tension test consists of slowly pulling a sample of material with an axial force, as in Fig. 4.1(a),
until it breaks. This section of the chapter provides an introduction to the methodology for tension
tests, as well as some additional comments. Sections that follow discuss tension testing in more
detail, after which other types of test are considered.

4.2.1 Test Methodology

The test specimen used may have either a circular or a rectangular cross section, and its ends are
usually enlarged to provide extra area for gripping and to avoid having the sample break where it is
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Figure 4.5 Tensile specimens of metals (left to right): untested specimen with 9 mm
diameter test section, and broken specimens of gray cast iron, aluminum alloy 7075-T651,
and hot-rolled AISI 1020 steel. (Photo by R. A. Simonds.)

being gripped. Specimens both before and after testing are shown for several metals and polymers
in Figs. 4.5 and 4.6.

Methods of gripping the ends vary with specimen geometry. A typical arrangement for
threaded-end specimens is shown in Fig. 4.7. Note that spherical bearings are used at each end
to provide a pure tensile force, with no undesirable bending. The usual manner of conducting the
test is to deform the specimen at a constant speed. For example, in the universal testing machines of
Fig. 4.3, the motion between the fixed and moving crossheads can be controlled at a constant speed.
Hence, distance h in Fig. 4.7 is varied so that

dh

dt
= ḣ = constant

The axial force that must be applied to achieve this displacement rate varies as the test proceeds.
This force P may be divided by the cross-sectional area Ai to obtain the stress in the specimen at
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Figure 4.6 Tensile specimens of polymers (left to right): untested specimen with a 7.6 mm
diameter test section, a partially tested specimen of high-density polyethylene (HDPE), and
broken specimens of nylon 101 and Teflon (PTFE). (Photo by R. A. Simonds.)

any time during the test:

σ = P

Ai
(4.1)

Displacements in the specimen are measured within a straight central portion of constant cross
section over a gage length Li , as indicated in Fig. 4.7. Strain ε may be computed from the change
in this length, �L:

ε = �L

Li
(4.2)

Stress and strain, based on the initial (undeformed) dimensions, Ai and Li , as just presented, are
called engineering stress and strain.
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Figure 4.7 Typical grips for a tension test in a universal testing machine. (Adapted from
[ASTM 97] Std. E8; copyright c© ASTM; reprinted with permission.)

It is sometimes reasonable to assume that all of the grip parts and the specimen ends are
nearly rigid. In this case, most of the change in crosshead motion is due to deformation within
the straight section of the test specimen, so that �L is approximately the same as �h, the change
in h. Strain may therefore be estimated as ε = �h/Li . However, actual measurement of �L is
preferable, as use of �h may cause considerable error in the measured strain values.

Strain ε as calculated from Eq. 4.2 is dimensionless. As a convenience, strains are sometimes
given as percentages, where ε% = 100ε. Strains may also be expressed in millionths, called
microstrain, where εμ = 106ε. If strains are given as percentages or as microstrain, then, prior to
using the value for most calculations, it is necessary to convert to the dimensionless form ε.

The principal result obtained from a tension test is a graph of engineering stress versus
engineering strain for the entire test, called a stress–strain curve. With the use of digital computers
in the laboratory, the form of the data is a list of numerical values of stress and strain, as sampled at
short time intervals during the test. Stress–strain curves vary widely for different materials. Brittle
behavior in a tension test is failure without extensive deformation. Gray cast iron, glass, and some
polymers, such as PMMA (acrylic), are examples of materials with such behavior. A stress–strain
curve for gray iron is shown in Fig. 4.8. Other materials exhibit ductile behavior, failing in tension
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Figure 4.8 Stress–strain curve for gray cast iron in tension, showing brittle behavior.
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Figure 4.9 Schematic of the engineering stress–strain curve of a typical ductile metal that
exhibits necking behavior. Necking begins at the ultimate stress point.

only after extensive deformation. Stress–strain curves for ductile behavior in engineering metals and
some polymers are similar to Figs. 4.9 and 4.10, respectively.

4.2.2 Additional Comments

One might ask why we describe tension test results in terms of stress and strain, σ and ε, rather than
simply force and length change, P and �L . Note that samples of a given material with different
cross-sectional areas Ai will fail at higher forces for larger areas. By calculating the force per unit
area, or stress, this effect of sample size is removed. Hence, a given material is expected to have the
same yield, ultimate, and fracture stress for any cross-sectional area Ai , while the corresponding
forces P vary with Ai . (An actual experimental comparison for different Ai will be affected by
minor variations in properties with location in the parent batch of material, lack of absolute precision
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Figure 4.10 Engineering stress–strain curve and geometry of deformation typical of
some polymers.

in the laboratory measurements, and other such statistical errors.) The use of strain ε similarly
removes the effect of sample length. For a given stress, specimens with greater length L will exhibit
a proportionately larger length change �L , but the strain ε corresponding to the yield, ultimate, and
fracture points is expected to be the same for any length of sample. Hence, the stress–strain curve is
considered to give a fundamental characterization of the behavior of the material.

4.3 ENGINEERING STRESS–STRAIN PROPERTIES

Various quantities obtained from the results of tension tests are defined as materials properties.
Those obtained from engineering stress and strain will now be described. In a later portion of this
chapter, additional properties obtained on the basis of different definitions of stress and strain, called
true stress and strain, will be considered.

4.3.1 Elastic Constants

Initial portions of stress–strain curves from tension tests exhibit a variety of different behaviors for
different materials as shown in Fig. 4.11. There may be a well-defined initial straight line, as for
many engineering metals, where the deformation is predominantly elastic. The elastic modulus, E ,
also called Young’s modulus, may then be obtained from the stresses and strains at two points on
this line, such as A and B in (a):

E = σB − σA

εB − εA
(4.3)

For accuracy, the two points should be as far apart as possible, and it may be convenient to
locate them on an extrapolation of the straight-line portion. Where laboratory stress–strain data
are recorded at short intervals with the use of a digital computer, values judged to be on the linear
portion may be fitted to a least-squares line to obtain the slope E .
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Figure 4.11 Initial portions of stress–strain curves: (a) many metals and alloys, (b) material
with yield drop, and (c) material with no linear region.

If there is no well-defined linear region, a tangent modulus, Et , may be employed, which is the
slope of a straight line that is tangent to the stress–strain curve at the origin, as shown in Fig. 4.11(c).
As a practical matter, obtaining Et often involves the use of considerable judgment, so this is not a
very well-defined property.

Poisson’s ratio ν can also be obtained from a tension test by measuring transverse strains during
elastic behavior. Diameter measurements or a strain gage can be used for this purpose. (See the next
chapter, Section 5.3, for detailed discussion of Poisson’s ratio.)

4.3.2 Engineering Measures of Strength

The ultimate tensile strength, σu , also called simply the tensile strength, is the highest engineering
stress reached prior to fracture. If the behavior is brittle, as for gray cast iron in Fig. 4.8, the highest
stress occurs at the point of fracture. However, in ductile metals, the force, and hence the engineering
stress, reaches a maximum and then decreases prior to fracture, as in Fig. 4.9. In either case, the
highest force reached at any point during the test, Pmax, is used to obtain the ultimate tensile strength
by dividing by the original cross-sectional area:

σu = Pmax

Ai
(4.4)

The engineering fracture strength, σ f , is obtained from the force at fracture, Pf , even if this is
not the highest force reached:

σ f = Pf

Ai
(4.5)

Hence, for brittle materials, σu = σ f , whereas for ductile materials, σu often exceeds σ f .
The departure from linear-elastic behavior, as in Fig. 4.11, is called yielding and is of

considerable interest. This is simply because stresses that cause yielding result in rapidly increasing
deformation due to the contribution of plastic strain. As discussed in Section 1.2 and illustrated
by Fig. 1.2, any strain in excess of the elastic strain σ/E is plastic strain and is not recovered
on unloading. Hence, plastic strains result in permanent deformation. Such deformation in an
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engineering member changes its dimensions and/or shape, which is almost always undesirable.
Thus, the first step in engineering design is usually to assure that stresses are sufficiently small
that yielding does not occur, except perhaps in very small regions of a component.

The yielding event can be characterized by several methods. The simplest is to identify the
stress where the first departure from linearity occurs. This is called the proportional limit, σp, and is
illustrated in Fig. 4.11. Some materials, as in (c), may exhibit a stress–strain curve with a gradually
decreasing slope and no proportional limit. Even where there is a definite linear region, it is difficult
to precisely locate where this ends. Hence, the value of the proportional limit depends on judgment,
so that this is a poorly defined quantity. Another quantity sometimes defined is the elastic limit,
which is the highest stress that does not cause permanent (i.e., plastic) deformation. Determination
of this quantity is difficult, as periodic unloading to check for permanent deformation is necessary.

A third approach is the offset method, which is illustrated by dashed lines in Fig. 4.11. A straight
line is drawn parallel to the elastic slope, E or Et , but offset by an arbitrary amount. The intersection
of this line with the engineering stress–strain curve is a well-defined point that is not affected by
judgment, except in cases where Et is difficult to establish. This is called the offset yield strength,
σo. The most widely used and standardized offset for engineering metals is a strain of 0.002, that
is, 0.2%, although other values are also used. Note that the offset strain is a plastic strain, such as
εpo = 0.002, as unloading from σo would follow a dashed line in Fig. 4.11, and this εpo would be
the unrecovered strain.

In some engineering metals, notably in low-carbon steels, there is very little nonlinearity prior
to a dramatic drop in load, as illustrated in Fig. 4.11(b). In such cases, one can identify an upper
yield point, σou , and a lower yield point, σol . The former is the highest stress reached prior to the
decrease, and the latter is the lowest stress prior to a subsequent increase. Values of the upper yield
point in metals are sensitive to testing rate and to inadvertent small amounts of bending, so that
reported values for a given material vary considerably. The lower yield point is generally similar
to the 0.2% offset yield strength, with the latter having the advantage of being applicable to other
types of stress–strain curve as well. Thus, the offset yield strength is generally the most satisfactory
means of defining the yielding event for engineering metals.

For polymers, offset yield strengths are also used. However, it is more common for polymers to
define a yield point only if there is an early relative maximum (upper yield point) or flat region in the
curve, in which case σo is the stress where dσ/dε = 0 first occurs. In polymers with an upper yield
point, σou , this stress may exceed that at fracture, σ f , but in other cases, it does not. (See Fig. 4.10.)
Hence, the ultimate tensile strength σu is the higher of either σou or σ f . The two situations are distin-
guished by describing the value as either the tensile strength at yield or the tensile strength at break.

In most materials, the proportional limit, elastic limit, and offset yield strength can be
considered to be alternative measures of the beginning of permanent deformation. However, for
a nonlinear elastic material such as rubber, the first two of these measure distinctly different events,
and the offset yield strength loses its significance. (See Fig. 3.17.)

4.3.3 Engineering Measures of Ductility

Ductility is the ability of a material to accommodate inelastic deformation without breaking. In the
case of tension loading, this means the ability to stretch by plastic strain, but with creep strain also
sometimes contributing.
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The engineering strain at fracture, ε f , is one measure of ductility. This is usually expressed as
a percentage and is then termed the percent elongation at fracture, which we will denote as 100ε f .
This value corresponds to the fracture point on the stress–strain curve, as identified in Figs. 4.9 and
4.10. The ASTM standard for tension testing of polymers includes this property, and it is given as
an option in the standard for tension testing of metals. For this measurement, test standards specify
the gage length as a multiple of the test section diameter or width. For example, for specimens with
round cross sections, a ratio of gage length to diameter of Li/di = 4 is specified by ASTM for use
in the United States. But international standards generally employ Li/di = 5.

Another method of determining the elongation that is sometimes used for metals is to employ
marks on the test section. The distance Li between these marks before testing is subtracted from
the distance L f measured after fracture. The resulting length change provides a strain value, which
gives the percent elongation after fracture.

εp f = L f − Li

Li
, % elongation after fracture = 100εp f (4.6)

Note that the elastic strain is lost when the stress drops to zero after fracture, so this quantity is a
plastic strain, as identified in Fig. 4.9.

For metals with considerable ductility, the difference between 100ε f and 100εp f is small, so
that the distinction between these two quantities is not of great importance. However, for metals of
limited ductility, the elastic strain recovered after fracture may constitute a significant fraction of
ε f . Moreover, the elongation may be so small as to be difficult to measure directly from marks on
the sample. It may then be useful to determine εp f from a value of ε f taken from the fracture point
on the stress–strain record, specifically, by subtracting the elastic strain that is estimated to be lost:

εp f = ε f − σ f

E
, % elongation after fracture = 100εp f (4.7)

This gives an estimated after-fracture result consistent with a measurement made on a broken
specimen.

Another measure of ductility is the percent reduction in area, called %RA, which is obtained
by comparing the cross-sectional area after fracture, A f , with the original area:

%R A = 100
Ai − A f

Ai
, %R A = 100

d2
i − d2

f

d2
i

(a, b) (4.8)

Here, form (b) is derived from (a) as a convenience for round cross sections of initial diameter di

and final diameter d f . As for the elongation, a discrepancy may exist between the area after fracture
and the area that existed at fracture. This presents little problem for ductile metals, but caution is
needed in interpreting area reductions after fracture for polymers.

4.3.4 Discussion of Necking Behavior and Ductility

If the behavior in a tension test is ductile, a phenomenon called necking usually occurs, as illustrated
in Fig. 4.12. The deformation is uniform along the gage length early in the test, as in (a) and (b),
but later begins to concentrate in one region, resulting in the diameter there decreasing more than



132 Chapter 4 Mechanical Testing: Tension Test and Other Basic Tests

d i

L i

ΔL
d min

ΔL

σ σ

ε

ε

ΔL

(b)

(c) x

x

0

0

LLi i

x
x

(a)

Figure 4.12 Deformation in a tension test of a ductile metal: (a) unstrained, (b) after
uniform elongation, and (c) during necking.

elsewhere, as in (c). In ductile metals, necking begins at the maximum force (ultimate strength)
point, and the decrease in force beyond this is a consequence of the cross-sectional area rapidly
decreasing. Once necking begins, the longitudinal strain becomes nonuniform, as illustrated in (c).

Examine the metal samples of Fig. 4.5. Necking occurred in the steel, and to an extent in the
aluminum alloy, but not in the brittle cast iron. Enlarged views show the steel and cast iron fractures
in more detail in Fig. 4.13.

The percent reduction in area is based on the minimum diameter at the fracture point and so is
a measure of the highest strain along the gage length. In contrast, the percent elongation at fracture
is an average over an arbitrarily chosen length. Its value varies with the ratio of gage length to
diameter, Li/di , increasing for smaller values of this ratio. As a consequence, it is necessary to
standardize the gage lengths used, such as the Li/di = 4 commonly used in the United States for
specimens with round cross sections, and the Li/di = 5 specified in international standards. The
reduction in area is not affected by such arbitrariness and is thus a more fundamental measure of
ductility than is the elongation.

4.3.5 Engineering Measures of Energy Capacity

In a tension test, let the applied force be P , and let the displacement over gage length Li be �L = x .
The amount of work done in deforming the specimen to a value of x = x ′ is then

U =
∫ x ′

0
P dx (4.9)

The volume of material in the gage length is Ai Li . Dividing both sides of the equation by this
volume, and using the definitions of engineering stress and strain, Eqs. 4.1 and 4.2, gives
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Figure 4.13 Fractures from tension tests on 9 mm diameter specimens of hot-rolled
AISI 1020 steel (left) and gray cast iron (right). (Photos by R. A. Simonds.)

u = U

Ai Li
=
∫ x ′

0

P

Ai
d

(
x

Li

)
=
∫ ε′

0
σ dε (4.10)

Hence, u is the work done per unit volume of material to reach a strain ε′, and it is equal to the
area under the stress–strain curve up to ε′. The work done is equal to the energy absorbed by the
material.

The area under the entire engineering stress–strain curve up to fracture is called the tensile
toughness, u f . This is a measure of the ability of the material to absorb energy without fracture.
Where there is considerable plastic strain beyond yielding, as for many engineering metals, some of
the energy is stored in the microstructure of the material, but most of it is dissipated as heat.

If the stress–strain curve is relatively flat beyond yielding, then u f may be approximated as the
area of a rectangle. The height is equal to the average of the yield and ultimate, and the width is
equal to the fracture strain:

u f ≈ ε f

(
σo + σu

2

)
(4.11)

For materials that behave in a brittle manner, the gradually curving stress–strain response may be
similar to a parabolic curve with vertex at the origin, in which case u f ≈ 2σ f ε f /3.

Brittle materials have low tensile toughness, despite perhaps high strength, due to low ductility.
In low-strength ductile materials, the converse occurs, and the tensile toughness is also low. To have
a high tensile toughness, both the strength and the ductility must be reasonably high, so that a high
tensile toughness indicates a “well rounded” material.
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Tensile toughness, as just defined, should not be confused with fracture toughness, which is the
resistance to failure in the presence of a crack, as explored in Chapter 8. The tensile toughness is
a useful means of comparing materials, but the fracture toughness should be considered to be the
primary measure of toughness for engineering purposes.

4.3.6 Strain Hardening

The rise in the stress–strain curve following yielding is described by the term strain hardening, as
the material is increasing its resistance with increasing strain. A measure of the degree of strain
hardening is the ratio of the ultimate tensile strength to the yield strength. Hence, we define the
strain hardening ratio = σu/σo. Values of this ratio above about 1.4 are considered relatively high
for metals, and those below 1.2 relatively low.

Example 4.1
A tension test was conducted on a specimen of AISI 1020 hot-rolled steel having an initial
diameter of 9.11 mm. Representative test data are given in Table E4.1(a) in the form of force
and engineering strain. For strain, the extensometer gage length was Li = 50.8 mm. In addition,
minimum diameters were measured manually with a micrometer in the necked region at several

Table E4.1 Data and Analysis for a Tension Test on AISI 1020 Hot-Rolled Steel

(a) Test Data (b) Calculated Values

Engr. Engr. True Raw True Corrected True Plastic
Force Strain Diam. Stress Strain Stress True Stress Strain
P , kN ε d , mm σ , MPa ε̃ σ̃ , MPa σ̃B , MPa ε̃p

0 0 9.11 0 0 0 0 0
6.67 0.00050 — 102.3 0.00050 102.3 102.3 0

13.34 0.00102 — 204.7 0.00102 204.7 204.7 0
19.13 0.00146 — 293.5 0.00146 293.5 293.5 0
17.79 0.00230 — 272.9 0.00230 272.9 272.9 0
17.21 0.00310 — 264.0 0.00310 264.0 264.0 0.00178
17.53 0.00500 — 268.9 0.00499 268.9 268.9 0.00365

17.44 0.00700 — 267.6 0.00698 269.4 269.4 0.00564
17.21 0.01000 — 264.0 0.00995 266.7 266.7 0.00862
20.77 0.0490 8.894 318.6 0.0478 334.3 334.3 0.0462
24.25 0.1250 — 372.0 0.1178 418.5 418.5 0.1157
25.71 0.2180 8.264 394.4 0.1972 480.4 465.3 0.1949
25.751 0.2340 — 395.0 0.2103 487.5 469.8 0.2079

25.04 0.3060 7.62 384.2 0.3572 549.1 505.0 0.3547
23.49 0.3300 6.99 360.4 0.5298 612.1 540.9 0.5271
21.35 0.3480 6.35 327.5 0.7218 674.2 576.2 0.7190
18.90 0.3600 5.72 290.0 0.9308 735.5 611.5 0.9278
17.392 0.3660 5.283 266.8 1.0909 794.2 649.1 1.0877

Notes: 1Ultimate. 2Fracture. 3Measured from broken specimen. 4Not used in calculations.
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points during the test. After fracture, the broken halves were reassembled, and the following
measurements were made: (1) Marks originally 25.4 mm apart and on opposite sides of the
necked region were 38.6 mm apart due to the lengthwise stretching in the specimen. (2) Similar
marks originally 50.8 mm apart were 70.9 mm apart. (3) The final minimum diameter in the
necked region was 5.28 mm.

(a) Determine the following materials properties: elastic modulus, 0.2% offset yield
strength, ultimate tensile strength, percent elongation, and percent reduction in area.

(b) Assume that the test was interrupted upon reaching a strain ε = 0.0070, and the
specimen unloaded to zero force. Estimate the elastic strain recovered and the plastic
strain remaining. Also, what would be the new length of the original 50.8 mm gage
section?

Solution (a) For each force value, engineering stresses are first calculated from Eq. 4.1, as
given in the first column of Table E4.1(b). For example, for the first force value above zero,

σ = P

Ai
= P

πd2
i /4

= 4(6670 N)

π (9.11 mm)2
= 102.3

N

mm2
= 102.3 MPa

Plotting these versus the corresponding engineering strains gives Fig. E4.1(a). However, on this
graph, the yield region is too crowded to see the needed detail, so the data for the beginning of the
test are plotted with a sensitive strain scale in Fig. E4.1(b). The first four data points appear to lie
on a straight line in Fig. E4.1(b), so that a least squares line of the form y = mx is fitted to these,
giving the elastic modulus as E = 201,200 MPa (Ans.). A line is drawn on Fig. E4.1(b) parallel
to the slope E and through the plastic strain offset of εpo = 0.002. The intersection of this with
the stress–strain curve gives the yield strength as σo = 264 MPa (Ans.). From Fig. E4.1(a), or
from the numerical values in Table E4.1(b), it is evident that the highest stress reached, and hence
the ultimate tensile strength, is σu = 395 MPa (Ans.).

Noting that the last line of Table E4.1 corresponds to fracture, the stress and strain at
fracture are σ f = 266.8 MPa and ε f = 0.366. The latter gives a percent elongation at fracture
of ε f % = 100ε f = 36.6% (Ans.). The corresponding elongation after fracture can then be
estimated from Eq. 4.7:

εp f = ε f − σ f

E
= 0.366 − 266.8 MPa

201,200 MPa
= 0.365, εp f % = 36.5% Ans.

The length measurements made from the broken specimen give additional values for the
elongation after fracture:

εp f = L f − Li

Li
= (38.6 − 25.4) mm

25.4 mm
= 0.520, εp f % = 52.0% (over 25.4 mm)

εp f = L f − Li

Li
= (70.9 − 50.8) mm

50.8 mm
= 0.396, εp f % = 39.6% (over 50.8 mm)

Ans.
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Also, the reduction in area from Eq. 4.8(b) is

%R A = 100
d2

i − d2
f

d2
i

= 100
(9.112 − 5.282) mm2

(9.11 mm)2
= 66.4% Ans.

Discussion The elongation from extensometer measurements, εp f % = 36.5%, is only
roughly equal to the value of 39.6% from the broken specimen for the same gage length of
50.8 mm. Exact agreement should not be expected, as measurements from a broken specimen
are not precise, and the two gage lengths were very likely shifted relative to one another along
the specimen length. The elongation of 52% over 25.4 mm is higher than the other values, due
to this being the average strain over a shorter gage length spanning the necked region, so that the
value is more strongly affected by the concentrated deformation in the neck.
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(b) If the test were interrupted at ε = 0.0070, the stress–strain path during unloading would
be expected to approximately follow the elastic modulus slope E , as shown in Fig. E4.1(b).
Noting from Table E4.1(b) that the stress value corresponding to this strain is σ = 267.6 MPa,
the elastic strain εe recovered, and the plastic strain εp remaining, are estimated to be

εe = σ

E
= 267.6 MPa

201,200 MPa
= 0.00133, εp = ε − εe = 0.00700 − 0.00133 = 0.00567 Ans.

The original gage length of 50.8 mm would be permanently stretched by a �L corresponding to
the plastic strain, where εp = �L/Li , so that the new length is

L = Li + �L = Li + εp Li = 50.8 mm + 0.00567(50.8 mm) = 51.09 mm Ans.

4.4 TRENDS IN TENSILE BEHAVIOR

A wide variety of tensile behaviors occur for different materials. Even for a given chemical
composition of a material, the prior processing of the material may have substantial effects on the
tensile properties, as may the temperature and strain rate of the test.

4.4.1 Trends for Different Materials

Engineering metals vary widely as to their strength and ductility. This is evident from Table 4.2,
where engineering properties from tension tests are given for a number of metals. Relatively high
strength polymers in bulk form are typically only 10% as strong as engineering metals, and their
elastic moduli are typically only 3% as large. Their ductilities vary quite widely, some being quite
brittle and others quite ductile. Properties of some commercial polymers are given in Table 4.3 to
illustrate these trends.

Rubber and rubber-like polymers (elastomers) have very low elastic moduli and relatively low
strengths, and they often have extreme ductility. Ceramics and glasses represent the opposite case,
as their behavior is generally so brittle that measures of ductility have little meaning. Strengths in
tension are generally lower than for metals, but higher than for polymers. The elastic moduli of
ceramics are relatively high, often higher than for many metals. Some typical values of ultimate
tensile strength and elastic modulus have already been given in Table 3.10.

The tensile behavior of composite materials is, of course, strongly affected by the details of
the reinforcement. For example, hard particles in a ductile matrix increase stiffness and strength,
but decrease ductility, more so for larger volume percentages of reinforcement. Long fibers have
qualitatively similar effects, with the increase in strength and stiffness being especially large for
loading directions parallel to large numbers of fibers. Whiskers and short chopped fibers generally
produce effects intermediate between those of particles and long fibers. Some of these trends are
evident in Table 4.4, where data are given for various SiC reinforcements of an aluminum alloy.
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Table 4.2 Tensile Properties for Some Engineering Metals

Elastic 0.2% Yield Ultimate Reduction
Modulus Strength Strength Elongation1 in Area

Material E σo σu 100ε f %R A

GPa MPa MPa % %
(103 ksi) (ksi) (ksi)

Ductile cast iron 159 334 448 15 19.8
A536 (65-45-12) (23) (49) (65)

AISI 1020 steel 203 260 441 36 61
as rolled (29.4) (37.7) (64)

ASTM A514, T1 208 724 807 20 66
structural steel (30.2) (105) (117)

AISI 4142 steel 200 1619 2450 6 6
as quenched (29) (235) (355)

AISI 4142 steel 207 1688 2240 8 27
205◦C temper (30) (245) (325)

AISI 4142 steel 207 1584 1757 11 42
370◦C temper (30) (230) (255)

AISI 4142 steel 207 1378 1413 14 48
450◦C temper (30) (200) (205)

18 Ni maraging 186 1791 1860 8 56
steel (250) (27) (260) (270)

SAE 308 cast 70 169 229 0.9 1.5
aluminum (10.2) (25) (33)

2024-T4 73.1 303 476 20 35
aluminum (10.6) (44) (69)

7075-T6 71 469 578 11 33
aluminum (10.3) (68) (84)

AZ91C-T6 cast 40 113 137 0.4 0.4
magnesium (5.87) (16) (20)

Note: 1Typical values from [Boyer 85] are listed in most cases.
Sources: Data in [Conle 84] and [SAE 89].

Some stress–strain curves from tension tests of engineering metals are shown in Figs. 4.14 and
4.15. The former gives curves for three steels with contrasting behavior, and the latter gives curves
for three aluminum alloys. Tensile stress–strain curves for low-ductility metals have only limited
curvature and no drop in stress prior to fracture, as for gray cast iron in Fig. 4.8 and also for the
as-quenched steel in Fig. 4.14.

Stress–strain curves from tension tests on three ductile polymers are shown in Fig. 4.16. These
are, in fact, the curves for the test specimens shown in Fig. 4.6. An early relative maximum in stress
is common for polymers, and this is associated with the distinctive necking behavior evident for
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Table 4.3 Mechanical Properties for Polymers at Room Temperature1

Tensile properties2
Heat

Modulus Yield Fracture Elong. Izod Defl.
Material E σo σ f 100ε f Energy3 Temp.

GPa MPa MPa % J/m ◦C
(103 ksi) (ksi) (ksi) (ft·lb/in)

ABS, medium 2.1–2.8 34–50 38–52 5–60 160–510 90–104
impact (0.3–0.4) (5–7.2) (5.5–7.5) (3–9.6)

ABS, 30% 6.9–8.3 — 90–110 1.5–1.8 64–69 102–110
glass fibers (1–1.2) (13–16) (1.2–1.3)

Acrylic, 2.3–3.2 54–73 48–72 2–5.5 11–21 68–100
PMMA (0.33–0.47) (7.8–10.6) (7–10.5) (0.2–0.4)

Epoxy, cast 2.4 — 28–90 3–6 11–53 46–290
(0.35) (4–13) (0.2–1)

Phenolic, cast 2.8–4.8 — 34–62 1.5–2 13–21 74–79
(0.4–0.7) (5–9) (0.24–0.4)

Nylon 6, dry 2.6–3.2 90 41–165 30–100 32–120 68–85
(0.38–0.46) (13) (6–24) (0.6–2.2)

Nylon 6, 33% 8.6–11 — 165–193 2.2–3.6 110–180 200–215
glass fibers (1.25–1.6) (24–28) (2.1–3.4)

Polycarbonate 2.4 62 63–72 110–150 110–960 121–132
PC (0.345) (9) (9.1–10.5) (2–18)

Polyethylene 0.17–0.28 9–14.5 8.3–32 100–650 No break 40–44
LDPE (0.025–0.041) (1.3–2.1) (1.2–4.6)

Polyethylene 1.08 26–33 22–31 10–1200 21–210 79–91
HDPE (0.157) (3.8–4.8) (3.2–4.5) (0.4–4)

Polystyrene 2.3–3.3 — 36–52 1.2–2.5 19–24 76–94
PS (0.33–0.48) (5.2–7.5) (0.35–0.45)

Polystyrene 1.1–2.6 14.5–41 13–43 20–65 53–370 77–96
HIPS (0.16–0.37) (2.1–6) (1.9–6.2) (1–7)

Rigid PVC 2.4–4.1 41–45 41–52 40–80 21–1200 60–77
(0.35–0.6) (5.9–6.5) (5.9–7.5) (0.4–22)

Notes: 1Properties vary considerably; values are ranges from Modern Plastics Encyclopedia
[Kaplan 95] pp. B-146 to 206. 2The ultimate strength σu is the higher of σo or σ f . 3Energy per
unit thickness is tabulated.

HDPE in Fig. 4.6. Necking begins when the stress reaches the early relative maximum, and then
it spreads along the specimen length, but with the diameter in the neck remaining approximately
constant once the process starts, as illustrated in Fig. 4.10. This behavior is due to the chainlike
molecules being drawn out of their original amorphous or crystalline structure into an approximately
linear and parallel arrangement.
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Table 4.4 Tensile Properties for Various SiC Reinforcements in a
6061-T6 Aluminum Matrix

Modulus 0.2% Yield Ultimate Elongation
E σo σu 100ε f

Reinforcement1 GPa (103 ksi) MPa (ksi) MPa (ksi) %

None 69 (10) 275 (40) 310 (45) 12

Particles, 20% 103 (15) 414 (60) 496 (72) 5.5

Particles, 40% 145 (21) 448 (65) 586 (85) 2

Whiskers, 20% 110 (16) 382 (55) 504 (73) 5

Fibers, 47%, 0◦ 204 (29.6) — 1460 (212) 0.9

Fibers, 47%, 90◦ 118 (17.1) — 86.2 (12.5) 0.1

Fibers, 47%, 137 (19.8) — 673 (98) 0.9
0◦/90◦

Fibers, 47%, 127 (18.4) — 572 (83) 1.0
0◦/ ± 45◦/90◦

Note: 1Volume percentage is given. For fibers, angles are orientations relative
to the tensile axis. For the last two cases, there are equal numbers of fibers at
each angle given. Fiber properties are E = 400 GPa and σu = 3950 MPa.
Source: Data in [ASM 87] pp. 858–901.

Other polymers, such as Nylon 101, neck in a manner more similar to metals. An additional type
of behavior is seen for Teflon (PTFE). This material deformed a considerable amount by developing
a large number of small tears bridged by filaments of material, a process called crazing, followed by
failure without necking. Some polymers, such as acrylic (PMMA), behave in a brittle manner and
have stress–strain curves that are nearly linear up to the point of fracture.

Ceramics and glass have stress–strain curves with limited curvature, as for low ductility metals,
with the curve often being reduced to essentially a straight line terminating at the fracture point.

4.4.2 Effects of Temperature and Strain Rate

If a material is tested in a temperature range where creep occurs—that is, where there is time-
dependent deformation—strains from this source will contribute to the inelastic deformation in the
test. Moreover, the creep strain that occurs is greater if the speed of the test is slower, as a slower test
provides more time for the creep strain to accumulate. Under such circumstances, it is important to
run the test at a constant value of strain rate, ε̇ = dε/dt , and to report this value along with the test
results.

For polymers, recall from Chapters 2 and 3 that creep effects are especially large above the
particular polymer’s glass transition temperature, Tg . As Tg values around and below room temper-
ature are common, large creep effects occur for many polymers. Tension tests on these materials
thus require care concerning the effects of strain rate, and it is often useful to evaluate the tensile
behavior at more than one rate.
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Figure 4.14 Engineering stress–strain curves from tension tests on three steels.
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Figure 4.15 Engineering stress–strain curves from tension tests on three aluminum alloys.

For metals and ceramics, creep effects become significant around 0.3 to 0.6Tm , where Tm is
the absolute melting temperature. Thus, creep strains are a factor at room temperature for metals
with low melting temperatures. Strain rate may also affect the tensile behavior of ceramics at room
temperature, but for an entirely different reason unrelated to creep, namely, time-dependent cracking
due to the detrimental effects of moisture.

For engineering metals at room temperature, strain-rate effects due to creep exist, but are not
dramatic. For example, some data for copper are given in Fig. 4.17. In this case, for an increase
in strain rate of a factor of 10,000, the ultimate tensile strength at room temperature increases
about 14%. Larger relative effects occur at higher temperatures as creep effects become more
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Figure 4.16 Engineering stress–strain curves from tension tests on three polymers.
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Figure 4.17 Effect of strain rate on the ultimate tensile strength of copper for tests
at various temperatures. (Adapted from [Nadai 41]; used with permission of ASME.)
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important. Also, note that the strength is drastically lowered by increased temperature, especially as
Tm = 1085◦C is approached.

The following generalizations usually apply to the tensile properties of a given material in
a temperature range where creep-related strain-rate effects occur: (1) At a given temperature,
increasing the strain rate increases the strength, but decreases the ductility. (2) For a given strain rate,
decreasing the temperature has the same qualitative effects, specifically, increasing the strength, but
decreasing the ductility.

4.5 TRUE STRESS–STRAIN INTERPRETATION OF TENSION TEST

In analyzing the results of tension tests, and in certain other situations, it is useful to work with true
stresses and strains. Note that engineering stress and strain are most appropriate for small strains
where the changes in specimen dimensions are small. True stresses and strains differ in that finite
changes in area and length are specifically considered. For a ductile material, plotting true stress
and strain from a tension test gives a curve that differs markedly from the engineering stress–strain
curve. An example is shown in Fig. 4.18.

4.5.1 Definitions of True Stress and Strain

True stress is simply the axial force P divided by the current cross-sectional area A, rather than the
original area Ai . Hence, given A, true stress σ̃ may be calculated from force P or from engineering
stress σ :

σ̃ = P

A
, σ̃ = σ

Ai

A
(a, b) (4.12)
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Figure 4.18 Engineering and true stress–strain curves from a tension test on hot-rolled
AISI 1020 steel.
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Since the area A decreases as a tension test proceeds, true stresses increasingly rise above the
corresponding engineering stresses. Also, there is no drop in stress beyond an ultimate point, which
is expected, as this behavior in the engineering stress–strain curve is due to the rapid decrease in
cross-sectional area during necking. These trends are evident in Fig. 4.18.

For true strain, let the length change be measured in small increments, �L1, �L2, �L3, etc.,
and let the new gage length, L1, L2, L3, etc., be used to compute the strain for each increment. The
total strain is thus

ε̃ = �L1

L1
+ �L2

L2
+ �L3

L3
+ · · · =

∑ �L j

L j
(4.13)

where �L is the sum of these �L j . If the �L j are assumed to be infinitesimal—that is, if �L is
measured in very small steps—the preceding summation is equivalent to an integral that defines true
strain:

ε̃ =
∫ L

Li

d L

L
= ln

L

Li
(4.14)

Here, L = Li + �L is the final length. Note that ε = �L/Li is the engineering strain, leading to
the following relationship between ε and ε̃:

ε̃ = ln
Li + �L

Li
= ln

(
1 + �L

Li

)
= ln (1 + ε) (4.15)

4.5.2 Constant Volume Assumption

For materials that behave in a ductile manner, once the strains have increased substantially beyond
the yield region, most of the strain that has accumulated is inelastic strain. Since neither plastic
strain nor creep strain contributes to volume change, the volume change in a tension test is limited
to the small amount associated with elastic strain. Thus, it is reasonable to approximate the volume
as constant:

Ai Li = AL (4.16)

This gives

Ai

A
= L

Li
= Li + �L

Li
= 1 + ε (4.17)

Substitution into Eqs. 4.12(b) and 4.14 then gives two additional equations relating true and
engineering stress and strain:

σ̃ = σ (1 + ε) (4.18)

ε̃ = ln
Ai

A
(4.19)

For members with round cross sections of original diameter di and final diameter d, the last equation
may be used in the form
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ε̃ = ln
πd2

i /4

πd2/4
= 2 ln

di

d
(4.20)

It should be remembered that Eqs. 4.17 through 4.20 depend on the constant volume assumption and
may be inaccurate unless the inelastic (plastic plus creep) strain is large compared with the elastic
strain.

True strains from Eq. 4.15 are somewhat smaller than the corresponding engineering strains.
But once necking starts and Eq. 4.19 is employed with the rapidly decreasing values of A, the true
strain may increase substantially beyond the engineering strain, as seen in Fig. 4.18.

4.5.3 Limitations on True Stress–Strain Equations

The ranges of applicability of the various equations for calculating engineering and true stresses
and strains are summarized by Fig. 4.19. First, note that engineering stress and strain may always
be determined from their definitions, Eqs. 4.1 and 4.2. True stress may always be obtained from
Eq. 4.12 if areas are directly measured, as from diameters in round cross sections.

Once necking starts at the engineering ultimate stress point, the engineering strain becomes
merely an average over a region of nonuniform deformation. Hence, it does not represent the
maximum strain and becomes unsuitable for calculating true stresses and strains. This situation
requires that Eqs. 4.15 and 4.18 not be used beyond the ultimate point. Beyond this, true stresses
and strains can be calculated only if the varying minimum cross-sectional area in the necked region
is measured, as by measuring diameters for round specimens. Hence, only Eqs. 4.12 and 4.19 are
available beyond the ultimate point where necking starts.

In addition, Eq. 4.18 is limited by the constant volume assumption. Hence, this conversion
to true stress is inaccurate at small strains, such as those below and around the yield stress. An
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starts Fracture

Strain

2x Yield

Yield
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σ = σ~ σ = σ (1 + ε)~

ε = ln (1 + ε) ~

σ = P/A~

ε = ΔL / L

σ = P/Ai

i

ε = ε~ ε = ln (Ai /A)~

Figure 4.19 Use and limitations of various equations for stresses and strains from
a tension test.
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arbitrary lower limit of twice the strain that accompanies the offset yield strength, 2εo, is suggested
in Fig. 4.19. (Note that εo is defined in Fig. 4.11(a).) Below this limit, the difference between true
and engineering stress is generally so small that it can be neglected, so that no conversion is needed.
A similar limitation is encountered by Eqs. 4.19 and 4.20, which are otherwise valid at any strain.

4.5.4 Bridgman Correction for Hoop Stress

A complication exists in interpreting tensile results near the end of a test where there is a large
amount of necking. As pointed out by P. W. Bridgman in 1944, large amounts of necking result in a
tensile hoop stress being generated around the circumference in the necked region. Thus, the state of
stress is no longer uniaxial as assumed, and the behavior of the material is affected. In particular, the
axial stress is increased above what it would otherwise be. (This is caused by plastic deformation;
see Chapter 12.)

A correction for steel can be made on the basis of the empirical curve developed by Bridgman,
which is shown in Fig. 4.20. The curve is entered with the true strain based on area, and it gives a
value of the correction factor, B, which is used as follows:

σ̃B = Bσ̃ (4.21)

Here, σ̃ is true stress simply computed from area by using Eq. 4.12, and σ̃B is the corrected value
of true stress. Values of B for steels may be estimated from the following equation that closely
approximates the curve of Fig. 4.20:

B = 0.0684x3 + 0.0461x2 − 0.205x + 0.825, where x = log10 ε̃ (0.12 ≤ ε̃ ≤ 3)

(4.22)

The correction is not needed for ε̃ < 0.12. Note that a 10% correction (B = 0.9) corresponds to a
true strain of ε̃ = 0.44. By Eq. 4.20, this gives a ratio of initial to necked diameter of 1.25. Hence,
fairly large strains must occur for the correction to be significant.

Similar correction curves are not generally available for other metals, but a correction can still
be done if the radius of the neck profile is measured. For details, see the references Bridgman (1952)
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Figure 4.20 Curve of [Bridgman 44] giving correction factors on true stress for the effect of
hoop stress due to necking in steels.
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and Marshal (1952) given at the end of this chapter. The one for steel should not be applied to other
metals except as a rough approximation.

Example 4.2
For the data of Table E4.1 for a tension test on AISI hot-rolled steel,

(a) Calculate true stresses and strains, and plot the true stress–strain curve.
(b) Calculate corrected values of true stress, and plot the resulting stress–strain curve.

Solution (a) The requested values are given as the second and third columns in Table E4.1(b),
and plotting these gives the curve labeled σ̃ versus ε̃ in Fig. 4.18. With reference to Fig. 4.19,
true strain is given by Eq. 4.15 from the beginning of the test to the start of necking at the
ultimate strength point, including all points above the lower horizontal line in Table E4.1. Also,
true stress may be taken as equal to engineering stress where the strain is less than twice the yield
strain. From Fig. E4.1(b), the yield strain can be read at the σo point to be εo = 0.0033. Hence,
for ε < 2εo = 0.0066, no adjustment is made, which points correspond to those above the first
horizontal line in Table E4.1. Beyond twice the yield strain, and to and including the ultimate
strength point, Eq. 4.18 is employed. For example, for the line in the table with P = 24.25 kN,
we have

ε̃ = ln (1 + ε)= ln (1 + 0.1250) = 0.1178, σ̃ = σ(1 + ε)= 372.0(1 + 0.1250) = 418.5 MPa

Beyond the ultimate point (that is, below the lower horizontal line in Table E4.1), we must use
only the equations that employ measurements of the varying diameter. Hence, we now need
Eq. 4.12(a) or (b) for true stress, and Eq. 4.19 or 4.20 for true strain. For example, for the line in
the table with P = 21.35 kN, we have

ε̃ = 2 ln
di

d
= 2 ln

9.11 mm

6.35 mm
= 0.7218, σ̃ = P

A
= P

πd2/4
= 4(21,350 N)

π(6.35 mm)2
= 674.2 MPa

Similar calculations give the remaining σ̃ and ε̃ values in Table E4.1.
(b) The corrected values of true stress σ̃B from Eqs. 4.21 and 4.22 are given in the fourth

column of Table E4.1(b), and plotting these gives the curve labeled σ̃B versus ε̃ in Fig. 4.18.
For ε̃ < 0.12, no correction is needed, so that σ̃B = σ̃ , and in effect B = 1. For the line in the
table with P = 25.71 kN, and below this in the table, a correction is required. For example, for
the line with P = 21.35 kN, we have

x = log10 ε̃ = log10 0.7218 = −0.1416, B = 0.0684x3 + 0.0461x2 − 0.205x + 0.825

B = 0.0684(−0.1416)3 + 0.0461(−0.1416)2 − 0.205(−0.1416) + 0.825 = 0.855

σ̃B = Bσ̃ = 0.855(674.2 MPa) = 576.2 MPa

Similar calculations give the remaining σ̃B values in Table E4.1. The corrected true stresses are
seen to be always smaller than the raw values.
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4.5.5 True Stress–Strain Curves

For true stress–strain curves of metals in the region beyond yielding, the stress versus plastic strain
behavior often fits a power relationship:

σ̃ = H ε̃n
p (4.23)

If stress versus plastic strain is plotted on log–log coordinates, this equation gives a straight line.
The slope is n, which is called the strain hardening exponent. The quantity H , which is called
the strength coefficient, is the intercept at ε̃p = 1. At large strains during the advanced stages
of necking, Eq. 4.23 should be used with true stresses that have been corrected by means of the
Bridgman factor:

σ̃B = H ε̃n
p (4.24)

A log–log plot of true stress versus true plastic strain for the test on AISI 1020 steel of Ex. 4.1
and 4.2 is shown in Fig. 4.21. Note that the σ̃ versus ε̃p data curve upward at the higher strains,
but the σ̃B versus ε̃p (corrected) data do lie along an apparent straight line trend, to which a power
relationship of the form of Eq. 4.24 has been fitted as shown.

Since the total strain is the sum of its elastic and plastic parts, Eq. 4.24 can be solved for plastic
strain, and this can be added to the elastic strain, ε̃e = σ̃B/E , to obtain a relationship between true
stress and the total true strain ε̃:

ε̃ = ε̃e + ε̃p, ε̃ = σ̃B

E
+
(

σ̃B

H

)1/n

(4.25)

This form is called the Ramberg–Osgood relationship, as considered in more detail in Chapter 12.
Using the constants for the example AISI 1020 steel to plot Eq. 4.25, we obtain the dashed curve
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Figure 4.21 Log–log plot of true stress versus true plastic strain for AISI 1020 hot-rolled steel.
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in Fig. 4.18. This is seen to represent the corrected data very well over all strains that are beyond
the anomalous upper/lower yield region of this material. Where the stress–strain curve exhibits
a smooth, gradual yielding behavior, Eq. 4.25 may provide a good fit for all strains. For some
materials, Eq. 4.25 does not fit very well, and some cases of this type can be handled by two power
laws that fit different portions of the stress–strain curve.

If cross-sectional area (diameter) measurements are not available for a tension test, then
Eq. 4.25 may still be employed, but the fit is restricted to data that are not beyond the engineering
ultimate stress point. The Bridgman correction then becomes unnecessary, so that Eq. 4.23 applies,
and σ̃B in Eq. 4.25 is replaced by the uncorrected σ̃ . Also, since the ultimate point is not exceeded,
σ̃ and ε̃ may be calculated simply from Eqs. 4.18 and 4.15.

4.5.6 True Stress–Strain Properties

Additional materials properties obtained from tension tests may be defined on the basis of true stress
and strain. The true fracture strength, σ̃f , is obtained simply from the load at fracture and the final
area, or from the engineering stress at fracture:

σ̃f = Pf

Af
= σf

(
Ai

Af

)
(4.26)

Since the Bridgman correction is generally needed, the value obtained should be converted to σ̃fB

by using Eq. 4.21, but note the limitation of Eq. 4.22 to steels.
The true fracture strain, ε̃f , may be obtained from the final area or from the percent reduction

in area:

ε̃f = ln
Ai

Af
, ε̃f = ln

100

100 − %R A
(a, b) (4.27)

The second equation follows readily from the first. Note that ε̃f cannot be computed if only the
engineering strain at fracture (percent elongation) is available.

The true toughness, ũ f , is the area under the true stress–strain curve up to fracture. Assume that
the material is quite ductile, so that the elastic strains are small, compared with the plastic strains,
over most of the stress–strain curve. Hence, let the plastic and total strains be taken as equivalent,
ε̃p ≈ ε̃, and consequently replace Eq. 4.24 with σ̃B = H ε̃n . On this basis, the true toughness is

ũ f =
∫ ε̃f

0
σ̃B d ε̃ = H

∫ ε̃f

0
ε̃nd ε̃ =

H ε̃n+1
f

n + 1
= σ̃fB ε̃f

n + 1
(4.28)

The various engineering and true stress–strain properties from tension tests are summarized
by the categorized listing of Table 4.5. Note that the engineering fracture strain εf and the percent
elongation are only different ways of stating the same quantity. Also, the %R A and ε̃f can each be
calculated from the other by using Eq. 4.27(b). The strength coefficient H determines the magnitude
of the true stress in the large strain region of the stress–strain curve, so it is included as a measure
of strength. The strain hardening exponent n is a measure of the rate of strain hardening for the true
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Table 4.5 Materials Properties Obtainable from Tension Tests

True Stress–Strain
Category Engineering Property Property

Elastic constants Elastic modulus, E , Et —
Poisson’s ratio, ν

Strength Proportional limit, σp True fracture strength, σ̃fB

Yield strength, σo Strength coefficient, H
Ultimate tensile strength, σu

Engineering fracture strength, σf

Ductility Percent elongation, 100εf True fracture strain, ε̃f

Reduction in area, %R A

Energy capacity Tensile toughness, uf True toughness, ũ f

Strain hardening Strain hardening Strain hardening
ratio, σu/σo exponent, n

stress–strain curve. For engineering metals, values above n = 0.2 are considered relatively high,
and those below 0.1 are considered relatively low.

True stress–strain properties are listed for several engineering metals in Table 4.6. These are
the same metals for which engineering properties have already been given in Table 4.2.

Example 4.3
Using the stresses and strains in Table E4.1 for the tension test on AISI 1020 steel, determine the
constants H and n for Eq. 4.24, and also the true fracture stress and strain, σ̃f B and ε̃f .

Solution First, we need to calculate true plastic strains ε̃p for the data in Table E4.1. This is
done by subtracting elastic strains from total strains. For example, for the line in Table E4.1 with
P = 25.71 kN, the calculation is

ε̃p = ε̃ − σ̃B

E
, ε̃p = 0.1972 − 465.3 MPa

201,200 MPa
= 0.1949

where E = 201,200 MPa from Ex. 4.1. To find H and n, note that Eq. 4.24 can be written

log σ̃B = n log ε̃p + log H

which is a straight line y = mx + b on a log–log plot, where y = log σ̃B (dependent variable)
and x = log ε̃p (independent variable). Hence, n and H are readily obtained from the fitting
parameters m and b.

n = m, b = log H, H = 10b

Thus, if σ̃B is plotted versus ε̃p on log–log coordinates, a straight line should be formed of slope
n and intercept at ε̃p = 1 of σ̃B = H . This is shown in Fig. 4.21. A least squares fit gives
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m = n = 0.1955 Ans.

b = 2.79634, H = 10b = 625.7 Ans.

Hence, the equation is σ̃B = 625.7 ε̃0.1955
p MPa.

The foregoing fit is based on the last nine data points in Table E4.1. The first four plastic
strain values in Table E4.1 for nonzero force are very small values judged to be meaningless,
as arising from subtracting two nearly equal quantities that include experimental error. The next
four did not appear to lie on the straight line trend in Fig. 4.21 and so were also excluded.

The true fracture stress and strain are simply the values from the last line of Table E4.1, as
this corresponds to the fracture point:

σ̃fB = 649 MPa, ε̃ f = 1.091 Ans.

4.6 COMPRESSION TEST

Some materials have dramatically different behavior in compression than in tension, and in some
cases these materials are used primarily to resist compressive stresses. Examples include concrete
and building stone. Data from compression tests are therefore often needed for engineering
applications. Compression tests have many similarities to tension tests in the manner of conducting
the test and in the analysis and interpretation of the results. Since tension tests have already
been considered in detail, the discussion here will focus on areas where these two types of tests
differ.

4.6.1 Test Methods for Compression

A typical arrangement for a compression test is shown in Fig. 4.22. Uniform displacement rates in
compression are applied in a manner similar to a tension test, except, of course, for the direction
of loading. The specimen is most commonly a simple cylinder having a ratio of length to diameter,
L/d, in the range 1 to 3. However, values of L/d up to 10 are sometimes used where the primary
objective is to accurately determine the elastic modulus in compression. Specimens with square or
rectangular cross sections may also be tested.

The choice of a specimen length represents a compromise. Buckling may occur if the L/d ratio
is relatively large. If this happens, the test result is meaningless as a measure of the fundamental
compressive behavior of the material. Buckling is affected by the unavoidable small imperfections
in the geometry of the test specimen and its alignment with respect to the testing machine. For
example, the ends of the specimen can be almost parallel, but never perfectly so.

Conversely, if L/d is small, the test result is affected by the details of the conditions at the end.
In particular, as the specimen is compressed, the diameter increases due to the Poisson effect, but
friction retards this motion at the ends, resulting in deformation into a barrel shape. This effect can
be minimized by proper lubrication of the ends. In materials that are capable of large amounts of
deformation in compression, the choice of too small of an L/d ratio may result in a situation where
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Table 4.6 True Stress–Strain Tensile Properties for Some Engineering Metals,
and Also Hardness

True Fracture Strength Strain Hardening Brinell
Strength Strain Coefficient Exponent Hardness1

Material σ̃ f B ε̃ f H n HB

MPa MPa
(ksi) (ksi)

Ductile cast iron 524 0.222 456 0.0455 167
A536 (65-45-12) (76) (66.1)

AISI 1020 steel 713 0.96 737 0.19 107
as rolled (103) (107)

ASTM A514, T1 1213 1.08 1103 0.088 256
structural steel (176) (160)

AISI 4142 steel 2580 0.060 — 0.136 670
as quenched (375)

AISI 4142 steel 2650 0.310 — 0.091 560
205◦C temper (385)

AISI 4142 steel 1998 0.540 — 0.043 450
370◦C temper (290)

AISI 4142 steel 1826 0.660 — 0.051 380
450◦C temper (265)

18 Ni maraging 2136 0.82 — 0.02 460
steel (250) (310)

SAE 308 cast 232 0.009 567 0.196 80
aluminum (33.6) (82.2)

2024-T4 631 0.43 806 0.20 120
aluminum (91.5) (117)

7075-T6 744 0.41 827 0.113 150
aluminum (108) (120)

AZ91C-T6 cast 137 0.004 653 0.282 61
magnesium (20) (94.7)

Note: 1Load 3000 kg for irons and steels, 500 kg otherwise; typical values from [Boyer 85] are listed in
some cases.
Sources: Data in [Conle 84] and [SAE 89].

the behavior of the specimen is dominated by the end effects, so that the test does not measure the
fundamental compressive behavior of the material.

Considering both the desirability of small L/d to avoid buckling and large L/d to avoid end
effects, a reasonable compromise is L/d = 3 for ductile materials. Values of L/d = 1.5 or 2 are
suitable for brittle materials, where end effects are small.
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Figure 4.22 Compression test in a universal testing machine that uses a spherical-seated
bearing block. (From [ASTM 97] Std. E9; copyright c© ASTM; reprinted with permission.)

Figure 4.23 Compression specimens of metals (left to right): untested specimen, and tested
specimens of gray cast iron, aluminum alloy 7075-T651, and hot-rolled AISI 1020 steel.
Diameters before testing were approximately 25 mm, and lengths were 76 mm.
(Photo by R. A. Simonds.)

Some examples of compression specimens of various materials both before and after testing
are shown in Figs. 4.23 and 4.24. Mild steel shows typical ductile behavior, specifically large
deformation without fracture ever occurring. The gray cast iron and concrete behaved in a brittle
manner, and the aluminum alloy deformed considerably, but then also fractured. Fracture in
compression usually occurs on an inclined plane or on a conical surface.

4.6.2 Materials Properties in Compression

The initial portions of compressive stress–strain curves have the same general nature as those in ten-
sion. Thus, various materials properties may be defined from the initial portion in the same manner
as for tension, such as the elastic modulus E , the proportional limit σp, and the yield strength σo.
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Figure 4.24 Untested and tested 150 mm diameter compression specimens of concrete with
Hokie limestone aggregate. (Photo by R. A. Simonds.)

The ultimate strength behavior in compression differs in a qualitative way from that in tension.
Note that the decrease in force prior to final fracture in tension is associated with the phenomenon
of necking. This, of course, does not occur in compression. In fact, an opposite effect occurs, in that
the increasing cross-sectional area causes the stress–strain curve to rise rapidly rather than showing
a maximum. As a result, there is no force maximum in compression prior to fracture, and the
engineering ultimate strength is the same as the engineering fracture strength. Brittle and moderately
ductile materials will fracture in compression. But many ductile metals and polymers simply never
fracture. Instead, the specimen deforms into an increasingly larger and thinner pancake shape until
the force required for further deformation becomes so large that the test must be suspended.

Ductility measurements for compression are analogous to those for tension. Such measures
include percentage changes in length and area, as well as engineering and true fracture strain. The
same measures of energy capacity may also be employed, as can constants for true stress–strain
curves of the form of Eq. 4.23.

4.6.3 Trends in Compressive Behavior

Ductile engineering metals often have nearly identical initial portions of stress–strain curves in
tension and compression; an example of this is shown in Fig. 4.25. After large amounts of
deformation, the curves may still agree if true stresses and strains are plotted.

Many materials that are brittle in tension have this behavior because they contain cracks or pores
that grow and combine to cause failures along planes of maximum tension—that is, perpendicular
to the specimen axis. Examples are the graphite flakes in gray cast iron, cracks at the aggregate
boundaries in concrete, and porosity in sintered ceramics. Such flaws have much less effect in
compression, so materials that behave in a brittle manner in tension usually have considerably higher
compressive strengths. For example, compare the strengths in tension and compression given for
various ceramics in Table 3.10. Quite ductile behavior can occur even for materials that are brittle
in tension, as for the polymer in Fig. 4.26.
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compression. (Adapted from [Richards 61] p. 153; reprinted by permission of PWS-Kent
Publishing Co., Boston.)
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Figure 4.27 System for testing brittle materials such as concrete and stone in compression
with lateral pressure. This system was in use at the U.S. Bureau of Reclamation Laboratories,
Denver, CO, in the 1960s. Lateral pressures up to 860 MPa (125 ksi) could be applied by using
kerosene as the hydraulic fluid, which did not contact the specimen, due to the use of a
neoprene sheath. (From [Hilsdorf 73] as adapted from [Chinn 65]; used with permission.)

Where compressive failure does occur, it is generally associated with a shear stress, so the
fracture is inclined relative to the specimen axis. This type of fracture is evident for gray cast iron,
an aluminum alloy, and concrete in Figs. 4.23 and 4.24. Compare the cast iron fracture plane with
that for tension in Fig. 4.13. The tension fracture plane is oriented normal to the applied tension
stress, which is typical of brittle behavior in all materials.

For brittle materials such as concrete and stone, some engineering applications involve
multiaxial compressive stresses, as in foundations for buildings, bridges, and dams. A testing
arrangement that simulates such conditions by employing hydraulic pressure for multiaxial testing is
shown in Fig. 4.27. The axial pressure system provides a compressive force in the vertical direction,
as for a simple compression test. And the lateral pressure system compresses the specimen laterally
on all sides. The compressive strength of concrete or stone in the axial direction is affected by such
lateral pressure; and for large values of lateral pressure, the compressive strength is substantially
higher than in an ordinary compression test. (This behavior is addressed in some detail later in
Sections 7.7 and 7.8, where methods of predicting strength of brittle materials under multiaxial
stress are considered.)
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4.7 HARDNESS TESTS

In engineering, hardness is most commonly defined as the resistance of a material to indentation.
Indentation is the pressing of a hard round ball or point against the material sample with a known
force so that a depression is made. The depression, or indentation, results from plastic deformation
beneath the indenter, as shown in Fig. 4.28. Some specific characteristic of the indentation, such as
its size or depth, is then taken as a measure of hardness.

Other principles are also used to measure hardness. For example, the Scleroscope hardness test
is a rebound test that employs a hammer with a rounded diamond tip. This hammer is dropped from
a fixed height onto the surface of the material being tested. The hardness number is proportional to
the height of rebound of the hammer, with the scale for metals being set so that fully hardened tool
steel has a value of 100. A modified version of this test is also used for polymers.

In mineralogy, the Mohs hardness scale is used. Diamond, the hardest known material, is
assigned a value of 10. Decreasing values are assigned to other minerals, down to 1 for the soft
mineral talc. Decimal fractions, such as 9.7 for tungsten carbide, are used for materials intermediate
between the standard ones. Where a material lies on the Mohs scale is determined by a simple
manual scratch test. If two materials are compared, the harder one is capable of scratching the
softer one, but not vice versa. This allows materials to be ranked as to hardness, and decimal values
between the standard ones are assigned as a matter of judgment.

Very hard steels have a Mohs hardness around 7, and lower strength steels and other relatively
hard metal alloys are generally in the range 4 to 5. Soft metals may be below 1, so their Mohs hard-
ness is difficult to specify. Various materials are compared as to their Mohs hardness in Fig. 4.29.
Also shown are values for two of the indentation hardness scales that will be discussed shortly.

Indentation hardness has an advantage over Mohs hardness in that the values obtained are less a
matter of interpretation and judgment. There are a number of different standard indentation hardness
tests. They differ from one another as to the geometry of the indenter, the amount of force used, etc.
As time-dependent deformations may occur that affect the indentation, loading rates and/or times
of application are fixed for each standard test.

Plastic

d
D

P

Elastic

Figure 4.28 Plastic deformation under a Brinell hardness indenter.
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Figure 4.29 Approximate relative hardness of various metals and ceramics.
(From [Richards 61] p. 402, as based on data from [Zwikker 54] p. 261; reprinted by permission
of PWS-Kent Publishing Co., Boston.)
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Figure 4.30 Brinell hardness tester (left), and indenter being applied to a sample (right).
(Photographs courtesy of Tinius Olsen Testing Machine Co., Inc., Willow Grove, PA.)

Test apparatus for the Brinell hardness test is shown in Fig. 4.30. Some of the resulting
indentations are shown, along with those for Rockwell type tests, in Fig. 4.31. These two and the
Vickers test are commonly used for engineering purposes.

4.7.1 Brinell Hardness Test

In this test, a large steel ball—specifically, 10 mm in diameter—is used with a relatively high force.
The force used is 3000 kg for fairly hard materials, such as steels and cast irons, and 500 kg for
softer materials, such as copper and aluminum alloys. For very hard materials, the standard steel
ball will deform excessively, and a tungsten carbide ball is used.

The Brinell hardness number, designated HB, is obtained by dividing the applied force P , in
kilograms, by the curved surface area of the indentation, which is a segment of a sphere. This
gives

HB = 2P

π D
[
D − (D2 − d2)0.5

] (4.29)

where D is the diameter of the ball and d is the diameter of the indentation, both in millimeters, as
illustrated in Fig. 4.28. Brinell hardness numbers are listed for the metals in Table 4.6.
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Figure 4.31 Brinell and Rockwell hardness indentations. On the left, in hot-rolled AISI 1020
steel, the larger Brinell indentation has a diameter of 5.4 mm, giving HB = 121, and the
smaller Rockwell B indentation gave HRB = 72. On the right, a higher strength steel has
indentations corresponding to HB = 241 and HRC = 20. (Photo by R. A. Simonds.)

4.7.2 Vickers Hardness Test

The Vickers hardness test is based on the same general principles as the Brinell test. It differs
primarily in that the indenter is a diamond point in the shape of a pyramid with a square base. The
angle between the faces of the pyramid is α = 136◦, as shown in Fig. 4.32. This shape results in the
depth of penetration, h, being one-seventh of the indentation size, d, measured on the diagonal.
The Vickers hardness number HV is obtained by dividing the applied force P by the surface area of
the pyramidal depression. This yields

HV = 2P

d2
sin

α

2
(4.30)

where d is in millimeters and P in kilograms.
Note that the standard pyramidal shape causes the indentations to be geometrically similar,

regardless of their size. For reasons derived from plasticity theory and which are beyond the scope
of the present discussion, this geometric similarity is expected to result in a Vickers hardness value
that is independent of the magnitude of the force used. Hence, a wide range of standard forces
usually between 1 and 120 kg are used, so that essentially all solid materials can be included in a
single wide-ranging hardness scale.

Approximate Vickers hardness numbers are given for various classes of materials in Fig. 4.29.
Also, values for some ceramics are given in Table 4.7. Within the more limited range where the
Brinell test can be used, there is approximate agreement with the Vickers scale. This approximate
agreement is shown, by average curves for steels of various strengths, in Fig. 4.33.
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Figure 4.32 Vickers hardness indentation.

Table 4.7 Vickers Hardness and Bending Strength for Some
Ceramics and Glasses

Hardness Bend Strength Elastic Modulus
Material H V , 0.1 kg MPa (ksi) GPa (103 ksi)

Soda-lime glass 600 65 74
(9.4) (10.7)

Fused silica glass 650 70 70
(10.1) (10.1)

Aluminous porcelain ≈ 800 120 120
(17.4) (17.4)

Silicon nitride 1700 600 400
Si3N4, hot pressed (87) (58)

Alumina, Al2O3 1750 400 400
99.5% dense (58) (58)

Silicon carbide 2600 600 400
SiC, hot pressed (87) (58)

Boron carbide, B4C 3200 400 475
hot pressed (58) (69)

Source: Data in [Creyke 82] p. 38.
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Figure 4.33 Approximate relationship between ultimate tensile strength and Brinell and
Vickers hardness of carbon and alloy steels. (Data from [Boyer 85] p. 1.61.)

Another hardness test that is somewhat similar to the Vickers test is the Knoop test. It differs
in that the pyramidal indenter has a diamond-shaped base and in the use of the projected area to
calculate hardness.

4.7.3 Rockwell Hardness Test

In the Rockwell test, a diamond point or a steel ball is employed as the indenter. The diamond point,
called a Brale indenter, is a cone with an included angle of 120◦ and a slightly rounded end. Balls
of sizes ranging between 1.6 mm and 12.7 mm are also used. Various combinations of indenter and
force are applied in the regular Rockwell test to accommodate a wide range of materials, as listed
in Table 4.8. In addition, there is a superficial Rockwell hardness test that uses smaller forces and
causes smaller indentations.

Rockwell tests differ from other hardness tests in that the depth of the indentation is measured,
rather than the size. A small initial force called the minor load is first applied to establish a reference
position for the depth measurement and to penetrate through any surface scale or foreign particles.
A minor load of 10 kg is used for the regular test. The major load is then applied, and the additional
penetration due to the major load is measured. This is illustrated by the difference between h2 and
h1 in Fig. 4.34.

Each Rockwell hardness scale has a maximum useful value around 100. An increase of one unit
of regular Rockwell hardness represents a decrease in penetration of 0.002 mm. Hence, the hardness
number is

HRX = M − �h

0.002
(4.31)

where �h = h2 − h1 is in millimeters and M is the upper limit of the scale. For regular Rockwell
hardness, M = 100 for all scales using the diamond point (A, C , and D scales), and M = 130 for all
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Table 4.8 Commonly Used Rockwell Hardness Scales

Symbol, HRX Penetrator Diameter Force
X = if Ball, mm (in) kg Typical Application

A Diamond point 60 Tool materials

D Diamond point 100 Cast irons, sheet steels

C Diamond point 150 Steels, hard cast irons,
Ti alloys

B 1.588 100 Soft steels, Cu and Al
(0.0625) alloys

E 3.175 100 Al and Mg alloys, other soft
(0.125) metals; reinforced polymers

M 6.35 100 Very soft metals; high-
(0.250) modulus polymers

R 12.70 60 Very soft metals; low-
(0.500) modulus polymers

scales using ball indenters (B, E , M , R, etc., scales). The hardness numbers are designated HRX,
where X indicates the scale involved, such as 60 HRC for 60 points on the C scale. Note that a
Rockwell hardness number is meaningless unless the scale is specified. In practice, the hardness
numbers are read directly from a dial on the hardness tester, rather than being calculated.

4.7.4 Hardness Correlations and Conversions

The deformations caused by a hardness indenter are of similar magnitude to those occurring at the
ultimate tensile strength in a tension test. However, an important difference is that the material
cannot freely flow outward, so that a complex triaxial state of stress exists under the indenter.
Nevertheless, empirical correlations can be established between hardness and tensile properties,
primarily the ultimate tensile strength σu . For example, for low- and medium-strength carbon and
alloy steels, σu can be estimated from Brinell hardness as

σu = 3.45(HB) MPa, σu = 0.50(HB) ksi (4.32)

where HB is assumed to be in units of kg/mm2. Note that we may also express hardness in units of
MPa by applying the conversion factor 1 kg/mm2 = 9.807 MPa. If the same units (such as MPa) are
used for both HB and σu , Eq. 4.32 becomes σu = 0.35(HB).

Observe that Eq. 4.32 approximates the curve shown in Fig. 4.33. However, there is consid-
erable scatter in actual data, so this relationship should be considered to provide rough estimates
only. For other classes of material, the empirical constant will differ, and the relationship may
even become nonlinear. Similarly, the relationship will change for a different type of hardness test.
Rockwell hardness correlates well with σu and with other types of hardness test, but the relationships
are usually nonlinear. This situation results from the unique indentation-depth basis of this test. For
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Figure 4.34 Rockwell hardness indentation made by application of (a) the minor load, and
(b) the major load, on a diamond Brale indenter. (Adapted from [Boyer 85] p. 34.6; used with
permission.)

carbon and alloy steels, a conversion chart for estimating various types of hardness from one another,
and also ultimate tensile strength, is given as Table 4.9. More detailed conversion charts for steels
and other metals are given in ASTM Standard No. E140, in various handbooks, and in information
provided by manufacturers of hardness testing equipment.

4.8 NOTCH-IMPACT TESTS

Notch-impact tests provide information on the resistance of a material to sudden fracture where
a sharp stress raiser or flaw is present. In addition to providing information not available from
any other simple mechanical test, these tests are quick and inexpensive, so they are frequently
employed.
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Table 4.9 Approximate Equivalent Hardness
Numbers and Ultimate Tensile Strengths for
Carbon and Alloy Steels

Brinell Vickers Rockwell Ultimate, σu

HB HV HRB HRC MPa ksi

627 667 — 58.7 2393 347
578 615 — 56.0 2158 313
534 569 — 53.5 1986 288
495 528 — 51.0 1813 263

461 491 — 48.5 1669 242
429 455 — 45.7 1517 220
401 425 — 43.1 1393 202
375 396 — 40.4 1267 184

341 360 — 36.6 1131 164
311 328 — 33.1 1027 149
277 292 — 28.8 924 134
241 253 100 22.8 800 116

217 228 96.4 — 724 105
197 207 92.8 — 655 95
179 188 89.0 — 600 87
159 167 83.9 — 538 78

143 150 78.6 — 490 71
131 137 74.2 — 448 65
116 122 67.6 — 400 58

Note: Force 3000 kg for HB. Both HB and HV are
assumed to be in units of kg/mm2.
Source: Values in [Boyer 85] p. 1.61.

4.8.1 Types of Test

In various standard impact tests, notched beams are broken by a swinging pendulum or a falling
weight. The most common tests of this type are the Charpy V-notch and the Izod tests. Specimens
and loading configurations for these are shown in Fig. 4.35. A swinging pendulum arrangement
is used for applying the impact load in both cases; a device for Charpy tests is shown in Fig. 4.36.
The energy required to break the sample is determined from an indicator that measures how high the
pendulum swings after breaking the sample. Some broken Charpy specimens are shown in Fig. 4.37.
The impact resistance of polymers (plastics) is often evaluated with the use of the Izod test. Some
representative data are included in Table 4.3.

Another test that is used fairly often is the dynamic tear test. Specimens for this test have a
center notch, as for the Charpy specimen, and they are impacted in three-point bending, but by a
falling weight. These specimens are quite large, 180 mm long, 40 mm wide, and 16 mm thick. An
even larger size, 430 mm long, 120 mm wide, and 25 mm thick, is also used.
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Figure 4.35 Specimens and loading configurations for (a) Charpy V-notch, and (b) Izod tests.
(Adapted from [ASTM 97] Std. E23; copyright c© ASTM; reprinted with permission.)

In notch-impact tests, the energies obtained depend on the details of the specimen size and
geometry, including the notch-tip radius. The support and loading configuration used are also
important, as are the mass and velocity of the pendulum or weight. Hence, results from one type
of test cannot be directly compared with those from another. In addition, all such details of the test
must be kept constant, as specified in the published standards, such as those of ASTM.

4.8.2 Trends in Impact Behavior, and Discussion

Polymers, metals, and other materials with low notch-impact energy are generally prone to brittle
behavior and typically have low ductility and low toughness in a tension test. However, the
correlation with tensile properties is only a general trend, as the results of impact fracture tests
are special due to both the high rate of loading and the presence of a notch.

Many materials exhibit marked changes in impact energy with temperature. For example, for
plain carbon steels of various carbon contents, Charpy energy is plotted versus temperature in
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Figure 4.36 Charpy testing machine, shown with the pendulum in the raised position prior to
its release to impact a specimen. (Photo courtesy of Tinius Olsen Testing Machine Co., Inc.,
Willow Grove, PA.)

Figure 4.37 Broken Charpy specimens, left to right, of gray cast iron, AISI 4140 steel
tempered to σu ≈ 1550 MPa, and the same steel at σu ≈ 950 MPa. The specimens are 10 mm in
both width and thickness. (Photo by R. A. Simonds.)
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Figure 4.38 Variation in Charpy V-notch impact energy with temperature for normalized
plain carbon steels of various carbon contents. (From [Boyer 85] p. 4.85; used with permission.)

Fig. 4.38. However, even for the same carbon content, and for heat treatment to the same hardness
(ultimate strength), there are still differences in the impact behavior of steels due to the influence of
different percentages of minor alloying elements. This behavior is illustrated by Fig. 4.39.

In Figs. 4.38 and 4.39, there tends to be a region of temperatures over which the impact energy
increases rapidly from a lower level that may be relatively constant to an upper level that may
also be relatively constant. Such a temperature-transition behavior is common in various materials.
The fracture surfaces for low-energy (brittle) impact failures are generally relatively smooth, and in
metals have a crystalline appearance. But those for high-energy (ductile) fractures have regions of
shear where the fracture surface is inclined about 45◦ to the tensile stress, and they have, in general,
a rougher, more highly deformed appearance, called fibrous fracture. These differences can be seen
in Fig. 4.37.

The temperature-transition behavior is of some engineering significance, as it aids in comparing
materials for use at various temperatures. In general, a material should not be severely loaded at
temperatures where it has a low impact energy. However, some caution is needed in attaching too
much significance to the exact position of the temperature transition. This is because the transition
shifts even for different types of impact tests, as discussed in the book by Barsom (1999). Notch-
impact test results can be quantitatively related to engineering situations of interest only in an
indirect manner through empirical correlations, with this situation applying both to the energies
and to the temperature transition.

By the use of fracture mechanics (as described later in Chapter 8), materials containing cracks
and sharp notches can be analyzed in a more specific way. In particular, the fracture toughness can
be quantitatively related to the behavior of an engineering component, and loading-rate effects can
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Figure 4.39 Temperature dependence of Charpy V-notch impact resistance for different
alloy steels of similar carbon content, all quenched and tempered to HRC 34. (Adapted from
[French 56]; used with permission.)

be included in the analysis. However, these advantages are achieved at the sacrifice of simplicity
and economy. Notch-impact tests have thus remained popular despite their shortcomings, as they
serve a useful purpose in quickly comparing materials and obtaining general information on their
behavior.

4.9 BENDING AND TORSION TESTS

Various bending and torsion tests are widely used for evaluating the elastic modulus, strength,
shear modulus, shear strength, and other properties of materials. These tests differ in a critical way
from tension and compression tests, in that the stresses and strains are not uniform over the cross
section of the test specimen. The only useful exception is the case of torsion of thin-walled circular
tubes, where the shear stress and strain are approximately uniform if the wall is sufficiently thin. In
other cases of bending and torsion, the nonuniform stresses and strains create a situation where a
stress–strain curve cannot be determined directly from the test data.

A procedure does exist for obtaining a stress–strain curve by numerically analyzing slopes on
a moment versus curvature plot for rectangular cross sections in bending. And there is a similar
procedure for analyzing torque versus twist angle data for solid round shafts in torsion. These
procedures are not covered here, but for torsion can be found in the books by Dieter (1986) and
Hill (1998), and for both bending and torsion in the book by Nadai (1950). The opposite problem,
that of determining the moment or torque given the material’s stress–strain curve, will be considered



170 Chapter 4 Mechanical Testing: Tension Test and Other Basic Tests

L1

P/2P/2

L

P/2P/2
(a)

P

2c

v

(c)

L1

P

t

(b)

Figure 4.40 Loading configuration for (a) three-point bending and (b) four-point bending.
The deflection of the centerline of either beam is similar to (c).

in detail in Chapter 13. Note that the simple equations commonly employed to calculate stresses for
bending and torsion, as in Fig. A.1(b) and (c), are based on linear-elastic behavior and so do not
apply if the stress–strain behavior is nonlinear due to yielding.

4.9.1 Bending (Flexure) Tests

Bending tests on smooth (unnotched) bars of material are commonly used, as in various ASTM
standard test methods for flat metal spring material, and for concrete, natural stone, wood, plastics,
glass, and ceramics. Bending tests, also called flexure tests, are especially needed to evaluate tensile
strengths of brittle materials, as such materials are difficult to test in simple uniaxial tension due to
cracking in the grips. (Think of trying to grab a piece of glass in the jaw-like grips often used for
testing flat pieces of metal.) The specimens often have rectangular cross sections and may be loaded
in either three-point bending or four-point bending, as illustrated in Fig. 4.40.

In bending, note that the stress varies through the depth of the beam in such a way that yielding
first occurs in a thin surface layer. This results in the load versus deflection curve not being sensitive
to the very beginning of yielding. Also, if the stress–strain curve is not linear, as after yielding, the
simple elastic bending analysis is not valid. Hence, bending tests are most meaningful for brittle
materials that have approximately linear stress–strain behavior up to the point of fracture.

For materials that do have approximately linear behavior, the fracture stress may be estimated
from the failure load in the bending test by simple linear elastic beam analysis:

σ = Mc

I
(4.33)

Here, M is the bending moment. For a rectangular cross section of depth 2c and width t , as in
Fig. 4.40, the area moment of inertia about the neutral axis is I = 2tc3/3. Consider three-point
bending of a beam of length L due to a force P at midspan, as in Fig. 4.40(a). In this case, the
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highest bending moment occurs at midspan and is M = P L/4. Equation 4.33 then gives

σ f b = 3L

8tc2
Pf (4.34)

where Pf is the fracture force in the bending test and σ f b is the calculated fracture stress. This
is usually identified as the bend strength or the flexural strength, with the quaint term modulus of
rupture in bending also being used. Values for some ceramics are given in Table 4.7.

Such values of σ f b should always be identified as being from a bending test. This is because
they may not agree precisely with values from tension tests, primarily due to departure of the
stress–strain curve from linearity. Note that brittle materials are usually stronger in compression
than in tension, so the maximum tension stress is the cause of failure in the beam. Corrections for
nonlinearity in the stress–strain curve could be made on the basis of methods presented later in
Chapter 13, but this is virtually never done.

Yield strengths in bending are also sometimes evaluated. Equation 4.34 is used, but with Pf

replaced by a load Pi , corresponding to a strain offset or other means of identifying the beginning of
yielding. Such σo values are less likely than σ f b to be affected by nonlinear stress–strain behavior,
but agreement with values from tension tests is affected by the previously noted insensitivity of the
test to the beginning of yielding.

The elastic modulus may also be obtained from a bending test. For example, for three-point
bending, as in Fig. 4.40(a), linear-elastic analysis gives the maximum deflection at midspan. From
Fig. A.4(a), this is

v = PL3

48EI
(4.35)

The value of E may then be calculated from the slope dP/dv of the initial linear portion of the load
versus deflection curve:

E = L3

48I

(
dP

dv

)
= L3

32tc3

(
dP

dv

)
(4.36)

Elastic moduli derived from bending are generally reasonably close to those from tension
or compression tests of the same material, but several possible causes of discrepancy exist:
(1) Local elastic or plastic deformations at the supports and/or points of load application may not
be small compared with the beam deflection. (2) In relatively short beams, significant deformations
due to shear stress may occur that are not considered by the ideal beam theory used. (3) The
material may have differing elastic moduli in tension and compression, so that an intermediate
value is obtained from the bending test. Hence, values of E from bending need to be identified
as such.

For four-point bending, or for other modes of loading or shapes of cross section, Eqs. 4.34 to
4.36 need to be replaced by the analogous relationships from Appendix A that apply.

4.9.2 Heat-Deflection Test

In this test used for polymers, small beams having rectangular cross sections are loaded in three-
point bending with the use of a special apparatus described in ASTM Standard No. D648. Beams
2c = 13 mm deep, and t = 3 to 13 mm thick, are loaded over a span of L = 100 mm. A force
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is applied such that the maximum bending stress, calculated by assuming elastic behavior, is
either 0.455 MPa or 1.82 MPa. The temperature is then increased at a rate of 2◦C per minute
until the deflection of the beam exceeds 0.25 mm, at which point the temperature is noted. This
heat-deflection temperature is used as an index to compare the resistance of polymers to excessive
softening and deformation as a result of heat. It also gives an indication of the temperature range
where the material loses its usefulness. Some values are given in Table 4.3.

4.9.3 Torsion Test

Tests of round bars loaded in simple torsion are relatively easy to conduct, and unlike tension tests,
they are not complicated by the necking phenomenon. The state of stress and strain in a torsion test
on a round bar corresponds to pure shear, as illustrated in Fig. 4.41, where T is torque, τ is shear
stress, and γ is shear strain. The same state of stress and strain also applies if the bar is hollow, such
as a thin-walled circular tube. Note that with a 45◦ rotation of the coordinate axes, the pure shear
stress and strain are equivalent to normal stresses and strains, as shown.

Fractures from torsion tests are shown in Fig. 4.42. The gray cast iron (top) behaves in a brittle
manner, with fracture on planes of maximum tension stress, 45◦ to the specimen axis, consistent
with Fig. 4.41. As the fracture wraps around the circumference, maintaining 45◦ to the specimen
axis causes the helical fracture pattern shown. In contrast, ductile behavior occurs for the aluminum
alloy (bottom), where fracture occurs on a plane of maximum shear stress transverse to the bar axis.

For linear-elastic behavior, the shear stress τ f at fracture can be related to the torque Tf by
applying Figs. A.1(c) and A.2(c). We obtain

τ f = Tf r2

J
, τ f = 2 Tf r2

π
(

r4
2 − r4

1

) (a, b) (4.37)

Figure 4.41 A round bar in torsion and the resulting state of pure shear stress and strain.
The equivalent normal stresses and strains for a 45◦ rotation of the coordinate axes are
also shown.
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Figure 4.42 Typical torsion failures, showing brittle behavior (top) in gray cast iron, and
ductile behavior (bottom) in aluminum alloy 2024-T351. (Photo by R. A. Simonds.)

where J is the polar moment of inertia of the cross-sectional area and r2 is the outer radius. Form
(b) is obtained from (a) by evaluating J for a hollow bar or tube with inner radius r1. A solid bar is
included by letting r1 = 0. However, as a result of Eq. 4.37 being derived from linear-elastic behavior,
τ f values so calculated are inaccurate if there is nonlinear deformation (yielding), a situation similar
to that for bending tests. However, this limitation can be largely overcome by testing thin-walled
tubes, as discussed in the next section.

In a torsion test, the torque T is usually plotted versus the angle of twist θ . The shear modulus
G can be evaluated from the slope dT/dθ of the initial linear portion of such a plot. Noting the
equation for θ in Fig. A.1(c), we see that the desired G is given by

G = L

J

(
dT

dθ

)
, G = 2L

π
(

r4
2 − r4

1

) (dT

dθ

)
(a, b) (4.38)

where L is the bar length and J , r2, and r1 are the same as before, with r1 = 0 for a solid bar.
Torsion tests on solid bars are often conducted as a means of comparing the strength and

ductility of different materials or variations of a given material. This is valid, as long as it is noted
that stresses from Eq. 4.37 may be fictitious values, as they do not include the effects of yielding.
(See Chapter 13.)

4.9.4 Testing of Thin-Walled Tubes in Torsion

If it is desired to investigate significant nonlinear deformation in torsion, the most straightforward
approach is to test thin-walled tubes, as illustrated in Fig. 4.43. The approximately uniform shear
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Figure 4.43 Thin-walled tube in torsion (a). The approximately uniform shear stress τavg on
the cross section is shown in (b), and the geometry for an angle of twist θ in (c).

stress and strain through the wall thickness can be obtained from

τavg = T

2πr2
avgt

, γavg = ravgθ

L
, where ravg = r2 + r1

2
(a, b, c) (4.39)

The wall thickness is t = r2 − r1, and ravg is the radius to the middle of the wall thickness. The
subscripts avg for shear stress and strain indicate averages for these quantities that vary somewhat
through the wall thickness.

By the use of Eq. 4.39, the shear stress–strain curve, τ versus γ , can be obtained directly and
simply from T versus θ data. This gives us a testing and data analysis situation that is analogous to
the use of Eqs. 4.1 and 4.2 to obtain σ versus ε curves from P versus �L data from tension tests.
The choice of a wall thickness for test specimens involves a compromise, with ratios in the range
t/r1 = 0.10 to 0.25 being reasonable. The former gives only a 10% variation in strain through the
wall, but is thin enough that buckling could be a problem. The latter value gives more resistance to
buckling, but with a 25% variation in strain.

Equation 4.39 can be derived with the aid of Fig. 4.43(b). The shear stress τavg is treated as
constant through the wall thickness. Multiplying this by the cross-sectional area gives the total
annular force, which has a torque arm ravg, and which must equilibrate the torque T :

T = (stress)(area)(distance) = (τavg)(2πravgt)(ravg) = 2πτavgr2
avgt (4.40)

Solving for τavg then gives Eq. 4.39(a). Now consider a cylinder of any radius r that is twisted by
an angle θ , as shown in Fig. 4.43(c). Noting that the shear strain is the distortion angle γ , which is
assumed to be small compared with unity, the arc length s = rθ = Lγ , so that γ = rθ/L . Applying
this for ravg gives Eq. 4.39(b). Also, applying the same relationship to compare γ for the inner and
outer walls gives

γ2 = r2θ

L
, γ1 = r1θ

L
,

γ2

γ1
= r2

r1
= 1 + t

r1
(4.41)
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Hence, for t/r1 = 0.1, we have γ2/γ1 = 1.10, or a 10% variation, as stated earlier, and similarly a
25% variation for t/r1 = 0.25.

The testing of thin-walled tubes in torsion is not nearly as prevalent as tension testing. But it
nevertheless provides a viable alternative for characterizing the fundamental stress–strain behavior
of materials.

4.10 SUMMARY

A variety of relatively simple mechanical tests are used to evaluate materials properties. The results
are used in engineering design and as a basis for comparing and selecting materials. These include
tests involving tension, compression, indentation, impact, bending, and torsion.

Tension tests are frequently used to evaluate stiffness, strength, ductility, and other character-
istics of materials, as summarized in Table 4.5. One property of interest is the elastic modulus E ,
a measure of stiffness and a fundamental elastic constant of the material. Poisson’s ratio ν can also
be obtained if transverse strains are measured. The yield strength σo characterizes resistance to the
beginning of plastic deformation, and the ultimate tensile strength σu is the highest engineering
stress the material can withstand.

Ductility is the ability to resist deformation without fracture. In a tension test, this is
characterized by the percent elongation at fracture, 100ε f , and by the percent reduction in area.
Also, detailed analysis of test results can be done by using true stresses and strains, which consider
the finite changes in gage length and cross-sectional area that may occur. Additional properties can
then be obtained, notably, the strain hardening exponent n and the true fracture stress and strain, σ̃fB

and ε̃f .
If a material is tested under conditions where significant creep strain occurs during the tension

test, then the results are sensitive to strain rate. At a given temperature, increasing the strain rate
usually increases the strength, but decreases the ductility. Qualitatively similar effects occur for a
given strain rate if the temperature is decreased. These effects are important for most engineering
metals only at elevated temperature, but they are significant in many polymers at room temperature.

Compression tests can be used to measure similar properties as tension tests. These tests are
especially valuable for materials used primarily in compression, such as concrete and building stone,
and for other materials that behave in a brittle manner in tension, such as ceramics and glass. In these
materials, the strength and ductility are generally greater in compression than in tension, sometimes
dramatically so.

Hardness in engineering is usually measured by using one of several standard tests that measure
resistance to indentation by a ball or sharp point. The Brinell test uses a 10 mm ball, and the Vickers
test a pyramidal point. Both evaluate hardness as the average stress in kg/mm2 on the surface area
of the indentation. The values obtained are similar, but the Vickers test is useful for a wider range
of materials. Rockwell hardness is based on the depth of indentation by a ball or conical diamond
point. There are several Rockwell hardness scales to accommodate various materials.

Notch-impact tests evaluate the ability of a material to resist rapid loading where a sharp notch
is present. The impact load is applied by a swinging pendulum or a falling weight. Details of
specimen size and shape and the manner of loading differ for various standard tests, which include
the Charpy, Izod, and dynamic tear tests.
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Impact energies often exhibit a temperature transition, below which the behavior is brittle. Thus,
impact energy versus temperature curves are useful in comparing the behavior of different materials.
However, too much significance should not be attached to the exact position of the temperature
transition, as this is sensitive to the details of the test and will not in general correspond to the
engineering situation of interest.

Bending tests on unnotched bars are useful for evaluating the elastic modulus and strength
of brittle materials. Since linear-elastic behavior is assumed in data analysis, strengths will differ
from those in tension tests, if significant nonlinear stress–strain behavior occurs prior to fracture.
A special bending test called the heat-deflection test is used to identify the limits of usefulness of
polymers with respect to temperature. Torsion tests permit direct evaluation of the shear modulus, G,
and also can be used to determine strength and ductility in shear. Thin-walled tubes tested in torsion
have nearly constant stress and strain through the wall thickness, so such tests may be employed to
obtain stress–strain curves in shear.

N E W T E R M S A N D S Y M B O L S

bending (flexure) test
bend strength, σ f b

Brinell hardness, HB
Charpy V -notch test
compression test
corrected true stress, σ̃B

elastic limit
engineering strain, ε

engineering stress, σ

heat-deflection temperature
indentation hardness
Izod test
necking
notch-impact test
offset yield strength, σo

percent elongation, 100εf

percent reduction in area, %R A
proportional limit, σp

Rockwell hardness, HRC, etc.
strain hardening exponent, n
strength coefficient, H
tangent modulus, Et

tensile toughness, uf

torsion test
true fracture strain, ε̃f

true fracture strength, σ̃f , σ̃fB

true strain, ε̃

true stress, σ̃

true toughness, ũ f

ultimate tensile strength, σu

Vickers hardness, HV
yielding
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PROBLEMS AND QUESTIONS

Section 4.31

4.1 Define the following concepts in your own words: (a) stiffness, (b) strength, (c) ductility,
(d) yielding, (e) toughness, and (f) strain hardening.

4.2 Define the following adjectives that might be used to describe the behavior of a material:
(a) brittle, (b) ductile, (c) tough, (d) stiff, and (e) strong.

4.3 The offset yield stress and the proportional limit stress are both used to characterize the
beginning of nonlinear behavior in a tension test. Why is the offset method generally
preferable? Can you think of any disadvantages of the offset method?

4.4 Force and length change data are given in Table P4.4 for the initial portion of a tension test
on AISI 4140 steel tempered at 538◦C (1000◦F). The diameter before testing was 10 mm, and
the gage length Li for the length change measurement was 50 mm.

(a) Calculate corresponding values of engineering stress and strain and display these values
on a stress–strain plot. (Your graph should agree with Fig. P4.5.)

(b) Determine the yield strength for a plastic strain offset of 0.002, that is, 0.2%.
(c) What tensile load is required to cause yielding in a bar of the same material but with

a diameter of 25 mm? How does this value compare with the load at yielding in the
10 mm diameter test specimen? Why do the two values differ?

1Numerical values given in tables are representative actual data from a large number of samples recorded in each test.



178 Chapter 4 Mechanical Testing: Tension Test and Other Basic Tests

Table P4.4

Force Length Change Force Length Change
P , kN �L , mm P , kN �L , mm

0 0 67.16 0.3944
19.04 0.0794 67.75 0.6573
38.53 0.1600 68.63 1.0951
58.81 0.2505 69.43 1.5156
65.63 0.2815 70.02 1.9534
67.60 0.2952

4.5 Stress–strain data are plotted in Fig. P4.5 for the initial portion of a tension test on AISI
4140 steel tempered at 538◦C (1000◦F). Note that data points A and B are labeled with their
stress–strain coordinates.

(a) Determine the elastic modulus E .
(b) If a bar of this material 100 mm long is strained to point A and then unloaded, what is

its length at point A and also after unloading?
(c) If a sample of this material is strained to point B and then unloaded, what is the plastic

(permanent) strain that remains after unloading?
(d) Repeat (b) where the bar is instead loaded to point B and then unloaded.

AISI 4140 Steel, 538oC (1000
ο
F) Temper
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Figure P4.5

4.6 Engineering stress–strain data from a tension test on 6061-T6 aluminum are plotted in
Fig. P4.6, and representative data points are listed in Table P4.6. Curve 1 shows the initial
part of the data plotted at a sensitive strain scale, and Curve 2 shows all of the data to
fracture. The diameter before testing was 10 mm, and after fracture the minimum diameter
in the necked region was 8 mm. Determine the following: elastic modulus, 0.2% offset yield
strength, ultimate tensile strength, percent elongation, and percent reduction in area.
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Table P4.6

σ , MPa ε, % σ , MPa ε, %

0 0 309 2.00
50 0.069 315 3.51

100 0.138 319 5.02
151 0.210 322 6.51
199 0.280 323 7.44
242 0.343 320 8.48
268 0.384 311 9.52
290 0.438 293 10.90
298 0.493 267 12.51
302 0.651 246 13.63
305 0.992 223 14.59

(Final point is fracture.)
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Figure P4.6

4.7 Engineering stress–strain data from a tension test on gray cast iron are given in Table P4.7.
The diameter before testing was 10 mm, and after fracture it was 9.5 mm.

(a) Determine the following: tangent modulus, 0.2% offset yield strength, ultimate tensile
strength, percent elongation, and percent reduction in area.

(b) How do these properties differ from the corresponding values for ductile cast iron in
Table 4.2? Referring to Section 3.3, explain why these two cast irons have contrasting
tensile behavior.
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Table P4.7

σ , MPa ε, % σ , MPa ε, %

0 0 182.4 0.402
19.45 0.0199 196.9 0.503
39.2 0.0443 208 0.601
60.0 0.0717 217 0.701
88.6 0.1168 224 0.804

110.1 0.1560 230 0.903
131.0 0.203 236 1.035
149.6 0.257 240 1.173
169.1 0.333

(Final point is fracture.)

4.8 Engineering stress–strain data from a tension test on AISI 4140 steel tempered at 649◦C
(1200◦F) are listed in Table P4.8. The diameter before testing was 10 mm, and after fracture
the minimum diameter in the necked region was 6 mm. Determine the following: elastic
modulus, 0.2% offset yield strength, ultimate tensile strength, percent elongation, and percent
reduction in area.

Table P4.8

σ , MPa ε, % σ , MPa ε, %

0 0 897 4.51
202 0.099 912 5.96
403 0.195 918 8.07
587 0.283 915 9.94
785 0.382 899 12.04
822 0.405 871 13.53
836 0.423 831 15.03
832 0.451 772 16.70
829 0.887 689 18.52
828 1.988 574 20.35
864 2.94

(Final point is fracture.)

4.9 Engineering stress–strain data from a tension test on AISI 4140 steel tempered at 204◦C
(400◦F) are listed in Table P4.9. The diameter before testing was 9.61 mm, and after fracture
the minimum diameter in the necked region was 9 mm. Determine the following: elastic
modulus, 0.2% offset yield strength, ultimate tensile strength, percent elongation, and percent
reduction in area.

4.10 Engineering stress–strain data from a tension test on 7075-T651 aluminum are given in
Table P4.10. The diameter before testing was 10 mm, and after fracture the minimum diameter
in the necked region was 8 mm. Determine the following: elastic modulus, 0.2% offset yield
strength, ultimate tensile strength, percent elongation, and percent reduction in area.
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Table P4.9

σ , MPa ε, % σ , MPa ε, %

0 0 1803 1.751
276 0.135 1889 2.24
553 0.276 1970 3.00
829 0.421 2013 3.76

1102 0.573 2037 4.50
1303 0.706 2047 5.24
1406 0.799 2039 5.99
1522 0.951 2006 6.73
1600 1.099 1958 7.46
1683 1.308 1893 8.22
1742 1.497

(Final point is fracture.)

Table P4.10

σ, MPa ε, % σ, MPa ε, %

0 0 557 1.819
112 0.165 563 2.30
222 0.322 577 4.02
326 0.474 587 5.98
415 0.605 593 8.02
473 0.703 596 9.52
505 0.797 597 10.97
527 0.953 597 12.50
542 1.209 591 13.90
551 1.498 571 15.33

(Final point is fracture.)

4.11 Engineering stress–strain data from a tension test on a near-γ titanium aluminide, Ti-48Al-
2V-2Mn (atomic percentages), are given in Table P4.11. Determine the following: elastic
modulus, 0.2% offset yield strength, ultimate tensile strength, percent elongation at fracture,
and percent elongation after fracture. (Data courtesy of S. L. Kampe; see [Kampe 94].)

Table P4.11

σ , MPa ε, % σ , MPa ε, %

0 0 431 0.607
85 0.060 446 0.717

169 0.119 457 0.825
254 0.181 467 0.932
313 0.236 478 1.080
355 0.303 483 1.125
383 0.373 482 1.313
412 0.493 480 1.45

(Final point is fracture.)
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4.12 Engineering stress–strain data from a tension test on PVC polymer are plotted in Fig. P4.12
and listed in Table P4.12. Curve 1 shows the initial part of the data plotted at a sensitive
strain scale, and Curve 2 shows all of the data until the extensometer had to be removed as
the measurement was approaching its 50% strain capacity. The specimen had a rectangular
cross section with original dimensions width 14.5 and thickness 4.02 mm. After fracture,
these dimensions were width 9.5 and thickness 2.02 mm. Gage marks originally 50 mm apart
had stretched to 82.5 mm after fracture, which occurred at a load of 1.319 kN. Determine the
following: elastic modulus, yield strength, ultimate tensile strength, percent elongation, and
percent reduction in area.

Table P4.12

σ , MPa ε, % σ , MPa ε, %

0 0 50.4 6.14
11.57 0.328 44.9 8.92
19.94 0.582 39.5 11.84
28.2 0.880 37.7 13.48
39.5 1.365 35.9 16.11
51.1 2.10 35.0 19.19
54.7 2.57 34.8 24.7
55.6 2.87 33.4 36.4
55.9 3.21 32.4 48.0
55.5 3.61

(Extensometer removed after final point.)
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4.13 Engineering stress–strain data from a tension test on polycarbonate are given in Table P4.13.
Data acquisition was terminated when the extensometer had to be removed as the measure-
ment was approaching its 50% strain capacity. The specimen had a rectangular cross section
with original dimensions width 14.5 and thickness 2.45 mm. After fracture, these dimensions
were width 10.6 and thickness 1.4 mm. Gage marks originally 50 mm apart had stretched to
82.5 mm after fracture, which occurred at a force of 1.319 kN. Determine the following: elastic
modulus, yield strength, ultimate tensile strength, percent elongation, and percent reduction
in area.

Table P4.13

σ , MPa ε, % σ , MPa ε, %

0 0 60.8 8.44
10.81 0.427 56.3 9.80
21.8 0.906 49.7 10.98
31.5 1.388 48.2 12.22
39.8 1.895 47.5 13.32
48.8 2.63 46.8 14.91
55.7 3.47 47.2 19.88
60.3 4.40 48.1 28.8
62.5 5.23 48.8 38.6
63.3 6.21 49.2 48.5
63.0 7.00

(Extensometer removed after final point.)

4.14 Engineering stress–strain data from a tension test on PMMA polymer are given in Table P4.14.
The specimen had a rectangular cross section with original dimensions width 12.61 and
thickness 2.92 mm. After fracture, these dimensions were the same within the repeatability of
the measurement. Determine the following: elastic modulus, yield strength, ultimate tensile
strength, percent elongation, and percent reduction in area.

Table P4.14

σ, MPa ε, % σ, MPa ε, %

0 0 49.5 1.729
9.00 0.241 53.7 1.960

17.20 0.490 57.7 2.23
24.8 0.733 60.6 2.46
32.3 0.995 63.3 2.75
38.7 1.239 64.9 2.95
44.6 1.487 66.3 3.19

(Final point is fracture.)



184 Chapter 4 Mechanical Testing: Tension Test and Other Basic Tests

Section 4.4
4.15 Using Tables 3.10, 4.2, and 4.3, write a paragraph that discusses in general terms the

differences among engineering metals, polymers, ceramics, and silica glasses as to their tensile
strength, ductility, and stiffness.

4.16 Using the data for various steels in Tables 4.2 and 14.1, plot ultimate tensile strength
versus percent reduction in area. Use linear coordinates. Also, use two different plotting
symbols, one for the steels that are not strengthened by heat treating, which are 1020, 1015,
Man-Ten, and 1045 (HR), and one for all of the others (which are strengthened by heat
treatment). Then comment on any general trends that are apparent and any exceptions to these
trends.

4.17 On the basis of the data for SiC reinforced aluminum in Table 4.4, write a paragraph discussing
the effects of various types and orientations of reinforcement on the stiffness, strength, and
ductility. Also, estimate the tensile toughness uf for each case, and include this in your
discussion.

Section 4.52

4.18 Explain in your own words, without using equations, the difference between engineering stress
and true stress and the difference between engineering strain and true strain.

4.19 Consider the tension test of Prob. 4.9 for AISI 4140 steel tempered at 204◦C (400◦F).
(a) Calculate true stresses and strains for the data up to the ultimate tensile strength. Plot

these values and compare the resulting true stress–strain curve with the engineering
one from the original data.

(b) For the points from (a) that are beyond yielding, calculate true plastic strains, and fit
these with the true stresses to Eq. 4.23 to obtain values of Hand n. Show data and fit
on a log–log plot.

(c) Calculate the true fracture strength and the true fracture strain, including the Bridgman
correction for the former. Also calculate the true plastic strain at fracture, and add the
corresponding point to your log–log plot from (b). If your fitted line is extended, is it
consistent with the fracture point?

4.20 Consider the tension test of Prob. 4.6 for 6061-T6 aluminum. Analyze these data in terms of
true stresses and strains by following the same procedure as in Prob. 4.19(a) and (b).

4.21 Consider the tension test of Prob. 4.10 for 7075-T651 aluminum. Analyze these data in terms
of true stresses and strains by following the same procedure as in Prob. 4.19(a) and (b).

4.22 For a number of points during a tension test on Man-Ten steel, engineering stress and strain
data are given in Table P4.22. Also given are minimum diameters measured in the necked
region in the latter portions of the test. The initial diameter was 6.32 mm.

(a) Evaluate the following engineering stress–strain properties: elastic modulus, yield
strength, ultimate tensile strength, and percent reduction in area.

2Where fitting of Eq. 4.23 is requested, do not include data points with plastic strain values smaller than about 0.001, as
needed to obtain a good linear trend on a log–log plot similar to Fig. 4.21.
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(b) Determine true stresses and strains, and plot the true stress–strain curve, showing
both raw and corrected values of true stress. Also evaluate the true fracture stress and
strain.

(c) Calculate true plastic strains for the data beyond yielding to fracture. Then fit Eq. 4.24
to these values and the corresponding corrected stresses, determining H and n.

Table P4.22

Engr. Stress Engr. Strain Diameter
σ, MPa ε d, mm

0 0 6.32
125 0.0006 —
257 0.0012 —
359 0.0017 —
317 0.0035 —
333 0.0070 —
357 0.0100 —
397 0.0170 —
458 0.0300 —
507 0.0500 —
541 0.0790 5.99
576 — 5.72
558 — 5.33
531 — 5.08
476 — 4.45
379 — 3.50

(Final point is fracture.)

4.23 Several values of the strength coefficient H are missing from Table 4.6. Estimate these values.
4.24 Assume that a material is quite ductile, so that elastic strains are small compared with plastic

strains over most of the stress–strain curve. Plastic and total strains can then be taken as
equivalent, ε̃p ≈ ε̃, and Eq. 4.23 becomes σ̃ = H ε̃n .

(a) Show that the strain hardening exponent n is then expected to be equal to the true
strain ε̃u at the engineering ultimate strength point—that is, n ≈ ε̃u . (Suggestion: Start
by making substitutions into σ̃ = H ε̃n from Sections 4.5.1 and 4.5.2, to obtain an
equation σ = f (ε̃, H, n) that gives engineering stress.)

(b) How closely is this expectation realized for the tension test on AISI 1020 steel of
Ex. 4.1, 4.2, and 4.3? (See Table E4.1 and Fig. 4.21.)

(c) From your derivation for (a), write an equation for estimating the ultimate tensile
strength σu from H and n. How well does this estimate work for the AISI 1020 steel
of Ex. 4.1, 4.2, and 4.3?

4.25 On the basis of the data in Tables 4.2 and 4.6 for 2024-T4 aluminum, draw the entire
engineering stress–strain curve up to the point of fracture on linear graph paper. Accurately
plot the initial elastic slope and the points corresponding to yield, ultimate, and fracture, and
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approximately sketch the remainder of the curve. How does your result compare with the
curve for similar material in Fig. 4.15?

4.26 Proceed as in Prob. 4.25, except draw the true stress–strain curve, and also calculate several
additional (σ̃ , ε̃) points along the curve to aid in plotting.

Section 4.6
4.27 Engineering stress–strain data from a compression test on a cylinder of gray cast iron are given

in Table P4.27. Strain measurements up to 4.5% are from an extensometer with a 12.70 mm
gage length, and beyond this strains are approximated from crosshead displacements. The
diameter before testing was 12.75 mm, and after fracture it was 14.68 mm. Also, the length
before testing was 38.12 mm, and after fracture it was 33.20 mm. The fracture occurred on an
inclined plane similar to the gray cast iron sample in Fig. 4.23.

(a) Determine the following: elastic modulus, 0.2% offset yield strength, ultimate com-
pressive strength, percent deformation at fracture, and percent change in area.

(b) Compare the results of this test to the tension test on material from the same batch
of cast iron in Prob. 4.7, in which the fracture occurred normal to the specimen axis.
Explain why the fracture plane differs and why the strength and ductility differ.

Table P4.27

σ , MPa ε, % σ , MPa ε, %

0 0 617 2.88
60.3 0.059 671 4.01

114.1 0.114 719 5.50
159.4 0.158 751 7.03
218 0.225 773 8.49
289 0.326 790 10.00
350 0.445 801 11.49
397 0.604 804 12.80
448 0.900 802 13.49
497 1.326 795 14.00
565 2.096

(Final point is fracture)

4.28 How would you expect the stress–strain curves for concrete to differ between tension and
compression? Give physical reasons for the expected differences.

4.29 Consider the data in Table 3.10 where strengths are given for both tension and compression
for a number of glasses and ceramics. Plot the tensile strengths σut versus the corresponding
compressive strengths σuc. What general trend is seen in this comparison? Try to provide a
physical explanation for this trend.

Section 4.7
4.30 Explain why the Brinell and Vickers hardness tests give generally similar results, as in

Fig. 4.33.
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4.31 Using the hardness conversion chart of Table 4.9, plot both Rockwell B and C hardness
versus ultimate tensile strength for steel. Comment on the trends observed. Is the relationship
approximately linear as for Brinell hardness?

4.32 Consider the typical hardness values for steels in Table 4.9.
(a) Plot the ultimate tensile strength σu as a function of the Brinell hardness values HB.

Show the estimate of Eq. 4.32 on the same graph, and comment on the success of this
relationship for estimating σu from HB.

(b) Develop an improved relationship for estimating σu from Brinell hardness.
(c) Plot σu as a function of the Vickers hardness values HV, and develop a relationship for

estimating σu from HV.
4.33 Vickers hardness and tensile data are listed in Table P4.33 for AISI 4140 steel that has been

heat treated to various strength levels by varying the tempering temperature. Plot the hardness
and the various tensile properties all as a function of tempering temperature. Then discuss the
trends observed. How do the various tensile properties vary with hardness?

Table P4.33

Temper, ◦C 205 315 425 540 650
Hardness, H V 619 535 468 399 300
Ultimate, σu , MPa 2053 1789 1491 1216 963
Yield, σo, MPa 1583 1560 1399 1158 872
Red. in Area, %R A 7 33 38 48 55

Section 4.8
4.34 Explain in your own words why notch-impact fracture tests are widely used, and why caution

is needed in applying the results to real engineering situations.

Section 4.9
4.35 For both three-point bending and four-point bending, as illustrated in Fig. 4.40, look at the

shear and moment diagrams of Figs. A.4 and A.5. Then use these diagrams to discuss the
differences between the two types of test. Can you think of any relative advantages and
disadvantages of the two types?

4.36 Equations 4.34 and 4.36 give values of fracture strength and elastic modulus from bending
tests, but they apply only to the case of three-point bending. Derive analogous equations for
the case of four-point bending with a rectangular cross section, as illustrated in Fig. 4.40(b).

4.37 The load-displacement record for a three-point bending test on alumina (Al2O3) ceramic is
shown in Fig. P4.37. The final fracture occurred at a force of 192 N and a displacement of
0.091 mm. With reference to Fig. 4.40(a), the distance between supports was L = 40 mm, and
the cross-sectional dimensions were width t = 4.01 mm and depth 2c = 3.01 mm. Determine
the bend strength σ f b and the elastic modulus E . Note that the nonlinearity in the record
just above zero should be ignored, as it includes displacement associated with developing full
contact between the specimen and the loading fixtures.
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4.38 Bend strengths from Eq. 4.34 are given below for 100 three-point bending tests on alumina
(Al2O3) ceramic. The specimens were approximately 3.12 mm square, and the distance
between supports was 40.0 mm. These data are from tests conducted by students in a
laboratory course during a three-year period from 2006 to 2009.

(a) Using equations from Appendix B, calculate the sample mean, standard deviation, and
coefficient of variation. Also plot a histogram analogous to Fig. B.1 of numbers of
samples versus the bend strength.

(b) Write a paragraph concisely discussing the statistical variation in these data. Does the
variation seem relatively small or relatively large? What do you think are the major
causes of the variation?

Table P4.38

σ f b, Bend Strength, MPa

443 358 328 398 438 457 345 475 445 387
437 446 389 373 459 422 383 409 442 521
477 437 454 422 472 385 368 391 449 527
433 324 302 406 335 415 364 398 445 473
416 386 405 397 410 424 417 471 442 348
524 437 392 471 425 428 429 463 454 379
360 477 426 458 452 362 417 426 458 387
419 329 451 376 441 355 447 431 369 359
464 350 426 426 435 429 442 505 443 403
333 431 404 382 426 457 425 449 471 404

Section 4.10
4.39 What characteristics are needed for the steel cable that supports and moves a ski lift? What

materials tests would be important in judging the suitability of a given steel for this use?
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4.40 You are an engineer designing pressure vessels to hold liquid nitrogen. What general
characteristics should the material to be used have? Of the various types of materials tests
described in this chapter, which would you employ to aid in selecting among candidate
materials? Explain the reason you need each type of test chosen.

4.41 Answer the questions of Prob. 4.40, where you are instead designing plastic motorcycle
helmets.

4.42 Answer the questions of Prob. 4.40, where you are designing the femoral stem part of a hip
prosthesis. Note that the lower end of the stem projects into the bone, and the upper end holds
the metal femoral head (ball).
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Stress–Strain Relationships and
Behavior

5.1 INTRODUCTION
5.2 MODELS FOR DEFORMATION BEHAVIOR
5.3 ELASTIC DEFORMATION
5.4 ANISOTROPIC MATERIALS
5.5 SUMMARY

OBJECTIVES

• Become familiar with the elastic, plastic, steady creep, and transient creep types of strain, as
well as simple rheological models for representing the stress–strain–time behavior for each.

• Explore three-dimensional stress–strain relationships for linear-elastic deformation in
isotropic materials, analyzing the interdependence of stresses or strains imposed in more
than one direction.

• Extend the knowledge of elastic behavior to basic cases of anisotropy, including sheets of
matrix-and-fiber composite material.

5.1 INTRODUCTION

The three major types of deformation that occur in engineering materials are elastic, plastic, and
creep deformation. These have already been discussed in Chapter 2 from the viewpoint of physical
mechanisms and general trends in behavior for metals, polymers, and ceramics. Recall that elastic
deformation is associated with the stretching, but not breaking, of chemical bonds. In contrast, the
two types of inelastic deformation involve processes where atoms change their relative positions,
such as slip of crystal planes or sliding of chain molecules. If the inelastic deformation is time
dependent, it is classed as creep, as distinguished from plastic deformation, which is not time
dependent.

In engineering design and analysis, equations describing stress–strain behavior, called
stress–strain relationships, or constitutive equations, are frequently needed. For example, in

190
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elementary mechanics of materials, elastic behavior with a linear stress–strain relationship is
assumed and used in calculating stresses and deflections in simple components such as beams and
shafts. More complex situations of geometry and loading can be analyzed by employing the same
basic assumptions in the form of theory of elasticity. This is now often accomplished by using the
numerical technique called finite element analysis with a digital computer.

Stress–strain relationships need to consider behavior in three dimensions. In addition to elastic
strains, the equations may also need to include plastic strains and creep strains. Treatment of creep
strain requires the introduction of time as an additional variable. Regardless of the method used,
analysis to determine stresses and deflections always requires appropriate stress–strain relationships
for the particular material involved.

For calculations involving stress and strain, we express strain as a dimensionless quantity, as
derived from length change, ε = �L/L . Hence, strains given as percentages need to be converted
to the dimensionless form, ε = ε%/100, as do strains given as microstrain, ε = εμ/106.

In this chapter, we will first consider one-dimensional stress–strain behavior and some
corresponding simple physical models for elastic, plastic, and creep deformation. The discussion
of elastic deformation will then be extended to three dimensions, starting with isotropic behavior,
where the elastic properties are the same in all directions. We will also consider simple cases of
anisotropy, where the elastic properties vary with direction, as in composite materials. However,
discussion of three-dimensional plastic and creep deformation behavior will be postponed to
Chapters 12 and 15, respectively.

5.2 MODELS FOR DEFORMATION BEHAVIOR

Simple mechanical devices, such as linear springs, frictional sliders, and viscous dashpots, can
be used as an aid to understanding the various types of deformation. Four such models and their
responses to an applied force are illustrated in Fig. 5.1. Such devices and combinations of them are
called rheological models.

Elastic deformation, Fig. 5.1(a), is similar to the behavior of a simple linear spring characterized
by its constant k. The deformation is always proportional to the force, x = P/k, and it is recovered
instantly upon unloading. Plastic deformation, Fig. 5.1(b), is similar to the movement of a block of
mass m on a horizontal plane. The static and kinetic coefficients of friction μ are assumed to be
equal, so that there is a critical force for motion Po = μmg, where g is the acceleration of gravity.
If a constant applied force P′ is less than the critical value, P ′ < Po, no motion occurs. However, if
it is greater, P ′ > Po, the block moves with an acceleration

a = P ′ − Po

m
(5.1)

When the force is removed at time t , the block has moved a distance x = at2/2, and it remains at
this new location. Hence, the model behavior produces a permanent deformation, x p.

Creep deformation can be subdivided into two types. Steady-state creep, Fig. 5.1(c), proceeds
at a constant rate under constant force. Such behavior occurs in a linear dashpot, which is an element
where the velocity, ẋ = dx/dt , is proportional to the force. The constant of proportionality is the
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(d) Transient creep
     P = kx + cx
     (σ = Eε + ηε)

Figure 5.1 Mechanical models for four types of deformation. The displacement–time and
force–displacement responses are also shown for step inputs of force P, which is analogous to
stress σ . Displacement x is analogous to strain ε.

dashpot constant c, so that a constant value of force P ′ gives a constant velocity, ẋ = P ′/c, resulting
in a linear displacement versus time behavior. When the force is removed, the motion stops, so that
the deformation is permanent—that is, not recovered. A dashpot could be physically constructed
by placing a piston in a cylinder filled with a viscous liquid, such as a heavy oil. When a force
is applied, small amounts of oil leak past the piston, allowing the piston to move. The velocity of
motion will be approximately proportional to the magnitude of the force, and the displacement will
remain after all force is removed.

The second type of creep, called transient creep, Fig. 5.1(d), slows down as time passes. Such
behavior occurs in a spring mounted parallel to a dashpot. If a constant force P ′ is applied, the
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Figure 5.2 Relationship of models to stress, strain, and strain rate, in a bar of material.

deformation increases with time. But an increasing fraction of the applied force is needed to pull
against the spring as x increases, so that less force is available to the dashpot, and the rate of
deformation decreases. The deformation approaches the value P ′/k if the force is maintained for
a long period of time. If the applied force is removed, the spring, having been extended, now pulls
against the dashpot. This results in all of the deformation being recovered at infinite time.

Rheological models may be used to represent stress and strain in a bar of material under
axial loading, as shown in Fig. 5.2. The model constants are related to material constants that are
independent of the bar length L or area A. For elastic deformation, the constant of proportionality
between stress and strain is the elastic modulus, also called Young’s modulus, given by

E = σ

ε
(5.2)

Substituting the definitions of stress and strain, and also employing P = kx , yields the relationship
between E and k:

E = kL

A
(5.3)

For the plastic deformation model, the yield strength of the material is simply

σo = Po

A
(5.4)

For the steady-state creep model, the material constant analogous to the dashpot constant c is called
the coefficient of tensile viscosity1 and is given by

η = σ

ε̇
(5.5)

1In fluid mechanics, viscosities are defined in terms of shear stresses and strains, ητ = τ/γ̇ , where η = 3ητ relates
values of tensile and shear viscosity for an ideal incompressible material.
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where ε̇ = dε/dt is the strain rate. Substitution from Fig. 5.2 and P = cẋ yields the relationship
between η and c:

η = cL

A
(5.6)

Equations 5.3 and 5.6 also apply to the spring and dashpot elements in the transient creep model.
Before proceeding to the detailed discussion of elastic deformation, it is useful to further discuss

plastic and creep deformation models.

5.2.1 Plastic Deformation Models

As discussed in Chapter 2, the principal physical mechanism causing plastic deformation in metals
and ceramics is sliding (slip) between planes of atoms in the crystal grains of the material, occurring
in an incremental manner due to dislocation motion. The material’s resistance to plastic deformation
is roughly analogous to the friction of a block on a plane, as in the rheological model of Fig. 5.1(b).

For modeling stress–strain behavior, the block of mass m can be replaced by a massless
frictional slider, which is similar to a spring clip, as shown in Fig. 5.3(a). Two additional models,
which are combinations of linear springs and frictional sliders, are shown in (b) and (c). These
give improved representation of the behavior of real materials, by including a spring in series with
the slider, so that they exhibit elastic behavior prior to yielding at the slider yield strength σo. In
addition, model (c) has a second linear spring connected parallel to the slider, so that its resistance
increases as deformation proceeds. Model (a) is said to have rigid, perfectly plastic behavior; model
(b) elastic, perfectly plastic behavior; and model (c) elastic, linear-hardening behavior.

Figure 5.3 gives each model’s response to three different strain inputs. The first of these is
simple monotonic straining—that is, straining in a single direction. For this situation, for models (a)
and (b), the stress remains at σo beyond yielding.

For monotonic loading of model (c), the strain ε is the sum of strain ε1 in spring E1 and strain
ε2 in the (E2, σo) parallel combination:

ε = ε1 + ε2, ε1 = σ

E1
(5.7)

The vertical bar is assumed not to rotate, so that both spring E2 and slider σo have the same strain.
Prior to yielding, the slider prevents motion, so that strain ε2 is zero:

ε2 = 0, ε = σ

E1
(σ ≤ σo) (5.8)

Since there is no deflection in spring E2, its stress is zero, and all of the stress is carried by the
slider. Beyond yielding, the slider has a constant stress σo, so that the stress in spring E2 is (σ − σo).
Hence, the strain ε2 and the overall strain ε are

ε2 = σ − σo

E2
, ε = σ

E1
+ σ − σo

E2
(σ ≥ σo) (5.9)
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Figure 5.3 Rheological models for plastic deformation and their responses to three different
strain inputs. Model (a) has behavior that is rigid, perfectly plastic; (b) elastic, perfectly plastic;
and (c) elastic, linear hardening.

From the second equation, the slope of the stress–strain curve is seen to be

dσ

dε
= Ee = E1 E2

E1 + E2
(5.10)

which is the equivalent stiffness Ee, lower than both E1 and E2, corresponding to E1 and E2 in
series.

Figure 5.3 also gives the model responses where strain is increased beyond yielding and then
decreased to zero. In all three cases, there is no additional motion in the slider until the stress has
changed by an amount 2σo in the negative direction. For models (b) and (c), this gives an elastic
unloading of the same slope E1 as the initial loading. Consider the point during unloading where
the stress passes through zero, as shown in Fig. 5.4 (a) or (b). The elastic strain, εe, that is recovered
corresponds to the relaxation of spring E1. The permanent or plastic strain εp corresponds to the
motion of the slider up to the point of maximum strain. Real materials generally have nonlinear
hardening stress–strain curves as in (c), but with elastic unloading behavior similar to that of the
rheological models.
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Figure 5.4 Loading and unloading behavior of (a) an elastic, perfectly plastic model, (b) an
elastic, linear-hardening model, and (c) a material with nonlinear hardening.

Now consider the response of each model to the situation of the last column in Fig. 5.3, where
the model is reloaded after elastic unloading to σ = 0. In all cases, yielding occurs a second time
when the strain again reaches the value ε1 from which unloading occurred. It is obvious that the two
perfectly plastic models will again yield at σ = σo. But the linear-hardening model now yields at a
value σ = σ1, which is higher than the initial yield stress. Furthermore, σ1 is the same value of stress
that was present at ε = ε1, when the unloading first began. For all three models, the interpretation
may be made that the model possesses a memory of the point of previous unloading. In particular,
yielding again occurs at the same σ -ε point from which unloading occurred, and the subsequent
response is the same as if there had never been any unloading. Real materials that deform plastically
exhibit a similar memory effect.

We will return to spring and slider models of plastic deformation in Chapter 12, where they will
be considered in more detail and extended to nonlinear hardening cases.

5.2.2 Creep Deformation Models

Significant time-dependent deformation occurs in engineering metals and ceramics at elevated
temperature. This also occurs at room temperature in low-melting-temperature metals, such as
lead, and in many other materials, such as glass, polymers, and concrete. A variety of physical
mechanisms are involved, as discussed to an extent in Chapter 2 and considered again in
Chapter 15.

The creep models of Fig. 5.1(c) and (d) are shown in Fig. 5.5, with springs E1 added to simulate
elastic strain, as in real materials. Note that in (b) the vertical bar is assumed not to rotate, so that
the parallel spring and dashpot are subjected to the same strain. Also, these models are expressed
in terms of stress and strain, so that springs deform according to ε = σ/E and dashpots according
to ε̇ = σ/η. If a constant stress σ ′ is applied to either model, an elastic strain εe = σ ′/E1 appears
instantly (0–1) and then later disappears (2–3) when the stress is removed.

The use of constant viscosities η in these models results in all strain rates and strains being
proportional to the applied stress, a situation described by the term linear viscoelasticity. Such
idealized linear behavior is sometimes a reasonable approximation for real materials, as for some
polymers, and also for metals and ceramics at high temperature, but low stress. However, for metals
and ceramics at high stress, strain rate is proportional not to the first power of stress, but to a
higher power on the order of five. In such cases, models or equations involving more complex
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Figure 5.5 Rheological models having time-dependent behavior and their responses to a
stress–time step. Both strain–time and stress–strain responses are shown. Model (a) exhibits
steady-state creep with elastic strain added, and model (b) transient creep with elastic strain
added.

stress dependence can be used, as described later in Chapter 15. However, the simple linear models
will suffice here to illustrate some of the gross features of creep behavior.

For the model of Fig. 5.5(a), the response during 1–2 is given by adding the elastic and creep
components of the strain:

ε = εe + εc = σ ′

E1
+ εc (5.11)

The rate of creep strain is related to the stress by the dashpot constant:

ε̇c = dεc

dt
= σ ′

η1
(5.12)

This represents a very simple differential equation that can be solved for εc by integration, and
combined with Eq. 5.11 to give the strain–time response:

ε = σ ′

E1
+ σ ′t

η1
(5.13)

This is the equation of the linear ε-t response during 1–2 as shown in Fig. 5.5(a). After removal of
the stress, the elastic strain disappears, but the creep strain accumulated during 1–2 remains as a
permanent strain.
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In the transient creep model of Fig. 5.5(b), while the stress is applied during 1–2, the elastic
strain in spring E1 is added to the creep strain in the (η2, E2) parallel combination. Hence, Eq. 5.11
again applies. The creep strain can be analyzed by noting that the stress in the (η2, E2) stage is the
sum of the separate stresses in the spring and the dashpot:

σ = E2εc + η2ε̇c (5.14)

This gives

ε̇c = dεc

dt
= σ − E2εc

η2
(5.15)

Solving this differential equation for the case of a constant stress σ ′ gives the creep strain versus
time response:

εc = σ ′

E2

(
1 − e−E2t/η2

)
(5.16)

Finally, adding the elastic strain gives the total strain:

ε = σ ′

E1
+ σ ′

E2

(
1 − e−E2t/η2

)
(5.17)

Study of this equation shows that the strain rate decreases with time, as shown in Fig. 5.5(b).
Moreover, the creep strain asymptotically approaches the limit σ ′/E2. This occurs as a result of
stress being transferred from the dashpot to the spring as time passes, until the spring must resist all
of the stress at infinite time.

After removal of the stress, the strain in the transient creep model varies as shown by 3–4 in
Fig. 5.5(b). In particular, it decreases toward zero at infinite time due to the spring in the parallel
arrangement pulling on the dashpot. Equations for this recovery response may also be obtained by
solving the differential equations involved.

5.2.3 Relaxation Behavior

So far, we have considered two types of time-dependent behavior. These are creep, which is the
accumulation of strain with time, as under constant stress, and recovery, which is the gradual
disappearance of creep strain that sometimes occurs after removal of the stress. A third type of
behavior is relaxation, which is the decrease in stress when a material is held at constant strain.

Relaxation is illustrated for the steady-state creep plus elastic strain model in Fig. 5.6. Since
the strain ε′ is suddenly applied, all of this strain is absorbed by the spring as a result of the fact that
the dashpot requires a finite time to respond. With time, motion occurs in the dashpot, and the strain
in the spring decreases, as it must, due to the total strain being held constant. We have

ε′ = εe + εc (5.18)
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Figure 5.6 Relaxation under constant strain for a model with steady-state creep and elastic
behavior. The step in strain (a) causes stress–time behavior as in (b), and stress–strain behavior
as in (c).

where ε′ is the constant total strain and εc is the creep strain. Hence, elastic strain is being replaced
by creep strain.

The stress necessary to maintain the constant strain is related to the elastic strain by

σ = E1εe (5.19)

Since εe is decreasing, this requires that σ must also decrease. The rate of creep strain is related to
the value of σ at any time by

ε̇c = dεc

dt
= σ

η1
(5.20)

Combining these equations and solving the resulting differential equation gives the variation of σ

as it decreases:

σ = E1ε
′e−E1t/η1 (5.21)

This corresponds to a σ -t response that decays—that is, relaxes—with time, as illustrated by curve
1–2 in Fig. 5.6(b).

Relaxation is the same phenomenon as creep, differing only in that it is observed under constant
strain rather than constant stress. Real engineering materials that exhibit creep will also show
relaxation behavior.

In Fig. 5.6, if the strain is returned to zero after a period of relaxation, the stress is forced
into compression. Additional relaxation then occurs, but in the opposite direction, as the relaxation
always proceeds toward zero stress.

Creep and relaxation, and models of the types just discussed, are considered in more detail in
Chapter 15.
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Example 5.1
Derive Eq. 5.21, which describes stress relaxation in the elastic, steady-state creep model, as
illustrated by 1–2 in Fig. 5.6(b). Base this on the other equations given just prior to Eq. 5.21.

Solution Differentiate both sides of Eqs. 5.18 and 5.19 with respect to time, noting that
dε′/dt = 0 as ε′ is held constant:

0 = ε̇e + ε̇c,
dσ

dt
= σ̇ = E1ε̇e

Substitute ε̇e from the second equation, and also ε̇c from Eq. 5.20, into the first equation to obtain

1

E1

dσ

dt
+ σ

η1
= 0

Separate the variables σ and t and integrate both sides of the equation, resulting in

ln σ = − E1

η1
t + C

where C is a constant of integration that can be evaluated by noting that the creep strain is
initially zero, so that σ = E1ε

′ at t = 0. This gives C = ln E1ε
′. Substituting for C and solving

for σ then produces the desired result:

σ = E1ε
′e−E1t/η1 Ans.

5.2.4 Discussion

We have discussed models of three major types of deformation, namely, elastic, plastic, and
creep deformation. These are characterized in Table 5.1. Elastic strain is the result of stretching
of chemical bonds. It is not considered to be time dependent and is recovered immediately on
unloading. Plastic strain is also not considered to be dependent on time and is permanent, due to its
being caused by the relative sliding of crystal planes through the incremental process of dislocation
motion. Note that perfectly plastic behavior, as in the models of Fig. 5.3(a) and (b), will result
in unstable rapid deformation if a stress above σo is maintained. However, some degree of strain
hardening usually occurs in real materials.

Creep strain may be divided into steady-state and transient types, according to whether the rate
is constant or decreases with time. In the ideal model of Fig. 5.5(b), all transient strain is recovered.
However, a portion of this may be permanent in real materials. The recovered portion of the creep
strain may be quite large in polymers due to chain molecules interfering with one another in such a
way that they slowly reestablish their original configuration after removal of the stress, causing the
strain to slowly disappear. For example, creep strains as large as 100% in flexible vinyl (plasticized
PVC) may be mostly recovered after unloading. In metals and ceramics, large creep strains can
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Table 5.1 Characteristics of the Various Types of Deformation

Type of Deformation Time Dependent? Additional Distinguishing Characteristics

Elastic No Recovered instantly
Plastic No Not recovered
Steady-state creep Yes Constant rate; not recovered
Transient creep Yes Decreasing rate; may be recovered

1
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Figure 5.7 Stress–time step applied to a material exhibiting strain response that includes
elastic, plastic, and creep components.

occur above about 0.5Tm , due to motion of lattice vacancies or dislocations, grain boundary sliding,
etc. Relatively little recovery occurs for such strains.

Creep strain that is recovered is often termed anelastic strain, which distinction is useful for
real materials where only a portion of the transient strain is recovered. Recovery should not be
confused with relaxation, as in Fig. 5.6, which is the result of creep deformation while the strain is
held constant.

Deformation in real materials may be dominated by one type of strain, or more than one type
may occur, depending on the material, temperature, loading rate, and stress level. For a case where
all four types from Table 5.1 occur, the behavior for a suddenly applied and then constant stress
would be similar to Fig. 5.7. The instantaneous deformation that occurs is a combination of elastic
and plastic strain. The plastic portion εp could be isolated by immediate unloading, as illustrated
by the dashed line. If the stress is instead maintained, creep deformation εc may occur that is a
combination of the transient and steady-state types.

Removal of the stress causes the elastic strain εe to be instantly recovered. Some of the creep
strain may be recovered after a period of time, as indicated by 3–4. This recovered or anelastic
portion is labeled εa in Fig. 5.7.

5.3 ELASTIC DEFORMATION

From the discussion in Chapter 2, elastic deformation is associated with stretching the bonds
between the atoms in a solid. As a result, the value of the elastic modulus, E , is quite high for
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Table 5.2 Elastic Constants for Various Materials at Ambient
Temperature

Elastic Modulus Poisson’s Ratio
Material E , GPa (103 ksi) ν

(a) Metals
Aluminum 70.3 (10.2) 0.345
Brass, 70Cu-30Zn 101 (14.6) 0.350
Copper 130 (18.8) 0.343
Iron; mild steel 212 (30.7) 0.293
Lead 16.1 (2.34) 0.44
Magnesium 44.7 (6.48) 0.291
Stainless steel, 2Ni-18Cr 215 (31.2) 0.283
Titanium 120 (17.4) 0.361
Tungsten 411 (59.6) 0.280

(b) Polymers
ABS, medium impact 2.4 (0.35) 0.35
Acrylic, PMMA 2.7 (0.40) 0.35
Epoxy 3.5 (0.51) 0.33
Nylon 66, dry 2.7 (0.39) 0.41
Nylon 66, 33% glass fibers 9.5 (1.38) 0.39
Polycarbonate 2.4 (0.345) 0.38
Polyethylene, HDPE 1.08 (0.157) 0.42

(c) Ceramics and glasses
Alumina, Al2O3 400 (58.0) 0.22
Diamond 960 (139) 0.20
Magnesia, MgO 300 (43.5) 0.18
Silicon carbide, SiC 396 (57.4) 0.22
Fused silica glass 70 (10.2) 0.18
Soda-lime glass 69 (10.0) 0.20
Type E glass 72.4 (10.5) 0.22
Dolomitic limestone 69.0 (10.0) 0.281
Westerly granite 49.6 (7.20) 0.213

Sources: Data in [Boyer 85] p. 216, [Creyke 82] p. 222, [Kaplan 95]
pp. B-146 to B-206, [Karfakis 90], [Kelly 86] pp. 376, 392, [Kelly 94]
p. 285, [Morrell 85] Pt. 1, p. 96, [PDL 91] Vol. I-B, pp. 133–136, and
[Schwartz 92] p. 2.75.

strongly bound covalent solids. Metals have intermediate values, and polymers generally have low
values due to the effect of secondary bonds between chain molecules. Some representative values
for various materials are given in Table 5.2.

5.3.1 Elastic Constants

A material that has the same properties at all points within the solid is said to be homogeneous, and
if the properties are the same in all directions, the material is isotropic. When viewed at macroscopic
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Figure 5.8 Longitudinal extension and lateral contraction used to obtain constants for a
linear-elastic material that is isotropic and homogeneous.

size scales, real materials obey these idealizations if they are composed of tiny, randomly oriented
crystal grains. This is at least approximately true for many metals and ceramics. Amorphous
materials, such as glass and some polymers, may also be approximately isotropic and homogeneous.
Hence, for the present, we will proceed with these simplifying assumptions.

Let a bar of a homogeneous and isotropic material be subjected to an axial stress σx , as in
Fig. 5.8. The strain in the direction of the stress is

εx = L − Li

Li
= �L

Li
(5.22)

where L is the deformed length, Li the initial length, and �L the change. In a similar manner, we
obtain the strain in any direction perpendicular to the stress—that is, along any diameter of the bar:

εy = εz = d − di

di
= �d

di
(5.23)

This transverse strain is negative for tensile σx , as the bar becomes thinner when stretched in the
length direction. Conversely, εy is positive for compressive σx .

The material is said to be linear elastic if the stress is linearly related to these strains, and
if the strains return immediately to zero after unloading, in the manner of a simple linear spring.
In this situation, two elastic constants are needed to characterize the material. One is the elastic
modulus, E = σx/εx , which is the slope of the σx versus εx line in Fig. 5.8. The second constant is
Poisson’s ratio,

ν = − transverse strain

longitudinal strain
= −εy

εx
(5.24)

Since εy is of opposite sign to εx , positive ν is obtained. Hence, as also shown, the slope of a plot
of εy versus εx is −ν. Substituting εx from Eq. 5.24 into E = σx/εx gives
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εy = − ν

E
σx (5.25)

This linear relationship is also shown in Fig. 5.8. The same situation also occurs along any other
diameter, such as the z-direction.

5.3.2 Discussion

Values of the elastic modulus vary widely for different materials. Poisson’s ratio is often around
0.3 and does not vary outside the range 0 to 0.5, except under very unusual circumstances. Note
that negative values of ν imply lateral expansion during axial tension, which is unlikely. As will be
seen subsequently, ν = 0.5 implies constant volume, and values larger than 0.5 imply a decrease in
volume for tensile loading, which is also unlikely. Values of ν for various materials are included in
Table 5.2.

It should be noted that no material has perfectly linear or perfectly elastic behavior. Use of
elastic constants such as E and ν should therefore be regarded as a useful approximation, or model,
that often gives reasonably accurate answers. For example, most engineering metals can be modeled
in this way at relatively low stresses below the yield strength, beyond which the behavior becomes
nonlinear and inelastic. Also, original dimensions and cross-sectional areas are used in the present
discussion to determine stresses and strains. Such an approach is appropriate for many situations
of practical engineering interest, where dimensional changes are small. Except where otherwise
indicated, this assumption, called small-strain theory, will be used.

If a given metal is alloyed (melted together) with relatively small percentages of one or more
other metals, the effect on the elastic constants E and ν is small. Hence, where specific values of
these elastic constants are not available for a given alloy, they can be approximated as being the
same as the corresponding pure metal values, as from Table 5.2. For example, this applies for all
common aluminum alloys and titanium alloys, where the total alloying is in most cases less than
10%. But a contrary example is 70Cu-30Zn brass, where the 30% zinc causes the values to differ
significantly from those for pure copper. For low-alloy steels, which are iron with total alloying less
than 5%, the values are close to those for pure iron. However, for some high-alloy steels, such as
stainless steels, which contain at least 12% chromium and also other alloying, the values may be
affected to a modest degree. Materials handbooks, such as those listed in the references for Chapters
3 and 4, can be consulted to obtain E and ν for specific alloys. For polymers and ceramics, there
may be significant batch-to-batch variation in the elastic constants, as the values are affected by
processing.

5.3.3 Hooke’s Law for Three Dimensions

Consider the general state of stress at a point, as illustrated in Fig. 5.9. A complete description
consists of normal stresses in three directions, σx , σy , and σz , and shear stresses on three planes,
τxy , τyz , and τzx . Considering normal stresses first, and assuming that small-strain theory applies, the
strains caused by each component of stress can simply be added together. A stress in the x-direction
causes a strain in the x-direction of σx/E . This σx also causes a strain in the y-direction, from
Eq. 5.25, of −νσx/E , and the same strain in the z-direction. Similarly, normal stresses in the y- and
z-directions each cause strains in all three directions.
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Figure 5.9 The six components needed to completely describe the state of stress at a point.

The situation can be summarized by the following table:

Resulting Strain
Each Direction

Stress x y z

σx
σx

E
−νσx

E
−νσx

E

σy −νσy

E

σy

E
−νσy

E

σz −νσz

E
−νσz

E

σz

E

Adding the columns in this table to obtain the total strain in each direction gives the following
equations:

εx = 1

E

[
σx − ν

(
σy + σz

)]
(a)

εy = 1

E

[
σy − ν

(
σx + σz

)]
(b)

εz = 1

E

[
σz − ν

(
σx + σy

)]
(c)

(5.26)

The shear strains that occur on the orthogonal planes are each related to the corresponding shear
stress by a constant called the shear modulus, G:

γxy = τxy

G
, γyz = τyz

G
, γzx = τzx

G
(5.27)

Note that the shear strain on a given plane is unaffected by the shear stresses on other planes. Hence,
for shear strains, there is no effect analogous to Poisson contraction. Equations 5.26 and 5.27, taken
together, are often called the generalized Hooke’s law.
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Only two independent elastic constants are needed for an isotropic material, so that one of E , G,
and ν can be considered redundant. The following equation allows any one of these to be calculated
from the other two:

G = E

2 (1 + ν)
(5.28)

This equation can be derived by considering a state of pure shear stress, as in a round bar under
torsion in Fig. 4.41. Recall from elementary mechanics of materials that the state of shear stress, τ ,
can be equivalently represented by principal normal stresses on planes rotated 45◦ with respect
to the planes of pure shear. Similarly, the shear strain is equivalent to normal strains as shown in
Fig. 4.41, also on 45◦ planes. Let the (x, y, z) directions for Eq. 5.26 correspond to the principal
(1, 2, 3) directions. The following substitutions can then be made in Eq. 5.26(a):

σx = τ, σy = −τ, σz = 0, εx = γ

2
(5.29)

This yields

γ = 2 (1 + ν)

E
τ (5.30)

From the definition of G, the constant of proportionality is G = τ/γ , so that Eq. 5.28 is confirmed.
Measured values of the three constants E , G, and ν for real materials will not generally obey

Eq. 5.28 perfectly. This situation is mainly due to the material not being perfectly isotropic.

Example 5.2
A cylindrical pressure vessel 10 m long has closed ends, a wall thickness of 5 mm, and an inner
diameter of 3 m. If the vessel is filled with air to a pressure of 2 MPa, how much do the length,
diameter, and wall thickness change, and in each case is the change an increase or a decrease?
The vessel is made of a steel having elastic modulus E = 200,000 MPa and Poisson’s ratio
ν = 0.3. Neglect any effects associated with the details of how the ends are attached.

Solution Attach a coordinate system to the surface of the pressure vessel, as shown in
Fig. E5.2, such that the z-axis is normal to the surface.

The ratio of radius to thickness, r/t , is such that it is reasonable to employ the thin-walled
tube assumption and the resulting stress equations, given in Fig. A.7(a) in Appendix A. Denoting
the pressure as p, we have

σx = pr

2t
= (2 MPa) (1500 mm)

2 (5 mm)
= 300 MPa

σy = pr

t
= (2 MPa) (1500 mm)

5 mm
= 600 MPa

The value of σz varies from −p on the inside wall to zero on the outside, so its value for the
present case is everywhere sufficiently small that σz ≈ 0 can be used. Substitute these stresses
and the known E and ν into Hooke’s law, Eq. 5.26, which gives
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Figure E5.2

εx = 600 × 10−6, εy = 2550 × 10−6, εz = −1350 × 10−6

These strains are related to the changes in length �L , circumference �(πd), diameter �d , and
thickness �t , as follows:

εx = �L

L
, εy = �(πd)

πd
= �d

d
, εz = �t

t

Substituting the strains and the known dimensions gives

�L = 6.00 mm, �d = 7.65 mm, �t = −6.75 × 10−3 mm Ans.

Thus, there are small increases in length and diameter, and a tiny decrease in the wall thickness.

Example 5.3
A sample of material subjected to a compressive stress σz is confined so that it cannot deform
in the y-direction, as shown in Fig. E5.3. Assume that there is no friction against the die, so that
deformation can freely occur in the x-direction. Assume further that the material is isotropic and
exhibits linear-elastic behavior.

material

rigid die

x

y

z σz

Figure E5.3
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Determine the following in terms of σz and the elastic constants of the material:

(a) The stress that develops in the y-direction.
(b) The strain in the z-direction.
(c) The strain in the x-direction.
(d) The stiffness E ′ = σz/εz in the z-direction. Is this apparent modulus equal to the elastic

modulus E from a uniaxial test on the material? Why or why not?
(e) Assume that the compressive stress in the z-direction has a magnitude of 75 MPa and

that the block is made of a copper alloy, and then calculate σy , εz , εx , and E ′.

Solution Hooke’s law for the three-dimensional case, Eq. 5.26, is needed. The situation posed
requires substituting εy = 0 and σx = 0, and also treating σz as a known quantity.

(a) The stress in the y-direction is obtained from Eq. 5.26(b):

0 = 1

E

[
σy − ν (0 + σz)

]
, σy = νσz Ans.

(b) The strain in the z-direction is given by substituting this σy into Eq. 5.26(c):

εz = 1

E

[
σz − ν (0 + νσz)

]
, εz = 1 − ν2

E
σz Ans.

(c) The strain in the x-direction is given by Eq. 5.26(a) with σy from part (a) substituted:

εx = 1

E

[
0 − ν (νσz + σz)

]
, εx = −ν (1 + ν)

E
σz Ans.

(d) The apparent stiffness in the z-direction is obtained immediately from the equation
for εz :

E ′ = σz

εz
= E

1 − ν2
Ans.

(e) For the copper alloy, Table 5.2 provides constants, E = 130 GPa = 130,000 MPa,
and ν = 0.343. The compressive stress requires that a negative sign be applied, so that σz =
−75 MPa. Substituting these quantities into the equations previously derived gives

σy = νσz = (0.343)(−75 MPa) = −25.7 MPa Ans.

εz = 1 − ν2

E
σz = 1 − 0.3432

130,000 MPa
(−75 MPa) = −509 × 10−6 Ans.
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εx = −ν(1 + ν)

E
σz = −0.343(1 + 0.343)

130,000 MPa
(−75 MPa) = 266 × 10−6 Ans.

E ′ = E

1 − ν2
= 130,000 MPa

1 − 0.3432
= 147,300 MPa Ans.

Discussion The compressive σz results in negative (that is, compressive) values for σy and
εz , but positive εx , as expected from the physical situation. The apparent elastic modulus E ′
is larger than the elastic modulus E , differing by the ratio E ′/E = 1/(1 − ν2); specifically,
E ′/E = 1.133 in this case. This is explained by noting that E is the ratio of stress to strain
only for the uniaxial case, and ratios of stress to strain for other states of stress and strain are
determined by behavior obeying the three-dimensional form of Hooke’s law.

5.3.4 Volumetric Strain and Hydrostatic Stress

In stressed bodies, small volume changes occur that are associated with normal strains. Shear strains
are not involved, as they cause no volume change, only distortion. Consider a rectangular solid, as
in Fig. 5.10, where there are normal strains in three directions. The dimensions L , W , and H change
by infinitesimal amounts, dL, dW, and dH, respectively, so that the normal strains are

εx = dL

L
, εy = dW

W
, εz = dH

H
(5.31)

Figure 5.10 Volume change due to normal strains.
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The volume, V = LWH , changes by an amount dV that can be evaluated from differential
calculus, where V is considered to be a function of the three independent variables L , W , and H :

dV = ∂V

∂L
d L + ∂V

∂W
dW + ∂V

∂ H
dH (5.32)

Evaluating the partial derivatives and dividing both sides by V = LWH gives

dV

V
= dL

L
+ dW

W
+ dH

H
(5.33)

This ratio of the change in volume to the original volume is called the volumetric strain, or dilata-
tion, εv . By substituting Eq. 5.31, the volumetric strain is seen to be simply the sum of the normal
strains:

εv = dV

V
= εx + εy + εz (5.34)

For an isotropic material, the volumetric strain can be expressed in terms of stresses by
substituting the generalized Hooke’s law, specifically Eq. 5.26, into Eq. 5.34. The following is
obtained after collecting terms:

εv = 1 − 2ν

E

(
σx + σy + σz

)
(5.35)

Note from this that ν = 0.5 causes the change in volume to be zero, εv = 0, even in the presence of
nonzero stresses. Also, a value of ν exceeding 0.5 would imply negative εv for tensile stresses—that
is, a decrease in volume. This would be highly unusual, so that 0.5 appears to be an upper limit on
ν that is seldom exceeded for real materials.

The average normal stress is called the hydrostatic stress and is given by

σh = σx + σy + σz

3
(5.36)

Substituting this into Eq. 5.35 yields

εv = 3 (1 − 2ν)

E
σh (5.37)

Hence, the volumetric strain is proportional to the hydrostatic stress. The constant of proportionality
relating these is called the bulk modulus, given by

B = σh

εv

= E

3 (1 − 2ν)
(5.38)
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Figure 5.11 Force vs. distance between atoms. A thermal oscillation of equal potential
energies about the equilibrium position xe gives an average distance xavg greater than xe.

Note that εv and σh are classed as invariant quantities. This means that they will always have the
same values, regardless of the choice of coordinate system. In other words, a different choice of
x-y-z axes at a particular point in a material will cause the various stress and strain components to
have different values, but the sum of the normal strains and the sum of the normal stresses will have
the same value for any coordinate system.

5.3.5 Thermal Strains

Thermal strain is a special class of elastic strain that results from expansion with increas-
ing temperature, or contraction with decreasing temperature. Increased temperature causes the
atoms in a solid to vibrate by a larger amount. The vibrations follow the force versus dis-
tance (P-x) curve between the atoms, as in Fig. 2.16, which curve results from chemical
bonding, as discussed in Section 2.4. In particular, the vibration causes equal potential en-
ergy changes �U about the equilibrium position xe, corresponding to equal areas under the
P-x curve. The shape of the P-x curve in this region is such that the average position, xavg, is
greater than xe, as illustrated in Fig. 5.11. Such larger average atomic spacings accumulate over a
macroscopic distance in the material to produce a dimensional increase. Similarly, decreasing the
temperature causes the average spacing to decrease and approach xe.

In isotropic materials, the effect is the same in all directions. Over a limited range of
temperatures, the thermal strains at a given temperature T can be assumed to be proportional to
the temperature change, �T . That is,

ε = α (T − T0) = α (�T ) (5.39)
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Figure 5.12 Coefficients of thermal expansion at room temperature versus melting
temperature for various materials. (Data from [Boyer 85] p. 1.44, [Creyke 82] p. 50, and
[ASM 88] p. 69.)

where T0 is a reference temperature where the strains are taken to be zero. The coefficient of thermal
expansion, α, is seen to be in units of 1/◦C, where strain is dimensionless.

Thermal effects are generally greater at higher temperatures; that is, α increases with
temperature. Hence, it may be necessary to allow for variation in α if �T is large. Thermal
strains, and therefore values of α, are smaller where the chemical bonding is stronger. If
values of α at room temperature for various materials are compared, this leads to a trend
of decreasing α with increasing melting temperature, as the chemical bonding is stronger at
temperatures more remote from the melting temperature. Figure 5.12 shows this trend for various
materials.

In an isotropic material, since uniform thermal strains occur in all directions, Hooke’s law for
three dimensions from Eq. 5.26 can be generalized to include thermal effects:

εx = 1

E

[
σx − ν

(
σy + σz

)]+ α(�T ) (a)

εy = 1

E

[
σy − ν

(
σx + σz

)]+ α(�T ) (b)

εz = 1

E

[
σz − ν

(
σx + σy

)]+ α(�T ) (c)

(5.40)

If free thermal expansion is prevented by geometric constraint, a sufficient �T will cause large
stresses to develop that may be of engineering significance.
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For example, consider the case of a smooth piece of material at temperature Ti that is suddenly
immersed in a liquid or gas having a temperature T f . A thin surface layer will reach T f quickly, but
strain in the (x-y) plane of the surface will be prevented due to the material below not having had
time to adjust its temperature. Hence, we have εx = εy = 0, and also σz = 0 due to the free surface.
Applying this situation to Eqs. 5.40(a) and (b) gives

σx = σy = − Eα(�T )

1 − ν
(5.41)

where �T = T f − Ti , so that the stresses are compressive for a temperature increase, and tensile
for a decrease.

5.3.6 Comparison with Plastic and Creep Deformations

Elastic deformation, which is the stretching of chemical bonds, usually involves volume change, as
reflected in a Poisson’s ratio less than 0.5. However, plastic deformation and creep deformation
involve atoms changing neighbors by various mechanisms and so do not ordinarily result in
significant volume change. Consider the two-dimensional schematic of plastic deformation in
Fig. 2.19. The areas (a) before and (d) after slip are the same, implying constant volume. Similarly,
the movement of vacancies in creep does not cause volume change. (See Fig. 2.26.)

Let transverse strain measurements in a tension test be extended beyond yielding, as shown
in Fig. 5.13. Prior to yielding, the slope of −εy versus εx is simply Poisson’s ratio. However,
after yielding, the slope increases and approaches 0.5, as plastic strains dominate the behavior.
To describe such behavior in a general three-dimensional way, Hooke’s law, Eq. 5.26, is needed,
in addition to analogous relationships for plastic strain. These are considered later in Chapter 12,
specifically as Eq. 12.24. Note that the form is the same as Eq. 5.26, but with ν replaced by 0.5 for
constant volume, and the elastic modulus E replaced by a variable E p.

For creep, the equations analogous to Hooke’s law are relationships between stress and strain
rate ε̇. These are considered in Chapter 15 as Eq. 15.64. Note that Poisson’s ratio ν is replaced by
0.5, and the elastic modulus E by the tensile viscosity η.

Figure 5.13 Elastic and plastic components of total strain, and the effect of plastic
deformation on Poisson’s ratio.
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5.4 ANISOTROPIC MATERIALS

Real materials are never perfectly isotropic. In some cases, the differences in properties for
different directions are so large that analysis assuming isotropic behavior is no longer a reasonable
approximation. Some examples of anisotropic materials are shown in Fig. 5.14.

Due to the presence of stiff fibers in particular directions, composite materials can be highly
anisotropic, and engineering design and analysis for these materials requires the use of a more
general version of Hooke’s law than was presented previously. In what follows, we will first discuss
Hooke’s law for anisotropic cases in general, and then we will apply it to in-plane loading of
composite materials. Anisotropic plasticity is not considered in this chapter or even in later chapters.
This advanced topic is important in some cases, but note that many composite materials fail prior to
the occurrence of large amounts of inelastic strain.

5.4.1 Anisotropic Hooke’s Law

In the general three-dimensional case, there are six components of stress: σx , σy , σz , τxy , τyz , and
τzx , as illustrated in Fig. 5.9. There are also six corresponding components of strain: εx , εy , εz , γxy ,
γyz , and γzx . In highly anisotropic materials, any one component of stress can cause strains in all six
components. The general anisotropic form of Hooke’s law is given by the following six equations,
here written with the coefficients shown as a matrix:

(a)

(d)

(b)

(c)
Z

Y

X

Figure 5.14 Anisotropic materials: (a) metal plate with oriented grain structure due to
rolling, (b) wood, (c) glass-fiber cloth in an epoxy matrix, and (d) a single crystal.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26

S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46

S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.42)

General anisotropy is considerably more complex than the isotropic case. Not only are there a large
number of different materials constants Si j , but their values also change if the orientation of the
x-y-z coordinate system is changed.

In the isotropic case, the constants do not depend on the orientation of the coordinate axes,
and most of the constants are either zero or have the same values as other ones. For example,
γxy = τxy/G, so that all of the Si j in the γxy row of the matrix are zero except S66 = 1/G. This
contrasts with the situation for highly anisotropic materials, where γxy is the sum of contributions
due to all six stress components. The matrix of Si j coefficients, specialized to the isotropic case as
given by Eq. 5.26, is

[
Si j
] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E
− ν

E
− ν

E
0 0 0

− ν

E

1

E
− ν

E
0 0 0

− ν

E
− ν

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.43)

where G is given by Eq. 5.28, so that there are only two independent constants.
In the most general form of anisotropy, each unique Si j in Eq. 5.42 has a different nonzero

value. The matrix is symmetrical about its diagonal in such a way that there are two occurrences of
each Si j , where i 	= j , so that there are 21 independent constants. An example of a situation with
this degree of complexity is the most general form of a single crystal, called a triclinic crystal, where
a 	= b 	= c and α 	= β 	= γ , these being the distances and angles defined in Fig. 2.9.

5.4.2 Orthotropic Materials; Other Special Cases

If the material possesses symmetry about three orthogonal planes—that is, about planes oriented
90◦ to each other—then a special case called an orthotropic material exists. In this case, Hooke’s
law has a form of intermediate complexity between the isotropic and the general anisotropic cases.
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To deal with the situation of the Si j values changing with the orientation of the x-y-z coordinate
system, it is convenient to define the values for the directions parallel to the planes of symmetry in
the material. This special coordinate system will here be identified by capital letters (X , Y , Z ), as
indicated for one case in Fig. 5.14. The coefficients for Hooke’s law for an orthotropic material are

[
Si j
] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

EX
−νY X

EY
−νZ X

EZ
0 0 0

−νXY

EX

1

EY
−νZY

EZ
0 0 0

−νX Z

EX
−νY Z

EY

1

EZ
0 0 0

0 0 0
1

GY Z
0 0

0 0 0 0
1

G Z X
0

0 0 0 0 0
1

G XY

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.44)

Examples include an orthorhombic single crystal, where α = β = γ = 90◦, but a 	= b 	= c, and
fibrous composite materials with fibers in directions such that there are three orthogonal planes of
symmetry.

In Eq. 5.44, there are three moduli EX , EY , and EZ for the three different directions in the
material. These in general have different values. There are also three different shear moduli G XY ,
GY Z , and G Z X corresponding to three planes. The constants νi j are Poisson’s ratio constants; thus,

νi j = −ε j

εi
(5.45)

giving the transverse strain in the j-direction due to a stress in the i-direction. Because of the
symmetry of Si j values about the matrix diagonal,

νi j

Ei
= ν j i

E j
(5.46)

where i 	= j and i , j = X , Y , or Z . These relationships reduce the number of independent Poisson’s
ratios to three for a total of nine independent constants. It is important to remember that these
constants apply only for the special X -Y -Z coordinate system.

If the material has the same properties in the X -, Y -, and Z -directions, then it is called a cubic
material. In this case, all three Ei have the same value EX , all three Gi j have the same value G XY ,
and all six Poisson’s ratios have the same value νXY . Thus, there are three independent constants.
Examples of such a case include all single crystals with a cubic structure, such as BCC, FCC, and
diamond cubic crystals. Note that there is still one more independent constant than for the isotropic
case, and the elastic constants still apply only for the special X -Y -Z coordinate system.
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For example, for a single crystal of alpha (BCC) iron, EX = 129 GPa. However, consider the
direction that is a body diagonal of the cubic unit cell—that is, along the direction of one of the
arrows in Fig. 2.23(a). The elastic modulus in this direction is E[111] = 276 GPa, which is about
twice as large as EX . Considering E values for all possible directions, these two are the largest and
smallest that occur. Polycrystalline iron is isotropic, and the value of E ≈ 210 GPa that applies is
the result of an averaging from randomly oriented single crystals. As expected, this E is between
the extreme values EX and E[111] for single crystals.

Another special case is a transversely isotropic material, where the properties are the same for
all directions in a plane, such as the X -Y plane, but different for the third (Z ) direction. Here there
are five independent elastic constants: EX and νXY for the X -Y plane, with Eq. 5.28 giving the
corresponding shear modulus G XY , and also EZ , νX Z , and G Z X . An example is a composite sheet
material made from a mat of randomly oriented and intertwined long fibers.

5.4.3 Fibrous Composites

Many applications of composite materials involve thin sheets or plates that have symmetry
corresponding to the orthotropic case, such as simple unidirectional or woven arrangements of
fibers, as in Fig. 5.14(c). Also, most laminates (Fig. 3.26) have overall behavior that is orthotropic.

For plates or sheets, the stresses that do not lie in the X -Y plane of the sheet are usually small,
so that plane stress with σZ = τY Z = τZ X = 0 is a reasonable assumption. Although strains εZ still
occur, these are not of particular interest, so Hooke’s law can be used in the following reduced form
derived from Eq. 5.44:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εX

εY

γXY

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

EX
−νY X

EY
0

−νXY

EX

1

EY
0

0 0
1

G XY

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σX

σY

τXY

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.47)

Here, capital letters still indicate that the stresses, strains, and elastic constants are expressed only for
directions parallel to the planes of symmetry of the material. (Stresses and strains in other directions
can be found by using transformation equations or Mohr’s circle, as discussed later in Chapter 6, or
in textbooks on mechanics of materials.) Equation 5.46 applies, so that

νY X

EY
= νXY

EX
(5.48)

with the result that four independent elastic constants are being employed out of the total of nine.
Values for some composite materials with unidirectional fibers are given in Table 5.3.

Values of these constants can be obtained from laboratory measurements, but they are also
commonly estimated from the separate (and generally known) properties of the reinforcement and
matrix materials. The topic of so estimating elastic constants is rather complex and is considered in
detail in books on composite materials, such as Gibson (2004). In the discussion that follows, we
will consider only the simple case of unidirectional fibers in a matrix.
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Table 5.3 Elastic Constants and Density for Fiber-Reinforced Epoxy with 60%
Unidirectional Fibers by Volume

(a) Reinforcement (b) Composite, Vr = 0.60

Type Er νr EX EY G XY νXY ρ

GPa (103 ksi) GPa (103 ksi) g/cm3

E-glass 72.3 0.22 45 12 4.4 0.25 1.94
(10.5) (6.5) (1.7) (0.64)

Kevlar 49 124 0.35 76 5.5 2.1 0.34 1.30
(18.0) (11.0) (0.8) (0.3)

Graphite 218 0.20 132 10.3 6.5 0.25 1.47
(T-300) (31.6) (19.2) (1.5) (0.95)

Graphite 531 0.20 320 5.5 4.1 0.25 1.61
(GY-70) (77.0) (46.4) (0.8) (0.6)

Note: For approximate matrix properties, use Em = 3.5 GPa (510 ksi) and νm = 0.33.
Sources: Data in [ASM 87] pp. 175–178, and [Kelly 94] p. 285.

Example 5.4
A plate of the epoxy reinforced with unidirectional Kevlar 49 fibers in Table 5.3 is subject to
stresses as follows: σX = 400, σY = 12, and τXY = 15 MPa, where the coordinate system is that
of Fig. 5.15(a). Determine the in-plane strains εX , εY , and γXY .

Solution Equation 5.47 applies directly.

εX = σX

EX
− νY X

EY
σY , εY = −νXY

EX
σX + σY

EY
, γXY = τXY

G XY

Since νY X is not given in the table, it is convenient to employ Eq. 5.48.

νY X

EY
= νXY

EX
= 0.34

76,000
= 4.474 × 10−6 1/MPa

Substituting this quantity and the given stresses, with EX , EY , and G XY from Table 5.3,
converted to MPa, gives the strains:

εX = 400

76,000
− (4.474 × 10−6)(12) = 0.00521 Ans.

εY = −(4.474 × 10−6)(400) + 12

5500
= 0.00039 Ans.

γXY = 15

2100
= 0.00714 Ans.
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5.4.4 Elastic Modulus Parallel to Fibers

Consider a uniaxial stress σx parallel to fibers aligned in the X -direction, as shown in Fig. 5.15(a).
Let the fibers (reinforcement) be an isotropic material with elastic constants Er , νr , and Gr , and let
the matrix be another isotropic material, Em , νm , Gm . Assume that the fibers are perfectly bonded to
the matrix so that fibers and matrix deform as a unit, resulting in the same strain εX in both. Further,
let the total cross-sectional area be A, and let the areas occupied by fibers and by matrix be Ar and
Am , respectively. Then

A = Ar + Am (5.49)

Since the applied force must be the sum of contributions from fibers and matrix, we have

σX A = σr Ar + σm Am (5.50)

where σr , σm are the differing stresses in fibers and matrix, respectively. The definitions of the
various elastic moduli require that

σX = EXεX , σr = Erεr , σm = Emεm (5.51)

Note that the strain in the composite is the same as that in both fibers and matrix:

εX = εr = εm (5.52)

Figure 5.15 Composite materials with various combinations of stress direction and
unidirectional reinforcement. In (a) the stress is parallel to fibers, and in (b) to sheets of
reinforcement, whereas in (c) and (d) the stresses are normal to similar reinforcement.
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Substitution of Eq. 5.51 into Eq. 5.50, and also applying Eq. 5.52, yields the desired modulus of the
composite material:

EX = Er Ar + Em Am

A
(5.53)

The ratios Ar/A and Am/A are also the volume fractions of fiber and matrix, respectively,
denoted Vr and Vm :

Vr = Ar

A
, Vm = 1 − Vr = Am

A
(5.54)

Thus, Eq. 5.53 can also be written

EX = Vr Er + Vm Em (5.55)

This result confirms that, in this case, a simple rule of mixtures applies. Note that the same
relationship is also valid for a case where the reinforcement is in the form of well-bonded layers, as
in Fig. 5.15(b).

5.4.5 Elastic Modulus Transverse to Fibers

Now consider uniaxial loading in the other orthogonal in-plane direction, specifically, a stress σY as
shown in Fig. 5.15(c). An exact analysis of this case is more difficult, but analysis of a transversely
loaded layered composite as shown in (d) is a useful approximation. In fact, the EY so obtained can
be shown by detailed analysis to provide a lower bound on the correct value for case (c). Therefore,
let us proceed to analyze case (d).

The stresses in reinforcement and matrix must now be the same and equal to the applied stress:

σY = σr = σm (5.56)

As before, we can use the definitions of the various elastic moduli:

σY = EY εY , σr = Erεr , σm = Emεm (5.57)

The total length in the Y-direction is the sum of contributions from the layers of reinforcement and
the layers of matrix:

L = Lr + Lm (5.58)

Also, the changes in these lengths give the strains in the overall composite material and in the
reinforcement and matrix portions. That is,

εY = �L

L
, εr = �Lr

Lr
, εm = �Lm

Lm
(5.59)

where

�L = �Lr + �Lm (5.60)
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Substituting for each �L in this equation from Eq. 5.59 yields

εY = εr Lr + εm Lm

L
(5.61)

Next, substitute for the strains, using Eq. 5.57, and also note that all of the stresses are equal, to
obtain

1

EY
= 1

Er

Lr

L
+ 1

Em

Lm

L
(5.62)

The length ratios are equivalent to volume fractions:

Vr = Lr

L
, Vm = 1 − Vr = Lm

L
(5.63)

Thus, we finally obtain

1

EY
= Vr

Er
+ Vm

Em
, EY = Er Em

Vr Em + Vm Er
(a, b) (5.64)

where (b) is obtained from (a) by solving for EY .

5.4.6 Other Elastic Constants, and Discussion

Similar logic also leads to an estimate of νXY , the larger of the two Poisson’s ratios, called the major
Poisson’s ratio, and also an estimate of the shear modulus:

νXY = Vrνr + Vmνm (5.65)

G XY = Gr Gm

Vr Gm + Vm Gr
(5.66)

The estimates of composite elastic constants just described are all approximations. Actual
values of EX are usually reasonably close to the estimate. Since EY from Eq. 5.64 is a lower bound
for the case of fibers, actual values are somewhat higher. Books on composite materials contain
more accurate, but considerably more complex, derivations and equations. In addition, fibers may
occur in two directions, and laminated materials are often employed that consist of several layers of
unidirectional or woven composite. Estimates for these more complex cases can also be made.

In a laminate, if equal numbers of fibers occur in several directions, such as the 0◦, 90◦, +45◦,
and −45◦ directions, the elastic constants may be approximately the same for any direction in the
X -Y plane, but different in the Z -direction. Such a material is said to be quasi-isotropic, and it may
be approximated as an isotropic material for in-plane loading, or as a transversely isotropic material
for general three-dimensional analysis.
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Example 5.5
A composite material is to be made of tungsten wire aligned in a single direction in a copper
matrix. The elastic modulus parallel to the fibers must be at least 250 GPa, and the elastic
modulus perpendicular to the fibers must be at least 200 GPa.

(a) What is the smallest volume fraction of wire that can be used?
(b) For the volume fraction of wire chosen in (a), what are the major Poisson’s ratio and

the shear modulus of the composite material?

Solution (a) We need to determine the volume fractions of fibers Vr needed to meet each
requirement. The larger of the two different Vr values obtained is then chosen as meeting or
exceeding both requirements. The matrix and reinforcement properties are:

Tungsten reinforcement : E = 411 GPa, ν = 0.280, G = 160.5 GPa
Copper matrix : E = 130 GPa, ν = 0.343, G = 48.4 GPa

where E and ν are from Table 5.2, and each G is calculated from Eq. 5.28 under the assumption
that each material is isotropic.

First consider the EX = 250 GPa requirement, where X is the fiber direction. Equation 5.55
can be solved to obtain the needed Vr . Substituting the appropriate preceding values and solving
for Vr gives

EX = Vr Er + Vm Em, Vm = 1 − Vr

250 GPa = Vr (411 GPa) + (1 − Vr )(130 GPa), Vr = 0.427

Then, similarly, consider the EY = 200 GPa requirement, and employ Eq. 5.64 to obtain

1

EY
= Vr

Er
+ Vm

Em
, Vm = 1 − Vr

1

200 GPa
= Vr

411 GPa
+ 1 − Vr

130 GPa
, Vr = 0.512

Hence, the required volume fraction is the larger value, Vr = 0.512. Ans.
(b) The major Poisson’s ratio and the shear modulus for the composite material with

Vr = 0.512 can be estimated from Eqs. 5.65 and 5.66:

νXY = Vrνr + Vmνm = 0.512(0.280) + (1 − 0.512)(0.343) = 0.311 Ans.

G XY = Gr Gm

Vr Gm + Vm Gr
= (160.5 GPa)(48.4 GPa)

0.512(48.4 GPa) + (1 − 0.512)(160.5 GPa)
= 75.3 GPa Ans.
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Discussion In (a), note that choosing the smaller value, Vr = 0.427, gives EY = 183.6 GPa
from Eq. 5.64. Hence, this choice fails the EY = 200 GPa requirement. But the Vr = 0.512
choice gives EX = 273.8 GPa from Eq. 5.55, so that the EX = 250 GPa requirement is
exceeded, and this choice is suitable.

5.5 SUMMARY

Deformations may be classified according to physical mechanisms and analogies with rheological
models as elastic, plastic, or creep deformations. The latter category may be further subdivided
into steady-state creep and transient creep. The simplest rheological models for each are shown in
Fig. 5.1.

Elastic deformation is associated with stretching the chemical bonds in solids so that the
distances between atoms increases. The deformation is not time dependent and is recovered
immediately upon unloading. Stress–strain curves for metals, especially, but also for many other
materials, exhibit a distinct elastic region where the stress–strain behavior is linear.

Plastic deformation is associated with the relative movement of planes of atoms, or of
chainlike molecules, and is not strongly time dependent. Rheological models containing frictional
sliders have behavior analogous to plastic deformation, sharing the following characteristics with
plastically deforming materials: (1) Departure from linear behavior occurs that results in permanent
deformation if the load is removed. (2) Compressive stressing is required to achieve a return to
zero strain after yielding. (3) There is a memory effect on reloading after elastic unloading, in that
yielding occurs at the same stress and strain from which unloading occurred.

Creep is time-dependent deformation that may or may not be recovered after unloading.
The physical mechanisms include vacancy and dislocation motions, grain boundary sliding, and
flow as a viscous fluid. Such mechanisms acting in metals, ceramics, and glasses produce creep
deformations that are mostly not recovered after unloading. However, considerable recovery of
creep deformation may occur in polymers as a result of interactions among the long carbon-chain
molecules. Rheological models built up of springs and dashpots can be used to study creep behavior.
In the simplest form of such models, strain rates are proportional to applied stresses, a situation
termed linear viscoelasticity. If a strain is applied and held constant, creep behavior in the material
causes the stress to decrease, a phenomenon termed relaxation.

Elastic deformation occurs in all materials at all temperatures. Plastic deformation is important
in strengthened metal alloys at room temperature, whereas creep effects are small. Significant
creep occurs at room temperature in low-melting-temperature metals, and in many polymers. At
sufficiently high temperature, creep becomes an important factor for strengthened metal alloys and
even for ceramics.

If a material is both isotropic and homogeneous, the elastic strains for the general three-
dimensional case are related to stresses by the generalized Hooke’s law:

εx = 1

E

[
σx − ν

(
σy + σz

)]
, γxy = τxy

G
(5.67)
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and similarly for the y- and z-directions and the yz and zx planes. There are two independent elastic
constants: the elastic modulus E , and Poisson’s ratio ν. The shear modulus G is related to these by

G = E

2(1 + ν)
(5.68)

The volumetric strain is the sum of the normal strains, εv = εx + εy + εz . For the isotropic,
homogeneous case, volumetric strain is related to the applied stresses by

εv = 1 − 2ν

E

(
σx + σy + σz

)
(5.69)

This equation indicates that the volume change is zero for ν = 0.5. Values for virtually all materials
lie within the limits ν = 0 and 0.5, usually between ν = 0.2 and 0.4.

Some materials, notably fibrous composites, are significantly anisotropic. A particular case
of anisotropy that is often encountered is orthotropy, in which the material has symmetry about
three orthogonal planes. Such a material has nine independent elastic constants. There is a different
value of the elastic modulus for each orthogonal direction, EX , EY , and EZ , and also three
independent values of Poisson’s ratio and of shear modulus, νXY , G XY , etc., corresponding to the
three orthogonal planes. These constants are defined only on the special X -Y -Z coordinate axes
that are parallel to the planes of symmetry in the material. If the orientation of the coordinate axes
change, the elastic constants change.

For in-plane loading of sheets and plates of composite materials with unidirectional fibers, the
elastic constants can be estimated from those of the reinforcement and matrix materials:

EX = Vr Er + Vm Em, EY = Er Em

Vr Em + Vm Er
(5.70)

In this case, X is the fiber (reinforcement) direction, Y is the transverse direction, and Vr , Vm are
the volume fractions of reinforcement and matrix, respectively.

N E W T E R M S A N D S Y M B O L S

(a) Terms
anelastic strain
bulk modulus, B
elastic (Young’s) modulus, E
generalized Hooke’s law
homogeneous
hydrostatic stress, σh

isotropic
linear elasticity
linear hardening
linear viscoelasticity
orthotropic

perfectly plastic
Poisson’s ratio, ν

recovery
relaxation
rheological model
shear modulus, G
steady-state creep
tensile viscosity, η

thermal expansion coefficient, α

transient creep
volumetric strain, εv
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(b) Nomenclature for Stresses and Strains
x , y, z Coordinate axes identifying directions for stresses and strains
γxy , γyz , γzx Shear strains
εx , εy , εz Normal strains
εc Creep strain
εe Elastic strain
εp Plastic strain
εsc, εtc Steady-state and transient creep strains, respectively
σx , σy , σz Normal stresses
τxy , τyz , τzx Shear stresses

(c) Nomenclature for Orthotropic and Composite Materials
X , Y , Z The particular x-y-z coordinate axes that are aligned with the

planes of material symmetry.
EX , EY , EZ Elastic moduli in the X -, Y - and Z -directions.
G XY , GY Z , G Z X Shear moduli in X -Y , etc., planes.
m, r Subscripts indicating matrix and reinforcement materials, res-

pectively.
Vm , Vr Volume fractions for matrix and reinforcement materials, res-

pectively.
νXY , etc. Poisson’s ratio giving the transverse strain in the Y -direction due to

a stress in the X -direction; others similarly.
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PROBLEMS AND QUESTIONS

Section 5.2
5.1 Define the following terms in your own words: (a) elastic strain, (b) plastic strain, (c) creep

strain, (d) tensile viscosity, (e) recovery, and (f) relaxation.
5.2 An aluminum alloy is represented by the elastic, perfectly plastic model of Fig. 5.3(b), with

constants E1 = 80 GPa and σo = 250 MPa.
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(a) Plot the stress–strain response for loading to a strain of ε = 0.010. Of this total strain,
how much is elastic, and how much is plastic?

(b) Also plot the response following (a) if the strain now decreases until it reaches zero.
5.3 For the elastic, linear-hardening rheological model of Fig. 5.3(c), how is the behavior affected

by changing E2 while E1 remains constant? You may wish to enhance your discussion by
including a sketch showing how the σ -ε path varies with E2.

5.4 A brass alloy is represented by the elastic, linear hardening model of Fig. 5.3(c), with constants
of E1 = 100 GPa, E2 = 3 GPa, and σo = 500 MPa. Plot the stress–strain response for loading
to a strain of ε = 0.025. Of this total strain, how much is elastic, and how much is plastic?

5.5 At 500◦C, a material has an elastic modulus of E= 70 GPa and a tensile viscosity of η = 1200
GPa-s. Assuming that the elastic, steady-state creep model of Fig. 5.5(a) applies, determine
the response to a stress of 50 MPa maintained for 5 minutes and then removed. Plot both the
strain versus time and stress versus strain for a total time of interval of 10 minutes.

5.6 Consider the strain in a transient creep model, as during the time span 0–1–2 in Fig. 5.5(b).
Starting from Eq. 5.15, derive Eq. 5.17 that gives the strain at time 2.

5.7 A polymer has constants for the elastic, transient creep model of Fig. 5.5(b) of E1 = 2 GPa,
E2 = 4 GPa, and η = 105 GPa-s. Determine and plot the strain versus time response for a stress
of 50 MPa applied for one day.

5.8 Consider relaxation under constant strain ε′ of a model with a spring and dashpot in series, as
in Fig. 5.6, but let the dashpot behave according to the nonlinear equation ε̇ = Bσm , where B
and m are material constants, with m being typically in the range 3 to 7. Derive an equation
for σ as a function of ε′, time t , and the various model constants.

5.9 A polymer is used for shrink-on banding to keep cardboard boxes from popping open during
shipment of merchandise. The tension in the banding is observed to have dropped to 90% of
its initial value after three months. Estimate how long it will take for the tension to drop to
50% of its original value. The polymer may be assumed to behave according to an elastic,
steady-state creep model, as in Fig. 5.6.

Section 5.32

5.10 Consider a material of length 300 mm, with a rectangular cross section, 40 mm wide by 3 mm
thick. When subjected to a tensile load of 3000 N, assume that the length is found to increase
by 3 mm and the width to decrease by 0.15 mm. Also assume that, upon removal of the load,
the length and width are measured again and are found to have returned to approximately
their original values. Determine the following: (a) stress in the length direction, (b) strain in
the length direction, (c) strain in the width direction, (d) elastic modulus, (e) Poisson’s ratio,
and (f) shear modulus.

5.11 A bar of brass alloy is 200 mm long and has a circular cross section of diameter 50 mm. It
is subjected to a tensile load of 500 kN, which gives a stress well below the material’s yield

2For metal alloys, where specific values are not available, the elastic constants E and ν may generally be approximated
as being the same as for the corresponding pure metal, as from Table 5.2. See the discussion in Section 5.3.2.
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strength. Determine the following: (a) stress in the length direction, (b) strain in the length
direction, (c) strain in the transverse direction, (d) length while under load, and (e) diameter
while under load.

5.12 Employ Eq. 5.26(a) and (b) as follows:
(a) Obtain an expression for the ratio εy / εx as a function of stresses and the elastic

constants for the material. Under what conditions is the negative of this ratio equal
to Poisson’s ratio ν?

(b) Obtain an expression for the ratio σx / εx as a function of stresses and the elastic
constants for the material. Under what conditions is this ratio equal to the elastic
modulus E?

5.13 For the special case of plane stress, σz = τyz = τzx = 0, proceed as follows:
(a) Write the resulting simplified version of Hooke’s law, Eqs. 5.26 and 5.27.
(b) Then invert the simplified forms of Eq. 5.26(a) and (b) to obtain relationships that give

the stresses σx and σy , each as a function of strains and materials constants only.
(c) Also derive the equation that gives εz as a function of the other two strains and materials

constants.
5.14 Strains are measured on the surface of a brass alloy part as follows: εx = 1600×10−6,

εy = 1300×10−6 , and γxy = 1500×10−6. Estimate the in-plane stresses σx , σy , and τxy,and
also the strain εz normal to the surface. (Assume that the gages were bonded to the metal when
there was no load on the part, that there has been no yielding, and that no loading is applied
directly to the surface, so that σz = τyz = τzx =0.)

5.15 Strains are measured on the surface of a polycarbonate plastic part as follows: εx = 0.022, εy

= −0.0158, and γxy = 0.0096. Estimate in-plane stresses σx , σy , and τxy,and also the strain
εz normal to the surface. (The same assumptions apply as for Prob. 5.14.)

5.16 Strains are measured on the surface of a low alloy steel part as follows: εx = −1750×10−6,
εy = 900×10−6, and γxy = 600×10−6. Estimate in-plane stresses σx , σy , and τxy,

and also the strain εz normal to the surface. (The same assumptions apply as for
Prob. 5.14.)

5.17 Strains are measured on the surface of a mild steel part as follows: εx = 250 × 10−6,
εy = −950 × 10−6, and γxy = 400 × 10−6. Estimate in-plane stresses σx , σy , and τxy ,
and also the strain εz normal to the surface. (The same assumptions apply as for
Prob. 5.14.)

5.18 Strains are measured on the surface of a titanium alloy part as follows: εx = 3300 ×
10−6, εy = 110 × 10−6, and γxy = 650 × 10−6. Estimate the in-plane stresses σx , σy , and
τxy , and also the strain εz normal to the surface. (The same assumptions apply as for
Prob. 5.14.)

5.19 A plate of metal is subjected to stresses σx = 186 MPa and σy = 152 MPa. The strains
that occur as a result of these stresses are measured to be εx = 1900 × 10−6 and εy =
1250 × 10−6. No yielding occurs in the plate, that is, the behavior is elastic. Estimate the
elastic modulus E and Poisson’s ratio ν for the metal. What type of metal is it?

5.20 A thin-walled spherical vessel contains a pressure p and has inner radius r and wall
thickness t . It is made of an isotropic material that behaves in a linear-elastic manner.
Determine the each of following as a function of the pressure, geometric dimensions, and
material constants involved: (a) change in radius, �r , and (b) change in wall thickness, �t .
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5.21 Consider a pressure vessel that is a thin-walled tube with closed ends and wall thickness t .
The volume enclosed by the vessel is determined from the inner diameter D and length L by
Ve = π D2L/4. The ratio of a small change in the enclosed volume to the original volume
can be found by obtaining the differential dVe and then dividing by Ve, which gives

dVe

Ve
= 2

d D

D
+ d L

L

Verify this expression. Then derive an equation for dVe/Ve as a function of the pressure p
in the vessel, the vessel dimensions, and elastic constants of the isotropic material. Assume
that L is large compared with D, so that the details of the behavior of the ends are not
important.

5.22 Consider a thin-walled spherical pressure vessel of inner diameter D and wall thickness t .
Derive an equation for the ratio dVe/Ve, where Ve is the volume enclosed by the vessel, and
dVe is the change in Ve when the vessel is pressurized. Express the result as a function of
pressure p, vessel dimensions, and elastic constants of the isotropic material.

5.23 A block of isotropic material is stressed in the x- and y-directions as shown in Fig. P5.23.
The ratio of the magnitudes of the two stresses is a constant, so that σy = λσx .

(a) Determine the stiffness in the x-direction, E ′ = σx/εx , as a function of only λ and the
elastic constants E and ν of the material.

(b) Compare this apparent modulus E ′ with the elastic constant E as obtained from a
uniaxial test, and comment on the comparison. (Suggestion: Assume that ν = 0.3 and
consider λ values of −1, 0, and +1.)

Figure P5.23

5.24 A sample of isotropic material is subjected to a compressive stress σz and is confined so that
it cannot deform in either the x- or y-directions, as shown in Fig. P5.24.

(a) Do stresses occur in the material in the x- and y-directions? If so, obtain equations for
σx and for σy , each as functions of only σz and the elastic constant ν for the material.

(b) Determine the stiffness E ′ = σz/εz in the direction of the applied stress σz in terms of
only the elastic constants E and ν for the material. Is E ′ equal to the elastic modulus
E as obtained from a uniaxial test? Why or why not?

(c) What happens if Poisson’s ratio for the material approaches 0.5?
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material
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rigid die
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Figure P5.24

5.25 A block of isotropic material is stressed in the x- and y-directions, but rigid walls prevent
deformation in the z-direction, as shown in Fig. P5.25. The ratio of the two applied stresses
is a constant, so that σy = λσx .

(a) Does a stress develop in the z-direction? If so, obtain an equation for σz as a function
of σx , λ , and the elastic constant ν for the material.

(b) Determine the stiffness E ′ = σx/εx for the x-direction as a function of only λ and the
elastic constants E and ν for the material.

(c) Compare this apparent modulus E ′ with the elastic modulus E as obtained from a
uniaxial test. (Suggestion: Assume that ν = 0.3 and consider λ values of −1, 0, and 1.)

Figure P5.25

5.26 For the situation of Fig. P5.24, where a rigid die prevents deformation in either the x- or
y-directions, the material is a polycarbonate plastic, and the stress in the z-direction is 30 MPa
compression.
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(a) Determine the stresses in the x- and y-directions, the strain in the z-direction, and the
volumetric strain.

(b) Evaluate the ratio of stress to strain for the z-direction, E ′ = σ2 / εz , and comment on
the value obtained.

5.27 A block of material is confined by a rigid die as shown in Fig. P5.24, so that it cannot deform
in either the x- or y-directions. A compressive stress is applied in the z-direction. Assume
that there is no friction along the walls and that no yielding occurs in the metal. What is
the largest value of the compressive stress σz that can be applied without the strain in the
z-direction exceeding 0.2% = 0.002?

5.28 For the solution of Fig. P5.25, the material is brass (70% Cu, 30% Zn), and the compressive
stresses applied in x- and y-directions are 80 and 120 MPa, respectively. What stress develops
in the z-direction, and what are the strains in the x- and y-directions?

5.29 For the situation of Fig. P5.25, where a rigid die prevents deformation in the z-direction, the
material is an aluminum alloy, and equal compressive stresses of 150 MPa are applied in the
x- and y-directions.

(a) Determine the stress in the z-direction, the strains in the x- and y-directions, and the
volumetric strain.

(b) Evaluate the ratio of stress to strain for the x-direction and comment on the value
obtained.

5.30 Equation 5.41 is sometimes used as a basis for making a preliminary comparison of the
thermal shock resistance of ceramic materials by calculating the maximum �T that can occur
without the material reaching its ultimate strength. The compressive ultimate σuc applies for
a temperature increase (upward shock), and the tensile ultimate σut applies for a temperature
decrease (downward shock). Coefficients of thermal expansion, α, and Poisson’s ratio, ν, for
some of the ceramic materials of Table 3.10 are given in Table P5.30.

(a) Calculate �Tmax for each ceramic for both upward shock and downward shock.
(b) Briefly discuss the trends observed. Include your opinion and supporting logic as to

which of these materials might be the best choice for high temperature engine parts,
such as turbine blades, where rapid temperature changes occur.

Table P5.30

Material α, 10−6/◦C ν

MgO 13.5 0.18
Al2O3 8.0 0.22
ZrO2 10.2 0.30
SiC 4.5 0.22
Si3N4 2.9 0.27

Sources: Table 5.2 and [Gauthier 95]
pp. 103, 935, 961, 964, and 979.

5.31 A plate of aluminum alloy is subjected to in-plane stresses of σx = 100, σy = −40, and
τxy = 60 MPa, with other stresses components being zero. The coefficient of thermal
expansion for the alloy is 23.6 × 10−6/◦C.
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(a) Determine all nonzero strain components if the temperature remains constant.
(b) Determine all nonzero strain components if the temperature decreases by 25◦C while

the given stresses are present.
(c) Compare the strain values from (a) and (b), and comment on the trends in the values.

5.32 A plate of magnesium alloy is subjected to in-plane stresses of σx = 80, σy = 30, and
τxy = 50 MPa, with the other stress components being zero. The coefficient of thermal
expansion for the alloy is 26 × 10−6/◦C. Proceed as in Prob. 5.31(a), (b), and (c).

5.33 For the situation of Example 5.3(e), consider the possibility of a temperature change �T in
addition to the stress σz = −75 MPa being applied.

(a) For a temperature increase, how would you expect the value of σy to qualitatively
change, as to its magnitude becoming larger or smaller? For a temperature decrease?

(b) Calculate the temperature change that would cause the copper alloy block to be on the
verge of losing contact with the walls in the y-direction. The coefficient of thermal
expansion for the alloy is 16.5 × 10−6 1/◦C.

Section 5.43

5.34 Name two materials that fit into each of the following categories: (a) isotropic, (b) transversely
isotropic, and (c) orthotropic. Try to think of your own examples rather than using those from
the text.

5.35 A composite material is made with a titanium alloy matrix and 35%, by volume, of
unidirectional SiC fibers. Estimate the elastic constants EX , EY , G XY , νXY , and νY X .

5.36 A composite material is to be made by extruding 50% by volume of unidirectional type
E-glass fibers in an epoxy matrix.

(a) Estimate the composite properties EX , EY , G XY , νXY , and νXY , where X is the fiber
direction. Fiber (reinforcement) and the matrix properties are given in Table 5.3(a) and
in the note below the table.

(b) Compare your values with the data given in Table 5.3(b) for a similar composite with
60% unidirectional fibers. Are the differences qualitatively what you would expect
from the different fiber volumes?

5.37 For the epoxy reinforced with 60% unidirectional E-glass fibers in Table 5.3, use the
reinforcement and matrix properties given in Table 5.3(a), and in the note below the table, to
estimate the composite properties EX , EY , G XY , νXY , and νY X . How well do your estimates
compare with the experimental values in Table 5.3(b)? Can you suggest reasons for any
discrepancies?

5.38 Proceed as in the previous problem, except change the fiber material to Kevlar 49.
5.39 Proceed as in Prob. 5.37, except change the fiber material to T-300 graphite.
5.40 Proceed as in Prob. 5.37, except change the fiber material to GY-70 graphite.
5.41 For unidirectional E-glass fibers used to reinforce epoxy, employ the reinforcement and matrix

properties given in Table 5.3(a), and in the note below the table, to estimate EX and EY for
several volume fractions of reinforcement ranging from zero to 100%. Plot curves of EX

versus Vr , and EY versus Vr , on the same graph, and comment on the trends.

3Materials properties for these problems may be found in Tables 5.2 and 5.3, including the footnote to the latter.



232 Chapter 5 Stress–Strain Relationships and Behavior

5.42 A sheet of epoxy reinforced with 60% unidirectional Kevlar 49 fibers has properties as
given in Table 5.3(b), where X is the fiber direction. The sheet is subjected to stresses σX

= 160, σY = 10, and τXY = 20 MPa. Determine the in-plane strains εX , εY , and γXY that
result.

5.43 A sheet of epoxy reinforced with 60% unidirectional E-glass fibers has properties as given
in Table 5.3(b), where X is the fiber direction. Strains εX = 0.0030, εY = − 0.0020, and
γXY = 0.0025 are measured. Estimate the applied stresses σX , σY , and τXY .

5.44 In a composite material, an epoxy matrix is reinforced with GY-70 type graphite fibers. The
volume percentage of fibers is 70%, and all are oriented in the same direction. For a sheet
of this material in the X -Y plane, with fibers in the X -direction, strains εX = 0.0050 and
εY = 0.0010 are measured. Estimate the applied stresses σX and σY . Reinforcement and
matrix properties are given in Table 5.3(a) and in the note below the table.

5.45 Graphite-epoxy material with 65% unidirectional fibers by volume was subjected to two
experiments: (1) A stress of 150 MPa was applied parallel to the fibers, as in Fig. 5.15(a).
The resulting strains parallel and transverse to this stress direction were measured from
strain gages as εX = 1138 × 10−6 and εY = −372 × 10−6. (2) A stress of 11.2 MPa was
applied transverse to the fibers, as in Fig. 5.15(c). The resulting strains parallel and transverse
to this stress direction were measured from strain gages as εY = 1165 × 10−6 and εX =
−22 × 10−6. However, the accuracy of the latter εX measurement is compromised by the
very small value of strain involved.

(a) Estimate the constants EX , EY , νXY , and νY X for this composite material.
(b) If the elastic modulus of the epoxy matrix is approximately 3.5 GPa, estimate the elastic

modulus of the graphite fibers.
5.46 A composite material is to be made from type E-glass fibers embedded in a matrix of ABS

plastic, with all fibers to be aligned in the same direction. For the composite, the elastic
modulus parallel to the reinforcement must be at least 48 GPa, and the elastic modulus
perpendicular to the reinforcement must be at least 5.0 GPa.

(a) What minimum volume fraction of fibers will satisfy both requirements?
(b) For the composite material with volume fraction of fibers chosen in (a), estimate the

elastic moduli in the parallel and perpendicular directions, the shear modulus, and the
major and minor Poisson’s ratios.

5.47 A composite material is to be made from silicon carbide (SiC) fibers embedded in a matrix
of an aluminum alloy, with all fibers to be aligned in the same direction. For the composite,
the elastic modulus parallel to the reinforcement must be at least 220 GPa, and the elastic
modulus perpendicular to the reinforcement must be at least 100 GPa. Proceed as in (a) and
(b) of Prob. 5.46.

5.48 A composite material is to be made of tungsten wire aligned in a single direction in an
aluminum alloy matrix. The elastic modulus parallel to the fibers must be at least 225 GPa,
and the elastic modulus perpendicular to the fibers must be at least 100 GPa. Proceed as in (a)
and (b) of Prob. 5.46.

5.49 A composite material is to be made by embedding unidirectional SiC fibers in a titanium
alloy metal matrix. For the composite, the elastic modulus in the fiber direction must be at
least 250 GPa, and the shear modulus must be at least 60 GPa. Proceed as in (a) and (b) of
Prob. 5.46.
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5.50 A composite material is needed that has unidirectional fiber or wire reinforcement embedded
in a metal matrix. The elastic modulus parallel to the reinforcement must be at least 170 GPa,
and the elastic modulus perpendicular to the reinforcement must be at least 85 GPa.

(a) If the matrix material is a magnesium alloy and the volume fraction of reinforcement
is 60%, what is the minimum elastic modulus required for the reinforcement material?

(b) Name two materials listed in Table 5.2 that might be reasonable candidates for the
reinforcement material.
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Review of Complex and
Principal States of Stress
and Strain

6.1 INTRODUCTION
6.2 PLANE STRESS
6.3 PRINCIPAL STRESSES AND THE MAXIMUM SHEAR STRESS
6.4 THREE-DIMENSIONAL STATES OF STRESS
6.5 STRESSES ON THE OCTAHEDRAL PLANES
6.6 COMPLEX STATES OF STRAIN
6.7 SUMMARY

OBJECTIVES

• For plane stress, develop the equations for transformation of axes, and apply these to
determine principal normal and shear stresses. Include graphical representation by Mohr’s
circle, as well as extension to generalized plane stress.

• Explore three-dimensional states of stress, with emphasis on principal normal stresses,
principal axes, principal shear stresses, and maximum shear stress.

• Review complex states of strain, applying the fact that the mathematics and analysis
procedures are analogous to those for stress.

6.1 INTRODUCTION

Components of machines, vehicles, and structures are subjected to applied loadings that may include
tension, compression, bending, torsion, pressure, or combinations of these. As a result, complex
states of normal and shear stress occur that vary in magnitude and direction with location in the
component. The designer must ensure that the material of the component does not fail as a result
of these stresses. To accomplish this, locations where the stresses are the most severe must be
identified, and then further analysis of the stresses at these locations is needed.

At any point in a component where the stresses are of interest, it is first necessary to note
that the magnitudes of the stresses vary with direction. By considering all possible directions, the

234
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most severe stresses at a given location can be found. The stresses involved are called principal
stresses, and the particular directions in which they act are the principal axes. Both principal normal
stresses and principal shear stresses are of interest. The main purpose of this chapter is to present
the procedures for determining these principal stresses and their directions.

Treatment of the topic begins with the relatively simple case of plane stress, where the stresses
acting on one orthogonal plane are zero. We next extend the topic to the general case of three-
dimensional states of stress, and then conclude the chapter by considering states of strain. The
degree of detail is limited to what is needed as background for later chapters. Full detail can be found
in any of a number of relatively advanced books on mechanics of materials and similar subjects, such
as Boresi (2003), Timoshenko (1970), and Ugural (2012).

The material presented in this chapter is especially needed for Chapter 7, which employs
principal stresses to analyze the effect of complex states of stress on yielding of ductile materials
and fracture of brittle materials. It is also needed as background for a number of other chapters later
in the book, as we consider such topics as brittle fracture of cracked members, failure due to cyclic
loading, plastic deformation of materials and components, and time-dependent behavior.

6.2 PLANE STRESS

Plane stress is of practical interest, as it occurs at any free (unloaded) surface, and surface locations
often have the most severe stresses, as in bending of beams and torsion of circular shafts.

Consider any given point in a solid body, and assume that an x-y-z coordinate system has been
chosen for this point. The material at this point is, in general, subjected to six components of stress,
σx , σy , σz , τxy , τyz , and τzx , as illustrated on a small element of material in Fig. 6.1. If the three
components of stress acting on one of the three pairs of parallel faces of the element are all zero,
then a state of plane stress exists. Taking the unstressed plane to be parallel to the x-y plane gives

σz = τyz = τzx = 0 (6.1)

Equilibrium of forces on the element of Fig. 6.1 requires that the moments must sum to zero about
both the x- and y-axes, requiring in turn that the components of τyz and τzx acting on the other two
planes must also be zero.

z

x

y

σz

τzx

τyz

τxy

σx

σy

Figure 6.1 The six components needed to completely describe the state of stress at a point.
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Figure 6.2 The three components needed to describe a state of plane stress (a), and
an equivalent representation of the same state of stress for a rotated coordinate system (b).

Hence, the components remaining are σx , σy , and τxy , as illustrated on a square element of
material in Fig. 6.2(a). Note that the square element is simply the cubic element viewed parallel to
the z-axis. Positive directions are as shown, with the sign convention as follows: (1) Tensile normal
stresses are positive. (2) Shear stresses are positive if the arrows on the positive facing sides of the
element are in the directions of the positive x-y coordinate axes.

6.2.1 Rotation of Coordinate Axes

The same state of plane stress may be described on any other coordinate system, such as x ′-y′ in
Fig. 6.2(b). This system is related to the original one by an angle of rotation θ , and the values of the
stress components change to σ ′

x , σ ′
y , and τ ′

xy in the new coordinate system. However, it is important
to recognize that the new quantities do not represent a new state of stress, but rather an equivalent
representation of the original one.

We may obtain the values of the stress components in the new coordinate system by considering
the freebody diagram of a portion of the element, as indicated by the dashed line in Fig. 6.2(a).
The resulting freebody is shown in Fig. 6.3. Equilibrium of forces in both the x- and y-directions
provides two equations, which are sufficient to evaluate the unknown normal and shear stress
components σ and τ on the inclined plane. The stresses must first be multiplied by the unequal
areas of the sides of the triangular element to obtain forces. For convenience, the hypotenuse is
taken to be of unit length, as is the thickness of the element normal to the diagram.

Summing forces in the x-direction, and then in the y-direction, gives two equations:

σ cos θ − τ sin θ − σx cos θ − τxy sin θ = 0 (6.2)

σ sin θ + τ cos θ − σy sin θ − τxy cos θ = 0 (6.3)
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Figure 6.3 Stresses on an oblique plane.

Solving for the unknowns σ and τ , and also invoking some basic trigonometric indentities, yields

σ = σx + σy

2
+ σx − σy

2
cos 2θ + τxy sin 2θ (6.4)

τ = −σx − σy

2
sin 2θ + τxy cos 2θ (6.5)

The desired complete state of stress in the new coordinate system may now be obtained.
Equations 6.4 and 6.5 give σ ′

x and τ ′
xy directly, and substitution of θ + 90◦ gives σ ′

y . Note that
θ is positive in the counterclockwise (CCW) direction, as this was the direction taken as positive in
developing these equations. This process of determining the equivalent representation of a state of
stress on a new coordinate system is called transformation of axes, so the preceding equations are
called the transformation equations.

6.2.2 Principal Stresses

The equations just developed give the variation of σ and τ with direction in the material, the
direction being specified by the angle θ relative to the originally chosen x-y coordinate system.
Maximum and minimum values of σ and τ are of special interest and can be obtained by analyzing
the variation with θ .

Taking the derivative dσ/dθ of Eq. 6.4 and equating the result to zero gives the coordinate axes
rotations for the maximum and minimum values of σ :

tan 2θn = 2τxy

σx − σy
(6.6)

Two angles θn separated by 90◦ satisfy this relationship. The corresponding maximum and minimum
normal stresses from Eq. 6.4, called the principal normal stresses, are

σ1, σ2 = σx + σy

2
±
√(

σx − σy

2

)2

+ τ 2
xy (6.7)
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Figure 6.4 A state of plane stress (a), and the special coordinate systems that contain the
principal normal stresses (b) and the principal shear stress (c).

Also, the shear stress at the θn orientation is found to be zero. The resulting equivalent representation
of the original state of stress is illustrated by Fig. 6.4(b).

As noted, the shear stress is zero on the planes where the principal normal stresses occur. The
converse is also true: If the shear stress is zero, then the normal stresses are the principal normal
stresses.

Similarly, Eq. 6.5 and dτ/dθ = 0 give the coordinate axes rotation for the maximum shear
stress:

tan 2θs = −σx − σy

2τxy
(6.8)

The corresponding shear stress from Eq. 6.5 is

τ3 =
√(

σx − σy

2

)2

+ τ 2
xy (6.9)

This is the maximum shear stress in the x-y plane and is called the principal shear stress. Also, the
two orthogonal planes where this shear stress occurs are found to have the same normal stress of

στ3 = σx + σy

2
(6.10)

where the special subscript indicates that this is the normal stress that accompanies τ3. This second
equivalent representation of the original state of stress is illustrated by Fig. 6.4(c).

Equations 6.6 and 6.8 indicate that 2θn and 2θs differ by 90◦. Hence, if both 2θn and 2θs are
considered to be limited to the range ±90◦, then one of these must be negative—that is, clockwise
(CW)—and we can write

|θn − θs | = 45◦ (6.11)

In addition, τ3 and the accompanying normal stress can be expressed in terms of the principal normal
stresses σ1 and σ2 by substituting Eqs. 6.9 and 6.10 into the two relations represented by Eq. 6.7.
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Solving these then gives

τ3 = |σ1 − σ2|
2

, στ3 = σ1 + σ2

2
(6.12)

The absolute value is necessary for τ3, due to the two roots of Eq. 6.9.

Example 6.1
At a point of interest on the free surface of an engineering component, the stresses with
respect to a convenient coordinate system in the plane of the surface are σx = 95, σy = 25, and
τxy = 20 MPa. Determine the principal normal and shear stresses and their coordinate system
rotations. Also determine the maximum normal stress and the maximum shear stress.

Solution Substitution of the given values into Eq. 6.6 gives the angle to the coordinate axes
for the principal normal stresses:

tan 2θn = 2τxy

σx − σy
= 4

7
, θn = 14.9◦ (CCW) Ans.

Substitution into Eq. 6.7 gives the principal normal stresses:

σ1, σ2 = σx + σy

2
±
√(

σx − σy

2

)2

+ τ 2
xy

σ1, σ2 = 60 ± 40.3 = 100.3, 19.7 MPa Ans.

The corresponding planes and state of stress are shown in Fig. E6.1(b). Note that the direction
for the larger of the two principal normal stresses is chosen so that it is more nearly aligned with
the larger of the original σx and σy than with the smaller.

Alternatively, a more rigorous procedure is to use θ = θn = 14.9◦ in Eq. 6.4, which gives
σ = σ ′

x = σ1 = 100.3 MPa. Use of θ = θn + 90◦ = 104.9◦ in Eq. 6.4 then gives the normal
stress in the other orthogonal direction, σ = σ ′

y = σ2 = 19.7 MPa. The zero value of τ at θ = θn

can also be verified by using Eq. 6.5.
For the equivalent representation where the maximum shear stress in the x-y plane occurs,

Eq. 6.8 gives

tan 2θs = −σx − σy

2τxy
= −7

4
, θs = −30.1◦ = 30.1◦ (CW) Ans.

The stresses for this rotation of the coordinate system may be obtained from σ1 and σ2 as
previously calculated and from Eq. 6.12:

τ3 = |σ1 − σ2|
2

= ±40.3 MPa, στ3 = σ1 + σ2

2
= 60 MPa Ans.
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Figure E6.1 Example of a state of stress (a) and its equivalent representations that contain
the principal normal stresses (b) and the principal shear stress (c).

This representation of the state of stress is shown as Fig. E6.1(c). The uncertainty as to the
sign of the shear stress can be resolved by noting that the positive shear diagonal (dashed line)
must be aligned with the larger of σ1 and σ2. Alternatively, a more rigorous procedure is to use
θ = θs = −30.1◦ in Eq. 6.5, which gives τ3 = 40.3 MPa. The positive sign indicates that the
shear stress is positive in the new x ′-y′ coordinate system.

As for any case of plane stress, the largest of σ1 and σ2 is the maximum normal stress that
occurs on any plane at this point in the material, so that σmax = 100.3 MPa (Ans.). However, we
cannot determine τmax from what has been presented so far. Note that the principal shear stress
τ3 is merely the largest shear stress for any rotation in the x-y plane, and the true maximum shear
stress may lie on planes that we have not yet considered. (See Section 6.3.2 and Ex. 6.4.)

6.2.3 Mohr’s Circle

A convenient graphical representation of the transformation equations for plane stress was
developed by Otto Mohr in the 1880s. On σ versus τ coordinates, these equations can be shown
to represent a circle, called Mohr’s circle, which is developed as follows.

Although it may not be immediately apparent, Eqs. 6.4 and 6.5 do represent a circle on a σ -τ
plot in parametric from, where 2θ is the parameter. This can be shown by combining these two
equations to eliminate 2θ . First, isolate all terms containing 2θ on one side of Eq. 6.4. Then square
both sides of Eqs. 6.4 and 6.5, sum the result, and invoke simple trigonometric identities to eliminate
2θ , obtaining

(
σ − σx + σy

2

)2

+ τ 2 =
(

σx − σy

2

)2

+ τ 2
xy (6.13)

This equation is of the form

(σ − a)2 + (τ − b)2 = r2 (6.14)
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Figure 6.5 Mohr’s circle and principal stresses corresponding to a given state of plane stress
(σx, σy, τxy).

which is the equation of a circle on a plot of σ versus τ with center at coordinates (a, b) and radius
r , where

a = σx + σy

2
, b = 0, r =

√(
σx − σy

2

)2

+ τ 2
xy (6.15)

Comparison with Eqs. 6.9 and 6.10 reveals that

a = στ3, r = τ3 (6.16)

Mohr’s circle is illustrated in Fig. 6.5. The center is seen to be located a distance στ3 from the origin
along the horizontal σ -axis, with στ3 being simply the average of the two normal stresses, σx and
σy . It is evident that the radius τ3 is indeed the maximum shear stress in the x-y plane. Also, the
maximum and minimum normal stresses occur along the σ -axis and are given by

σ1, σ2 = a ± r = σx + σy

2
± τ3 (6.17)

Noting Eq. 6.9, this is seen to be equivalent to Eq. 6.7.
In using Mohr’s circle, difficulties with the signs of shear stresses can be avoided by adopting

the convention shown in Fig. 6.6. The complete state of shear stress is considered to be split into
two portions as shown. The portion that causes clockwise rotation is considered positive, and the
portion that causes counterclockwise rotation is considered negative. For normal stresses, tension is
positive, and compression negative.1

1By the sign convention employed for Fig. 6.3 and the associated equations, a shear stress on the σx planes causing
counterclockwise rotation is positive. Hence, the suggested sign convention for Mohr’s circle reverses the sign for τxy on the
σx planes, while leaving the sign unchanged for τxy on the σy planes. Other valid options for handling these signs exist as
described in various textbooks on elementary mechanics of materials.
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Figure 6.6 Sign convention and diameters of special interest for Mohr’s circle.

If this is done, the two ends of a diameter of the circle can be used to represent the stresses on
orthogonal planes in the material. This is illustrated by diameter A in Fig. 6.6. Note that the normal
and shear stresses that occur together on one orthogonal plane provide the coordinate point for one
end of the diameter, and those for the other plane give the opposite end.

A rotation of this diameter by an angle 2θ on the circle gives the state of stress for a coordinate
axis rotation of θ in the same direction in the material. This is illustrated by diameter B in Fig. 6.6,
which corresponds to the situation of Fig. 6.2(b). If the diameter is rotated by an angle 2θn until it
becomes horizontal, the principal normal stresses are obtained. Also, if the diameter is rotated by
an angle 2θs until it becomes vertical, the state of stress obtained contains the principal shear stress.
These special choices of coordinate axes are illustrated by diameters C and D in Fig. 6.6, and they
correspond to Fig. 6.4(b) and (c), respectively.

Example 6.2
Repeat Example 6.1, using Mohr’s circle. Recall that the original state of stress is σx = 95,
σy = 25, and τxy = 20 MPa.

Solution The circle is obtained by plotting two points that lie at opposite ends of a diameter,
as shown in Fig. E6.2.

(σ, τ ) = (σx ,−τxy
) = (95,−20) MPa

(σ, τ ) = (σy, τxy
) = (25, 20) MPa
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60
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τ, MPa

Figure E6.2 Mohr’s circle corresponding to the state of stress of Fig. E6.1.

A negative sign is applied to τxy for the point associated with σx , because the shear arrows on
the same planes as σx tend to cause a counterclockwise rotation. Similarly, a positive sign is used
for τxy when associated with σy , due to the clockwise rotation. The center of the circle must lie
on the σ -axis at a point halfway between σx and σy :

(σ, τ )ctr. =
(

σx + σy

2
, 0

)
= (60, 0) MPa

From the preceding coordinate points, the shaded right triangle shown has a base of 35 and
an altitude of 20 MPa. The hypotenuse is the radius of the circle and is also the principal shear
stress:

τ3 =
√

352 + 202 = 40.3 MPa Ans.

The angle with the σ -axis is

tan 2θn = 20

35
, 2θn = 29.74◦ (CCW) Ans.

A counterclockwise rotation of the diameter of the circle by this 2θn gives the horizontal diameter
that corresponds to the principal normal stresses. Their values are obtained from the center
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location and radius of the circle:

σ1 = σx + σy

2
+ τ3 = 60 + 40.3 = 100.3 MPa Ans.

σ2 = σx + σy

2
− τ3 = 60 − 40.3 = 19.7 MPa Ans.

The resulting state of stress is the same as previously illustrated in Fig. E6.1(b). Note that the
counterclockwise rotation 2θn on the circle corresponds to a rotation of θn = 14.9◦ in the same
direction in the material.

The diameter corresponding to the original state of stress must be rotated clockwise to obtain
the equivalent representation that contains the principal shear stress. Since this is 90◦ from the
σ -axis, the angle of rotation is

2θs = 90◦ − 2θn = 60.26◦ (CW) Ans.

so that θs = 30.1◦ clockwise. The coordinates of the ends of this vertical diameter give the same
state of stress with τ3 as previously shown in Fig. E6.1(c).

As already noted for Ex. 6.1, we have σmax = 100.3 MPa (Ans.), but we cannot determine
τmax at this point.

6.2.4 Generalized Plane Stress

Consider a state of stress where two components of shear stress are zero, such as τyz = τzx = 0.
Such a situation is illustrated in a three-dimensional view in Fig. 6.7(a). It can also be illustrated
by a diagram in the x-y plane, where the z-direction is normal to the paper, as shown in (b). The
freebody of a portion of this unit cube is shown in (c). This freebody is similar to that employed
previously for plane stress—specifically, Fig. 6.3. The only difference is the presence of the stress
σz . The equations of equilibrium in the x-y plane are the same as before.

Hence, all of the equations previously developed for the x-y plane apply to this case as well.
This includes the equations for the principal normal stresses in the x-y plane, σ1 and σ2, and also
those for the principal shear stress and the accompanying normal stress, τ3 and στ3. It is simply
necessary to note that σz remains unchanged for all rotations of the coordinate axes in the x-y
plane. Moreover, since Mohr’s circle was also derived from the same equilibrium equations, it can
also be employed for the x-y plane.

Since this category of stress state is closely related to plane stress, we will call it generalized
plane stress. For example, such a state of stress occurs in a thick-walled tube with closed ends loaded
by internal pressure and torsion, as illustrated in Fig. A.6(a) in Appendix A. Note that, for the r-t-x
coordinate system shown, two shear components are zero, with the only nonzero shear being τt x .
The three normal stresses, σr , σt , and σx , generally have nonzero values. (The only exception is that
σr = 0 at R = r2.)

As will be apparent from the discussion of three-dimensional states of stress given later in this
chapter, there are always three principal normal stresses, σ1, σ2, and σ3. For generalized plane stress
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Figure 6.7 State of generalized plane stress where two components of shear stress are zero.

with τyz = τzx = 0, we obtain σ1 and σ2 from Eq. 6.7 or from Mohr’s circle, and the third principal
normal stress turns out to be σ3 = σz . Also, since ordinary plane stress is simply a special case
of generalized plane stress where σz = 0, the third principal normal stress in this case is simply
σ3 = σz = 0.

6.3 PRINCIPAL STRESSES AND THE MAXIMUM SHEAR STRESS

Consider any state of stress on an x-y-z coordinate system, as in Fig. 6.1. There is, in all cases,
an equivalent representation on a new coordinate system of principal axes, 1-2-3, where no shear
stresses are present, as illustrated by Fig. 6.8(a). The three normal stresses for the 1-2-3 coordinate
system are principal normal stresses, σ1, σ2, and σ3. Of these, one is the maximum normal stress
acting on any plane, another is the minimum normal stress acting on any plane, and the remaining
one has an intermediate value.

For x-y plane stress or generalized plane stress, the values of σ1 and σ2 and their directions
may be found, as described in the previous section of this chapter, by using Eqs. 6.6 and 6.7. In
Fig. 6.4, the directions of σ1 and σ2 are the 1-2 axes, with these directions being determined by the
θn rotation from the original x-y axes. Further, the 3-axis is the z-axis, with σ3 = σz .

However, for the general three-dimensional case, the 1-2-3 axes are unique directions that may
all differ from the original x-y-z directions. The general procedure for finding σ1, σ2, and σ3 and
the corresponding 1-2-3 axes will be considered in the next section of this chapter. However, before
proceeding with this somewhat advanced topic, it is useful to consider principal shear stresses and
the maximum shear stress, and also to revisit plane stress.
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Figure 6.8 Principal normal stresses and principal axes (a), and principal shear stresses (b), (c),
(d). In (b), rotation of the unit cube 45◦ about the axis of σ1 gives the planes where τ1 acts.
Similar rotation about σ2 gives the τ2 planes (c), and about σ3 the τ3 planes (d).

6.3.1 Principal Shear Stresses and Maximum Shear Stress

In Fig. 6.8(a), if the equivalent state of stress is found for a 45◦ rotation about any of the 1, 2, or 3
axes, a shear stress is encountered that is the largest for any rotation about that axis. The three shear
stresses that result are called the principal shear stresses, τ1, τ2, and τ3. These are each accompanied
by normal stresses that are the same on the two shear planes, στ1, στ2, and στ3, respectively. For
the planes containing each pair of principal axes, 1-2, 2-3, and 3-1, we have a state of generalized
plane stress, so that relationships similar to Eq. 6.12 apply for each 45◦ rotation. Hence, the three
principal shear stresses and the accompanying normal stresses are given by

τ1 = |σ2 − σ3|
2

, τ2 = |σ1 − σ3|
2

, τ3 = |σ1 − σ2|
2

(6.18)

στ1 = σ2 + σ3

2
, στ2 = σ1 + σ3

2
, στ3 = σ1 + σ2

2
(6.19)
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Figure 6.9 Mohr’s circles for a three-dimensional state of stress.

The maximum shear stress for any plane in the material is the largest of the three principal shear
stresses:

τmax = MAX(τ1, τ2, τ3) (6.20)

Mohr’s circles may be applied for the rotations of Fig. 6.8 about each of the principal axes.
The three circles that result are shown in Fig. 6.9. Two of the circles lie inside the largest one, and
each is tangent along the σ -axis to the other two. The radii of these circles are the principal shear
stresses, τ1, τ2, and τ3, and the centers are located along the σ -axis at the points given by the three
στ i values. Also, each plane where one of these principal shear stresses occurs is seen to be a 45◦
rotation away from the corresponding planes of principal normal stress, which is consistent with the
previous discussion and with Fig. 6.8.

Example 6.3
For the following state of stress, determine the principal normal stresses, the principal axes, and
the principal shear stresses:

σx = 100, σy = −60, σz = 40 MPa

τxy = 80, τyz = τzx = 0 MPa

Also determine the maximum normal stress and the maximum shear stress.

Solution Since there is only one nonzero component of shear stress, we have a state of
generalized plane stress, and the stress normal to the plane of the nonzero shear stress is one
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of the principal normal stresses:

σ3 = σz = 40 MPa Ans.

Mohr’s circle may then be employed for the x-y plane just as for a two-dimensional problem.
The two ends of a diameter are

(
σx ,−τxy

) = (100,−80),
(
σy, τxy

) = (−60, 80) MPa

The resulting circle is shown in Fig. E6.3(a).
Simple geometry, as in Ex. 6.2, is next needed to locate the ends of the horizontal diameter.

In particular, the center of the circle is located at a σ value of

a = σx + σy

2
= 100 − 60

2
= 20 MPa

From the cross-hatched triangle, the radius of the circle is

r =
√

802 + 802 = 113.1 MPa

This gives the two remaining principal normal stresses:

σ1, σ2 = a ± r = 133.1,−93.1 MPa Ans.

0
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80
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113.1
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Figure E6.3 Mohr’s circle, principal axes, and principal stresses for the three-dimensional
state of stress example.
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From Fig. E6.3(a), the directions for these stresses are given by a rotation θn relative to the
original x-y axes:

tan 2θn = 80/80 = 1.00, 2θn = 45◦, θn = 22.5◦(CCW)

This rotation gives the 1-2 principal axes. Since the third principal stress σ3 is coincident with
σz , the, 1-2-3 principal axes are as shown in Fig. E6.3(b).

The maximum normal stress is the largest of σ1, σ2, σ3, so that σmax = 133.1 MPa (Ans.).
The points (σ1, 0), (σ2, 0), and (σ3, 0) now fix the circles for the three principal planes, as

shown in Fig. E6.5(c). The radii of these circles are the principal shear stresses:

τ1 = |σ2 − σ3|
2

= | −93.1 − 40|
2

= 66.6 MPa Ans.

τ2 = |σ1 − σ3|
2

= |133.1 − 40|
2

= 46.6 MPa Ans.

τ3 = |σ1 − σ2|
2

= |133.1 − (−93.1)|
2

= 113.1 MPa Ans.

The largest of these is τmax = 113.1 MPa. Ans.

Comments The principal normal stresses and directions could have been determined from
Eqs. 6.6 and 6.7 rather than from Mohr’s circle. If desired, the three circles could then still be
plotted from the values of σ1, σ2, and σ3, with half circles as in (c) being sufficient to allow τ1,
τ2, and τ3 to be visualized.

6.3.2 Plane Stress Revisited

Consider plane stress in the x-y plane, so that σz = τyz = τzx = 0. If the principal normal stresses in
the x-y plane are σ1 and σ2, then the third principal normal stress σ3 is zero. Even for this situation,
shear stresses are in general present on all of the principal shear planes of Fig. 6.8. From Eq. 6.18,
for the case of σz = σ3 = 0, the principal shear stresses are

τ1 = |σ2 − σ3|
2

= |σ2|
2

, τ2 = |σ1 − σ3|
2

= |σ1|
2

, τ3 = |σ1 − σ2|
2

(6.21)

Thus, in a sense, there is no such thing as a state of plane stress, as stresses occur on planes
associated with choices of coordinate axes that are not in the x-y plane. Furthermore, it is hazardous
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Figure 6.10 Plane stress in the x-y plane reconsidered as a three-dimensional state of stress. In
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Figure 6.11 Orientations of the planes of principal shear relative to the principal normal
stress cube.

to confine one’s attention to the x-y plane, as one of the principal shear stresses τ1, τ2, or τ3 may
be larger than the one of these that is the τ3 of Eq. 6.9 obtained from analysis of the stresses in the
x-y plane. From Eq. 6.21, this in fact occurs whenever the two principal normal stresses in the x-y
plane are of the same sign.

Mohr’s circles further illustrate the situation, as shown in Fig. 6.10. The circles are defined by
the points σ1, σ2, and σ3 on the σ -axis, where one of these is σz = 0, so that two of the circles
must pass through the origin. If the principal normal stresses in the x-y plane are of opposite
sign, then the circle for the x-y plane is the largest, and τ3 for the x-y plane is the maximum
shear stress for all possible choices of coordinate axes. This case is illustrated by (a). However,
if the principal normal stresses for the x-y plane are of the same sign, as in (b), then one of the
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Figure 6.12 Failure of a 15 mm diameter copper water pipe due to excess pressure
from freezing. In the cross section on the right, note that failure occurred on a plane inclined
45◦ to the tube surface, which is the plane of the maximum shear stress. (Photos by
R. A. Simonds.)

other circles is the largest. The radius of the largest circle now corresponds to a shear stress that
cannot be found by rotations in the x-y plane, and which acts on planes that are inclined to the x-y
plane.

Consider Fig. 6.11, where the planes of principal shear from Fig. 6.8 are shown within the
principal normal stress cube. For plane stress, we have defined σ1 and σ2 as the principal normal
stresses found by a coordinate system rotation in the x-y plane. Hence, the 1-2 plane is also
the x-y plane. Where either τ1 or τ2 is the maximum shear stress, the planes on which this
shear stress acts are seen from Fig. 6.11 to be inclined relative to the x-y plane by 45◦ angles.
Failure of a pressurized tube along such an inclined plane of maximum shear stress is shown in
Fig. 6.12.

Example 6.4
What is the maximum shear stress for the situation analyzed in Examples 6.1 and 6.2?

Solution Recall that the original state of stress is σx = 95, σy = 25, and τxy = 20 MPa. Also,
the principal normal and shear stresses already found by analysis confined to the x-y plane are

σ1 = 100.3, σ2 = 19.7, τ3 = 40.3 MPa

The third principal normal stress is σ3 = σz = 0. Equation 6.18 then gives the remaining
principal shear stresses:
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τ1 = |σ2 − σ3|
2

= |19.7 − 0|
2

= 9.8 MPa

τ2 = |σ1 − σ3|
2

= |100.3 − 0|
2

= 50.1 MPa

The maximum shear stress is thus τ2, which does not lie in the x-y plane, but acts on planes
inclined 45◦ to the x-y plane, so that τmax = 50.1 MPa (Ans.). This situation was expected,
since the principal stresses σ1 and σ2 in the x-y plane are of the same sign.

Example 6.5
A pipe with closed ends has a wall thickness of 10 mm and an inner diameter of 0.60 m. It is
filled with a gas at 20 MPa pressure and is subjected to a torque about its long axis of 1200 kN·m.
Determine the three principal normal stresses and the maximum shear stress. Neglect any effects
of the discontinuity associated with the end closure.

Solution The thin-walled tube approximations of Figs. A.7 and A.8 apply, and the combina-
tion of pressure and torsion give stresses as shown in Fig. E6.5. From thickness t = 10 mm, the
inner, outer, and average radii are, respectively,

r1 = 300, r2 = r1 + t = 310, ravg = r1 + t/2 = 305 mm

The hoop and longitudinal stresses due to the pressure are then

σt = pr1

t
= (20 MPa)(300 mm)

10 mm
= 600 MPa, σx = pr1

2t
= 300 MPa

σr
τtx

σx

σt

Figure E6.5

There is also a radial stress

σr = 0 (outside), σr = −p = −20 MPa (inside)
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The shear stress due to the torsion is

τt x = T

2πr2
avgt

= 1200 × 106 N·mm

2π(305 mm)2(10 mm)
= 205.3 MPa

Since we have a state of generalized plane stress, the principal normal stresses are

σ1, σ2 = σt + σx

2
±
√(

σt − σx

2

)2

+ τ 2
t x = 450 ± 254.3 = 704.3, 195.7 MPa

σ3 = σr , σ3 = 0 (outside), σ3 = −20 (inside) Ans.

From Eqs. 6.18 and 6.20, the maximum shear stress is

τmax= MAX

( |σ2 − σ3|
2

,
|σ1 − σ3|

2
,
|σ1 − σ2|

2

)

τmax= 352.1 MPa (outside), τmax = 362.1 MPa (inside)

Note that σ1 and σ3 give the controlling choice in each case. The larger value for the two locations
is, of course, the final answer—specifically, τmax = 362.1 MPa (Ans.).

6.4 THREE-DIMENSIONAL STATES OF STRESS

In the general three-dimensional case, all six components of stress may be present: σx , σy , σz , τxy ,
τyz , and τzx . This general case can be analyzed to obtain transformation equations that permit values
of the stress components to be evaluated for any choice of coordinate axes in three dimensions. This
is accomplished by considering the freebody of a portion of the stress cube of Fig. 6.1 as cut off by
an oblique plane in Fig. 6.13. Equilibrium of forces is then applied to this cube portion, as shown in
Fig. 6.14.

The stresses on the cube portion are shown in Fig. 6.14(a) and some needed geometry in (b)
and (c). The stresses on the original x-y, y-z, and z-x planes are the same as in Fig. 6.1. On
the new oblique plane, there is a normal stress σ and a shear stress τ . In (b), the normal to the
oblique plane, which is the direction of σ , is described by angles θx , θy , θz to the x , y, z axes,
respectively. The cosines of these angles are useful, l = cos θx , m = cos θy , n = cos θz , and are
called the direction cosines. By applying equilibrium of forces to this cube portion, σ and τ can be
evaluated in terms of the stresses on the original x-y-z coordinate system for any direction (l, m, n)

of the normal. Further analysis can be performed to find the maximum and minimum values of σ ,
and also an intermediate value, which are found to be accompanied by zero τ and to have orthogonal
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y

z

x

Figure 6.13 An oblique plane in a three-dimensional coordinate system.
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(b)
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(0, c/m, 0)

c/n

cn

P

0

0

0

θz

θz
c

z

R

S

x-y
T
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σx

σ

σ

τ

τ

τxy

σ  y

σ z

τyz

τzx

Figure 6.14 Stresses on the cube portion formed by an oblique plane (a), and associated
geometry (b), (c). If the oblique plane is normal to a principal axis, then σ = σi and τ = 0,
where σi is any one of σ1, σ2, or σ3.
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directions. These are of course the principal normal stresses, σ1, σ2, and σ3. Their directions, 1-2-3,
are the principal axes, as in Fig. 6.8(a). Interestingly, if the point (σ, τ) for any desired plane is
plotted on Mohr’s circle as in Fig. 6.9(b), it will always lie within the shaded area. A geometric
construction to locate this point was derived by Otto Mohr, as described in the book by Ugural
(2012).

Rather than analyzing the rather complex general case, we can proceed directly to the principal
normal stresses by invoking equilibrium of forces on the cube portion for the special case σ = σi ,
τ = 0, where σi is any one of σ1, σ2, σ3. To aid us in this process, we first need to address some of
the details of the geometry of the oblique plane, including the relative areas of the four faces of the
cube portion.

6.4.1 Geometry and Areas

Consider right triangle O-T-R in Fig. 6.14(b), which is shown in a two-dimensional view as (c).
Point T is located by extending line R-S to the x-y plane, where R is the z-axis intercept and S is
the point where the normal intersects the oblique plane. If the distance O S along the normal from
the origin to the oblique plane is denoted c, the coordinates of point S are (cl, cm, cn). For the z-
direction, this can be seen in Fig. 6.14(c), where cz = c (cos θz) = cn, and similarly for the other two
directions. Also, from right triangle O-S-R, the z-axis intercept is distance O R = c/ cos θz = c/n,
and similarly for the other two axes intercepts. Hence, we now have the coordinates of points P , Q,
R, and S, as shown in (b).

Using these coordinates to write RS and P Q as vectors, we find that the dot product of these is
zero, indicating that the two lines are perpendicular, RS ⊥ P Q. Since RO is perpendicular to any
line in the x-y plane, we have RO ⊥ P Q as well, and the plane of triangle O-T -R is perpendicular
to line P Q, so that any line in this plane is also perpendicular, giving RT ⊥ P Q and OT ⊥ P Q.
Further, from (c), angle O-T -R is seen to equal θz , due to mutually perpendicular sides, so that
RT (cos θz) = OT .

We can now find the needed areas A of the triangular faces of the cube portion. Due to the
perpendicularities noted previously, and since RT (cos θz) = OT , we have

AP Q R = P Q × RT

2
, AP QO = Axy = P Q × OT

2
= AP Q R(cos θz) = n AP Q R (6.22)

Hence, the area AP QO = Axy of the x-y face is obtained simply by multiplying the area AP Q R of
the oblique face by the direction cosine to the z-axis, n = cos θz . An analogous result applies for
the y-z and z-x faces, so that the areas of the three orthogonal faces are simply related to the area of
the oblique face by multiplying by appropriate direction cosines:

Ayz = l AP Q R, Azx = m AP Q R, Axy = n AP Q R (6.23)
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6.4.2 Principal Normal Stresses from Equilibrium of Forces

We are now ready to apply equilibrium of forces to the cube portion for the special case σ = σi ,
τ = 0, where σi is any one of the principal normal stresses σ1, σ2, σ3. First, note that the components
of σi in the x , y, z directions are liσi , miσi , niσi , respectively, where subscripts i have been added
to indicate direction cosines for the particular principal normal stress σi . Multiplying stresses by
areas to obtain forces and summing in the x-direction of Fig. 6.14(a), we obtain

liσi AP Q R − σx Ayz − τxy Azx − τzx Axy = 0 (a)

−liσi AP Q R + σx li AP Q R + τxymi AP Q R + τzx ni AP Q R = 0 (b)
(6.24)

where (b) is obtained from (a) by invoking Eq. 6.23 and multiplying through by −1. Dividing (b)
by AP Q R , we obtain the first of the following three equations:

(σx − σi )li + τxymi + τzx ni = 0

τxyli + (σy − σi )mi + τyzni = 0

τzx li + τyzmi + (σz − σi )ni = 0

(6.25)

The second two are similarly obtained by summing forces in the other two directions.
Equation 6.25 represents a homogeneous, linear system in variables li , mi , ni , which has a

nontrivial solution only if the following determinant relationship is satisfied:

∣∣∣∣∣∣
(σx − σ) τxy τzx

τxy (σy − σ) τyz

τzx τyz (σz − σ)

∣∣∣∣∣∣ = 0 (6.26)

Expanding this determinant gives a cubic equation:

σ 3 − σ 2(σx + σy + σz) + σ(σxσy + σyσz + σzσx − τ 2
xy − τ 2

yz − τ 2
zx )

−(σxσyσz + 2τxyτyzτzx − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy) = 0

(6.27)

This cubic always has three real roots, which are the principal normal stresses, σ1, σ2, σ3.
An alternative means of expressing this relationship is

σ 3 − σ 2 I1 + σ I2 − I3 = 0 (6.28)
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where

I1 = σx + σy + σz

I2 = σxσy + σyσz + σzσx − τ 2
xy − τ 2

yz − τ 2
zx

I3 = σxσyσz + 2τxyτyzτzx − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy

(6.29)

These quantities are called stress invariants, as they have the same values for all choices of
coordinate system. For example, σx + σy + σz = σ ′

x + σ ′
y + σ ′

z = constant. Hence, the sum of the
normal stresses I1 for the stress state as represented on the original x-y-z coordinate system is the
same as the sum for the equivalent representation on any other coordinate system, x ′-y′-z′, including
the coordinate system given by the principal directions, 1-2-3.

Determining values for the principal normal stresses thus consists of finding the three roots
of the cubic equation in one of the forms just given. In doing so, it is common practice to assign
the subscripts 1, 2, and 3, in order, to the maximum, intermediate, and minimum values. However,
this convention is not a necessity, and it is useful in working numerical problems to relax this
requirement and allow the numbers to be assigned as convenient. We will write all equations
involving principal stresses in general form, so that it is not necessary to assume that the subscripts
are assigned in any particular order.

6.4.3 Directions for the Principal Normal Stresses

Now consider finding the directions for the principal normal stresses—that is, the principal axes
1-2-3 of Fig. 6.8(a). To proceed, the values of the principal normal stresses, σ1, σ2, σ3, first need to
be determined, as described previously. Then one of these is substituted as σi into Eqs. 6.25, which
are then solved simultaneously with

l2
i + m2

i + n2
i = 1 (6.30)

to give the values of li , mi , and ni . Note that Eq. 6.30 is required by geometry, and that only two of
the three elements of Eq. 6.25 will be found to be independent, so that the third will not aid in the
solution. To find all three principal axes, the process is repeated for each of σ1, σ2, and σ3.

In presenting the direction cosines, it is conventional to minimize negative signs. This can
be accomplished by replacing one or more sets of direction cosines by its negative, which is
merely a vector pointing in the opposite direction along the same line. For example, (l1, m1, n1) =
(0.300,−0.945,−0.130) can be replaced by (−0.300, 0.945, 0.130). Also, the three sets of direction
cosines should represent a right-hand coordinate system. This can be accomplished by checking the
vector cross product.

(l1, m1, n1)×(l2, m2, n2) = (l3, m3, n3) (6.31)

If this is not obeyed, then replace one direction cosine vector with its negative so as to both satisfy
Eq. 6.31 and minimize negative signs. Alternatively, the first two direction cosine vectors can be
obtained by solving Eqs. 6.25 and 6.30, and the third from Eq. 6.31, so that the right-hand system
convention is automatically satisfied.
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Example 6.6
For the same state of stress as in Ex. 6.3, determine the principal normal stresses by treating
this as a three-dimensional problem. Recall that the given state of stress is σx = 100, σy =
−60, σz = 40, τxy = 80, and τyz = τzx = 0 MPa.

Solution Substitute these given stresses into Eq. 6.29 to obtain values for the stress invariants:

I1 = 80, I2 = −10,800, I3 = −496,000

These values correspond to units of MPa for stresses, as employed throughout this solution. The
cubic relationship of Eq. 6.28 is thus

σ 3 − σ 2 I1 + σ I2 − I3 = 0, σ 3 − 80σ 2 − 10,800σ + 496,000 = 0

For a number of values of σ , calculate the corresponding values of f (σ ):

σ 3 − 80σ 2 − 10,800σ + 496,000 = f (σ )

Then use these values to plot the cubic equation as in Fig. E6.6.
It is evident that there are three roots where the curve crosses the σ -axis, where f (σ ) = 0.

From the graph, these roots can be seen to be roughly 130, 40, and −90 MPa. Starting with
each of these rough values in turn, apply trial and error, Newton’s method, or another numerical
procedure, as implemented in various widely available computer software. Accurate values are

8 x 10

–100

–93.1
0

–4

4

40
100 200

σ = 133.1

σ, MPa

5

f (σ)

Figure E6.6 Graph of the example cubic equation, showing the three roots that are
principal normal stresses.



Section 6.4 Three-Dimensional States of Stress 259

obtained as follows:

σ1 = 133.1, σ2 = −93.1, σ3 = 40.0 MPa Ans.

These are numbered consistently with the Ex. 6.3 solution. The maximum normal stress is
the largest of σ1, σ2, σ3, so that σmax = 133.1 MPa. Principal shear stresses τ1, τ2, τ3 and the
maximum shear stress, τmax, can then be calculated as already done in Ex. 6.3.

Comments Note that we did not take advantage of the fact that this is a state of generalized
plane stress. Hence, the foregoing procedure can be applied for any state of stress, as for cases
where there are no zero stress components for the original x-y-z system. Where there are zero
components, the determinate form of the cubic, Eq. 6.26, may be useful. In this particular case,
Eq. 6.26 gives ∣∣∣∣∣∣

(100 − σ) 80 0
80 (−60 − σ) 0
0 0 (40 − σ)

∣∣∣∣∣∣ = 0

Using the last column to expand yields

(40 − σ)[(100 − σ)(−60 − σ) − 6400] = 0, (σ − 40)(σ 2 − 40σ − 12,400) = 0

Hence, from the (σ − 40) factor, it is evident that one root is σ3 = 40.0 MPa. The remaining two
can be found by applying the quadratic formula to the equation that is the other factor.

Example 6.7
Find the direction cosines for each principal normal stress axis for the stress state of Ex. 6.6.

Solution The principal stresses as already determined in Ex. 6.6 are needed:

σ1 = 133.1, σ2 = −93.1, σ3 = 40 MPa

Equation 6.25 must now be applied for each of these stresses. Substituting for σ1, and also for
σx , σy , σz , τxy , τyz , and τzx on the original coordinate axes, we have

(100 − 133.1)l1 + 80m1 = 0

80l1 + (−60 − 133.1)m1 = 0

(40 − 133.1)n1 = 0

The last of these is satisfied only by n1 = 0, and the first two both give the same result:

l1 = 2.414m1
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Combining these results with Eq. 6.30 gives

(2.414m1)
2 + m2

1 + 02 = 1, m1 = 0.383

The value of l1 is then easily obtained, so that the three values are

l1 = 0.924, m1 = 0.383, n1 = 0 Ans.

Similar solutions for σ2 = −93.1 and for σ3 = 40 MPa give the direction cosines for the other
two principal axes:

l2 = −0.383, m2 = 0.924, n2 = 0

l3 = 0, m3 = 0, n3 = 1
Ans.

The right-handedness of the 1-2-3 system of the direction cosines needs to be checked by
using Eq. 6.31. We have

∣∣∣∣∣∣
i j k
l1 m1 n1

l2 m2 n2

∣∣∣∣∣∣ = l3i + m3j + n3k,

∣∣∣∣∣∣
i j k

0.924 0.383 0
−0.383 0.924 0

∣∣∣∣∣∣ = 1.000k

where i, j, k are unit vectors for the x , y, z directions, respectively, and the cross product is done
in determinate form. The l3, m3, n3 direction cosines from the preceding analysis are confirmed,
and no sign changes are needed.

Comments From Fig. E6.3(b), the angles between the principal axes and the x , y, z axes are
as follows:

1-axis: θx = 22.5◦, θy = 67.5◦, θz = 90◦

2-axis: θx = 112.5◦, θy = 22.5◦, θz = 90◦

3-axis: θx = 90◦, θy = 90◦, θz = 0◦

The cosines of these angles are seen to agree with the values of the direction cosines that
have just been found. For a state of stress with no zero components in the original x -y -z system,
there would be no 90◦ or 0◦ angles, so none of the direction cosines would be zero or unity.

6.5 STRESSES ON THE OCTAHEDRAL PLANES

Consider an oblique plane oriented relative to the 1-2-3 principal axes, as shown in Fig. 6.15(a). A
normal stress σ and a shear stress τ act on this plane. The direction of the normal to the oblique
plane is specified by the angles α, β, and γ to the principal axes.
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Octahedral plane:
α = β = γ
σ = σ
τ = τh

h

Figure 6.15 Octahedral plane shown relative to the principal normal stress axes (a), and the
octahedron formed by the similar such planes in all octants (b).

For the special case where α = β = γ , the oblique plane intersects the principal axes at equal
distances from the origin and is called the octahedral plane. Based on equilibrium of forces, the
normal stress on this plane can be shown to be the average of the principal normal stresses:

σh = σ1 + σ2 + σ3

3
(6.32)

The quantity σh is called the octahedral normal stress or the hydrostatic stress and was considered
in Chapter 5. Equilibrium also permits the shear stress on the same plane, called the octahedral
shear stress, to be evaluated:

τh = 1

3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (6.33)

In each octant of the principal axes coordinate system, there is a similar plane where the normal
makes equal angles with the axes. The stresses on all eight such planes are the same and are σh and
τh . These planes can be thought of as forming an octahedron, as shown in Fig. 6.15(b). Noting that
opposite faces of the octahedron correspond to a single plane, the octahedral stresses act on four
planes.

By evaluating the stress invariants, Eq. 6.29, for the special case of the principal normal stresses,
and after some manipulation, σh and τh can be written in terms of the invariants:

σh = I1

3
, τh = 1

3

√
2
(
I 2
1 − 3I2

)
(6.34)
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Substitution of the general form of the invariants and manipulation then gives

σh = σx + σy + σz

3
(6.35)

τh = 1

3

√
(σx − σy)2 + (σy − σz)2 + (σz − σx )2 + 6(τ 2

xy + τ 2
yz + τ 2

zx ) (6.36)

These more general expressions may be used to compute σh and τh for stresses described with
respect to any coordinate system, so that it is not necessary to first determine the principal stresses.
Since the octahedral stresses σh and τh are functions of the stress invariants, these quantities are
themselves invariant. Hence, any equivalent representation of a given state of stress will give the
same values of σh and τh .

The octahedral shear stress is an important quantity, as it is used as a basis for predicting
yielding and other types of material behavior under complex states of stress. This is considered
starting in the next chapter, as is the similar use of the maximum shear stress. Since τmax occurs on
only two planes, τh occurs twice as frequently as does τmax. (Compare Figs. 6.8 and 6.15.) Also, for
all possible states of stress, it can be shown that τh is always similar in magnitude to τmax, with the
ratio τh/τmax being confined to the range 0.866 to unity, or more precisely,

√
3/2 to unity.

6.6 COMPLEX STATES OF STRAIN

In the discussion of complex states of stress, it was noted that equilibrium of forces leads to
transformation equations for obtaining an equivalent representation of a given state of stress on
a new set of coordinate axes. Of particular interest are two sets of axes, one containing the principal
normal stresses, and the other the principal shear stresses. The mathematics involved is common
to all physical quantities classed as symmetric second-order tensors, as distinguished from vectors,
which are first-order tensors, or scalars, which are zero-order tensors.

Strain is also a symmetric second-order tensor and so is governed by similar equations. In this
case, the basis of the equations is simply the geometry of deformation. Detailed analysis (see the
References) gives equations that are identical to those for stress, except that shear strains are divided
by two. Hence, the various equations developed for stress can be used for strain by changing the
variables as follows:

σx , σy, σz → εx , εy, εz, τxy, τyz, τzx → γxy

2
,
γyz

2
,
γzx

2
(6.37)

These apply in general and also to the special case where the x-y-z axes are axes of principal strain,
1-2-3.

Advanced textbooks on continuum mechanics, theory of elasticity, and similar subjects often
redefine shear strains as being half as large as the usual engineering shear strains used here, calling
these tensor shear strains, so that the equations become identical to those for stress. However, we
will continue to use engineering shear strains.
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6.6.1 Principal Strains

Principal normal strains and principal shear strains occur in a similar manner as for stresses. For
plane strain, where εz = γyz = γzx = 0, modifying Eqs. 6.6 and 6.7 according to Eq. 6.37 gives the
axis rotations and values for the principal normal strains:

tan 2θn = γxy

εx − εy

ε1, ε2 = εx + εy

2
±
√(

εx − εy

2

)2

+
(γxy

2

)2
(6.38)

Equations 6.8 through 6.10 are similarly modified to obtain the axis rotation and value for the
principal shear strain in the x-y plane, and also the accompanying normal strain:

tan 2θs = −εx − εy

γxy

γ3 =
√

(εx − εy)2 + (γxy)2, εγ 3 = εx + εy

2
(6.39)

As for the stress equations, θ is positive counterclockwise. Positive normal strains correspond
to extension, negative ones to contraction. Positive shear strain causes a distortion corresponding
to a positive shear stress, in that the long diagonal of the resulting parallelogram has a positive
slope. (Look ahead to Fig. E6.8(a) for an example of a positive shear strain.) Direct use of these
equations can be replaced by Mohr’s circle in a manner similar to its use for stress. In accordance
with Eq. 6.37, the σ -axis becomes an ε-axis, and the τ -axis becomes a γ /2-axis.

For three-dimensional states of strain, the principal strains can be obtained by modifying
Eqs. 6.26 and 6.18 with the use of Eq. 6.37:∣∣∣∣∣∣∣∣∣∣∣∣

(εx − ε)
γxy

2

γzx

2

γxy

2
(εy − ε)

γyz

2

γzx

2

γyz

2
(εz − ε)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.40)

γ1 = |ε2 − ε3| , γ2 = |ε1 − ε3| , γ3 = |ε1 − ε2| (6.41)

6.6.2 Special Considerations for Plane Stress

For cases of plane stress, σz = τyz = τzx = 0, the Poisson effect results in normal strains εz

occurring in the out-of-plane direction, so that the state of strain is three-dimensional. If the material
is isotropic, or if the material is orthotropic and a material symmetry plane is parallel to the x-y
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plane, no shear strains γyz or γzx occur. This creates a situation analogous to that for generalized
plane stress, where σz is present, but τyz = τzx = 0. Hence, one of the principal normal strains is
εz = ε3, and the other two can be obtained from Eq. 6.38. In addition, Mohr’s circle can be used for
the x-y plane.

For isotropic, linear-elastic materials, εz can be obtained from Hooke’s law in the form of
Eq. 5.26. Taking σz = 0 and adding Eqs. 5.26(a) and (b) leads to

σx + σy = E

1 − ν
(εx + εy) (6.42)

Substituting this into Eq. 5.26(c) with σz = 0 gives εz in terms of the normal strains in the x-y
plane:

εz = −ν

1 − ν
(εx + εy) (6.43)

Since τyz = τzx = 0, Eq. 5.27 gives γyz = γzx = 0, and it is confirmed that εz is one of the principal
normal strains.

Consider an orthotropic material under x-y plane stress where the x-y plane is a plane of
symmetry of the material. (This is the situation for most sheets and plates of composite materials.)
The strain εz is still one of the principal normal strains, as γyz = γzx = 0 holds in this case also.
Hence, the strains in the x-y plane can still be analyzed with Eqs. 6.38 and 6.39, and Mohr’s circle
for the x-y plane can still be used. However, εz cannot be obtained from Eq. 6.43, as the more
general form of Hooke’s law for orthotropic materials (Eq. 5.44) is needed.

The principal axes for stress and strain coincide for isotropic materials. Hence, Hooke’s law
can be applied to the principal strains, and the resulting stresses are the principal stresses, and vice
versa. However, this is not the case for orthotropic materials unless the principal normal stress axes
are perpendicular to the planes of material symmetry.

Example 6.8
At a point on a free (unloaded) surface of an engineering component made of an aluminum
alloy, the following strains exist: εx = −0.0005, εy = 0.0035, and γxy = 0.003. Determine the
principal normal and shear strains. Assume that no yielding of the material has occurred.

Solution Since the material is expected to be isotropic, εz can be obtained from Eq. 6.43, and
this is one of the principal normal strains. We obtain

ε3 = εz = −0.345

1 − 0.345
(−0.0005 + 0.0035) = −0.00158 Ans.

where Poisson’s ratio from Table 5.2 is used, and application of this equation based on elastic
behavior is valid due to the absence of yielding. Substituting the given strains into Eqs. 6.38 and
6.39 gives the axis rotations and values for the other two principal normal strains and for one of
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the principal shear strains:

tan 2θn = −3

4
, θn = −18.4◦ = 18.4◦ (CW)

ε1, ε2 = 0.004,−0.001 Ans.

tan 2θs = 4

3
, θs = 26.6◦ (CCW)

γ3 = 0.005, εγ 3 = 0.0015 Ans.

The resulting states of strain are shown in Fig. E6.8 as (b) and (c). Signs and directions are
determined in a manner similar to that used previously for stresses. In particular, the larger of the
two principal normal strains takes a direction such that it is more nearly aligned with the larger
of the original εx and εy than with the smaller. Also, the principal shear strain causes a distortion

2θ

2θ

0(–1, 0)

(–0.5, –1.5)

2.5
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Figure E6.8 A state of strain (a) and the equivalent representations corresponding to
principal normal strains (b) and the principal shear strain in the x-y plane (c). Mohr’s
circle for this case is shown in (d).
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such that the long diagonal (dashed line) of the resulting parallelogram is aligned with the larger
of ε1 and ε2.

The remaining two principal shear strains can be obtained from Eq. 6.41:

γ1 = |ε2 − ε3| = 0.00058, γ2 = |ε1 − ε3| = 0.00558 Ans.

The same result for the in-plane strains can be obtained by using Mohr’s circle on a plot of
ε versus γ /2 as shown. Two ends of a diameter are given by(

εx ,−γxy

2

)
= (−0.0005,−0.0015),

(
εy,

γxy

2

)
= (0.0035, 0.0015)

Analysis on the circle proceeds in a manner similar to that for stress. (See Fig. E6.8(d).) The
special dual sign convention needed for shear strain corresponds to that for the shear stress
which would produce the distortion, clockwise rotation being positive, as in Fig. 6.6.

6.6.3 Strain Gage Rosettes

Strain gages are small metal-foil sensors that may be bonded to the surface of a material to measure
the longitudinal strain in a direction parallel to the alignment of the thin elements of the foil.
Deformation of the material is duplicated in the gage, which changes its resistance by a small
amount to provide a measurement of strain. A coordinated group of strain gages called a rosette is
often used to obtain strain measurements in more than one direction. Two common configurations
of three-gage rosettes are shown in Fig. 6.16.

Figure 6.16 Two strain gage rosette configurations for measurements in three directions.
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To completely characterize the in-plane strains at a point, εx , εy , and γxy are needed. There is no
direct way of measuring shear strain, but γxy can be calculated if longitudinal strains are measured
in three different directions. Transformation equations analogous to those of Section 6.2.1 for stress
are needed to calculate the shear strain, and sometimes also εx and/or εy , if the measured strains are
not aligned with the desired x-y directions.

Example 6.9
Consider a strain gage rosette mounted on the unloaded free surface of an engineering
component, as shown in Fig. 6.16(a). Note that longitudinal strains εx , εy , and ε45 are measured
in x- and y-directions and in a third direction 45◦ from the other two. Develop an equation
for calculating the shear strain γxy from the three measurements that are available, so that the
in-plane state of strain, εx , εy , and γxy , is completely known.

Solution Convert the stress transformation relationship of Eq. 6.4 to the corresponding
equation for normal strain by substitutions from Eq. 6.37:

εθ = εx + εy

2
+ εx − εy

2
cos 2θ + γxy

2
sin 2θ

Substituting θ = 45◦ gives

ε45 = εx + εy

2
+ γxy

2

Solving for γxy then provides the desired result:

γxy = 2ε45 − εx − εy Ans.

6.7 SUMMARY

For a general state of stress, given by components σx , σy , σz , τxy , τyz , and τzx , there is one choice of
a new coordinate system where shear stresses are absent and where the maximum and minimum
normal stresses occur along with an intermediate normal stress. These special stresses are the
principal normal stresses, σ1, σ2, and σ3, and they may be obtained by solving the cubic equation
given by the determinant ∣∣∣∣∣∣

(σx − σ) τxy τzx

τxy (σy − σ) τyz

τzx τyz (σz − σ)

∣∣∣∣∣∣ = 0 (6.44)

If there is only one nonzero component of shear stress, such as τxy , the principal normal stresses are

σ1, σ2 = σx + σy

2
±
√(

σx − σy

2

)2

+ τ 2
xy, σ3 = σz (a, b) (6.45)
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One method of evaluating Eq. 6.45(a) and obtaining the corresponding axis rotation is to use Mohr’s
circle.

The principal shear stresses occur on planes inclined 45◦ with respect to the principal normal
stress axes. These are given by

τ1 = |σ2 − σ3|
2

, τ2 = |σ1 − σ3|
2

, τ3 = |σ1 − σ2|
2

(6.46)

One of the values τ1, τ2, τ3 is the maximum shear stress that occurs for all possible choices of
coordinate axes. For x-y plane stress, special care is needed that all three of Eq. 6.46 are considered,
because the principal shear stress in the x-y plane may not be the largest. It is useful to envision
three different Mohr’s circles, one for each plane perpendicular to a principal normal stress axis.
The radii of these are the principal shear stresses.

The octahedral normal and shear stresses occur on planes that intercept the principal normal
stress axes at equal distances from the origin. Their values are given by

σh = σ1 + σ2 + σ3

3
(6.47)

τh = 1

3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (6.48)

where σh is also called the hydrostatic stress.
Principal normal strains and principal shear strains occur in a manner analogous to principal

stresses. The same equations apply by replacing stresses with strains as follows:

σx , σy, σz → εx , εy, εz, τxy, τyz, τzx → γxy

2
,
γyz

2
,
γzx

2
(6.49)

Even plane stress causes a three-dimensional state of strain. However, for isotropic materials, and
also for orthotropic materials stressed in a plane of material symmetry, the out-of-plane shear strains
γyz and γzx are zero, permitting two-dimensional analysis to be performed in the x-y plane, despite
the presence of a nonzero εz .

N E W T E R M S A N D S Y M B O L S

axes rotation angles: θn and θs

direction cosines: l, m, n
generalized plane stress
Mohr’s circle
octahedral normal (hydrostatic)

stress, σh

octahedral planes
octahedral shear stress, τh

plane strain
plane stress

principal axes (1, 2, 3)
principal normal strains: ε1, ε2, ε3
principal normal stresses: σ1, σ2, σ3
principal shear strains: γ1, γ2, γ3

principal shear stresses: τ1, τ2, τ3
strain gage rosette
stress invariants: I1, I2, I3
transformation equations
transformation of axes
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PROBLEMS AND QUESTIONS

Sections 6.2 and 6.3
6.1 A state of stress that occurs at a point on the free surface of a solid body is σx = 6 MPa,

σy = 6 MPa and τxy = 2 MPa.
(a) Evaluate the two principal normal stresses and the one principal shear stress that can be

found by coordinate system rotations in the x-y plane, and give the coordinate system
rotations.

(b) Determine the maximum normal stress and the maximum shear stress at this point.
6.2 to 6.9

Proceed as in Prob. 6.1, but use the indicated stress from the table given below:

Table P6.2

Problem
No. σx , MPa σy , MPa τxy , MPa

6.2 −5 5 −5
6.3 32 −10 −20
6.4 21 131 0
6.5 35 21 7
6.6 345 138 69
6.7 125 −80 30
6.8 −50 40 −50
6.9 60 80 20

6.10 An element of material is subjected to the following state of stress: σx = 4, σy = −5,
σz = −3, τxy = −2, τyz = τzx = 0. Determine the following:

(a) Principal normal stresses and principal shear stresses.
(b) Maximum normal stress and maximum shear stress.
(c) Directions of the principal normal stress axes.

6.11 to 6.14
Proceed as in Prob. 6.10, but use the indicated stresses from the table given below:
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Table P6.11

Stress Components, MPa
Problem No. σx σy σz τxy τyz τzx

6.11 14 −56 70 0 0 0
6.12 200 0 250 100 0 0
6.13 345 138 −69 69 0 0
6.14 60 90 200 33 0 0

6.15 Consider the following state of plane stress: σx = 200 MPa, σy = 100 MPa and
τxy = 0 MPa.

(a) Determine the principal normal stresses and the maximum shear stress.
(b) Show that, for such a special case of x-y plane stress, where τxy = 0 MPa, the in-plane

principal normal stress σ1 and σ2 are always the same as σx and σy as to both the values
and directions.

6.16 For the strain measurements on the surface of the mild steel part of Prob. 5.17, estimate
the maximum normal stress and the maximum shear stress. Assume that no yielding has
occurred.

6.17 For the strain measurements on the surface of the titanium alloy part of Prob. 5.18, estimate
the maximum normal stress and the maximum shear stress. Assume that no yielding has
occurred.

6.18 A spherical pressure vessel has a wall thickness of 2.5 mm and an inner diameter of 150 mm,
and it contains a liquid at 1.2 MPa pressure. Determine the maximum normal stress and the
maximum shear stress, and also describe the planes on which these act.

6.19 A pipe with closed ends has an outer diameter of 80 mm and wall thickness of 2.0 mm. It is
subjected to an internal pressure of 10 MPa and a bending moment of 2.0 kN·m. Determine
the maximum normal stress and the maximum shear stress. Neglect the localized effects of
the end closure.

6.20 Proceed as in Prob. 6.19, except let a torque of 3.0 kN·m be applied instead of the bending
moment given, while the 10 MPa pressure is still present.

6.21 A tube has an outer diameter of 60 mm and wall thickness of 3.0 mm. It is subjected to a
bending moment of 1.8 kN·m and a torque of 2.5 kN·m. Determine the maximum normal
stress and the maximum shear stress.

6.22 A solid shaft of diameter 50 mm is subjected to a bending moment M = 3.0 kN·m and
a torque T = 2.5 kN·m. Determine the maximum normal stress and the maximum shear
stress.

6.23 A solid shaft of diameter d is subjected to a bending moment M and a torque T .
(a) Derive an expression for the maximum shear stress as a function of d, M , and T .
(b) If M = 2.0 kN-m, what is the smallest diameter such that the maximum shear stress

does not exceed 100 MPa?
6.24 A thin-walled tube with closed ends has an inside radius of 80 mm and a wall thickness of

6 mm. It is subjected to an internal pressure of 20 MPa, a torque of 60 kN·m, and an axial
compressive force of 200 kN. Determine the maximum normal stress and the maximum shear
stress.
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6.25 A solid shaft of diameter 50 mm is subjected to an axial load P = 200 kN and a torque
T = 1.5 kN·m. Determine the maximum normal stress and the maximum shear stress.

6.26 A solid shaft of diameter d is subjected to an axial load P and a torque T.

(a) Derive an expression for the maximum shear stress as a function of d, P , and T.
(b) If P = 200 kN and T = 1.5 kN·m, what is the smallest diameter such that the

maximum shear stress does not exceed 100 MPa?
6.27 A simply supported beam 0.50 m long has a rectangular cross section of depth 2c = 60 mm

and thickness t = 40 mm. A vertical force P = 40 kN is applied at midspan, as in Fig. A.4(a),
and also an axial force F = 100 kN is applied along its length. Determine the maximum
normal stress and the maximum shear stress.

6.28 Consider an internally pressurized thick-walled spherical vessel, as in Fig. A.6(b).
(a) Develop an equation for the maximum shear stress at any radial position in the vessel,

expressing this as a function of the radii r1, r2, and R, and the pressure p. Also show
that the overall maximum shear stress in the vessel occurs at the inner wall.

(b) Assume that the vessel has an inner diameter of 100 mm and an outer diameter of
150 mm and contains an internal pressure of 300 MPa. Then determine the principal
normal and shear stresses at the inner wall.

(c) For the same case as in (b), plot the variations of σr , σt , and τmax versus R.
6.29 Consider an internally pressurized thick-walled tube, as in Fig. A.6(a). Assume that the tube

has closed ends, but neglect the localized effects of the end closure.
(a) Develop an equation for the maximum shear stress at any radial position in the vessel,

expressing this as a function of the radii r1, r2, and R, and the pressure p. Also show
that the overall maximum shear stress in the vessel occurs at the inner wall.

(b) Assume that the vessel has an inner diameter of 80 mm, an outer diameter of 100 mm,
and contains an internal pressure of 100 MPa. Then determine the principal normal and
shear stresses at the inner wall.

(c) For the same case as in (b), plot the variations of σr , σt , σx , and τmax versus R.
6.30 A thick-walled tube has closed ends and is loaded with an internal pressure of 75 MPa and a

torque of 30 kN·m. The inner and outer diameters are 80 and 120 mm, respectively.
(a) Determine the maximum shear stress in the tube. Neglect the localized effects of the

end closure. (Suggestion: Using Fig. A.6(a), calculate τmax at the inner and outer walls
and at several intermediate radial positions.)

(b) Plot the variations of σr , σt , and σx due to the pressure, τt x due to the torsion, and τmax,
all versus R.

6.31 Proceed as in Prob. 6.30(a) and (b), except change the numerical values as follows:
internal pressure 90 MPa, torque 15 kN·m, and inner and outer diameters 48 and 78 mm,
respectively.

6.32 A rotating annular disc as in Fig. A.9 has inner radius r1 = 90, outer radius r2 = 300, and
thickness t = 50 mm. It is made of an alloy steel and rotates at a frequency of f = 120
revolutions/second.

(a) Calculate values of the radial and tangential stresses, σr and σt , for a number of values
of the variable radius R, and then plot these stresses as a function of R.

(b) Determine the values and locations of the maximum normal stress and the maximum
shear stress in the disc.

(Problem continues)



272 Chapter 6 Review of Complex and Principal States of Stress and Strain

(c) Show that the maximum normal stress and the maximum shear stress are located at the
inner radius for any rotating annular disc with constant thickness.

Section 6.4
6.33 Rework Prob. 6.2 by solving the cubic equation and finding the direction cosines for the

principal axes. Also, show that your direction cosines are consistent with the axes rotations
from Eq. 6.6.

6.34 Rework Prob. 6.11 by solving the cubic equation and finding the direction cosines for the
principal axes. Also, show that your direction cosines are consistent with the axes rotations
from Eq. 6.6.

6.35 Consider the special case where normal stresses σx , σy , and σz are present, but where the
only nonzero shear stress is τxy , so that τyz = τzx = 0. For determining principal normal
stresses, show that the solution of the cubic equation (Eq. 6.26 or 6.27) corresponds to the
two equations represented by Eq. 6.7 and the third equation σz = σ3. Also show that for this
special case the direction cosine for σ3 is perpendicular to the x-y plane, that is (l3, m3,
n3) = (0, 0, 1).

6.36 An element of material is subjected to the following state of stress: σx = −40, σy = 100,
σz = 30, τxy = −50, τyz = 12, and τzx = 0 MPa. Determine the following:

(a) Principal normal stresses and principal shear stresses.
(b) Maximum normal stress and maximum shear stress.
(c) Direction cosines for each principal normal stress axis.

6.37 to 6.43
Proceed as in Prob. 6.36, but use the indicated stresses from Table P6.37.

Table P6.37

Problem Stress Components, MPa

No. σx σy σz τxy τyz τzx

6.37 0 0 0 0 100 100
6.38 0 0 50 0 300 300
6.39 100 0 0 50 50 50
6.40 100 −100 0 0 50 50
6.41 65 −120 −45 30 0 50
6.42 25 50 40 20 −30 0
6.43 10 20 −10 −20 10 −30

6.44 Consider the state of stress σx = 90, σy = 130, σz = −60, and τxy = τyz = τzx = 0 MPa.
Employ the cubic equation (Eq. 6.26 or 6.27) and answer the following:

(a) Determine the principal normal stresses and the maximum shear stress.
(b) Show that, for such a special case, where τxy = τyz = τzx = 0, the principal normal

stresses are always simply σ1, σ2, σ3 = σx , σy , σz . Also, show that the x-y-z axes are
coincident with the 1-2-3 principal axes.
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Section 6.5
6.45 Determine the octahedral normal and shear stresses for the state of stress: σx = 32 MPa,

σy = −10 MPa, and τxy = −20 MPa.
6.46 Determine the octahedral normal and shear stresses for the state of stress: σx = 345 MPa,

σy = 138 MPa, σz = −69 MPa and τxy = 69 MPa.
6.47 Consider a case of plane stress where the only nonzero components for the x-y-z coordinate

system chosen are σx and τxy . (For example, this situation occurs at the surface of a shaft under
combined bending and torsion.) Develop equations in terms of σx and τxy for the following:
maximum normal stress, maximum shear stress, and octahedral shear stress.

6.48 Consider the case of plane stress where the only nonzero components for the x-y-z system
chosen are σx and σy . (For example, this occurs in a thin-walled tube with internal pressure
and bending and/or axial loads.) Develop an equation for the octahedral shear stress in terms
of σx and σy .

6.49 Develop an equation for the octahedral shear stress in terms of the principal shear stresses.
6.50 Consider an internally pressurized thick-walled tube, as in Fig. A.6(a). Assume that the tube

has closed ends, but neglect the localized effects of the end closure. Develop an equation for
the octahedral shear stress τh , expressing this as a function of the radii r1, r2, and R, and the
pressure p. Also, show that the maximum value of τh occurs at the inner wall.

6.51 For the thick-walled tube of Prob. 6.30:
(a) Determine the maximum value of octahedral shear stress in the tube. Neglect the

localized effects of the end closure.
(b) Plot the variation of τh versus radius and comment on the trend observed.

6.52 Derive the equations for the octahedral normal and shear stresses, Eqs. 6.32 and 6.33, on the
basis of equilibrium of the solid body shown in Fig. 6.15(a). (Suggestions: Note that the three
faces in the principal planes are acted upon by principal stresses, σ1, σ2, and σ3. Then sum
forces normal to the octahedral plane to get σh , and parallel to this plane to get τh .)

Section 6.6
6.53 For the strains measured on the free surface of a mild steel part in Prob. 5.17, determine the

principal normal strains and the principal shear strains. Assume that no yielding has occurred.
6.54 For pure planar shear, where only τxy is nonzero, verify the principal stresses, strains, and

planes shown in Fig. 4.41.
6.55 A strain guage rosette of the type shown in Fig. 6.16(a) is employed to measure strains

on the free surface of an aluminum alloy part, with the result being εx = 1900 × 10−6,
εy = 1250 × 10−6, and ε45 = 2375 × 10−6. Determine the principal normal strains and the
principal shear strains. Assume that no yielding has occurred.

6.56 As mentioned in the previous problem, strains are measured using a strain gauge on the surface
of a polycarbonate plastic part as follows: εx = 0.011, εy = 0.0079, and γxy = 0.0048.
Determine the principal normal strains and the principal shear strains. Assume that no yielding
has occurred. Poisson’s ratio can be taken from Table 5.2.

6.57 Consider a strain gage rosette mounted on the unloaded free surface of an engineering
component. The rosette is the type shown in Fig. 6.16(b), so that it measures strain in the x-
direction and in two additional directions that correspond to counterclockwise rotations from
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the x-direction of θ = 60◦ and 120◦. Develop equations that allow εy and γxy to be calculated
from the available measurements, εx , ε60, and ε120, so that the in-plane state of strain, εx , εy ,
and γxy , is completely known.

6.58 By modifying the equations for stress, develop equations for the normal and shear strains on
the octahedral plane, εh and γh . Express these in terms of the components of a general three-
dimensional state of strain: εx , εy , εz , γxy , γyz , γzx . What is the significance of εh? Under
what conditions is the octahedral plane for strain the same as the one for stress?
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Yielding and Fracture under
Combined Stresses

7.1 INTRODUCTION
7.2 GENERAL FORM OF FAILURE CRITERIA
7.3 MAXIMUM NORMAL STRESS FRACTURE CRITERION
7.4 MAXIMUM SHEAR STRESS YIELD CRITERION
7.5 OCTAHEDRAL SHEAR STRESS YIELD CRITERION
7.6 DISCUSSION OF THE BASIC FAILURE CRITERIA
7.7 COULOMB–MOHR FRACTURE CRITERION
7.8 MODIFIED MOHR FRACTURE CRITERION
7.9 ADDITIONAL COMMENTS ON FAILURE CRITERIA
7.10 SUMMARY

OBJECTIVES

• Develop and employ three basic criteria for predicting failure under multiaxial stresses:
maximum normal stress fracture criterion, maximum shear stress yield criterion, and
octahedral shear stress yield criterion.

• Compare and discuss these basic criteria as to applicability and extensions.
• Explore fracture of brittle materials under multiaxial stresses in tension or compression,

where either of two modes of fracture may occur, tension or shear, with the degree of
compression affecting the shear mode.

7.1 INTRODUCTION

Engineering components may be subjected to complex loadings in tension, compression, bending,
torsion, pressure, or combinations of these, so that at a given point in the material, stresses often
occur in more than one direction. If sufficiently severe, such combined stresses can act together to
cause the material to yield or fracture. Predicting the safe limits for use of a material under combined
stresses requires the application of a failure criterion.

A number of different failure criteria are available, some of which predict failure by yielding,
others failure by fracture. The former are specifically called yield criteria, the latter fracture criteria.

275
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In the present chapter, failure criteria will be considered on the basis of values of stress. Their
application involves calculating an effective value of stress that characterizes the combined stresses,
and then this value is compared with the yield or fracture strength of the material. A given material
may fail by either yielding or fracture, depending on its properties and the state of stress, so that, in
general, the possibility of either event occurring first must be considered.

7.1.1 Need for Failure Criteria

The need for careful consideration of failure criteria is illustrated by the examples of Fig. 7.1. For
these examples, the material is assumed to be a ductile engineering metal, the behavior of which
approximates the ideal elastic, perfectly plastic case. A uniaxial tension test provides the elastic
modulus E , and the yield strength σo, as shown in (a). Now assume that a transverse compression
of equal magnitude to the tension is also applied, as shown in (b). In this case, the tension σy
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Figure 7.1 Yield strengths for a ductile metal under various states of stress: (a) uniaxial
tension, (b) tension with transverse compression, (c) biaxial tension, and (d) hydrostatic
compression.
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necessary to cause yielding is experimentally observed to be only about half of the value from the
uniaxial test. This result is easily verified by conducting a simple torsion test on a thin-walled tube,
where the desired state of stress exists at an orientation of 45◦ to the tube axis. (Recall Fig. 4.41.)

Now consider another example, namely, a transverse tension σx of equal magnitude to σy , as
illustrated in (c). Since transverse compression lowered the yield strength, intuition suggests that
transverse tension might increase it. But an experiment will show that the effect of the transverse
tension on yielding is small or absent. The experiment could be done by pressurizing a thin-walled
spherical vessel until it yielded, or by a combination of pressure and tension on a thin-walled tube.
If the material is changed to a brittle one—say, gray cast iron—neither tensile nor compressive
transverse stresses have much effect on its fracture.

An additional experimental fact of interest is that it is difficult, and perhaps impossible, to
yield a ductile material if it is tested under simple hydrostatic stress, where σx = σy = σz , in either
tension or compression. This is illustrated in Fig. 7.1(d). Hydrostatic tension is difficult to achieve
experimentally, but hydrostatic compression consists of simply placing a sample of material in a
pressurized chamber.

Hence, failure criteria are needed that are capable of predicting such effects of combined states
of stress on yielding and fracture. Although both yield and fracture criteria should in general be
employed, materials that typically behave in a ductile manner generally have their usefulness limited
by yielding, and those that typically behave in a brittle manner are usually limited by fracture.

7.1.2 Additional Comments

An alternative to failure criteria based on stress is to specifically analyze cracks in the material by
the use of the special methods of fracture mechanics. Such an approach is not considered in this
chapter, but is instead the sole topic of the next chapter.

In most of the treatment that follows, materials are assumed to be isotropic and homogeneous.
Failure criteria for anisotropic materials is a rather complex topic that is considered only to a limited
extent.

Note that the effect of a complex state of stress on deformation prior to yielding has already
been discussed in Chapter 5. For example, the initial elastic slopes in Fig. 7.1 are readily obtained
from Hooke’s law in the form of Eq. 5.26. The yield criteria considered in this chapter predict the
beginning of plastic deformation, beyond which point Hooke’s law ceases to completely describe the
stress–strain behavior. Detailed treatment of stress–strain behavior beyond yielding is an advanced
topic called plasticity, which is considered to an extent in Chapter 12.

The discussion in this chapter relies rather heavily on the review of complex states of stress
in the previous chapter, specifically, transformation of axes, Mohr’s circle, principal stresses, and
octahedral stresses.

7.2 GENERAL FORM OF FAILURE CRITERIA

In applying a yield criterion, the resistance of a material is given by its yield strength. Yield strengths
are most commonly available as tensile yield strengths σo, determined from uniaxial tests and based
on a plastic strain offset, as described in Chapter 4. To apply a fracture criterion, the ultimate
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strengths in tension and compression, σut and σuc, are needed. In tension tests on materials that
behave in a brittle manner, yielding is in most cases not a well-defined event, and the ultimate
strength and fracture events occur at the same point. Hence, using σut for brittle materials is the
same as using the engineering fracture strength, σ f .

Failure criteria for isotropic materials can be expressed in the mathematical form

f (σ1, σ2, σ3) = σc (at failure) (7.1)

where failure (yielding or fracture) is predicted to occur when a specific mathematical function
f of the principal normal stresses is equal to the failure strength of the material, σc, as from a
uniaxial test. The failure strength is either the yield strength σo, or the ultimate strength, σut or σuc,
depending on whether yielding or fracture is of interest.

A requirement for a valid failure criterion is that it must give the same result regardless of the
original choice of the coordinate system in a problem. This requirement is met if the criterion can be
expressed in terms of the principal stresses. It is also met by any criterion where f is a mathematical
function of one or more of the stress invariants given in the previous chapter as Eq. 6.29.

If any particular case of Eq. 7.1 is plotted in principal normal stress space (three-dimensional
coordinates of σ1, σ2, and σ3), the function f forms a surface that is called the failure surface.
A failure surface can be either a yield surface or a fracture surface. In discussing failure criteria,
we will proceed by considering various specific mathematical functions f , hence various types of
failure surface.

Consider a point in an engineering component where the applied loads result in particular values
of the principal normal stresses, σ1, σ2, and σ3, and where the materials property σc is known, and
also where a specific function f has been chosen. It is then useful to define an effective stress, σ̄ ,
which is a single numerical value that characterizes the state of applied stress. In particular,

σ̄ = f (σ1, σ2, σ3) (7.2)

where f is the same function as in Eq. 7.1. Thus, Eq. 7.1 states that failure occurs when

σ̄ = σc (at failure) (7.3)

Failure is not expected if σ̄ is less than σc:

σ̄ < σc (no failure) (7.4)

Also, the safety factor against failure is

X = σc

σ̄
(7.5)

In other words, the applied stresses can be increased by a factor X before failure occurs. For
example, if X = 2, the applied stresses can be doubled before failure is expected.1

1Safety factors may also be expressed in terms of applied loads, according to Eq. 1.3. If loads and stresses are
proportional, as is frequently the case, then safety factors on stress are identical to those on load. But caution is needed
if such proportionality does not exist, as for problems of buckling and surface contact loading.
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We will now proceed to discuss various specific failure criteria, some of which are appropriate
for yielding, and others for fracture. In doing so, unless otherwise noted, the subscripts for principal
stresses σ1, σ2, and σ3 will not be assumed to be assigned in any particular order relative to their
magnitudes.

7.3 MAXIMUM NORMAL STRESS FRACTURE CRITERION

Perhaps the simplest failure criterion is that failure is expected when the largest principal normal
stress reaches the uniaxial strength of the material. This approach is reasonably successful in
predicting fracture of brittle materials under tension-dominated loading.

To simplify the discussion, let us assume for the present that we have a material which fractures
if an ultimate strength σu is exceeded in either tension or compression. That is, we are temporarily
assuming that σut = |σuc| = σu , where σut is the ultimate strength in tension and |σuc| is the ultimate
strength in compression, expressed as a positive value.

For such a material, a maximum normal stress fracture criterion would be specified by a
function f as follows:

σu = MAX(|σ1| , |σ2| , |σ3|) (at fracture) (7.6)

where the notation MAX indicates that the largest of the values separated by commas is chosen.
Absolute values are used so that compressive principal stresses can be considered. A particular set
of applied stresses can then be characterized by the effective stress

σ̄N = MAX(|σ1| , |σ2| , |σ3|) (7.7)

where the subscript specifies the maximum normal stress criterion. Hence, fracture is expected when
σ̄N is equal to σu , but not when it is less, and the safety factor against fracture is

X = σu

σ̄N
(7.8)

7.3.1 Graphical Representation of the Normal Stress Criterion

For plane stress, such as σ3 = 0, this fracture criterion can be graphically represented by a square
on a plot of σ1 versus σ2, as shown in Fig. 7.2(a). Any combination of σ1 and σ2 that plots within the
square box is safe, and any on its perimeter corresponds to fracture. Note that the box is the region
that satisfies

MAX(|σ1| , |σ2|) ≤ σu (7.9)

Equations for the four straight lines that form the borders of this safe region are obtained as
shown in Fig. 7.2(b):

σ1 = σu, σ1 = −σu, σ2 = σu, σ2 = −σu (7.10)
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Figure 7.2 Failure locus for the maximum normal stress fracture criterion for plane stress.

For the general case, where all three principal normal stresses may have nonzero values, Eq. 7.6
indicates that the safe region is bounded by

σ1 = ±σu, σ2 = ±σu, σ3 = ±σu (7.11)

Each of the preceding equalities represents a pair of parallel planes normal to one of the principal
axes and intersecting each at +σu and −σu . The failure surface is therefore simply a cube, as
illustrated in Fig. 7.3. If any one of σ1, σ2, or σ3 is zero, then only the two-dimensional region
formed by the intersection of the cube with the plane of the remaining two principal stresses needs
to be considered. Such an intersection is shown for the case of σ3 = 0, and the result is, of course,
the square of Fig. 7.2.

7.3.2 Discussion

Consider a point on the surface of an engineering component, where plane stress prevails, so that
σ3 = 0. Further, assume that increasing the applied load causes σ1 and σ2 to both increase with their
ratio σ2/σ1 remaining constant, a situation called proportional loading. For example, for pressure
loading of a thin-walled tube with closed ends, the stresses maintain the ratio σ2/σ1 = 0.5, where
σ1 is the hoop stress and σ2 the longitudinal stress.

In such a case, a graphical interpretation of the safety factor may be made, as illustrated in
Fig. 7.2(a). Let D be the straight-line distance from the origin to the (σ1, σ2) point corresponding
to the applied stress. Then extend this straight line until it strikes the fracture line, and denote the
overall distance from the origin as DN . The safety factor against fracture is the ratio of these lengths:

X = DN

D
(7.12)
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Figure 7.3 Three-dimensional failure surface for the maximum normal stress fracture
criterion.

Such a graphical interpretation of the safety factor, and specifically Eq. 7.12, also applies in the
general three-dimensional case, as illustrated in Fig. 7.3. The distances D and DN are still measured
along a straight line, but in this case the line may be inclined relative to all three principal axes.
Evaluation of the safety factor in terms of lengths of lines for proportional stressing is valid for any
physically reasonable failure surface, such as the others to be discussed subsequently.

For real materials that normally behave in a brittle manner, the ultimate strength in compression
is usually considerably larger than that in tension, and the behavior in multiaxial compression
is more complex than suggested by any form of a maximum normal stress criterion. Hence, for
engineering use, the idealized fracture criterion just described needs to be restricted to tension-
dominated loading, which can be accomplished with the formulas

σ̄N T = MAX(σ1, σ2, σ3), X = σut

σ̄N T
(a)

where σ̄N T > 0, and |σmax| > |σmin| (b)
(7.13)

This modified criterion is subject to the limitations that the maximum principal normal stress be
both positive and larger in magnitude than any principal normal stress that is negative (compressive).
These restrict its use to cases where the DN line in Fig. 7.2 strikes the failure criterion within A-B-
C , or in Fig. 7.3 strikes one of the three positive-facing sides of the cube. Note that the safety factor
is obtained by comparing this redefined effective stress σ̄N T to the ultimate strength in tension, σut .
More discussion on compressive behavior and failure criteria for brittle materials will be given later,
and in fact, this is the emphasis of Sections 7.7 and 7.8 near the end of this chapter.
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Example 7.1
A sample of gray cast iron is subjected to the state of generalized plane stress of Ex. 6.3. Gray
cast iron normally behaves in a brittle manner, and this particular material has ultimate strengths
in tension and compression of σut = 214 and |σuc| = 770 MPa, respectively. What is the safety
factor against fracture?

Solution In Ex. 6.3, the given state of stress is σx = 100, σy = −60, σz = 40, τxy = 80,
and τyz = τzx = 0 MPa. From these, principal normal stresses σ1 = 133.1, σ2 = −93.1, and
σ3 = 40 MPa are calculated. Equation 7.13 thus gives

σ̄N T = MAX(σ1, σ2, σ3) = MAX(133.1,−93.1, 40.0) = 133.1 MPa

X = σut/σ̄N T = (214 MPa)/(133.1 MPa) = 1.61 Ans.

The limitations accompanying Eq. 7.13 need to be checked. Clearly, σ̄N T > 0. Also, |σmax| =
133.1 , and |σmin| = 93.1 MPa, so that |σmax| > |σmin|, and the answer above is valid as to this
being a tension-dominated case.

7.4 MAXIMUM SHEAR STRESS YIELD CRITERION

Yielding of ductile materials is often predicted to occur when the maximum shear stress on any
plane reaches a critical value τo, which is a material property:

τo = τmax (at yielding) (7.14)

This is the basis of the maximum shear stress yield criterion, also often called the Tresca criterion.
For metals, such an approach is logical because the mechanism of yielding on a microscopic size
scale is the slip of crystal planes, which is a shear deformation that is expected to be controlled by
a shear stress. (See Chapter 2.)

7.4.1 Development of the Maximum Shear Stress Criterion

From the previous chapter, recall that the maximum shear stress is the largest of the three principal
shear stresses, which act on planes oriented at 45◦ relative to the principal normal stress axes, as
illustrated in Fig. 6.8. These principal shear stresses may be obtained from the principal normal
stresses by Eq. 6.18, which is repeated here for convenience:

τ1 = |σ2 − σ3|
2

, τ2 = |σ1 − σ3|
2

, τ3 = |σ1 − σ2|
2

(7.15)

Hence, this yield criterion can be stated as follows:

τo = MAX

( |σ1 − σ2|
2

,
|σ2 − σ3|

2
,
|σ3 − σ1|

2

)
(at yielding) (7.16)
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The yield stress in shear, τo, for a given material could be obtained directly from a test in simple
shear, such as a thin-walled tube in torsion. However, only uniaxial yield strengths σo from tension
tests are commonly available, so that it is more convenient to calculate τo from σo. In a uniaxial
tension test, at the stress defined as the yield strength, we have

σ1 = σo, σ2 = σ3 = 0 (7.17)

Substitution of these values into the yield criterion of Eq. 7.16 gives

τo = σo

2
(7.18)

In the uniaxial test, note that the maximum shear stress occurs on planes oriented at 45◦ with respect
to the applied stress axis. This fact and Eq. 7.18 are easily verified with Mohr’s circle, as shown in
Fig. 7.4.

Equation 7.16 can thus be written in terms of σo as

σo

2
= MAX

( |σ1 − σ2|
2

,
|σ2 − σ3|

2
,
|σ3 − σ1|

2

)
(at yielding) (7.19)

or

σo = MAX(|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|) (at yielding) (7.20)

The effective stress is most conveniently defined as in Eq. 7.3, so that it equals the uniaxial strength
σo at the point of yielding. That is,

σ̄S = MAX(|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|) (7.21)

45o

σ1

τ' =
σ1
2

σ' =
σ1
2

σ1

σ1

90

0

o

(σ', τ')τ

(σ , 0)1

σ

Figure 7.4 The plane of maximum shear in a uniaxial tension test.
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where the subscript S specifies the maximum shear stress criterion. The safety factor against yielding
is then

X = σo

σ̄S
(7.22)

7.4.2 Graphical Representation of the Maximum Shear Stress Criterion

For plane stress, such as σ3 = 0, the maximum shear stress criterion can be represented on a plot of
σ1 versus σ2, as shown in Fig. 7.5(a). Points on the distorted hexagon correspond to yielding, and
points inside are safe. This failure locus is obtained by substituting σ3 = 0 into the yield criterion
of Eq. 7.20:

σo = MAX(|σ1 − σ2| , |σ2| , |σ1|) (7.23)

The region of no yielding, where σ̄S < σo, is thus the region bounded by the lines

σ1 − σ2 = ±σo, σ2 = ±σo, σ1 = ±σo (7.24)

These lines are shown in Fig. 7.5(b). Note that the first equation gives a pair of parallel lines with a
slope of unity, and the other two give pairs of lines parallel to the coordinate axes.

For the general case, where all three principal normal stresses may have nonzero values, the
boundaries of the region of no yielding are obtained from Eq. 7.20:

σ1 − σ2 = ±σo, σ2 − σ3 = ±σo, σ1 − σ3 = ±σo (7.25)

Each of these equations gives a pair of inclined planes which are parallel to the principal stress
direction that does not appear in the equation. For example, the first equation represents a pair of
planes parallel to the σ3 direction.
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Figure 7.5 Failure locus for the maximum shear stress yield criterion for plane stress.
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Figure 7.6 Three-dimensional failure surface for the maximum shear stress yield criterion.

These three pairs of planes form a tube with a hexagonal cross section, as shown in Fig. 7.6. The
axis of the tube is the line σ1 = σ2 = σ3. This direction corresponds to the normal to the octahedral
plane in the octant where the principal normal stresses are all positive—specifically, the α = β = γ

line of Fig. 6.15. If the tube is viewed along this line, a regular hexagon is seen, as shown in (b).
If any one of σ1, σ2, or σ3 is zero, then the intersection of the tube with the plane of the

remaining two stresses gives a distorted hexagon failure locus, as already shown in Fig. 7.5(a).

7.4.3 Hydrostatic Stresses and the Maximum Shear Stress Criterion

Consider the special case of a stress state where the principal normal stresses are all equal, so that
there is a state of pure hydrostatic stress σh :

σ1 = σ2 = σ3 = σh (7.26)

For example, the material could be subjected to a simple pressure loading p, so that σh = −p. This
case corresponds to a point along the axis of the hexagonal cylinder of Fig. 7.6. For any such point,
the effective stress σ̄S from Eq. 7.21 is always zero, and the safety factor against yielding is thus
infinite.
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Hence, the maximum shear stress criterion predicts that hydrostatic stress alone does not cause
yielding. This seems surprising, but is in fact in agreement with experimental results for metals
under hydrostatic compression. Testing in hydrostatic tension is essentially impossible, but it is
likely that brittle fracture without yielding would occur at a high stress level even in normally
ductile materials.

Interpretation of the safety factor in terms of lengths of lines from the origin in principal stress
space, as discussed earlier, is also valid for the maximum shear stress criterion. Since stresses are
expected to affect yielding only to the extent that they deviate from the axis of the hexagonal tube,
the projections of lengths normal to this axis can also be used:

X = D′
S

D′ (7.27)

Here, D′
S is the projected distance corresponding to yielding, and D′ to the applied stress, as shown

in Fig. 7.6(b).

Example 7.2
Consider the pipe with closed ends of Ex. 6.5, with wall thickness 10 mm and inner diameter
0.60 m, subjected to 20 MPa internal pressure and a torque of 1200 kN·m. What is the safety
factor against yielding at the inner wall if the pipe is made of the 18 Ni maraging steel of
Table 4.2?

Solution The hoop, longitudinal, and radial stresses due to pressure, and the shear stress
due to torsion, are calculated in Ex. 6.5 as σt = 600, σx = 300, σr = −20 (inside), and τt x =
205.3 MPa. These give principal normal stresses at the inner wall of

σ1 = 704.3, σ2 = 195.7, σ3 = −20 MPa

The effective stress for the maximum shear stress criterion from Eq. 7.21 is

σ̄S = MAX (|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|)
σ̄S = MAX (|704.3 − 195.7| , |195.7 − (−20)| , |(−20) − 704.3|) = 724.3 MPa

The yield strength for this material from Table 4.2 is 1791 MPa, so the safety factor against
yielding for the inner wall is

X = σo/σ̄S = (1791 MPa)/(724.3 MPa) = 2.47 Ans.

Comment For the outer wall, revising the preceding calculation with σr = σ3 = 0 gives
σ̄S = 704.3 MPa and X = 2.54. The slightly lower value of X = 2.47 is thus the control-
ling one.
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Example 7.3
A solid shaft of diameter d is made of AISI 1020 steel (as rolled) and is subjected to a tensile
axial force of 200 kN and a torque of 1.50 kN·m.

(a) What is the safety factor against yielding if the diameter is 50 mm?
(b) For the situation of (a), what adjusted value of diameter is required to obtain a safety

factor against yielding of 2.0?

Solution (a) The applied axial force P and torque T produce stresses as shown in Fig. E7.3,
which may be evaluated on the basis of Figs. A.1 and A.2:

σx = P

A
= 4P

πd2
, τxy = T c

J
= T (d/2)

πd4/32
= 16T

πd3

Note that σx is uniformly distributed, and τxy is evaluated at the surface of the shaft where it is
highest. Hence, we have a state of plane stress with σy = 0. The principal normal stresses are
σ3 = σz = 0 and

σ1, σ2 = σx + σy

2
±
√(

σx − σy

2

)2

+ τ 2
xy = 2P

πd2
±
√(

2P

πd2

)2

+
(

16T

πd3

)2

Viewing the foregoing as σ1, σ2 = a ± r , and noting that r > a, the three Mohr’s circles must
be configured as in Fig. 6.10(a), rather than (b). Hence, σ1 and σ2 determine the maximum shear
stress and so also σ̄S :

σ̄S = MAX (|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|) = |σ1 − σ2|

σ̄S = 2

√(
2P

πd2

)2

+
(

16T

πd3

)2

= 4

πd2

√
P2 +

(
8T

d

)2

= 159.1 MPa

Substituting P = 200,000 N, T = 1.50 × 106 N·mm, and d = 50 mm, gives σ̄S in units of
N/mm2 = MPa. Employing this value with the yield strength σo = 260 MPa of the given
material from Table 4.2, we have

X = σo/σ̄S = (260 MPa)/(159.1 MPa) = 1.63 Ans.

P

T

τxy

σx

Figure E7.3
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(b) To achieve a safety factor of X = 2.0 with a modified value of diameter d, we need

σ̄S = σo/X = (260 MPa)/2.0 = 130 MPa

Substituting this and the given P and T into the equation for σ̄S developed earlier gives

130 MPa = 4

πd2

√
(200,000 N)2 +

(
8(1.50 × 106 N·mm)

d

)2

This cannot be solved for d in a closed-form manner, so trial and error or other iterative procedure
is required to obtain

d = 54.1 mm Ans.

As might be expected, increasing the safety factor to 2.0 from that found in (a) requires a larger
diameter.

7.5 OCTAHEDRAL SHEAR STRESS YIELD CRITERION

Another yield criterion often used for ductile metals is the prediction that yielding occurs when the
shear stress on the octahedral planes reaches the critical value

τh = τho (at yielding) (7.28)

where τho is the value of octahedral shear stress τh necessary to cause yielding. The resulting
octahedral shear stress yield criterion, also often called either the von Mises or the distortion energy
criterion, represents an alternative to the maximum shear criterion.

A physical justification for such an approach is as follows: Since hydrostatic stress σh is
observed not to affect yielding, it is logical to find the plane where this occurs as the normal
stress, and then to use the remaining stress τh as the failure criterion. Another justification is to note
that, although yielding is caused by shear stresses, τmax occurs on only two planes in the material,
whereas τh is never very much smaller and occurs on four planes. (Compare Figs. 6.8 and 6.15.)
Hence, on a statistical basis, τh has a greater chance of finding crystal planes that are favorably
oriented for slip, and this may overcome its disadvantage of being slightly smaller than τmax.

7.5.1 Development of the Octahedral Shear Stress Criterion

From the previous chapter, Eq. 6.33, the shear stress on the octahedral planes is

τh = 1

3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (7.29)
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so that the failure criterion is

τho = 1

3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (at yielding) (7.30)

As was done for the maximum shear stress criterion, it is useful to express the critical value in terms
of the yield strength from a tension test. Substitution of the uniaxial stress state with σ1 = σo and
σ2 = σ3 = 0 into the octahedral shear criterion gives

τho =
√

2

3
σo (7.31)

From the three-dimensional geometry of the octahedral planes, as described in the previous
chapter, it can be shown that the plane on which the uniaxial stress acts is related to the octahedral
plane by a rotation through the angle α of Fig. 6.15, where

α = cos−1
(

1√
3

)
= 54.7◦ (7.32)

The same result can also be obtained from Mohr’s circle by noting that, in uniaxial tension, the
normal stress on the octahedral plane is

σh = σ1 + σ2 + σ3

3
= σ1

3
(7.33)

Locating the point that satisfies this on Mohr’s circle leads to the aforementioned values of α and
τho, as shown in Fig. 7.7.
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Figure 7.7 The plane of octahedral shear in a uniaxial tension test.
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Combining Eqs. 7.30 and 7.31 gives the yield criterion in the desired form, expressed in terms
of the uniaxial yield strength:

σo = 1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (at yielding) (7.34)

As before, the effective stress for this theory is most conveniently defined so that it equals the
uniaxial strength σo at the point of yielding:

σ̄H = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (7.35)

Here, the subscript H specifies that this effective stress is determined by the octahedral shear stress
criterion. Also, the corresponding safety factor is X = σo/σ̄H . This effective stress may also be
determined directly for any state of stress, without the necessity of first determining principal
stresses, by modifying Eq. 7.35 with the use of Eqs. 6.33 and 6.36. The result is

σ̄H = 1√
2

√
(σx − σy)2 + (σy − σz)2 + (σz − σx )2 + 6(τ 2

xy + τ 2
yz + τ 2

zx ) (7.36)

7.5.2 Graphical Representation of the Octahedral Shear Stress Criterion

For plane stress, such as σ3 = 0, the octahedral shear stress criterion can be represented on a plot of
σ1 versus σ2, as shown in Fig. 7.8. This elliptical shape can be obtained by substituting σ3 = 0 into

0

–σo

–σo

σo

σ1

oct. shear

max. shear

σ2

σo

Figure 7.8 Failure locus for the octahedral shear stress yield criterion for plane stress, and
comparison with the maximum shear criterion.
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Figure 7.9 Three-dimensional failure surface for the octahedral shear stress yield criterion.

the failure criterion in the form of Eq. 7.34:

σo = 1√
2

√
(σ1 − σ2)

2 + σ 2
2 + σ 2

1 (7.37)

Manipulation gives

σ 2
o = σ 2

1 − σ1σ2 + σ 2
2 (7.38)

which is the equation of an ellipse with its major axis along the line σ1 = σ2 and which crosses
the axes at the points ±σo. Note that the ellipse has the distorted hexagon of the maximum shear
criterion inscribed within it as shown.

For the general case, where all three principal normal stresses may have nonzero values, the
boundary of the region of no yielding, as specified by Eq. 7.34, represents a circular cylindrical
surface with its axis along the line σ1 = σ2 = σ3. This is illustrated in Fig. 7.9. The view along the
cylinder axis, giving simply a circle, is also shown. If any one of σ1, σ2, or σ3 is zero, then the
intersection of the cylindrical surface with the plane of the remaining two principal stresses gives
an ellipse, as in Fig. 7.8.

Thus, we have a situation similar to that for the maximum shear stress criterion, where
hydrostatic stress is predicted to have no effect on yielding. In particular, substitution of
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Figure 7.10 Comparison of yield surfaces for the maximum shear and octahedral shear stress
criteria.

σ1 = σ2 = σ3 = σh into Eq. 7.35 gives σ̄H = 0, and a safety factor against yielding of infinity. Safety
factors against yielding may be similarly interpreted in terms of distances from the cylinder axis, as
illustrated in Fig. 7.9(b). The hexagonal-tube yield surface of the maximum shear criterion is in fact
inscribed within the cylindrical surface of the octahedral shear criterion. A view along the common
axis of both gives the comparison of Fig. 7.10.

7.5.3 Energy of Distortion

In applying stresses to an element of material, work must be done, and for an elastic material, all
of this work is stored as potential energy. This internal strain energy can be partitioned into one
portion associated with volume change and another portion associated with distorting the shape of
the element of material. Hydrostatic stress is associated with the energy of volume change, and since
hydrostatic stress alone does not cause yielding, the remaining (distortional) portion of the total
internal strain energy is a logical candidate for the basis of a failure criterion. When this approach is
taken, the resulting failure criterion is found to be the same as the octahedral shear stress criterion.
(See Nadai (1950) or Boresi (2003) for details.)

Example 7.4
Repeat Ex. 7.2, except use the octahedral shear stress yield criterion.

First Solution For the closed-end pipe, the hoop, longitudinal, and radial stresses due
to internal pressure, and the shear stress due to torsion, are calculated in Ex. 6.5 as σt =
600, σx = 300, σr = −20 (inside), and τt x = 205.3 MPa. These give principal normal stresses
of σ1 = 704.3, σ2 = 195.7, and σ3 = −20 MPa. The effective stress for the octahedral shear
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stress criterion from Eq. 7.35 is

σ̄H = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

σ̄H = 1√
2

√
(704.3 − 195.7)2 + (195.7 − (−20))2 + ((−20) − 704.3)2 = 644.1 MPa

The yield strength for the 18 Ni maraging steel material from Table 4.2 is 1791 MPa, so that the
safety factor against yielding for the inner wall is

X = σo/σ̄H = (1791 MPa)/(644.1 MPa) = 2.78 Ans.

Comments For the outer wall, revising the preceding calculation with σr = σ3 = 0 gives
σ̄H = 629.6 MPa and X = 2.84. The slightly lower value of X = 2.78 is thus the controlling
one. Note that both safety factors are somewhat higher than those for the maximum shear
criterion from Ex. 7.2.

Second Solution For the octahedral shear criterion, the step of determining principal normal
stresses is not necessary, as the solution can proceed directly from the stresses on the original
r -t-x coordinate system with the use of Eq. 7.36.

σ̄H = 1√
2

√
(σr − σt )2 + (σt − σx )2 + (σx − σr )2 + 6(τ 2

r t + τ 2
t x + τ 2

xr )

σ̄H = 1√
2

√
(−20 − 600)2 + (600 − 300)2 + (300 − (−20))2 + 6(0 + 205.32 + 0) = 644.1 MPa

As expected, σ̄H is the same as for the first solution, and X = 2.78 (Ans.) is similarly obtained
for the inner wall.

Example 7.5
A block of material is subjected to equal compressive stresses in the x- and y-directions, and it is
confined by a rigid die so that it cannot deform in the z-direction, as shown in Fig. E7.5. Assume
that there is no friction against the die and also that the material behaves in an elastic, perfectly
plastic manner, with uniaxial yield strength σo.

(a) Determine the stress σx = σy necessary to cause yielding, expressing this as a function
of σo and elastic constants of the material.

(b) What is the value of σy at yielding if the material is an aluminum alloy with uniaxial
yield strength σo = 300 MPa and elastic constants as in Table 5.2?
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Solution (a) Apply Hooke’s law for the z-direction, Eq. 5.26(c), letting σx = σy , and noting
that preventing deformation in the z-direction requires that the strain in that direction be zero
(εz = 0):

εz = 1

E

[
σz − ν(σx + σy)

]
, 0 = 1

E

[
σz − ν(σy + σy)

]
, σz = 2νσy

Here, solving the second expression for σz gives the third. Since there are no shear stresses, the
x-y-z axes are also the principal axes, 1-2-3, and the principal normal stresses are

σ1 = σx = σy, σ2 = σy, σ3 = σz = 2νσy

The effective stress for the octahedral shear criterion is

σ̄H = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

σ̄H = 1√
2

√
(σy − σy)2 + (σy − 2νσy)2 + (2νσy − σy)2 = σy(1 − 2ν)

Since σ̄H = σo at the point of yielding, the desired result is

σy = σo

1 − 2ν
Ans.

(b) For the aluminum alloy with uniaxial yield strength σo = 300 MPa, assume that σo =
−300 MPa applies for uniaxial compression. Substituting this and ν = 0.345 from Table 5.2,

Figure E7.5 Block of material stressed equally in two directions, with rigid walls
preventing deformation in the third direction.
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the stress to cause yielding is

σy = −300 MPa

1 − 2(0.345)
= −967.7 MPa Ans.

Discussion If the same block of material is not confined in the z-direction, the stress in that
direction is zero, and an analysis similar to the previous one gives simply σy = σo. However,
preventing deformation in the z-direction is seen to cause a stress σz = 2νσy to develop, which
in turn causes the value of σx = σy at yielding to substantially exceed the uniaxial yield strength.
Hence, constraining the deformation makes it more difficult to yield the material. This occurs
because the stresses σx , σy , and σz all have the same sign and so combine to create significant
hydrostatic stress, which in effect subtracts from the ability of the applied stresses to cause
yielding. For this particular situation, the maximum shear stress criterion gives an identical result.

7.6 DISCUSSION OF THE BASIC FAILURE CRITERIA

The three failure criteria discussed so far, namely, the maximum normal stress, maximum shear
stress, and octahedral shear stress criteria, may be considered to be the basic ones among a larger
number that are available. It is useful at this point to discuss these basic approaches. We will
also consider some design issues and some additional failure criteria that are modifications or
combinations of the basic ones.

7.6.1 Comparison of Failure Criteria

Both the maximum shear stress and the octahedral shear stress criteria are widely used to predict
yielding of ductile materials, especially metals. Recall that both of these indicate that hydrostatic
stress does not affect yielding, and also that the hexagonal-tube yield surface of the maximum
shear criterion is inscribed within the circular-cylinder surface of the octahedral shear criterion.
Hence, these two criteria never give dramatically different predictions of the yield behavior under
combined stress, there being no state of stress where the difference exceeds approximately 15%.
This can be seen in Fig. 7.10, where the distance from the cylinder axis to the two yield surfaces
differs by a maximum amount at the various points where the circle is farthest from the hexagon.
From geometry, the distances at these points have the ratio 2/

√
3 = 1.155. Hence, safety factors and

effective stresses for a given state of stress cannot differ by more than this. For plane stress, σ3 = 0,
such a maximum deviation occurs for pure shear, where σ1 = −σ2 = |τ |, and also for σ1 = 2σ2, as
in pressure loading of a thin-walled tube with closed ends.

However, note that, in some situations, the maximum shear and octahedral shear yield criteria
do give dramatically different predictions than a maximum normal stress criterion. Compare the
tubular yield surfaces of either with the cube of Fig. 7.3, and consider states of stress near the tube
axis (σ1 = σ2 = σ3), but well beyond the boundaries of the cube. For plane stress, the three failure
criteria compare as shown in Fig. 7.11. Where both principal stresses have the same sign, the maxi-
mum shear stress criterion is equivalent to a maximum normal stress criterion. However, if the prin-
cipal stresses are opposite in sign, the normal stress criterion differs considerably from the other two.
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Figure 7.11 Plane stress failure loci for three criteria. These are compared with biaxial yield
data for ductile steels and aluminum alloys, and also with biaxial fracture data for gray cast
iron. (The steel data are from [Lessells 40] and [Davis 45], the aluminum data from [Naghdi 58]
and [Marin 40], and the cast iron data from [Coffin 50] and [Grassi 49].)

The most convenient method of comparing failure criteria experimentally is to test thin-walled
tubes under various combinations of axial, torsion, and pressure loading, thus producing various
states of plane stress. Some data obtained in this manner for yielding of ductile metals and fracture
of a brittle cast iron are shown in Fig. 7.11. The cast iron data follow the normal stress criterion,
whereas the yield data tend to fall between the two yield criteria, perhaps agreeing better, in general,
with the octahedral shear criterion. The maximum shear criterion is more conservative, and on the
basis of experimental data for ductile metals similar to that in Fig. 7.11, this criterion seems to
represent a lower limit that is infrequently violated.

The maximum difference of 15% between the two yield criteria is relatively small compared
with safety factors commonly used and with various uncertainties usually involved in mechanical
design, so a choice between the two is not a matter of major importance. If conservatism is desired,
the maximum shear criterion could be chosen.

7.6.2 Load Factor Design

The manner of determining safety factors just described follows allowable stress design, where the
stresses analyzed correspond to the loads expected in actual service, and a single safety factor X is
calculated that applies to all sources of loading.
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An alternative is load factor design, where each load expected in actual service is multiplied
by a load factor Y , which is similar to a safety factor. The loads so increased are used to determine
stresses, so that the failure condition is analyzed. For yield and fracture criteria, effective stresses
σ̄ calculated with the increased loads are then equated to the material’s failure stress, such as the
yield strength, σo, or the ultimate tensile strength, σut , as appropriate. Load factors Y may differ
for different sources of loading to reflect circumstances such as different uncertainties in the actual
values of the various load inputs. Ideally, the Y values would be based on statistical analysis of loads
measured in service.

We will use the following nomenclature: The value of a load P expected in actual service is
denoted P̂ , and the load factor for this load is YP . Then the increased (factored) load used in analysis
of the failure condition is Pf = YP P̂ .

Example 7.6
Consider the situation of Ex. 7.3(b), where a solid shaft of diameter d is made of AISI 1020 steel
(as rolled) and is subjected in service to an axial force P = 200 kN and a torque T = 1.50 kN·m.
What diameter is required if load factors of YP = 1.60 and YT = 2.50 are required for the axial
force and torque, respectively?

Solution The factored loads for analysis of the failure condition are

Pf = YP P̂ = 1.60(200,000 N) = 320,000 N

T f = YT T̂ = 2.50(1.50 × 106 N·mm) = 3.75 × 106 N·mm

Then we modify the Ex. 7.3 solution, proceeding similarly, except for employing Pf and T f .
The maximum shear stress yield criterion thus gives

σ̄S = MAX (|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|) = |σ1 − σ2|

σ̄S = 2

√(
2Pf

πd2

)2

+
(

16T f

πd3

)2

= 4

πd2

√
P2

f +
(

8T f

d

)2

= σo = 260 MPa

where the effective stress is now equated directly to the yield strength of the AISI 1020 steel,
as the stresses have already been increased by load factors. Substituting Pf and T f and solving
iteratively gives d = 55.5 mm (Ans.).

Comment If the preceding solution is repeated with YP = YT = 2.00, the same answer
(d = 54.1 mm) as in Ex. 7.3 is obtained. As employed here, load factors that all have the same
value are mathematically equivalent to safety factors.

7.6.3 Stress Raiser Effects

Engineering components necessarily have complex geometry that causes stresses to be locally
elevated—for example, holes, fillets, grooves, keyways, and splines. Such stress raisers are often
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collectively termed notches. (See Appendix A, Section A.6.) Consider components made of ductile
materials, such as most steels, aluminum alloys, titanium alloys, and other structural metals, and
also many polymeric materials. In this case, the material can yield in a small local region without
significantly compromising the strength of the component. This is due to the ability of the material
to deform at the notch and shift some of the stress to adjacent regions, which behavior is called
stress redistribution. Final failure does not occur until yielding spreads over the entire cross section,
as discussed in Section A.7 in the context of fully plastic yielding. (See Figs. A.10 and A.14.)

As a result of a ductile material’s ability to tolerate local yielding, stress raiser effects are
not usually included in applying yield criteria for static design. In other words, net section nominal
stresses, such as S in Figs. A.11 and A.12, are used with the yield criterion, rather than local stresses
σ = kt S that include the notch effect. (However, where cyclic loading may cause fatigue cracking,
stress raiser effects do need to be considered, as treated in detail in Chapters 10, 13, and 14.)

In modern industry, critical components are likely to be analyzed on a digital computer by the
method of finite elements. Linear-elastic behavior is usually assumed, and color-coded plots are
often made of the magnitude of the von Mises stress, which is simply our octahedral effective stress,
σ̄H . (See the back cover of this book for examples of such plots.) This affords an opportunity to
visualize the size of any regions that exceed the yield strength. Where yielding occurs over regions
of worrisome size, design changes need to be made, and the analysis repeated, to be sure that the
change was successful. It is often not feasible to make a design so conservative as to eliminate all
yielding for severe loading conditions that may occur only rarely.

The preceding argument does not apply to brittle (nonductile) materials, such as glass, stone,
ceramics, PMMA and some other polymeric materials, and gray cast iron and some other cast
metals. Brittle materials are not capable of deforming sufficiently to shift locally high stresses
elsewhere, which is illustrated in Fig. A.10(e). Therefore, the locally elevated stress, σ = kt S,
should be compared with the failure criterion. In tension-dominated situations, brittle materials
fail if the local stress reaches the ultimate tensile strength, according to the maximum normal
stress fracture criterion of Eq. 7.13. As a rough guide, a brittle material can be defined as one
with less than 5% elongation in a tension test. However, there is an interesting exception to the
foregoing recommendation: Where the inherent flaws in a brittle material are relatively large, these
may overwhelm the effect of a small stress raiser so that it has little effect. For example, gray cast
iron is not sensitive to small stress raisers, as its behavior is dominated by relatively large graphite
flakes. (See Fig. 3.7.) In contrast, glass is weakened by a scratch.

7.6.4 Yield Criteria for Anisotropic and Pressure-Sensitive Materials

Several empirical modifications have been suggested so that the octahedral shear stress criterion
can be used for anisotropic or pressure-sensitive materials. Anisotropic materials have different
properties in different directions. Consider anisotropic materials that are orthotropic, possessing
symmetry about three planes oriented 90◦ to each other. For example, such anisotropy can occur in
rolled plates of metals where the yield strength may differ somewhat between the rolling, transverse,
and thickness directions. The anisotropic yield criterion described in Hill (1998) for this case is

H (σX − σY )2 + F (σY − σZ )2 + G (σZ − σX )2 + 2Nτ 2
XY + 2Lτ 2

Y Z + 2Mτ 2
Z X = 1 (7.39)
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where the X -Y -Z axes are aligned with the planes of material symmetry, and H , F , G, N , L , and M
are empirical constants for the material. Let σoX , σoY , and σoZ be the uniaxial yield strengths in the
three directions, and let τoXY , τoY Z , and τoZ X be shear yield strengths on the respective orthogonal
planes. The empirical constants can be evaluated from the various yield strengths as follows:

H + G = 1

σ 2
oX

, H + F = 1

σ 2
oY

, F + G = 1

σ 2
oZ

2N = 1

τ 2
oXY

, 2L = 1

τ 2
oY Z

, 2M = 1

τ 2
oZ X

(7.40)

The Hill criterion as just described can also be used with reasonable success as a fracture criterion
for orthotropic composite materials. The equations are the same, except that the various yield
strengths are replaced by the corresponding ultimate strengths. However, different values of the
constants are generally needed for tension versus compression, and other complexities exist for
composite materials that may not be fully predicted by this criterion.

If a material has different yield strengths in tension and compression, this suggests that a
dependence on hydrostatic stress needs to be added. One proposed yield criterion for this situation is

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 + 2 (|σoc| − σot ) (σ1 + σ2 + σ3) = 2 |σoc| σot (7.41)

where σot and σoc are the yield strengths in tension and compression, respectively, with the negative
sign on σoc being removed by use of the absolute value.

Polymers often have somewhat higher yield strengths in compression than in tension, with
the ratio |σoc|/σot often being in the range from 1.2 to 1.35. This is illustrated by biaxial test
results for three such materials in Fig. 7.12. The behavior expected from Eq. 7.41 with a typical
value of |σoc|/σot = 1.3 is plotted. The resulting off-center ellipse is in reasonable agreement with
the data.

In some exceptional cases, the yield strength of ductile metals has been observed to be
decreased by hydrostatic compression. See the review of Lewandowski (1998) for details and a
discussion of the physical mechanism involved, which is associated with upper/lower yield point
behavior.

7.6.5 Fracture in Brittle Materials

The maximum normal stress criterion gives reasonably accurate predictions of fracture in brittle
materials, as long as the normal stress having the largest absolute value is tensile. However,
deviations from this criterion occur if the normal stress having the largest absolute value is
compressive. Data illustrating this trend for gray cast iron are shown in Fig. 7.13. A prominent
feature of the deviation is that the ultimate strength in compression is higher than that in tension by
more than a factor of three.

Recall from Chapters 2 and 3 that brittle materials, such as ceramics and glasses and some
cast metals, commonly contain large numbers of randomly oriented microscopic cracks or other
planar interfaces that cannot support significant tensile stress. For example, the numerous flaws in
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Figure 7.12 Biaxial yield data for various polymers compared with a modified octahedral
shear stress theory. (Data from [Raghava 72].)

natural stone have this effect, as do the graphite flakes in gray cast iron. Tensile normal stresses are
expected to open these flaws and therefore to cause them to grow. Thus, failure is expected to occur
on the plane where the maximum tensile normal stress occurs and to be controlled by this stress.
For example, gray cast iron fails normal to the maximum tensile stress in both tension and torsion,
as seen in the photographs of Figs. 4.13 and 4.42.

However, if the dominant stresses are compressive, the planar flaws (cracks, etc.) tend to have
their opposite sides pressed together so that they have less effect on the behavior. This explains the
higher strengths in compression for brittle materials. Also, failure occurs on planes inclined to the
planes of principal normal stress and more nearly aligned with planes of maximum shear. (See the
compressive fractures of gray iron and concrete in Figs. 4.23 and 4.24.)

One possibility for handling the differing behavior of brittle materials in tension and compres-
sion is simply to modify the maximum normal stress criterion so that the compressive and tensile
ultimate strengths differ. This would give the off-center square shown in Fig. 7.13, which still does
not agree with the data. In addition, any successful fracture criterion should predict that even brittle
materials do not fail under hydrostatic compression, which is in agreement with both observation
and intuition.

Therefore, additional failure criteria need to be considered that are capable of predicting the
behavior of brittle materials. A number of such criteria exist, and we will consider two of the simpler
ones in the portions of this chapter that follow.
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Figure 7.13 Biaxial fracture data of gray cast iron compared with two fracture criteria. (Data
from [Grassi 49].)

7.7 COULOMB–MOHR FRACTURE CRITERION

In the Coulomb–Mohr (C–M) criterion, fracture is hypothesized to occur on a given plane in the
material when a critical combination of shear and normal stress acts on this plane. In the simplest
application of this approach, the mathematical function giving the critical combination of stresses
is assumed to be the linear relationship

|τ | + μσ = τi (at fracture) (7.42)

where τ and σ are the stresses acting on the fracture plane and μ and τi are constants for a
given material. This equation forms a line on a plot of σ versus |τ |, as shown in Fig. 7.14. The
intercept with the τ axis is τi , and the slope is −μ, where both τi and μ are defined as positive
values.

Now consider a set of applied stresses, which can be specified in terms of the principal stresses,
σ1, σ2, and σ3, and plot the Mohr’s circles for the principal planes on the same axes as Eq. 7.42. The
failure condition is satisfied if the largest of the three circles is tangent to (just touches) the Eq. 7.42
line. If the largest circle does not touch the line, a safety factor greater than unity exists. Intersection
of the largest circle and the line is not permissible, as this indicates that failure has already occurred.
The line is therefore said to represent a failure envelope for Mohr’s circle.
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Figure 7.14 Coulomb–Mohr fracture criterion as related to Mohr’s circle, and predicted
fracture planes.

The point of tangency of the largest circle to the line occurs at a point (σ ′, τ ′) that represents the
stresses on the plane of fracture. The orientation of this predicted plane of fracture can be determined
from the largest circle. In particular, fracture is expected to occur on a plane that is rotated by an
angle θc relative to the plane normal to the maximum principal stress (σ1), where rotations in the
material are half of the 2θc rotation on Mohr’s circle. There are two possible planes, as illustrated
in Fig. 7.14. Also, from the geometry shown, the slope constant μ can also be specified by an angle
φ, where

tan φ = μ, φ = 90◦ − 2θc (a, b) (7.43)

The shear stress τ ′ that causes failure is thus affected by the normal stress σ ′ acting on the same
plane. Such behavior is logical for materials where a brittle shear fracture is influenced by numerous
small and randomly oriented planar flaws. More compressive σ ′ is expected to cause more friction
between the opposite faces of the flaws, thus increasing the τ ′ necessary to cause fracture.

7.7.1 Development of the Coulomb–Mohr Criterion

It is convenient to express the C–M criterion in terms of principal normal stresses with the aid of
Fig. 7.14. For the present, we will assume (with signs considered) that σ1 is the largest principal
normal stress, σ3 the smallest, and σ2 intermediate; that is, σ1 ≥ σ2 ≥ σ3. Using the radius from the
center of the largest Mohr’s circle to the (σ ′, τ ′) point, we can express σ ′ and τ ′ in terms of σ1 and σ3:

σ ′ = σ1 + σ3

2
+
∣∣∣∣σ1 − σ3

2

∣∣∣∣ cos 2θc,
∣∣τ ′∣∣ = ∣∣∣∣σ1 − σ3

2

∣∣∣∣ sin 2θc (7.44)
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These relationships can now be substituted into Eq. 7.42. After doing so, it is useful to make
additional substitutions that arise from trigonometry.

cos 2θc = sin φ, sin 2θc = cos φ, μ = tan φ = sin φ

cos φ
, sin2 φ + cos2 φ = 1 (7.45)

After some algebraic manipulation, we obtain three alternative forms of the desired expression:

|σ1 − σ3| + (σ1 + σ3) sin φ = 2τi cos φ (a)

|σ1 − σ3| + m(σ1 + σ3) = 2τi
√

1 − m2 (b)

|σ1 − σ3| + m(σ1 + σ3) = ∣∣σ ′
uc

∣∣ (1 − m) (c)

(7.46)

Equation (b) arises from (a) through the definition of a new constant, m = sin φ, and form (c) will
be derived shortly. It is also useful to note that additional manipulation using the trigonometric
expressions of Eq. 7.45 gives

m = sin φ = μ√
1 + μ2

, μ = m√
1 − m2

(a, b) (7.47)

Assume that the failure envelope, as given by Eq. 7.42 or 7.46, is known for a given material.
We can then calculate the strength that is expected in simple compression, σ ′

uc, where the prime
is included to indicate that the value is calculated from the envelope, as distinguished from the
value σuc from an actual test. The principal stresses for this situation are σ3 = σ ′

uc, σ1 = σ2 = 0.
Substituting these into Eq. 7.46(b) and noting that σ ′

uc has a negative value gives

−σ ′
uc(1 − m) = 2τi

√
1 − m2, σ ′

uc = −2τi

√
1 + m

1 − m
(a, b) (7.48)

Algebraic manipulation of (a) yields the desired result (b) in explicit form. The corresponding
Mohr’s circle and fracture planes are illustrated in Fig. 7.15(a). Also, substituting Eq. 7.48(a)
into Eq. 7.46(b) gives the envelope equation in the form of Eq. 7.46(c). In the latter, the quantity
|σ ′

uc| = −σ ′
uc is employed, so that the correct result is obtained regardless of how the sign of σ ′

uc is
entered.

Similarly, the strength expected in simple tension, σ ′
ut , can be calculated from the failure

envelope by substituting the appropriate principal stresses, σ1 = σ ′
ut , σ2 = σ3 = 0, into Eq. 7.46(b).

The result is

σ ′
ut = 2τi

√
1 − m

1 + m
(7.49)

The corresponding Mohr’s circle and fracture planes for this case are illustrated in Fig. 7.15(b).
Additionally, consider a test in simple torsion, as illustrated in Fig. 7.16, where τ ′

u is the fracture
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Figure 7.15 Fracture planes predicted by the Coulomb–Mohr criterion for uniaxial tests in
tension and compression.
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Figure 7.16 Pure torsion and the fracture planes predicted by the Coulomb–Mohr criterion.

strength in shear expected from the failure envelope. Substituting the appropriate principal stresses,
σ1 = −σ3 = τ ′

u, σ2 = 0, into Eq. 7.46(b) gives

τ ′
u = τi

√
1 − m2 (7.50)

If experimental data from several triaxial compression tests at various stress levels are available,
then a linear least squares fit can be employed to obtain constants for the failure envelope line.
Two constants are needed: (1) the slope, as specified by any one of μ, φ, θc, or m, and (2) the
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Table 7.1 Strengths and Coulomb–Mohr Fitting Constants for Some Brittle Materials

Tension Compression Coulomb–Mohr Fit

Material1 σut , MPa |σuc|, MPa m b, MPa μ τi , MPa θc, deg

Siliceous sandstone2 37 100 0.700 33.37 0.979 23.35 22.8
Granite rock3 13.4 143 0.824 22.00 1.455 19.42 17.3
Sand–cement mortar4 2.87 31.8 0.497 17.11 0.573 9.86 30.1
Concrete5 1.7 45.3 0.631 17.90 0.814 11.54 25.4
Gray cast iron6 214 770 0.276 557.8 0.287 290.1 37.0

Notes: 1The values listed will vary significantly depending on the origin of the material. Based on data
from 2[Jaeger 69], 3[Karfakis 03], 4[Campbell 62], and 5[Hobbs 71]. 6Values not fitted, but estimated
from measured σuc and θc. 7Value estimated from similar material.

intercept τi . First, write Eq. 7.46(b) as

|σ1 − σ3| = −m(σ1 + σ3) + 2τi

√
1 − m2 (7.51)

Then fit a linear relationship

y = ax + b (7.52)

where

y = |σ1 − σ3| , x = σ1 + σ3 (a)

a = −m, b = 2τi
√

1 − m2 (b)
(7.53)

Values of m and b from fits of this type for a few materials are given in Table 7.1, along with the
corresponding values of μ, τi , and θc, calculated from m and b with the use of Eqs. 7.47, 7.53(b),
and 7.43, respectively. Also, the last line of the table gives estimated constants for gray cast iron.

Example 7.7
Test data are given in Table E7.7(a) for static fracture of siliceous sandstone, including simple
tension, simple compression, and two tests in compression with lateral pressure p surrounding
all sides of the test specimen. The applied stresses at fracture are denoted σ3, and the lateral
stresses as σ1 = σ2 = −p.

(a) Fit the data to Eq. 7.51 to obtain values of m and τi that describe the Coulomb–Mohr
failure envelope line. Also, calculate μ, φ, and θc.

(b) Plot the resulting failure envelope line, along with the largest Mohr’s circles, for each
test. Does the line reasonably represent the test data?

(c) Also, calculate the ultimate strengths in compression and tension, σ ′
uc and σ ′

ut , that
correspond to the fitted C–M failure envelope, and compare these with the actual values
from the tests.
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Table E7.7

(a) Given Stresses (b) Calculated Values

σ3 σ1 = σ2 y x Center
MPa MPa |σ1 − σ3| σ1 + σ3 (σ1 + σ3)/2

3 0 — — 1.5
−100 0 100 −100 −50
−700 −100 600 −800 −400

−1230 −200 1030 −1430 −715

Source: Data in [Jaeger 69] pp. 75 and 156.

Solution (a) Values of y and x are calculated from Eq. 7.53(a), as given in Table E7.7(b). A
linear least squares fit of these values, with the simple tension test not being included, yields

a = −0.6995, b = 33.37 MPa

Equation 7.53(b) then gives

m = −a = 0.6995, τi = b

2
√

1 − m2
= 33.37 MPa

2
√

1 − 0.69952
= 23.35 MPa Ans.

The additional values desired can then be calculated from Eqs. 7.47 and 7.43:

φ = sin−1 m = 44.39◦, μ = tan φ = 0.9789, θc = 90◦ − φ

2
= 22.81◦ Ans.

(b) The failure envelope line is then given by substituting the constants obtained into
Eq. 7.42:

|τ | + 0.9789σ = 23.35 MPa Ans.

This line is plotted in Figs. E7.7(a) and (b), where the latter shows the region near the origin in
more detail. Also plotted are the largest Mohr’s circles from each test, where the centers of each
are calculated in Table E7.7(b) as a convenience. The line is in reasonable agreement with the
circles for the three tests in compression, but it is far above the circle for the simple tension test.

(c) The values of the strengths in simple compression and tension expected from the fitted
envelope, σ ′

uc and σ ′
ut , are obtained by substituting m and τi from the previous fit into Eqs. 7.48

and 7.49:

σ ′
uc = −111.1, σ ′

ut = 19.63 MPa Ans.

The value of σ ′
uc is about 10% larger than σuc = −100 MPa, which is perhaps within statistical

scatter. But σ ′
ut is drastically larger than σut = 3 MPa, and the fitted envelope obviously does not

agree with the tension test data.
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Figure E7.7

7.7.2 Graphical Representation of the Coulomb–Mohr Criterion

If the assumption σ1 ≥ σ2 ≥ σ3 is dropped, so that there are no restrictions on the relative
magnitudes of the principal normal stresses, Eq. 7.46 needs to be expanded into three relationships.
For the form of Eq. 7.46(c), these are

|σ1 − σ2| + m(σ1 + σ2) = ∣∣σ ′
uc

∣∣ (1 − m) (a)

|σ2 − σ3| + m(σ2 + σ3) = ∣∣σ ′
uc

∣∣ (1 − m) (b)

|σ3 − σ1| + m(σ3 + σ1) = ∣∣σ ′
uc

∣∣ (1 − m) (c)

(7.54)
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Figure 7.17 Failure locus for the Coulomb–Mohr fracture criterion for plane stress.

Note that these actually represent six equations due to the absolute values, fracture being predicted
if any one of them is satisfied. For plane stress with σ3 = 0, these reduce to

|σ1 − σ2| + m(σ1 + σ2) = ∣∣σ ′
uc

∣∣ (1 − m) (a)

|σ2| + m(σ2) = ∣∣σ ′
uc

∣∣ (1 − m) (b)

|σ1| + m(σ1) = ∣∣σ ′
uc

∣∣ (1 − m) (c)

(7.55)

The six lines represented by the latter equations form the boundaries of the region of no failure, as
shown in Fig. 7.17. The unequal fracture strengths in tension and compression that correspond to
the envelope line can be related by combining Eqs. 7.48 and 7.49 and substituting −|σ ′

uc| = σ ′
uc:

σ ′
ut = ∣∣σ ′

uc

∣∣ 1 − m

1 + m
(7.56)

For the general case of a three-dimensional state of stress, Eq. 7.54 represents six planes that
give a failure surface as shown in Fig. 7.18. The surface forms a vertex along the line σ1 = σ2 = σ3
at the point

σ1 = σ2 = σ3 = ∣∣σ ′
uc

∣∣ 1 − m

2m
(7.57)

Hence, the value of m, or of the closely related constant μ, determines where the vertex is formed.
Higher values of m or μ indicate that the six planes are tilted more abruptly relative to one another
and form a vertex closer to the origin. If any one of σ1, σ2, or σ3 is zero, the intersection of this
surface with the plane of the remaining two principal stresses forms the shape of Fig. 7.17.

From comparison of Eqs. 7.25 and 7.54, it is evident that the C–M criterion with m = 0 is
equivalent to a maximum shear stress criterion. Figure 7.17 then takes the same, more symmetrical
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Figure 7.18 Three-dimensional failure surface for the Coulomb–Mohr fracture criterion.

shape as Fig. 7.5. The vertex of the failure surface is moved to infinity, and its cross sections become
perfect hexagons, all of the same size. Thus, the C–M criterion contains the maximum shear criterion
as a special case.

7.7.3 Effective Stress for the Coulomb–Mohr Criterion

We can define an effective stress for the C–M criterion, as was done for other failure criteria earlier in
this chapter. To proceed, first note that Eq. 7.54 describes the failure surface. If the stresses actually
applied are such that the left-hand sides of all of (a), (b), and (c) are less than |σ ′

uc|(1 − m), then a
safety factor against fracture exists that is greater than unity. Consider the following three quantities
arising from Eq. 7.54:

C12 = 1

1 − m

[
|σ1 − σ2| + m(σ1 + σ2)

]
(a)

C23 = 1

1 − m

[
|σ2 − σ3| + m(σ2 + σ3)

]
(b)

C31 = 1

1 − m

[
|σ3 − σ1| + m(σ3 + σ1)

]
(c)

(7.58)

If the applied stresses cause any one of these quantities to reach |σ ′
uc|, then fracture is expected.

Hence, the effective stress, σ̄C M , and the corresponding safety factor against fracture, XC M , may be
defined as
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σ̄C M = MAX(C12, C23, C31), XC M =
∣∣σ ′

uc

∣∣
σ̄C M

(a)

σ̄C M = 0, XC M = ∞, if MAX ≤ 0 (b)

(7.59)

Situation (b) arises when the combination of stresses is such that a line from the origin through the
point (σ1, σ2, σ3) never intersects the failure surface of the type shown in Fig. 7.18. For example,
this occurs for σ1 = σ2 = σ3 = −p, where p is pressure.

Ideally, values of σ ′
uc and m for use in these equations would be available from fitting a

failure envelope. However, only σuc from test data in simple compression may be available. In
this case, σ ′

uc should be estimated as being the same as σuc, and an estimate of m is needed.
This might be obtained by measuring the fracture angle θc from the simple compression tests,
and then applying Eqs. 7.43(b) and 7.47(a) to estimate m = sin φ = sin(90◦ − 2θc). Or m might
be known approximately from experience with similar material. For example, the paper by Paul
(1961) suggests a generic value for any gray cast iron of φ = 20◦, corresponding to θc = 35◦ and
m = 0.342.

7.7.4 Discussion

For the C–M criterion with a positive nonzero value of μ, which gives a downward-sloping failure
envelope line as in Fig. 7.14, the predicted behavior is consistent with a number of observations
that are typical of brittle materials. First, the fracture strength in compression is greater than
that in tension, with the difference increasing with the value of μ. Test data showing different
strengths in tension and compression have already been presented in Fig. 7.13 for gray cast iron.
Data for a ceramic material are shown in Fig. 7.19. (See also Table 3.10 for data on additional
materials.)

1.0

–2.0

1.0–2.0

– 4.0

0

failure locus

test data

– 4.0

σ   , GPa2

σ   , GPa1

Al   O2 3

Figure 7.19 Test data and failure locus for biaxial compression of the ceramic alumina, Al2O3.
Each point plotted is the average from three or four tests as reported by [Sines 75].
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The plane of fracture in compression is often observed to be an acute angle relative to the
loading axis on the order of θc = 20◦ to 40◦. (See the fractured compression specimens of cast iron
and concrete in Figs. 4.23 and 4.24, and compare with Fig. 7.15.) From Eq. 7.43, this corresponds
approximately to μ values in the range 1.2 to 0.2.

However, the fracture planes predicted for a tension test are incorrect. Brittle materials generally
fail in tension on planes near the plane normal to the maximum tension stress—that is, normal to the
specimen axis—not on planes as shown in Fig. 7.15. Failures of brittle materials in torsion generally
also occur on planes normal to the maximum tension stress, not on the planes predicted by the C–M
theory, as in Fig. 7.16. (See the broken tension and torsion specimens of cast iron in Figs. 4.13 and
4.42.) Moreover, the fracture strengths in tension, compression, and shear are not typically related
to one another as predicted by a single value of m used with the previous equations.

The situation of the maximum tension stress controlling the behavior in tension and torsion, in
disagreement with the C–M criterion, can be handled by using the C–M criterion in combination
with the maximum normal stress fracture criterion. This combination, called the modified Mohr
fracture criterion, will be discussed in Section 7.8.

An alternative form of Eq. 7.46 is sometimes employed. Returning to the σ1 ≥ σ2 ≥ σ3
assumption, so that only Eq. 7.46(c) is needed, some algebraic manipulation yields

σ3 = hσ1 − |σ ′
uc|, where h = 1 + m

1 − m
(7.60)

In some cases, a linear relationship does not fit the data very well, so Eq. 7.60 is generalized to a
power equation:

σ3 = −k(−σ1)
a − |σuc| (σ3 ≤ σ2 ≤ σ1) (7.61)

The quantities k and a are fitting constants, and σuc is the strength in simple compression from test
data. Where this nonlinear relationship is needed, the value of a is typically less than unity and in
the range 0.7 to 0.9. A nonlinear relationship between σ3 and σ1 implies a curved failure envelope
line, rather than a straight line as in Eq. 7.42 and Fig. 7.14. A curved failure envelope is indeed
sometimes observed, especially for tests under rather large confining pressures, where failure of the
normally brittle material is controlled by ductile yielding rather than by fracture.

In most tests for obtaining C–M envelope fits, the σ3 at failure is a larger compressive value
than σ1 = σ2 from lateral pressure; these are called Type I tests, as in Ex. 7.7. Another option is to
increase σ3 = σ2 to fracture while σ1 is held at a smaller compressive value; this is called a Type II
test. The C–M envelopes for Type II tests in general appear to be above those for Type I tests. So
the intermediate principal stress σ2 does have an effect, contrary to the assumption implicit in the
C–M criterion that it does not. Although a more general approach would be desirable, it appears to
be reasonable to use the envelope from Type I tests as a conservative approximation.

7.8 MODIFIED MOHR FRACTURE CRITERION

As already noted, the Coulomb–Mohr fracture criterion does not agree with behavior of brittle
materials in tension and torsion. This difficulty can be handled by using the C–M criterion in
combination with the maximum normal stress fracture criterion, as illustrated in Fig. 7.20. In
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particular, the C–M failure locus from compression-dominated behavior is truncated and replaced
by the maximum normal stress criterion wherever its predictions exceed the latter. This combination
is called the modified Mohr (M-M) fracture criterion.

7.8.1 Details of the Modified Mohr Criterion

For the σ1 versus σ2 failure locus for biaxial stresses of Fig. 7.20(a), note that, for simple tension,
and also for biaxial stresses that are both positive, fracture is controlled by σut , as measured in a
simple tension test, not by the larger value σ ′

ut expected from the C–M criterion and Eq. 7.49 or
7.56. Looking at the σ versus |τ | failure envelope, as in Fig. 7.20(b), we see that a vertical line at
σut truncates the sloping line of the C–M criterion, so that, again, σ ′

ut does not correspond to the
real behavior.

For simple compression, σuc ≈ σ ′
uc is indicated in Fig. 7.20(a) and (b), with these two quantities

differing only due to statistical scatter in real data, and perhaps due to minor deviations of the
compression-dominated behavior from a linear C–M envelope. (If there are major deviations from
linearity, as when Eq. 7.61 applies, a more general approach is needed.)

Tension-dominated behavior generally extends at least to, and often somewhat beyond, the
σ1 = −σ2 line in Fig. 7.20(a) corresponding to simple torsion. (See the data of Figs. 7.11 and 7.13.)
Hence, in torsion, fracture is expected to occur at τu = σut , not at the larger value τ ′

u from the C–M
criterion and Eq. 7.50.

0 σut
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σuc ≈

τ

σ'utσ'uc

σ'uc

σ'ut
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Figure 7.20 The modified Mohr (M-M) fracture criterion, formed by the maximum normal
stress criterion truncating the Coulomb–Mohr (C–M) criterion.
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The intersection of the C–M and the maximum normal stress parts of the M-M failure locus for
biaxial stress occurs at a stress σi , as shown in Fig. 7.20(a). In particular, there is usually a biaxial
state of stress, σ1 = σut , σ2 = σi , σ3 = 0, with σi negative, where both the C–M and maximum
normal stress criteria are obeyed. Substituting this combination of stresses into Eq. 7.54(a) and
solving for σi gives

σi = −|σ ′
uc| + σut

1 + m

1 − m
(σut ≤ σ ′

ut ) (7.62)

In three dimensions, the M-M failure locus is similar to Fig. 7.21. The three positive faces of the
maximum normal stress cube truncate the C–M failure surface. (Compare Fig. 7.21 with Figs. 7.3
and 7.18.) Note that the three positive faces of the normal stress cube correspond to

σ1 = σut , σ2 = σut , σ3 = σut (7.63)

Hence, the failure surface is given by these three planes in addition to the six planes
corresponding to Eq. 7.54. Fracture is expected when any one of the nine planes is reached. The
two failure surfaces intersect, and the two theories agree, along six edges of these faces. (Four of
these edges can be seen, and two are hidden, in Fig. 7.21.) For plane stress, a failure locus as in
Fig. 7.20(a), solid line, is obtained as the intersection of the failure surface with a plane such as
σ3 = 0.

The M-M criterion requires three materials constants: (1) the slope of the C–M failure envelope,
as specified by any one of μ, φ, θc, and m; (2) the intercept τi of the C–M failure envelope, which

σ = 03
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γ

β

α
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Figure 7.21 Three-dimensional failure surface for the modified Mohr fracture criterion. The
Coulomb–Mohr surface is truncated by three faces of the maximum normal stress cube.
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can be specified by σ ′
uc used with Eq. 7.48; and (3) the ultimate tensile strength σut from test data in

simple tension. As already noted, the estimate σ ′
uc ≈ σuc may be employed if there are insufficient

compression-dominated data for making a C–M envelope fit. But then m or one of its allied constants
must be known, such as an observed fracture angle θc from simple compression tests. Equation 7.62
presents an additional opportunity to estimate m. In particular, if biaxial data as in Fig. 7.13 are
available and give a reasonably distinct value of σi , then m may be obtained by solving Eq. 7.62:

m = |σ ′
uc| − σut + σi

|σ ′
uc| + σut + σi

(7.64)

Some caution is obviously needed in employing values of m estimated without the benefit of data
suitable for fitting the C–M failure envelope.

More general, but more complex, methods are available that do not require a linear C–M failure
envelope line. (See books by Nadai (1950), Jaeger (2007), Chen (1988), and Munz (1999) for
discussion and details.) However, the linear assumption is often employed, as in the ASTM test
method for triaxial compression of rock.

7.8.2 Effective Stresses and Safety Factor for the Modified Mohr Criterion

For the M-M criterion, effective stresses for its C–M and maximum normal stress components can be
determined. Each of these gives a safety factor against fracture, the lowest of which is the controlling
one. The effective stress and safety factor for the C–M criterion have already been described by
Eqs. 7.58 and 7.59, which may be employed in the same form here. For the maximum normal stress
component, the effective stress of Eq. 7.13(a) applies to include the three positive faces of the normal
stress cube:

σ̄N P = MAX(σ1, σ2, σ3), X N P = σut

σ̄N P
(a)

σ̄N P = 0, X N P = ∞, if MAX ≤ 0 (b)
(7.65)

Here, the subscripts are changed to NP, as this differs by removal of the restrictions of Eq. 7.13(b).
We will now use the normal stress criterion up to the intersection with the C–M criterion, as at
the stress σi of Fig. 7.20, which generally exceeds the previous limitation by a small amount. The
situation of Eq. 7.65(b) arises when the combination of stresses is such that a line from the origin
through the point (σ1, σ2, σ3) never intersects one of the positive faces of the maximum normal
stress cube.

The overall and controlling safety factor for the M-M criterion is then the smallest of the values
from Eqs. 7.59 and 7.65:

X M M = MIN(XC M , X N P ) (a)

1

X M M
= MAX

(
σ̄C M

|σ ′
uc|

,
σ̄N P

σut

)
(b)

(7.66)

Form (b) gives the same result and is convenient for numerical calculations, as it avoids generating
infinite values when either or both of σ̄C M or σ̄N P are zero.
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Example 7.8
A gray cast iron has a tensile strength of 214 MPa and a compressive strength of 770 MPa, where
these values are averages from three tests of each type on a single batch of material. Also, in the
compression tests, the fracture was observed to occur on a plane inclined to the direction of
loading by an angle averaging θc = 37◦.

(a) Assuming that the modified Mohr criterion applies, calculate m and σi values for this
material.

(b) If a shaft of diameter 30 mm of this material is subjected to a torque of 500 N·m,
estimate the safety factor against fracture.

(c) What is the safety factor against fracture if a 100 kN compressive force is applied to the
shaft in addition to the torque?

Solution (a) The value of m can be obtained from θc = 37◦ and Eqs. 7.43 and 7.47.

φ = 90◦ − 2θc = 16◦, m = sin φ = 0.2756 Ans.

To calculate σi , use σ ′
uc = σuc = −770 MPa, as well as σut = 214 MPa, with m in Eq. 7.62.

σi = −|σ ′
uc| + σut

1 + m

1 − m
= −393.1 MPa Ans.

(b) The shear stress at the shaft surface due to a torque T is obtained from the shaft radius
of r = 15 mm and expressions from Appendix A:

τxy = T r

J
, J = πr4

2

τxy = 2T

πr3
= 2(500,000 N·mm)

π(15 mm)3
= 94.31 MPa

Noting that there is a state of plane stress with this τxy and σx = σy = 0, the in-plane principal
normal stresses from Eq. 6.7 are

σ1, σ2 = σx + σy

2
±
√(

σx − σy

2

)2

+ τ 2
xy = 94.31,−94.31 MPa

The third principal normal stress is σ3 = 0.
We now have all of the quantities needed to obtain C12, C23, and C31 from Eq. 7.58:

C12 = 260.4, C23 = 94.31, C31 = 166.09 MPa

These, along with the principal normal stresses, σ1, σ2, and σ3 give the effective stresses and
safety factors for the C–M and maximum normal stress components of the M-M failure criterion.
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From Eqs. 7.59 and 7.65, we obtain

σ̄C M = MAX(C12, C23, C31) = 260.4 MPa, XC M =
∣∣σ ′

uc

∣∣
σ̄C M

= 770 MPa

260.4 MPa
= 2.96

σ̄N P = MAX(σ1, σ2, σ3) = 94.31 MPa, X N P = σut

σ̄N P
= 214 MPa

94.31 MPa
= 2.27

Finally, from Eq. 7.66, the controlling safety factor is the smaller of the two:

X M M = MIN(XC M , X N P ) = 2.27 Ans.

(c) The additional compressive force causes a stress of

σx = P

A
= −100,000 N

π(15 mm)2
= −141.47 MPa

so the overall state of plane stress and the resulting principal normal stresses are now

σx = −141.47, σy = 0, τxy = 94.31 MPa

σ1 = 47.16, σ2 = −188.63, σ3 = 0 MPa

The latter, with the same m, σ ′
uc, and σut values as before, give the following from Eqs. 7.58,

7.59, 7.65, and 7.66:

C12 = 271.7, C23 = 188.63, C31 = 83.05 MPa

σ̄C M = MAX(C12, C23, C31) = 271.7 MPa, XC M =
∣∣σ ′

uc

∣∣
σ̄C M

= 770 MPa

271.7 MPa
= 2.83

σ̄N P = MAX(σ1, σ2, σ3) = 47.16 MPa, X N P = σut

σ̄N P
= 214 MPa

47.16 MPa
= 4.54

X M M = MIN(XC M , X N P ) = 2.83 Ans.

Discussion In (b), X N P is the smaller of the two safety factors, so that the maximum normal
stress component of the M-M failure criterion is controlling. But in (c), XC M is smaller, so the
C–M component is controlling.
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Example 7.9
A block of the granite rock of Table 7.1 is subjected to a confining pressure on all sides of
p = 150 MPa, due to the weight of rock above, as well as a shear stress τxy , as shown in
Fig. E7.9(a).

(a) What value of shear stress τxy will cause the block to fracture?
(b) What is the largest value of τxy that can be allowed if a safety factor of 2.0 against

fracture is desired?

Solution (a) Since a fit was done to obtain the constants in Table 7.1 for this material, it
is preferable to employ σ ′

uc from Eq. 7.48, rather than the tabulated value of σuc from a simple
compression test. Using m = 0.824 and τi = 19.42 MPa from Table 7.1, we find that the value is

σ ′
uc = −2τi

√
1 + m

1 − m
= −2(19.42 MPa)

√
1 + 0.824

1 − 0.824
= −125.0 MPa

The given state of stress is σx = σy = σz = −p = −150 MPa, and unknown τxy , with τyz =
τzx = 0 MPa. This is a state of generalized plane stress, so that one principal normal stress is
σ3 = σz = −150 MPa, and the other two are

σ1, σ2 = σx + σy

2
±
√(

σx − σy

2

)2

+ τ 2
xy = −150 ± τxy MPa

Since σ1 and σ2 are determined by adding and subtracting the same value from σ3 = −150 MPa,
the three Mohr’s circles must be configured as in Fig. E7.9(b), with the circle formed by σ1 and
σ2 being the largest. Hence, C12 is the largest and controlling value for Eqs. 7.58 and 7.59, so
C23 and C31 can be disregarded. Assuming for the present that the C–M component controls, we
have

C12 = 1

1 − m

[
|σ1 − σ2| + m(σ1 + σ2)

]
= σ̄C M =

∣∣σ ′
uc

∣∣
XC M∣∣(−150 + τxy) − (−150 − τxy)

∣∣+ 0.824(−300) = (1 − 0.824)(125.0)/1.00 MPa

τxy

p

p

p

(a)

σ 
σut 

τi

μ

σ 1σ 3σ 2

(b)

0

τ 

Figure E7.9
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where XC M = 1.00 is substituted so that the point of fracture is analyzed. Solving for τxy yields

τxy = 134.6 MPa Ans.

This value gives σ1, σ2 = −150 ± τxy = −15.4,−284.6 MPa. Hence, Eq. 7.65 gives σ̄N P = 0
and infinite X N P , so the maximum normal stress component does not control, and the preceding
solution is valid.

(b) Proceeding as before, except for substituting XC M = 2.00, gives τxy = 129.1 MPa
(Ans.). This value corresponds to σ1, σ2 = −20.9,−279.1 MPa, so Eq. 7.65 again gives σ̄N P =
0, and this solution is also valid.

Comment In the solution for (b), the safety factor of XC M = 2.00 is, in effect, applied
both to the pressure and to τxy . Due to increased pressure making fracture more difficult, it
turns out that only a small decrease in τxy is needed to achieve the safety factor. From an
engineering viewpoint, if the pressure is considered not to vary, it would be wise to apply
the desired safety factor of X = 2.00 to only the shear stress that is allowed to vary, so that
the solution for (b) becomes τxy = 134.6/2.00 = 67.3 MPa. This would be the same as a load
factor design approach, with Yp = 1.00 applied to the pressure and Yτ = 2.00 applied to τxy .
(See Section 7.6.2.)

7.9 ADDITIONAL COMMENTS ON FAILURE CRITERIA

To gain additional perspective on the subject of this chapter, we will engage in some limited further
discussion on brittle versus ductile behavior and on time-dependent effects.

7.9.1 Brittle Versus Ductile Behavior

Engineering materials that are commonly classed as ductile are those for which the static strength
in engineering applications is generally limited by yielding. Many metals and polymers fit into this
category. In contrast, the usefulness of materials commonly classed as brittle is generally limited by
fracture. In a tension test, brittle materials exhibit no well-defined yielding behavior, and they fail
after only a small elongation, on the order of 5% or less. Examples are gray cast iron and certain
other cast metals, and also stone, concrete, other ceramics, and glasses.

However, normally brittle materials may exhibit considerable ductility when tested under
loading such that the hydrostatic component σh of the applied stress is highly compressive. Such
an experiment can be conducted by testing the material in a chamber that is already pressurized,
as in Fig. 4.27. The surprising result of large plastic deformations in a normally brittle material is
illustrated by some stress–strain curves for limestone in Fig. 7.22.

Also, materials normally considered ductile fail with increased ductility if the hydrostatic stress
is compressive, or reduced ductility if it is tensile. For example, although the initial yielding of
metals is insensitive to hydrostatic stress, the point of fracture is affected. Data showing this for
a steel are given in Fig. 7.23, where the true fracture stress and strain are seen to increase with
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Figure 7.22 Stress–strain data for limestone cylinders tested under axial compression with
various hydrostatic pressures ranging from one to 10,000 atmospheres. The applied
compressive stress plotted is the stress in the pressurized laboratory, that is, the compression
in excess of pressure. (Adapted from [Griggs 36]; used with permission; c© 1936 The University
of Chicago Press.)
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Figure 7.23 Effect of pressures ranging from one to 26,500 atmospheres on the tensile
behavior of a steel, specifically AISI 1045 with HRC = 40. Stress in the pressurized laboratory is
plotted. (Data from [Bridgman 52] pp. 47–61.)

pressure—that is, with hydrostatic compression. The fracture event appears to shift to a later point
along a common stress–strain curve.

To explain such behavior, it is useful to adopt the viewpoint that fracture and yielding are
separate events and that either one may occur first, depending on the combination of material and
stress state involved. In three-dimensional principal normal stress space, the limiting surface for
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Figure 7.24 Relationships of the limiting surfaces for yielding and fracture for materials that
usually behave in a ductile manner, and also for materials that usually behave in a brittle
manner.

yielding (at least for metals) is taken to be a cylinder or other prismatic shape that is symmetrical
about the line σ1 = σ2 = σ3, such as the surfaces of Figs. 7.6 and 7.9. Limiting surfaces for fracture
are, in general, similar to those for the modified Mohr theory (as discussed previously and illustrated
in Fig. 7.21), although the boundaries may actually be smooth curves.

The situation is illustrated in Fig. 7.24. For certain states of stress, the yield surface is encoun-
tered first, whereas for others the fracture surface is encountered first. The relative dimensions of
the two surfaces change for different materials. For normally ductile materials, fracture prior to
yielding is not expected, except for stress states involving a large hydrostatic tension. The stress
may be increased by varying amounts beyond yielding before fracture occurs, depending on the
amount of hydrostatic compression. However, for normally brittle materials, there is a contrasting
behavior, as fracture occurs prior to yielding, except for stress states involving a large hydrostatic
compression. Thus, if a wide range of stress states are of interest for any material, it is important to
consider the possibility that either yielding or fracture may occur first.

7.9.2 Time-Dependent Effects of Cracks

As already noted, normally brittle materials usually contain, or easily develop, small flaws or other
geometric features that are equivalent to small cracks. Brittle failure generally occurs as a result
of such cracks growing and joining. This process is often time dependent, principally because it
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is affected by the presence of moisture (water) or other substances that react chemically with the
material. Time-dependent cracking causes the fracture behavior to be dependent on the loading rate.
Also, if the stress is held constant, failure can occur after some time has elapsed at a stress that
would not cause fracture if maintained for only a short time. Thus, the approaches of this chapter
should be used with some caution to assure that the material properties employed are realistic with
respect to time-related effects.

7.10 SUMMARY

Design to avoid yielding or fracture in nominally uncracked material requires the use of a failure
criterion, which is a procedure for summarizing a complex state of stress as an effective stress σ̄ that
can be compared to the material’s strength. For yielding of ductile materials, the relevant materials
strength property is the yield strength σo, so that a safety factor can be calculated as

X = σo

σ̄
(7.67)

Two yield criteria are available that are reasonably accurate for isotropic materials, namely, the
maximum shear stress criterion and the octahedral shear stress criterion. The effective stresses for
these are, respectively,

σ̄S = MAX(|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|) (7.68)

σ̄H = 1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (7.69)

Effective stresses, and hence safety factors, from these two criteria never differ by more than 15%.
In their basic forms, according to these two equations, both predict that hydrostatic stresses have no
effect. Modifications can be used to predict yielding in anisotropic or pressure-sensitive materials.

The application of safety factors, as just described, is called allowable stress design. An
alternative is load factor design, where the applied loads are increased by factors Y that can vary for
different load inputs, and the failure condition is analyzed. In particular, σ̄ = σo is employed, where
σ̄ is calculated from stresses that include load factors.

In applying yield criteria to ductile materials, the stresses employed are usually the nominal
ones—that is, the stresses do not include the localized stress raiser effect at notches. This is justified,
as ductile materials can deform beyond yielding in a small region without causing failure of the
component. But this is not the case for brittle materials, for which stress raiser effects should be
considered in fracture criteria.

For brittle materials, no single basic failure criterion suffices to describe the fracture behavior.
The modified Mohr criterion is a reasonable choice. It is a combination of the maximum normal
stress criterion, which is used where the stresses are dominated by tension, and the Coulomb–Mohr
criterion. The latter assumes that fracture occurs when the combination of normal and shear stress
on any plane in the material reaches a critical value given by

|τ | + μσ = τi (7.70)
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where μ and τi are material constants. The Coulomb–Mohr criterion can be considered to be a
shear stress criterion in which the limiting shear stress increases for greater amounts of hydrostatic
compression.

In applying the modified Mohr criterion, values are needed for three material constants. These
can be the ultimate strengths in tension and compression, σut and σuc, and one additional constant,
either μ or the closely related constant m. A value for μ or m can be estimated from the inclination
of the fracture plane in compression tests.

Under high hydrostatic compression, normally brittle materials behave in a ductile manner,
and ductile materials fracture at higher true stresses and strains than otherwise. Such behavior can
be explained by considering yielding and fracture to be independent events with different failure
surfaces. The possibility of either occurring first should generally be considered.

Fracture may be time dependent due to crack growth effects, so caution is needed in applying
failure criteria that use materials constants from short-term tests.

N E W T E R M S A N D S Y M B O L S

(a) Terms
allowable stress design
anisotropic yield criterion
effective stresses: σ̄N T , σ̄S , σ̄H , σ̄C M

failure criterion (stress based)
failure surface
fracture criteria:

Coulomb–Mohr
maximum normal stress
modified Mohr

load factor design

principal normal stress space
proportional loading
safety factor
ultimate strengths:

compression, σuc

shear, τu

tension, σut

yield criteria:
maximum shear stress
octahedral shear stress

(b) Constants for the Coulomb–Mohr (C–M) and Modified Mohr (M-M) Criteria
μ, τi Slope and intercept, respectively, of the C–M failure envelope line
m, |σ ′

uc| Constants for the C–M criterion, expressed in terms of principal normal stresses
φ C–M failure envelope slope angle, tan φ = μ, sin φ = m
θc Fracture angle, θc = (90◦ − φ)/2
σi For the modified Mohr criterion, stress where the maximum normal and C–M portions

of the failure surface agree
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PROBLEMS AND QUESTIONS

Section 7.3
7.1 An engineering component is made of the Boron carbide (B4C) ceramic of Table 3.10. The

most severely stressed point is subjected to the following state of stress: σx = 35, σy = 21,
τxy = 7, and σz = τyz = τzx = 0 MPa. Determine the safety factor against fracture.

7.2 In an engineering component made of zirconia (ZrO2), the most severely stressed point is
subjected to the following state of stress: σx = 125, σy = −80, τxy = 30 and σz = τyz =
τzx = 0 MPa. Determine the safety factor against fracture. The material has a tensile strength
of 147 MPa and a compressive strength of 2100 MPa.

7.3 An engineering component is made of the silicon nitride (Si3N4) ceramic of Table 3.10. The
most severely stressed point is subjected to the following state of stress: σx = 60, σy = 90,
σz = 200, τxy = 33, and τyz = τzx = 0 MPa. Determine the safety factor against fracture.

7.4 In an engineering component made of AISI 1020 steel as rolled, the most severely stressed
point is subjected to the following state of stress: σx = 200, σy = 0, σz = 250, τxy = 100
and τyz = τzx = 0 MPa. Determine the safety factor against fracture. The material has a yield
strength of 260 MPa and an ultimate tensile strength of 441 MPa.

Sections 7.4 and 7.52

7.5 In an engineering component made of SAE 308 cast aluminum, the most severely stressed
point is subjected to the following state of stress: σx = 32, σy = −10, τxy = −20, and
σz = τyz = τzx = 0 MPa. Determine the safety factor against yielding by (a) the maximum
shear stress criterion, and (b) the octahedral shear stress criterion.

7.6 In an engineering component made of AISI 4142 steel (as quenched), the most severely
stressed point is subjected to the following state of stress: σx = 345, σy = 138, σz = −69,
τxy = 69, and τyz = τzx = 0 MPa. Determine the safety factor against yielding by (a) the
maximum shear stress criterion, and (b) the octahedral shear stress criterion.

2Use materials properties from Tables 4.2 and 5.2. Unless otherwise indicated, these yield criteria problems may be
worked by either the maximum shear stress criterion or the octahedral shear stress criterion.
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7.7 In an engineering component made of ductile cast iron A 536 (65-45-12) material, the
most severely stressed point is subjected to the following state of stress: σx = −50, σy =
120, σz = 40, τxy = −60, τyz = 14, and τzx = 0 MPa. Determine the safety factor against
yielding by (a) the maximum shear stress criterion, and (b) the octahedral shear stress
criterion.

7.8 In an engineering component, the most severely stressed point is subjected to the following
state of stress: σx = 345, σy = 138, τxy = 69, and σz = τyz = τzx = 0 MPa. What minimum
yield strength is required for the material if a safety factor of 2.5 against yielding is
required? Employ (a) the maximum shear stress criterion, and (b) the octahedral shear stress
criterion.

7.9 In an engineering component, the most severely stressed point is subjected to the following
state of stress: σx = 14, σy = −56, σz = 70, and τxy = τyz = τzx = 0 MPa. What minimum
yield strength is required for the material if a safety factor of 2.0 against yielding is required?
Employ (a) the maximum shear stress criterion, and (b) the octahedral shear stress criterion.

7.10 In Fig. 7.1, for each case (a), (b), (c), and (d) that is shown, sketch the three Mohr’s circles
corresponding to the principal shear stresses. Then, for each case, employ the maximum shear
stress criterion to determine σy at yielding as a function of the uniaxial yield strength. Do you
confirm the predictions indicated?

7.11 Strains are measured on the surface of part made from 7075-T6 aluminum and are as follows:
εx = 3600 × 10−6, εy = 150 × 10−6, and γxy = 700 × 10−6. Assume that no yielding has
occurred and also that no loading is applied directly to the surface, so that σz = τyz = τzx =
0 MPa. What is the safety factor against yielding?

7.12 A strain gauge rosette, as in Ex. 6.9, is applied to the surface of a component made of Ti-6A1-
4V (solution treated and aged). Assume that no yielding has occurred and also that no loading
is applied directly to the surface, so that σz = τyz = τzx = 0 MPa. Strains are measured as
follows: εx = 1200 × 10−6, εy = −650 × 10−6, and ε45 = 1900 × 10−6. What is the safety
factor against yielding?

7.13 A strain gauge rosette, as in Ex. 6.9, is applied to the surface of a component made of
AISI 1020 steel (as rolled). Assume that no yielding has occurred, and also that no loading
is applied directly to the surface, so that σz = τyz = τzx = 0 MPa. Strains are measured as
follows: εx = 290 × 10−6, εy = −860 × 10−6, and ε45 = −190 × 10−6. What is the safety
factor against yielding?

7.14 A solid circular shaft subjected to pure torsion must be designed to avoid yielding, with a
safety factor X . Find the required diameter as a function of the torque T and the yield strength
σo, using (a) the maximum shear stress criterion, and (b) the octahedral shear stress criterion.
How much do these two sizes differ?

7.15 A solid circular shaft has a diameter of 50 mm and is made of AISI 1020 steel (as rolled). It
is subjected to a tensile axial force of 100 kN, a bending moment of 800 N·m, and a torque of
1500 N·m. Determine the safety factor against yielding.

7.16 A pipe with closed ends has an outer diameter of 80 mm and a wall thickness of 3.0 mm. It
is subjected to an internal pressure of 20 MPa and a bending moment of 2.0 kN·m. Determine
the safety factor against yielding if the material is 7075-T6 aluminum.

7.17 A thin-walled tube with closed ends has an inside radius r1 = 80 mm and a wall thickness
t = 6 mm. It is made of AISI 4142 steel tempered at 450◦C and is subjected to an internal
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pressure of 20 MPa, a torque of 60 kN·m, and a compressive axial force of 200 kN. Determine
the safety factor against yielding.

7.18 A solid shaft of diameter d is made of ASTM A514, T1 structural steel and is subjected to
a tensile axial force of 200 kN and a torque of 1.5 kN.m. What is the safety factor against
yielding if the diameter is 50 mm? Use the octahedral shear stress yield criterion.

7.19 A solid shaft is subjected to a tensile axial force of 300 kN, a bending moment of 5.0 kN·m,
and a torque of 9.0 kN·m. A safety factor against yielding of 2.75 is required. What is the
smallest permissible value of diameter d if the material is 18 Ni (250) maraging steel?

7.20 A vertical force of 50 kN is applied at mid-span of a simply supported beam, as in Fig. A.4(a).
The beam is made of AISI 1020 steel (as rolled), it is 1.0 m long, and it has an I-shaped cross
section. The dimensions, as defined in Fig. A.2(d), are h2 = 150, h1 = 135, b2 = 100, and
b1 = 96 mm, with loading in the y-direction of Fig. A.2(d).

(a) For an arbitrary location along the beam length, qualitatively sketch the variations of
bending stress and of transverse shear stress through the depth of the beam.

(b) Determine the safety factor against yielding, checking any points of possible maximum
stress. (Suggestion: The transverse shear stress at the center of the beam, y = 0, may
be approximated as τxy = V/Aweb.)

7.21 A circular tube must support a bending moment of 4.5 kN·m and a torque of 7.0 kN·m. It is
made of ASTM A514 (T1) structural steel and has a wall thickness of 3.0 mm.

(a) What is the safety factor against yielding if the outside diameter is 80 mm?
(b) For the situation of (a), what adjusted value of outside diameter with the same thickness

is required to obtain a safety factor against yielding of 1.5?
7.22 A circular tube must support an axial load of 60 kN tension and a torque of 1.0 kN·m. It is

made of 7075-T6 aluminum and has an inside diameter of 46.0 mm.
(a) What is the safety factor against yielding if the wall thickness is 2.5 mm?
(b) For the situation of (a), what adjusted value of thickness with the same inside diameter

is required to obtain a safety factor against yielding of 2.0?
7.23 Consider a solid circular shaft subjected to bending and torsion, so that the state of stress of

interest involves only a normal stress σx and a shear stress τxy , with all other stress components
being zero, as in Fig. P7.23. Develop a design equation for the shaft, giving diameter d as a
function of yield strength, safety factor, bending moment M , and torque T . Employ (a) the
maximum shear stress criterion, and (b) the octahedral shear stress criterion.

x

y

T

M

σ

τxy

x

Figure P7.23

7.24 A thin-walled tube with closed ends has an inner diameter of 40 mm and a wall thickness of
2.5 mm. It contains a pressure of 10 MPa and is subjected to a torque of 3000 N·m.
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(a) What is the safety factor against yielding if the material is ASTM A514 (T1) structural
steel.

(b) Is the design adequate? If not, suggest a new choice of material.
7.25 A piece of a ductile metal is confined on two sides by a rigid die, as shown in Fig. P7.25.

A uniform compressive stress σz is applied to the surface of the metal. Assume that there is
no friction against the die, and also that the material behaves in an elastic, perfectly to plastic
manner with uniaxial yield strength σo. Derive an equation for the value of σz necessary to
cause yielding in terms of σo and the elastic constants of the material. Is the value of σz

that causes yielding affected significantly by Poisson’s ratio? Employ (a) the maximum shear
stress criterion, and (b) the octahedral shear stress criterion. (c) For each yield criterion, what
stress σz is expected to cause yielding if the material is ductile cast iron A536 (65-45-12)?

material

rigid die

x

y

z σz

Figure P7.25

7.26 Repeat Prob. 7.25(c) for the case where the die material is AISI 4142 steel.

material

z

rigid die

y

x

σz

Figure P7.26

7.27 Consider the situation of Fig. E7.5, where a piece of material is stressed in two directions
and restrained from deforming in the third direction by rigid, but smooth, walls. Generalize
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the loading such that σx = λσy , where λ may vary between +1 and −1, and derive the
corresponding expression for σy at yielding that is analogous to the result of Ex. 7.5(a).
Comment on how the stress at yielding is affected by λ.

7.28 A block of 7075-T6 aluminum is subjected to a confining pressure on all sides of p =
120 MPa, along with a shear stress τxy as shown in Fig. P7.28.

(a) Employ octahedral shear stress criterion and find the largest value of τxy that can be
applied if the safety factor against yielding must be 2.5.

(b) Is there a large effect of the pressure p on the τxy required to cause yielding? Briefly
discuss the effect of p as to whether the effect is large, small or absent and explain
why.

τxy

p

p

p

Figure P7.28

7.29 A block of AISI 4142 steel (as quenched) is subjected to a stress σz = −100 MPa, along with
a shear stress τxy , as shown in Fig. P7.29.

(a) Based on octahedral shear stress criterion, find the largest valued of τxy that can be
applied if the safety factor against yielding must be 2.0.

(b) Is there a large effect of σz on the τxy required to cause yielding? Briefly discuss the
effect of σz as to whether the effect is large, small or absent, and explain why.

τxy

σz

Figure P7.29

7.30 A thick-walled tube with closed ends has inner and outer radii of 30 and 50 mm, respectively.
It contains an internal pressure of 160 MPa and is also subjected to a torque of 30 kN·m. The
material is AISI 4142 steel tempered at 450◦C. What is the safety factor against yielding?
(Note: Check inside, outside, and several intermediate values of radius, as the most severely
stressed location is not known.)

7.31 A thick-walled tube with closed ends has inner and outer radii of 25 and 50 mm, respectively.
It contains an internal pressure of 100 MPa and is also subjected to a torque of 75 kN·m. The
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material is 18 Ni maraging steel (250). What is the safety factor against yielding? (Note:
Check inside, outside, and several intermediate values of radius, as the most severely stressed
location is not known.)

7.32 A thick-walled tube with closed ends has inner and outer radii of 25 and 35 mm, respectively.
It contains an internal pressure of 25 MPa and is also subjected to a torque of 8.0 kN·m. The
material is 7075-T6 aluminum and a safety factor of 2.0 against yielding is required.

(a) What is the safety factor against yielding? Does it meet the required value?
(b) Assume that the inner radius is fixed at its given value. What adjusted value of the outer

radius is required to meet the safety factor?
7.33 Consider a thick-walled tube with closed ends having inner radius r1, outer radius r2, and

loaded only with an internal pressure p. Assume that, in a design situation, values of r1 and p
are fixed, as well as a safety factor X against yielding. Further, a candidate material with yield
strength σo has been selected.

(a) Develop an equation for the outer radius r2 that is required as a function of the other
variables involved, that is, find r2 = f ( r1, p , X , σo).

(b) What r2 is required for r1 = 40 mm, p = 100 MPa, X = 4.0, and σo = 1791 MPa, where
the latter corresponds to the 18 Ni maraging steel of Table 4.2.

7.34 A rotating annular disc, as in Fig. A.9, has inner radius r1 = 50, outer radius r2 = 200, and
thickness t = 30 mm. It is made of 2024-T4 aluminum and rotates at a frequency of f = 230
revolutions/second.

(a) What is the safety factor against yielding?
(b) If a safety factor of 2.0 against yielding is required, what is the highest permissible

rotational frequency?
7.35 A solid circular shaft 1.0 m long must support a bending moment M = 1.0 kN·m and a torque

T = 1.5 kN·m. A safety factor of X = 2.0 against yielding is required.
(a) What shaft diameter d is required if the material is AISI 1020 steel? What is the

resulting mass of the shaft?
(b) Also, consider the possibility of making the shaft out of 2024-T4 aluminum, 7075-T6

aluminum, or one of the tempers of AISI 4140 steel from Prob. 4.33. Calculate the
required diameter and mass for each.

(c) Select a material for the shaft from among those considered in (a) and (b). Assume that
the shaft must be both light in weight and inexpensive, and also not prone to sudden
fracture. See Table 3.13 for useful data.

Section 7.6
7.36 For the situation of Prob. 7.21, what outside diameter is needed if load factors YM = 1.50 and

YT = 1.80 are required for moment and torque, respectively?
7.37 For a shaft loaded in bending and torsion, as in Prob. 7.23, develop a design equation for the

diameter d as a function of yield strength, bending moment M , torque T , and load factors YM

and YT for moment and torque, respectively. Employ (a) the maximum shear stress criterion,
and (b) the octahedral shear stress criterion.

7.38 A shaft made of gray cast iron is loaded in torsion and contains a groove as in Fig. A.12(d).
Dimensions are d2 = 52.5, d1 = 50, and ρ = 3.75 mm. The material has a tensile strength of
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214 MPa and a compressive strength of 770 MPa. For a safety factor of 3.0 against fracture,
what is the highest torque that can be applied to the shaft? Note that S in Fig. A.12(d) is the
nominal shear stress, and kt S is the shear stress in the bottom of the groove.

7.39 A block of the polycarbonate (PC) plastic of Table 4.3 is loaded in compression and confined
by a rigid die on two sides, as in Fig. P7.25. The compressive yield strength is 20% higher
than the tensile yield strength.

(a) Estimate the value of σz necessary to cause yielding.
(b) Qualitatively sketch the yield locus for plane stress, in this case σx = σ3 = 0, and show

the location of the point corresponding to your answer to (a).
7.40 Specialize the anisotropic yield criterion of Hill, Eq. 7.39, to the case of plane stress. If the

yield strengths σoX , σoY , and τoXY are known, can the needed constants be obtained so that
the criterion can be used? If not, suggest an additional test on the material and explain how
you would use the result to evaluate the needed constants.

7.41 An unusual new material is hypothesized to fail when the absolute value of the hydrostatic
stress exceeds a critical value. That is,

∣∣∣∣σx + σy + σz

3

∣∣∣∣ = σhc

However, there is also a possibility that this material obeys either the maximum normal stress
failure criterion or the maximum shear stress failure criterion.

(a) Does the equation given constitute a possible failure theory? Why or why not?
(b) Consider a uniaxial test, and on this basis define a convenient effective stress.
(c) In three-dimensional principal normal stress space, describe the failure surface corre-

sponding to the equation given. Also describe the failure locus for the special case of
plane stress.

(d) Describe a critical experiment, consisting of one or a few mechanical tests, and a min-
imum of experimentation, that provides a definitive choice among the aforementioned
three criteria. Note that some of the mechanical tests that are feasible are uniaxial
tension and compression, torsion of tubes and rods, internal and external pressure of
closed-end tubes, biaxial tension in pressurized diaphragms, and hydrostatic compres-
sion.

Section 7.7
7.42 The results of two tests on diabase rock are given in Table P7.42: (1) a uniaxial compression

test, and (2) a confined compression test with lateral pressure σ1 = σ2.
(a) Assume that the Coulomb–Mohr fracture criterion applies, and use the results of these

tests to determine the slope and intercept constants μ and τi for Eq. 7.42.
(b) Accurately plot the resulting |τ | versus σ failure envelope line. Also accu-

rately plot the corresponding σ1 versus σ2 (biaxial stress) failure locus similar to
Fig. 7.17.
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Table P7.42

Test No. σ3, MPa σ1 = σ2, MPa

1 −225.7 0
2 −548.0 −30.3

Source: Data in [Karfakis 03].

7.43 Test data are given in Table P7.43 for siltstone from Virginia under simple tension, simple
compression, and compression with lateral pressure. The values of σ3 correspond to fracture.
Proceed as in Ex. 7.7 for these data.

Table P7.43

σ3 σ1 = σ2

MPa MPa

21.9 0
−185.4 0
−278 −7.10
−291 −10.49
−343 −14.34
−345 −19.65
−392 −23.1

Source: Data from [Karfakis 03].

7.44 Test data are given in Table P7.44 for mortar, made from Portland cement and Sydney
sand, under simple compression and compression with lateral pressure. The values of σ3
correspond to failure, which occurred as distinct fractures, except for the highest value of
lateral compression, where the peak compressive stress occurred after considerable nonlinear
deformation. The data are taken from three different batches of nominally identical mortar,
and the tests were done after approximately 200 days of aging. Proceed as in Ex. 7.7 for these
data.

Table P7.44

σ3 σ1 = σ2

MPa MPa

−32.1 0
−33.8 0
−29.5 0
−61.0 −8.27
−61.0 −8.27

−102.7 −22.1
−104.8 −22.1
−148.9 −41.4
−159.3 −41.4

Source: Data in [Campbell 62].
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7.45 Test data are given in Table P7.45 for Portland cement concrete, made with Thames Valley
flint gravel as the aggregate, under simple tension, simple compression, and compression with
lateral pressure. The values of σ3 correspond to failure, which occurred as distinct fractures for
lateral pressures of zero and 2.5 MPa. For the higher lateral pressures, the peak compressive
stress occurred after considerable nonlinear deformation, with an array of internal splitting
cracks being observed. The tests were done after 56 days of aging, and any water appearing
in compression was allowed to drain from the ends of the specimen. Proceed as in Ex. 7.7 for
these data.

Table P7.45

σ3 σ1 = σ2

MPa MPa

1.70 0
−45.3 0
−58.8 −2.5
−72.0 −5.0
−96.2 −10.0

−117.6 −15.0
−137.5 −20.0
−155.2 −25.0

Source: Data in [Hobbs 71].

7.46 Consider the test data of Table P7.45, but ignore the simple tension test on the first line.
(a) Fit these data to the alternative form of the C–M criterion of Eq. 7.60, where h and

|σ ′
uc| are the fitting constants.

(b) Also fit these data to Eq. 7.61, where k and a are the fitting constants, and |σuc| is the
value from the simple compression test.

(c) Comment on the relative success of the two equations in representing the data.

Section 7.8
7.47 For the situation of Ex. 7.8, accurately plot the σ1-σ2 failure locus for plane stress, as in

Fig. 7.20(a). Then use this plot to graphically verify the two safety factors.
7.48 A brittle material has an ultimate tensile strength of 300 MPa, and for compression-dominated

behavior, it has a Coulomb–Mohr failure envelope line given by τi = 387 MPa and
μ = 0.259.

(a) Accurately plot the limiting modified-Mohr failure envelope on σ versus |τ |
coordinates.

(b) Calculate σ ′
uc and σi , and then accurately plot the biaxial failure locus on σ1 versus σ2

coordinates.
(c) Graphically determine the safety factor for the following cases of biaxial principal

stresses:
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(1) σ1 = 200, σ2 = −100 MPa
(2) σ1 = 100, σ2 = −600 MPa
(3) σ1 = −300, σ2 = −600 MPa

(d) Confirm the values from (c) by applying Eq. 7.66.
7.49 In a compression test, a cylinder of unreinforced concrete has an ultimate strength of

27.2 MPa, and the fracture is observed to occur on a plane inclined to the direction of
loading by an angle of approximately θc = 25◦. If this same concrete is subjected to lateral
(compressive) stresses of σ1 = σ2 = −10 MPa, estimate the stress σ3 necessary to cause
failure in compression. (Suggestion: If the tensile strength is needed, this may be estimated as
10% of the compressive strength.)

7.50 A cylinder of the mortar of Table 7.1 is subjected to an axial compressive stress σz of 50 MPa,
along with equal lateral compressive stresses, σx = σy .

(a) What is the safety factor against fracture if the lateral compressive stresses are
12 MPa?

(b) Let σz remain unchanged. But let the lateral compression be reduced, that is, |σx | =
|σy | < 12 MPa. Can σx = σy approach zero without fracture occurring? At what value
of σx = σy is fracture expected to occur?

7.51 A building column 400 mm in diameter is made of the sandstone of Table 7.1.
(a) What is the safety factor against fracture if the column is subjected to a compressive

force of 1250 kN?
(b) What is the safety factor against fracture if the column is subjected to a torque of

20 kN·m?
(c) What is the safety factor against fracture if the column is subjected at the same time to

both the 1250 kN compressive force and the 20 kN·m torque?
(d) Compare the safety factors calculated in (a), (b), and (c), and explain the trends in their

values.
7.52 A block of the concrete of Table 7.1 is loaded with a pressure p applied to all sides, and also

with a shear stress, τxy = 30 MPa, as shown in Fig. P7.28.
(a) Will the block fracture if p = 40 MPa?
(b) What smallest value of p such that the block will not fracture?

7.53 A block of the mortar of Table 7.1 is loaded with a shear stress τxy = 1.0 MPa, and also with
a normal stress σz , as shown in Fig. P7.29.

(a) What is the safety factor against fracture if σz = 0?
(b) What is the safety factor against fracture if σz is 15 MPa compression?
(c) For the safety factor to be not less than 2.5, what is the most severe compressive σz that

can be applied?
7.54 Consider a 50 mm diameter shaft of the gray cast iron of Table 7.1. If a safety factor of

3.0 against fracture is required, what is the largest torque that can be applied along with a
compressive axial force of 250 kN?

7.55 A building column 400 mm in diameter is made of the sandstone of Table 7.1. It resists a
compressive force P and a torque T = 34,000 N·m, and a safety factor of 4.0 against fracture
is required.

(a) What is the largest compressive force P that can be permitted?
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(b) If only the torsion is applied, that is P = 0, is the safety factor requirement met? If
not, what minimum value of compressive force P must be applied to satisfy the safety
factor?

7.56 A thick-walled tube has inner and outer radii of 30 and 50 mm, respectively, and it is made of
the gray cast iron of Table 7.1.

(a) What is the safety factor against fracture for an internal pressure of 20 MPa?
(b) What is the safety factor against fracture if a compressive axial force of 700 kN is

applied, in addition to the internal pressure in part (a)?
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Fracture of Cracked Members

8.1 INTRODUCTION
8.2 PRELIMINARY DISCUSSION
8.3 MATHEMATICAL CONCEPTS
8.4 APPLICATION OF K TO DESIGN AND ANALYSIS
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8.8 DISCUSSION OF FRACTURE TOUGHNESS TESTING
8.9 EXTENSIONS OF FRACTURE MECHANICS BEYOND LINEAR ELASTICITY
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OBJECTIVES

• Understand the effects of cracks on materials and why the fracture toughness, K I c, is a
measure of a material’s ability to resist failure due to a crack. Explore trends in K I c with
material and with variables such as temperature, loading rate, and processing.

• Evaluate the effects of cracks in engineering components, using linear-elastic fracture
mechanics and applying the stress intensity factor, K , to combine stress, geometry, and crack
size to characterize the severity of a crack situation.

• Analyze the effects of plasticity in cracked members, including plastic zone sizes, constraint
effects due to plate thickness, and fully plastic limit loads, and briefly introduce advanced
fracture mechanics methods.

8.1 INTRODUCTION

The presence of a crack in a component of a machine, vehicle, or structure may weaken it so that
it fails by fracturing into two or more pieces. This can occur at stresses below the material’s yield
strength, where failure would not normally be expected. As an example, photographs from a propane
tank truck failure caused in part by pre-existing cracks are shown in Fig. 8.1. Where cracks are
difficult to avoid, a special methodology called fracture mechanics can be used to aid in selecting
materials and designing components to minimize the possibility of fracture.

334
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Figure 8.1 Photographs from a propane tank truck that exploded due to fracture from
initial environmental cracks in welds. Typical initial cracks are shown from a region that did
not participate in the final failure. (Photos courtesy of H. S. Pearson, Pearson Testing Labs,
Marietta, GA, lower left, upper and lower right, published in [Pearson 86]; copyright
c© ASTM; reprinted with permission.)

In addition to cracks themselves, other types of flaws that are cracklike in form may easily
develop into cracks, and these need to be treated as if they were cracks. Examples include deep
surface scratches or gouges, voids in welds, inclusions of foreign substances in cast and forged
materials, and delaminations in layered materials. For example, a photograph of a crack starting
from a large inclusion in the wall of a forged steel artillery tube is shown in Fig. 8.2.
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Figure 8.2 Crack (light area) growing from a large nonmetallic inclusion (dark area within)
in an AISI 4335 steel artillery tube. The inclusion was found by inspection, and the tube was
not used in service, but rather was tested under cyclic loading to study its behavior. (Photo
courtesy of J. H. Underwood, U.S. Army Armament RD&E Center, Watervliet, NY.)

The study and use of fracture mechanics is of major engineering importance simply because
cracks or cracklike flaws occur more frequently than we might at first think. For example, the
periodic inspections of large commercial aircraft frequently reveal cracks, sometimes numerous
cracks, that must be repaired. Cracks or cracklike flaws also commonly occur in ship structures,
bridge structures, pressure vessels and piping, heavy machinery, and ground vehicles. They are also
a source of concern for various parts of nuclear reactors.

Prior to the development of fracture mechanics in the 1950s and 1960s, specific analysis
of cracks in engineering components was not possible. Engineering design was based primarily
on tension, compression, and bending tests, along with failure criteria for nominally uncracked
material—that is, the methods discussed in Chapters 4 and 7. Such methods automatically include
the effects of the microscopic flaws that are inherently present in any sample of material. But they
provide no means of accounting for larger cracks, so their use involves the implicit assumption
that no unusual cracks are present. Notch-impact tests, as described in Section 4.8, do represent
an attempt to deal with cracks. These tests provide a rough guide for choosing materials that resist
failure due to cracks, and they aid in identifying temperatures where particular materials are brittle.
But there is no direct means of relating the fracture energies measured in notch-impact tests to the
behavior of an engineering component.

In contrast, fracture mechanics provides materials properties that can be related to component
behavior, allowing specific analysis of strength and life as limited by various sizes and shapes of
cracks. Hence, it provides a basis for choosing materials and design details so as to minimize the
possibility of failure due to cracks.

Effective use of fracture mechanics requires inspection of components, so that there is some
knowledge of what sizes and geometries of cracks are present or might be present. For example,
periodic inspections are commonly performed on large aircraft and bridges so that a crack cannot
grow to a dangerous size before it is found and repaired. Methods of inspection for cracks include
not only simple visual examination, but also sophisticated means such as X-ray photography and
ultrasonics. (In the latter method, reflections of high-frequency sound waves are used to reveal the
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presence of a crack.) Repairs necessitated by cracks may involve replacing a part or modifying it,
as by machining away a small crack to leave a smooth surface, or by reinforcing the cracked region
in some manner.

In this chapter, we will introduce fracture mechanics and study its application to failure under
static loading. Later, in Chapter 11, we will consider growth of cracks due to cyclic loading.

8.2 PRELIMINARY DISCUSSION

Before introducing the details of fracture mechanics, it is useful to make some observations
concerning the general nature of cracks and their effects.

8.2.1 Cracks as Stress Raisers

Consider an elliptical hole in a plate of material, as illustrated in Fig. 8.3(a). For purposes of
discussion, the hole is assumed to be small compared with the width of the plate and to be aligned
with its major axis perpendicular to the direction of a uniform stress, S, applied remotely. The
uniform stress field is altered in the neighborhood of the hole, as illustrated for one particular case
in Fig. 8.3(b).

The most notable effect of the hole is its influence on the stress σy parallel to S. Far from the
hole, this stress is equal to S. If examined along the x-axis of (b), the value of σy rises sharply near
the hole and has a maximum value at the edge of the hole. This maximum value depends on the
proportions of the ellipse and its tip radius ρ:
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Figure 8.3 Elliptical hole in a wide plate under remote uniform tension, and the stress
distribution along the x-axis near the hole for one particular case.
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A stress concentration factor for the ellipse can be defined as the ratio of the maximum stress to the
remote stress: kt = σy/S.

Consider a narrow ellipse where the half-height d approaches zero, so that the tip radius ρ also
approaches zero, which corresponds to an ideal slitlike crack. In this case, σy becomes infinite, as
does kt . Hence, a sharp crack causes a severe concentration of stress and is special in that the stress
is theoretically infinite if the crack is ideally sharp.

8.2.2 Behavior at Crack Tips in Real Materials

An infinite stress cannot, of course, exist in a real material. If the applied load is not too high,
the material can accommodate the presence of an initially sharp crack in such a way that the
theoretically infinite stress is reduced to a finite value. This is illustrated in Fig. 8.4. In ductile
materials, such as many metals, large plastic deformations occur in the vicinity of the crack tip.
The region within which the material yields is called the plastic zone. Intense deformation at the
crack tip results in the sharp tip being blunted to a small, but nevertheless nonzero, radius. Hence,
the stress is no longer infinite, and the crack is open near its tip by a finite amount, δ, called the
crack-tip opening displacement (CTOD).

In other types of material, different behaviors occur that have a similar effect of relieving the
theoretically infinite stress by modifying the sharp crack tip. In some polymers, a region containing
elongated voids develops, with a fibrous structure bridging the crack faces, which is called a craze
zone. In brittle materials such as ceramics, a region containing a high density of tiny cracks may
develop at the crack tip.

In all three cases, the crack tip experiences intense deformation and develops a finite separation
near its tip. The very high stress that would ideally exist near the crack tip is spread over a larger
region and is said to be redistributed. A finite value of stress that can be resisted by the material thus

x
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δ
ρ

plastic zone

metal

2ro

ceramic

polymer

δ

δ

real crack
ideal crack

Figure 8.4 Finite stresses and nonzero radii at tips of cracks in real materials. A region of
intense deformation forms due to plasticity, crazing, or microcracking.
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exists near the crack tip, and the stresses somewhat farther away are higher than they would be for
an ideal crack.

8.2.3 Effects of Cracks on Strength

If the load applied to a member containing a crack is too high, the crack may suddenly grow and
cause the member to fail by fracturing in a brittle manner—that is, with little plastic deformation.
From the theory of fracture mechanics, a useful quantity called the stress intensity factor, K, can be
defined. Specifically, K is a measure of the severity of a crack situation as affected by crack size,
stress, and geometry. In defining K , the material is assumed to behave in a linear-elastic manner,
according to Hooke’s law, Eq. 5.26, so that the approach being used is called linear-elastic fracture
mechanics (LEFM).

A given material can resist a crack without brittle fracture occurring as long as this K is below
a critical value Kc, called the fracture toughness. Values of Kc vary widely for different materials
and are affected by temperature and loading rate, and secondarily by the thickness of the member.
Thicker members have lower Kc values until a worst-case value is reached, which is denoted K I c

and called the plane strain fracture toughness. Hence, K I c is a measure of a given material’s ability
to resist fracture in the presence of a crack. Some values of this property are given for various
materials in Tables 8.1 and 8.2.

For example, consider a crack in the center of a wide plate of stressed material, as illustrated in
Fig. 8.5. In this case, K depends on the remotely applied stress S and the crack length a, measured
from the centerline as shown:

K = S
√

πa (a  b) (8.2)

This equation is accurate only if a is small compared with the half-width b of the member. For a
given material and thickness with fracture toughness Kc, the critical value of remote stress necessary
to cause fracture is thus

Sc = Kc√
πa

(8.3)

Hence, longer cracks have a more severe effect on strength than do shorter ones, as might be
expected.

Some test data illustrating the effect of different crack lengths on strength are shown in
Fig. 8.5. These particular data correspond to 2014-T6 aluminum plates of thickness t = 1.5 mm,
tested at −195◦C. Note that the failure data fall far below the material’s yield strength σo. This
behavior cannot be explained merely by yielding and the loss of cross-sectional area due to the
crack, which is indicated by the dotted line. (See Fig. A.16(a), which gives the dotted line as
S = P/(2bt) = σo(1 − a/b).) Substituting the Kc value for this case into Eq. 8.3 gives the solid
curve, which agrees quite well with most of the data, indicating a degree of success for LEFM.
However, as the stress S approaches the material’s yield strength σo, the data fall below Eq. 8.3, as
shown by the dashed line. This deviation occurs because Eq. 8.2 assumes that linear-elastic behavior
is exhibited and so is accurate only if the plastic zone is small, which is not the case for the failures
at high stresses for short cracks.
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Table 8.1 Fracture Toughness and Corresponding Tensile
Properties for Representative Metals at Room Temperature

Toughness Yield Ultimate Elong. Red. Area
Material K I c σo σu 100ε f %R A

MPa
√

m MPa MPa % %
(ksi

√
in) (ksi) (ksi)

(a) Steels

AISI 1144 66 540 840 5 7
(60) (78) (122)

ASTM A470-8 60 620 780 17 45
(Cr-Mo-V) (55) (90) (113)

ASTM A517-F 187 760 830 20 66
(170) (110) (121)

AISI 4130 110 1090 1150 14 49
(100) (158) (167)

18-Ni maraging 123 1310 1350 12 54
air melted (112) (190) (196)

18-Ni maraging 176 1290 1345 15 66
vacuum melted (160) (187) (195)

300-M 152 1070 1190 18 56
650◦C temper (138) (156) (172)

300-M 65 1740 2010 12 48
300◦C temper (59) (252) (291)

(b) Aluminum and Titanium Alloys (L-T Orientation)

2014-T651 24 415 485 13 —
(22) (60) (70)

2024-T351 34 325 470 20 —
(31) (47) (68)

2219-T851 36 350 455 10 —
(33) (51) (66)

7075-T651 29 505 570 11 —
(26) (73) (83)

7475-T7351 52 435 505 14 —
(47) (63) (73)

Ti-6Al-4V 66 925 1000 16 34
annealed (60) (134) (145)

Sources: Data in [Barsom 87] p. 172, [Boyer 85] pp. 6.34, 6.35, and 9.8,
[MILHDBK 94] pp. 3.10–3.12 and 5.3, and [Ritchie 77].
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Table 8.2 Fracture Toughness of Some Polymers and Ceramics at Room Temperature

K I c K I cMaterial Material
Polymers1 MPa

√
m (ksi

√
in) Ceramics2 MPa

√
m (ksi

√
in)

ABS 3.0 (2.7) Soda-lime glass 0.76 (0.69)

Acrylic 1.8 (1.6) Magnesia, MgO 2.9 (2.6)

Epoxy 0.6 (0.55) Alumina, Al2O3 4.0 (3.6)

PC 2.2 (2.0) Al2O3, 15% ZrO2 10 (9.1)

PET 5.0 (4.6) Silicon carbide 3.7 (3.4)

Polyester 0.6 (0.55) SiC
PS 1.15 (1.05) Silicon nitride 5.6 (5.1)

PVC 2.4 (2.2) Si3N4

PVC 3.35 (3.05) Dolomitic limestone 1.30 (1.18)

rubber mod. Westerly granite 0.89 (0.81)

Concrete 1.19 (1.08)

Notes: 1,2See Tables 4.3 and 3.10, respectively, for additional properties of similar materials.
Sources: Data in [ASM 88] p. 739, [Karfakis 90], [Kelly 86] p. 376, [Shah 95] p. 176, and
[Williams 87] p. 243.
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Figure 8.5 Failure data for cracked plates of 2014-T6 Al tested at −195◦C. (Data from
[Orange 67].)
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8.2.4 Effects of Cracks on Brittle Versus Ductile Behavior

Consider the crack length where the failure stress predicted by LEFM equals the yield strength,
identified as at in Fig. 8.5. Substituting Sc = σo into Eq. 8.3 gives its value:

at = 1

π

(
Kc

σo

)2

(8.4)

On an approximate basis, cracks longer than this transition crack length will cause the strength to
be limited by brittle fracture, rather than by yielding. Thus, if cracks of length around or greater than
the at of a given material are likely to be present, fracture mechanics should be employed in design.
Conversely, for crack lengths below at , yielding dominated behavior is expected, so that there will
be little or no strength reduction due to the crack.

Note that Eq. 8.4 is based on the assumed case of a wide, center-cracked plate, and that at

will differ for other geometric cases. It is nevertheless useful to employ at values from Eq. 8.4 as
representative quantities in comparing different materials.

Consider two materials, one with low σo and high Kc, and the other with an opposite
combination, namely, high σo and low Kc. These combinations of properties cause a relatively large
at for the low-strength material, but a small at for the high-strength one. Compare Figs. 8.6(a)
and (b). Thus, cracks of moderate size may not affect the low-strength material, but they may
severely limit the usefulness of the high-strength one. Such an inverse trend between yield
strength and fracture toughness is fairly common within any given class of materials. Low strength
in a tension test is usually accompanied by high ductility and also by high fracture toughness.
Conversely, high strength is usually associated with low ductility and low fracture toughness. Trends
of this nature for AISI 1045 steel are illustrated in Fig. 8.7.
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Figure 8.6 Transition crack length at for a low-strength, high-toughness material (a), and
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in tension σut is controlled by brittle fracture.



Section 8.2 Preliminary Discussion 343

3000

2000

1000

00

200

400
AISI 1045 steel

σ

σ σ

f

o uS
tr

es
s,

 k
si

Tr
ue

 F
ra

ct
ur

e 
S

tr
ai

n
F

ra
ct

ur
e 

To
ug

hn
es

s,

M
P

a 
 m

M
P

a

0.8

0.4

0

ε f

200 400 600 800

20

40

60

80

K
Ic

80

60

40

20

0

ks
i  

in

0.2

0.6

1.0

100

300

500

Brinell Hardness, HB

0

Figure 8.7 Comparison of properties from tension tests and fracture toughness tests for
AISI 1045 steel, all plotted as functions of hardness, which is varied by heat treatment.
(Illustration courtesy of R. W. Landgraf, Howell, MI.)

The relative sensitivity to flaws associated with different at values for different materials helps
to explain a number of sudden engineering failures that occurred in the 1950s and 1960s. New high-
strength materials, such as steels and aluminum alloys developed for the aerospace industry, had
sufficiently low fracture toughness that they were sensitive to rather small cracks. One example was
the British-made Comet passenger airliner, two of which failed at high altitude in the 1950s, with
considerable loss of life in the resulting crashes. Other examples are the late 1950s failures of rocket
motor cases for the Polaris missile, and the F-111 aircraft crash in 1969. Such failures accelerated
the development of fracture mechanics and led to its adoption by the U.S. Air Force as the basis of
their damage tolerant design requirements.

Also, some apparently mysterious brittle failures in normally ductile steels occurred in the
1940s and earlier. These were finally understood years later to be due to cracks that were sufficiently
large to exceed even the relatively large at value of the ductile steel. One example of this is the
failure in Boston in 1919 of a large tank, about 90 feet in diameter and 50 feet high, that contained
2 million gallons of molasses. Other examples include welded Liberty Ships and tankers that broke
completely in two during and shortly after World War II, and other ship and bridge failures.
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8.2.5 Internally Flawed Materials

As already discussed in earlier chapters, many brittle materials naturally contain small cracks or
cracklike flaws. This is generally true for glass, natural stone, ceramics, and some cast metals. The
interpretation can be made that these materials have a high yield strength, but this strength can never
be reached under tensile loading because of earlier failure due to small flaws and a low fracture
toughness. Such a viewpoint is supported by the fact that brittle materials have considerably higher
strengths under compression than under tension, because the flaws simply close under compression
and thus have a much reduced effect.

Denoting the inherent flaw size in such a material as ai , Eq. 8.3 gives the ultimate strength in
tension:

σut = Kc√
πai

(8.5)

This situation is illustrated in Fig. 8.6(b). New cracks of size around or below ai have little effect,
as they are no worse than the flaws already present. The material is thus said to be internally
flawed. Also, since the flaws actually present may vary considerably from sample to sample, there
is generally a large statistical scatter in σut .

8.3 MATHEMATICAL CONCEPTS

A cracked body can be loaded in any one or a combination of the three displacement modes shown
in Fig. 8.8. Mode I is called the opening mode and consists of the crack faces simply moving apart.
For Mode II, the sliding mode, the crack faces slide relative to one another in a direction normal to
the leading edge of the crack. Mode III, the tearing mode, also involves relative sliding of the crack
faces, but now the direction is parallel to the leading edge. Mode I is caused by tension loading,
whereas the other two are caused by shear loading in different directions, as shown. Most cracking
problems of engineering interest involve primarily Mode I and are due to tension stresses, so we
will limit most of our discussion to this case.

Energy methods were employed in the earliest work on fracture mechanics, reported by
A. A. Griffith in 1920. This approach is expressed by a concept called the strain energy release
rate, G. Later work led to the concept of a stress intensity factor, K , and to the proof that G and K
are directly related.

x

z

y
Mode I

y

x

z

Mode III
x

z

y
Mode II

Figure 8.8 The basic modes of crack surface displacement. (Adapted from [Tada 85];
used with permission.)
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8.3.1 Strain Energy Release Rate, G

Consider a cracked member under a Mode I force P , where the crack has length a, as shown in
Fig. 8.9. Assume that the behavior of the material is linear-elastic, which requires that the force
versus displacement behavior also be linear. In a manner similar to a linear spring, potential energy
U is stored in the member, as a result of the elastic strains throughout its volume, as shown in
Fig. 8.9(a). Note that v is the displacement at the point of loading and U = Pv/2 is the triangular
area under the P-v curve.

If the crack moves ahead by a small amount da while the displacement is held constant, the
stiffness of the member decreases, as shown by (b). This results in the potential energy decreasing
by an amount dU ; that is, U decreases due to a release of this amount of energy. The rate of change
of potential energy with increase in crack area is defined as the strain energy release rate

G = −1

t

dU

da
(8.6)

Here, the change in crack area is t (da), and the negative sign causes G to have a positive value.
Thus, G characterizes the energy per unit crack area required to extend the crack, and as such is
expected to be the fundamental physical quantity controlling the behavior of the crack.

In the original concept by Griffith, all of the potential energy released was thought to be used
in the creation of the new free surface on the crack faces. This is approximately true for materials
that crack with essentially no plastic deformation, as for the glass tested by Griffith. However, in
more ductile materials, a majority of the energy may be used in deforming the material in the plastic
zone at the crack tip. In applying G to metals in the 1950s, G. R. Irwin showed that the concept was
applicable even under these circumstances if the plastic zone was small.

daa

t
L

P

P

(a) (b)

dU

U – dU

v

a + da

a

G = –
1
t

dU
da

U

v = ΔL

P

Figure 8.9 Potential energies for two neighboring crack lengths and the energy change dU
used to define the strain energy release rate G.
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As listed in the References, Barsom (1987) is a collection of papers reporting some of the early
work on fracture mechanics by Griffith, Irwin, and others.

8.3.2 Stress Intensity Factor, K

The stress intensity factor concept, which has already been introduced, needs to be defined in a more
complete manner. In general terms, K characterizes the magnitude (intensity) of the stresses in the
vicinity of an ideally sharp crack tip in a linear-elastic and isotropic material.

A coordinate system for describing the stresses in the vicinity of a crack is shown in Fig. 8.10.
The polar coordinates r and θ lie in the x-y plane, which is normal to the plane of the crack, and the
z-direction is parallel to the leading edge of the crack. For any case of Mode I loading, the stresses
near the crack tip depend on r and θ as follows:

σx = K I√
2πr

cos
θ

2

[
1 − sin

θ

2
sin

3θ

2

]
+ · · · (a)

σy = K I√
2πr

cos
θ

2

[
1 + sin

θ

2
sin

3θ

2

]
+ · · · (b)

τxy = K I√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+ · · · (c)

σz = 0 (plane stress) (d)

σz = ν
(
σx + σy

)
(plane strain; εz = 0) (e)

τyz = τzx = 0 (f)

(8.7)

σ
τ

τ
τ

σ
σ

θ

x

xy

yz

zx

z

y

r

leading edge
of the crack

y

x

z

Figure 8.10 Three-dimensional coordinate system for the region of a crack tip. (Adapted
from [Tada 85]; used with permission.)
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These equations are derived on the basis of the theory of linear elasticity, as described in any
standard text on that subject, and they are said to describe the stress field near the crack tip. Higher
order terms that are not of significant magnitude near the crack tip are omitted. These equations
predict that the stresses rapidly increase near the crack tip. Confirmation of this characteristic of the
stress field is provided by a photograph of stress contours in a clear plastic specimen in Fig. 8.11.

If the cracked member is relatively thin in the z-direction, plane stress with σz = 0 applies.
However, if it is relatively thick, a more reasonable assumption may be plane strain, εz = 0, in
which case Hooke’s law, specifically Eq. 5.26(c), requires that σz depend on the other stresses and
Poisson’s ratio, ν, according to Eq. 8.7(e).

The nonzero stress components in Eq. 8.7 are seen to all approach infinity as r approaches
zero—that is, upon approaching the crack tip. Note that this is specifically caused by these stresses
being proportional to the inverse of

√
r . Thus, a mathematical singularity is said to exist at the crack

tip, and no value of stress at the crack tip can be given. Also, all of the nonzero stresses of Eq. 8.7
are proportional to the quantity KI , and the remaining factors merely give the variation with r and
θ . Hence, the magnitude of the stress field near the crack tip can be characterized by giving the

Figure 8.11 Contours of maximum in-plane shear stress around a crack tip. These were
formed by the photoelastic effect in a clear plastic material. The two thin white lines
entering from the left are the edges of the crack, and its tip is the point of convergence
of the contours. (Photo courtesy of C. W. Smith, Virginia Tech, Blacksburg, VA.)
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value of the factor K I . On this basis, K I is a measure of the severity of the crack. Its definition in a
formal mathematical sense is

K I = lim
r,θ→0

(
σy

√
2πr

)
(8.8)

It is generally convenient to express K I as

K I = F S
√

πa (8.9)

where the factor F is needed to account for different geometries. For example, if a central crack
in a plate is relatively long, Eq. 8.2 needs to be modified, as the proximity of the specimen edge
causes F to increase above unity. The quantity F is a function of the ratio a/b, as shown in Fig. 8.12,
curve (a). Curves (b) and (c) show the variation of F with a/b for two additional cases of cracked
members under tension, specifically, for double-edge-cracked plates and for single-edge-cracked
plates.

8.3.3 Additional Comments on K and G

For loading in Mode II or III, analogous, but distinct, stress field equations exist, and stress
intensities K I I and K I I I can be defined in a manner analogous to K I . However, most practical
applications involve Mode I. As a convenience, the subscript on K I will be dropped, and K without
such a subscript is understood to denote K I , that is, K = K I .

The quantities G and K can be shown to be related as follows:

G = K 2

E ′ (8.10)

where E ′ is obtained from the material’s elastic modulus E and Poisson’s ratio ν:

E ′ = E (plane stress; σz = 0)

E ′ = E

1 − ν2
(plane strain; εz = 0)

(8.11)

Equation 8.10 and the dependence of G on load versus displacement behavior, Eq. 8.6, can be
exploited to evaluate K . Slopes on P-v curves, as in Fig. 8.9, are employed in a procedure called
the compliance method. See any book on fracture mechanics or Tada (2000) for details.

Since G and K are directly related according to Eq. 8.10, only one of these concepts is
generally needed. We will primarily employ K, which is consistent with most engineering-oriented
publications on fracture mechanics.

8.4 APPLICATION OF K TO DESIGN AND ANALYSIS

For fracture mechanics to be put to practical use, values of stress intensity K must be determined
for crack geometries that may exist in structural components. Extensive analysis work has been
published, and also collected into handbooks, giving equations or plotted curves that enable K
values to be calculated for a wide variety of cases. A special section of the References at the
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Figure 8.12 Stress intensity factors for three cases of cracked plates under tension.
Geometries, curves, and equations labeled (a) all correspond to the same case, and similarly
for (b) and (c). (Equations as collected by [Tada 85] pp. 2.2, 2.7, and 2.11.)
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end of this chapter lists several such handbooks. What will be done in this portion of the chapter is
to give certain fundamental equations for calculating K and also examples of the type of information
available from handbooks.

8.4.1 Mathematical Forms Used to Express K

It has already been noted that K can be related to applied stress and crack length by an equation of
the form

K = F Sg
√

πa, F = F(geometry, a/b) (8.12)

The quantity F is a dimensionless function that depends on the geometry and loading configuration,
and usually also on the ratio of the crack length to another geometric dimension, such as the member
width or half-width, b, as defined for three cases in Fig. 8.12. Additional examples for F are given in
Figs. 8.13 and 8.14, specifically, for bending of single-edge-cracked plates and for various loadings
on a circumferentially cracked round bar. In these examples, crack length a is measured from either
the surface or the centerline of loading, and the width dimension b is consistently defined as the
maximum possible crack length, so that for a/b = 1, the member is completely cracked. For each
case in Figs. 8.12 to 8.14, polynomials or other mathematical expressions are given that may be
employed to calculate F within a few percent for any α = a/b. Where trigonometric functions
appear, the arguments for these are in units of radians.

Applied forces or bending moments are often characterized by determining a nominal or
average stress. In fracture mechanics, it is conventional to use the gross section nominal stress,
Sg , calculated under the assumption that no crack is present. Note that this convention is followed
for each case in Figs. 8.12 to 8.14. The subscript g is added merely to avoid any possibility of
confusion, as net section stresses, Sn , based on the remaining uncracked area, could be used. The
use of Sg rather than Sn is convenient, as the effect of crack length is then confined to the F and√

a factors. In general, the manner of defining nominal stress S is arbitrary, but consistency with
F is necessary. The function F must be redefined and its values changed if the definition of S is
changed, and also if the definition of a or b is changed.

It is sometimes convenient to work directly with applied loads (forces), with the following
equation being useful for planar geometries:

K = FP
P

t
√

b
, FP = FP (geometry, a/b) (8.13)

Here, P is force, t is thickness, and b is the same as before. The function FP is a new dimensionless
geometry factor. Examples are given in Figs. 8.15 and 8.16. Equating K from Eqs. 8.12 and 8.13
allows FP to be related to the previously defined F :

FP = F
Sgt

√
πab

P
(8.14)

This relationship can be used to obtain the function FP for any of the cases where F is given in
Figs. 8.12 to 8.14. Expressing K in terms of FP has the advantage that the dependence on crack
length is confined to the dimensionless function FP .
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Figure 8.13 Stress intensity factors for two cases of bending. Geometries, curves, and
equations labeled (a) all correspond to the same case, and similarly for (b). Case (b) with
h/b = 2 is the ASTM standard bend specimen. (Equations from [Tada 85] p. 2.14, and
[ASTM 97] Std. E399.)
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K = FSg    πa

α = a/b

β = 1 – α
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b

(a) Axial load P: Sg = P

πb2
, F = 1.12 (10%, a/b ≤ 0.21)

F = 1

2β1.5

[
1 + 1

2
β + 3

8
β2 − 0.363β3 + 0.731β4

]

(b) Bending moment M: Sg = 4M

πb3
, F = 1.12 (10%, a/b ≤ 0.12)

F = 3

8β2.5

[
1 + 1

2
β + 3

8
β2 + 5

16
β3 + 35

128
β4 + 0.537β5

]

(c) Torsion T, K = K III: Sg = 2T

πb3
, F = 1.00 (10%, a/b ≤ 0.09)

F = 3

8β2.5

[
1 + 1

2
β + 3

8
β2 + 5

16
β3 + 35

128
β4 + 0.208β5

]

Figure 8.14 Stress intensities for a round shaft with a circumferential crack, including limits
on the constant F for 10% accuracy and expressions for any α = a/b. For torsion (c), the stress
intensity is for the shear Mode III. (Equations from [Tada 85] pp. 27.1, 27.2, and 27.3.)

8.4.2 Discussion

Mathematically closed-form solutions for K exist primarily for a/b = 0, that is, for members
that are large (ideally infinite) compared with the crack. However, these solutions are often
reasonably accurate to surprisingly large values of a/b. Corresponding equations for K are given
in Figs. 8.12 to 8.15, along with limits on α = a/b for 10% accuracy. For example, for a
center-cracked plate, Fig. 8.12(a) indicates that F = 1 is within 10% for a/b ≤ 0.4. As a second
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Figure 8.15 Stress intensity factor for forces applied to the faces of a central crack in a plate
with h/b ≥ 2. A simple expression is given for FP that is within 10% for a limited range of
α = a/b, as is an expression valid for any α. (Equations from [Tada 85] pp. 2.22 and 2.23.)
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Figure 8.16 Stress intensity factor for the ASTM standard compact specimen, as determined
from FP = FP(α), where α = a/b. (Equation from [Srawley 76].)

example, for a single-edge-cracked plate, Fig. 8.12(c) indicates that F = 1.12 is within 10%
for a/b ≤ 0.13.

An edge-cracked tension member, Fig. 8.12(c), can be thought of as being similar to a center-
cracked plate (a) that has been split in half. Since the crack dimension a is consistently defined
for the two cases, the additional relatively modest factor of 1.12 is associated with the effect of
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the new free surface. In fact, for Mode I cracks with loading applied far from the crack, this same
factor F = 1.12 applies, for small a/b, to any through-thickness surface crack in a plate and to any
circumferential surface crack in a round bar. Thus, it applies to all of the surface crack cases of
Figs. 8.12 to 8.14, with the exception of the Mode III case of Fig. 8.14(c).

For relatively long cracks where the simple infinite body solutions become inaccurate, the
polynomial-type equations for calculating F or FP are needed. These were obtained by various
researchers and handbook authors by performing numerical analysis for a number of relative crack
lengths a/b. Mathematical expressions F = F(a/b) or FP = FP (a/b) were then fitted that give
close agreement with the calculated values. Such fitted expressions are, of course, valid only for the
range of a/b covered in analysis, but these are now often available for all possible a/b from zero
to unity, as for each case in Figs. 8.12 to 8.15. (In Fig. 8.16, note that the expression is valid for
0.2 ≤ a/b ≤ 1.) Some of the numerical methods that apply to such analysis are the finite element,
boundary integral equation, and weight function methods. See the book by Anderson (2005) for an
introductory discussion of numerical analysis of cracked bodies.

In Figs. 8.12 to 8.14, with the exception of Fig. 8.13(b), the equations apply for uniform,
bending, or torsional stresses applied an infinite distance h from the crack. However, the errors for
finite h are generally negligible at h/b = 3 and begin to be significant (>5%) only at h/b around
1 or 2, which is indicated where the details are known.

Example 8.1
A center-cracked plate, as in Fig. 8.12(a), has dimensions b = 50 mm, t = 5 mm, and large h;
a force of P = 50 kN is applied.

(a) What is the stress intensity factor K for a crack length of a = 10 mm?
(b) For a = 30 mm?
(c) What is the critical crack length ac for fracture if the material is 2014-T651 aluminum?

Solution (a) To calculate K for a = 10 mm, using Fig. 8.12(a), we need

Sg = P

2bt
= 50,000 N

2(50 mm)(5 mm)
= 100 MPa, α = a

b
= 10 mm

50 mm
= 0.200

Since α ≤ 0.4, it is within 10% to use F = 1. Thus,

K = Sg
√

πa = (100 MPa)
√

π(0.010 m) = 17.7 MPa
√

m Ans.

where crack length a is entered in units of meters to obtain the desired units for K of MPa
√

m.
(b) For a = 30 mm, we have α = a/b = (30 mm)/(50 mm) = 0.600. This does not satisfy

α ≤ 0.4, so the more general expression for F from Fig. 8.12(a) is needed:

F = 1 − 0.5α + 0.326α2

√
1 − α

= 1.292

K = F Sg
√

πa = 1.292 (100 MPa)
√

π(0.030 m) = 39.7 MPa
√

m Ans.
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(c) Table 8.1 gives K I c = 24 MPa
√

m for 2014-T651 Al. Since ac is not known,
F cannot be determined directly. First, assume that α ≤ 0.4 is satisfied, in which case
F ≈ 1. Then

KI c ≈ Sg
√

πac

Solving for ac gives

ac ≈ 1

π

(
K I c

Sg

)2

= 1

π

(
24 MPa

√
m

100 MPa

)2

= 0.0183 m = 18.3 mm Ans.

This corresponds to α = ac/b = (18.3 mm)/(50 mm) = 0.37, which satisfies α ≤ 0.4, so that
the estimated F ≈ 1 is acceptable and the result obtained is reasonably accurate.

If it is not desired to use the 10% approximation on F , an iterative solution is needed.
Toward that end, substitute the expression for F into the equation for K :

K = 1 − 0.5(a/b) + 0.326(a/b)2

√
1 − (a/b)

Sg
√

πa

Then, using the values K = K I c = 24 MPa
√

m, b = 0.050 m, and Sg = 100 MPa, solve for a
by trial and error, Newton’s method, or another numerical procedure, as implemented in various
widely available computer software. The result is

ac = 0.01627 m = 16.3 mm Ans.

which value is seen to differ somewhat from the previous one. (The actual value of F that
corresponds to this ac is Fc = 1.061.)

A graphical procedure could also be used to obtain this result: Select a number of values
of a, and for each of these calculate α = a/b . Then calculate F by using the polynomial-type
expression as in (b), and calculate K , obtaining values such as those in Table E8.1. Next, plot
the resulting values of K versus a as in Fig. E8.1. Finally, enter this graph with the desired value
of K = K I c = 24 MPa

√
m, and read the corresponding crack length as accurately as the graph

permits, giving ac = 16.3 mm (Ans.).

Table E8.1

Calc. No. a α = a/b F K = F Sg
√

πa
mm MPa

√
m

1 10 0.20 1.021 18.1
2 15 0.30 1.051 22.8
3 20 0.40 1.100 27.6
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Figure E8.1

Comment For (c), an iterative or graphical solution is optional in this case, but is necessary
in other cases where a limit on α for 10% accuracy in K is exceeded.

8.4.3 Safety Factors

Where cracks may be present, safety factors against yielding, as examined in Chapter 7, need to be
supplemented by safety factors against brittle fracture. Depending on the particular situation, either
yielding or fracture might control the design.

Since stress Sg and K are proportional according to K = F Sg
√

πa, a safety factor X against
fracture for stress can be accomplished by applying the same factor to K . Hence, if Sg and a are
the stress and crack length that are expected to occur in actual service, the safety factor on K, and
thus on Sg , is

X K = K I c

K
= K I c

F Sg
√

πa
(8.15)

It may also be useful to compare the service crack length a with the crack length ac that is expected
to cause failure at the service stress Sg . The value of ac is available from

K I c = Fc Sg
√

πac (8.16)

where Fc is evaluated at ac. Combining the previous two equations leads to the following safety
factor on crack length:

Xa = ac

a
=
(

F

Fc
X K

)2

(8.17)

Because X K is squared, safety factors on crack length must be rather large to achieve reasonable
safety factors on K and stress.
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For example, if F does not change very much between a and ac, so that F ≈ Fc, then
Eq. 8.17 reduces to Xa = X2

K , so that X K = √
Xa . Hence, a safety factor of Xa = 4 is needed

to achieve X K = 2, and Xa = 9 is needed to achieve X K = 3. This is very important in design, as
it means that crack lengths must be guaranteed to be quite small compared with the critical value ac

for fracture.
If the crack length expected to occur in actual service is relatively small, safety factors against

yielding may be calculated simply by comparing the service stress Sg with the material’s yield
strength σo:

Xo = σo/Sg (8.18)

However, for applied stresses that are multiaxial, Sg must be replaced by an effective stress σ̄ for one
of the yield criteria of Chapter 7. Since Sg is the stress on the gross area, the preceding calculation
gives the safety factor against yielding as if no crack were present.

A more advanced method for calculating the safety factor against yielding is to compare the
applied load with the fully plastic limit load. The latter is an estimate of the load necessary to
cause yielding over the entire cross section that remains after subtracting the crack area, so that
the effect of the crack in reducing the cross-sectional area is included. See Section A.7.2 for
more explanation, and note that Fig. A.16 gives fully plastic forces and moments, Po and Mo, for
some simple cases of cracked members. Hence, this type of safety factor against yielding is given
by one of

X ′
o = Po/P, X ′

o = Mo/M (8.19)

as may apply for a given case, where P and M are values of force and moment for actual service.
Values chosen for safety factors must reflect the consequences of failure and whether or not

the values of the variables that affect the calculation are well known, as well as sound engineering
judgment. If possible, statistical information should be employed for variables such as stress, crack
size and shape, and materials properties. (See Section B.4 for a discussion of statistical variation in
materials properties.) Also, minimum safety factors may be set by design code, company policy,
or governmental regulation. Where the applied loads are well known and there are no unusual
circumstances, reasonable values for safety factors in stress are three against fracture and two against
yielding. The larger value for fracture is suggested because of the greater statistical scatter in K I c

compared with yield strength, and also because brittle fracture is a more sudden, catastrophic mode
of failure than yielding.

Example 8.2
Consider the situation of Ex. 8.1, where a center-cracked plate of 2014-T651 aluminum, with
dimensions b = 50 and t = 5 mm, is subjected in service to a force of P = 50 kN.

(a) What is the largest crack length a that can be permitted for a safety factor against
fracture of 3.0 in stress?

(b) What safety factor on crack length results from the safety factor in stress of (a)?
(c) What is the safety factor against yielding?
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Solution (a) Equation 8.15 gives the highest value of K that can be allowed:

K = K I c

X K
= 24 MPa

√
m

3.0
= 8.0 MPa

√
m

Hence, this K is employed to obtain the largest crack length that can be permitted:

K = F Sg
√

πa, 8.0 MPa
√

m = F(100 MPa)
√

πa

Assuming that F = 1 is sufficiently accurate, solving for a gives

a = 2.04 mm Ans.

Since α = a/b = (2.04 mm)/(50 mm) = 0.0408, we are well within the limit for 10% accuracy
on K , and this result is reasonably accurate. If F is allowed to vary, as in Ex. 8.1(c), essentially
the same result is obtained: a = 2.03 mm (Ans.).

(b) In Ex. 8.1(c), the crack length causing failure at the service stress is calculated to be
ac = 16.3 mm. Comparing this with the value of a from part (a) of this example gives the safety
factor on crack length:

Xa = ac/a = (16.3 mm)/(2.03 mm) = 8.03 Ans.

(c) The safety factor against yielding, calculated as if no crack is present, is given by Eq. 8.18
and is

Xo = σo/Sg = (415 MPa)/(100 MPa) = 4.15 Ans.

where the yield strength value is from Table 8.1. A more detailed calculation that uses the fully
plastic limit force as in Eq. 8.19 is

X ′
o = Po

P
= 2btσo(1 − a/b)

P
= 2(50 mm)(5 mm)(415 MPa)

50,000 N

(
1 − 2.03 mm

50 mm

)
= 3.98 Ans.

where the expression for Po is obtained from Fig. A.16(a), and P is the actual service force.

Comments The safety factor on crack length is rather large, as expected. Either of the safety
factors against yielding is higher than X K = 3.0, indicating that this member is closer to brittle
fracture that to yielding; that is, X K = 3.0 is the controlling safety factor.

Example 8.3
An engineering member made of titanium 6Al-4V (annealed) is a plate loaded in tension that
may have a crack in one edge, as shown in Fig. 8.12(c). The applied force is P = 55 kN, the
width is b = 40 mm, and the crack may be as long as a = 6 mm. If a safety factor of 3.0 in stress
is required, what minimum plate thickness t is required?
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Solution The stress intensity K = F Sg
√

πa must be below K I c by a safety factor X K = 3.0.
Noting this and substituting the expression for Sg from Fig. 8.12(c) gives

K = K I c

X K
= F

P

bt

√
πa,

66 MPa
√

m

3.0
= F

55,000 N

(40 mm)(t, mm)

√
π(0.006 m)

where K I c is from Table 8.1. Note that F = 1.12 with 10% accuracy up to α = 0.13. But α =
a/b = (6 mm)/(40 mm) = 0.15 is beyond this limit, so F must be calculated by substituting this
α into the appropriate polynomial-type expression. The result is

F = 0.265(1 − α)4 + 0.857 + 0.265α

(1 − α)3/2
= 1.283

Substituting this F and solving gives t = 11.01 mm (Ans.).
However, we need to check that the safety factor is also met for yielding. The fully plastic

limit force, from Fig. A.16(d), is

Po = btσo

[
−α + √

2α2 − 2α + 1
]

Po = (40 mm)(11.01 mm)(925 MPa)
[
−0.15 +

√
2(0.15)2 − 2(0.15) + 1

]
= 290,400 N

where the yield strength is from Table 8.1. Hence, the safety factor against yielding is

X ′
o = Po

P
= 290.4 kN

55 kN
= 5.28

which exceeds the required value, so the preceding result of t = 11.01 mm is the final answer.

8.5 ADDITIONAL TOPICS ON APPLICATION OF K

Following the basic treatment of the previous section, it is useful to consider some additional topics
related to the application of K to design and analysis. These topics include some special cracked
member configurations, superposition for handling combined loading, cracks inclined to the stress
direction, and also leak-before-break for pressure vessels.

8.5.1 Cases of Special Interest for Practical Applications

The handbooks listed in the References contain a wide variety of additional useful cases. These
include not only additional situations of cracked plates and shafts, but also cracked tubes, discs,
stiffened panels, etc., including three-dimensional cases.
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In practical applications, cracks having shapes that approximate a circle, half-circle, or quarter-
circle may occur, as illustrated in Fig. 8.17. Half-circular surface cracks as in (b) and (d) are
especially common. Evaluation of stress intensities for these complex three-dimensional cases is
aided by the existence of an exact solution for a circular crack of radius a in an infinite body under
uniform stress S:

K = 2

π
S
√

πa (8.20)

For embedded (internal) circular cracks, Fig. 8.17(a), this solution is still within 10% for members
of finite size, subject to the limits a/t < 0.5 and a/b < 0.5.

For half-circular surface cracks or quarter-circular corner cracks, and for a values that are
small compared with the other dimensions, the stress intensities are elevated compared with
Eq. 8.20 by a factor around 1.13 or 1.14, giving F values as shown in Fig. 8.17 for cases (b),
(c), and (d). These F values specifically apply for points where the crack front intersects the surface,
where K has its maximum value. They may be applied for either tension or bending, with 10%
accuracy, within the limits indicated. (Note that the factors of 1.13 or 1.14 on K , compared with
the circular crack case, are analogous to the previously discussed free surface factor of 1.12 for
cracks in flat plates.)

More detail is shown for the half-circular surface crack case in Fig. 8.18. The equations given
are based on the paper by Newman (1986), as fitted there to finite element analyses. Note that K is
affected by the proximity of the boundary in two directions and also varies around the periphery of
the crack; that is, K varies with both a/b and a/t and also with θ . Stresses for tension and bending,
St and Sb, respectively, are defined as in Fig. 8.17(b), and three functions fa , fb, and fw, are needed.
Figure 8.18 gives an equation for fw that is accurate for a/b < 0.5, where fw = 1 if either or both
of a/b and a/t are small. Also given are fa and fb for the surface points, θ = 0 and 180◦, and
for the deepest point, θ = 90◦. The θ variation is rather small, as shown in Fig. 8.18(b) for two
different a/t values. For small a/b and a/t , note that fw = fb = 1, giving fa = 1.144 at the surface
and fa = 1.04 at the deepest point. The former value corresponds to F = 1.144(2/π) = 0.728 in
Fig. 8.17(b).

An exact solution also exists for an elliptical crack in an infinite body under uniform stress.
With reference to Fig. 8.19(a), this solution is

K = S

√
πa

Q
fφ, fφ =

[(a

c

)2
cos2 φ + sin2 φ

]1/4

(a/c ≤ 1) (8.21)

where the angle φ specifies a particular location P around the elliptical crack front. The quantity Q
is called the flaw shape factor. It is given exactly by

√
Q = E(k) =

∫ π/2

0

√
1 − k2 sin2 β dβ, k2 = 1 −

(a

c

)2
(8.22)

E(k) is the standard elliptic integral of the second kind, values of which are given in most books
of mathematical tables and in analogous computer software packages. However, Q may be closely
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Figure 8.17 Stress intensity factors for (a) an embedded circular crack under uniform
tension normal to the crack plane, and related cases: (b) half-circular surface crack, (c)
quarter-circular corner crack, and (d) half-circular surface crack in a shaft, where the latter is
more precisely a portion of a circular arc with center on the surface. (Based on [Newman 86]
and [Raju 86].)
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a/t = 0

f  = 1.08[1 + 0.1875(1 – sin θ)2]

π π

f  = 1.04[1 + 0.1(1 – sin θ)2]

θ, radians
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h

Functional forms for a/b < 0.5, h/b > 1:

K = fa fw
2

π
(St + fb Sb)

√
πa, fw =

√
sec

(
πa

2b

√
a

t

)

where fa = fa(a/t, θ), fb = fb(a/t)

Expressions for θ = 0 and 180◦ (surface) for any α = a/ t:

fa = (1.04 + 0.2017α2 − 0.1061α4)(1.1 + 0.35α2) , fb = 1 − 0.45α

Expressions for θ = 90◦ (deepest point) for any α = a/ t:

fa = 1.04 + 0.2017α2 − 0.1061α4 , fb = 1 − 1.34α − 0.03α2

Figure 8.18 Stress intensity factors for rectangular cross sections as in (a) for half-circular
surface cracks under tension and/or bending. The general form for K is given, as well as
particular equations for the surface and deepest point for any a/t. Also, (b) shows the
variation with θ for a/t = 0 and 0.5 as given by fa. (Equations from [Newman 86].)

approximated by the expression given in Fig. 8.19. Note that Eq. 8.21 reduces to Eq. 8.20 for a
circular crack, a/c = 1.

With respect to variation with the angle φ, the maximum K from Eq. 8.21 occurs at φ = 90◦,
where fφ = 1, corresponding to points D on the minor axis of the ellipse. The minimum K occurs at
φ = 0, where fφ = √

a/c, corresponding to points E on the major axis of the ellipse. Denoting the
maximum K as K D , this value may be employed for finite-size members, within 10%, for a/t < 0.4
and c/b < 0.2.

In a manner similar to the circular crack, the closed-form solution for an embedded elliptical
crack may be applied in modified form to related cases. For example, for a half-elliptical
surface crack under uniform stress, multiplying by a free surface factor of 1.12 allows K D to be
approximated. Limitations for 10% accuracy are given in Fig. 8.19, as case (b). For surface cracks
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(b) FD ≈ 1.12 a/t < 0.3,1 c/b < 0.2

Note: 1Except limit to a/t < 0.16 if a/c < 0.25.

Figure 8.19 Stress intensity factors for (a) an embedded elliptical crack and (b) a similar
half-elliptical surface crack. The equations give KD at point D for a uniform tension
normal to the crack plane. (Based on [Newman 86].)

with a/c ≤ 1, equations giving FD for any a/t are

FD = [g1 + g2(a/t)2 + g3(a/t)4
]

fw, g1 = 1.13 − 0.09(a/c)

g2 = −0.54 + 0.89

0.2 + a/c
, g3 = 0.5 − 1

0.65 + a/c
+ 14(1 − a/c)24

fw =
√

sec

(
πc

2b

√
a

t

)
(c/b < 0.5)

(8.23)
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except that these are limited to a/t < 0.75 for a/c < 0.2. The foregoing equations are from
Newman (1986). This and other sources, notably Raju (1982, 1986) and Murakami (1987), together
give K solutions for a wide variety of cases of elliptical, half-elliptical, and quarter-elliptical cracks
in plates, shafts, and tubes, under both tension and bending loads.

Example 8.4
A pressure vessel made of ASTM A517-F steel operates near room temperature and has a wall
thickness of t = 50 mm. A surface crack was found in the vessel wall during an inspection. It has
an approximately semi-elliptical shape, as in Fig. 8.19(b), with surface length 2c = 40 mm and
depth a = 10 mm. The stresses in the region of the crack, as calculated without considering the
presence of the crack, are approximately uniform through the thickness and are Sz = 300 MPa
normal to the crack plane and Sx = 150 MPa parallel to the crack plane, where the coordinate
system of Fig. 8.19 is used. What is the safety factor against brittle fracture? Would you remove
the pressure vessel from service?

Solution From Table 8.1(a), we see that this material has a fracture toughness of K I c =
187 MPa

√
m and a yield strength of σo = 760 MPa at room temperature. The K for the given

stresses and crack can be estimated from Fig. 8.19(b). Since c = 20 mm, we have a/c = 0.5.
Also, we have a/t = 0.2 and large b, for which FD = 1.12 is a reasonable approximation. The
quantity Q is needed:

Q = 1 + 1.464
(a

c

)1.65 = 1.466

Hence, the maximum K , which occurs at the point of maximum depth of the elliptical crack,
is approximately

K = K D = FD Sz

√
πa

Q
≈ 1.12(300 MPa)

√
π(0.010 m)

1.466
= 49.2 MPa

√
m

The stress-based safety factor against brittle fracture is

X K = K I c

K
= 187

49.2
= 3.80 Ans.

This is a reasonably high value, so it would be safe to continue using the pressure vessel until
repairs are convenient. However, the crack should be checked frequently to be sure that it is not
growing. In addition, the ASME or other design code for pressure vessels is likely to apply, and
it should be consulted in this situation.

Comment Stresses parallel to the plane of a crack do not affect K , so the given Sx does not
enter the calculation. (See Section 8.5.4 for further discussion of this point.)

8.5.2 Cracks Growing from Notches

Another situation that is often of practical interest is a crack growing from a stress raiser, such as a
hole, notch, or fillet. The example of a pair of cracks growing from a circular hole in a wide plate
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Figure 8.20 Stress intensities for a pair of cracks growing from a circular hole in a remotely
loaded wide plate, a  b, h. (Equation from [Tada 85] p. 19.1.)

is used to illustrate this situation in Fig. 8.20. The solid line shown is from numerical analysis and
is closely approximated by the equation given. If the crack is short compared with the hole radius,
the solution is the same as for a surface crack in an infinite body, except that the stress is kt S, being
amplified by the stress concentration factor, in this case kt = 3 from Fig. A.11(a):

K A = 1.12 kt S
√

πl (8.24)

In this equation, l is the crack length measured from the hole surface. Once the crack has grown
far from the hole, the solution is the same as for a single long crack of tip-to-tip length 2a, for which

K B = F S
√

πa (8.25)

where F = 1 for this particular case of a wide plate. Hence, for long cracks, the width of the hole
acts as part of the crack, and the fact that the material removed to make the hole is missing from the
crack faces is of little consequence. The exact K first follows K A, then falls below it and approaches
K B , agreeing exactly for large l beyond the range of the plot of Fig. 8.20.

Most cases of a crack at an internal or surface notch can be roughly approximated by using
K A for crack lengths up to that where K A = K B , and then using K B for all longer crack lengths.
Equations 8.24 and 8.25 apply, with the kt and F = F(a/b) for the particular case being used,
and with the nomenclature being generalized as in Fig. 8.21. Note that kt and S in Eq. 8.24 must
be consistently defined and also that F in Eq. 8.25 is usually consistent with Sg calculated from
gross area. Hence, the values ktn used with net section stress Sn that are usually available need to
be converted to values ktg that are consistent with Sg , which can be accomplished by using the
relationship ktn Sn = ktg Sg . The crack length where K A = K B , labeled as l = l ′ in Fig. 8.20, can
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Figure 8.21 Nomenclature for cracks growing from notches.
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Figure 8.22 Eccentric loading of a plate with an edge crack, and the superposition used to
obtain K.

then be obtained from the preceding equations:

l ′ = c(
1.12

ktg

F

)2

− 1

(8.26)

The resulting values of l ′ are typically in the range 0.1ρ to 0.2ρ, where ρ is the notch-tip radius.
More refined estimates of K for cracks at notches may be made, as described by Kujawski

(1991) and in earlier work that he references. Also, the various handbooks give solutions for
specific cases.

8.5.3 Superposition for Combined Loading

Stress intensity solutions for combined loading can be obtained by superposition—that is, by adding
the contributions to K from the individual load components. For example, consider an eccentric load
applied a distance e from the centerline of a member with a single edge crack, as shown in Fig. 8.22.
This eccentric load is statically equivalent to the combination of a centrally applied tension load and
a bending moment. The contribution to K from the centrally applied tension may be determined
from Fig. 8.12(c):

K1 = F1S1
√

πa, S1 = P

bt
(8.27)
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The contribution from bending may be determined from Fig. 8.13(a):

K2 = F2S2
√

πa, S2 = 6M

b2t
= 6Pe

b2t
(8.28)

Hence, the total stress intensity due to the eccentric load is obtained by summing the two solutions
and using substitutions from the previous equations; it is

K = K1 + K2 = P

bt

(
F1 + 6F2e

b

)√
πa (8.29)

where the particular a/b that applies is used to separately determine F1 and F2 for tension and
bending, respectively.

Ingenious use of superposition sometimes allows handbook solutions to be employed for cases
not obviously included. For example, consider the case of a central crack in a plate with a pair of
prying forces. Values of K for this case, here denoted K1, are available from Fig. 8.15. This K1

can be considered to be the superposition of three loadings, as shown in Fig. 8.23(a). The two cases
denoted K2 have the same solution, and K3 is simply the center-cracked plate from Fig. 8.12(a).
Hence, superposition requires that K1 = K2 + K2 − K3, where the K3 loading is subtracted from
2K2 to obtain K1. This allows K2 to be determined from the known solutions for K1 and K3, with
details being given as the equations for case (a) in Fig. 8.23.

Similar superposition is shown in Fig. 8.23(b) for the related case of an infinite array of collinear
cracks with prying forces. Here, K1 and K3 have known closed-form solutions, as given in the case
(b) equations, so that a closed-form expression for K2 is readily obtained. Figure 8.23 also gives
some approximations for these solutions that are within 10% for the indicated ranges of α = a/b.
Note that K2 from Fig. 8.23(a) or (b) is of special interest for applications where tension in a sheet
of material is reacted by a concentrated force due to a bolt or a rivet, or a row of bolts or rivets.
In particular, these K2 solutions provide K B (see Section 8.5.2) for cracks growing from one hole,
or a row of holes, as shown in Fig. 8.24.

8.5.4 Cracks Inclined or Parallel to an Applied Stress

Consider a crack that is inclined to the applied stress, as in Fig. 8.25. Such a situation is difficult
to handle because there is not only an opening (tensile) mode stress intensity K I , but also a sliding
(shear) mode K I I , with these varying with θ as shown. A reasonable, but approximate, approach
to such cases is to treat them as opening mode (K I ) situations, with the crack length being the
projection normal to the stress direction—that is, along the x-axis of Fig. 8.25—giving

K = S
√

πa cos θ (8.30)

where F = 1 for this particular example of a wide plate.
Stresses parallel to a crack can generally be ignored in calculating the opening mode K . Note

that this is the case in Fig. 8.25, where KI is zero for θ = 90◦. As an additional example, consider
a crack in a pressure vessel wall, as in Fig. 8.26. Only the stress σt that is normal to the plane of the
crack affects K , and the stress parallel to the crack, such as σx , may be ignored in calculating K .
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√
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FP1 is FP from Fig. 8.15, and F3 is F from Fig. 8.12(a).

(b) Infinite array of collinear cracks, exact solutions for any α = a/b:
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√
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√
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√
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√
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Figure 8.23 Superposition to obtain solutions for cases of a single crack (a), or a row of
cracks (b), loaded on one side. (Arguments of trigonometric functions are in radians.)
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Figure 8.25 Angled crack in an infinite plate under remote tension and the resulting stress
intensity factors.

8.5.5 Leak-Before-Break Design of Pressure Vessels

In a thin-walled pressure vessel with a crack growing in the wall, two possibilities exist: (1) The
crack may gradually extend and penetrate the wall, causing a leak before sudden brittle fracture can
occur. (2) Sudden brittle fracture may occur prior to the vessel leaking. Since a brittle fracture in
a pressure vessel may involve explosive release of the vessel contents, a leak is by far preferable.
Also, a leak is easily detected from a pressure drop or from the escape of vessel contents. Hence,
pressure vessels should be designed to leak before they fracture.

A crack in a pressure vessel may grow in size due to the influence of the cyclic loading
associated with pressure changes, or due to hostile chemical attack on the material. (See Chapter 11.)
A crack usually starts from a surface flaw and extends in a plane normal to the maximum stress in the
vessel wall, as shown in Fig. 8.26(a). Early in its progress, the crack will often grow with the surface
length 2c continuing to be approximately twice the depth a, so that c ≈ a. If no brittle fracture
occurs, the growth will proceed in a pattern similar to that shown, resulting in a through-wall crack
with surface length 2c that is approximately twice the thickness, 2t , as in (b). However, sudden
brittle fracture will occur before the crack penetrates the wall unless the material has sufficient
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Figure 8.26 A crack in the wall of a pressure vessel, showing (a) its growth from a small
surface flaw and (b) the minimum critical size of a through-wall crack to provide
leak-before-break.

fracture toughness to support a through-wall crack of at least this size:

cc ≥ t (8.31)

Such a through-wall crack may be analyzed as a central crack in a plate, as in Fig. 8.12(a). Since
the plate is wide compared with the crack length, F = 1, with cc being the crack length a, and the
maximum stress σt is S. Making these substitutions into K = F S

√
πa, and also substituting K I c

for K , and then solving for cc, we have

cc = 1

π

(
K I c

σt

)2

(8.32)

Hence, cc may be calculated and compared with the thickness to determine whether the leak-
before-break condition is met.

The equations just developed apply where the crack starts from a small surface flaw. If the
initial flaw is located inside the wall, penetration of the wall may occur with a surface length 2c
that is less than twice the thickness, so that the cc value from Eq. 8.32 will be more than sufficient.
However, if the initial flaw has considerable length along the surface, the crack may have 2c larger
than twice the thickness, or c > t , when it penetrates the wall. In this case, cc from Eq. 8.32 will
not provide leak-before-break. This latter circumstance is best avoided by adequate inspection and
repair to assure that no initial surface defects of size approaching c > t are present.

Example 8.5
A spherical pressure vessel is made of ASTM A517-F steel and operates at room temperature.
The inner diameter is 1.5 m, the wall thickness is 10 mm, and the maximum pressure is 6 MPa.
Is the leak-before-break condition met? What is the safety factor on K relative to K I c, and what
is the safety factor against yielding?
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Solution From Fig. A.7(b), the maximum stress in the vessel wall is

σt = pr1

2t
= (6 MPa)(750 mm)

2(10 mm)
= 225 MPa

Combining this value with KI c = 187 MPa
√

m from Table 8.1, the critical crack length is

cc = 1

π

(
K I c

σt

)
= 1

π

(
187 MPa

√
m

225 MPa

)2

= 0.220 m = 220 mm

This far exceeds the wall thickness of t = 10 mm, so the leak-before-break condition is met.
When the vessel leaks, the crack length along the surface is 2c = 2t , so that c = t = 10 mm.

At this point, the stress intensity factor is

K = F S
√

πa = 1(225 MPa)
√

π(0.01 m) = 39.9 MPa
√

m

Here, the situation is treated as a center crack in a wide plate, as in Fig. 8.12(a), with substitutions
F = 1, S = σt , and a = c. Hence, the safety factor on K is

X K = K I c

K
= 187 MPa

√
m

39.9 MPa
√

m
= 4.69 Ans.

This is a reasonable value, so the vessel is safe from brittle fracture.
Noting that the principal stresses are σ1 = σ2 = 225 MPa and σ3 ≈ 0, we conclude that the

effective stress from Eq. 7.21 is σ̄S = 225 MPa, and the safety factor against yielding is

Xo = σo

σ̄S
= 760 MPa

225 MPa
= 3.38 Ans.

where the yield strength is also from Table 8.1. Hence, yielding is unlikely.

8.6 FRACTURE TOUGHNESS VALUES AND TRENDS

In fracture toughness testing, an increasing displacement is applied to an already cracked specimen
of the material of interest until it fractures. The arrangement used for a bend specimen is shown
in Fig. 8.27. Growth of the crack is detected by observing the force versus displacement (P-v)
behavior, as in Fig. 8.28. A deviation from linearity on the P-v plot, or a sudden drop in force due
to rapid cracking, identifies a point PQ corresponding to an early stage of cracking. The value of
K , denoted K Q , is then calculated for this point. If there is some tearing of the crack prior to final
fracture, K Q may be somewhat lower than the value Kc corresponding to the final fracture of the
specimen.



372 Chapter 8 Fracture of Cracked Members

Figure 8.27 Fixtures for a fracture toughness test on a bend specimen. The dimension W
corresponds to our b. (Adapted from [ASTM 97] Std. E399; copyright c© ASTM; reprinted with
permission.)

Figure 8.28 Types of force vs. displacement behavior that can occur in a fracture toughness
test. (From [ASTM 97] Std. E399; copyright c© ASTM; reprinted with permission.)
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Figure 8.29 Compact specimens of two different sizes, b = 5.1 and 61 cm. (Photo courtesy of
E. T. Wessel, Haines City, FL; used with permission of Westinghouse Electric Corp.)

In addition to bend specimens, various other specimen geometries are used, such as the compact
specimen geometry of Fig. 8.16. For these, the thickness is usually t = 0.5b. Figures 8.29 and 8.30
are photographs of untested and tested compact specimens.

Fracture toughness testing of metals based on LEFM principles is governed by several ASTM
standards, notably Standard Nos. E399 and E1820. Similar tests are also done for other types of
material, as in Standard No. D5045 on plastics (polymers) and No. C1421 on ceramics. A situation
addressed in these standards is that K Q decreases with increasing specimen thickness t , as illustrated
by test data in Fig. 8.31. This occurs because the behavior is affected by the plastic zone at the crack
tip in a manner that depends on thickness. Once the thickness obeys the following relationship
involving the yield strength, no further decrease is expected:

t ≥ 2.5

(
K Q

σo

)2

(8.33)
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Figure 8.30 Fracture surfaces from a KIc test on A533B steel that used a compact specimen
of dimensions t = 25, b = 51 cm. (Photo courtesy of E. T. Wessel, Haines City, FL; used with
permission of Westinghouse Electric Corp.)

Values of K Q meeting this requirement are denoted as K I c to distinguish them as worst-case values.
In engineering design that employs material of thickness such that K Q is somewhat greater than K I c,
values of K I c can be used, while recognizing that this provides some extra conservatism. Such an
approach is often necessary, since only KI c values are widely available, as in Tables 8.1 and 8.2.

A later section of this chapter will consider in more detail plastic zone size effects and other
aspects of fracture toughness testing. We will now proceed to discuss the trends in KI c with material,
temperature, loading rate, and other influences.

8.6.1 Trends in KIc with Material

Values of K I c for engineering metals are generally in the range 20 to 200 MPa
√

m. For increasing
strength within a given class of engineering metal, it has already been noted that fracture toughness
decreases along with tensile ductility. See Figs. 1.6 and 8.7. As a further example, the effect on KI c

of heat treating the alloy steel AISI 4340 to various strength levels is shown in Fig. 8.32.
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Figure 8.31 Effect of thickness on fracture toughness of an alloy steel heat treated to the
high strength of σu = 1720 MPa. (Adapted from [Steigerwald 70]; copyright c© ASTM;
reprinted with permission.)
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Figure 8.32 Fracture toughness vs. yield strength for AISI 4340 steel quenched and tempered
to various strength levels. (Adapted from an illustration courtesy of W. G. Clark, Jr.,
Westinghouse Science and Technology Ctr., Pittsburgh, PA.)
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Polymers that are useful as engineering materials typically have K I c values in the range 1 to
5 MPa

√
m. Although these are low values, most polymers are used at low stresses due to their low

ultimate strengths, so that under typical usage the likelihood of fracture is roughly similar to that for
metals. Modifying a low-ductility polymer with ductile particles such as rubber increases its fracture
toughness. The addition of short chopped fibers or other stiff reinforcement may decrease toughness
if crack growth paths are available that do not intersect the reinforcement. Conversely, long fibers,
and especially continuous ones, in a polymer matrix composite may obstruct crack growth to the
point that the toughness is in the range of that for metals.

Ceramics have low values of fracture toughness, also in the range 1 to 5 MPa
√

m, as might
be expected from their low ductility. This range of K I c values is similar to that for polymers,
but it is quite low in view of the fact that ceramics are high-strength materials. Indeed, their
strengths in tension are usually limited by the inherent flaws in the material, as discussed near
the beginning of this chapter. Recent efforts in materials development have led to modifications
to ceramics that increase toughness somewhat. For example, alumina (Al2O3) toughened with a
second phase of 15% zirconia (ZrO2) has K I c ≈ 10 MPa

√
m. This occurs because high stress

causes a phase transformation (crystal structure change) in the zirconia, which increases its
volume by several percent. Thus, when the crack tip encounters a zirconia grain, the increase
in volume is sufficient to cause a local compressive stress that retards further extension of the
crack.

Fracture toughness exhibits more statistical variation than other materials properties, such as
yield strength. Coefficients of variation are often 10% and may reach 20%. Taking 15% as a typical
value, about one out of ten values from a large sample are expected to be 19% below the mean,
one out of a hundred 35% below, and one out of a thousand 46% below. Safety factors used in
design need to reflect this rather large uncertainty. (See Appendix B near the end of this book for
additional discussion of statistical variation and also for some sample statistical data on fracture
toughness.)

8.6.2 Effects of Temperature and Loading Rate

Fracture toughness generally increases with temperature; illustrative test data for a low-alloy steel
and a ceramic are shown in Figs. 8.33 and 8.34. An especially abrupt change in toughness over
a relatively small temperature range occurs in metals with a BCC crystal structure, notably in
steels with ferritic–pearlitic and martensitic structures. The temperature region where the rapid
transition occurs varies considerably for different steels, as illustrated in Fig. 8.35. There is
usually a lower shelf of approximately constant K I c below the transition region, and an upper
shelf above it, corresponding to a higher approximately constant K I c. (Only one set of data
in Fig. 8.35 covers a sufficient range to exhibit an upper shelf.) Such temperature-transition
behavior is similar to that observed in Charpy or other notch-impact tests, as discussed in
Chapter 4.

The distinct temperature-transition behavior in BCC metals is difficult to explain merely on
the basis of the increase in ductility associated with the temperature range involved. It is, in fact,
due to a shift in the physical mechanism of fracture. Below the temperature transition, the fracture
mechanism is identified as cleavage, and above it, as dimpled rupture. Microphotographs of fracture
surfaces exhibiting these mechanisms are shown in Fig. 8.36. Cleavage is fracture with little plastic
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Figure 8.33 Fracture toughness and yield strength versus temperature for a nuclear pressure
vessel steel. Compact specimens and one nonstandard geometry were used in sizes indicated.
(Adapted from [Clark 70]; copyright c© ASTM; reprinted with permission.)
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Figure 8.34 Fracture toughness vs. temperature for a silicon nitride ceramic. (Adapted from
[Munz 81]; copyright c© ASTM; reprinted with permission.)



378 Chapter 8 Fracture of Cracked Members

80

120

160

200

40

0
2001000-100-200

0

40

80

160

120

200
A217, 2.25 Cr-1Mo, cast : 419
AISI 403, 12 Cr SS : 682
A471, Ni-Cr-Mo-V : 931

A469, Ni-Mo-V : 590

A470, Cr-Mo-V : 626

Rotor Steel : σ , MPaο

240

Temperature,  Co

K
   

, k
si

  i
n

Ic

K
   

, F
ra

ct
ur

e 
To

ug
hn

es
s,

 M
P

a 
 m

Ic

Figure 8.35 Fracture toughness vs. temperature for several steels used for turbine-generator
rotors. (Data from [Logsdon 76].)

Figure 8.36 Cleavage fracture surface (left) in a 49Co-49Fe-2V alloy, and dimpled rupture
(right) in a low-alloy steel. (Photos courtesy of A. Madeyski, Westinghouse Science and
Technology Ctr., Pittsburgh, PA.)

deformation along specific crystal planes that have low resistance. Dimpled rupture, also called
microvoid coalescence, involves the plasticity-induced formation, growth, and joining of tiny voids
in the material. This process leaves the rough and highly dimpled fracture appearance seen in the
photograph.
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Figure 8.37 Effect of loading rate on the fracture toughness of a structural steel.
Approximate strain rates at the edge of the plastic zone are given; the slowest corresponds to
an ordinary test. (Adapted from [Barsom 75]; reprinted with permission from Engineering
Fracture Mechanics; c© 1975 Elsevier, Oxford, UK.)

Data on the K I c versus temperature behavior of steels and other materials is useful in selecting
specific materials for service, as it is important to avoid high-stress use of a material at a temperature
where its fracture toughness is low. Combinations of material and service temperature that are on
the upper shelf should be employed wherever possible.

The statistical variation in fracture toughness is especially large within the temperature
transition region. For example, note the degree of scatter about the trend lines in Figs. 8.33 and
8.35. Also, the position of the transition may shift by as much as 50◦C for different batches of the
same steel. Hence, special care is needed in engineering design within the temperature transition
region. A conservative approach would be to use the lower shelf toughness value, which is often
around 40 MPa

√
m for steel.

A higher rate of loading usually lowers the fracture toughness, having an effect similar to
decreasing the temperature. The effect can be thought of as causing a temperature shift in the KI c

behavior, as illustrated by test data in Fig. 8.37. Since notch-impact tests involve a high rate of
loading, these typically give a higher transition temperature than K I c tests run at ordinary rates.
Some illustrative test data are shown in Fig. 8.38.

8.6.3 Microstructural Influences on KIc

Seemingly small variations in chemical composition or processing of a given material can
significantly affect fracture toughness. For example, sulfide inclusions in steels apparently have
effects on a microscopic level that facilitate fracture. The resulting influence of sulfur content on
toughness of an alloy steel is shown in Fig. 8.39.
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Figure 8.38 Comparison of temperature-transition behaviors for KIc and Charpy tests
on a 2.25Cr-1Mo steel. (Adapted from [Marandet 77]; copyright c© ASTM; reprinted
with permission.)

Figure 8.39 Effect of sulfur content on the fracture toughness of AISI 4345 steel.
(From [Wei 65]; copyright c© ASTM; reprinted with permission.)
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Fracture toughness is generally more sensitive than other mechanical properties to anisotropy
and planes of weakness introduced by processing. For example, in forged, rolled, or extruded metal,
the crystal grains are elongated and/or flattened in certain directions, and fracture is easier where
the crack grows parallel to the planes of the flattened grains. Nonmetallic inclusions and voids
may also become elongated and/or flattened so that they also cause the fracture properties to vary
with direction. Thus, fracture toughness tests are often conducted for various specimen orientations
relative to the original piece of material. The six possible combinations of crack plane and direction
in a rectangular section of material are shown in Fig. 8.40. Fracture toughness data for three of these
possibilities are also given for some typical aluminum alloys.

Neutron radiation affects the pressure vessel steels used in nuclear reactors by introducing
large numbers of point defects (vacancies and interstitials) into the crystal structure of the material.
This causes increased yield strength, but decreased ductility, and the fracture toughness transition
temperature may increase substantially, as shown by test data in Fig. 8.41. As a result, there is a
large decrease in fracture toughness over a range of temperatures. Such radiation embrittlement
is obviously a major concern in nuclear power plants and is an important factor in determining
their service life.

8.6.4 Mixed-Mode Fracture

If a crack is not normal to the applied stress, or if there is a complex state of stress, a combination of
fracture Modes I, II, and III may exist. For example, a situation involving combined Modes I and II
is shown in Fig. 8.25. Such a situation is complex because the crack may change direction so that it
does not grow in its original plane, and also because the two fracture modes do not act independently,
but rather interact. Tests analogous to the K I c test to determine K I I c or K I I I c are difficult to
conduct and are not standardized, so that toughness values for the other modes are generally
not known.

The situation is analogous to the need for a yield criterion for combined stresses. Several
combined-mode fracture criteria exist, but there is currently no general agreement on which is best.
Any successful theory must predict mixed-mode fracture data of the type shown in Fig. 8.42. These
particular data suggest that an elliptical curve could be used as an empirical fit, which is useful
where both K I c and K I I c are known.

(
K I

K I c

)2

+
(

K I I

K I I c

)2

= 1 (8.34)

8.7 PLASTIC ZONE SIZE, AND PLASTICITY LIMITATIONS ON LEFM

Near the beginning of this chapter, it was noted that real materials cannot support the theoretically
infinite stresses at the tip of a sharp crack, so that upon loading, the crack tip becomes blunted
and a region of yielding, crazing, or microcracking forms. We will now pursue yielding at crack
tips in more detail. It is significant that the region of yielding, called the plastic zone, must not be
excessively large if the LEFM theory is to be applied.



382 Chapter 8 Fracture of Cracked Members

40

30

20

10

0
7075
-T651

2219
-T851

2014
-T651

0

10

20

30

40
L-T

T-L

S-L

L-T

T-L

S-LS-L
T-LL-T

K
   

, k
si

  i
n

Ic

K
   

, M
P

a 
 m

Ic

Figure 8.40 Designations for crack plane and growth direction in rectangular sections,
and some corresponding effects on fracture toughness in plates of three aluminum alloys.
(Top from [ASTM 97] Std. E399; copyright c© ASTM; reprinted with permission. Bottom from
data in [MILHDBK 94] pp. 3.10 and 3.11.)
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Figure 8.41 Effect of neutron irradiation on fracture toughness of a nuclear pressure vessel
steel. (Adapted from [Bush 74]; copyright c© ASTM; reprinted with permission.)

Figure 8.42 Combined mode fracture in two aluminum alloys. (From [Broek 86] p. 378;
reprinted by permission of Kluwer Academic Publishers.)
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8.7.1 Plastic Zone Size for Plane Stress

An equation for estimating plastic zone sizes for plane stress situations can be developed from the
elastic stress field equations, Eq. 8.7, with σz = 0. In the plane of the crack, where θ = 0, these
simplify to

σx = σy = K√
2πr

, σz = τxy = τyz = τzx = 0 (a, b) (8.35)

Since all shear stress components along θ = 0 are zero, σx , σy , and σz are principal normal stresses.
Applying either the maximum shear stress or the octahedral shear stress yield criterion of the
previous chapter, we estimate that yielding occurs at σx = σy = σo, where σo is the yield strength.
Substituting this and solving for r gives

roσ = 1

2π

(
K

σo

)2

(8.36)

This is simply the distance ahead of the crack tip where the elastic stress distribution exceeds the
yield criterion for plane stress, as illustrated in Fig. 8.43. Note that elastic, perfectly plastic behavior
is assumed.

Due to yielding within the plastic zone, the stresses are lower than the values from the elastic
stress field equations. The yielded material thus offers less resistance than expected, and large
deformations occur, which in turn cause yielding to extend even farther than roσ , as also illustrated.
The commonly used estimate is that yielding actually extends to about 2roσ . Hence, the final
estimate of plastic zone size for plane stress is

2roσ = 1

π

(
K

σo

)2

(8.37)

plastic zone

yielded, redistributed stress

δ

r

σ

2r

oσ
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theoretical elastic stressσy

x

Figure 8.43 Plastic zone size estimate for plane stress, showing the approximate effect of
redistribution of stress.
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Figure 8.44 Plastic zone, stress state, and fracture mode for (a) plane stress and
(b) plane strain.

As might be expected, the plastic zone size increases if the stress (hence K ) is increased, and it
is smaller for the same K for materials with higher σo. The plane stress plastic zone and the stress
state within it near the crack tip are illustrated in Fig. 8.44(a).

8.7.2 Plastic Zone Size for Plane Strain

Consider a cracked member where the thickness is large compared with the plastic zone size, as
in Fig. 8.44(b). The material outside the plastic zone is subjected to relatively low stresses σx and
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σy , and thus relatively small Poisson contraction in the z-direction. This makes it difficult for the
material inside the plastic zone to deform in the z-direction, as its length in the z-direction is held
nearly constant by the surrounding material. Hence, the behavior is said to approximate plane strain,
defined by εz = 0. As a result, a tensile stress develops in the z-direction, which elevates the value
of σx = σy necessary to cause yielding, in turn decreasing the plastic zone size relative to that for
plane stress.

To explore this in more detail, note that εz = 0, when substituted with σx = σy into Hooke’s
law, Eq. 5.26, gives a stress in the z-direction of σz = 2νσy . Substituting these stresses into either
the octahedral shear stress yield criterion or the maximum shear stress yield criterion gives a stress at
yielding of σx = σy = σo/(1 − 2ν); that is, σx = σy = 2.5σo for a typical value of Poisson’s ratio
of ν = 0.3. This situation has already been analyzed as Ex. 7.5, except that the stresses there were
compressive, but the same result as just stated is obtained for tensile stresses. Hence, the constrained
deformation creates a tensile hydrostatic stress that, in effect, subtracts from the ability of the applied
stresses σx = σy to cause yielding, resulting in an apparent elevation of the yield strength.

The more refined estimate by G. R. Irwin suggests that the effect is somewhat smaller, with
yielding around σy = √

3σo. Proceeding as for the plane stress estimate, except for using the latter
value of σy , we obtain

2roε = 1

3π

(
K

σo

)2

(8.38)

This is noted to be one-third as large as the plane-stress value.
The plastic zone size equations given are based on simple assumptions and should be considered

to be rough estimates only. The particular estimates given follow the early work of G. R. Irwin.

8.7.3 Plasticity Limitations on LEFM

If the plastic zone is sufficiently small, there will be a region outside of it where the elastic stress field
equations (Eq. 8.7) still apply, called the region of K -dominance, or the K -field. This is illustrated
in Fig. 8.45. The existence of such a region is necessary for LEFM theory to be applicable. The
K -field surrounds and controls the behavior of the plastic zone and crack tip area, which can
be thought of as an incompletely understood “black box.” Thus, K continues to characterize the
severity of the crack situation, despite the occurrence of some limited plasticity. However, if the
plastic zone is so large that it eliminates the K -field, then K no longer applies.

As a practical matter, it is necessary that the plastic zone be small compared with the distance
from the crack tip to any boundary of the member, such as distances a, (b − a), and h for a cracked
plate, as in Fig. 8.46(a). A distance of 8ro is generally considered to be sufficient. Note from
Eqs. 8.37 and 8.38 that 8ro is four times the plastic zone size, which can be either 2roσ or 2roε,
depending on which applies. Since 2roσ is larger than 2roε, an overall limit on the use of LEFM is

a, (b − a), h ≥ 4

π

(
K

σo

)2

(LEFM applicable) (8.39)

This must be satisfied for all three of a, (b − a), and h. Otherwise, the situation too closely
approaches gross yielding with a plastic zone extending to one of the boundaries, as shown in
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Figure 8.45 A crack and its plastic zone, and the larger K-field that must exist for LEFM
to be applicable.
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Figure 8.46 Small plastic zone compared with planar dimensions (a), and situations where
LEFM is invalid due to the plastic zones being too large compared with (b) crack length,
(c) uncracked ligament, and (d) member height.

Fig. 8.46(b), (c), or (d). As discussed in Section 8.9, a value of K calculated beyond the applicability
of LEFM underestimates the severity of the crack.

8.7.4 Plane Stress Versus Plane Strain

If the thickness is not large compared with the plastic zone, Poisson contraction in the thickness
direction occurs freely around the crack tip, resulting in yielding on shear planes inclined through
the thickness, as shown in Fig. 8.44(a). Fracture under plane stress also occurs along such inclined
planes.
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Figure 8.47 Fracture surfaces (left) and cross sections showing profiles of fractures (right)
for toughness tests on compact specimens (b = 51 mm) of 7075-T651 aluminum. The thinnest
specimens shown have typical plane stress fractures on inclined planes; the intermediate
thickness has mixed behavior; and the thickest specimens have flat plane-strain fractures.
(Photos by R. A. Simonds.)

However, for thick members, the geometric constraint limits the strain εz in the thickness
direction, giving rise to a transverse stress σz . As already discussed, this σz has the effect of elevating
the stress σy at yielding and reducing the plastic zone size. Yielding on through-thickness shear
planes is no longer possible, and a flat fracture occurs over most of the thickness, as illustrated
in Fig. 8.44(b). Photographs of broken specimens showing plane stress, plane strain, and mixed
fractures are shown in Fig. 8.47.

On the basis of empirical observation of the trends in fracture behavior, especially the thickness
effect on toughness, as in Fig. 8.31, it has become generally accepted that a fully developed
situation of plane strain does not occur unless the thickness satisfies the relationship given earlier
as Eq. 8.33. In addition, the distances from the crack tip to the in-plane boundaries must be
similarly large compared with the plastic zone. Otherwise, deformation in the x- or y-direction
can occur, as in Fig. 8.46, reducing the degree of constraint. Thus, the overall requirement for plane
strain is

t, a, (b − a) , h ≥ 2.5

(
K

σo

)2

(plane strain) (8.40)

Comparison with Eq. 8.38 indicates that this corresponds to the various dimensions all being
larger than 47roε, or about 24 times the plane strain plastic zone size 2roε. Note that the requirements
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on the in-plane dimensions of Eq. 8.39 are less stringent than Eq. 8.40, so that the limits on the use
of LEFM are automatically satisfied if plane strain is satisfied.

Example 8.6
For the situation of Ex. 8.1:

(a) For a = 10 mm, determine whether or not plane strain applies and whether or not LEFM
is valid. Also estimate the plastic zone size.

(b) Do the same for the estimated ac = 16.3 mm.

Solution (a) Plane strain applies if Eq. 8.40 is satisfied. Use t = 5 mm, b = 50 mm, and K
as calculated in Ex. 8.1(a), and also σo = 415 MPa for 2014-T651 Al, to obtain

t, a, (b − a), h ≥ 2.5

(
K

σo

)2

= 2.5

(
17.7 MPa

√
m

415 MPa

)2

?

5, 10, 40, large h ≥ 0.0045 m = 4.5 mm?

Yes, the test is successful, so plane strain applies and LEFM is applicable (Ans.). The plastic
zone size is then estimated as the value for plane strain from Eq. 8.38:

2roε = 1

3π

(
K

σo

)2

= 1

3π

(
17.7 MPa

√
m

415 MPa

)2

= 0.19 mm Ans.

(b) For ac = 16.3 mm and K = K I c = 24 MPa
√

m, the plane strain test is similarly applied.

5, 16.3, 33.7, large h ≥ 2.5

(
24 MPa

√
m

415 MPa

)2

= 8.4 mm?

No, the test fails, and plane strain does not apply (Ans.). But LEFM may still be applicable if
Eq. 8.39 is satisfied. Thus, we ask,

a, (b − a), h ≥ 4

π

(
K

σo

)2

= 4

π

(
24 MPa

√
m

415 MPa

)2

?

16.3, 33.7, large h ≥ 4.3 mm?

Yes, the test is successful, and LEFM is applicable (Ans.). The plastic zone size is then estimated
as the value for plane stress from Eq. 8.37:

2roσ = 1

π

(
K

σo

)2

= 1

π

(
24 MPa

√
m

415 MPa

)2

= 1.06 mm Ans.
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Comment Due to the state of plane stress in (b), the use of K I c is conservative. The actual
Kc may be somewhat higher than K I c, and the ac value therefore larger than estimated.

8.8 DISCUSSION OF FRACTURE TOUGHNESS TESTING

The preceding discussion on plastic zone size and the condition of plane strain permits us to now
engage in a more detailed discussion of certain aspects of fracture toughness testing.

8.8.1 Standard Test Methods

Test methods for evaluating fracture toughness on the basis of LEFM include requirements similar
to Eq. 8.40 to qualify a test result as a valid measurement of K I c. For example, ASTM Standard
No. E399, which applies to metallic materials, explicitly requires that Eq. 8.40 be met for (b − a),
and then the remaining items in Eq. 8.40 are included by recommending that a/b and t/b be near
0.5, and by using specimen geometries where h/b is around 0.5 or greater.

The force versus displacement (P-v) behavior in a fracture toughness test may be similar to
Fig. 8.28, Types I, II, or III. Since the plastic zone is required by Eq. 8.40 to be quite small, any
nonlinearity in the P-v curve must be due to growth of the crack. A smooth curve as in Type I
is caused by a steady tearing type of fracture called slow-stable crack growth. In other cases, the
crack may suddenly grow a short distance, which is called a pop-in (II), or it may suddenly grow to
complete failure (III).

The KI c test standard for metals handles the problem of defining the beginning of cracking by
drawing a line with a slope that is 95% as large as the initial elastic slope (O-A) in the test. A force
PQ is identified as the point where this line crosses the P-v curve, or as any larger peak value prior
to the crossing point. The stress intensity factor is then evaluated with the use of PQ and the initial
crack length:

K Q = f (ai , PQ) (8.41)

If this K Q satisfies Eq. 8.40, it is then considered to be a valid K I c value. However, there is one
additional requirement designed to assure that the test involves sudden fracture with little slow-
stable crack growth, specifically that the maximum load reached cannot exceed PQ by 10%.

If the plane strain condition is not satisfied in the test, then it is necessary to use a larger test
specimen so that the comparisons of Eq. 8.40 are more favorable. As a result, quite large specimens
may be required for materials with relatively low yield strength but high fracture toughness. For
example, the large compact specimen of Fig. 8.29 (with b = 61 cm) was required to obtain the
K I c value plotted for 10◦C for A533B steel in Fig. 8.33.

A successful fracture toughness test requires an initially sharp flaw, called a precrack, that is
equivalent to a natural crack; otherwise the measured K I c will be artificially elevated. For metals,
this is achieved by using cyclic loading at a low level to start a natural fatigue crack at the end of a
machined slot. For plastics (polymers), the usual procedure is to press a razor blade into the material
at the end of the machined slot.
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Figure 8.48 Load vs. displacement and load vs. crack extension behavior during fracture
toughness tests under plane strain (a) and plane stress (b).

8.8.2 Effect of Thickness on Fracture Behavior

Fracture under the highly constrained conditions of plane strain generally occurs rather suddenly,
with little crack growth prior to final fracture. Also, the fracture surface is quite flat. In contrast,
plane stress fractures tend to have sloping or V -shaped surfaces inclined at about 45◦ on planes
of maximum shear stress, as already illustrated by Figs. 8.44 and 8.47. The final fracture in
plane stress is usually preceded by considerable slow-stable crack growth, as shown in Fig. 8.48.
These behaviors correlate with the thickness effect on toughness, as in Fig. 8.31. Flat plane-strain
fractures occur where the thickness is sufficient to reach the lower plateau of the curve—that is,
the minimum toughness KI c. Inclined or V-shaped plane-stress fractures occur for relatively thin
members, for which the toughness may be well above K I c. Fracture toughness values K I c meeting
the requirements for plane strain are expected to be minimum values that can be safely used in
design for any thickness.

Where a thickness less than that required for plane strain fracture in a given material is used in
an engineering application, K I c may involve an undesirably large degree of conservatism. It may
then be useful to use K Q data for the particular thickness of interest. Also, a toughness Kc can be
defined that corresponds to the point of final fracture, as illustrated in Fig. 8.48(b). Since the amount
of slow-stable crack growth may be considerable, the crack extension �ac from the initial length ai

to the final length ac needs to be measured. The corresponding K can then be calculated from the
load Pc at the point of final fracture.

8.9 EXTENSIONS OF FRACTURE MECHANICS BEYOND LINEAR ELASTICITY

If Eq. 8.39 is not satisfied, so that LEFM does not apply due to excessive yielding, several methods
still exist for analyzing cracked members. Excessive yielding causes K to no longer correctly
characterize the magnitude of the stress field around the crack tip—specifically, K underestimates
the severity of the crack. An introduction to various approaches for extending fracture mechanics
beyond linear elasticity follows.
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However, before proceeding, it is useful to take note of the concept of a fully plastic yielding
load. For a given cracked member, the fully plastic force Po, or moment Mo, is the load or
moment necessary to cause yielding to spread across the entire remaining uncracked portion of
the cross-sectional area. Large and unstably increasing strains and deflections occur once Po or
Mo is exceeded. If the stress–strain curve of the material is idealized as being elastic, perfectly
plastic, then lower bound estimates of fully plastic loads may be made, as described in Appendix A,
Section A.7. Some particular results are given in Fig. A.16.

Three approaches to extending fracture mechanics beyond linear elasticity will now be
introduced: (1) the plastic zone adjustment, (2) the J -integral, and (3) the crack-tip opening
displacement (CTOD).

8.9.1 Plastic Zone Adjustment

Consider the redistributed stress near the plastic zone, as in Fig. 8.43. The stresses outside of the
plastic zone are similar to those for the elastic stress field equations for a hypothetical crack of
length ae = a + roσ , that is, a hypothetical crack with its tip near the center of the plastic zone. This
in turn leads to modifying K , increasing it, to account for this yielding by using ae in place of the
actual crack length a.

Where the form K = F S
√

πa is used, the modified value is

Ke = Fe S
√

πae = Fe S
√

π(a + roσ ), where roσ = 1

2π

(
Ke

σo

)2

(8.42)

The F used is the value corresponding to ae/b, and roσ is calculated by using Ke in Eq. 8.36.
An iterative calculation is generally involved in using this equation, as Fe = F(ae/b) cannot be
determined in advance, since roσ and hence ae depend on Ke. If F is not significantly changed for
the new crack length ae, then no iteration is required, and the modified value Ke is related to the
unmodified value K = F S

√
πa by

Ke = K√
1 − 1

2

(
F S

σo

)2
(8.43)

In some situations with a high degree of constraint, such as embedded elliptical cracks or half-
elliptical surface cracks, it may be appropriate to use the plane strain plastic zone size to make the
adjustment. Replacing roσ with roε in the previous equations gives a relationship similar to Eq. 8.43,
differing in that the 1

2 in the denominator is replaced by 1
6 .

Such modified K values allow LEFM to be extended to somewhat higher stress levels than
permitted by the limitation of Eq. 8.39. However, large amounts of yielding still cannot be analyzed.
The use of even adjusted crack lengths becomes increasingly questionable if the stress approaches
a value that would cause yielding fully across the uncracked section of the member. It is suggested
that the use of plastic zone adjustments be limited to loads below 80% of the fully plastic force or
moment—that is, below 0.8Po or 0.8Mo.
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Example 8.7
Problem 8.48 concerns a test on a double-edge-cracked plate of 7075-T651 aluminum, for which
a = 5.7, b = 15.9, and t = 6.35 mm. A value of KQ = 37.3 MPa

√
m is calculated for the force

PQ = 50.3 kN, but the test for applicability of LEFM (Eq. 8.39) is not met. Calculate the fully
plastic force. If it is reasonable to do so, also apply the plastic zone adjustment to obtain a revised
value of K Q .

Solution Figure A.16(a) also applies to the geometry of Fig. 8.12(b), so that the fully plastic
load is

Po = 2btσo

(
1 − a

b

)
Po = 2(0.0159 m)(0.00635 m)(505 MPa)

(
1 − 5.7 mm

15.9 mm

)

Po = 0.0654 MN = 65.4 kN Ans.

where the yield strength of 7075-T651 Al from Table 8.1 is used. Comparing Po with PQ gives

PQ

Po
= 50.3 kN

65.4 kN
= 0.77

Since this ratio is less than 0.80, it is reasonable to apply the plastic zone adjustment.
From Fig. 8.12(b), the value α = a/b = 0.358 that applies is well within the range α ≤ 0.6,

where F ≈ 1.12. Hence, F can be taken as unchanged for ae and Eq. 8.43 applies. Thus,
we have

K Qe = K Q√
1 − 1

2

(
F S

σo

)2
= 37.3 MPa

√
m√

1 − 1

2

(
1.12 × 249 MPa

505 MPa

)2
= 40.5 MPa

√
m Ans.

where S = Sg = PQ/2bt is used.

Comment This adjusted K is 40% above the value from Table 8.1 of K I c = 29 MPa
√

m. The
probable explanation for the difference is that K Qe includes an effect of increased toughness for
plane stress.

8.9.2 The J-Integral

An advanced approach to fracture based on the J -integral concept is capable of handling even
large amounts of yielding. In a formal mathematical sense, the J -integral is defined as the quantity
obtained from evaluating a particular line integral around a path enclosing the crack tip. The material
is assumed to be elastic—that is, to recover all strain on unloading—but the stress–strain curve
may be nonlinear. For our present purposes, it is sufficient to define J as the generalization of the
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Figure 8.49 Definition of the J-integral in terms of the potential energy difference for cracks
of slightly different length.

strain energy release rate, G, to cases of nonlinear-elastic stress–strain curves. This is illustrated in
Fig. 8.49. However, for most cases of engineering interest, the nonlinear stress–strain (and hence,
P-v) behavior is due to elasto-plastic behavior, as in metals. For elasto-plastic materials, J loses
the physical interpretation related to potential energy. But it retains significance as a measure of
the intensity of the elasto-plastic stress and strain fields around the crack tip. Values can still
be determined experimentally or analytically by the use of P-v curves, as in Fig. 8.49, but the
two different P-v curves for crack lengths a and (a + da) need to be obtained from independent
tests on two different members, rather than by extending the crack da after a single member
is loaded.

The J -integral can be used as the basis of fracture toughness tests, according to ASTM Standard
No. E1820. Since the plasticity limitations of LEFM can now be exceeded, the need for large test
specimens is removed. For example, in A533B steel at room temperature, a fracture toughness JI c

can be obtained from the small specimen in Fig. 8.29, without the need for testing the large one.
Thus, JI c can be used to estimate an equivalent value of K I c by using Eq. 8.10 with J replacing G:

K I cJ =
√

JI c E ′ (8.44)

Here, E ′ is from Eq. 8.11. Fracture toughness testing to determine JI c is summarized in the section
that follows.

In engineering applications where crack extension and fracture under plastic loading need to be
considered, the J -integral is a candidate for use, as is the CTOD approach, which is discussed later.
(See Section 8.9.4.) One important area of such application is pressure vessels, especially nuclear
pressure vessels. Note that an attempt to use K beyond its region of validity will generally cause the
results of engineering calculations to be nonconservative, that is, to be in error on the unsafe side.
For example, consider the case of a center-cracked plate, as in Fig. 8.12(a), where the crack length
a is small compared with the half-width b. For plane stress, the modified (equivalent) value K J ,
which includes the plasticity effect, is approximately

K J =
√

J E, K J ≈ K
√

1 + εp

εe
√

n
(8.45)
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Here, K = S
√

πa is from LEFM, and εe and εp are the elastic and plastic strains corresponding to
the applied stress. The quantity n is the strain-hardening exponent for a stress versus plastic strain
relationship of the form σ = Hεn

p, where n ≈ 0.1 to 0.2 is typical for metals. (See Chapter 12 for
a detailed discussion of such stress–strain curves.) If the plastic strain εp is small, the second term
under the radical disappears, and K J = K . However, beyond yielding, εp increases rapidly, and K J

can become much larger than K . Hence, use of K can be substantially nonconservative.
The use of the J -integral in engineering applications requires that one be able to determine J

for various geometries and crack lengths for the particular material’s nonlinear stress–strain curve.
Handbooks by Kumar (1981) and Zahoor (1989) give extensive tables for calculating J, and the
books by Anderson (2005) and Saxena (1998) also provide useful information.

8.9.3 Fracture Toughness Tests for JIc

One complexity encountered in JI c testing is that nonlinearity in the P-v behavior is now due to
a combination of crack growth and plastic deformation. Hence, the beginning of cracking beyond
the initial precrack cannot be determined in a straightforward manner from the P-v curve, and
special means are needed to directly measure crack growth. A common method of doing so is
the unloading compliance method, which involves periodically unloading the sample by a small
amount, while measuring the P-v behavior, as illustrated in Fig. 8.50. The slopes of the P-v lines
during unloading and reloading, such as m5 in the illustration, are a measure of the elastic stiffness
of the sample, which decreases as the crack increases its length, permitting the crack length to be
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m51
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 F
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Figure 8.50 Force versus displacement (P-v) behavior during an elasto-plastic fracture
toughness test with periodic elastic unloadings.
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Figure 8.51 Area Apl for calculating the J-integral. Curve A is the actual P-v record for the
growing crack, whereas curve B is the hypothetical P-v curve for a stationary (nongrowing)
crack of length a5.

calculated at various points during the test. (Note that the small elastic unloadings have no significant
effect on the cracking behavior.)

Another approach, called the potential drop method, is based on the fact that the electrical
resistance of the specimen increases as its cross-sectional area decreases due to crack growth. A
current is passed through the specimen, and the voltage (potential) across the crack is measured
and used to calculate the crack length. The unloading compliance and potential drop methods have
the advantage of allowing crack extension data to be obtained from a single sample. However, the
most accurate method is to test several nominally identical test specimens and remove the load
after varying amounts of crack extension in different specimens. Then the samples are heated to tint
(slightly oxidize) the fresh fracture surface so that it is easily observed, next they are broken into
two pieces, and finally the amounts of crack growth are measured through a microscope.

Values of the J -integral are needed for the points along the P-v record, such as point 5 in
Fig. 8.50, where crack lengths have been determined. For the standard bend specimen, Fig. 8.13(b)
with h/b = 2, and the standard compact specimen, Fig. 8.16, an approximate procedure has been
developed for determining J directly from the P-v record of the test. To do so, the current crack
length, a = ai + �a, is needed, where ai is the initial precrack length and �a is the crack extension.
Also needed is the area Apl shown in Fig. 8.51. This is the area under the force versus displacement
curve for loading and then unloading a hypothetical test member originally containing a stationary
(nongrowing) crack of length a = ai + �a. Hence, the hypothetical loading slope, such as m5, is
somewhat lower than the actual initial load slope mi . Also, this P-v curve differs from, and deviates
below, the actual one, as the actual curve corresponds to an initial crack of length ai , with crack
growth by gradual tearing to the current �a value.

Given the current crack length a and area Apl , the J value can be determined as follows:

J = Jel + Jpl , Jel = K 2(1 − ν2)

E
(8.46)

The elastic term Jel is obtained from the stress intensity K and the elastic constants of the material
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Figure 8.52 The J-integral versus �a curve, or R-curve, from an elasto-plastic fracture
toughness test. The intersection with the 0.2 mm offset line gives JQ, the provisional JIc value.

as indicated. Further, K is calculated from the applied force P and the crack length a just as if there
were no yielding, as from Fig. 8.13(b) or Fig. 8.16. The plastic term Jpl is given by

Jpl = ηApl

t (b − a)
(8.47)

where t , a, and b are defined as in Fig. 8.13(b) or 8.16. For the bend specimen, if the displacement
v is the deflection at the point of load application, then η = 1.9, or if v is the crack mouth
displacement, as in Fig. 8.27, then η is a somewhat larger value that varies with a/b. For the compact
specimen, η = 2 + 0.522(1 − a/b).

In ASTM Standard No. E1820, two alternate procedures are described. For the basic test
method, the crack extension �a is assumed to be small, so that a = ai + �a can be approximated
as being equal to the initial crack length ai , with Eqs. 8.46 and 8.47 being applied on this basis. For
the area Apl of Fig. 8.51, a small crack extension gives solid and dashed loading curves A and B that
approximately coincide, so that the actual loading curve A can be employed. Also, a small correction
is applied to the J values so obtained to account for the effect of the actual crack extension �a. The
more detailed resistance curve test method in Standard E1820 is applicable for single specimen
tests, such as the unloading compliance test of Fig. 8.50. In this method, values of J are calculated
in an incremental manner by updating the value at each point of crack length measurement, and in
the process making an adjustment so that the value is based on the new stationary-crack P-v curve,
such as curve B in Fig. 8.51. The calculated values of J determined by either method are then plotted
versus the change in crack length, �a, to form a curve, called the R-curve, as shown in Fig. 8.52.

Before the crack begins to tear through the material, the intense local plastic deformation at the
crack tip causes an increase in the crack-tip opening displacement, CTOD, or δ, of Fig. 8.4. This
plastic blunting effect causes the tip of the crack to move forward by a distance of about δ/2, giving
the J versus �a curve an initial, or blunting line, slope of approximately
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J

�a
= 2σY , where σY = σo + σu

2
(8.48)

The quantities σo and σu are the tensile yield and ultimate strengths of the material.
Lines are then drawn on the J -�a curve that are parallel to this blunting line and which intersect

the �a axis at 0.15 mm and 1.5 mm. A curve is fitted through the data between these lines, and JQ

is defined as the intersection of this curve and a third parallel line that intersects the �a axis at
0.2 mm. Hence, JQ corresponds to a crack extension by tearing of 0.2 mm (0.008 in), which value
does not include the apparent extension due to plastic blunting. Finally, JQ is qualified as a fracture
toughness, JI c, if the test meets the size requirement

t, (b − a) > 10

(
JQ

σY

)
(8.49)

An equivalent K I c can then be calculated from JI c by Eq. 8.44.
Note that the crack extension at JQ is quite small, so that the material may have considerable

reserve toughness beyond JI c due to an ability to withstand tearing crack growth. It is thus
sometimes useful to employ the full R-curve and consider this behavior in engineering applications.

8.9.4 Crack-Tip Opening Displacement (CTOD)

The elastic stress field analysis employed for K can also be used to estimate the displacements
separating the crack faces. Then, pursuing logic that partially parallels that for plastic zone sizes,
it is possible to make an estimate of the separation of the crack faces near the tip—that is, of the
CTOD, which is denoted δ. For ductile materials, this estimate is

δ ≈ K 2

Eσo
≈ J

σo
(8.50)

where δ is illustrated in Fig. 8.4. In this equation, the yield strength σo is sometimes replaced by
the higher stress σY of Eq. 8.48. Experimentally determined values of δ are also used as the basis
of fracture toughness tests, so that the toughness is expressed as a critical value δc, as in ASTM
Standard Nos. E1290 and E1820.

Values of δ may be determined for situations of engineering interest, such as a flaw in a pressure
vessel wall, and then compared with δc. Hence, the CTOD concept also provides an engineering
approach to fracture beyond linear elasticity.

8.10 SUMMARY

Using linear-elastic fracture mechanics (LEFM), the severity of a crack in a component can be
characterized by the value of a special variable called the stress intensity factor, K = F S

√
πa,

where S is stress and a is crack length, both consistently defined relative to the dimensionless
quantity F . Use of K depends on the behavior being dominated by linear-elastic deformation, so
that the zone of yielding (plasticity) at the crack tip must be relatively small. Simple equations and
handbooks provide values of F for a wide range of cases of cracked bodies, some examples of
which are given in Figs. 8.12 to 8.14 and also Figs. 8.17 to 8.20. The value of F depends on the
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crack and member geometry; the loading configuration, such as tension or bending; and the ratio of
the crack length to the width of the member, such as the ratio a/b. Some notable values of F for
relatively short cracks under tension stress are as follows:

F = 1.00 (center-cracked plate)
F = 1.12 (through-thickness or circumferential surface crack)
F = 0.73 (half-circular surface crack)
F = 0.72 (quarter-circular corner crack)

(8.51)

It is sometimes convenient to express K in terms of an applied force P by using the differently
defined dimensionless quantity FP according to Eq. 8.13.

The value of K for which a given material begins to crack significantly is called K Q , and the
value for failure is called Kc. Slow-stable crack growth may follow K Q until Kc is reached, and both
of these may decrease with increased member thickness. If the plastic zone surrounding the crack
tip is quite small compared with the thickness and is very well isolated relative to the boundaries
of the member, then a state of plane strain is established. Under plane strain, only limited slow-
stable crack growth occurs, so that K Q and Kc have similar values to each other, and K Q becomes
the standard plane-strain fracture toughness, K I c. A value of K I c represents a worst-case fracture
toughness that can be safely used for any thickness. The flowchart of Fig. 8.53 gives the requirement
for plane strain and the plastic zone sizes, and the situation concerning K I c is also summarized.
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Figure 8.53 Flowchart for distinguishing between plane stress and plane strain, for
deciding what fracture mechanics approach is needed, and for identifying what is expected
from toughness testing.



400 Chapter 8 Fracture of Cracked Members

Values of K I c for a given material generally decrease along with ductility if the material is
processed to achieve higher strength. For a given material and processing, K I c generally increases
with temperature, sometimes exhibiting a rather abrupt change over a narrow range of temperatures,
and also having relatively constant lower shelf and upper shelf values on opposite sides of the
temperature transition. Increased loading rate causes K I c to decrease, having the effect of shifting
the transition to a higher temperature. The microstructure of the material may affect K I c, as in the
detrimental effect of sulfur in some steels, the effect of crystal grain orientation from rolling of
aluminum alloys, and radiation embrittlement of pressure vessel steels.

If the plastic zone is too large, LEFM is no longer valid. Modest amounts of yielding can be
handled by using adjusted values Ke calculated by adding half of the plastic zone size to the crack
length. However, above about 80% of the fully plastic force or moment, Po or Mo, more general
methods such as the J -integral or the crack-tip opening displacement (CTOD, δ) are needed. The
flowchart of Fig. 8.53 also provides a guide for determining which of the various approaches is
required in a given situation.

N E W T E R M S A N D S Y M B O L S

(a) Terms
bend specimen
blunting line
cleavage
compact specimen
crack-tip opening displacement (CTOD): δ, δc

dimpled rupture
fracture modes I, II, and III
fracture toughness: Kc, K I c

fully plastic force, moment: Po, Mo

internally flawed material
J -integral: J, JI c

K -field
linear-elastic fracture mechanics (LEFM)
mixed-mode fracture

plane strain constraint
plastic zone
pop-in
precrack
R-curve
slow-stable crack growth
strain energy release rate, G
stress intensity factor, K
stress redistribution
superposition
temperature transition
transition crack length, at

unloading compliance

(b) Nomenclature
a Crack length
ac Critical (at fracture) crack length
ae Plastic-zone-adjusted crack length
b Maximum possible crack length; member width or half-width
c Major axis of elliptical crack; notch dimension analogous to a
F Dimensionless function F(a/b) for K = F S

√
πa

FP Dimensionless function FP (a/b) for K = FP P/(t
√

b)

h Member half-height
J Value of the J -integral
JI c Plane strain fracture toughness in terms of J
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K Stress intensity factor for a Mode I crack
K I , K I I , K I I I Stress intensity factors for the three fracture modes
K I c Plane strain fracture toughness
Kc Fracture toughness
Ke Plastic-zone-adjusted K
K J , K I cJ Plasticity-modified K based on J
K Q Provisional fracture toughness
Pc Critical (at fracture) force
PQ Force for calculating K Q

roε Half the estimated plastic zone size for plane strain
roσ Half the estimated plastic zone size for plane stress
Sg Gross section S (based on area before cracking)
t Thickness
U Potential strain energy
v Displacement
α Ratio a/b
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PROBLEMS AND QUESTIONS

Section 8.2
8.1 Look at Fig. 8.32, and perform the following tasks:

(a) Obtain approximate values of fracture toughness K I c for AISI 4340 steel heat treated to
yield strengths of 1000 and 1800 MPa.

(b) For each of these yield strengths, calculate the transition crack length at , and comment
on the significance of the values obtained.
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8.2 Look at Fig. 8.33, and perform the following tasks:
(a) Obtain approximate values of fracture toughness K I c and yield strength σo for A533B

steel at temperatures of −100◦C and +0◦C.
(b) For each temperature, make a plot of stress versus crack length, showing the yielding

alone line, and the fracture alone curve, as in Fig. 8.6.
(c) Then compare these plots, and comment on the engineering use of this steel at these two

temperatures.
8.3 For each metal in Table 8.1, do the following:

(a) Calculate the transition crack length at .
(b) Plot these as data points on a logarithmic scale, versus yield strength σo on a linear scale,

using different symbols for steels, aluminum alloys, and titanium alloys.
(c) Comment on the values obtained and on any trends with yield strength.

8.4 Using Tables 8.1 and 8.2, perform these tasks:
(a) Calculate transition crack lengths at for the following materials: steels AISI 1144,

ASTM A517, and 300-M (both tempers); aluminum alloys 2219-T851 and 7075-T651;
polymers ABS and epoxy; soda-lime glass; and the ceramic SiC. Refer to Table 3.10 or
4.3 for tensile properties for the ceramics and polymers. For brittle materials where the
yield strength σo is not available, replace it with the ultimate tensile strength σu .

(b) Comment on the values obtained and any trends observed for the different classes of
material. Which particular materials do you think are likely to be internally flawed?

Sections 8.3 and 8.4
8.5 Define the following concepts in your own words: (a) Modes I, II, and III, (b) crack-tip

singularity, (c) stress intensity factor K , (d) strain energy release rate G, and (e) fracture
toughness K I c.

8.6 For center-cracked plates in tension, as in Fig. 8.12(a), accurate values of F from numerical
results are given in the Tada (2000) handbook, as listed in Table P8.6

(a) Compare these values with the expression for F from Fig. 8.12(a) that is recommended
for any α. What is its accuracy for α ≤ 0.8?

(b, c) Two approximations for F that are sometimes employed for center-cracked plates are

F =
√

sec
πα

2
, F =

√
2

πα
tan

πα

2
(b, c)

where the arguments of the trigonometric functions are in radians. Compare each of
these with the numerical values, and characterize the accuracy of each for α ≤ 0.8.

Table P8.6

α = a/b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F = F(α) 1.000 1.006 1.025 1.058 1.109 1.187 1.303 1.488 1.816 2.578

8.7 An engineering member is to be made of 18-Ni maraging steel (vacuum melted). The member
is a plate loaded in tension, and it may have a crack in one edge as shown in Fig. 8.12(c). The
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dimensions are width b = 35 and t = 5 mm, and the crack may be as long as a = 10 mm.
The member must resist a tension force of P = 50 kN. Determine: (a) the safety factor
against brittle fracture, (b) the safety factor against fully plastic yielding, and (c) the overall
(controlling) safety factor.

8.8 A center-cracked plate of AISI 1144 steel has dimensions, as defined in Fig. 8.12(a), of b = 50
and t = 5 mm, and it is subject to a tension force of P = 100 kN.

(a) What are the safety factors against brittle fracture and against fully plastic yielding if
the crack length is a = 10 mm?

(b) Proceed as in (a) but use a = 30 mm.
(c) Assume that this plate is an engineering component and comment on its safety for the

two different crack lengths.
8.9 A beam with a rectangular cross section has dimensions, as defined in Fig. 8.13, of b = 40

and t = 10 mm. The beam is made of 7475-T7351 aluminum and is subjected to a bending
moment of M = 900 N·m.

(a) If a through-thickness edge crack of length a = 5 mm is present, what is the safety
factor against brittle fracture?

(b) Repeat (a) for a crack length of 10 mm.
(c) What is the critical crack length for fracture?
(d) What crack length can be allowed if a safety factor of 3.0 against brittle fracture is

required?
8.10 A tension member made of 2014-T651 aluminum has dimensions, as defined in Fig. 8.12(c),

of b = 50 and t = 5 mm. A safety factor of 3.0 against failure by either brittle fracture or fully
plastic yielding is required.

(a) If there is a through-thickness crack in one edge of length a = 10 mm, what is the
highest tension force P that can be permitted in service.

(b) If the force in service is P = 5.0 kN, what is the largest crack length that can safely
exist in the member?

8.11 A rectangular beam made of ABS plastic is b = 20 mm deep and t = 10 mm thick. As shown
in Fig. 8.13(a), a bending moment M is applied, and a through-thickness edge crack may be
present. For a safety factor against brittle fracture of 2.5 in stress, what is the largest crack
length a that can be allowed if (a) M = 20 N·m, and (b) M = 5.0 N·m?

8.12 An engineering member is made of 300-M (650◦C temper) steel. It is in the shape of a plate
loaded in tension and may have a crack in one edge, as shown in Fig. 8.12(c). The dimensions
are width b = 80 mm and thickness t = 20 mm, and the member must resist a tension force
of P = 150 kN. Determine the length a of the largest edge crack that can be permitted such
that the safety factor against brittle fracture is not less than 3.5, and also the safety factor
against fully plastic yielding is not less than 2.5.

8.13 An engineering member is to be made of an aluminum alloy. It is in the shape of a plate loaded
in tension that may have a crack in one edge, as shown in Fig. 8.12(c). The dimensions are
width b = 40 mm and thickness t = 4.0 mm, and the crack may be as long as a = 8.0 mm.
The member must resist a tension force of P = 7.5 kN.
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(a) For a safety factor of 2.8 against brittle fracture, what minimum fracture toughness
K I c is required?

(b) For a safety factor of 2.0 against fully plastic yielding, what minimum yield strength
σo is required?

(c) Given your results from (a) and (b), select an aluminum alloy from Table 8.1 that
meets both requirements.

8.14 A tension member has width b = 50 mm and thickness t = 5 mm. An axial force P is applied,
and the member may contain an edge crack as deep as a = 10 mm, as in Fig. 8.12(c).

(a) Estimate the force P at failure if the material is the ASTM A517-F steel of Table 8.1.
(b) Also estimate the force P at failure if the material is the AISI 4130 steel from Table 8.1.
(c) Which material would be the best choice if the member is to be used in an engineering

application? Why?
8.15 Bending members, as in Fig. 8.13(a), of depth b = 40 mm and thickness t = 10 mm are made

of 18-Ni maraging steel (vacuum melted). In service, the bending moment may be as high
as M = 5 kN·m, and members with edge cracks larger than a = 1 mm are normally found in
inspection and scrapped.

(a) Estimate the moment M necessary to cause failure in this situation. What is the safety
factor?

(b) Assume that some of these members were accidentally not inspected and found their
way into actual service with cracks as large as a = 10 mm. Replacement is expensive.
Assume that you are the engineer who must make the decision on replacement. What
would you decide? Support your decision with additional calculations as needed.

8.16 A beam with a rectangular cross section has dimensions, as defined in Fig. 8.13(a), of b = 50
and t = 10 mm. The beam is made of 7475-T7351 aluminum and is subjected to a bending
moment of M = 1.0 kN·m. A through-thickness edge crack of length as large as a = 4 mm
may be present. Safety factors of 2.0 against yielding and 3.5 against brittle fracture are
needed.

(a) Are the safety factor requirements met?
(b) If not, what new beam depth b is needed, assuming that t and the other values given

remain unchanged?
8.17 For a round shaft with a circumferential crack, as in Fig. 8.14, derive equations for (a) the

fully plastic force Po, and (b) the fully plastic moment Mo. Express these as functions of
crack length a, shaft radius b, and yield strength σo.

8.18 A circular shaft of 50 mm diameter is subjected to bending and contains a circumferential
surface crack of depth a = 10 mm, as in Fig. 8.14. The shaft is made of the ASTM A517-F
steel of Table 8.1. Estimate the bending moment M that will cause the shaft to fail.

8.19 A thin-walled tube, as in Fig. P8.19, is loaded with an internal pressure p and has a
longitudinal through-wall crack of length 2a. Stress intensity factors f or this case from
Tada (2000) are

K = F(pravg/t)
√

πa, where F = F(λ), λ = a/
√

ravgt

F = √
1 + 1.25λ2 for λ ≤ 1, and F = 0.6 + 0.9λ for 1 ≤ λ ≤ 5
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t 2a

crack ravg

pressure

Figure P8.19

The material is titanium 6Al-4V alloy (annealed), the pressure is p = 40 MPa, and the tube
dimensions are ravg = 50 and t = 4 mm. A crack of tip-to-tip length 2a = 20 mm may be
present. What is the safety factor against fracture? What is the safety factor against yielding
with no crack present? Is the tube safe to use if failure could present a safety hazard?

8.20 A structural member has dimensions and area moment of inertia as shown in Fig. P8.20,
and it contains a crack of length a = 15 mm, as also shown. This member is made of A572
structural steel (Fig. 8.37) and may be subjected in service to dynamic loading at temperatures
as low as −30◦C.

(a) What bending moment about the x-axis will cause brittle fracture of the beam,
where the sense of the moment is such that the crack is subjected to a tensile stress?
(Suggestions: Evaluate K approximately by noting that the cracked flange of the beam
is essentially an edge-cracked tension member. Also, verify that K I c ≈ 40 MPa

√
m

from Fig. 8.37.)
(b) The structural design code used for this beam permits a moment of 176 kN·m to be

applied in service, which is based on a safety factor of 1.67 against yielding. Compare
this value with your result from (a) and comment on the difference.

Figure P8.20
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8.21 A stiffener in aircraft structure is a T-section, as shown in Fig. P8.21, and is made of
7075-T651 aluminum. A crack of length a may be present in the bottom of the web as shown.
A bending moment of 180 N·m is applied about the x-axis, such that the crack is subjected to
tensile stresses.

(a) To enable stress calculations, locate the y-centroid of the T-section and its area moment
of inertia about the centriodal x-axis. (Answers: c = 25.36 mm, Īx = 31,538 mm4.)

(b) If the crack has length a = 1.5 mm, what is the safety factor against brittle fracture?
(c) What is the largest crack length a that can be permitted if a safety factor against brittle

fracture of 3.0 is considered adequate?
(d) Consider the possibility of changing the material to the more expensive 7475-T7351

aluminum alloy. What are some possible advantages and disadvantages of making this
change? Support your comments with calculations where possible.

40 mm

y

x

4.0

35
c

4.0

a crack

Figure P8.21

8.22 A tube having inner radius r1 = 45 mm and outer radius r2 = 50 mm is subjected to a bending
moment of 8.0 kN·m. It is made of annealed titanium 6Al-4V. As shown in Fig. P8.22, the
tube has a through-wall crack of width 2a = 10 mm, located at an angle θ = 50◦ relative to
the bending axis. Estimate the safety factor, considering both brittle fracture and fully plastic
yielding. Use reasonable approximations as needed to reach a solution.

M

2a

θ

r2

r1

Figure P8.22
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Section 8.5
8.23 A large part in a turbine-generator unit operates near room temperature and is made of

ASTM A470-8 steel. A surface crack has been found that is roughly a semi-ellipse, with
surface length 2c = 60 mm and depth a = 20 mm. The stress normal to the plane of the
crack is 200 MPa, and the member width and thickness are large compared with the crack
size. What is the safety factor against brittle fracture? Should the power plant continue
to operate if failure of this part is likely to cause costly damage to the remainder of the
unit?

8.24 A solid circular shaft 40 mm in diameter is made of the steel 300-M (300◦C temper). It is
subjected to a bending moment of 2 kN·m and may contain a half-circular surface crack,
as in Fig. 8.17(d).

(a) What crack size ac will cause brittle fracture?
(b) What crack size a must be found by inspection to achieve a safety factor in stress of

3.5 against brittle fracture?
(c) Calculate the ratio of the crack size from (a) to that from (b), and comment on the

significance of this value.
8.25 A beam with a rectangular cross section, as in Fig. 8.17(c), is made of 2219-T851 aluminum

and must withstand a bending moment of M = 150 N·m. The thickness is b = 20 mm, and
a quarter-circular corner crack as large as a = 1 mm may be present.

(a) What beam depth t is required for a safety factor 3.0 against brittle fracture?
(b) For the beam depth t as calculated in (a), is the design adequate with respect to possible

fully plastic failure? (Suggestion: Make a conservative estimate of Mo by assuming that
the crack extends across the full thickness b.)

8.26 A round rod of silicon nitride ceramic is loaded as a simply supported beam under a uniformly
distributed force, as in Fig. A.4(b). The rod diameter is 10 mm, the length between supports is
120 mm, and the distributed force is w = 3.0 N/mm.

(a) If a half-circular surface crack as deep as 0.5 mm may be present, what is the safety
factor against brittle fracture?

(b) If a safety factor of 4.0 is required, what is the largest permissible depth for a half-
circular surface crack?

8.27 Solid circular shafts made of titanium 6Al-4V (annealed) are subjected in service to bending,
with a moment M = 6.0 kN·m. Half-circular surface cracks, as in Fig. 8.17(d), may exist in
the part. From nondestructive inspection, it is expected that no cracks larger than a = 5.0 mm
are present.

(a) What shaft diameter is required to resist yielding with a safety factor of 2.0 if no crack
is present?

(b) For an inspection-size crack, what shaft diameter is required to resist brittle fracture
with a safety factor of 3.0?

(c) What shaft diameter should actually be used?
8.28 A shaft of diameter 60 mm has a circumferential surface crack, as in Fig. 8.14, of depth

a = 10 mm. The shaft is made of the 18-Ni maraging steel (air melted) of Table 8.1.
(a) If the shaft is loaded with a bending moment of 2 kN·m, what is the safety factor against

brittle fracture?
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(b) If an axial tensile force of 120 kN is combined with the bending moment, what is the
safety factor?

8.29 A solid circular shaft has a diameter of 50 mm and is made of 7075-T651 aluminum. The
shaft contains a half-circular surface crack, as in Fig. 8.17(d), of depth a = 10 mm, and it is
subjected to a bending moment of M = 600 N·m. What is the largest axial force P that can
be applied along with M such that the safety factor against brittle fracture is not less than 4.0?

8.30 A tension member made of the AISI 4130 steel of Table 8.1 has dimensions, as defined
in Fig. 8.12(c), of b = 50 and t = 10 mm. A safety factor of 3.5 against brittle fracture is
required.

(a) If there is a through-thickness crack in one edge of length a = 5 mm, what is the
highest tension force P that can be permitted in service?

(b) The force P may be off the center of the width dimension b of the member (eccentric)
by as much as 5 mm. In this case, and for the same a = 5 mm, what is the highest
force P that can be permitted in service?

8.31 A tube made of soda-lime glass has an inner radius r1 = 38 mm and a wall thickness
t = 4 mm. A half-circular surface crack of depth a = 2 mm is present as shown in Fig. P8.31.
What internal pressure will cause fracture of the tube?

r1

t

crack

pressure

a

Figure P8.31

8.32 Consider the case of an infinite array of collinear cracks of Fig. 8.23(b), specifically, the K2
case where the crack faces are loaded on one side.

(a) For α = a/b in the range 0.01 to 0.99, calculate a number of values of the
dimensionless function FP2 = K2t

√
b/P . Plot these as a function of α, and comment

on the somewhat unusual trend observed.
(b) Verify that the two approximations given near the bottom of Fig. 8.23 are indeed

within 10% over the ranges indicated.
8.33 In joining plates of 2024-T351 aluminum, a row of bolt holes is loaded on one side by

concentrated forces, as in Fig. 8.24. The remotely applied stress is S = 60 MPa, the hole
spacing is 2b = 24 mm, and the hole diameters are 4 mm. Cracks of length l = 3 mm are
present on each side of each hole. What is the safety factor against failure? Consider both
brittle fracture and fully plastic yielding.
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8.34 A cylindrical pressure vessel has an inner diameter of 150 mm and a wall thickness of 5 mm,
and it contains a pressure of 20 MPa. The safety factor against yielding must be at least
Xo = 2. Also, a leak-before-break criterion must be met, with a safety factor of at least
Xa = 9 on crack length, requiring cc ≥ Xat .

(a) Is the vessel safe if it is made from 300-M steel (300◦C temper)?
(b) From ASTM A517-F steel?
(c) What minimum fracture toughness is required for the material in this application?
(d) What is the safety factor on K relative to K I c due to the Xa = 9 requirement?

8.35 A thick-walled tube having inner radius r1 = 30 mm and outer radius r2 = 50 mm contains a
pressure of 200 MPa. It is made of the AISI 4130 steel of Table 8.1. As shown in Fig. P8.35,
a longitudinal crack is present, with width 2c = 10 mm and depth a = 3 mm. Estimate the
safety factors against brittle fracture and against yielding.

r1

r2

crack

pressure

a

2c

Figure P8.35

8.36 A disc having inner radius r1 = 100 mm and outer radius r2 = 400 mm rotates at 60
revolutions/sec. It is made of ASTM A470-8 steel. As shown in Fig. P8.36, the disc has a
quarter-circular corner crack of depth a = 10 mm at the inner radius. Estimate the safety
factors against brittle fracture and against yielding.

a

ω

a

r2

r1 crack

Figure P8.36
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Section 8.6
8.37 Assume that each of the rotor steels of Fig. 8.35 except A217 is being considered for use

at room temperature (22◦C). The design will be such that the highest stress does not exceed
half of the respective yield strength in each case. Assuming a flaw geometry that is a half-
circular surface crack in a semi-infinite body, determine the largest permissible crack size a
for each material if a safety factor of 2.0 against brittle fracture is required. Also comment on
how this information might affect the choice among these steels.

8.38 A bending member has dimensions, as defined in Fig. 8.13(a), of width b = 50 mm and
thickness t = 20 mm. A through-thickness crack in the edge subjected to tension stress may
be as long as a = 10 mm. What moment is expected to cause failure if the material is AISI
4340 steel (Fig. 8.32) with a yield strength of (a) 800 MPa and (b) 1600 MPa? In each
case, consider both brittle fracture and fully plastic yielding as possible failure modes. Then
(c) comment on whether or not it is beneficial to use the higher strength steel in this case.
(Look at Prob. 8.42 for tabulated values from Fig. 8.32.)

8.39 Two plates of A533B-1 steel (Fig. 8.33) are butted together and then welded from one side,
with the weld only penetrating halfway, as shown in Fig. P8.39. A uniform tension stress
is applied during service in a pressure vessel. Considering both brittle fracture and fully
plastic yielding as possible failure modes, estimate the strength of this joint, as affected
by the cracklike flaw that exists, for temperatures of (a) −75◦C and (b) 200◦C. Express
your answers as values of gross stress, Sg = P/(bt), calculated as if the joint were solid.
Properties for −75◦C can be read from Fig. 8.33 as K I c ≈ 52 MPa

√
m and σo ≈ 550 MPa.

For 200◦C, the yield strength is σo = 400 MPa and the (upper shelf) fracture toughness is

Figure P8.39
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K I c = 200 MPa
√

m. The weld metal has similar properties to the plates. Then (c) comment
on the suitability of this steel for use at these two temperatures.

8.40 Consider 300-M steel with properties for 650◦C and 300◦C tempers as listed in Table 8.1.
Solid circular shafts for an engineering application are currently being made from the
650◦C temper material and have a diameter of 54 mm. The shafts are loaded with a
bending moment of 8.0 kN·m, and nondestructive inspection assures that there are no cracks
deeper than a = 1.0 mm. Also, the design requires a safety factor of at least 2.0 against
yielding.

(a) Is the current design adequate? Assume that any cracks present are half-circular surface
cracks as in 8.17(d).

(b) It has been suggested that a weight and cost savings can be realized by chang-
ing to the 300◦C temper material with a higher yield strength, and then using a
smaller shaft diameter. What minimum shaft diameter would you recommend for
the 300◦C temper material? Would you recommend a change to the 300◦C temper
material?

8.41 Consider rapid cooling (thermal shock) of the glass and ceramics listed in Table P8.41, with
additional data in Table 8.2. Sudden cooling of a thin surface layer of material causes a stress,
as given by Eq. 5.41.

Table P8.41

α E ν

Material 10−6/◦C GPa

Soda-lime glass 9.1 69 0.20
MgO 13.5 300 0.18
Al2O3 8.0 400 0.22
SiC 4.5 396 0.22
Si3N4 2.9 310 0.27

Sources: Tables 3.10, 5.2, P5.30, and [Creyke 82]
p. 50.

(a) Assume that a piece of each material contains a small half-circular surface crack of
depth a = 1.0 mm, and calculate the surface temperature change �T necessary to
cause fracture for each. Which material is the most resistant to thermal shock? Which
is the least?

(b) Apply the method of Section 3.8.1 to determine the combination of materials properties
giving the function f2 that controls the resistance to thermal shock. Rank the materials
according to f2. Comment on the effects of each of the properties K I c, α, E , and ν,
and rationalize how each affects the resistance to thermal shock.

8.42 A solid round shaft is to be made from the AISI 4340 steel of Fig. 8.32. It must resist a bending
moment of M = 3.8 kN·m, with a safety factor of two against yielding. Also, a half-circular
surface crack of depth a = 1.0 mm may be present, and a safety factor of three against brittle
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fracture is needed. Some combinations of yield strength and fracture toughness from Fig. 8.32
are given in Table P8.42.

(a) For material heat treated to a yield strength of 800 MPa, what shaft diameter is
required to resist yielding if the possible crack is ignored? Also, what shaft diameter
is required to resist fracture due to the 1 mm crack, where the possibility of yielding is
ignored?

(b) Which value from (a) should be chosen to avoid failure by either cause?
(c) Repeat (a) for the additional combinations of yield strength and fracture toughness

given. What combination of yield strength and shaft diameter gives the most efficient
design, such that the diameter, and thus the weight, is minimized?

(d) Repeat the previous analysis for a = 0.50 mm and for a = 2.0 mm. Is the choice of a
yield strength sensitive to the crack size that might be present?

Table P8.42

σo, MPa 800 1000 1200 1300 1400 1600 1800
KI c, MPa

√
m 187 182 152 102 65 41 35

8.43 In Fig. 8.40, the fracture toughness of rolled plates of aluminum alloys is seen to vary with
orientation. Explain the physical reasons for this behavior and why the toughness for the L-T
orientation is the highest and that for S-L is the lowest.

8.44 Write a paragraph explaining the significance of the data for unirradiated and irradiated
A533B-1 steel of Fig. 8.41.

8.45 Consider the choice of a steel for an oil pipeline in a cold climate, such as Alaska or Siberia.
What are the desirable characteristics of a material for this application? What types of test
data should be available on candidate materials to serve as a basis for the decision?

8.46 A shaft of diameter 20 mm has a circumferential surface crack, as in Fig. 8.14, of depth
a = 1.5 mm. The shaft is made of the AISI 4130 steel of Table 8.1, and it is loaded with
a bending moment of 150 N·m, combined with a torque of 300 N·m. What is the safety
factor against brittle fracture? Noting that K I I I c is unknown, a reasonable and probably
conservative assumption is to employ a relationship of the same form as Eq. 8.34 and assume
that K I I I c = K I c/2.

Sections 8.7, 8.8, and 8.9
8.47 For the situation of Ex. 8.4 under the applied stress given, do the following:

(a) Determine whether or not plane strain applies and whether or not LEFM is applicable.
(b) Estimate the plastic zone size, 2roσ or 2roε, whichever applies.

8.48 A double-edge-cracked plate of 7075-T651 aluminum has dimensions, as defined in
Fig. 8.12(b), of b = 15.9 mm, t = 6.35 mm, large h, and sharp precracks with a = 5.7 mm.
Under tension load, failure by sudden fracture occurred at a force of Pmax = 55.6 kN. Prior to
this, there was a small amount of slow-stable crack growth, with the P-v curve being similar
to Fig. 8.28, Type I, and crossing the 5% slope deviation at PQ = 50.3 kN.
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(a) Calculate K Q corresponding to PQ .
(b) At the K Q point, determine whether or not plane strain applies and whether or not

LEFM is applicable.
(c) What is the significance of the K Q calculated?

8.49 A fracture toughness test was conducted on AISI 4340 steel having a yield strength
of 1380 MPa. The standard compact specimen used had dimensions, as defined in
Fig. 8.16, of b = 50.8 mm, t = 12.95 mm, and a sharp precrack to a = 25.4 mm. Failure
occurred suddenly at PQ = Pmax = 15.03 kN, with the P-v curve resembling Type III of
Fig. 8.28.

(a) Calculate K Q at fracture.
(b) Does this value qualify as a valid (plane strain) K I c value?
(c) Estimate the plastic zone size at fracture.

8.50 Data are given in Table P8.50 for compact specimens of 7075-T651 aluminum in the same
sizes as those photographed in Fig. 8.47. All had dimensions, as defined in Fig. 8.16, of
b = 50.8 and h = 30.5 mm, and initial sharp precracks and thickness as tabulated. For each
test, perform the following tasks:

(a) Calculate K Q , and determine whether or not K Q qualifies as a valid (plane strain) K I c.
(b) Estimate the plastic zone size at K Q , using 2roσ or 2roε as applicable.
(c) Determine whether analysis by LEFM is applicable.
(d) Plot K Q versus thickness t , and comment on the trend observed and its relationship to

the fracture surfaces in Fig. 8.47.
(e) For each test, employ the crack length ai and Fig. A.16(c) in Appendix A to estimate

the fully plastic force. Then compare these values to the highest forces Pmax reached
prior to fracture. What is the significance of the trend observed?

Table P8.50

Test ai t PQ Basis of PQ Pmax

No. mm mm kN (See Fig. 8.28.) kN

1 24.1 3.18 2.56 P5 for Type I 3.96

2 24.7 6.86 4.96 Pop-in, Type II 6.16

3 23.3 19.35 12.00 Pmax for Type III 12.00

8.51 Consider the form K = F Sg
√

πa and the limitation on LEFM of Eq. 8.39.
(a) Develop an equation that gives the largest permissible ratio Sg/σo as a function of F .
(b) What is the maximum stress level Sg/σo for use of LEFM for F = 1.00, F = 1.12, and

F = 2/π , corresponding, respectively, to center, edge, and embedded circular cracks
in infinite bodies?

(c) Can you rationalize the trends in Fig. 8.5 on the basis of your results?
8.52 The combinations of crack length and stress corresponding to failure in Fig. 8.5 are given in

Table P8.52.
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Table P8.52

Test Crack Length Gross Stress at Fracture
No. ac, mm Sg , MPa

1 3.00 453
2 5.35 405
3 10.70 342
4 18.43 276
5 34.60 202
6 62.19 142

Source: Data in [Orange 67].

(a) Plot these data, the line for σo = 518 MPa, and the curve for Kc = S
√

πa =
66 MPa

√
m, just as they appear in Fig. 8.5.

(b) Also plot a revised curve for Kc = 66 MPa
√

m, where the plastic zone adjustment is
used.

(c) Comment on the success of curve (b) in predicting the behavior.
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Fatigue of Materials:
Introduction and
Stress-Based Approach

9.1 INTRODUCTION
9.2 DEFINITIONS AND CONCEPTS
9.3 SOURCES OF CYCLIC LOADING
9.4 FATIGUE TESTING
9.5 THE PHYSICAL NATURE OF FATIGUE DAMAGE
9.6 TRENDS IN S-N CURVES
9.7 MEAN STRESSES
9.8 MULTIAXIAL STRESSES
9.9 VARIABLE AMPLITUDE LOADING
9.10 SUMMARY

OBJECTIVES

• Explore the cyclic fatigue behavior of materials as a process of progressive damage leading
to cracking and failure, including trends for variables such as stress level, geometry, surface
condition, environment, and microstructure.

• Review laboratory testing in fatigue, and analyze typical test data to obtain stress–life curves
and evaluate mean stress effects.

• Apply engineering methods to estimate fatigue life, including the effects of mean stress,
multiaxial stress, and variable-level cyclic loading; also evaluate safety factors in stress and
in life.

9.1 INTRODUCTION

Components of machines, vehicles, and structures are frequently subjected to repeated loads, and
the resulting cyclic stresses can lead to microscopic physical damage to the materials involved.

416
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Even at stresses well below a given material’s ultimate strength, this microscopic damage can
accumulate with continued cycling until it develops into a crack or other macroscopic damage
that leads to failure of the component. This process of damage and failure due to cyclic loading
is called fatigue. Use of this term arose because it appeared to early investigators that cyclic
stresses caused a gradual, but not readily observable, change in the ability of the material to resist
stress.

Mechanical failures due to fatigue have been the subject of engineering efforts for more
than 150 years. One early study was that of W. A. J. Albert, who tested mine hoist chains
under cyclic loading in Germany around 1828. The term fatigue was used quite early, as
in an 1839 book on mechanics by J. V. Poncelet of France. Fatigue was further discussed
and studied in the mid-1800s by a number of individuals in several countries in response to
failures of components such as stagecoach and railway axles, shafts, gears, beams, and bridge
girders.

The work in Germany of August Wöhler, starting in the 1850s and motivated by railway axle
failures, is especially noteworthy. He began the development of design strategies for avoiding fatigue
failure, and he tested irons, steels, and other metals under bending, torsion, and axial loads. Wöhler
also demonstrated that fatigue was affected not only by cyclic stresses, but also by the accompanying
steady (mean) stresses. More detailed studies following Wöhler’s lead included those of Gerber and
Goodman on predicting mean stress effects. The early work on fatigue and subsequent efforts up to
the 1950s are reviewed in a paper by Mann (1958).

Fatigue failures continue to be a major concern in engineering design. Recall from Chapter 1
that the economic costs of fracture and its prevention are quite large, and note that an estimated 80%
of these costs involve situations where cyclic loading and fatigue are at least a contributing factor.
As a result, the annual cost of fatigue of materials to the U.S. economy is about 3% of the gross
national product (GNP), and a similar percentage is expected for other industrial nations. These
costs arise from the occurrence or prevention of fatigue failure for ground vehicles, rail vehicles,
aircraft of all types, bridges, cranes, power plant equipment, offshore oil well structures, and a wide
variety of miscellaneous machinery and equipment, including everyday household items, toys, and
sports equipment. For example, wind turbines used in power generation, Fig. 9.1, are subjected to
cyclic loads due to rotation and wind turbulence, making fatigue a critical aspect of the design of
the blade and other moving parts.

At present, there are three major approaches to analyzing and designing against fatigue
failures. The traditional stress-based approach was developed to essentially its present form by
1955. Here, analysis is based on the nominal (average) stresses in the affected region of the
engineering component. The nominal stress that can be resisted under cyclic loading is determined
by considering mean stresses and by adjusting for the effects of stress raisers, such as grooves, holes,
fillets, and keyways. Another approach is the strain-based approach, which involves more detailed
analysis of the localized yielding that may occur at stress raisers during cyclic loading. Finally,
there is the fracture mechanics approach, which specifically treats growing cracks by the methods
of fracture mechanics.

The stress-based approach is introduced in this chapter and further considered in Chapter 10,
and the fracture mechanics approach is treated in Chapter 11. Discussion of the strain-based
approach is postponed until Chapter 14, as it is necessary to first consider plastic deformation in
materials and components in Chapters 12 and 13.



418 Chapter 9 Fatigue of Materials: Introduction and Stress-Based Approach

Figure 9.1 Large horizontal-axis wind turbine in operation on the Hawaiian island of Oahu.
The blade has a tip-to-tip span of 98 m. (Photo courtesy of the NASA Lewis Research Center,
Cleveland, OH.)

9.2 DEFINITIONS AND CONCEPTS

A discussion of the stress-based approach begins with some necessary definitions and basic
concepts.

9.2.1 Description of Cyclic Loading

Some practical applications, and also many fatigue tests on materials, involve cycling between
maximum and minimum stress levels that are constant. This is called constant amplitude stressing
and is illustrated in Fig. 9.2.

The stress range, �σ = σmax − σmin, is the difference between the maximum and the minimum
values. Averaging the maximum and minimum values gives the mean stress, σm . The mean stress
may be zero, as in Fig. 9.2(a), but often it is not, as in (b). Half the range is called the stress
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Figure 9.2 Constant amplitude cycling and the associated nomenclature. Case (a) is
completely reversed stressing, σm = 0; (b) has a nonzero mean stress σm; and
(c) is zero-to-tension stressing, σmin = 0.

amplitude, σa , which is the variation about the mean. Mathematical expressions for these basic
definitions are

σa = �σ

2
= σmax − σmin

2
, σm = σmax + σmin

2
(a, b) (9.1)

The term alternating stress is used by some authors and has the same meaning as stress amplitude.
It is also useful to note that

σmax = σm + σa, σmin = σm − σa (9.2)

The signs of σa and �σ are always positive, since σmax > σmin, where tension is considered positive.
The quantities σmax, σmin, and σm can be either positive or negative.

The following ratios of two of these variables are sometimes used:

R = σmin

σmax
, A = σa

σm
(9.3)

where R is called the stress ratio and A the amplitude ratio. Some additional relationships derived
from the preceding equations are also useful:

σa = �σ

2
= σmax

2
(1 − R), σm = σmax

2
(1 + R) (a, b)

R = 1 − A

1 + A
, A = 1 − R

1 + R
(c, d)

(9.4)
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Cyclic stressing with zero mean can be specified by giving the amplitude σa , or by giving the
numerically equal maximum stress, σmax. If the mean stress is not zero, two independent values are
needed to specify the loading. Some combinations that may be used are σa and σm , σmax and R,
�σ and R, σmax and σmin, and σa and A. The term completely reversed cycling is used to describe
a situation of σm = 0, or R = −1, as in Fig. 9.2(a). Also, zero-to-tension cycling refers to cases
of σmin = 0, or R = 0, as in Fig. 9.2(c).

The same system of subscripts and the prefix � are used in an analogous manner for other
variables, such as strain ε, force P , bending moment M , and nominal stress S. For example, Pmax

and Pmin are maximum and minimum force, �P is force range, Pm is mean force, and Pa is force
amplitude. If there is any possibility of confusion as to what variable is used with the ratios R or A,
a subscript should be employed, such as Rε for strain ratio.

9.2.2 Point Stresses Versus Nominal Stresses

It is important to distinguish between the stress at a point, σ , and the nominal or average stress, S,
and for this reason we use two different symbols. Nominal stress is calculated from force or moment
or their combination as a matter of convenience and is only equal to σ in certain situations. Consider
the three cases of Fig. 9.3. For simple axial loading (a), the stress σ is the same everywhere and so
is equal to the average value S = P/A, where A is the cross-sectional area.

For bending, it is conventional to calculate S from the elastic bending equation, S = Mc/I ,
where c is the distance from neutral axis to edge and I is the area moment of inertia about the
bending axis. Hence, σ = S at the edge of the bending member, with σ , of course, being less
elsewhere, as illustrated in Fig. 9.3(b). However, if yielding occurs, the actual stress distribution
becomes nonlinear, and σ at the edge of the member is no longer equal to S. This is also illustrated
in Fig. 9.3(b). Despite the limitation to elastic behavior, such values of S are often calculated beyond
yielding, and this can lead to confusion. Stresses σ for bending beyond yielding can be obtained by
replacing the elastic bending formula with more general analysis, as described in Chapter 13.

For notched members, nominal stress S is conventionally calculated from the net area remaining
after removal of the notch. (The term notch is used in a generic sense to indicate any stress raiser,
including holes, grooves, fillets, etc.) If the loading is axial, S = P/A is used, and for bending,
S = Mc/I is calculated on the basis of bending across the net area. Due to the stress raiser effect,
such an S needs to be multiplied by an elastic stress concentration factor, kt , to obtain the peak stress
at the notch, σ = kt S, as illustrated in Fig. 9.3(c). (Values of kt and corresponding definitions of S
are given for some representative cases in Appendix A, Figs. A.11 and A.12.) Note that kt is based
on linear-elastic materials behavior, and the value does not apply if there is yielding. Where yielding
occurs even locally at the notch, the actual stress σ is lower than kt S, as also illustrated in Fig. 9.3(c).

Stresses in notched members and other complex geometries may be determined from finite
element analysis or other numerical methods. Such analysis most commonly considers only linear-
elastic materials behavior, so calculated stresses are, again, not correct if yielding occurs—that is, if
the calculated stress exceeds the yield strength σo.

To avoid confusion, we will strictly observe the distinction between the stress σ at a point of
interest and nominal stress S. For axial loading of unnotched members, where σ = S, we will use σ .
However, for bending and notched members, S or kt S are employed, except where it is truly
appropriate to use σ.
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Figure 9.3 Actual and nominal stresses for (a) simple tension, (b) bending, and (c) a notched
member. Actual stress distributions σy vs. x are shown as solid lines, and hypothetical
distributions associated with nominal stresses S as dashed lines. In (c), the stress distribution
that would occur if there were no yielding is shown as a dotted line.

9.2.3 Stress Versus Life (S-N) Curves

If a test specimen of a material or an engineering component is subjected to a sufficiently severe
cyclic stress, a fatigue crack or other damage will develop, leading to complete failure of the
member. If the test is repeated at a higher stress level, the number of cycles to failure will be smaller.
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Figure 9.4 Stress versus life (S-N) curves from rotating bending tests of unnotched
specimens of an aluminum alloy. Identical linear stress scales are used, but the
cycle numbers are plotted on a linear scale in (a), and on a logarithmic one in (b).
(Data from [MacGregor 52].)

Figure 9.5 Rotating bending S-N curve for unnotched specimens of a steel with a distinct
fatigue limit. (Adapted from [Brockenbrough 81]; used with permission.)

The results of such tests from a number of different stress levels may be plotted to obtain a stress–life
curve, also called an S-N curve. The amplitude of stress or nominal stress, σa or Sa , is commonly
plotted versus the number of cycles to failure Nf , as shown in Figs. 9.4 and 9.5.

A group of such fatigue tests giving an S-N curve may be run all at zero mean stress, or all at
some specific nonzero mean stress, σm . Also common are S-N curves for a constant value of the
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stress ratio, R. Although stresses are usually plotted as amplitudes, �σ or σmax are sometimes plot-
ted instead. Equations 9.2 and 9.4 can be used to convert S-N curves plotted in one form to another.

The number of cycles to failure changes rapidly with stress level and may range over several
orders of magnitude. For this reason, the cycle numbers are usually plotted on a logarithmic scale.
The difficulty with a linear plot is illustrated in Fig. 9.4, where the same S-N data are plotted on
both linear and logarithmic scales of Nf . On the linear plot, the cycle numbers for the shorter lives
cannot be read accurately. A logarithmic scale is also often used for the stress axis.

If S-N data are found to approximate a straight line on a log–linear plot, the following equation
can be fitted to obtain a mathematical representation of the curve:

σa = C + D log Nf (9.5)

In this equation, C and D are fitting constants. For data approximating a straight line on a log–log
plot, the corresponding equation is

σa = AN B
f (9.6)

This second equation is often used in the slightly different form

σa = σ ′
f (2Nf )

b (9.7)

The fitting constants for the two forms are related by

A = 2bσ ′
f , B = b (9.8)

Constants for Eqs. 9.6 and 9.7 are given in Table 9.1 for several engineering metals. These are
based on fitting test data for unnotched axial specimens tested under completely reversed (σm = 0)
loading. It is noteworthy that Eq. 9.7 has been widely adopted, with values of σ ′

f and b for σm = 0
being tabulated as materials properties.

At short fatigue lives, the high stresses involved may be accompanied by plastic strains, as
described in Chapters 12 and 14. Equation 9.7 nevertheless continues to apply for uniaxial test data
from unnotched specimens, except that amplitudes of true stress σ̃a are needed if the strains are
quite large. Also, the constant σ ′

f is often approximately equal to the true fracture strength σ̃ f from
a tension test, which for ductile materials is noted to be a value larger than the engineering ultimate
strength σu .

In some materials, notably plain-carbon and low-alloy steels, there appears to be a distinct
stress level below which fatigue failure does not occur under ordinary conditions. This is illustrated
in Fig. 9.5, where the S-N curve appears to become flat and to asymptotically approach the stress
amplitude labeled Se. Such lower limiting stress amplitudes are called fatigue limits or endurance
limits. For test specimens without notches and with a smooth surface finish, these are denoted σe

and are often considered to be material properties.
The term fatigue strength is used to specify a stress amplitude value from an S-N curve at a

particular life of interest. Hence, the fatigue strength at 105 cycles is simply the stress amplitude
corresponding to Nf = 105. Other terms used with S-N curves include high-cycle fatigue and
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Table 9.1 Constants for Stress–Life Curves for Various Ductile Engineering
Metals, From Tests at Zero Mean Stress on Unnotched Axial Specimens

Yield Ultimate True Fracture σa = σ ′
f (2Nf )

b = AN B
f

Strength Strength Strength
Material σo σu σ̃ f B σ ′

f A b = B

(a) Steels
SAE 1015 228 415 726 1020 927 −0.138

(normalized) (33) (60.2) (105) (148) (134)

Man-Ten 322 557 990 1089 1006 −0.115
(hot rolled) (46.7) (80.8) (144) (158) (146)

RQC-100 683 758 1186 938 897 −0.0648
(roller Q & T) (99.0) (110) (172) (136) (131)

SAE 4142 1584 1757 1998 1937 1837 −0.0762
(Q & T, 450 HB) (230) (255) (290) (281) (266)

AISI 4340 1103 1172 1634 1758 1643 −0.0977
(aircraft quality) (160) (170) (237) (255) (238)

(b) Other Metals
2024-T4 Al 303 476 631 900 839 −0.102

(44.0) (69.0) (91.5) (131) (122)

Ti-6Al-4V 1185 1233 1717 2030 1889 −0.104
(solution treated (172) (179) (249) (295) (274)
and aged)

Notes: The tabulated values have units of MPa (ksi), except for dimensionless b = B.
See Table 14.1 for sources and additional properties.

low-cycle fatigue. The former identifies situations of long fatigue life where the stress is sufficiently
low that yielding effects do not dominate the behavior. The life where high-cycle fatigue starts
varies with material, but is typically in the range 102 to 104 cycles. In the low-cycle range, the more
general strain-based approach of Chapter 14 is particularly useful, as this deals specifically with the
effects of plastic deformation.

Example 9.1
Some values of stress amplitude and corresponding cycles to failure are given in Table E9.1
from tests on the AISI 4340 steel of Table 9.1. The tests were done on unnotched, axially loaded
specimens under zero mean stress.

(a) Plot these data on log–log coordinates. If this trend seems to represent a straight line,
obtain rough values for the constants for A and B of Eq. 9.6 from two widely separated
points on a line drawn through the data.

(b) Obtain refined values for A and B, using a linear least-squares fit of log Nf versus
log σa .
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Table E9.1

σa , MPa Nf , cycles

948 222
834 992
703 6 004
631 14 130
579 43 860
524 132 150

Source: Data in [Dowling 73].

Solution (a) The plotted data are shown in Fig. E9.1. They do seem to fall along a straight
line, and the first and last points represent the line well. Denote these points as (σ1, N1) and
(σ2, N2), and apply the equation σa = AN B

f to both:

σ1 = AN B
1 , σ2 = AN B

2

Then divide the second equation into the first, and take logarithms of both sides:

σ1

σ2
=
(

N1

N2

)B

, log
σ1

σ2
= B log

N1

N2

Solving for B gives

B = log σ1 − log σ2

log N1 − log N2
= log (948 MPa) − log (524 MPa)

log 222 − log 132,150
= −0.0928 Ans.
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Once B is known, A can be calculated from either point:

A = σ1

N B
1

= 948 MPa

222−0.0928
= 1565 MPa Ans.

(b) Since the stress is chosen in each test, σa is the independent variable, and Nf is the
dependent one. Hence, to proceed with a least-squares fit, solve Eq. 9.6 for Nf , and then take the
logarithm of both sides:

Nf =
(σa

A

)1/B
, log Nf = 1

B
log σa − 1

B
log A

This is a straight line on a log–log plot, so

y = mx + c

where y is the dependent variable and x is the independent one. Then

y = log Nf , x = log σa, m = 1/B, c = − 1

B
log A

Performing a linear least-squares fit on this basis gives

m = −10.582, c = 33.87

so that

B = 1/m = −0.0945, A = 10−cB = 1587 Ans.

The resulting line is plotted on Fig. E9.1.

Discussion The values of A and B from Solutions (a) and (b) are seen to agree approximately
with each other and with the values in Table 9.1, which are based on a larger set of data.

From Eq. 9.6, the coefficient A is seen to be the σa intercept at Nf = 1. This is shown in
Fig. E9.1. The exponent B is the slope as directly measured on a log–log plot with the same
scales on both axes. In Fig. E9.1, since the logarithmic decades on the σa axis are twice as large
as those on the Nf axis, Dv/Dh = 2, the slope v/h measured directly from the graph must be
divided by 2 to graphically determine a value of B.

Also, σ ′
f and b for Eq. 9.7 may be obtained directly from A and B. Using Eq. 9.8 with the

values from the least-squares fit, we get

b = B = −0.0945, σ ′
f = A

2b
= 1587 MPa

2−0.0945
= 1695 MPa

From Eq. 9.7, the constant σ ′
f is noted to be the σa intercept at one-half cycle, Nf = 0.5, which

is also shown in Fig. E9.1.
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9.2.4 Safety Factors for S-N Curves

Consider a stress level σ̂a and a number of cycles N̂ that are expected to occur in actual service.
As illustrated in Fig. 9.6, this combination must fall below the stress–life curve σa = f (Nf ) that
corresponds to failure, so that there is an adequate safety factor. At Point (1), the stress amplitude
σa1 corresponds to failure at the desired service life N̂ . Comparing σa1 with the service stress σ̂a

provides the safety factor in stress:

X S = σa1

σ̂a
(Nf = N̂ ) (9.9)

An alternative is to employ Point (2), where the failure life Nf 2 corresponds to the service stress σ̂a .
Comparing Nf 2 with the service life N̂ gives the safety factor in life:

X N = Nf 2

N̂
(σa = σ̂ a) (9.10)

Safety factors in stress for fatigue should be similar in magnitude to other stress-based safety
factors, as discussed in previous chapters, typically in the range X S = 1.5 to 3.0, depending on
the consequences of failure and whether or not the values of σ̂a and N̂ are well known. However,
fatigue lives are quite sensitive to the value of stress, so relatively large safety factors in life are
needed to achieve reasonable safety factors in stress. Hence, safety factors in life need to be in the
range X N = 5 to 20 or more.

For example, consider stress–life curves of the form of Eq. 9.6, and apply this relationship to
points analogous to (1) and (2) in Fig. 9.6:

σa1 = AN̂ B, σ̂a = A N B
f 2 (a, b) (9.11)

Substituting these into Eq. 9.9 and noting Eq. 9.10 allows X S and X N to be related:

X S = AN̂ B

A N B
f 2

=
(

1

X N

)B

= X−B
N , X N = X−1/B

S (a, b) (9.12)
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Figure 9.6 Stress–life curve and the stress amplitude and number of cycles expected in actual
service, σ̂a and N̂, giving safety factors XS in stress and XN in life.
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Hence, for the Eq. 9.6 form of stress–life curve, a given safety factor in stress corresponds to a
particular safety factor in life, and vice versa. The same relationship applies for the alternative form
of Eq. 9.7 by substituting b = B. For other forms of stress–life curve that do not form a straight line
on a log–log plot, the X N that corresponds to a given X S will vary with life.

Values around B = −0.1 are typical of stress–life curves for unnotched axial specimens
of engineering metals, as in Table 9.1. Stress–life curves from tests on notched engineering
components typically have exponents around B = −0.2 and welded structural steel members
around B = −1/3. Applying Eq. 9.12 for these values of B, we get the following safety factors
in life X N corresponding to X S = 2, and also safety factors in stress for X N = 10:

B −1/B X N for X S = 2 X S for X N = 10

−0.1 10 1024 1.26
−0.2 5 32 1.58
−0.333 3 8 2.15

We see that a quite large safety factor in life is needed to achieve even a modest safety factor in
stress, especially for shallow S-N curves where −1/B is large.

From Appendix B, Table B.4, a typical coefficient of variation for fatigue strength is δx = 10%.
With reference to Table B.3, this implies a 0.1% failure rate, or 1 out of 1000, at a stress
3.09 × 10% = 30.9% below the mean. This in turn corresponds to a stress of 69.1% of the
mean and to a safety factor in stress of X S = 1/0.691 = 1.45. Similarly, a 0.01% failure rate,
1 out of 10,000, corresponds to 3.72 × 10% = 37.2% below the mean, implying a safety factor of
XS = 1/0.628 = 1.59. Particular cases will of course have more or less variation than the typical δx .
Also, the foregoing logic assumes that there is no error in the S-N curve itself. Hence, these failure
rates and corresponding safety factors X S should be considered to be only a rough guide. Neverthe-
less, they do suggest that safety factors in stress for fatigue should generally be larger than 1.5.

Example 9.2
For the AISI 4340 steel of Table 9.1, a stress amplitude of σ̂a = 500 MPa will be applied in
service for N̂ = 2000 cycles. What are the safety factors in stress and in life?

Solution The safety factor in life can be determined by applying Eq. 9.6 to calculate the life
corresponding to Point (2) in Fig. 9.6. We obtain

σa = σ̂a = AN B
f 2 , N f 2 =

(
σ̂a

A

)1/B

=
(

500 MPa

1643 MPa

)1/(−0.0977)

= 1.942 × 105 cycles

X N = N f 2

N̂
= 1.942 × 105

2000
= 97.1

Ans.

where the material constants A and B are from Table 9.1.



Section 9.3 Sources of Cyclic Loading 429

The safety factor in stress can be calculated from the stress amplitude σa1 corresponding to
Point (1), which is obtained by substituting N̂ = 2000 cycles into Eq. 9.6:

σa1 = AN B
f = AN̂ B = 1643(2000)−0.0977 = 782 MPa

Hence, the safety factor in stress is

X S = σa1

σ̂a
= 782 MPa

500 MPa
= 1.564 Ans.

However, due to the Eq. 9.6 form of the stress–life curve, this latter calculation can be
accomplished more efficiently from X N and Eq. 9.12:

X S = X−B
N = 97.1−(−0.0977) = 1.564

Discussion Note that the modest value of safety factor in stress of X S = 1.56 corresponds
to the quite large safety factor in life of X N = 97.1, as expected from the rather large value of
−1/B = 10.2 for the stress–life curve.

9.3 SOURCES OF CYCLIC LOADING

Some practical applications involve cyclic loading at a constant amplitude, but irregular load versus
time histories are more commonly encountered. Examples are given in Figs. 9.7 to 9.10. Loads on
components of machines, vehicles, and structures can be divided into four categories, depending
on their source. Static loads do not vary and are continuously present. Working loads change with
time and are incurred as a result of the function performed by the component. Vibratory loads are
relatively high-frequency cyclic loads that arise from the environment or as a secondary effect of
the function of the component. These are often caused by fluid turbulence or by the roughness
of solid surfaces in contact with one another. Accidental loads are rare events that do not occur
under normal circumstances.

For example, consider highway bridges. Static loads are caused by the always-present weight
of the structure and roadway. Cyclic working loads are caused by the weights of vehicles, especially
heavy trucks, moving across the bridge. Vibratory loads are added to the working loads and
are caused by tires interacting with the roughness of the roadway, including the bouncing of
vehicles after hitting potholes. Long-span bridges are also subject to vibratory loading due to wind
turbulence. Accidental loading could be caused by a truck hitting an overpass bridge because the
truck was too high for the clearance available, or by an earthquake.

Working loads and vibratory loads, and often their combined effects, are the cyclic loads that
can cause fatigue failure. However, the damage due to cyclic loads is greater if the static loads
are more severe, so these also need to be considered. Accidental loads may play an additional role,
themselves causing fatigue failure, or damaging a component so that it is more susceptible to fatigue
caused by subsequent, more ordinary loads.
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Figure 9.7 Sample record of stresses at the steering knuckle arm of a motor vehicle,
including the original stress–time history (a), and the separation of this into the vibratory load
due to roadway roughness (b) and the working load due to maneuvering the vehicle (c).
(From [Buxbaum 73]; used with permission; first published by AGARD/NATO.)

S-N curves from constant amplitude testing can be used to estimate fatigue lives for irregular
load-time histories. The methodology will be introduced near the end of this chapter.

9.4 FATIGUE TESTING

Materials testing to obtain S-N curves is a widespread practice. Several ASTM Standards address
stress-based fatigue testing for metals, especially Standard No. E466. The resulting data and curves
are widely available in the published literature, including various handbooks, as listed in a special
section of the References. An understanding of the basis of these tests is useful in effectively
employing their results for engineering purposes.

9.4.1 Test Apparatus

One of the machines employed by Wöhler tested a pair of rotating test specimens subjected to
cantilever bending, as shown in Fig. 9.11. Springs supplied a constant force through a bearing,
permitting rotation of the specimen, so that the bending moment varied linearly with distance from
the spring. In such a rotating bending test, any point on the specimen is subjected to a sinusoidally
varying stress as it rotates from the tension (top) side of the beam to the compression (bottom) side,
completing one cycle each time the specimen rotates 360◦.

Equipment for rotating bending tests operating on similar principles is still in use today. A
variation involving four-point bending has probably been more widely used than any other type of
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Figure 9.8 Calculated force on the front left lower ball joint in an automobile suspension,
recorded while the tires were impacting railroad ties. (From [Thomas 87]; used with
permission; c© Society of Automotive Engineers.)

Figure 9.9 Loads during each revolution of a helicopter rotor. Feathering of the blade and
interaction with the air cause these dynamic loads. (From [Boswell 59]; used with permission.)

fatigue testing machine; this is illustrated in Fig. 9.12. The two bearings near each end of the test
specimen permit the load to be applied while the specimen rotates, and two bearings outside of
these provide support. A hanging weight usually provides the constant force. Four-point bending
has the advantage of providing a constant bending moment and zero shear over the length of the
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Figure 9.10 Loads for one flight of a fixed-wing aircraft (a), and a simplified version of this
loading (b). Working loads occur due to takeoffs, maneuvers, and landings, and there are
vibratory loads due to runway roughness and air turbulence, as well as wind gust loads
in storms. (From [Waisman 59]; used with permission.)

Figure 9.11 Rotating cantilever beam fatigue testing machine used by Wöhler. D, drive
pulley; C, arbor; T, tapered specimen butt; S, specimen; a, moment arm; G, loading bearing;
P, loading spring. (From [Hartmann 59]; used with permission.)
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Figure 9.12 The R. R. Moore rotating beam fatigue testing machine. (From [Richards 61]
p. 382; reprinted by permission of PWS-Kent Publishing Co., Boston.)

Figure 9.13 A reciprocating cantilever bending fatigue testing machine based on controlled
deflections from a rotating eccentric. (From [Richards 61] p. 383; reprinted by permission of
PWS-Kent Publishing Co., Boston.)

specimen. For all forms of rotating bending test, the cyclic stress has a mean value of zero. This
is because the distance from the neutral axis of bending to a given point on the specimen surface
varies symmetrically about zero as the circular cross section rotates.

A rotating crank can be used in a reciprocating bending test to achieve a nonzero mean stress,
as shown in Fig. 9.13. Geometric changes in the apparatus that effectively alter the length of the
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Figure 9.14 Various fatigue test specimens, all shown to the same scale. (Adapted from
[Hartmann 59]; used with permission.)

Figure 9.15 Axial fatigue testing machine based on a resonant vibration caused
by a rotating eccentric mass. (From [Collins 93] p. 179; reprinted by permission of
John Wiley & Sons, Inc. copyright c© 1993 by John Wiley & Sons, Inc.)

connecting rod from the eccentric drive give different mean deflections and, hence, different mean
stresses. The test specimens are often flat, with the width tapered the proper amount to give a
constant bending stress, despite the linearly varying moment. One of the test specimens shown in
Fig. 9.14 is of this type. If yielding occurs in such a test, the stresses cannot be readily determined
from the deflections, and the force or specimen strain must be specifically measured. Axial stressing
with various mean levels can be achieved by a modification of this device.

A cyclic stress with zero mean level can be achieved by exciting a resonant vibration in an
elastic system, such as the axial testing machine based on a rotating eccentric mass shown in
Fig. 9.15. More complex resonant devices capable of providing mean stresses are also used, and
similar principles can be applied to bending or torsion. In addition, the vibration can be induced
by other means, such as electromagnetic, piezoelectric, or acoustic effects. Frequencies of cycling
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up to 100 kHz are possible with some of these special techniques. At such very high frequencies,
active cooling of the specimen is required to avoid overheating.

Modifications and elaborations of simple mechanical devices, as just described, allow fatigue
tests to be run in torsion, combined bending and torsion, biaxial bending, etc. Test specimens made
of thin-walled tubes may be subjected to cyclic fluid pressure to obtain biaxial stresses. All of the
test equipment described so far is best suited to constant amplitude loading at a constant frequency
of cycling. However, additional complexity can be added to some of these machines to achieve a
slowly changing amplitude or mean level.

Closed-loop servohydraulic testing machines (Fig. 4.4) are also widely used for fatigue testing.
This equipment is expensive and complex, but it has important advantages over all other types of
fatigue testing equipment. The test specimens can be subjected to constant amplitude cycling with
controlled loads, strains, or deflections, and the amplitude, mean, and cyclic frequency can be set to a
desired value by the electronic controls of the machine. Also, any irregular loading history available
as an electrical signal can be enforced upon a test specimen. Highly irregular histories similar to
Figs. 9.7 to 9.10 can thus be used in tests that closely simulate actual service conditions. Closed-
loop machines are often controlled by computers, and the test results monitored by computers.

In most of the test apparatus described, the frequency is fixed by the speed of an electric motor
or by the natural frequency of a resonant vibratory device. This fixed frequency is usually in the
range from 10 to 100 Hz. At the latter value, a test to 107 cycles takes 28 hours, a test to 108

cycles takes 12 days, and a test to 109 cycles takes almost four months. These long test times
place a practical limit on the range of lives that can be studied. If very long lives are of interest,
one possibility is to use a special high-frequency resonant vibration testing device. However, the
frequency may affect the test results, so it is not clear that an S-N curve obtained at, say, 20 kHz
can be applied to service loading at a much lower frequency.

9.4.2 Test Specimens

Specimens for evaluating the fatigue resistance of materials are designed to fit the test apparatus
used. Some examples are shown in Fig. 9.14, and two fractures from fatigue tests are shown in
Fig. 9.16. The simplest test specimens, called unnotched or smooth specimens, have no stress raiser
in the region where failure occurs. A variety of specimens containing stress raisers, called notched
specimens, are also used. These permit the evaluation of materials under conditions more closely
approaching those in an actual component. Notched test specimens are characterized by the value
of the elastic stress concentration factor kt .

Actual structural components, or portions of components, such as bolted or welded joints, are
often subjected to fatigue testing. Structural assemblies, or even entire structures or vehicles, are also
sometimes tested. Examples are tests of aircraft wings or tail sections, or of automobile suspension
systems. A test of an entire automobile has already been illustrated by Fig. 1.13.

9.5 THE PHYSICAL NATURE OF FATIGUE DAMAGE

When viewed at a sufficiently small size scale, all materials are anisotropic and inhomogeneous.
For example, engineering metals are composed of an aggregate of small crystal grains. Within each
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Figure 9.16 Photographs of broken 7075-T6 aluminum fatigue test specimens: unnotched
axial specimen, 7.6 mm diameter (left); and plate 19 mm wide with a round hole (right).
In the unnotched specimen, the crack started in the flat region with slightly lighter
color, and cracks in the notched specimen started on each side of the hole. (Photos by
R. A. Simonds.)

grain, the behavior is anisotropic due to the crystal planes, and if a grain boundary is crossed, the
orientation of these planes changes. Inhomogeneities exist not only due to the grain structure, but
also because of tiny voids or particles of a different chemical composition than the bulk of the
material, such as hard silicate or alumina inclusions in steel. Multiple phases, involving grains or
other regions of more than one chemical composition, are also common, as discussed in Chapter 3.
As a result of such nonuniform microstructure, stresses are distributed in a nonuniform manner
when viewed at the size scale of this microstructure. Regions where the stresses are severe are
usually the points where fatigue damage starts. The details of the behavior at a microstructural
level vary widely for different materials due to their different bulk mechanical properties and their
different microstructures.

For ductile engineering metals, crystal grains that have an unfavorable orientation relative to
the applied stress first develop slip bands. As discussed in Chapter 2, slip bands are regions where
there is intense deformation due to shear motion between crystal planes. A sequence of photographs
showing this process is presented as Fig. 9.17. Also, the slip band damage previously illustrated
in Fig. 2.22 was caused by cyclic loading. Additional slip bands form as more cycles are applied,
and their number may become so large that the rate of formation slows, with the number of slip
bands approaching a saturation level. Individual slip bands become more severe, and some develop
into cracks within grains, which then spread into other grains, joining with other similar cracks, and
producing a large crack that propagates to failure.

For materials of somewhat limited ductility, such as high-strength metals, the microstructural
damage is less widespread and tends to be concentrated at defects in the material. A small crack de-
velops at a void, inclusion, slip band, grain boundary, or surface scratch, or there may be a sharp flaw
initially present that is essentially a crack. This crack then grows in a plane generally normal to the



Figure 9.17 The process of slip band damage during cyclic loading developing into a crack in an annealed 70Cu-30Zn brass.
(Photos courtesy of Prof. H. Nisitani, Kyushu Sangyo University, Fukuoka, Japan. Published in [Nisitani 81]; reprinted with
permission from Engineering Fracture Mechanics, Pergamon Press, Oxford, UK.)
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Figure 9.18 Fatigue crack origin in an unnotched axial test specimen of AISI 4340 steel having
σu = 780 MPa, tested at σa = 440 MPa with σm = 0. The inclusion that started the crack can be
seen at the two higher magnifications. (SEM photos by A. Madeyski, Westinghouse Science
and Technology Ctr., Pittsburgh, PA; see [Dowling 83] for related data.)

tensile stress until it causes failure, sometimes joining with other cracks in the process. Photographs
of progressive damage of this type have already been presented as Fig. 1.8. An example of a fatigue
fracture initiating from an inclusion is shown in Fig. 9.18. Thus, the process in limited-ductility
materials is characterized by propagation of a few defects, in contrast to the more widespread
damage intensification that occurs in highly ductile materials. In fibrous composite materials, fatigue
damage is generally characterized by increasing numbers of fiber breaks and delamination spreading
over a relatively large area. The final failure involves an irregular geometry of pulled-out fibers and
separated layers, rather than a distinct crack.

S-N curves can be plotted not only for failure, but also for numbers of cycles required to reach
various stages of the damage process, as illustrated in Fig. 9.19. The curves in one case are for
slip-band-dominated damage in an annealed, nearly pure, aluminum alloy. For the other case, a pre-
cipitation hardened aluminum alloy, S-N curves are given for the first detected crack and for failure.

Where failure is dominated by growth of a crack, the resulting fracture, when viewed
macroscopically, generally exhibits a relatively smooth area near its origin. This can be seen in
Figs. 9.16, 9.18, and 9.20. The portion of the fracture associated with growth of the fatigue crack is



Section 9.5 The Physical Nature of Fatigue Damage 439

Figure 9.19 Stress–life curves for completely reversed bending of smooth specimens, showing
various stages of fatigue damage in an annealed 99% aluminum (1230-0), and in a hardened
6061-T6 aluminum alloy. (Adapted from [Hunter 54] and [Hunter 56]; copyright c© ASTM;
reprinted with permission.)
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Figure 9.20 Fatigue failure of an aluminum alloy airplane propeller. The failure began
at a small gouge on the bottom edge, approximately 2 cm from the right end of the scale.
(Photo by R. A. Simonds; sample loaned for photo by Prof. J. L. Lytton of Virginia Tech,
Blacksburg, VA.)

Figure 9.21 Fracture surfaces for fatigue and final brittle fracture in an 18 Mn steel member.
(Photo courtesy of A. Madeyski, Westinghouse Science and Technology Ctr., Pittsburgh, PA.)

usually fairly flat and is oriented normal to the applied tensile stress. Rougher surfaces generally
indicate more rapid growth, where the rate of growth usually increases as the crack proceeds.
Curved lines concentric about the crack origin, called beach marks, are often present and mark
the progress of the crack at various stages, as seen in Fig. 9.20 and more clearly in Fig. 9.21. Beach
marks indicate changes in the texture of the fracture surface as a result of the crack being delayed or
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Figure 9.22 Fatigue striations spaced approximately 0.12 μm apart, from a fracture surface of
a Ni-Cr-Mo-V steel. (Photo courtesy of A. Madeyski, Westinghouse Science and Technology Ctr.,
Pittsburgh, PA. Published in [Madeyski 78]; copyright c© ASTM; reprinted with permission.)

accelerated, which may occur due to an altered stress level, temperature, or chemical environment.
Beach marks may also be caused by discoloration due to greater amounts of corrosion on older
portions of the fracture surface.

After the crack has reached a sufficient size, a final failure occurs that may be ductile, involving
considerable deformation, or brittle and involving little deformation. The final fracture area is
usually rough in texture, and in ductile materials forms a shear lip, inclined at approximately
45◦ to the applied stress. These features can be seen in Figs. 9.16, 9.20, and 9.21. Microscopic
examination of fatigue fracture surfaces in ductile materials often reveals the presence of marks left
by the progress of the crack on each cycle. These are called striations and can be seen in Fig. 9.22.

9.6 TRENDS IN S-N CURVES

S-N curves vary widely for different classes of materials, and they are affected by a variety of factors.
Any processing that changes the static mechanical properties or microstructure is also likely to affect
the S-N curve. Additional factors of importance include mean stress, member geometry, chemical
environment, temperature, cyclic frequency, and residual stress. Some typical S-N curves for metals
have already been presented, and curves for several polymers are shown in Fig. 9.23.

9.6.1 Trends with Ultimate Strength, Mean Stress, and Geometry

Smooth specimen fatigue limits of steels are often about half of the ultimate tensile strength, which
is illustrated in Fig. 9.24. Values drop below σe ≈ 0.5σu at high-strength levels where most steels
have limited ductility. This indicates that a reasonable degree of ductility is helpful in providing
resistance to cyclic loading. Lack of appreciation for this fact can lead to fatigue failures in situations
where fatigue was not previously a problem, as in substituting high-strength materials to save weight
in vehicles. Similar correlations exist for other metals, but the fatigue limits are generally lower than
half the ultimate. This is illustrated for wrought aluminum alloys by Fig. 9.25.
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Figure 9.23 Stress–life curves from cantilever bending of mineral and glass-filled thermosets
(solid lines) and unfilled thermoplastics (dashed lines). (Adapted from [Riddell 74]; used
with permission.)
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Figure 9.25 Fatigue strengths in rotating bending at 5 × 108 cycles for various tempers of
common wrought aluminum alloys, including 1100, 2014, 2024, 3003, 5052, 6061, 6063,
and 7075 alloys. The slope me = σerb/σu indicates the average behavior for σu < 325 MPa.
(Adapted from R. C. Juvinall, Stress, Strain, and Strength, 1967; [Juvinall 67] p. 215;
reproduced with permission; c©1967 The McGraw-Hill Companies, Inc.)

Figures 9.24 and 9.25 apply for a uniaxial state of stress and for zero mean stress, so the values
need to be adjusted for other situations. For example, for a state of pure shear stress due to torsion,
the fatigue limit for zero mean stress can be estimated from the bending value by

τer = σerb/
√

3 = 0.577σerb (9.13)

Glass-fiber-reinforced thermoplastics are typically tested under zero-to-maximum tension or
bending. Such composites may have various reinforcement details, such as continuous unidirec-
tional fibers, random chopped fiber mats, or short chopped fibers for injection molding. Their S-N
curves for R ≈ 0 are sometimes approximated by a relationship of the form of Eq. 9.5, namely,

σmax = σu(1 − 0.1 log Nf ) (9.14)

where σu is the ultimate tensile strength. The constant 0.1 determines the slope of the resulting
straight line on a log–linear plot. See the paper by Adkins (1988) in the References for more
detail.

An important influence on S-N curves that will be considered in some detail later in this chapter
is the effect of mean stress. For a given stress amplitude, tensile mean stresses give shorter fatigue
lives than for zero mean stress, and compressive mean stresses give longer lives. Some test data
illustrating this are shown in Fig. 9.26. Note that such an effect of mean stress lowers or raises the
S-N curve, so that for a given life, the stress amplitude which can be allowed is lower if the mean
stress is tensile, or higher if it is compressive.

Stress raisers (notches) shorten the life—that is, lower the S-N curve—more so if the elastic
stress concentration factor kt is higher. An example of this effect is shown in Fig. 9.27. Another
important trend is that notches have a relatively more severe effect on high-strength, limited-ductility
materials. Notch effects are treated in detail in the next chapter, and also later in Chapter 14.
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Figure 9.28 Effect of a salt solution similar to seawater on the bending fatigue behavior of
an aluminum alloy. (Data from [Stubbington 61].)

9.6.2 Effects of Environment and Frequency of Cycling

Hostile chemical environments can accelerate the initiation and growth of fatigue cracks. One
mechanism is the development of corrosion pits, which then act as stress raisers. In other cases,
the environment causes cracks to grow faster by chemical reactions and dissolution of material at
the crack tip. For example, testing in a salt solution similar to seawater lowers the S-N curve of one
aluminum alloy as shown in Fig. 9.28.

Even the moisture and gases in air can act as a hostile environment, especially at high
temperature. Time-dependent deformation (creep) is also more likely at high temperature, and when
combined with cyclic loading, creep may have a synergistic effect that unexpectedly shortens the
life. In general, chemical or thermal effects are greater if more time is available for them to occur.
This leads to the fatigue life varying with frequency of cycling in such situations, the life in cycles
being shorter for slower frequencies. Such effects are evident in Fig. 9.29.

Polymers may increase in temperature during cyclic loading, as these materials often produce
considerable internal energy due to their viscoelastic deformation, which must be dissipated as heat.
The effect is compounded because such materials have a poor ability to conduct heat away to their
surroundings. A consequence of this is that the S-N curve is affected not only by frequency, but also
by specimen thickness, since thinner test specimens are more efficient at conducting their heat away.

9.6.3 Effects of Microstructure

Any change in the microstructure or surface condition has the potential of altering the S-N curve,
especially at long fatigue lives. In metals, resistance to fatigue is generally enhanced by reducing the
size of inclusions and voids, by small grain size, and by a dense network of dislocations. However,
special processing aimed at improvements due to microstructure may not be successful unless it
can be accomplished without substantially decreasing the ductility. Some S-N curves for brass
illustrating effects due to microstructure are shown in Fig. 9.30. In this material, a higher degree
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Figure 9.29 Temperature and frequency effects on axial S-N curves for the nickel-base alloy
Inconel. (Illustration from [Gohn 64] of data in [Carlson 59]; used with permission.)

of cold work by drawing increases the dislocation density and hence the fatigue strength. Larger
grain sizes are obtained by more thorough annealing, thus lowering the fatigue strength.

Microstructures of materials often vary with direction, such as the elongation of grains and
inclusions in the rolling direction of metal plates. Fatigue resistance may be lower in directions
where the stress is normal to the long direction of such an elongated or layered grain structure.
Similar effects are especially pronounced in fibrous composite materials, where the properties and
structure are highly dependent on direction. Fatigue resistance is higher where larger numbers of
fibers are parallel to the applied stress, and especially low for stresses normal to the plane of a
laminated structure.

9.6.4 Residual Stress and Other Surface Effects

Internal stresses in the material, called residual stresses, have an effect similar to an applied mean
stress. Hence, compressive residual stresses are beneficial. These can be introduced by permanently
stretching a thin surface layer, yielding it in tension. The underlying material then attempts to
recover its original size by elastic deformation, forcing the surface layer into compression.

One means of doing this is by bombarding the surface with small steel or glass shot, which is
called shot peening. Another is by sufficient bending to yield a thin surface layer, which is called
presetting. However, the latter has an opposite (hence harmful) effect on the other side of a bending
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Figure 9.30 Influence of grain size and cold work on rotating bending S-N curves for
70Cu-30Zn brass. (From [Sinclair 52]; used with permission.)

member, so the procedure is useful only if the bending in service is expected to be primarily in one
direction, as for leaf springs in ground vehicle suspensions. Various combinations of presetting and
shot peening affect the S-N curves of steel leaf springs under zero-to-maximum bending, as shown
in Fig. 9.31. The effects correlate as expected with measured residual stresses.

Smoother surfaces that result from more careful machining in general improve resistance to
fatigue, although some machining procedures are harmful, as they introduce tensile residual stresses.
Various surface treatments, such as carburizing or nitriding of steels, may alter the microstructure,
chemical composition, or residual stress of the surface and therefore affect the fatigue resistance.
Plating, such as nickel or chromium plating of steel, generally introduces tensile residual stresses
and is therefore often harmful. Also, the deposited material itself may have poorer resistance to
fatigue than the base material, so cracks easily start there and then grow into the base material. Shot
peening after plating can help by changing the residual stress to compression.

Welding results in geometries that involve stress raisers, and residual stresses often occur as a
result of uneven cooling from the molten state. Unusual microstructure may exist, as well as porosity
or other small flaws. Hence, the presence of welds generally reduces fatigue strength and requires
special attention.

9.6.5 Fatigue Limit Behavior

Many steels and some other materials appear to exhibit a distinct fatigue limit —that is, a safe
stress below which fatigue failure appears to never occur, as in Fig. 9.5. For other materials, such
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Figure 9.31 S-N curves for zero-to-maximum bending, and residual stresses, for variously
shot peened steel leaf springs. (From [Mattson 59]; courtesy of General Motors Research
Laboratories.)

as many nonferrous metals, the stress–life curve is observed to continuously decrease as far as
test data are available. This can be seen for aluminum alloys in Figs. 9.4 and 9.27 and for brass
in Fig. 9.30.

The fatigue limit concept is widely employed in engineering design. Even materials that do not
have a distinct fatigue limit are sometimes assumed to have such behavior for design purposes. In
this case, the fatigue strength at an arbitrary long life is defined as the fatigue limit, where beyond
this life the stress–life curve decreases only very gradually. Such an assumption for a life of 5 × 108

cycles is the basis for the data of Fig. 9.25.
Due to the long test times that are required to reach lives beyond 107 cycles, most fatigue data

that are available are limited to this range. However, recent test data extending to 109 cycles and
beyond have exhibited the surprising behavior of a drop in the stress–life curve beyond the flat
region in the 106 to 107 cycles range. Such behavior has been observed in a number of steels and
other engineering metals, with one set of data being shown in Fig. 9.32. Detailed study reveals
that there are two competing mechanisms of fatigue failure: failure that begins from surface defects
and failure that begins from internal nonmetallic inclusions. The former dominates the behavior
up to around 107 cycles and exhibits the apparent fatigue limit, but the latter causes failures at
lower stresses and very long lives. Hence, where very large numbers of cycles are applied in
service, the concept of a safe stress may not be valid. See the book by Bathias (2005) for more
detail.
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Figure 9.32 Stress–life curve extending into the very long life range for a bearing steel with
hardness H V = 778, corresponding to σu ≈ 2350 MPa, containing 1% carbon and 1.45%
chromium. The specimens were tested by T. Sakai and M. Takeda at Ritsumeikan University in
lab air at 52.5 Hz using a cantilever-type rotating bending apparatus. (Adapted from
[Sakai 00]; used with permission of the Society of Materials Science, Japan.)

There are additional problems with the fatigue limit concept. These arise from the fact that the
fatigue limit occurs because the progressive damage process is difficult to initiate below this level.
But if the fatigue process can somehow start, then it can proceed below the fatigue limit. Hence,
corrosion may cause small pits or other surface damage that allows fatigue cracks to initiate, with
the result that the stress–life curve for corroded material may continue downward below the usual
fatigue limit.

A similar effect can occur where large numbers of cycles at low stress are combined in the
loading history with occasional severe cycles. High stress levels tend to initiate fatigue damage
at a number of cycles N that is only a small fraction of the failure life Nf at that level. Hence, the
occurrence of a small number of severe cycles can cause damage that can then be propagated to
failure by stresses below the usual fatigue limit.

Test data illustrating this for a low-strength steel are given in Fig. 9.33. For the data points
corresponding to periodic overstrain, the material was subjected to a severe cycle at intervals of
105 cycles. Although the cumulative life fraction, �N/Nf , for the overstrain cycles never exceeded
a few percent, there was a large effect on the life, with failure now occurring below the fatigue limit
σe, close to the extrapolation of the line of Eq. 9.7. Test results from studies by several investigators
suggest that such behavior occurs for all steels with a distinct fatigue limit, and similar behavior is
likely for any other metal with a distinct fatigue limit.

Behavior as just described is one type of a sequence effect, which is any situation where prior
loading at one stress level affects the behavior at a second stress level. See Section 14.6 for more
discussion and illustrative data.

9.6.6 Statistical Scatter

If multiple fatigue tests are run at one stress level, there is always considerable statistical scatter
in the fatigue life. Some S-N data illustrating this are shown in Fig. 9.34. The scatter arises



450 Chapter 9 Fatigue of Materials: Introduction and Stress-Based Approach

800

600

400

300

200

100
102 103 104 105 106 107

Man-Ten steel
σu = 557 MPa

σe

No overstrain
Periodic overstrainσ a

, S
tr

es
s 

A
m

pl
itu

de
, M

P
a

f
N , Cycles to Failure

Figure 9.33 Stress–life data for a low-strength steel tested under constant amplitude cycling
with zero mean stress. Periodic overstrain tests included severe cycles applied every 105 cycles,
but with their �N/Nf not exceeding a few percent. (Data from [Brose 74].)

Figure 9.34 Scatter in rotating bending S-N data for an unnotched aluminum alloy.
(Adapted from [Grover 66] p. 44.)

due to sample-to-sample variation in materials properties, internal defect sizes, and surface
roughness, as well as imperfect control of test variables, such as humidity and specimen alignment.
If the statistical scatter in cycles to failure Nf is considered, a skewed distribution usually occurs,
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Figure 9.35 Distribution of fatigue lives for 57 small specimens of 7075-T6 aluminum tested
at Sa = 207 MPa (30 ksi) in rotating bending. (From [Sinclair 53]; used with permission of
ASME.)

as in Fig. 9.35 (left). However, if the logarithm of Nf is treated as the variable, then a reasonably
symmetrical distribution is generally obtained, as shown on the right. Use of a standard Gaussian
(also called normal) statistical distribution of log Nf is then possible, which is equivalent to a
lognormal distribution of Nf . Other statistical models are also used, such as the Weibull distribution.
The scatter in log Nf is almost always observed to increase with life, which can be seen in Fig. 9.34.

Statistical analysis of fatigue data permits the average S-N curve to be established, along with
additional S-N curves for various probabilities of failure. An example is shown in Fig. 9.36. Such
a family of S-N-P curves gives detail on the statistical scatter. Since S-N curves are affected by a
variety of factors, such as surface finish, frequency of cycling, temperature, hostile chemical envi-
ronments, and residual stresses, probabilities of failure from S-N-P curves determined on the basis
of laboratory data should be considered only as estimates. Additional safety margins are usually
needed in design to account for complexities and uncertainties that are not included in such data.

9.7 MEAN STRESSES

S-N curves that include data for various mean stresses are widely available for commonly used
engineering metals, and sometimes for other materials. In this section, we will consider the effect
of mean stress in some detail, including equations that have been developed to estimate the effect
where specific data are not available.

9.7.1 Presentation of Mean Stress Data

One procedure used for developing data on mean stress effects is to select several values of mean
stress, running tests at various stress amplitudes for each of these. The results can be plotted as a
family of S-N curves, each for a different mean stress, as already illustrated in Fig. 9.26.
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Figure 9.36 Family of rotating bending S-N curves for various probabilities of failure, P, from
data for small unnotched specimens of 7075-T6 aluminum. (From [Sinclair 53]; used with
permission of ASME.)

An alternative means of presenting the same information is a constant-life diagram, as shown
in Fig. 9.37. This is done by taking points from the S-N curves at various values of life in cycles,
and then plotting combinations of stress amplitude and mean stress that produce each of these lives.
Interpolation between the lines on either type of plot can be used to obtain fatigue lives for various
applied stresses. The constant-life diagram presentation shows clearly that, to maintain the same
life, increasing the mean stress in the tensile direction must be accompanied by a decrease in stress
amplitude.

Another procedure often used for developing data on mean stress effect is to choose several
values of the stress ratio, R = σmin/σmax, running tests at various stress levels for each of these.
A different family of S-N curves is obtained, with each corresponding to a different R value. An
example is shown in Fig. 9.38. In this example, the σmax values are plotted. S-N curves for constant
values of R provide the same information, but in different form, than S-N curves for constant values
of mean stress.

9.7.2 Normalized Amplitude-Mean Diagrams

Let the stress amplitude for the particular case of zero mean stress be designated σar . On a
constant-life diagram, σar is thus the intercept at σm = 0 of the curve for any particular life.
The graph can then be normalized in a useful way by plotting values of the ratio σa/σar versus
the mean stress σm . The result of so normalizing the data of Fig. 9.37 is shown in Fig. 9.39.
Such a normalized amplitude-mean diagram forces agreement at σm = 0, where σa/σar = 1, and
tends to consolidate the data at various mean stresses and lives into a single curve. This provides
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Figure 9.39 Normalized amplitude-mean diagram for 7075-T6 aluminum based on Fig. 9.37.

an opportunity to fit a single curve that gives an equation representing the data. For values
of stress amplitude approaching zero, the mean stress should approach the ultimate strength of
the material, so that a line or curve representing such data should also pass through the point
(σm, σa/σar ) = (σu, 0).

A straight line is often used, as illustrated by the solid line in Fig. 9.39. This is justified by
the observation that, for tensile mean stresses, most data for ductile materials tend to lie near or
beyond such a line, as is the case in Fig. 9.39. Hence, the straight line is generally conservative—
that is, the error is such that it causes extra safety in life estimates. The equation of this
line is

σa

σar
+ σm

σu
= 1 (9.15)

This relationship is also used for fatigue limits, for which σa and σar become σe and σer ,
respectively. Equation 9.15 and the corresponding straight line on the normalized plot were
developed by Smith (1942) from an early proposal by Goodman, and they are called the modified
Goodman equation and line, respectively.
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9.7.3 Additional Mean Stress Equations

A variety of other equations have been proposed in attempts to more closely fit the central tendency
of data of this type. One of the earliest to be employed was the Gerber parabola; this is also shown
in Fig. 9.39 and gives the equation

σa

σar
+
(

σm

σu

)2

= 1 (σm ≥ 0) (9.16)

This particular equation is limited to tensile mean stresses, as it incorrectly predicts a harmful effect
of compressive mean stresses.

Improved agreement for ductile metals is often possible by replacing σu in Eq. 9.15 with
either: (a) the corrected true fracture strength σ̃ fB from a tension test, as defined in Section 4.5,
or (b) the constant σ ′

f from the unnotched axial S-N curve for σm = 0, in the form of Eq. 9.7. The
corresponding new equations are

σa

σar
+ σm

σ̃ fB
= 1,

σa

σar
+ σm

σ ′
f

= 1 (a, b) (9.17)

Such modification of the Goodman line was proposed by J. Morrow in the first edition of the Society
of Automotive Engineers’ Fatigue Design Handbook (Graham, 1968). The constant σ ′

f is often
approximately equal to σ̃ f B , and both of these values are somewhat higher than σu for ductile
metals. Hence, the higher intercept value on the σm axis, as shown by the dashed line in Fig. 9.39,
tends to give better agreement with test data for both tensile and compressive mean stress than does
the use of σu .

Equation 9.17(b) with σ ′
f generally gives reasonable results for steels. However, for some

aluminum alloys, σ̃ fB and σ ′
f may differ significantly, and this is associated with the stress–life

data not fitting the form of Eq. 9.7 very well at short lives. In these cases, better agreement with
test data is obtained by employing Eq. 9.17(a) with σ̃ fB .

An additional relationship that is frequently employed is the Smith, Watson, and Topper (SWT)
equation. Two equivalent forms are

σar = √
σmaxσa (σmax > 0) (a)

σar = σmax

√
1 − R

2
(σmax > 0) (b)

(9.18)

either of which may be chosen as a matter of convenience. Noting that σmax = σm + σa , we see that
form (a) includes the same variables as the other mean stress equations. Form (b) may be obtained
from (a) by employing Eq. 9.4(a) to eliminate σa . The SWT relationship has the advantage of not
relying on any material constant.

The final expression that we will consider is the Walker equation, which employs a materials
constant γ . Two equivalent forms are

σar = σ
1−γ
max σ

γ
a (σmax > 0) (a)

σar = σmax

(
1 − R

2

)γ

(σmax > 0) (b)

(9.19)
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Fitting of data for more than one mean stress or R-ratio is needed to obtain γ , which will be
described in Chapter 10. Note that the SWT relationship may be thought of as a special case of
the Walker one where γ = 0.5. Neither the SWT nor the Walker equations can be shown as a single
curve on a plot of σa/σar versus σm , as in Fig. 9.39. But they both do form a single curve on a plot
of σa/σar versus σm/σar , so that comparisons to test data can be done on this basis.

Considering all of the mean stress equations given, neither the Goodman nor the Gerber
equations are very accurate, with the former often being overly conservative, and the latter often
nonconservative. The Morrow relationship in the form of Eq. 9.17(a) is usually reasonably accurate,
but suffers from the value of the true fracture strength σ̃ fB not always being known. Equation 9.17(b)
with σ ′

f fits data very well for steels, but should be avoided for aluminum alloys and perhaps for
other nonferrous metals. The SWT expression of Eq. 9.18 is a good choice for general use and fits
data particularly well for aluminum alloys. The Walker relationship, Eq. 9.19, is the best choice
where data exist for fitting the value of γ .

A recent paper (Dowling, 2009) provides a comparison of these mean stress equations for a
number of sets of fatigue test data. In that study, it is noted that the Walker constant γ decreases
for higher strength metals, indicating an increasing sensitivity to mean stress. For steels, the data
analyzed give the following equation for estimating γ from the ultimate tensile strength:

γ = −0.000200 σu + 0.8818 (σu in MPa) (9.20)

9.7.4 Life Estimates with Mean Stress

Let the equation representing the amplitude-mean behavior, such as Eq. 9.17(b), be solved for the
completely reversed stress σar :

σar = σa

1 − σm

σ ′
f

(9.21)

Substituting values of stress amplitude σa and mean stress σm gives a stress amplitude σar that is
expected to produce the same life at zero mean stress as the (σa, σm) combination. Hence, σar can be
thought of as an equivalent completely reversed stress amplitude. Substituting σar into a stress–life
curve for zero mean stress thus provides a life estimate for the (σa, σm) combination.

For example, assume that the S-N curve for completely reversed loading is known and has the
form of Eq. 9.7. Since tests at σm = 0 are employed to obtain the constants σ ′

f and b, the stress
amplitude σa corresponds to the special case denoted σar , so that, for our present purposes, the
equation needs to be written as

σar = σ ′
f (2Nf )

b (9.22)

Combining this with Eq. 9.21 yields a more general stress–life equation that applies for nonzero
mean stress:

σa = (σ ′
f − σm)(2Nf )

b (9.23)

Note that this reduces to Eq. 9.7 for the special case of σm = 0. On a log–log plot, Eq. 9.23 produces
a family of σa-Nf curves for different values of mean stress, which are all parallel straight lines.
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Any of the preceding mean stress equations can be similarly employed to generalize the stress–
life equation. As a further example, combining Eq. 9.22 with the SWT relationship of Eq. 9.18
gives

√
σmaxσa = σ ′

f (2Nf )
b (σmax > 0) (a)

σmax

√
1 − R

2
= σ ′

f (2Nf )
b (σmax > 0) (b)

Nf = ∞ (σmax ≤ 0) (c)

(9.24)

where either of the two forms (a) and (b) may be used, as convenient. Note that (c) is necessary,
as σar from Eq. 9.18 is zero if σmax is zero and is undefined if σmax is negative. Hence, the
SWT equation predicts that fatigue failure is not possible unless the cyclic stress ranges into
tension.

The equivalent completely reversed stress σar is also useful as a means of assessing the
success of any given mean stress equation in a way that makes the accuracy of life estimates
apparent. Assume that fatigue life data Nf are available for various combinations of stress amplitude
and mean, σa and σm , or for various combinations of σmax and R. Values of σar can then be
calculated for each test, and then these all plotted versus the corresponding Nf values. If the mean
stress equation is successful, then all of the σar data will agree closely with the stress–life curve
for zero mean stress, such as Eq. 9.22. This will be demonstrated by one of the examples that
follow.

Example 9.3
The AISI 4340 steel of Table 9.1 is subjected to cyclic loading with a tensile mean stress of
σm = 200 MPa.

(a) What life is expected if the stress amplitude is σa = 450 MPa?
(b) Also estimate the σa versus Nf curve for this σm value.

First Solution (a) The S-N curve from Table 9.1 for zero mean stress is given by constants
σ ′

f = 1758 MPa and b = −0.0977 for Eq. 9.7. Life estimates may be made for nonzero σm by
entering Eq. 9.7 with values of equivalent completely reversed stress σar :

σar = σ ′
f

(
2Nf

)b = 1758
(
2Nf

)−0.0977MPa

Calculating σar from Eq. 9.21 gives

σar = σa

1 − σm

σ ′
f

= 450

1 − 200

1758

= 507.8 MPa
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Solving the life equation for Nf and substituting σar produces the desired result:

Nf = 1

2

(
σar

σ ′
f

)1/b

= 1

2

(
507.8

1758

)1/(−0.0977)

= 166,000 cycles Ans.

Noting that Eqs. 9.7 and 9.21 were combined to obtain Eq. 9.23, we get the same result in fewer
steps by solving the latter for Nf :

Nf = 1

2

(
σa

σ ′
f − σm

)1/b

= 1

2

(
450

1758 − 200

)1/(−0.0977)

= 166,000 cycles Ans.

(b) The σa versus Nf curve for σm = 200 MPa may be obtained from Eq. 9.23, with σa left
as a variable.

σa = (σ ′
f − σm)(2Nf )

b = (1758 − 200)(2Nf )
−0.0977 = 1558(2Nf )

−0.0977 MPa Ans.

Second Solution (a) An alternative is to employ Eq. 9.24 with σmax = σm + σa = 650 MPa.
First, solve Eq. 9.24 for Nf , and then substitute as appropriate:

Nf = 1

2

(√
σmaxσa

σ ′
f

)1/b

= 1

2

(√
650 × 450

1758

)1/(−0.0977)

= 86,900 cycles Ans.

(b) The σa versus Nf curve for σm = 200 MPa may be obtained from the foregoing by
retaining σa in variable form:

Nf = 1

2

(√
(200 + σa)σa

1758

)1/(−0.0977)

(σa in MPa) Ans.

Discussion For (a), the Nf value is seen to differ between the two solutions, which were
based on the Morrow and SWT mean stress equations, respectively. In general, these approaches
can be expected to agree only roughly. The equations for σa versus Nf for part (b) also differ,
with the one for the second solution being a gradual curve, rather than a straight line, on log–log
coordinates.

Example 9.4
The aluminum alloy 2024-T4 is subjected to cyclic loading between σmin = 172 and σmax =
430 MPa. What life is expected?
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Solution Since the SWT relationship generally works well for aluminum alloys, we will use
this. The form of Eq. 9.24(b) is the most convenient, for which we need

R = σmin

σmax
= 172

430
= 0.40

Constants σ ′
f = 900 MPa and b = −0.102 are available for this material from Table 9.1. Solving

Eq. 9.24(b) for Nf and substituting gives

Nf = 1

2

(
σmax

σ ′
f

√
1 − R

2

)1/b

= 1

2

(
430

900

√
1 − 0.40

2

)1/(−0.102)

= 255,000 cycles Ans.

Example 9.5
Fatigue data for unnotched, axially loaded specimens tested at various mean stresses are given in
Table E9.5 for the same AISI 4340 steel as in Table 9.1. Additional data for zero mean stress are
given in Ex. 9.1. Plot σar versus N f for all data for the mean stress equations of (a) Goodman,
Eq. 9.15, and (b) Morrow with σ ′

f , Eq. 9.17(b). On each plot, also show the stress–life line from
the constants in Table 9.1. Then comment on the success of each equation in correlating the data.

Solution (a) Materials properties σu = 1172 MPa, σ ′
f = 1758 MPa, and b = −0.0977 are

needed from Table 9.1. Solving the Goodman relationship of Eq. 9.15 for σar gives

σar = σa

1 − σm

σu

Then calculate σar for each (σa, σm) combination in Table E9.5. For example, for the first test
listed, with N f = 73,780 cycles, the value is

σar = 379 MPa

1 − 621 MPa

1172 MPa

= 806.1 MPa

Table E9.5

σa , MPa σm , MPa Nf , cycles σa , MPa σm , MPa Nf , cycles

379 621 73 780 310 414 445 020
345 621 83 810 552 207 45 490
276 621 567 590 483 207 109 680
517 414 31 280 414 207 510 250
483 414 50 490 586 −207 208 030
414 414 84 420 552 −207 193 220
345 414 437 170 483 −207 901 430
345 414 730 570

Source: Data in [Dowling 73]. Note: All prestrained 10 cycles at εa = 0.01.
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Similarly calculating all of the σar values and plotting these versus Nf gives Fig. E9.5(a). The
data points from Table E9.1 are also plotted, for which no calculation is needed, as σar = σa due
to σm = 0. Also shown is the log–log straight line corresponding to Eq. 9.22, σar = σ ′

f (2Nf )
b.

In Fig. E9.5(a), the data for tensile mean stress are seen to lie well above the Eq. 9.22 line
for zero mean stress, increasingly so for larger σm . The data being above the line indicates that
the Goodman equation is conservative with respect to these data for tensile mean stress. But the
overall correlation is quite poor. (Ans.)

(b) For the equation of Morrow with σ ′
f , the same procedure is followed, except for the use

of Eq. 9.17(b), which is already solved for σar as Eq. 9.21. The calculation for the first test listed
in Table E9.5, with Nf = 73,780 cycles, is

σar = σa

1 − σm

σ ′
f

= 379 MPa

1 − 621 MPa

1758 MPa

= 586.0 MPa
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Similarly, calculating all of the values and plotting versus Nf , while also including the
Table E9.1 data and the Eq. 9.22 line, gives Fig. E9.5(b).

The correlation of the data with the line for zero mean stress is now much improved, and no
clear trends are seen except for some scatter. Hence, the equation of Morrow with σ ′

f provides a
reasonably accurate representation of these data. (Ans.)

9.7.5 Safety Factors with Mean Stress

The discussion in Section 9.2.4 on safety factors can be generalized to include cases with
nonzero mean stress. One option is to apply the logic of Fig. 9.6 with the stress amplitude
σa simply replaced by an equivalent completely reversed stress amplitude, σar . The stress–life
curve is then σar = f (Nf ), and safety factors in stress and life are calculated by generalizing
Eqs. 9.9 and 9.10:

X S = σar1

σ̂ar

∣∣∣∣
Nf =N̂

, X N = N f 2

N̂

∣∣∣∣
σar =σ̂ar

(a, b) (9.25)

The value of σ̂ar is calculated from the stress amplitude σ̂a and mean stress σ̂m expected to occur
in actual service, with the use of Eq. 9.18 or 9.21 or other similar mean stress relationship. Also,
for stress–life curves of the form of Eq. 9.7, the two safety factors are related by X S = X−b

N from
Eq. 9.12.

A second option is to multiply σ̂a and σ̂m by load factors Ya and Ym , respectively, to calculate
a value of equivalent completely reversed stress σ ′

ar1 that cannot exceed the stress–life curve at the

desired service life N̂ , so that σ ′
ar1 ≤ f (N̂ ) is required. For example, the Morrow σar expression of

Eq. 9.21 is used with the stress–life curve of Eq. 9.22 as follows:

σ ′
ar1 = Ya σ̂a

1 − Ym σ̂m

σ ′
f

, σ ′
ar1 ≤ σ ′

f (2N̂ )b (a, b) (9.26)

The SWT expression of Eq. 9.18, with σmax = σm + σa substituted, is employed as

σ ′
ar1 =

√
(Ym σ̂m + Ya σ̂a)Ya σ̂a , σ ′

ar1 ≤ σ ′
f (2N̂ )b (a, b) (9.27)

The load factor approach has the advantage that different values can be assigned to Ya and Ym ,
which may be desirable if the value of one of σ̂a or σ̂m is more uncertain than the other.

Assume that the same load factor is applied for both the stress amplitude and mean, Y = Ya =
Ym . This common load factor can be factored out of Eq. 9.27, so that σ ′

ar1 = Y
√

σ̂maxσ̂a = Y σ̂ar .
Comparison with Eq. 9.25(a) gives Y = X S , so that the load factor and the safety factor in stress are
equivalent if SWT is employed. Such Y = X S equivalence also applies for the Walker mean stress
relationship, Eq. 9.19, but not for the Morrow or Goodman equations, as the latter mathematical
forms do not allow similar factoring.
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Example 9.6
Man-Ten steel is subjected in service to a stress amplitude of 180 MPa and a mean stress of
100 MPa for 20,000 cycles.

(a) What are the safety factors in stress and in life?
(b) What load factor Y = Ya = Ym corresponds to the 20,000 cycle service life?

Solution (a) Constants for this material are available from Table 9.1, which will be used as
needed. If we choose the Morrow mean stress equation, σ̂ ar is calculated from Eq. 9.21, and
then the corresponding life is available from Eq. 9.22:

σ̂ar = σ̂a

1 − σ̂m

σ ′
f

= 180 MPa

1 − 100 MPa

1089 MPa

= 198.2 MPa

Nf 2 = 1

2

(
σ̂ar

σ ′
f

)1/b

= 1

2

(
198.2 MPa

1089 MPa

)1/(−0.115)

= 1.359 × 106 cycles

Hence, the safety factor in life from Eq. 9.25(b) is

X N = N f 2

N̂
= 1.359 × 106

20,000
= 67.93 Ans.

The safety factor in stress can be obtained from this value and Eq. 9.12(a), for which B = b.

X S = X−b
N = (67.93)−(−0.115) = 1.624 Ans.

(b) To obtain the load factor, we employ Eq. 9.26(b) to obtain σ ′
ar1, with an equality

applying, as we wish to compute the failure point:

σ ′
ar1 = σ ′

f (2N̂ )b = (1089 MPa)(2 × 20,000)−0.115 = 322.0 MPa

Then, substituting the known quantities into Eq. 9.26(a) gives

σ ′
ar1 = Ya σ̂a

1 − Ym σ̂m

σ ′
f

, 322.0 MPa = Ya(180 MPa)

1 − Ym(100 MPa)

1089 MPa

Invoking Y = Ya = Ym as specified and solving gives Y = 1.536 (Ans.).

Discussion As expected, the load factor Y does not have the same value as X S . If we
rework this problem, choosing the SWT mean stress equation, we obtain identical values
X S = Y = 1.434.
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9.8 MULTIAXIAL STRESSES

In engineering components, cyclic loadings that cause complex states of stress are common. Some
examples are biaxial stresses due to cyclic pressure in tubes or pipes, combined bending and torsion
of shafts, and bending of sheets or plates about more than one axis. Steady applied loads that
cause mean stresses may also be combined with such cyclic loads. An additional complexity is
that different sources of cyclic loading may differ in phase or frequency or both. For example, if a
steady bending stress is applied to a thin-walled tube under cyclic pressure, there are different stress
amplitudes and mean stresses in two directions, as shown in Fig. 9.40. The axial and hoop directions
are the directions of principal stress and remain so as the pressure fluctuates.

If a steady torsion is instead applied, a more complex situation exists, as illustrated in Fig. 9.41.
At times when the pressure is momentarily at zero, the principal stress directions are controlled
by the shear stress and are oriented 45◦ to the tube axis. However, for nonzero values of pressure,
these directions rotate to become more closely aligned with the axial and hoop directions, but never
reaching them, except for the limiting case where the stresses σx and σy due to pressure are large
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Figure 9.40 Combined cyclic pressure and steady bending of a thin-walled tube with
closed ends. The principal directions are constant.
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Figure 9.41 Combined cyclic pressure and steady torsion of a thin-walled tube with closed
ends. The principal directions oscillate during each cycle.

compared with the τxy caused by torsion. Additional complexities could exist. For example, the
bending moment in Fig. 9.40 or the torque in Fig. 9.41 could also be cyclic loads, and the frequency
of cycling of the bending or torsion could differ from that of the pressure.

9.8.1 One Approach to Multiaxial Fatigue

Consider the simple situation where all cyclic loads are completely reversed and have the same
frequency, and further where they are either in-phase or 180◦ out-of-phase with one another. Also,
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assume for the present that there are no steady (noncyclic) loads present. For ductile engineering
metals, it is reasonable in this case to assume that the fatigue life is controlled by the cyclic amplitude
of the octahedral shear stress. The amplitudes of the principal stresses, σ1a , σ2a , and σ3a can then
be employed to compute an effective stress amplitude using a relationship similar to that employed
for the octahedral shear yield criterion:

σ̄a = 1√
2

√
(σ1a − σ2a)2 + (σ2a − σ3a)2 + (σ3a − σ1a)2 (9.28)

This is identical to Eq. 7.35, except that all stress quantities are amplitudes. In applying this
equation, amplitudes considered to be in-phase are positive, and those 180◦ out-of-phase are
negative.

The life may then be estimated by using σ̄a to enter an S-N curve for completely reversed
uniaxial stress. Note that the S-N curves most commonly available are from bending or axial tests,
which do involve a uniaxial state of stress and can therefore be used directly with σ̄a values.
(However, difficulties arise for S-N curves for bending where yielding occurred in the tests.) For
plane stress with σ3 = 0, Eq. 9.28 predicts an elliptical failure locus on a plot of σ1a versus σ2a ,
analogous to the locus for the octahedral shear yield criterion. Some experimental data are compared
with such a locus in Fig. 9.42.

If steady (noncyclic) loads are present, these alter the effective stress amplitude σ̄a in a
manner analogous to the mean stress effect under uniaxial loading. One approach is to assume
that the controlling mean stress variable is proportional to the steady value of the hydrostatic
stress. On this basis, an effective mean stress can be calculated from the mean stresses in the three
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Figure 9.42 Octahedral shear stress criterion compared with 107 cycle fatigue strengths for
completely reversed biaxial loading. (From the data of Sawert and Gough as compiled by
[Sines 59].)
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principal directions:

σ̄m = σ1m + σ2m + σ3m (9.29)

Using stress invariants as discussed in Chapter 6, we can compute these effective stress ampli-
tudes and means from the amplitudes and means of the stress components for any convenient
coordinate axes:

σ̄a = 1√
2

√
(σxa − σya)2 + (σya − σza)2 + (σza − σxa)2 + 6(τ 2

xya + τ 2
yza + τ 2

zxa)

σ̄m = σxm + σym + σzm (9.30)

The quantities σ̄a and σ̄m can be combined into an equivalent completely reversed uniaxial
stress by generalizing Eq. 9.21 or other mean stress relationship:

σar = σ̄a

1 − σ̄m

σ ′
f

(9.31)

Values of σar may be used to enter a completely reversed S-N curve for uniaxial stress, such as
Eq. 9.22, and the life thus determined.

For uniaxial loading with a mean stress, only σ1a and σ1m are nonzero, and Eq. 9.31 reduces to
Eq. 9.21, as it should. For pure shear, as in torsion, only the amplitude and mean of the shear stress,
τxya and τxym , are nonzero. Hence, Eq. 9.30 gives simply

σ̄a =
√

3τxya, σ̄m = 0 (9.32)

Note that σ̄m is zero even if a mean shear stress is present. This somewhat surprising prediction that
mean shear stress has no effect is in fact in agreement with experimental observation. For additional
detail on this point and on multiaxial stress effects in general, see Sines (1959) and Socie (2000) in
the References.

9.8.2 Discussion

For situations where the principal axes rotate during cyclic loading, the applicability of the equations
just given is questionable. This also applies if cyclic loads occur at more than one frequency, or if
there is a difference in phase (other than 180◦) between them. A number of other approaches exist.
For example, the critical plane approach involves finding the maximum shear strain amplitude and
the plane on which it acts, and then using the maximum normal stress acting on this plane to obtain
a mean stress effect. Some discussion of this method is given in Chapter 14.

Example 9.7
An unnotched solid circular shaft of diameter 50 mm is made of the alloy Ti-6Al-4V of Table 9.1.
A zero-to-maximum (R = 0) cyclic torque of T = 10 kN·m is applied, together with a zero-to-
maximum cyclic bending moment of M = 7.5 kN·m, with the two cyclic loads being applied
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in phase at the same frequency. How many load cycles can be applied before fatigue failure is
expected?

Solution Employing Figs. A.1 and A.2 in Appendix A, the stresses at the shaft surface at
points in time where both the torque and the moment reach their maximum values are

τxy max=T c

J
= T r

πr4/2
= 2(0.010 MN·m)

π(0.025 m)3
= 407.4 MPa

σx max= Mc

I
= Mr

πr4/4
= 4(0.0075 MN·m)

π(0.025 m)3
= 611.2 MPa

where all other stress components, σy , σz , τyz , and τzx , are zero. Since both of these stresses are
applied at R = 0, the amplitudes and means are

τxya = τxym = 407.4

2
= 203.7, σxa = σxm = 611.2

2
= 305.6 MPa

The effective stress amplitude and mean may then be calculated from Eq. 9.30:

σ̄a = 1√
2

√
(305.6 − 0)2 + 0 + (0 − 305.6)2 + 6(203.72 + 0 + 0) = 466.8 MPa

σ̄m = 305.6 + 0 + 0 = 305.6 MPa

The equivalent completely reversed stress amplitude σar can now be obtained from Eq. 9.31
and the life then estimated by substituting σar into Eq. 9.22:

σar = σ̄a

1 − σ̄m

σ ′
f

= 466.8

1 − 305.6

2030

= 549.5 MPa

Nf = 1

2

(
σar

σ ′
f

)1/b

= 1

2

(
549.5 MPa

2030 MPa

)1/(−0.104)

= 1.43 × 105 cycles Ans.

The material constants σ ′
f and b are from Table 9.1.

Discussion Yielding at the peak load is a possibility. The most severe stresses occur when the
bending and torque reach their peak values, τxy = 407.4 and σx = 611.2 MPa. Substituting these
into Eq. 7.36 gives an effective stress of σ̄H = 933.5 MPa. Comparison with the yield strength
from Table 9.1 gives a safety factor against yielding of Xo = 1.27. Hence, there is no yielding,
but the safety factor is not very large.
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9.9 VARIABLE AMPLITUDE LOADING

As discussed earlier in this chapter, fatigue loadings in practical applications usually involve stress
amplitudes that change in an irregular manner. We will now consider methods of making life
estimates for such loadings.

9.9.1 The Palmgren–Miner Rule

Consider a situation of variable amplitude loading, as illustrated in Fig. 9.43. A certain stress
amplitude σa1 is applied for a number of cycles N1, where the number of cycles to failure from
the S-N curve for σa1 is N f 1. The fraction of the life used is then N1/N f 1. Now let another stress
amplitude σa2, corresponding to N f 2 on the S-N curve, be applied for N2 cycles. An additional
fraction of the life N2/N f 2 is then used. The Palmgren–Miner rule simply states that fatigue failure
is expected when such life fractions sum to unity—that is, when 100% of the life is exhausted:

N1

N f 1
+ N2

N f 2
+ N3

N f 3
+ · · · =

∑ N j

N f j
= 1 (9.33)

This simple rule was employed by A. Palmgren in Sweden in the 1920s for predicting the life of
ball bearings, and then it was applied in a more general context by B. F. Langer in 1937. However,
the rule was not widely known or used until its appearance in 1945 in a paper by M. A. Miner.

A particular sequence of loading may be repeatedly applied to an engineering component, or,
for a continually varying load history, a typical sample may be available. Under these circumstances,
it is convenient to sum cycle ratios over one repetition of a given load sequence and then multiply
the result by the number of repetitions required for the summation to reach unity:

B f

[∑ N j

N f j

]
one rep.

= 1 (9.34)
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Figure 9.43 Use of the Palmgren–Miner rule for life prediction for variable amplitude loading
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Figure 9.44 Life prediction for a repeating stress history with mean level shifts.

Here, B f is the number of repetitions to failure. The application of this equation is illustrated
in Fig. 9.44.

Some cycles of the variable amplitude loading may involve mean stresses. Equivalent com-
pletely reversed stresses then need to be calculated before applying a completely reversed S-N
curve, or else a life equation applied that already incorporates mean stress effects, such as Eq. 9.23
or 9.24. In addition, the stress ranges caused by changing the mean level also need to be considered
in summing cycle ratios. For example, in Fig. 9.44, the cycles at amplitude-mean combinations
(σa1, σm1) and (σa2, σm2) are obvious. However, one additional cycle (σa3, σm3) also needs
to be considered. In fact, this cycle will cause most of the fatigue damage if σa1 and σa2 are
small, so that omitting it could result in a seriously nonconservative life estimate. The task of
identifying cycles can be handled in a comprehensive manner by cycle counting, as described in the
next subsection.

Consider service loading that includes stress cycles at contrasting high and low levels. A
relatively small number of severe cycles can have a significant effect on the life estimated by the
Palmgren–Miner rule, depending on their contribution to the summation of cycle ratios. However,
as discussed in Section 9.6.5, there is an additional sequence effect of the severe cycles. In
particular, a small number of severe cycles may initiate damage that can then be propagated
by low stresses, even stresses below the fatigue limit from constant amplitude tests. Therefore,
where cycles both above and below the fatigue limit occur, it is recommended that the stress–
life relationship of the form of Eqs. 9.6 or 9.7 be extrapolated below the fatigue limit, as a
straight line on a log–log plot, for the purpose of making life estimates. Hence, stresses below
the fatigue limit are not assumed to give infinite life. One procedure that has some support in
experimental results is to assume that there is a revised fatigue limit at half of the one from constant
amplitude testing. (In Ritchie (2003), see Chapter 4.03 for additional comments and literature
references.)
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Example 9.8
The stress history shown in Fig. E9.8 is repeatedly applied as a uniaxial stress to an unnotched
member made of the AISI 4340 steel of Table 9.1. Estimate the number of repetitions required
to cause fatigue failure.

One repetition 
time

1 2 3 4 5 6 7 8 9 10

0

220

800

σ,
 S

tr
es

s,
 M

P
a

Figure E9.8

Solution In one repetition of the history, the stress rises from zero to 800 MPa and later
returns to zero, forming one cycle with σmin = 0 and σmax = 800 MPa. There are also 10
cycles with σmin = 220 and σmax = 800 MPa. A table is useful, with all stress values being
in MPa:

j N j σmin σmax σa σm N f j N j/N f j

1 1 0 800 400 400 1.36 × 105 7.37 × 10−6

2 10 220 800 290 510 1.54 × 106 6.51 × 10−6

� = 1.388 × 10−5

Each of the two levels of cycling forms a line in the table. The values of stress
amplitude σa , and mean stress σm , and the corresponding life Nf , are calculated from
Eqs. 9.1 and 9.23.

σa = σmax − σmin

2
, σm = σmax + σmin

2
, Nf = 1

2

(
σa

σ ′
f − σm

)1/b

Constants σ ′
f = 1758 MPa and b = −0.0977 from Table 9.1 are used. The life in repetitions

to failure B f may then be estimated from the N and Nf values in the table by using the
Palmgren–Miner rule in the form of Eq. 9.34.

B f = 1

/[∑ N j

N f j

]
one rep.

= 1/1.388 × 10−5 = 72,000 repetitions Ans.
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9.9.2 Cycle Counting for Irregular Histories

For highly irregular variations of load with time, such as those in Figs. 9.7 to 9.10, it is not obvious
how individual events should be isolated and defined as cycles so that the Palmgren–Miner rule can
be employed. In past years, there was considerable uncertainty and debate concerning the proper
procedure, and a number of different methods were proposed and used. However, a consensus
has emerged that the best approach is a procedure called rainflow cycle counting, developed by
Prof. T. Endo and his colleagues in Japan around 1968, or certain other procedures that are
essentially equivalent.

An irregular stress history consists of a series of peaks and valleys, which are points where the
direction of loading changes, as illustrated in Fig. 9.45. Also of interest are ranges—that is, stress
differences—measured between peaks and valleys or between valleys and peaks. A simple range
is measured between a peak and the next valley, or between a valley and the next peak. An overall
range is measured between a peak and a valley that is not the next one, but is one that occurs later,
or between a valley and a later peak. In Fig. 9.45, �σAB and �σBC are simple ranges, and �σAD

and �σDG are overall ranges.
In performing rainflow cycle counting, a cycle is identified or counted if it meets the criterion

illustrated in Fig. 9.46. A peak-valley-peak or valley-peak-valley combination X -Y -Z in the loading
history is considered to contain a cycle if the second range, �σY Z , is greater than or equal to the
first range, �σXY . If the second range is indeed larger or equal, then a cycle equal to the first range
(�σXY ) is counted. The mean value for this cycle, specifically the average of σX and σY , is also of
interest.
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Figure 9.45 Definitions for irregular loading.
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Figure 9.47 Example of rainflow cycle counting. (Adapted from [ASTM 97] Std. E1049;
copyright c© ASTM; reprinted with permission.)

The complete procedure is described as follows, with the use of the example of Fig. 9.47:
Assume that the stress history given is to be repeatedly applied, so that it can be taken to begin at
any peak or valley. On this basis, it is convenient to move a portion of the history to the end, so that
a sequence is obtained that begins and ends with the highest peak or lowest valley. Figures 9.47(a)
and (b) illustrate this. We can then proceed with cycle counting, starting at the beginning of the
rearranged history and using the criterion of Fig. 9.46. If a cycle is counted, this information is
recorded, and its peak and valley are assumed not to exist for purposes of further cycle counting,
as illustrated for cycle E-F in (c). If no cycle can be counted at the current location, we then move
ahead until a count can be made. For example, in (d), after E-F is counted, the counting condition
is next met for A-B.

Counting is complete when all of the history is exhausted. For this example, the cycles counted
are E-F , A-B, H -C , and D-G, and they have ranges and means as tabulated at the bottom of
Fig. 9.47. Note that some of the cycles counted correspond to simple ranges in the original history,
specifically E-F and A-B, and others to overall ranges, specifically H -C and D-G. The largest



Section 9.9 Variable Amplitude Loading 473

Mean

Range −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 All

20 4 1 5 2 2 5 — — 3 6 15 27 29 32 22 12 6 2 — 173
25 2 4 3 9 8 10 4 6 2 7 17 37 36 43 33 13 7 1 2 244
30 1 1 5 3 1 1 4 3 — 4 13 20 20 23 20 8 6 1 — 134
35 1 1 4 2 3 2 — 1 3 2 8 17 16 11 11 7 2 — — 91
40 — 1 1 1 2 1 1 — — 4 7 15 16 9 8 2 — — — 68
45 — 1 — 4 3 — — — — 2 1 9 7 2 3 1 — — — 33
50 — — 2 2 2 1 — — — 2 2 3 3 1 1 1 1 — — 21
55 — — 1 1 — — — — — 2 2 4 4 2 — 1 — 1 — 18
60 — 1 1 — — — — — — 1 1 3 2 1 — — — — — 10
65 — — — — — — — — — — 2 1 — — — — — — — 3
70 — — — — — — — — — — 2 — 1 — — — — — — 3
75 — — — — — — 1 — — — 1 2 — — — — — — — 4
80 — — — — — — — — — — — — — — — — — — — —
85 — — — — 1 — 1 3 3 — — — — — — — — — — 8
90 — — — — — — — — 4 — — — — — — — — — — 4
95 — — — — — 1 — 1 4 1 — — — — — — — — — 7

100 — — — — — — — 5 3 1 — — — — — — — — — 9
105 — — — — — — — 3 3 3 — — — — — — — — — 9
110 — — — — — — — — 2 3 — — — — — — — — — 5
115 — — — — — — — — 3 — — — — — — — — — — 3
120 — — — — — — 1 — 1 1 — — — — — — — — — 3
125 — — — — — — — — 2 — — — — — — — — — — 2
130 — — — — — — — — — — — — — — — — — — — —
135 — — — — — — — 1 — — — — — — — — — — — 1
140 — — — — — — — — — — — — — — — — — — — —
145 — — — — — — — — — — — — — — — — — — — —
150 — — — — — — — — 1 — — — — — — — — — — 1

Figure 9.48 An irregular load vs. time history from a ground vehicle transmission, and a
matrix giving numbers of rainflow cycles at various combinations of range and mean. The
range and mean values are percentages of the peak load; in constructing the matrix, these
were rounded to the discrete values shown. (Load history from [Wetzel 77] pp. 15–18.)
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range counted is always the one between the highest peak and the lowest valley, D-G for this
example.

For lengthy histories, it is convenient to present the results of rainflow cycle counting as a matrix
giving the numbers of cycles occurring at various combinations of range and mean. An example of
this is shown in Fig. 9.48. Note that values of range and mean are rounded off to discrete values to
give a matrix of manageable size. Cycle counting is often applied directly to load histories, with this
being the case for Fig. 9.48.

Additional information on cycle counting can be found in ASTM Standard No. E1049 and in the
SAE Fatigue Design Handbook (Rice, 1997). The latter reference also contains relevant computer
programs.

Example 9.9
At a location of interest in a member made of the alloy Ti-6Al-4V of Table 9.1, the material
is repeatedly subjected to the uniaxial stress history of Fig. E9.9(a). Estimate the number of
repetitions necessary to cause fatigue failure.

Solution Cycle counting is needed, as shown in Fig. E9.9(b). Point A has the highest absolute
value of stress, so no reordering is needed. Thus, cycle counting can start at the first point at level
A and finish when the history returns to this point at A′. By considering event A1-B1-A2, a cycle
A1-B1 is counted, followed by two additional similar cycles, A2-B2 and A3-B3. Next, event
A4-C1-D1 is considered, but no cycle is counted. Then event C1-D1-C2 yields cycle C1-D1,
followed by additional similar cycles, with a total of 100 cycles C-D being counted. At this
point, all peaks and valleys have participated in cycles, except A4, E , and A′. These form the
final major cycle between the highest peak and the lowest valley.

The results of the cycle counting are summarized in Table E9.9, including the maximum
and minimum stresses for each of the three levels of cycling. Stress amplitudes σa are calculated
for each line in the table from Eq. 9.1(a), with all stress values tabulated being in units of MPa.
Values of Nf are then determined from σmax and σa on the basis of the SWT equation and
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Table E9.9

Cycle j N j σmin σmax σa N f j N j/N f j

A-B 1 3 130 950 410 4.21 × 104 7.12 × 10−5

C-D 2 100 −140 560 350 1.14 × 106 8.74 × 10−5

A-E 3 1 −250 950 600 6.75 × 103 1.481 × 10−4

� = 3.068 × 10−4

constants σ ′
f and b for Ti-6Al-4V from Table 9.1. Hence, Eq. 9.24(a) is solved for Nf to make

the calculations:

Nf = 1

2

(√
σmaxσa

σ ′
f

)1/b

Next, the ratios N j/N f j are calculated for each level of cycling, and the sum of these is employed
in Eq. 9.34 to finally yield the estimated number of repetitions to failure:

B f = 1

/[∑ N j

N f j

]
one rep.

= 1/3.068 × 10−4 = 3259 repetitions Ans.

9.9.3 Equivalent Stress Level and Safety Factors

For making life estimates for variable amplitude loading, an alternative procedure is to calculate an
equivalent constant amplitude stress level that causes the same life as the variable history if applied
for the same number of cycles. Since the Palmgren–Miner rule is the basis of the equation that we
will develop for calculating the equivalent stress, this method is simply a different route to making
the same calculation.

Consider a repeating or sample load history containing NB rainflow cycles, so that the number
of cycles to failure is Nf = B f NB , where B f is the number of repetitions to failure. For each cycle,
an equivalent completely reversed stress amplitude σar can be computed from the stress amplitude
and mean. To proceed, apply the Palmgren–Miner rule in the form of Eq. 9.34:

B f

⎡
⎣ NB∑

j=1

N j

N f j

⎤
⎦ = 1, N f j = 1

2

(
σar j

σ ′
f

)1/b

(a, b) (9.35)

Here, the life N f j for each σar j is calculated from Eq. 9.22. Then treat each cycle individually, so
that each N j = 1, and substitute the N f j values from (b) into (a) to obtain

Nf

NB

⎡
⎣ NB∑

j=1

2

(
σar j

σ ′
f

)−1/b
⎤
⎦ = 1, σ ′

f (2Nf )
b

⎡
⎣ NB∑

j=1

(σar j )
−1/b

/
NB

⎤
⎦

b

= 1 (a, b) (9.36)
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where Nf /NB has been substituted for B f and (a) is rearranged and raised to the power b to
obtain (b).

From Eq. 9.7, we note that the desired equivalent constant amplitude stress, which we will
denote σaq , must be related to the number of cycles to failure by σaq = σ ′

f (2Nf )
b. Hence, if we

isolate the quantity σ ′
f (2N f )

b in Eq. 9.36(b) onto one side of the equality, then what is on the
other side gives the desired σaq :

σaq =
⎡
⎣ NB∑

j=1

(σar j )
−1/b

/
NB

⎤
⎦

−b

, σaq =
⎡
⎣ k∑

j=1

N j (σar j )
−1/b

/
NB

⎤
⎦

−b

(a, b) (9.37)

Equivalent form (b) is convenient where there are repeated cycles numbering N j at each of k
different levels. It is derived from (a) by combining the cycles at each level, so that the products
N j (σar j )

−1/b are summed over the k different levels. Equation 9.37 applies for any power-law form
of stress–life curve, such as Eq. 9.6, for which σaq = AN B

f and B replaces b.
To determine safety factors, the logic of Fig. 9.6 applies, with the stress amplitude σa now

generalized to σaq , and the stress–life curve becoming σaq = σ ′
f (2Nf )

b. The safety factors in stress
and life are calculated by generalizing Eqs. 9.9 and 9.10:

X S = σaq1

σ̂aq

∣∣∣∣
Nf =N̂

, X N = N f 2

N̂

∣∣∣∣
σaq=σ̂aq

(a, b) (9.38)

The value of σ̂aq is calculated from the stress history expected in service by using Eq. 9.37. Also,
Eq. 9.12 relates the two safety factors, so that X S = X−b

N .
A load factor approach can also be applied. The entire stress history could be scaled by a single

load factor Y , or different components of the loading could be assigned different load factors. The
life from the factored stress history must not be less than the desired service life N̂ . For the Eq. 9.7
form of stress–life curve, this is the same as requiring that the equivalent constant amplitude stress
from Eq. 9.37 for the factored stress history must obey σ ′

aq1 ≤ σ ′
f (2N̂ )b. For the Eq. 9.7 form with

either the SWT or Walker mean stress equations, a single load factor Y applied to all stresses in the
history will always have the same value as the safety factor in stress, Y = XS . But different values
will be obtained for the Morrow or Goodman mean stress equations, Y 	= X S , which arise from an
extension of the logic in the last paragraph of Section 9.7.5.

Example 9.10
Consider the stress history and material of Ex. 9.8.

(a) Estimate the life using the equivalent constant amplitude stress method.
(b) If the given stress history is expected to be applied in service for 1000 repetitions, what

are the safety factors in stress and in life?

Solution (a) Since there are repeated cycles at different levels of cycling, Eq. 9.37(b) is con-
venient, where k = 2 in this case. Cycle counting and calculation of stress amplitudes and means
are the same as for Ex. 9.8, and the same materials constants σ ′

f and b for AISI 4340 steel are
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Table E9.10

j N j σmin σmax σa σm σar j N j (σar j )
−1/b

1 1 0 800 400 400 517.8 6.036 × 1027

2 10 220 800 290 510 408.5 5.330 × 1027

NB = 11 � = 1.137 × 1028

employed. Then σar is calculated for each of level of cycling from the Morrow mean stress
relationship, Eq. 9.21. Values are given in Table E9.10, where all stresses are in MPa units.
Next, the corresponding products N j (σar j )

−1/b are computed, and the sum of these obtained as
required for Eq. 9.37(b). Also, summing the N j values gives NB .

We then employ Eq. 9.37(b) to calculate σaq , substituting the sum � from the table, along
with NB and the material constant b:

σaq =
⎡
⎣ k∑

j=1

N j (σar j )
−1/b

/
NB

⎤
⎦

−b

= [1.137 × 1028/11]−(−0.0977) = 435.8 MPa

Finally, substitute this value as σa in Eq. 9.7 and solve for N f to obtain

Nf = 1

2

(
σaq

σ ′
f

)1/b

= 1

2

(
435.8 MPa

1758 MPa

)1/(−0.0977)

= 792,300 cycles

B f = Nf

NB
= 792,300

11
= 72,000 repetitions Ans.

where the number of repetitions to failure is also calculated. As expected, the same result is
obtained as for Ex. 9.8.

(b) The safety factor in life can be calculated from Eq. 9.38(b) and then the safety factor in
stress from Eq. 9.12(a):

X N = N f 2

N̂
= B f 2

B̂
= 72,000

1000
= 72.0, X S = X−b

N = (72.0)−(−0.0977) = 1.52 Ans.

Discussion Note that by using Eq. 9.12, both safety factors can be obtained from the original
solution of Ex. 9.8 without invoking the σaq value. Alternatively, the safety factor in stress
can also be calculated from Eq. 9.38(a) by entering Eq. 9.7 with N̂ = B̂ NB = 11,000 cycles
to obtain σaq1 = 661.9 MPa. Comparison with σ̂aq = 435.8 MPa from (a) then gives the same
value, X S = 1.52.
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9.10 SUMMARY

Fatigue of materials is the process of accumulated damage and then failure due to cyclic loading.
Engineering efforts over more than 150 years, aimed at preventing fatigue failure, led first to
the development of a stress-based approach. This approach emphasizes stress versus life curves
and nominal (average) stresses. More sophisticated approaches, namely the strain-based approach
and the fracture mechanics approach, have arisen in recent years.

Cyclic stressing between constant maximum and minimum values can be described by giving
values of the stress amplitude and mean, σa and σm . Alternatively, we can specify σmax and the
ratio R, or �σ and R, where R = σmin/σmax. Useful relationships among these quantities are
given by Eqs. 9.1 to 9.4. It is important to distinguish between the actual stress σ at a point and
any nominal (average) stress S that might be calculated.

Stress versus life (S-N) curves are commonly plotted in terms of stress amplitude versus cycles
to failure. Such curves can be obtained from a variety of test apparatus, ranging from relatively
simple rotating bending machines to sophisticated closed-loop servohydraulic equipment. The most
basic S-N curve is considered to be the one for zero mean stress, which is the only case that can be
tested by means of rotating bending.

S-N curves vary with the material and its prior processing. They are also affected by mean
stress and geometry, especially the presence of notches, and also by surface finish, chemical and
thermal environment, frequency of cycling, and residual stress. Some equations for representing
S-N curves are

σa = σ ′
f (2Nf )

b, σa = C + D log Nf (9.39)

The first of these gives a straight line on log–log coordinates, the second a straight line on log–linear
coordinates.

Estimates of mean stress effects for unnotched members may be made by using equations such
as that of Morrow, or of Smith, Watson, and Topper:

σar = σa

1 − σm

σ ′
f

, σar = √
σmaxσa (9.40)

In such an equation, the applied combination of stress amplitude σa and mean stress σm is expected
to result in the same life as the stress amplitude σar applied at zero mean stress. Values of σar , called
the equivalent completely reversed stress amplitude, may be used to enter a curve of σa versus Nf

from completely reversed loading. The preceding equations may also be generalized for making
life estimates for simple cases of multiaxial loading. The quantities σa and σm are replaced by an
effective stress amplitude σ̄a , which is proportional to the amplitude of the octahedral shear stress,
and an effective mean stress σ̄m , which is proportional to the hydrostatic stress due to mean stresses
in three directions.

If more than one amplitude or mean level occurs, life estimates may be made by summing cycle
ratios in the Palmgren–Miner rule:

∑ N j

N f j
= 1 (9.41)
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The alternative form given by Eq. 9.34 is useful for sequences of loading that occur repeatedly.
Cycles introduced by changing mean levels need to be considered in making such life estimates,
and rainflow cycle counting is needed for highly irregular load versus time histories. Stress cycles
below the fatigue limit should not be assigned infinite life if they occur in the same loading history
as occasional cycles that are substantially above the fatigue limit. The Palmgren–Miner rule may be
applied by summing cycle ratios, as in Eq. 9.41, or by calculating an equivalent constant amplitude
stress σaq that causes the same life as the variable history if applied for the same number of cycles.
(See Eq. 9.37.)

N E W T E R M S A N D S Y M B O L S

beach marks
completely reversed cycling
constant amplitude
constant-life diagram
elastic stress concentration factor, kt

equivalent completely reversed stress
amplitude, σar

equivalent constant amplitude stress, σaq

fatigue (of materials)
fatigue limit, σe

fatigue strength
fracture mechanics approach
Gerber parabola
high-cycle fatigue
low-cycle fatigue
maximum stress, σmax
mean stress, σm

minimum stress, σmin
modified Goodman line
Morrow equation
nominal stress, S
normalized amplitude-mean diagram
notch (stress raiser)

Palmgren–Miner rule
peak, valley
point stress, σ

rainflow cycle counting
residual stress
rotating bending test
safety factor in life, X N

safety factor in stress, X S

sequence effect
S-N curve
static load
strain-based approach
stress amplitude, σa

stress-based approach
stress range, �σ

stress ratio, R
striations
SWT equation
vibratory load
Walker equation
working load
zero-to-tension cycling
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PROBLEMS AND QUESTIONS

Section 9.2
9.1 Verify each item of Eq. 9.4, starting from any of Eqs. 9.1 to 9.3 or preceding items of

Eq. 9.4.
9.2 Write definitions in your own words for point stress σ , nominal stress S, and the product

kt S. Give an example of a situation where σ = S, and also give an example where
σ 	= S.

9.3 For an S-N curve of the form of Eq. 9.5, two points (N1, σ1) and (N2, σ2) are known.
(a) Develop equations for the constants C and D as a function of these values.
(b) Apply your result from (a) to the data in Fig. 9.5 for N f <106 cycles, evaluating C and

D to obtain an equation that gives a reasonable representation of these data.
9.4 The steel 50CrMo4 can be assumed to have an S-N curve of the form of Eq. 9.6. Some

fatigue test data for unnotched specimens under axial stress, with zero mean stress, are given
in Table P9.4.

(a) Plot these data on log–log coordinates, and determine approximate values for the
constants A and B.

(b) Obtain refined values for A and B, using a linear least-squares fit to log N f versus
log σa . Then calculate σ ′

f and b for Eq. 9.7.

Table P9.4

σa MPa N f cycles

675 14 000
578 55 000
600 58 000
559 61 000
563 165 000
540 270 000

Source: Data in [Baumel 90].

9.5 Proceed as in Prob. 9.4, but use the data in Table P9.5 for unnotched, axially loaded specimens
of 2024-T3 aluminum tested under zero mean stress.
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Table P9.5

σa MPa N f cycles

331 43 000
276 112 000
241 172 000
207 231 000
190 546 000
179 1165 000

Source: Data in [Baumel 90].

9.6 Proceed as in Prob. 9.4, but use the data in Table P9.6 for unnotched, axially loaded specimens
of 50CrMo4 tested under zero mean stress.

Table P9.6

σa MPa N f cycles

537 38 000
475 45 000
463 47 000
447 140 000
450 185 000
438 190 000

Source: Data in [Baumel 90].

9.7 Proceed as in Prob. 9.4, but use the data in Table P9.7 for unnotched, axially loaded specimens
of 50CrMo4 tested under zero mean stress.

Table P9.7

σa MPa Nf cycles

448 30 000
448 85 000
414 144 000
469 252 000
372 351 000
459 520 000
345 701 000

Source: Data in [Berns 91].
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9.8 Proceed as in Prob. 9.4, but use the data in Table P9.8 for unnotched, axially loaded specimens
of 6Al-4V Titanium tested under zero mean stress.

Table P9.8

σa MPa Nf cycles

293 45 000
241 90 000
207 160 000
174 700 000
152 1200 000

Source: Data in [Grover 51a]
and [Illg 56].

9.9 For the SAE 1015 steel in Table 9.1, a life of 1.94 × 105 cycles to failure is calculated for
the stress amplitude of σa = 500 MPa that is expected to occur in service. To assure that
no failures occur, the suggestion is made that parts of this type should be replaced when the
number of cycles applied reaches 1

3 of this life.
(a) What are the safety factors in life and in stress corresponding to this suggestion?
(b) Is the suggestion a good one? Briefly explain the logic of your answer.

9.10 A part made of Ti-6Al-4V (solution treated and aged) will be subjected in service to a stress
amplitude of σa = 500 MPa, and the desired service life is 60,000 cycles.

(a) What are the safety factors in stress and in life? Do these seem reasonable for an actual
engineering application? Explain why or why not.

(b) If a safety factor of 1.3 in stress is considered adequate, how many cycles can be applied
in service before the part is replaced?

9.11 A part made of the Man-Ten (hot rolled) steel of Table 9.1 is subjected in service to a stress
amplitude of σa = 150 MPa. If a safety factor of 1.5 on stress is considered adequate, how
many cycles can be allowed to occur in service before the part is replaced? What is the
corresponding safety factor on life?

Sections 9.3 to 9.6
9.12 Describe the likely sources of cyclic loading for a sailboat mast. Consider static loads, working

loads, vibratory loads, and accidental loads.
9.13 For a bicycle pedal crank arm, answer the same question as in Prob. 9.12.
9.14 For the suspension springs in an automobile, answer the same question as in Prob. 9.12.
9.15 For the fork of a fork-lift truck, answer the same question as in Prob. 9.12.
9.16 Describe how a rotating bending fatigue testing machine works, and identify its major

advantages and disadvantages.
9.17 Describe how a closed-loop servohydraulic fatigue testing machine works, and identify its

major advantages and disadvantages.
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9.18 For the S-N curves of Fig. 9.19, explain how the damage develops differently for the two
aluminum alloys and how this correlates with the prior processing of the alloys. Comment on
the fractions of the failure life required to develop observable damage. (Sections 3.2 and 3.4
may be useful.)

9.19 Define beach marks and striations, and explain the differences between these.
9.20 Explain the significance of statistical scatter in fatigue life, especially how this may affect the

use of S-N curves for engineering purposes.

Section 9.7
9.21 The SAE 1015 steel of Table 9.1 is subjected to a stress amplitude of σa = 200 MPa. Using

the Morrow equation, estimate the life for mean stresses σm of (a) zero, (b) 80 MPa tension,
and (c) 80 MPa compression.

9.22 Proceed as in Prob. 9.21 except use the SWT equation.
9.23 Proceed as in Prob. 9.21 except use the Walker equation with γ = 0.735.
9.24 The AISI 4340 steel of Table 9.1 is subjected to cyclic loading at a stress amplitude of

σa = 600 MPa. Using the Morrow equation, estimate the life for mean stresses σm of (a) zero,
(b) 200 MPa tension, and (c) 200 MPa compression.

9.25 Proceed as in Prob. 9.24, except use the SWT equation.
9.26 Proceed as in Prob. 9.24, except use the Walker equation with γ = 0.65.
9.27 The aluminum alloy 2024-T4 is subjected to a stress amplitude of σa = 250 MPa. Using the

Morrow equation in the true fracture strength form, estimate the life for mean stresses σm of
(a) zero, (b) 120 MPa tension, and (c) 120 MPa compression.

9.28 Proceed as in Prob. 9.27 except use the SWT equation.
9.29 For RQC-100 steel, using the Morrow equation, obtain equations relating stress amplitude

σa and life Nf for mean stresses σm of (a) 200 MPa tension, (b) zero, and (c) 200 MPa
compression. Then plot these on log–log coordinates, and comment on the trends observed.

9.30 Proceed as in Prob. 9.29, except change the material to 2024-T4 aluminum and use the SWT
equation.

9.31 Consider the data for AISI 4340 steel at various mean stresses from Tables E9.1 and E9.5.
(a) Prepare a plot of these data similar to Fig. 9.39. (Suggestion: Start by calculating σar

from each Nf value, using constants from Table 9.1.)
(b) On plot (a), add lines for Eqs. 9.15, 9.16, 9.17(a), and 9.17(b), and briefly discuss the

success of these equations in representing the data.
9.32 Consider the data for AISI 4340 steel at various mean stresses from Tables E9.1 and E9.5.

(a) Calculate σar values for the SWT mean stress relationship, Eq. 9.18, for the combined
data from both tables, and plot these versus life. Add the σar versus N f line from the
constants in Table 9.1, and comment on the success of the correlation.

(b) Repeat (a), except use σar values for the Walker relationship, Eq. 9.19, with γ = 0.65.
9.33 For axially loaded, unnotched specimens of titanium 6Al-4V, Table P9.5 gives fatigue test data

for zero mean stress, and Table P9.33 gives additional data at various nonzero mean stresses.
Combine the data from Tables P9.5 and P9.33 into a single data set and proceed as follows:

(a) For the Goodman relationship, Eq. 9.15, calculate σar for each test, and plot these
versus N f . Add the line from the fit to the zero mean stress data of Prob. 9.5, and
comment on the success of the correlation.
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(b, c, d) Proceed as in (a) for the mean stress relationships of (b) Morrow with σ̃ f B , (c)
Morrow with σ ′

f , and (d) SWT.

Table P9.33

σa , MPa σm , MPa N f , cycles σa , MPa σm , MPa N f , cycles

293 592 45 000 778 −130 4 500
241 646 90 000 594 −312 132 000
207 668 160 000 529 −354 540 000
174 685 700 000

Source: Data in [Baumel 90].

9.34 For axially loaded, unnotched specimens of 50CrMo4 steel, Table P9.6 gives fatigue test data
for mean stresses of approximately zero, and Table P9.34 gives additional data at various
nonzero mean stresses. Combine the data from Tables P9.6 and P9.34 into a single data set
and proceed as follows:

(a) For the Goodman relationship, Eq. 9.15, calculate σar for each test, and plot these
versus N f . Add the line from the fit to the zero mean stress data of Prob. 9.6, and
comment on the success of the correlation.

(b, c, d) Proceed as in (a) for the mean stress relationships of (b) Morrow with σ̃ f B , (c)
Morrow with σ ′

f , and (d) SWT.

Table P9.34

σa , MPa σm , MPa N f , cycles σa , MPa σm , MPa N f , cycles

537 125 38 000 675 −225 14 000
447 267 140 000 578 −193 55 000
475 475 45 000 600 −200 58 000
463 463 47 000 559 −135 61 000
450 450 185 000 563 −188 165 000
438 438 190 000 540 −180 270 000

Source: Data in [Baumel 90].

9.35 For axially loaded, unnotched specimens of 2024-T3 aluminum, Table P9.8 gives fatigue
test data for zero mean stress. Table P9.35 gives additional data for nonzero mean stresses,
specifically, for various combinations of σmax and R = σmin/σmax, with N f being given in
thousands of cycles. Combine the data from Tables P9.8 and P9.35 into a single data set and
proceed as follows:

(a) For the Goodman relationship, Eq. 9.15, calculate σar for each test, and plot these
versus N f . Add the line from the fit to the zero mean stress data of Prob. 9.8, and
comment on the success of the correlation.

(b, c, d) Proceed as in (a) for the mean stress relationships of (b) Morrow with σ̃ f B , (c)
Morrow with σ ′

f , and (d) SWT.
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Table P9.35

σmax, MPa R Nf , 103 cycles σmax, MPa R Nf , 103 cycles

469 0.6 252 345 −0.3 67
459 0.6 520 310 −0.3 132
448 0.4 85 241 −0.3 353
414 0.4 144 448 −0.6 6.2
372 0.4 351 372 −0.6 18.2
345 0.4 701 331 −0.6 43
448 0.02 30 276 −0.6 112
386 0.02 60 241 −0.6 172
362 0.02 85 207 −0.6 231
310 0.02 156 190 −0.6 546
260 0.02 355 179 −0.6 1165
414 −0.3 24

Source: Data in [Grover 51a].

9.36 The steel SAE 4142 (450 HB) will be subjected in service to a stress amplitude σa = 500 MPa
and a mean stress σm = 450 MPa. A service life of 8,000 cycles is desired. What are the safety
factors in stress and in life?

9.37 Aluminum alloy 2024-T4 will be subjected in service to a stress amplitude σa = 200 MPa
and a mean stress σm = 250 MPa. A service life of 5000 cycles is desired. What are the safety
factors in stress and in life?

9.38 The AISI 4340 steel of Table 9.1 will be subjected in service to a stress amplitude σa =
400 MPa and a mean stress σm = 100 MPa. A service life of 3000 cycles is desired. What are
the safety factors in stress and in life?

9.39 The alloy Ti-6Al-4V of Table 9.1 is employed in a service situation where the stress amplitude
is fixed at σa = 350 MPa, but where the mean stress can vary. A mean stress σm = 200 MPa
is expected in service and a service life of 12,000 cycles is desired.

(a) What is the safety factor in life?
(b) What load factor Y = Ya = Ym corresponds to the 12,000 cycle service life?

h
+

Figure P9.39

9.40 Man-Ten steel will be subjected in service to a stress amplitude σa = 100 MPa and a mean
stress σm = 200 MPa. A service life of 4000 cycles is desired. The value of the amplitude is
less certain than that of the mean, so the load factor for the amplitude is desired to be twice
that for the mean, Ya = 2Ym .



Problems and Questions 487

(a) What is the safety factor in life?
(b) What load factor Ya = 2Ym corresponds to the desired service life?

Section 9.8
9.41 The alloy Ti-6Al-4V of Table 9.1 is used to make a cylindrical pressure vessel having closed

ends with an inner diameter of 250 mm and wall thickness of 2.5 mm.
(a) What repeatedly applied pressure will cause fatigue failure in 105 cycles? (Neglect the

stress raiser effect of the end closure or other geometric discontinuities.)
(b) For the pressure from (a), what is the safety factor against yielding?

9.42 An unnotched solid circular shaft is made of SAE 4142 steel (450 HB). It has a diameter of
50 mm and is loaded in cyclic torsion between zero and a torque of 20 kN·m.

(a) How many torsion cycles are expected to result in fatigue failure?
(b) What is the safety factor against yielding?
(c) What shaft diameter is needed if 100,000 cycles are expected in service and the safety

factor on life must be at least 20?
(d) What shaft diameter is needed if the safety factor against yielding must be at

least 1.5?
(e) What diameter is needed if requirements of (c) and (d) are both satisfied?

Section 9.9
9.43 An un-notched member of the AISI4340 steel of Table 9.1 is subjected to uniaxial cyclic

stressing at zero mean stress. The amplitude is at first σa = 517 MPa for 31,280 cycles,
followed by σa = 444 MPa for 84,620 cycles. If the stress is then changed to 550 MPa, how
many cycles can be applied at this third level before fatigue failure is expected?

9.44 At a location of interest in an engineering component made of 2024-T4 aluminum, the material
is repeatedly subjected to the uniaxial stress history shown in Fig. P9.44. Estimate the number
of repetitions necessary to cause fatigue failure.
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Figure P9.44

9.45 At a location of interest in an engineering component, the material is repeatedly subjected to
the uniaxial stress history shown in Fig. P9.45. The component is made of SAE 4142 steel
(450 HB). Estimate the number of repetitions necessary to cause fatigue failure.
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9.46 At a location of interest in a member made of the alloy Ti-6Al-4V of Table 9.1, the material is
repeatedly subjected to the uniaxial stress history shown in Fig. P9.46. Estimate the number
of repetitions necessary to cause fatigue failure.
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9.47 At a location of interest in a member made of the alloy Ti-6Al-4V of Table 9.1, the material is
repeatedly subjected to the uniaxial stress history shown in Fig. P9.47. Estimate the number
of repetitions necessary to cause fatigue failure.
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9.48 At a location of interest in a member made of the SAE 1015 steel of Table 9.1, the material is
repeatedly subjected to the uniaxial stress history shown in Fig. P9.48. Estimate the number
of repetitions necessary to cause fatigue failure.
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9.49 At a location of interest in an engineering component, the material is repeatedly subjected to
the uniaxial stress history shown in Fig. P9.49. The component is made of RQC-100 steel.
Estimate the number of repetitions necessary to cause fatigue failure.
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9.50 At a location of interest in an engineering component, the material is repeatedly subjected to
the uniaxial stress history shown in Fig. P9.50. The component is made of the AISI 4340 steel
of Table 9.1. Estimate the number of repetitions necessary to cause fatigue failure.

9.51 The history of Fig. 9.47(a) is repeatedly applied as a uniaxial stress on an unnotched member
of 2024-T4 aluminum, with stress values σ being given by 1 unit = 60 MPa.

(a) Estimate the number of repetitions required to cause fatigue failure.
(b) If 1000 repetitions of the stress history are expected in service, what are the safety

factors in stress and in life?
9.52 Rework Ex. 9.9, using the equivalent stress method of Section 9.9.3.
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9.53 For the situation of Ex. 9.9, assume that 500 repetitions of the given stress history are expected
in service. What are the safety factors in stress and in life? Do these values seem adequate for
a real engineering situation?

9.54 Assume that the history of Fig. 9.9 is a bending stress on the main rotor shaft of the helicopter.
The shaft is made of the alloy Ti-6Al-4V of Table 9.1. With the stress concentration factor of
a notch included, one stress unit in Fig. 9.9 is equivalent to 50 MPa.

(a) How many rotor revolutions can be applied before fatigue failure is expected? What is
the estimated life in hours of flight if each rotor revolution requires 0.3 seconds?

(b) A service life of 2000 flight hours is required, with a load factor of 1.5 uniformly
applied to all stresses. Is this requirement met?
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Stress-Based Approach to
Fatigue: Notched Members

10.1 INTRODUCTION
10.2 NOTCH EFFECTS
10.3 NOTCH SENSITIVITY AND EMPIRICAL ESTIMATES OF kf

10.4 ESTIMATING LONG-LIFE FATIGUE STRENGTHS (FATIGUE LIMITS)
10.5 NOTCH EFFECTS AT INTERMEDIATE AND SHORT LIVES
10.6 COMBINED EFFECTS OF NOTCHES AND MEAN STRESS
10.7 ESTIMATING S-N CURVES
10.8 USE OF COMPONENT S-N DATA
10.9 DESIGNING TO AVOID FATIGUE FAILURE
10.10 DISCUSSION
10.11 SUMMARY

OBJECTIVES

• Understand the effects of notches (stress raisers) on fatigue strength, and apply traditional
engineering methods for evaluating long-life fatigue strength and for estimating S-N curves.

• Evaluate mean stress effects for notched members.
• Analyze fatigue strength and life where S-N curves from tests on actual components are

available.

10.1 INTRODUCTION

Geometric discontinuities that are unavoidable in design, such as holes, fillets, grooves, and
keyways, cause the stress to be locally elevated and so are called stress raisers. Stress raisers,
here generically termed notches for brevity, require special attention, as their presence reduces the
resistance of a component to fatigue failure. This is simply a consequence of the locally higher
stresses causing fatigue cracks to start at such locations.

Figure 10.1 provides an example of a notch in an engineering component, in particular, the
attachment of blades in a steam turbine. Despite careful design to minimize the severity of the notch,
a fatigue crack nevertheless developed as shown. Figure 10.2 illustrates the effect of a notch on the

491
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Figure 10.1 Steam turbine rotor with blades attached and the fir tree type of connection at
the blade root. On the lower right, a fatigue crack can be seen running across the blade root
just above the base of the blade. (Photos courtesy of Neville F. Rieger, STI Technologies, Inc.,
Rochester, NY. Reprinted with permission of the Electric Power Research Institute, EPRI, from
Failure Analysis of Fossil Low Pressure Turbine Blade Group.)

S-N curve for an aluminum alloy tested in rotating bending. Plotting nominal bending stress versus
life for both the smooth and notched members shows that the fatigue strength is lowered
substantially by the notch. Such effects clearly need to be included in engineering design and
analysis.

Textbooks on mechanical design and similar sources describe traditional methods of applying
a stress-based approach to fatigue of notched members. This chapter first reviews and discusses
these traditional methods. Following this, we consider the use of fatigue test data for notched
engineering components as an alternative to the empirical estimates of the traditional methods. Note
that Chapter 14 covers the more advanced strain-based approach to fatigue, which treats notched
members in a more detailed and rigorous manner than does any type of a stress-based approach.
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Figure 10.2 Effect of a notch on the rotating bending S-N behavior of an aluminum alloy,
and comparisons with strength reductions using kt and kf. (Data from [MacGregor 52].)

10.2 NOTCH EFFECTS

The elastic stress concentration factor kt may be employed to characterize the severity of a notch,
where kt = σ/S is the ratio of the local notch (point) stress σ to the nominal (average) stress S.
(These quantities have already been defined and discussed in Section 9.2.2 with the aid of Fig. 9.3.
Also, Figs. A.11 and A.12 in Appendix A give kt values for typical cases.) Although the kt concept
is useful for analyzing notch effects in fatigue, additional influences need to be considered, which
we will now discuss.

10.2.1 The Fatigue Notch Factor kf and Causes of kf < kt

If a simplistic view is taken, we would expect unnotched (smooth) and notched members to have
the same fatigue life if the stress σ = S in the smooth member is the same as the stress σ = kt S at
the notch in the notched member. Hence, on a plot of S versus life Nf , the effect of a notch should
be to reduce the stress amplitude corresponding to any given life by the factor kt . An example of
such an estimate is the lower line in Fig. 10.2. However, it is seen that the actual test data lie above
this estimate, so that the notch has less effect than expected on the basis of kt . The actual reduction
factor at long fatigue lives—specifically, at Nf = 106 to 107 cycles or greater—is called the fatigue
notch factor and is denoted kf . It is given by

kf = σar

Sar
(10.1)
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Figure 10.3 Fatigue notch factors for various notch radii based on fatigue limits from
rotating bending of mild steel. (Data from [Frost 59].)

where kf is formally defined only for completely reversed stresses, σar for the smooth member, and
Sar for the notched member.

If the notch has a large radius ρ at its tip, kf may be essentially equal to kt . However, for
small ρ, the previously noted discrepancy may be quite large, so that kf is considerably smaller
than kt . Some values of kf illustrating this variation with ρ for notched bars of mild steel are shown
in Fig. 10.3. As will be discussed in the following sections, more than one physical cause of this
behavior may exist.

10.2.2 Process Zone Size and Weakest-Link Effects

The stress in a notched member decreases rapidly with increasing distance from the notch, as
illustrated in Fig. 10.4. The slope dσ/dx of the stress distribution is called the stress gradient,
and the magnitude of this quantity is especially large near sharp notches. It is generally agreed that
the kf < kt effect is associated with this stress gradient, and several detailed explanations have been
suggested on this basis.

One argument made on the basis of stress gradients is that the material is not sensitive to the
peak stress, but rather to the average stress that acts over a region of small, but finite, size. In other
words, some finite volume of material must be involved for the fatigue damage process to proceed.
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Figure 10.4 Interpretation of the fatigue limit as the average stress over a finite distance δ

ahead of the notch.

The size of the active region can be characterized by a dimension δ, called the process zone size,
as illustrated in Fig. 10.4. Thus, the stress that controls the initiation of fatigue damage is not the
highest stress at x = 0, but rather the somewhat lower value that is the average out to a distance
x = δ. This average stress is then expected to be the same as the smooth specimen fatigue limit σe,
so that kf is estimated by

kf =
(
average σy out to x = δ

)
Sa

= σe

Sa
(10.2)

which is less than kt . The ratio kf /kt falls further below unity—that is, the discrepancy increases—if
the notch radius ρ is smaller. This is because the drop in stress with increasing distance x away from
the notch is more abrupt if ρ is smaller. Such a trend is consistent with observations, as in Fig. 10.3.

A result of this type might be expected due to discrete microstructure, such as crystal grains,
having the effect of equalizing the stress over a small dimension, so that the peak stress is actually
lowered. However, no generally applicable correlation of trends in kf with microstructural features
has been established.

Another possible stress gradient effect involves a weakest-link argument based on statistics.
Recall that the fatigue damage process may initiate in a crystal grain that has an unfavorable
orientation of its slip planes relative to the planes of applied shear stress, or in other cases at an
inclusion, void, or other microscopic stress raiser. Many potential damage initiation sites occur
within the volume of a smooth specimen. However, at a sharp notch, there is a possibility that no
such damage initiation site occurs in the small region where the stress is near its peak value. Hence,
on the average, the notched member will be more resistant to fatigue than expected if the comparison
is made on the basis of the local notch stress, σa = kt Sa .

10.2.3 Crack Growth Effect

A third possible effect is related to the fact that a crack may start quickly in a sharply notched
member during cyclic loading, so that the fatigue behavior is dominated by crack growth. Consider
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cyclic loading of a notched member under a nominal stress S. Then let a smooth member be cycled
under a stress σs , such that its stress is the same as that at the notch in the notched member, σs = kt S.
Therefore, on the basis of kt , the same fatigue life is expected in smooth and notched members.
However, in the notched member, the crack is growing into a region of rapidly decreasing stress, as
in Fig. 10.4, whereas this does not occur in the smooth member. As a result, the crack in the notched
member will require more cycles to grow than the one in the smooth member, extending the life in
the notched member and resulting in a kf < kt effect.

A more specific rationalization is possible by noting that the growth of cracks under cyclic
loading is controlled by the stress intensity factor, K , of fracture mechanics. Consider the variation
in K for a crack growing from a notch, as in Fig. 8.20. For a short surface crack of length l in an
unnotched (smooth) plate of material under axial stress σs , we may obtain K from Fig. 8.12(c).

Ks = 1.12σs
√

πl (10.3)

Now, considering a crack in the notched member, the situation described in Section 8.5.2 applies. In
particular, the stress intensity may be approximated as K A up to the crack length l ′ of Eq. 8.26, and
by KB beyond l ′. If the stress in the smooth member is the same as that at the notch, σs = kt S, then
Ks for the smooth member is similar to K A for the notched member up to l = l ′. However, beyond
l ′, the value of K in the notched member no longer increases very rapidly and falls well below that
for the smooth member.

Hence, the lower values of K in the notched member will cause cracks to grow slower than in
the smooth member, causing longer lives and thus a higher S-N curve than expected on the basis
of kt . Since l ′ is generally in the range 0.1ρ to 0.2ρ, its value is smaller for sharper notches, so
the smooth and notched specimen K values for sharper notches diverge at smaller crack lengths.
This explains the trend of a greater kf < kt effect for sharper notches. Moreover, in sharply notched
members, cracks are observed to start due to the high stress and strain at the notch tip, but then to
fail to grow as the K value is too low. The stress below which such nonpropagating cracks exist
determines the fatigue limit of the sharply notched member.

10.2.4 Reversed Yielding Effect

Finally, there is a fourth effect that is caused by reversed yielding at the notch during cyclic loading.
In this case, the plastic strains that occur cause the actual stress amplitude σa at the notch to be less
than kt Sa , as illustrated in Fig. 10.5. This gives a life that is longer than expected from kt Sa , in effect
raising the S-N curve. Such behavior occurs at high stress levels corresponding to short fatigue lives
in most engineering metals, and it occurs even at long lives in a few very ductile metals. However,
there is little or no yielding at long lives, say, around 106 or 107 cycles, for most engineering metals,
so this explanation alone is insufficient. (Yielding effects at short lives are considered in detail later
in Chapter 14 with the use of the strain-based approach.)

To summarize, fracture mechanics analysis of cracks growing from notches suggests that the
presence of cracks is a major cause of the kf < kt effect. This argument is further supported
by the occurrence of nonpropagating cracks in sharply notched members. Reversed yielding is
clearly also a factor at short lives, and the process zone and weakest-link effects may play a
further role. In general, however, the situation is quite complex and is not completely understood.
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Figure 10.5 Effect of reversed yielding in a small region near the notch on the stress
amplitude.

This circumstance has resulted in the development of several empirical approaches, which are
considered next.

10.3 NOTCH SENSITIVITY AND EMPIRICAL ESTIMATES OF kf

A useful concept in dealing with notch effects is the notch sensitivity

q = kf − 1

kt − 1
(10.4)

If the notch has its maximum possible effect, so that kf = kt , then q = 1. The value of q decreases
from unity if kf < kt , having a minimum value of q = 0 where kf = 1, which corresponds to the
notch having no effect. The value of q between 0 and 1 is therefore a convenient measure of how
severely a given member is affected by a notch. An example of the variation of q with material and
notch radius is shown in Fig. 10.6. For a given material, q increases with notch radius, and within a
given class of materials, q increases with ultimate tensile strength. Hence, the discrepancy between
kf and kt is greatest for highly ductile materials and for sharp notches, and least for low-ductility
materials and blunt notches.

Values of q and hence kf may be estimated from empirical material constants that are
independent of notch radius. Peterson (1974) employs

q = 1

1 + α

ρ

(10.5)
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Figure 10.6 Notch sensitivities q for the typical α values of Peterson, from Eq. 10.6.

where α is a material constant having dimensions of length, with some typical values being as
follows:

α = 0.51 mm (0.02 in) (aluminum alloys)
α = 0.25 mm (0.01 in) (annealed or normalized low-carbon steels)
α = 0.064 mm (0.0025 in) (quenched and tempered steels)

(10.6)

These typical values correspond to the curves plotted in Fig. 10.6.
Peterson also provides more detail on the variation of α with strength for steels, as shown in

Fig. 10.7. Values of α from this curve may be calculated within a few percent accuracy by the fitted
expression

log α = 2.654 × 10−7σ 2
u − 1.309 × 10−3σu + 0.01103

α, mm = 10log α (345 ≤ σu ≤ 2070 MPa)
(10.7)

where σu is the ultimate tensile strength in MPa units. Figure 10.7 and Eq. 10.7 apply to axial or
bending loading, and approximate values of α for torsion are obtained by multiplying values from
Eq. 10.7 by 0.6.

Empirical curves giving either q or α can therefore be used to obtain kf . It is convenient in
making such calculations to solve Eq. 10.4 for kf :

kf = 1 + q(kt − 1) (10.8)

Combining this with Eq. 10.5 gives kf directly from α:

kf = 1 + kt − 1

1 + α

ρ

(10.9)
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Figure 10.7 Peterson constant α as a function of ultimate tensile strength for carbon and
low-alloy steels. Typical values from [Peterson 59] closely fit the curve shown.

Another frequently used empirical formulation for q and the resulting equation for kf are

q = 1

1 +
√

β

ρ

, kf = 1 + kt − 1

1 +
√

β

ρ

(10.10)

where β is a different material constant. These particular expressions represent a simplification of
an equation developed by H. Neuber. Typical values of β for steels and for heat-treated aluminum
alloys are plotted in Fig. 10.8. Fitting the curve for steel, with σu in MPa units, gives

log β = −1.079 × 10−9σ 3
u + 2.740 × 10−6σ 2

u − 3.740 × 10−3σu + 0.6404

β, mm = 10log β (345 ≤ σu ≤ 1725 MPa)
(10.11)

and fitting the one for aluminum gives

log β = −9.402 × 10−9σ 3
u + 1.422 × 10−5σ 2

u − 8.249 × 10−3σu + 1.451, β, mm = 10log β

(10.12)

The accuracy of β from these expressions is within a few percent of the original graphs developed
by Kuhn, as replotted in Fig. 10.8.

Equations 10.9 and 10.10, and a number of other analogous equations in the literature, are
based on the process zone, weakest link, and similar hypotheses as reviewed by Peterson (1959).
However, research related to k f has continued, as in the paper by Harkegard (2010). The equations
presented here and other similar ones should be viewed as somewhat crude estimates based on
empirical data. Note that the equations for estimating kf are intended for relatively mild notches,
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Figure 10.8 Neuber constant β as a function of ultimate tensile strength for carbon and
low-alloy steels and for solution treated and aged (T-series) aluminum alloys. Curves from
[Kuhn 52] and [Kuhn 62] are replotted.

such as those intentionally used in mechanical design. If the notch is relatively deep and sharp, so
that it is cracklike in form, it will generally be more accurate to simply assume that the notch is
already a crack. Its behavior can then be predicted from fracture mechanics.

Example 10.1
Consider the rotating bending member of Fig. 10.3, and, specifically, a notch radius of
ρ = 0.4 mm.

(a) Determine kt and then estimate kf .
(b) Estimate the completely reversed bending moment amplitude that can be applied for

106 cycles.

Solution (a) The geometry and loading correspond to Fig. A.12(c). Values of the ratios d2/d1

and ρ/d1 are determined and used to obtain kt from this graph. We have

d2 = 12.7 mm, ρ = 0.4 mm, d1 = 12.7 − 2(1.27) = 10.16 mm

d2

d1
= 12.7

10.16
= 1.25,

ρ

d1
= 0.4

10.16
= 0.0394, kt = 2.7 Ans.

where a judgmental interpolation between the curves for d2/d1 = 1.11 and 1.43 is needed.
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A value of kf could be obtained from either the Peterson constant α or the Neuber
constant β. Entering Fig. 10.7 with the materials ultimate tensile strength σu = 450 MPa gives
α ≈ 0.3 mm, which, with Eq. 10.9, gives

kf = 1 + kt − 1

1 + α

ρ

= 1 + 2.7 − 1

1 + 0.3 mm

0.4 mm

= 1.97 Ans.

Essentially the same result is obtained by starting with the fit to the Peterson curve, Eq. 10.7,
which gives α = 0.299 mm. Using Neuber, β = 0.259 mm is obtained from Eq. 10.11, resulting
in kf = 1.94 from Eq. 10.10.

(b) The fatigue limit for completely reversed (σm = 0) loading of unnotched material is
estimated from Fig. 9.24 as half the ultimate strength, or σer = 225 MPa. Dividing by kf gives
the fatigue limit with the notch effect included:

Ser = σer

kf
= 225 MPa

1.97
= 114.1 MPa

From the definition of S in Fig. A.12(c), the moment amplitude for infinite life is

Ma = πd3
1 Ser

32
= π(10.16 mm)3(114.1 N/mm2)

32
= 11,740 N·mm = 11.74 N·m Ans.

In an actual engineering situation, a safety factor is required. For example, for a safety factor
of X S = 2 in stress, the highest moment actually allowed in service would be M̂a = Ma/2 =
5.87 N·m.

Comment Such close agreement between the two differently calculated kf values in (a) is
ideally expected, but often does not occur. Note that these values agree only roughly with the
experimental value of kf ≈ 2.5 from Fig. 10.3.

10.4 ESTIMATING LONG-LIFE FATIGUE STRENGTHS (FATIGUE LIMITS)

In applications involving relatively low stresses applied for large numbers of cycles, design against
fatigue may require only that the fatigue strength at long lives on the order of 106 to 108 cycles
be known. Such values are often available in the literature from rotating bending fatigue tests on
smoothly polished samples. For situations that differ from standard test conditions as to type of
loading, size, surface finish, etc., modified values are often estimated on the basis of trends observed
in existing data.
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10.4.1 Estimation of Smooth Specimen Fatigue Limits

Distinct fatigue limits, where the S-N curve appears to become horizontal at long lives, are observed
for many low-strength carbon and alloy steels and for some stainless steels, irons, molybdenum
alloys, titanium alloys, and polymers. But for many other materials, such as aluminum, magnesium,
copper, and nickel alloys, and for some stainless steels, and also for high-strength carbon and alloy
steels, S-N curves generally continue to decrease slowly at the longest lives that have been studied.
Fatigue strengths at long lives from rotating bending tests on smoothly polished specimens are
commonly tabulated as materials properties. These fatigue strengths are often loosely termed fatigue
limits, even if there is no distinct horizontal region on the S-N curve.

It is convenient to consider the ratio of the fatigue limit to the ultimate tensile strength,
namely,

me = σerb

σu
(10.13)

where σerb is the polished specimen fatigue limit for completely reversed loading in bending, often
rotating bending. A value around me = 0.5 is common for low- and intermediate-strength steels,
as discussed in Section 9.6.1 and as shown in Fig. 9.24. A similar plot for fatigue strengths of
wrought aluminum alloys at Nf = 5 × 108 cycles is given in Fig. 9.25. For aluminum alloys, a
value of me = 0.4 applies for the lower strength levels. For both steels and aluminums, me decreases
beyond a certain ultimate tensile strength level; that is, the fatigue limit fails to keep up with the
increased static strength. The fatigue limit appears to level off around 700 MPa for many steels, and
around 130 MPa for wrought aluminum alloys. This trend is associated with the fact that a degree of
ductility is helpful in providing fatigue resistance, and high-strength alloys generally have limited
ductility.

Some other typical me values are 0.4 for cast irons at Nf = 107 cycles, 0.35 for wrought
magnesium alloys at Nf = 108 cycles, and 0.5 for titanium alloys at Nf = 107 cycles. Data are
given in various materials property sources (see the Chapter 9 References). Systematic collections
of long-life fatigue strength data are not generally available for the less commonly used metals or
for polymers and composites, but data on particular materials of these types can sometimes be found
in the literature.

10.4.2 Factors Affecting Long-Life Fatigue Strength

If a notch is present, the fatigue strength at long lives is reduced by the factor kf , as discussed in
detail in Section 10.3. A variety of additional factors may also affect the long-life fatigue strength,
often reducing it. For example, axial loading produces a lower fatigue strength than bending,
typically by 10% or more. This is thought to be because the process zone, weakest link, or related
effects due to a stress gradient act to a limited extent in bending, as described earlier for notches.
Such effects are beneficial and can occur in bending (or torsion) due to the stress variation with
depth in the material, but not for axial loading, where the stress is uniform. Another factor is that a
slight, but unknown, eccentricity of the axial load may cause some bending that is not included in
the stress calculation, S = P/A.
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Figure 10.9 Effect of size on the fatigue limit of smoothly polished specimens of steels tested
in rotating bending. Values are plotted of md, the ratio of the fatigue limit to that for the
frequently used 7.62 mm (0.3 in.) specimen diameter. (Data from [Heywood 62] p. 23.)

The state of stress also has an effect on fatigue strength, as described in Chapter 9, where an
octahedral shear stress criterion is suggested for ductile materials. For example, for pure torsion,
such an approach gives an estimate of the fatigue limit in shear from Eq. 9.13, specifically,
τer = 0.577σerb.

For large-size members in bending or torsion, stress gradient effects would be expected to
cause fatigue strengths to decrease with member size, and such a size effect is in fact observed. A
size effect is expected specifically because the decrease of stress with depth is less abrupt in larger
cross sections, so that a larger volume of material is subjected to relatively high stress. Some test
data for steel shafts are shown in Fig. 10.9. As a result of this effect, fatigue limits from small
(typically, 8 mm diameter) rotating bending test specimens need to be decreased for application to
larger sizes.

If the surface finish is rougher than the polished surface of a typical smooth test specimen,
the long-life fatigue strength is reduced. Careful grinding reduces the fatigue limit around 10%,
and more ordinary machining by 20% or more. Relatively rough surfaces that are unmodified after
forging or casting may cause the fatigue limit to be less than half of the smooth specimen value.
Some typical reduction factors for various surface conditions for steel are given in Fig. 10.10. Note
that the reductions are greater for increased ultimate tensile strength. This occurs because surface
roughness acts as a stress raiser (notch), and as previously discussed, higher strength materials are
relatively more sensitive to notches. Surface finish effects are complicated by other factors that may
accompany them, such as residual stresses from machining or heat treating, and also by surface
compositional or microstructural changes that may occur during some types of processing, such as
hot rolling or forging.
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10.4.3 Reduction Factors for the Fatigue Limit

Combinations of effects such as those just described are common in engineering situations. What
is usually done is to multiply reduction factors for the various effects to obtain an adjusted fatigue
limit σer , which is lower than σerb:

σer = mt mdmsmoσerb (a)

σer = memt mdmsmoσu = mσu (b)
(10.14)

Here, (a) is chosen if the bending fatigue strength σerb is known and (b) if only the ultimate strength
σu is known. In (b), the quantity m is a combined reduction factor that includes me from Eq. 10.13.
Specifically,

m = memt mdmsmo (10.15)

The various factors account for the effects of type of loading (mt ), size (md), surface finish (ms),
and any other effects (mo) that may be involved, such as elevated temperature, corrosion, etc. Any
one of these factors obviously has no effect if the value is unity, and a value of 0.9 corresponds
to a 10% reduction, etc. Some examples are mt = 0.58 for torsion from Eq. 9.13, md = 0.95 for
diameters around 25 mm from Fig. 10.9, and ms = 0.8 for a machined surface in low-strength steel
from Fig. 10.10.

Figure 10.10 Effect of various surface finishes on the fatigue limit of steel. Values are plotted
of ms, the ratio of the fatigue limit to that for polished specimens. (Adapted from R. C.
Juvinall, Stress, Strain, and Strength, 1967; [Juvinall 67] p. 234; reproduced with permission;
c© 1967 the McGraw-Hill Companies, Inc.)
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Table 10.1 Parameters for Estimating Fatigue Limits

Parameter Applicability Juvinall (2006) Budynas (2011)

Bending fatigue Steels, σu ≤ 1400 MPa1 0.5 0.5
limit factor: High-strength steels ≤ 0.5 σerb = 700 MPa
me Cast irons; Al alloys 0.4 —

if σu ≤ 328 MPa
Higher strength Al σerb = 131 MPa —
Magnesium alloys 0.35 —

Load type Bending 1.0 1.0
factor: Axial 1.0 0.85
mt Torsion 0.58 0.59

Size (stress Bending or torsion2,3,4 1.0 (d < 10 mm) 1.24d−0.107

gradient) factor: 0.9 (10 ≤ d < 50) (3 ≤ d ≤ 51 mm)
md

Axial2,3 0.7 to 0.9 (d < 50)5 1.0

Surface finish Polished 1.0 1.0
factor: Ground6 See Fig. 10.10 1.58σ−0.085

u
ms Machined6 See Fig. 10.10 4.51σ−0.265

u

Life for fatigue Steels, cast irons 106 106

limit point: Aluminum alloys 5 ×108 —
Ne, cycles Magnesium alloys 108 —

Notes:1 Juvinall specifically gives a hardness limit, HB ≤ 400. 2Diameter d is in mm
units. 3For Juvinall, for 50 ≤ d< 100 mm, decrease the values of md by 0.1 relative to the
values for d < 50 mm, and for 100 ≤ d < 150 mm decrease by 0.2. 4For Budynas, use
1.51d−0.157 for 51 < d ≤ 254 mm, and for nonrotating bending, replace d with de = 0.37d for
round sections, and with de = 0.808

√
ht for rectangular sections (Fig. A.2). 5Use 0.9 for

accurately concentric loading, and a lower value otherwise. 6For Budynas, substitute σu

in MPa.

Recommended factors from the design books of Juvinall (2006) and of Budynas (2011) are
given in Table 10.1. Note that the former addresses several metals, but the latter only steels.
(Table 10.1 will be considered in detail later in Section 10.7 on estimating S-N curves.)

If the starting point for the estimate is the ultimate tensile strength, then the fatigue limit, as a
nominal stress for a notched member, Ser , is obtained by applying Eq. 10.14(b) along with kf :

Ser = σer

kf
= mσu

kf
(10.16)

This discussion on estimating fatigue limits would be incomplete without reminding the reader
of Section 9.6.5, where it is noted that some materials have a surprising drop in the S-N curve at
very long lives, so that failures occur below the apparent fatigue limit. Also, corrosion damage and
occasional severe cycles may cause the S-N curve to continue downward below the fatigue limit
from constant amplitude tests.
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Example 10.2
Consider again the notched bending member of Fig. 10.3. Modify the 106 cycles fatigue strength
(fatigue limit) estimate of Ex. 10.1 to include additional factors as just discussed. Assume that
the notch surface is finished by grinding.

Solution The minor diameter of 12.7 mm gives a size effect of around md = 0.96 from
Fig. 10.9, and the ground surface finish gives ms = 0.90 from Fig. 10.10. Combining these with
me = 0.5 from Fig. 9.24, as used before, gives the revised estimate for unnotched material from
Eq. 10.14(b):

σer = memdmsσu = 0.5 × 0.96 × 0.90 × 450 = 194.4MPa

Note that mt and mo are omitted, as no reduction is made for these; that is, mt = 1 and mo = 1.
Using the same kf as before, the fatigue limit for the notched member is estimated as

Ser = σer

kf
= 194.4 MPa

1.97
= 98.7MPa Ans.

Second Solution Since the AISI (SAE) 1015 steel material is included in Table 9.1, the
me = 0.50 estimate can be bypassed in favor of the fatigue strength at 106 cycles calculated
from Eq. 9.7:

σa = σ ′
f (2Nf )

b = 1020(2 × 106)−0.138 = 137.7 MPa

Modifying this value for size and surface finish and applying kf gives a second estimate for the
fatigue limit of the notched member:

Ser = mdmsσa

kf
= 0.96 × 0.90 × 137.7 MPa

1.97
= 60.4MPa Ans.

Comment The second value is considerably lower than the first. The difference is in part due
to the ultimate strength for the Table 9.1 material being lower than for the Fig. 10.3 material
of nominally the same type. Also, the Table 9.1 constants correspond to axial loading, which is
known to give fatigue strengths around 10% lower than for bending. The remaining discrepancy
is still around 35%, which highlights the rough nature of estimates of this type.

10.5 NOTCH EFFECTS AT INTERMEDIATE AND SHORT LIVES

At intermediate and short fatigue lives in ductile materials, the reversed yielding effect of Fig. 10.5
becomes increasingly important as higher stresses, and therefore shorter lives, are considered. One
consequence of this behavior is that the ratio of the smooth specimen to notched specimen fatigue
strengths becomes even less than kf , so that it is useful to define a fatigue notch factor k′

f that varies
with life:
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Figure 10.11 Test data for a ductile metal illustrating variation of the fatigue notch factor
with life. The S-N data (top) are used to obtain k’f = σa / Sa (bottom). The notches are
half-circular cutouts. Nominal stress S is defined on the basis of the net area, as in Fig. A.11(b).

k′
f = f (Nf ) = σar

Sar
(10.17)

Data illustrating this effect are shown in Fig. 10.11. As is typical for ductile metals, k′
f decreases

from kf at long lives to a value near unity at short lives.
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Considering completely reversed loading, these trends can be rationalized by idealizing the
behavior of the material as elastic, perfectly plastic with yield strength σo, as illustrated in Fig. 10.12.
There are three possible situations: (a) no yielding, (b) local yielding, and (c) full yielding. If the
stress at the notch never exceeds the yield strength, which is satisfied if kt Sa ≤ σo, there is no yield-
ing. In this case, ignoring effects other than yielding for the present, k′

f is expected to be equal to kt :
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Figure 10.12 Cyclic yielding for a notched member of an ideal elastic, perfectly plastic
material. There are three possibilities: (a) no yielding, (b) local yielding, and (c) full yielding.
The fatigue notch factor is thus expected to vary with the stress level, as in (d).
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k′
f = kt (no yielding; kt Sa ≤ σo) (10.18)

Assume that the loading is sufficiently severe to cause yielding, at least locally at the notch—
in other words, assume that kt Sa > σo. Completely reversed loading will then cause yielding to
occur in both tension and compression on each loading cycle, as illustrated in Fig. 10.12(b). If this
reversed yielding does not spread over the entire cross section, the situation is described as local
yielding. Since the stress amplitude at the notch is equal to σo, the value of k′

f is expected to be

k′
f = σo

Sa
(local yielding; kt Sa > σo) (10.19)

In the extreme case of full yielding, the reversed yielding spreads across the entire cross section,
as in (c). This causes the stress amplitude over the net section to be uniform and equal to σo, so that
the nominal stress amplitude is also equal to σo. Hence, the notch has little effect, and

k′
f ≈ 1 (full yielding; Sa ≈ σo) (10.20)

Such behavior is similar to the spreading of yielding across the cross section in static loading, as
in Fig. A.10 in Appendix A, except that now reversed yielding in both tension and compression on
each cycle of loading is involved.

The expected trends in k′
f for the three situations are summarized by the preceding equations,

as shown in Fig. 10.12(d). The indicated trends of k′
f with stress will produce a variation with life

similar to the lower curve of Fig. 10.11. However, the difference between kf and kt at long lives
indicates that at least one effect in addition to yielding is acting.

In applying the stress-based approach, S-N curves for notched members may need to be
estimated. An empirical approach rather than analysis as just described is sometimes used to make
adjustments for yielding effects at short and intermediate lives. For example, once kf for long life
has been estimated, k′

f at Nf = 103 cycles can be estimated from curves based on test data, as in
Fig. 10.13. A graphical interpolation is then used to obtain k′

f for lives between Nf = 103 and 106.

Figure 10.13 Curve based on empirical data for estimating the fatigue notch factor k’f at
Nf = 1000 cycles. (Adapted from R. C. Juvinall, Stress, Strain, and Strength, 1967; [Juvinall 67]
p. 260; reproduced with permission; c© 1967 the McGraw-Hill Companies, Inc.)
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Study of the particular curves shown indicates that k′
f at Nf = 103 approaches kf for high-strength

(usually brittle, low-ductility) metals, and k′
f approaches unity for low-strength (usually ductile)

metals. This is precisely what is expected on the basis of a reversed yielding effect, as just discussed.
Empirical estimates of entire S-N curves for notched members are discussed in a later section of
this chapter.

10.6 COMBINED EFFECTS OF NOTCHES AND MEAN STRESS

The empirical expressions and curves for kf and k′
f are based on trends and data observed under

completely reversed loading. Hence, these values cannot be applied directly if mean stresses are
present. The most common approach to handling mean stresses for notched members is to apply
the Goodman relationship, Eq. 9.15, with nominal stresses. However, mean stress adjustments for
notched members are complicated by the effects of local yielding at the notch. The Smith, Watson,
and Topper (SWT) method, Eq. 9.18, and the Walker relationship, Eq. 9.19, offer useful alternatives.
Detailed discussion follows.

10.6.1 Goodman Equation for Notched Members

Consider the fully plastic yielding behavior of a notched member, as illustrated in Fig. A.10
and discussed in Section A.7. If the material is quite ductile, as for many engineering metals,
redistribution of stresses results in an approximately uniform stress at failure. Hence, the ultimate
strength of the notched member is not strongly affected by the notch, and in fact may be increased
somewhat compared with the value σu for unnotched material.

Pursuing this logic leads to applying the Goodman equation in the manner shown by the line
labeled ductile in Fig. 10.14. The corresponding equation is

Sar = σar

kf
= Sa

1 − Sm

σu

(ductile materials) (10.21)

Compared with unnotched material, the equivalent completely reversed nominal stress Sar is
reduced by a notch factor kf . But since there is no corresponding reduction on the mean stress
axis, the preceding equation implies that the notch factor for the mean stress is kf m = 1.

However, for low-ductility materials, the redistribution of stress does not occur, and the ultimate
strength of the notched member is reduced. This suggests the line labeled brittle in Fig. 10.14, which
corresponds to the equation

Sar = σar

kf
= Sa

1 − k f m Sm

σu

(brittle materials) (10.22)

The notch factor kf m for the mean stress is generally taken to be the same value as for the stress
amplitude; that is, kf m = kf .
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Figure 10.14 Goodman amplitude-mean plots for smooth and notched members of brittle
and ductile materials.

The preceding equations are rather widely employed, as is similar use of the Gerber relation-
ship, Eq. 9.16. However, there are some problems in applying them. First, the brittle versus ductile
choice is problematical. For example, for metals with reasonable, but somewhat limited, ductility,
such as high-strength steels and high-strength aluminum alloys, a notch effect on the mean stress
does occur, but mainly at long lives. Hence, we might choose Eq. 10.22, with kf m being treated as
a life-dependent variable, but this greatly complicates its application. Second, plotting Sar versus
life Nf for test data (as in Ex. 9.5) usually gives a poor correlation, even for unquestionably ductile
metals where Eq. 10.21 would be the logical choice.

Third, nominal stress S is an arbitrarily defined quantity, and for complex geometries, there
may be more than one possible choice for defining S, or no clear choice at all. Since the arbitrary
definition of S affects the value of the ratio Sm/σu , numerical results will vary, depending on the
definition of S. This situation creates a serious logical problem in applying any mean stress equation
to nominal stress where there is a ratio with a materials constant.

The first and second difficulties just noted involve behavior resulting from local yielding at
notches. Hence, it is useful to pursue this issue in more detail, which is undertaken next.

10.6.2 Local Yielding Effects

Let the concentration factor for the mean stress in Eq. 10.22 be considered to be a variable,

kf m = σm

Sm
(10.23)
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Figure 10.15 A notched member of an elastic, perfectly plastic material under cyclic loading
with nonzero mean level. There are three possible stress–strain behaviors at the notch: (a) no
yielding, (b) initial yielding, but elastic cycling, and (c) reversed yielding. The concentration
factor kfm for mean stress is thus expected to vary with Smax as shown in (d).

where Sm is the mean level for the nominal stress and σm is the mean level for the local stress
at the notch. Also let the behavior of the material be approximated as being elastic, perfectly
plastic, and assume that a mean stress is present. There are three possible situations, as illustrated
in Fig. 10.15: (a) no yielding, (b) initial yielding, and (c) reversed yielding. There is no yielding
if neither the peak nor the valley of the load causes the stress kt S at the notch to exceed the yield
strength. In this case, the mean stress at the notch is elevated by the factor kt , so that kf m = kt is
expected.
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Next, assume that either the peak or valley load causes yielding, corresponding to kt |S|max >

σo. However, also assume that the loading is not sufficiently severe for reversed yielding to occur.
We then have the situation shown in Fig. 10.15(b) where there is only initial yielding. Since the
cyclic stressing is elastic, the notch stress amplitude may be calculated from σa = kt Sa . On each
stress cycle, the maximum stress will return to the same yield strength value σo that it had at the
first load peak. Hence, for initial yielding in tension, the mean stress is

σm = σmax − σa = σo − kt Sa (10.24)

Finally, if the loading is sufficiently severe that kt�S > 2σo, reversed yielding occurs, as shown in
(c). The stresses at the notch are

σmax = σo, σmin = −σo (10.25)

so that

σm = σmax + σmin

2
= 0 (10.26)

which gives kf m = 0.
Hence, the situation can be summarized as

kf m = kt (no yielding; kt |S|max < σo)

kf m = σo − kt Sa

|Sm | (initial yielding; kt |S|max > σo)

kf m = 0 (reversed yielding; kt�S > 2σo)

(10.27)

where absolute values are used to make the equations applicable for either tensile or compressive
Sm . The variation of kf m with Smax is similar to Fig. 10.15(d). Note that local yielding at the notch
causes kf m to be less than kt , even zero in extreme cases.

In view of this analysis, Eq. 10.22 could be used for ductile materials by making kf m a
continuous variable according to Eq. 10.27. The value kf m = 1 implied by Eq. 10.21 is indeed
within the range of zero to kt given by these equations, but this or any other single value is seen to
represent only a crude approximation. This question is discussed in Juvinall (1967), where one of
the alternatives suggested is similar to the use of Eq. 10.27, except that kt is replaced with kf .

10.6.3 SWT and Walker Equations for Notched Members

Recalling the difficulties noted for the Goodman equation in the simple form of Eq. 10.21, we
see that this expression is not an optimum choice for general use. Equation 10.22, with kf m from
Eq. 10.27, may represent an improvement. However, the added complexity of this method may not
be justified in view of the underlying inaccuracy of the Goodman equation. (See Ex. 9.5.) Also, note
that the yield strength on which Eq. 10.27 depends is altered by cyclic loading, as discussed later in
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Section 12.5. Moreover, the strain-based method provides a more complete analysis of the effects of
local yielding at notches, as covered in Section 14.5, which method should be adopted if it is truly
desired to include local yielding effects. Hence, for the present use, it seems appropriate to consider
other options.

One possibility is to apply the SWT equation to nominal stress by changing the variable to S in
either of the two equivalent forms of Eq. 9.18:

Sar =
√

SmaxSa , Sar = Smax

√
1 − R

2
(a, b) (10.28)

For several sets of notched specimen data on steels and aluminum alloys, plotting this Sar versus
life Nf gave better results than the Goodman equation. (See Dowling, 2000, and also the Problems
at the end of this chapter.)

Another option is to similarly employ the Walker relationship of Eq. 9.19 with nominal stresses:

Sar = S1−γ
max Sγ

a , Sar = Smax

(
1 − R

2

)γ

(a, b) (10.29)

The constant γ should be specifically fitted to data on the notched member of interest; the procedure
for doing so is given in the next section. Where γ is not known from data for at least a case similar
to the one of interest, the SWT relationship should be employed, which is, of course, the same as
Walker with the default value γ = 0.5.

Note that there is no ratio of S to a material property in Eq. 10.28 or 10.29, so this logical
difficulty with the Goodman equation is removed. Also, the fatigue life curve and the SWT or
Walker equation may be expressed in terms of an applied load, such as a force P or a bending
moment M , so there is no need to even define a nominal stress. For example, for the SWT equation
and a force P , we have

Par =
√

Pmax Pa , Par = Pmax

√
1 − R

2
(a, b) (10.30)

Since any reasonable definition of S would be proportional to such an applied load, estimated fatigue
lives will be unaffected by the use of a variable such as P in place of S.

Example 10.3
The RQC-100 steel of Table 9.1 is to be used in the form of a plate with a width change under
bending, as in Fig. A.11(d). The dimensions are w2 = 88, w1 = 80, ρ = 4, and t = 10 mm.
What amplitude of bending moment Ma will result in a life of 106 cycles if cycling is applied at
mean moment of Mm = 4 kN·m?

First Solution One approach is to use Eq. 10.21 for this ductile material. Since the available
data are for unnotched material, Eq. 10.21 is used in the form

σar = kf Sar = kf Sa

1 − Sm

σu
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The quantities kf , Sm , and σar need to be evaluated, and then we can solve for Sa , which gives
Ma . To estimate kf , first determine kt from Fig. A.11(d):

w2

w1
= 88 mm

80 mm
= 1.1,

ρ

w1
= 4 mm

80 mm
= 0.05, kt = 1.85

The Peterson constant α is given by Eq. 10.7 used with σu = 758 MPa from Table 9.1. We have

log α = 2.654 × 10−7(758 MPa)2 − 1.309 × 10−3(758 MPa) + 0.01103 = −0.8287

α = 10log α = 10−0.8287 = 0.148 mm

Equation 10.9 then gives kf :

kf = 1 + kt − 1

1 + α

ρ

= 1 + 1.85 − 1

1 + 0.148 mm

4 mm

= 1.82

We next calculate Sm from the definition of S in Fig. A.11(d):

Sm = 6Mm

w2
1t

= 6(0.004 MN·m)

(0.08 m)2(0.01 m)
= 375 MPa

Constants A and B from Table 9.1 give the completely reversed stress amplitude σar at Nf = 106

for smooth specimens of this material:

σar = AN B
f = 897(106)−0.0648 = 366 MPa

We can now solve the preceding first equation for Sa , substitute the values determined, and
finally use the definition of S to get Ma :

Sa = σar

kf

(
1 − Sm

σu

)
= 366 MPa

1.82

(
1 − 375 MPa

758 MPa

)
= 102 MPa

Ma = w2
1t Sa

6
= (0.08 m)2(0.01 m)(102 MPa)

6
= 0.00109 MN·m

Ma = 1.09 kN·m Ans.
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Second Solution The SWT equation can also be employed. From the calculations already
done, we obtain

Sar = σar/kf = 366/1.82 = 201 MPa

With Sm = 375 MPa from the given mean moment, we can apply Eq. 10.28:

Sar =
√

SmaxSa =
√

(Sm + Sa)Sa , 201 =
√

(375 + Sa)Sa MPa

Solving the latter iteratively (or using the quadratic formula) gives Sa = 87.5 MPa, and
calculating the corresponding moment amplitude as before gives Ma = 0.933 kN·m (Ans.).

10.6.4 Fitting the Walker Equation

As noted, use of the Walker equation requires that a value be known for the special fitting constant
γ . This is useful where fatigue life data for more that one mean stress or R-ratio are available for
a notched member of interest, or for unnotched materials test specimens. All of the data can then
be employed in a single fitting procedure to obtain a stress–life curve with the mean stress effect
included. The ability to vary γ to fit the data usually allows accurate representation of the mean
stress effect.

Assume that the nominal stress versus life curve for a notched member for zero mean stress is
a straight line on a log–log plot, so that it has the same form as Eq. 9.6. Then

Sar = AN B
f (10.31)

Combine this with Eq. 10.29(b), and then solve for Nf :

Sar = AN B
f = Smax

(
1 − R

2

)γ

, Nf =
[

Smax

(
1 − R

2

)γ 1

A

]1/B

(a, b) (10.32)

Next, take the logarithm to the base 10 of both sides:

log Nf = 1

B
log Smax + γ

B
log

(
1 − R

2

)
− 1

B
log A (10.33)

We can now do a multiple linear regression with independent variables x1 and x2 and dependent
variable y. We have

y = m1x1 + m2x2 + c (10.34)
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where

y = log Nf , x1 = log Smax, x2 = log

(
1 − R

2

)
(10.35)

m1 = 1

B
, m2 = γ

B
, c = − 1

B
log A (10.36)

Once the fitting constants m1, m2, and c are known, the desired values are easily determined:

B = 1

m1
, γ = Bm2 = m2

m1
, A = 10−cB = 10−c/m1 (10.37)

Hence, after the fit is done, so that A, B, and γ are known, the life Nf may be calculated from
Eq. 10.32(b) for any cyclic loading given by values of Smax and R.

The value of γ is limited to the range zero to 1.0, and γ can be thought of as an inverse measure
of the sensitivity to mean stress or to R. Low values of γ correspond to high sensitivity, and values
approaching 1.0 to low sensitivity. Note that substituting γ = 1 into Eq. 10.29 gives Sar = Sa , which
corresponds to mean stress having no effect.

The original expression of the Walker equation in 1970 employed an equivalent zero-to-
maximum (R = 0) stress range, �S. Two forms that may be used interchangeably are

�S = S1−γ
max �Sγ , �S = Smax(1 − R)γ (a, b) (10.38)

Comparison of (b) with Eq. 10.29(b) gives the relationship

�S = 2γ Sar (10.39)

Thus, we may choose either �S or Sar as merely different expressions of the same concept, with
values being easily converted from one form to the other. Also, data may be fitted to a stress–life
curve in terms of �S by using a procedure similar to the one for Sar . This gives the same values of
γ and B, but the coefficient analogous to A in Eq. 10.31 differs due to Eq. 10.39. We have

�S = A′ N B
f , where A′ = 2γ A (10.40)

Example 10.4
For double-edge-notched plates of 2024-T3 aluminum under axial load, cycles to failure data
are given in Table E10.4(a) for various combinations of maximum stress Smax and mean stress
Sm . These data are also plotted in Fig. E10.4(a). Fit these data to the Walker equation, using
Eq. 10.31, with Sar given by Eq. 10.29, to obtain values of A, B, and γ . The specimen
dimensions were w1 = 38.10, w2 = 57.15, notch radius ρ = 8.06, and thickness t = 2.29 mm,
giving kt = 2.15 on the basis of net area. The material’s tensile properties were yield 372 MPa
and ultimate 503 MPa.
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Table E10.4(a)

Smax, MPa Sm , MPa Nf , cycles Smax, MPa Sm , MPa Nf , cycles

241 0 3 500 362 138 3 100
207 0 6 500 338 138 9 300
172 0 17 400 338 138 6 000
138 0 70 000 310 138 21 800
103 0 754 000 276 138 48 300
103 0 210 000 241 138 82 200
303 69 3 000 214 138 128 500
276 69 6 500 214 138 218 700
241 69 14 900 414 207 4 500
207 69 35 000 372 207 9 600
207 69 43 400 345 207 25 700
172 69 124 200 310 207 63 500
152 69 168 700 293 207 152 900
145 69 507 400 276 207 315 500

Source: Data in [Grover 51b].
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Figure E10.4(a)

Solution To use the procedure just described, we first employ Eq. 9.4(b) to calculate R for
each test. Equation 10.35 then gives values of y, x1, and x2 for each test. A few representative
values are shown in Table E10.4(b). Next, the multiple linear regression of Eq. 10.34 is
performed by widely available computer software.
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Table E10.4(b)

(a) Given Data (b) Variables for Fitting and Calculated Sar

y x1 x2 Sar for
Smax Sm R Nf log Nf log Smax log 1−R

2 γ = 0.7326

241 0 −1.000 3 500 3.544 2.382 0 241.0
207 0 −1.000 6 500 3.813 2.316 0 207.0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
303 69 −0.545 3 000 3.477 2.481 −0.1122 250.7
276 69 −0.500 6 500 3.813 2.441 −0.1249 223.6

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

The result of the multiple regression is

m1 = −4.598, m2 = −3.369, c = 14.644

Equation 10.37 then gives the desired values of A, B, and γ :

B = 1

m1
= −0.2175, γ = m2

m1
= 0.7326, A = 10−c/m1 = 1531 MPa

Therefore, Eqs. 10.29 and 10.31 become

Sar = Smax

(
1 − R

2

)0.7326

, Sar = 1531 N−0.2175
f MPa Ans.

Computing Sar from the first equation for each test and plotting versus Nf gives the data points
in Fig. E10.4(b). The line from the second equation is also shown. The data are consolidated
reasonably well and follow the straight line trend, so this fitting result seems satisfactory. Also,
eliminating R from Eq. 10.32(b) by means of Eq. 9.4(b) gives Nf as a function of Sm and Smax:

Nf =
[

Smax

A

(
1 − Sm

Smax

)γ ]1/B

Using this with the values for the fitted constants gives the family of curves plotted in
Fig. E10.4(a).

Discussion Where the Sar versus Nf data do not fit a log–log straight line, or where the
Walker equation does not consolidate the data into a single trend, another mathematical form
may be employed. See MMPDS-05 (Chapter 9 References) for some possibilities.
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10.7 ESTIMATING S-N CURVES

Estimates of fatigue limits can be used as part of a procedure for estimating entire S-N curves, with
most mechanical engineering design books including such a procedure. We will first consider the
general methodology that is applied, which is illustrated by Fig. 10.16. Then we will summarize the
methods recommended in the design books of Juvinall (2006) and Budynas (2011), where the latter
is the current presentation of the Shigley book.
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Figure 10.16 Estimating completely reversed S-N curves for smooth and notched members
according to procedures suggested by Juvinall or Budynas.
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10.7.1 Methodology for Estimating S-N Curves

A stress–life curve for smooth (unnotched) material at zero mean stress is estimated first. Using the
ultimate tensile strength σu , the fatigue limit σer = mσu is obtained as described in Section 10.4.
Recall that the factor m is a multiplication of several factors, as in Eq. 10.15. One of these is an
estimate of the polished bend specimen fatigue limit as a fraction of σu , such as me = 0.5 for most
steels. Additional reduction factors account for effects such as type of loading (mt ), size (md ), and
surface finish (ms). This provides a point σer at a long life Ne, such as Ne = 106 cycles for steels.
The curve is assumed to be flat beyond Ne.

Then a point σ ′
ar = m′ σ ′

u is established at N f = 103 cycles. The quantity σ ′
u is the ultimate

tensile strength σu for tension or bending, or the ultimate strength in shear τu for torsion. Based on
the observation that stress levels around this life are not very far below σu , the factor m′ is typically
in the range 0.75 to 0.9. This value may vary with the type of loading, as stress–life curves for axial
loading around 103 cycles are lower than for bending. Size and surface finish factors are not usually
applied at 103 cycles, as these effects are observed to act mainly at long lives.

The points at 103 and Ne cycles are connected with a straight line on a log–log plot, giving a
relationship of the form σar = A N B

f . If very short lives are of interest, another straight line may be

employed to connect the 103 cycles point with σ ′
u at N f = 1 cycle. Hence, the three points forming

the stress–life relationship are

(σ ′
u, 1), (σ ′

ar , N f ) = (m′σ ′
u, 103), (σer , N f ) = (mσu , Ne) (10.41)

For notched members, the stress–life curve is expressed in terms of nominal (average) stress, S,
as defined for various cases in Figs. A.11 and A.12. The stress at the long life point Ne is divided
by k f , becoming a nominal stress Ser = mσu/k f . At 103 cycles, the stress value is divided by a
short-life notch factor k′

f , becoming S′
ar = m′σ ′

u/k′
f . Also, at N f = 1 cycle, the notch is usually

assumed to have no effect, so that the value σ ′
u is unchanged. The three points on a log–log plot

forming the nominal stress versus life relationship are then

(σ ′
u , 1) , (S′

ar , N f ) =
(

m′σ ′
u

k′
f

, 103

)
, (Ser , N f ) =

(
mσu

k f
, Ne

)
(10.42)

For agreement with experimental data, k′
f should be somewhat smaller than k f , more so for

lower strength metals, to reflect the effect of yielding as discussed in Section 10.5. Empirical values
of k′

f can be obtained from Fig. 10.13 for steels, aluminum alloys, and magnesium alloys. The graph
is entered with the ultimate tensile strength σu , using a different scale for each material type, giving
the value of a quantity that can be used with k f to obtain k′

f .
Various design textbooks are highly diverse in the handling of k′

f , as are even different editions
of the same textbook. Values range over the extremes of k′

f = 1 and k′
f = k f , where the former

indicates no notch effect at 103 cycles, and the latter indicates the same effect as at long lives.
The choice k′

f = k f is sometimes justified as simplifying calculations, but it produces a stress–life
relationship that is overly conservative at short lives.
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10.7.2 Estimates by the Methods of Juvinall or Budynas

In Juvinall (2006), a procedure is suggested that can be applied to a variety of engineering metals,
and a similar approach is used by Budynas (2011) for steels. These approaches are summarized by
Tables 10.1 and 10.2, with Table 10.1 giving details for the fatigue limit (Ne) point, and Table 10.2
for the 103 cycles point. With reference to Table 10.1, both authors use the factor me = 0.5 for
steels, while noting that me falls below this value for high-strength steels, as in Fig. 9.24. Budynas
limits the estimated bending fatigue limit for steels, not allowing it to exceed 700 MPa. Juvinall
employs me factors for other metals as indicated, with the fatigue limit for aluminum alloys not
being allowed to exceed 131 MPa. (See Fig. 9.25.)

The load type factors mt that are employed by the two authors are similar for bending
and torsion, but differ for axial loading. However, this mt difference for axial loading is mostly
eliminated by the details of the factors md used for size (stress gradient). For bending and torsion,
Juvinall reduces md in steps for various ranges of diameter, with d being interpreted as the minor
diameter or width, such as d1 or w1 for various cases in Figs. A.11 and A.12. Budynas uses
continuously varying equations for md , and also makes special provisions for nonrotating bending
and for rectangular sections. (See not only the main table entries, but also the notes below the table.)

For the surface finish factor ms , Juvinall employs Fig. 10.10 for steels, and suggests ms = 1.0
for gray cast iron, but makes no specific recommendations for other metals. Budynas gives equations
for ms for steels as a function of σu , two of which are listed in Table 10.1. Both authors employ
Ne = 106 cycles for steels and cast irons, and Juvinall gives values for some other metals. Both
authors also present reduction factors for temperature and for various levels of statistical reliability,
but these are not shown in Table 10.1.

For the point at 103 cycles, with reference to Table 10.2, Juvinall uses fixed m′ values as
indicated. Budynas employs m′ = 0.9 for low-strength steels, and also gives a curve with decreasing
m′ values for higher strength steels. An equation fitted to this curve is given in Table 10.2.
Both authors employ the conservative assumption k′

f = k f , which avoids some mathematical
complexities in dealing with cases of combined loading, as when more than one of bending, axial,
and torsion loading occur.

In their calculations, both authors work with local notch stresses, σ = k f S, and apply these with
the stress–life curve for smooth (unnotched) material at zero mean stress, σar versus N f . Although
neither author directly employs the Sar versus N f curve, either method can be used to obtain such
a curve by employing the three points of Eq. 10.42.

Table 10.2 Estimates of the S-N Curve Point at 103 Cycles

Juvinall (2006)1 m ′ = 0.9, k ′
f = kf (bending; torsion with τu replacing σu)

m ′ = 0.75, k ′
f = kf (axial)

Budynas (2011)2 m ′ = 0.90 (σu < 483 MPa)

(steel only) m ′ = 0.2824x2 − 1.918x + 4.012 , x = log σu (σu ≥ 483 MPa)

k ′
f = k f

Notes: 1Use the estimate τu ≈ 0.8σu for steel, and τu ≈ 0.7σu for other ductile metals. 2 The equation
for m ′ is a fit to the curve given in Budynas (2011).
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For nonzero mean stresses, both authors employ local notch stress amplitudes and mean
stresses.

σa = k f Sa , σm = k f Sm (σmax ≤ σo) (a)

σa = k f Sa , σm = k f m Sm (σmax > σo) (b)
(10.43)

Where σmax = σa + σm exceeds the yield strength σo, local yielding is expected, as in Fig. 10.15(b)
or (c), and Eq. 10.43(b) is needed. In this case, Juvinall employs a procedure that is equivalent to
the use of Eq. 10.27 with k f replacing kt . Budynas gives two options, either Eq. 10.27 with k f

replacing kt , or k f m = 1. (With reference to Fig. 10.15, note that the k f m = 1 assumption can be
either conservative or nonconservative, depending on the stress levels.)

Given σa and σm values from Eq. 10.43, Juvinall in effect employs the Goodman mean stress
relationship, Eq. 9.15. Budynas gives the option of employing either the Goodman or Gerber
relationships, as well as a third option called the ASME elliptic equation.

Example 10.5
A round bar of the aircraft quality AISI 4340 steel of Table 9.1 is subject to nonrotating bending
and contains a circumferential groove with a ground surface. The dimensions, as defined in
Fig. A.12(c), are d1 = 32, d2 = 35, and ρ = 1.5 mm. Assume that the only materials properties
known are the yield and ultimate strengths.

(a) Estimate the completely reversed S-N curve for the grooved bar.
(b) Predict the life for cyclic loading at a nominal stress amplitude of Sa = 150 MPa, with

a mean of Sm = 200 MPa.
(c) If 5000 cycles are expected in actual service, what are the safety factors in stress and in

life?

First Solution (a) One approach is to use the procedure of Budynas. First, the notch factor
kf is estimated from kt by using α or β as in previous examples. Figure A.12(c) provides kt :

d2

d1
= 1.094,

ρ

d1
= 0.047, kt = 2.35

If we obtain kf from Eqs. 10.7 and 10.9, it is

α = 0.070 mm, kf = 2.29

The ultimate strength of σu = 1172 MPa from Table 9.1 is needed, and the various mi factors
are evaluated by following the Budynas column of Table 10.1. We obtain

me = 0.5, mt = 1.0
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For the size factor, Note 4 of Table 10.1 applies, due to the nonrotating bending situation. Using
the minimum diameter d1, we have

de = 0.37d1 = 11.84 mm, md = 1.24d−0.107
e = 0.952

The surface finish factor is

ms = 1.58 σ−0.085
u = 0.867

Hence, the overall reduction factor and the estimated fatigue limit are

m = memt mdms = 0.412

σer = mσu = 0.412(1172 MPa) = 483 MPa , Ser = mσu

k f
= 483 MPa

2.29
= 211 MPa

Here, σer and Ne = 106 cycles provides one point on the estimated stress–life curve for unnotched
material, and Ser provides the corresponding point on the curve for the notched member.

Table 10.2 is then employed to calculate values needed for the point at 103 cycles.

m′ = 0.2824x2 − 1.918x + 4.012 , x = log σu (σu ≥ 483 MPa)

m′ = 0.2824 (log 1172)2 − 1.918 (log 1172) + 4.012 = 0.786

k′
f = k f = 2.29

Thus, the values for N f = 103 cycles, for both unnotched and notched cases, are

σ ′
ar = m′σ ′

u = 0.786(1172 MPa) = 921 MPa , S′
ar = m′σ ′

u

k f
= 921 MPa

2.29
= 402 MPa

Proceeding as in Ex. 9.1(a), the equation of the form σar = A N B
f for unnotched material is

B = log σ ′
ar − log σer

log N f − log Ne
= log 921 − log 483

log 103 − log 106
= −0.0933

A = σ ′
ar

N B
f

= 921

1000−0.0933
= 1754 MPa

σar = 1754 N−0.0933
f MPa (103 ≤ N f ≤ 106) Ans.

This stress–life relationship is shown in Fig. E10.5 (left). Also shown is the similar line obtained
by applying the Juvinall procedure, with details from Tables 10.1 and 10.2.
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For the notched member, since k′
f = k f applies uniformly over the interval 103 to 106

cycles, the corresponding stress–life relationship is

Sar = A

k f
N B

f , Sar = 766 N−0.0933
f MPa (103 ≤ N f ≤ 106) Ans.

This nominal stress versus life relationship is shown in Fig. E10.5 (right), as is the similar
relationship from the Juvinall procedure.

(b) To obtain the life for the given nominal stresses, first multiply the given Sa and Sm by
k f to obtain local stresses at the notch.

σa = k f Sa = 2.29(150) = 344 , σm = k f Sm = 2.29(200) = 458

σmax = σa + σm = 802 MPa

Since σmax is less than the yield strength of σo = 1103 MPa from Table 9.1, the situation is
similar to Fig. 10.15(a), and no special measures are needed to account for yielding effects. One
of the mean stress options in the Budynas method is to use the Goodman equation, which gives
an equivalent completely reversed stress from Eq. 9.15 of

σar = σa

1 − σm/σu
= 344

1 − 458/1172
= 564 MPa

The corresponding life from the stress–life relationship developed in (a) is

N f =
(σar

A

)1/B =
(

564 MPa

1754 MPa

)1/(−0.0933)

= 1.914 × 105cycles Ans.
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(c) The safety factor in life can then be calculated from the service life of N̂ = 5000 cycles
using Eq. 9.25(b), and the safety factor in stress follows from Eq. 9.12(a).

X N = N f 2

N̂
= 1.914 × 105

5000
= 38.3 , XS = X−B

N = 38.3−(−0.0933) = 1.405 Ans.

The point (σ̂ar , N̂ ) = (564 MPa, 5000) corresponding to the service loading is shown in
Fig. E10.5 (left), allowing these safety factors to be visualized.

Second Solution (a, b) An alternate procedure is to employ the nominal stress versus life
relationship already developed as Sar = (A/k f ) N B

f . Noting the difficulties with the Goodman
and similar mean stress relationships, we will apply the SWT equation to the nominal stress.

Sar =
√

SmaxSa =
√

(Sm + Sa)Sa =
√

(200 + 150)150 = 229 MPa

The corresponding life is

N f =
(

Sar

A/k f

)1/B

=
(

(229 MPa)2.29

1754 MPa

)1/(−0.0933)

= 4.14 × 105 cycles Ans.

(c) Safety factors then follow as before.

X N = N f 2

N̂
= 4.14 × 105

5000
= 82.8 , X S = X−B

N = 82.8−(−0.0933) = 1.510 Ans.

The point (Ŝar , N̂ ) = (229 MPa, 5000) corresponding to the service loading is shown in
Fig. E10.5 (right), again allowing the safety factors to be visualized.

Discussion The first solution is highly conservative due to the use of k′
f = k f . Entering

Fig. 10.13 with σu = 1172 MPa = 170 ksi and applying k f = 2.29 gives k′
f = 1.55. Modifying

the estimated Sar vs. N f curve with this value would considerably raise the point at N f = 103

cycles, thus giving larger safety factors. Also, noting the discussion of the Goodman equation in
Sections 9.7 and 10.6, the use of the SWT equation in the second solution should provide greater
accuracy.

10.7.3 Discussion

The two methods discussed for estimating S-N curves, and other similar ones, should not be
regarded as providing anything more than very rough curves for use in design. Of the two procedures
discussed, Juvinall’s is the most complete, as it incorporates nonferrous metals. However, the
Budynas estimate is more detailed where it does apply for steels. Notably, some of the reduction
factors, such as those for size and surface finish, reflect fits to large amounts of test data.
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These estimates assume that the S-N curve does not decrease beyond the long-life point at Ne,
where they assume the existence of a fatigue limit. Recalling the discussion of Section 9.6.5, we
note that caution is needed regarding this aspect of the estimates. Where corrosion or occasional
severe cycles are involved, it may be wise to regard the (Ser , Ne) point on the estimated S-N curve
not as the beginning of a flat region, but rather as a point on a log–log straight line that continues
downward below this point.

Actual fatigue data from tests are always preferable to an estimated S-N curve. Thus, such data
should be used where possible to aid in estimating the S-N curve, or even to replace the estimate
entirely. Also, where data are not found in the literature, it will sometimes be appropriate to expend
the time and funds necessary to obtain them. It is, in fact, quite common in engineering practice to
employ S-N curves from tests on engineering components, as described in the next section.

10.8 USE OF COMPONENT S-N DATA

It is often advantageous to employ S-N data from tests on members that are similar or identical
to the engineering component of interest, such as machine or vehicle parts or structural joints.
Subassemblies, such as a vehicle suspension system, may also be tested, as may portions of a
structure, or even an entire machine, vehicle, or structure.

10.8.1 Bailey Bridge Example

An example is provided by the Bailey bridge panel made from structural steel, as shown in
Fig. 10.17. This is one panel of a modular truss for military and temporary civilian bridges used
by the British in World War II. Bailey bridges were still being manufactured long after the end of
the war, and some were used in situations and for lengths of time (10 years or more) that were not
envisioned by the original designers. Hence, a fatigue testing program was undertaken, as reported
in a 1970 paper by Webber, to provide information on permissible duration and severity of bridge
usage.

Constant amplitude S-N data from this work and a fitted curve are shown in Fig. 10.18. The
tests were conducted by applying cyclic loads to an assembly of panels, with these loads oriented in
a plane corresponding to vertical loads on a bridge, which is the vertical direction in the illustration.
Cracks generally started at a weld near the slot for sway brace and were visibly growing for at least
half of the life, which was defined as complete separation of a truss member. The nominal stresses
plotted are bending stresses, calculated by treating the entire panel as a beam, with the bracing
averaged as a web and with the location of the critical slot giving the distance from the neutral
axis of this beam. All tests employed the same minimum load, corresponding to the dead load of a
bridge.

Such a curve is useful in assessing the life expected for Bailey bridges. In particular, values of
cycles to failure from the fitted curve may be employed with the Palmgren-Miner rule to make life
estimates for various combinations of vehicle weight and numbers of load applications. Note that
this curve lacks generality in that it is applicable only to this particular component cycled with the
particular minimum stress used. However, it has the major advantage of automatically including
the effects of details such as complex geometry, surface finish, residual stresses from fabrication,
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Figure 10.17 Bailey bridge panel. (From [Webber 70]; copyright c© ASTM; used with
permission.)
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Figure 10.18 Fatigue data at constant Smin and fitted line, for Bailey bridge panels in vertical
bending, with failure defined as complete separation of a truss member. (Data from
[Whitman 60].)
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and the unusual metallurgy at welds. Such factors are difficult to evaluate by any means other than
a component test.

In a manner similar to the Bailey bridge case, other component S-N curves have the
disadvantage of lacking generality, but the advantage of automatically including difficult-to-evaluate
geometric and fabrication detail.

10.8.2 Mean Stress Effects and Variable Amplitude Life for Components

For the Bailey bridge example, the S-N data and the service stresses of interest all correspond to a
fixed minimum stress, so there is no need to consider variations in the mean stress. However, many
applications of component S-N data will require evaluating the effects of mean nominal stress, Sm ,
which may also be expressed as effects of the R-ratio, R = Smin/Smax. For this purpose, the SWT
relationship can be employed, with the variable being either nominal stress S, as in Eq. 10.28, or
an applied force or moment, as in Eq. 10.30. If data are available for more than one value of mean
stress or R, then the Walker relationship of Eq. 10.29 is recommended. A value of γ needs to be
fitted, as described in Section 10.6.4, and the variable can again be either S or an applied load. The
Goodman, Gerber, and similar equations are not recommended.

For variable amplitude loading, component life estimates can be made by counting cycles and
using the Palmgren–Miner rule in the same manner as described in Section 9.9. A nominal stress
versus life curve, or a load versus life curve, simply replaces the stress–life curve for unnotched
material. An alternative is to use the strain-based approach, as described later in Chapter 14.

Example 10.6
Double-edge-notched plates of 2024-T3 aluminum alloy (kt = 2.15) have a nominal stress
versus life relationship of the form of Eq. 10.31, where Sar is given by the Walker relationship,
Eq. 10.29, with fitting constants A = 1530 MPa, B = −0.217, and γ = 0.733. Assume that
these plates will be repeatedly subjected in engineering service to the nominal stress history
shown in Fig. E10.6.
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(a) Estimate the number of repetitions of the history to cause fatigue failure.
(b) If 60 repetitions of the load history are expected to be applied in service, what are the

safety factors in life and in stress?

Table E10.6

j N j Smin Smax R Sar N f j N j/N f j

1 14 45 315 0.143 169.3 2.55 × 104 5.50 × 10−4

2 40 45 270 0.167 142.1 5.70 × 104 7.02 × 10−4

3 80 45 225 0.200 114.9 1.52 × 105 5.28 × 10−4

4 1 −63 45 −1.400 51.4 6.17 × 106 1.62 × 10−7

5 1 −63 315 −0.200 216.6 8.17 × 103 1.22 × 10−4

� = 1.902 × 10−3

Solution (a) Rainflow cycle counting of the history is first needed, and the results are shown
in the first four columns of Table E10.6. Peak A1 is a suitable starting point, as it is at the highest
stress level in the history. The first cycle counted is A1-B1, followed by A2-B2, etc., up to A14-
B14, for 14 cycles at this level. Then 40 cycles B-C and 80 cycles B-D are counted, followed
by one cycle E1-B. Peak/valley points A15 and E2 remain unused, and along with a return to the
starting point A′, these form major cycle A15-E2-A′.

Next, apply the Walker mean stress relationship, Eq. 10.29, along with the stress–life curve
of Eq. 10.31, with constants A, B, and γ as given. For each stress level, calculate

R = Smin/Smax, Sar = Smax

(
1 − R

2

)γ

, Nf =
(

Sar

A

)1/B

where all stresses are in MPa units. The resulting values are given in Table E10.6. Also, calculate
and then sum the cycle ratios, Nj/Nf j . Finally, the number of repetitions to failure may be
evaluated by applying the Palmgren–Miner rule in the form of Eq. 9.34:

B f = 1

/[∑ N j

N f j

]
one rep.

= 1/1.902 × 10−3 = 526 repetitions Ans.

(b) With 60 repetitions expected in service, the safety factor in life can be calculated from
Eq. 9.10, and the safety factor in stress follows from Eq. 9.12:

X N = Nf

N̂
= B f

B̂
= 526

60
= 8.76, X S = X−B

N = 8.76−(−0.217) = 1.60 Ans.
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10.8.3 Matching a Component to Notched Specimen Data

Often, S-N data exist for notched plate or bar specimens of the component material, as in various
handbooks, including MMPDS-05 (Chapter 9 References). It is tempting to match a component to
such S-N data by looking for a case with a similar elastic stress concentration factor, kt . However,
this does not properly handle notch size (stress gradient) effects, which were discussed earlier in
Section 10.2. It is preferable to match the component to test specimens with a similar notch radius
ρ, even if the kt values differ significantly, and then relate the stresses in terms of the value of kt S,
the local notch stress for elastic behavior.

Another approach is to match not ρ but the fracture mechanics length parameter l ′ of Eq. 8.26.
For notched members loaded at the same kt S and having similar l ′ values, there will be a similar
variation of the stress intensity factor K with crack length near the notch. This can be verified
for two notched members by plotting K/(ktg Sg) versus crack length for both on the same graph.
The approximations of Eqs. 8.24 and 8.25 may be employed—that is, KA up to l ′, and KB

beyond. (For consistency with F , gross section stress Sg should be employed. The corresponding
stress concentration factor ktg can be obtained from a value ktn based on net area by noting that
ktg Sg = ktn Sn .) The l ′ method of matching S-N curves is applicable to notches and holes, but
requires further development for fillet-type notches. See the paper by Dowling and Wilson (1981)
for more detail and discussion.

10.8.4 Component S-N Curves for Welded Members

Connections between pieces of metal are often accomplished by welding. This involves applying
intense heat to melt filler metal and at the same time melting a small portion of the two pieces to be
joined, so that a solid joint is formed upon cooling and solidification. Some typical weld joints are
shown in Fig. 10.19, and a few structural details that involve welding are shown in Fig. 10.20.

Welded structural members have complex geometry and metallurgy in the vicinity of the weld,
and they may contain porosity or other defects. These defects make it difficult to determine stress
concentration factors or to relate the behavior to that of any nonwelded test member. As a result,
most design codes that cover welded structural members employ component S-N curves based on
extensive testing of actual welded members. Several design codes that employ this approach are
listed at the end of this chapter in a separate section of the References.

(a) (b) (c)

(d)

Figure 10.19 Typical welds: (a) fillet weld, (b) corner joint formed by a single-V-groove weld,
(c) butt joint formed by a double-V-groove weld, and (d) butt joint formed by a square-groove
weld with partial penetration. Dashed lines indicate the base metal shape before welding,
and shaded areas indicate the melted and resolidified material.
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(a) (b)

(c) (d)

Figure 10.20 A sampling of the numerous structural details involving welding: (a)
longitudinal butt weld, (b) transverse butt weld, (c) cover plate attached with fillet welds, and
(d) lateral attachment with fillet welds. (Adapted from [AWS 96] p. 16; used with permission.)

Some of the fatigue data on welded structural members used in design code development are
shown in Fig. 10.21. The cyclic range of the nominal stress from bending, �S, is plotted versus
cycles to failure. Members with only longitudinal welds are seen to have considerably higher fatigue
strengths than members with transverse welds at the ends of cover plates. Although data for three
different structural steels are plotted, the results are insensitive to the particular structural steel
involved, but highly sensitive to the geometric detail. Noting the statistical scatter that is evident
in these data, S-N curves are shown not only for the mean behavior, but also for 95% survival at a
confidence level of 95%, where the latter curves are seen to lie near the lower limits of the scatter
for the two cases.

Similar data for a variety of cases have been employed to develop S-N curves for use in
structural design. For example, for structural steel details in nontubular members under tension
and/or bending, the American Welding Society (AWS) structural welding design code gives fatigue
curves as

�S =
(

C

Nf

)0.333

, �S ≥ �STH (ksi units) (a)

�S =
(

329C

Nf

)0.333

, �S ≥ �STH (MPa units) (b)

(10.44)

where the stresses are given as ranges, and �STH is a threshold stress range—that is, a fatigue
limit. Structural details are categorized according to the severity of their stress concentration effect,
giving a family of S-N curves that each obey Eq. 10.44, as shown in Fig. 10.22. The corresponding
constants for Eq. 10.44 are given in Table 10.3, as are constants for these same curves expressed in
the form
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Figure 10.21 Nominal stress range versus millions of cycles to failure for bending tests on
welded structural members of three different structural steels. The data for longitudinal welds
(top) correspond to AWS category B, and that for cover-plated beams (bottom) to category E.
(From [Jenney 01] p. 276; reprinted with permission.)

�S = A′ N B
f , �S ≥ �STH (10.45)

The curves of Fig. 10.22 and Table 10.3 correspond to 95% survival, as in Fig. 10.21.
Plain structural steel with no welding or other stress raiser corresponds to category A.

Additional categories are then assigned, depending on the geometric detail, as specified in the
AWS code. For example, category B applies for cases of only mild stress concentration, as for
simple longitudinal welds, as in Fig. 10.20(a). The welded girder (upper) data in Fig. 10.21 is also a
category B case. Category C corresponds to somewhat more severe cases, such as transverse welds
in a spliced beam, Fig. 10.20(b), except that category B may be used if the welds are ground flat to
be flush with the adjacent metal. Transverse welds similar to Fig. 10.20(d) are also category C . An
especially severe stress concentration is caused by a transverse weld at the end of a partial-length
cover plate, as in Fig. 10.20(c), and as for the cover-plate (lower) data of Fig. 10.21. If the flange
thickness is less than 20 mm, then category E applies; otherwise the less favorable category E ′ is
used.
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Figure 10.22 Stress–life curves from the AWS design code for various categories of
nontubular connections.

Table 10.3 Constants for AWS Fatigue Curves for
Nontubular Sections

Category C , cycles B A′, MPa �STH , MPa

A 2.50 × 1010 −0.3330 19 987 166.0
B 1.20 × 1010 −0.3330 15 653 110.0
C 4.40 × 109 −0.3330 11 207 69.0
D 2.20 × 109 −0.3330 8 897 48.0
E 1.10 × 109 −0.3330 7 063 31.0
E′ 3.90 × 108 −0.3330 5 001 18.0

To choose the appropriate category and hence S-N curve, we must match the structural detail
to a pictorial and explanatory chart in the AWS code. There are also some intermediate categories,
such as B ′, and a special category F for shear loading. The same set of curves are employed for
all common structural steels, and no mean stress adjustment is made. AWS gives a different set of
curves for tubular connections, as for structures made from pipe sections welded together.

The American Association of State Highway and Transportation Officials (AASHTO) employs
essentially identical curves, with B = − 1

3 exactly, while specifying how they are to be applied to the
specific case of bridge design. For design involving finite fatigue lives, the S-N curves are extended
below the threshold (fatigue limit), and a load factor of 0.75 is applied relative to the stresses caused
by a design truck weighing 90% of the usual legal limit. This factor arises from Palmgren–Miner
rule life calculations that consider a spectrum of truck weights, many lighter than the design truck.
However, to employ the threshold and thus assume infinite life, the load factor required is 1.50,
twice the previous value. On this basis, fatigue damage is expected only for trucks that are 50%
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heavier than the design truck, that is, 35% above the usual legal limit. Recalling the discussion in
Section 9.6.5, this conservative handling of the fatigue limit is indeed appropriate for the variable
amplitude loading experienced by bridges.

Additional, generally similar, weld design codes with S-N curves are published by other
national and international organizations, some of which are referenced at the end of this chapter.

As noted, the AWS design curves correspond to 95% survival. These curves are shifted relative
to the corresponding curves for the mean of the data by approximately a factor of 2.0 in life, which,
due to B = − 1

3 , gives a shift in stress by a factor of approximately 1.25. (Note that substituting
X N = 2.0 and B = − 1

3 into Eq. 9.12 gives X S = 2.01/3 = 1.26.) Although AWS does not specify
any safety factor beyond that given by the 95% survival curves, an additional margin of safety may
be desirable. For example, consider a safety factor of 2.5 in life relative to the 95% survival curve.
Combined with the aforementioned factor of 2.0, this gives a safety factor in life relative to the mean
of the data of approximately X N = 2.5 × 2.0 = 5.0. Applying Eq. 9.12 makes this equivalent to a
safety factor in stress of X N = 5.01/3 = 1.71.

In applying the Palmgren–Miner rule for variable amplitude loading, we have noted in
Chapter 9 that this can be done by calculating an equivalent stress level which is expected to cause
the same fatigue life, in cycles, as the variable loading. Adapting Eq. 9.37 to an S-N curve of the
form of Eq. 10.45, we see that the equivalent stress range �Sq and the resulting life are given by

�Sq =
[ k∑

j=1

N j (�S j )
−1/B

/
NB

]−B

, Nf = B f NB =
(

�Sq

A′

)1/B

(a, b) (10.46)

The preceding applies to a repeating sequence of loading containing NB cycles with k different
stress levels. For each stress level j = 1, 2, 3, . . . k, the quantity N j is the number of cycles and
�S j is the stress range. The overall number of cycles to failure N f is related to the number of
repetitions to failure B f according to B f = N f /NB .

Note that the quantity f j = N j/NB is the fraction of the total number of cycles that occurs at
stress range �S j . Making this substitution into Eq. 10.46(a) gives

�Sq =
[ k∑

j=1

f j (�S j )
−1/B

]−B

,

k∑
j=1

f j = 1 (10.47)

where the f j must, of course, sum to unity. For the particular case of B = − 1
3 , Eqs. 10.46(b) and

10.47 give

�Sq =
[ k∑

j=1

f j (�S j )
3
]1/3

, Nf =
(

�Sq

A′

)−3

(a, b) (10.48)

Equations similar to these may appear in weld design codes and in literature discussing them.
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10.9 DESIGNING TO AVOID FATIGUE FAILURE

Where fatigue failure is a concern in design, or where failures have actually occurred, one strategy
that can be employed to reduce or eliminate problems is to minimize the severity of stress raisers.
This corresponds to minimizing the elastic stress concentration factor kt , which in turn decreases
the fatigue notch factor kf , thus raising the fatigue limit and the overall S-N curve. Other changes in
geometric detail, such as reducing eccentricity that causes bending, may also be beneficial. Another
strategy is to exploit the mean stress effect by introducing residual (locked-in) stresses that have the
same beneficial effect as an applied compressive mean stress. More detailed discussion follows.

10.9.1 Design Details

In design of engineering components, resistance to fatigue failure can be improved by careful
attention to detail. For notches such as grooves, fillets, and noncircular holes, stress concentration
factors are decreased if the radius of the notch is increased, as study of Figs. A.11 and A.12 in
Appendix A will confirm. Other aspects of the geometry also have an effect, such as the relative
width of a notched plate or the ratio of the two diameters in a stepped shaft. Hence, within the
constraints imposed by functional requirements, geometries can be adjusted to minimize the elastic
stress concentration factor kt . For a given material, kf will then also be minimized. If more than one
material is being considered, the different notch sensitivities q of these also need to be examined.

Consider the example of Fig. 10.23. A relatively small radius occurs in (a) at the diameter step
in a shaft. The stress concentration factor kt can be decreased by increasing the fillet radius while
keeping the other dimensions the same. Even better, the radius can be essentially eliminated by
using a taper, as in (b). If functional requirements preclude a simple taper, the geometry of (c) has a
lower kt than (a) and could perhaps be used.

Similar principles apply to other design details, such as keyways, as illustrated in Fig. 10.24. A
further example is the common fir tree design for connecting the roots of turbine blades, shown in
Fig. 10.1. Smooth curves with radii as large as permitted by the tight spaces involved are used, and
the overall taper tends to distribute the load fairly evenly among the projections (lugs) on the blade
root.

Where small motions occur between tightly fitting metal parts, a problem called fretting may
occur. A metal oxide in the form of a powder is usually present, and there is surface damage that can
cause cracks to start and grow. Hence, considerable care is needed in designing certain mechanical
connections, such as the press-fitted shaft of Fig. 10.25. Altered geometry to reduce the stresses
and to make a more gradual transition into the press fit is helpful, with some possibilities being
shown. Since certain combinations of materials are particularly susceptible to this problem, it is
often helpful to change one of the materials, or to use a bushing or a surface coating in the joint.
Intentional introduction of beneficial compressive residual stresses, as by shot peening, is also often
used.

Bolts involve severe stress raisers in the threads and elsewhere, and the tightly fitting surfaces
in a bolted connection may also be subject to fretting. Locations where fatigue cracks are likely
to start in a bolt, and some changes that can be used to improve the fatigue resistance, are
shown in Fig. 10.26. Highly specialized bolt and rivet designs are sometimes used in critical
applications. Some bolted connections that might be found in metal aircraft structure are shown
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Figure 10.23 The common location (a) of fatigue cracks in a stepped shaft, and (b) reducing
the stress raiser effect by using a taper, or (c) by using a taper with a shoulder. (From
[Cottell 56]; reprinted by permission of the Council of the Institution of Mechanical Engineers,
London, UK.)

in Fig. 10.27. Improved resistance to fatigue is provided by symmetrical geometries that minimize
bending stresses in the members being connected, and thus also in the bolts. Tapered or scarf
joints cause the loads to be more evenly distributed among the bolts, so this feature also is usually
beneficial.

In welded joints, special care is needed to minimize the stress-raiser effect. Grinding to smooth
the irregular raised shape left when the weld metal solidifies is helpful. Welds may contain a variety
of defects, such as shrinkage cracks, porosity, or a groove (undercut) left at the edge of the weld.
Inspection to find defects and their subsequent repair is important. Also, partial penetration welds, as
in Fig. 10.19(d), essentially constitute built-in cracks, so these should not be allowed in critical areas.

Additional information on design details for various mechanical elements, such as joints,
springs, gears, bearings, shafts, etc., may be found in textbooks on mechanical design and in
structural design codes, such as those listed in the References.
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Figure 10.24 Usual location (a) of fatigue cracks in keyways, and an improved design (b)
called a sled-runner keyway. (From [Cottell 56]; reprinted by permission of the Council of the
Institution of Mechanical Engineers, London, UK.)

Figure 10.25 Some designs to alleviate stress concentration at a press-fitted shaft. The plain
shaft (a) involves a severe stress raiser and is susceptible to fretting. Some possible
improvements are (b) enlarging the shaft end, (c) modifying the collar, or (d) grooving the
shaft. (Adapted from [Grover 66] p. 211.)
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Figure 10.26 Usual location (a) of fatigue cracks in a bolt and (b) some measures to improve
fatigue resistance. (From [Cottell 56]; reprinted by permission of the Council of the Institution
of Mechanical Engineers, London, UK.)

10.9.2 Surface Residual Stresses

Consider a notched member, as in Fig. 10.28, that is subjected to a tensile overload sufficient to cause
local yielding. Upon removal of the load, the unyielded material around the plastic zone attempts
to recover its original shape, and in so doing forces the yielded material into compression. Other
regions away from the notch are in tension, so there is a distribution of stress that sums to zero, as
required by equilibrium and the now-zero applied load. These locked-in stresses are called residual
stresses. If compressive at the notch, they retard fatigue cracking by biasing the mean stress in the
compressive direction during subsequent cyclic loading.

If it is assumed that the material is an elastic, perfectly plastic one, the residual stress remaining
after removal of a nominal stress S′ is thus

σr = σo − kt S′ (σo < kt S′ ≤ 2σo)

σr = −σo (kt S′ > 2σo)
(10.49)

In the first case, corresponding to Fig. 10.28(a), no compressive yielding occurs during unloading,
but in the second case, (b), it does, and this results in a residual stress equal to the yield strength
in compression. If the overload is compressive, an analogous but opposite effect occurs, giving a
tensile and thus harmful residual stress. The preceding equations can still be used if σo is replaced
by −σo and S′ is used with its negative value.

Compressive surface residual stresses are often intentionally introduced into mechanical
components to improve the fatigue strength at long lives. Any method of yielding the surface in
tension will result in a compressive residual stress in a manner similar to the notch case. Methods
used in addition to tensile overloading of notches include shot peening, cold rolling of the surface,
and overloading in bending, called presetting. (See Fig. 9.31.) Shot peening is the most commonly
used method and involves bombarding the surface with small, hard, often steel, balls. These cause
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Figure 10.27 Some bolted joint details. A single shear joint can be improved by introducing a
taper (scarf). Double shear joints minimize bending and can also be tapered. (Adapted from
[Grover 66] p. 176.)

biaxial yielding in tension under each point of impact; hence, a biaxial compressive residual stress
occurs due to the elastic recovery of the unyielded material beneath. Components commonly shot
peened include leaf springs, gears, crankshafts, and turbine blades.

Compressive surface residual stresses can also be produced by surface hardening treatments,
as in carburizing or nitriding of steels, or by thermal treatments, notably rapid quenching of steel
shafts. Other surface treatments, such as abusive grinding and chrome plating, need to be used with
care, as they may introduce harmful tensile residual stresses. Tensile residual stresses often remain
after welding, which leads to the common practice of a subsequent stress relief heat treatment to
remove them.

Surface residual stresses are beneficial only where subsequent yielding does not occur due to
loads in service, as this may remove the compressive residual stress or even change it to a harmful
tensile one. Additional discussion of residual stress effects on fatigue can be found in Stephens
(2001) and in the SAE Fatigue Design Handbook (Rice, 1997).
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Figure 10.28 Unloading of a notched member after local yielding. Stress–strain behavior at
the notch and residual stress distributions are shown for (a) elastic behavior during unloading,
and (b) compressive yielding during unloading.

10.10 DISCUSSION

In some cases, engineering components have geometrically smooth contours and relatively large
notch radii, such that stresses in fatigue-critical locations can be analyzed in detail, as by the
application of stress concentration factors, kt , or by finite element analysis. However, note that kt

values are based on elastic behavior, and most finite element analysis done in a design environment
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also assumes elastic behavior. As a result, the stress values are in error if they exceed the yield
strength. But if there is indeed little or no yielding, it is reasonable to make fatigue life estimates
using the methodology of Chapter 9, applying this to the local stresses as analyzed.

However, the circumstances are often more complex. Specifically, there may be localized
yielding. Or there may be relatively sharp notches or complexities—for example, bolted joints
or welds—such that detailed analysis of the local stresses is difficult. Estimated S-N curves or
component S-N curves are then needed. However, we recall from the previous discussion that
estimated S-N curves are recommended only for obtaining rough initial estimates. Wherever
possible, these should be replaced by S-N data for actual components or for notched members
similar to the component.

As discussed in Section 10.8, component S-N curves have the advantage of automatically
including difficult-to-evaluate geometric and fabrication detail. But there are disadvantages. First,
the match between the actual components and the readily available data may be imperfect. Second,
the accuracy of life estimates for irregular loading histories can be affected by occasional severe
loads during service if these cause local yielding at notches. Such local yielding causes residual
stresses, as illustrated in Fig. 10.28. These overload-induced residual stresses may affect the life
by shifting the local mean stresses during subsequent cyclic loading. This sequence effect is not
accounted for by any mean stress equation that employs nominal stress or load, such as the ones
described in this chapter. As a result, when using component S-N curves, we may not predict lives
for irregular loading histories very well by the Palmgren–Miner rule. This can be overcome to an
extent by employing the P–M rule in relative form, �(N j/N f j ) = D, where D may differ from
unity, having a value based on test data for component geometries and load histories similar to those
expected in service. Another option is to apply the Corten–Dolan cumulative damage procedure,
which is summarized in Section 5.3 of Graham (1968).

The local yielding effects that cause difficulty for any nominal-stress-based or load-based
approach are specifically analyzed by the strain-based approach, as described in Chapter 14. See
the discussion of Section 14.6.

In some cases, cracks are present essentially from the beginning of the fatigue life. The use of a
crack-growth approach based on fracture mechanics is then indicated; this is treated in Chapter 11.
Note that very sharp notches may cause such early initiation of cracks that the life is dominated
by crack growth. In particular, this is likely to be the case where kf requires a large adjustment
from kt .

It can be argued with considerable justification that all but the highest quality welds contain
sufficiently severe defects that the life is controlled by crack growth. A crack-growth approach to
fatigue of welded members is promising, but this approach has not yet been fully exploited, due to
the difficulties caused by the complex geometry involved. The geometric complexity also makes it
difficult to apply a strain-based approach to welded members, so that component S-N curves are
currently the preferred approach for welded members.

10.11 SUMMARY

Stress raisers (notches) reduce fatigue strength and require careful attention to detail in design. The
strength reduction is often not as great as would be expected from the elastic stress concentration
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factor kt , so special fatigue notch factors are used. These are calculated from kt and empirical curves,
giving the notch sensitivity value q for the material and notch radius of interest. Alternatively, the
same empirical information may be expressed in terms of a material constant. For example, Peterson
employs a material constant α and the notch radius ρ to estimate kf :

kf = 1 + kt − 1

1 + α

ρ

(10.50)

In ductile materials, yielding causes even further reductions in kf at short lives. A more general
variable k′

f that varies with life is then needed. Limiting values of k′
f are kf at long life and unity at

short life.
For engineering situations involving low stresses applied large numbers of times, design may

be based on the fatigue strength at a long life of 106 cycles or more, called the fatigue limit,
and denoted σer for completely reversed loading. Where specific data are not available, σer for
commonly used metals may be estimated from correlations with the ultimate tensile strength σu .
In applying σer values to engineering components, the fatigue notch factor kf is employed along
with additional modifying factors, such as those for type of load, size, and surface finish, to
obtain the fatigue limit as a nominal stress, Ser , for the notched member. Additional empirical
assumptions may be employed to make a rough estimate of an entire S-N curve, as in the procedures
of Juvinall or Budynas. However, caution is needed with the concept of a fatigue limit stress,
as damage due to occasional severe cycles or corrosion may cause failure at stresses below this
level.

In considering mean stress effects for notched members, the Goodman or Gerber equations
are often applied to nominal stresses. But application of these is complicated by local yielding
at notches, inaccuracy, and sensitivity to the arbitrary definition of nominal stress, S. Thus, it is
preferable to employ either the Smith, Watson, and Topper (SWT) equation or the Walker equation,
which are, respectively,

Sar =
√

SmaxSa , Sar = S1−γ
max Sγ

a (a, b) (10.51)

The Walker equation requires data at more than one mean stress or R-ratio to permit fitting a
value of γ .

An S-N curve from test data for the actual engineering component of interest is preferable
to an estimated one. Lacking this, data from similar components or notched members should be
employed if possible. To match a component to notched specimen data, such as might be found in a
handbook, look for data for a similar notch radius, ρ, or for a similar length parameter l ′ of Eq. 8.26,
and compare stresses on the basis kt S. For welded structural members, design codes include S-N
curves identified with various structural details. These are typically expressed in terms of the range
of nominal stress, and the curves are generally the same for all mean stresses and for all structural
steels, independent of yield strength.

Design strategies to minimize fatigue failures include avoiding sharp notch radii and intention-
ally introducing beneficial surface residual stresses.
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N E W T E R M S A N D S Y M B O L S

component S-N curve
equivalent stresses, �S, Sar

estimated S-N curve
fatigue limit:

polished bend, σerb

adjusted, σer

notch, Ser

fatigue limit life, Ne

fatigue limit ratio, me = σerb/σu

fatigue limit reduction factors:
load type, mt

size, md

surface, ms

fatigue notch factor:
long life, kf

short life, k′
f

mean stress, kf m

fretting
initial yielding
local yielding
Neuber constant, β

nonpropagating crack
notch sensitivity, q
Peterson constant, α

process zone effect
relative P–M rule
residual stress
reversed yielding
shot peening
size effect
stress gradient, dσ/dx
stress raiser
surface finish
weakest-link effect
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de Normalisation (European Committee for Standardization), Brussels. See also: BS EN 1993-1-9:2005,
British Standards Institution, London; replaces BS 5400-10 and BS 7608.

DONG, P., J. K. HONG, D. OSAGE, and M. PRAGER. 2002. “Master S-N Curve Method for Fatigue Evaluation
of Welded Components,” WRC Bulletin 474, ISSN 043-2326, Welding Research Council, New York.

PROBLEMS AND QUESTIONS

Sections 10.2 and 10.3
10.1 Define the following terms in your own words: (a) notches; (b) S-N curve; (c) stress gradient;

and (d) reversed yielding.
10.2 Determine kt , and then estimate kf for the low carbon steel. Do you agree with the values

given? Why might there be a discrepancy in kf ?
10.3 For the notched member of Fig. 9.27 with ρ = 1.20 mm, determine kt and estimate k f . Then

use the unnotched member fatigue strength at 108 cycles to estimate Ser , for the notched
member, and compare to the actual data.

10.4 For the notched member of Fig. 10.11, answer the following:
(a) Determine your own value of kt , and then estimate kf . (Note that the half-circular notch

shape gives w1 = w2 − 2ρ.). Assume kt = 3.4.
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(b) For 106 cycles, use your kf value with the smooth specimen fatigue strength from the
S-N curve to estimate the notched specimen strength. How good is the agreement with
the test data?

10.5 A double-edge-notched plate is made of AISI 4130 steel and is subjected to an axial
force P , as in Fig. A.11(b). Its dimensions are w1 = 80, w2 = 88, ρ = 4, and t = 10 mm.
The steel has an ultimate tensile strength of 1172 MPa, and the fatigue limit for completely
reversed (σm = 0) loading of unnotched material can be estimated from Fig. 9.24.

(a) Determine kt and then estimate kf .
(b) Determine the σar value for 106 cycles.

10.6 A shaft with a step-down in diameter has dimensions, as defined in Fig. A.12(c), of d1 = 11,
d2 = 13, and ρ = 0.4 mm. The shaft is subjected to bending and is made of a quenched
and tempered low-alloy steel having an ultimate tensile strength of 450 MPa. The fatigue
limit for completely reversed (σm = 0) loading of unnotched material can be estimated from
Fig. 9.24.

(a) Determine kt and then estimate kf .
(b) What completely reversed bending moment amplitude Ma can be applied to the

notched shaft for 106 cycles? A safety factor of 2.0 in stress is required.
10.7 A plate with a round hole is made of the 2024-T4 aluminum of Table 9.1, and it has dimensions

of d = 6, w = 30, and t = 5 mm, as defined in Fig. A.11(a). The fatigue limit for completely
reversed (σm = 0) loading of unnotched material can be estimated from Fig. 9.25.

(a) Determine kt and estimate kf for loading in tension.
(b) What completely reversed axial force amplitude Pa can be applied for 5 × 108 cycles

without fatigue failure? A safety factor of 2.5 in stress is required.
10.8 A flat plate with a width reduction is made of the AISI 4340 steel of Table 9.1. The bar has

dimensions, as defined in Fig. A.11(d), of w1 = 20, w2 = 30, t = 10, and ρ = 2 mm.
(a) Determine kt and estimate kf for loading in bending.
(b) What completely reversed bending moment amplitude Ma can be applied for 106 cycles

without fatigue failure? A safety factor of 1.8 in stress is required.

Section 10.4
10.9 According to Fig. 9.24, most steels with ultimate tensile strengths beyond σu = 1400 MPa

have fatigue limits below half the ultimate. However, a few high-strength steels (σu = 1700
to 2000 MPa) have higher fatigue limits than is typical, with the values still being near the
σerb = 0.5σu line. Speculate on how the tensile properties other than σu for such steels might
compare with those for more ordinary high-strength steels.

10.10 A circular rod made of the RQC-100 steel of Table 9.1 is loaded in bending and has a step
change in diameter. The dimensions, as defined in Fig. A.11(d), are w1 = 70, w2 = 80,
t = 8 mm and ρ = 4 mm, and the fillet radius is ground. Estimate the largest completely
reversed bending moment amplitude that can be applied for 106 cycles.
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10.11 A circumferentially grooved round bar made of 7075-T6 aluminum is subjected to 108 cycles
of completely reversed bending. The bar has dimensions, as defined in Fig. A.12(c), of
d1 = 15, d2 = 21.5, and ρ = 0.75 mm. The notch radius ρ has a ground surface finish, which
is estimated to reduce the polished specimen fatigue limit of the material (see Fig. 9.25) by
a factor ms = 0.8. A safety factor of 1.5 in stress is required.

(a) What completely reversed moment amplitude Ma can be applied in the actual service
of this bar?

(b) If a completely reversed moment amplitude of Ma = 13 N·m will be applied in
service, is the design adequate? If not, what new value of notch radius ρ will allow
the bar to just meet the required safety factor?

10.12 A circumferentially grooved round shaft of the AISI 4340 steel of Table 9.1 is subjected
to torsion. The shaft has dimensions, as defined in Fig. A.12(d), of d1 = 20, d2 = 22, and
ρ = 1.0 mm. The notch radius ρ has a ground surface finish. A safety factor of 1.8 in stress
is required. What completely reversed torque amplitude Ta can be applied for 106 cycles in
the actual service of this shaft?

Sections 10.5 and 10.6
10.13 For notched members of ductile materials, explain in your own words why k′

f tends to
approach unity at short fatigue lives, and also why kf m tends to approach zero at short fatigue
lives.

10.14 Consider the fatigue data for AISI 4340 steel in Fig. 10.11(a), specifically, the S-N curve for
the notched member.

(a) Obtain an equation that approximates the line relating Sa and Nf between 102 and
105 cycles. (Note that the stress scale is linear and the life scale is logarithmic.)

(b) One of the same notched members is subjected to constant amplitude cycling at a
force amplitude of Pa = 32 kN and a mean force of Pm = 25 kN. What fatigue life in
cycles is expected?

10.15 For the notched member of Fig. 10.11, estimate the repeatedly applied zero-to-maximum
nominal stress Smax that corresponds to a life of Nf = 105 cycles: (a) using Eq. 10.21, and
(b) using Eq. 10.28.

10.16 Consider the S-N curve of Fig. 9.27 for the bar of 2024-T4 aluminum with notch radius
ρ = 1.59 mm. Note that nominal stress S is defined as in Fig. A.12(c). If a similar bar
is subjected to a mean bending moment Mm = 4.0 N·m, estimate the bending moment
amplitude Ma that will cause failure in 105 cycles: (a) using Eq. 10.21 and (b) using
Eq. 10.28.

10.17 The aluminum alloy 2024-T4 of Table 9.1 is to be used in the form of a plate with a
central hole under axial loading, as in Fig. A.11(a). The dimensions are w = 50, d = 10,
and t = 20 mm. For a life of N f = 107 cycles, estimate the mean force Pm if the force
amplitude is Pa = 50 kN: (a) using Eq. 10.21 and (b) using Eq. 10.28.

10.18 Assume that the notched member AISI 4340 Steel of Fig. 10.11 is a component that is
required to resist 2000 cycles of a nominal stress amplitude of Sa = 150 MPa, applied at a
mean level of Sm = 200 MPa. Obtain approximate values for the safety factors in both stress
and life.
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10.19 Consider the 7075-T6 aluminum bending member of Prob. 10.11, with notch radius
ρ = 0.75 mm. The completely reversed loading fatigue limit of the material, with the surface
finish effect included, is σer = 220 MPa, and the fatigue notch factor is kf = 1.98. What
moment amplitude Ma can be applied for 5 × 106 cycles along with this mean moment such
that there is a safety factor of 2 in stress?

10.20 A plate with a width reduction is made of the ASTM A514 structural steel of Table 4.2. It
is required to withstand 106 cycles of an axial force amplitude of Pa = 16 kN, applied along
with a mean force of Pm = 9 kN. The plate has dimensions, as defined in Fig. A.11(c),
of w1 = 20, w2 = 24, t = 10, and ρ = 0.50 mm. The notch radius ρ has a ground surface
finish.

(a) What is the safety factor in stress?
(b) If a safety factor of 1.8 in stress is required, what new value of notch radius ρ allows

the bar to just meet this requirement?
10.21 Consider the data for notched plates of 2024-T3 aluminum of Ex. 10.4. Fitting the data for

zero mean stress to Eq. 10.31 gives A = 976 MPa and B = −0.1750.
(a) Using the Goodman relationship of Eq. 10.21, plot Sar versus Nf for all of the data.

Also plot the zero-mean-stress fitted line, and comment on the success of the resulting
correlation.

(b) Repeat (a), using the SWT relationship of Eq. 10.28.
(c) Repeat (a), using the Goodman relationship of Eq. 10.22, with kf m from Eq. 10.27,

except replace kt with kf .
10.22 For double-edge-notched plates of 7075-T6 aluminum under axial load, cycles to failure

data are given in Table P10.22 for various combinations of maximum stress Smax and

Table P10.22

Smax, MPa Sm , MPa Nf , cycles Smax, MPa Sm , MPa Nf , cycles

276 0 136 138 69 32 000
224 0 329 121 69 48 500
207 0 917 379 138 169
172 0 2 228 345 138 309
138 0 5 300 310 138 756
112 0 17 800 241 138 2 500
103 0 30 000 224 138 5 500

86.2 0 70 000 207 138 10 500
69.0 0 274 000 190 138 16 800
63.8 0 339 200 172 138 179 000
58.6 0 969 200 155 138 566 500

276 69 374 293 207 4 000
241 69 955 276 207 7 800
207 69 2 000 276 207 10 000
172 69 6 823 259 207 15 000
155 69 13 000 241 207 32 700

Source: Data in [Grover 51b], [Illg 56], and [Naumann 59].
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mean stress Sm . The specimen dimensions, as defined in Fig. A.11(b), were w1 = 38.10,
w2 = 57.15, notch radius ρ = 1.45, and thickness t = 2.29 mm, giving kt = 4.00 on the
basis of net area. Also, the material’s tensile properties were yield 521 MPa and ultimate
572 MPa. Fitting the data for zero mean stress to Eq. 10.31 gives A = 676 MPa and
B = −0.1822.

(a) Using the Goodman relationship of Eq. 10.21, plot Sar versus Nf for all of the data.
Also plot the zero-mean-stress fitted line, and comment on the success of the resulting
correlation.

(b) Repeat (a), using the SWT relationship of Eq. 10.28.
10.23 Three fatigue test data points from Ex. 10.4 are given in Table P10.23 for notched axial

specimens of 2024-T3 aluminum. Assume that the data fit Sar = A N B
f , with Sar given by

the Walker relationship, Eq. 10.29. Using these three points, determine approximate values
for the fitting constants A, B, and γ . Then employ the resulting γ value to calculate Sar

values for the three data points, and plot these versus N f on a log–log graph. Do the three
points lie on the fitted straight line?

Table P10.23

Smax , MPa Sm , MPa N f , cycles

241 0 3 500
103 0 210 000
310 207 63 500

10.24 Three fatigue test data points from Probs. 9.5 and 9.33 are given in Table P10.24 for
unnotched axial specimens of titanium 6Al-4V. Assume that the data fit σar = A N B

f ,
with σar given by the Walker relationship, Eq. 9.19. Using these three points, determine
approximate values for the fitting constants A, B, and γ . Then employ the resulting γ value
to calculate σar values for the three data points, and plot these versus N f on a log–log graph.
Do the three points lie on the fitted straight line?

Table P10.24

σa , MPa σm , MPa N f

892 0 706
385 0 500 000
241 646 90 000

10.25 Consider the notched specimen data of Table P10.22 for 7075-T6 aluminum. Fit these data
to the Walker equation, all together as a single set of data. Use Sar = A N B

f , with Sar given
by Eq. 10.29, to obtain values of A, B, and γ . Also, on a plot of Sar versus Nf , show data
and fitted line, and comment on the success of the fit.
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10.26 Consider the unnotched specimen data for AISI 4340 steel of Ex. 9.1 and 9.5. Combine the
data from both examples into a single set of data and proceed as follows:

(a) Fit the data to an equation of the form σar = A N B
f , with σar given by the

Walker relationship, Eq. 9.19 . Obtain values for the three fitting constants, A, B,
and γ .

(b) On a log–log graph of σar vs. N f , plot both your fitted line and the data, and comment
on the success of the fit.

10.27 Consider the unnotched specimen data for titanium 6Al-4V of Tables P9.5 and P9.33.
Combine the data from both tables into a single set of data and proceed as in (a) and (b)
of Prob. 10.26.

10.28 Consider the unnotched specimen data for 50CrMo4 steel of Tables P9.6 and P9.34. Combine
the data from both tables into a single set of data and proceed as in (a) and (b) of
Prob. 10.26.

10.29 Consider the unnotched specimen data for 2024-T3 aluminum of Tables P9.8 and P9.35.
Combine the data from both tables into a single set of data and proceed as in (a) and (b) of
Prob. 10.26.

Section 10.7
10.30 The notched plate in bending of Ex. 10.3, which is made of RQC-100 steel with σu = 758

MPa, is noted to have a value of kf = 1.82. Assume that the notch has a machined
surface.

(a) Estimate the S-N curve for unnotched material according to Budynas.
(b) What life is expected for a moment amplitude of Ma = 1.50 kN·m applied at a mean

level of Mm = 2.00 kN·m?
10.31 The axially loaded plate with a hole of Prob. 10.17, made of 2024-T4 aluminum as in

Table 9.1, has a value of kf = 2.36, and the hole is smoothly polished.
(a) Estimate the S-N curve for unnotched material according to the procedure of

Juvinall.
(b) What life is expected if an axial force amplitude of Pa = 40 kN is applied at a mean

level of Pm = 32 kN?
10.32 A circular rod made of the SAE 4142 (450 HB) steel of Table 9.1 is loaded axially and has

a step change in diameter. The dimensions, as defined in Fig. A.12(a), are d1 = 15, d2 = 18,
and ρ = 1 mm, and the fillet radius is ground. Using the S-N curve estimate of Budynas,
evaluate the safety factors in both stress and life if the expected service loading is 30,000
cycles at a zero-to-tension force of Pmax = 70 kN.

10.33 For the AISI 4340 steel notched member of Fig. 10.11, some points on the S-N curve
are given in Table P10.33. Note that the notch surface is smoothly polished. Estimate the
nominal stress versus life S-N curve according to the procedures of (a) Juvinall and (b)
Budynas. Then plot both estimates along with the data and comment on the success of the
estimates.
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Table P10.33

Sa , MPa N f , cycles

696 102

617 102.5

538 103

459 103.5

379 104

300 104.5

231 105

193 105.5

176 106 to 107

10.34 Nominal stress amplitude versus cycles to failure data are given in Table P10.34 for
completely reversed (R = −1) loading of notched members of normalized SAE 4130 steel
with yield strength σo = 679 MPa and ultimate tensile strength σu = 807 MPa. The axially
loaded test specimens were double-edge-notched plates, as in Fig. A.11(b), with (net area)
nominal stress S defined as shown. The dimensions were w1 = 38.10, w2 = 57.15, notch
radius ρ = 8.06, and thickness t = 1.905 mm, giving an elastic stress concentration factor
of kt = 2.15. The notch surface was electropolished. Estimate the nominal stress versus life
S-N curve according to the procedures of (a) Juvinall and (b) Budynas. Then plot both
estimates along with the data and comment on the success of the estimates.

Table P10.34

Sa , MPa N f , cycles

690 190
552 1 075
400 5 779
345 27 000
310 43 000
262 82 000
221 182 000
221 635 000
197 1 712 700
186 2 153 500
172 >10 900 000

Source: Data from [Grover 51b] and
[Illg 56].
Note: No failure indicated by “>”.

10.35 Nominal stress amplitude versus cycles to failure data are given in Table P10.35 for
completely reversed loading of notched members of 2014-T6 aluminum. The axially loaded
test specimens were circumferentially notched round bars, with diameter in the bottom of
the notch d1 = 10.16, major diameter d2 = 12.70, and notch radius ρ = 0.813 mm, giving
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an elastic stress concentration factor of kt = 2.65. Nominal stress S is defined based on
the net area corresponding to d1, and the notch surface was polished. The material’s tensile
properties were yield 438 MPa and ultimate 494 MPa. Estimate the nominal stress versus
life S-N curve by the method of Juvinall, and graphically compare estimate and data.

Table P10.35

Sa , MPa Nf ,cycles

262 2 100
200 13 300
138 137 000
124 661 000
100 2 420 000

82.7 17 200 000
79.3 27 600 000

Source: Data in [Lazan 52].

10.36 In an engineering failure that actually occurred, the shaft shown in Fig. P10.36 was supported
by bearings at its ends and was used in a hoist for lifting ore out of a mine. It was loaded
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in rotating bending by the forces shown and failed after 15 years of service and 2.5 × 107

rotations. An impact factor of 1.5 has already been included in the forces given to roughly
account for forces exceeding the dead weight of the ore, cable, and bucket. (An impact factor
is needed due to such effects as bouncing during loading at the bottom of the mine and
acceleration to start moving the ore upward.) The shaft was made of AISI 1040 steel with
tensile properties of σu = 620 MPa, σo = 310 MPa, and reduction in area 25%. The design
drawings showed a fillet radius of 6.35 mm at the failure location, with a machined surface
finish, but measurements on the shaft after failure indicated that it had a radius of only 2 mm.
Estimate the safety factor in stress for both the intended and actual fillet radii. Does this error
in manufacture explain the failure?

Section 10.8
10.37 In the Bailey bridge work described in the text, variable amplitude tests were also done. In

one series of these, numbers of cycles were applied at various stress levels, with a constant
Smin = 7.9 MPa, in a pattern as shown in Fig. P10.37. This loading block contained a total
of 24,000 cycles, and it was repeatedly applied, with alternate blocks being done in reverse
sequence, until fatigue failure occurred. Table P.10.37(a) gives the total numbers of cycles
in each loading block for the various load levels, where the load levels are expressed as
percentages of the peak stress, which is the highest value of Smax. Test data are given in
Table P.10.37(b) as average numbers of blocks to failure from multiple tests at each of
two peak stress values. Failure in these tests was defined as complete separation of a truss
member.

(a) Calculate the life expected for the two peak stress values of 240 and 209 MPa. Base
your calculations on the Smax versus Nf equation fitted to constant amplitude data, as
shown in Fig. 10.18.

100

80

60

40

20

0
Time        

S
m

ax
, %

 o
f P

ea
k 

S
tr

es
s

24,000 cycles total

Smin = 7.9 MPa

660

640

2000800

640

4700

600

320

20

20

3

37

20

540

1000

6000

4000

1000

1000 cycles

Figure P10.37



554 Chapter 10 Stress-Based Approach to Fatigue: Notched Members

(b) Compare your results with the test data. Can you think of reasons for any trends in
the calculated versus actual life comparison?

Table P.10.37(a)

Smax Level, % of Number
Peak Stress of Cycles

20 11 700
40 8 400
60 3 140
80 700
90 57

100 3

All 24 000

Table P.10.37(b)

Peak Stress, Blocks
MPa to Failure

240 33
209 100

Source: Data in [Webber 70].

10.38 Consider double-edge-notched plates of 2024-T3 aluminum alloy with kt = 2.15, as in
Ex. 10.4. These have a nominal stress versus life curve of the form Sar = A N B

f , where
Sar is given by the Walker relationship, Eq. 10.29, with fitting constants A = 1530 MPa,
B = −0.217, γ = 0.733 and

∑ = 2.9 × 10−3. Assume that these plates will be repeatedly
subjected in engineering service to the nominal stress history shown in Fig. P10.38.

(a) Estimate the number of repetitions to failure.
(b) If 200 repetitions are expected to be applied in service, what are the safety factors in

life and in stress?
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10.39 Notched members of the same geometry and material as in Prob. 10.38 are subjected to the
nominal stress history shown in Fig. P10.39.

(a) Estimate the number of repetitions to failure.
(b) If 600 repetitions are expected to be applied in service, what are the safety factors in

life and in stress?
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10.40 Consider double-edge-notched plates of 7075-T6 aluminum, as in Prob. 10.22, with kt =
4.00. These have a (net section) nominal stress versus life curve of the form Sar = A N B

f ,
where Sar is given by the Walker relationship, Eq. 10.29, with fitting constants1 of A =
779 MPa, B = −0.197, and γ = 0.486. Some of these plates were repeatedly subjected to
the nominal stress history given by Table P10.40(a). Note that all of the loading cycles had
a common minimum level. Each maximum stress level was applied for the number of cycles
given, and then the entire sequence was repeated until failure occurred. Six tests were run,
with numbers of repetitions of the load history to failure being given in Table P10.40(b).

(a) Estimate the number of repetitions to failure.
(b) Compare your calculated life with the test data, and comment on the success of your

estimate.

Table P10.40(a)

Smin, MPa Smax, MPa No. of Peaks

48.3 303 47
48.3 231 268
48.3 159 810
48.3 86.2 1810

Table P10.40(b)

Test No. Repetitions to Failure

1 18.7
2 18.0
3 18.0
4 18.0
5 16.0
6 15.0

Source: Data in [Naumann 62].

10.41 Consider double-edge-notched plates of 7075-T6 aluminum, as in Prob. 10.22, with kt =
4.00. These have a (net section) nominal stress versus life curve of the form Sar = A N B

f ,

Note: 1These values were obtained by fitting the full set of 74 data points available from the sources for Table P10.22 for
Nf = 102 to 2 × 106 cycles.
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where Sar is given by the Walker relationship, Eq. 10.29, with fitting constants A = 779 MPa,
B = − 0.197, and γ = 0.486. Some of these plates were repeatedly subjected to a variable
amplitude axial loading history, as shown in Fig. P10.41. All loading events started from
and returned to a base level of S = 48.3 MPa, with the nominal stress levels and numbers of
cycles being considered representative of aircraft maneuver loads. Stress levels and numbers
of events are listed in Table P10.41(a). Six tests were run, and numbers of repetitions of the
load history to failure are given in Table P10.41(b).

(a) Estimate the number of repetitions to failure. (Suggestion: Apply rainflow cycle
counting, and consider the history to start and finish at either the 336 MPa level or
the −67.6 MPa level.)

(b) Compare your calculated life with the test data, and comment on the success of your
estimate.
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Figure P10.41

Table P10.41(a)

Smax or Smin No. of Peaks
MPa or Valleys1

336 12
292 35
255 88
219 180
181 300
143 510
105 780

67.6 1030
−19.3 15
−67.6 2

Note: 1All events start at and
return to S = 48.3 MPa.

Table P10.41(b)

Repetitions
Test No. to Failure

1 13.7
2 12.1
3 12.1
4 11.0
5 11.0
6 10.0

Source: Data in [Naumann 62].
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10.42 Several notched members of Man-Ten steel, as shown in Fig. P10.42, were tested under
completely reversed constant amplitude loading. Fitting these data yielded the force versus
life relationship

�P = 379(2Nf )
−0.223 kN (R = −1)

where Nf is the number of cycles to observation of a crack of length 2.5 mm beyond the
notch. Similar notched members were also repeatedly subjected to the irregular load history
of Fig. 9.48, where this history contains 854 cycles, distributed among various ranges and
means as shown. Test results are given in Table P10.42. Note that numbers of repetitions of
the history to reach a 2.5 mm crack are given for three different values of the peak force,
with three duplicate tests in each case.

(a) Use the given force–life relationship to calculate the fatigue life expected for each of
the three peak force levels in Table P10.42. Note that the range and mean values for
the matrix of Fig. 9.48 are expressed as percentages of the peak force.

(b) Compare your calculations with the test data, preferably on a log–log plot of peak
force versus repetitions to cracking. Briefly discuss any trends that are apparent.
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Figure P10.42

Table P10.42

Repetitions to 2.5 mm CrackPeak Force
kN Test 1 Test 2 Test 3

71.17 8.4 12.8 12.5
35.58 420 154 74
15.57 5800 4270 3755

Source: Data in [Wetzel 77] pp. 7–13.

10.43 For structural-steel cover-plated beams, Fig. 10.20(c), the most likely failure location is at
the end of the cover plate. For one such beam in a bridge, assume that the AWS design S-N
curve for category E ′ applies, where �S is the nominal bending stress range in the beam at
the end of the cover plate. The bridge is crossed by numerous vehicles of various weights
each day, resulting in approximately 1000 stress cycles of significant magnitude per day.
The values of stress at this detail, and the numbers of cycles per day at each stress level, are
distributed as in Table P10.43.

(a) Estimate the number of years of service before fatigue failure at this detail is expected,
on the basis of the design S-N curve.

(b) If the desired service life is 75 years, what are the safety factors in life and in stress?
10.44 A structural detail in a highway bridge that has been in service for 20 years fits AWS category

E . When the bridge was designed, a weight limit on trucks of 30 tons was in effect, where
1 ton = 2000 lb = 8.896 kN. Traffic monitoring when the bridge was one year old indicated
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Table P10.43

�S, MPa Cycles per day

1.8 121
5.4 335
9.0 255

12.6 136
16.2 76
19.8 48
23.4 16
27.0 9
30.6 3
34.2 1

All 1000

a traffic volume averaging 800 trucks a day, with the numbers and weights of trucks allowing
cyclic stress ranges to be determined for the detail, as listed in Table P10.44. (Automobiles
and other light vehicles cause insignificant stresses.)

(a) Calculate the equivalent constant level of cyclic stress �Sq that is expected to cause
the same life as the given stresses if applied for the same number of cycles.

(b) For the given stresses, estimate the life of the detail in years. Given that the usual
design life for bridges is 75 years, what are the safety factors in life and in stress?

(c) The traffic volume on the bridge has gradually increased and at the present time is
twice the early value—that is, 1600 trucks a day. Moreover, the legislature in the state
involved is being lobbied to raise the weight limit on bridges of this type to 40 tons.
Estimate the remaining life of the bridge if this change is made. (Suggestion: Assume
that the new loading corresponds to increasing all of the stresses in Table P10.44 by
the ratio of 40/30 = 1.333.) (Problem continues)

Table P10.44

�S, MPa % of trucks

2 2.1
6 10.5

10 15.1
14 21.0
18 18.5
22 11.8
26 10.9
30 5.9
34 2.1
38 1.3
42 0.8

� 100
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(d) You are an engineer who lives in this state. Draft a letter to your state legislator,
explaining the expected effect of the weight limit change on the life of the bridge, and
giving your opinion as to what the legislature should do.

Section 10.9
10.45 Examine a crank shaft in internal combustion engine.

(a) Draw a sketch of it, and point out any design features that are beneficial in avoiding
fatigue failure.

(b) Suggest any design changes that might improve fatigue resistance.
(c) Of what material does this part appear to be made? Try to explain the choice of

material from the viewpoints of function, cost, and resistance to fatigue, wear, and
other possible failure causes.

10.46 Examine the helical springs in the axle suspension system of a small boat trailer, and then
answer (a), (b), and (c), as in Prob. 10.45.

10.47 Examine a cotter joint with sleeve, and then answer (a), (b), and (c) as in Prob. 10.45.
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Fatigue Crack Growth

11.1 INTRODUCTION
11.2 PRELIMINARY DISCUSSION
11.3 FATIGUE CRACK GROWTH RATE TESTING
11.4 EFFECTS OF R = Smin/Smax ON FATIGUE CRACK GROWTH
11.5 TRENDS IN FATIGUE CRACK GROWTH BEHAVIOR
11.6 LIFE ESTIMATES FOR CONSTANT AMPLITUDE LOADING
11.7 LIFE ESTIMATES FOR VARIABLE AMPLITUDE LOADING
11.8 DESIGN CONSIDERATIONS
11.9 PLASTICITY ASPECTS AND LIMITATIONS OF LEFM FOR FATIGUE

CRACK GROWTH
11.10 ENVIRONMENTAL CRACK GROWTH
11.11 SUMMARY

OBJECTIVES

• Apply the stress intensity factor K of fracture mechanics to fatigue crack growth and to
environmental crack growth, and understand test methods and trends in behavior.

• Explore fatigue crack growth rate curves, da/dN versus �K, including fitting common
equations and evaluating R-ratio (mean stress) effects.

• Calculate the life to grow a fatigue crack to failure, including cases requiring numerical
integration and cases of variable amplitude loading. Employ such calculations to evaluate
safety factors and inspection intervals.

11.1 INTRODUCTION

The presence of a crack can significantly reduce the strength of an engineering component due to
brittle fracture, as already discussed in Chapter 8. However, it is unusual for a crack of dangerous
size to exist initially, although this can occur, as when there is a large defect in the material used
to make a component. In a more common situation, a small flaw that was initially present develops
into a crack and then grows until it reaches the critical size for brittle fracture.

Crack growth can be caused by cyclic loading, a behavior called fatigue crack growth. However,
if a hostile chemical environment is present, even a steady load can cause environmental crack

560
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Figure 11.1 Growth of a worst-case crack from the minimum detectable length ad to
failure (a), and the resulting variation in worst-case strength (b).

growth. Both types of crack growth can occur if cyclic loads are applied in the presence of a hostile
environment, especially if the cycling is slow or if there are periods of steady load interrupting
the cycling. This chapter primarily considers fatigue crack growth, but limited discussion of
environmental crack growth is included near the end in Section 11.10.

Engineering analysis of crack growth is often required and can be done with the stress intensity
concept, K, of fracture mechanics. Recall from Chapter 8 that K quantifies the severity of a crack
situation. Specifically, K depends on the combination of crack length, loading, and geometry
given by

K = F S
√

πa (11.1)

where a is crack length, S is nominal stress, and F is a dimensionless function of geometry and
the relative crack length α = a/b. The rate of fatigue crack growth is controlled by K . Hence, the
dependence of K on a and F causes cracks to accelerate as they grow. The variation of crack length
with cycles is thus similar to Fig. 11.1(a).

The analysis and prediction of fatigue crack growth has assumed major importance for large
engineered items, especially where safety is paramount, as for large aircraft and for components in
nuclear power plants. Note that the stress-based approach to fatigue of Chapters 9 and 10 does not
consider cracks in a specific and detailed manner. Hence, this chapter provides an introduction to
crack growth, including materials testing, trends in materials behavior, and prediction of the life to
grow a crack to failure.

11.2 PRELIMINARY DISCUSSION

Before proceeding in detail, it is useful to describe the general nature of crack growth analysis and
the need for it, and further to present some definitions.

11.2.1 Need for Crack Growth Analysis

It has been found from experience that careful inspection of certain types of hardware often reveals
cracks. For example, this is the case for large welded components, such as pressure vessels and
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bridge and ship structure, for metal structure in large aircraft, and for large forgings, as in the rotors
of turbines and generators in power plants. Cracks are especially likely to be found in such hardware
after some actual service usage has occurred. The possibility of cracks strongly suggests that specific
analysis based on fracture mechanics is appropriate.

Let us assume that a certain structural component may contain cracks, but none are larger than
a known minimum detectable length ad . This situation could be the result of an inspection that is
capable of finding all cracks larger than ad , so that all such cracks have been repaired, or the parts
scrapped. (Inspections for cracks are done by a variety of means, including visual examination,
X-ray photography, reflection of ultrasonic waves, and application of electric currents, where in the
latter case a crack causes a detectable disturbance in the resulting voltage field.) This worst-case
crack of initial length ad then grows until it reaches a critical length ac, where brittle fracture occurs
after Ni f cycles of loading. If the number of cycles expected in actual service is N̂ , then the safety
factor on life is

X N = Ni f

N̂
(11.2)

This situation is illustrated in Fig. 11.1(a). Such a safety factor is needed because uncertainties exist
as to the actual stress that will occur in service, the exact ad that can be reliably found, and the crack
growth rates in the material.

The critical strength for brittle fracture of the member is determined by the current crack length
and the fracture toughness Kc for the material and thickness involved:

Sc = Kc

F
√

πa
(11.3)

As the worst-case crack grows, its length increases, causing the worst-case strength Sc to decrease,
with failure occurring when Sc reaches Smax, the maximum value for the cyclic loading applied in
actual service. This is illustrated in Fig. 11.1(b). The safety factor on stress against sudden brittle
fracture due to the applied cyclic load is

Xc = Sc

Smax
(11.4)

Such a safety factor is generally needed in addition to X N because of the possibility of an unexpected
high load that exceeds the normal cyclic load. Within the expected actual service life, Xc decreases
and has its minimum value at the end of this service life.

It sometimes occurs that the combination of minimum detectable crack length ad and cyclic
stress is such that the safety margin, as expressed by X N and Xc, is insufficient. Predicted failure
prior to reaching the actual service life, X N < 1, may even be the case. Periodic inspections for
cracks are then necessary, following which any cracks exceeding ad are repaired, or the part
replaced. This ensures that, after each inspection, no cracks larger than ad exist. Assuming that
inspections are done at intervals of Np cycles, the length of the worst-case crack increases due
to growth between inspections, varying as shown in Fig. 11.2. The safety factor on life is then
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Figure 11.2 Variation of worst-case crack length (a), and strength (b), where periodic
inspections are required.

determined by the inspection period:

X N = Ni f

Np
(11.5)

After each inspection, the worst-case strength of the member temporarily increases, as shown in
Fig. 11.2(b). The safety factor on stress is lowest just prior to each inspection.

Analysis based on fracture mechanics allows the variations in crack length and strength to be
estimated so that safety factors can be evaluated. Where periodic inspections are necessary, fracture
mechanics analysis thus permits a safe inspection interval to be set. For example, for large military
and civilian aircraft, cracks are so commonly found during periodic inspections that safe operation
and economic maintenance are both critically dependent on fracture mechanics analysis. The term
damage-tolerant design is used to identify this approach of requiring that structures be able to
survive even in the presence of growing cracks.

In reality, the detectable crack length ad is not an absolute limit, as the probability of finding a
crack in inspection increases with crack size, but is never 100%. For example, in the aircraft industry,
values of ad for various inspection methods are generally established as the size that can be found
with 90% probability at a confidence level of 95%. On this basis, the better inspection methods give
ad values on the order of 1 or 2 mm under normal circumstances. Note that ad is usually defined
as the depth of a surface crack or half the width of an internal crack, on the basis of typical flaw
geometries, as in Figs. 8.17 and 8.19. Cracks as small as a = 0.1 mm can be found, but ad values
this small can be justified only in special cases.

In addition to design applications, analysis of crack growth life is also useful in situations
where an unexpected crack has been found in a component of a machine, vehicle, or structure. The
remaining life can be calculated to determine whether the crack may be ignored, whether repair or
replacement is needed immediately, or whether this can be postponed until a more convenient time.
Situations of this sort have arisen in steel-mill machinery, where an immediate shutdown would
disrupt operations and perhaps cause a large employee layoff. Similar situations have also occurred
in turbine-generator units in major electrical power plants, where fracture of a large steel component
could cause a power outage and expenditures of millions of dollars.
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11.2.2 Definitions for Fatigue Crack Growth

Consider a growing crack that increases its length by an amount �a due to the application of a
number of cycles �N . The rate of growth with cycles can be characterized by the ratio �a/�N or,
for small intervals, by the derivative da/d N . A value of fatigue crack growth rate, da/d N , is the
slope at a point on an a versus N curve, as in Fig. 11.1(a).

Assume that the applied loading is cyclic, with constant values of the loads Pmax and Pmin. The
corresponding gross section nominal stresses Smax and Smin are then also constant. For fatigue crack
growth work, it is conventional to use the stress range �S and the stress ratio R, which are defined
as in Eqs. 9.1 and 9.3:

�S = Smax − Smin, R = Smin

Smax
(11.6)

The primary variable affecting the growth rate of a crack is the range of the stress intensity
factor. This is calculated from the stress range �S:

�K = F �S
√

πa (11.7)

The value of F depends only on the geometry and the relative crack length, α = a/b, just as if the
loading were not cyclic. Since, according to Eq. 11.1, K and S are proportional for a given crack
length, the maximum, minimum, range, and R-ratio for K during a loading cycle are respectively
given by

Kmax = F Smax
√

πa, Kmin = F Smin
√

πa

�K = Kmax − Kmin, R = Kmin

Kmax

(11.8)

Also, it may be convenient, especially for laboratory test specimens, to use the alternative expression
of K in terms of applied force P , as discussed in Chapter 8 relative to Eq. 8.13:

�K = FP
�P

t
√

b
, R = Pmin

Pmax
(11.9)

11.2.3 Describing Fatigue Crack Growth Behavior of Materials

For a given material and set of test conditions, the crack growth behavior can be described by the
relationship between cyclic crack growth rate da/d N and stress intensity range �K . Test data and
a fitted curve for one material are shown on a log–log plot in Fig. 11.3. At intermediate values of
�K , there is often a straight line on the log–log plot, as in this case. A relationship representing this
line is

da

d N
= C(�K )m (11.10)

where C is a constant and m is the slope on the log–log plot, assuming, of course, that the decades
on both log scales are the same length. This equation is identified with Paul Paris, who first used
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it and who was influential in the first application of fracture mechanics to fatigue in the early
1960s.

At low growth rates, the curve generally becomes steep and appears to approach a vertical
asymptote denoted �Kth , which is called the fatigue crack growth threshold. This quantity is
interpreted as a lower limiting value of �K below which crack growth does not ordinarily occur.
At high growth rates, the curve may again become steep, due to rapid unstable crack growth just
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pressure vessel steel. Three regions of behavior are indicated: (a) slow growth near the
threshold �Kth, (b) intermediate region following a power equation, and (c) unstable rapid
growth. (Plotted from the original data for the study of [Paris 72].)
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prior to final failure of the test specimen. Such behavior can occur where the plastic zone is small, in
which case the curve approaches an asymptote corresponding to Kmax = Kc, the fracture toughness
for the material and thickness of interest. Rapid unstable growth at high �K sometimes involves
fully plastic yielding. In such cases, the use of �K for this portion of the curve is improper, as the
theoretical limitations of the K concept are exceeded.

The value of the stress ratio R affects the growth rate in a manner analogous to the effects
observed in S-N curves for different values of R or mean stress. For a given �K , increasing R
increases the growth rate, and vice versa. Some data illustrating this effect for a steel are shown in
Fig. 11.4.

Constants C and m for the intermediate region where Eq. 11.10 applies have been suggested
by Barsom (1999) for various classes of steel. These apply for R ≈ 0 and are given in Table 11.1.
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Figure 11.4 Effect of R-ratio on crack growth rates for an alloy steel. For R < 0, the
compressive portion of the load cycle is here included in calculating �K. (Data from
[Dennis 86].)
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Table 11.1 Constants from Barsom (1999) for
Worst-Case da/dN Versus �K Curves for Various
Classes of Steel for R ≈ 0

Constants for da/d N = C(�K )m

Class of Steel C,
mm/cycle

(MPa
√

m)m C,
in/cycle

(ksi
√

in)m m

Ferritic-pearlitic 6.89 × 10−9 3.6 × 10−10 3.0
Martensitic 1.36 × 10−7 6.6 × 10−9 2.25
Austenitic 5.61 × 10−9 3.0 × 10−10 3.25

Note: For use with the Walker equation for R > 0.2, it is
suggested that the given constants be employed as C0 and
m along with an approximate value of γ = 0.5.
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Figure 11.5 Steps in obtaining da/dN versus �K data and using it for an engineering
application. (Adapted from [Clark 71]; used with permission.)
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The value of m is important, as it indicates the degree of sensitivity of the growth rate to stress.
For example, if m = 3, doubling the stress range �S doubles the stress intensity range �K , thus
increasing the growth rate by a factor of 2m = 8.

11.2.4 Discussion

The logical path involved in evaluating the crack growth behavior of a material and using the
information is summarized in Fig. 11.5. First, a convenient test specimen geometry is employed
in tests at each of several different load levels, so that a wide range of fatigue crack growth rates is
obtained. Growth rates are then evaluated and plotted versus �K to obtain the da/d N versus �K
curve. This curve can be used later in an engineering application, with �K values being calculated
as appropriate for the particular component geometry of interest. Crack length versus cycles curves
for a specific initial crack length can then be predicted for the component, leading to life estimates
and the determination of safety factors and inspection intervals as discussed earlier.

Example 11.1
Obtain approximate values of constants C and m, and give Eq. 11.10 for the data at R = 0.1 in
Fig. 11.4.

Solution These data appear to fall along a straight line on this log–log plot, so it is reasonable
to apply Eq. 11.10. Aligning a straight edge with the data gives a line that passes near two points
as follows: (

�K ,
da

d N

)
= (21, 10−5) and

(
155, 10−2)

Here, units of MPa
√

m and mm/cycle are used. Now apply Eq. 11.10 to these two points,
denoting them as (�KA, da/d NA) and (�KB, da/d NB):

da/d NA = C(�KA)m, da/d NB = C(�KB)m

Eliminate C between these two equations by dividing one into the other:

da/d NA

da/d NB
=
(

�KA

�KB

)m

Taking logarithms of both sides and solving for m then gives

m = log (da/d NA) − log (da/d NB)

log (�KA) − log (�KB)
= log 10−5 − log 10−2

log 21 − log 155
= 3.456

Next, obtain C by substituting this m and either known point into Eq. 11.10:

10−5 mm

cycle
= C(21 MPa

√
m)3.456, C = 2.696 × 10−10 mm/cycle

(MPa
√

m)m
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Note that C has the unusual units indicated that involve the exponent m. Hence, the desired
relationship, with constants rounded to three significant figures, is

da

d N
= 2.70 × 10−10(�K )3.46 (mm/cycle, MPa

√
m) Ans.

Discussion If a more accurate fit is desired, the original source of the data should be consulted
for numerical values of the data points and a log–log least squares line of the form y = mx + b
obtained. Taking logarithms of both sides of Eq. 11.10 then gives

log
da

d N
= m log (�K ) + log C

y = log
da

d N
, x = log (�K ), m = m, b = log C

11.3 FATIGUE CRACK GROWTH RATE TESTING

Standard methods for conducting fatigue crack growth tests have been developed, notably ASTM
Standard No. E647. Two commonly used test specimen geometries are the standard compact
specimen, Fig 8.16, and center-cracked plates, Fig. 8.12(a).

11.3.1 Test Methods and Data Analysis

In a typical test, constant amplitude cyclic loading is applied to a specimen of a size such that its
width dimension b (as defined in Chapter 8) is perhaps 50 mm. Before starting the test, a precrack is
necessary. This is accomplished by first machining a sharp notch into the specimen and then starting
a crack by cyclic loading at a low level. Cyclic loading is then applied at the higher level to be used
for the remainder of the test. The progress of the crack is recorded in terms of the numbers of cycles
required for its length to reach each of 10 to 20 or more different values, with these being on the
order of 1 mm apart for a specimen of size b ≈ 50 mm. The resulting crack length data may then be
plotted as discrete points versus the corresponding cycle numbers, as in Fig. 11.6.

To measure these crack lengths, one approach is simply to note by visual observation, through
a low-power (20 to 50X) microscope, when the crack reaches various lengths that have been
previously marked on the specimen. An arrangement for such a test is shown in Fig. 11.7. More
sophisticated means may be used to measure crack lengths. For example, as the crack grows, the
deflection of the specimen increases, resulting in decreased stiffness. This stiffness change may be
measured and used to calculate the crack length. Another approach is to pass an electric current
through the specimen and measure changes in the voltage field due to growth of the crack, from
which we can obtain its length. Ultrasonic waves can also be reflected from the crack and used to
measure its progress.

To obtain growth rates from crack length versus cycles data, a simple and generally suitable
approach is to calculate straight-line slopes between the data points, as shown in Fig. 11.6.
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Figure 11.6 Crack growth rates obtained from adjacent pairs of a versus N data points.

Figure 11.7 Crack growth rate test under way (left) on a compact specimen (b = 51 mm),
with a microscope and a strobe light used to visually monitor crack growth. Cycle numbers
are recorded when the crack reaches each of a number of scribe lines (right). (Photos by
R. A. Simonds.)

If the data points are numbered 1, 2, 3 . . . j , then the growth rate for the segment ending at point
number j is (

da

d N

)
j
≈
(

�a

�N

)
j
= a j − a j−1

N j − N j−1
(11.11)
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The corresponding �K is calculated from the average crack length during the interval with either
of the two equations

�K j = F �S
√

πaavg, �K j = FP
�P

t
√

b
(11.12)

whichever is more convenient. In the first equation,

aavg = a j + a j−1

2
(11.13)

The geometry factor F = F(α) or FP = FP (α), where α = a/b, is evaluated at the same average
crack length, using

αavg = aavg

b
= a j + a j−1

2b
(11.14)

The foregoing procedure is valid only if the crack length is measured at fairly short intervals.
Otherwise, the growth rate and K may differ so much between adjacent observations that the
averaging involved causes difficulties. Detailed requirements are given in the ASTM Standard. Also,
curve-fitting methods of evaluating da/dN , which are more sophisticated than simple point-to-point
slopes, are sometimes used to smooth the scatter in the a versus N data. Fitting a polynomial over
all of the data from a test usually does not work very well, but such a fit applied in an incremental
manner to portions of the data works well, as described in the ASTM Standard.

Example 11.2
Crack length versus cycles data are given in Table E11.2(a) from a test on a center-cracked plate
of 7075-T6 aluminum. The specimen had dimensions, as defined in Fig. 8.12(a), of h = 445,
b = 152.4, and t = 2.29 mm. The force was cycled between zero and a maximum value of
Pmax = 48.1 kN. Obtain da/d N and �K values from these data.

Solution The average growth rate between points 1 and 2 is obtained by applying Eq. 11.11
with j = 2: (

da

d N

)
2

= a2 − a1

N2 − N1
= 7.62 − 5.08

18,300 − 0
= 1.388 × 10−4 mm/cycle Ans.

The corresponding �K is evaluated by using the average crack length from Eqs. 11.13 and 11.14
with j = 2:

aavg = a2 + a1

2
= 7.62 + 5.08

2
= 6.35 mm , αavg = aavg

b
= 6.35 mm

152.4 mm
= 0.0417

To evaluate F for this geometry, Fig. 8.12(a) is employed. The value corresponding to αavg is

F = 1 − 0.5α + 0.326α2

√
1 − α

= 1 − 0.5(0.0417) + 0.326(0.0417)2

√
1 − 0.0417

= 1.001
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Table E11.2

(a) Given Data (b) Calculated Values

j a N da/d N aavg αavg F �K
mm cycles mm/cycle mm MPa

√
m

1 5.08 0 — — — — —
2 7.62 18 300 1.39 ×10−4 6.35 0.0417 1.001 9.74
3 10.16 28 300 2.54 × 10−4 8.89 0.0583 1.002 11.53
4 12.70 35 000 3.79 × 10−4 11.43 0.0750 1.003 13.09
5 15.24 40 000 5.08 × 10−4 13.97 0.0917 1.004 14.49
6 17.78 43 000 8.47 × 10−4 16.51 0.1083 1.006 15.78
7 20.32 47 000 6.35 × 10−4 19.05 0.1250 1.008 16.99
8 22.86 50 000 8.47 × 10−4 21.59 0.1417 1.010 18.13
9 25.40 52 000 1.27 × 10−3 24.13 0.1583 1.013 19.21

10 30.48 57 000 1.02 × 10−3 27.94 0.1833 1.017 20.77
11 35.56 59 000 2.54 × 10−3 33.02 0.2167 1.025 22.74
12 40.64 61 000 2.54 × 10−3 38.10 0.2500 1.034 24.65
13 45.72 62 000 5.08 × 10−3 43.18 0.2833 1.045 26.52

Source: Data in [Hudson 69].

Hence, using �S = �P/(2bt) in Eq. 11.12, we have

(�K )2 = F �S
√

πaavg

(�K )2 = 1.001
48,100 N

2(152.4 mm)(2.29 mm)

√
π(0.00635 m) = 9.74 MPa

√
m Ans.

Similarly applying Eqs. 11.11 to 11.14 with j = 3, and then with j = 4, etc., gives the additional
values seen in Table E11.2(b).

11.3.2 Test Variables

Crack growth tests are most commonly conducted under zero-to-tension loading, R = 0, or tension-
to-tension loading with a small R value, such as R = 0.1. Variations of R in the range 0 to 0.2 have
little effect on most materials, and tests in this range are accepted by convention as the standard
basis for comparing the effects of various materials, environments, etc. It is usually necessary to
test several specimens at different load levels to obtain data over a wide range of growth rates. Such
results for a steel are shown in Figs. 11.8 and 11.9. For more complete data, groups of several tests
at each of several R values can be conducted. Also, if data are desired in the �Kth region, a special
decreasing load test is needed, as described in ASTM Standard No. E647.

A wide range of variables may affect fatigue crack growth rates in a given material, so that
test conditions may be selected to include situations that resemble the anticipated service use of
the material. Some of these variables are temperature, frequency of the cyclic load, and hostile
chemical environments. Minor variations in the processing or composition of materials may affect
fatigue crack growth rates due to the different microstructures that result. Hence, tests on different
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Figure 11.8 Crack length versus cycles data for four different levels of cyclic load applied to
compact specimens of an alloy steel.

variations of a material may be conducted to aid in developing materials that can best resist fatigue
crack growth.

11.3.3 Geometry Independence of da/dN versus �K Curves

For a given material and set of test conditions, such as a particular R value, test frequency, and
environment, the growth rates should depend only on �K . This arises simply from the fact that K
characterizes the severity of a combination of loading, geometry, and crack length, and �K serves
the same function for cyclic loading. Hence, regardless of the load level, crack length, and specimen
geometry, all da/dN versus �K data for a given set of test conditions should fall together along a
single curve, except that some statistical scatter is, of course, expected. This occurs for the different
load levels and crack lengths involved in Figs. 11.8 and 11.9. There should be a single trend even
if more than one specimen geometry is included in the tests. Some data demonstrating geometry
independence are shown in Fig. 11.10.

Such uniqueness of the da/d N versus �K curve for different geometries is a crucial test of
the applicability of the K concept to both materials testing and engineering applications. (Recall
Fig. 11.5.) This uniqueness has been sufficiently verified, so it is not generally necessary to include
more than one test specimen geometry in obtaining materials data. However, difficulty with the
applicability of �K can occur if there is excessive yielding, or for very small cracks, as discussed
in Section 11.9 near the end of this chapter.
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Figure 11.9 Data and least-squares fitted line for da/dN versus �K from the a versus N data
of Fig. 11.8.

11.4 EFFECTS OF R = Smin/Smax ON FATIGUE CRACK GROWTH

An increase in the R-ratio of the cyclic loading causes growth rates for a given �K to be larger,
which has already been illustrated by Fig. 11.4. The effect is usually more pronounced for more
brittle materials. For example, the granite rock of Fig. 11.11 shows an extreme effect, being sensitive
to increasing R from 0.1 to only 0.2. In contrast, mild steel and other relatively low-strength, highly
ductile, structural metals exhibit only a weak R effect in the intermediate growth rate region of the
da/d N versus �K curve.

11.4.1 The Walker Equation

Various empirical relationships are employed for characterizing the effect of R on da/d N versus
�K curves. One of the most widely used equations is based on applying the Walker relationship,
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Figure 11.10 Fatigue crack growth rate data for a 0.65% carbon steel, demonstrating
geometry independence. (Adapted from [Klesnil 80] p. 111; used with permission.)

Eq. 10.38, to the stress intensity factor K :

�K = Kmax(1 − R)γ (11.15)

Here, γ is a constant for the material and �K is an equivalent zero-to-tension (R = 0) stress
intensity that causes the same growth rate as the actual Kmax, R combination. By applying Eq. 9.4(a)
to K , which gives �K = Kmax(1 − R), Eq. 11.15 is seen to be equivalent to

�K = �K

(1 − R)1−γ
(11.16)

Let the constant C in Eq. 11.10 be denoted C0 for the special case of R = 0.

da

d N
= C0 (�K )m (R = 0) (11.17)

Since �K is an equivalent �K for R = 0, we can substitute �K for �K in Eq. 11.17:

da

d N
= C0

[
�K

(1 − R)1−γ

]m

(11.18)

This represents a family of da/d N versus �K curves, which, on a log–log plot, are all parallel
straight lines of slope m. Some manipulation gives

da

d N
= C0

(1 − R)m(1−γ )
(�K )m (11.19)
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Figure 11.11 Effect of R-ratio on fatigue crack growth rates for Westerly granite, tested in
the form of three-point bend specimens. (From [Kim 81]; copyright c© ASTM; reprinted with
permission.)

Comparing this with Eq. 11.10, we see that m is not expected to be affected by R, but C becomes a
function of R.

C = C0

(1 − R)m(1−γ )
(11.20)

A useful interpretation arising from Eq. 11.18 is that �K , the equivalent zero-to-tension
(R = 0) stress intensity, can be plotted versus da/d N , and a single straight line should result.
The data of Fig. 11.4 are plotted in this manner in Fig. 11.12, with γ = 0.42. Since all of the data
lie quite close to the single line, the equation is reasonably successful. However, it was necessary
to handle loadings involving compression, R < 0, by assuming that the compressive portion of the
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Figure 11.12 Representation of the data of Fig. 11.4 by a single relationship based on the
Walker equation. (Data from [Dennis 86].)

cycle had no effect, which is accomplished by using γ = 0 where R < 0, so that �K = Kmax. This
is reasonable on the basis of the logic that the crack closes at zero load and no longer acts as a crack
below this. In more ductile metals, the compressive portion of the loading may contribute to the
growth, so this approach is not universally applicable.

Values of the constant γ for various metals are typically around 0.5, but vary from around 0.3 to
nearly 1.0. A value of γ = 1 gives simply �K = �K , corresponding to no effect of R. Decreasing
values of γ imply a stronger effect of R. Constants for the Walker equation are given for several
metals in Table 11.2, including the AISI 4340 steel of Fig. 11.12. Where data are available for
R < 0, note that γ = 0 applies in three cases, but not for the very ductile Man-Ten steel, for which
compressive loading does contribute to crack growth according to γ = 0.22.
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Table 11.2 Constants for the Walker Equation for Several Metals

Yield Toughness Walker Equation

Material σo K I c C0 C0 m γ γ

MPa MPa
√

m
(ksi) (ksi

√
in)

mm/cycle

(MPa
√

m)m

in/cycle

(ksi
√

in)m (R ≥ 0) (R < 0)

Man-Ten steel 363 2001 3.28 × 10−9 1.74 × 10−10 3.13 0.928 0.220
(52.6) (182)

RQC-100 steel 778 1501 8.01 × 10−11 4.71 × 10−12 4.24 0.719 0
(113) (136)

AISI 4340 steel 1255 130 5.11 × 10−10 2.73 × 10−11 3.24 0.420 0
(σu = 1296 MPa) (182) (118)

17-4 PH steel 1059 1201 3.29 × 10−8 1.63 × 10−9 2.44 0.790 —
(H1050, vac. melt) (154) (109)

2024-T3 Al2 353 34 1.42 × 10−8 7.85 × 10−10 3.59 0.680 —
(51.2) (31)

7075-T6 Al2 523 29 2.71 × 10−8 1.51 × 10−9 3.70 0.641 0
(75.9) (26)

Notes: 1Data not available; values given are estimates. 2Values for C0 include a modification for use in
[Hudson 69] of k, where K = k

√
π .

Sources: Original data or fitted constants in [Crooker 75], [Dennis 86], [Dowling 79c], [Hudson 69], and
[MILHDBK 94] pp. 3–10 and 3–11.

A value of γ can be obtained from data at various R values, the desired γ being the one that
best consolidates the data along a single straight line or other curve on a plot of da/d N versus �K .
Where a straight line on a log–log plot is expected, a good initial estimate of γ can be obtained by
using the data for two different and contrasting R values, as illustrated in Example 11.3, presented
next. However, a more rigorous procedure is to perform a multiple linear regression, starting by
taking the logarithm of both sides of Eq. 11.19:

log (da/d N ) = m log (�K ) − m(1 − γ ) log (1 − R) + log C0 (11.21)

The dependent variable is y = log (da/d N ), and the independent ones are x1 = log (�K ) and
x2 = log (1 − R). See Ex. 10.4 for a similar analysis.

The Walker �K in the form of Eq. 11.15 or 11.16 can be used with any mathematical form for
the da/d N versus �K equation. However, it is primarily employed for intermediate growth rates
where Eq. 11.10 does apply.



Section 11.4 Effects of R = Smin/Smax on Fatigue Crack Growth 579

Example 11.3
Obtain approximate values for the Walker equation constants for the AISI 4340 steel of Fig. 11.4.

Solution Note that the Walker equation assumes that the same exponent m applies for all
R-ratios, so that a family of parallel straight lines is formed on a log–log plot. Two such parallel
lines for contrasting values of R are sufficient for obtaining approximate values of C0, m, and γ .
The line for R = 0.1 already determined in Ex. 11.1 can be used for one of these:

da

d N
= 2.70 × 10−10(�K )3.46 (R = 0.1)

In this equation and in what follows, units of MPa
√

m and mm/cycle are employed. A second
line parallel to this one and passing through the R = 0.7 data goes approximately through the
point (

�K ,
da

d N

)
= (11, 10−5)

The R = 0.7 data are roughly parallel to the R = 0.1 data, so it is reasonable to proceed with a
common m = 3.46. The constant C for this second line may be obtained by substituting this m
and the preceding point into Eq. 11.10:

10−5 = C(11)3.46, C = 2.49 × 10−9

Hence, the equation of the line is

da

d N
= 2.49 × 10−9(�K )3.46 (R = 0.7)

We now have two values of C , both of which must obey Eq. 11.20.

C0.1 = C0

(1 − R)m(1−γ )
, C0.7 = C0

(1 − R)m(1−γ )

Substituting the respective C and R values, along with the known m, gives two equations with
unknowns C0 and γ :

2.70 × 10−10 = C0

(1 − 0.1)3.46(1−γ )
, 2.49 × 10−9 = C0

(1 − 0.7)3.46(1−γ )

Dividing the second equation into the first eliminates C0:

2.70 × 10−10

2.49 × 10−9
=
(

0.3

0.9

)3.46(1−γ )
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Taking logarithms of both sides and solving for γ yields

log
2.70 × 10−10

2.49 × 10−9
= 3.46 (1 − γ ) log

0.3

0.9
, γ = 0.415 Ans.

Substituting this γ back into either equation involving C0 allows that constant to be determined:

C0 = 2.70 × 10−10(0.9)3.46(1−0.415) = 2.18 × 10−10 mm/cycle

(MPa
√

m)m
Ans.

The final constant is the m value used throughout, m = 3.46 (Ans.).

Comment These approximate values of the constants agree only roughly with the ones in
Table 11.2 for this material, as the latter were fitted by using the full set of data at several
R values.

11.4.2 The Forman Equation

Another proposed generalization to include R effects is that of Forman:

da

d N
= C2 (�K )m2

(1 − R) Kc − �K
= C2 (�K )m2

(1 − R) (Kc − Kmax)
(11.22)

Here, Kc is the fracture toughness for the material and thickness of interest. The second form arises
from the first simply by applying Eq. 9.4(a) to �K in the denominator. As Kmax approaches Kc,
the denominator approaches zero, and da/d N becomes large. In particular, there is an asymptote at
�K/(1 − R) = Kmax = Kc. The equation thus has the attractive feature of predicting accelerated
growth near the final toughness failure, while approaching Eq. 11.10 at low �K . Hence, it can be
used to fit data that cover both the intermediate and high growth rate regions.

Assuming that crack growth data are available for various R values, we can fit these to Eq. 11.22
by computing the following quantity for each data point:

Q = da

d N
[(1 − R)Kc − �K ] (11.23)

If these Q values are plotted versus the corresponding �K values on a log–log plot, a straight line
is expected. This is illustrated for 7075-T6 aluminum in Fig. 11.13. The slope of the Q versus �K
line on the log–log plot is given by m2, and C2 is the value of Q at �K = 1.

For a given material, the success of the Forman equation can be judged by the extent to which
data for various �K , R combinations all fall together on a straight line on a log–log plot of Q
versus �K . For the data of Fig. 11.13(a), the consolidation onto a straight line in (b) is reasonably
successful. Constants for the Forman equation corresponding to these data are given in Table 11.3,
as are constants for three additional metals.
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Figure 11.13 Effect of R-ratio on growth rates in 7075-T6 aluminum (a), and correlation of
these data (b) on the basis of the Forman equation, with constants as listed in Table 11.3.
(Data from [Hudson 69].)

11.4.3 Effects on �Kth

The R-ratio generally has a strong effect on the behavior at low growth rates, hence also on the
threshold value �Kth . This occurs even for low-strength metals where there is little effect at
intermediate growth rates. Some values of �Kth for various steels over a range of R-ratios are
shown in Fig. 11.14. The lower limit of the scatter shown corresponds to �Kth as follows:

�Kth = 7.0(1 − 0.85R) MPa
√

m
(R ≥ 0.1)

�Kth = 6.4(1 − 0.85R) ksi
√

in
(11.24)

On the basis of the discussion in Barsom (1999), these equations appear to represent a reasonable
worst-case estimate for a wide range of steels. However, lower values of �Kth may apply for highly
strengthened steels, which will be illustrated later. Similar trends occur for other classes of metals.

The Walker equation in the form of Eq. 11.15 is sometimes employed to represent the effect of
R-ratio on �Kth for a given material:

�Kth = �K th(1 − R)1−γth (11.25)
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Table 11.3 Constants for the Forman Equation for Several Metals

Yield Toughness Forman Equation

Material σo K I c C2 C2 m2 Kc

MPa MPa
√

m MPa
√

m
(ksi) (ksi

√
in)

mm/cycle

(MPa
√

m)m2−1

in/cycle

(ksi
√

in)m2−1 (ksi
√

in)

17-4 PH steel 1145 — 1.40 × 10−6 6.45 × 10−8 2.65 132
(H1025) (166) (120)

Inconel 718 1172 132 4.29 × 10−6 2.00 × 10−7 2.79 132
(Fe-Ni-base, aged) (170) (120) (120)

2024-T3 Al1 353 34 2.31 × 10−6 1.14 × 10−7 3.38 110
(51.2) (31) (100)

7075-T6 Al1 523 29 5.29 × 10−6 2.56 × 10−7 3.21 78.7
(75.9) (26) (71.6)

Notes: 1Values for C2 and Kc include a modification for use in [Hudson 69] of k, where K = k
√

π . The Kc

values are for 2.3 mm thick sheet material; replace with K I c for thick material.
Sources: Values in [Hudson 69], [MILHDBK 94] pp. 2–198 and 6–59, and [Smith 82].

Here, �K th and γth are empirical constants fitted to test data of �Kth values for various R. Note
that �K th corresponds to �Kth at R = 0. Values of γth will not generally agree with γ fitted to the
Walker equation in the intermediate growth rate region. In particular, there is usually an increased
sensitivity to R-ratio in the low growth rate and threshold region.

11.4.4 Discussion

A variety of other mathematical expressions, some of them quite complex, have been used to
represent da/d N versus �K curves. Some of these are not merely empirical, but are based on
attempts to include modeling of the closing of the crack and other physical phenomena that affect
crack growth. Many give a curve shape similar to Fig. 11.3, where the curve steepens at both low
and high growth rates. If R-ratio effects are included and the da/d N versus �K behavior ranges
over the regions of low, intermediate, and high growth rates, as many as 10 empirical constants may
be required to accurately represent the behavior of a given material.

An alternative to curve fitting with empirical constants is to use a table lookup procedure. In this
case, numerical data of da/d N versus �K for various R-ratios are maintained in tabular form in a
digital computer, and interpolation is employed to determine da/d N for a desired combination of
�K and R. For additional detail on representing da/d N versus �K behavior, see Forman (2005),
Grandt (2004), and Henkener (1993).

A simple, but approximate, approach to representing da/d N versus �K behavior is illustrated
in Fig. 11.15. In the intermediate region, use the Walker relationship, Eq. 11.19, with appropriately
fitted materials constants C0, m, and γ . Then in the threshold region, assume that there is an abrupt
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Figure 11.14 Effect of R-ratio on the threshold �Kth for various steels. For R = −1, the
compressive portion of the loading cycle is here excluded from calculations of �Kth. (Adapted
from [Barsom 87] p. 285; c© 1987 by Prentice Hall, Upper Saddle River, NJ; reprinted with
permission.)

transition to a vertical limit, �Kth , as given by Eq. 11.25 or other analogous relationship. Additional
materials constants, such as �K th and γth , are then needed. However, it is conservative to simply
ignore the threshold, as shown by the dashed line. Finally, represent the unstable rapid-growth-rate
region as another vertical limit. This limit occurs upon reaching either the fracture toughness or the
fully plastic limit load, the latter occurring due to the decreasing cross-sectional area of the cracked
member. Either of these may occur first.

A situation often encountered is that data for a material of interest are available only for zero-
to-tension or similar loading—that is, for R in the range 0 to 0.2. For engineering metals in the
intermediate growth rate region, it is reasonable to employ such data with the Walker equation by
assuming a value of γ = 0.5. This will generally provide a conservative estimate of the behavior at
other positive R-ratios.

The use of a fracture toughness constant Kc in the Forman and other crack growth equations
is necessary for accurate representation of behavior at high growth rates. However, some care is
needed. First, Kc varies with thickness unless the behavior is plane strain, where K I c applies. In
addition, the severe cyclic loading that occurs just prior to brittle fracture at the end of a crack growth
test may alter Kc, increasing it for certain materials and decreasing it for others. Further, for ductile,
high-toughness materials such as mild steel, fatigue crack growth tests may terminate due to gross
yielding instead of brittle fracture. It is then not appropriate to obtain a Kc value from such data.
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Figure 11.15 Approximate representation of da/dN versus �K behavior with R-ratio effects
included. The Walker equation is used for the intermediate region, along with a possible
threshold limit at low growth rates. There is also an instability limit at high growth rates, due
to either brittle fracture or fully plastic yielding.

11.5 TRENDS IN FATIGUE CRACK GROWTH BEHAVIOR

Fatigue crack growth behavior differs considerably for different classes of material. It is also
affected, sometimes to a large extent, by changes in the environment, such as temperature or hostile
chemicals.

11.5.1 Trends with Material

The crack growth behavior in air at room temperature may vary only modestly within a narrowly
defined class of materials. For example, data for R ≈ 0 for several ferritic-pearlitic steels are shown
in Fig. 11.16. An equation of the form of Eq. 11.10 is shown that represents the worst case for the
several steels tested, with this equation corresponding to the constants given in Table 11.1. Recall
from Chapter 3 that ferritic-pearlitic steels have low carbon contents and are relatively low-strength
steels used for structural members, pressure vessels, and similar applications.

Worst-case da/d N versus �K equations are given in Barsom (1999) for two additional classes
of steel, namely, martensitic steels and austenitic stainless steels. The constants have already been
presented in Table 11.1. Martensitic steels are distinguished as being steels that are heat treated by
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Figure 11.16 Fatigue crack growth rate data at R ≈ 0 for four ferritic-pearlitic steels, and a
line giving worst-case growth rates. Note that the axes are reversed, compared with the other
da/dN versus �K plots given. (From [Barsom 71]; used with permission of ASME.)

quenching and tempering, so this group includes many low-alloy steels, and also those 400-series
stainless steels with less than 15% Cr. Austenitic steels are primarily the 300-series stainless steels,
which are used where corrosion resistance is critical. These equations apply for R values near zero,
say, up to R = 0.2. For higher R-ratios, it is suggested that these constants be employed as C0 and
m in the Walker equation, along with an assumed value of γ = 0.5.

These general-purpose equations need to be used with some care, as exceptions do exist
where they are not very accurate. For example, if the widely used martensitic steel AISI 4340
is heat treated to various strength levels, including very high strength levels, the crack growth
rates may exceed the suggested worst-case trend. In addition, the �Kth values for high-strength
steels may be considerably below the typical behavior of Fig. 11.14. Test data showing the
trend of �Kth with strength level in AISI 4340 steel are given in Fig. 11.17. The decrease
in �Kth with strength parallels the similar trend in fracture toughness for this material. (See
Fig. 8.32.)

If various major classes of metals are considered, such as steels, aluminum alloys, and titanium
alloys, crack growth rates differ considerably when compared on a da/d N versus �K plot.
However, the �K values corresponding to a given growth rate scale roughly with the elastic
modulus E . Hence, a plot of da/d N versus �K/E removes much of the difference among various
metals, as shown in Fig. 11.18. Polymers exhibit a wide range of growth rates when compared on
the basis of �K , as shown in Fig. 11.19. For any given �K level, the growth rates are considerably
higher than for most metals.

One generalization that may be made is that the crack growth rate exponent m is higher for
lower ductility (more brittle) materials. For ductile metals, m is typically in the range 2 to 4 and
is often around 3. Higher exponents occur for more brittle cast metals, for short-fiber reinforced
composites, and for ceramics, including concrete. For example, m is near 12 for the granite rock of
Fig. 11.11.
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Figure 11.17 Effect of strength level of an alloy steel on �Kth at two R-ratios. (Adapted from
[Ritchie 77]; used with permission of ASME.)

Figure 11.18 Fatigue crack growth trends for various metals correlated by plotting �K/E.
(From [Bates 69]; used with permission.)

Despite the generalizations that may be made as to similar behavior within classes of materials,
surprisingly small differences can sometimes have a significant effect. For example, decreasing the
grain size in steels has the detrimental effect of lowering �Kth , while the behavior outside of the low
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Figure 11.19 Fatigue crack growth trends for various crystalline and amorphous polymers.
(From [Hertzberg 75]; used with permission.)

growth rate region is relatively unaffected. Also, as might be expected, variations in reinforcement
often have a significant effect on crack growth in composites materials, an example of which is
given in Fig. 11.20.

11.5.2 Trends with Temperature and Environment

Changing the temperature usually affects the fatigue crack growth rate, with higher temperature
often causing faster growth. Data illustrating such behavior for the austenitic (FCC) stainless steel
AISI 304 are shown in Fig. 11.21 (left). However, an opposite trend can occur in BCC metals
due to the cleavage mechanism contributing to fatigue crack growth at low temperature. (See
Section 8.6.) Such a trend for an Fe-21Cr-6Ni-9Mn alloy is illustrated in Fig. 11.21 (right). This
alloy is austenitic at room temperature, but at low temperatures it is martensitic (BCC), and hence
subject to cleavage, so that the more usual temperature effect is reversed. The effect of this cleavage
contribution in BCC irons and steels can have a large effect on the fatigue crack growth exponent
m, as shown in Fig. 11.22. Suppressing this effect by adding sufficient nickel avoids high growth
rates at low temperature.
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Figure 11.20 Effect on crack growth rates at R = 0.2 of various amounts of short glass fibers,
in a matrix of the thermoplastic polymer PBT, with crack propagation perpendicular to the
mold-fill direction. (Adapted from [Voss 88]; used with permission.)

Figure 11.21 Effect of temperature on fatigue crack growth rates in two metals. (From
[Tobler 78]; used with permission.)
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Hostile chemical environments often increase fatigue crack growth rates, with certain combi-
nations of material and environment causing especially large effects. The term corrosion fatigue is
often used when the environment involved is a corrosive medium, such as seawater. Such behavior
is illustrated in Fig. 11.23, which shows the effect of a saltwater solution similar to seawater on two
strength levels of AISI 4340 steel. The effect is considerably greater for the higher strength level
of this steel. The effect on growth rate per cycle, da/d N , of a given hostile environment is usually
greater at slower frequencies of cycling, where the environment has more time to act. This trend is
apparent in the data of Fig. 11.24.

Even the gases and moisture in air can act as a hostile environment, which can be demonstrated
by comparing test data in vacuum or an inert gas with data in air. Such comparisons for a metal
and a ceramic are shown in Fig. 11.25. This circumstance results in frequency effects occurring
in ambient air for some materials. Since chemical activity increases with temperature, the general
trend of increasing growth rate with temperature is explained, at least in part, by the ambient air
having a hostile effect.
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Figure 11.23 Contrasting sensitivity to corrosion fatigue crack growth of two strength levels
of an alloy steel. (Adapted from [Imhof 73]; copyright c© ASTM; reprinted with permission.)

11.6 LIFE ESTIMATES FOR CONSTANT AMPLITUDE LOADING

Since �K increases with crack length during constant amplitude stressing �S, and since the crack
growth rate da/d N depends on �K , the growth rate is not constant, but increases with crack length.
In other words, the crack accelerates as it grows, as for the data of Fig. 11.8. This situation of
changing da/d N necessitates the use of an integration procedure to obtain the life required for
crack growth.

Crack growth rates da/d N for a given combination of material and R-ratio are given as a
function of �K by Eqs. 11.10, 11.18, and 11.22, and by other similar equations, which may be
represented in general by

da

d N
= f (�K , R) (11.26)
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Figure 11.24 Frequency effects on corrosion fatigue crack growth rates in a maraging steel.
(Adapted from [Imhof 73]; copyright c© ASTM; reprinted with permission.)

where any effects of environment, frequency, etc., are assumed to be included in the material
constants involved. The life in cycles required for crack growth may be calculated by solving this
equation for d N and integrating both sides:

∫ N f

Ni

d N = N f − Ni = Ni f =
∫ a f

ai

da

f (�K , R)
(11.27)

This integral gives the number of cycles required for the crack to grow from an initial size ai at
cycle number Ni to a final size a f at cycle number Nf . It is convenient to use the symbol Ni f to
represent the number of elapsed cycles, Nf − Ni .
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ceramic. (Left adapted from [Floreen 79]; used with permission. Right adapted from
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The inverse of the growth rate, d N/da, is the rate of accumulation of cycles, N , per unit
increase in crack length a. From Eq. 11.26, this is given by

d N

da
= 1

da/d N
= 1

f (�K , R)
(11.28)

Note that Eq. 11.27 can also be written

Ni f =
∫ a f

ai

(
d N

da

)
da (11.29)

Hence, if d N/da from Eq. 11.28 is plotted as a function of a, the life Ni f is given by the area under
this curve between ai and a f . This is illustrated in Fig. 11.26.

To perform the integration for a particular case, it is necessary to substitute the specific da/d N
equation for the material and R of interest, and also the specific equation for �K for the geometry
of interest. Some useful closed-form solutions exist, but numerical integration is necessary in many
cases.
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11.6.1 Closed-Form Solutions

Consider a situation where growth rates are given by Eq. 11.10 and where F = F(a/b) in Eq. 11.7
can be approximated as constant over the range of crack lengths ai to a f :

da

d N
= f (�K , R) = C (�K )m, �K = F �S

√
πa (11.30)

The value of C used can include the effect of the ratio R = Smin/Smax, as from the Walker approach
using Eq. 11.20. Assume that Smax and Smin are constant, so that �S and R are also both constant.
Substituting this particular f (�K , R) into Eq. 11.27 and then substituting for �K gives

Ni f =
∫ a f

ai

da

C (�K )m =
∫ a f

ai

da

C
(
F �S

√
πa
)m =

∫ a f

ai

1

C
(
F �S

√
π
)m da

am/2
(11.31)

Since C , F , �S, and m are all constant, the only variable is a, and integration is straightforward,
giving

Ni f =
a1−m/2

f − a1−m/2
i

C
(
F �S

√
π
)m

(1 − m/2)
(m 	= 2) (11.32)

If m = 2, this equation is mathematically indeterminate.
Where a f is substantially larger than ai and m is around 3 or greater, the ai term dominates the

numerator of Eq. 11.32, and the life is insensitive to the value of a f . This trend is accentuated for
larger values of m. With reference to Fig. 11.26, the area under the curve, Ni f , is affected only a
small amount by the exact choice of a f . Also, since most of the area, and thus most of the cycles,
are accumulated near ai , the value of constant F chosen for Eq. 11.32 should be closer to the value
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Fi corresponding to ai than to the value Ff corresponding to af . Hence, either use Fi or a slightly
higher intermediate value.

Additional closed-form solutions exist that may be useful, such as one for the case of m = 2,
with derivations of some of these being included as Problems at the end of this chapter. However,
where F = F(a/b) must be treated as a variable, the variety of these is severely limited due to the
appearance of m as an exponent on F in the denominator of Eq. 11.31.

The preceding equations assume constant amplitude loading, so the gross section nominal
stresses Smax and Smin are constant during cycling. If these change, the integral of Eq. 11.27, and any
equations obtained from it, can be used in separate calculations for periods of crack growth during
which the load levels are constant. The cycle numbers for each of these periods can then be summed
to obtain the total life. However, see the additional discussion of variable amplitude loading given
later in Section 11.7.

11.6.2 Crack Length at Failure

In employing Eq. 11.27 to estimate crack growth life, the final crack length af is often unknown
and must be determined before the equation can be applied. In addition, if F is taken as constant, as
in Eq. 11.32, it is also necessary to determine Ff = F(a f /b), so that it can be confirmed that this
value does not differ excessively from Fi = F(ai/b). If Ff and Fi differ by more than about 15 to
20%, the resulting error in Ni f due to using a constant value will generally be unacceptably large.
Numerical integration, as described in Section 11.6.3, is then usually needed.

Under constant amplitude cyclic loading, the value Kmax corresponding to Smax increases as
crack growth proceeds. When Kmax reaches the fracture toughness Kc for the material and thickness
of interest, failure is expected at the length ac that is critical for brittle fracture:

ac = 1

π

(
Kc

F Smax

)2

(11.33)

Since F varies, a graphical or iterative solution as already illustrated by Example 8.1(c) is generally
needed to obtain ac.

In addition, crack growth causes a loss of cross-sectional area, and thus an increase in the
stress on the remaining uncracked (net) area. Depending on the material and the member geometry
and size, fully plastic yielding may be reached prior to Kmax = Kc. This is most likely for
ductile materials with low strength and high fracture toughness. Hence, a f is the smaller of two
possibilities, ac and ao, where the latter is the crack length corresponding to fully plastic yielding.
Values of ao may be estimated on the basis of fully plastic behavior, as discussed in Appendix A,
Section A.7.2. For some simple two-dimensional cases, useful equations for ao obtained in this
manner are given in Fig. A.16.

Use of linear-elastic fracture mechanics up to the crack length ao corresponding to fully plastic
yielding violates the plastic zone size limitations of LEFM, as discussed in Chapter 8. The effect
of yielding just prior to reaching ao will be to increase growth rates to higher values than those
calculated, giving an actual life that is shorter than calculated. However, recall from Fig. 11.26 that
cracks accelerate during their growth, so most cycles are exhausted while the crack is short, and few
are spent while the crack is near its final length. The error in life from this source is thus usually
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small, so the suggested procedure of choosing the smaller of ac and ao is useful and appropriate as
an approximation for engineering purposes.

Another source of possible error in life estimates is that the fracture toughness Kc at the end of
cyclic loading may differ from standard values obtained in static tests. However, if af is significantly
larger than ai , the effect on life of an altered value of Kc may not be large, which also arises from
the situation illustrated by Fig. 11.26.

Example 11.4
A center-cracked plate of the AISI 4340 steel (σu = 1296 MPa) of Table 11.2 has dimensions,
as defined in Fig. 8.12(a), of b = 38 and t = 6 mm, and it contains an initial crack of length
ai = 1 mm. It is subjected to tension-to-tension cyclic loading between constant values of
minimum and maximum force, Pmin = 80 and Pmax = 240 kN.

(a) At what crack length a f is failure expected? Is the cause of failure yielding or brittle
fracture?

(b) How many cycles can be applied before failure occurs?
(c) Assume that this member is an engineering component that is expected to be subjected

to 150,000 cycles in its service life, and further assume that a safety factor of three on
life is required. If ai = 1 mm is the minimum detectable crack length ad for inspection,
are periodic inspections required? If so, at what interval?

(d) Consider the possibility of avoiding periodic inspections by improved initial inspection,
such that a smaller ai can be justified. What new ai = ad would be required?

Solution (a) The crack length at fully plastic yielding can be estimated from Fig. A.16(a):

ao = b

(
1 − Pmax

2btσo

)
= (38 mm)

(
1 − 240,000 N

2(38 mm)(6 mm)(1255 MPa)

)
= 22.1 mm

The yield strength (and also KI c) is obtained from Table 11.2.
The crack length ac at brittle fracture is given by Eq. 11.33:

ac = 1

π

(
K I c

F Smax

)2

With reference to Fig. 8.12(a), an initial estimate of ac may be made by assuming that ac/b ≤ 0.4,
so that F ≈ 1. We obtain

Smax = Pmax

2bt
= 240,000 N

2(38 mm)(6 mm)
= 526 MPa

ac ≈ 1

π

(
K I c

F Smax

)2

= 1

π

(
130 MPa

√
m

1(526 MPa)

)2

= 0.0194 m = 19.4 mm
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Table E11.4

Calc. No. Trial a α = a/b F Kmax = F Smax
√

πa
mm MPa

√
m

1 15 0.395 1.097 125.3
2 16 0.421 1.114 131.3
3 15.77 0.416 1.110 130.0

This corresponds to ac/b = 0.51, which is beyond the region of 10% accuracy for F ≈ 1. A trial
and error solution, as in Ex. 8.1(c), is thus needed, with F taken from Fig. 8.12(a). This is shown
in Table E11.4. The final K value is K I c = 130 MPa

√
m so that ac = 15.8 mm. Since this is

smaller than ao, brittle fracture determines the controlling value a f , and

a f = 15.8 mm Ans.

(b) If F is approximately constant, Eq. 11.32 can be employed to calculate Ni f by
substituting either the initial F or an intermediate value that is biased toward the initial one:

Ni f =
a1−m/2

f − a1−m/2
i

C
(
F �S

√
π
)m

(1 − m/2)

In this case, the value increases from Fi = 1.00 to F f = 1.11. So the variation is small enough
that constant F is a reasonable assumption, and we can use F = 1.00 for the Ni f calculation. If
we note that Table 11.2 gives constants for the Walker equation, we see that the nonzero R-ratio
for the applied load can be handled by calculating a C value from Eq. 11.20 as follows:

R = Smin

Smax
= Pmin

Pmax
= 80

240
= 0.333

C = C0

(1 − R)m(1−γ )
= 5.11 × 10−10

(1 − 0.333)3.24(1−0.42)
= 1.095 × 10−9 mm/cycle

(MPa
√

m)m

However, substitution into the equation for Ni f is most convenient if all quantities have units
consistent with MPa

√
m as used for �K , requiring a units conversion for C as follows:

C = 1.095 × 10−9 mm/cycle

(MPa
√

m)m
× 1 m

1000 mm
= 1.095 × 10−12 m/cycle

(MPa
√

m)m

Two additional calculations are useful before computing Ni f :

�S = Smax(1 − R) = 526(0.667) = 351 MPa

(
1 − m

2

)
=
(

1 − 3.24

2

)
= −0.62
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Substituting the various numerical values finally gives Ni f :

Ni f = (0.0158 m)−0.62 − (0.001 m)−0.62(
1.095 × 10−12 m/cycle

(MPa
√

m)m

)
(1.00 × 351 MPa × √

π)3.24(−0.62)

Ni f = 77,600 cycles Ans.

In the preceding substitutions, note that all units are meters, MPa, or combinations of these.
Careful checking indicates that these all cancel, leaving only “cycles.”

(c) With no periodic inspections, the safety factor on life from Eq. 11.2 is

X N = Ni f

N̂
= 77,600

150,000
= 0.52

Hence, failure is expected before the end of the service life, so inspections are clearly needed.
For the required X N = 3, the inspection interval can be obtained from Eq. 11.5:

Np = Ni f

X N
= 77,600

3
= 25,900 cycles Ans.

(d) To avoid periodic inspections and satisfy X N = 3, we need a new, smaller ai = ad such
that Ni f is

Ni f = X N N̂ = 3(150,000) = 450,000 cycles

Equation 11.32 is needed again, but now with Ni f known and ai unknown. Noting that the same
values of af , C , m, F , and �S apply as in (b), and handling units as before, we have the following
substitutions:

450,000 = (0.0158)−0.62 − a−0.62
i

(1.095 × 10−12)(1.00 × 351
√

π)3.24(−0.62)

Solving for ai gives

ai = ad = 7.63 × 10−5m = 0.0763 mm Ans.

According to the earlier discussion in Section 11.2.1, this very small ad is probably below the
limits of any reasonable inspection. Hence, periodic inspection would be difficult to avoid in this
case unless it is possible to lower the applied load through redesign or restrictions on the use of
the component.

Comment It would also be reasonable and more conservative to choose a slightly higher
value of F for the Ni f calculations. For example, choosing F = 1.03 gives Ni f = 70, 500 cycles
for (b) and ai = 0.0657 mm for (d).
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11.6.3 Solutions by Numerical Integration

As already discussed, Eq. 11.32 and related equations that might be derived for calculating crack
growth life assume that F is constant, so these cannot be used if F changes excessively between
the initial and final crack lengths, ai and a f . Since closed-form integration of Eq. 11.27 is seldom
possible if F is treated as a variable, numerical integration becomes necessary. Also, some elaborate
mathematical forms used to fit da/d N versus �K curves lead to equations that cannot be integrated
in closed form even for constant F , again necessitating numerical integration.

To perform a numerical integration, it is useful to employ Eq. 11.27 in the form of Eq. 11.29.
First, pick a number of crack lengths between ai and a f :

ai , a1, a2, a3, . . . a f

For each of these, and for the material, geometry, and loading of interest, calculate �K , and then
da/d N , inverting the latter to get d N/da. Finally, find Ni f as the area under the d N/da versus
a curve between ai and a f . This can be done for any mathematical form of the �K and da/d N
equations. For example, for the forms of Eq. 11.30 with F allowed to vary, the d N/da for any given
crack length a j is

(
d N

da

)
j
= 1

C
(
�K j

)m = 1

C
(
Fj �S

√
πa j

)m (11.34)

where Fj needs to be specifically calculated for each a j .
The intervals �a between the a j can be made equal, but this is not necessary. It is important

that �a be sufficiently small for accurate representation of the d N/da curve. This is most likely to
be a problem for the shorter crack lengths where the curve is generally steepest. One alternative that
gives small �a only where needed is to increase a by a fixed percentage for each interval. A 10%
(factor of 1.10) increase for each interval is sufficiently small for typical values of m:

a j+1 = ra j , r ≈ 1.10 (11.35)

A manual solution for Ni f may be done on graph paper. It is also straightforward to program an
approximate area calculation on a digital computer. Standard methods and computer programs for
numerical integration also apply.

A relatively simple method of numerical integration usually described in books on numerical
analysis is Simpson’s rule. To use this, consider three neighboring crack lengths a j , a j+1, and a j+2,
as shown in Fig. 11.27. Between a j and a j+2, an estimate of the area under the curve y = d N/da
can be made by assuming that a parabola passes through the three points (a j , y j ), (a j+1, y j+1), and
(a j+2, y j+2). If the points are equally spaced �a apart, the area estimate is

∫ a j+2

a j

y da = �a

3

(
y j + 4y j+1 + y j+2

)
(11.36)
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yj
yj+1

yj+2

a a aj+1 j+2j

Δa

a, Crack Length

0

dN da
y 

=

=

a

a

j+2

j

dN
da

daArea

Figure 11.27 Area under the dN/da versus a curve over two intervals �a as estimated by
Simpson’s rule.

This equation is applied for each of j = 0, 2, 4, 6 . . . (n − 2), where n is even. Adding the
contributions to the area from each calculation gives an approximate value of the total area under
the curve between ai and a f , where a f = an .

For crack growth analysis, the number of intervals can be kept reasonably small if the a values
are not evenly spaced, but instead differ by a constant factor r , as in Eq. 11.35. Then

ai , a1 = rai , a2 = r2ai , . . . an = rnai = a f (11.37)

The area for a parabola through three such points is given by

∫ a j+2

a j

y da = a j
(
r2 − 1

)
6r

[
y jr(2 − r) + y j+1(r + 1)2 + y j+2(2r − 1)

]
(11.38)

The integration up to an can be performed in a manner analogous to a Simpson’s rule calculation,
except for the use of the new area formula.

Example 11.5
Refine the approximate life estimate of Ex. 11.4(b) by using numerical integration.

Solution The modified Simpson’s rule of Eq. 11.38 can be used. A factor for incrementing a
is first chosen to be near r = 1.1, such that the integration will end at a f = 15.8 mm, which is
the a f as determined in Ex. 11.4. From Eq. 11.37, we have a f = rnai , where ai = 1.0 mm as
given. Substituting a f and ai with r = 1.10 and solving gives n = 28.96. Thus, we need an even
integer for n near this value. Choosing n = 30 and solving for r gives

rn = a f

ai
, r30 = 15.8 mm

1.0 mm
, r = 1.09637
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The crack lengths for the n = 30 intervals can now be calculated by using this r with Eq. 11.35,
starting with the first value as a0 = ai = 0.001 m. Some of the values are shown in Table E11.5
in units of meters.

Then, using F and S as appropriate for the center-cracked plate geometry from Fig. 8.12(a),
we perform calculations as follows for each a j , where j = 0 to 30:

α = a

b
, F = 1 − 0.5α + 0.326α2

√
1 − α

�K = F �S
√

πa = F
�P

2bt

√
πa, y = d N

da
= 1

C(�K )m

Values from Ex. 11.4 are needed as follows: b = 0.038 m, t = 0.006 m, �P = 0.160 MN,
m = 3.24, and C = 1.095 × 10−12, where this C includes the effect of R = 0.333. Note that
units of meters, MPa = MN/m2, and cycles, or combinations of these, are used for all quantities,
including C . Some calculation results are shown in Table E11.5.

Next, numerical integration can proceed by applying Eq. 11.38 to each pair of intervals to
obtain the number of cycles �N to grow the crack from a j to a j+2:

�N j+2 =
∫ a j+2

a j

y da

Specifically, Eq. 11.38 is first applied for the two intervals from j = 0 to j + 2 = 2, then from
j = 2 to j + 2 = 4, next from j = 4 to j + 2 = 6, etc., up to j = 28 to j + 2 = 30. The first

Table E11.5

j a α = a/b F = F(a/b) �K y = d N/da �N �(�N )

m MPa
√

m cycles/m cycles cycles

0 1.000 × 10−3 0.0263 1.0003 19.67 5.869 × 107 0 0
1 1.096 × 10−3 0.0289 1.0004 20.60 5.055 × 107 — —
2 1.202 × 10−3 0.0316 1.0005 21.57 4.354 × 107 10 203 10 203
3 1.318 × 10−3 0.0347 1.0006 22.59 3.750 × 107 — —
4 1.445 × 10−3 0.0380 1.0007 23.66 3.229 × 107 9 098 19 300
5 1.584 × 10−3 0.0417 1.0008 24.77 2.781 × 107 — —
6 1.737 × 10−3 0.0457 1.0010 25.94 2.395 × 107 8 110 27 410
...

...
...

...
...

...
...

...

26 1.094 × 10−2 0.2878 1.0464 68.05 1.052 × 106 2 304 72 020
27 1.199 × 10−2 0.3155 1.0572 71.99 8.770 × 105 — —
28 1.314 × 10−2 0.3459 1.0708 76.35 7.249 × 105 1 935 73 955
29 1.441 × 10−2 0.3792 1.0881 81.23 5.931 × 105 — —
30 1.580 × 10−2 0.4158 1.1101 86.78 4.789 × 105 1 573 75 528
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three calculations give

�N2 =
∫ a2

a0=ai

y da = 10,203, �N4 =
∫ a4

a2

y da = 9098

�N6 =
∫ a6

a4

y da = 8110 cycles

The cumulative sum of the �N values is also calculated as shown in the last column of the table.
For example, the number of cycles to reach crack length a6 is

�(�N )6 = 10,203 + 9098 + 8110 = 27,410 cycles

The final such cumulative sum at a30 = a f is the calculated life for crack growth:

�(�N )30 = Ni f = 75,500 cycles Ans.

Discussion The life from this numerical integration is seen to be similar to the approximate
result from Ex. 11.4 of Ni f = 77,600 cycles, which is affected by the choice of F = 1.00. If
Ex. 11.4 is redone with constant F = 1.0085, the same life is obtained as for Ex. 11.5.

11.7 LIFE ESTIMATES FOR VARIABLE AMPLITUDE LOADING

If the stress levels vary during crack growth, life estimates may still be made. One simple approach
is to assume that growth for a given cycle is not affected by the prior history—that is, sequence
effects are absent. Large sequence effects do occur in special situations, but it is often useful and
sufficiently accurate to neglect these.

11.7.1 Summation of Crack Increments

The crack growth �a in each individual cycle of variable amplitude loading can be estimated from
the da/d N versus �K curve of the material. Summing these �a, while keeping track of the number
of cycles applied, leads to a life estimate. Such a procedure is equivalent to a numerical integration
where a, rather than N , is the dependent variable.

Hence, if the current crack length is a j and the increment is �a j , the new value of crack length
a j+1 for the next cycle is

a j+1 = a j + �a j = a j +
(

da

d N

)
j

(11.39)

where the �a are numerically equal to da/d N , since �N = 1 for one cycle. Denoting the initial
crack length as ai , we find that the crack length after N cycles is
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aN = ai +
N∑

j=1

(
da

d N

)
j

(11.40)

Each da/d N is calculated from the �K and R for that particular cycle, where �K is obtained
from the current crack length a j and the �S for the particular cycle. Any form of expression for
varying F = F(a/b) and any form of a da/d N versus �K relationship can be readily used with
this procedure. For highly irregular loading, rainflow cycle counting as described in Chapter 9 can
be used to identify the cycles.

The summation is continued until a load peak is encountered that is sufficiently severe to cause
either fully plastic yielding or brittle fracture. At this point, the calculation is terminated, and the
number of cycles accumulated is the estimated crack growth life.

Note that the procedure just described can also be applied for constant amplitude loading as an
alternative to the numerical integration approach of Section 11.6.3. In this case, the procedure can
be modified to accommodate values of �N other than unity, so that cycles are taken in groups, such
as �N = 100. It is necessary only that �N be sufficiently small that da/d N does not change by
more than a small amount, so that its value at the beginning of the interval is representative of the
entire interval.

For a crack with a curved front, such as a portion of a circle or ellipse, as in Figs. 8.17 to
8.19, the stress intensity K varies around the periphery of the crack. This causes the growth rate to
also vary around the periphery, so that the crack changes shape as it grows. This complexity can be
handled by updating the crack shape and appropriately adjusting the geometry function F , as crack
increments are summed. The needed details for F can be found in various References to Chapter 8,
especially Newman (1986). Such a capability is included in the computer programs NASGRO and
AFGROW; see LexTech (2010) and SWRI (2010).

11.7.2 Special Method for Repeating or Stationary Histories

In some cases, it may be reasonable to approximate the actual service load history by assuming that it
is equivalent to repeated applications of a loading sequence of finite length. This can be useful where
some repeated operation occurs, such as lift cycles for a crane, or flights of an aircraft, and also for
random loading with characteristics that are constant with time, called stationary loading. The crack
growth life can then be estimated by an alternative procedure that is equivalent to summing crack
increments. The necessary mathematical derivation follows.

First, assume that the da/d N versus �K behavior obeys a power relationship of the form of
Eq. 11.10. The increment in crack length for any cycle (�N = 1) is then

�a j = C0
(
�K j

)m
(11.41)

where different R-ratios are handled by calculating an equivalent zero-to-tension (R = 0) value
�K , as in the Walker approach using Eq. 11.15. Note that the coefficient C0 corresponding to
R = 0 applies due to the use of �K . If the repeating load history contains NB cycles, the increase
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in crack length during one repetition is obtained by summing:

�aB =
NB∑
j=1

�a j =
NB∑
j=1

C0
(
�K j

)m
(11.42)

The average growth rate per cycle during one repetition of the history is thus

(
da

d N

)
avg.

= �aB

NB
=

C0
∑NB

j=1

(
�K j

)m
NB

(11.43)

Note that C0 is constant and so can be factored from the summation. Manipulation gives

(
da

d N

)
avg.

= C0

⎛
⎝[∑NB

j=1

(
�K j

)m
NB

]1/m⎞⎠
m

= C0
(
�Kq

)m (11.44)

where

�Kq =
[∑NB

j=1

(
�K j

)m
NB

]1/m

(11.45)

The quantity �Kq can be interpreted as an equivalent zero-to-tension stress intensity range that is
expected to cause the same crack growth as the variable amplitude history when applied for the
same number of cycles NB .

Since K and nominal stress S are proportional for any given crack length, an equivalent zero-
to-tension stress level can also be defined:

�Sq = �Kq

F
√

πa
=
[∑NB

j=1

(
�S j

)m
NB

]1/m

(11.46)

In this equation, the �S for each cycle in the history is the equivalent zero-to-tension value corrected
for R effect. If this is done on the basis of the Walker approach using Eq. 11.15, these values
are obtained from

�S = Smax(1 − R)γ (11.47)

where γ is the value for crack growth, as from Table 11.2.
Since �Sq is independent of crack length, it can be applied throughout the life as the crack

grows. Hence, we can make a life estimate by using �Sq just as if it were a constant amplitude
loading at R = 0, for example, by using Eq. 11.32. However, to determine the final crack length
a f as caused by either fully plastic yielding or brittle fracture, the actual peak stress Smax in one
repetition of the history should be employed.

Such use of �Sq assumes that the load history of length NB is repeated numerous times during
the crack growth life. If the repeating history is so long that only a few repetitions occur, then
special, detailed handling of the last repetition is needed to identify the load peak that causes failure
and so determines af .
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Note that Eq. 11.46 is very similar to Eq. 9.37, which is employed for calculating equivalent
stress amplitudes for use with stress–life curves. If the latter is expressed in terms of stress
range and equivalent zero-to-maximum stresses, the two become identical with the substitution
m = −1/b.

Example 11.6
A center-cracked plate of the AISI 4340 steel of Table 11.2 has dimensions, as defined in
Fig. 8.12(a), of b = 38 and t = 6 mm, and the initial crack length is ai = 1 mm. It is repeatedly
subjected to the axial force history of Fig. E11.6. How many repetitions of this history can be
applied before fatigue failure is expected? (This is the same situation as Ex. 11.4, except for the
load history.)

Solution We will first calculate an equivalent zero-to-tension stress level for the load history
from Eq. 11.46. This �Sq may then be employed in Eq. 11.32 to calculate the life Ni f as if it
were a simple zero-to-tension (R = 0) loading. However, a f needs to correspond not to �Sq ,
but to the most severe force in the history, Pmax = 240 kN. Since this Pmax is the same as in
Ex. 11.4, we need not repeat the calculation, but may employ the af value and corresponding
approximate F from Ex. 11.4, which are

a f = 15.8 mm, F = 1.00

In addition, materials properties from Table 11.2 are needed:

C0 = 5.11 × 10−13 m/cycle

(MPa
√

m)m
, m = 3.24, γ = 0.42

From rainflow counting of the given force history, we obtain the results presented in the first
four columns of Table E11.6. The single cycle for j = 4 arises from rainflow cycle counting as
the major cycle between the highest peak and lowest valley. (See Section 9.9.2).
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Table E11.6

j N j Pmax Pmin R Smax �S j N j (�S j )
m

cycles kN kN MPa MPa

1 100 240 180 0.75 526.3 294.0 9.94 × 109

2 25 200 100 0.5 438.6 327.8 3.54 × 109

3 40 150 0 0 328.9 328.9 5.72 × 109

4 1 240 0 0 526.3 526.3 6.56 × 108

� 166 1.986 × 1010

The following calculations are then needed for each load level j :

R = Pmin

Pmax
, Smax = Pmax

2bt
, �S = Smax(1 − R)γ

Here, S is defined as in Fig. 8.12(a).
Since multiple cycles occur at each of k = 4 load levels, the summation for Eq. 11.46 may

be done in the form

NB∑
j=1

(�S j )
m =

k∑
j=1

N j (�S j )
m

Details are given in Table E11.6, where the sum is shown at the bottom. Noting that NB =
�N j = 166 cycles, we may now calculate �Sq :

�Sq =
[∑k

j=1 N j (�S j )
m

NB

]1/m

=
[

1.986 × 1010

166

]1/3.24

= 311.3 MPa

This value is then employed in Eq. 11.32 to obtain the number of cycles for crack growth:

Ni f =
a1−m/2

f − a1−m/2
i

C0(F �Sq
√

π)m(1 − m/2)
= 0.0158−0.62 − 0.001−0.62

5.11 × 10−13(1.00 × 311.3
√

π)3.24(−0.62)

Ni f = 2.45 × 105 cycles

Here, all quantities substituted correspond to units of meters and MPa, as in Ex. 11.4. Also, C0 is
the value for R = 0, as R-ratio effects are already included in the �S values. Finally, the number
of repetitions to failure is

Bi f = Ni f

NB
= 2.45 × 105

166
= 1477 repetitions Ans.
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11.7.3 Sequence Effects

In all of the treatment so far of variable amplitude loading, it has been assumed that the crack
growth in a given cycle is unaffected by prior events in the load history. However, this assumption
may sometimes lead to significant error. Consider the situation of Fig. 11.28. After a high tensile
overload is applied, as in case C , the growth rate during the lower level cycles is decreased. Slower
than normal growth continues for a large number of cycles until the crack grows beyond the region
affected by the overload, where the size of the affected region is related to the size of the crack-tip
plastic zone caused by the overload. For the case illustrated, the overall effect of only three overloads
was to increase the life by about a factor of 10. This beneficial effect of tensile overloads is called
crack growth retardation.

A tensile overload introduces a compressive residual stress around the crack tip in a manner
similar to the notched member of Fig. 10.28. This compression tends to keep the crack tip closed
during the subsequent lower level cycles, retarding crack growth. The magnitude of the effect is
related to the ratio Smax 2/Smax 1, where Smax 2 is the overload stress and Smax 1 is the peak value of
the lower level. For ratios greater than about 2.0, crack growth may be arrested—that is, stopped
entirely. Conversely, if the ratio is less than about 1.4, the effect is small. Compressive overloads
have an opposite, but lesser, effect. The effect is not as great because the crack tends to close during
the overload, so the faces of the crack support much of the compressive load and shield the crack
tip from its effect. Also, the effect of a tensile overload is much reduced if it is followed by a
compressive one, as in case B of Fig. 11.28.

Several methods have been developed to incorporate sequence effects due to overloads into life
calculations for crack growth. The general approach used is to base the life estimate on calculating
crack growth increments for each cycle as previously described in connection with Eqs. 11.39
and 11.40. However, the da/d N values used are modified in a manner that is determined by
the prior history of overloads. This is generally done by determining da/d N from an effective

Figure 11.28 Effect of overloads on crack growth in center-cracked plates (b = 80, t = 2 mm)
of 2024-T3 aluminum. (From [Broek 86] p. 273, based on data in [Schijve 62]; reprinted by
permission of Kluwer Academic Publishers.)
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�K that is modified on the basis of logic related to residual stress fields or crack closure
levels. More detailed explanation can be found in Broek (1986) and (1988), Grandt (2004), and
Suresh (1998).

Overload sequence effects are likely to be important where high overloads occur predominantly
in one direction. This occurs in the service of some aircraft, where occasional severe wind gust
loadings or maneuver loadings may introduce sequence effects. However, less effect is expected
if overloads occur in both directions, if the history is highly irregular, or if the overloads are
relatively mild. Noting that the effect is mainly to retard crack growth, we see that neglecting this
sequence effect usually provides conservative estimates of crack growth life that will be sufficient
for engineering purposes in many cases. Load histories that include severe compressive overloads
then need to be handled with caution, due to the possibility of these causing faster crack growth than
predicted.

11.8 DESIGN CONSIDERATIONS

It is becoming increasingly common to ensure adequate service life for components of machines,
vehicles, and structures on the basis of crack growth calculations, as described in this chapter. This is
appropriate for large structures subjected to cyclic loading, especially where personal safety or high
costs are factors, and especially if cracks are commonly found in the type of hardware involved.
Examples include bridge structure, large aircraft, space vehicles, and nuclear and other pressure
vessels. Such a damage-tolerant approach is critically dependent on initial and sometimes periodic
inspections for cracks.

Inspection for cracks, especially small ones, is an expensive process and is not generally
feasible for inexpensive components that are made in large numbers. If the service stresses are
relatively high, the cracks that would need to be found to use a damage-tolerant approach can
be so small that the inspection would greatly increase the cost of the item. Periodic inspections
would allow a larger crack to be tolerated initially, but the component may not be available for
periodic inspection. Examples of parts that fall into this category are automobile engine, steering,
and suspension parts, bicycle front forks and pedal cranks, and parts for home appliances. Here,
fatigue life estimates are usually made on the basis of an S-N approach, or the related strain-based
approach, neither of which specifically considers cracks. Where personal safety is involved, safety
factors reflect this fact and are typically larger than if a damage-tolerant approach could be used.
Failures are minimized by careful attention to design detail and to manufacturing quality control,
including initial inspection to eliminate any obviously flawed parts.

Regardless of the approach used, a finite probability of failure always exists. For the damage-
tolerant approach, this arises because the minimum detectable crack length ad is difficult to establish
and is never precisely known. For the S-N and related approaches, a finite probability of failure
arises due to the possibility that a part passing inspection still contains a flaw that, though small,
nevertheless leads to early failure. Also, all approaches to ensuring adequate life are subject to
additional uncertainties, such as: (1) estimates of the service loading being too low, (2) accidental
substitution during manufacturing of the wrong material, (3) undetected manufacturing quality
control problems, and (4) hostile environmental effects that are more severe than forecast, with
the latter including both ordinary corrosion and environmental crack growth.
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Where a damage-tolerant approach is used, critical components must be designed so that they
are accessible for inspection. For example, cracks at fastener (rivet or bolt) holes are of concern
in aircraft structure, and access to the interior of the skin of the fuselage or wing structure may be
needed for situations such as that illustrated in Fig. 11.29. If periodic inspections are required, then
the design must accommodate disassembly when this is necessary for inspection. For example, in
large aircraft, the passenger seats, interior panels, and even paint are removed, and some structural
parts are disassembled, for costly, but necessary, periodic inspections.

Specific measures can also be taken by the designer to allow structures to function without
sudden failure even if a large crack does develop. Some examples for aircraft structure are
illustrated in Figs. 11.30 and 11.31. Stiffeners retard crack growth, and joints in skin panels may be

interior

crack
crack

exterior
skin

Figure 11.29 Cracks in the interior of an aircraft skin structure. (Adapted from [Chang 78].)

Figure 11.30 Stiffened panel in aircraft structure with a crack delayed before growing into
adjacent panels. The rivet spacing dimensioned is 38 mm. (From the paper by J. P. Butler in
[Wood 70] p. 41.)
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Figure 11.31 Crack (left) in a DC-10 fuselage in the longitudinal direction, due to cabin
pressure loading, and (right) a crack stopper strap. Rivet locations are indicated by (+), and
the longeron member with a hat-shaped cross section is omitted on the left for clarity. (From
[Swift 71]; copyright c© ASTM; reprinted with permission.)

intentionally introduced so that a crack in one panel has difficulty growing into the next. Similarly,
a crack stopper strap may lower stresses in a critical area and provide some strength even if a crack
does start.

Recall from the early part of this chapter and Eq. 11.2 that the safety factor on life X N is the ratio
of the failure life for crack growth Ni f to the expected service life N̂ . The value of Ni f depends not
only on the detectable crack length ad , but also on the stress level and the material. If the safety factor
is insufficient, perhaps even less than unity, several different options exist to resolve the situation.
Obviously, the design could be changed to lower the stress, thus increasing the calculated life Ni f

and X N . Another possibility is to make a more careful initial inspection for cracks, decreasing ad ,
and thus increasing the worst-case failure life Ni f . Alternatively, the material could be changed to
one with slower fatigue crack growth rates, as judged by comparing da/d N versus �K curves.
Depending on whether failure occurs by brittle fracture or by yielding, increasing either the fracture
toughness or the yield strength of the material also increases the life by increasing the final crack
length af , but the effect is usually small, as the life is generally insensitive to the value of af .

If design changes or improved initial inspection do not suffice, it may be necessary to perform
periodic inspections, making it permissible to calculate the safety factor from the inspection period
Np with the use of Eq. 11.5.

11.9 PLASTICITY ASPECTS AND LIMITATIONS OF LEFM
FOR FATIGUE CRACK GROWTH

During cyclic loading, a region of reversed yielding exists at the crack tip, and the size of this region
can be estimated by a procedure similar to that applied to static loading in Section 8.7. On this
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Figure 11.32 Hypothesized plastic deformation behavior at the tip of a growing fatigue crack
during a loading cycle. Slip of crystal planes along directions of maximum shear occurs as
indicated by arrows, and this plastic blunting process results in one striation (�a) being
formed for each cycle. (Adapted from the paper by J. C. Grosskreutz in [Wood 70] p. 55.)

basis, plasticity limitations on LEFM for fatigue crack growth can be explored. Limitations are also
needed if the crack is so small that its size is comparable to that of the microstructural features of
the material.

11.9.1 Plasticity at Crack Tips

In the immediate vicinity of the crack tip, there is a finite separation δ between the crack faces, as
discussed in Chapter 8. Behavior on the size scale of δ determines how the crack advances through
the material during cyclic loading. Details are not fully understood, they vary with material, and
they even vary with the K level for a given material. In ductile metals, the process of crack advance
during a cycle is thought to be similar to Fig. 11.32. Localized deformation by slip of crystal planes
occurs and is most intense in bands above and below the crack plane. The crack tip moves ahead
and becomes blunt as the maximum load is reached, and it is resharpened during decreasing load.
This process results in striations on the fracture surface, as previously illustrated by Fig. 9.22.

Another mechanism is crack growth by small increments of brittle cleavage during each cycle.
It is not uncommon in metals for the fracture surface to have regions of striation growth mixed
with regions of cleavage, especially at high growth rates where Kmax approaches Kc. In other
cases, the boundaries between grains are the weakest regions in the material, so that the crack
grows along grain boundaries. This is called intergranular fracture, to distinguish it from the more
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Figure 11.33 Monotonic (a) and cyclic (b) plastic zones. (Adapted from [Paris 64]; used with
permission.)

usual transgranular fracture by striation formation or cleavage. For example, intergranular fatigue
cracking occurred for the granite rock of Fig. 11.11. In metals, intergranular cracking is likely to
occur if there is a hostile environmental influence.

If the material is relatively ductile, a crack-tip plastic zone will exist that is considerably larger
than δ. The peak stress in the cyclic loading determines Kmax, which can be substituted into Eq. 8.37
or 8.38 to estimate the extent of yielding ahead of the crack. For example, for plane stress,

2roσ = 1

π

(
Kmax

σo

)2

(11.48)

This is called the monotonic plastic zone. As the minimum load in a cycle is approached, yielding
in compression occurs in a region of smaller size, called the cyclic plastic zone, as illustrated in
Fig. 11.33.

For an ideal elastic, perfectly plastic material, consider the behavior during unloading following
K = Kmax. For compressive yielding to occur as K changes by an amount �K , the stress of σo near
the crack tip must change to −σo, which is a change of 2σo, or twice the yield strength. In effect,
for changes relative to Kmax, the yield strength is doubled. The size of the cyclic plastic zone where
yielding occurs not only in tension, but also in compression, can therefore be approximated by using
�K for K and 2σo for σo in the monotonic plastic zone estimate:

2r ′
oσ = 1

π

(
�K

2σo

)2

(11.49)

For zero-to-tension (R = 0) loading, where �K = Kmax, the cyclic plastic zone is thus estimated
to be one-fourth as large as the monotonic one. The cyclic plastic zone size may also be estimated
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for cases of plane strain. Using logic as in Section 8.7, we see that its size r ′
oε is one-third as large

as the corresponding plane stress zone.
We can further understand the monotonic and cyclic plastic zones by considering the

stress–strain history at a point in the material as the crack approaches, as illustrated in Fig. 11.34.
When the point being observed is still outside the monotonic plastic zone, no yielding occurs.
Yielding begins, but only in the tensile direction, when the monotonic plastic zone boundary passes
the point. Once the cyclic plastic zone boundary passes, yielding in both compression and tension
occurs during each loading cycle.

11.9.2 Thickness Effects and Plasticity Limitations

If the monotonic plastic zone is not small compared with the thickness, then plane stress exists,
and fatigue cracks may grow in a shear mode, with the fracture inclined about 45◦ to the surface.
Since K and hence the plastic zone size increase with crack length, a transition to this behavior can
occur during the growth of a crack, as illustrated in Fig. 11.35. Crack growth rates can be affected
somewhat by member thickness as a result of different behavior in plane stress and plane strain.
However, the effect is sufficiently small that it can generally be ignored, so crack growth data for
one thickness can be used for any other thickness.

If large amounts of plasticity occur during cyclic loading, crack growth rates rapidly increase
and exceed what would be expected from the da/d N versus �K curve. This circumstance arises
from the fact that the theory supporting the use of K requires that the plasticity be limited to a

(a)

(b)

(c)
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123456
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2
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0 t

2roσ
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–σo
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2ro′ σ

Figure 11.34 Stress–strain behavior at a point as the tip of a growing fatigue crack
approaches. For selected cycles (a), relative positions of the point and the crack tip are shown
in (b), and the stress–strain responses in (c). (Adapted from [Dowling 77]; copyright c© ASTM;
reprinted with permission.)
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Figure 11.35 Schematic of surfaces of fatigue cracks showing transition from a flat tensile
mode to an angular shear mode. The shear growth can (A) occur on a single sloping surface,
or (B) form a V-shape. (From [Broek 86] p. 269; reprinted by permission of Kluwer Academic
Publishers.)

region that is small compared with the planar dimensions of the member, as discussed previously in
Section 8.7. Large effects occur only where the maximum load exceeds about 80% of fully plastic
yielding, so this level represents a sufficient plasticity limitation in most cases. Modest effects may
occur at somewhat lower levels. If a fairly strict limitation is desired, the limitation of Eq. 8.39 on
the in-plane dimensions, as previously employed for static loading, can be applied to the peak stress:

a, (b − a), h ≥ 8roσ = 4

π

(
Kmax

σo

)2

(11.50)

For fatigue crack growth, thickness effects and plasticity limitations are not generally issues of major
importance, as they are for fracture toughness applications. This is because nominal stresses around
or exceeding yielding are rare in engineering situations except near the very end of the life, when
the fatigue crack growth phase is essentially complete. However, local yielding at stress raisers is
fairly common, so difficulties may be encountered if it is necessary to use fracture mechanics for
cracks growing from notches while they are still small, as they may be affected by local plasticity.
Fortunately, a crack is under the influence of the local stress field of a notch only if its length is quite
small, specifically less than about 10 to 20% of the notch radius. See Eq. 8.26 and Fig. 8.20.

11.9.3 Limitations for Small Cracks

Fracture mechanics in the form considered so far is based on stress analysis in an isotropic and
homogeneous solid. The microstructural features of the material are, in effect, assumed to occur on
such a small scale that only the average behavior needs to be considered. However, if a crack is
sufficiently small, it can interact with the microstructure in ways that cause the behavior to differ
from what would otherwise be expected. In engineering metals, small cracks tend to grow faster
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Figure 11.36 Behavior for a crack that is small in all dimensions (left) and also for a crack with
one dimension that is large compared with the microstructure (right).

than estimated from the usual da/d N versus �K curves from test specimens with long cracks, as
illustrated in Fig. 11.36.

It is useful to distinguish between small cracks and short cracks. For a small crack, all of
its dimensions are similar to or smaller than the dimension of greatest microstructural significance,
such as the average crystal grain size or the average reinforcement particle spacing. However, a short
crack has one dimension that is large compared with the microstructure. The behavior of a small
crack can be profoundly affected by the microstructure. For example, while the crack is within a
single crystal grain in a metal, the growth rate is much higher than expected from the usual da/d N
versus �K curve, as illustrated by Fig. 11.36(a). Upon encountering a grain boundary, the growth
is temporarily retarded. Until the crack becomes several times larger than the grain size, the average
growth rate, as affected by lattice planes within grains and grain boundaries, is considerably above
the usual da/d N versus �K curve.

A less drastic effect occurs if the crack is merely short in one dimension and large compared
with the microstructure in the other dimension, as illustrated by Fig. 11.36(b). Growth rates for such
cracks in metals are similar to the da/d N versus �K curve, except at low �K , where a reasonable
estimate of the behavior can be obtained by extrapolating Eq. 11.10 from the intermediate region
of the curve. The cause of the special behavior in this case appears to be associated with the fact that
the faces of a crack normally interfere behind the tip during part of the stress cycle. In particular,
the crack opens and closes, and the portion of the stress cycle that occurs while the crack is closed
does not contribute to its growth. Note that this cannot occur if there is insufficient length behind
the tip for the interference to occur. Thus, for low �K where crack closure effects are especially
important, short cracks grow faster than expected.

An approximate method for identifying crack sizes below which the usual da/d N versus �K
curve may not apply is illustrated in Fig 11.37. Note that the unnotched-specimen fatigue limit is the
stress level below which the small, naturally occurring flaws in the material will not grow, even with
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Figure 11.37 Fatigue limit stress as a function of crack length, and the transition length as,
below which special small crack effects are expected.

their growth enhanced by the small crack effect, as just discussed. Considering members containing
cracks of various sizes, we note that the fatigue limit decreases with crack length. For relatively long
cracks, it follows the behavior expected from LEFM and the threshold, �Kth , from the long crack
da/d N versus �K curve.

The crack length as , where the �Kth prediction exceeds the unnotched-specimen fatigue limit,
is the intersection of the lines for the two equations

�S = �σe, �Kth = �S
√

πa (11.51)

where the completely reversed (R = −1) fatigue limit is given as a stress range �σe = 2σer , where
�Kth is the value for R = −1, and where the geometry factor is approximated as F = 1. Combining
these and solving for a gives

as = 1

π

(
�Kth

�σe

)2

(11.52)

For cracks larger than as in all dimensions, fracture mechanics based on long-crack data is expected
to be reasonably accurate. For example, approximate values of �σe and �Kth for two steels with
contrasting ultimate tensile strengths σu give as values as follows:

σu , MPa �σe = 2σer , MPa �Kth , MPa
√

m as , mm

500 500 12 0.18
1500 1400 9 0.013

For the lower strength steel, as is relatively large and could be within a range of crack sizes that
is of engineering interest. The opposite is true for the higher strength steel, where as is so small
that unusual short crack behavior would probably never affect the use of fracture mechanics for
engineering applications.

Discussions of small crack effects, with references to additional literature, are given in Suresh
(1998) and in Milne (2003, vol. 4).
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11.10 ENVIRONMENTAL CRACK GROWTH

Similar considerations of inspection for cracks, and a similar need for life estimates, exist where
crack growth is caused by a hostile chemical environment, a situation termed environmentally
assisted cracking (EAC). There are several physical mechanisms that occur. One of these is stress
corrosion cracking, where material removal by corrosion in water, salt water, or other liquid assists
in growing the crack. In other cases, no corrosion is involved, as in cracking of steels due to hydrogen
embrittlement, or cracking of aluminum alloys due to liquid metal embrittlement caused by mercury.
In these cases, the embrittling substance appears to enhance the breaking of chemical bonds in the
highly stressed region of the crack tip. Embrittlement, and hence crack growth, can occur even where
the harmful substance is not present as an external environment, but is instead in solid solution in the
material, which is sometimes the case for hydrogen cracking of metals. Also, even the moisture and
gases in air can cause environmental crack growth in some materials—for example, in silica glass.

11.10.1 Life Estimates for Static Loading

In situations of environmental crack growth during an unchanging static load, the crack growth
life can be estimated on the basis of fracture mechanics in a manner analogous to the procedures
described previously for fatigue crack growth under constant amplitude loading. The parameter
controlling crack growth is simply the static value K of the stress intensity factor, as determined
from the applied static stress and the current crack length. Growth rates for the material are
characterized by the use of a da/dt versus K curve, where da/dt is the time-based growth rate,
or crack velocity, also denoted ȧ. For example, the ȧ versus K relationship sometimes fits a straight
line on a log–log plot, so that it has the form

ȧ = da

dt
= AK n (11.53)

where A and n are material constants that depend on the particular environment and are affected by
temperature. Data for two glasses that obey such a relationship are shown in Fig. 11.38.

Once the ȧ versus K relationship is known, life estimates can proceed as for fatigue crack
growth with the use of either closed-form expressions or numerical integration. For example, if
F = F(a/b) does not change substantially during crack growth, a relationship similar to Eq. 11.32
is obtained, due to the mathematical forms of Eqs. 11.10 and 11.53 being the same:

ti f =
a1−n/2

f − a1−n/2
i

A
(
F S

√
π
)n

(1 − n/2)
(n 	= 2) (11.54)

Here, ti f is the time required for a crack to grow from an initial size ai to a final size a f . As before,
a f can be estimated as the smaller of ao due to fully plastic yielding or ac due to brittle fracture.

Where the behavior follows Eq. 11.53, the exponent n may be quite high. For example, for
silica glasses in various environments, it is usually at least 10 and may be considerably higher.
A high value of n indicates that cracks accelerate rapidly, and also that growth rates da/dt are
highly sensitive to the value of K , so that modest increases in stress can have a large effect.
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Figure 11.38 Crack velocity data for two silica glasses in room temperature environments as
indicated. (Data from [Wiederhorn 77].)

A different behavior is sometimes observed where the growth rate is constant over a range of K
values, as in Fig. 11.39. At low K , the growth rate may drop abruptly, so that the curve approaches
an asymptote at the value K I E AC , called the environmentally assisted cracking threshold, below
which no crack growth occurs under static loading. (This quantity is also often denoted K I scc,
especially in publications prior to about 1990.) A reasonable engineering approach in such cases is
to approximate the curve with a constant rate ȧE AC , except that no growth occurs below K I E AC .
Life estimates are then given simply by

ti f = a f − ai

ȧE AC
(K > K I E AC ) (11.55)

The value of ȧE AC must, of course, be specific to the material, environment, and temperature of
interest.

Values of K I E AC are generally determined from long-term static loading tests. One approach
is to hang weights on previously cracked cantilever beams, as shown in Fig. 11.40. A number of
different initial values of K are obtained by using various weights. As also shown, the value of K
below which no failure occurs after a long period of time is then identified as K I E AC . Tests of this
type are covered by ASTM Standard No. E1681.

More complex forms of an ȧ versus K relationship that do not fit either Eq. 11.53 or constant
ȧ may be encountered.
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Figure 11.39 Crack velocity data (left) for 7075-T6 aluminum in a 3.5% NaCl solution similar
to seawater, and approximation of such behavior (right) by use of a constant ȧ between KIEAC

and KIc. (Left from [Campbell 82] p. 20; used with permission.)

11.10.2 Additional Comments

Environmental cracking problems occur for certain particular combinations of material and environ-
ment. Small changes in the processing or composition of a material, hence in its microstructure, may
eliminate or introduce the problem. For example, AISI 4340 steel is susceptible to environmental
cracking in H2S gas, as illustrated by K I E AC data in Fig. 11.41. The K I E AC value is sensitive to
the gas pressure and especially to the strength level (heat treatment) of the steel. Similar trends
occur in this steel for other environments, such as seawater, and also in other alloy steels. In such
cases, a modest decrease in strength may solve a cracking problem by increasing K I E AC , despite
the safety factor against yielding decreasing somewhat. Also, a seemingly small change in the
environment can have a large effect. For example, alloy steels similar to AISI 4340 also crack in pure
hydrogen gas, but the effect is considerably decreased if a small amount of oxygen is added to the
hydrogen.
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Figure 11.40 Determination of KIEAC from cantilever beams loaded with dead weights. (Data
from [Novak 69].)

As an additional example, grain boundary cracking and the resulting intergranular fracture
surface from an actual pressure vessel cracking problem are shown in Fig. 11.42. The environment
in the 2.25Cr-1Mo steel vessel contained hydrogen gas at a partial pressure of 10 MPa, and the
temperature was 420◦C. However, some of the welding rods used in fabricating the vessel were of
the wrong type, resulting in some welds having much less Cr and Mo content than specified for
this steel, in turn causing a loss of resistance to environmental cracking in the affected welds. Grain
boundary cracking, as shown, then led to large cracks, necessitating a costly program of inspection
and repair. Intergranular cracking is caused by the segregation of impurities at grain boundaries,
or other metallurgical differences there, that make these boundaries susceptible to environmental
attack. In this particular case, the Cr and Mo are needed to form carbides and thus limit the amount
of iron carbide formed, and also to stabilize the iron carbides (such as Fe3C) that do form. Note
that iron carbides are the source of difficulty at the grain boundaries, probably by reacting with the
hydrogen to form methane gas.

Opportunities thus exist for eliminating environmental cracking problems, making life esti-
mates as previously described unnecessary. This is, of course, the preferred solution where it
is feasible. As suggested by the preceding examples, a detailed knowledge of the material and
environment combination involved is required to aid in choosing the correct course of action, so
relevant literature or expert advice is needed. Some information along these lines can be found in
Hertzberg (1996) and Milne (2003, vol. 6). Also, relevant materials data for ȧ versus K and K I E AC

are sometimes available for commonly encountered environments, such as water and saltwater, as
in Wachtman (2009) and Skinn (1994).
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Figure 11.41 Effect of H2S gas pressure on KIEAC for two yield strength levels of AISI 4340
steel, tested as compact speciments with b = 64.8 mm and h/b = 0.486. (Adapted from
[Clark 76]; copyright c© ASTM; reprinted with permission.)

Figure 11.42 Grain boundary damage (left) and resulting intergranular fracture surface
(right) in steel used in a pressure vessel containing H2 gas at elevated temperature. (Photos
courtesy of K. Rahka, Technical Research Center of Finland, Espoo, Finland. Published in
[Rahka 86]; copyright c© ASTM; reprinted with permission.)
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Environmental and fatigue crack growth may occur in combination when cyclic loading is
applied in a hostile environment, as in corrosion fatigue. A simple approach to making life estimates
in such cases is to add the two contributions to crack growth by using both da/d N versus �K
and da/dt versus K curves. However, this is not always sufficiently accurate, and a number of
complexities exist that are difficult to incorporate into life estimates. Some discussion is given in
Suresh (1998).

11.11 SUMMARY

The resistance of a material to fatigue crack growth under a given set of conditions can be
characterized by a da/d N versus �K curve. At intermediate growth rates, the behavior can often
be represented by the Paris equation,

da

d N
= C (�K )m (11.56)

Values of the exponent m are typically in the range 2 to 4 for ductile materials, but are higher for
brittle materials, with values above 10 sometimes occurring.

Growth rates are affected by the value of the stress ratio R = Smin/Smax. For a given �K ,
increasing R increases da/d N in a manner analogous to the effect of mean stress on S-N curves.
More general equations for da/d N have thus been developed that include this effect. For example, if
the Walker equation is used, C in Eq. 11.56 depends on R as in Eq. 11.20. Hostile chemical environ-
ments may increase da/d N , especially at slow frequencies of cyclic loading. At low growth rates,
da/d N versus �K curves generally exhibit a lower limiting or threshold value, �Kth , below which
crack growth does not usually occur. The low growth rate region of the curve is especially sensitive
to the effects of R-ratio and material variables, such as grain size and heat treatment in metals.

For a given applied stress, material, and component geometry, the crack growth life Ni f depends
on both the initial crack size ai and the final crack size a f . The life Ni f is quite sensitive to the value
of ai and considerably less sensitive to a f . To make a calculation of Ni f , it is necessary to have an
equation for the da/d N versus �K curve for the material. We also need a mathematical expression
for the stress intensity for the geometry and loading case of interest, such as K = F S

√
πa. For

example, where F is constant or approximately so, and for behavior according to Eq. 11.56, the
life is

Ni f =
a1−m/2

f − a1−m/2
i

C
(
F �S

√
π
)m

(1 − m/2)
(m 	= 2) (11.57)

In design applications, the initial crack size ai is often the minimum size ad that can be reliably
detected by inspection. The final crack size a f is either ac or ao, whichever is smaller, as either
brittle fracture or fully plastic yielding may occur first.

As F often varies, and as mathematical complexities may occur for certain forms of the da/d N
versus �K equation, a closed-form expression for Ni f may not be obtainable. It is then necessary
to perform numerical integration by first evaluating �K and then da/d N for a number of different
crack lengths. The crack growth life can be interpreted as the area under the d N/da versus a plot
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between ai and a f , as illustrated in Fig. 11.26. This area is given by the integral

Ni f =
∫ a f

ai

(
d N

da

)
da (11.58)

For variable amplitude loading, the da/d N versus �K curve can be used to estimate increments
in crack length �a for each cycle. The end of the crack growth life occurs when the crack
length increases such that a stress peak is expected to cause either brittle fracture or fully plastic
yielding. An alternative procedure is to identify a representative sample of the load history and
apply Eq. 11.46 to obtain an equivalent zero-to-maximum stress level �Sq . Then �Sq can be used
to make a life estimate as for constant amplitude loading. If isolated severe overloads occur, these
may cause sequence effects that need to be included in life estimates.

The estimated crack growth life from the minimum detectable crack length ad must be longer
than the expected actual service life by a sufficient safety factor X N . If X N is inadequate, it may be
possible to resolve the situation by redesign that lowers stresses, by improving the initial inspection
to decrease ad , by changing materials, or by resorting to periodic inspections. Special crack-stopping
design features as used in aircraft structure also contribute to safety.

Limitations on the use of LEFM due to excessive plasticity can be set on the basis of plastic
zone sizes according to Eq. 11.50. However, the looser restriction of 80% of fully plastic yielding
is generally sufficient. If a crack is so small that all of its dimensions are similar to or smaller than
the microstructural features of the material, then its growth is likely to be significantly faster than
expected from the usual da/d N versus �K curve. Equation 11.52 can be employed to estimate a
crack length below which such behavior is expected.

For static loading in a hostile chemical environment, time-dependent crack growth may occur.
Life estimates may be made by employing a da/dt versus K curve for the particular combination
of material and environment. Since environmental cracking problems are sensitive to the exact
combination of material and environment, it may be possible to make a modest change in the
material or the environment that eliminates the problem.

N E W T E R M S A N D S Y M B O L S

crack growth life, Ni f

crack growth retardation
crack velocity, ȧ = da/dt
cyclic plastic zone size, 2r ′

o
damage-tolerant design
embrittlement
environmentally assisted cracking (EAC)
EAC threshold, K I E AC

equivalent zero-to-maximum stress, �Sq

fatigue crack growth rate, da/d N
fatigue crack growth threshold, �Kth

Forman equation constants: C2, m2, Kc

initial and final crack lengths: ai , af

inspection period, Np

intergranular fracture
minimum detectable crack length, ad

monotonic plastic zone size, 2ro

Paris equation constants: C , m
small crack; short crack
small crack transition length, as

stationary loading
stress corrosion cracking
stress intensity range, �K
transgranular fracture
Walker equation constants: C0, m, γ
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PROBLEMS AND QUESTIONS

Section 11.2
11.1 Estimate the constants C and m for the straight line portion of the data of Fig. 11.3.
11.2 Look at Fig. 11.9, and determine your own values of constants Cand m for the fitted line

shown. Comment on the differences between your values and those given on the graph.
11.3 Look at Fig. 11.25 (right), and calculate constants C and m for crack growth of this

MgO-PSZ ceramic material in air. Comment on the value of m obtained and its significance.
11.4 Look at Fig. 11.20, and determine constants C and m for crack growth of the PBT matrix

material. Comment on the value of m obtained and its significance.
11.5 Representative data points are given in Table P11.5 from the results of tests at R = 0.1 on

2124-T851 aluminum.
(a) Plot these points on log–log coordinates, and obtain approximate values of constants

C and m for Eq. 11.10.
(b) Use a log–log least-squares fit to obtain refined values of C and m.

Table P11.5

da/d N , mm/cycle �K , MPa
√

m

1.26 × 10−6 2.99
2.41 × 10−6 3.64
4.84 × 10−6 5.02
1.02 × 10−5 6.04
1.99 × 10−5 7.68
3.74 × 10−5 9.95
6.69 × 10−5 12.0
1.77 × 10−4 15.9

Source: Data in [Ruschau 78].
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11.6 Representative data points are given in Table P11.6 from the results of tests at R= 0.0.032 on
a hard tool steel with σu = 2200 MPa. Proceed as in Prob. 11.5(a) and (b), except use these
data.

Table P11.6

da/dN, mm/cycle �K , MPa
√

m

4.23 × 10−6 6.85
8.10 × 10−6 8.39
1.77 × 10−5 10.40
3.50 × 10−5 13.42

11.7 Representative data points are given in Table P11.7 from the results of tests at R = 0.5 on
2124-T851 aluminum. Proceed as in Prob. 11.5(a) and (b), except use these data.

Table P11.7

da/d N , mm/cycle �K , MPa
√

m

1.25 × 10−6 2.18
2.00 × 10−6 2.75
3.57 × 10−6 3.53
6.62 × 10−6 4.52
1.49 × 10−5 5.48
3.38 × 10−5 6.97
8.16 × 10−5 9.20
1.65 × 10−4 11.7

Source: Data in [Ruschau 78].

11.8 Representative data points are given in Table P11.8 from the results of tests at R = 0.04 on
17-4 PH stainless steel. Proceed as in Prob. 11.5(a) and (b), except use these data.

Table P11.8

da/d N , mm/cycle �K , MPa
√

m

9.98 × 10−6 11.2
2.84 × 10−5 15.6
8.03 × 10−5 22.4
1.83 × 10−4 32.9
3.18 × 10−4 42.3
7.92 × 10−4 65.1
1.60 × 10−3 90.8
3.68 × 10−3 124

Source: Data in [Crooker 75].
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Section 11.3
11.9 A center-cracked plate of 7075-T6 aluminum was tested as in Ex. 11.2. All details were the

same, except that the force was cycled between Pmin = 48.1 and Pmax = 96.2 kN. The data
obtained are listed in Table P11.9. Determine the da/d N and �K values from these data,
make a da/d N versus �K plot of the results on log–log coordinates, and fit the data to
Eq. 11.10 to obtain values of C and m. Does Eq. 11.10 appear to represent the data well?

Table P11.9

a, mm N , 103 cycles a, mm N , 103 cycles

5.08 0 20.32 21.5
7.62 9.5 22.86 22.3

10.16 14.3 25.40 22.9
12.70 17.1 30.48 23.5
15.24 19.1 35.56 24.0
17.78 20.5

Source: Data in [Hudson 69].

11.10 A center-cracked plate of 2024-T3 aluminum had dimensions, as defined in Fig. 8.12(a), of
b = 152.4 and t = 2.29 mm. It was tested under cyclic loading between Pmin = 12.03 and
Pmax = 36.09 kN. The crack length versus cycles data obtained are listed in Table P11.10.

(a) Determine da/dN and �K values from these data, and make a da/dN versus �K plot
of the results on log–log coordinates. Then fit the data to Eq. 11.10 to obtain values
of C and m. Does Eq. 11.10 appear to represent the data well?

(b) Change the �K scale on your plot to a linear one. Does this seem to be a better way
to represent the data? Why or why not?

(c) Change both the da/dN and �K scales to linear ones, and answer the same questions
as in (b).

Table P11.10

a, mm N , cycles a, mm N , cycles

5.08 0 22.86 600 000
7.62 230 000 25.40 620 000

10.16 350 000 30.48 670 000
12.70 450 000 35.56 690 000
15.24 500 000 40.64 710 000
17.78 540 000 45.72 720 000
20.32 570 000

Source: Data in [Hudson 69].

11.11 Crack length versus cycles data are given in Table P11.11 from a test on a hard tool steel, with
tensile properties 2200 MPa ultimate and 1.7% elongation. A standard compact specimen
was used with dimensions, as defined in Fig. 8.16, of b = 50.8 and t = 6.35 mm. The
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force was cycled at a frequency of 30 Hz between Pmin = 44.5 and Pmax = 1379 N. Crack
lengths a, measured from the centerline of the pin holes, are given in Table P11.11 with the
corresponding cycle numbers. Determine the da/d N and �K values from these data, make
a da/d N versus �K plot of the results on log–log coordinates, and fit the data to Eq. 11.10
to obtain values of C and m. Does Eq. 11.10 appear to represent the data well?

Table P11.11

a, mm N , 103 cycles a, mm N , 103 cycles

19.86 0 27.43 1122
21.13 300 27.89 1148
22.15 508 28.32 1167
22.94 658 29.08 1191
23.80 792 29.85 1221
24.61 892 30.71 1241
25.37 976 31.01 1251
26.54 1070 31.29 1259

Source: Data in [Luken 87].

11.12 A compact specimen of AISI 4340 steel (σu = 786 MPa) had dimensions, as defined in
Fig. 8.16, of b = 50.8 and t = 9.525 mm. It was tested under cyclic loading between
Pmin = 211.5 and Pmax = 4230 N. The crack length versus cycles data obtained are listed in
Table P11.12.

(a) Determine da/dN and �K values from these data, and make a da/dN versus �K plot
of the results on log–log coordinates. Then fit the data to Eq. 11.10 to obtain values
of C and m. Does Eq. 11.10 appear to represent the data well?

(b) Note that these data correspond to one of the tests for Figs. 11.8 and 11.9. How well
does your fit agree with that of Fig. 11.9? Why might it differ?

Table P11.12

a, mm N , cycles a, mm N , cycles a, mm N , cycles

25.78 0 30.81 100 680 35.89 135 000
26.16 12 560 31.37 106 620 36.42 136 430
26.67 24 000 31.88 112 830 36.91 137 720
27.56 41 250 32.33 115 730 37.36 138 800
28.07 52 900 32.89 119 590 37.97 139 780
28.45 61 410 33.35 122 650 38.48 140 740
28.83 70 610 33.99 125 530 38.99 141 400
29.21 80 000 34.29 128 310 39.37 142 000
29.72 87 580 34.87 130 660 39.88 142 460
30.30 95 500 35.31 133 000 40.26 142 820
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Section 11.4
11.13 Consider 17-4 PH stainless steel with crack-growth constants for the Walker equation as in

Table 11.2.
(a) Determine da/dN versus �K equations of the form of Eq. 11.10 for R = 0, for

R = 0.5, and for R = 0.8. Plot the three equations on the same log–log graph.
(Suggestion: For each R, plot �K over the range 10 to 120 MPa

√
m.)

(b) By what factor does da/dN increase for a given �K if R is increased from 0 to 0.5?
From 0 to 0.8? Are these factors constant for different �K values?

11.14 Employ the results of Prob. 11.9 for 7075-T6 aluminum tested at R = 0.5 as follows: Plot
the da/d N versus �K data on log–log coordinates, and also show the line corresponding to
the Walker equation, with constants from Table 11.2. Do data and line agree?

11.15 Show that Eq. 11.18 can be expressed in the form da/d N = C0(�K )p(Kmax)
q , and give

expressions for determining the new constants p and q from m and γ , that is, find p =
f (m, γ ) and q = g(m, γ ).

11.16 For RQC-100 steel, three da/dN versus �K data points at two different contrasting R-ratios
are given in Table P11.16.

(a) Assume that the Walker equation applies, and employ these points to obtain estimates
of the constants C0, m, and γ .

(b) On log–log coordinates, plot da/dN versus the equivalent values �K . Show values
from the three data points and also the line da/d N = C0

(
�K

)m
based on your

constants from (a). Do data and line agree?

Table P11.16

da/dN, mm/cycle �K , MPa
√

m R

4.87 × 10−2 114 0.1
3.10 × 10−5 20.1 0.1
1.64 × 10−4 20.0 0.8

11.17 Proceed as in Prob. 11.16, but use the data for 17-4 PH stainless steel in Table P11.17.

Table P11.17

da/dN, mm/cycle �K , MPa
√

m R

3.68 × 10−3 124 0.04
9.98 × 10−6 11.2 0.04
2.46 × 10−4 28.4 0.8

11.18 For RQC-100 steel, some da/d N versus �K data at three different positive R-ratios are
given in Table P11.18.

(a) Plot the given da/d N versus �K data on a log–log graph, and draw a set of parallel
lines through the data, one for each R value. Is it reasonable to represent the data by
such a set of parallel lines?
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(b) If yes, then employ all of the data in a single multiple regression fit based on Eq. 11.21,
to obtain values of the constants C0, m, and γ for the Walker equation.

(c) On log–log coordinates, plot da/d N versus the equivalent values �K , showing both
values from the data and the line from your fit. Are the data consolidated? Are they
represented well by the line?

Table P11.18

�K da/d N R �K da/d N R
MPa

√
m mm/cycle MPa

√
m mm/cycle

20.1 3.10 × 10−5 0.1 25.4 1.51 × 10−4 0.5
25.2 7.54 × 10−5 0.1 30.3 2.65 × 10−4 0.5
30.2 1.68 × 10−4 0.1 40.7 8.33 × 10−4 0.5
40.5 5.02 × 10−4 0.1 51.5 2.90 × 10−3 0.5
49.8 1.56 × 10−3 0.1 64.9 6.86 × 10−3 0.5
65.7 5.08 × 10−3 0.1 11.6 1.70 × 10−5 0.8
81.4 1.27 × 10−2 0.1 13.5 3.28 × 10−5 0.8
99.0 2.34 × 10−2 0.1 16.5 8.91 × 10−5 0.8

114.0 4.87 × 10−2 0.1 20.0 1.64 × 10−4 0.8
11.2 8.72 × 10−6 0.5 24.0 4.13 × 10−4 0.8
15.2 2.78 × 10−5 0.5 27.1 5.58 × 10−4 0.8
19.5 4.94 × 10−5 0.5

Source: Data for [Dowling 79c].

11.19 Consider the data in Tables P11.5 and P11.7 from the results of tests at R = 0.1 and 0.5
on 2124-T851 aluminum. Combine these data all into a single set. Then proceed as in
Prob. 11.18(a), (b), and (c), except use these data.

11.20 Representative data points are given in Table P11.20 from the results of tests on 17-4
PH stainless steel at R = 0.67 and 0.8. Combine these data and the data at R = 0.04 in
Table P11.8 all into a single set. Then proceed as in Prob. 11.18(a), (b), and (c), except use
these data.

Table P11.20

da/d N , mm/cycle �K , MPa
√

m R da/d N , mm/cycle �K , MPa
√

m R

4.57 × 10−5 15.8 0.67 2.45 × 10−5 11.2 0.8
7.70 × 10−5 20.1 0.67 5.23 × 10−5 14.7 0.8
1.39 × 10−4 25.4 0.67 7.75 × 10−5 17.6 0.8
2.36 × 10−4 32.6 0.67 1.30 × 10−4 22.7 0.8
4.47 × 10−4 41.1 0.67 2.46 × 10−4 28.4 0.8
1.42 × 10−3 53.6 0.67 4.67 × 10−4 35.8 0.8
2.67 × 10−3 66.2 0.67 9.14 × 10−4 45.5 0.8

Source: Data in [Crooker 75].
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11.21 Using the Forman equation and the constants in Table 11.3 for 2024-T3 aluminum:
(a) Plot the da/d N versus �K curves that apply for both R = 0 and R = 0.5. Use log–

log coordinates and include growth rates between 10−6 and 10−2 mm/cycle. Are the
lines straight?

(b) By about what factor is da/d N typically increased by changing R from 0 to 0.5? Its
the factor constant for different �K values?

11.22 For a CrMoV forged steel (0.28C), having a yield strength of σo = 661 MPa, fatigue crack
growth thresholds at various R-ratios are given in Table P11.22. Fit these data to Eq. 11.25,
and compare data and fit on an appropriate plot. Does the resulting relationship provide a
reasonable fit to the data?

Table P11.22

R −1 0 0.27 0.46 0.54 0.63
�Kth, MPa

√
m 12.20 6.80 5.90 4.50 3.80 3.20

Source: Data in [Taylor 85] p. 131.

11.23 The SAE Fatigue Design Handbook (Rice, 1997) gives the following equation as being
useful in fitting da/d N versus �K curves:

da

d N
= C4 (�K − �Kth)m4

(1 − R)Kc − �K

The quantities C4 and m4 are new material constants, and Kc and �Kth are material
constants as previously defined, with �Kth being a function of R.

(a) Describe the shape of the resulting curve on a log–log plot of da/d N versus �K .
Qualitatively, how is it affected by changing R? By changing �Kth? By changing
Kc?

(b) Assume that Kc is known, and also that �Kth is known for various R. How could
values for C4 and m4 then be obtained by using a log–log plot of data from crack
growth tests at several different R-ratios?

Section 11.5
11.24 Explain in your own words why hostile chemical environments have a greater effect on

da/d N for slow frequencies of loading than for high frequencies. Is this related to the
additional trend that growth rates usually increase with temperature if frequency is held
constant? Explain why.

11.25 Consider the data on fracture toughness and crack-growth rate for AISI 4340 steel in
Figs. 8.32 and 11.23. Further, note from Section 3.3 that the strength (yield and ultimate)
of this and similar steels can be varied by changing the heat treatment. Write a paragraph
that summarizes the trends seen in the data cited. Also comment on how the strength level
chosen affects limitations on the use of this steel.
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Section 11.6
11.26 Derive the equation for crack growth life Ni f that is analogous to Eq. 11.32, but which is

applicable to the special case of m = 2. The result should give Ni f as a function of the
remaining materials constant C , stress range �S, the approximately constant F , and initial
and final crack lengths, ai and af .

11.27 Consider da/d N versus �K behavior according to Eq. 11.10 with K = P/(t
√

πa), as for
small a/b for prying loads in Fig. 8.15. Derive an equation for crack-growth life Ni f as a
function of material constants C and m, force range �P , geometric dimensions, and initial
and final crack lengths, ai and af .

11.28 From Fig. 8.23, note that the stress intensity factor for cases of cracks loaded on one side
can be approximated over a range of crack lengths by K = 0.89P/(t

√
b). Consider crack

growth behavior according to Eq. 11.10, and assume that the initial and final crack sizes, ai

and a f , are both within the range where this K -expression applies. Then derive an equation
giving the crack growth life Ni f as a function of materials constants C and m, force range
�P , geometric dimensions, and crack lengths ai and af .

11.29 Derive an equation for calculating crack growth life Ni f that is analogous to Eq. 11.32, where
F is approximately constant, but where da/d N is given by the Forman equation, Eq. 11.22.
The result should give Ni f as a function of materials constants C2, m2, and Kc, stress range
�S, stress ratio R, constant F , and initial and final crack lengths, ai and af .

11.30 Consider an infinite collinear array of cracks under remote uniform stress S, which is the K3

case of Fig. 8.23(b), so that K is given by

K = F S
√

πa, F =
√

2b

πa
tan

πa

2b

(a) Derive a closed-form expression for the number of cycles Ni f to grow the cracks from
initial lengths ai to final lengths a f , where the crack growth behavior obeys Eq. 11.10
with m = 2. The result should give Ni f as a function of materials constants C and m,
stress range �S, geometric dimensions, and crack lengths ai and a f .

(b) Are closed-form solutions possible for other values of m? If so, which ones?
(Suggestion: Consult a table of integrals.)

11.31 A center-cracked plate made of 2024-T3 aluminum has dimensions, as defined in
Fig. 8.12(a), of b = 50, t = 4 mm, and large h, and an initial crack length of ai = 2 mm.
How many cycles between Pmin = 18 and Pmax = 60 kN are required to grow the crack to
failure by either fully plastic yielding or brittle fracture?

11.32 A bending member made of AISI 4340 steel (σu = 1296 MPa) has a rectangular cross section
with dimensions, as defined in Fig. 8.13, of b = 60 and t = 9 mm. An initial edge crack
of length a = 0.5 mm is present, and the member is subjected to cyclic bending between
Mmin = 1.2 and Mmax = 3.0 kN·m. Estimate the number of cycles necessary to grow the
crack to failure.

11.33 A double-edge-cracked plate made of RQC-100 steel has dimensions, as defined in
Fig. 8.12(b), of b = 100 and t = 8 mm. The two edge cracks have equal lengths of
a = 1.0 mm, and the member is subjected to cyclic loading between Pmin = −150 and
Pmax = 600 kN. Estimate the number of cycles necessary to grow the cracks to failure.
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11.34 A bending member made of 7075-T6 aluminum has a rectangular cross section with
dimensions, as defined in Fig. 8.13, of b = 40 and t = 10 mm. Inspection can reliably find
cracks only if they are larger than a = 0.25 mm, so it must be assumed that a through-
thickness edge crack of this size may be present. A cyclic bending moment is applied with
Mmin = −90 and Mmax = 300 N·m.

(a) Estimate the number of cycles to grow the crack to failure.
(b) What is the safety factor in life if the desired service life is 200,000 cycles?
(c) A safety factor in life of 3.00 is required. Is periodic inspection necessary? If so, at

what interval of cycles?
11.35 A circular shaft made of 17-4 PH stainless steel has a diameter of 60 mm and contains

a half-circular surface crack, as in Fig. 8.17(d), of initial size ai = 0.5 mm. A cyclic
bending moment is applied between Mmin = 2.0 and Mmax = 14.0 kN·m. Estimate the
number of cycles to grow the crack to failure. (Suggestion: Since Appendix A does not
have a fully plastic yielding solution for this case, roughly estimate ao from the solution of
Fig. A.16(b), with the circular cross section analyzed as a rectangle, using the transformation
b, t → d.)

11.36 An aircraft structural member made of 7075-T6 aluminum has a cross section as shown
in Fig. P11.36. A quarter circular corner crack of size a = 0.5 mm is present, and the
member is subjected to a tension stress S. How many cycles between Smax = 336 and
Smin = −68 MPa can be applied before failure is expected? (Comment: It is reasonable to
assume that an approximately quarter-circular crack shape is maintained as the crack grows.
Also, conservatively approximate the fully plastic limit force by assuming that the crack of
depth a extends uniformly across the full 15 mm thickness of the member.)

a

a
15 mm

40 mm

Figure P11.36

11.37 A bending member has a rectangular cross section of dimensions, as defined in Fig. 8.13,
of depth b = 60 and thickness t = 12 mm. It is made of the AISI 4340 steel of Table 11.2
and is subjected to a cyclic moment between Mmin = 0.8 and Mmax = 4.0 kN·m. Failure
occurred after 60,000 cycles of this loading by brittle fracture from a through-thickness edge
crack extending 14 mm in the depth direction. Estimate the initial crack length present at the
beginning of the cyclic loading.

11.38 A circular rod 80 mm in diameter contains a circumferential surface crack, as in Fig. 8.14.
The material is the ferritic-pearlitic structural steel ASTM A572 with yield strength σo =
345 MPa and plane stress fracture toughness in this thickness of at least Kc = 200 MPa

√
m.

What force range �P , applied at R = 0.6, will cause the crack to grow from ai = 0.5 mm
to a f = 10 mm in two million cycles?
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11.39 Consider the center-cracked plate of 2024-T3 aluminum and loading given in Prob. 11.31.
The initial crack size of ai = 2 mm gives a life of Ni f = 46,600 cycles, where the life ends
due to brittle fracture at a f = 14.8 mm.

(a) What is the largest initial crack size ai that can be permitted to escape inspection if
the part must withstand 100,000 cycles before it fails?

(b) Assuming that inspection to find your ai from (a) is possible, what inspection interval
in cycles would give the plate a reasonable safety factor on life? Assume that the plate
is a critical aircraft structural part.

11.40 A bending member made of 2024-T3 aluminum has a rectangular cross section with
dimensions, as defined in Fig. 8.13, of b = 40 and t = 5.0 mm. The member is subjected
to cyclic bending between Mmin = 46 and Mmax = 184 N·m.

(a) If an initial edge crack of length ai = 1.0 mm is present, estimate the number of cycles
necessary to grow the crack to failure.

(b) An inspection period of 50,000 cycles is planned, and a safety factor of 3.0 in life is
required. What size crack ad must be found in periodic inspections?

11.41 Consider the T-section of Prob. 8.21, which contains a crack of length a = 1.5 mm, as
shown in Fig. P8.21. The member is subjected to cyclic bending about the x-axis between
Mmin = 117 and Mmax = 180 N·m, with the crack on the tensile side of the bending axis.
Estimate the number of cycles to grow this crack to failure. The 7075-T651 aluminum
material may be assumed to have the same crack growth properties as the 7075-T6 alloy
of Table 11.2.

11.42 A sheet of 2024-T3 aluminum 3.0 mm thick is fastened to a structural member with a row
of rivets, as shown in Fig. 8.24. Cyclic stressing between Smin = 8.5 and Smax = 28 MPa
is applied. The rivet holes are spaced 2b = 24 mm apart, and the hole diameters are
d = 4.0 mm. Most of the rivet holes have cracks starting from them, with the largest of
these having a length of l = 0.5 mm. Estimate the number of cycles to grow the cracks to
l = 4.0 mm, at which point the holes plus cracks occupy half of the sheet width. (Suggestion:
Complete Prob. 11.28 before doing this one.)

Section 11.6.3
11.43 Consider the center-cracked plate of AISI 4340 steel of Ex. 11.4, with the same initial

crack size of ai = 1 mm, but let the cyclic forces be half as large—that is, Pmin = 40 and
Pmax = 120 kN.

(a) Estimate the crack length at failure.
(b) Calculate the life using numerical integration.

11.44 For the situation of Prob. 11.31, estimate the number of cycles to failure, using numerical
integration with F allowed to vary.

11.45 Check your ai value from Prob. 11.37 by calculating Ni f from numerical integration, with
F allowed to vary. If the result is not close to 60,000 cycles, adjust the ai value until
Ni f = 60,000 is obtained.

11.46 A single-edge-cracked plate is loaded in tension and has dimensions, as defined in
Fig. 8.12(c), of b = 75, t = 5 mm, and large h, and it contains an initial crack of length
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ai = 4 mm. A zero-to-maximum cyclic load of 20 kN is applied, and the material is Man-
Ten steel. How many cycles can be applied before fatigue failure is expected?

11.47 For the situation of Prob. 11.42, use numerical integration to estimate Ni f , allowing K to
vary with crack length according to the exact K2 from Fig. 8.23(b).

11.48 A spherical pressure vessel has an inner radius of 0.6 m and a wall thickness of 50 mm. The
material is an austenitic stainless steel with a fracture toughness of at least 200 MPa

√
m.

Nondestructive inspection revealed a surface crack in the inner wall of length 2c = 8 mm
and depth a = 2 mm. Although the crack will change its a/c = 0.5 proportions somewhat if
it grows, a reasonable approximation for preliminary analysis is to assume that a/c remains
constant as the crack increases its depth a. In this case, FD for Fig. 8.19(b) varies with the
relative crack depth a/t , as given by Eq. 8.23.

(a) How many times can the vessel be pressurized to 20 MPa and depressurized before
failure occurs?

(b) Does failure occur by leaking of the vessel or by brittle fracture? If the former, what
is the safety factor against brittle fracture when the vessel leaks?

11.49 For the shaft of Prob. 10.36, assume that a number of small cracks 1 mm deep are present
around the base of the fillet radius. Estimate the number of cycles (shaft rotations) to grow
such cracks to failure. Use reasonable approximations where necessary to reach a solution.
The steel has a ferritic-pearlitic microstructure (Table 11.1) and has yield and ultimate
strengths roughly similar to those of Man-Ten steel (Tables 9.1 and 11.2).

Section 11.7
11.50 For the material and member of Prob. 11.31, replace the loading with repeated applications

of the axial force history shown in Figure P11.50. How many repetitions are required to grow
the crack from ai = 2 mm to failure?

One repetition
time

1 2 3 4 5 6 7 8 9 10

0

18

60

P
, F

or
ce

, k
N

Figure P11.50

11.51 A double-edge-cracked member of 7075-T6 aluminum has dimensions, as defined in
Fig. 8.12(b), of b = 28.6 and t = 2.3 mm, and it contains equal initial cracks on each side
of length ai = 2.0 mm. Estimate the number of repetitions of the load history shown in
Fig. P11.51 necessary to grow the cracks to failure. Materials constants as in Table 11.2
apply, except that the fracture toughness for this thickness is Kc = 78.7 MPa

√
m.
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11.52 For the same material and member as in Prob. 11.37, the initial crack length is ai =
0.5 mm, and the load history is replaced by repeated applications of the sequence shown
in Fig. P11.52. Estimate the number of repetitions to failure.
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Figure P11.52

11.53 A beam with a rectangular cross section is made of Man-Ten steel and has dimensions,
as defined in Fig. 8.13, of b = 40 and t = 20 mm. Assume that a through-thickness,
inspection-size crack of length ad = 1.00 mm is initially present. How many repetitions
of the bending moment history shown in Fig. P11.53 are required to grow the crack to
failure?

11.54 A circular shaft of 7075-T6 aluminum has a diameter of 50 mm and contains a half-circular
surface crack, as in Fig. 8.17(d), of initial length ai = 1.0 mm. How many repetitions of the
bending moment history shown in Fig. P11.54 are required to grow the crack to failure?
Failure occurs by brittle fracture, and it may be assumed that the crack maintains its shape
as it grows.
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Section 11.8
11.55 Consider the center-cracked plate and AISI 4340 steel of Ex. 11.4. Assume that periodic

inspections are done with ad = 1 mm every 25,900 cycles, as determined in Ex. 11.4(c).
(a) What are the safety factors against brittle fracture and against fully plastic yielding

for the worst-case crack that might exist just prior to inspection?
(b) Do these safety factors seem adequate, or should the inspection period be shortened

or other action taken to ensure safety?
11.56 A plate of the AISI 4340 steel of Table 11.2 is loaded in tension and may contain an

edge crack. It has dimensions, as defined in Fig. 8.12(c), of width b = 250 and thickness
t = 25 mm. Cyclic loading occurs between loads of Pmin = 1.7 and Pmax = 3.4 MN.

(a) Estimate the number of cycles required to grow a crack to failure, starting from a
minimum detectable size of ad = 1.3 mm.

(b) The desired actual service life is 60,000 cycles, and a safety factor of 3.0 on life is
required. Is the design adequate?

(c) If not, what ad would have to be found by improved inspection?
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(d) If ad = 1.3 mm cannot be improved, what interval of periodic inspections is required?
(e) If neither improved inspection nor periodic inspection is possible, how much must the

stresses be lowered while maintaining R = 0.5?
11.57 A beam with a rectangular cross section has dimensions, as defined in Fig. 8.13, of b = 40

and t = 20 mm. Inspection can reliably find cracks only if they are larger than a = 1.00 mm,
so it must be assumed that a through-thickness edge crack of this size may be present. A
cyclic bending moment is applied with Mmin = 480 and Mmax = 1200 N·m, and the material
is Man-Ten steel.

(a) Estimate the number of cycles to grow the crack to failure.
(b) What is the safety factor in life if the desired service life is 1,000,000 cycles?
(c) A safety factor in life of 3.00 is required. Is periodic inspection necessary? If so, at

what interval of cycles?
(d) For your inspection period from (c), and where the inspection will reliably find

any a > 1.00 mm, estimate the largest crack size that can be present just prior to
inspection.

(e) For the (worst-case) crack size from (d), what are the safety factors against brittle
fracture and against fully plastic yielding? Do these seem adequate?

Section 11.10
11.58 Obtain approximate values of the constants A and n of Eq. 11.53 for both sets of data in

Fig. 11.38. Comment on the values of n obtained. In each case, by what factor is ȧ increased
if K is increased by 25%?

11.59 The constants A and n of Eq. 11.53 for soda-lime-silicate glass are approximately A =
1.67 and n = 20.3, where these values apply for K and ȧ in units of MPa

√
m and m/s,

respectively. Assume that this glass contains initial cracks of length a = 10 μm and that
these are half-circular surface cracks as in Fig. 8.17(b).

(a) Use Eq. 11.54 to derive a relationship between stress and time to failure for this
situation. (Suggestion: Consider whether the life is likely to be significantly affected
by a f .)

(b) Develop similar equations for both ai = 5μm and ai = 20 μm. Then plot all three S
versus time equations on log–log coordinates, and briefly discuss the dependence of
life on stress level and initial crack length.
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Plastic Deformation Behavior
and Models for Materials

12.1 INTRODUCTION
12.2 STRESS–STRAIN CURVES
12.3 THREE-DIMENSIONAL STRESS–STRAIN RELATIONSHIPS
12.4 UNLOADING AND CYCLIC LOADING BEHAVIOR FROM

RHEOLOGICAL MODELS
12.5 CYCLIC STRESS–STRAIN BEHAVIOR OF REAL MATERIALS
12.6 SUMMARY

OBJECTIVES

• Become familiar with basic forms of stress–strain relationships, including fitting data to these
and representing them with spring and slider rheological models.

• Employ deformation plasticity theory to explore the effects of multiaxial states of stress on
stress–strain behavior.

• Analyze unloading and cyclic loading behavior for both rheological models and for real
materials, including cyclic stress–strain curves, irregular variation of strain with time, and
transient behavior such as mean stress relaxation.

12.1 INTRODUCTION

Deformation beyond the point of yielding that is not strongly time dependent, called plastic
deformation, frequently occurs in engineering components and may need to be analyzed in design or
in determining the cause of a failure. During plastic deformation, stresses and strains are no longer
proportional, so relationships more general than Hooke’s law (Eq. 5.26) are needed to provide an
adequate description of the stress–strain behavior.

12.1.1 Significance of Plastic Deformation

Plastic deformation can impair the usefulness of an engineering component by causing large
permanent deflections. Also, as already noted in Chapter 10, plastic deformation commonly causes

638
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residual stresses to remain after unloading. (See Fig. 10.28.) Residual stresses can either decrease or
increase the subsequent resistance of a component to fatigue or environmental cracking, depending
on whether the residual stress is tensile or compressive, respectively. Furthermore, the stress-based
approach to fatigue, as in Chapter 10, is based primarily on elastic analysis. As a result of this
limitation, traditional methods of estimating S-N curves and mean stress effects involve rough
empirical adjustments to account for the influence of plastic deformation. The needed adjustments
are especially large at short lives and at high mean stresses.

Improved understanding and analysis of permanent deflections, of residual stress, and of
yielding during cyclic loading is made possible through a study of plastic deformation. In this
chapter, we characterize the plastic deformation behavior of materials in more detail than is provided
by the brief introduction in Chapter 5. The topic is extended in Chapter 13 to stress–strain analysis
of beams, shafts, and notched members. Information from both this chapter and Chapter 13 is then
used in Chapter 14 to present the strain-based approach to fatigue, which considers plasticity effects
on fatigue in a fairly complete and rigorous manner.

Plastic deformation is generally considered to be time independent. This simplifying assump-
tion is often a reasonable one for engineering purposes, as long as the always-present time-
dependent (creep) deformations are relatively small. Further consideration of time-dependent
behavior is postponed until Chapter 15.

12.1.2 Preview of Chapter

In characterizing the plastic deformation behavior of materials, the obvious starting point is to
consider stress–strain curves for monotonic loading—that is, for loading that proceeds in only one
direction, as in Fig. 12.1(a). Mathematical representation ε = f (σ ) of such curves is needed, as for
later use in Chapter 13 for component analysis. Recalling from Chapter 7 that yielding is affected by

ε = f(σ)

ε

σ

0

(a) (b)

σ

σot

ε

A

σoc

0.004

14
0

M
P

a

2024-T4 Al

Figure 12.1 Monotonic stress–strain curve (a), and unloading stress–strain curve (b), where
the Bauschinger effect causes yielding at A prior to the yield strength σoc from monotonic
compression.
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Figure 12.2 Stress–strain response in 2024-T4 aluminum for 20 cycles of completely reversed
strain at εa = 0.01. (From [Dowling 72]; copyright c© ASTM; reprinted with permission.)

the state of stress, we might expect that the stress–strain curve beyond yielding is also affected. This
is indeed the case, and we will consider state-of-stress effects on stress–strain curves in some detail.

If the direction of straining is reversed after yielding has occurred, the stress–strain path that is
followed differs from the initial monotonic one, as illustrated in Fig. 12.1(b). Yielding on unloading
generally occurs prior to the stress reaching the yield strength σoc for monotonic compression, as
at point A. This early yielding behavior is called the Bauschinger effect, after the German engineer
who first studied it in the 1880s. Unloading stress–strain paths need to be described mathematically
for use in predicting behavior after unloading from a severe load, as in estimating residual stresses.

Stress–strain behavior during cyclic loading exhibits a number of complexities. Some example
test data are shown in Fig. 12.2. In this case, an aluminum alloy specimen under axial loading was
subjected to cyclic straining between the levels εmax = 0.01 and εmin = −0.01. Yielding occurs on
each half-cycle of loading, and the behavior is observed to gradually change with the number of
applied cycles. At least approximate modeling of such behavior is needed in implementing the
strain-based approach to fatigue. Rheological models composed of linear springs and frictional
sliders, as introduced in Chapter 5, are found to be particularly useful for this purpose.

12.1.3 Additional Comments

Before proceeding in more detail, we note that the present chapter and the next are intended only as
a brief introduction to the subject of plasticity. Furthermore, the emphasis on rheological modeling
and cyclic loading is somewhat unconventional compared with the treatments found in traditional
(graduate-level) textbooks on the subject, such as Mendelson (1968). But more recent textbooks,
such as Khan (1995) and Skrzypek (1993), do tend to include increased coverage of cyclic loading.



Section 12.2 Stress–Strain Curves 641
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Figure 12.3 Differing unloading behavior for kinematic and isotropic hardening.

Here, we will consider primarily the total strain theory of plasticity, also called deformation theory,
rather than the more advanced incremental theory. Also, the rheological models used are consistent
with the behavior called kinematic hardening, the alternative choice of isotropic hardening not being
employed, as it is a poor model for real materials.

These two hardening rules are illustrated for unloading behavior in Fig. 12.3. Kinematic
hardening predicts that yielding in the reverse direction occurs when the stress change from the
unloading point is twice the monotonic yield strength, �σ = 2σo. In contrast, isotropic hardening
predicts yielding later at �σ = 2σ ′, where σ ′ is the highest stress reached prior to unloading.
Thus, kinematic hardening predicts a Bauschinger effect as observed in real materials, but isotropic
hardening predicts the opposite.

12.2 STRESS–STRAIN CURVES

Two simple elasto-plastic stress–strain curves and the corresponding rheological models are shown
in Fig. 12.4. Note that these rheological models follow the conventions introduced in Chapter 5,
and they contain only linear springs and frictional sliders, there being no time-dependent dashpot
elements. Forces on such models are proportional to stress in the material being modeled, and
displacements are proportional to strains. Additional curves involving nonlinear hardening are
shown in Fig. 12.5.

12.2.1 Elastic, Perfectly Plastic Relationship

An elastic, perfectly plastic stress–strain relationship is flat beyond yielding, as illustrated by
Fig. 12.4(a) and the equations

σ = Eε (σ ≤ σo)

σ = σo

(
ε ≥ σo

E

) (12.1)
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Figure 12.4 Stress–strain curves and rheological models for (a) elastic, perfectly plastic
behavior and (b) elastic, linear-hardening behavior.
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Figure 12.5 Stress–strain curves on linear and logarithmic coordinates for (a) an elastic,
power-hardening relationship and (b) the Ramberg–Osgood relationship.



Section 12.2 Stress–Strain Curves 643

where σo is the yield strength. This form is a reasonable approximation for the initial yielding
behavior of certain metals and other materials. Also, it is often used as a simple idealization to make
rough estimates, even where the stress–strain curve has a more complex shape.

Beyond yielding, the strain is the sum of elastic and plastic parts:

ε = εe + εp = σ

E
+ εp

(
ε >

σo

E

)
(12.2)

In the rheological model, the elastic strain εe is analogous to the deflection of the linear spring of
stiffness E , and the plastic strain εp is analogous to the movement of the frictional slider.

12.2.2 Elastic, Linear-Hardening Relationship

Elastic, linear-hardening behavior, Fig. 12.4(b), is useful as a rough approximation for stress–strain
curves that rise appreciably following yielding. Such a relationship requires an additional con-
stant, δ. This is the reduction factor for the slope following yielding, the slope before yielding
being the elastic modulus E and the one after yielding being δE . The value of δ can vary from zero
to unity, with smaller values giving flatter postyielding behavior. Also, δ = 0 gives a special case
that corresponds to the elastic, perfectly plastic relationship.

An equation for the postyield portion can be obtained by taking the slope between any point on
this part of the curve and the yield point:

δE = σ − σo

ε − εo
(12.3)

Noting that the yield strain is given by εo = σo/E , and solving for stress, allows the entire
relationship to be specified:

σ = Eε (σ ≤ σo)

σ = (1 − δ) σo + δEε (σ ≥ σo)
(12.4)

It is sometimes convenient to solve the second equation for strain:

ε = σo

E
+ (σ − σo)

δE
(σ ≥ σo) (12.5)

The response of the rheological model is the sum of the elastic strain in spring E1 and any
plastic strain in the spring–slider (E2, σo) parallel combination. No plastic strain occurs until the
stress exceeds the slider yield strength σo, and beyond this point the deflection of spring E2 is
also equal to the plastic strain. Noting that, beyond yielding, spring E2 is subjected to a stress of
(σ − σo), we can add the deflections in the two springs to obtain the total strain:

ε = σ

E1
+ (σ − σo)

E2
(σ ≥ σo) (12.6)
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Equations 12.5 and 12.6 are equivalent if the constants are related by

E = E1, δE = E1 E2

E1 + E2
(12.7)

The slope δE corresponds to the stiffness of the two springs E1 and E2 in series.

12.2.3 Elastic, Power-Hardening Relationship

Reasonably accurate representation of the stress–strain curves of real materials generally requires
a more complex mathematical relationship than those described so far. One form that is sometimes
used assumes that stress is proportional to strain raised to a power, with this being applied only
beyond a yield strength σo:

σ = Eε (σ ≤ σo) (a)

σ = H1ε
n1 (σ ≥ σo) (b)

(12.8)

The term strain hardening exponent is used for n1, and H1 is an additional constant.
The most convenient means of fitting this relationship to a particular set of stress–strain data

is to make a log–log plot of stress versus strain, where for the postyield portion a straight line is
expected. This is illustrated on the right in Fig. 12.5(a). The value of σ at ε = 1 is H1. Assuming
that the logarithmic decades are the same length in both directions, we find that the slope of the line
is n1. On the same graph, the elastic region equation, σ = Eε, also forms a straight line, but with a
slope of unity, and the two lines intersect at σ = σo. Values of the exponent n1 are typically in the
range 0.05 to 0.4 for metals where this equation fits well.

Equation 12.8(b) can be easily expressed in terms of strain:

ε =
(

σ

H1

)1/n1

(σ ≥ σo) (12.9)

Also, the yield strength is not an independent constant, as any two of σo, H1, and n1 may be
used to calculate the remaining one. An equation relating these can be obtained by applying both
Eqs. 12.8(a) and (b) at the point (εo, σo) and combining the results:

σo = E

(
H1

E

)1/(1−n1)

(12.10)

12.2.4 Ramberg–Osgood Relationship

A relationship similar to that proposed in a report by Ramberg and Osgood in 1943 is frequently
used. Here, elastic and plastic strains, εe and εp, are considered separately and summed. An
exponential relationship is used, but it is applied to the plastic strain, rather than to the total strain
as before:

σ = Hεn
p (12.11)

This n is also called a strain hardening exponent, despite the fact that it is defined differently than
the previous n1.
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Elastic strain is proportional to stress according to εe = σ/E , and plastic strain εp is the
deviation from the slope E , as shown in Fig. 12.5(b). Solving Eq. 12.11 for plastic strain and adding
the elastic and plastic strains gives an equation for total strain:

ε = εe + εp, ε = σ

E
+
( σ

H

)1/n
(12.12)

This relationship cannot be solved explicitly for stress. It provides a single smooth curve for all
values of σ and does not exhibit a distinct yield point. Thus, it contrasts with the previously
described elastic, power-hardening form, which is discontinuous at a distinct yield point σo.
However, a yield strength may be defined as the stress corresponding to a given plastic strain offset,
such as εpo = 0.002, as in Fig. 4.11(a). Equation 12.11 then gives the offset yield strength:

σo = H(0.002)n (12.13)

Constants for Eq. 12.12 for a particular set of stress–strain data are obtained by making a log–
log plot of stress versus plastic strain (σ versus εp), as illustrated on the right in Fig. 12.5(b). The
constant H is the value of σ at εp = 1, and n is the slope on the log–log plot if the logarithmic
decades in the two directions are of equal length. A plot of σ versus total strain ε is a curve on the
log–log plot. At small strains, this curve approaches the line of unity slope corresponding to elastic
strains; at large strains, it approaches the plastic strain line of slope n.

The Ramberg–Osgood equation and the power-hardening relationship are essentially equivalent
if the strains are sufficiently large that the plastic portion dominates, so that the elastic portion can
be considered to be negligible. The first term of Eq. 12.12 is then negligible, and values of H and n
fitted to data at large strains for ductile materials will be similar to values of H1 and n1 fitted to the
same data.

For tension tests, note that the Ramberg–Osgood form is often applied to true stresses and
strains, as already discussed in connection with Eq. 4.25.

Example 12.1
Some test data points on the monotonic stress–strain curve of 7075-T651 aluminum for uniaxial
stress are given in Table E12.1. Obtain values of the constants for a stress–strain curve of the
Ramberg–Osgood form, Eq. 12.12, that fits these data.

Solution The elastic modulus E is needed, as are the constants H and n. Prior to fitting, the
strains given as percentages need to be converted to dimensionless values, ε = ε%/100. Then,
plot all of the data on linear–linear coordinates as in Fig. E12.1(a), Curve 1. The overall trend
is a continuous curve that gradually deviates from an elastic slope, so that attempting a fit to
Eq. 12.12 is reasonable. The first three nonzero data points appear to form a straight line through
the origin, which is confirmed by plotting these on a sensitive strain scale (Curve 2). Fitting a
line σ = Eε gives an elastic modulus value that is rounded to E = 71,000 MPa.

We can now proceed to fit the constants H and n for the Eq. 12.11 relationship, σ = Hεn
p.

First, plastic strains εp are calculated for all of the data points where some nonlinearity is
apparent in Curve 1 of Fig. E12.1(a), using
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Table E12.1

Test Data Calculations
Comment

σ , MPa ε, % ε εp log σ log εp

0 0 0 — — — Used for E
135.3 0.191 0.00191 — — — Used for E
270 0.381 0.00381 — — — Used for E
362 0.509 0.00509 — — — Used for E
406 0.576 0.00576 4.17 × 10−5 — — Not used
433 0.740 0.00740 0.001301 2.636 −2.886 Used for H , n
451 0.895 0.00895 0.002598 2.654 −2.585 Used for H , n
469 1.280 0.01280 0.006194 2.671 −2.208 Used for H , n
487 2.290 0.02290 0.01604 2.688 −1.795 Used for H , n
505 4.570 0.04570 0.03859 2.703 −1.414 Used for H , n
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Figure E12.1(a)

εp = ε − σ

E

The resulting values are shown in Table E12.1. (Note that Eq. 12.12 implies that plastic strains
exist at all stress values. But at low stresses these become so small that they cannot be readily
measured in the laboratory, becoming essentially negligible.) Next, the stress versus plastic strain
data are plotted on log–log coordinates as shown in Fig. E12.1(b). The smallest εp value departs
from the linear trend of the other data and is so small that its accuracy is questionable; hence, this
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data point is rejected from the fitting process. The remaining data are then fitted to Eq. 12.11.
Taking logarithms of both sides of Eq. 12.11 gives

log σ = n log εp + log H

This is a straight line on a log–log plot; that is,

y = mx + b

where

y = log σ, x = log εp, m = n, b = log H

Performing a linear least-squares fit on this basis gives

m = n = 0.04453 Ans.

b = 2.7675, H = 10b = 585.5 MPa Ans.

Discussion Equation 12.11 with the constants evaluated is thus

σ = 585.5ε0.04453
p MPa
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The resulting straight line on a log–log plot of σ versus εp is shown in Fig. E12.1(b). Substituting
the constants obtained into Eq. 12.12 gives a relationship for the total strain:

ε = σ

71,000
+
( σ

585.5

)1/0.04453

Here, σ is in units of MPa. Entering a number of values of σ into this equation and calculating
the corresponding total strains ε gives Curve 1 plotted in Fig. E12.1(a). The original data are in
good agreement with the fitted curve.

12.2.5 Rheological Modeling of Nonlinear Hardening

A stress–strain curve of either the elastic, power-hardening, or Ramberg–Osgood types can be
modeled by approximating it as a series of straight line segments, as illustrated in Fig. 12.6. The
first segment ends at the yield strength for the elastic, power-hardening case and at a low stress
where the plastic strain is small for the Ramberg–Osgood case. The corresponding rheological
model has a linear spring that gives an initial elastic slope, and then a series of spring and slider
parallel combinations that cause nonlinear behavior. The yield stresses for the various sliders have

δ
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δ
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Figure 12.6 Multistage spring and slider model for nonlinear-hardening stress–strain curves.
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increasingly higher values and correspond to the stresses at the ends of the straight line segments
on the stress–strain curve. The slope of any segment corresponds to the stiffness of all the springs
in series for which the associated sliders have yielded:

δ j E = 1
1

E1
+ 1

E2
+ 1

E3
+ · · · + 1

E j

(12.14)

Here, δ j is the slope reduction factor for the segment that starts at σoj .
The strain in the model is the sum of the strains in each stage:

ε = ε1 + ε2 + ε3 + · · · + ε j (12.15)

Until a slider yields, it absorbs all of the stress, and the associated spring absorbs none, as the strain
in that stage is zero. Once a slider, say, the i th one, has moved, any stress in excess of that slider’s
yield stress must be resisted by the associated spring. Hence, the total stress is

σ = σoi + Eiεi (σ > σoi ) (12.16)

Solving for strain gives

εi = σ − σoi

Ei
(σ > σoi ) (12.17)

This equation applies to each stage that has yielded, so that if all sliders up to the j th one have
yielded, the strain is

ε = σ

E1
+ σ − σo2

E2
+ σ − σo3

E3
+ · · · + σ − σoj

E j
(12.18)

Evaluating dσ/dε to get the slope verifies Eq. 12.14.

12.3 THREE-DIMENSIONAL STRESS–STRAIN RELATIONSHIPS

From Chapters 5 and 7, the presence of stress components in more than one direction affects both
a material’s elastic stiffness and its yield strength. During plastic deformation, the state of stress
continues to affect the behavior. Relationships between stress and strain are therefore needed for
plastic deformation for the general three-dimensional case.

The generalized Hooke’s law for elastic strains was previously developed in Chapter 5 as
Eqs. 5.26 and 5.27. These relationships apply not only prior to yielding, but also after yielding,
except that in the latter case they give only the elastic portions of the strains:
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εex = 1

E

[
σx − ν

(
σy + σz

)]
(a)

εey = 1

E

[
σy − ν (σx + σz)

]
(b)

εez = 1

E

[
σz − ν

(
σx + σy

)]
(c)

γexy =τxy

G
, γeyz = τyz

G
, γezx = τzx

G
(d)

(12.19)

Subscripts e have been added to indicate that these are elastic strains, and the elastic constants E , ν,
and G are defined in the usual manner.

The various strain components also include plastic portions that must be added to the elastic
portions to obtain total strains:

εx = εex + εpx , εy = εey + εpy, εz = εez + εpz

γxy = γexy + γpxy, γyz = γeyz + γpyz, γzx = γezx + γpzx
(12.20)

Shear strains, γxy , etc., are engineering shear strains as employed in Chapters 5 and 6 and in most
elementary mechanics of materials textbooks. These values are twice the tensor shear strains often
used in advanced textbooks.

12.3.1 Deformation Plasticity Theory

In Chapter 7, it was noted that yielding for a given material occurs at a value of effective stress σ̄

that is approximately the same for all states of stress. Equation 7.35 gives σ̄ as a function of the
principal normal stresses:

σ̄ = 1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (12.21)

Recall that this particular σ̄ is proportional to the octahedral shear stress and reduces to σ̄ = σ1 for
the uniaxial case.

Corresponding strain quantities are needed. The effective plastic strain is a function of the
plastic strains in the principal directions and is given by

ε̄p =
√

2

3

√
(εp1 − εp2)2 + (εp2 − εp3)2 + (εp3 − εp1)2 (12.22)

where subscripts (1, 2, 3) indicate the (x , y, z) axes that are the principal stress directions. This ε̄p

is proportional to the plastic shear strain on the octahedral planes and reduces to ε̄p = εp1 for the
uniaxial case. The effective total strain is the sum of elastic and plastic parts:
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Figure 12.7 Correlation of true stresses and true plastic strains from combined axial and
pressure loading of thin-walled copper tubes in terms of (a) octahedral shear stress and strain,
and (b) maximum shear stress and strain. (Adapted from [Davis 43]; used with permission of
ASME.)

ε̄ = σ̄

E
+ ε̄p (12.23)

Defined in this manner, ε̄ reduces to ε1 for the uniaxial case. A key feature of deformation theory is
its prediction that a single curve relates σ̄ and ε̄ for all states of stress. Some test data on thin-walled
copper tubes that approximately verify this are shown in Fig. 12.7(a). (Note that the octahedral
shear stress τh is proportional to σ̄ , and the plastic octahedral shear strain γph is proportional
to ε̄p.)

Equations analogous to Hooke’s law are used to relate stresses and plastic strains:

εpx = 1

E p

[
σx − 0.5

(
σy + σz

)]
(a)

εpy = 1

E p

[
σy − 0.5

(
σx + σz

)]
(b)

εpz = 1

E p

[
σz − 0.5

(
σx + σy

)]
(c)

γpxy = 3

E p
τxy, γpyz = 3

E p
τyz, γpzx = 3

E p
τzx (d)

(12.24)

Comparing these with Hooke’s law, Eq. 12.19, we replace the elastic modulus E by a plastic
modulus E p:
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Ep =

σ
_

σ
_
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ε
_

εp

p
0

Figure 12.8 Definition of the plastic modulus as the secant modulus to a point on the
effective stress versus effective plastic strain curve.

E p = σ̄

ε̄p
(12.25)

Graphically, E p corresponds to a secant modulus drawn to a point on the σ̄ versus ε̄p curve, as
shown in Fig. 12.8. Hence, E p is a variable that decreases as plastic deformation progresses along
the σ̄ versus ε̄p curve for the material.

12.3.2 Discussion

Poisson’s ratio ν in Hooke’s law is replaced by 0.5 in Eq. 12.24, which is equivalent to
the assumption that plastic strains do not contribute to volume change. This is supported by
experimental evidence in metals, and is consistent with the physical mechanism of plastic
strain being slip of crystal planes, as discussed in Chapter 2. Hence, the volumetric strain εv

is given by Eq. 5.35 even in the presence of plastic strains. Further comparing Eqs. 12.19
and 12.24, we replace the elastic shear modulus G by Ep/3. This can be verified by using
Eq. 12.24 to derive a plastic shear modulus Gp in a manner parallel to the derivation leading to
G = E/[2(1 + ν)] in Section 5.3.3. The presence of 0.5 in place of ν in the equation is seen to give
Gp = Ep/3.

Equations 12.19 and 12.24 can be combined to obtain expressions for the components of total
strain that also have the form of Hooke’s law. To derive these, add the elastic component from any
one of Eq. 12.19(a) to (d) to the corresponding plastic component from Eq. 12.24(a) to (d). For the
normal strains, using the x-direction as an example, we obtain

εx = εex + εpx = 1

E
[σx − ν(σy + σz)] + 1

E p
[σx − 0.5(σy + σz)] (12.26)

Substituting Ep = σ̄ /ε̄p and invoking Eq. 12.23 leads to the desired expression for the x-direction,
and additional equations for the y- and z-directions are similarly obtained.
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εx = 1

Et
[σx − ν̃ (σy + σz)] (a)

εy = 1

Et
[σy − ν̃ (σx + σz)] (b)

εz = 1

Et
[σz − ν̃ (σx + σy)] (c)

where Et = σ̄

ε̄
, and ν̃ = ν σ̄ + 0.5E ε̄p

E ε̄
(d, e)

(12.27)

The variable Et is the secant modulus to a point on the effective stress versus effective total strain
curve. And the quantity ν̃ can be viewed as a generalized Poisson’s ratio, which turns out to be
the weighted average between ν and 0.5, according to the split of the effective total strain ε̄ into
elastic and plastic components, σ̄ /E and ε̄p. Hence, at small strains where the elastic component is
dominant, we have ν̃ = ν, with a continuous variation in ν̃ as strain increases, approaching ν̃ = 0.5
at large strains where the plastic component is dominant.

Also, the effective total strain ε̄ can be expressed directly in terms of the total strain components,
providing an alternative to Eq. 12.23. First, let the x-y-z axes be the special case of the principal
stress axes, 1-2-3. Then solve Eqs. 12.27(a), (b), and (c) for the principal stresses, σ1, σ2, and σ3, to
express these as functions of the total strains in the principal directions, ε1, ε2, and ε3. Substituting
these stresses and Et = σ̄ /ε̄ into Eq. 12.21, followed by algebraic manipulation, gives the desired
result:

ε̄ = 1√
2 (1 + ν̃)

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2 (12.28)

The preceding development derives from octahedral shear stress and plastic shear strain.
However, a similar plasticity theory may be formulated on the basis of the maximum shear stress
and plastic shear strain. The particular test results of Fig. 12.7 correlate even better on this basis,
as shown in (b). But the use of σ̄ and ε̄p as described is more conventional and will be the only
approach pursued here.

12.3.3 The Effective Stress–Strain Curve

Assume that the uniaxial stress–strain curve for a given material is known:

ε1 = f (σ1) (σ2 = σ3 = 0) (12.29)

For deformation plasticity theory in the form just given, the curve relating effective stress and
effective strain is the same as the uniaxial one:

ε̄ = f (σ̄ ) (12.30)

This can be verified by examining the uniaxial case, σ2 = σ3 = 0, for which Eq. 12.21 gives σ̄ = σ1.
Since the x-y-z axes are in this case the 1-2-3 principal axes, Eq. 12.24 gives plastic strains in the
2- and 3-directions that are negative and half as large as the plastic strain in the stress direction; that
is, εp2 = εp3 = −0.5εp1. Substitution into Eq. 12.22 then gives ε̄p = εp1, so that the effective total
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strain from Eq. 12.23 is ε̄ = ε1. Finally, Eq. 12.30 is verified by substituting σ̄ = σ1 and ε̄ = ε1 into
Eq. 12.29.

Hence, if the uniaxial stress–strain curve for a given material is known, this can be taken as the
effective stress–strain curve. This generalization then allows stress–strain curves to be obtained for
other states of stress that might be of interest. Details for the particular case of plane stress follow.

12.3.4 Application to Plane Stress

Consider the case of plane stress where the coordinate axes chosen are the principal axes, for which
the shear components are zero:

σx = σ1, σy = σ2 = λσ1, σz = σ3 = 0 (12.31)

Here, the ratio λ = σ2/σ1 is used as a convenience. Equation 12.21 gives the effective stress for this
situation:

σ̄ = σ1

√
1 − λ + λ2 (12.32)

The total strain in the direction of σ1 is composed of elastic and plastic parts:

ε1 = εe1 + εp1 (12.33)

The elastic part may be evaluated from Eq. 12.19(a), and the plastic part is obtained from
Eq. 12.24(a), with E p = σ̄ /ε̄p substituted:

εe1 = σ1

E
(1 − νλ) , εp1 = σ1ε̄p

σ̄
(1 − 0.5λ) (12.34)

Taking ε̄ = f (σ̄ ) as any particular uniaxial curve, Eq. 12.23 gives

ε̄p = ε̄ − σ̄

E
= f (σ̄ ) − σ̄

E
(12.35)

Substituting this for ε̄p and then combining Eq. 12.33 and 12.34 yields

ε1 = 1 − νλ

E
σ1 + (1 − 0.5λ) σ1

σ̄

[
f (σ̄ ) − σ̄

E

]
(12.36)

where σ̄ is obtained from Eq. 12.32.
Hence, for any particular uniaxial curve, ε̄ = f (σ̄ ), and for any particular biaxial state of

stress as given by λ, this equation provides a relationship between σ1 and the strain ε1 in the
same direction. Equations can be similarly developed for the other strain components, ε2 and ε3,
as functions of σ1 and λ. More general equations for the case of nonzero σ3 can also be developed
by a similar procedure.
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Figure 12.9 Estimated effect of biaxial stress on a Ramberg–Osgood stress–strain curve.
(The constants correspond to a fictitious aluminum alloy.)

Equation 12.36 does not apply for an elastic, perfectly plastic material beyond yielding, as no
ε̄ = f (σ̄ ) can be defined. In this case, Eq. 12.19 applies up to yielding, and the new yield stress can
be estimated by substituting σ̄ = σo into Eq. 12.32, where σo is the uniaxial yield strength. This
gives

σ1 = E

1 − νλ
ε1 (σ̄ ≤ σo) (a)

σ1 = σo√
1 − λ + λ2

(
ε̄ ≥ σo

E

)
(b)

(12.37)

For other discontinuous stress–strain curves with a distinct yield point, apply Eq. 12.37(a) for the
elastic portion; beyond this, employ Eq. 12.36 with the particular postyield ε̄ = f (σ̄ ) that is of
interest.
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As an example of the use of Eq. 12.36, consider a uniaxial curve that fits the Ramberg–Osgood
form, Eq. 12.12, so that

ε̄ = f (σ̄ ) = σ̄

E
+
(

σ̄

H

)1/n

(12.38)

Substituting this ε̄ = f (σ̄ ) into Eq. 12.36, and applying the σ̄ expression of Eq. 12.32, gives

ε1 = (1 − νλ)
σ1

E
+ (1 − 0.5λ)

(
1 − λ + λ2)(1−n)/(2n)

(σ1

H

)1/n
(12.39)

An example of the use of Eq. 12.39 to estimate the effects of various transverse stresses on the σ1
versus ε1 curve is given in Fig. 12.9. Note that transverse tension, λ > 0, raises the stress–strain
curve, whereas transverse compression, λ < 0, lowers it.

Example 12.2
A material has the Ramberg–Osgood uniaxial stress–strain curve given by the constants of
Fig. 12.9. Write the equation relating the principal stress and strain σ1 and ε1 for the case of
plane stress, σ3 = 0, with λ = σ2/σ1 = 1.0.

Solution Equation 12.39 applies. The following constants for the uniaxial (same as effective)
stress–strain curve are given in Fig. 12.9:

E = 69,000 MPa, H = 690 MPa, n = 0.15, ν = 0.3

Substituting these values and λ = 1.0 into Eq. 12.39 gives numerical factors preceding each term:

ε1 = 0.700
σ1

69,000
+ 0.500

( σ1

690

)1/0.15

Consolidating the numerical constants then gives

ε1 = σ1

98,570
+
( σ1

765.6

)1/0.15
Ans.

A plot of this equation corresponds to the λ = 1.0 line in Fig. 12.9. Note that this equation has
the same form as the original uniaxial one, Eq. 12.12, except that new values appear in place of
E and H .

Example 12.3
A thin-walled tubular pressure vessel of radius r and wall thickness t has closed ends and is made
of a material having a uniaxial stress–strain curve of the Ramberg–Osgood form, Eq. 12.12. If
the internal pressure p is increased monotonically, derive an equation for the relative change in
radius, �r/r , as a function of p and the various constants involved.
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Solution The principal stresses are

σ1 = pr

t
, σ2 = pr

2t
, σ3 ≈ 0

where σ1 is in the hoop direction and σ2 is in the longitudinal direction. The strain ε1 in the hoop
direction is the ratio of the change in circumference to the original circumference, so that

ε1 = �(2πr)

2πr
= �r

r

Since we have plane stress, λ = σ2/σ1 = 0.5 can be substituted into Eq. 12.39, which gives

�r

r
= ε1 = (1 − 0.5ν)

σ1

E
+ (0.75)(0.75)(1−n)/(2n)

(σ1

H

)1/n

Substitution of σ1 and manipulation gives the desired result:

�r

r
=
(

1 − ν

2

) pr

t E
+

√
3

2

(√
3pr

2t H

)1/n

Ans.

Example 12.4
Consider the state of stress σ2 = σ3 = 0.5σ1 applied to a material that follows the Ramberg–
Osgood uniaxial stress–strain curve, Eq. 12.12. Derive an equation for the strain ε1 in the
direction of σ1 as a function of σ1 and material constants E , H , and n from the uniaxial curve.

Solution Since this is not a case of plane stress, Eqs. 12.36 and 12.39 do not apply. However,
by following a procedure parallel to that employed for deriving these in Section 12.3.4, we can
proceed. First, apply Eqs. 12.19(a) and 12.24(a), letting the principal axes 1-2-3 be the x-y-z
axes.

εe1 = 1

E
[σ1 − ν(σ2 + σ3)] = 1

E
[σ1 − ν(0.5σ1 + 0.5σ1)] = (1 − ν)σ1

E

εp1 = 1

E p
[σ1 − 0.5(σ2 + σ3)] = 1

E p
[σ1 − 0.5(0.5σ1 + 0.5σ1)] = σ1

2E p

To evaluate the variable E p = σ̄ /ε̄p, we need an expression for ε̄p for the Ramberg–Osgood
form, which can be obtained from Eqs. 12.23 and 12.38.

ε̄p = ε̄ − σ̄

E
=
(

σ̄

H

)1/n

Hence, we have

E p = σ̄

ε̄p
= σ̄

(σ̄ /H)1/n
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Then apply Eq. 12.21 to determine σ̄ for this case, where σ2 = σ3 = 0.5σ1.

σ̄ = 1√
2

√
(σ1 − 0.5σ1)2 + (0.5σ1 − 0.5σ1)2 + (0.5σ1 − σ1)2 = 0.5σ1

Substitute this into the expression for E p, and then apply the result to the equation obtained
for εp1.

E p = 0.5σ1

(0.5σ1/H)1/n
, εp1 = σ1

2E p
=
( σ1

2H

)1/n

Finally, the elastic and plastic components can be combined to obtain the total strain ε1.

ε1 = εe1 + εp1, ε1 = (1 − ν)
σ1

E
+
( σ1

2H

)1/n
Ans.

Comment For this three-dimensional state of stress, the ε1 versus σ1 curve is seen to have
an elastic slope that is steeper than for the uniaxial case by a factor 1/(1 − ν) ≈ 1.4. Further, at
large plastic strains, the stresses are twice as high as for the uniaxial case.

12.3.5 Deformation versus Incremental Plasticity Theories

Experimental results indicate that plastic strains depend not only on the values of the stresses
reached, but also on the history of stressing. For example, consider a thin-walled tube loaded to
particular values of axial load P = P ′ and torque T = T ′, either of which is sufficient to cause
yielding by itself. If the axial loading beyond yielding is applied first and then the torsion, the
plastic strains that result differ from those which occur if the torsion is applied first. Also, a third
result is obtained if the tension and torsion are increased proportionally, so that the ratio P/T
remains constant until P ′ and T ′ are simultaneously reached.

These sequences of stressing correspond to variations in principal stresses as shown in
Fig. 12.10. The lines shown are called loading paths, and any loading path that is a straight line
through the origin is termed proportional loading. The situation of the plastic strains differing
despite the final stresses being the same is said to represent loading path dependence. To analyze
such path-dependent behavior, an incremental plasticity theory is needed, which is applied by
following the loading path in small steps. The equations of incremental plasticity theory are similar
to those previously given for deformation theory, Eqs. 12.21 to 12.25, except that all plastic strains,
ε̄p, εpx , etc., are replaced by the corresponding differential quantities, d ε̄p, dεpx , etc.

However, if all stresses are applied so that their magnitudes are proportional, and if no unloading
occurs, then incremental plasticity theory gives the same result as deformation theory. The previous
discussion is thus restricted to cases of monotonic proportional loading. Proportional loading is
defined mathematically at a given point in a deforming solid if the principal stresses maintain
constant directions and constant ratios of their values as these increase. That is,
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axial

axial

torsion
torsion

proportional

σ1

σ = σ
_

o

σ2

Figure 12.10 Three possible paths for combined axial and torsional loading of a thin-walled
tube.

σ2

σ1
= λ2,

σ3

σ1
= λ3 (12.40)

where λ2 and λ3 may vary from point to point in the deforming solid, but, for any given point, must
not change.

As a practical matter, modest variations in λ2 and λ3 can occur without causing significant
problems with deformation theory. Also, if proportionality is preserved, but unloading does occur,
as in cyclic loading, deformation theory can still be used, as will be discussed later. However,
some practical problems involve obviously nonproportional loading and thus require the use of
incremental theory. Details on incremental theory and its application are given in textbooks on
plasticity, such as those listed in the References.

12.4 UNLOADING AND CYCLIC LOADING BEHAVIOR FROM RHEOLOGICAL MODELS

Spring and slider rheological models do not include time-dependent effects, nor do they exhibit
certain other complexities that are observed for real materials. They nevertheless provide a useful
idealization, even for cyclic loading, as their behavior is basically similar to that of engineering
metals and some other materials.

Some features of the behavior of these models are illustrated in Fig. 12.11. First consider the
simple elastic, perfectly plastic model (a). If the direction of loading is reversed, the behavior
may be elastic until yielding again occurs on reloading. However, if the strain excursion for the
unloading–reloading event is sufficiently large, reversed yielding occurs. More specifically, reversed
yielding occurs when the stress change since unloading reaches �σ = 2σo. For completely reversed
loading, the response for a �ε sufficient to cause reversed yielding is also shown. The behavior is
symmetrical about the origin and repeats itself for each cycle of loading.
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deformation during unloading, but the second one is sufficiently large to cause compressive yielding. The third history is
completely reversed and causes a hysteresis loop that is symmetrical about the origin.
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If the model has one or more stages of parallel spring–slider combinations, then the behavior is
analogous, but more complex, as shown in Fig. 12.11 by model (b). An unloading–reloading event
similarly causes reversed yielding when �σ = 2σo, which is similar to kinematic hardening as in
Fig. 12.3. For the second strain history illustrated, reversed yielding occurs, causing a small loop to
be formed, following which the stress–strain path rejoins the original path, then proceeding just as
if the small loop had never occurred. This special behavior is called the memory effect and is similar
to the behavior of real materials. For completely reversed straining, a loop symmetrical about the
origin is formed that resembles the material behavior of Fig. 12.2.

We will now consider the behavior of multistage spring–slider models in more detail, starting
with unloading behavior and then proceeding to cyclic loading behavior.

12.4.1 Unloading Behavior

Consider any one stage (no. i) of a multistage parallel spring–slider model as shown in Fig. 12.12.
After this stage has yielded on monotonic loading, its stress and strain are related by Eq. 12.16. At
a particular later stress–strain point (ε′, σ ′), we thus have

σ ′ = σoi + Eiε
′
i (12.41)

where ε′
i is the strain in the i th stage only. If the direction of loading is reversed at the point

(ε′, σ ′), no change in ε′
i occurs until the stress on the slider reaches −σoi . Hence, ε′

i at first remains

σoi

........

E
E

i
1 ε

σ

σ

σ''

(ε', σ')

2σoi

σo, i +1

σo, i +1

σoi

2ε0

δi E1 

δ Ei 1

σ

0 ε

Δσ

(a) (b)

(εmin, σmin)

(εmax, σmax)

Δε

Figure 12.12 Unloading behavior of spring and slider rheological models showing (a)
doubling of segment lengths with the slope unchanged, and (b) similar behavior on reloading.
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unchanged, and thus so does the stress Eiε
′
i in the spring, so that this stage can be said to be locked

until the resistance of the slider is overcome. At the point of reversed yielding of this i th stage, the
stress is thus

σ ′′ = −σoi + Eiε
′
i (12.42)

The change in stress necessary to cause reversed yielding in the i th stage is then

�σ ′′ = σ ′ − σ ′′ = 2σoi (12.43)

Beyond the point of reversed yielding of the i th stage, the stress on the slider remains at −σoi ,
and the stress change beyond σ ′′, which is the difference �σ − 2σoi , is applied to the spring and
causes its elastic deflection. The contribution of the i th stage to the change in strain is thus

�εi = �σ − 2σoi

Ei
(12.44)

The total change in strain is the sum for all yielded stages:

�ε = �σ

E1
+ �σ − 2σo2

E2
+ �σ − 2σo3

E3
+ · · · + �σ − 2σoj

E j
(12.45)

Here, all sliders through the j th one have reverse yielded. The values of stress and strain relative to
the original (σ, ε) axes are

σ = σ ′ − �σ, ε = ε′ − �ε (12.46)

where (ε′, σ ′) is the point of load reversal. Combining Eqs. 12.45 and 12.46 and evaluating the
derivative dσ/dε gives the slope of the stress–strain response:

dσ

dε
= 1

1

E1
+ 1

E2
+ 1

E3
+ · · · + 1

E j

(12.47)

Thus, noting Eq. 12.14, we see that the slope is the same as for the interval in the monotonic response
where the same number of sliders have yielded.

Furthermore, since Eq. 12.43 states that the �σ at each slider’s point of reversed yielding is
twice its monotonic yield stress, the intervals between reversed yielding events are twice as large as
the intervals between the corresponding monotonic yieldings. In other words, the stress–strain path
relative to a shifted origin at the point of unloading (ε′, σ ′) has the same shape as the monotonic
curve, differing in that it is expanded by a scale factor of two. Each straight-line segment of the
unloading path has the same slope as the corresponding one in the monotonic response, but its
length is doubled.
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If the monotonic response of Eq. 12.18 is represented as

ε = f (σ ) (12.48)

then the unloading response of Eq. 12.45 is

�ε

2
= f

(
�σ

2

)
(12.49)

which can be verified from the two equations. The factor of two in the denominator is the
mathematical expression of the factor-of-two expansion previously noted. In particular, half of the
values �σ and �ε have the same functional relationship as σ and ε from the monotonic curve.

For initial loading in compression, followed by loading in the tensile direction, analogous
behavior occurs. The initial loading in compression is given by ε = − f (−σ), and Eq. 12.49 applies
for the subsequent loading in the tensile direction.

12.4.2 Discussion of Unloading

Since the point of reversed yielding of the first slider stage must conform to Eq. 12.43, the first
reversed yielding occurs at �σ = 2σo, where σo = σo2 is the monotonic yield strength of the model.

σ σ

εε0 0
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0.004

28
0

M
P

a

14
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M
P
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Experimental
Estimated

(a) (b)

Figure 12.13 Monotonic tension followed by loading into compression for (a) aluminum alloy
2024-T4 and (b) quenched and tempered AISI 4340 steel. Unloading curves estimated from a
factor-of-two expansion of the monotonic curve are also shown.
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Hence, the first reversed yielding obeys kinematic hardening, as in Fig. 12.3. If unloading proceeds
to such a degree that more sliders yield during unloading than previously yielded on loading, then
Eq. 12.49 is followed until the stress–strain path joins the one that would be traced for monotonic
compression. Beyond this point, the monotonic compression path is followed.

If the number of stages in the model is made relatively large, then its response approximates
a smooth stress–strain curve. Equations 12.48 and 12.49 can thus be thought of as representing
smooth curves.

Stress–strain paths for unloading are shown for laboratory tests of two engineering metals in
Fig. 12.13. Also shown are estimated paths for unloading based on Eq. 12.49. Fair agreement is
obtained for the aluminum alloy, but not for the steel. Materials that yield abruptly on monotonic
loading seldom have similar behavior on unloading. A more gentle curve occurs instead, as for
the steel in this case. For both experimental curves, note that yielding in compression begins at a
lower absolute value of stress than the initial tensile yield strength; that is, a Bauschinger effect is
observed. For the aluminum alloy, this is estimated reasonably well by the rheological model.

12.4.3 Cyclic Loading Behavior

As illustrated in Fig. 12.12(b), let unloading be terminated at a point (εmin, σmin), and then let
reloading proceed in the tensile direction. The rheological model follows the same factor-of-two
expanded curve as during unloading, with the origin now being at (εmin, σmin). This behavior
persists until the original point of unloading (ε′, σ ′) is reached, where a closed stress–strain loop is
formed. Let this point be denoted (εmax, σmax), and let the strain be cycled between the two values
εmax and εmin. During the resulting constant amplitude cycling, the stress–strain loop between εmax

and εmin, called a hysteresis loop, is retraced for each cycle. This is further illustrated by Fig. 12.14.
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(ε , σ )min min
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Figure 12.14 Stress–strain unloading and reloading behavior consistent with a spring and
slider rheological model. The example curves plotted correspond to a Ramberg–Osgood
stress–strain curve with constants as in Fig. 12.9.
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In this case, it is assumed that there are a large number of model stages, so that smooth curves
occur.

Relative to the original (σ , ε) coordinate axes, the stress–strain paths for the unloading and
reloading branches of the hysteresis loop are given by

ε = εmax − 2 f

(
σmax − σ

2

)
, ε = εmin + 2 f

(
σ − σmin

2

)
(a, b) (12.50)

Expression (a) for the unloading branch is obtained by combining ε = εmax − �ε with Eq. 12.49,
and (b) for the reloading branch is obtained by combining ε = εmin + �ε with Eq. 12.49. For cyclic
loading biased in the tensile direction, as in Fig. 12.14, the stress–strain path to the point (εmax,
σmax) is given by ε = f (σ ), as shown. For cyclic loading biased in the compressive direction, initial
loading to the point (εmin, σmin) is given by ε = − f (−σ). Thus, the following apply:

εmax = f (σmax) |εmax| > |εmin| (a)

εmin = − f (−σmin) |εmin| > |εmax| (b)
(12.51)

Equation 12.50 gives the two branches of the hysteresis loop for either case.
Cyclic loading of engineering metals often follows a Ramberg–Osgood stress–strain relation-

ship. Some constants for representative metals are given in Table 12.1, where the notation H ′ and n′
is employed to denote curves that are specifically derived from cyclic loading, to distinguish these
from curves from monotonic loading. Such cyclic stress–strain curves will be discussed in more
detail in the next part of this chapter, Section 12.5.

Table 12.1 Constants for Cyclic Stress–Strain Curves for Four
Engineering Metals

Yield Ultimate
Cyclic σ -ε curve

Material σo σu E H ′ n′

RQC-100 steel 683 758 200,000 903 0.0905
(99) (110) (29,000) (131)

AISI 4340 steel 1103 1172 207,000 1655 0.131
(160) (170) (30,000) (240)

2024-T351 Al 379 469 73,100 662 0.070
(55) (68) (10,600) (96)

7075-T6 Al 469 578 71,000 977 0.106
(68) (84) (10,300) (142)

Notes: Units are MPa (ksi), except for dimensionless n′. See Table 14.1 for
additional properties and sources.
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Example 12.5
A material has the uniaxial stress–strain curve given by the constants in Fig. 12.9. Assume that
this curve also applies for cyclic loading and that the stress–strain behavior is similar to that of
a multistage spring–slider model. Then estimate the stress–strain response for starting from zero
and then cycling between εmax = 0.028 and εmin = 0.01.

Solution The stress–strain response for this example is the one plotted in Fig. 12.14. For the
initial monotonic loading from zero to εmax, we use Eq. 12.12 with E , H , and n values as in
Fig. 12.9:

ε = f (σ ) = σ

69,000
+
( σ

690

)1/0.15

We first need to solve this equation for σmax, given that εmax = 0.028. A solution by trial and
error or by an iterative procedure such as Newton’s method is needed, giving

σmax = 390.1 MPa Ans.

For unloading from the point (εmax, σmax), Eq. 12.49 applies:

�ε = 2 f

(
�σ

2

)
= �σ

69,000
+ 2

(
�σ

1380

)1/0.15

This equation gives the unloading response relative to an origin at (εmax, σmax), as shown in
Fig. 12.14. At (εmin, σmin), the direction of straining reverses, where

�ε = εmax − εmin = 0.018, �σ = σmax − σmin

Entering the preceding equation with �ε and performing a second iterative solution gives �σ :

�σ = 614.5 MPa

It then follows that

σmin = σmax − �σ = 390.1 − 614.5 = −224.4 MPa Ans.

For reloading back to εmax, the same Eq. 12.49 path is followed for the �σ versus �ε

response relative to an origin at (εmin, σmin). Hence, the estimated curve reaches the same point
(σmax, εmax) as before, and subsequent cycles are estimated to retrace the hysteresis loop thus
formed.

Comment If it is desired to plot the stress–strain response accurately, pick a number of
values of σ between zero and σmax, and plot these versus the corresponding strain values from
ε = f (σ ) in the form of Eq. 12.12. Then, for a number of values of σ between σmax and σmin,
calculate and plot the corresponding strain values for the two branches of the hysteresis loop
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from Eqs. 12.50(a) and (b). Since ε = f (σ ) is given by Eq. 12.12, the specific relationships
needed are

ε = εmax − 2

[
σmax − σ

2E
+
(

σmax − σ

2H

)1/n
]

, ε = εmin + 2

[
σ − σmin

2E
+
(

σ − σmin

2H

)1/n
]

12.4.4 Application to Irregular Strain versus Time Histories

The behavior of a multistage spring and slider rheological model (as in Fig. 12.6) can be
summarized by a set of rules that apply to any irregular variation of strain with time. These
rules are stated as follows in terms of the behavior of the straight-line segments that approximate
the monotonic loading curve. The segments are numbered starting from the origin, as shown in
Fig. 12.15(a):

1. Initially, and after each reversal of strain direction, segments are used in order, starting with
the first.

2. Each segment may be used once in either direction with its original length. Thereafter, the
length is twice the monotonic value and the segment retains the same slope.

3. An exception to rule (1) is that a segment (or portion thereof ) must be skipped if its most
recent use was not in the opposite direction of its impending use.

Figure 12.15 illustrates the application of these rules, the strain history of (b) resulting in the
stress–strain response of (c). Segments 1 through 5 are each used once in reaching point A, and no
additional segments are required by the example strain history, so that only double-length segments
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Figure 12.15 Behavior of a multistage spring–slider rheological model for an irregular strain
history. A model having the monotonic stress–strain curve (a) is subjected to strain history (b),
resulting in stress–strain response (c). (Adapted from [Dowling 79b]; used with permission of
Elsevier Science Publishers.)
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are used during the remainder of the history. At point B ′ in the strain history, segment 3 must be
skipped, as its most recent use was not in the opposite direction of its impending use, so that the
sequence of segments between C and D is 1-2-4-5.

Only double-length segments are used after the strain first reaches its largest absolute value.
Thus, beyond this point, the model behaves such that all stress–strain curves follow a single shape,
which is the monotonic curve expanded with a scale factor of two, according to Eq. 12.49. Rule
(3) causes that memory effect to act, the skipping of segments (or portions thereof ) resulting in a
return to the stress–strain path previously established. The origins for the various �σ versus �ε

curves are, of course, located at points where the direction of straining changes, and the particular
origin that applies for a given section of curve is determined by the memory effect. The skipping of
a portion of a segment does not occur in Fig. 12.15.

If the strain history subsequently returns to its largest absolute value, the stress–strain paths
traced form a set of closed stress–strain hysteresis loops. This is the case in Fig. 12.15, where the
loops correspond to events B-C-B′ and A-D-A′. If the same strain history is applied again, the same
loops are retraced.

12.5 CYCLIC STRESS–STRAIN BEHAVIOR OF REAL MATERIALS

A special laboratory test methodology has been developed for characterizing cyclic stress–strain
behavior, which is done during low-cycle fatigue testing. This is described in ASTM Standard
No. E606 and also in Landgraf (1969). As a result, considerable data are available for engineering
metals, as are limited data from other materials.

12.5.1 Cyclic Stress–Strain Tests and Behavior

The most common test involves completely reversed (R = −1) cycling between constant strain
limits, as illustrated in Fig. 12.16. A strain amplitude, εa = �ε/2, is selected, and an axial test
specimen is loaded until the tensile strain reaches a value of εmax = +εa . Then the direction of
loading is reversed until the strain reaches εmin = −εa , and the test is continued, with the direction
of loading being reversed each time the strain reaches +εa or −εa . The rate of straining between
these limits may be held constant, or sometimes a fixed-frequency sinusoidal variation of strain with
time is used. The rate or frequency of the test affects the behavior of materials that exhibit significant
creep at the test temperature used. For engineering metals tested at room temperature, rate effects
are generally small.

Such cyclic strain tests are continued until fatigue failure occurs. The stresses that are needed
to enforce the strain limits usually change as the test progresses. Some materials exhibit cycle-
dependent hardening, which means that the stresses increase, as shown in Fig. 12.16 (top). Others
exhibit cycle-dependent softening, or a decrease in stress with increasing numbers of cycles, as also
illustrated (bottom). In engineering metals, the cyclic hardening or softening is usually rapid at first,
but the change from one cycle to the next decreases with increasing numbers of cycles. Often, the
behavior becomes approximately stable in that further changes are small. These trends can be seen
in Fig. 12.2, which shows hardening in an aluminum alloy.
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Figure 12.16 Completely reversed controlled strain test and two possible stress responses,
cycle-dependent hardening and softening. (From [Landgraf 70]; copyright c© ASTM; reprinted
with permission.)
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Figure 12.17 Stable stress–strain hysteresis loop.

If the stress–strain variation during stable behavior for one cycle is plotted, a closed hysteresis
loop is formed on each cycle, as shown in Fig. 12.17. After the direction of loading changes at
either the positive or the negative strain limit, the slope of the stress–strain path is at first constant
and close to the elastic modulus, E , as from a tension test. Then the path gradually deviates from
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Figure 12.18 Cycle-dependent softening and asymmetric hysteresis loops in Nylon 6-6
reinforced with 13% glass fiber, which was cycled at a constant strain rate of ε̇ = 0.01 1/s.
(From [Beardmore 75]; used with permission.)

linearity as plastic strain occurs. We can think of each branch of the hysteresis loop as being a
separate stress–strain curve which begins at an origin that is shifted to one of the loop tips, with the
axes being inverted for the lower branch. Note that this hysteresis looping behavior is similar to that
of the rheological models discussed earlier. Compare the completely reversed case in Fig. 12.11(b)
with Fig. 12.17.

The maximum deviation from linearity reached during a cycle is the plastic strain range, labeled
�εp in Fig. 12.17. The stress range is �σ , and the elastic portion of the strain range is related
to �σ by the elastic modulus E . Summing the elastic and plastic portions gives the total strain
range, �ε:

�ε = �σ

E
+ �εp (12.52)

It is often useful to work with the amplitudes—that is, half-ranges—of these quantities, εa = �ε/2,
σa = �σ/2, and εpa = �εp/2, so that

εa = σa

E
+ εpa (12.53)

In most engineering metals, the stable hysteresis loops are nearly symmetrical with respect
to tension and compression. One exception is gray cast iron, where the different behavior
of graphite flakes in tension and compression causes asymmetric behavior. Ductile polymers
and their composites also often have asymmetric hysteresis loops, with an example shown in
Fig. 12.18.
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Figure 12.19 Cyclic stress–strain curve defined as the locus of tips of hysteresis loops. Three
loops are shown, A-D, B-E, and C-F. The tensile branch of the cyclic stress–strain curve is
O-A-B-C, and the compressive branch is O-D-E-F.

12.5.2 Cyclic Stress–Strain Curves and Trends

Hysteresis loops from near half the fatigue life are conventionally used to represent the
approximately stable behavior. Such loops from tests at several different strain amplitudes can be
plotted on one set of axes, as shown in Fig. 12.19. A line from the origin that passes through the
tips of the loops, such as O-A-B-C , is called cyclic stress–strain curve. Where the branches in
tension and compression do not differ greatly (which is often the case), their average is used. The
cyclic stress–strain curve is thus the relationship between stress amplitude and strain amplitude for
cyclic loading.

Cyclic stress–strain curves for several engineering metals are compared with monotonic tension
curves in Fig. 12.20. Where the cyclic curve is above the monotonic one, the material is one that
cyclically hardens, and vice versa. A mixed behavior may also occur, with crossing of the curves
indicating softening at some strain levels and hardening at others. The cyclic curves virtually always
deviate smoothly from linearity, even for materials where the monotonic curve has a distinct yield
point or even a yield drop.

Equations of the Ramberg–Osgood form have this character and are thus commonly used to
represent cyclic stress–strain curves:

εa = σa

E
+
( σa

H ′
)1/n′

(12.54)

Here, primes are used to specify that the constants for the plastic term are from fitting cyclic rather
than monotonic stress–strain data. An offset yield strength σ ′

o for this cyclic curve may be obtained
by employing Eq. 12.13 with H ′ and n′. For engineering metals, n′ is often in the range of 0.1 to
0.2, so that 0.15, or about 1

7 , is a typical value. A low value of n from monotonic tension, say, 0.05,
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Figure 12.20 Cyclic and monotonic stress–strain curves for several engineering metals. (From
[Landgraf 69]; copyright c© ASTM; reprinted with permission.)

corresponds to a fairly flat stress–strain curve. A metal with low n is likely to cyclically soften to a
lower, but steeper, curve, with the resulting n′ generally being around 0.1 to 0.2. Conversely, a metal
with a high n (steeply rising monotonic curve) is likely to harden to a higher, but flatter, curve, with
n′ again being around 0.1 to 0.2. Values of H ′ and n′ for some engineering metals are given in
Table 12.1, and more are given later in Chapter 14, specifically in Table 14.1.

The alloy composition and processing of engineering metals affects the cyclic stress–strain
behavior, sometimes differently than it affects the monotonic tension properties. For example,
strength achieved by cold working is often substantially reduced by cycle-dependent softening.
Conversely, metals softened by annealing generally harden considerably. Hardening due to a fine
precipitate, as in many aluminum alloys, is usually preserved and often increases under cyclic
loading. This is the case for the two aluminum alloys included in Fig. 12.20. In medium-carbon
steels that are hardened by heat treatment using quenching and tempering, some of the effect usually
is lost if cyclic loading occurs. An example is provided by the curve for SAE 4340 steel in Fig. 12.20.
For such steels, the average variation with hardness of the monotonic and cyclic yield strengths, σo

and σ ′
o, is shown in Fig. 12.21. Cyclic softening, indicated by σ ′

o being lower than σo, occurs, except
at very high hardness.

Ductile polymers usually soften under cyclic loading. Recall from Section 7.6.4 that polymers
have monotonic yield strengths that are typically 20% to 30% higher in compression than in tension,
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Figure 12.21 Average property trends for SAE 1045 steel and other medium-carbon steels as
a function of hardness, including the true fracture strength, the monotonic and cyclic yield
strengths, and the threshold stress amplitude for relaxation of mean stress. (Adapted from
[Landgraf 88]; copyright c© ASTM; reprinted with permission.)

indicating a sensitivity to hydrostatic stress. A similar ratio of compressive to tensile yield strengths
is maintained in the cyclic stress–strain curves, such behavior being evident for polycarbonate in
Fig. 12.22. The cyclic stress–strain curves for ductile polymers are affected by the strain rate, even
at room temperature.

12.5.3 Hysteresis Loop Curve Shapes

One item of interest is the shape of hysteresis loop curves, such as C-H -F and F-G-C in Fig. 12.19.
If the stable behavior obeys a multistage spring and slider rheological model of the type discussed
earlier, the stress–strain path for the hysteresis loops should have the same shape as the cyclic
stress–strain curve, except for expansion by a scale factor of two according to Eq. 12.49. Thus, for
a cyclic stress–strain curve ε = f (σ ) of the Ramberg–Osgood form, Eq. 12.54, the equation of the
loop curves obtained from �ε/2 = f (�σ/2) is

�ε = �σ

E
+ 2

(
�σ

2H ′

)1/n′

(12.55)

Here, the variables �σ and �ε represent changes relative to coordinates axes at either loop tip.
This expected behavior can be compared with actual behavior by expanding the cyclic

stress–strain curve with a scale factor of two and comparing the result with actual loop curves. Such
a comparison for a steel is shown in Fig. 12.23. To enable this comparison, three actual hysteresis
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Figure 12.22 Monotonic (left) and cyclic (right) stress–strain curves for polycarbonate for
both tension (T) and compression (C). (Adapted from [Beardmore 75]; used with permission.)

Figure 12.23 Stable hysteresis loops for a steel, plotted with shifted axes so that their
compressive tips coincide. The loop curves fall near the dashed line, which is obtained by
expanding the cyclic stress–strain curve with a scale factor of two, �ε/2 = f(�σ/2). (From
[Dowling 78]; used with permission of ASME.)
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Figure 12.24 Stable stress–strain response of AISI 4340 steel (σu = 1158 MPa) subjected to
a repeatedly applied irregular strain history (a). The predicted response is shown in (b) and
actual test data in (c). (Adapted from [Dowling 79b]; used with permission of Elsevier Science
Publishers.)

loops from experimental data are plotted with shifted origins, so that their tips fall at the origin
used to plot Eq. 12.55. Reasonably good agreement of the actual and estimated loop curves exists
in this case. Similar behavior generally occurs for other engineering metals, but in some cases the
agreement is not as good. Nevertheless, Eq. 12.55 provides a reasonable estimate, for engineering
purposes, of loop shape in metals.

For irregular variations of strain with time, the hysteresis loop curves for stable behavior still
generally follow shapes close to the cyclic stress–strain curve expanded with a scale factor of two,
Eq. 12.55. Hence, the behavior is similar to that predicted by the spring–slider rheological model,
as previously discussed and as illustrated in Fig. 12.15. Some supporting test data for an alloy steel
are provided by Fig. 12.24. The stress–strain response for a short irregular history (a) is shown in
(b) as predicted by the rheological model. The actual measured response for stable behavior shown
in (c) is almost identical.

For nonuniaxial states of stress, Eq. 12.39 and related more general equations, that are not
limited to plane stress, can be used to estimate cyclic stress–strain curves. The constants E , H ′, and
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n′ for the uniaxial cyclic stress–strain curve of the material of interest are, of course, employed.
It is then reasonable to apply the same assumption that hysteresis loops have shapes following
�ε/2 = f (�σ/2), where εa = f (σa) is now the cyclic stress–strain curve for a particular direction
of the nonuniaxial state of stress. Such a procedure thus allows deformation plasticity theory to
be used for cyclic loading, but the limitation of at least approximately proportional loading is still
needed.

Example 12.6
Table E12.6(a) gives the strain history that is repeatedly applied for the stress–strain response
example of Fig. 12.24. Estimate the stress response for stable behavior after cyclic softening
in this material is complete. The AISI 4340 steel (σu = 1158 MPa) has fitting constants for
its stable cyclic stress–strain curve, Eq. 12.54, of E = 201,300 MPa, H ′ = 1620 MPa, and
n′ = 0.112.

Solution Behavior similar to a spring and slider rheological model is expected. The starting
point should be the peak or valley having the largest absolute value of strain, in this case, point
A. To establish point A, assume that the loading follows the Eq. 12.54 cyclic stress–strain curve,
εa = f (σa), as if it were a monotonic curve. Use ε = f (σ ) for tension, or ε = − f (−σ) for
compression. Define a variable ψ = +1 if the direction is positive and ψ = −1 if the direction
is negative, and employ Eq. 12.54 in the form

εA = σA

E
+ ψ

(
ψσA

H ′

)1/n′

In this case, ψ = −1. Then substituting εA = −0.0248 and solving iteratively gives σA =
−1043.0 MPa, as listed in the first line of Table E12.6.

Stress–strain paths beyond A are then calculated by applying �ε/2 = f (�σ/2), in the form
of Eq. 12.55, to ranges X -Y that follow smooth hysteresis loop curves:

Table E12.6

(a) Strain History (b) Calculated Values

Point Strain Origin Origin Direction �ε to �σ Stress
(Y ) ε (X) Strain, ε ψ Point MPa σ, MPa

A −0.0248 — — −1 — — −1043.0
B 0.0067 A −0.0248 +1 0.0315 1953.1 910.1
C −0.0184 B 0.0067 −1 0.0251 1883.3 −973.1
D −0.0056 C −0.0184 +1 0.0128 1642.4 669.3
E −0.0136 D −0.0056 −1 0.0080 1394.2 −724.9
F 0.0232 A −0.0248 +1 0.0480 2076.6 1033.6
G 0.0014 F 0.0232 −1 0.0218 1838.0 −804.4
H 0.0167 G 0.0014 +1 0.0153 1713.8 909.5
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�εXY = | εY − εX | , �εXY = �σXY

E
+ 2

(
�σXY

2H ′

)1/n′

Specifically, the X -Y are ranges for closed stress–strain hysteresis loops, in this case, D-E ,
B-C , G-H , and A-F , and also ranges that locate the starting points of loops, in this case,
A-B, C-D, and F-G. To identify these ranges, a qualitative sketch of the stress–strain paths
similar to Fig. 12.24(b) is helpful. Note that a hysteresis loop is closed where the strain next
reaches the same value as a previous direction change, where the memory effect acts, and the
stress–strain path continues on the curve established before the loop started. In this case, loops
close at points D′, B ′, G ′, and A′. (Such points can also be identified by applying rainflow
cycle counting to the strain history, as they also correspond to points where rainflow cycles are
completed.)

The calculations are organized as shown in Table E12.6(b). For each peak or valley (Y ) in
the history, the origin point (X) of the smooth hysteresis loop curve is tabulated, along with
its strain value. (For example, to locate point F , range A-F is analyzed, as loop B-C closes at
point B′, so that the origin for the continuing curve to F is point A.) Next, ψ is listed as +1
if the strain is increasing during the range, or −1 if it is decreasing. Then, using the preceding
equations, each strain range �εXY is calculated, and the value is employed to determine the
corresponding stress range �σXY . For example, the range from εA = −0.0248 to εB = 0.0067
is �εAB = 0.0315. Entering this value into the second equation and solving iteratively gives
�σAB = 1953.1 MPa.

Analyzing the ranges for all loops and their starting points gives sufficient information to
establish the stress values for all points in the strain history. This is done by starting from the
initial point A and calculating the stress at each subsequent point by adding or subtracting the
appropriate stress range. We employ

σY = σX + ψ�σXY

where the use of ψ causes �σXY to be added to or subtracted from σX to obtain σY , depending
on whether the strain is increasing or decreasing. For example, for points B and C ,

σA = −1043.0, �σAB = 1953.1, ψ = +1, so that σB = 910.1 MPa

σB = 910.1, �σBC = 1883.3, ψ = −1, so that σC = −973.1 MPa

These and the remaining values for all peaks and valleys in the history are given Table E12.6.

Comment If a quantitative plot of the stress–strain response is desired, Eq. 12.55 can be
employed to calculate a number of points along each smooth curve connecting peak–valley
points, while observing the memory effect. This can be implemented by applying the equations
given at the end of Ex. 12.5 to each hysteresis loop, noting that these give Eq. 12.55 as referred
to the original (σ , ε) coordinate axes.
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12.5.4 Transient Behavior; Mean Stress Relaxation

The spring and slider rheological models exhibit only stable behavior for cyclic loading—that is,
continuous repetition of an identical hysteresis loop for each cycle. Cycle-dependent hardening or
softening thus represents a class of transient behavior that is not predicted by such models. Also,
these models still exhibit stable behavior even if the mean stress is not zero—that is, if the loop is
biased in either the tensile or compressive direction.

However, if a real material is subjected to loading with a nonzero mean stress, an additional
class of transient behavior may be observed. Examples of such behavior for a steel are shown in
Fig. 12.25. If biased strain limits are imposed, and if the strain range is sufficiently large to cause
some cyclic plasticity, as on the left, the resulting mean stress will gradually shift toward zero as
increasing numbers of cycles are applied. Sometimes a stable nonzero value is reached, or if the
degree of plasticity is large, the mean stress may shift essentially to zero. This behavior is called
cycle-dependent relaxation. Behavior of this type is further illustrated by Fig. 12.26.

If biased stress limits with a sufficiently large range are imposed, the mean strain will increase
with cycles, as illustrated on the right in Fig. 12.25. The mean strain shift may decrease its rate
and stop, it may establish an approximately constant rate, or it may accelerate and lead to a
failure somewhat similar to that in a tension test. This behavior is called cycle-dependent creep

Figure 12.25 Cycle-dependent relaxation of mean stress (left) and cycle-dependent creep
(right), both for an AISI 1045 steel. On the right, the specimen was previously yielded, so that
the monotonic curve does not appear. (From [Landgraf 70]; copyright c© ASTM; reprinted with
permission.)
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Figure 12.26 Cycle-dependent relaxation during controlled strain with an alternating mean
value for the same steel as in Fig. 12.25. The stress–strain response is shown on the right for
one typical repetition of the strain history. (Illustration courtesy of R. W. Landgraf, Howell, MI.)

or ratchetting. Cyclic creep and relaxation are a single phenomenon viewed under two different
situations.

Cyclic creep–relaxation may occur at the same time as cyclic hardening or softening, and the
two phenomena may interact. Relaxation effects are especially obvious when they are enhanced
by cyclic softening occurring at the same time, which is the case for Fig. 12.25 (left). Cyclic
creep–relaxation behavior occurs for combinations of material and temperature where time-
dependent effects are usually considered small, as well as in situations where there is an obvious
combination of cycle-dependent and time-dependent effects. However, subtle time dependency may
play a role even where the behavior is thought to be mainly cycle dependent.

A paper by Martin (1971) describes a fairly straightforward approach of modifying the spring
and slider model to handle cycle-dependent transient behavior. More general three-dimensional
incremental plasticity models can also be devised that exhibit cycle-dependent transient behavior;
see Skrzypek (1993).

A detailed study of cycle-dependent relaxation in SAE 1045 steel is described by Landgraf
and Chernenkoff (1988). The following equation is used to determine the mean stress σm N after N
cycles of relaxation:

σm N = σmi Nr (12.56)

In this equation, σmi is the initial (N = 1) value of mean stress. The exponent r has values typically
in the range 0 to −0.2 and varies with the level of cyclic strain and the material. For SAE 1045 steel
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heat treated to various strength levels, r was found to vary as follows:

r = 0.085

(
1 − εa

εath

)
(εa > εath)

r = 0 (εa ≤ εath)

εath = e−8.41+0.00536(HB)

(12.57)

Here, εa is the applied strain amplitude, and εath is a threshold value below which no relaxation
occurs. Also, HB is the Brinell hardness in units of kg/mm2. (See Section 4.7.). The stress value
σath corresponding to εath on the cyclic stress–strain curve is somewhat lower than the cyclic yield
strength. This trend is included in Fig. 12.21.

Equations 12.56 and 12.57 also provide reasonable estimates for mean stress relaxation in other
heat-treated steels. For other engineering metals, similar equations may be useful if employed with
numerical constants based on test data for the particular material.

Example 12.7
Let the strain history of Fig. 12.24(a) be replaced by that of Fig. E12.7, which differs only in that
the cycle from G to H and return to G is now repeated 20 times. Simulate the stress response
for this revised strain history (a) according to a spring and slider rheological model, and (b)
including the transient effect of mean stress relaxation.

Solution (a) Behavior according to a spring and slider model predicts that hysteresis loop
G-H in Fig. 12.24(b) is simply retraced 20 times. Thus, no new calculations are needed, and the
results of Table E12.6(b) still apply, with σG = −804.4 and σH = 909.5 MPa for each of the 20
cycles.

(b) Some relaxation of mean stress during the 20 cycles is likely. The result of Ex. 12.6 is
considered to provide only the initial value of the mean stress:

σmi = σG + σH

2
= −804.4 + 909.5

2
= 52.6 MPa
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Subsequent values can then be calculated from Eqs. 12.56 and 12.57. For the latter, we need the
Brinell hardness, HB, which can be estimated from Eq. 4.32 and the ultimate tensile strength
given in Ex. 12.6:

HB = σu, MPa

3.45
= 1158 MPa

3.45
= 336 kg/mm2

From Table E12.6(b), we have εa = �εG H /2 = 0.0153/2 = 0.00765, so that Eq. 12.57 gives

εath = e−8.41+0.00536(HB) = e−8.41+0.00536(336) = 0.001346

r = 0.085

(
1 − εa

εath

)
= 0.085

(
1 − 0.00765

0.001346

)
= −0.398

Equation 12.56 then provides the specific relationship for mean stress relaxation in this case:

σm N = σmi Nr = 52.6N−0.398

Employing this relationship for various numbers of cycles from the 20 that are applied gives the
following:

N , cycles 1 2 5 10 15 20
σm N , MPa 52.6 39.9 27.7 21.0 17.9 15.9

Ans.

Hence, the mean stress decays to about 30% of its initial value over the 20 cycles. However,
all of the mean stress values involved are relatively small, so the stress–strain response will be
similar to Fig. 12.24, except that loop G-H drifts slightly downward during the 20 cycles.

12.6 SUMMARY

Some relationships commonly used to fit stress–strain curves involve linear-elastic behavior up to a
distinct yield point σo. If the curve is flat beyond σo, the relationship is said to be elastic, perfectly
plastic, and Eq. 12.1 applies. A rising linear behavior beyond σo is called an elastic, linear-hardening
relationship, and this is given by Eq. 12.4. A power relationship beyond σo may also be used and is
given by Eq. 12.8. The Ramberg–Osgood relationship differs from the others described in that there
is no distinct yield point.

ε = σ

E
+
( σ

H

)1/n
(12.58)

At all values of stress, elastic and plastic strain are summed to obtain total strain, resulting in
a smooth, continuous curve. The plastic (not total) strain and stress have a power relationship.
Rheological models consisting of linear springs and frictional sliders can be used to model any of
these stress–strain curves.
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Considering three-dimensional states of stress, we note that Hooke’s law still applies beyond
yielding, but gives only the elastic portion of the strain. The plastic portion can be related to the
stress by deformation plasticity theory, which employs equations analogous to Hooke’s law:

εpx = 1

E p
[σx − 0.5(σy + σz)], εpy, εpz, similarly

γpxy = 3

E p
τxy, γpyz, γpzx , similarly

(12.59)

Here, Poisson’s ratio is replaced by 0.5, so that plastic strains do not contribute to volume change.
The elastic modulus is replaced by the variable E p = σ̄ /ε̄p, which is the secant modulus to a
point on the effective stress versus plastic strain curve, σ̄ versus ε̄p. These effective quantities
are proportional to the corresponding octahedral shear stresses and strains and are related to the
principal stresses and plastic strains by Eqs. 12.21 and 12.22. Total strains are obtained by adding
elastic and plastic portions.

A key feature of deformation plasticity theory is that the σ̄ versus ε̄p curve is assumed to be
independent of the state of stress, thus permitting a stress–strain curve from one state of stress to
be used to estimate those for other states of stress. As employed here, the effective stress–strain
curve, σ̄ = f (ε̄), is identical to the uniaxial curve, σ = f (ε). For plane stress, estimates of
stress–strain curves as a function of λ = σ2/σ1 are given, in general, by Eq. 12.36, and more
specific relationships for elastic, perfectly plastic and Ramberg–Osgood materials are given by
Eqs. 12.37 and 12.39, respectively.

For unloading following yielding, and for cyclic loading, spring and frictional slider rheological
models suggest that yielding should occur when the stress range reaches twice the yield stress
from the monotonic stress–strain curve, �σ = 2σo. Furthermore, stress–strain paths for these
situations are predicted to follow a path that is given by a factor-of-two expansion of the monotonic
stress–strain curve, namely,

�ε

2
= f

(
�σ

2

)
(12.60)

where ε = f (σ ) is the monotonic curve. In the preceding equation, �σ and �ε are measured
from origins at points where the loading direction changes, resulting in symmetrical stress–strain
hysteresis loops being formed. If the strain varies in an irregular manner with time, the
stress–strain paths still form such hysteresis loops, obeying Eq. 12.60. After completion of a
loop, the stress–strain behavior exhibits a memory effect in that it returns to the path previously
established.

For stable cyclic loading following completion of most cycle-dependent hardening or softening,
the behavior predicted by a multistage spring and slider rheological model is reasonably accurate
for many engineering metals. It is necessary to replace the monotonic stress–strain curve with a
special cyclic stress–strain curve, with the Ramberg–Osgood form often being used:

εa = σa

E
+
( σa

H ′
)1/n′

(12.61)
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In this equation, stress and strain amplitudes appear, and the constants H ′ and n′ differ from those
for the monotonic curve. In addition to hardening–softening, a second type of transient, cycle-
dependent behavior occurs in engineering metals—namely, cyclic creep–relaxation.

N E W T E R M S A N D S Y M B O L S

(a) Terms
Bauschinger effect
cycle-dependent creep (ratchetting)
cycle-dependent hardening
cycle-dependent relaxation
cycle-dependent softening
cyclic stress–strain curve
cyclic yield strength, σ ′

o
deformation plasticity theory
hysteresis loop
incremental plasticity theory
isotropic hardening

kinematic hardening
memory effect
monotonic loading
power-hardening σ -ε curve: σo, H1, n1
proportional loading
Ramberg–Osgood σ -ε curve

monotonic: E , H , n
cyclic: E , H ′, n′

slope reduction factor, δ

strain-hardening exponent: n1, n, n′

(b) Nomenclature for Three-Dimensional Stresses and Strains
E p Plastic modulus
γxy , γyz , γzx Total shear strains on orthogonal planes
γexy , γeyz , γezx Elastic shear strains
γpxy , γpyz , γpzx Plastic shear strains
εx , εy , εz Total normal strains in orthogonal directions
εex , εey , εez Elastic normal strains
εpx , εpy , εpz Plastic normal strains
ε1, ε2, ε3 Normal strains in the principal directions
εe1, εe2, εe3 Elastic strains in the principal directions
εp1, εp2, εp3 Plastic strains in the principal directions
ε̄ Effective total strain
ε̄p Effective plastic strain
λ Ratio σ2/σ1 for plane stress (σ3 = 0)

ν̃ Generalized Poisson’s ratio
σx , σy , σz Normal stresses in orthogonal directions
σ1, σ2, σ3 Principal normal stresses
σ̄ Effective stress
τxy , τyz , τzx Shear stresses on orthogonal planes
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PROBLEMS AND QUESTIONS

Section 12.2
12.1 The monotonic stress–strain curve of RQC-100 steel under uniaxial stress can be approx-

imated by an elastic, linear-hardening relationship. Two points on this curve are given in
Table P12.1, with the first point corresponding to the beginning of yielding. Plot the curve
and write its equation in the form of Eq. 12.4, with numerical values substituted for the
constants E , δ, and σo.

Table P12.1

σ, MPa ε

783 1.50 × 10−2

810 1.1 × 10−2

12.2 Proceed as in Prob. 12.1, except use the two points in Table P12.2 for an AISI 4340 steel.
Yielding begins at the first point.

Table P12.2

σ, MPa ε

1200 4.00 × 10−2

1310 3.50 × 10−2

12.3 Consider the engineering stress–strain data in Table P4.8 for AISI 4140 steel tempered at
649◦C. Make a stress–strain plot of the data for strains less than 2%. Of Eqs. 12.1, 12.4,
12.8, and 12.12, choose the one that will best represent the data, and perform a fit to evaluate
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the materials constants. Add your fitted curve to the plot of the data, and comment on how
well it fits the data.

12.4 Engineering stress–strain data are given in Table P12.4 for the beginning of a tension test on
AISI 4140 steel tempered at 427◦C. Make a stress–strain plot of the data. Of Eqs. 12.1, 12.4,
12.8, and 12.12, choose the one that will best represent the data, and perform a fit to evaluate
the materials constants. Add your fitted curve to the plot of the data, and comment on how
well it fits the data.

Table P12.4

σ, MPa ε, % σ, MPa ε, %

0 0 1399 0.781
402 0.197 1406 1.010
812 0.405 1445 1.386

1198 0.595 1466 1.823
1358 0.681 1483 2.502
1403 0.732 1492 3.278

12.5 Consider the engineering stress–strain data in Table P4.11 for near-γ titanium aluminide, Ti-
48Al-2V-2Mn. Make a stress–strain plot of the data for strains less than 1.2%. Of Eqs. 12.1,
12.4, 12.8, and 12.12, choose the one that will best represent the data, and perform a fit to
evaluate the materials constants. Add your fitted curve to the plot of the data, and comment
on how well it fits the data.

12.6 Consider the engineering stress–strain data in Table P4.6 for 6061-T6 aluminum. Make a
stress–strain plot of the data for strains less than 7.5%. Of Eqs. 12.1, 12.4, 12.8, and 12.12,
choose the one that will best represent the data, and perform a fit to evaluate the materials
constants. Add your fitted curve to the plot of the data, and comment on how well it fits the
data.

12.7 Consider the engineering stress–strain data in Table P4.9 for AISI 4140 steel tempered at
204◦C. Make a stress–strain plot of the data for strains less than 4%. Of Eqs. 12.1, 12.4,
12.8, and 12.12, choose the one that will best represent the data, and perform a fit to evaluate
the materials constants. Add your fitted curve to the plot of the data, and comment on how
well it fits the data.

12.8 Consider the engineering stress–strain data in Table P4.7 for gray cast iron. Make a stress–
strain plot of these data. Of Eqs. 12.1, 12.4, 12.8, and 12.12, choose the one that will best
represent the data, and perform a fit to evaluate the materials constants. Or if none of these
seems to fit very well, suggest another form of equation yourself, and fit it. Add your fitted
curve to the plot of the data, and comment on how well it fits the data.

12.9 Consider the engineering stress–strain data in Table P4.14 for a tension test on PMMA
polymer. Make a stress–strain plot of these data. Of Eqs. 12.1, 12.4, 12.8, and 12.12, choose
the one that will best represent the data, and perform a fit to evaluate the materials constants.
Or if none of these seems to fit very well, suggest another form of equation yourself, and
fit it. Add your fitted curve to the plot of the data, and comment on how well it fits the
data.
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Section 12.3
12.10 Consider Eqs. 12.26 and 12.27 and proceed as follows: Starting with Eq. 12.26, derive

Eq. 12.27(a), verifying in the process that the expressions of Eq. 12.27(d) and (e) for Et

and ν̃ appear in the modulus and Poisson’s ratio positions in the equation.
12.11 Proceed as in Ex. 12.3, except change the pressure vessel to a thin-walled spherical one of

radius r and wall thickness t .
12.12 A thin-walled tubular pressure vessel of radius r , wall thickness t , and length L has closed

ends and is made of a material having a uniaxial stress–strain curve of the Ramberg–Osgood
form, Eq. 12.12. If the internal pressure p is increased monotonically, derive an equation for
the relative change in the enclosed volume, dVe/Ve, as a function of the pressure p and the
various constants involved. (Suggestion: See Prob. 5.21.)

12.13 Consider stress with principal normal stresses σ2 = σ3 = σ1/2, and a material with a uniaxial
stress–strain curve of the Ramberg–Osgood form. Develop an equation for ε1 as a function
of σ1 and λ as well as materials constants E , H1, n1, and ν.

12.14 Consider plane stress with principal normal stresses σ1, σ2 = λσ1, and σ3 = 0. Assuming a
Ramberg–Osgood form of stress–strain curve, derive relationships analogous to Eq. 12.39
for the other two principal strains, ε2 and ε3, each as a function of σ1 and λ and materials
constants.

12.15 For a given material, assume that constants E , H , and n are known for its uniaxial
stress–strain curve of the Ramberg–Osgood form, Eq. 12.12. An estimate is needed of the
stress–strain curve γ = fτ (τ ) for a state of pure planar shear stress.

(a) Show that the appropriate estimate is

γ = τ

G
+
(

τ

Hτ

)1/n

where G = E/[2(1 + ν)] and Hτ = H/3(n+1)/2. Note that the principal stresses and
strains for pure shear are given in Fig. 4.41.

(b) For the Fig 12.9 material, calculate a number of points on both the uniaxial and the
pure shear stress–strain curves, covering strains from zero to 0.04. Then plot the two
curves on the same graph and comment on the comparison.

12.16 For a given material, assume that constants E , σo, and δ are known for its uniaxial
stress–strain curve of the elastic, linear-hardening form, Eq. 12.5.

(a) Develop an equation for estimating the stress–strain curve γ = fτ (τ ) for a state of
pure planar shear stress. (See Fig. 4.41.) The materials constants in your equation
should be G, δ, ν, and the yield strength in shear, τo.

(b) Does the new equation still exhibit linear hardening? What is its slope dτ/dγ ? If the
new slope is denoted δτ G, where G is the shear modulus, is δτ the same as δ for the
uniaxial curve?

12.17 Consider a material with a uniaxial stress–strain curve of the Ramberg–Osgood form,
Eq. 12.12, subjected to the state of stress

σ1 = σ2, σ3 = ασ1 (−1 ≤ α ≤ 1)

where σ1, σ2, and σ3 are the principal normal stresses and α is a constant.
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(a) Derive an equation for the principal normal strain ε1 as a function of σ1, α, and
materials constants.

(b) Assume that the material is the 7075-T651 aluminum of Ex. 12.1, with Poisson’s
ratio ν = 0.33. Plot the family of curves resulting from α = −1,−0.5, 0, 0.5, and 1,
covering strains from zero to 0.04. Then comment on the trends observed.

12.18 Consider a situation of plane stress, σ3 = 0, with an applied stress σ1, where deformation
is prevented in the other in-plane direction, so that ε2 = 0. (For example, this occurs in a
sample of material loaded and constrained as in Fig. E5.3.)

(a) Letting the x-y-z axes be the principal stress axes, 1-2-3, apply Eq. 12.27 to develop
expressions as follows: (1) σ2 as a function of σ1 and the generalized Poisson’s ratio
ν̃, (2) σ1 as a function of effective stress σ̄ and ν̃, for which Eq. 12.21 is also needed,
and (3) ε1 as a function of effective strain ε̄ and ν̃.

(b) Let the effective (same as uniaxial) stress–strain curve be the Ramberg–Osgood one
from Ex. 12.1, with Poisson’s ratio ν = 0.33. Then calculate a number of values of
σ1 and ε1 for ε̄ ranging from zero to 0.04.

(c) Plot the σ̄ versus ε̄ curve, and on the same graph, plot a second curve for σ1 versus
ε1. Comment on the comparison of the two curves. Explain the cause of the trend
observed.

12.19 Consider the state of strain ε2 = ε3 = 0, with a stress σ1 applied, and note that symmetry
requires σ2 = σ3. Proceed as in Prob. 12.18(a), (b), and (c), except do so for the ε2 = ε3 = 0
case.

Section 12.4
12.20 For a titanium alloy, assume that the stress–strain relationship is an elastic, perfectly plastic

one, with constants E = 120 GPa and σo = 600 MPa, and also assume that the behavior
follows a spring and slider rheological model of the type shown in Fig. 12.4(a).

(a) Determine and plot the stress–strain response if the material is loaded from zero stress
and strain to εmax = 0.009 and then cycled between this εmax and εmin = −0.009.

(b) Proceed as in (a) for εmax = 0.009 and εmin = 0.002.
(c) Proceed as in (a) for εmax = 0.009 and εmin = −0.003.

12.21 An elastic, linear-hardening material has elastic modulus E = 200 GPa, yield strength
σo = 500 MPa, and a value of δ = 0.1 for Eq. 12.4. Assuming that the behavior follows
the rheological model of Fig. 12.4(b), estimate and plot the stress–strain response for the
following:

(a) Completely reversed cyclic straining at εa = 0.006.
(b) Straining from zero to ε = 0.012, followed by decreasing strain to ε = 0.005, and

then increasing strain to ε = 0.015.
12.22 Assume that a steel behaves according to the rheological model of Fig. 12.4(b), with the

elastic, linear-hardening stress–strain curve, Eq. 12.4, having constants E = 208 GPa,
σo = 523 MPa, and δ = 0.0535.

(a) Determine and plot the stress–strain response if the material is loaded from zero stress
and strain to εmax = 0.012 and then cycled between this εmax and εmin = 0.008.

(b) Proceed as in (a) for εmax = 0.012 and εmin = 0.005.
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12.23 A multistage spring–slider rheological model as in Fig. 12.6 has a spring in series with three
parallel spring–slider combinations. For model constants as given in the table that follows,
determine and plot the stress–strain response as the strain increases from zero to ε = 0.016
and then returns to zero.

Stage No. 1 2 3 4
Ei , GPa 200 120 150 50
σoi , MPa 0 800 1100 1300

12.24 The rheological model of Prob. 12.23 is started from zero, strained to εmax = 0.016, and
then cycled between this εmax and εmin = 0. Determine and plot the stress–strain response.

12.25 For the rheological model of Prob. 12.23, determine and plot the stress–strain response for
starting at zero and then following the sequence of strains given in the accompanying table.

Peak or Valley A B C D A′

ε, Strain 0.016 −0.008 0.008 0 0.016

12.26 Aluminum alloy 2024-T351 is loaded from zero stress and strain to εmax = 0.016 and
then cycled between this εmax and εmin = 0.004. Assume that the stress–strain behavior is
similar to a multistage spring–slider model that follows the stable cyclic stress–strain curve
of Ramberg–Osgood form given by constants in Table 12.1. Estimate the maximum and
minimum stresses σmax and σmin for this cyclic loading. Then plot the stress–strain response
during the cyclic loading.

12.27 Proceed as in Prob. 12.26, but let the material be loaded from zero stress and strain to
εmin = −0.016 and then cycled between this εmin and εmax = −0.004. Note that the loading
to εmin should follow Eq. 12.51(b).

12.28 The steel AISI 4340 steel (σu = 1172 MPa) is loaded from zero stress and strain to
εmax = 0.012 and then cycled between this εmax and εmin = 0.003. Assume that the
stress–strain behavior is similar to a multistage spring–slider model that follows the stable
cyclic stress–strain curve of Ramberg–Osgood form given by constants in Table 12.1.
Estimate the maximum and minimum stresses σmax and σmin for this cyclic loading. Then
plot the stress–strain response during the cyclic loading.

12.29 Aluminum alloy 7075-T6 is loaded from zero stress and strain to εmax = 0.035 and then
cycled between this εmax and εmin = 0.005. Assume that the stress–strain behavior is
similar to a multistage spring–slider model that follows the stable cyclic stress–strain
curve of Ramberg–Osgood form given by constants in Table 12.1. Estimate the maximum
and minimum stresses, σmax and σmin, for this cyclic loading. Then plot the stress–strain
response during the cyclic loading.

Section 12.5
12.30 For aluminum alloy 2024-T351, the monotonic and cyclic stress–strain curves both fit

Ramberg–Osgood forms, Eqs. 12.12 and 12.54, respectively. Constants for the monotonic
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curve are E = 73.1 GPa, H = 662 MPa, and n = 0.070, and those for the cyclic curve are
given in Table 12.1.

(a) Plot both of these curves on the same linear–linear axes out to a strain of ε = 0.01.
(b) Does this material harden or soften cyclically? How do the yield strengths from the

two curves compare?
12.31 Various properties are given in Chapter 14, specifically Table 14.1, for four strength levels of

SAE 4142 steel, including E , H ′, and n′ for Eq. 12.54.
(a) Plot all four cyclic stress–strain curves on the same graph, covering strain amplitudes

from zero to 0.04.
(b) Then comment on the trends in these curves and how they correlate with the strength

and ductility from tension tests. Include in your comparison the monotonic yield
strength versus the 0.2% offset yield strength from the cyclic curves.

12.32 For completely reversed strain cycling (σm ≈ 0) of 7075-T6 Al alloy,. This alloy has tensile
properties of yield strength 469 MPa, ultimate strength 578 MPa, and 51% reduction in area.

(a) Make a stress–strain plot of these data. Then fit the data to obtain a cyclic stress–
strain curve of the Ramberg–Osgood form, Eq. 12.54, for which E = 710 GPa.
Add your fitted curve to the plot of the data, and comment on how well it fits the
data.

(b) Representative points from a typical monotonic stress–strain curve for this material
are given in Table P12.32(b). Add these data to the stress–strain plot from (a) and
comment on the behavior of the material.

Table P12.32(a)

εa σa , MPa εpa N f , cycles

0.0200 524 0.01741 257
0.0100 459 0.00774 1 494
0.0060 410 0.00398 6 749
0.0040 352 0.00227 19 090
0.0030 315 0.00144 36 930
0.0020 270 0.00067 321 500
0.0015 241 0.00031 2 451 000

Source: Data in [Leese 85].

Table P12.32(b)

ε σ, MPa

0 0
0.00218 441
0.00218 379
0.01200 379
0.01400 402
0.01600 422
0.01800 433
0.02000 438

12.33 For completely reversed strain cycling (σm ≈ 0) of 2024-T351 Al with σu = 469 MPa and
σ0 = 379 MPa, Table P12.33(a) gives strain amplitudes and the corresponding cyclically
stable amplitudes of stress and plastic strain, as well as fatigue lives.

(a) Make a stress–strain plot of these data. Then fit the data to obtain a cyclic stress–
strain curve of the Ramberg–Osgood form, Eq. 12.54, for which E = 73, 100 MPa.
Add your fitted curve to the plot of the data, and comment on how well it fits the data.
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(b) Representative points from a typical monotonic stress–strain curve for this material
are given in Table P12.33(b). Add these data to the stress–strain plot from (a) and
comment on the behavior of the material.

Table P12.33(a)

εa σa , MPa εpa N f , cycles

0.02000 948 0.01495 222
0.01000 834 0.00570 992
0.00500 703 0.00150 6 004
0.00400 631 0.00085 14 130
0.00318 579 0.00036 43 860
0.00270 524 0.00015 132 150

Note: Last three prestrained 10 cycles at εa = 0.01.
Source: Data in [Dowling 73].

Table P12.33(b)

ε σ, MPa

0 0
0.00495 1025
0.00520 1070
0.00556 1109
0.00625 1097
0.00675 1091
0.01000 1091
0.02000 1148

12.34 For quenched and tempered RQC-100 steel with ultimate tensile strength σu = 758 MPa
and E = 200 GPa, Table P12.34 gives strain amplitudes and the corresponding cyclically
stable amplitudes of stress, plastic strain, and mean stress, as well as fatigue lives. Make a
stress–strain plot of these data. Then fit the data to obtain a cyclic stress–strain curve of the
Ramberg–Osgood form, Eq. 12.54, for which E = 206.7 GPa. Add your fitted curve to the
plot of the data, and comment on how well it fits the data.

Table P12.34

εa σa , MPa σm , MPa εpa N f , cycles

0.0177 2089 −55 0.00720 20
0.0150 1972 0 0.00490 40
0.0125 1931 −34 0.00300 91
0.0095 1751 28 0.00110 245
0.0090 1586 76 0.00070 476
0.0075 1524 0 0.00020 1 130
0.0072 1379 138 — 800
0.0050 1034 0 — 18 950
0.0040 827 0 — 386 500

Source: Data in [Landgraf 66] and [Landgraf 68].

12.35 From strain-controlled cyclic torsion tests on thin-walled tubes of hot-rolled and normalized
SAE 1045 steel, the applied shear strain amplitudes γa , as well as the resulting amplitudes
of shear stress τa and plastic shear strain γpa , are given in Table P12.35. (The τa and γpa

values are for cyclically stable behavior near half of the fatigue life, Nf .)
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(a) Make a shear stress–strain plot of these data. Then fit the data to a cyclic stress–strain
curve of the Ramberg–Osgood form. Use G = 79.1 GPa, and obtain H ′

τ and n′ from
fitting τa = H ′

τ γ
n′
pa . Then add your fitted curve to the plot of the data, and comment

on how well it fits.
(b) For this material under uniaxial stress, constants E , H ′, and n′ for the cyclic

stress–strain curve are given in Table 14.1. On the basis of Prob. 12.15, use these
uniaxial constants to estimate the cyclic stress–strain for shear. Poisson’s ratio is
ν = 0.277. Compare this estimate to the data on the stress–strain plot from (a), and
comment on the success of the estimate.

Table P12.35

γa τa , MPa γpa Nf , cycles

0.0250 267 0.0217 502
0.0150 234 0.0120 1 372
0.0082 197 0.0057 6 998
0.0050 165 0.0029 33 840
0.0040 158 0.0020 70 020
0.0030 148 0.0012 546 000

Source: Data in [Leese 85].

12.36 The steel RQC-100 of Table 12.1 is loaded from zero stress and strain to εmax = 0.010 and
then cycled between this εmax and εmin = 0.006.

(a) Estimate the maximum and minimum stresses, σmax and σmin, for this cyclic loading,
and plot the stress–strain response.

(b) Consider cyclic relaxation of mean stress. Estimate and plot the variation of mean
stress with cycles out to N = 5 × 104 cycles, and comment on the trend observed.

12.37 The steel SAE 1045, when heat treated to a hardness of HB = 500, has constants for its
cyclic stress–strain curve (Eq. 12.54) of E = 206 GPa, H ′ = 2636 MPa, and n′ = 0.12. An
axially loaded member of this material is cycled between εmin = 0 and εmax = 0.008.

(a) Estimate and plot the stress–strain response for behavior that is cyclically stable.
(b) Consider cyclic relaxation of mean stress. Estimate and plot the variation of mean

stress with cycles out to N = 104 cycles, and comment on the trend observed.
12.38 Aluminum alloy 2024-T351 is loaded from zero stress and strain and is then subjected to the

strain sequence given in the accompanying table and also shown in Fig. P12.38. Note that
valley A occurs 11 times and peak B occurs 10 times. Estimate and plot the stress–strain
response. Assume that the stress–strain behavior is stable (cyclic hardening or softening
already complete), and use the Ramberg–Osgood cyclic stress–strain curve given by the
constants in Table 12.1.

Peak or Valley A1 B1 A-B A10 B10 A11 C A′

ε, Strain −0.016 −0.005 repeats −0.016 −0.005 −0.016 −0.002 −0.016
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Figure P12.38

12.39 Aluminum alloy 2024-T351 is loaded from zero stress and strain and is then subjected to the
strain sequence given in the accompanying table. Note that valley B occurs 11 times and peak
C occurs 10 times. Estimate and plot the stress–strain response. Assume stable stress–strain
behavior (cyclic hardening or softening already complete) and use the Ramberg–Osgood
cyclic stress–strain curve given by the constants in Table 12.1.

Peak or Valley A B1 C1 B-C B10 C10 B11 A′

ε, Strain 0.020 0.004 0.016 repeats 0.004 0.016 0.004 0.020

12.40 Aluminum alloy 7075-T6 is loaded from zero stress and strain and is then subjected to the
strain sequence given in the accompanying table. Note that valley B and peak C each occur
50 times. Estimate and plot the stress–strain response. Assume that the stress–strain behavior
is stable (cyclic hardening or softening already complete), and use the Ramberg–Osgood
cyclic stress–strain curve given by the constants in Table 12.1.

Peak or Valley A B1 C1 B-C B50 C50 D A′

ε, Strain 0.010 0.035 0.025 repeats 0.01 0.025 0.005 0.035

12.41 The steel AISI 4340 steel (σu = 1172 MPa) is loaded from zero stress and strain and is then
subjected to the strain sequence in the accompanying table. Note that peak C and valley D
each occur 5 times. Estimate and plot the stress–strain response. Assume stable stress–strain
behavior (cyclic hardening or softening already complete) and use the Ramberg–Osgood
cyclic stress–strain curve given by the constants in Table 12.1.

Peak or Valley A B1 C1 D1 C-D C5 D5 A′

ε, Strain 0.015 –0.003 0.005 0.002 repeats 0.007 0.003 0.015
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Stress–Strain Analysis of
Plastically Deforming Members

13.1 INTRODUCTION
13.2 PLASTICITY IN BENDING
13.3 RESIDUAL STRESSES AND STRAINS FOR BENDING
13.4 PLASTICITY OF CIRCULAR SHAFTS IN TORSION
13.5 NOTCHED MEMBERS
13.6 CYCLIC LOADING
13.7 SUMMARY

OBJECTIVES

• Perform elasto-plastic stress–strain analysis for simple cases of bending and torsion,
considering various forms of stress–strain curve.

• Employ approximate methods, such as Neuber’s rule, to estimate stresses and strains at
notches where there is local plastic deformation.

• Extend the analysis of bending, torsion, and notched members to unloading, for determining
residual stresses and strains, and further to cyclic loading, including irregular load versus
time histories.

13.1 INTRODUCTION

It is often useful for engineering purposes to analyze plastic deformation in components of
machines, vehicles, or structures. This occurs in two types of situations. First, it may be desirable to
know the load necessary to cause gross plastic deformation, sometimes called plastic collapse. The
safety factor for failure due to accidental overload can then be calculated by comparing the failure
load with the loads expected during service of the component. Second, the stresses and strains that
accompany plastic deformation in localized areas, as at the edge of a beam or at a stress raiser,
are of interest. Such deformations introduce residual stresses, perhaps intentional ones, that can be
evaluated by analysis of the plastic deformation. Localized plastic deformation caused by cyclic
loading is of considerable importance, as this is often associated with fatigue cracking.

693
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Local plasticity at stress raisers (notches) can be analyzed by applying an approximate method
such as Neuber’s rule. In some cases that are frequently of practical interest, such as bending of
beams and torsion of circular shafts, plastic deformation can be analyzed in a fairly straightforward
manner by a mechanics-of-materials type of approach. Three steps are needed: (1) Assume a strain
distribution. (2) Apply equilibrium of forces. (3) Choose a particular stress–strain relationship, and
use this to complete the analysis.

We will apply such approaches not only to static loading, but also to unloading and to cyclic
loading. The application to cyclic loading will be employed in the next chapter for the strain-
based approach to fatigue. Detailed analysis of many complex situations of loading and geometry
is not possible with the relatively simple methods of this chapter. Analysis by finite elements or
another numerical method may be needed. (See the SAE Fatigue Design Handbook (Rice, 1997)
for a chapter-length introduction to numerical stress–strain analysis.) The treatment given here
nevertheless provides an introduction and some useful engineering tools. In what follows, it is
assumed that the reader is familiar with portions of Chapter 12.

13.2 PLASTICITY IN BENDING

Bending of beams where the material deforms in a linear-elastic manner is quite thoroughly covered
in elementary and advanced textbooks on mechanics of materials. Plastic bending is also often
introduced, but typically is limited to elastic, perfectly plastic behavior. In this portion of the
chapter, bending involving plastic deformation will be considered for various stress–strain curves.
Procedures for developing closed-form solutions are described, and some completed solutions are
given. We will consider only cases where the applied loads lie in a plane of symmetry of the cross
section.

13.2.1 Review of Elastic Bending

As a brief review of linear-elastic bending, consider the simple case of three-point bending of a
beam having a rectangular cross section, as illustrated in Fig. 13.1. The applied loads lie in the
x-y plane, which is a plane of symmetry of the beam. Elastic stress distributions in the beam
involve a zero stress or neutral axis, N -N , that coincides with a centroidal axis of the cross-sectional
area.

Normal stresses for linear-elastic bending are given by

σ = My

Iz
(13.1)

where M is the bending moment at the cross section of interest, such as M = Px/2 for the cross
section illustrated in Fig. 13.1. The quantity Iz is the moment of inertia of the cross-sectional area
about the neutral axis, and the distance y is measured from the neutral axis. The positive direction for
y is chosen as the direction that gives positive σ on the side of the neutral axis where tensile stresses
occur. The equation gives a linear distribution of the normal stress, σ = σx , with distance y from
the neutral axis, which arises from two key assumptions: (1) linear-elastic stress–strain behavior
and (2) plane sections remaining plane after deformation—which combine to require a linear stress
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Figure 13.1 Elastic bending and shear in a rectangular beam. For a cross section as indicated
above, the stresses are distributed as shown below.

distribution. For rectangular cross sections of thickness t and depth 2c, Eq. 13.1 gives the maximum
tensile stress as

σc = 3M

2tc2
(13.2)

where the subscript indicates that this stress occurs at y = c. Since in this case the cross section
is symmetrical above and below the neutral axis, an equal compressive stress −σc occurs at
y = −c.

Except for cases of pure bending, these normal stresses are accompanied by shear stresses
that can be computed as described in Appendix A, Section A.2. For a rectangular cross section,
the shear stress τ = τxy for elastic deformation varies as a parabola with a maximum value at the
neutral axis:

τ = 3V
(
c2 − y2

)
4tc3

(13.3)

Here, V is the shear force, such as V = P/2 for the cross section illustrated in Fig. 13.1.
Equation 13.1 applies even if the cross-sectional area is not symmetrical about the neutral axis,

provided that the requirement of symmetry about the plane of loading is still met. Such a case is
illustrated in Fig. 13.2(a). However, if symmetry about the plane of loading does not exist, then
the stresses can still be determined by considering bending about two axes, as for Fig. 13.2(b).
In addition, if the plane of unsymmetrical bending does not pass through the shear center of the
cross-sectional area, torsional stresses must be considered.
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Figure 13.2 Bending due to loads in a plane of symmetry of the cross section (a), and
bending due to loads not in a plane of symmetry (b).

13.2.2 Plastic Bending Analysis by Integration

Let us restrict our attention to cases of bending in a plane of symmetry of the beam and generalize
the problem to permit plastic deformation. Also, assume that shear stresses are absent, or if present,
that their effects are small. Under these circumstances, a reasonably accurate physical assumption,
even for plastic deformation, is that originally plane cross sections remain plane. This results in a
linear variation of strain with distance from the neutral axis, given by

ε

y
= εc

c
(13.4)

where ε is strain in the longitudinal (x) direction and εc is its value at y = c, the edge of the beam.
Hence, if yielding occurs, the nonlinear stress–strain curve causes the stress distribution to become
nonlinear, as illustrated in Fig. 13.3. Due to the linear strain distribution, the stress distribution has
the same shape as the portion of the stress–strain curve up to ε = εc.

We can derive the bending moment by considering the contribution of a differential element of
area, as shown in Fig. 13.4:

d M = (stress)(area)(distance) = (σ )(t dy)(y) (13.5)

Here, the thickness t can vary with y. Integrating to obtain the moment gives

M =
∫ c1

−c2

σ t y dy (13.6)
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Figure 13.4 Area element (t dy) and stress distribution needed for integration to relate
bending moment M to stresses and strains.
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The cross-sectional area may not be symmetrical above and below the x-axis, and the stress–strain
curve may not be symmetrical with respect to tension and compression. If either of these
asymmetries exists, then the neutral axis shifts somewhat from the centroid of the cross-sectional
area as plastic deformation progresses, so it needs to be located before the integration can proceed.
The principle to be followed in doing so is that the volumes under the tensile and compressive
portions of the stress distribution must give equal and opposite forces—that is, a sum of zero—
corresponding to an axial force P of zero:

P =
∫ c1

−c2

σ t dy = 0 (13.7)

Equations 13.4, 13.6, and 13.7, and a stress–strain curve ε = f (σ ), are needed to solve any specific
problem.

13.2.3 Rectangular Cross Sections

Consider the simple case of a rectangular cross section and a material with a symmetrical
stress–strain curve. Hence, t is constant, c1 = c2 = c, and the neutral axis remains at the centroid.
The symmetry that exists is such that the integral can be computed for one side of the neutral axis
and then doubled:

M = 2t
∫ c

0
σ y dy (13.8)

This equation may be integrated for various forms of stress–strain curve. Stress σ first needs to be
written as a function of y for integration to proceed.

For example, let ε = f (σ ) be a simple power-hardening stress–strain curve with no elastic
region; that is,

σ = H2ε
n2 (13.9)

Substituting the strain ε from Eq. 13.4 gives

σ = H2

( yεc

c

)n2
(13.10)

This is the equation of the positive part of a nonlinear stress distribution, as illustrated in Fig. 13.3(e).
We then substitute this σ into Eq. 13.8 and perform the integration, obtaining

M = 2tc2 H2ε
n2
c

n2 + 2
= 2tc2σc

n2 + 2
(13.11)

Since the stress–strain curve holds for the edge of the beam where σ = σc and ε = εc, Eq. 13.9
permits the result to be expressed in terms of stress, giving the second form. The special case of
n2 = 1 corresponds to the linear-elastic case with H2 = E , so that Eq. 13.11 then gives the same
result as Eq. 13.2.
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13.2.4 Discontinuous Stress–Strain Curves

Consider a stress–strain curve that is discontinuous, in that the mathematical relationship changes
at the end of a distinct linear-elastic region. Three such relationships are described in Chapter 12,
specifically, behavior that is perfectly plastic, linear hardening, or power hardening. A beam made
of such a material has a distinct elastic-plastic boundary and a region on each side of the neutral axis
where only elastic deformation occurs. For example, for perfectly plastic behavior beyond yielding,
the stress distribution is similar to Fig. 13.3(d).

As a result of the discontinuity, integration must be performed in two steps. For a symmetrical
stress–strain curve and a rectangular cross section, Eq. 13.8 applies. The integration step occurs at
yb, the distance from the neutral axis to the point where yielding begins:

M = 2t

[∫ yb

0
σ y dy +

∫ c

yb

σ y dy

]
(13.12)

To evaluate the integral, yb must first be found by applying Eq. 13.4 at y = yb:

εo

yb
= εc

c
(13.13)

Noting that the yield stress and strain are related by σo = Eεo gives

yb = σoc

Eεc
(13.14)

Between y = 0 and y = yb, the stress distribution is linear as a consequence of the linear-elastic
stress–strain relationship, ε = σ/E . To obtain σ as a function of y in this interval, apply Eq. 13.4 at
any y < yb:

σ/E

y
= εc

c
(0 ≤ y ≤ yb) (13.15)

Then combine this with Eq. 13.13 and solve for σ :

σ = Eεo y

yb
(0 ≤ y ≤ yb) (13.16)

The second step of the integration is affected by the type of hardening beyond yielding. As
an example, consider an elastic, perfectly plastic stress–strain curve. In this case, the stress beyond
y = yb is simply equal to the yield strength:

σ = σo (yb ≤ y ≤ c) (13.17)

To obtain a solution, first substitute Eqs. 13.16 and 13.17 into the first and second terms, respectively,
of Eq. 13.12, perform the integration, and then use Eq. 13.14 to eliminate yb from the equation. After
some manipulation, the result is

M = tc2σo

[
1 − 1

3

(
σo

Eεc

)2
]

(εc ≥ σo/E) (13.18)
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If yielding is just beginning at the edge of the beam, we have εc = σo/E . Equation 13.18 then
gives the same result as the elastic solution, Eq. 13.2, namely,

Mi = 2tc2σo

3
(εc = σo/E) (13.19)

which is called the initial yielding moment. For smaller values of M , the elastic solution applies in
the form of Eq. 13.2, with σc = Eεc. For large values of the maximum strain, Eq. 13.18 approaches
a limiting value called the fully plastic moment:

Mo = tc2σo (εc � σo/E) (13.20)

Note that Mo/Mi = 1.5, which ratio changes if the cross-sectional shape is other than a rect-
angle. The variation of moment with strain, according to Eq. 13.18, and also the accompanying
changes in the stress distribution, are shown in Fig. 13.5. As the fully plastic moment is
approached, large deformations occur and a plastic hinge is said to develop. This corresponds
to the elastic region of the beam, y ≤ yb, shrinking and approaching zero. The development of
increased plastic deformation and, finally, a plastic hinge in three-point bending is illustrated in
Fig. 13.6.

Additional analysis similar to that just given can be done for various other combinations
of stress–strain curve and cross-sectional shape, some of which are in the exercises at the end
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Figure 13.5 Moment versus strain behavior for a rectangular beam of an elastic, perfectly
plastic material. As loading progresses, the stress distribution changes as shown.
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(no yielding)

P = Po

(plastic hinge; then collapse)

P < Pi

(yielding has started)

Pi < P < Po

Figure 13.6 Development of a plastic hinge in three-point bending. The initial yield load
Pi and the fully plastic load Po correspond to moments Mi and Mo, respectively. Large
deflections occur when Po is reached.

of this chapter. It is not always possible to perform the integration analytically; sometimes
numerical integration is needed. Also, Appendix A gives fully plastic loads for additional
cases.

13.2.5 Ramberg–Osgood Stress–Strain Curve

The Ramberg–Osgood stress–strain curve, Eq. 12.12, has the advantage that it can be used to
accurately represent the stress–strain curves of many materials:

ε = σ

E
+
( σ

H

)1/n
(13.21)

Although this relationship is not explicitly solvable for stress, closed-form integration can still be
performed in certain cases by changing the variable of integration from y to σ . This is demonstrated
next for a rectangular cross section.

To begin, use the linear strain distribution, Eq. 13.4, to obtain y in terms of strain, and
differentiate to obtain dy:

y = c

εc
ε, dy = c

εc
dε (13.22)
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Substitute these into Eq. 13.8 to express M in terms of an integral with both stress and strain as
variables:

M = 2t

(
c

εc

)2 ∫ εc

0
σε dε (13.23)

Strain ε is given as a function of stress by Eq. 13.21, and dε can be obtained from this by
differentiation and manipulation as

dε =
[

1

E
+ 1

nσ

( σ

H

)1/n
]

dσ (13.24)

Substituting both Eqs. 13.21 and 13.24 into the integral of Eq. 13.23 gives

M = 2t

(
c

εc

)2 ∫ σc

0
σ

[
σ

E
+
( σ

H

)1/n
] [

1

E
+ 1

nσ

( σ

H

)1/n
]

dσ (13.25)

This integral can be evaluated in a straightforward manner by first obtaining the product of the
two quantities in brackets. Doing so and performing some manipulation gives

M = 2tσc

(
c

εc

)2 [1

3

(σc

E

)2 + n + 1

2n + 1

(σc

E

) (σc

H

)1/n + 1

n + 2

(σc

H

)2/n
]

(13.26)

This result may be written with the beam-edge stress σc as the only variable by substituting
εc = f (σc) as Eq. 13.21. A useful form obtained after some manipulation is

M = 2tc2σc

3

⎡
⎢⎢⎣

1 + 3n + 3

2n + 1
β + 3

n + 2
β2

(1 + β)2

⎤
⎥⎥⎦ (13.27)

where β = εpc

εec
, εpc =

(σc

H

)1/n
, εec = σc

E
, εc = εec + εpc

The quantities εpc and εec are the edge-of-beam values of plastic and elastic strain, respectively, and
β is their ratio. Using the preceding quantities, we can relate the moment to either stress or strain,
with the relationship with strain being implicit.

Equation 13.27 gives a smooth variation of moment with strain, as shown in Fig. 13.7. Also
shown for comparison are the trends for elastic analysis, Eq. 13.2, and for Eq. 13.11, which is the
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Figure 13.7 Moment vs. strain relationship for a material having a particular
Ramberg–Osgood stress–strain curve. The curve approaches the limiting case of the
elastic solution for small strains, and another limiting case corresponding to simple power
hardening for large strains.

result derived with the use of a simple power-hardening stress–strain curve having H2 = H and
n2 = n. If the ratio of plastic to elastic strain β is small, Eq. 13.27 reduces to the elastic solution.
Conversely, if β is large, Eq. 13.27 approaches the solution for the simple power-hardening case,
Eq. 13.11.

13.3 RESIDUAL STRESSES AND STRAINS FOR BENDING

A beam that is plastically deformed and then has the bending moment removed is illustrated in
Fig. 13.8. Let the material exhibit not only plastic deformation, but also elastic deformation that is
recovered during unloading. Upon unloading of the beam, the strains will decrease, but not to zero,
so that a permanent deflection remains in the beam. Locked-in or residual stresses will also exist in
the beam.

Since plane sections are still expected to remain plane during unloading, the greatest changes
in strain are at the edge of the beam. Here, the residual stress is opposite in sign to the stress
previously present at the maximum load. What happens is that the material at the beam-edge that
was permanently stretched in tension is forced into compression as the beam springs back upon
removal of the load. Conversely, the material at the beam-edge subjected to compressive yielding is
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Figure 13.8 Loading of a rectangular beam beyond the point of yielding, followed by
unloading. Loading starts from zero moment at time (a) and proceeds to the maximum
moment M’ at time (b). When unloading is complete at time (c), residual strains εr having
a linear distribution remain, and residual stresses σr are distributed as shown.

forced into tension upon unloading. Closer to the neutral axis, there are regions where the residual
stresses have the same sign as the previously applied stress.

13.3.1 Rectangular Beam of Elastic, Perfectly Plastic Material

Consider an elastic, perfectly plastic material and the case of a rectangular cross section that has
been loaded beyond yielding. This situation is illustrated in Fig. 13.9. At the highest moment
reached, M ′, the stress distribution is similar to Fig. 13.9(a). The moment M ′ is related to the strain
at the edge of the beam, ε′

c, by Eq. 13.18.

M ′ = tc2σo

[
1 − 1

3

(
σo

Eε′
c

)2
]

(13.28)

Let us proceed by assuming that there is no yielding on unloading, corresponding to linear-elastic
behavior, and then later check this assumption. In this case, the change in moment on unloading,
�M , is related to the change in stress at the edge of the beam, �σc, by the elastic solution, Eq. 13.2:

�M = 2tc2�σc

3
(13.29)
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Figure 13.9 For a rectangular beam of an elastic, perfectly plastic material, stresses at the
maximum moment are shown in (a), stress changes during unloading in (b), and residual
stresses in (c). Depending on the location, residual stresses may be opposite in sign to the
maximum stress (d) or of the same sign (e, f ). The particular case illustrated corresponds to
M’ = 0.95Mo.

Since the beam is unloaded to zero moment, M ′ − �M = 0. Combining the previous two equations
on this basis and solving for �σc gives

�σc = σo

2

[
3 −

(
σo

Eε′
c

)2
]

(13.30)

The residual stress and strain at y = c are the values at M ′ minus the changes on unloading, where
the change in strain is �εc = �σc/E due to the assumed elastic unloading behavior.

σrc = σ ′
c − �σc, εrc = ε′

c − �σc/E (a, b) (13.31)

Noting that σ ′
c = σo, since the beam has yielded at M ′, and combining (a) with Eq. 13.30, we get

the residual stress at y = c:

σrc = −σo

2

[
1 −

(
σo

Eε′
c

)2
]

(13.32)
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Figure 13.10 For the special case of fully plastic yielding of a rectangular beam, maximum
stresses prior to unloading are shown in (a), stress changes during unloading in (b), and
residual stresses in (c).

In a similar manner, (b) gives the residual strain at y = c:

εrc = σo

2E

[
−3 + 2

(
Eε′

c

σo

)
+
(

σo

Eε′
c

)2
]

(13.33)

The quantity Eε′
c/σo = ε′

c/εo is the ratio of the highest strain reached to the yield strain, which
must be greater than unity for an initially yielded beam. Noting that this ratio and its inverse appear
in both Eqs. 13.32 and 13.33, we readily conclude that σrc is negative and εrc is positive at y = +c,
corresponding to the edge of the beam that was yielded in tension. Appropriate sign changes give
values equal in magnitude, but opposite in sign, for y = −c.

For the extreme case where the highest strain reached is large compared with the yield strain,
Eq. 13.32 gives a residual stress of magnitude half the yield strength, and Eq. 13.33 indicates that
essentially none of the strain is lost upon unloading:

σrc = −σo

2
, εrc = ε′

c

(
ε′

c/εo � 1
)

(13.34)

The corresponding stress distributions are shown in Fig. 13.10. Conversely, if the edge of the
beam just reaches the yield stress, ε′

c/εo = 1, these equations give σrc = εrc = 0, as expected.
Equations 13.32 and 13.33 give a smooth variation between the two limiting cases. Note that
the initial assumption of no yielding in compression is confirmed for the most extreme case by
Eq. 13.34, so the analysis is valid.

13.3.2 Analysis Extended to the Interior of the Beam

Now consider interior locations in the beam. The residual stress distribution consists of straight-line
segments with slope changes at y = ±yb, as shown in Fig. 13.9(c). This arises from the fact that the
residual stress distribution is the sum of the distributions for σ ′ and �σ . Since the σ ′ distribution
has slope changes at y = ±yb, and the �σ distribution has none, their sum σr has slope changes
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at ±yb only. Comparing Figs. 13.9(a) and (c), it is seen that points in the beam that were yielded,
y > yb, follow a stress–strain path similar to either (d) or (e), depending on the sign of the residual
stress. Points not yielded, y < yb, deform only along the elastic line, but the stresses do not return
to zero, as for (f).

The residual stress distribution can thus be completely described if its value at the elastic-
plastic boundary, σrb, is determined in addition to σrc. Recall that the location of the elastic-
plastic boundary yb is related to the maximum strain reached by Eq. 13.14. Since σrb has reached,
but not exceeded, the yield stress, it is related to the corresponding residual strain by the elastic
modulus, σrb = Eεrb. Plane sections remaining plane requires that the distribution of residual strain
be linear:

εrb

yb
= εrc

c
,

σrb/E

yb
= εrc

c
(a, b) (13.35)

Substituting yb from Eq. 13.14 with εc = ε′
c into (b) yields

σrb = σoεrc

ε′
c

(13.36)

Hence, σrb can be easily obtained from εrc, which is given by Eq. 13.33, so that the entire residual
stress distribution can be plotted as in Fig. 13.9(c). As the strain ε′

c increases from ε′
c/εo = 1 to

a large value, ε′
c/εo � 1, the value of σrb is seen to increase from zero to σo. The latter case of

σrb = σo corresponds to fully plastic yielding, yb = 0, as in Fig. 13.10.
Analogous residual stress distributions occur for other cross-sectional shapes and types of

elasto-plastic stress–strain curve. Closed-form analysis similar to that just described can be
performed in some cases, and in other cases numerical analysis is required.

13.4 PLASTICITY OF CIRCULAR SHAFTS IN TORSION

Circular shafts loaded beyond the point of yielding in torsion, either solid or hollow, can be
analyzed with procedures similar to those previously applied for bending. The assumption that plane
sections remain plane is again employed. (For noncircular sections, this assumption is violated,
and more sophisticated analysis is needed that is not covered here.) Analysis of torsion of circular
shafts requires stress–strain curves for a state of pure shear. These are not generally known,
but can be estimated from the more commonly available uniaxial stress–strain curves. We thus
need to discuss estimation of stress–strain curves for shear before proceeding with analysis of
circular shafts.

13.4.1 Stress–Strain Curves for Shear

Circular shafts in torsion are stressed at all points in pure planar shear. In this state of stress, the
only nonzero component of stress is τxy , the x-y plane being taken to be tangent to the surface
of the shaft, and the z-axis normal to the surface, as illustrated in Fig. 13.11(a). To estimate
stress–strain curves for this case from uniaxial ones, the principal stresses and strains can be
evaluated and used with equations based on deformation theory of plasticity, as described in the
previous chapter.
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Figure 13.11 Circular shaft subjected to pure torsion. A state of pure shear stress occurs, with
its magnitude varying with radius r as determined by a linear distribution of shear strain.

For such a pure shear τxy , one of the principal axes is the z-axis, and the other two lie in
the x-y plane and are rotated 45◦ with respect to the x-y axes. The principal normal stresses are
related to τxy by

σ1 = −σ2 = τxy, σ3 = 0 (13.37)

which was previously illustrated in Fig. 4.41. For an isotropic, homogeneous material subjected to
such a τxy , the only nonzero component of strain is γxy . The strains along the principal axes are

ε1 = −ε2 = γxy

2
, ε3 = 0 (13.38)

These principal stresses, strains, and directions can be verified by applying transformation equations
or Mohr’s circle, as described in Sections 6.2 and 6.6.

Since pure shear is a special case of plane stress, any desired stress–strain curve for shear
can be obtained from Eq. 12.36 used with λ = σ2/σ1 = −1. Substitution of this λ, along with the
preceding σ1 and ε1, gives the τ -γ relationship corresponding to any chosen form of uniaxial (same
as effective) stress–strain curve.

For example, for a uniaxial curve of the Ramberg–Osgood form, Eq. 12.12, we may use
Eq. 12.36 in the specific form of Eq. 12.39, which gives

γxy = τxy

G
+
(

τxy

Hτ

)1/n

, Hτ = H

3(n+1)/2
(13.39)

Here, n is the same as for the uniaxial case, and the new constant Hτ is related to H from the
uniaxial curve as indicated. Also, G is the shear modulus, which may be estimated from Eq. 5.28.
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For an elastic, perfectly plastic stress–strain curve, the yield strength τo for pure shear can
be related to the uniaxial value by applying Eq. 12.32 with λ = −1. At yielding, σ̄ = σo and
σ1 = τxy = τo, so that τo = σo/

√
3. Hence, the relationship is

τxy = Gγxy
(
τxy ≤ τo

)
(a)

τxy = τo = σo√
3

(
γxy ≥ τo

G

)
(b)

(13.40)

For other discontinuous stress–strain curves with a distinct yield point, τo = σo/
√

3 and
Eq. 13.40(a) still apply, but Eq. 13.40(b) must be replaced by an appropriate expression derived
from Eq. 12.36.

13.4.2 Analysis of Circular Shafts

Analysis of circular shafts loaded beyond yielding in torsion proceeds in a manner similar to that
previously described for bending. Consider the cross section of a shaft as shown in Fig. 13.11(b).
Due to the radial symmetry, the shear stress τxy = τ is constant for all points at a distance r from
the shaft axis. The contribution to the torque of an annular element of area as shown is

dT = (stress)(area)(distance) = (τ )(2πr dr)(r) (13.41)

Integrating from r = 0 to the outer surface, r = c, gives the torque:

T = 2π

∫ c

0
τr2 dr (13.42)

For a hollow shaft with inner radius c1 and outer radius c2, Eq. 13.42 needs to be modified to

T = 2π

∫ c2

c1

τr2 dr (13.43)

To evaluate either integral, a particular stress–strain curve for shear, γ = fτ (τ ), is needed, along
with the assumption that plane sections remain plane during twisting. This requires a linear
distribution of shear strain, γxy = γ , or

γ

r
= γc

c
(13.44)

where γc is the shear strain at r = c.
Consider a case of simple power hardening with no distinct yield point; that is,

τ = H3γ
n3 (13.45)

Substituting Eqs. 13.44 and 13.45 into Eq. 13.42 and evaluating the integral for a solid shaft gives

T = 2πc3τc

n3 + 3
= 2πc3 H3γ

n3
c

n3 + 3
(13.46)
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For a solid shaft and an elastic, perfectly plastic stress–strain curve, Eq. 13.40, the analysis parallels
that leading to Eq. 13.18 for bending with a similar σ -ε curve. The result is

T = πc3τc

2
(τc ≤ τo)

T = πc3τo

6

[
4 −

(
τo

Gγc

)3
]

(γc ≥ τo/G)

(13.47)

As a final case, for a solid shaft and a Ramberg–Osgood type stress–strain curve, Eq. 13.39, analysis
similar to that used for bending to obtain Eq. 13.27 gives

T = 2πc3τc

⎡
⎢⎢⎣

1

4
+ 2n + 1

3n + 1
βτ + n + 2

2n + 2
β2

τ + 1

n + 3
β3

τ

(1 + βτ )
3

⎤
⎥⎥⎦ (13.48)

where βτ is the ratio of the plastic to elastic shear strain at the shaft surface, r = c:

βτ = γpc

γec
, γpc =

(
τc

Hτ

)1/n

, γec = τc

G
, γc = γec + γpc

Equation 13.48 thus constitutes a relationship between torque and surface shear stress that can be
written explicitly, and also an implicit relationship between torque and surface shear strain.

Residual shear stresses for torsion behave in an analogous manner to those for bending and can
be analyzed by a similar procedure.

13.5 NOTCHED MEMBERS

Notched engineering members are often subjected to loads in service that cause localized yielding.
The resulting plastic strains are of special interest in estimating fatigue lives with the strain-based
approach, which is the subject of the next chapter. Gross plastic deformation in notched members
must also be avoided in engineering design by providing a sufficient safety factor against overload.
This portion of the chapter provides engineering tools that address these needs. Before proceeding,
the reader may wish to review the topics of elastic stress concentration factors and fully plastic
yielding loads in Appendix A, Sections A.6 and A.7.

Consider the behavior of notched members over a wide range of applied loads, as illustrated in
Fig. 13.12. At low loads, the behavior is everywhere elastic and a simple linear relationship prevails.
Localized plastic deformation begins when the stress at the notch exceeds the yield strength of the
material. Plastic deformation then spreads over a region of increasing size for increasing load, until
the entire cross section of the member has yielded. The behavior of load versus local notch strain
is similar to the curve shown. Such a curve exhibits three regions corresponding to the three types
of behavior: (a) no yielding, (b) local yielding, and (c) fully plastic yielding. Some plastic zones for
local yielding at a notch in polycarbonate plastic are shown in Fig. 13.13.
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Figure 13.12 Load versus local strain behavior of a notched member showing three regions
of behavior: (a) no yielding, (b) local yielding, and (c) fully plastic yielding. The applied load
may be represented by a quantity such as a force P, moment M, or nominal stress S.

Figure 13.13 Plastic zones at notches in polycarbonate plastic. The notches are 3 mm deep
and have radii of ρ = 2 mm, and the thickness varies from 1 mm (left) and 2 mm (center)
to 5 mm (right). Thickness affects the development of the plastic zone, as the state of stress
is altered by different degrees of transverse constraint. (Photos courtesy of Prof. H. Nisitani,
Kyushu Sangyo University, Fukuoka, Japan. Published in [Nisitani 85]; reprinted with
permission from Engineering Fracture Mechanics, Pergamon Press, Oxford, UK.)
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Figure 13.14 Coordinate system for the local stresses and strains at a notch.

13.5.1 Elastic Behavior and Initial Yielding

For elastic behavior, the notch stress σ can be determined from the nominal stress S and the elastic
stress concentration factor kt :

σ = kt S (σ ≤ σo) (13.49)

For axial or bending loads, this σ is the stress at the bottom of the notch in a direction parallel
to S, specifically σy as shown in Fig. 13.14. Values of kt may be obtained from Figs. A.11 and
A.12 and from various handbooks, as noted in Appendix A. Except where the notch radius ρ is
small compared with the thickness t , the stress σz in the thickness direction will be small compared
with σy . Also, σx = 0 due to the free surface normal to the x direction, so that the state of stress
is approximately uniaxial with σy = σ . The corresponding strain is then simply

ε = kt S

E

(
ε ≤ σo

E

)
(13.50)

Noting that S/E can be considered to be a nominal (average) strain, kt is not only a stress
concentration factor, but is also a strain concentration factor. Equations 13.49 and 13.50 apply only
until σ reaches the yield strength σo, beyond which they are not valid. For cases of shear loading,
τ , γ , and G are similarly used with an appropriate kt value, provided, of course, that the yield
strength in shear is not exceeded.

Consider a plate with a central hole, with dimensions as defined in Fig. 13.15(a), loaded with
an axial force P . Assuming that kt is defined on the basis of net section nominal stresses, we have

S = P

2(b − a)t
(13.51)
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Figure 13.15 Geometries and stress distributions corresponding to fully plastic yielding for
two cases of notched members.

where the nomenclature a and b parallels that previously used for cracked members in Chapter 8,
but is here applied for notches with blunt ends of some definite radius ρ. Yielding first occurs at the
force denoted Pi , where kt S = σo, for which Eq. 13.51 gives

Pi = 2(b − a)t

kt
σo (13.52)

which is called the initial yielding force.
For notched bending members, nominal stress is generally defined by applying the elastic

bending formula to the cross section of depth (b − a) remaining after removal of the notch. For
a rectangular bending member with a single edge notch, as in Fig. 13.15(b), we thus have

S = 6M

(b − a)2t
(13.53)

which can be obtained by substituting c = (b − a)/2 into Eq. 13.2. The initial yielding moment
occurs when kt S = σo, so that

Mi = (b − a)2t

6kt
σo (13.54)

Similar equations based on the particular definition of nominal stress being used can be obtained for
any other case.

13.5.2 Fully Plastic Yielding

Beyond the point of yielding, the local notch strains are larger than would be estimated from elastic
analysis. (Compare the solid and dashed lines in Fig. 13.12.) Yielding is initially confined to a
relatively small volume of material, but a larger volume yields as loads increase. When yielding
spreads to the entire cross-sectional area, the situation is described as fully plastic yielding. Beyond
this point, small increases in load cause large increases in notch strain. The overall displacement,
which up to this point has been nearly linear, also begins to increase rapidly with load. For an elastic,
perfectly plastic material, no further increase in load is possible, and the load versus strain curve
becomes flat.
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Rough estimates of fully plastic yielding forces or moments can be easily made on the basis
of stress distributions for a perfectly plastic material, as shown in Fig. 13.15. For the particular
cases illustrated, the fully plastic force Po for (a), and the fully plastic moment Mo for (b), are,
respectively,

Po = 2(b − a)tσo, Mo = (b − a)2tσo

4
(a, b) (13.55)

These equations are derived in Section A.7, where results are also given for additional cases.
Estimates of fully plastic load of this type are lower bounds, as actual failure loads for notched
members are somewhat higher. As noted in Section A.7.3, this situation arises from two causes:
(1) strain hardening beyond yielding in most actual stress–strain curves, and (2) geometric constraint
at notches effectively elevating the yield strength.

13.5.3 Estimates of Notch Stress and Strain for Local Yielding

Few closed-form solutions exist for determining notch strains during plastic deformation. Numerical
analysis, as by finite elements, can be used, but nonlinear elasto-plastic stress–strain relationships
complicate such analysis and increase costs compared with linear-elastic analysis. Although
nonlinear numerical analysis is sometimes necessary, various approximate methods for estimating
notch stresses and strains have also been developed. Of these, Neuber’s rule is the most widely used
and will now be described.

Consider monotonic loading of a notched member having an elasto-plastic stress–strain curve,
as shown in Fig. 13.16(a). The maximum stress σy and the corresponding strain εy at the notch
are of interest, where these will be denoted simply as σ and ε. Once plastic deformation begins at
the notch, the ratio of the notch stress to the nominal stress falls below the value kt that applies
for linear-elastic behavior. As already noted and illustrated in Fig. 13.12, strains show the opposite
trend, exceeding values corresponding to elastic behavior. It therefore becomes necessary to define
separate stress and strain concentration factors as

kσ = σ

S
, kε = ε

e
(13.56)

where e is nominal strain—in particular, the value from the material’s stress–strain curve cor-
responding to S. The trends of these quantities with increasing notch strain are illustrated in
Fig. 13.16(b).

Neuber’s rule states simply that the geometric mean of the stress and strain concentration factors
remains equal to kt during plastic deformation:√

kσ kε = kt (13.57)

For axial loading with bilateral symmetry, the approximately uniform stress distribution during fully
plastic yielding causes both σ and S to have similar values. Hence, kσ tends toward unity for large
strains, so the preceding equation suggests that kε is limited to the value k2

t .
If fully plastic yielding does not occur, e = S/E applies. This permits a useful equation for

local yielding to be obtained from Neuber’s rule by substituting Eq. 13.56, along with e = S/E ,
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Figure 13.16 For a given notched member and stress–strain curve (a), Neuber’s rule may be
used to estimate local notch stresses and strains, σ and ε, corresponding to a particular value
of nominal stress S. Stress and strain concentration factors vary as in (b).

into Eq. 13.57. After simple manipulation, we obtain

σε = (kt S)2

E
(13.58)

For a given material, geometry, and applied load, hence, for known E , kt , and S, the product of
stress and strain is thus a known constant. Since stress and strain are also related by the stress–strain
curve of the material, a solution can be obtained for their values. Noting that σε = constant is
simply a hyperbola, a graphical solution is quite easy, as illustrated in Fig. 13.16(a). If the local
notch stress does not exceed the yield strength, Eq. 13.58 still gives the correct solution consistent
with linear-elastic behavior. The use of Eq. 13.58 for a number of different values of S gives a trend
with ε as in Fig. 13.12, regions (a) and (b). If there is fully plastic yielding, region (c), Eq. 13.58
does not apply, and will in fact underestimate the strains. Note that plotting nominal stress S versus
strain ε gives the same curve, except for a scale factor, as plotting force or moment, P or M . This
occurs because S is proportional to P or M , or other applied load quantity, as from Eq. 13.51 or
13.53. In fact, nominal stress S should be regarded as merely a convenient means of representing
applied load.

For an elastic, perfectly plastic material beyond the point of yielding, strains are easily
calculated by substituting σ = σo into Eq. 13.58:

ε = (kt S)2

σo E
(ε ≥ σo/E) (13.59)
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Useful closed-form equations may also be obtained for a material with power-hardening beyond
yielding by substituting either stress or strain from Eq. 12.8(b) into Eq. 13.58 and solving for the
other quantity:

σ = H1

[
(kt S)2

E H1

]n1/(n1+1)

, ε =
[

(kt S)2

E H1

]1/(n1+1)

(σ ≥ σo) (13.60)

If a Ramberg–Osgood stress–strain curve is used, no closed-form solution for stresses and
strains is possible. Elimination of ε between Eq. 12.12 and 13.58 gives an equation involving
S and σ that can be solved for σ by trial and error or some other numerical procedure:

S = 1

kt

√
σ 2 + σ E

( σ

H

)1/n
, kt S =

√
σ 2 + σ E

( σ

H

)1/n
(a, b) (13.61)

Substitution of σ into Eq. 12.12 then gives ε. Form (b) is useful where the local stress for elastic
behavior, σelas = kt S, is calculated directly, as by finite elements.

Cases of loading in the compressive (negative) direction may be handled by replacing (σ , ε, S)
with (−σ , −ε, −S) in any of 13.58 to 13.61, with the material’s stress–strain curve, ε = f (σ ),
similarly modified to become ε = − f (−σ).

Example 13.1
The notched member of Fig. 13.16 has an elastic stress concentration factor of kt = 2.5,
and its material has an elastic, power-hardening stress–strain curve, Eq. 12.8, with constants
E = 69 GPa, H1 = 834 MPa, and n1 = 0.200. Estimate the stress and strain at the notch in the
y-direction if the member is loaded to a nominal stress of S = 200 MPa.

Solution We first need to determine whether yielding occurs at the notch by comparing
kt S = 2.5 × 200 = 500 MPa with the yield strength, which, from Eq. 12.10, is

σo = E

(
H1

E

)1/(1−n1)

= (69,000 MPa)

(
834 MPa

69,000 MPa

)1/(1−0.200)

= 276.5 MPa

As kt S exceeds this value, the notch stress is not equal to kt S, and an estimate that considers
yielding is required, as from Neuber’s rule. Thus, stress and strain values are needed that satisfy
both the elasto-plastic part of the stress–strain curve and Neuber’s rule:

σ = H1ε
n1 , σ = 834ε0.200 MPa

σε = (kt S)2

E
, σε = (2.5 × 200)2

69,000
= 3.623 MPa

Substitute σ from the first equation into the second equation, and solve the expression obtained
for ε. Then calculate σ from the first equation. The resulting values are

ε = 0.01075, σ = 336.9 MPa Ans.
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Discussion These values could also be obtained directly from Eq. 13.60, which is derived
from the same two equations that are employed in this example. Also, a graphical solution
could be implemented as in Fig. 13.16 by a plot of the hyperbola σε = 3.623 MPa on the
same axes as the stress–strain curve, where the intersection with the stress–strain curve gives the
desired values.

13.5.4 Discussion

Stresses are often calculated from finite element analysis or other numerical methods, usually
assuming elastic materials behavior. Such analytical results are thus said to provide elastically
calculated stresses, σelas, which can be interpreted as kt S values and used directly with Neuber’s
rule. In numerical analysis to obtain local (elastically calculated) stresses, it is important to ensure
that the geometric detail is analyzed at a sufficiently high spatial resolution to capture the maximum
stresses at locations of interest.

It is reasonable to use Neuber’s rule in the form of Eq. 13.58 for all loads except those
approaching fully plastic yielding. This is the case despite the fact that S values may exceed
σo. For example, for bending of a rectangular section, fully plastic yielding does not occur until
S = 1.5σo. (Substitute Mo from Eq. 13.55(b) into Eq. 13.53 to verify this.) Where fully plastic
yielding does occur, a special version of Neuber’s rule may be used. See the paper by Seeger (1980)
for details.

Neuber’s rule may also be employed for shear stresses and strains, as in torsionally loaded
notched shafts. Equation 13.58 applies, where σ and ε are replaced with τ and γ , and kt and S
are defined as appropriate for the particular case. For more complex situations, such as combined
bending and torsion or other multiaxial loading, Neuber’s rule or related methods may still be
applied. However, for nonproportional loading with principal stress axes that vary in direction during
stressing, the application is difficult. See the papers by Hoffmann (1989), Chu (1995), and Reinhardt
(1997) for more information.

It is important to keep in mind in all uses of Neuber’s rule that it is an approximation. Estimated
strains generally tend to be reasonably accurate or somewhat larger than those from more precise
nonlinear numerical analysis or from careful strain measurements. See the paper by Harkegard
(2003) for a study of the accuracy of Neuber’s rule.

Another approximate procedure that can be used in a manner similar to Neuber’s rule is the
strain energy density method as described by Glinka (1985). The strain energy density is the area
under the stress–strain curve up to the stress and strain values that are present, specifically, Wp in
Fig. 13.17. In this method, Wp is postulated to be equal to the energy density We that would occur
in the absence of yielding, We = Wp. This method gives estimates of local notch stress and strain,
σ and ε, in a manner generally similar to the application of Neuber’s rule.

13.5.5 Effects of Geometric Constraint at Notches

In Fig. 13.14, if the notch radius ρ is small compared with the thickness t , deformation at the
notch in the thickness (z) direction is difficult. The physical cause of this geometric constraint on
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Figure 13.17 Method of notch strain estimation of Glinka, where We = Wp gives
estimates of notch stress and strain, σ and ε.

transverse deformation is the same as for a cracked member, as explained in Section 8.7.2. Hence,
the state of stress will not be uniaxial, as previously assumed, but will approach plane strain, εz = 0.
A similar circumstance occurs in axisymmetric geometries with notches, such as grooved shafts, if
ρ is small compared with the diameter.

For such plane strain at a notch surface, we still have σx = 0 due to the free surface—that is, y-z
plane stress—but now also εz = 0. In this case, Eq. 12.27(c) shows that a tensile stress σz develops:

σz = ν̃σy, where ν̃ = νσ̄ + 0.5E ε̄p

E ε̄
(13.62)

Note that ν̃ is the generalized Poisson’s ratio of Eq. 12.27(e). For loading that causes a nominal
tension stress S in the region of the notch, there are no shear stresses on the x-y-z axes of Fig. 13.14,
so the stresses in these directions are principal normal stresses. Hence, let σ1 = σy , σ2 = σz , and
σ3 = σx = 0, and note that ν̃ = σ2/σ1 = λ, as in Eq. 12.31. Then, applying Eq. 12.32, and also
Eq. 12.27(b), we obtain

σ1 = σy = σ̄√
1 − ν̃ + ν̃2

, ε1 = εy = ε̄(1 − ν̃2)√
1 − ν̃ + ν̃2

(13.63)

Thus, we can pick a number of points (σ̄ , ε̄) on the effective (same as uniaxial) stress–strain curve of
the material, evaluate ν̃, and then calculate corresponding points on the stress–strain curve (σ1, ε1)
for the notch surface material. This modified stress–strain curve may then be used with Neuber’s
rule to estimate the stresses and strains at the notch.

Cases intermediate between plane stress and plane strain can also be handled as described by
Hoffman (1989).
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13.5.6 Residual Stresses and Strains at Notches

If a notched member is loaded sufficiently for local yielding to occur, and then the load is removed,
residual stresses will remain. This is illustrated for an overload in tension in Fig. 13.18. As the
nominal stress S is increased to (a) and then to (b), local yielding occurs at the notch. When the
load is removed (c), a tensile residual strain and a compressive residual stress remain as shown.
Stress distributions are also shown for the three situations (a), (b), and (c). If the overload is
compressive, analogous behavior occurs with a tensile residual stress resulting.

This behavior is similar to that already discussed for bending. As before, the elastic recovery of
the material upon unloading results in the most intensely deformed regions having a residual stress
that is opposite in sign to the peak stress previously reached. Since equilibrium of forces requires
that the integral sum of the stresses must be zero after the load is removed, some interior regions
retain stresses of the same sign as the overload.

(a)

0

(b)

(ε', σ')

ε

σy

y

r r(ε , σ )

(c)

x

(b)

(a)

(c)

σ'

ε y

σ , εy y
ε r

(a)

(c)

(b)

0

S

S'
x

P

σ y

0

σ y

σ r

P

y

Figure 13.18 Residual stress and strain remaining after local yielding in a notched member.
For loading to (a) there is no yielding, but at (b) there is, causing the stress distribution to
flatten. After unloading (c), a tensile residual strain and a compressive residual stress remain
at the notch surface.
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Residual stresses and strains at notches can be estimated by extending the application of
Neuber’s rule to the unloading event. Specifically, Neuber’s rule is applied to the changes �σ ,
�ε, and �S that occur during unloading:

�σ�ε = (kt�S)2

E
(13.64)

When combined with the stress–strain curve for unloading, �σ and �ε can thus be determined.
These quantities are then subtracted from the maximum stress and strain reached, σ ′ and ε′, giving
the residuals, σr and εr :

σr = σ ′ − �σ, εr = ε′ − �σ (13.65)

If the initial loading is in the compressive direction, σ ′ and ε′ will have negative values, and �σ and
�ε should instead be added to obtain the residuals; the behavior is analogous to that of Fig. 13.18
with (σ, ε, S) replaced by (−σ , −ε, −S).

Example 13.2
The notched member of Fig. 13.16 has an elastic stress concentration factor of kt = 2.5,
and its material has an elastic, power-hardening stress–strain curve, Eq. 12.8, with constants
E = 69 GPa, H1 = 834 MPa, and n1 = 0.200. Estimate the residual stress and strain at the
notch if the member is loaded to a nominal stress S′, and then unloaded, for (a) S′ = 200 MPa
and (b) S′ = 260 MPa.

Solution (a) A stress–strain response qualitatively similar to Fig. 13.18(b) is expected.
For the initial loading, the stress and strain at S′ = 200 MPa have already been estimated in
Ex. 13.1.

σ ′ = 336.9 MPa, ε′ = 0.01075

Since no specific stress–strain path is given for unloading, we will approximate this as �ε/2 =
f (�σ/2), where the monotonic stress–strain curve is denoted ε = f (σ ). As discussed in
Section 12.4, this corresponds to a factor-of-two expansion of the monotonic curve. Thus,
yielding on unloading will occur only if the stress changes by more than 2σo, where the
monotonic yield strength is σo = 276.5 MPa from Ex. 13.1. If we note that �S = 200 MPa for
unloading, we see that the change in notch stress during unloading, as calculated under the
assumption of elastic behavior, needs to be compared with 2σo:

kt�S = 2.5 × 200 = 500 MPa, 2σo = 2 × 276.5 = 553.1 MPa, kt�S < 2σo

Hence, the change is less than 2σo, and no plastic deformation occurs on unloading, so the
changes in stress and strain are given by elastic behavior:

�σ = kt�S = 500 MPa, �ε = �σ/E = 500/69,000 = 0.00725
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The residuals then follow from Eq. 13.65:

σr = σ ′ − �σ = 336.9 − 500, σr = −163.1 MPa

εr = ε′ − �ε = 0.01075 − 0.00725, εr = 0.00351
Ans.

The stress–strain response is shown in Fig. E13.2(a). Note that yielding occurs at σo during the
initial loading, but the unloading simply follows the elastic modulus slope E .

(b) The stress and strain for the initial loading to S′ = 260 MPa may be determined by the
same procedure as in Ex. 13.1. The values for loading to this higher S′ are

σ ′ = 367.7 MPa, ε′ = 0.01665

For unloading with the new value �S = 260 MPa, the assumption of elastic behavior gives
kt�S = 650 MPa, which is greater than 2σo. Hence, plastic deformation occurs during unload-
ing, and Neuber’s rule in the form of Eq. 13.64 needs to be solved with the unloading stress–strain
path, �ε/2 = f (�σ/2):

�σ

2
= H1

(
�ε

2

)n1

, �σ = 2 × 834

(
�ε

2

)0.200

MPa

�σ�ε = (kt�S)2

E
, �σ�ε = (2.5 × 260)2

69,000
= 6.123 MPa

Substitute �σ from the first equation into the second equation, and then solve the expression
obtained for �ε. Then calculate �σ from the first equation. The resulting values are

�ε = 0.01049, �σ = 583.7 MPa
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Finally, the residuals follow from Eq. 13.65.

σr = σ ′ − �σ = 367.7 − 583.7, σr = −216.0 MPa

εr = ε′ − �ε = 0.01665 − 0.01049, εr = 0.00616
Ans.

The stress–strain response is shown in Fig. E13.2(b). As before, yielding occurs at σo during
the initial loading. Unloading follows the elastic modulus slope E until compressive yielding
occurs, where the change in stress exceeds 2σo.

13.6 CYCLIC LOADING

Analysis of stresses and strains for cyclic loading is needed for dealing with such engineering
situations as vibratory loading, earthquake loading, and fatigue. The preceding analysis of plastic
deformation can be extended to cyclic loading by idealizing the stress–strain behavior of the material
according to the spring and slider rheological models of the previous chapter. In particular, cycle-
dependent hardening or softening and creep–relaxation behavior are assumed to be absent. Such an
idealized material has identical cyclic and monotonic stress–strain curves, ε = f (σ ), and hysteresis
loop curves that obey the factor-of-two assumption, �ε/2 = f (�σ/2). In applications, the stable
cyclic stress–strain curve is used for ε = f (σ ). Both constant amplitude cyclic loading and irregular
variation of load with time can be considered on this basis.

13.6.1 Bending

To develop a methodology for dealing with cyclic loading, first consider the example of cyclic
loading of a beam due to loads that all lie in a plane of symmetry of the beam. For simplicity,
assume that the cross section is symmetrical about the neutral axis. Let the moment vary cyclically
between two values, Mmax and Mmin, as illustrated in Fig. 13.19. Assuming that inertial effects are
small, equilibrium of forces exists at any given time and requires that the integral of Eq. 13.6 must
always be satisfied. Equation 13.6 therefore applies in the following form at times corresponding to
Mmax and Mmin:

Mmax = 2
∫ c

0
σmaxt y dy, Mmin = 2

∫ c

0
σmint y dy (a, b) (13.66)

Here, σmax is a function of y and constitutes the stress distribution that exists at a time corresponding
to M = Mmax, and similarly, σmin is the stress distribution at M = Mmin. Such distributions are
illustrated in Fig. 13.19(b). Since plane sections are expected to remain plane even during cyclic
loading, linear strain distributions as in Fig. 13.19(c) are expected at Mmax and Mmin, so that the
distribution of strain range �ε is also linear.

Considering the range of moment �M , the properties of integrals give:

�M = Mmax − Mmin = 2
∫ c

0
�σ t y dy (13.67)
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where �σ = σmax − σmin is the distribution of stress range with y. Dividing by two, and also noting
that amplitude quantities are given by Ma = �M/2 and σa = �σ/2, we obtain two additional and
equivalent forms:

�M

2
= 2

∫ c

0

�σ

2
t y dy, Ma = 2

∫ c

0
σa ty dy (a, b) (13.68)

These indicate that stress–strain analysis for ranges and amplitudes during cyclic loading may
proceed in a straightforward manner that is similar to the analysis for static loading.

Let the material behavior be idealized as following stable behavior according to a spring and
slider rhelogical model. As discussed in Section 12.4, such a material has a monotonic stress–strain
curve ε = f (σ ) that is the same as its cyclic stress–strain curve, expressed as �ε/2 = f (�σ/2),
or equivalently as εa = f (σa). Combining this stress–strain curve with Eq. 13.68, and invoking
the linear variation of strain with y, a (sometimes implicit) relationship ε = g(M) is obtained that
applies to cyclic loading as �ε/2 = g(�M/2), or as εa = g(Ma). The analysis differs from one for
static loading only in the use of the cyclic stress–strain curve.

Given such a static analysis that uses the cyclic stress–strain curve, the stresses and strains at
the edge of the beam (y = c) corresponding to Mmax and Mmin can be obtained as follows:

εc max = g(Mmax), εc max = f (σc max) (a)

�εc/2 = g(�M/2), �εc/2 = f (�σc/2) (b)

εc min = εc max − �εc, σc min = σc max − �σc (c)

(13.69)

Note that (a) gives the initial loading to Mmax; next, (b) gives the half-ranges (amplitudes) for the
cyclic loading; and then (c) is the subtraction of ranges from the maximum values to obtain the
minimum values. If it is desired to work directly with amplitude quantities, substitutions may be
made as follows: Ma = �M/2, εca = �εc/2, and σca = �σc/2.

Example 13.3
Consider cyclic loading of a rectangular beam made of an elastic, perfectly plastic material.
Assuming that the initial loading is sufficiently severe to cause yielding, write the equa-
tions that give the maximums, amplitudes, and minimums of stress and strain at y = c for
cyclic loading.

Solution An explicit relationship ε = g(M) is available from the combined use of the elastic
solution of Eq. 13.2 and the postyield solution of Eq. 13.18. In the former, the substitution
σc = Eεc is made, and both are solved for εc:

εc = 3M

2tc2 E
, εc = σo

E

√
tc2σo

3(tc2σo − M)
(a, b)
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In this equation, (a) applies for εc ≤ σo/E , and (b) for εc ≥ σo/E . Since we have yielding for
the initial loading, (b) is employed for Eq. 13.69(a), giving

σc max = σo, εc max = σo

E

√
Mo

3(Mo − Mmax)
(εc max ≥ σo/E) Ans.

where the fully plastic moment Mo = tc2σo from Eq. 13.20 is introduced as a convenience.
There may or may not be cyclic yielding. Considering either possibility, and applying

Eq. 13.69(b) to amplitude quantities, we obtain

σca = Eεca, εca = 3Ma

2tc2 E
(εca ≤ σo/E)

σca = σo, εca = σo

E

√
Mo

3 (Mo − Ma)
(εca ≥ σo/E)

Ans.

If there is no cyclic yielding, the first relationship applies, and if there is cyclic yielding, the
second one applies. In either case, the values at Mmin are then obtained from Eq. 13.69(c):

εc min = εc max − 2εca, σc min = σc max − 2σca Ans.

The stress–strain response at y = c is similar to Fig. E13.3(a) if there is no cyclic yielding and
similar to (b) if there is cyclic yielding.

ε0

σ

ε0

(a) (b)

σ

σ o

Figure E13.3

13.6.2 Generalized Methodology for Other Cases

The procedure just described for analyzing cyclic bending uses the results of analysis performed in
the same manner as for monotonic loading. Such a methodology is applicable to other geometries
and modes of loading, and relevant theoretical discussion and proofs from the viewpoint of
plasticity theory are given in the papers by Mroz (1967, 1973). The following restrictions and
comments apply: The same idealizations of the stress–strain behavior must be retained, namely,
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stable behavior always following the cyclic stress–strain curve and hysteresis loop curves obeying
�ε/2 = f (�σ/2). Also, if there are multiple applied loads, they must not result in significantly
nonproportional loading in regions of yielding; that is, the ratios of the principal stresses must
remain at least approximately constant. States of stress other than uniaxial can be handled by
applying deformation plasticity theory to the cyclic stress–strain curve in the same manner as done in
Chapter 12 for monotonic curves.

Consider the strain at some location of interest, such as the edge of a beam in bending, but now
also include other cases, such as the surface of a circular shaft, or the notch surface in a notched
member. Assume that this strain, denoted ε, can be related explicitly or implicitly to the applied
load by stress–strain analysis that considers plastic deformation, perhaps employing some of the
equations given earlier in this chapter. Then

ε = g(S) (13.70)

where the applied load, such as an axial force, bending moment, torque, pressure, or a combination
of these, is represented generically as a nominal stress S.

Cyclic loading with a maximum value Smax and an amplitude Sa = �S/2 can be analyzed with
the use of this ε = g(S). Analysis to obtain ε = g(S) is done just as for monotonic loading, by using
a stress–strain curve ε = f (σ ) that is already adjusted to correspond to the particular state of stress
involved. The specific curve used is the same as the stable (half-life) cyclic stress–strain curve for
the material and state of stress of interest. The monotonic-loading analytical result ε = g(S) can
then be used for cyclic loading to obtain peak values and cyclic variations of stresses and strains.
Assuming that the mean load during cycling is positive (tensile), R > −1, we have

εmax = g (Smax) = f (σmax) (a)

εa = g (Sa) = f (σa) (b)

�ε

2
= g

(
�S

2

)
= f

(
�σ

2

)
(c)

(13.71)

where (b) and (c) are equivalent, but are both given to indicate that either amplitudes or ranges can
be obtained, where all amplitudes are half the corresponding ranges. Values at Smin are obtained by
subtracting the ranges from the values at Smax:

εmin = εmax − �ε, σmin = σmax − �σ (13.72)

The procedure represented by Eqs. 13.71 and 13.72, and the corresponding stress–strain and
load–strain paths, are illustrated for the bending example by Fig. 13.19(d) and (e).

If the loading is completely reversed (R = −1), the amplitude and maximum values are iden-
tical, so that Eqs. 13.71(a) and (b) give the same result. If the cyclic loading extends farther into the
negative (compressive) direction than into tension, R < −1, Eq. 13.71(a) needs to be replaced by

εmin = −g (−Smin) = − f (−σmin) (13.73)

Ranges are then added to these minimum values to compute maximum values.
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Consider a notched member and approximate analysis for notch stress and strain that uses
Neuber’s rule. If the cyclic stress–strain curve obeys the Ramberg–Osgood form, ε = g(S) is given
implicitly by Neuber’s rule and the stress–strain curve, Eqs. 13.58 and 12.54. For a numerical
solution, the combination of Eqs. 13.58 and 12.54 given by Eq. 13.61 is convenient. Substituting
S = Smax into Eq. 13.61 and solving iteratively gives σ = σmax, which then gives ε = εmax from
Eq. 12.54. Similarly, substituting S = Sa into Eq. 13.61 and solving iteratively gives σ = σa , which
then gives ε = εa from Eq. 12.54. If a more exact analysis is desired, ε = g(S) could be obtained by
finite element analysis of the plastic deformation, which would be performed just as for monotonic
loading, except for use of the cyclic stress–strain curve.

Example 13.4
A notched plate made of the AISI 4340 steel of Table 12.1 has an elastic stress concentration
factor of kt = 2.80. The nominal stress is cycled between Smax = 750 and Smin = 50 MPa.
Assume that the stress–strain behavior can be approximated with the stable cyclic stress–strain
curve and that the behavior is similar to a spring and slider rheological model. Then estimate the
stress–strain response.

Solution Use Neuber’s rule and the cyclic stress–strain curve as in Eq. 13.71 to estimate both
the maximums and amplitudes of the local notch stress and strain. For the initial monotonic
response, assumed to follow the cyclic stress–strain curve, Eqs. 12.54 and 13.61 are employed
for Eq. 13.71(a):

εmax = σmax

E
+
(σmax

H ′
)1/n′

, εmax = σmax

207,000
+
( σmax

1655

)1/0.131

Smax = 1

kt

√
σ 2

max + σmax E
(σmax

H ′
)1/n′

, 750 = 1

2.80

√
σ 2

max + 207,000 σmax

( σmax

1655

)1/0.131

Here, E , H ′, σmax, and Smax are all in MPa units. Solve the second equation iteratively to obtain
σmax. Then calculate εmax from the first equation. The resulting values are

σmax = 972 MPa, εmax = 0.02192 Ans.

For the cyclic loading, we need the amplitude of the nominal stress:

Sa = Smax − Smin

2
= 350 MPa

Amplitude quantities in Eqs. 12.54 and 13.61 are then employed for Eq. 13.71(b):

εa = σa

E
+
( σa

H ′
)1/n′

, εa = σa

207,000
+
( σa

1655

)1/0.131

Sa = 1

kt

√
σ 2

a + σa E
( σa

H ′
)1/n′

, 350 = 1

2.80

√
σ 2

a + 207,000 σa

( σa

1655

)1/0.131
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Solving in the same manner as previously gives

σa = 755 MPa, εa = 0.00615 Ans.

Finally, the minimum values for cyclic loading are

σmin = σmax − 2σa = −538 MPa

εmin = εmax − 2εa = 0.00962
Ans.

where cycle-dependent relaxation and creep are assumed not to occur.
The estimated stress–strain response is shown in Fig. E13.4. This was plotted as ε = f (σ )

for the monotonic portion and �ε = 2 f (�σ/2) for both branches of the hysteresis loop.
The mean stress σm during the cyclic loading, which will be of interest in the next chapter for
fatigue, is also shown. Its value is

σm = σmax − σa = 972 − 755 = 217 MPa

Figure E13.4

13.6.3 Application to Irregular Load Versus Time Histories

Estimates of stress–strain response for cyclic loading, as just described, can be extended to irregular
variations of load with time. A stress–strain analysis done as for monotonic loading, but using the
cyclic stress–strain curve, is still needed. This analysis can be applied in the form �ε/2 = g(�S/2)



Section 13.6 Cyclic Loading 729

during irregular loading histories—specifically, to all load excursions that correspond to stress–
strain paths following the curve shape �ε/2 = f (�σ/2).

Consider the example of Fig. 13.20. A notched member as in (a) is made of a material having
a cyclic stress–strain curve, εa = f (σa), as shown in (b). The load–strain curve, εa = g(Sa), from
Neuber’s rule for this case is also shown. The load history of (c) is repeatedly applied, resulting
in the load versus notch strain response of (d) and the local notch stress–strain response of (e).
As a convenience, the load history has already been ordered to start at the largest absolute value
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Figure 13.20 Analysis of a notched member subjected to an irregular load versus time history.
Notched member (a), having cyclic stress–strain and load–strain curves as in (b), is subjected
to load history (c). The resulting load versus notch strain response is shown in (d), and
the local stress–strain response at the notch in (e). (Adapted from [Dowling 89];
copyright c© ASTM; reprinted with permission.)
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of load. Recalling the behavior of the rheological model from Chapter 12, this results in all sub-
sequent stress–strain paths following �ε/2 = f (�σ/2), with origins at their respective hysteresis
loop tips.

Analysis proceeds as follows: First, the stress and strain for point A are found from SA by
applying Eq. 13.71(a) or 13.73:

εA = g(SA) = f (σA) (SA > 0)

εA = −g(−SA) = − f (−σA) (SA < 0)

(13.74)

Then Eq. 13.71(c) is applied to load ranges from the given history as

�εAB

2
= g

(
�SAB

2

)
= f

(
�σAB

2

)
,

�εBC

2
= g

(
�SBC

2

)
= f

(
�σBC

2

)
(13.75)

and similarly for the following additional ranges: �SAD , �SDE , �SE F , �SFG , and �SE H . Events
�SC B′ , �SG F ′ , �SH E ′ , and �SD A′ do not need to be analyzed, as the results are the same as for
the other branches of the corresponding hysteresis loops. The results of this analysis are sufficient
to establish stress and strain values for all peaks and valleys in the load history, and also all of the
intervening σ -ε paths. Overall ranges similar to �SAD can be analyzed by ignoring the included
minor load excursion, in this case event B-C-B ′. This is the case because the memory effect causes
the stress–strain path beyond B ′ to be the same as it would have been if event B-C-B ′ had not
occurred. The memory effect similarly acts at points F ′ and E ′. However, the equations used do
not apply to events such as �SC D , since the stress–strain path involves portions of more than one
hysteresis loop and so does not obey �ε/2 = f (�σ/2).

The same logic can be applied to completely analyze load histories of any length, as long as
the underlying assumptions of stable material behavior, and of at least approximately proportional
loading, are satisfied. Beginning the analysis at the most extreme value of load is merely a
convenience. Any starting point can be used if a more general logic based on spring and slider
rheological models is employed.

Analysis of irregular load histories as just described is needed when the strain-based approach
is used to make fatigue life estimates. This topic is considered in the next chapter.

Example 13.5
Table E13.5(a) gives the history of nominal stress S for Fig. 13.20. Estimate the local notch
stress–strain response for stable behavior. Note that the value of stress concentration factor is
kt = 2.40 and the material is 2024-T351 aluminum.

Solution Constants for the material’s cyclic stress–strain curve εa = f (σa) in the form of
Eq. 12.54 are available from Table 12.1 as E = 73,100 MPa, H ′ = 662 MPa, and n′ = 0.070.
Assume that the materials behavior is similar to that of a spring and slider rheological model.
Use Neuber’s rule to approximate the load–strain function εa = g(Sa), specifically, by the
combination of Eqs. 12.54 and 13.61. To analyze point A, assume loading that follows the
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Table E13.5

(a) Load History (b) Calculated Values

Point S Origin Origin S Direction �S to �σ �ε Stress Strain
(Y ) MPa (X ) MPa ψ Point MPa σ , MPa ε

A 414 — — +1 — — — 503.3 0.02683
B −69 A 414 −1 483 900.3 0.02042 −397.0 0.00642
C 345 B −69 +1 414 857.3 0.01575 460.3 0.02217
D −310 A 414 −1 724 983.4 0.04200 −480.0 −0.01517
E 310 D −310 +1 620 954.6 0.03173 474.5 0.01656
F −172 E 310 −1 482 899.8 0.02034 −425.3 −0.00378
G 172 F −172 +1 344 784.9 0.01188 359.6 0.00810
H −241 E 310 −1 551 930.6 0.02571 −456.0 −0.00915

cyclic stress–strain curve as if it were a monotonic one, and employ Eq. 13.61 in the same
manner, to obtain

SA = ψ
1

kt

√
σ 2

A + ψσA E

(
ψσA

H ′

)1/n′

, εA = σA

E
+ ψ

(
ψσA

H ′

)1/n′

where ψ = +1 if the direction is positive (as is the case here), or ψ = −1 if the direction
is negative. Substitute SA = 414 MPa into the first equation, solve iteratively to obtain σA =
503.3 MPa, and then substitute this value into the second equation to obtain εA = 0.02683.

Analysis beyond point A can now be done by applying Eqs. 12.54 and 13.61 to ranges that
correspond to smooth hysteresis loop curves, employing these in the forms �ε/2 = g(�S/2)

and �ε/2 = f (�σ/2). First, identify points in the history where the memory effect acts
and stress–strain hysteresis loops are closed, which are also points where rainflow cycles are
completed, here at points B ′, F ′, E ′, and A′. Then apply Eqs. 12.54 and 13.61 for each closed
loop, B-C , F-G, E-H , and A-D, and also for ranges locating the starting points of loops, A-B,
D-E , and E-F .

The calculations are organized as shown in Table E13.5(b). For each peak or valley (Y ) in
the history, the origin point (X ) of the smooth hysteresis loop curve is tabulated, along with its
S value. (For example, when loop B-C closes at point B ′, the origin for the continuing curve is
point A, so that range A-D is analyzed to locate point D.) Next, ψ is listed as +1 if the strain is
increasing during the range, or −1 if it is decreasing. Then each load range �SXY is calculated,
from which each corresponding stress and strain range, �σXY and �εXY , can be determined:

�SXY = |SY − SX |

�SXY

2
= 1

kt

√(
�σXY

2

)2

+ �σXY E

2

(
�σXY

2H ′

)1/n′

�εXY

2
= �σXY

2E
+
(

�σXY

2H ′

)1/n′
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For example, the range from SA = 414 to SB = −69 is �SAB = 483 MPa. Entering this
value into the second equation just given and solving iteratively yields �σAB = 900.3 MPa.
Substituting the latter value into the third equation then gives �εAB = 0.02042.

Finally, determine the stress and strain values for all peaks and valleys in the history by
starting from the initial point A and calculating the stress and strain at each subsequent point.
Do so by adding or subtracting the appropriate ranges, using the equations

σY = σX + ψ �σXY , εY = εX + ψ �εXY

where the use of ψ causes �σXY to be added to or subtracted from σX to obtain σY , and similarly
for the strains, depending on whether the S is increasing or decreasing. For example, for points
B and C ,

σA = 503.3, �σAB = 900.3, ψ = −1, so that σB = −397.0 MPa
εA = 0.02683, �εAB = 0.02042, ψ = −1, so that εB = 0.00642

σB = −397.0, �σBC = 857.3, ψ = +1, so that σC = 460.3 MPa
εB = 0.00642, �εBC = 0.01575, ψ = +1, so that εC = 0.02217

Comments The stress and strain values for the peaks and valleys in the load history, A, B, C ,
etc., can be plotted on stress–strain coordinates as in Fig. 13.20(e). Equation 12.54 in the form
�ε/2 = f (�σ/2) can be employed to calculate a number of points along each smooth curve
connecting peak–valley points, while observing the memory effect. (The equations at the end of
Ex. 12.5 apply.) Or the peak–valley points can be used as a guide to sketch the curves by hand,
noting that only one curve shape is needed.

13.6.4 Discussion

The methodology just described for cyclic loading is consistent with the analysis of residual stresses
presented earlier. Consider starting from zero and applying a particular load, as described by a
nominal stress S′, and then returning to zero. Analysis of this event is identical to that for the first
cycle of constant amplitude loading with Smax = S′ at R = 0, so that Smin = 0. The resulting values
of σmin and εmin are the residual stress and strain, σr and εr .

The procedure described clearly involves idealized materials behavior. Cycle-dependent hard-
ening or softening is at least roughly included by the use of the stable cyclic stress–strain curve.
However, the approach does not include cycle-dependent creep–relaxation or the details of the
hardening or softening behavior. The degree of approximation involved with omitting these transient
behaviors is not expected to be a problem except in unusual cases. The ease of application of the
approach described makes it a useful engineering tool, as in its use for the strain-based approach to
fatigue in Chapter 14.

More serious limitations may be encountered if multiple applied loads cause significantly
nonproportional loading during plastic deformation. Time-dependent creep–relaxation behavior,
as for metals at high temperature, is, of course, also beyond the scope of the method described.
If such complexities need to be analyzed, a number of computer programs are available that
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incorporate sophisticated models of material behavior into analysis by finite elements. However,
caution is needed to ensure that the stress–strain modeling is appropriate and specific to the material
and situation of interest. Computer programs sometimes employ stress–strain models that are
mathematically convenient, but which represent the behavior of real materials poorly.

13.7 SUMMARY

For symmetrical bending of beams, and for torsion of solid or hollow circular shafts, stresses and
strains can be readily analyzed for situations where plastic deformation occurs. Plane sections are
assumed to remain plane, and an integral must be evaluated for the particular form of stress–strain
curve of interest. Analysis of this type can be extended to determine residual stresses and strains. For
members containing notches, stresses and strains at the notch may be estimated by using Neuber’s
rule in the form of Eq. 13.58. Satisfying both Neuber’s rule and the particular stress–strain curve
of interest provides a solution. Also, this procedure may be extended to estimating residual stresses
and strains at notches.

Plastic deformation in bending or torsion, and also localized plastic deformation at notches,
causes strains to occur that exceed those from elastic analysis for the given loads. The specific
analytical results presented are listed in Table 13.1, and additional cases are suggested as exercises.

Cyclic loading is readily analyzed if the behavior of the material is idealized to follow the stable
(half-life) cyclic stress–strain curve. For this curve in the form ε = f (σ ), hysteresis loop curves can
be approximated as obeying �ε/2 = f (�σ/2). A useful expediency is to ignore the transient cycle-
dependent stress–strain behavior, namely, creep–relaxation and hardening or softening.

On this basis, stress–strain analysis may be performed just as for monotonic loading, except
for the use of the stable cyclic stress–strain curve. For applied loading characterized by a nominal
stress S that cycles between Smax and Smin, let the strain of interest be functionally related to S by an
analytical result expressed in the form ε = g(S). For cyclic loading that is completely reversed or

Table 13.1 Cases Analyzed

Case Equation No.

Bending of Rectangular Beams
(a) Simple power-hardening material 13.11
(b) Elastic, perfectly plastic material 13.18
(c) Ramberg–Osgood material 13.27
(d) Residual stress–strain for case (b) 13.32, 13.33

Torsion of Solid Circular Shafts
(e) Simple power-hardening material 13.46
(f) Elastic, perfectly plastic material 13.47
(g) Ramberg–Osgood material 13.48

Local σ -ε in Notched Members
(h) Elastic, perfectly plastic material 13.59
(i) Elastic, power-hardening material 13.60
(j) Ramberg–Osgood material 13.61
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which has a tensile (positive) mean level, R ≥ 1, maximums and amplitudes (half-ranges) of stress
and strain can be determined by applying this result as follows:

εmax = g(Smax) = f (σmax), εa = g(Sa) = f (σa) (13.76)

Minimums of stress and strain are obtained by subtracting ranges from maximum values. Similar
analysis can also be applied for loading that is biased in the compressive direction, R < −1.

Analysis of cyclic loading can be extended to irregular variation of load with time by applying
�ε/2 = g(�S/2) to all load excursions that correspond to stress–strain paths following �ε/2 =
f (�σ/2). The memory effect is invoked at points where stress–strain hysteresis loops close, after
which the stress and strain return to the path established prior to starting the loop.

N E W T E R M S A N D S Y M B O L S

elastically calculated stress, σelas
finite element method
fully plastic force or moment: Po, Mo

fully plastic yielding
initial yielding
initial yield force or moment: Pi , Mi

local notch stress and strain
local yielding
Neuber’s rule
residual stress and strain, σr and εr

stress and strain concentration factors, kσ and kε
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PROBLEMS AND QUESTIONS

Section 13.2
13.1 A beam has a symmetrical diamond-shaped cross section, as shown in Fig. P13.1, and the

material obeys a simple power-hardening stress–strain curve, Eq. 13.9. For pure bending
with the z-axis as the neutral axis, derive an equation giving the bending moment M as a
function of εc, the strain at y = c, and also constants H2, n2, b, and c.

13.2 A beam has an I-shaped cross section, as shown in Fig. P13.2, and the material obeys a
simple power-hardening stress–strain curve, Eq. 13.9.

(a) For pure bending with the z-axis as the neutral axis, derive an equation giving the
bending moment M as a function of εc2, the strain at y = c2, and also constants H2,
n2, t1, t2, c1, and c2.

(b) Adapt your equation from (a) to the nomenclature of Fig. A.2(d), employing
dimensions h1, h2 and b1, b2. Does the result also apply to a box section?

z
b

c

y

Figure P13.1

c2c1

t 1

z

t 2

y

Figure P13.2

13.3 A rectangular beam of depth 2c and thickness t is subjected to pure bending and is made
of a material with an elastic, power-hardening stress–strain curve, Eq. 12.8. Show that the
bending moment M is related to the edge strain εc, beam dimensions, and constants for the
stress–strain curve, by

M = 2tc2σc

3
, M = 2tc2

n1 + 2

[
Eε3

o(n1 − 1)

3ε2
c

+ H1ε
n1
c

]
(a, b)
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where (a) applies for (εc ≤ εo), and (b) applies for (εc ≥ εo), with εo = σo/E being the yield
strain. Does the post-yield solution (b) reduce to the elastic case for incipient yielding at the
beam edge? Does it reduce to Eq. 13.11 for large values of εc?

13.4 For the situation of Prob. 13.3, assume that the beam has cross-sectional dimensions of
depth 2c = 48 mm and thickness t = 18 mm, and let the material be an aluminum alloy with
E = 70 GPa, H1 = 600 MPa, and n1 = 0.200.

(a) Calculate bending moments M for a range of edge strain values up to approximately
εc = 0.03, and then plot M as a function of εc on linear–linear coordinates.

(b) Concisely discuss the M versus εc behavior observed. Is a distinct yielding event
seen in the M versus εc trend? Why or why not? What is the limiting case of the
post-yield solution for large strains? Does your curve approach this case as you might
expect?

13.5 A beam with a circular cross section of radius c is subjected to pure bending, and it is made
of a material with an elastic, perfectly plastic stress–strain curve, Eq. 12.1. Show that the
moment M is related to εc, the strain at y = c, by

M = πc3 Eεc

4
, M = c3σo

6

[
2

(
1 − 1

α2

)3/2

+ 3

√
1 − 1

α2
+ 3α sin−1 1

α

]
(a, b)

where (a) applies for (εc ≤ εo), and (b) applies for (εc ≥ εo), with εo = σo/E being the yield
strain, and α = εc/εo.

13.6 For the situation of Prob. 13.5, assume that the cross section radius is c = 20 mm, and let the
material be an alloy steel with E = 120,000 MPa and σo = 600 MPa.

(a) Calculate bending moments M for a range of edge strain values up to approximately
εc = 0.03, and then plot M as a function of εc on linear–linear coordinates.

(b) Concisely discuss the M versus εc behavior observed. Is a distinct yielding event seen
in the M versus εc trend? Why or why not? What is the limiting case of the post
yield solution for large strains? Does your curve approach this case as you might
expect?

13.7 Consider a material with a simple power-hardening stress–strain curve, Eq. 13.9.
(a) For a beam with a circular cross section of radius c, derive an equation for the bending

moment M as a function of εc, the strain at y = c, and also constants H2, n2, and c.
(Suggestion: Consult the definite integrals section of a table of integrals, and note
that a closed-form solution can be obtained in terms of the standard Gamma function,
more specifically, the Beta function.)

(b) Extend the result from (a) to the more general case of a tubular cross section with
inner radius c1 and outer radius c2.

Section 13.3
13.8 Consider three identical rectangular beams, of depth 2c = 60 and thickness t = 30 mm,

loaded in symmetrical pure bending. All are made of an elastic, perfectly plastic material
with yield strength σo = 400 MPa and elastic modulus E = 300 GPa. The first beam is
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loaded to an edge strain of ε1
c = 0.003 and then unloaded, the second to ε1

c = 0.006, and
the third to ε1

c = 0009. For each of the three beams, complete the following tasks:
(a) Calculate the moment M1 required to reach ε1

c and the residual stress and residual
strain, σrc and εrc, remaining after unloading.

(b) Determine and plot the stress distribution, both at the maximum moment M1 and after
removal of M ′.

(c) Comment on the differences among the three cases analyzed.
13.9 A rectangular beam has depth 2c = 40 and thickness t = 20 mm, and is made of an

aluminum alloy having elastic, perfectly plastic stress–strain behavior, with E = 70 GPa and
σo = 350 MPa. A bending moment of 750 N·m is applied and then removed.

(a) Determine the residual stresses, and plot their distribution versus the distance y from
the neutral axis. On the same plot, also show the stress distribution at the maximum
moment.

(b) Plot the stress–strain paths for each edge of the beam—that is, for both y = c and
y = −c.

Section 13.4
13.10 Derive Eq. 13.47.
13.11 Derive Eq. 13.48, and show that it reduces to the correct elastic case for small plastic strains

and to Eq. 13.46 for large plastic strains.
13.12 For a simple power-hardening stress–strain curve, Eq. 13.45, and for a thick-walled tube with

inner radius c1 and outer radius c2, complete the following:
(a) Derive an equation for torque T as a function of the maximum shear strain γc.
(b) Check your result to be sure that it reduces to Eq. 13.46 as c1 approaches zero.

13.13 A thick-walled tube subjected to simple torsion has inner radius c1 and outer radius c2. The
material has an elastic, perfectly plastic stress–strain relationship with shear modulus G and
yield strength in shear τo.

(a) Assume that the elastic-plastic boundary occurs between c1 and c2, and derive an
equation for the torque T as a function of the shear strain γc2 at r = c2, material
constants G and τo, and c1 and c2.

(b) For the no yielding case, employ elastic analysis, Fig. A.1(c), to obtain the applicable
equation relating T and γc2.

(c) For fully plastic yielding, obtain the equation for T that applies. (Suggestion: In
Fig. A.15(e), subtract the torque that is missing due to the tube being hollow.)

(d) Verify that your results for (b) and (c) are consistent with limiting cases of your
equation from (a).

13.14 Aluminum alloy 2024-T351 has a uniaxial stress–strain curve for monotonic loading of
Ramberg–Osgood form, Eq. 12.12, with E = 73.1 GPa, H = 527 MPa, and n = 0.0663, and
also a value of Poisson’s ratio of ν = 0.33.

(a) Estimate the shear stress–strain curve for this material.
(b) A solid round shaft of this material of radius c = 9.53 mm is loaded in torsion.

Estimate and plot the curve relating torque T and surface shear strain out to γc = 0.1.
(Problem continues)
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(c) For a gage length of L = 152.4 mm, corresponding torque versus angle of twist data
are given in Table P13.14. Plot these points on the curve from (b), and comment on the
comparison. (Hint: Angle of twist θ in radians is related to shear strain by θ = γc L/c.)

Table P13.14

T , N·m θ , degrees

0 0
82.5 2

164 4
229 6
297 10
339 15
377 25
407 40
438 60
467 90

13.15 A circular shaft of radius c is subjected to torsion, and the material has an elastic, power-
hardening curve for shear stress versus shear strain. In particular, τ = Gγ for (τ ≤ τo), and
τ = H4γ

n4 for (τ ≥ τo). Show that the torque T is related to γc, the strain at r = c, by

T = πc3Gγc

2
, T = 2πc3

n4 + 3

[
Gγ 4

o (n4 − 1)

4γ 3
c

+ H4γ
n4
c

]
(a, b)

where (a) applies for (γc ≤ γo), and (b) applies for (γc ≥ γo), with γo = τo/G being the
yield strain. Does the postyield solution (b) reduce to the elastic case for incipient yielding
at the beam edge? Does it reduce to Eq. 13.46 for large strains?

13.16 For the situation of Prob. 13.15, assume that the shaft radius is c = 50 mm and that the
material is an aluminum alloy with G = 120 GPa, H4 = 375 MPa, and n4 = 0.100.

(a) Calculate torques T for a range of maximum strain values up to approximately
γc = 0.05, and then plot T as a function of γc on linear–linear coordinates.

(b) Briefly discuss the T versus γc behavior observed. Is a distinct yielding event seen in
the T versus γc trend? Why or why not? What is the limiting case of the post-yield
solution for large strains? Does your curve approach this case as you might expect?

Section 13.5
13.17 Consider the notched member and stress–strain curve of Fig. 13.16. Using stress and strain

values estimated with Neuber’s rule in Examples 13.1 and 13.2, calculate the stress and strain
concentration factors, kσ and kε, for loading to (a) S = 240 and (b) S = 280 MPa. Are your
values consistent with the graph of Fig. 13.16(b) ?

13.18 A notched member has an elastic stress concentration factor of kt = 3, and it is made of
an elastic, perfectly plastic material having an elastic modulus E = 120 GPa and a yield
strength σo = 280 MPa. Estimate the stress and strain at the notch if the member is loaded to
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a nominal stress S1 of (a) 120, (b) 140, and (c) 160 MPa. For each case, plot the stress–strain
path, and calculate the stress and strain concentration factors, kσ and kε. Also, (d) briefly
discuss the behavior seen.

13.19 A notched member has an elastic stress concentration factor of kt = 2.80, and it is made
of an elastic, perfectly plastic material having an elastic modulus E = 240 GPa and a yield
strength σo = 1400 MPa. Estimate the stress and strain at the notch if the member is loaded
to a nominal stress S′ of (a) 400, (b) 800, and (c) 1200 MPa. For each case, plot the stress–
strain path, and calculate the stress and strain concentration factors, kσ and kε. Also, (d)
briefly discuss the behavior seen.

13.20 A notched member has an elastic stress concentration factor of kt = 3.20, and it is made of
an elastic, power-hardening material with E = 140 GPa, H1 = 1600 MPa, and n1 = 0.20.
Estimate the stress and strain at the notch if the member is loaded to a nominal stress S1 of
(a) 200, (b) 400, and (c) 600 MPa. For each case, plot the stress–strain path, and calculate
the stress and strain concentration factors, kσ and kε. Also, (d) briefly discuss the behavior
seen.

13.21 Consider an elastic, linear-hardening material with an Eq. 12.4 stress–strain curve having
constants σo, E , and δ. A notched member made of such a material has an elastic stress
concentration factor kt and is subjected to a nominal stress S.

(a) Assuming that local yielding occurs at the notch, and on the basis of Neuber’s rule,
derive expressions for the local stress and strain at the notch, σ and ε, as functions of
kt , S, σo, E , and δ.

(b) Confirm that your result reduces to Eq. 13.59 for δ = 0.
(c) Assume that E = 400 GPa, σo = 700 MPa, and δ = 0.200 for the material, and that

kt = 3.0 for the notched member. If S = 250 MPa is applied, estimate σ and ε, and
then kσ and kε.

13.22 A notched plate having an elastic stress concentration of kt = 4.0 is made of 7075-T651
aluminum, and a nominal stress S = 350 MPa is applied. The material’s Ramberg–Osgood
stress–strain curve has constants E , H , and n as in Ex. 12.1, with Poisson’s ratio ν = 0.33.
The member thickness is several times larger than the notch radius, so that the strain in
the transverse direction, εz in Fig. 13.14, is expected to be close to zero. Estimate the
notch surface stress and strain in the y-direction of Fig. 13.14. (Comments: The situation
described in Section 13.5.5 applies, and an iterative solution is required. Pick a point (ε̄, σ̄ )

on the effective (same as uniaxial) stress–strain curve. Then calculate (ε1, σ1) = (εy, σy),
and use Neuber’s rule with these values. Vary the (ε̄, σ̄ ) choice until the desired S is
obtained.)

13.23 Aluminum alloy 7075-T651 has a monotonic stress–strain curve for uniaxial stress of the
Ramberg–Osgood form, Eq. 12.12, with constants E , H , and n as in Ex 12.1. With reference
to Fig. A.11(a), a plate of this material with a central round hole had dimensions of
width w = 76.2, hole diameter d = 19.05, and thickness t = 6.35 mm, giving an elastic
stress concentration factor of kt = 2.42. A strain gage was mounted inside the hole to
measure the strain εy as in Fig. 13.16. Values εy are given in Table P13.23 for various
levels of force P during monotonic loading of the plate. Estimate the P versus εy curve
expected from Neuber’s rule, plot this curve along with the test data, and comment on
the comparison.
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Table P13.23

P , Force, kN εy , Notch Strain

0 0
44.5 0.0042
66.7 0.0064
89.0 0.0087

111.2 0.0121
133.4 0.0174
155.7 0.0251
177.9 0.0366

13.24 Proceed as in Prob. 13.23, except approximate the stress–strain curve as an elastic, perfectly
plastic one, with σo corresponding to the 0.2% offset yield strength.

13.25 On the basis of the method of Glinka as described in Section 13.5.4 and Fig. 13.17, perform
the following tasks:

(a) Develop an alternative relationship analogous to Eq. 13.59 for estimating notch strain
for an elastic, perfectly plastic material.

(b) Develop an alternative relationship analogous to Eq. 13.61 that gives S as a function
of notch stress for a Ramberg–Osgood material.

(c) Apply your result (b) to the notch strain data of Prob. 13.23, plotting the estimated
P versus εy curve along with the test data. How well do curve and data agree?

13.26 A notched member has a stress concentration factor of kt = 3.0, and it is made of a material
having an elastic, linear hardening stress–strain relationship, Eq. 12.4, with constants
E = 70 GPa, σo = 800 MPa, and δ = 0.18.

(a) Estimate the stress and strain at the notch if a nominal stress S′ = 300 MPa is
applied.

(b) What residual stress and strain, σr and εr , remain after this S′ is removed?
(c) Plot the stress–strain response for loading to S′ and then unloading.

13.27 A notched member has an elastic stress concentration of kt = 3.50 and is made of a
material and has an elastic, power-hardening stress–strain curve, Eq. 12.8, with constants
E = 69 GPa, H1 = 834 MPa, and n1 = 0.200. The member is loaded from zero to a nominal
stress S1 and then unloaded. Determine the local notch residual stress and strain that remain
for (a) S1 = 250, (b) S1 = −250, and (c) S1 = 300 MPa. Also, plot the stress–strain paths
for each case. Also (d) briefly discuss the different types of behavior that occur.

13.28 A notched member has an elastic stress concentration factor of kt = 3.30, and it is made of
a material and has an elastic, power-hardening stress–strain curve, Eq. 12.8, with constants
E = 73100 MPa, H1 = 622 MPa, and n1 = 0.070. Estimate the residual stress and strain
at the notch if the member is loaded to a nominal stress S1, and then unloaded, for (a)
S1 = −280 and (b) S1 = 280 MPa. For each case, plot the stress–strain path for loading and
unloading. Also, (c) briefly discuss the relationship between the signs of S1 and σr and why
the observed trend occurs.

13.29 A plate with around hole is loaded in tension. As defined in Fig. A.11(a), the dimensions are
w = 50, d = 15, and t = 5.0 mm. The plate is made of 7075-T651 aluminum, which has a
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Ramberg–Osgood stress–strain curve, with constants E , H , and n, as in Ex. 12.1. Verify from
Fig. A.11(a) that kt = 2.35. Then estimate the residual stress and strain at the notch if the
member is loaded to a force P ′, and then unloaded, for (a) P ′ = 54 and (b) P ′ = 70 kN.
For each case, plot the stress–strain path for loading and unloading. Also, (c) concisely
discuss the behavior that occurs.

Section 13.6
13.30 A notched member has an elastic stress concentration factor of kt = 3.00 and is made of

a material with an elastic, perfectly plastic stress–strain relationship, where E = 200 GPa
and σo = 400 MPa. Estimate and plot the local notch stress–strain response for cyclic
loading with nominal stresses of (a) Smax = 100 and Smin = −20 MPa, (b) Smax = 200
and Smin = −40 MPa, (c) Smax = 200 and Smin = −100 MPa, and (d) Smax = 200 and
Smin = −200 MPa. Also, (e) concisely discuss the different types of behavior that occur.

13.31 A notched member has an elastic stress concentration factor of kt = 3.50 and is made of the
AISI 4340 steel (σu = 1468 MPa) of Table 14.1, where constants are given for the stable
cyclic stress–strain curve, Eq. 12.54. Estimate and plot the local notch stress–strain response
for cyclic loading between nominal stresses Smax = 500 and Smin = −400 MPa.

13.32 A notched plate is loaded axially, as in Fig. A.11(b), and has a stress concentration factor of
kt = 2.5. It is made of the Al-T6-V4 of Table 12.1, where constants are given for the stable
cyclic stress–strain curve, Eq. 12.54 with E = 69 GPa, H1 = 834 and n1 = 0.2. Estimate and
plot the local notch stress–strain response if the nominal stress is cycled between Smax = 100
and Smin = −40 MPa.

13.33 A notched plate is loaded axially, as in Fig. A.11(b), and has a stress concentration factor of
kt = 2.5. It is made of the 2024-T351 aluminum of Table 12.1, where constants are given for
the stable cyclic stress–strain curve, Eq. 12.54. The member and material as in Prob.13.32 is
subjected to constant amplitude cyclic loading between Smin = −250 and Smax = 100 MPa.
Estimate and plot the local notch stress–strain response.

13.34 A plate with a round hole is made of the RQC-100 steel of Table 12.1. The dimensions,
as defined in Fig. A.11(a), are w = 150, d = 12, and t = 2.5 mm. Confirm that kt = 2.8.
Then estimate and plot the local notch stress–strain response for cyclic loading between
Pmax = 130 and Pmin = 35 kN.

13.35 The same member and material as in Prob. 13.34 is subjected to constant amplitude cyclic
loading between Pmin = −100 and Pmax = 5 kN. Estimate and plot the local notch stress–
strain response.

13.36 A member is made of the titanium 6Al-4V alloy of Table 14.1, where constants are given
for the cyclic stress–strain curve, Eq. 12.54. It is a flat plate with a width reduction and is
subjected to in-plane bending. The dimensions, as defined in Fig. A.11(d), are w2 = 75,
w1 = 50, fillet radius ρ = 1.75, and thickness t = 6.5 mm. Confirm that kt = 2.5. Then
estimate and plot the local notch stress–strain response for cyclic loading between Mmax =
1500 and Mmin = −200 N·m.

13.37 Some rectangular beams made of the RQC-100 steel of Table 12.1 had a depth of 2c =
6.35 and a thickness of t = 12.7 mm. Five of these beams were subjected to completely
reversed cyclic pure bending under controlled edge strains. Bending moment and edge strain
amplitudes from these tests are given in Table P13.37. (The Ma values are for cyclically
stable behavior near Nf /2, that is, half of the fatigue life, Nf .) Make a plot of Ma versus εca ,
and compare these data with the curve from Eq. 13.27 applied to cyclic loading.
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Table P13.37

No. Ma , Moment Amplitude, N·m εca , Edge Strain Amplitude Nf , cycles

1 39.0 0.0022 240 000
2 46.4 0.0030 32 990
3 58.6 0.0050 4 882
4 68.9 0.0100 1 335
5 79.0 0.0180 438

Source: Data courtesy of R. W. Landgraf; see [Dowling 78].

13.38 Bluntly notched compact specimens, as shown in Fig. P13.38, were made of AISI 4340
steel (σu = 1158 MPa). These were subjected to various amplitudes of completely reversed
cyclic force, Pa . Small strain gages were applied parallel to the force direction on the curved
surface at the end of the notch, giving measurements of strain amplitude εa for stable (near
half the fatigue life) behavior as listed in Table P13.38. Also, elasto-plastic finite element
analysis (FEA) was done, as for static loading, but with the stable cyclic stress–strain curve,
represented by the elastic, power-hardening form, Eq. 12.8, with constants E = 206.9 GPa,
H ′

1 = 1924 MPa, and n′
1 = 0.167. This analysis gave an elastic stress concentration factor

of kt = 2.62 and notch strain values as also listed in the table. To define kt , nominal stress
S was calculated from tension and bending on the net section, giving the equation for S in
Fig. P13.38.

(a) Calculate a number of points on the Pa versus εa curve estimated from Neuber’s rule.
Plot this curve and the strain gage data points on the same graph.

(b) Add the curve from the FEA results to the plot from (a), and then comment on the
success of Neuber’s rule and the FEA.

w = 78.31 mm
P

c = 0.400w 0.
60

0w

r = 5.08
mm

t = thickness
t = 5.08 mm

1.308w

S =
2P(2w+c)

  kt = 2.62
t(w–c)2

,

Figure P13.38

Table P13.38

Pa , kN εa (gages) εa (FEA)

7.03 — 0.00298
8.54 0.00354 0.00362

10.23 — 0.00444
12.01 — 0.00547
14.03 0.00630 0.00685
15.57 — 0.00792
17.35 — 0.00934
19.19 0.01015 0.01092
24.02 0.01455 0.01598
26.02 0.01730 0.01850
27.58 0.01850 0.02064
32.03 0.02615 0.02746
34.92 0.02970 0.03282

Source: Data for [Dowling 79b].
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13.39 A rotating annular disc has inner radius r1 = 105, outer radius r2 = 525, and thickness
t = 50 mm. It is made of the AISI 4340 steel (σu = 1172 MPa) of Table 12.1 and rotates
at a frequency of f = 120 revolutions/second. (See Fig. A.9 and the accompanying text.)

(a) Calculate radial and tangential stresses, σr and σt , for a number of values of variable
radius R between r1 and r2. Then plot these stresses as a function of R.

(b) Does the peak stress exceed the 0.2% offset cyclic yield strength? Over what
range of R?

(c) Estimate and plot the local stress–strain response at the inner radius for the cyclic
loading that results from starting and stopping the rotation. The inner radius acts as a
stress raiser, so Neuber’s rule should provide a reasonable estimate, with the Fig. A.9
equations giving stresses for elastic behavior, σelas.

13.40 A notched member has an elastic stress concentration factor of kt = 2.50 and is made of the
titanium 6Al-4V alloy of Table 14.1, where constants are given for the cyclic stress–strain
curve, Eq. 12.54. Estimate and plot the local notch stress–strain response for repeated
applications of the nominal stress history given in the table that follows. In each repetition,
note that valley B and peak C each occur 1000 times.

Peak or Valley A B1 C1 B-C B1000 C1000 D A′

S, Nom. Stress, MPa 600 −100 300 repeats −100 300 −200 600

13.41 A notched bending member has an elastic stress concentration factor of kt = 2.40. It is made
of the 2024-T351 aluminum of Table 12.1, where constants are given for the stable cyclic
stress–strain curve, Eq. 12.54. Estimate and plot the local notch stress–strain response for
repeated applications of the nominal stress history given in the accompanying table. In each
repetition, note that peak C and valley D each occur 200 times.

Peak or Valley A B C1 D1 C-D C200 D200 A′

S, Nom. Stress, MPa 360 −100 260 60 repeats 260 60 360

13.42 A notched member has an elastic stress concentration of kt = 3.00. It is made of the SAE
1045 steel (hot-rolled and normalized) of Table 14.1, where constants are given for the stable
cyclic stress–strain curve, Eq. 12.54. Estimate and plot the local notch stress–strain response
for repeated applications of the nominal stress history given in the accompanying table. In
each repetition, note that peak C and valley D each occur 50 times.

Peak or Valley A B C1 D1 C-D C50 D50 E F A′

S, Nom. Stress, MPa 350 −160 160 −80 repeats 160 −80 240 −250 350
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13.43 A notched member has an elastic stress concentration factor of kt = 3.00 and is made
of RQC-100 steel. Determine and plot the local notch stress–strain response for repeated
applications of the nominal stress history given in the accompanying table. In each repetition,
note that valley D and peak E each occur 2000 times.

Peak or Valley A B C D1 E1 D-E D2000 E2000 F A′

S, Nom. Stress, MPa 380 −170 260 −90 170 repeats −90 170 −260 380
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Strain-Based Approach to
Fatigue

14.1 INTRODUCTION
14.2 STRAIN VERSUS LIFE CURVES
14.3 MEAN STRESS EFFECTS
14.4 MULTIAXIAL STRESS EFFECTS
14.5 LIFE ESTIMATES FOR STRUCTURAL COMPONENTS
14.6 DISCUSSION
14.7 SUMMARY

OBJECTIVES

• Explore strain versus fatigue life curves and equations, including trends with material and
adjustments for surface finish and size.

• Extend strain–life curves to cases of nonzero mean stress and multiaxial stress.
• Apply the strain-based method to make life estimates for engineering components, especially

members with geometric notches, including cases of irregular variation of load with time.

14.1 INTRODUCTION

The strain-based approach to fatigue considers the plastic deformation that may occur in localized
regions where fatigue cracks begin, as at edges of beams and at stress raisers. Stresses and strains
in such regions are analyzed and used as a basis for life estimates. This procedure permits detailed
consideration of fatigue situations where local yielding is involved, which is often the case for
ductile metals at relatively short lives. However, the approach also applies where there is little
plasticity at long lives, so that it is a comprehensive approach that can be used in place of the
stress-based approach.

The strain-based approach differs significantly from the stress-based approach, which is
described in Chapters 9 and 10. Its features are highlighted in Fig. 14.1. Recall that the stress-
based approach emphasizes nominal (average) stresses, rather than local stresses and strains, and it
employs elastic stress concentration factors and empirical modifications thereof. Employment of the
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Figure 14.1 The strain-based approach to fatigue, in which local stress and strain, σ and ε, are
estimated for the location where cracking is most likely. The effects of local yielding are
included, and the material’s cyclic stress–strain and strain–life curves from smooth axial test
specimens are employed.

cyclic stress–strain curve is a unique feature of the strain-based approach, as is the use of a strain
versus life curve, instead of a nominal stress versus life (S-N) curve. As a result of the more detailed
analysis of local yielding, the strain-based method gives improved estimates for intermediate and
especially short fatigue lives. Also, the method permits a more rational and accurate handling of
mean stress effects by employing the local mean stress at the notch, rather than the mean nominal
stress. A similarity between the stress-based and strain-based approaches is that neither includes
specific analysis of crack growth, as in the fracture mechanics approach of Chapter 11.

The strain-based approach was initially developed in the late 1950s and early 1960s in
response to the need to analyze fatigue problems involving fairly short fatigue lives. The particular
applications were nuclear reactors and jet engines—specifically, cyclic loading associated with their
operating cycles, especially cyclic thermal stresses. Subsequently, it became clear that the service
loadings of many machines, vehicles, and structures include occasional severe events that can best be
evaluated with a strain-based approach. One example is the loading on automotive suspension parts
caused by potholes, high-speed turns, or unusually rough roads. Another is the transient disturbance
of electrical power systems, in some cases caused by lightning strikes, which can produce large
mechanical vibrations in the turbines and generators of a power plant. Additional examples include
loadings on aircraft due to gusts of wind in storms, and loads due to combat maneuvers of fighter
aircraft.
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Figure 14.2 Test specimen, extensometer, and grips for strain-controlled fatigue testing.
(Photo by G. K. McCauley, Virginia Tech.)

In this chapter, we will use the definitions and nomenclature given early in Chapter 9. Since the
strain-based approach has some similarities to the stress-based approach, certain concepts employed
will be related to those introduced in Chapters 9 and 10. Also, we will draw upon the information in
Chapters 12 and 13 on plastic deformation. Of particular relevance is the cyclic stress–strain curve,
Eq. 12.54:

εa = σa

E
+
( σa

H ′
)1/n′

(14.1)

Other material from Section 12.5 will be used, as will Neuber’s rule from Section 13.5 and the
general procedure for analyzing cyclic loads, Section 13.6.
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Figure 14.3 Elastic, plastic, and total strain versus life curves. (Adapted from [Landgraf 70];
copyright c© ASTM; reprinted with permission.)

14.2 STRAIN VERSUS LIFE CURVES

A strain versus life curve is a plot of strain amplitude versus cycles to failure. Such a curve is
employed in the strain-based approach for making life estimates in a manner analogous to the use
of the S-N curve in the stress-based approach.

14.2.1 Strain–Life Tests and Equations

Strain–life curves are derived from fatigue tests under completely reversed (R = −1) cyclic loading
between constant strain limits, with stress also measured, as described in ASTM Standard No.
E606. Recall that the behavior of metal samples during such tests has already been discussed in
Section 12.5 in connection with the cyclic stress–strain curve, which is determined from the same
set of data as the strain–life curve. In these tests, axial loading is usually applied to specimens with
straight, cylindrical test sections, as illustrated in Fig. 14.2. At long lives where there is little plastic
deformation, tests may be run under stress control, which is then essentially equivalent to strain
control. The number of cycles to failure Nf is usually defined as occurring when there is substantial
cracking of the specimen. A schematic diagram of a strain–life curve on log–log coordinates
is shown by the curve labeled total in Fig. 14.3, and a curve fitted to actual data is shown in
Fig. 14.4.

For each test, amplitudes of stress, strain, and plastic strain, σa , εa , and εpa , are measured from
a hysteresis loop, as in Fig. 12.17. As for the cyclic stress–strain curve, the particular hysteresis loop
chosen is one taken at a cycle number near half of the fatigue life, which is considered to represent
the approximately stable behavior after most cycle-dependent hardening or softening is complete.
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Figure 14.4 Strain versus life curves for RQC-100 steel. For each of several tests, elastic,
plastic, and total strain data points are plotted versus life, and fitted lines are also shown.
(From the author’s data on the ASTM Committee E9 material.)

Note that the strain amplitude can be divided into elastic and plastic parts as

εa = εea + εpa (14.2)

where the elastic strain amplitude is related to the stress amplitude by εea = σa/E . The plastic
strain amplitude εpa is a measure of the half-width of the stress–strain hysteresis loop. In addition
to the total strain εa , it is also useful to plot the elastic strain εea and the plastic strain εpa separately
versus life Nf . Thus, for each test, three points are plotted, as shown by the vertical dashed line in
Fig. 14.4.

If data from several tests are plotted, the elastic strains often give a straight line of shallow slope
on a log–log plot, and the plastic strains give a straight line of steeper slope. Equations can then be
fitted to these lines.

εea = σa

E
=

σ ′
f

E
(2Nf )

b, εpa = ε′
f (2Nf )

c (a, b) (14.3)

In these equations, b and c are slopes on the log–log plot, assuming, of course, that the decades on
the logarithmic scales in the two directions are equal in length. The intercept constants σ ′

f /E and ε′
f
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Figure 14.5 Strain–life curves for polycarbonate and polymethyl methacrylate. The shallow
slope for PMMA at short lives is associated with crazing. (Data from [Beardmore 75].)

are, by convention, evaluated at Nf = 0.5 and so require use of the quantity (2Nf ) in the equations.
The four constants needed are illustrated in Fig. 14.3.

Combining Eqs. 14.2 and 14.3 gives a relationship between the total strain amplitude εa and life:

εa =
σ ′

f

E
(2Nf )

b + ε′
f (2Nf )

c (14.4)

The quantities σ ′
f , b, ε′

f , and c are considered to be material properties. This equation corresponds to
the curves labeled total in Figs. 14.3 and 14.4. To obtain Nf for a given value of εa , the mathematical
form of this equation requires either a graphical or numerical solution. An equation of this form is
generally called the Coffin–Manson relationship, which name arises from the separate development
of related equations in the late 1950s by both L. F. Coffin and S. S. Manson.

Note that Eq. 14.3(a) provides the stress–life relationship previously presented as Eq. 9.7:

σa = σ ′
f (2Nf )

b (14.5)

Hence, if data over a wide range of lives are used to evaluate the strain–life constants, Eq. 14.4
includes a stress–life curve as its limiting case for small plastic strains. Equations 14.4 and 14.5
can thus be used up to quite long lives, at which point the slope b generally decreases, apparently
approaching zero for materials with a distinct fatigue limit. (See Chapter 9.)

Strain–life data are available for a variety of engineering metals, as are values of the constants
for the strain–life and cyclic stress–strain curves. Published collections of such information are
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Table 14.1 Cyclic Stress–Strain and Strain–Life Constants for Selected Engineering Metals.1

Tensile Properties Cyclic σ -ε Curve Strain–Life Curve

Material Source σo σu σ̃ fB % R A E H ′ n′ σ ′
f b ε′

f c

(a) Steels
SAE 1015 (8) 228 415 726 68 207,000 1349 0.282 1020 −0.138 0.439 −0.513

(normalized) (33.0) (60.2) (105) (30,000) (196) (148)

Man-Ten2 (7) 322 557 990 67 203,000 1096 0.187 1089 −0.115 0.912 −0.606
(hot rolled) (46.7) (80.8) (144) (29,500) (159) (158)

RQC-100 (2) 683 758 1186 64 200,000 903 0.0905 938 −0.0648 1.38 −0.704
(roller Q & T) (99.0) (110) (172) (29,000) (131) (136)

SAE 1045 (6) 382 621 985 51 202,000 1258 0.208 948 −0.092 0.260 −0.445
(HR & norm.) (55.4) (90.1) (143) (29,400) (182) (137)

SAE 4142 (1) 1619 2450 2580 6 200,000 2810 0.040 2550 −0.0778 0.0032 −0.436
(As Q, 670 HB) (235) (355) (375) (29,000) (407) (370)

SAE 4142 (1) 1688 2240 2650 27 207,000 4140 0.126 3410 −0.121 0.0732 −0.805
(Q & T, 560 HB) (245) (325) (385) (30,000) (600) (494)

SAE 4142 (1) 1584 1757 1998 42 207,000 2080 0.093 1937 −0.0762 0.706 −0.869
(Q & T, 450 HB) (230) (255) (290) (30,000) (302) (281)

SAE 4142 (1) 1378 1413 1826 48 207,000 2210 0.133 2140 −0.0944 0.637 −0.761
(Q & T, 380 HB) (200) (205) (265) (30,000) (321) (311)

AISI 43402 (3) 1103 1172 1634 56 207,000 1655 0.131 1758 −0.0977 2.12 −0.774
(Aircraft Qual.) (160) (170) (237) (30,000) (240) (255)

AISI 4340 (1) 1371 1468 1557 38 200,000 1910 0.123 1879 −0.0859 0.640 −0.636
(409 HB) (199) (213) (226) (29,000) (277) (273)

Ausformed H-11 (1) 2030 2580 3170 33 207,000 3475 0.059 3810 −0.0928 0.0743 −0.7144
(660 HB) (295) (375) (460) (30,000) (504) (553)

(b) Other Metals
2024-T351 Al (1) 379 469 558 25 73,100 662 0.070 927 −0.113 0.409 −0.713

(55.0) (68.0) (81.0) (10,600) (96.0) (134)

2024-T4 Al3 (4) 303 476 631 35 73,100 738 0.080 1294 −0.142 0.327 −0.645
(Prestrained) (44.0) (69.0) (91.5) (10,600) (107) (188)

7075-T6 Al (5) 469 578 744 33 71,000 977 0.106 1466 −0.143 0.262 −0.619
(68.0) (84) (108) (10,300) (142) (213)

Ti-6Al-4V (1) 1185 1233 1717 41 117,000 1772 0.106 2030 −0.104 0.841 −0.688
(soln. tr. & age) (172) (179) (249) (17,000) (257) (295)

Inconel X (1) 703 1213 1309 20 214,000 1855 0.120 2255 −0.117 1.16 −0.749
(Ni base, annl.) (102) (176) (190) (31,000) (269) (327)

Notes: 1The tabulated values either have units of MPa (ksi), or they are dimensionless. 2Test specimens
prestrained, except at short lives, also periodically overstrained at long lives. 3For nonprestrained tests, use
same constants, except σ ′

f = 900(131) and b = −0.102.
Sources: Data in (1) [Conle 84]; (2) author’s data on the ASTM Committee E9 material; (3) [Dowling 73];
(4) [Dowling 89] and [Topper 70]; (5) [Endo 69] and [Raske 72]; (6) [Leese 85]; (7) [Wetzel 77] pp. 41 and
66; (8) [Keshavan 67] and [Smith 70].
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referenced at the end of this chapter, and values of the constants for some representative metals are
given in Table 14.1. Strain–life data are also available for some polymers, curves for two ductile
polymers being shown in Fig. 14.5. Note that forms different than Eq. 14.4 would be needed to fit
these data.

Example 14.1
Data are given in Table E14.1 for completely reversed strain-controlled fatigue tests on RQC-100
steel. The elastic modulus is E = 200 GPa, and σa and εpa are measured near Nf /2. Determine
constants for the strain–life curve.

Solution Two least-squares fits are needed to obtain the constants σ ′
f , b, ε′

f , and c, one for
Eq. 14.5 and one for Eq. 14.3(b). Both fits proceed in a manner similar to Ex. 9.1(b). For the
first, solve Eq. 14.5 for the dependent variable 2Nf , and take logarithms of both sides:

2Nf =
(

σa

σ ′
f

)1/b

, log (2Nf ) = 1

b
log σa − 1

b
log σ ′

f

This has the form y = mx + d , where

y = log (2Nf ), x = log σa, m = 1

b
, d = −1

b
log σ ′

f

Performing a linear least-squares fit on this basis gives

m = −17.096, d = 50.513

so that the needed constants are

b = 1

m
= −0.0585, σ ′

f = 10−db = 901 MPa Ans.

Table E14.1

εa σa , MPa εpa Nf , cycles

0.0202 631 0.01695 227
0.0100 574 0.00705 1 030
0.0045 505 0.00193 6 450
0.0030 472 0.00064 22 250
0.0023 455 (0.00010) 110 000

Source: The author’s data on the ASTM
Committee E9 material.
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To obtain the remaining two constants, proceed similarly, solving Eq. 14.3(b) for 2Nf and
taking logarithms of both sides to obtain the form y = mx + d:

2Nf =
(

εpa

ε′
f

)1/c

, log (2Nf ) = 1

c
log εpa − 1

c
log ε′

f

y = log (2Nf ), x = log εpa, m = 1

c
, d = −1

c
log ε′

f

However, the last εpa value, shown in parentheses in Table E14.1, is judged to be so small that its
accuracy of measurement is likely to be poor. Moreover, this point does not lie along the linear
trend of the other εpa vs. Nf data on a plot similar to Fig. 14.4. Hence, the fit is done with only
the first four εpa values, giving

m = −1.3456, d = 0.39690

c = 1

m
= −0.743, ε′

f = 10−dc = 1.972 Ans.

Employing E = 200,000 MPa as given, the strain–life curve of the form of Eq. 14.4 can finally
be written:

εa = 0.004505 (2Nf )
−0.0585 + 1.972 (2Nf )

−0.743

Comments The constants obtained differ somewhat from those in Fig. 14.4 due to the use
of an abbreviated set of data. The given σa and εpa data may also be employed to fit the cyclic
stress–strain curve, with the procedure being the same as in Ex. 12.1, except for the use of
amplitude quantities. Again excluding the last point, the results are H ′ = 900 MPa, n′ = 0.0896.

14.2.2 Comments on Strain–Life Equations and Curves

At long lives, the first (elastic strain) term of Eq. 14.4 is dominant, as the plastic strains are relatively
small, and the curve approaches the elastic strain line. This corresponds to a thin hysteresis loop, as
shown in Fig. 14.3. Conversely, at short lives, the plastic strains are large compared with the elastic
strains, the curve approaches the plastic strain line, and the hysteresis loops are fat. At intermediate
lives, near the crossing point of the elastic and plastic strain lines, the two types of strain are of
similar magnitude. The crossing point is identified as the transition fatigue life, Nt . An equation
relating Nt to the other constants can be obtained by using the substitution εea = εpa to combine
Eqs. 14.3(a) and (b), which gives

Nt = 1

2

(
σ ′

f

ε′
f E

)1/(c−b)

(14.6)
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For a given material, the transition fatigue life Nt locates a boundary between fatigue behavior
involving substantial plasticity and behavior involving little plasticity. The value of Nt is thus the
most logical point for separating low-cycle and high-cycle fatigue. Special analysis of plasticity
effects by the strain-based approach may be needed if lives around or less than Nt are of interest.
Conversely, the S-N approach, which is based primarily on elastic analysis, may suffice at lives
longer than Nt .

From Eqs. 12.11 and 12.12, the plastic strain term of the cyclic stress–strain curve gives

σa = H ′εn′
pa (14.7)

If Nf is eliminated between Eqs. 14.3(b) and 14.5 and the result compared with this equation, the
constants for the strain–life curve can be related to those for the cyclic stress–strain curve:

n′ = b

c
, H ′ =

σ ′
f

(ε′
f )

b/c
(14.8)

Thus, of the six constants H ′, n′, σ ′
f , b, ε′

f , and c, only four are independent. However, it is common
practice to make three separate fits of data, using Eqs. 14.3(b), 14.5, and 14.7, so that the preceding
relationships among the constants are satisfied only approximately. In other words, reported values
for the six constants may not be exactly mutually consistent as implied by Eq. 14.8.

In a few cases, there may be fairly large inconsistencies among the six constants. This arises
in situations where the data do not fit the assumed mathematical forms very well. In particular,
data points of σa versus Nf or εpa versus Nf may depart somewhat from log–log straight lines.
In such cases, it should be ensured that the strain–life constants σ ′

f , b, ε′
f , and c used for Eq. 14.4

still give a reasonable representation of the total strain data, εa versus Nf . Also, the H ′ and n′
values used should be the ones actually fitted to the σa versus εpa data, not values calculated from
Eq. 14.8.

For ductile materials at very short lives, the strain may be sufficiently large that true stresses
and strains, as defined in Section 4.5, differ significantly from the more usual engineering values. In
such cases, σa , εpa , and εa in the preceding equations should be replaced by true stress and strain
values, σ̃a , ε̃pa , ε̃a . If this is done, these equations often give a reasonable representation of fatigue
data over a wide range that includes very short lives. Also, if a tension test is interpreted as a fatigue
test where failure occurs at Nf = 0.5 cycles, then the intercept constants σ ′

f and ε′
f should be the

same as the true fracture stress and strain from a tension test, σ̃f and ε̃f . Although values of σ ′
f and

ε′
f are best obtained from fitting actual fatigue data, there is often reasonable agreement with σ̃f and

ε̃f . Note that the convenience of such a direct comparison explains why σ ′
f and ε′

f are defined as
intercepts at Nf = 0.5.

14.2.3 Trends for Engineering Metals

The large amount of data available for engineering metals permits some generalizations and trends
to be stated concerning strain–life curves for this class of materials. Details follow.
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Figure 14.6 Trends in strain–life curves for strong, tough, and ductile metals. (Adapted from
[Landgraf 70]; copyright c© ASTM; reprinted with permission.)

As just explained, the intercept constants for the strain–life curve are expected to be similar to
the true fracture stress and strain from a tension test:

σ ′
f ≈ σ̃ f , ε′

f ≈ ε̃ f (14.9)

A ductile metal has a high value of ε̃ f and a low value of σ̃ f . Hence, the plastic strain line, as in
Fig. 14.3, tends to be high, and the elastic strain line low. This results in a steep strain–life curve,
as illustrated in Fig. 14.6. Also, the transition fatigue life Nt will be relatively long. The opposite
trend generally occurs for a strong but relatively brittle metal, for which a high σ̃ f and a low ε̃ f

correspond to a flatter strain–life curve and a relatively low value of Nt . A tough material, which
has intermediate values of both σ̃ f and ε̃ f , tends to have a strain–life curve and Nt value between
the two extremes. It is noteworthy that the strain–life curves for a wide variety of engineering metals
tend to all pass near the strain εa = 0.01 for a life of Nf = 1000 cycles.

Strain–life curves for various steels that exhibit the trends just discussed are shown in Fig. 14.7.
The variation of Nt with mechanical properties is illustrated by plotting its value versus hardness for
various steels in Fig. 14.8. Hardness, of course, varies inversely with ductility, so that Nt decreases
as hardness is increased.

Some generalizations may also be made concerning the strain–life slope constants b and c.
Values around c = −0.6 are common, and the relatively narrow range of c = −0.5 to −0.8 appears
to include most engineering metals. A typical value of the elastic strain slope is b = −0.085.
Relatively steep elastic slopes, around b = −0.12, are common for soft metals, such as annealed
metals; shallow slopes, nearer b = −0.05, are common for highly hardened metals. This trend
contributes to the overall trend already noted of steep versus shallow strain–life curves for ductile
versus brittle metals, respectively.

For steels with ultimate tensile strengths below about σu = 1400 MPa, recall from Section 9.6.1
that a fatigue limit occurs near 106 cycles at a stress amplitude around σa = σu/2. This establishes
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Figure 14.7 Strain–life curves for four representative hardened steels. (Adapted from
[Landgraf 68]; used with permission.)
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Figure 14.8 Transition fatigue life versus hardness for a wide range of steels. (Adapted from
[Landgraf 70]; copyright c© ASTM; reprinted with permission.)

one point that must satisfy the stress–life relationship, Eq. 14.5. If the estimate σ ′
f ≈ σ̃ f is also

applied, Eq. 14.5 gives

b = − 1

6.3
log

2σ̃ f

σu
(14.10)
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In other cases, where the fatigue limit (or long-life fatigue strength) at Ne cycles is given by
σa = meσu , the estimate becomes

b = −
log

σ̃ f

meσu

log (2Ne)
(14.11)

where some approximate me and Ne values for various classes of engineering metals are given in
Table 10.1. Higher ratios σ̃ f /σu apply for more ductile metals, so that Eqs. 14.10 and 14.11 are
consistent with the aforementioned trends noted for b.

14.2.4 Factors Affecting Strain–Life Curves; Surface Finish and Size

If a hostile chemical environment or elevated temperature is present, smaller numbers of cycles to
failure are expected, especially for lower frequencies where the environment has more time to act. At
temperatures exceeding about half of the absolute melting temperature of a given material, nonlinear
deformations due to time-dependent creep–relaxation behavior generally become significant.
Strain–life and cyclic stress–strain curves then become dependent on test frequency. Hence, such
effects will occur at a sufficiently elevated temperature for any structural engineering metal, and they
occur at room temperature for low-melting-temperature metals, such as lead and tin, and also for
most polymers. Analysis of creep–relaxation and its effect on life, where this occurs in combination
with cyclic loading, involves the problem area called creep–fatigue interaction. Some additional
comments on this topic are given in Chapter 15.

In contrast to S-N curves at long lives, strain–life curves at relatively short lives are not highly
sensitive to such factors as surface finish and residual stress. Residual stresses that are initially
present are quickly removed by cycle-dependent relaxation if cyclic plastic strains are present,
and so these have only limited effect at lives around and below Nt . Surface finish is important
in high-cycle fatigue, because most of the life at the low stresses involved is spent initiating
a crack. However, if significant plastic strains are present, a small crack (or cracklike damage) starts
relatively early in the life, even if the surface is smooth. Most of the life is thus spent in growing
small cracks into the material at some depth, where the surface finish cannot have an effect. The
importance of crack growth effects at relatively short lives was previously illustrated by Fig. 9.19,
and it is further illustrated by strain–life data in Fig. 14.9.

A reasonable method of modifying the strain–life curve to include the effect of surface finish is
to change only the elastic slope b. This can be done by lowering the stress–life curve at the number
of cycles Ne usually associated with the fatigue limit, such as Ne = 106 cycles for steel, while
leaving σ ′

f unchanged. In particular, the stress amplitude at Nf = Ne, which is σe = σ ′
f (2Ne)

b, is
replaced by msσe to obtain the new slope. Here, ms is a surface effect factor, as in Chapter 10. This
gives a new slope constant bs that replaces the original b in making life estimates:

bs = −
log

σ ′
f

msσe

log (2Ne)
= b + log ms

log (2Ne)
(14.12)

Here, substitution for σe leads to the second form.
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Figure 14.9 Strain–life curves for failure, and for two specific crack sizes, in an alloy steel.
(Adapted from [Dowling 79a]; used with permission.)

Size effects, as discussed in Chapter 10, are also a concern in applying a strain-based approach
to large-size members, but experimental data are limited. In one study of shafts up to 250 mm in
diameter that included data on low-carbon and low-alloy (turbine-generator rotor) steels, the size
reduction factor was found to vary with shaft diameter, d, as

md =
(

d

25.4 mm

)−0.093

(14.13)

where d is interpreted as the minimum diameter for shafts containing fillet radii or circumferential
grooves. Further, the study suggested lowering the entire strain–life curve by this factor, so that the
intercept constants σ ′

f and ε′
f are replaced by reduced values and σ ′

f d and ε′
f d :

σ ′
f d = mdσ ′

f , ε′
f d = mdε′

f (14.14)

The slope constants b and c are not altered. (Equations 14.13 and 14.14 are based on [Placek 84].)
Adjusted values of materials constants from Eq. 14.12 or 14.14 should in no case be used with

Eq. 14.8 to obtain H ′ and n′ for the cyclic stress–strain curve. As already noted, H ′ and n′ should
always be based on fitting stress–strain data.

14.3 MEAN STRESS EFFECTS

Mean stress effects, as discussed in Chapters 9 and 10, need to be evaluated in applying the strain-
based approach. In particular, the strain–life curve for completely reversed loading needs to be
modified if a mean stress is present. It is useful to think of a family of strain–life curves, where the
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Figure 14.10 Mean stress effect on the strain–life curve of an alloy steel, with dashed curves
from the mean stress equation of Morrow. Most test specimens were overstrained prior to
testing, and most with Nf > 105 cycles were also periodically overstrained. (Data from
[Dowling 73].)

particular one to be used depends on the mean stress. Test data illustrating this situation for an alloy
steel are shown in Fig. 14.10.

14.3.1 Mean Stress Tests

For a cyclic strain test conducted with a nonzero mean strain, cycle-dependent relaxation of the
mean stress is likely, as described in Chapter 12 and illustrated by Fig. 12.25. If the plastic strain
amplitude is not large, some of the mean stress will remain. The life will then be affected by this
mean stress. Other than this influence of an accompanying mean stress, there is little effect on
fatigue life of mean strain itself, unless the value is so large that it is a significant fraction of the
tensile ductility.

Alternatively, controlled stress tests can be run. In this case, there can be no relaxation of the
mean stress, but cycle-dependent creep can occur. Large amounts of this type of deformation may
accumulate and result in a failure similar to that from a tension test. However, the situation of pri-
mary interest here is plasticity in localized regions, in which large cyclic creep deformations are gen-
erally prevented by the stiffness of the surrounding elastic material. Hence, results from controlled
stress tests are of present interest only if the failure is not dominated by cycle-dependent creep.

Regardless of the test procedure used, data can be obtained for evaluating the effect of mean
stress on life. Discussion follows of various alternative methods of quantifying this mean stress
effect in the context of strain–life curves.
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14.3.2 Including Mean Stress Effects in Strain–Life Equations

As was done in Chapter 9, let us define the special case of stress amplitude where the mean stress
is zero as σar . Since the fitting constants σ ′

f and b for Eq. 14.5 are obtained from tests with zero
mean stress, this relationship should be stated for cases of nonzero mean stress as Eq. 9.22, which
is repeated here:

σar = σ ′
f (2N f )

b (14.15)

To obtain the estimated fatigue life Nf , an additional equation is needed to calculate σar for the
mean stress situation of interest.

σar = f (σa, σm) (14.16)

In this context, σar can be thought of as an equivalent completely reversed stress amplitude. Some
of the more widely applied mean stress methods, which may be expressed as particular equations
σar = f (σa, σm), are given as Eqs. 9.15 to 9.19.

To include mean stress effects in the strain–life relationship, first combine Eqs. 14.15 and 14.16
as follows:

σar = f (σa, σm) = σa
f (σa, σm)

σa
= σ ′

f (2N f )
b (14.17)

Then solve for the stress amplitude σa that is in the numerator after the second equals sign, and
manipulate the remaining stress quantities to be within brackets with Nf , allowing us to define a
zero-mean-stress-equivalent life, N∗.

σa = σ ′
f

[
2N f

(
σa

f (σa, σm)

)1/b
]b

= σ ′
f (2N∗)b (a)

where N∗ = N f

(
σa

f (σa, σm)

)1/b

(b)

(14.18)

Hence, one can determine the life N∗ that is expected for a given stress amplitude σa under zero
mean stress, and then solve Eq. 14.18(b) to obtain the life Nf as affected by a nonzero mean stress.

Nf = N∗
(

σa

f (σa, σm)

)−1/b

(14.19)

The effect on life should be the same regardless of whether one employs a stress–life or a strain–life
curve. This permits Eq. 14.4 to be generalized to

εa =
σ ′

f

E
(2N∗)b + ε′

f (2N∗)c (14.20)
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Here, N∗ is the life calculated from the strain amplitude εa as if the mean stress were zero, and
then Nf as affected by the nonzero mean stress is obtained from Eq. 14.19. Also, on a strain–life
plot, data plotted as εa versus the equivalent life N∗ are expected to all fall together along the curve
for zero mean stress, Eq. 14.4. This is demonstrated in Fig. 14.11 for the same set of steel data
as in Fig. 14.10, where the particular f (σa, σm) is in this case based on the Morrow mean stress
expression of Eq. 9.17(b).

As noted in Section 9.7.3, the Goodman and the Gerber mean stress relationships are less
accurate than the Morrow, SWT, and Walker methods. As a result of the general recognition of
this situation, only the latter three are commonly applied to strain–life curves.

14.3.3 Mean Stress Equation of Morrow

The approach suggested by J. Morrow can be expressed as an equation giving the equivalent
completely reversed stress amplitude, σar , which is expected to produce the same life as a given
combination of amplitude σa and mean σm :

σar = σa

1 − σm

σ ′
f

(14.21)

Here, the constant σ ′
f is the same as for the stress–life curve. This expression arises from Eq. 9.17(b)

and was previously introduced as Eq. 9.21. Substituting this particular σar into Eqs. 14.18(b) and
14.19, we obtain

N∗
mi = Nf

(
1 − σm

σ ′
f

)1/b

(14.22)

Nf = N∗
mi

(
1 − σm

σ ′
f

)−1/b

(14.23)

Subscripts mi have been added to N∗ to indicate the particular case of the Morrow mean stress
equation using the stress–life intercept constant σ ′

f .
Substituting N∗

mi into Eq. 14.20 gives a single equation for a family of strain–life curves:

εa =
σ ′

f

E

(
1 − σm

σ ′
f

)
(2Nf )

b + ε′
f

(
1 − σm

σ ′
f

)c/b

(2Nf )
c (14.24)

This expression is similar to the original strain–life equation, except that the intercept constants are,
in effect, modified for any particular nonzero value of mean stress. It was used to plot the family
of curves shown in Fig. 14.10. Also, plotting the data of Fig. 14.10 versus N∗

mi from Eq. 14.22
consolidates the data along the curve for σm = 0 as seen in Fig. 14.11. The success of the Morrow
equation for this set of data is quite good, as judged by the agreement of the data points for nonzero
mean stress with the curve.
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Figure 14.11 Mean stress data of Fig. 14.10 plotted versus N∗ according to the Morrow
equation.

As noted in Section 9.7.3, the Morrow mean stress expression of Eq. 9.17(a) employing the true
fracture strength σ̃ fB is sometimes useful, especially for aluminum alloys where the σ ′

f form gives
poor results. In this case, the σar and N∗expressions that apply are

σar = σa

1 − σm

σ̃f B

(14.25)

N∗
m f = Nf

(
1 − σm

σ̃fB

)1/b

(14.26)

Subscripts mf are added to N∗ to specify the Morrow equation based on the true fracture strength.

14.3.4 Modified Morrow Approach

The following modification of Eq. 14.24 is often used:

εa =
σ ′

f

E

(
1 − σm

σ ′
f

)
(2Nf )

b + ε′
f (2Nf )

c (14.27)

The first (elastic strain) term is the same, but the mean stress dependence has been removed from
the second (plastic strain) term. This has the effect of reducing the estimated effect of mean stress
at relatively short lives.
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Figure 14.12 Family of strain–life curves given by the modified Morrow approach, and
comparison with the data of Fig. 14.10.

Members of the family of strain–life curves corresponding to Eq. 14.27 are compared with the
alloy steel test data of Fig. 14.10 in Fig. 14.12. The trend of a smaller predicted effect of mean stress
at relatively short lives is evident from comparison with Fig. 14.10. Nevertheless, the agreement with
the test data is still reasonable. Equation 14.27 does not lend itself to any graphical presentation other
than plotting several members of the family of curves.

14.3.5 Smith, Watson, and Topper (SWT) Parameter

The SWT method was previously introduced, in the context of stress–life curves, as Eq. 9.18. An
analogous application to strain–life curves, which reduces to Eq. 9.18 if the plastic strains are small,
is often employed. Specifically, this approach assumes that the life for any situation of mean stress
depends on the product

σmaxεa = h′′(Nf ) (14.28)

By definition, σmax = σm + σa , and h′′(Nf ) indicates a function of fatigue life Nf . Hence, the life
is expected to be the same as for completely reversed (σm = 0) loading where this product has the
same value.

Let σar and εar be the completely reversed stress and strain amplitudes that result in the same
life Nf as the (σmax, εa) combination. Noting that, for σm = 0, we have σmax = σar , we find that
the function of life h′′(Nf ) becomes σmaxεa = σarεar . If the stress–life and strain–life curves for
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Figure 14.13 Plot of the Smith, Watson, and Topper parameter versus life for the data of
Fig. 14.10.

completely reversed loading are given by Eqs. 14.5 and 14.4, the function h′′(Nf ) can be obtained
by substituting these equations for σar and εar to produce

σmaxεa = σ ′
f (2Nf )

b

[
σ ′

f

E
(2Nf )

b + ε′
f (2Nf )

c

]
(14.29)

which can be rearranged to obtain

σmaxεa =
(
σ ′

f

)2

E
(2Nf )

2b + σ ′
f ε

′
f (2Nf )

b+c (14.30)

A convenient graphical presentation is to make a plot of the quantity σmaxεa versus Nf by using
Eq. 14.30, which requires only the constants from σm = 0 test data. Then, for any situation involving
a nonzero mean stress, enter this plot with the value of the product σmaxεa to obtain Nf . Such a plot
for the alloy steel of Fig. 14.10 is shown in Fig. 14.13. The success of the SWT parameter for this
particular case can be judged by the extent to which the data for nonzero mean stress agree with the
curve. The agreement is reasonable, but not as good as for the Morrow equation in Fig. 14.11.

14.3.6 Walker Mean Stress Equation

Recall the two equivalent forms of the Walker mean stress relationship previously presented as
Eq. 9.19.
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σar = σ
1−γ
max σ

γ
a , σar = σmax

(
1 − R

2

)γ

(a, b) (14.31)

where either of these can be derived from the other by noting the definition R = σmin/σmax.
Substituting each of these in turn into Eq. 14.18(b) gives corresponding alternate expressions for
N∗, denoted N∗

w.

N∗
w = Nf

(
σa

σmax

)(1−γ )/b

N∗
w = Nf

(
1 − R

2

)(1−γ )/b

, (a, b) (14.32)

Substituting N∗
w into Eq. 14.20 gives a family of strain–life curves; the one for form (b) is

εa =
σ ′

f

E

(
1 − R

2

)(1−γ )

(2Nf )
b + ε′

f

(
1 − R

2

)c(1−γ )/b

(2Nf )
c (14.33)

Note that employing γ = 0.5 in this equation corresponds to the stress-based SWT relationship,
Eq. 9.18, but this is not the same as the usual application of the SWT relationship of Eq. 14.30.

Plotting εa versus N∗
w is of course expected to consolidate strain–life data at various mean

stresses all onto a single curve, as for the analogous plot based on N∗
mi of Fig. 14.11. Such

comparisons for a number of steels, aluminum alloys, and one titanium alloy gave excellent results
as reported in the recent study of Dowling (2009).

Applying the Walker method of course requires a value of γ . Recall that γ for steels can
be estimated from Eq. 9.20. Where data at various mean stresses are available, the procedure of
Section 10.6.4 can be applied to all of the data, in a single fitting procedure, to obtain values of σ ′

f ,
b, and γ . Corresponding ε′

f and c are then obtained by fitting N∗
w and plastic strain amplitudes, εpa ,

as described in Dowling (2009).

14.3.7 Discussion

The unmodified Morrow method works quite well for steels, but it is often inaccurate for aluminum
alloys. The latter difficulty is associated with the fact that the fitted stress–life constant σ ′

f is typically
considerably larger than the true fracture strength σ̃ fB , as a result of the stress–life data not fitting the
form of Eq. 14.5 very well. In such cases, better agreement with test data is obtained by employing
N∗ from Eq. 14.26 with Eq. 14.20.

One justification for using the modified Morrow approach is that the resulting reduced effect of
σm at short lives may offset a bias in estimated life that arises from neglecting the transient relaxation
of mean stress in notched members. The SWT equation gives acceptable results for a wide range
of materials. It is generally as accurate for steels as the Morrow approach, and it is quite good for
aluminum alloys.

In general, if a single method is desired, the SWT life relationship, Eq. 14.30, can be chosen.
The Morrow approach is a good choice for steels. But it should not be used for aluminum alloys, or
for other metals where σ ′

f and σ̃ fB differ by a large amount, unless N∗ is obtained from Eq. 14.26.
Where γ is known or can be estimated, the Walker relationship is likely to be the most accurate of
all of the possibilities discussed.
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Example 14.2
The RQC-100 steel of Table 14.1 is subjected to cycling with a strain amplitude of εa = 0.004
and a tensile mean stress of σm = 100 MPa. How many cycles can be applied before fatigue
cracking is expected?

First Solution Of the various methods given, we will first apply the Morrow equation.
Substituting the constants E , σ ′

f , b, ε′
f , and c from Table 14.1 for RQC-100 steel into Eq. 14.20,

we have

εa = 938

200,000
(2N∗)−0.0648 + 1.38(2N∗)−0.704

Using the given εa = 0.004 and solving numerically for N∗ gives

N∗ = 8124 cycles

Since N∗ does not include the effect of mean stress, its value must be employed along with
σm = 100 MPa to obtain an Nf value that does include this effect. Hence, we apply N∗ in
Eq. 14.23, specifically as N∗

mi .

Nf = N∗
mi

(
1 − σm

σ ′
f

)−1/b

= 8124

(
1 − 100

938

)1/0.0648

= 1426 cycles Ans.

Second Solution To apply the modified Morrow approach, simply substitute the same
material constants into Eq. 14.27:

εa = 938

200,000

(
1 − σm

938

)
(2Nf )

−0.0648 + 1.38(Nf )
−0.704

Substituting σm = 100 MPa and simplifying gives

εa = 838

200,000
(2Nf )

−0.0648 + 1.38(2Nf )
−0.704

We then enter this equation with εa = 0.004 and solve numerically for Nf , obtaining

Nf = 6597 cycles Ans.

Third Solution For the SWT approach, Eq. 14.30, we need the product σmaxεa . Thus, first
apply the cyclic stress–strain curve with constants from Table 14.1 to obtain σa :

εa = σa

E
+
( σa

H ′
)1/n′

= σa

200,000
+
( σa

903

)1/0.0905
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Entering this equation with εa = 0.004 and solving numerically for σa gives

σa = 501.2 MPa, σmax = σm + σa = 100 + 501.2 = 601.2 MPa

σmaxεa = 601.2(0.004) = 2.4046 MPa

Next, we substitute material constants into Eq. 14.30.

σmaxεa = (938)2

200,000

(
2Nf

)2(−0.0648) + (938)(1.38)(2Nf )
−0.0648−0.704

σmaxεa = 4.399(2Nf )
−0.1296 + 1294

(
2Nf

)−0.7688

Entering this equation with σmaxεa = 2.4046 MPa and solving numerically yields Nf :

Nf = 5088 cycles Ans.

Fourth Solution For the Walker method, the constant γ can be estimated for this steel from
Eq. 9.20. With σu from Table 14.1, we obtain

γ = −0.000200 σu + 0.8818 = −0.000200 (758 MPa) + 0.8818 = 0.7302

Then apply N∗ from the first solution, but now specifically as N∗
w. Since σa and σmax are

available from the third solution, form (a) of Eq. 14.32 is convenient. Solving for Nf and
substituting the needed values gives

Nf = N∗
w

(
σa

σmax

)−(1−γ )/b

= 8124

(
501.2

601.2

)−(1−0.7302)/(−0.0648)

= 3809 cycles Ans.

Comment In this example, the Morrow and modified Morrow calculations give values that
differ considerably due to the relatively short life involved. The values from the SWT and Walker
methods lie between the two Morrow estimates, with the Walker estimate likely being the most
accurate of the four.

14.4 MULTIAXIAL STRESS EFFECTS

Fatigue under multiaxial loading where plastic deformations occur is currently an area of active
research. Reasonable estimates are possible for relatively simple situations, but some uncertainty
exists as to the best procedure for complex nonproportional loadings, where the ratios of the
principal stresses change, and where the principal axes may also rotate. Given this situation, the
discussion that follows first considers some simple, but limited methods. Then an introductory
discussion is given of possible approaches for more complex loadings.
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14.4.1 Effective Strain Approach

Consider situations where all cyclic loadings have the same frequency and are either in-phase or
180◦ out-of-phase. It is then reasonable to define an effective strain amplitude that is proportional
to the cyclic amplitude of the octahedral shear strain:

ε̄a = σ̄a

E
+ ε̄pa (14.34)

The quantities σ̄a and ε̄pa are obtained from Eqs. 12.21 and 12.22 by substituting amplitudes of the
principal stresses and plastic strains. A negative sign is employed for amplitude quantities that are
180◦ out-of-phase with amplitudes selected as positive.

The fatigue life for multiaxial loading is postulated to depend on the value of this effective strain
amplitude. For uniaxial loading, σ2 = σ3 = 0, its value reduces to the uniaxial strain amplitude,
ε̄a = ε1a . Since the latter is related to life by Eq. 14.4, we can write

ε̄a =
σ ′

f

E
(2Nf )

b + ε′
f (2Nf )

c (14.35)

where the first and second terms correspond to elastic and plastic components of the effective strain,
so that

σ̄a = σ ′
f (2Nf )

b, ε̄pa = ε′
f (2Nf )

c (a, b) (14.36)

Consider the special case of plane stress, namely,

σ2a = λσ1a, σ3a = 0, ε1a = εe1a + εp1a (14.37)

where the notation of Chapter 12 is used, except for the added subscript a, to indicate amplitude
quantities. Letting the (x, y, z) axes be the principal (1, 2, 3) axes, we can combine Eqs. 12.19,
12.24, and 12.32 with Eqs. 14.35 to 14.37 to obtain an equation for the strain–life curve in terms of
the first principal strain:

ε1a =
σ ′

f

E
(1 − νλ) (2Nf )

b + ε′
f (1 − 0.5λ) (2Nf )

c

√
1 − λ + λ2

(14.38)

This equation can be used along with the Ramberg–Osgood type stress–strain curve for biaxial
loading, Eq. 12.39, where all stresses and strains are interpreted as amplitude quantities.

For the special state of plane stress that is pure shear, Eqs. 13.37 and 13.38 apply, and λ = −1.
The preceding equation then reduces to

γxya =
σ ′

f√
3G

(2Nf )
b +

√
3ε′

f (2Nf )
c (14.39)

where γxya is the shear strain amplitude and G is the shear modulus. The corresponding
Ramberg–Osgood type of stress–strain curve has already been derived as Eq. 13.39.
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14.4.2 Discussion of the Effective Strain Approach

The cyclic amplitude of the hydrostatic stress appears to have an additional effect not accounted for
by the octahedral shear strain. This quantity is the average of the amplitudes of the principal normal
stresses:

σha = σ1a + σ2a + σ3a

3
(14.40)

To quantify this effect, the relative value of σha may be expressed as a triaxiality factor,
T = 3σha/σ̄a . For plane stress (σ3 = 0) with λ = σ2a/σ1a , the triaxiality factor is

T = 1 + λ√
1 − λ + λ2

(14.41)

Three notable special cases are (a) pure planar shear, λ = −1, T = 0, (b) uniaxial stress, λ = 0,
T = 1, and (c) equal biaxial stresses, λ = 1, T = 2. The specific trend observed is that, for a given
value of ε̄a , the life is shorter for larger values of T .

Several modifications of the strain–life equation have been proposed that include this effect.
For example, the paper by Marloff (1985) suggests that

ε̄a =
σ ′

f

E
(2Nf )

b + 21−T ε′
f (2Nf )

c (14.42)

Note that this is the same as Eq. 14.35, except that ε′
f is replaced by the quantity 21−T ε′

f . The same
modification also applies to Eqs. 14.38 and 14.39. Compared with the uniaxial case, note that the
additional effect amounts to multiplying ε′

f by 2.0 for pure shear or by 0.5 for equal biaxial stresses.
So far, we have not considered the mean stress effect in the context of an effective strain

approach. This could be done, for example, by assuming that the controlling mean stress variable
is the noncyclic component of the hydrostatic stress, as previously applied for the stress-based
approach in Section 9.8. Equation 14.35 or 14.42 can then be generalized in a manner similar to
Eq. 14.24, 14.27, 14.30, or 14.33.

However, the effective strain approach is severely limited in its applicability to combined
loading. It is reasonable to apply it for combined loadings that are in-phase or 180◦ out-of-phase,
provided that there are no steady (mean) loadings which cause substantial rotation of the principal
stress axes during cyclic loading, as in the situation of Fig. 9.41. Such rotation of the principal axes
causes nonproportional loading, as discussed previously in Section 12.3.5.

14.4.3 Critical Plane Approaches

Where the loading is nonproportional to a significant degree, a critical plane approach is needed. In
such an approach, stresses and strains during cyclic loading are determined for various orientations
(planes) in the material, and the stresses and strains acting on the most severely loaded plane are
used to predict fatigue failure.

Cracks virtually always have irregular shapes, due to growth through the grain structure of the
material. Thus, growth due to a shear stress alone tends to be difficult due to mechanical interlocking
and friction effects involving irregularities on the faces of cracks, as shown in Fig. 14.14. Stresses
and strains normal to the crack plane may have a major effect on the behavior, accelerating the
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(a)

γ ac

(b)

γ ac

σ maxc

Figure 14.14 Crack under pure shear (a), where irregularities retard growth, compared with a
situation (b) where a normal stress acts to open the crack, enhancing its growth. (Adapted
from [Socie 87]; used with permission of ASME.)

growth if they tend to open the crack. This situation has led to a number of proposals for critical
plane approaches. For example, Fatemi and Socie suggest a relationship similar to

γac

(
1 + ασmax c

σ ′
o

)
=

τ ′
f

G
(2Nf )

b + γ ′
f (2Nf )

c (14.43)

where γac is the largest amplitude of shear strain for any plane, and σmax c is the peak tensile stress
normal to the plane of γac, occurring at any time during the γac cycle. Also, α is an empirical
constant, α = 0.6 to 1.0, depending on the material, and σ ′

o is the yield strength for the cyclic
stress–strain curve. The quantities γac and σmax c are illustrated in Fig. 14.14. The constants τ ′

f ,
b, γ ′

f , and c give the strain–life curve from completely reversed tests in pure shear, specifically
torsion tests on thin-walled tubes. If not known, these constants can be estimated from the ones
from uniaxial loading with the use of Eq. 14.39. Implementation of this type of an approach for
complex variable amplitude loading requires considering the possibility of failure on a number of
different planes.

An additional complexity is that there are two distinct modes of crack initiation and early
growth, namely, growth on planes of high shear stress (mode II) or growth on planes of high tensile
stress (mode I). Shear cracking is most likely at high strains, but may occur even at low strains for
pure shear loading. Tensile cracking is most likely for equal biaxial stresses (λ = 1), but is also
common for uniaxial loading. The occurrence of a given mode depends on the type of loading and
the magnitude of the strain, and the details vary for different materials. Shear dominated cracking
is addressed by Eq. 14.43 or other analogous relationship. A reasonable approach for tensile stress
dominated cracking is to employ the Smith, Watson, and Topper parameter, Eq. 14.30. The quantity
εa is interpreted as the largest amplitude of normal strain for any plane, and σmax is the maximum
normal stress on the same plane as εa , specifically, the peak value during the εa cycle. The shortest
life estimated from either the SWT parameter used in this way or Eq. 14.43 is the final life estimate.
The necessity of making two calculations reflects the two possible modes of cracking.

A single multiaxial fatigue criterion that considers both the shear and normal stress cracking
modes is that of Chu (1995):

2τmaxγa + σmaxεa = f (Nf ) (14.44)
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Here, each term involves the product of the maximum stress in a cycle and the corresponding strain
amplitude, with the first term involving shear stress and strain, and the second, normal stress and
strain. The critical plane is simply the plane where the left-hand side of Eq. 14.44 is largest, and
f (Nf ) can be obtained from uniaxial test data. Note that this criterion can be thought of as a
generalization of the SWT parameter, Eq. 14.28.

A number of other critical plane approaches have been proposed, and research is currently
active in this area. For complex nonproportional loadings, determining the stresses and strains of
interest for critical-plane fatigue life estimates for an engineering component will generally require
the use of fairly sophisticated analysis that employs incremental plasticity theory.

14.5 LIFE ESTIMATES FOR STRUCTURAL COMPONENTS

So far in this chapter, we have considered only relationships between stresses and strains and
life. To use these for given cyclic loadings on a structural component, such as a beam, a shaft,
or a notched member, stresses and strains need to be first determined from applied loads. Thus,
stress–strain analysis from Chapter 13 needs to be combined with the fatigue life relationships from
the earlier portions of this chapter. Sections 13.5 and 13.6, which consider notched members and
cyclic loading, are especially needed.

We will use the same simplifying assumptions for the behavior of the material as in Chapters 12
and 13. The transient effects of cycle-dependent hardening or softening and creep–relaxation are
thus not generally considered. In particular, the stress–strain behavior is idealized to always follow
the stable cyclic stress–strain curve according to a multistage spring and slider rheological model.
Such a material has identical monotonic and cyclic stress–strain curves. Where there are multiple
applied loads, we will consider only cases with at least approximately proportional loading in
regions of yielding—that is, cases where the directions and ratios of the principal stresses remain at
least approximately constant. The strain-based approach can be extended to handle more complex
cases by employing a critical-plane approach, as previously described, but we will not pursue the
topic that far here.

14.5.1 Constant Amplitude Loading

Assuming idealized behavior for the material as just described, we note that the monotonic and
cyclic stress–strain curves are the same:

ε = f (σ ), εa = f (σa) (14.45)

The specific function used is often the Ramberg–Osgood form, Eq. 14.1, and the constants for
this curve are evaluated from stable behavior in cyclic strain tests. As in the rheological model,
unloading and reloading during cycling is approximated as following stress–strain paths that are
expanded with a scale factor of two relative to the preceding curve:

�ε

2
= f

(
�σ

2

)
(14.46)

Recall that origins for the �σ versus �ε curves are the points where the direction of straining
changes, as illustrated in Fig. 12.14.
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A stress–strain analysis of the component of interest is needed, which is done just as for
monotonic loading but with the use of the cyclic stress–strain curve. Let this result be expressed as
an equation, which may be explicit or implicit, giving the strain as a function of a generic variable
S that denotes load, moment, nominal stress, etc., as applicable in the particular case:

ε = g(S) (14.47)

As discussed in Section 13.6, the material behavior assumed permits this analysis to be applied to
cyclic loading. For constant amplitude loading that is biased in the tensile direction, the maximum
stress and strain can be estimated from

εmax = g(Smax) = f (σmax) (R ≥ −1) (14.48)

Also, the amplitudes or ranges can be estimated from

εa = g(Sa) = f (σa),
�ε

2
= g

(
�S

2

)
= f

(
�σ

2

)
(14.49)

where these two equivalent equations are both given merely as a convenience. For loading that is
biased in compression, R < −1, Eq. 13.73 replaces Eq. 14.48.

Once σmax, εmax, σa = �σ/2, and εa = �ε/2 are known, other quantities of interest follow
easily. The local notch mean stress is of special interest for fatigue life prediction:

σm = σmax − σa (14.50)

The values of εa and σm or σmax then allow the fatigue life Nf to be estimated from one of
the methods of Section 14.3. Such a procedure can be applied for bending, torsional, or notched
members by using analytical results ε = g(S), such as those given in Chapter 13.

As an example, consider using Neuber’s rule to analyze a notched member, followed by a
fatigue life estimate. If Eq. 14.1 is used for the cyclic stress–strain curve, the function ε = g(S)

is the implicit one obtained by using this σ -ε relation with Neuber’s rule, Eq. 13.58. For cyclic
loading with a nonzero mean level, Neuber’s rule can be used twice with the cyclic (same as
monotonic) stress–strain curve, once for Smax and once for Sa . Thus, two equations need to be
solved simultaneously to obtain σmax and εmax:

εmax = σmax

E
+
(σmax

H ′
)1/n′

,
(kt Smax)

2

E
= σmaxεmax (14.51)

Similarly, for σa and εa , we need to simultaneously solve

εa = σa

E
+
( σa

H ′
)1/n′

,
(kt Sa)2

E
= σaεa (14.52)

Such calculations have already been illustrated in Ex. 13.4, where the combination of the preceding
expressions given by Eq. 13.61 was found to be useful.

The fatigue notch factor kf , as discussed in Chapter 10, is often employed in place of kt in these
equations. Use of the empirically based parameter kf improves the accuracy of life prediction for
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sharp notches. However, see the discussion on crack growth effects near the end of this chapter for
another viewpoint, which suggests that kt should be retained.

The steps necessary to perform a life estimate for constant amplitude loading of a notched
member are summarized by Fig. 14.15. Step (1) is to assemble the needed input information related
to the loading, geometry, and material involved. Then (2) the values of (εmax, σmax) and (εa, σa)

are obtained from Eqs. 14.51 and 14.52, corresponding to a graphical solution as illustrated. The
estimated stress–strain response can then be plotted, and the local notch mean stress σm determined,
which is shown as step (3). Finally, (4) the life is obtained by using either εa and σm , or εa and σmax.

Example 14.3
A notched plate made of the AISI 4340 (aircraft quality) steel of Table 14.1 has an elastic
stress concentration factor of kt = 2.80. If the nominal stress is cycled between Smax = 750
and Smin = 50 MPa, how many cycles can be applied before fatigue cracking is expected?

Solution The identical situation has already been analyzed in Ex. 13.4 to estimate the local
notch stresses and strains. In particular, the cyclic stress–strain curve and Neuber’s rule were
used, as in Eqs. 14.51 and 14.52, to obtain both the maximums and amplitudes of stress and
strain. The resulting values are

σmax = 972 MPa, εmax = 0.02192

σa = 755 MPa, εa = 0.00615

Note that the steps followed in Ex. 13.4 correspond to (1) and (2) in Fig. 14.15. Plotting the
stress–strain response as in step (3) gives the result shown previously as Fig. E13.4. Also, the
mean stress during cycling is

σm = σmax − σa = 972 − 755 = 217 MPa

where cycle-dependent relaxation is assumed not to occur.
The life can now be estimated. If the Morrow mean stress method is chosen, εa and σm are

needed, and we substitute material constants from Table 14.1 into Eq. 14.20 to obtain

εa = 1758

207,000
(2N∗)−0.0977 + 2.12(2N∗)−0.774

Substituting the value we found for εa and solving numerically for N∗ gives

N∗ = 3011 cycles

The life Nf with the σm effect included is then obtained from Eq. 14.23, for which N∗
mi = N∗.

Nf = N∗
mi

(
1 − σm

σ ′
f

)−1/b

= 3011

(
1 − 217

1758

)1/0.0977

= 781 cycles Ans.

We could also choose a different mean stress method, such as the SWT parameter, in which case
εa and σmax are employed with Eq. 14.30, giving Nf = 1800 cycles (Ans.).
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14.5.2 Irregular Load Versus Time Histories

The methodology just described can be extended to irregular variations of load with time. This
requires applying stress–strain analysis for irregular load versus time histories, as described in
Section 13.6.3 and illustrated by Fig. 13.20 and Ex. 13.5. Once such an analysis is done, a fatigue
life estimate may be readily made by means of the Palmgren–Miner rule from Chapter 9.

The strain amplitude and mean stress of each closed stress–strain hysteresis loop are needed.
Consider Fig. 14.16, which is the example load history and local notch stress–strain response from
Fig. 13.20. There are four closed loops as shown in (c), specifically corresponding to load excursions
B-C-B ′, F-G-F ′, E-H -E ′, and A-D-A′. The strain amplitude εa and mean stress σm for each are
calculated from the (ε, σ ) coordinates of the loop tips. For example, these quantities are labeled
in (c) for loop F-G-F ′. The life to failure Nf corresponding to each hysteresis loop can then be
determined from its combination of strain amplitude and mean stress. If the SWT parameter is used,
σmax is simply the highest stress for a given loop, such as σG for loop F-G-F ′. Having obtained
the Nf value for each loop, we can apply the Palmgren–Miner rule, where each closed stress–strain
hysteresis loop is considered to represent a cycle.

Note that the cycle counting condition of Fig. 9.46 is satisfied at the same points in the load
history where the memory effect acts and the stress–strain path returns to one previously established.
These are also the points where segments are skipped in the rheological model, as described in
Section 12.4. Thus, the use of closed stress–strain hysteresis loops to identify cycles is equivalent
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Figure 14.16 Analysis of a notched member subjected to an irregular load versus time history.
Notched member (a), made of 2024-T351 aluminum, is subjected to load history (b). The
resulting local stress–strain response at the notch is shown in (c).
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to rainflow cycle counting. Furthermore, rainflow cycle counting is now seen to possess a physical
justification based on this correspondence with elasto-plastic stress–strain behavior.

The full procedure for estimating the stress–strain response and then the fatigue life can
be summarized for a repeating history by steps as follows: (1) Assemble the following input
information: (a) materials constants for the cyclic stress–strain and strain–life curves, Eqs. 14.1
and 14.4, (b) component analysis results, such as the elastic stress concentration factor kt and
Neuber’s rule, or other component analysis ε = g(S), done with the cyclic stress–strain curve as for
monotonic loading, and (c) the load (S) versus time history. (2) Reorder the load–time history to start
and return to the peak or valley having the largest absolute value of load. (3) Perform rainflow cycle
counting on the load history, noting that the cycles identified also correspond to closed stress–strain
hysteresis loops. (4) Estimate the local stress–strain response, as at a notch or a beam edge, as
described in Section 13.6.3, applying Eqs. 13.74 and 13.75, while observing the memory effect at
points where hysteresis loops close. (5) For each closed hysteresis loop (cycle), identify the strain
amplitude εa and either the mean or maximum stress, σm or σmax, and use these to determine the
corresponding fatigue life Nf , as affected by mean stress, from one of the mean stress equations of
Section 14.3. (6) Apply the Palmgren–Miner rule in the form of Eq. 9.34 to estimate the number of
repetitions of the load history to fatigue cracking, Bf .

Example 14.4
A shaft made of hot-rolled and normalized SAE 1045 steel is loaded in bending and has a
diameter change, as in Fig. A.12(b) of Appendix A. The stress concentration factor for the fillet
radius is kt = 3.00, and the member is repeatedly subjected to the history of net section nominal
stress shown in Fig. E14.4(a).1 How many times can this loading history be applied before fatigue
cracking is expected?

350

240

0

−160

−250
One repetition

1 2 ... 48 49 50

S
, M

P
a

t

Figure E14.4(a)

1Note: The peak nominal stress in this history is close to the yield strength of the material. However, with reference to
Fig. A.15(c), gross yielding will not occur, as Mo/Mi = 1.7 indicates that the fully plastic bending moment Mo is 70%
above the moment Mi that corresponds to S = σo.
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Solution The constants for this material’s cyclic stress–strain and strain–life curves, Eqs. 14.1
and 14.4, are listed in Table 14.1. We will employ kt with Neuber’s rule and the cyclic
stress–strain curve to estimate the stress–strain response for the given load history and, on this
basis, make the life estimate.

To begin, the first peak and valley in the history are moved to the end, and the second peak is
repeated at the end, so that the highest absolute value of S occurs first and last. This is shown on
the left in Fig. E14.4(b), as is rainflow cycle counting of the history according to the procedure
of Section 9.9.2. There are 50 cycles B-C , one cycle E-F , and the major cycle A-D. Since these
cycles correspond to closed stress–strain hysteresis loops, the stress–strain response is as shown
on the right in Fig. E14.4(b). The stress and strain values for each peak and valley are calculated
in a manner similar to Ex. 13.5, with the details given in Table E14.4(a).
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Table E14.4(a)

Load History Calculated Values

Point S Origin Origin S Direction �S to �σ �ε Stress Strain
(Y ) MPa (X) MPa ψ Point MPa σ, MPa ε

A 350 — — +1 — — — 474.0 0.011513
B 0 A 350 −1 350 701.5 0.007780 −227.4 0.003733
C 240 B 0 +1 240 573.5 0.004475 346.1 0.008208
D −250 A 350 −1 600 890.9 0.018004 −416.9 −0.006490
E 240 D −250 +1 490 818.1 0.013075 401.3 0.006585
F −160 E 240 −1 400 747.3 0.009539 −346.0 −0.002954
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For peak A, the value of SA is substituted into Eq. 13.61, and the equation is solved
iteratively for stress σA. Then σA is substituted into the cyclic stress–strain curve, Eq. 14.1,
to calculate εA. The specific forms used are

SA = ψ
1

kt

√
σ 2

A + ψσA E

(
ψσA

H ′

)1/n′

, εA = σA

E
+ ψ

(
ψσA

H ′

)1/n′

where ψ allows either tensile or compressive initial loading to be handled. Note that the cyclic
stress–strain curve is assumed to give the initial monotonic stress–strain path, ε = f (σ ).

Next, stress and strain ranges �σXY and �εXY are calculated from nominal stress ranges
�SXY corresponding to smooth hysteresis loop curves that follow �ε/2 = f (�σ/2). In
particular, this is done for the closed stress–strain hysteresis loops, B-C , E-F , and A-D, and
also for ranges A-B and D-E that locate starting points for closed loops. Equations 13.61 and
14.1 are again employed, now for half-ranges as follows:

�SXY = | SY − SX | , �SXY

2
= 1

kt

√(
�σXY

2

)2

+ �σXY E

2

(
�σXY

2H ′

)1/n′

�εXY

2
= �σXY

2E
+
(

�σXY

2H ′

)1/n′

The value of the range �SXY is first calculated. Then �SXY /2 is substituted into the second
equation, allowing �σXY /2 to be obtained from an iterative calculation, after which the result is
substituted into the third equation to give �εXY /2. In Table E14.4(a), the resulting full ranges
�SXY , �σXY , and �εXY are tabulated.

The stress–strain response calculations are completed by starting from the initial point A and
computing the stress and strain at each subsequent point by adding or subtracting the appropriate
ranges:

σY = σX + ψ �σXY , εY = εX + ψ �εXY

Here, ψ causes addition or subtraction, depending on whether S is increasing or decreasing. In
these calculations, the memory effect is observed. For example, we locate point D relative to its
origin point A by subtracting ranges A-D, with cycles B-C not affecting the calculation.

As stress and strain values are now available for each peak and valley in the load history, a
life calculation based on the Palmgren–Miner rule can proceed in a straightforward manner. If
the Morrow equation is used for the mean stress effect, values are needed for the strain amplitude
and mean stress, εa and σm , the quantity N∗, and finally the life Nf . This is done for each cycle,
B-C , E-F , and A-D. Thus, Eqs. 14.20 and 14.23 are needed and are applied as follows, with
N∗

mi = N∗:

εa = �ε

2
, σm = σmax + σmin

2

εa =
σ ′

f

E

(
2N∗)b + ε′

f

(
2N∗)c , Nf = N∗

mi

(
1 − σm

σ ′
f

)−1/b



Section 14.5 Life Estimates for Structural Components 779

Table E14.4(b) gives the results of these calculations. Each εa is obtained from the corresponding
�ε in Table E14.4(a), and each σm from the two appropriate stress values in the same table. For
example, for cycle B-C , the value of εa is half of the �ε on the third line of Table E14.4(a)—that
is, the line for point C with origin B. For calculating σm for cycle B-C , our σmax is the σ value
from the third (point C) line of Table E14.4(a), and σmin is the σ value from the second (point B)

line. Note that an iterative calculation is needed to calculate N∗ from εa , and then N f as affected
by σm follows.

Table E14.4(b)

Cycle N j εa σm , MPa N ∗ Morrow N f j N j/N f j

B-C 50 0.002237 59.3 2.127 × 105 1.054 × 105 4.745 × 10−4

E-F 1 0.004770 27.6 1.207 × 104 8.751 × 103 1.143 × 10−4

A-D 1 0.009002 28.6 1.803 × 103 1.293 × 103 7.736 × 10−4

� = 1.362 × 10−3

In Table E14.4(a), the N j and Nf j values are employed to calculate cycle ratios N j/Nf j , and
the sum of these is computed. Finally, the estimated number of repetitions to failure is obtained
by substituting this sum into the Palmgren–Miner rule in the form of Eq. 9.34, with the result
being

B f = 1

/[∑ N j

N f j

]
one rep.

= 1/1.362 × 10−3 = 734 repetitions Ans.

Another option is to use the SWT equation. In this case, the εa and σmax values for each
cycle give the product σmaxεa , which is then substituted into Eq. 14.30 to obtain the Nf value.
Details are given in Table E14.4(c).

Table E14.4(c)

Cycle N j εa σmax σmaxεa SWT N f j N j/N f j

B-C 50 0.002237 346.1 0.7743 1.196 × 105 4.181 × 10−4

E-F 1 0.004770 401.3 1.9140 1.017 × 104 9.829 × 10−5

A-D 1 0.009002 474.0 4.2673 1.577 × 103 6.339 × 10−4

� = 1.150 × 10−3

B f = 1/� = 869 repetitions Ans.

14.5.3 Discussion

Computer programs for accomplishing the procedure described in the previous subsection are given
in Wetzel (1977), specifically in the papers therein by Landgraf and by Brose, and also in Socie
(1980). The programming strategy used to follow the σ -ε paths can employ the rules corresponding
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to the behavior of the rheological model, as given in Section 12.4. These rules are applied not only
for the σ -ε response, but also for the S-ε response, where the curve ε = g(S) is used just as if it
were a stress–strain curve, as in Fig. 13.20(d). One strategy that has been successfully employed is
to make prior calculations of a number of points along the smooth curves, storing these in an array
to be drawn upon while actually performing the S-ε and σ -ε modeling.

The procedure described can be used for multiaxial loading. Adjustments as described in
Chapter 12 and earlier in this chapter must, of course, be made to the cyclic stress–strain and
strain–life relationships, and mean stress effects need to be handled appropriately. Also, the analysis
employed for relating load and strain, such as Neuber’s rule, must include a consideration of
the multiaxiality, as discussed in Sections 13.5.4 and 13.5.5. If multiple external loads cause
significantly nonproportional loading in regions of yielding, more sophisticated analysis using
incremental plasticity theory is needed, perhaps combined with finite element analysis on a digital
computer.

14.5.4 Simplified Procedure for Irregular Histories

A simplification of the procedure described is often employed that does not require a detailed
knowledge of the loading sequence. It becomes necessary to have only a summary of the load
history in the form of a matrix (as in Fig. 9.48) giving the numbers of rainflow-counted cycles at
various combinations of load range and mean load. The procedure is illustrated in Fig. 14.17 for
one of the cycles, specifically F-G, of the example of Figs. 13.20 and 14.16. Consistent with the
assumption that only the cycle counting result for the load history is known, the values of SF and SG

are considered to be known. However, the exact location of this cycle within the loading sequence
is assumed to be unknown, and this affects the local notch mean stress for the cycle, and hence
also its Nf value. The result of a similar situation occurring for all cycles except the largest one is
that the analysis does not provide a single answer, but rather places generally narrow bounds on the
calculated life.

Using F-G as a typical cycle, the key to making the simplified life estimate is to note that both
load–strain loop F-G and stress–strain loop F-G must lie within the corresponding loop for the
major (largest) cycle in the history, in this case cycle A-D. Since the loads SF and SG are known,
this places limits on the mean strain of cycle F-G. In particular, in Fig. 14.17(a), load–strain loop
F-G could be so far to the right that it is attached to the lower branch of loop A-D at P , or so far to
the left that it is attached to the upper branch at Q.

These limits on the strains for loop F-G confine the corresponding stress–strain loop as shown
in (b). We can place bounds σm P and σm Q on the mean stress of loop F-G by calculating the peak
and valley stresses and strains for the two extreme possibilities. We do this by applying Eq. 13.74 to
SA, and then applying Eq. 13.75 for load ranges A-P , A-D, D-Q, and F-G. Knowing the bounds
on the mean stress for cycle F-G then allows us to calculate bounds for the corresponding number
of cycles to failure, Nf FG .

The upper bound values on Nf are similarly obtained for all cycles in the history, and these
are employed with the Palmgren–Miner rule to obtain the upper bound on calculated life for the
irregular load history. The lower bound Nf values are similarly used to obtain the lower bound on
the life. Such a procedure was applied to the transmission load history of Fig. 9.48 for the case of
a notched member and material combination for which test data are available. Estimated bounds
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Figure 14.17 Simplified procedure that places bounds on the mean stress effect. For cycle F-G
of Fig. 14.16, the mean stress must lie between the values σmP and σmQ. (Adapted from
[Dowling 89]; copyright c© ASTM; reprinted with permission.)

on the life are compared with these test data in Fig. 14.18. The agreement obtained is reasonable,
considering the degree of scatter in the data.

Note that summarizing the load history as its rainflow matrix results in a loss of detail relative
to the original ordered list of peaks and valleys. A number of different sequences of peaks and
valleys have this same matrix, and each potentially results in a different calculated life. This explains
the situation of a bounded life calculation, where the bounds are the extremes from all possible
sequences that give the rainflow matrix used.

14.6 DISCUSSION

Additional discussion is useful. This will include noting some relationships and contrasts between
the methodology presented in this chapter and that from earlier chapters describing other approaches
to fatigue.

14.6.1 Strain-Based Versus Stress-Based Approaches

The strain-based approach handles local plasticity effects in a more rational and detailed manner
than does the stress-based approach of Chapters 9 and 10. Hence, it is generally the preferred
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approach for analyzing short fatigue lives, as judged by the transition fatigue life of the material.
The strain-based approach can also be used at long lives where elastic strains dominate, in which
case it becomes equivalent to a stress-based approach.

In some cases, S-N curves may be available from testing of members very similar to the actual
component of interest. Examples might be welded joints, built-up riveted beams, or vehicle axles,
of a specific design and material. S-N curves from such members automatically include the effects
of various complexities that are difficult to evaluate, such as the complex metallurgy and geometry
of welds, fretting effects, or effects of surface hardening processes. Where such S-N curves are
available, it may be advantageous to use these with a nominal-stress-based approach as described in
Chapter 10. Although the advantages of detailed analysis of local yielding effects by the strain-based
approach are lost, the advantage gained by automatic inclusion of other complexities will sometimes
outweigh this loss. The choice of an approach in such cases will be dictated by the details of the
particular situation. It may even be useful to perform design or analysis by using more than one
approach and compare the results.

14.6.2 Mean Stresses and Plasticity Effects

A key feature of the strain-based approach is that fatigue life estimates are made on the basis of
local stresses and strains in the region where fatigue cracking is expected to start, as at the edge
of a beam or in the bottom of a notch. Hence, the manner of accounting for mean stress effects is
fundamentally different than applying relationships such as Eqs. 10.21 or 10.28 directly to nominal
stress S. In particular, the mean stress used is the one that occurs locally, and its value is obtained
by specifically analyzing the local plastic deformation.
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Figure 14.19 Estimated stress–strain responses for an aluminum alloy, for various levels of
zero-to-maximum loading on plates with central round holes. (Adapted from [Dowling 87];
used with permission; c© Society of Automotive Engineers.)

An example of analysis by the strain-based approach involving mean stresses is provided
by Figs. 14.19 and 14.20. The procedure previously described for constant amplitude loading
(Fig. 14.15) is applied to zero-to-maximum (R = 0) loading of notched plates of 2024-T351
aluminum. Stress–strain paths for four different load levels are shown in Fig. 14.19, and life
calculations made on this basis are in reasonable agreement with test data as shown in Fig. 14.20. For
the highest loads in this example, the mean stresses are near zero, as in Fig. 14.19(a). For decreasing
load, the ratio k f m = σm/Sm of local to nominal mean stress increases. It becomes equal to kt where
the load is sufficiently low that no yielding occurs, as in (d). The overall trend is similar to that
discussed in connection with the stress-based approach; see Fig. 10.15. Also, the ratio k′

f = σa/Sa

varies in a manner similar to Fig. 10.12. Thus, in contrast to the estimation procedures for S-N
curves in Chapter 10, it is apparent that the strain-based approach provides a rational basis for
specifically evaluating the effect of plastic deformation on S-N curves.

It is noteworthy that the procedure described for estimating local mean stresses does not
consider cycle-dependent creep–relaxation effects. Actual stress–strain responses at notches are
expected to be similar to Fig. 14.21. Both creep and relaxation occur simultaneously, and these
may interact with the cycle-dependent hardening or softening that is also occurring. More detailed
modeling of the stress–strain response, as already discussed to an extent in Section 12.5, is a
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Figure 14.20 Life estimates for the situation of Fig. 14.19 using the SWT parameter, and also
corresponding test data. (Data from [Wetzel 68].)

Figure 14.21 Simulation of the stress–strain behavior at a notch, for zero-to-maximum
loading of Ti-811 with kf = 1.75. A smooth specimen was subjected to cyclic loading, with the
direction of straining reversed whenever Neuber’s rule using kf was satisfied. (Adapted from
[Stadnick 72]; copyright c© ASTM; reprinted with permission.)
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possibility. In particular, values of mean stress could be revised to reflect relaxation according
to Eq. 12.56 or another analogous relationship. The improved accuracy of fatigue life prediction
resulting from this may, in a few cases, justify the increased complexity of the analysis. However, an
impediment to such more refined analysis is the necessity of obtaining additional material constants
to describe the transient behavior. Note that the overall effect of lowered mean stress due to local
yielding is considered even by the analysis based on stable behavior, as in Fig. 14.19.

14.6.3 Sequence Effects Related to Local Mean Stress

The rational handling of mean stress effects by the strain-based approach is especially important
for irregular load versus time histories. Consider the two load histories of Fig. 14.22. They differ
only in that the initial severe loading cycle has two different sequences. No difference in these
two situations would be predicted by the stress-based approach, as the mean nominal stress for the
subsequent lower level cycles is zero in both cases.

Stress–strain responses for the two load histories as shown were estimated from the procedure
of Section 14.5.2. Mean stresses are present for the lower level cycles, and these differ in sign as a
result of the sequence of the initial severe cycle. Large differences in the fatigue life can occur in
such situations, and these are predicted with reasonable accuracy by the strain-based approach. It is,
of course, of special concern that the stress-based approach, as usually applied, does not predict the
detrimental effect of history (a).
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Figure 14.22 Two load histories applied to a notched member (kt = 2.4), and the estimated
notch stress–strain responses for 2024-T4 aluminum. The high–low overload in (a) produces a
tensile mean stress, and the low–high overload in (b) produces the opposite. (Adapted from
[Dowling 82]; used with permission of ASME.)
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14.6.4 Sequence Effects Related to Physical Damage to the Material

Any situation where the order of loading affects the life is called a sequence effect. In addition to
sequence effects related to local mean stress, as just described, sequence effects also occur that are
associated with physical damage to the material caused by occasional severe cycles. Small cracks,
and also the preceding slip band damage, etc., usually occur at shorter fractions of the total life at
higher strain levels. This is evident in the strain–life curves of Fig. 14.9, and also in the stress–life
curves of Fig. 9.19. Such behavior causes a sequence effect and a resulting difficulty in applying the
Palmgren–Miner rule.

Note that a physical measure of the damage D caused by fatigue loading, such as the size of
the dominant microcrack, usually increases in a nonlinear manner with life fraction, as illustrated in
Fig. 14.23(a). Let the life fraction for Nj cycles, applied at a particular stress level Sj , be termed Uj .
Then

Uj = Nj

Nf j
(14.53)

If the stress level is changed from S1 to S2 during the life, the Palmgren–Miner rule requires that

U1 + U2 = 1 (14.54)

This is obeyed for Fig. 14.23(a), but not for (b). In the latter case, the damage curves differ for the
two different stress levels, with the result that the summation of life fractions at failure is not unity.
If the damage proceeds at a higher rate for S1 than for S2, the summation is less than unity, which is
the particular case illustrated. Hence, the Palmgren–Miner rule can accurately predict the life where
there is only nonlinearity in the D versus U curve as in (a), but nonuniqueness as in (b) causes the
rule to be in error.

This is precisely the situation that occurs if a relatively small number of cycles at a high
stress level are followed by, or mixed with, cycling at a lower stress level. Thus, summations of
life fractions can be less than unity as a result of the same degree of physical damage occurring at
shorter fractions of the life at higher stress levels. A reasonable engineering approach to this problem

Figure 14.23 Physical damage versus life fraction, where the relationship is (a) unique and (b)
nonunique. (From [Dowling 87]; used with permission; c© Society of Automotive Engineers.)
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Figure 14.24 Effect of initial overstrain (10 cycles at εa = 0.02) on the strain–life curve of an
aluminum alloy. (Adapted from [Dowling 89] as based on data from [Topper 70]; copyright c©
ASTM; reprinted with permission.)

is to obtain strain–life or S-N curves by applying a few high-level cycles prior to each test, so as to
predamage the material. A life fraction of around 0.01 or 0.02 appears, in general, to be sufficient to
lower the strain–life curve so that nonconservative life estimates are avoided. An example of such a
strain–life curve for prestrained material is shown in Fig. 14.24.

In steels that have a distinct fatigue limit, effects of this sort extend to stresses below the fatigue
limit. Periodic overstrains have an especially severe effect and appear to essentially eliminate the
fatigue limit, as shown in Fig. 14.25 and previously in Fig. 9.33. Therefore, for irregular loading
where some stress levels substantially exceed the fatigue limit, infinite life should not be assumed for
cycles below this level. Limited data, as in Fig. 14.25, suggest that extrapolation below the fatigue
limit of the strain–life curve obtained at shorter lives could be used to deal with this situation. As
discussed in Sections 9.6.5 and 9.9.1, such extrapolation should extend at least as low as half of the
fatigue limit from constant amplitude test data, at which stress it may be reasonable to assume that
a true fatigue limit exists.

14.6.5 Crack Growth Effects

In the usual manner of obtaining strain–life curves, the Nf values correspond to failure or to
substantial cracking in small (typically 5 to 10 mm diameter) axial test specimens. It is generally
observed that life predictions made on this basis correspond to an engineering size crack that is
easily visible with the naked eye, hence of size on the order of 1 to 5 mm. The existence of such a
crack is often considered to constitute failure of the component. However, this rather loose definition
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Figure 14.25 Effects of both initial and periodic overstrains on the strain–life curve for an
alloy steel. The fatigue limit for the no-overstrain case is estimated from test data on similar
material. (Data from [Dowling 73].)

of failure is not always sufficient. For example, it may be desired to predict the life required to
develop a crack of a definite size, so that the remaining life required to grow this crack to failure can
be estimated from fracture mechanics, as described in Chapter 11. Strain–life curves corresponding
to specific small crack sizes, as in Fig. 14.9, are needed if this is to be done in a rigorous manner.

On this basis, the strain-based approach provides the crack initiation life Ni to a crack size ai ,
and the fracture mechanics approach provides the life Ni f to grow the crack from ai to the failure
size a f . Hence, the total life to failure, Nf , is

Ni + Ni f = Nf (14.55)

If ai is chosen to be too short, then the behavior of the crack may be affected by local notch plasticity
or other complexities affecting small cracks, so that the use of linear-elastic fracture mechanics is
compromised. On the other hand, ai cannot be too long, as the notch surface strains used in the
strain-based approach do not apply at too great a distance from the notch. A reasonable choice as
an initiation size is the crack length l ′ defined by Eq. 8.26. The length l ′ varies with geometry and is
generally around 0.1ρ to 0.2ρ, where ρ is the notch tip radius. However, this degree of rigor is not
always needed. Additional discussion is provided in Dowling (1979) and Socie (1984).

From Section 10.2, recall that the principal reason that an empirical fatigue notch factor kf

is needed appears to be related to the growth of cracks near the notch. The initiation of small
cracks at notches appears to be governed by kt , not by kf . Hence, if the life is separated into
crack initiation and growth phases, as previously described, it is reasonable to use kt rather than



Section 14.7 Summary 789

kf with the strain-based approach to estimate Ni . For sharp notches, this procedure will predict
early initiation of cracks that are then expected from fracture mechanics to grow slowly or not at all.
Such nonpropagating cracks are indeed commonly observed.

14.7 SUMMARY

The strain-based approach employs estimates for the stresses and strains that occur at locations
where fatigue cracking is likely to start, such as edges of beams and notches. The behavior of the
material is characterized with the use of the stable cyclic stress–strain curve and the strain–life curve
from uniaxial loading:

εa = σa

E
+
( σa

H ′
)1/n′

, εa =
σ ′

f

E
(2Nf )

b + ε′
f (2Nf )

c (14.56)

Mean stress also affects the fatigue life, so that the strain–life curve often needs to be generalized to
include this effect according to one of the methods of Section 14.3.

Strain–life and cyclic stress–strain curves vary for different engineering metals and processing
histories in a manner that can generally be correlated with other mechanical properties. For example,
very ductile metals usually have good resistance to fatigue at high strains corresponding to short
lives, but poor resistance at long lives, and vice versa for highly strengthened metals. Elevated
temperature and hostile chemical environments affect strain–life curves, and time-dependent
creep–relaxation behavior may complicate analysis at high temperatures.

If multiaxial loading occurs, then the cyclic stress–strain and strain–life curves need to be used
in more general form. For biaxial loading that is proportional or approximately so, the relationships
needed are Eqs. 12.39 and 14.38, with the latter perhaps being modified on the basis of Eq. 14.42.
For nonproportional loading, the more advanced incremental plasticity theory is needed for relating
stresses and strains, and a critical plane approach is appropriate for estimating fatigue life.

To apply the strain-based approach to an engineering component, such as a beam or a notched
member, an analysis relating applied load and strain at the expected failure location is needed. In
uncomplicated cases, proportional loading is assumed, as is stable stress–strain behavior without
cycle- or time-dependent creep–relaxation. A stress–strain analysis is needed that is done just as for
monotonic loading, except that the cyclic stress–strain curve is used. For example, Neuber’s rule
can be used for notched members with a stress–strain curve ε = f (σ ), where εa = f (σa) is the
cyclic stress–strain curve. The result of this analysis is given by a (perhaps implicit) load–strain
relationship, ε = g(S), such as the combination of Eqs. 13.61 and 14.1, where S quantifies the
applied load.

A starting point for analyzing cyclic loading may be established by applying monotonic loading
to the highest absolute value of S. Where this S is positive, we use εmax = g(Smax) = f (σmax).
Load–strain and stress–strain paths for cyclic loading are then estimated by �ε/2 = g(�S/2) =
f (�σ/2). For irregular variation of load with time, cycle counting and the stress–strain memory
effect are employed as detailed in Section 13.6.3. Once the stress and strain values have been
estimated for all peaks and valleys in the load history, the quantities needed to estimate the fatigue
life Nf for each cycle, such as the strain amplitude εa and the mean stress σm , are readily determined.



790 Chapter 14 Strain-Based Approach to Fatigue

Application of the Palmgren–Miner rule can then follow to estimate the life for an irregular loading
history.

Use of the local notch mean stress, rather than the nominal (average) mean stress, provides a
rational basis for analyzing the effects of local plastic deformation, including the effects of loading
sequence for irregular load versus time histories. Additional sequence effects are caused by physical
damage to the material during occasional severe loading cycles. These can be handled by using
strain–life curves for test specimens that have been subjected to plastic deformation before testing
or periodically during testing. The strain-based approach can also be used in combination with
crack growth life estimates by fracture mechanics to obtain total fatigue lives for crack initiation
plus growth.
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PROBLEMS AND QUESTIONS

Section 14.2
14.1 Using the two straight lines plotted for RQC-100 steel in Fig. 14.4, estimate your own

values of the constants σ ′
f , b, ε′

f , and c for the strain–life curve. The elastic modulus is
E = 200 GPa. Do your values agree reasonably well with those given?

14.2 Plot strain–life curves for the four heat treatments of SAE 4142 steel in Table 14.1 all together
on one graph. Employ log–log coordinates and cover lives from 1 to 106 cycles. Comment on
any trends that you observe and how these correlate with the tensile properties and hardness.
(Suggestion: Include the transition fatigue life Nt in your discussion.)

14.3 How do the strain–life curves for the two ductile polymers in Fig. 14.5 differ from those
typical of engineering metals? Consider both qualitative trends, such as the shape of the
curves, and quantitative trends, such as the life corresponding to εa = 0.01.

14.4 For hot-rolled and normalized SAE 1045 steel with an elastic modulus of E = 202 GPa,
some fatigue data for completely reversed loading are given in Table P12.32(a). The stress
and strain values listed correspond to stable (near Nf /2) behavior.
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(a) Determine constants for the strain–life curve. Compare the results with those listed in
Table 14.1, which were obtained from a larger set of data.

(b) Plot both the data and the fitted curves for elastic, plastic, and total strain. Do your
constants provide a good representation of the data?

14.5 For AISI 4340 steel with σu = 1172 MPa, data of stress, strain, and fatigue life from
completely reversed tests are given in Table P12.33(a). The elastic modulus is E = 207 GPa.
Proceed as in Prob. 14.4(a) and (b), except use these data.

14.6 For quenched and tempered SAE 1045 steel with ultimate tensile strength σu = 2248 MPa
and hardness HB = 595, data of stress, strain, and fatigue life from completely reversed tests
are given in Table P12.34. The elastic modulus is E = 206.7 GPa. Proceed as in Prob. 14.4(a)
and (b), except use these data, and omit the comparison with Table 14.1. (For now, ignore
the relatively small values of mean stress, σm .)

14.7 Based on the constants in Table 14.1:
(a) Plot strain–life curves for steels SAE 1015 and SAE 4142 (380 HB). Employ log–log

coordinates and cover lives from 1 to 106 cycles.
(b) Noting that these curves are from polished test specimens, also plot the curves for

both materials that include the effect of a typical machined surface finish. How do the
effects of surface finish differ for the two steels?

14.8 Hot-rolled and normalized SAE 1045 steel, as in Table 14.1, is made into a large shaft. There
is a change in the shaft diameter from d1 = 222 to d2 = 343 mm, with a fillet of radius
ρ = 11.1 mm having a machined surface. Adjust the constants for the strain–life curve so
that it is appropriate for making life estimates for this shaft. Then plot both the original and
modified strain–life curves, and comment on how they differ.

14.9 For all materials in Table 14.1, complete the following tasks:
(a) Plot σ ′

f versus the σ̃ fB on linear–linear coordinates. How good is the correlation, and
what trends are evident?

(b) Plot ε′
f versus the true fracture strain ε̃f on log–log coordinates, and answer the same

questions. (Hint: Calculate ε̃f from %R A.)
14.10 Use the strain–life constants given for each material in Table 14.1 to calculate the strain

amplitude εa corresponding to Nf = 1000 cycles. Then prepare a histogram of the frequency
of occurrence of various εa values, and comment on the result obtained.

Section 14.3
14.11 Estimate the fatigue life for SAE 4142 steel (560 HB) for a strain amplitude of εa = 0.0040

with a mean stress of σm = 150 MPa. Employ each of the following methods: (a) Morrow,
(b) modified Morrow, (c) SWT, and (d) Walker with γ estimated from Eq. 9.20.

14.12 Proceed as in Prob. 14.11, except change the mean stress to σm = −150 MPa. Also calculate
the fatigue life for a strain amplitude of εa = 0.0040 with a mean stress of zero.

14.13 Estimate the fatigue life for 2024 – T4 aluminum for a strain amplitude of εa = 0.0050 with
a mean stress of σm = 200 MPa. Employ each of the following methods: (a) Morrow, (b)
modified Morrow, (c) SWT, and (d) Walker with an estimate of γ = 0.50.
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14.14 Proceed as in Prob. 14.13, except change the mean stress to σm = −200 MPa. Also calculate
the fatigue life for a strain amplitude of εa = 0.0050 with a mean stress of zero.

14.15 Estimate the fatigue life for SAE 1015 steel for a strain amplitude of εa = 0.0030 with
a mean stress of σm = 175 MPa. Employ each of the following methods: (a) Morrow, (b)
modified Morrow, (c) SWT, and (d) Walker with γ estimated from Eq. 9.20.

14.16 Proceed as in Prob. 14.15, except change the mean stress to σm = −175 MPa. Also calculate
the fatigue life for a strain amplitude of εa = 0.0030 with a mean stress of zero.

14.17 Estimate the fatigue life for the material AISI 4340 (aircraft qual.) with mean stress σm =
100 MPa and strain amplitude εa = 0.0040 using: (a) Morrow, and (b) SWT approach.

14.18 Estimate the fatigue life for the material 2024 – T351 aluminum alloy with mean stress
σm = 150 MPa and strain amplitude εa = 0.0030 using: (a) Morrow, and (b) SWT approach.

14.19 Proceed as in Prob 14.17, except use (a) modified Morrow, and (b) Walker approach.
14.20 Proceed as in Prob 14.18, except use (a) modified Morrow, and (b) Walker approach.
14.21 Compare Figs. 14.11 and 14.13. Does either the Morrow approach or the SWT approach

appear to be superior for this material? Are there any specific trends of disagreement with
the data in either case, and if so, what are these trends?

14.22 Some strain–life data at nonzero mean stresses are given in Table P14.22 for prestrained
2024-T4 aluminum.

Table P14.22

εa σa , MPa σm , MPa Nf , cycles

0.00345 245 71.7 37 800
0.00232 165 71.7 244 600
0.00172 122 71.7 760 000

0.00410 291 142 11 000
0.00303 215 141 30 000
0.00254 181 144 58 500
0.00198 143 143 158 000
0.00148 105 142 437 100
0.00121 85.5 144 820 000

0.00250 178 292 27 700
0.00149 106 292 200 000
0.00109 76.5 287 747 000

Source: Data in [Topper 70].
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(a) Plot data points of the SWT parameter, σmaxεa , versus Nf on log–log coordinates.
Also plot the curve expected from the constants in Table 14.1, and comment on the
success of the SWT parameter for this material.

(b) Using the modified Morrow approach, Eq. 14.27, plot the members of the family of
strain–life curves that correspond to mean stresses of σm = 0, 72, 142, and 290 MPa.
Then plot the test data and comment on the agreement with the curves.

14.23 Using the data for prestrained 2024-T4 aluminum from Prob. 14.22, complete the following:
(a) Plot εa versus N∗

mi from Eq. 14.22 on log–log coordinates. Also plot the strain–life
curve from the material constants in Table 14.1, and comment on the success of the
Morrow equation for this data.

(b) Repeat (a) with N∗
m f calculated using the true fracture strength, Eq. 14.26. Is the

agreement improved?
14.24 Additional data for the SAE 1045 steel of Prob. 12.34 are given in Table P14.24. These

are stress-controlled tests with mean stresses imposed. Cyclic stress–strain and strain–life
constants fitted to the Prob. 12.34 data are as follows:

E , MPa H ′, MPa n′ σ ′
f , MPa b ε′

f c
206,700 3246 0.0918 3149 −0.1014 0.251 −0.891

(a) For the combined data from Tables P12.34 and P14.24, plot data points of strain
amplitude εa versus N∗

mi , where the latter is from the Morrow relationship, Eq. 14.22.
Where εa is not given, estimate the value from σa and the cyclic stress–strain
curve, Eq. 14.1. On the same graph, also plot the strain–life curve from the given
constants.

(b) On a second graph, plot the SWT parameter σmaxεa versus Nf , showing both the
combined data and the curve expected from the given constants.

(c) Comment on the success of both the Morrow and SWT methods in correlating the
mean stress data for this material. Is either significantly better than the other?

Table P14.24

σa , MPa σm , MPa Nf , cycles

1379 −345 3 750
1207 −345 19 500
1207 690 135
1034 690 2 270

896 690 4 850
724 690 22 750
621 690 572 000

Source: Data in [Landgraf 66].

14.25 Consider the data of Tables P12.33(a) and E9.5 for AISI 4340 steel with σu = 1172 MPa. A
stress–life fit to these combined data, using σar = σ ′

f (2Nf )
b with the Walker relationship,



Problems and Questions 795

Eq. 9.19, gives constants σ ′
f = 1951 MPa, b = −0.1074, and γ = 0.652. (See Sec-

tion 10.6.4.)
(a) For the combined data from Tables P12.33(a) and E9.5, plot data points of strain

amplitude εa versus N∗
w, where the latter is from the Walker relationship, Eq. 14.32.

On the same graph, also plot the strain–life curve, using the constants for this material
from Table 14.1, except replace σ ′

f and b with the values given in this problem. Where
εa is not given, estimate the value from σa and the cyclic stress–strain curve, Eq. 14.1.

(b) Compare the success of the data correlation from (a) with that for other mean stress
equations in Figs. 14.11 to 14.13.

Section 14.4
14.26 Some shear strain versus life data from completely reversed torsion of thin-walled tubes

are given in Table P12.35 for hot-rolled and normalized SAE 1045 steel. The shear strain
amplitude γa was constant in each test, and the shear stress and plastic shear strain
amplitudes, τa and γpa , were measured near Nf /2. Some properties of this steel are listed in
Table 14.1, and the shear modulus is G = 79.1 GPa.

(a) Plot the γa versus Nf data on log–log coordinates, compare them with the curve
predicted by Eq. 14.39, and comment on the success of this equation.

(b) Add the γa versus Nf equation to your plot that is obtained by using the hydrostatic
stress adjustment of Eq. 14.42. Does this improve the agreement with the data?

14.27 For the hot-rolled and normalized SAE 1045 steel of Table 14.1, plot a family of estimated
strain–life curves, ε1a versus Nf , for biaxial loadings specified by λ = −1.0, −0.5, 0, 0.5,
and 1.0. Use Poisson’s ratio ν = 0.277, employ log–log coordinates, and cover lives from 10
to 106 cycles. Then comment on the trends in the curves.

14.28 Derive an equation analogous to Eq. 14.38 for ε1a versus Nf for the case of axisymmetric
loading, where σ2a = σ3a = βσ1a . Also, for the hot-rolled and normalized SAE 1045 steel of
Table 14.1, plot the particular curve that applies for β = 0.5, along with the one for uniaxial
loading. Use Poisson’s ratio ν = 0.277, employ log–log coordinates, and cover lives from
10 to 106 cycles. Then comment on the comparison.

Section 14.5.1
14.29 Plates with round holes of 2024-T351 aluminum are axially loaded and have an elastic

stress concentration factor from Fig. A.11(a) of kt = 2.4. Make estimates of the life to
fatigue cracking, and also plot the estimated stress–strain response, for cycling at R = 0
with (a) Smax = 240 MPa, and (b) Smax = 345 MPa. Your results should be similar to those
of Figs. 14.19 and 14.20.

14.30 Estimate the number of cycles to cause fatigue cracking for the notched member and cyclic
loading of Prob. 13.32.

14.31 A notched plate of 2024-T351 aluminum is loaded axially, as in Fig. A.11(b), and has a stress
concentration factor of kt = 2.5. Estimate the number of cycles to cause fatigue cracking for
the cyclic loading of Prob. 13.33.

14.32 Estimate the number of cycles to cause fatigue cracking for the notched member and cyclic
loading of Prob. 13.31.
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14.33 A plate with a round hole, Fig. A.11(a), made of RQC-100 steel, is loaded in tension and
has a stress concentration factor of kt = 2.8. Estimate the number of cycles to cause fatigue
cracking for the cyclic loading of Prob. 13.35.

14.34 For the rotating annular disc of Prob. 13.39, estimate the number of stop–start cycles
necessary to cause fatigue cracking.

14.35 Consider the test data in Prob. 10.22 for axially loaded plates with double-edge notches,
having kt = 4, made of 7075-T6 aluminum. Estimate the S-N curve for Sm = 0 loading
from the strain-based approach, employing materials constants from Table 14.1. (Suggestion:
Calculate the life for several different values of Smax.) Then plot your estimated curve along
with the Sm = 0 test data, and comment on the success of the estimate.

14.36 Consider the data for bending of rectangular beams of RQC-100 steel in Prob. 13.37.
(a) Use the strain-based approach to estimate moment amplitudes corresponding to

several fatigue lives over the range Nf = 102 to 106 cycles. Then plot the estimated
curve of Ma versus Nf , along with the test data, and comment on the comparison.

(b) Also, plot the strain amplitude versus life data, εa versus Nf , along with the curve
from axial specimen data given by constants in Table 14.1. Do data and curve agree?

14.37 Consider the bluntly notched compact specimen of Prob. 13.38 made of AISI 4340
steel (σu = 1158 MPa). Fatigue life data for completely reversed loading are given in
Table P14.37. Note that fatigue lives are listed both for failure and for the initiation in the
end of the notch of a small surface crack of length 2c = 0.5 mm, corresponding to a crack
depth around half this length, a ≈ 0.25 mm.

(a) Make a load amplitude versus fatigue life plot, Pa versus both Ni and Nf , of these
data.

(b) On this life plot, add a curve calculated from strains estimated by Neuber’s rule.
The constants for the strain–life curve are E = 206.9 GPa, σ ′

f = 1544 MPa, b =
−0.0767, ε′

f = 0.526, and c = −0.655.
(c) Also add a curve for lives estimated from the FEA strain values of Table P13.38.
(d) Concisely discuss the success of the two different estimates, considering both

Ni and Nf .

Table P14.37

Pa Ni , cycles Nf , cycles
kN a ≈ 0.25 mm failure

35.58 60 103
24.46 150 474
16.01 874 4 150
11.12 5 000 23 200

8.45 24 900 75 700
7.12 73 800 154 700
6.67 3 340 000 3 400 000
6.23 1 800 000 2 070 000
6.23 2 900 000 3 100 000

Source: Data for [Dowling 82].
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14.38 Round shafts with a diameter transition having a fillet radius were made of ASTM A470
(Ni-Cr-Mo-V) steel with σu = 724 MPa. The smaller and larger diameters and the fillet
radius were d1 = 25.4, d2 = 57.15, and ρ = 1.575 mm, giving an elastic concentration
factor for shear stress due to torsion of kt = 1.56. Nominal stress is defined as for the
related case of Fig. A.12(d). These shafts were subjected to completely reversed torsional
loading, with torque amplitudes Ta and numbers of cycles Nf to fatigue cracking being
given in Table P14.38. From axial loading tests on similar material, constants for the cyclic
stress–strain and strain–life curves, Eqs. 14.1 and 14.4, are given as follows, as is Poisson’s
ratio, ν:

E , GPa H ′, MPa n′ σ ′
f , MPa b ε′

f c ν

206.9 710 0.0640 748 −0.0490 1.74 −0.738 0.300

(a) Estimate the cyclic stress–strain and strain–life equations for a state of planar shear
stress.

(b) Using Neuber’s rule applied to shear stress and strain, along with your equations from
(a), estimate the curve relating torque amplitude and cycles to failure over the range
Nf = 102 to 107 cycles. Add the given data to the curve and comment on the success
of the estimated curve.

Table P14.38

Ta Nf , cycles
kN·m to cracking

1.1718 950
1.0080 2 000
0.7548 20 000
0.6492 80 100
0.5995 118 000
0.5995 567 000
0.5283 1 000 000

Source: Data in
[Placek 84].

Section 14.5.2
14.39 AISI 4340 steel with σu = 1468 MPa is made into a notched shaft that is loaded in bending

and has an elastic stress concentration factor of kt = 3.0. This shaft is a part in a helicopter,
and the nominal bending stress history for each flight in simplified form is shown in
Fig. P14.39. Estimate the number of flights necessary to develop a crack in this part if
Sa2 = 70 MPa for (a) Smax = 275 MPa, and (b) Smax = 480 MPa. Make a qualitative sketch
of the local stress–strain response to guide your solution.
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14.40 The nominal stress history shown in Fig. P14.40 is repeatedly applied to a notched member
made of the Ti-6Al-4V alloy of Table 14.1. The elastic stress concentration factor is
kt = 2.50, the value of Smax = 600 MPa, and N2 = 3000 cycles. Estimate the number of
repetitions required to cause fatigue cracking. Make a qualitative sketch of the local stress-
strain response to guide your solution.
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S      = −0.5SminN    cycles2

One repetition

Smax
S

0
t

max

Figure P14.40

14.41 Estimate the number of repetitions to cause fatigue cracking for the notched member and
load history of Fig. 13.20, starting from the results of Ex. 13.5.

14.42 For the material and strain history of Prob. 12.38, assume that the history is repeatedly
applied, and estimate the number of repetitions to cause fatigue cracking.

14.43 For the material and strain history of Prob. 12.41, assume that the history is repeatedly
applied, and estimate the number of repetitions to cause fatigue cracking.

14.44 For the notched member and repeatedly applied nominal stress history of Prob. 13.40,
estimate the number of repetitions to cause fatigue cracking.

14.45 For the notched member and repeatedly applied nominal stress history of Prob. 13.41,
estimate the number of repetitions to cause fatigue cracking.

14.46 For the notched member and repeatedly applied nominal stress history of Prob. 13.42,
estimate the number of repetitions to cause fatigue cracking.

14.47 For the notched member and repeatedly applied nominal stress history of Prob. 13.43,
estimate the number of repetitions to cause fatigue cracking.
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14.48 A member made of 2024-T351 aluminum has a notch with an elastic stress concentration
factor of kt = 2.50. It is repeatedly subjected to the variable amplitude loading history shown
in Fig. P14.48. Qualitatively sketch the local notch stress–strain response, and then estimate
the number of repetitions to cause fatigue cracking.
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Figure P14.48

14.49 Make the life estimate of Ex. 10.6 by the strain-based method. Use properties for 2024-T351
aluminum as likely to be similar to those for the given 2024-T3 alloy. Then compare and
briefly discuss the two calculations as to the life obtained, the nature of the input information
required, and the complexity of the calculation.

14.50 Problem 10.40 gives a nominal stress history that was repeatedly applied to axially loaded,
double-edge-notched plates of 7075-T6 aluminum, with kt = 4.00. Fatigue lives from six
identical tests are given in Table P10.40(b). The plate dimensions are the same as in
Prob. 10.22.

(a) Qualitatively sketch the local notch stress–strain response, and then use the strain-based
method to estimate the number of repetitions to cause fatigue cracking. Compare your
calculated life with the test data and comment on the success of your estimate.

(b) Consider the notches on each side of the member to be collapsed to sharp cracks of
the same length a as the notch depth. On this approximate basis, estimate the number
of repetitions of the history required to grow the cracks from initiation to failure. Add
this life to that from (a) to obtain the total life to failure, and again compare with the
test results. (Materials properties for crack growth are given in Table 11.2. Note that
Kc from Table 11.3 applies for t = 2.3 mm.)

14.51 Problem 10.41 gives a nominal stress history that was repeatedly applied to axially loaded,
double-edge-notched plates of 7075-T6 aluminum, with kt = 4.00. Fatigue lives from six
identical tests are given in Table P10.40(b). The plate dimensions are the same as in
Prob. 10.22. Proceed as in Prob. 14.50(a) and (b).

Section 14.6
14.52 Rework Ex. 10.3, using the strain-based approach. Then discuss the differences between your

calculation and that of Ex. 10.3.
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14.53 Chain with an average static breaking strength of Pu = 106.8 kN has links as shown in
Fig. P14.53(a). The links are made from SAE 8622H steel bar of diameter d = 10 mm,
which is cut to length and cold formed to the needed shape, then welded into solid links,
and finally heat treated by quenching and tempering. Tensile properties are yield 1014 MPa,
ultimate 1117 MPa, and 62% reduction in area. Fatigue properties were estimated from data
on similar material and adjusted to obtain agreement with fatigue data on chain links, giving
the following values:

E , MPa H ′, MPa n′ σ ′
f , MPa b ε′

f c
213,700 1386 0.0985 1517 −0.10 1.00 −0.55

Elastic finite element analysis found the highest stresses at points such as F and G,
where similar values of kt = 5.8 were obtained. This kt is based on nominal stress
defined as S = P/(2A), where P is the force on the chain and A = πd2/4. (Source: Data
from [Tipton 92].)

(a) Estimate the fatigue life for chain that is subject to a load amplitude of 8% of Pu about
a mean level of 16% of Pu .

(b) Chain is normally proof tested before use by applying a high load, such as O-A-B
in Fig. P14.53(b). (This eliminates defective links and introduces beneficial residual
stresses.) Revise your life estimate from (a) to include an initial proof test at 60%
of Pu .

(c) Compare your results from (a) and (b) as to both the life and the local mean stress
during use of the chain, and comment on the expected effectiveness of the proof
loading.
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14.54 A shaft that supports cable pulleys used to lift coal from a mine is loaded in rotating bending
in a situation similar to that of Prob. 10.36, but the shaft is larger, due to higher loads. A
fillet radius analogous to that labeled in Fig. P10.36 is the most severely stressed location,
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Table P14.54

No. of Rotations Nominal Stress
Situation per Hoist Cycle S, MPa

Accelerating 9 92
Up with coal 45 86
Down empty 54 60

where the diameter in this case increases from d1 = 222 to d2 = 343 mm, with a fillet radius
of ρ = 11.1 mm, having a machined surface. The shaft material is hot-rolled and normalized
SAE 1045 steel with tensile properties of yield 306 MPa, ultimate 569 MPa, and 48% area
reduction. In each lift and return cycle of the hoist, the shaft rotates 108 times, and there are
approximately 32,000 hoist cycles in a typical year of operation. The coal skip (bucket) is
first loaded with coal in the mine 515 m below the pulley shaft. It then accelerates upward,
next moves upward at constant speed, stops at the top of its travel and dumps the coal,
and finally returns empty to the bottom of its travel. Details are given in Table P14.54.
Combinations of nominal (without kt ) bending stress and numbers of stress cycles are given,
where the stress cycles correspond to shaft rotations, totaling 108 per hoist cycle. These
stresses assume smooth operation of the equipment; no impact factor is included. They result
from the weights of shaft and attached pulleys, coal, skip, and cables.

(a) Evaluate the shaft design for resistance to fatigue failure. Is the design adequate?
(b) Approximately three years after installation, the shaft failed from a large crack that

had started at the fillet radius. Fifteen months prior to the failure, an accident occurred
in which the skip went out of control while moving upward and crashed into the
structure below the shaft, causing a nominal stress that may have been as high as
S = 200 MPa at the instant of impact. Did the accident contribute to the failure?

(c) After the failure, the shaft was replaced by a similar one made of SAE 4340 steel
having an ultimate tensile strength of 700 MPa. Was this a reasonable solution to the
problem? What additional design changes would you suggest?
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OBJECTIVES

• Explore time-dependent behavior and physical mechanisms for creep and damping.
• Apply time–temperature parameters to estimate creep–rupture life.
• Review stress–strain–time models and relationships for engineering materials, and apply

these to analysis of simple components.

15.1 INTRODUCTION

Elastic and plastic strains are commonly idealized as appearing instantly upon the application of
stress. Further deformation that occurs gradually with time is called creep strain. Creep is often
important in engineering design, as in applications involving high temperature, such as steam
turbines in power plants, jet and rocket engines, and nuclear reactors. Some other examples of
creep are the failure of lightbulb filaments, the gradual loosening of plastic eyeglass frames, slow
deformation leading to rupture of plastic pipe, and the movement of ice in glaciers.

For metals and crystalline ceramics, creep deformation is sufficiently large to be of importance
in a given material only above a temperature that is generally in the range of 30 to 60% of its absolute
melting temperature. Large creep strains can occur in polymers and glasses above the particular

802
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Figure 15.1 Stress versus temperature for 3% total deformation in 10 min for various
engineering metals. (From [van Echo 58]; used with permission.)

material’s glass transition temperature Tg , as discussed in Chapters 2 and 3. Thus, polymers that
are in a leathery or rubbery state are susceptible to creep, and this is often the case even at room
temperature. Concrete creeps at room temperature, but the process becomes slower with time, so
that only small additional strains occur after the first year or so.

Selection of an appropriate material is likely to be a critical factor in a creep-sensitive design.
Engineering metals used in high-temperature service generally contain alloying elements such as
chromium, nickel, and cobalt, with the percentages of these expensive materials increasing with
temperature resistance. The large differences that exist in temperature resistance among various
classes of engineering metals are illustrated by short-time creep data in Figure 15.1. New tough
ceramic materials offer opportunities for greater temperature resistance than even the best metal
alloys. Conversely, polymers are severely limited in their temperature resistance.

Other environmental effects, such as oxidation and environmental cracking, are also likely
to cause difficulty as chemical activity increases with temperature. For example, the resistance to
oxidation in air and creep-related failure are compared for various classes of heat-resisting metals in
Fig. 15.2. Although such other environmental factors are not treated in this chapter, they nevertheless
also need to be considered in design for high-temperature service. Another complexity that often
occurs in engineering situations is cyclic loading combined with time-dependent deformation.
A harmful creep–fatigue interaction that accelerates the fatigue process can then occur.
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Figure 15.2 Relative creep and oxidation resistance of various classes of engineering metals.
(Adapted from [Sims 78]; used with permission.)

The engineering methods that have been developed for analyzing and predicting creep behavior
provide tools that can be used in design to avoid failure due to creep. One concern is excessive
deformation. Another is creep rupture, which is a separation (fracture) of the material that can
occur as a result of the creep process. In what follows, we will first consider creep testing and
physical mechanisms, which topics provide needed introductory information prior to emphasizing
engineering methods in the remainder of the chapter.

An additional topic covered near the end of this chapter is materials damping, which is the
dissipation of energy resulting from cyclic loading. Since the deformations involved are often time
dependent, the topic is included in this chapter. Note that the amount of materials damping affects
the severity of mechanical vibrations.

15.2 CREEP TESTING

The most common method of creep testing is simply to apply a constant axial force, either in tension
or compression, to a bar or cylinder of the material of interest. Since the force is to be held constant
for long periods of time, simple dead weights and a lever system may be used, as shown in Fig. 15.3.
The creep strain is measured with time, and the time at rupture is recorded if this occurs during the
test. Tests on a given material are generally done at various stresses and temperatures, and test
durations can range from less than one minute to several years.

15.2.1 Behavior Observed in Creep Tests

The behavior observed on a graph of strain versus time is usually similar to Fig. 15.4. There is an
initial nearly instantaneous occurrence of elastic and perhaps also plastic strain, followed by the
gradual accumulation of creep strain. The strain rate, ε̇ = dε/dt , hence the slope of the ε versus t
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Figure 15.3 Schematic of a creep testing machine.
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Figure 15.4 Strain versus time behavior during creep under constant force, hence constant
engineering stress, and the three stages of creep.

plot, is at first relatively high. However, ε̇ decreases and often becomes approximately constant, at
which point the primary or transient stage of creep is said to end, and the secondary or steady-state
stage to begin. At the end of the secondary stage, ε̇ increases in an unstable manner as rupture failure
approaches, with this portion being called the tertiary stage. In this final stage, the deformation
becomes localized by the formation of a neck as in a tension test, or voids may form inside the
material, or both may occur.
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Figure 15.5 Creep curves for lead at 17◦C from the early work of Andrade, where
1 kg/cm2 = 0.0981 MPa. (From [Andrade 14]; used with permission.)

Some creep data for a metal in the form of strain versus time records are shown in Fig. 15.5.
As might be expected, higher strain rates occur for higher stresses. These data are from the work of
Andrade, a notable early investigator of creep who was active around 1910, and were obtained under
constant true stress, rather than constant force, with the use of the apparatus shown in Fig. 15.6. No
tertiary stage occurs in the data of Fig. 15.5, probably as a result of the constant true stress. Note
that the usual tertiary acceleration of creep is, in at least some cases, due not to any change in the
behavior of the material itself, but rather to the decreasing cross-sectional area under constant force.
This causes the true stress to increase, which in turn causes ε̇ to increase.

15.2.2 Representing Creep Test Results

The results of a single creep test can be summarized by giving the following four quantities: stress
σ , temperature T , steady-state creep rate ε̇sc, and time to rupture tr . A variety of alternatives exist
for presenting the data from a series of tests at various stresses and temperatures. For example,
stress versus strain rate, σ versus ε̇sc, can be plotted for each of several temperatures, as illustrated
in Fig. 15.7. Another useful presentation is to plot stress versus life, σ versus tr , for various
temperatures, as illustrated by Fig. 15.8. As seen in these examples, logarithmic scales are generally
used. A σ versus tr plot is analogous to an S-N curve for fatigue, except that the life is a rupture
time rather than a number of cycles. Stress–life plots for three values of strain, and also for rupture,
all for a single temperature, are shown for a polymer in Fig. 15.9.
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Figure 15.6 Apparatus used by Andrade for creep testing under constant true stress. The

mass M is shaped according to y = 1
lo+x

√
Mlo
ρπ

and is suspended in a liquid of mass density ρ,

so that the force decreases with strain to maintain constant true stress during uniform
elongation. (From [Andrade 10]; used with permission.)

Stress–life data are also often represented by plotting σ versus T , with lines for different times
to failure tr . This is, of course, simply an alternative means of representing the same information as a
plot similar to Fig. 15.8. Such a representation for nickel metal is shown in Fig. 15.10. This particular
plot covers a wide range of the variables, and it also indicates some details of the nature of the creep
fractures that occur for various stresses and temperatures. Such a comprehensive representation is
said to be a fracture mechanism map.
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Figure 15.7 Stress versus steady-state strain rate at various temperatures for a carbon steel
used for pressure vessels. (Adapted from [Randall 57]; copyright c© ASTM; reprinted with
permission.)
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Figure 15.9 Stress–life curves for unplasticized polyvinyl chloride for three values of strain,
and also for the onset of rupture by necking. (Adapted from [EVC 89]; used with permission.)

Stress–strain curves for various constant values of time, called isochronous stress–strain curves,
are often needed. These are constructed from strain versus time data for several stress levels, as
shown in Figs. 15.11(a) and (b). Strains corresponding to a particular time, such as t = t1, are
obtained as shown in (a). These are then plotted versus the corresponding stress values, as in (b),
forming the isochronous stress–strain curve for time t1. Similar curves can be constructed for other
values of time, such as t2 and t3, so that a family of stress–strain curves is obtained. For polymers,
it is a common practice to use isochronous stress–strain curves to determine secant moduli, Es ,
corresponding to specific values of strain, as shown for strain ε = ε′ in (c). Such Es values are then
plotted versus time to characterize the behavior of the material, as in (d). Secant modulus versus
time curves for more than one value of strain may be obtained and plotted as a family of curves.

Of particular significance are plots of ε̇sc versus 1/T , the reciprocal of absolute temperature,
where a log scale is used for ε̇sc, and a linear scale for 1/T . Such a plot with lines for various stresses
is shown for a ceramic in Fig. 15.12. Also useful is a similar plot with tr replacing ε̇sc. Slopes on
these plots give apparent activation energies, a subject that will be discussed in the next section.

15.3 PHYSICAL MECHANISMS OF CREEP

The physical mechanisms causing creep differ markedly for different classes of materials. In
addition, even for a given material, different mechanisms act at various combinations of stress and
temperature. Motions of atoms, vacancies, dislocations, or molecules within a solid material occur in
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Figure 15.10 Fracture mechanism map showing stress versus temperature for various times
to creep rupture for nickel with the indicated grain size. Stresses σ are normalized with the
elastic modulus E, which varies with temperature. (From [Ashby 77]; used with permission.)

a time-dependent manner, and they occur more rapidly at higher temperatures. Such motions are im-
portant in explaining creep behavior and fall within the broad category of behavior called diffusion.

15.3.1 Viscous Creep

The viscosity of a liquid, as employed in fluid mechanics, is the ratio of the applied shear stress to
the resulting rate of shear strain. That is,

ητ = τ

γ̇
(15.1)

where ητ is the shear viscosity. Similarly, a tensile viscosity can be defined as

η = σ

ε̇
(15.2)

For an ideal viscous substance that is incompressible, η = 3ητ . Also, a constant value of η

corresponds to the behavior of an ideal dashpot with force–displacement behavior of the form
P = cẋ , where the constant c is analogous to η. (See Section 5.2).

Some nominally solid materials behave in a manner similar to a liquid with a very high
viscosity. This is generally the case for amorphous solids such as silica glass and some polymers.
In response to a stress applied to the material, molecules or groups of molecules move relative
to one another in a time-dependent manner, resulting in creep deformation. Such molecular
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Figure 15.11 Construction of isochronous stress–strain curves and secant modulus curves.
Strain–time data (a) for several stress levels can be used to obtain isochronous σ -ε curves,
as in (b). Secant moduli Es can then be obtained from the isochronous σ -ε curves, as shown
in (c), and Es is often plotted versus time, as in (d).

motions constitute a diffusion process that is enhanced if the temperature is increased. This occurs
because a temperature increase is related to an increase of the average oscillations of atoms about
their equilibrium positions. Greater oscillations result in more frequent stress-driven molecular
rearrangements that contribute to creep deformation.

Such a situation is a case of thermal activation. From the physics involved, the rate of a
thermally activated process is expected to be governed by an equation of the following form, which
is called the Arrhenius equation :

ε̇ = Ae
−Q
RT (15.3)
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Figure 15.12 Steady-state creep rate versus reciprocal of absolute temperature for single
crystals of titanium oxide ceramic, TiO2, also called rutile, tested under compression in a
vacuum, where 1 dyne/cm2 = 10−7 MPa. (Adapted from [Hirthe 63]; reprinted by permission of
the American Ceramic Society.)

The rate here is the strain rate ε̇, and Q is a special physical constant called the activation energy. It is
a measure of the energy barrier that must be overcome for molecular motion to occur. Temperature
T is the absolute temperature in units of kelvins (K). And R is the universal gas constant, the
value of which depends on the choice of units for Q, such as calories/mole or joules/mole. The
corresponding values and their units are

R = 1.987 cal/(mole·K) (for Q in cal/mole)

R = 8.314 J/(mole·K) (for Q in J/mole)
(15.4)

The coefficient A depends, at a minimum, on stress. For a creep process that is similar to viscous
flow obeying Eq. 15.2, the stress dependence can be included in the rate equation as follows:

ε̇ = A1σe
−Q
RT (15.5)
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The new coefficient A1 depends mainly on the material, but its value and Q may both change if the
physical mechanism is altered due to a sufficient shift in temperature or stress.

15.3.2 Creep in Polymers

At temperatures below the glass transition temperature Tg of a given polymer, creep effects are
relatively small. Above Tg , creep effects rapidly become significant. As Tg for common polymers is
often in the range −100 to +200◦C, this temperature may be exceeded around or even below room
temperature. For a primarily crystalline thermoplastic such as polyethylene, viscous flow occurs
at temperatures substantially above Tg , especially upon approaching the melting temperature. Note
that the secondary (hydrogen and van der Waals) bonds that hold the carbon-based molecular chains
to one another below Tg are less effective above Tg . Thus, creep can occur by the molecular chains
sliding past one another in a viscous manner. The process is made easier in linear polymers if the
molecular chains are shorter, and it is enhanced by the absence of obstacles to sliding, such as
branching or cross-linking in the chainlike molecules. The stress and temperature dependence of
this type of viscous flow at least roughly obey Eq. 15.5.

However, the behavior is more complicated at intermediate temperatures, only modestly above
Tg , where the behavior is leathery or rubbery. Here, sliding of the molecular chains is more difficult,
and they are more easily entangled with one another, particularly if the chains are long. Such
entanglements give the material an increasing resistance as deformation proceeds, so that the rate of
creep decreases as deformation progresses. Other obstacles to sliding, such as branching or cross-
linking, have a similar effect, so that these also tend to limit creep if they are present.

Obstacles to sliding of the molecules also give the material a memory of its before-deformation
shape. In particular, after removal of the applied stress, the stretched and distorted chain segments
between entanglement or cross-link points act somewhat like springs that tend to cause the prior
creep deformation to disappear (recover) with time. This self-limiting creep and recovery behavior
is a departure from simple viscous behavior that is similar to that of the transient creep rheological
model of Fig. 5.5(b). In a real polymer, some nonrecoverable viscous deformation occurs in addition
to the recoverable portion. The simplest rheological model that has behavior even roughly similar to
that of a polymer is thus one that combines elastic, steady-state creep, and transient creep elements,
as shown in Fig. 15.13.

15.3.3 Creep in Crystalline Materials

Crystalline materials commonly used in engineering include metals and their alloys and the engi-
neering ceramics. Some ceramics contain a crystalline phase in combination with a glassy phase,
such as porcelain and fired clay brick. As a result of their similarities in structure, crystalline materi-
als (or phases) have roughly similar physical mechanisms for creep deformation. A variety of phys-
ical mechanisms occur, which may be separated into two broad classes, termed diffusional flow and
dislocation creep. Some authors also consider grain boundary sliding to be a distinct mechanism.

A general equation for the steady-state creep rate in crystalline materials is

ε̇ = A2σ
m

dq T
e

−Q
RT (15.6)
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Figure 15.13 Creep and recovery behavior in a rheological model that combines elastic,
steady-state creep, and transient creep elements. The elastic strain εe in spring E1 is recovered
immediately upon unloading, whereas the transient creep strain εtc in parallel combination
(E2, η2) is recovered slowly with time. The steady-state creep strain εsc in dashpot η1 is
never recovered.

Table 15.1 Creep Exponents for Various Physical Mechanisms

Name of Mechanism m q Description

Diffusional flow 1 2 Vacancy diffusion through the crystal
(Nabarro–Herring creep) lattice

Diffusional flow 1 3 Vacancy diffusion along grain
(Coble creep) boundaries

Grain boundary sliding 2 2 or 3 Sliding accommodated by vacancy
diffusion through the crystal lattice
(q = 2) or along grain boundaries
(q = 3)

Dislocation creep 3 to 8 0 Dislocation motion, with climb over
(Power law creep) microstructural obstacles

In this equation, the variables that affect the strain rate ε̇ are stress σ , average grain diameter d, and
absolute temperature T . The coefficient A2, the exponents m and q, and the activation energy Q
have values that depend on the material and the particular creep mechanism that is acting. Values
of m and q are summarized in Table 15.1. The temperature dependence is similar to Eq. 15.3,
indicating that all creep mechanisms are thermally activated. However, there is an additional
(relatively weak) inverse temperature dependence; that is, A in Eq. 15.3 is affected somewhat by
temperature.

Diffusional flow can occur at low stress, but requires relatively high temperature. This
mechanism involves the movement of vacancies (holes) in the crystal lattice, as previously
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illustrated by Fig. 2.26. It occurs as a result of the spontaneous formation of vacancies being favored
near grain boundaries that are approximately normal to the applied stress. The uneven distribution
thus created results in movement (diffusion) of vacancies to regions of lower concentration.
Hence, there is a transfer of material that causes an overall deformation of the polycrystalline
material.

If the vacancies move through the crystal lattice, the behavior is called Nabarro–Herring creep.
Also, the resulting strain rate is approximately proportional to the stress, m = 1, and inversely
proportional to the square of the average grain diameter, q = 2. However, if the vacancies instead
move along grain boundaries, the behavior is termed Coble creep. The dependence on stress is
similar, but the dependence on grain size is altered to q = 3. The proportionality of strain rate to
stress indicates that both types of diffusional flow are essentially viscous processes. The activation
energy Q is similar to either Qv for self-diffusion of the material in its own crystal lattice or Qb for
diffusion along grain boundaries, as applicable.

Dislocation creep, also called power-law creep, involves the more drastic motion of disloca-
tions, which are line defects, rather than only vacancies, which are point defects. Consequently, high
stresses are required, but the effect can occur at intermediate temperatures where diffusional flow
is small. The mechanisms are complex and not fully understood, but dislocation climb is thought to
be important.

Consider Fig. 15.14. Due to the effect of an applied stress, an edge dislocation moves along
a crystal lattice plane by the stepwise slip process described in Chapter 2, which is also called
glide. On encountering an obstacle, such as a precipitate particle or an immobile entanglement of
other dislocations, further deformation requires that the dislocation move to another lattice plane.
Such a motion is termed climb and requires a rearrangement of atoms, again by vacancy diffusion.
The cumulative effect of a large number of such climb events is to permit more glide, hence more
macroscopic deformation, than could otherwise occur. The deformation is time dependent because
the climb process is time dependent. As grain boundaries are not a major factor, the strain rate is
not significantly affected by grain size, but the resistance to the climb process is such that there
is a strong stress dependence. Values of m vary with material and test conditions, being typically

climb

glide

glide

Figure 15.14 Climb of an edge dislocation, permitting continued glide past an obstacle, and
enabling deformation to proceed.
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around 5, and usually within the range 3 to 8. The process appears to be diffusion controlled, which
is supported by the fact that Q for dislocation creep generally agrees with that for self-diffusion of
the material in its own crystal lattice.

15.3.4 Discussion

If a given material, grain size, and temperature are of interest, it may be convenient to restate
Eq. 15.6 as

ε̇ = Bσm, where B = A2

dq T
e

−Q
RT (a, b) (15.7)

The quantity B then becomes a constant. If the applied stress σ does not vary with time, then the
creep strain accumulates linearly with time t according to

εsc = Bσmt (15.8)

where the subscript sc is included to indicate that this is the strain resulting from steady-state creep.
Since elastic strain corresponding to an elastic modulus E occurs in all materials, the total strain
will be at least the sum of the elastic and creep strains:

ε = εe + εsc = σ

E
+ Bσmt (15.9)

If plastic strains also occur, then this additional strain component needs to be added as well, perhaps
based on Eq. 12.11.

15.3.5 Evaluation of Activation Energies

Activation energies for creep can be determined by fitting slopes of straight lines on plots of log ε̇

versus 1/T for constant stress, such as the lines in Fig. 15.12. Assume that the simple form of
Eq. 15.3 applies, and take logarithms to the base 10 of both sides. Then

log ε̇ = log A − Q

RT
log e = log A − 0.434

Q

R

(
1

T

)
(15.10)

The gas constant R takes a value from Eq. 15.4, depending on the units desired for Q. In the second
form, log10 e is evaluated, and T continues to be absolute temperature in kelvins.

If Eq. 15.3 is indeed obeyed, the activation energy Q will be the same for all values of stress.
Hence, data of log ε̇ versus 1/T for various stresses should form parallel straight lines. This is seen
to be at least approximately the case in Fig. 15.12. An analogous procedure may be applied to
find activation energies where the behavior obeys Eq. 15.6. In particular, for a given material and
grain size d, a plot of the quantity log (ε̇T ) versus 1/T produces straight lines, all having the same
slope proportional to Q, but with intercepts depending on stress σ . Alternatively, if the constant
m is known, a plot of log (ε̇T/σm) versus 1/T can be made. This produces a single line of slope
proportional to Q for all stresses.
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Figure 15.15 Activation energy for creep of pure aluminum as a function of the absolute
temperature. (Adapted from [Sherby 57]; reprinted with permission from Acta Metallurgica;
c© 1957 Elsevier, Oxford, UK.)

Care is needed in employing values of activation energy Q, as large shifts in temperature or
stress may change the mechanism sufficiently to alter Q. This is demonstrated by some data for
high-purity aluminum shown in Fig. 15.15. In this case, Q for creep at relatively high temperature
is found to be independent of both stress and strain, and it is constant and close to the self-diffusion
value. However, below about half the absolute melting temperature, Q decreases and becomes vari-
able, as a result of other mechanisms occurring that are not controlled by the same activation energy.

15.3.6 Deformation Mechanism Maps

For a given material, a deformation mechanism map can be drawn that shows what deformation
mechanism is dominant for any given combination of stress and temperature. Examples for nickel
metal and a nickel-base superalloy are shown in Fig. 15.16. Lines of constant shear strain rate γ̇

are shown, and the behavior may be considered to be essentially elastic below the lowest one of
these. The diffusional flow region is subdivided, depending on the type of vacancy diffusion, and
two types of power-law creep occur for nickel, low-temperature (LT) creep and high-temperature
(HT) creep. Above the yield stress, plastic deformation by dislocation glide is the dominant type of
deformation. A theoretical limit on the strength is also shown, this corresponding to the theoretical
shear strength, τb ≈ G/10, that can cause shear of crystal planes even if no dislocation motion
occurs. (See Section 2.4.)

Details of the map of course differ with the material and its processing. For example, in
crystalline materials, diffusional flow is more likely to be an important factor if the grain size is
small. This results from the inverse dependence of strain rate on grain size, as in Eq. 15.6 with
q = 2 or 3. Hence, where this mechanism is dominant, large grain size is beneficial.

In the deformation mechanism maps of Fig. 15.16, the stresses plotted are shear stresses τ , and
these are normalized with respect to the shear modulus G, so that the vertical axis is τ/G. Since G
decreases with temperature, its value is needed to use the map. The following relationship applies:

G = G300 − h(T − 300) (15.11)



Figure 15.16 Deformation mechanism maps giving shear strain rates γ̇ for nickel (left) and a nickel-base superalloy (right),
both having the same grain size. Shear stresses τ are normalized to the temperature-varying shear modulus G, so that the
left-hand vertical axis is τ/G. For the homologous temperature scale T/Tm, the quantity Tm is the melting temperature, and
absolute temperatures in degrees K are used. (From [Ashby 77] and [Frost 82] p. 57, respectively; used with permission).

818
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In this equation, G300 is the value at T = 300 K, the quantity h is a material constant, and T is
the absolute temperature in degrees K. These values and the melting temperature Tm are given in
the following table for the materials of these two maps:

Material G300, MPa h, MPa/K Tm , K

Nickel 78,900 29.3 1726
MAR-M200 80,000 25.0 1600

Source: Data in [Frost 82] p. 54.

For creep under uniaxial tension, stress σ and strain rate ε̇ are related to the shear quantities τ and
γ̇ of the map by

σ =
√

3τ, ε̇ = γ̇ /
√

3 (15.12)

Additional similar maps are given for various metals and ceramics in Frost (1982). In that book,
materials constants are also listed for each region of the maps on the basis of relationships similar
to Eq. 15.6.

Example 15.1
Consider nickel with the same grain size and processing as the material of Fig. 15.16. This
material is subjected to a tensile stress of 6 MPa at a temperature of 900◦C. What is the
approximate strain rate, and what creep mechanism is dominant?

Solution To enter the map, we need τ and G from Eqs. 15.12 and 15.11, which give the
normalized shear stress τ/G. We have

τ = σ√
3

= 6 MPa√
3

= 3.464 MPa

G = G300 − h(T − 300) = 78,900 − 29.3(1173 − 300) = 53,320 MPa

τ/G = 6.50 × 10−5

where T = 900 + 273 = 1173 K is substituted for obtaining G.
For the temperature, either use the upper scale and enter the graph directly with T = 900◦C,

or enter the lower scale with T/Tm = 1173/1726 = 0.680. To enter the τ/G scale, it may be
useful to calculate log (τ/G) = −4.19, allowing linear scaling between τ/G = 10−4 and 10−5

(that is, between log (τ/G) = −4 and −5). Entering the map with these values and interpolating
between curves gives a strain rate of approximately

γ̇ ≈ 10−6.7 = 2.0 × 10−7 s−1, ε̇ = γ̇ /
√

3 = 1.2 × 10−7 s−1 Ans.

This point falls within the region of dominance of the high-temperature type of power law creep.
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Comment The value calculated actually represents quite a high strain rate for any practical
application. For example, in one day, the accumulated strain would be

ε = ε̇t = (1.2 × 10−7 s−1)(3600 s/h)(24 h) = 0.010 = 1.0%

15.3.7 Creep in Concrete

Although concrete can be described in general terms as a crystalline ceramic, its complex structure
results in distinctive creep mechanisms and behavior. Concrete contains cement paste that has been
chemically combined with water in the hydration reaction that hardens the concrete. Unhydrated
paste is also present that is slowly converted by the hydration reaction as time passes. Additional
unreacted water is present in pores, between microlayers of the hydrated cement, and chemically
adsorbed (weakly attached by secondary chemical bonds) to the hydrated paste. Finally, there is
aggregate (sand and stone) in a gradation of sizes.

Creep in concrete occurs mostly in the cement paste, with the aggregate acting to limit the
deformation. Thus, elastic strains build up in the aggregate and oppose the creep in the paste,
causing the creep rate to decrease. Data illustrating this trend are shown in Fig. 15.17. The
detailed mechanisms of creep in the cement paste are complex and not completely understood.
One possibility is that an applied stress squeezes the unreacted water in some voids and causes
it to move by viscous flow to another location, permitting a time-dependent distortion of the
microstructure. Another is that adsorbed water lubricates layers and particles of hydrated cement
and allows them to slide relative to one another. Microcracking at interfaces between aggregate and
paste also progresses with time and contributes to creep. In addition, at high stresses, mechanisms
similar to those in more ordinary crystalline ceramics may be significant.

Since creep occurs primarily in the cement paste, the elastic deformations that build up in the
aggregate reverse the creep strain when the load is removed. This recovery behavior, and also the

Figure 15.17 Creep strain in μm/m for concrete in tension and compression for two different
times of curing. (From [Davis 37]; copyright c© ASTM; reprinted with permission.)
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decreasing creep rate under load, is similar to the behavior of the transient creep rheological model
of Fig. 5.5(b). However, as the creep strain due to microcracking is not recovered on unloading,
the behavior is represented better by the rheological model of Fig. 15.13. More complex models
with additional stages, and special nonlinear springs and dashpots, are also used.

15.4 TIME–TEMPERATURE PARAMETERS AND LIFE ESTIMATES

Creep deformation can proceed to the point of rupture of the material by the development
of cracking, crazing, or other damage, which results from the intense strain. For example, in
crystalline materials, voids may appear along grain boundaries or at other points of localized stress
concentration, such as precipitate particles, by a process called creep cavitation. An example is
shown in Fig. 15.18. The enlarging and joining of grain boundary or other voids then causes cracks,
which can progress to the point of fracture, called creep rupture. However, if the temperature is
sufficiently high in a ductile and relatively pure metal, the process of dynamic recrystallization can
occur, in which these voids are essentially repaired as they try to form. Large deformations are then
possible, and failure eventually occurs by necking. Creep rupture of ductile polymers is generally
preceded by large uniform or necking deformations.

In engineering design where creep occurs, there must be neither excessive deformation nor
rupture within the desired service life, which is likely to be lengthy, perhaps 20 years or more.
However, test-time limitations result in creep data generally being available only out to 1000 hours
(42 days), or sometimes 10,000 h (14 months), but seldom to 100,000 h (11 years). For estimating
the behavior at low strain rates and long times, one possible approach is to estimate creep strains
for the service temperature of interest by extrapolating the appropriate σ versus ε̇ curve, such as

Figure 15.18 Grain boundary cavitation and cracking due to creep in a tantalum alloy (T-111),
tested under creep–fatigue interaction with temperature variation between 200 and 1150◦C.
(Adapted from [Sheffler 72].)
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one of those in Fig. 15.7, back to low ε̇ values. Similarly, rupture lives, or lives to a particular
strain value, could be estimated by extrapolating stress–life plots, such as Figs. 15.8 or 15.9, to long
lives. However, such extrapolations do not work very well, as the slopes of fitted lines on log–linear
or log–log plots of σ versus ε̇ or σ versus tr may not be constant, or they may be constant over
only limited ranges of these variables. Abrupt slope changes may occur due to a shift in the creep
mechanism, so that extrapolation is not valid. In other words, one cannot extrapolate across the
boundaries for various creep mechanisms on a deformation mechanism map.

A more successful approach is to use data from relatively short time tests, but at temperatures
above the service temperature of interest, to estimate the behavior for the longer time at the service
temperature. Under these circumstances, a common physical mechanism for tests and service is
more likely than for extrapolation at a constant temperature. Such an approach involves the use
of a time–temperature parameter. We will consider two approaches of this type, namely the
Sherby–Dorn parameter and the Larson–Miller parameter.

15.4.1 Sherby–Dorn (S-D) Parameter

The Arrhenius rate equation is the basis of the Sherby–Dorn (S-D) time–temperature parameter.
A key assumption is that the activation energy for creep is constant. First, write Eq. 15.3 in
differential form and note that the coefficient is a function of stress, A = A(σ ):

dε = A(σ )e
−Q
RT dt (15.13)

Then integrate both sides of the equation, and discard the constant of integration so that only the
steady-state creep strain appears:

εsc = A(σ )te
−Q
RT (15.14)

This equation suggests that creep strains for a given stress form a unique curve if plotted versus the
quantity

θ = te
−Q
RT (15.15)

which is termed the temperature-compensated time. Some supporting test data for aluminum alloys
are shown in Fig. 15.19.

To formally define the S-D parameter, we use logic as follows: The creep strain at rupture is
observed to be fairly constant for a given value of temperature-compensated time to rupture, θr , as
for the data for any one material in Fig. 15.19. Hence, θr depends only on stress, so for a given
material, there should be a single curve relating θr and stress for various combinations of tempera-
ture T and rupture time tr . Rather than working directly with θr , we find it convenient to define the
S-D parameter as PSD = log θr . Thus, take logarithms to the base 10 of both sides of Eq. 15.15,
note that t = tr at θ = θr , and substitute log10 e = 0.434 and R ≈ 2.0 cal/(mole·K), to obtain

PSD = log tr − 0.217Q

T
(15.16)

Units of hours for tr , cal/mole for Q, and kelvins for T are employed.
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Figure 15.19 Creep strain versus temperature-compensated time for aluminum and dilute
alloys tested at σ = 27.6 MPa at various temperatures. (From [Orr 54]; used with permission.)
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Figure 15.20 Graphical interpretation for the Sherby–Dorn parameter, with constant slope
proportional to the activation energy Q.

Values of the activation energy Q for use with the S-D parameter can be obtained by plotting
creep–rupture data on coordinate axes of log tr versus 1/T , as illustrated in Fig. 15.20. A family of
parallel straight lines is expected, one for each value of stress. These lines all have slopes given by
0.217Q, and each intercept at 1/T = 0 can be interpreted as the PSD value for that stress. Some
typical values of Q are 90,000 cal/mole for various steels and stainless steels, and 36,000 cal/mole
for pure aluminum and dilute alloys. A few additional values for specific engineering metals are
listed in Table 15.2.
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Table 15.2 Activation Energies for the Sherby–Dorn Parameter

1Cr-1Mo-0.25V A-286 S-590 Nimonic 80A
Material steel Fe-Ni-Cr alloy Fe-Cr-Ni-Co alloy Ni-base alloy

Q, cal/mole 110,000 91,000 85,000 91,000

Source: Data in [Conway 69], [Goldhoff 59a], and [Goldhoff 59b].
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Figure 15.21 Correlation using the Sherby–Dorn parameter of creep–rupture data for
S-590 alloy. (Data from [Goldhoff 59a].)

Once Q is known, stress–life data can be employed to make a plot of PSD versus stress, as
shown for a heat-resisting iron-base alloy in Fig. 15.21. The data for all stresses and temperatures
should fall together along a single curve, with the correlation of the data being a measure of the
success of the parameter for any particular set of data. Using such a plot and Eq. 15.16, we can
determine rupture times tr for particular values of stress and temperature. The test data used to
obtain the PSD versus σ plot generally involve shorter rupture times than the service lives of interest.
Hence, test data at relatively short tr and high temperature are being used to predict the behavior at
longer tr and lower temperature.

Service lives in creep situations may be limited by excess deformation rather than by rupture.
It is then useful to identify a particular value of creep strain, such as 1% or 2%, that is considered
to represent failure. The S-D parameter can be used in this situation also, by simple replacement of
the rupture life tr in Eq. 15.16 by tf , the time to reach the strain of interest. The values of PSD used,
of course, need to be obtained from data for tf rather than tr .
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Example 15.2
An engineering component made of the heat-resisting Fe-Cr-Ni-Co alloy S-590 is subjected in
service to a static stress of 200 MPa at a temperature of 600◦C. What creep–rupture life in days
is expected?

Solution Figure 15.21 provides the needed stress versus PSD curve and value of Q =
85,000 cal/mole for this material. Entering the curve with σ = 200 MPa gives PSD ≈
−16.0. Temperature must be in kelvins for Eq. 15.16; that is, T = 600◦C + 273 = 873 K.
Equation 15.16 then gives

log tr = PSD + 0.217Q

T
= −16.0 + 0.217(85,000 cal/mole)

873 K
= 5.128

tr = 10log tr = 105.128 = 134,400 hours = 5600 days Ans.

15.4.2 Larson–Miller (L-M) Parameter

The time–temperature parameter of Larson and Miller is an analogous approach to that of Sherby
and Dorn, but different assumptions, and therefore different equations, are used. The L-M parameter
can also be derived starting from Eq. 15.15, substituting θ = θr and t = tr , and similarly taking
logarithms to the base 10 of both sides. However, Q is assumed to vary, and θr to be constant.
The parameter is in this case defined as PL M = 0.217Q, and a constant C = − log θr is employed.
Proceeding on this basis and solving for PL M gives

PL M = T (log tr + C) (15.17)

Units of kelvins (K) for T and hours for tr will be used here. However, in much of the literature
related to the L-M parameter, the temperature is in degrees Fahrenheit, here denoted TF . The
parameter is then given by

P ′
L M = (TF + 460) (log tr + C) (15.18)

so that P ′
L M = 1.8PL M . The units for C are unaffected, as tr is in units of hours in all cases.

The value of C can be interpreted as an extrapolated intercept on a plot of log tr versus 1/T ,
as shown in Fig. 15.22. A family of straight lines is expected for various stress values, with all of
these lines having a common intercept of log tr = −C at 1/T = 0. The slopes are the values of
PL M corresponding to each stress. Note that this approach has the same theoretical basis as the
S-D parameter, differing in that the activation energy is assumed not to be constant, but to vary
with stress. Also, θr is assumed not to vary with stress, but instead to be a material constant as
given by C .

Once the constant C is known, values of PL M from stress–life data can be plotted against stress,
as shown in Fig. 15.23. Such a plot is used in a manner similar to a PSD versus σ curve to estimate
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Figure 15.22 Graphical interpretation for the Larson–Miller parameter, with −C being the
common intercept of lines of varying slope.
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Table 15.3 Constants for the Larson–Miller Parameter

C Polynomial Fit (units of hours, K, and MPa) Range of L-M Fit

Material log (hours) b0 b1 b2 b3 σ , MPa T , K

1Cr-1Mo-0.25V steel 22 128,200 −141,500 64,380 −9,960 69–621 755–1005

AISI 310 stainless steel 10 20,470 −4,655 0 0 3.4–31 1255–1366

A-286 (Fe-Ni-Cr alloy) 20 116,400 −120,500 53,460 −8,188 69–758 811–1089

S-590 (Fe-Cr-Ni-Co alloy) 17 38,405 −8,206 0 0 69–690 811–1089

Nimonic 80A (Ni-base alloy) 18 16,510 11,040 −4,856 403 54–486 923–1089

Source: Values and data in [Conway 69], [Goldhoff 59a], [Goldhoff 59b], [Larson 52], [Orr 54], and
[van Echo 67].

rupture times. Values of the constant C for rupture of various steels and other structural engineering
metals are often near 20. Table 15.3 gives some values for specific metals. The L-M parameter may
also be used to estimate times tf corresponding to a limiting creep strain prior to rupture, provided,
of course, that the needed tf data are available. Another use of the L-M parameter, or of any other
time–temperature parameter, is in comparing and ranking materials. Such a comparison for several
materials is shown in Fig. 15.24. Higher curves indicate more resistant materials.

Example 15.3
Consider again Example 15.2, using the Larson–Miller parameter.

Solution The logic is the same as before, except that now PL M from Eq. 15.17 is employed.
Figure 15.23 provides the needed stress versus PL M curve and value of C = 17 log (hours) for
this material. Entering the curve with σ = 200 MPa gives PL M ≈ 19,500. Equation 15.17 with
temperature in kelvins, T = 600◦C + 273 = 873 K, then gives

log tr = PL M

T
− C = 19,500

873 K
− 17 = 5.337

tr = 10log tr = 105.337 = 217,200 hours = 9050 days Ans.

The result is seen to differ somewhat from that of Ex. 15.2 using PSD .

15.4.3 Discussion

The two time–temperature parameters discussed seem to differ considerably from one another,
and neither is consistent with the creep rate equation that is currently the most widely accepted,
namely, Eq. 15.6, which includes the added (but weak) dependence on the inverse of temperature.
Nevertheless, they seem to often give reasonable results. For example, note that both have a similar
and reasonable ability to correlate the same set of data in Figs. 15.21 and 15.23. A number of other
time–temperature parameters have been proposed. See Conway (1971) and Penny (1995) for more
detail.
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The success of any time–temperature parameter approach depends on a similar physical
mechanism of creep occurring in the relatively short-time, high-temperature tests as in the typically
longer-time, lower-temperature service situation. Thus, the test data should involve times as close
to the service application as possible, so that the extrapolation involved is not so extreme that an
entirely new mechanism is encountered. A good general rule is that the test data should extend to
about 10% of the desired service life, such as tests out to 17,500 hours = 2 years for a 20-year
service life. Caution is advised where this must be compromised. Also, curves fitted to stress versus
parameter data should not be extrapolated to stresses very far beyond the range of the data.

The utility of time–temperature parameters is aided by fitting equations to stress versus
parameter curves, as in Figs. 15.21, 15.23, and 15.24. For example, for the S-D parameter, solve
Eq. 15.16 for the dependent variable log tr , and then fit a polynomial to PSD versus x , where
x = log σ :

log tr = PSD + 0.217Q

T
(a)

PSD = a0 + a1x + a2x2 + a3x3 (b)
(15.19)
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A similar polynomial fit can be applied to the L-M parameter of Eq. 15.17, where again
x = log σ :

log tr = PL M

T
− C (a)

PL M = b0 + b1x + b2x2 + b3x3 (b)
(15.20)

In these equations, a linear fit will sometimes be sufficient; that is, a2 = a3 = 0, or b2 = b3 = 0.
Also, a polynomial of order higher than three may be employed, with the order preferably being an
odd number. Coefficients fitted to Eq. 15.20(b) are given in Table 15.3 for several metals. Note that
the equation from a parameter versus stress fit, such as Eq. 15.19 or 15.20, can be used to obtain a
family of stress–life curves for various temperatures, as in Fig. 15.8.

Rather than separately determining Q and then fitting PSD by means of Eq. 15.19, we can
choose another option, which is to determine Q as part of the data fitting procedure. To accomplish
this, we again employ x = log σ and combine Eqs. 15.19(a) and (b), with y = log tr considered to
be the dependent variable:

log tr = a0 + a1x + a2x2 + a3x3 + 0.217Q (1/T ) (a)

y = a0 + a1z1 + a2z2 + a3z3 + a4z4 (b)
(15.21)

A multiple linear regression can then be done with independent variables z1 = x, z2 = x2, z3 = x3,

and z4 = 1/T , which yields values for fitting constants a0, a1, a2, a3, and a4 = 0.217Q. Of course,
the values for a0 to a3 will differ somewhat from those obtained from fitting Eq. 15.19(b) with a
predetermined Q.

For PL M , the determination of C can be similarly included in a multiple linear regression by
combining Eqs. 15.20(a) and (b) to obtain a different form for y = log tr :

log tr = −C + b0(1/T ) + b1(x/T ) + b2(x2/T ) + b3(x3/T ) (a)

y = d + b0z1 + b1z2 + b2z3 + b3z4 (b)
(15.22)

In this case, the independent variables are z1 = 1/T, z2 = x/T, z3 = x2/T , and z4 = x3/T , and
the fitting constants obtained are d = −C, and b0, b1, b2, and b3.

Example 15.4
The creep–rupture data for alloy S-590 plotted in Fig. 15.8 are given in Table E15.4(a), where,
for each test, the temperature T , stress σ , and rupture time tr are listed. Employ these data as
follows:

(a) On the basis of Eq. 15.19, obtain a fitted equation relating the Sherby–Dorn parameter
to stress. Consider Q = 85,000 cal/mole from Table 15.2 to be given.

(b) Similarly, use Eq. 15.20 to obtain a fitted equation relating the Larson–Miller parameter
to stress, with C = 17 log (h) from Table 15.3 given.
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Table E15.4(a)

T σ tr T σ tr T σ tr
K MPa hours K MPa hours K MPa hours

811 690 22 922 345 93 1005 121 16 964
811 621 109 922 310 192 1089 172 25
811 552 433 922 276 756 1089 155 88
811 483 1 677 922 241 2 243 1089 138 267
866 552 25 922 207 11 937 1089 121 719
866 517 44 922 172 43 978 1089 103 1 354
866 483 109 1005 234 59 1089 86 5 052
866 414 264 1005 193 342 1089 69 15 335
866 345 3 149 1005 172 809 1089 69 11 257
922 414 26 1005 172 1 028 — — —
922 379 63 1005 138 9 529 — — —

Source: Data in [Goldhoff 59a].

Solution (a) First calculate x = log σ and PSD for each data point—that is, for each T, σ,

tr combination in Table E15.4(a). The PSD values are obtained by substituting tr and T into
Eq. 15.16, with the first few calculation results shown in Table E15.4(b). Then employ the full
set of data to fit PSD = f (x) to the cubic polynomial of Eq. 15.19(b). The result is

PSD = −12.35 + 4.42x − 2.287x2 − 0.1292x3, x = log σ (units: h, K, MPa) Ans.

A reasonable fit to the data is obtained, with the curve plotted in Fig. 15.21 corresponding to this
equation.

(b) The fit for the Larson–Miller parameter proceeds similarly, and the first few values of
PL M from Eq. 15.17 are also shown in Table E15.4(b). However, in Fig. 15.23, where PL M is
plotted against σ on a log scale, the data appear to lie along a straight line. It was thus assumed
that b3 = b4 = 0 in Eq. 15.20(b), resulting in a simple linear equation for the fit.

PL M = 38,405 − 8206x, x = log σ (units: h, K, MPa) Ans.

This line is the one plotted in Fig. 15.23, where it is seen to represent the data well.

Table E15.4(b)

T σ tr x = log σ y1 = PSD y2 = PL M

K MPa hours log (MPa) log (h) K·log (h)

811 690 22 2.839 −21.40 14 876
811 621 109 2.793 −20.71 15 439
811 552 433 2.742 −20.11 15 925
· · · · · · · · · · · · · · · · · ·
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Figure 15.25 Stress versus time to creep rupture curves, showing (a) safety factors in stress
and in life, and (b) safety margin in temperature.

15.4.4 Safety Factors for Creep Rupture

Safety factors in stress and in life for creep rupture, Xσ and Xt , may be defined as illustrated in
Fig. 15.25. The logic is parallel to that employed for fatigue stress–life curves in Section 9.2.4.

Consider a combination of stress σ̂ , time t̂ , and temperature T̂ that are expected to occur in
actual service. As shown in Fig. 15.25(a), the point ( σ̂ , t̂ ) must fall below the stress–life curve for
failure at the service temperature, σ = f (tr , T̂ ). Point (1) on the failure curve corresponds to failure
at the desired service life t̂ , so that comparing the stress σ1 with the service stress σ̂ provides the
safety factor in stress:

Xσ = σ1

σ̂
(tr = t̂) (15.23)

Also, Point (2) corresponds to failure at the service stress σ̂ , and comparing rupture time tr2 with
the service life t̂ gives the safety factor in life:

Xt = tr2

t̂
(σ = σ̂ ) (15.24)

As for fatigue, rather large safety factors in life are needed to achieve reasonable safety factors in
stress, which should generally be around 1.5 or larger.

Also of interest is the temperature increase above T̂ that will cause failure at the service stress
and time, σ̂ and t̂ , as illustrated by Fig. 15.25(b). The failure temperature T f is the temperature
that lowers the stress–life curve so that it passes through the point (σ̂ , t̂). The increase �T f that is
required to reach T f can be regarded as the safety margin in temperature:

�T f = T f − T̂ (σ = σ̂ , tr = t̂) (15.25)
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Example 15.5
Consider the situation of Ex. 15.2 and 15.3, where a component made of alloy S-590 is subjected
to a stress of 200 MPa at a temperature of 600◦C.

(a) Repeat the rupture life calculation of Ex. 15.3, using the Eq. 15.20 fit for PL M .
(b) If the desired service life is 1.5 years, what are the safety factors in life and in stress?
(c) What is the safety margin in temperature?

Solution (a) From Table 15.3, the S-590 alloy constants for Eq. 15.20 are C = 17,
b0 = 38,405, b1 = −8206, and b2 = b3 = 0. Noting that x = log σ , substituting these values
gives PL M from Eq. 15.20(b), and then tr follows from Eq. 15.20(a) with substitution of
T = 600◦C + 273 = 873 K:

PL M = b0 + b1x = 38,405 − 8,206 log (200 MPa) = 19,523

log tr = PL M

T
− C = 19,523

873 K
− 17 = 5.363, tr = 230,583 h = 9608 days Ans.

(b) The safety factor in life is calculated by comparing tr from (a) with the service life t̂ :

t̂ = (1.5 years)(365.25 days/year)(24 h/day) = 13,149 h

Xt = tr2

t̂
= 230,583 h

13,149 h
= 17.5 Ans.

For the safety factor in stress, we need to determine the σ1 that causes failure at tr = t̂ , which
depends on the value of PL M corresponding to tr = t̂ at temperature T = T̂ . The needed PL M

value can be calculated from Eq. 15.17:

PL M = T (log tr + C) = T̂ (log t̂ + C) = (873 K)[log (13,149 h) + 17] = 18,437

Substituting this PL M into Eq. 15.20(b) and solving gives σ = σ1, and then Eq. 15.23 gives Xσ :

PL M = b0 + b1x, 18,437 = 38,405 − 8,206 log σ1

log σ1 = 2.433, σ1 = 271.2 MPa

Xσ = σ1

σ̂
= 271.2

200
= 1.36 Ans.

(c) To obtain the temperature increase, �T f = T f − T̂ , that causes failure at (σ, tr ) =
(σ̂ , t̂), solve Eq. 15.17 for T . Then calculate T f by substituting tr = t̂ along with PL M from
(a), as this value corresponds to σ̂ . The result of these two operations is
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T = PL M

log tr + C
, T f = 19,523

log (13,149 h) + 17
= 924.4 K

�T f = T f − T̂ = 924.4 − 873 = 51.4 K Ans.

Comments Solving Eq. 15.20(b) for σ , as in (b) of this example, requires an iterative solution
if this polynomial is of order 3 (or 5, etc.). But a closed-form calculation is possible in this case,
due to b2 = b3 = 0 giving a linear relationship. Note that the safety factor in stress of Xσ = 1.36
is rather low. A higher value would require a safety factor in life even larger than the Xt = 17.5
that is calculated.

15.4.5 Creep Rupture under Multiaxial Stress

For multiaxial loading, it is logical to use stress–life curves or time–temperature parameters by
simply replacing the uniaxial stress with the effective stress σ̄ of Eq. 12.21. However, creep rupture
under multiaxial loading is also affected to an extent by the maximum principal stress σ1. One
approach is to use the following effective stress for creep rupture:

σ̄c = ασ1 + (1 − α)σ̄ (15.26)

Here, σ̄ is from Eq. 12.21, and α is a material constant with a value between zero and unity that
must be evaluated from multiaxial testing. The quantity σ̄c is then considered to be equivalent to a
uniaxial stress. If a value of α is unavailable, another possibility is to take the worst possible case
for α between zero and unity, which corresponds to σ̄c = MAX (σ1, σ̄ ). For additional discussion,
see Gooch (1986), Penny (1995), and Skrzypek (1993).

15.5 CREEP FAILURE UNDER VARYING STRESS

If stresses change infrequently, stress–life curves and time–temperature parameters can still be
employed to make life estimates. However, if stress changes occur so often that the cyclic loading
begins to cause fatigue damage, a more complex situation exists that requires special analysis.

15.5.1 Creep Rupture under Step Loading

Rough estimates of life to creep rupture can be made by applying a time-fraction rule to stress–life
plots in the same manner that the Palmgren–Miner rule is used with cyclic lives for fatigue:

∑ �ti
tri

= 1, B f

(∑ �ti
tri

)
one rep.

= 1 (15.27)



834 Chapter 15 Time-Dependent Behavior: Creep and Damping

In this case, life is expressed in terms of time, and stress versus rupture life curves similar to those in
Fig. 15.8 are used. The quantity �ti is the time spent at stress level σi , and tri is the corresponding
rupture life. For the second version, the summation is done for one repetition of a loading sequence
that occurs a number of times, and B f is the number of repetitions to failure. If the temperature also
changes, then the appropriate stress–life curve is used for each temperature step. A similar procedure
can be employed where failure is considered to be the accumulation of a particular amount of creep
strain. Stress–life curves for the particular strain value are, of course, used.

Failure lives for use with these equations also can be obtained from time–temperature
parameters. Each stress level σi is used to obtain a parameter value Pi , which is then solved for
tri by employing the appropriate temperature.

15.5.2 Creep–Fatigue Interaction

Practical applications at high temperature often involve both creep and fatigue, and these phenomena
may act together in a synergistic manner. For example, various components of aircraft jet engines
experience periods of both fluctuating and steady stress, due to the complex situation of thermal
stresses caused by large temperature variations combined with cyclic loading, as the aircraft
flies at constant speed, changes speed, lands, and shuts down the engines, etc. High-temperature
components in nuclear reactors and various pressure vessels are also subjected to combined creep
and fatigue.

One simple approach is to sum the life fractions due to both creep and fatigue, and thus combine
the Palmgren–Miner rule, Eq. 9.33, and the time-fraction rule of Eq. 15.27:

∑ �ti
tri

+
∑ Ni

Nf i
= 1 (15.28)

However, this approach is very rough, because the physical processes of creep and fatigue are
distinct, so a simple addition of effects cannot be expected to be accurate. In particular, in
engineering metals, creep damage may involve grain boundary cracking, whereas the damage due
to the fatigue portion of the loading may be concentrated in slip bands within the crystal grains.

Where creep and fatigue interact, the frequency of cycling is important, as slow frequencies
give creep more time to contribute to the damage. One approach developed with such effects in mind
is the frequency-modified fatigue approach of L. F. Coffin. The cyclic stress–strain and strain–life
relationships are generalized so that the various material constants become functions of temperature
and frequency.

Even the details of the time variation of stress and strain can be important. This is illustrated by
some high-temperature test data on an engineering metal in Fig. 15.26. When compared on the basis
of equal inelastic (creep plus plastic) strain ranges, the different waveforms can have very different
cyclic lives. This results from the complexities of the physical process of damage in the material.
For example, the loading with creep in compression only, called PC, is sometimes (but not always)
the most severe. This can occur where an oxidizing environment, perhaps only air, causes an oxide
surface layer to form during the compressive creep loading. Subsequent rapid loading into tension
cracks this oxide, leading to early cracking of the metal beneath. Data of the type in Fig. 15.26 form
the basis of the strain-range partitioning approach developed by S. S. Manson and co-workers.
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Figure 15.26 Effect on life of intermittent creep in tension, compression, or both, during
cyclic loading of the cast Ni-base alloy MAR-M002 at 850◦C. Stress–strain hysteresis loops have
the shapes shown. (Adapted from [Antunes 78]; used with permission; first published by
AGARD/NATO.)
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Four types of test are run, namely, tests involving mainly plastic deformation and little creep (PP),
creep mainly in tension (CP), creep mainly in compression (PC), and creep in both tension and
compression (CC). Life predictions are then made for engineering components on the basis of the
life fractions spent in each of the four types of loading.

No consensus currently exists as to the best approach to creep–fatigue interaction, and this is
an active area of current research. See Penny (1995) and Saxena (2003) for more detail.

15.6 STRESS–STRAIN–TIME RELATIONSHIPS

To analyze the stresses and strains in engineering components subject to creep, it is necessary to
have stress–strain relationships that include the time dependency. Relationships suggested by simple
linear rheological models are often useful for polymers, but more complex behavior also occurs in
these materials, and especially in metals, that requires special consideration.

15.6.1 Linear Viscoelasticity

Strain–time equations for a constant applied stress are given for various rheological models in
Fig. 15.27. The equations for (a), (b), and (c) are developed in Section 5.2.2. The relationship for
(c) is the same as for (b), except that the elastic displacement of spring E1 is added. Since (d) is
simply the series combination of (a) and (b), the strains from these two simply add to give the
relationship for (d):

ε = σ

E1
+ σ t

η1
+ σ

E2

(
1 − e−E2t/η2

)
(15.29)

The three terms in this equation correspond respectively to the instantaneous elastic strain in spring
E1, the steady-state creep strain in dashpot η1, and the transient creep strain in the (E2, η2) parallel
combination:

εe = σ

E1
, εsc = σ t

η1
, εtc = σ

E2

(
1 − e−E2t/η2

)
(15.30)

Strain rates from differentiation with respect to time are also of interest.

ε̇e = 0, ε̇sc = σ

η1
, ε̇tc = σ

η2
e−E2t/η2 (15.31)

Hence, the steady-state creep strain has a constant rate, as it should, and the transient creep strain
proceeds at a decreasing rate, approaching the limiting value εtc = σ/E2 for large t . For a given
stress, such a trend of strain with time is similar to that observed in real materials, except that no
tertiary creep stage occurs in the model.

From examining the preceding equations and Fig. 15.27, it is apparent, for any of these models,
that for a given time t there is a simple proportionality between stress and strain, and also between
stress and strain rate. A similar proportionality applies for any model constructed from combinations
of linear springs and dashpots, so that such models are said to exhibit linear viscoelasticity. As
a result of this situation, the stress–strain relationships for given values of time—that is, the
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Figure 15.27 Strain versus time behavior for four viscoelastic models.

isochronous stress–strain curves —are all straight lines. This is illustrated in Fig. 15.28 for two of
the models. For the transient-creep-plus-elastic model (a), only spring E1 deforms for small t ; but
for large t , the dashpot has no effect, and the stiffness is that corresponding to E1 and E2 in series:

Ee = E1 E2

E1 + E2
(15.32)

For (b), the slope is again E1 for short times, but zero at long times, due to the deformation of
dashpot η1 not being constrained. For design applications with polymers, it is common practice to
assume that the behavior follows linear viscoelasticity, with the time-dependent elastic modulus
being taken as the secant modulus Es to mildly nonlinear isochronous stress–strain curves as in
Fig. 15.11(c).

In crystalline materials that behave according to Eq. 15.6, note that steady-state creep by either
type of diffusional flow gives m = 1, so that Eq. 15.7(a) becomes ε̇ = Bσ , and Eq. 15.7(b) still
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Figure 15.28 Limits on the linear isochronous stress–strain curves for two linear
viscoelastic models.

applies. In such cases, we thus have linear viscoelastic behavior, with the viscosity, η = σ/ε̇ = 1/B,
depending on material, temperature, and grain size. As elastic strains also occur, the behavior is that
of the steady-state creep model of Fig. 15.27(a), with the elastic modulus at the temperature of
interest being E = E1.

15.6.2 Nonlinear Creep Equations

From the discussion on mechanisms of creep strain in crystalline materials in Section 15.3.3, it
is apparent that nonlinear behavior, m 	= 1, is not unusual. For example, for dislocation creep in
crystalline materials, strain rates are not proportional to stress, as there is instead a strong power
dependence with m ≈ 5. Polymers and concrete may behave in a linear viscoelastic manner at low
stresses, but not generally at high stresses. Isochronous stress–strain curves for a polymer and a
concrete are shown in Figs. 15.29 and 15.30. These materials are clearly nonlinear at the relatively
high stresses involved.

Thus, more general stress–strain–time relationships than those provided by linear viscoelastic
models are often needed. This situation has led to a wide variety of nonlinear relationships that
employ expressions involving powers of σ , such as

ε = εi + Bσmt + Dσα
(
1 − e−βt) (15.33)

The quantities B, m, D, α, and β are empirical constants from creep data for a given material and
temperature. The instantaneous strain εi can include both elastic and plastic parts, εi = εe + εp.
In a manner similar to Eq. 15.29, the second term of Eq. 15.33 is the steady-state (secondary)
creep strain, and the third is the transient (primary) creep strain. In Marin (1962), a useful form of
Eq. 15.33 is employed that is the special case where plastic strain is given by εp = B1σ

1/n , with
1/n = α = m:
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Figure 15.29 Two isochronous stress–strain curves for high-density polyethylene in tension.

Figure 15.30 Isochronous stress–strain curves (dashed lines) for a concrete tested in
compression after curing 56 days, where f ′

c is the ultimate strength in compression. As the
strain rates decrease with time and appear to approach zero, a creep limit curve can be drawn.
(From [Rusch 60]; used with permission.)
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ε = σ

E
+ [B1 + B2t + B3

(
1 − e−βt)] σm (15.34)

Since the Ramberg–Osgood relationship, Eq. 12.12, is widely used for elasto-plastic
stress–strain curves, it is convenient to employ stress–strain–time relationships that can be put into
the same form. Thus, we have

ε = σ

E
+
(

σ

Hc

)1/nc

(15.35)

where nc is an appropriate value for creep and Hc includes a time dependence. For example,
Eq. 15.34 is equivalent to employing Eq. 15.35 with

nc = 1

m
, Hc = [B1 + B2t + B3(1 − e−βt )

]−1/m
(15.36)

At times sufficiently large for the transient straining to be essentially complete, Eq. 15.33 gives
a simplified expression for steady-state creep:

ε = εi + Bσmt + Dσα, ε̇sc = Bσm (a, b) (15.37)

In this pair of equations, the third term of (a) is the limiting value of transient creep strain. The
temperature dependence of the steady-state creep rate can be estimated from an activation energy,
as described earlier. For example, for power-law creep according to Eq. 15.7, noting that q = 0, the
constant B is given in temperature-dependent form by

B = A2

T
e

−Q
RT (15.38)

Creep equations having an exponent applied to time t are sometimes employed, such as

ε = εi + D3σ
δtφ, ε = σ

E
+ D3σ

δtφ (a, b) (15.39)

where the exponent φ is in the range zero to unity, and a power-type stress dependence is seen to be
included. In the second form, the instantaneous strain εi is assumed to consist of elastic strain only.
For some engineering metals at specific temperatures, values of constants for Eq. 15.39(b) are given
in Table 15.4. Also, Eq. 15.39(b) has the form of Eq. 15.35, where

nc = 1

δ
, Hc = 1(

D3tφ
)1/δ

(15.40)

Other relationships that are used feature a time function that is logarithmic or hyperbolic:

ε = εi + D4 log (1 + β4t), ε = εi + D5t

1 + β5t
(a, b) (15.41)

These relationships, and modifications and extensions of them, are used for transient creep, as is
Eq. 15.33 with B = 0. They are especially useful for materials where the behavior is dominated
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Table 15.4 Some Constants for Eq. 15.39(b)

Material Temperature E D3 δ φ

◦C MPa for MPa, hours
(ksi) (for ksi, hours)

SAE 1035 steel1 524 161,000 1.58 × 10−11 4.15 0.40
(23,300) (4.78 × 10−8)

Copper alloy 3601 371 85,500 4.26 × 10−9 4.05 0.87
(12,400) (1.06 × 10−5)

Pure nickel2 700 150,000 2.42 × 10−6 2.50 0.28
(21,700) (3.02 × 10−4)

7075-T6 Al2 316 36,500 1.35 × 10−13 7.00 0.33
(5,300) (1.00 × 10−7)

Cr-Mo-V steel2 538 152,000 1.15 × 10−9 2.35 0.34
(22,000) (1.07 × 10−7)

Notes: 1Constants from [Chu 70] based on 1-hour creep tests. 2From [Lubahn 61]
pp. 159, 255, and 574, based on creep data extending to 300, 18, and 104 hours,
respectively.

by transient creep, such as concrete. Note that Eq. 15.41(b) approaches a limiting value for infinite
time, as does Eq. 15.33 with B = 0. All the other expressions presented give unlimited strains for
large t .

Constants for nonlinear stress–strain–time equations, as just described, are not generally
available in comprehensive tabular or similar form for various materials. This is due to the lack
of a consensus as to which of the many equations to use, and also due to the constants changing,
not only with material, but also with stress and temperature. Hence, it is generally necessary
in engineering applications to obtain the needed constants from creep data for the material and
conditions of interest, either from the literature or from new laboratory tests. An exception is that
steady-state creep constants for a wide range of stresses and temperatures are given in Frost (1982)
for representative metals and ceramics, some of which are engineering materials.

15.7 CREEP DEFORMATION UNDER VARYING STRESS

Up to this point, we have considered creep deformation where the stress and temperature are held
constant. However, many engineering applications involve situations where one or both of these
vary. An introduction that emphasizes creep under varying stress follows. For more detail, see the
books by Neville (1983), Penny (1995), and Skrzypek (1993).

15.7.1 Recovery of Creep Strain

The time-dependent disappearance of creep strain after the removal of some or all of the applied
stress is called recovery. Such behavior was previously illustrated for simple rheological models
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in Fig. 5.5. There is no recovery of creep strain for the steady-state creep model (a), but in the
transient creep model (b), all creep strain is recovered in the spring and slider parallel combination
after infinite time. For the combined rheological model of Fig. 15.13, the transient creep strain εtc

in the parallel combination is recovered slowly with time, but the steady-state creep strain εsc in the
dashpot remains.

To explore the recovery behavior of the model of Fig. 15.13 in detail, let a constant stress σ ′ be
maintained for a time t ′. From Fig. 15.27(b), the strain in the transient creep element at t ′ is

ε′
2 = εtc = σ ′

E2

(
1 − e−E2t ′/η2

)
(15.42)

After removal of the stress, it is easily shown (see Prob. 15.38) that this strain decreases and
approaches zero at infinite time according to

ε2 = ε′
2e−E2�t/η2 (15.43)

where �t = t − t ′ is the time elapsed since removal of the stress. Now consider recovery for the
entire model. The elastic strain in spring E1 is recovered instantly, but the strain in the steady-state
creep element, dashpot η1, remains unchanged:

ε1 = εsc = σ ′t ′

η1
(15.44)

The strain–time response of the entire model after removal of σ ′ can now be obtained by combining
ε1 and ε2, with ε′

2 from Eq. 15.42 also being substituted:

ε = σ ′t ′

η1
+ σ ′

E2

(
1 − e−E2t ′/η2

)
e−E2�t/η2 (15.45)

This equation corresponds to the decreasing strain curve after unloading at t = t ′ in Fig. 15.13.
Analogous, but more complex, behavior occurs in real materials. In particular, the governing

equations are not generally linear with stress, and strains initially classified as transient may not
be recovered fully. In polymers and concrete, considerable portions of the creep strain are often
recovered. However, for metals or for cases of simple viscous flow in polymers or glass, there is
generally only a relatively small amount of recovery. In modeling real materials, additional transient
creep elements in series or special nonlinear springs and dashpots are sometimes used.

15.7.2 Stress Relaxation

Consider a material and temperature combination such that creep occurs under constant applied
stress. But employ a new type of test in which the specimen is quickly loaded to some given
strain and then held. The stress will decrease with time, and this loss of stress is called relaxation.
Equations for the stress variation with time in two simple rheological models are given in Fig. 15.31.
(The equation for (a) was previously derived in Example 5.1, and that for (b) is requested as
Prob. 15.39.) In a relaxation test, the stress appears to approach a stable value after a long time,
which value may be only a little below the initial stress, or it may be much lower, depending on the
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Figure 15.31 Relaxation under constant strain for two linear viscoelastic models.

material, temperature, and strain level involved. What occurs during relaxation is that some of the
elastic strain that appears on initial rapid loading is slowly replaced by creep strain, with the total of
the two being constant according to the constraint of the test.

Real materials, of course, behave in a more complex manner than do simple linear viscoelastic
models. For example, consider stress relaxation during constant strain in a material for which the
plastic strain and the transient creep strain are small, so that the behavior is dominated by elastic
strain and steady-state creep strain. Assume that the rate of creep strain is related to stress by a
power relationship, as in Eq. 15.7(a). Further assume that this applies even during the decreasing
stress situation of relaxation. Then let the total strain be held constant at a value ε′, so that

εe + εc = ε′, ε̇e + ε̇c = 0 (15.46)

where εe = σ/E is the elastic strain, εc is the creep strain, and the second equation is obtained by
differentiating the first with respect to time.

Since ε̇e = σ̇ /E , the previous equations, εc is the creep strain, and ε̇c = Bσm from Eq. 15.7(a)
combine to give

1

E

dσ

dt
+ Bσm = 0 (15.47)

This differential equation is easily solved by integration:

∫ t

0
dt = − 1

B E

∫ σ

σi

dσ

σm
(15.48)
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Since only elastic strain occurs on the rapid initial loading, the initial stress at the beginning
of relaxation, t = 0, is σi = Eε′. After integration and then some manipulation, the following
equations are obtained for the variation of stress with time:

σ = σi[
t B E(m − 1) σm−1

i + 1
]1/(m−1)

(m 	= 1)

σ = σi e−B Et (m = 1)

(15.49)

This analysis, in effect, generalizes the case of Fig. 15.31(a) so that the dashpot has a nonlinear
response according to

η1 = σ

ε̇
= 1

Bσm−1
(15.50)

The special case of m = 1 is seen to be equivalent to the original linear model with η1 = 1/B.
Equation 15.49, with m as appropriate, can be used to approximate the behavior of crystalline

materials in the power-law (dislocation creep) and viscous (diffusional flow) regions of the
deformation mechanism map. However, caution is advised, as it needs to be remembered that
transient creep strain effects are neglected in doing so.

15.7.3 Step Loading of Linear Viscoelastic Models

Consider a series of loading steps as shown in Fig. 15.32(a). An increase in stress causes additional
instantaneous (elastic plus plastic) strain, additional transient creep strain, and an increased steady-
state strain rate. A decrease in stress causes instantaneous loss of some of the elastic strain and a
decrease in strain rate, and perhaps even some recovery of transient creep strain if the resulting
stress is low. A number of approaches exist for predicting strain versus time behavior under these
conditions.

First, consider the behavior of any linear viscoelastic rheological model—that is, any combina-
tion of standard linear springs and dashpots. Any such model can be shown to obey the superposition
principle. This principle states simply that the creep strain at any time is the sum of the strains due
to each change in stress, �σ , that has occurred, where each �σ is considered to act continuously
as an applied stress, starting from the time it occurs to any later time. An application is illustrated
in Fig. 15.32. Stress σ1 is applied at time t1, but at time t2 the stress changes to σ2. After this
change, the creep strain due to �σ1 = σ1 continues to accumulate, but an additional creep strain
must be added due to the additional stress �σ2 = σ2 − σ1. The amount of this additional creep
strain is the same as that due to a stress equal to �σ2 applied by itself, starting at time t2. Similarly,
following t3, the creep strains due to �σ1 and �σ2 continue, but the strain for �σ3 must now
be added. In this particular example, the �σ3 = σ3 − σ2 to be added is negative, so subtraction
occurs.

In general, the stress change to reach the i th load step from the previous level is

�σi = σi − σi−1 (15.51)
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Figure 15.32 The superposition principle for linear viscoelastic models and materials. An
applied stress history and the resulting strain response are shown in (a), and the stress changes
and resulting strains that are superimposed to obtain this response are shown in (b–e).

The stress during the i th step is the sum of all changes that have occurred so far. That is,

σi =
∑

�σi (15.52)

Let the linear strain–time relationship for the model be represented by ε = σ f (t), where various
examples of f (t) are available from Fig. 15.27. The strain at any later time t due to �σi acting as
an applied stress starting at time ti is thus

�εi = �σi f (t − ti ) (15.53)

Note that (t − ti ) is the time since the stress change �σi . According to the superposition principle,
the total strain is the sum of all of the strains �εi due to each �σi that has occurred:
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Figure 15.33 A step stress history (a) and estimated strain responses (b), based on time
hardening (c) and strain hardening (d).

ε =
∑

�εi =
∑

�σi f (t − ti ) (15.54)

This summation is equivalent to the graphical procedure of simply adding the strains due to each
�σ at any desired time, as illustrated by Fig. 15.32(b–e).

The behavior of real materials is often too complex to be represented by linear viscoelas-
ticity. Hence, nonlinear extensions of this approach are sometimes used. For materials such as
metals, where recovery behavior is relatively unimportant, it may be reasonable to use certain
approaches that neglect recovery behavior entirely, such as time hardening and strain hardening, as
discussed next.

15.7.4 Time-Hardening and Strain-Hardening Rules

These methods are illustrated in Fig. 15.33 for the stress history shown in (a). Estimated strains
are shown in (b) for the two approaches. For time hardening, creep (not total) strain versus time
curves are first plotted for all stress levels involved, as shown in (c). Whenever the stress changes,
the deformation is assumed to proceed according to the curve for the new stress, starting at the point
on this curve corresponding to the actual value of time. For example, after the stress changes to
σ2 at time t2, the strain–time curve for σ2 is used to estimate the behavior until the stress changes
again. These segments of strain–time response for each stress level are then combined to estimate
the overall strain response as shown in (b). Changes in the elastic and plastic strain may also need
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to be included. In this example, instantaneous changes in elastic strain are shown in (b), along with
the segments of creep strain versus time response from (c).

Assume that the creep strain versus time curves are given by

εc = f2(σ, t) (15.55)

The change in creep strain �εci during the i th stress level is obtained from the curve for σi and is
the difference between the creep strains corresponding to times ti and ti+1. Also, the accumulated
creep strain εc is the sum of the changes. Thus,

�εci = f2 (σi , ti+1) − f2 (σi , ti ) , εc =
∑

�εci (15.56)

For example, consider creep according to Eq. 15.39(b). Summing the elastic strain due to the current
value of stress and the accumulated creep strain, we obtain the total strain:

ε = εe + εc = σ

E
+ D3

∑
σ δ

i

(
tφi+1 − tφi

)
(15.57)

Strain hardening assumes that the deformation after a stress change starts at a point on the new
creep strain versus time curve that corresponds to the actual value of creep strain, as illustrated in
Fig. 15.33(d). At time t2, the stress changes to σ2, and the curve for σ2 is used for a time period
�t2 = t3 − t2. The starting point on the σ2 curve corresponds to the creep strain εc1 reached at
the end of the σ1 step. Hence, it corresponds not to the real time t2 but rather to a fictitious time
te2. Similarly, at time t3, the curve for σ3 is used for the time period �t3 = t4 − t3, starting at the
fictitious time te3 corresponding to the creep strain εc2 at the end of the previous step. For each step,
such as the i th one, the tei value must be calculated from the creep strain reached at the end of the
previous step by solving Eq. 15.55 for tei , that is

εc(i−1) = f2 (σi , tei ) (15.58)

The creep strain occurring during the i th step and the accumulated strain can then be computed:

�εci = f2 (σi , tei + �ti ) − f2 (σi , tei ) , εc =
∑

�εci (15.59)

For example, for creep according to Eq. 15.39(b), the previous equations give

tei =
(

εc(i−1)

D3σ
δ
i

)1/φ

, ε = σ

E
+ D3

∑
σ δ

i

[
(tei + �ti )

φ − tφei

]
(15.60)

Strain hardening and time hardening give different results, except for creep strain versus time
curves that are linear—that is, for steady-state creep. Although neither procedure can be regarded
as anything other than a rough approximation, strain hardening does appear to be more accurate for
engineering metals than time hardening. Such a trend might be expected, as it is logical to assume
that the effect of prior deformation is more closely related to the amount of strain that has occurred
than simply to the amount of time elapsed. If step changes in temperature occur instead of, or in
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addition to, stress changes, then time hardening and strain hardening can still be used by introducing
strain–time curves for more than one temperature.

15.8 CREEP DEFORMATION UNDER MULTIAXIAL STRESS

Multiaxial stresses, of course, often occur in engineering components, but creep data and constants
are generally based on uniaxial tests. Thus, special methodology is needed for generalizing uniaxial
data to handle multiaxial situations.

Consider an ideal linear viscous fluid that is incompressible, called a Newtonian fluid.
Incompressibility requires that the volumetric strain be zero, hence also that the volumetric strain
rate be zero. Thus, Eq. 5.34 gives

ε̇x + ε̇y + ε̇z = 0 (15.61)

Now consider a uniaxial stress σx and the resulting strain rate:

ε̇x = σx

η

(
σy = σz = 0

)
(15.62)

Here, η is the tensile viscosity of Eq. 15.2. Equal strain rates occur in the other two directions, so
that these can be obtained by invoking Eq. 15.61:

ε̇y = ε̇z = − ε̇x

2
= −1

2

(
σx

η

) (
σy = σz = 0

)
(15.63)

If stresses also occur in the other directions, these produce additional strains in a similar manner,
so that strain rates are given by

ε̇x = 1

η

[
σx − 0.5

(
σy + σz

)]
(a)

ε̇y = 1

η

[
σy − 0.5

(
σx + σz

)]
(b)

ε̇z = 1

η

[
σz − 0.5

(
σx + σy

)]
(c)

(15.64)

Shear stresses and strains may also be present, for which the shear viscosity ητ of Eq. 15.1 applies.
Pursuing logic similar to that leading to Eq. 5.28 gives ητ = η/3, so that the only independent
constant is η, and the equations for shear strain rates can be written as

γ̇xy = 3

η
τxy, γ̇yz = 3

η
τyz, γ̇zx = 3

η
τzx (15.65)

These relationships are analogous to Hooke’s law, Eqs. 5.26 and 5.27, except that they involve strain
rates. Poisson’s ratio ν is replaced by 0.5, also E by η, and G by η/3.

The preceding equations can be extended to cases where the stress versus strain rate relationship
is nonlinear by interpreting η as a secant modulus on a stress versus strain rate plot. That is,
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η = σ̄

¯̇ε (15.66)

Here, σ̄ and ¯̇ε are respectively the effective stress and the effective strain rate, which, in terms of
principal stresses and corresponding strain rates, are

σ̄ = 1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (a)

¯̇ε =
√

2

3

√
(ε̇1 − ε̇2)

2 + (ε̇2 − ε̇3)
2 + (ε̇3 − ε̇1)

2 (b)

(15.67)

Note that σ̄ is the same as Eq. 12.21 and ¯̇ε is analogous to Eq. 12.22. We now have a situation
analogous to deformation plasticity theory, as described in Section 12.3, except for strain rates
replacing strains. In a similar manner, the effective stress versus strain rate relationship is the same
as the uniaxial one. Thus, if ε̇ = g(σ ) is the uniaxial relationship, then ¯̇ε = g (σ̄ ).

Example 15.6
For a given material and temperature, the uniaxial creep behavior follows Eq. 15.39(b). A thin-
walled tubular pressure vessel of radius r and wall thickness b has closed ends and is made of
this material. Develop an equation for the relative change in radius, �r/r , as a function of time
t and a constant pressure p in the vessel.

Solution We first generalize the uniaxial stress–strain curve to an effective stress–strain
curve:

ε̄ = σ̄

E
+ D3σ̄

δtφ, ¯̇ε = D3φσ̄ δtφ−1

The viscosity is thus both stress and time dependent:

1

η
=

¯̇ε
σ̄

= D3φσ̄ δ−1tφ−1

This relationship can now be used with Eq. 15.64 to solve our particular problem, which involves
stresses and strains as follows:

σ1 = pr

b
, σ2 = pr

2b
, σ3 ≈ 0, ε1 = �(2πr)

2πr
= �r

r

Here, σ1 and ε1 are in the hoop direction, σ2 is in the longitudinal direction, and these stresses
are noted to be principal stresses.

Letting the (x, y, z) directions be the principal (1, 2, 3) directions, Eq. 15.64(a) gives

ε̇1 = 1

η
[σ1 − 0.5 (σ2 + σ3)] = D3φσ̄ δ−1tφ−1

[ pr

b
− 0.5

( pr

2b

)]
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Also, σ̄ is given by Eq. 15.67(a):

σ̄ = 1√
2

√( pr

b
− pr

2b

)2 +
( pr

2b

)2 +
(
− pr

b

)2 =
√

3pr

2b

Substituting this σ̄ into the expression for ε̇1 and simplifying gives

ε̇1 =
√

3

2
D3φtφ−1

(√
3pr

2b

)δ

Since the pressure p is constant, we can integrate with respect to time to obtain the creep
strain:

εc1 =
∫ t

0
ε̇1 dt =

√
3

2
D3tφ

(√
3pr

2b

)δ

We now need the elastic strain from Eq. 5.26. This is

εe1 = 1

E
[σ1 − ν (σ2 + σ3)] =

(
1 − ν

2

) ( pr

bE

)

Adding the elastic and creep strains finally gives the desired result:

�r

r
= εe1 + εc1,

�r

r
=
(

1 − ν

2

) ( pr

bE

)
+

√
3

2
D3tφ

(√
3pr

2b

)δ

Ans.

15.9 COMPONENT STRESS–STRAIN ANALYSIS

Stress–strain analysis of engineering components subject to time-dependent deformation can be
performed for simple cases using isochronous stress–strain curves. If these curves are approximately
linear, corresponding to linear viscoelastic behavior, only linear-elastic stress analysis is needed.
For nonlinear isochronous σ -ε curves, analysis is done in the same manner as for elasto-plastic
stress–strain curves that are not time dependent. Hence, various analytical results from Chapter 13
can be adapted to creep situations.

15.9.1 Linear Viscoelastic Behavior

Assume that it is reasonable to represent the behavior of a given material by a rheological model
built up of combinations of linear springs and dashpots. As already explained in Section 15.6.1, the
isochronous stress–strain curves are then all straight lines, which can be represented by ε = σ f (t),



Section 15.9 Component Stress–Strain Analysis 851

x

z
y

b(a)

2c M

M
t 1

t 2

t 3

M

M

0

(d)
-c

y

c

(c)

εx

1t 2t 3t

0

-c

c
y

t  , t  , t1 2 3

σx

σx

σ

ε

t 1 t 2 t 3

0

E(t)

(b)

Figure 15.34 Behavior under constant applied moment of a beam (a) made of a linear
viscoelastic material (b). The stress distribution is linear and constant with time (c),
while the strain maintains a linear distribution as it increases (d).

where the particular time function f (t) that applies depends on the model. A time-dependent
modulus

E(t) = 1

f (t)
= σ

ε
(15.68)

where E(t) is simply the slope of the isochronous stress–strain curve, is often used. Since the
stress–strain relationship is linear, component stress–strain analysis for any particular time t can
be done by a stress analysis performed on the basis of linear-elastic behavior. The analysis is
unaffected, except that the elastic modulus varies with time.

The situation for a rectangular beam under pure bending is illustrated in Fig. 15.34. For all
values of time, the stress distribution is linear and unchanging, according to the bending formula
from linear-elastic analysis. Thus,

σ = My

Iz
= 3My

2bc3
(15.69)

The strain for any position y in the beam at any time t is then obtained by combining Eqs. 15.68
and 15.69:

ε = σ

E(t)
= 3My

2bc3

1

E(t)
(15.70)

Analysis of linear-elastic behavior can be similarly applied to other situations, such as more complex
bending problems, shafts in torsion, pressure vessels, geometries containing stress raisers, etc.
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The stress distributions from linear-elastic analysis apply in all cases. To determine strains where
nonuniaxial stress states occur, it is necessary to apply both Hooke’s law, Eq. 5.26, and the equations
for multiaxial viscous flow, Eq. 15.64.

If the isochronous stress–strain curves are nonlinear, but not grossly so, it may still be
reasonable to employ linear-elastic analysis as just described. Values of E(t) are replaced by values
of the secant modulus, Es(t), as defined in Fig. 15.11.

Example 15.7
A beam is simply supported over a length of L = 100 mm and is loaded at its center with a
transverse load of P = 50 N. Its cross section has width b = 15 mm and depth 2c = 10 mm. The
material has linear viscoelastic behavior with elastic and steady-state creep strains, similar to the
model of Fig. 15.27(a), with the constants being E1 = 3 GPa and η1 = 105 GPa·s. Determine
(a) the maximum stress in the beam, (b) the initial elastic deflection when the load is applied,
and (c) the deflection after one week.

Solution Due to the linear viscoelastic behavior, stresses may be obtained from the ordinary
elastic bending formula:

σ = Mc

I
, I = 2bc3

3

Here, I is from Fig. A.2(a) in Appendix A. The maximum stress is at the midlength, where the
moment is M = P L/4 from Fig. A.4(a). Hence, substituting for M and I gives

σ = 3P L

8bc2
= 3(50 N)(100 mm)

8(15 mm)(5 mm)2
= 5.00 MPa Ans.

Using the equation from Fig. A.4(a), we find that the initial elastic deflection is controlled by
E1, as the creep strain is initially zero:

v = P L3

48E1 I
= (50 N)(100 mm)3

48(3000 MPa)(1250 mm3)
= 0.278 mm Ans.

To obtain the deflection as affected by creep, note that the strain–time behavior is given by
the equation from Fig. 15.27(a):

ε = σ

E1
+ σ t

η1

Hence, the time-dependent modulus for t = 1 week = 604,800 seconds is

E(t) = σ

ε
= 1

1

E1
+ t

η1

= 1
1

3000 MPa
+ 604,800 s

108 MPa·s
= 156.7 MPa
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Repeating the deflection calculation with this lower value E(t) finally gives the deflection
after one week:

v = P L3

48E(t)I
= (50 N)(100 mm)3

48(156.7 MPa)(1250 mm3)
= 5.32 mm Ans.

15.9.2 Analysis with Nonlinear Isochronous Stress–Strain Curves

If the isochronous stress–strain curves are markedly nonlinear, then analysis similar to that described
in Chapter 13 for plastic deformation is needed. The isochronous stress–strain curve for any
particular time is used just as if it were an elasto-plastic stress–strain curve. This is illustrated in
Fig. 15.35 for a rectangular beam under static pure bending. The stress distribution must resist a
bending moment that does not vary with time; however, the shape of the stress distribution may
change as a result of a changing shape of the isochronous stress–strain curve. A linear strain

(a)

(b)

(d)(c)

0 0
εσ

t
c

2c

z
y

x

b

-c

c

y y

M

x

3t 2t 1t

-c

t t1 2 3

x

0

t t t 321σ

ε

Figure 15.35 Behavior under constant moment of a beam (a) made of a material with
nonlinear isochronous stress–strain curves (b). The stress distribution may change its shape
with time (c), while the strain distributions remain linear as the strain increases (d).
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distribution is a reasonable assumption for all values of time, but the magnitude of the strain
increases.

For example, assume, for the beam material in Fig. 15.35, that all strains except the steady-state
creep strains are small and that these are given by

ε = Bσmt (15.71)

For any particular time t , this equation represents simple power hardening, as in Eq. 13.9, with
constants as follows:

n2 = 1

m
, H2 = 1

(Bt)1/m
(15.72)

The analytical result of Eq. 13.11 can now be employed by making these substitutions. Denoting
the beam thickness as b to avoid confusion with time t , we get

M = 2mbc2σc

1 + 2m
= 2mbc2

1 + 2m

( εc

Bt

)1/m
(15.73)

where σc, εc are the stress and strain at the edge of the beam. The relationship between strain and
moment depends on time, as expected. In this particular case, the stress distribution is nonlinear, but
does not adjust with time unless m differs for the various isochronous curves.

Other analytical results from Chapter 13 can be applied to creep problems in a similar manner
if the isochronous stress–strain curves are represented by equations of the same mathematical form
as those used in each case. The power-law form of many of the stress–strain–time equations for
creep makes the simple power-hardening and Ramberg–Osgood forms particularly convenient to
use. For the Ramberg–Osgood case, Eq. 15.35 applies, where Hc specifies the time dependence, as
from Eq. 15.36 or 15.40.

In stress–strain analysis for creep situations, it may be useful to perform multiple analyses by
using several members of the family of isochronous stress–strain curves, each corresponding to a
different value of time, to determine how the component behavior evolves with time. Also, if the
combination of geometry and loading is complex, then it may be appropriate to employ numerical
analysis, as by finite elements.

Example 15.8
A rectangular beam made of S-590 alloy has depth 2c = 50 mm and thickness b = 20 mm. It
is loaded with a moment of M = 1.50 kN·m at a temperature of 725◦C. At this temperature,
and for stresses in the range 100 to 400 MPa, constants for Eq. 15.71 are m = 10.74 and
B = 3.91 × 10−29, where t is in units of hours. (From data in [Grant 50].) Estimate the stress in
the beam, the creep strain after 16,000 hours, and the life to creep rupture.

Solution The stress at the edge of the beam is obtained directly from Eq. 15.73. Retaining
units of mm for b and c, and substituting M = 1.50 × 106 N·mm, we obtain
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σc = M(1 + 2m)

2mbc2
= 125.6 MPa Ans.

After 16,000 hours, the creep strain at the edge of the beam is

εc = Bσm
c t = 3.91 × 10−29(125.6 MPa)10.74(16,000 h) = 0.0218 Ans.

From constants C , b1, and b2 in Table 15.3, the Larson–Miller parameter and the estimated life
to rupture from Eq. 15.20 are

PL M = 38,405 − 8206 log σ = 38,405 − 8206 log (125.6 MPa) = 21,181 K·log (h)

log tr = PL M

T
− C = 21,181

(725 + 273) K
− 17 = 4.224, tr = 16,730 hours Ans.

It is assumed in this calculation that the steady-state creep strain is large compared with both the
elastic and the transient creep strain, so that Eq. 15.71 applies on an approximate basis.

15.10 ENERGY DISSIPATION (DAMPING) IN MATERIALS

Materials subjected to cyclic loading absorb energy, some of which may be stored as potential en-
ergy within the structure of the material, but most of which is dissipated as heat to the surroundings.
Such energy dissipation may be small, and even difficult to measure, but it is nevertheless always
present. Otherwise, vibrations (say, in a tuning fork of the material) would never decay, and the
physically impossible situation of a perpetual motion machine would exist. Energy dissipation in
materials, termed damping or internal friction, is caused by a wide range of physical mechanisms,
depending on the material, temperature, and frequency of cyclic loading involved. Any physical
mechanism that causes creep can cause damping, but other mechanisms that act at low stresses are
not associated with macroscopic creep effects. The small strains associated with such low-stress
damping phenomena are recoverable or anelastic strains, as defined in Section 5.2.4, and low-stress
damping itself is called anelastic damping. Damping also occurs as a result of plastic deformation.

Damping in materials is of practical importance, as the degree of damping affects the behavior
under vibratory loading. In particular, higher damping results in lower stresses under forced
vibration near resonance, and also in more rapid decay of free vibration. Damping behavior may
thus affect the choice of materials in vibration-sensitive applications, such as turbine blades.

15.10.1 Damping Behavior of Rheological Models

The transient-creep-plus-elastic rheological model exhibits behavior similar to low-stress (anelastic)
damping, as summarized in Fig. 15.36. A sinusoidal stress is assumed to be applied. That is,

σ = σa sin ωt (15.74)
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Figure 15.36 Behavior of a transient-creep-plus-elastic rheological model under a sinusoidal
stress. The curves shown correspond to E1/E2 = 1.

where σa is the stress amplitude and ω is the angular frequency. The strain response of the model
at any frequency is sinusoidal, but there is a phase shift, as specified by a phase angle δ, relative to
the sine wave of the stress:

ε = εa sin (ωt − δ) (15.75)

The preceding two equations are the parametric equations for an ellipse. Hence, the stress–strain
response forms an elliptical hysteresis loop, as shown in Fig. 15.36(c).

The area inside this loop is the energy absorbed in each cycle per unit volume of material,
which is called the unit damping energy, �u. Evaluating the loop area gives an equation for �u:

�u = πσaεa sin δ (15.76)

Both δ and �u exhibit maxima when plotted versus the angular frequency ω. For this particular
model, the �u maximum occurs at the frequency ωd = E2/η2. The quantity (εa sin δ) is the strain
from Eq. 15.75 when σ is zero. Hence, it is the half-width of the elliptical hysteresis loop and is
a measure of the nonlinearity in strain, as shown in Fig. 15.37. This quantity, sometimes called
the remnant displacement, is roughly analogous to the plastic strain amplitude, εpa = �εp/2, of
Fig. 12.17. Since (εa sin δ) is proportional to �u, it exhibits the same type of frequency dependence
as �u.
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Figure 15.37 Definitions for an elliptical hysteresis loop.

At frequencies that are high compared with ωd , the dashpot is essentially rigid. Deformation is
thus prevented in spring E2 and occurs only in E1, so that the response is linear with stiffness E1.
Conversely, at frequencies that are low compared with ωd , there is sufficient time for free movement
of the dashpot, so that it has little effect. The elliptical loop again reduces to a straight line, but in this
case with the lower stiffness Ee corresponding to E1 and E2 in series. (See Eq. 15.32.) The stiffness
is an elastic modulus, called E∗, defined as shown in Fig. 15.37. Its value varies with frequency,
increasing from Ee at low frequency to E1 at high frequency. The transition between the two occurs
in the neighborhood of the energy dissipation peak.

For any rheological model composed of linear springs and dashpots—that is, for any linear
viscoelastic model—elliptical hysteresis loops are formed, and the strain response is proportional to
the applied stress. Hence, the strain amplitude εa is proportional to the stress amplitude σa . Also, the
phase shift δ does not depend on σa , but only on ω. Hence, the elliptical hysteresis loops for various
σa at a given frequency all have the same proportions and differ only in size. From Eq. 15.76, this
results in the unit damping energy being proportional to the square of the stress amplitude:

�u = Jσ 2
a (15.77)

In this equation, J is a constant for a given set of model constants and frequency. More complex
rheological models that are useful for damping include series combinations of several transient creep
elements with differing constants. Such a model exhibits several peaks on a plot of δ or �u versus
ω, one for each transient creep element. Also, elements having more complex nonlinear behavior
are sometimes used.
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15.10.2 Definitions of Variables Describing Damping

A number of different definitions are in use for describing the damping behavior of any model or
material. The unit damping energy �u, also often denoted D, has already been defined, as have the
phase angle δ and the remnant displacement. The loss coefficient Q−1 is defined as

Q−1 = tan δ (15.78)

The variable Q itself is called the quality factor.
The ratio of the stress amplitude to the strain amplitude, E∗ = σa/εa , as shown in Fig. 15.37, is

called the dynamic modulus or the absolute modulus. Another frequently used measure of stiffness
is the storage modulus, E ′, which is the slope of a line from the origin to the maximum strain
point on the elliptical hysteresis loop, which occurs at the stress σ = σa cos δ as shown. The storage
modulus is conventionally used to define the elastic strain energy at the peak strain, ue, as also
shown in Fig. 15.37. The loss coefficient is related to the energies �u and ue by

Q−1 = �u

2πue
(15.79)

One additional definition that is often used is the log decrement, �t = π Q−1. Where �u is small
compared with ue, such that Q−1 = 0.1 or less, the damping is considerd to be relatively low.

15.10.3 Low-Stress Mechanisms in Metals

At low stresses in engineering metals, a variety of damping mechanisms occur, each of which
behaves in a manner similar to the linear viscoelastic model previously discussed. This results in
a number of different peaks in energy dissipation that occur as the frequency or temperature is
changed, as illustrated in Fig. 15.38.

An example of such a mechanism is the Snoek effect. This involves interstitial solute atoms in
a body-centered-cubic (BCC) metal, such as carbon or nitrogen in iron, as illustrated in Fig. 15.39.
Such interstitial atoms are small compared with iron atoms, so they can occupy the normally
unoccupied positions in the middle of the cube edges of the BCC iron crystal structure, somewhat
distorting the structure in doing so. If a tensile stress is applied as shown, interstitial atoms along
cube edges that are approximately normal to the applied stress are further squeezed by the Poisson
contraction that occurs. They tend to jump to cube edges that are more parallel to the applied stress,
where the tensile strain provides added space to accommodate them.

If the frequency of loading is very high, the interstitials have insufficient time to move, so the
effect does not occur. Conversely, if the frequency is very low, the interstitials can move freely.
In both cases, the strain in the material is in phase with the stress, but for the lower frequency,
the material deforms more and thus has a slightly lower elastic modulus. However, at intermediate
cyclic loading frequencies corresponding to the time required for a jump to occur, the strain response
is slower than the applied stress, a phase lag occurs, and the dissipation of energy is at a maximum.
The applied stress can then be said to be in resonance with the jumping of the interstitials. Since the
jumping process is thermally activated, a peak in energy dissipation can also be observed by varying
the temperature at a constant frequency.
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Figure 15.38 Damping peaks for a hypothetical metal and several real metals, and the
associated microstructural mechanisms. (Adapted from [Lazan 68] p. 39; used with permission.)

C

Fe

σ

Figure 15.39 Mechanism of the Snoek effect, involving motion of interstitial atoms
in a BCC metal structure.

Another example is the thermoelastic effect, also called thermal current damping. As Poisson’s
ratio is usually somewhat less than the value of ν = 0.5 corresponding to the volume being constant,
the volume of a stressed solid increases during the tensile portion of cyclic loading. If the loading
is so rapid that heat exchange with the surroundings does not have time to occur, the increased
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volume results in a temperature decrease, hence also in a thermal contraction. Conversely, for
rapid loading under compression, there is decreased volume, increased temperature, and thermal
expansion. Hence, rapid cyclic loading is accompanied by thermal strains that are in the opposite
direction of the mechanical strains, resulting in an apparent stiffening of the material. The elastic
modulus that occurs is referred to as the adiabatic (meaning constant heat) value. But under slow
cycling, where heat exchange with the surroundings can occur freely, there are no thermal strains
opposing the mechanical strains. The elastic modulus then takes on the lower isothermal value.
At intermediate frequencies that correspond to the time required for heat flow, the strain response
exhibits a phase lag and there is a relative maximum in energy dissipation.

15.10.4 Additional Mechanisms and Trends

Other damping mechanisms involve various time-dependent movements of impurity atoms or
vacancies (point defects), movements of dislocations (line defects), and sliding of grain boundaries.
In ferromagnetic materials, an effect called magnetoelastic damping is important, in which energy
dissipation results from rotations in the directions of the microscopic magnetic domains that occur
in such a material. This effect is unusual in that it is independent of frequency and is more strongly
dependent on stress amplitude than is expected from the ideal model discussed previously. In
particular, �u is proportional to the cube of stress, rather than the square. In addition, the effect
may saturate and become independent of stress above a critical level, and it may be sensitive to
mean stress.

The gross dislocation motions that result in slip of crystal planes, and hence in plastic
deformation, can cause large amounts of energy dissipation called plastic strain damping. Such
effects are inactive at low stresses, but for engineering metals at temperatures where creep effects
are small, they become the dominant mechanism of damping at high stresses. The behavior is
dramatically different from that of the linear viscoelastic model, being insensitive to frequency
and very sensitive to stress. Hysteresis loops due to plastic deformation are not elliptical; rather,
they are pointed as in Fig. 12.17. According to the approximation for the shape of hysteresis loop
curves discussed in Chapter 12, plastic strain damping can be calculated from the area inside the
stress–strain hysteresis loop. For a cyclic stress–strain curve of Ramberg–Osgood form, Eq. 12.55
applies on an approximate basis, giving

�u = 4

(
1 − n′

1 + n′

)
σaεpa = 4

(
1 − n′) σ 1+1/n′

a

(1 + n′) (H ′)1/n′ (15.80)

where Eq. 12.11 is used to obtain the second form, and H ′ and n′ are the constants for the cyclic
stress–strain curve. Let Eq. 15.77 be generalized to

�u = Jσ d
a (15.81)

Noting that n′ = 1
7 is typical, we find that the exponent on stress from Eq. 15.80 is

d = 1 + 1

n′ ≈ 8 (15.82)
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This indicates a very strong dependence on stress, in contrast to d = 2 for ideal anelastic damping.
Polymers and elastomers are likely to exhibit behavior similar to ideal linear viscoelasticity

(d = 2) if the stress levels are not excessively high. Some of the mechanisms that operate to cause
peaks in energy dissipation involve chain molecule motions, such as rotations, translations, or
coiling and uncoiling, of interior or end segments of chains. The segments involved can be long
or short, and motions of side groups can also cause damping. In general, larger moving entities
cause damping peaks at lower frequencies for a given temperature, or at higher temperatures for a
given frequency.

At stresses where metals are used for engineering purposes, the damping is generally quite
low, involving loss coefficients around Q−1 = 0.01 or less. In contrast, the values for polymers
at service stresses may be much larger, such as Q−1 = 0.1 or more. Correspondingly large phase
angles and variations in the elastic modulus (E∗ or E ′) then also occur. Such large damping may
be disadvantageous if excessive heat is generated, but it is often beneficial in quickly damping any
vibrations that develop. High damping is, of course, often intentionally employed to mitigate sound
or vibration by the use of polymers, especially elastomers.

Some trend curves for damping energy in engineering metals at room temperature are suggested
by Lazan (1968) and are shown in Fig. 15.40. For nonmagnetic metals, the stress exponent for the
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Figure 15.40 Trends for damping in ferromagnetic and nonferromagnetic metals, and
also for a typical viscoelastic polymer. For the two classes of metals, ranges of behavior
and idealized relations are given, with the equations being for �u in kJ/m3. (Adapted from
[Lazan 68] p. 139; used with permission.)
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middle of the data trend is a little larger than the ideal viscoelastic value of d = 2, up to about
80% of the fatigue limit σe, where the slope of about d = 8 begins due to plastic strain damping.
Ferromagnetic metals have higher damping at low stresses and a value of d ≈ 3, followed by a
region of d ≈ 1, which prevails until d ≈ 8 begins around the fatigue limit.

15.10.5 Damping in Engineering Components

The discussion so far of damping has considered only the behavior of uniformly stressed samples of
material, rather than engineering components, such as beams, shafts, etc., that contain nonuniform
distributions of stress. For ideal viscoelastic behavior, d = 2, the loss coefficient Q−1 for a
component is the same as for the material. Otherwise, Q−1 depends on the geometry and so is
not the same as for a uniformly stressed material.

The total damping energy �U for a component can be obtained by integrating over its volume.
A second integration over the volume yields the elastic energy for the component, and the ratio of
these is the loss factor for the component, giving

�U = ∫ �u dV, Ue = ∫ ue dV, Q−1
v = �U

2πUe
(15.83)

Such analysis is considered in Lazan (1968) and Marin (1962) for cases where it is reasonable
to assume linear-elastic behavior, that is, behavior where the nonlinear strains due to damping
are small compared with the elastic strains. If large plastic deformations occur, the methods of
Chapter 13 for beams and shafts can be extended to calculate damping energies, with �u given by
Eq. 15.80. Numerical analysis, as by finite elements, may be employed for complex geometries and
loadings.

Example 15.9
Consider a rectangular beam of depth 2c, thickness b, and length L , that is subjected to a
cyclic pure bending moment Ma about zero mean. The strains are sufficiently large that a
nonlinear stress distribution occurs, and the material follows a cyclic stress–strain curve of the
Ramberg–Osgood form, Eq. 12.54. Obtain an equation for the total energy �U dissipated in
each cycle of loading as a function of the stresses and strains at the beam edge.

Solution The damping energy in the member is obtained by combining Eq. 15.81 with the
integral for �U of Eq. 15.83. We obtain

�U =
∫

�u dV =
∫

Jσ d
a dV

where J and d from Eq. 15.80 apply:

J = 4
(
1 − n′)

(1 + n′) (H ′)1/n′ , d = 1 + 1

n′
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Since we have pure bending, the stress amplitude varies with distance y from the neutral axis,
but not with position x along the beam length. (The coordinate axes of Fig. 13.3 are being used.)
Hence, a suitable volume element is

dV = Lb dy

Symmetry permits the integral to be evaluated on only one side of the beam, so that it becomes

�U = 2J Lb
∫ c

0
σ d

a dy

This integral can be evaluated by a procedure similar to that leading to the bending analysis
of Eq. 13.27. We first make the reasonable physical assumption that plane sections remain plane
even during the cyclic plastic deformation. Thus, Eq. 13.22 applies to the strain amplitudes:

y = c

εca
εa, dy = c

εca
dεa

Here, εa is strain amplitude and εca is the particular value at the beam edge, y = c. The cyclic
stress–strain curve (Eq. 12.54) and its differential are also needed:

εa = σa

E
+
( σa

H ′
)1/n′

, dεa =
[

1

E
+ 1

n′σa

( σa

H ′
)1/n′]

dσa

Substituting dεa into the expression for dy, and then substituting the result into the integral for
�U, gives a form with stress as the only variable:

�U = 2J Lbc

εca

∫ σca

0
σ

1+1/n′
a

[
1

E
+ 1

n′σa

( σa

H ′
)1/n′]

dσa

In this equation, σca is the stress amplitude at y = c, and the expression involving n′ has been
substituted for d.

The integral is now readily evaluated. After doing so, substituting for J , and performing
some manipulation, we obtain

�U = 8Lbc

(H ′)1/n′

(
1 − n′

1 + n′

)
σ

1+1/n′
ca

⎡
⎢⎢⎣

n′

2n′ + 1
+ 1

2 + n′ β

1 + β

⎤
⎥⎥⎦ Ans.

where β = εpca

εeca
, εpca =

(σca

H ′
)1/n′

, εeca = σca

E
, εca = εeca + εpca

Here, εpca and εeca are plastic and elastic strain amplitudes, respectively, at y = c.
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15.11 SUMMARY

15.11.1 Creep: Introductory Aspects

Creep tests of materials are most commonly performed by applying various levels of constant stress
to uniaxial specimens. Data can be obtained on strains, strain rates, and rupture lives. In addition to
strain versus time plots, the data may be used to construct stress versus life plots, where life is the
time to rupture or to a particular value of strain. Stress–strain curves corresponding to given times,
called isochronous stress–strain curves, are also useful.

The physical mechanisms associated with creep deformation vary widely with the material
and with the combination of stress and temperature involved. Behavior similar to simple viscous
flow, where stress and strain rate are proportional, may occur. This is the case for glasses, for
polymers at temperatures significantly above Tg , and for crystalline materials (metals and ceramics)
at high temperature, but low stress. For the latter, the mechanism of viscous flow is often diffusional
flow involving movement of vacancies through the crystal lattice or along grain boundaries. At
relatively high stresses in crystalline materials, the dominant creep mechanisms involve movement
of dislocations, which process is highly sensitive to stress, so that strain rates are proportional to
stress raised to a power on the order of five. Steady-state creep rates in crystalline materials may be
described by

ε̇ = A2σ
m

dq T
e

−Q
RT (15.84)

where the trends for the exponents m on stress and q on average grain diameter are summarized in
Table 15.1. The dependence on absolute temperature T follows an Arrhenius relationship with an
activation energy Q that depends on the creep mechanism.

Creep mechanisms in polymers around and above Tg , but not very close to the melting
temperature, involve various relatively complex motions and interactions of the long chainlike
molecules. Effects such as entanglement of the chains can cause increased resistance as defor-
mation proceeds, and also a tendency for much of the creep deformation to be recovered if
the load is removed. Creep in concrete involves distinctive mechanisms associated with time-
dependent deformation in the cement paste and movement of water in pores. Elastic strains in
the aggregate oppose and limit the creep strain, and also cause a strong recovery behavior to
occur.

15.11.2 Creep: Engineering Analysis

For making life estimates, time–temperature parameters are generally used, rather than more direct
extrapolation of stress–life curves. For example, creep–rupture lives for various combinations of
stress and temperature can be employed with a material constant C to calculate values of the
Larson–Miller parameter:

PL M = T (log tr + C) (15.85)
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A plot or fitted equation of PL M versus stress can then be used to estimate times to rupture
tr for situations not represented in the original data. Extrapolation beyond the data by up to a
factor of 10 in life is reasonable, as long as a new creep mechanism is not encountered. Other
time–temperature parameters are available, including the Sherby–Dorn parameter, Eq. 15.16. Where
stress levels vary, a time-fraction rule, used similarly to the Palmgren–Miner rule for fatigue,
provides rough life estimates. If creep is combined with cyclic loading, life fractions for creep may
be combined with those for fatigue from the Palmgren–Miner rule to roughly estimate the combined
effect.

A variety of stress–strain–time relationships have been proposed that can be used for making
engineering estimates of behavior. For example, for steady-state creep, the power-law dependence
of Eq. 15.84 has the form ε̇ = Bσm for a given material and temperature. Additional terms,
or an altered mathematical form, are used to describe transient creep, for which ε̇ varies with
time. Situations of varying stress are also of interest, including recovery of creep strain after
removal of stress, relaxation of stress under constant strain, and step loading. Various alternatives
exist for handling step loading. Where linear viscoelastic behavior is a reasonable approximation,
a superposition procedure can be used, as in Fig. 15.32. Time hardening or strain hardening
(Fig. 15.33) is often employed for step loading of metals, with the latter preferred.

For multiaxial stresses, creep strains can be estimated by means of equations similar to those
of plasticity theory, but applied to strain rates:

ε̇x = 1

η

[
σx − 0.5

(
σy + σz

)]
, etc. (15.86)

The tensile viscosity η appears, and since creep strains cause little volume change, 0.5 replaces
Poisson’s ratio. For linear viscoelastic behavior, η may vary with time, but not with stress.
However, η may be treated as a stress-dependent variable to handle cases of nonlinear isochronous
stress–strain curves. Rupture lives for multiaxial states of stress can be estimated by assuming
that the effective stress σ̄ has the same effect as a numerically equal uniaxial stress. A secondary
dependence on the maximum principal stress can also be added according to Eq. 15.26.

For engineering components, ordinary linear-elastic stress analysis can be applied if the
material behavior can be approximated as following linear viscoelasticity. Strains at various
times are then obtained from the time-dependent elastic modulus E(t) of the material. Where
the isochronous stress–strain curves are nonlinear, analysis is done just as for an elasto-plastic
stress–strain curve, with several repetitions of the analysis for various values of time often being
needed. Nonlinear isochronous stress–strain curves sometimes have the Ramberg–Osgood form, as
for Eq. 15.35 combined with either Eq. 15.36 or 15.40, allowing stress–strain analysis for this form
to be used in a straightforward manner for creep.

15.11.3 Materials Damping

Energy dissipation during cyclic loading, called damping, can occur as a result of various low stress
(anelastic) damping mechanisms in metals, such as the Snoek effect and thermoelastic coupling. In
general, the damping energy per cycle, per unit volume, varies with stress amplitude according to
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�u = Jσ d
a (15.87)

where the exponent d depends on the material and the mechanism that is dominant for a given stress,
temperature, and frequency. The damping behavior of metals at low stresses, and also of polymers
in general, is often similar to the behavior of linear viscoelastic models that contain transient creep
elements. As a result, peaks in energy dissipation occur at certain frequencies for constant temper-
ature, and the energy dissipated in each cycle is approximately proportional to the square of stress,
d ≈ 2. At stresses around and above the fatigue limit in metals, the energy dissipation is insensitive
to frequency and is dominated by plastic deformation. The energy dissipated in each cycle is then
highly sensitive to stress, typically being proportional to the eighth power of stress, d ≈ 8.

N E W T E R M S A N D S Y M B O L S

(a) Creep
activation energy, Q
Coble creep
creep cavitation
creep exponent, m
creep–fatigue interaction
creep recovery
creep rupture
deformation mechanism map
diffusional flow
dislocation (power-law) creep
effective strain rate, ¯̇ε
isochronous stress–strain curve
Larson–Miller constant, C
linear viscoelasticity
Nabarro–Herring creep
primary (transient) creep
safety factors: Xσ , Xt

safety margin in temperature, �T f

secondary (steady-state) creep
strain-hardening rule
stress relaxation
superposition principle
temperature compensated time, θ

tertiary creep
thickness, b
time-dependent elastic modulus, E(t)
time-fraction rule
time-hardening rule
time–temperature parameters:

Larson–Miller, PL M

Sherby–Dorn, PSD

time to rupture, tr
universal gas constant, R
viscosity: ητ , η

(b) Damping
anelastic damping
component energies: �U , Ue

damping exponent, d
dynamic modulus, E∗
elastic strain energy, ue

loss coefficient: Q−1 = tan δ

magnetoelastic damping

materials damping (internal friction)
phase shift, δ

plastic strain damping
remnant displacement
Snoek effect
thermoelastic effect
unit damping energy, �u
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PROBLEMS AND QUESTIONS

Section 15.2
15.1 A 40% tin, 60% lead alloy solder wire of diameter 3.15 mm is subjected to creep by hanging

weights from lengths of the wire. Length changes measured over a 254 mm gage length after
various elapsed times are given in Table P15.1 for three different weights.

Table P15.1

Length change, mm

Time, min 4.54 kg 6.80 kg 9.07 kg

0 0 0 0
0.25 0.28 0.46 0.69
0.5 0.36 0.66 0.94
1 0.48 0.91 1.45

2 0.71 1.40 2.36
4 1.09 2.24 4.09
6 1.47 3.00 5.72
8 1.83 3.38 7.26

12 2.54 4.90 10.41
16 3.23 6.38 13.64
20 3.91 7.82 16.74

(a) Plot the family of strain versus time curves that results. Is the behavior dominated by
either transient or steady-state creep, or do significant amounts of both occur?

(b) Determine the steady-state creep rate, ε̇sc, for each value of weight, and plot these on
log–log coordinates versus the corresponding stresses. Does a straight line provide a
reasonable fit? If so, find values of B and m for the relationship ε̇sc = Bσm .

15.2 From the data in Fig. 15.8, construct an approximate plot with curves of stress versus
temperature for various times to failure. In particular, plot three curves, one corresponding
to each of the three rupture times 102, 103, and 104 hours.

15.3 Plot isochronous stress–strain curves for lead–tin solder from the data in Table P15.1, doing
so for times of t = 4, 12, and 20 min. Are the curves linear?

Section 15.3
15.4 Consider metals, polymers, and concrete. Which of these classes of materials typically

exhibit strong recovery of creep strain after unloading, and which do not? Briefly explain
in terms of the physical mechanisms of creep why the strains are generally recovered, or
why they are not recovered, for each class of materials.
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15.5 Compare the diffusional flow and dislocation creep mechanisms of crystalline materials. In
particular, considering the effects of grain size, stress, and temperature, how do the trends in
behavior differ?

15.6 For AISI 304 stainless steel with a grain size of 200 μm, constants for Eq. 15.6 follow
for the power-law region of the deformation mechanism map. These apply for stress σ in
units of MPa, temperature T in kelvins (K), and strain rates ε̇ in s−1. (Constants based on
[Frost 82] p. 62.)

m = 7.5, q = 0, Q/R = 33,700 K

A2 = 1.04 × 1027

Gm−1
, G300 = 81,000 MPa, h = 38 MPa/K

Here, A2 depends on the shear modulus G as it varies with temperature according to
Eq. 15.11. Make a log–log plot of σ versus ε̇, showing lines for T = 900, 1200, and 1450 K,
and covering strain rates in the range 10−2 to 10−8 s−1.

15.7 Using the constants from the previous problem for 304 SS at 1200 K, plot isochronous
stress–strain curves for times of 1 minute, 1 hour, and 1 week. Consider stresses such that
the strains extend to about ε = 0.02 in each case. Assume that only elastic strains need to
be added to creep strains from Eq. 15.6. The elastic modulus E may be estimated from the
shear modulus G by approximating Poisson’s ratio as ν = 0.3.

15.8 For the AISI 304 stainless steel of Prob.15.6, assume that only elastic strains need to be added
to creep strains, and approximate Poisson’s ratio as ν = 0.3. Then answer the following:

(a) For a stress of 42 MPa applied at a temperature of 950 K for one year, what is the
resulting strain?

(b) If the strain at 950 K cannot exceed 0.0015 in one year, what is the highest value of
stress that can be permitted?

(c) If the strain at 42 MPa cannot exceed 0.0015 in one year, what is the highest
temperature that can be permitted?

(d) Compare the results of the calculations for (a), (b), and (c), and comment on the trends
seen.

15.9 Approximately confirm the value of activation energy Q shown on Fig. 15.12.
15.10 Consider a situation where creep strain rate data are available for a given material for various

values of stress, grain size, and temperature, all for the same creep mechanism. Develop an
equation that can be used as the basis of multiple linear regression to evaluate the constants
A2, m, q, and Q in Eq. 15.6.

15.11 Several creep tests were conducted on 40% tin, 60% lead solder wire. Table P15.11 gives
steady-state creep rates for the various combinations of stress and temperature that were
investigated. Since all of the data are for one batch of material, only a single grain size is
represented, and a constant A3 = A2/dq can be employed for Eq. 15.6. Also, it is useful to
isolate the quantity (ε̇ T ) on one side of the equation and then take the natural logarithm of
both sides:

ε̇ T = A3σ
me

−Q
RT , ln (ε̇ T ) = m ln σ − Q

R

(
1

T

)
+ ln A3
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(a) On the basis of these equations, fit the data using multiple linear regression to obtain
values of the constants A3, m, and Q.

(b) Graphically compare the test data and fitted equation, and comment on the success of
the fit.

Table P15.11

T , ◦C σ, MPa ε̇, 1/s

25 2.80 6.00 × 10−6

25 7.20 1.49 × 10−5

25 12.70 5.48 × 10−5

43 2.80 9.58 × 10−6

66 2.80 2.69 × 10−5

79 2.80 5.32 × 10−5

Source: Data in [Arthur 10].

15.12 A bar of the MAR-M200 alloy of Fig. 15.16 (right) with grain size d = 100 μm is 40 mm
long. It is subjected to a tensile stress of 110 MPa at a temperature of 687◦C.

(a) What is the initial elastic length change of the bar? (Suggestions: Use the constants
that follow Eq. 15.11; assume Poisson’s ratio ν = 0.30.)

(b) Using Fig. 15.16, estimate the length change due to the combination of creep and
elastic strain after one day, and also after one year.

(c) Check your result for (b), using Eq. 15.6. Some constants (from [Frost 82] p. 54) for
this material for grain boundary diffusion (Coble) creep are as follows:

Q/R = 13,800 K, A2 = 9.81 × 10−14 K·m5

MN·s
(d) Repeat (c), except assume that the grain size is 10 times larger, d = 1000 μm. Why

might this difference be important in an actual application?
15.13 The blades in one stage of a gas turbine engine are subjected to normal stresses up to 150 MPa

and temperatures that range from 450 to 650◦C. To avoid excessive deformation, the creep
strain should nowhere exceed 2% in 2000 hours. Consider the two materials of Fig. 15.16 as
candidates for these turbine blades.

(a) What is the maximum strain rate, and what is the creep mechanism, for nickel
material? Is it suitable for this use?

(b) What is the maximum strain rate, and what is the creep mechanism, for MAR-M200,
and is it suitable?

(c) Either material can be differently processed to achieve a grain size anywhere in the
range 10 μm to 1 cm. Should this be done? What would be your final choice of a
material and a grain size?

Sections 15.4 and 15.5
15.14 For the alloy Fe-Cr-Ni-Co alloy S-590 of Table 15.3, do the following:

(a) Estimate the creep rupture life for the following four combinations of stress and
temperature: (1) σ = 80 MPa, T = 600◦C; (2) σ = 80 MPa, T = 750◦C; (3) σ =
160 MPa, T = 600◦C; and (4) σ = 160 MPa, T = 750◦C.
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(b) Comment on the trends in rupture life with stress and temperature. Is the life very
sensitive to these variables?

15.15 The stainless steel AISI 310 is used in a high-temperature application with an applied stress
of 10 MPa. The planned actual service life is 1000 hours, and a safety factor of 1.5 on stress
is required.

(a) What is the highest operating temperature that is permissible while satisfying the
safety factor of 1.5 on stress?

(b) Assuming operation at the temperature that you found in (a), what safety factor on
life is achieved by using the safety factor of 1.5 on stress?

15.16 Alloy S-590 is required to withstand one year of service at a temperature of 600◦C.
(a) What stress is expected to cause creep rupture in one year?
(b) What stress can be allowed in actual service if a safety factor of 1.4 on stress is

required?
(c) What safety factor on life is achieved by the safety factor of 1.4 on stress?

15.17 A pipe in a spacecraft, made of AISI 310 stainless steel, is near the rocket engine, causing
it to be subjected to temperatures as high as 1200◦C. The stress applied to the pipe in actual
service is expected to be 10 MPa.

(a) How long would you allow the pipe to be subjected to the given temperature and stress
if a safety factor of 10 on life is required?

(b) What safety factor on stress is achieved by the safety factor of 10 on life? Does the
resulting safety factor on stress seem reasonable and adequate?

15.18 Alloy A-286 is subjected in service to a stress of 200 MPa at a temperature of 750◦C.
(a) Estimate the creep rupture life at these service conditions.
(b) If a safety factor of 2.0 on stress is required, what is the maximum service life that

can be allowed?
(c) What is the safety margin in temperature?

15.19 An engineering component made of alloy S-590 will be subjected in actual service to
temperatures as high as 800◦C at a stress of 100 MPa.

(a) What life to creep rupture is expected for the given service conditions?
(b) It has been suggested that components of this type should be replaced after they have

reached half the expected life. What safety factor on stress would be provided by this
replacement policy?

(c) Do you agree with the suggestion of replacement at half the expected life? Why or
why not?

15.20 The Cr-Mo-V steel of Table 15.3 is used in an application where the applied stress is
100 MPa. The planned actual service life is 10,000 hours, and a safety factor of 1.5 on stress
is required.

(a) What is the highest permissible operating temperature?
(b) What safety factor on life is achieved by using the factor of 1.5 on stress?
(c) What safety margin in temperature corresponds to the factor of 1.5 on stress?
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15.21 The Cr-Mo-V steel of Table 15.3 is used in an application where the applied stress is
300 MPa. The planned actual service life is 20,000 hours, and a safety factor of 1.5 on stress
is required.

(a) What is the highest permissible operating temperature?
(b) What safety factor on life is achieved by using the factor of 1.5 on stress?
(c) What safety margin in temperature corresponds to the factor of 1.5 on stress?

15.22 Nimonic 80A is required to withstand one year of service at a temperature of 700◦C.
(a) What stress is expected to cause creep rupture in one year?
(b) What stress can be allowed in actual service if a safety factor of 1.75 on stress is

required?
(c) What safety factor on life is achieved by the safety factor of 1.75 on stress?

15.23 A gas turbine aircraft engine has blades made of alloy A-286. One critical row of blades
has stress σ (bending plus axial) and temperature T that vary with location according to
Table P15.23, where x is the distance beyond the base of the blade, as shown in Fig. P15.23.
For larger x , the stress continues to decease toward a value of zero at the end of the blade, but
the temperature remains near 680◦C. These values correspond to the most severe operating
condition encountered in normal use of the aircraft.

(a) Estimate the life of the blades, as limited by creep rupture.
(b) The maintenance schedule specifies replacing these blades every 5000 flight hours.

What safety factor in stress is provided by this retirement life?
(c) What safety margin in temperature is provided by the 5000-hour retirement life?
(d) Do you agree with the 5000-hour retirement life? Should it be shorter or longer?

Table P15.23

x , mm 0 15 30 45 60 75 90
σ , MPa 170 168 164 155 142 120 90
T,◦C 560 597 630 657 675 680 680

x

Figure P15.23

15.24 Creep-rupture data are given in Table P15.24 for the nickel-base alloy Nimonic 80A. Note
that temperature, stress, and rupture time are given for a number of different tests.

(a) Fit these data to a Larsen–Miller parameter versus stress relationship of the form
of Eq. 15.20, that is, obtain your own values of b0, b1, b2, and b3. Consider the C
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value from Table 15.3 to be given. Then plot PL M versus σ for both data and fit, and
comment on the success of the fit.

(b) Similarly fit and plot these data for a Sherby–Dorn parameter versus stress relation-
ship of the form of Eq. 15.19, that is, obtain your own values of a0, a1, a2, and a3.
Consider the Q value from Table 15.2 to be given.

Table P15.24

T , ◦C σ, MPa tr , hours T , ◦C σ, MPa tr , hours T , ◦C σ, MPa tr , hours

650 486 300 700 247 1 735 750 132 3 000
650 417 1 000 700 232 3 000 750 123 4 450
650 352 3 000 700 201 4 836 750 92 13 089
650 339 2 655 700 171 10 000 750 85 10 000
650 309 5 270 700 154 10 893 750 62 22 657
650 281 10 000 700 113 30 000 750 54 30 000
650 278 8 171 700 108 34 065 816 154 100
650 247 13 386 750 276 100 816 122 300
650 216 30 000 750 228 300 816 87 1 000
700 350 300 750 178 1 000 816 56 3 000
700 283 1 000 750 154 1 857 — — —

Source: Data in [Goldhoff 59b].

15.25 Creep–rupture data are given in Table P15.25 for 1Cr-1Mo-0.25V steel. Note that tem-
perature, stress, and rupture time are given for a number of different tests. Proceed as in
Prob.15.24(a) and (b), except use these data.

Table P15.25

T σ tr T σ tr T σ tr
◦C MPa hours ◦C MPa hours ◦C MPa hours

482 621 37 538 338 5 108 649 276 19
482 565 975 538 262 10 447 649 207 102
482 538 3 581 593 417 18 649 172 125
482 483 9 878 593 345 167 649 138 331
538 552 7.0 593 276 615 732 138 3.7
538 469 213 593 200 2 200 732 103 8.9
538 414 1 493 593 152 6 637 732 69 31.8

Source: Data in [Goldhoff 59b].

15.26 An engineering component made of the heat-resisting Nimonic 80A alloy is subjected in
service to a static stress of 400 MPa at a temperature of 400◦C. What creep–rupture life is
expected?

15.27 Using the creep–rupture data for alloy S-590 of Ex. 15.4, perform a new PSD fit on the basis
of Eq. 15.21, where a new value of Q is obtained from fitting, along with new values of a0
to a3. Plot PSD versus σ for both data and fit, and comment on the success of the fit.
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15.28 Creep–rupture data are given in Table P15.28 for ruthenium, a platinum group metal. Note
that test temperature T , stress σ , and rupture time tr are given for each test.

(a) Perform a Larson–Miller parameter fit on the basis of Eq. 15.22, where C and b0 to
b3 are obtained from fitting. Plot PL M versus σ for both data and fit, and comment on
the success of the fit.

(b) Similarly fit and plot these data for a Sherby–Dorn parameter relationship of the form
of Eq. 15.21, where Q and a0 to a3 are obtained from fitting.

Table P15.28

T σ tr T σ tr
◦C MPa minutes ◦C MPa minutes

1000 327 137 1250 131 78
1000 322 1427 1250 115 283
1000 312 1835 1500 86.2 13
1250 198 8 1500 65.5 55
1250 165 33 1500 50.3 159

Source: Data in [Douglass 62].

15.29 A thin-walled tube with closed ends has an inner diameter of 160 mm and a wall thickness of
2.5 mm, and it is loaded with an internal pressure of 7.0 MPa. The material is the Cr-Mo-V
steel of Table 15.3, and the temperature is 550◦C. Estimate the life to creep rupture.

15.30 A beam is simply supported over a length of L = 140 mm and is loaded at its center
with a transverse load of P = 70 N. Its cross section has width b = 14 mm and depth
2c = 12 mm. The material has linear viscoelastic behavior with elastic and steady-state
creep strains, similar to the model of Fig. 15.27(a), with the constants being E1 = 3 GPa
and η1 = 105 GPa·s. Determine (a) the maximum stress in the beam, (b) the initial elastic
deflection when the load is applied, and (c) the deflection after one week.

15.31 For 21 hours of each day, an engineering component made of alloy S-590 is subjected to a
stress of 250 MPa at a temperature of 550◦C. For the remaining 3 hours of each day, the stress
is 200 MPa, and the temperature is 600◦C. Estimate the number of years to creep rupture.

15.32 A rectangular beam made of S-590 alloy has depth 2c = 50 mm and thickness b = 20 mm. It
is loaded with a moment of M = 1.65 kN·m at a temperature of 800◦C. At this temperature,
and for stresses in the range 100 to 400MPa, constants for Eq. 15.73 are m = 10.74 and
B = 3.91 × 10−29, where t is in units of hours. (From data in [Grant 50].) Estimate the
stress in the beam, the creep strain after 20,000 hours, and the life to creep rupture.

Section 15.6
15.33 Using the constants in Table 15.4 for SAE 1035 steel at 524◦C, complete the following:

(a) Plot isochronous stress–strain curves for times of 1, 10, 102, 103, and 104 hours,
considering stresses up to 100 MPa. Comment on the trends seen in these curves.

(b) Plot strain–time curves out to 1000 hours for stresses of 50, 70, and 90 MPa. Comment
on the trends in these curves, also.
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15.34 Strain versus time data obtained by hanging weights from strips of high-density polyethylene
are given in Table P15.34, where the stress is listed for each test, along with strain values for
times, t = 30, 200, and 600 seconds.

(a) Fit these data to an equation of the form ε = Dσ δtφ , obtaining values of the fitting
constants D, δ, and φ. (This is Eq. 15.39(b) with elastic strains neglected.)

(b) On a stress–strain plot, which may be a log–log plot if desired, verify that your fitted
constants provide a reasonable representation of the data.

Table P15.34

Strain, ε, for time t =Stress
σ, MPa 30 s 200 s 600 s

3.71 0.0016 0.0024 0.0030
6.17 0.0042 0.0059 0.0072
7.91 0.0063 0.0090 0.0113
9.43 0.0085 0.0125 0.0156

11.15 0.0107 0.0157 0.0201
12.08 0.0123 0.0190 0.0251

15.35 Data from creep tests on polycarbonate plastic are given in Table P15.35. Specifically, for
three values of uniaxial stress, strains are given for various times in seconds.

(a) Fit these data to Eq. 15.39(b). First, subtract elastic strains to calculate creep
strains εc = ε − σ/E , with E = 2400 MPa from Table 4.3. Then perform a multiple
regression fit based on εc = D3σ

δtφ .
(b) Graphically compare the test data and fitted equation, and comment on the success of

the fit.

Table P15.35

Total Strain ε in %, for time t =Stress
σ , MPa 10 s 30 s 100 s 300 s 600 s 1200 s 1800 s

35.5 1.667 1.692 1.723 1.757 1.779 1.808 1.826
45.2 2.216 2.289 2.373 2.460 2.522 2.590 2.633
52.7 3.266 3.457 3.682 3.915 4.086 4.282 4.413

Source: Data in [Welker 10].

Section 15.7
15.36 A material behaves according to Eq. 15.39(b), and the strain rate from this equation is

assumed to apply even during stress relaxation.
(a) For a strain ε′ that is quickly applied and held constant, develop an equation for the

stress versus time behavior during relaxation.
(b) Does your result reduce to Eq. 15.49 for the special case of φ = 1?

15.37 A bolt used at 550◦C is made of 304 stainless steel with a grain size of d = 50 μm. The
bolt is tightened to a preload stress of 60 MPa. Loss of this preload may occur due to creep
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dominated by diffusional flow along grain boundaries—that is, Eq. 15.6 with m = 1 and
q = 3. Constants (from [Frost 82] p. 62) that apply are

Qb/R = 20,100 K, A2 = 7.73 × 10−12 K·m5

MN·s
G300 = 81,000 MPa, h = 38 MPa/K

where the last two items and Eq. 15.11 give the shear modulus G as it varies with
temperature. The elastic modulus E may be estimated from G by approximating Poisson’s
ratio as ν = 0.3.

(a) After what time period is half the bolt preload lost due to creep?
(b) What grain size is needed to avoid losing more than half the preload in one year?
(c) What reduced temperature with the original grain size would avoid loss of half the

preload in one year?
15.38 For the transient creep model of Fig. 15.27(b), perform the following tasks:

(a) Show that the recovery of creep strain after removal of a constant stress is given by
Eq. 15.43. (Hint: During recovery, stresses E2ε in the spring and η2ε̇ in the dashpot
must sum to the value of zero for the parallel combination.)

(b) A spring E1 is added in series to form an elastic, transient creep model, as in
Fig. 15.27(c). The constants are E1 = 6 GPa, E2 = 3 GPa, and η2 = 105 GPa·s.
Determine and plot the strain–time response of this model if a stress of σ = 15 MPa is
quickly applied, held constant for one day, and then removed, with the strain allowed
to recover for one additional day.

15.39 Consider a step strain ε′ that is applied to the elastic, transient creep model, and held constant,
as in Fig. 15.31(b).

(a) Derive the equation shown for the stress–time response during relaxation. (Hint: The
stress applied to the parallel combination is the sum of stresses E2ε2 in the spring and
η2ε̇2 in the dashpot.)

(b) Let the model constants be E1 = 6 GPa, E2 = 3 GPa, and η2 = 105 GPa·s. Determine
and plot the stress–time response if a strain of ε′ = 0.008 is applied and held constant
for one day.

15.40 Verify Eq. 15.45 by using the superposition principle.

Section 15.8
15.41 A thin-walled spherical pressure vessel has an inner diameter of 250 mm and wall thickness

of 8 mm, and it contains a liquid at a pressure of 0.40 MPa. It is made of a borosilicate
glass and is used at a temperature of 500◦C, where the shear viscosity of the glass is
ητ = 1014 Pa·s.

(a) What is the rate of creep strain in the vessel wall?
(b) How much does the vessel diameter increase in one month?

15.42 Show that the shear viscosity, ητ = τ/γ̇ , and the tensile viscosity are expected to be related
by η = 3ητ . (Hint: Follow a procedure parallel to that used to verify Eq. 5.28.)

15.43 For a given material and temperature, the uniaxial creep behavior follows Eq. 15.39(b).
Develop a corresponding equation γ = f (τ ) for creep in pure planar shear, where the
constants are expressed in terms of D3, δ, and φ from uniaxial test data.
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15.44 Proceed as in Ex. 15.6, except change the pressure vessel to a thin-walled spherical one of
radius r and wall thickness b.

15.45 A stainless steel pressure vessel is a cylindrical tube with closed ends, wall thickness 10 mm,
and an inner diameter of 300 mm. It is loaded with an internal pressure of 4 MPa and an
axial force in tension of 150 kN. The operating temperature is 900 K, and the material has
constants as given in Prob.15.6.

(a) What is the effective (uniaxial equivalent) strain rate ¯̇ε?
(b) What are the percentage increases in the vessel length and diameter in 10 years?
(c) Does the design seem to be reasonable from the standpoint of creep deformation?

Section 15.9
15.46 Consider the simply supported beam over a length of L = 100 mm and is loaded at its

center with a transverse load of P = 50 N. Its cross section has width b = 15 mm and
depth 2c = 10 mm., except change the beam material to one with elastic plus transient creep
behavior, as in Fig. 15.27(c). Let the material constants be E1 = 4 GPa, E2 = 0.5 GPa,
and η2 = 106 GPa·s. Similarly determine (a) the maximum stress, (b) the initial elastic
deflection, and (c) the deflection after one week.

15.47 A pipe of length 200 mm, made of 304 stainless steel, is fixed at one end and free at
the other. It is loaded as a cantilever beam with a force of P = 100 N at the free end.
The inner and outer diameters of the cross section are d1 = 24 and d2 = 30 mm, and the
temperature is 625◦C. The material deforms by the combination of steady-state creep strain
from Eq. 15.6 and elastic strain. Materials constants and grain size are the same as in
Prob. 15.37. Determine: (a) the maximum stress in the pipe, (b) the initial elastic deflection
at the free end, and (c) the total deflection after one year.

15.48 A solid circular shaft for a high speed rotor is made of the MAR-M200 alloy of Fig. 15.16
(right) with grain size d = 100μm. The shaft has a diameter of 60 mm and a length of 1.00 m,
and it is used in service at a temperature of 687◦C. The shaft is supported by bearings at each
end, similar to the support of a simple beam, Fig. A.4(b). The weight of the shaft itself and the
rotor mounted on it total 2500 N, which may be assumed to be distributed uniformly along
the shaft length. The material deforms by the combination of elastic strain and steady-state
creep strain of the Coble (boundary diffusion) type from Eq. 15.6. Materials constants are
the same as in Prob.15.12 and following Eq. 15.11, and Poisson’s ratio can be approximated
as ν = 0.30. Determine (a) the initial elastic deflection of the shaft, and (b) the deflection if
the shaft sits idle at the service temperature for one week. Also, (c) would you recommend
restarting the operation of the rotor after this delay? Why or why not?

15.49 An annular disc rotates at a frequency of 50 revolutions/second at a temperature of 700◦C. It
has inner radius r1 = 40, outer radius r2 = 130, and thickness t = 50 mm. The disc is made
of the nickel-base superalloy MAR-M200, with grain size d = 100 μm, as in Fig. 15.16
(right). The material deforms by the combination of elastic strain and steady-state creep
strain, due to grain boundary diffusion (Coble creep). Materials constants for Eq. 15.6 are
the same as in Prob. 15.12 and following Eq. 15.11.

(a) Calculate radial and tangential stresses, σr and σt , for a number of values of variable
radius R between r1 and r2. Then plot these stresses as a function of R. (See Fig. A.9
and the accompanying text.)
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(b) How much does the inner radius increase due to creep after one day, and also after
one year?

(c) Proceed as in (b) for the outer radius.
15.50 A rectangular beam of depth 2c and thickness b is subjected to pure bending due to a moment

M that is held constant with time. Develop an equation giving the maximum strain as a
function of M , time t , and geometry and materials constants, for creep behavior according
to (a) εc = Bσmt , and (b) εc = D3σ

δtφ . In both cases, assume that the instantaneous elastic
and plastic strains are small.

15.51 A solid circular shaft of radius c is subjected to a torque T that is held constant with time.
Develop equations giving the surface shear strain as a function of torque T , time t , and ge-
ometry and materials constants, for materials that have uniaxial creep behavior according to
(a) and (b) of Prob. 15.50. Assume that the instantaneous elastic and plastic strains are small.

15.52 A hollow circular shaft has inner radius c1 and outer radius c2. The material has a shear
stress–strain–time relationship γ = D2τ

δtφ . Obtain an equation for the maximum shear
strain γc2 in the shaft as a function of the applied torque T , the time t , and the various
constants involved, c1, c2, D2, δ, and φ.

15.53 A high-density polyethylene material is made into a cantilever beam of depth 2c = 10 mm
and thickness b = 6.2 mm, and a 1.2 kg weight is applied to the end of the beam. What
strain is expected at a point on the edge of the beam (y = c), which is 90 mm from the
weight, after (a) 30 seconds and (b) 10 minutes? You may use the isochronous stress–strain
curves of Fig. 15.29.

15.54 Consider pure bending about the z-axis of a beam with a box or I -shaped cross section,
as shown in Fig. A.2(d). The material and temperature combination are such that creep is
expected to occur according to ε̇ = Bσ m , where m is in the range 3 to 8, and elastic and
plastic strains can be assumed to be small compared to creep strains. Obtain an equation for
the maximum strain as a function of the bending moment M , time t , materials constants B
and m, and geometric variables b1, b2, h1, and h2.

15.55 A beam of 7075-T6 aluminum has a rectangular cross section and is used at a temperature
of 316◦C. The material has stress–strain constants as given in Table 15.4. A moment of
2.7 kN·m is applied, a safety factor of 1.5 on moment is required, and the creep strain cannot
exceed 1% in 100 hours. Select a beam size such that the depth 2c is twice the thickness b,
that is, find b = c. Obtain solutions, (a) assuming that elastic deformation is negligible, and
(b) including elastic deformation.

15.56 A rectangular beam made of AISI 310 stainless steel has depth 2c = 60 mm and thickness
b = 40 mm. It is loaded with a moment of M = 1.70 kN·m at a temperature of 725◦C. At
this temperature, and for stresses in the range 3.4 to 31 MPa, constants for Eq. 15.71 are
m = 4.06 and B = 9.45 × 10−9, where t is in units of hours. Estimate the stress in the
beam, the creep strain after 16,000 hours, and the life to creep rupture.

Section 15.10
15.57 Use Eq. 12.55 to verify Eq. 15.80.
15.58 Consider a rectangular beam of depth 2c, thickness b, and length L that is subjected to

a uniform cyclic moment of amplitude Ma about zero mean. Assume that the energy
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dissipation of the material is given by Eq. 15.77, and that the damping is small, so that
the distribution of stress over the beam depth is approximately linear. Proceed as follows,
expressing results as functions of stress amplitude, geometry, and materials constants:

(a) Obtain an equation giving the energy �U dissipated in each cycle of loading.
(b) Evaluate the loss coefficient Q−1. How is the value related to that for uniaxial loading

of the material?
(c) Use your result from (a) to obtain �U for a cantilever beam with one end fixed and a

cyclic load Pa at the free end.
15.59 Proceed as in (a) and (b) of the previous problem, but consider the more general situation of

small damping where the exponent d 	= 2, as in Eq. 15.81.
15.60 Consider completely reversed cyclic loading at a strain amplitude εa of an elastic, perfectly

plastic material having yield strength σo and elastic modulus E .
(a) Write an expression for the unit damping energy �u as a function of εa and materials

constants.
(b) Use (a) to obtain the energy �U dissipated by cyclic pure bending of a rectangular

beam of depth 2c, thickness b, and length L . Express the result as a function of the
strain amplitude εca at the beam edge, where εca exceeds σo/E , and also geometry
and materials constants.

15.61 A solid circular shaft of radius c is subjected to a completely reversed cyclic torque Ta that
is sufficiently large to cause cyclic yielding. The material obeys a Ramberg–Osgood type of
cyclic stress–strain behavior, so that the cyclic stress–strain curve for pure shear has the form
of Eq. 13.39. As a result, the unit damping energy is given by a relationship analogous to
Eq. 15.80, that is

�u = 4

(
1 − n′

1 + n′

)
τaγpa

where τa and γpa are the amplitudes of shear stress and plastic shear strain, respectively.
Develop an equation for the energy �U , dissipated by the shaft in each cycle of loading, that
is similar to the relationship for bending from Example 15.9. In particular, express the energy
�U as an implicit function of the shear strain γca at the shaft surface, and also geometry and
materials constants.
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Review of Selected Topics from
Mechanics of Materials

A.1 INTRODUCTION
A.2 BASIC FORMULAS FOR STRESSES AND DEFLECTIONS
A.3 PROPERTIES OF AREAS
A.4 SHEARS, MOMENTS, AND DEFLECTIONS IN BEAMS
A.5 STRESSES IN PRESSURE VESSELS, TUBES, AND DISCS
A.6 ELASTIC STRESS CONCENTRATION FACTORS FOR NOTCHES
A.7 FULLY PLASTIC YIELDING LOADS

A.1 INTRODUCTION

Presented in this Appendix is review and reference material that is related to elementary mechanics
of materials. Basic stress and deflection formulas are given, as are selected properties of areas, beam
deflections, and stress concentration factors for notched members. In addition, fully plastic yielding
is considered in more detail than is usual for elementary treatments. The presentation consists of
pictorial charts with equations, accompanied by brief explanation.

The information given here provides useful input to various topics covered in the main body of
this text. For additional details of theory and derivations of equations, the reader is referred to the
References at the end of this Appendix.

A.2 BASIC FORMULAS FOR STRESSES AND DEFLECTIONS

Assume that the material is isotropic and exhibits linear-elastic behavior. In particular, stress and
strain are related by ε = σ/E for the uniaxial case, where E is the elastic modulus of the material,
or by Eqs. 5.26 and 5.27 for more complex states of stress. Stresses and deflections for various
situations of prismatic (constant cross section) members are then given by the equations shown
in Fig. A.1. In these equations, A is the cross-sectional area, L is length, and Iz is the area
moment of inertia about the z-axis through the centroid of the cross-sectional area. Also, J is the
centroidal polar moment of inertia of the cross-sectional area, and G is the shear modulus of the
material.

880
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Figure A.1 Equations for calculating stresses and deflections for (a) centric axial loading,
(b) symmetric bending, (c) torsion of circular shafts and tubes, and (d) transverse shear.
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The simple relationships in (a) apply for a uniaxial tensile or compressive force P applied
along the centroid of the cross-sectional area. For eccentric loading, the equivalent force system, of
axial force at the centroid plus bending moment, is needed, and bending stresses must be added. In
(b), formulas for bending stress and angular deflection are given that apply where there is symmetry
about an x-y plane normal to the z-axis, as shown. The quantity Mz is a moment about the centriodal
z-axis. For torsion of solid or hollow circular shafts, the equations in (c) give shear stress and angle
of twist. The torque T is a moment about the shaft axis.

In (d), a transverse shear force V is applied in the y-direction along a line through the centroid
of the cross section. Symmetry about an x-y plane normal to the z-axis is again assumed to exist.
Consider a point P that is of interest. The area A′ is identified that is outside of a line through P ,
parallel to the z-axis. Also needed is the distance y ′ from the centroid of A′ to the centroid of the
overall cross-sectional area. The quantity Q = A′y′ is then the first moment of area A′ about the
overall centroidal z-axis. Also, ts is the thickness of material cut to isolate A′. The shear stress τ

calculated is actually an average across the cut ts .
Cases where loadings of the preceding types occur together, called combined loading, can

be handled by simply superimposing the stresses and deflections from each individual loading
component. This includes situations of bending (b) where there are moments about both the
y- and z-axes, provided there are two planes of symmetry, as for rectangular or circular cross
sections. Where the required symmetry does not exist for bending or transverse shear, and for torsion
of noncircular cross sections, additional analysis is needed, as described in elementary and advanced
textbooks on mechanics of materials, theory of elasticity, and related topics. See the References
listed at the end of this Appendix.

A.3 PROPERTIES OF AREAS

Some areas, A, and area moments of inertia about centroidal axes, Iz , are given for simple shapes in
Fig. A.2. Both Iz and polar moments of inertia, J , are given for circular and hollow circular cross
sections, including an approximation for thin-walled tubes. For these, J = Iy + Iz = 2Iz , due to the
symmetry.

Centroids are given for half- and quarter-circular areas, and similarly for portions of tubular
cross sections, in Fig. A.3. Noting Fig. A.1(d), we find that these centroids are useful in analyzing
the maximum transverse shear for circular and tubular cross sections.

For more complex shapes, areas and moments of inertia may often be obtained by adding or
subtracting those for simple shapes. For example, subtraction of values for a smaller circular area
from those for a larger one gives A, Iz , and J for the tubular cross section in Fig. A.2(c). Similarly,
subtraction involving two rectangular areas gives A and Iz for box and I-sections in Fig. A.2(d).

In general, the centroid of the cross-sectional area may not be known from symmetry, so it must
be located. For example, this is the case for the T-section of Fig. A.1(b). The centroidal Iz for the
overall shape may then be obtained by determining the individual centroidal Iz of each of its parts
and then applying the parallax axis theorem to transfer each to the overall centroidal axis. See any
elementary mechanics of materials textbook for details and examples.

For standard structural steel shapes, such as I-sections, T-sections, channels, angles, and tubing,
properties of cross-sectional areas are given in the AISC Steel Construction Manual. Materials
manufacturers’ handbooks and other handbooks also often contain such information.
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Figure A.2 Selected shapes and their areas A and centroidal area moments of intertia Iz.
Centroidal polar moments of inertia J are also given for (b) and (c). For (c), the second,
approximate equations for Iz and J are within 1% for t/r1 < 0.2, and 5% for t/r1 < 0.6.
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Figure A.3 Centroids for (a) half-circular and quarter-circular areas and (b) half-circular and
quarter-circular sections of tubes. For (b), the second, approximate equation for y is within 1%
for t/r1 < 0.4, and 5% for t/r1 < 1.3, where t = r2 − r1.

A.4 SHEARS, MOMENTS, AND DEFLECTIONS IN BEAMS

Simply supported and cantilever beams with concentrated and uniformly distributed forces are
shown in Fig. A.4. The variations with position along the length of the beam of the internal shear
and bending moment are plotted, and the maximum bending moments are given. Equations for the
maximum deflections are also given for linear-elastic behavior. If symmetry about an x-y plane
exists, as in Fig. A.1(b), the deflection will be in this plane in the y-direction. The equations given
include deflection due to bending but neglect deflection due to shear, such as δ in Fig. A.1(d), as the
latter is a relatively small effect in most beams.

Three- and four-point bending situations as in Fig. 4.40 are common in materials testing.
Figure A.4(a) corresponds to the three-point bending case, and corresponding information is given
for four-point bending in Fig. A.5.

Additional information of this type can be found in various textbooks and handbooks, including
the AISC Steel Construction Manual.

A.5 STRESSES IN PRESSURE VESSELS, TUBES, AND DISCS

Useful equations are available for various cases of tubular and spherical pressure vessels, for other
loadings on tubes, and for rotating discs. Some of these are described in this section, with linear-
elastic behavior being assumed in all cases. Most of what follows is derived in Timoshenko (1970).

Consider loading by internal pressure p of tubular and hollow spherical vessels, as shown in
Fig. A.6. Let the inner and outer radii be r1 and r2, respectively, and also let R be any radial distance
between r1 and r2. For a tubular pressure vessel, a cylindrical coordinate system is convenient, so
that radial, tangential, and longitudinal directions, r -t-x , are employed. Closed-form equations for
the stresses σr , σt , and σx due to the pressure loading are given in Fig. A.6(a). The radial stress σr

is always compressive, varying smoothly with R from σr = −p at the inner radius to zero at the
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outer radius. The tangential stress σt is always tensile, decreasing with R from a maximum value at
the inner wall to a smaller value at the outer wall. The longitudinal stress σx is zero for open-end
tubes; and for closed-end tubes it is uniform, as given by the equation shown. If the tubular vessel is
also subjected to torsion, a shear stress τt x = TR/J is present. Note that τt x increases linearly with
R, and so has a maximum value at the outer wall. These equations do not consider the local stress
raiser effects of the end closure of the vessel, nozzles, etc.

Similar equations for a hollow spherical pressure vessel are given in Fig. A.6(b). The stresses
σr and σt vary with R in a qualitatively similar manner as for the tubular vessel, but the values, of
course, differ. Due to the symmetry of the sphere, the x-direction is replaced by a second t-direction,
with the tangential stress σt at any given R being the same for any direction normal to a radius of
the sphere.

For internal pressure loading of thin-walled tubular and spherical vessels, the equations of
Fig. A.6 still apply, but may be replaced by simpler expressions, as shown in Fig. A.7. Stresses
from these approximate equations should be considered to be uniform through the wall thickness.
Limits on t/r1 for 5% and 10% accuracy are given in the figure caption.

Figure A.8 gives some useful approximations for stresses in thin-walled tubes due to torsion
and/or bending. For torsion, applying τt x = TR/J at the middle of the wall thickness, R = ravg,
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Figure A.6 Stresses in thick-walled pressure vessels, (a) tubular and (b) spherical.

along with the approximate J from Fig. A.2(c), gives the first equation shown. Similarly, for
bending, applying σx = My/Iz at any point C in the middle of the wall thickness, along with the
approximate Iz from Fig. A.2(c), gives the second equation shown. The third equation given is the
maximum value σx A of this approximate bending stress, which occurs at y = ravg, that is, at point
A along the y-axis. The bending stress is, of course, zero along the neutral axis, which is the z-axis.
Stresses from these approximate equations should be considered to be uniform through the wall
thickness, and limits on t/r1 for 5% and 10% accuracy are given in the figure caption.

Stresses in a rotating annular disc are given in Fig. A.9. Normalized variables α =
r1
/

r2 and z = R
/

r2 are employed as a convenience. Further, ρ is mass density, ω is angular
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velocity (as in radians per second), and ν is Poisson’s ratio. Note that ω = 2π f , where f is the
rotational frequency, as in revolutions per second. The radial stress σr is zero at both the inner and
outer radii, and elsewhere tensile, with a maximum value at R = √

r1r2. The tangential stress σt is
tensile for all R and has its highest value at the inner radius, with the bore of the disc essentially
acting as a stress raiser. To apply the equations given, it is useful to express the quantity ρω2r2

2 in
units of stress, such as MPa.
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Figure A.9 Stresses due to rotation of an annular disc, where ρ is mass density, ω is angular
velocity, and ν is Poisson’s ratio.

For example, assume that ρ = 7.9 g/cm3, f = 120 rev/s, and r2 = 200 mm. To aid with units,
note that g/cm3 = Mg/m3, N = kg·m/s2, and MPa = 106 N/m2. Hence, we obtain

ρω2r2
2 =

(
7.9

Mg

m3
× 1000 kg

Mg
× N

kg·m/s2

) (
120

rev

s
× 2π

rad

rev

)2

(0.200m)2 = 179.6 × 106 N

m2

ρω2r2
2 = 179.6 MPa

For a solid disc, r1 = 0, the equations in Fig. A.9 need to be modified before use by substituting
α = 0. In this case, it is found that σr = σt at the center, R = 0, with σt decreasing to a lower value
at the outer radius, and σr decreasing to zero.

A.6 ELASTIC STRESS CONCENTRATION FACTORS FOR NOTCHES

Geometric discontinuities, such as holes, fillets, grooves, and keyways, are unavoidable in design.
They cause the stress to be locally elevated and so are called stress raisers, or notches. Such a
situation is illustrated by Fig. A.10(a) and (b). The stress concentration factor kt for linear-elastic
materials behavior is used to characterize notches, where kt = σ/S is the ratio of the local notch
(point) stress σ to the nominal (average) stress S. Curves giving kt for some typical cases are
provided in Figs. A.11 and A.12.

Values of kt are widely available in various textbooks, handbooks, and papers, such as Peterson
(1974) and the additional sources in Section (b) of the References. As analysis methods have
improved with time, values of kt found in older publications do not always agree with more accurate
values from recent work.
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Figure A.10 Component with a stress raiser (a) and stress distributions for various cases:
(b) linear-elastic deformation, (c) local yielding for a ductile material, (d) full yielding for a
ductile material, and (e) brittle material at fracture.

Any particular definition of S is arbitrary, and the choice made affects the value of kt . Hence,
it is important to be consistent with the definition of S being used when employing kt values. The
most common convention is to define S in terms of the net area, which is the area after the notch
has been removed. Note that this convention is observed for each example in Figs. A.11 and A.12.
Also, the equality σ = kt S holds at the notch only if there is no yielding of the material—that is,
only if kt S is less than the yield strength σo.

A.7 FULLY PLASTIC YIELDING LOADS

All of the stresses and deflections considered so far in this Appendix assume linear-elastic materials
behavior. However, situations may be encountered where the stresses and strains exceed the linear-
elastic range of the material. We may identify such a situation by noting whether or not stresses
calculated under the assumption that the behavior is linear-elastic exceed the material’s yield
strength. If they do, the results of the calculation are invalid, and analysis that specifically considers
yielding effects is needed.

If yielding spreads across the full cross section of a member, a situation of fully plastic yielding
is said to occur. The applied load necessary to cause this is called the fully plastic load. Fully plastic
loads correspond to the onset of large and unstably increasing strains and deflections in engineering
members, so that they are estimates of the final failure load of the member.

In this Appendix, we will make the simplifying assumption that the material’s stress–strain
curve can be approximated as being elastic, perfectly plastic, as shown in Fig. A.13. For the
uniaxial case, E is the elastic modulus and σo is the yield strength; for pure shear, G is the shear
modulus and τo is the yield strength in shear. The value of τo can be estimated from σo by using
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Figure A.11 Elastic stress concentration factors for various cases of notched plates. (Values
from [Peterson 74] pp. 35, 89, 98, and 150.)

the octahedral shear stress yield criterion of Section 7.5, which gives τo = σo/
√

3 = 0.577σo. An
alternative estimate is τo = 0.5σo from the maximum shear stress criterion of Section 7.4.

Thus, the discussion here will have only the limited objective of analyzing fully plastic loads
for elastic, perfectly plastic stress–strain behavior. More detailed analysis of engineering members
for stresses and strains beyond yielding is considered in Chapter 13.

A.7.1 Fully Plastic Bending and Torsion

Consider pure bending of a beam with a rectangular cross section, as shown in Fig. A.14. At low
values of moment M , the stresses are given by the elastic bending formula of Fig. A.1(b). Note
that the stress varies linearly with distance y from the neutral (z) axis. If the moment is increased,
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Figure A.12 Elastic stress concentration factors for various cases of notched circular shafts.
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Figure A.13 Elastic, perfectly plastic stress–strain assumptions for the uniaxial (σ -ε) and pure
shear (τ -γ ) cases.
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Figure A.14 Stress distributions in bending for a rectangular cross section and an elastic,
perfectly plastic stress–strain curve. Proceeding from (a) to (d), the moment is increased
beyond elastic behavior to fully plastic yielding.

a value of M = Mi is reached where the maximum stress is at the yield value σo. We thus have a
case of incipient yielding. Substituting Iz from Fig. A.2(a) and solving for M in the bending stress
formula gives the expression for Mi of Fig. A.14(b). We will call Mi the initial yielding moment.

If the moment is increased beyond Mi , yielding progresses from the outer edges of the beam
toward the neutral axis, as shown in (c). Note that a portion of the stress distribution is now flat,
as the idealized material cannot support a stress higher than σo. (Strains exceeding εo = σo/E ,
of course, occur.) As yielding approaches the neutral axis as in (d), the entire stress distribution
becomes flat at σo on the tension side and −σo on the compression side. No further increase in M
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is possible, and the limiting value is denoted Mo, the fully plastic moment. An equation for Mo can
be obtained by replacing the stress distributions above and below the neutral axis with concentrated
forces located at their centroids, as shown in (e). The resulting Mo is an estimate of the moment
where large, unstable deflections begin, as illustrated in Fig. 13.6.

Comparing the equations of Fig. A.14(b) and (e), we obtain a ratio Mo/Mi = 1.50. Thus,
the moment may increase by a factor of 1.5 beyond initial yielding before the beam collapses
completely. This contrasts with the situation for simple tension, as shown in Fig. A.15(a). Here,
the initial and fully plastic yielding forces, Pi and Po, are the same, due to the idealized, flat stress–
strain curve, so that initial yielding and final failure are predicted to occur at the same force. Similar
results for additional cases are shown in Fig. A.15, specifically for bending of solid circular cross
sections and thin-walled tubes, and also for torsion of the same geometries. Note that the ratio
Mo/Mi decreases if more of the cross-sectional area is concentrated away from the neutral axis. For
bending, standard I-beams are rather extreme in this regard, having values around Mo/Mi = 1.1.

Analysis of flat stress distributions, as in Fig. A.14, may be readily applied to obtain fully plastic
moments for other cross-sectional shapes. If the section is not symmetrical about the x-z plane, as
in Fig. A.1(b), a new neutral axis is needed. In particular, the neutral axis for fully plastic bending
is the line parallel to the centroidal z-axis that has equal areas above and below. (This gives a zero
sum of forces in the longitudinal direction, as required by equilibrium.) The moment of the stress
distribution about this neutral axis then gives Mo.

The equations in Fig. A.15(b), (c), and (e) may also be extended to some related cases. For
example, consider a box beam having outside dimensions of half-depth c2 and width t2, and
analogous inside dimensions, c1 and t1. Subtracting the moment due to the missing central portion
gives

Mo = t2c2
2σo − t1c2

1σo, Mo = σo

4

(
b2h2

2 − b1h2
1

)
(a, b) (A.1)

where the second form has been converted to the nomenclature of Fig. A.2(d), and also applies to
the I-section. Similar logic gives Mo and To for thick-walled tubes, providing a more general result
than the approximations of Fig. A.15(d) and (f):

Mo = 4σo

3

(
r3

2 − r3
1

)
, To = 2πτo

3

(
r3

2 − r3
1

)
(a, b) (A.2)

Additional results of fully plastic analysis may be found in books on advanced mechanics of
materials, plasticity, and related topics.

A.7.2 Fully Plastic Behavior in Notched and Cracked Members

If a notched member is made of a ductile material, yielding occurs first in a small region near the
notch, as shown in Fig. A.10(c). Increased loading causes yielding to spread over the entire cross
section, as shown in (d). As a result, the final strength of the notched member is similar to that for
an unnotched member with the same net cross-sectional area. However, if the material is a brittle
one that does not yield prior to fracture, the locally elevated stress situation prevails up to the point
of fracture, as shown in (e), and the strength is considerably lower than for an unnotched member.
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Figure A.15 Initial yielding and fully plastic yielding forces, moments, or torques, for simple
cross-sectional shapes. Cases (d) and (f) represent approximations for thin-walled tubes, both
accurate within 5% for t/r1 < 1.3.

Fully plastic loads for notched members of ductile materials may be estimated by again
assuming elastic, perfectly plastic behavior as in Fig. A.13. A uniform stress distribution at σo

or −σo, as in Fig. A.10(d), is employed to evaluate the fully plastic load. Results of some analyses
of this type are given in Fig. A.16.
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Figure A.16 Freebody diagrams and resulting equations for fully plastic forces or moments,
Po or Mo, for various two-dimensional cases of notched or cracked members. The same
equations solved for notch or crack length, ao, are shown at the bottom. Diagrams and
equations labeled (a) all correspond to the same case, and similarly for (b), (c), and (d).

In Fig. A.16, the notch of dimension a, defined as shown in each case, may also represent a
crack. Equations are given for the fully plastic force or moment, Po or Mo, as a function of the
geometric ratio α = a/b, where b is a width dimension, as also shown for each case. In addition,
the Po or Mo = f (α) equations for each case are solved for the notch or crack dimension ao that
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corresponds to fully plastic yielding for a given force or moment, producing the ao = g(P or M)

equations also shown.
For each case in Fig. A.16, the freebody diagram is shown that is used to evaluate Po or Mo.

For example, for case (a), summing forces gives

Po = stress × area = [σo][2(b − a)t]

Po = 2btσo(1 − a/b) = 2btσo(1 − α)
(A.3)

Also, solving Eq. A.3 for a gives

ao = b

[
1 − P

2btσo

]
(A.4)

where ao is the notch or crack length corresponding to fully plastic yielding for a given force P .
Equations A.3 and A.4 also apply to a double-edge-notched member, as in Fig. A.10 or 8.12(b),
where a and b are defined as in the latter.

The pure bending case (b) may be verified by applying the equation Mo = tc2σo of Fig. A.15(b)
to the net section of width 2c = b − a, that is, by substituting c = (b − a)/2. Cases (c) and (d)
involve a more lengthy analysis as a result of each representing a situation of combined bending and
tension. In the course of the analysis, both forces and moments must be summed, and the unknown
location of the neutral axis found.

Example A.1
Verify the equation for Po for case (d) of Fig. A.16.

Solution A detailed freebody diagram is shown as Fig. A.17. The location Q of the neutral
axis is unknown. Let x represent the distance from Q to the right edge, so c = b − a − x is the
distance from the end of the notch to Q. Next, sum forces, noting that the freebody is of uniform
thickness t . Choosing upward as positive, we have

�F = 0, Po + σoxt − σoct = 0

Substitute c = b − a − x and solve for x

x = 1

2

(
b − a − Po

σot

)

Next, sum moments about Q. Choosing clockwise as positive, we have

�MQ = 0, Po

(
b

2
− x

)
− σoxt

( x

2

)
− σoct

( c

2

)
= 0
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Substitute for c, expand the c2 term that is present, and collect terms:

Po

σot
(b − 2x) − 2x2 + 2x(b − a) − (b − a)2 = 0

Then substitute x as found previously, and again collect terms:

(
Po

σot

)2

+ 2a

(
Po

σot

)
− (b − a)2 = 0

We now have a quadratic equation in the variable Po/σot . Apply the standard quadratic formula
and discard the negative root, as it does not permit positive Po:

Po

σot
= −a +

√
2a2 − 2ab + b2

Letting α = a/b finally gives the desired result:

Po = btσo

[
−α +

√
2α2 − 2α + 1

]
Ans.

The quadratic equation can be solved for notch or crack length a rather than for force P ,
giving the expression for ao that is shown in Fig. A.16 for case (d).

b
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c = b – a – xa x
2

σo

σo

σoxt

σoct

Q

Figure A.17 Geometric detail for verifying the result of Fig. A.16(d).
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A.7.3 Discussion

The fully plastic forces, moments, and torques of Figs. A.15 and A.16 represent lower bound
estimates, so that actual values of the load at member failure may be somewhat higher. There are two
factors that contribute to this situation. First, strain hardening in actual stress–strain curves will in-
crease the value somewhat, for the following reason: At the point of failure in a component made of a
real material, the stresses on some portions of the cross-sectional area will exceed the yield strength
σo and approach the higher ultimate strength σu . Hence, the actual load exceeds that for uniform
stress at σo. The second contributing factor is that the yield strength is, in effect, increased if con-
strained deformation causes a triaxial state of stress to develop. This effect is especially prevalent for
sharp notches or cracks if the thickness of the member is sufficient for a state of plane strain to exist.
For example, for a center-notched plate, Fig. A.16(a), this second effect can increase Po by as much
as 15%. And for bending of a notched member, Fig. A.16(b), the increase in Mo can reach 45%.

R E F E R E N C E S

(a) General References
AISC. 2006. Steel Construction Manual, 13th ed., Am. Institute of Steel Construction, Chicago, IL.
BEER, F. P., E. R. JOHNSTON, Jr., J. T. DEWOLF, and D. MAZUREK. 2012. Mechanics of Materials, 6th ed.,

McGraw-Hill, New York.
BORESI, A. P., and R. J. SCHMIDT. 2003. Advanced Mechanics of Materials, 6th ed., John Wiley, Hoboken,

NJ. (See also the 2d ed. of this book, same title, 1952, by F. B. Seely and J. O. Smith.)
PILKEY, W. D. 2004. Formulas for Stress, Strain, and Structural Matrices, 2d ed., John Wiley, New York.
TIMOSHENKO, S. P. and J. N. GOODIER. 1970. Theory of Elasticity, 3d ed., McGraw-Hill, New York.
TIMOSHENKO, S. P. 1984. Strength of Materials, Part I, and Part II, 3d ed., Robert E. Krieger Pub. Co.,

Malabar, FL.
YOUNG, W. C., R. G. BUDYNAS, and A. SADEGH. 2011. Roark’s Formulas for Stress and Strain, 8th ed.,

McGraw-Hill, New York.

(b) Sources for Stress Concentration Factors
HARDY, S. J., and N. H. MALIK. 1992. “A Survey of Post-Peterson Stress Concentration Factor Data,” Int. Jnl.

of Fatigue, vol. 14, no. 3, pp. 147–153.
NODA, N.-A., and Y. TAKASE. 2003. “Stress Concentration Formula Useful for Any Dimensions of Shoulder

Fillet in a Round Bar Under Tension and Bending,” Fatigue and Fracture of Engineering Materials and
Structures, vol. 26, no. 3, pp. 245–255. See also earlier papers by Noda et al. referenced within.

NODA, N.-A., and Y. TAKASE. 2006. “Stress Concentration Formula Useful for all Notch Shape in a Round
Bar (Comparison Between Torsion, Tension and Bending),” Int. Jnl. of Fatigue, vol. 28, no. 2, pp. 151–163.
See also earlier papers by Noda et al. referenced within.

PETERSON, R. E. 1974. Stress Concentration Factors, John Wiley & Sons, New York.
PILKEY, W. D., and D. F. PILKEY. 2008. Peterson’s Stress Concentration Factors, 3d ed., John Wiley,

Hoboken, NJ.
ROLOVIC, R., S. M. TIPTON, and J. R. SOREM, Jr,. 2001. “Multiaxial Stress Concentration in Filleted Shafts,”

Jnl. of Mechanical Design, Trans. ASME, vol. 123, pp. 300–303.
TIPTON, S. M., J. R. SOREM, Jr., and R. D. ROLOVIC, 1996. “Updated Stress Concentration Factors for Filleted

Shafts in Bending and Tension,” Jnl. of Mechanical Design, Trans. ASME, vol. 118, pp. 321–327.



B
Statistical Variation in
Materials Properties

B.1 INTRODUCTION
B.2 MEAN AND STANDARD DEVIATION
B.3 NORMAL OR GAUSSIAN DISTRIBUTION
B.4 TYPICAL VARIATION IN MATERIALS PROPERTIES
B.5 ONE-SIDED TOLERANCE LIMITS
B.6 DISCUSSION

B.1 INTRODUCTION

Laboratory measurements of materials properties, such as yield strength or fracture toughness,
contain random error due to such causes as minor calibration errors, imperfect test specimen
geometry and testing machine alignment, and noise in electronic components. The properties will
also vary with location in a plate or bar of material that is large enough to remove multiple test
specimens. Furthermore, a material of a given nominal type, such as 2024-T351 aluminum alloy,
polycarbonate plastic, or 99.5% dense Al2O3, will vary to some extent as to chemical composition,
level of impurities, size and number of microscopic defects, and the exact details of processing.
Such differences among batches of similar material are a major source of variation in materials
properties. It is simply a fact of life that no two measurements or samples of material are identical.

This variation in materials properties can be subjected to analysis by statistics to permit
estimates of the probability associated with variation of a given magnitude. This Appendix provides
a brief introduction to the statistical treatment of variations in materials properties.

B.2 MEAN AND STANDARD DEVIATION

Consider a variable x that has statistical variation. Repeated observations could be made and the
variation plotted as a histogram, as shown in Fig. B.1. A histogram is simply a bar chart showing
the number of observations of x as a function of the value of x . The values are usually concentrated

900
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Figure B.1 Histogram showing variations in the ultimate tensile strength of cold-drawn
and annealed SAE 4340 steel wire. The corresponding curve for a normal distribution
is also shown. (Data from [Haugen 80] p. 5.)

near the sample mean, or average value, given by

x̄ = 1

n

n∑
i=1

xi (B.1)

where n is the total number of observations, called the sample size, and the xi are the individual
observations.

The variability of x may be small, with most values being quite close to x̄ , or it may be large,
with values ranging widely. The sample standard deviation sx is a measure of the magnitude of the
variation:

sx =
√∑n

i=1(xi − x̄)2

n − 1
=
√∑n

i=1x2
i − nx̄2

n − 1
(B.2)

The two forms of this equation are mathematically equivalent, with the second being more
convenient for manual computation.

Another useful measure of the variation is the sample coefficient of variation,

δx = sx

x̄
(B.3)

The coefficient of variation is a dimensionless measure of the uncertainty in the value of x .
Values of δx are often expressed as percentages—for example, δx = 0.083 = 8.3%. This measure is
particularly convenient, as its value for a given property tends to be relatively constant over a range
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Table B.1 Fracture Toughness Data for Dolomitic
Limestone

Test No. K I c, MPa
√

m Test No. K I c, MPa
√

m

1 1.305 7 1.197
2 1.341 8 1.334
3 1.355 9 1.306
4 1.437 10 1.300
5 1.192 11 1.183
6 1.353

Source: Data from [Karfakis 90].

of mean values. For example, yield strengths of steels have a value of roughly δx = 7%, despite the
mean values ranging over a factor of 10, from 200 to 2000 MPa.

Note that the sample mean x̄ and the sample standard deviation sx are merely estimates, based
on a limited number of observations, of the true values of these quantities from an infinite number
of observations. The true mean is denoted μ, and the true standard deviation is denoted σ .

Example B.1
The results of a number of fracture toughness tests on dolomitic limestone are given in Table B.1.
Determine the sample values of the mean, standard deviation, and coefficient of variation.

Solution Equations B.1 to B.3 are needed, for which n = 11, and the xi are the various K I c

values. Performing these computations gives

x̄ = 1.300 MPa
√

m, sx = 0.0797 MPa
√

m Ans.

δx = sx/x̄ = 0.0613 = 6.13% Ans.

B.3 NORMAL OR GAUSSIAN DISTRIBUTION

If the variation is approximately symmetrical about the mean, it may be reasonable to assume that
the mathematical form known as the normal or Gaussian distribution applies. This distribution
forms a bell-shaped curve, as shown in Fig. B.1.

To work with the normal distribution, it is convenient to transform the original variable x to the
standard normal variable, z:

z = x − μ

σ
(B.4)

Thus, z has zero mean relative to the true mean μ. Also, its magnitude is normalized with respect to
the true standard deviation σ , so that z is in units of numbers of standard deviations. On this basis,
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the bell-shaped curve of the normal distribution has the equation

f (z) = 1√
2π

e−z2/2 (B.5)

which is called the probability density function.
The area under the f (z) curve between minus infinity and plus infinity is unity. Let us assume

that a large number of observations were employed to determine x̄ and sx , so that these values are
close to the true mean and standard deviation, μ and σ , and also that a normal distribution gives
a good representation of the data. It can then be said that any portion of the area under f (z) gives
the probability that z lies within the values that bound the area. Partial areas bounded by integer z
values are shown in Fig. B.2. From these areas, it is seen that approximately 68% of the observations
are expected to fall within one standard deviation of the mean—that is, within μ ± σ . Furthermore,
95.5% are expected to be within two standard deviations, and 99.7% within three. These bounds
and probabilities for large samples are summarized in Table B.2.

In applying materials property values in engineering design, it is of particular concern that
values of the property, such as yield strength or fracture toughness, may vary considerably below
the mean. For a large sample size and a normal distribution, areas under f (z) may also be employed
to estimate the probability that the property will be less than a particular value. For example, from
Fig. B.2, the probability P that x is less than (μ − 3σ) is the area between z = −∞ (negative
infinity) and z = −3, so that P = 0.00135, or 0.135%. Since 1/P ≈ 740, we would expect, on the
average, one sample out of 740 to be below this limit. Additional probabilities for various numbers
of standard deviations below the mean are given in Table B.3(a).
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Figure B.2 Probability density function for the normal distribution. The total area under
the curve from z = −∞ to +∞ is unity, and portions of the area bounded by various numbers
of standard deviations are shown.
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Table B.2 Probabilities for
Various Bounds About the Mean

Bounds Percent Within Bounds

μ ± σ 68.27
μ ± 2σ 95.45
μ ± 3σ 99.73
μ ± 4σ 99.994

Table B.3 Probabilities for Various Values Below the Mean

Limiting Value Percent Less Fraction Less Percent More
of x Than Limit, P Than Limit Than Limit, R

(a) For integer numbers of standard deviations
μ 50 1/2 50
μ − σ 15.9 1/6 84.1
μ − 2σ 2.28 1/44 97.72
μ − 3σ 0.135 1/740 99.865
μ − 4σ 0.00317 1/31,600 99.99683

(b) For particular values of probability
μ − 1.28σ 10 1/10 90
μ − 2.33σ 1 1/100 99
μ − 3.09σ 0.1 1/1000 99.9
μ − 3.72σ 0.01 1/10,000 99.99

It is also useful to identify limits that correspond to particular probabilities of failure, such as
P = 0.001 = 0.1%, corresponding to one value out of a thousand. Limits of this type are given
in Table B.3(b). Note that the reliability is R = 1 − P . For example, a probability of failure of
P = 0.001 = 0.1% corresponds to a reliability of R = 0.999 = 99.9%.

Textbooks and handbooks on probability and statistics give detailed numerical tables for the
normal distribution that provide more complete information similar to that in Tables B.2 and B.3.

Example B.2
From tension tests on 121 samples of ASTM A514 structural steel, the mean yield strength is
794 MPa and the standard deviation is 38.6 MPa. Assume that a normal distribution applies, and
estimate the yield strength value for a reliability of 99%. (Data from [Kulak 72].)

Solution A reliability of 99% corresponds to a strength such that only 1%, or one out of 100,
values are expected to be lower. From Table B.3(b), this limit corresponds to μ − 2.33σ . If x̄
and sx are employed as estimates of μ and σ , respectively, the 99% reliability value is

x99 = x̄ − 2.33sx = 794 − 2.33 × 38.6 = 704 MPa Ans.
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Table B.4 Typical Coefficients of Variation

Variable x Typical δx , %

Yield strength of metals 7
Ultimate strength of metals 5
Modulus of elasticity of metals 5
Fracture toughness of metals 15
Tensile strength of welds 10
Compressive strength of concrete 15
Strength of wood 15
Cycles to failure in fatigue 50
Crack growth rate in fatigue 50
Strength for a given life in fatigue 10

Source: Values in [Wirsching 96] p. 18.2.

B.4 TYPICAL VARIATION IN MATERIALS PROPERTIES

For materials property data, such as yield strength, hardness, and fracture toughness, coefficients
of variation δx are generally in the range 0.05 to 0.20, that is, 5% to 20%. Some typical values for
particular materials property variables are given in Table B.4. These coefficients are suggested by
P. H. Wirsching as default values for use where more specific information is not available. Specific
data from fracture toughness tests on various materials are given in Table B.5. Note that sample sizes
n are given in addition to x̄ , sx , and δx . The δx values for metals are noted to vary considerably, and
some exceed the typical value of 15% from Table B.4.

The coefficient of variation has particular intuitive appeal as a measure of variation that
is normalized to the mean value. For example, consider the typical δx = 15% for fracture toughness
of metals, and assume that the mean value is known from a large sample. From Table B.3(b),
there is a 10% chance that a value will be more than 1.28σx below the mean. Hence, there is
a 10% chance that the value will be 1.28 × 15% = 19.2% below the mean. Similarly, there is a
1% chance that the value will be 2.33 × 15% = 35.0% below, and a 0.1% chance that it will be
3.09 × 15% = 46.3% below.

B.5 ONE-SIDED TOLERANCE LIMITS

Direct use of the normal distribution to estimate probability limits on materials properties is
inaccurate unless the sample size n used to establish the mean and standard deviation is indeed
quite large. This arises from the fact that x̄ and sx from Eqs. B.1 and B.2 are only estimates, and
not the true values μ and σ for an infinite number of observations, so that these values themselves
contain random error. This additional source of statistical error can be included by using tolerance
limits for normally distributed variables. It is necessary to specify a confidence level, such as 90%,
95%, or 99%, to make a specific estimate.

The value of x that is exceeded R percent of the time at a confidence level C is

xR,C = x̄ − kR,C sx (B.6)
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Table B.5 Statistical Variation of Fracture Toughness

Fracture Toughness, x = K I c

Number of Standard Coefficient of
Material Strength1 K I c Tests Mean Deviation Variation

σo or σuc, MPa n x̄ , MPa
√

m sx , MPa
√

m δx , %

(a) Metals2

D6AC steel 1496 103 70.3 13.3 18.9
540◦C temper

9Ni-4Co-0.20C 1300 27 141.8 11.8 8.3
steel, Q & T

2024-T351 Al 325 11 34.1 5.6 16.5

7075-T651 Al 505 99 28.6 2.2 7.6

7475-T7351 Al 435 151 51.6 5.4 10.4

Ti-6Al-4V 925 43 65.9 6.9 10.5
annealed

(b) Rock and Concrete
Dolomitic limestone 283 11 1.300 0.080 6.1

(Hokie stone)

Westerly granite 233 9 0.885 0.031 3.5

Concrete beams 54.4 16 1.191 0.156 13.1
1.14 m span

Notes: 1Yield strength, σo, is tabulated for metals, and ultimate compressive strength, σuc, for rock
and concrete. 2All metals data are for the L-T orientation.
Sources: Data in [Boyer 85] p. 6.35, [Karfakis 90], [MILHDBK 94] pp. 2.4, 3.11, and 3.12,
and [Shah 95] p. 176.

where k is the one-sided tolerance limit factor. The factor k depends on the sample size n, and
on both R and C . Values for various R and C combinations are tabulated in some handbooks of
statistical tables. A few values for reliabilities R = 90, 99, and 99.9%, and for a confidence level
C = 95%, are given in Table B.6. The confidence level of C = 95% means that there is a 95%
chance that the reliability R is satisfied. For an infinite number of observations, note that these k
values give the same limits as Table B.3(b). However, for sample sizes around n = 100 or less,
the tolerance limits are significantly farther from the mean—that is, k is significantly larger—than
for n = ∞.

Convenient formulas for the one-sided tolerance limit factor are given in the handbook
MMPDS-05 (2010), specifically for reliabilities of R = 90% and 99%, with confidence C = 95%:

k90,95 = 1.282 + exp [0.958 − 0.520 ln n + 3.19/n] (a)
(n ≥ 16)

k99,95 = 2.326 + exp [1.34 − 0.522 ln n + 3.87/n] (b)
(B.7)
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Table B.6 One-Sided Tolerance Limit Factors
for Normally Distributed Variables and 95%
Confidence

Reliability Level

90% 99% 99.9%
Number of

Observations
n k90 k99 k99.9

5 3.41 5.74 7.50
10 2.35 3.98 5.20
20 1.93 3.30 4.32
50 1.65 2.86 3.77

100 1.53 2.68 3.54
200 1.45 2.57 3.40
500 1.39 2.48 3.28
∞ 1.28 2.33 3.09

Sources: Values in [Odeh 77] p. 25 and
[MILHDBK 94] pp. 9.220–9.224.

The function exp [y] denotes ey , where e = 2.718 . . . , and the formulas are noted to be accurate
only for n ≥ 16. Also, a procedure for calculating any desired kR,C is given in the handbook by
Natrella (1966).

Example B.3
Repeat Ex. B.2, but now include the uncertainty associated with the finite sample size to estimate
the yield strength for a 99% reliability with 95% confidence.

Solution From Eq. B.7(b), the one-sided tolerance limit factor is obtained by substituting the
sample size of n = 121 observations, which gives k99,95 = 2.65. The limit from Eq. B.6 is thus

x99,95 = x̄ − 2.65sx = 794 − 2.65 × 38.6 = 692 MPa Ans.

This limit is seen to be lower than the previous value of 704 MPa.

B.6 DISCUSSION

Materials properties are sometimes listed in handbooks and supplier information as typical values,
which should be interpreted as mean values. In other cases, the properties are characterized as
minimum values. These are generally not derived from statistical analysis, but instead are obtained
by examining a set of data and by selecting, as a matter of judgment, a value that is expected to
be exceeded in most cases. Such minimum values are typically two or three standard deviations
below the mean. Occasionally, limits are given that are based on statistical analysis. Where this is
done, one possibility is a three-sigma limit, meaning a value x = x̄ − 3sx . Another possibility is a
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one-sided tolerance limit, xR,C , as discussed in the previous section. Such tolerance limits are given
for tensile properties of metals in MMPDS-05, where an adjustment has also been made for possible
minor asymmetry (skewness) in the normal distribution.

A three-sigma limit is sometimes used to establish a safety factor in stress for S-N curves.
(See Section 9.2.4.) For a typical δx of 10% on fatigue strength from Table B.4, this corresponds to
lowering the S-N curve by 31% in stress.

Books on probability and statistics describe other probability density functions besides the nor-
mal one. Of these, the Weibull distribution is also widely used to analyze materials data, especially
where the data do not scatter symmetrically about the mean—that is, for skewed data. In addition,
quantities related to time to failure, such as creep rupture life or cycles to failure in fatigue, often
have a markedly skewed distribution that is sometimes represented by the lognormal distribution.
This distribution consists simply of a normal distribution in the new variable y = log x , where x is
the original variable, such as time or cycles to failure.
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Answers for Selected Problems
and Questions

This section of the book gives the answers for approximately half of the Problems and Questions
where a numerical value or the development of a new equation is requested. Where a series of values
needs to be calculated, a typical set of these is given.

CHAPTER 1

1.7 X1 = 1.43

CHAPTER 3

3.15 (a) pine = 1, CFRP = 2; (b) pine = 1, 1020 steel = 2; (c) pine or 7075 Al
3.17 (a) mass: pine = 1, CFRP = 2; (b) cost: pine = 1, 1020 steel = 2
3.19 Ti-6-4, GFRP, and CFRP also pass requirements. Ti-6-4 and CFRP are extremely costly.

GFRP costs 1.8 times the 4340 steel, but weighs 54% as much.

CHAPTER 4

4.5 (a) E = 207.3 GPa, (b) L A = 100.493 mm, L0 = 100.00 mm, (c) εp = 0.01581, (d) L B =
101.581 mm, L0 = 101.58 mm

4.6 E = 72.4 GPa, σo = 302 MPa, σu = 323 MPa, 100ε f = 14.6%, 100εp f = 14.28%, %RA =
28.7%

4.7 E = 97.7 GPa, σo = 180 MPa, σu = 240 MPa, 100ε f = 1.17%, 100εp f = 0.93%, %RA =
9.75%

4.10 E = 68.9 GPa, σo = 528 MPa, σu = 597 MPa, 100ε f = 15.3%, 100εp f = 14.5%, %RA =
36%

909
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4.13 E = 2530 MPa, σou = 63.3 MPa, σu = 63.3 MPa, 100ε f = 3.19%, 100εp f = 80.0%, %RA =
46.5%

4.14 E = 3730 MPa, σ0.2% = 38 MPa, σu = 66.3 MPa, 100ε f = 3.19%, 100εp f = 1.41%, %RA
small

4.21 (a) For σ = 587 MPa: σ̃ = 622 MPa, ε̃ = 0.0581, ε̃p = 0.0490; (b) H = 749 MPa, n = 0.0597
4.22 (a) E = 211.9 GPa, σo = 317 MPa, σu = 576 MPa, %RA = 69.3%; (b) For σ = 558 MPa:

ε̃ = 0.341, σ̃B = 725 MPa, ε̃p = 0.337; (c) H = 915 MPa, n = 0.191
4.24 (c) σu = Hnn/en

4.27 (a) E = 100.7 GPa, σoc = 394 MPa, σuc = 804 MPa, length change = −12.9%, area change
= − 32.6%

4.36 σ f b = 3L1

4tc2
Pf , E = L1(3L2 − 4L2

1)

32tc3

(
d P

dv

)
; 4.37 σ f b = 317 MPa, E = 336 GPa

CHAPTER 5

5.4 εe = 0.0058, εp = 0.0194
5.7 (ε, σ) = (0.0250, 50 MPa) at t = 0 s; (ε, σ) = (0.0230, 40 MPa) at t = 86,400 s

5.9 t50% = 19.7 months

5.11 (a) 254.7 MPa, (b) 0.002523, (c) −0.000883, (d) 200.5 mm, (e) 49.956 mm

5.13 (b) σx = E

1 − ν2
(εx + νεy), σy = E

1 − ν2
(εy + νεx ); (c) εz = − ν

1 − ν
(εx + εy)

5.15 σx = 44.87, σy = −20.87, τxy = 8.352 MPa, εz = 3800 × 10−6

5.17 σx = −5.847 MPa, σy = −201.2 MPa, τxy = 32.56 MPa, εz = 285.9 × 10−6

5.18 σx = 460.82, σy = 179.56, τxy = 28.665 MPa, εz = −1926.48 × 10−6

5.20 �r = pr2(1 − ν)

2t E
,�t = −νpr

E
; 5.21

dVe

Ve
= pD(5 − 4ν)

4t E
; 5.23 (a) E ′ = E

1 − νλ

5.25 (a) σz = νσx (1 + λ), (b) E ′ = E

1 − νλ − ν2(1 + λ)
; 5.27 σz = −406.78 MPa

5.29 (a) σz = −103.5 MPa, εx = εy = −889.6 × 10−6, εv = 1779.2 × 10−6; (b) E ′ = 168.6 GPa
5.30 (a) For MgO: �T = −30◦C (down shock), �T = 182◦C (up shock)
5.33 (b) �T = −11.99◦C
5.35 EX = 216.6, EY = 158.72, G XY = 59.2 GPa, νXY = 0.31165, νY X = 0.228
5.37 EX = 44.8, EY = 8.16, G XY = 3.08 GPa, νXY = 0.264, νY X = 0.0481
5.38 EX = 75.8, EY = 8.39, G XY = 3.15 GPa, νXY = 0.342, νY X = 0.0379
5.43 σX = 131.2, σY =−15.25, τXY = 11.00 MPa
5.45 (a) EX = 131.8 GPa, νXY = 0.327, EY = 9.61 GPa, νY X = 0.0189, and a better value is

0.0238; (b) Er = 201 GPa
5.46 (a) Vr = 0.651; (b) EX = 48.0, EY = 6.48, G XY = 2.41 GPa, νXY = 0.265, νY X = 0.0358
5.48 (a) Vr = 0.454; (b) EX = 225, EY = 112.7, G XY = 42.2 GPa, νXY = 0.315, νY X = 0.1581
5.50 (a) EX = 170 GPa requires Er = 254 GPa min, and EY = 85 GPa requires Er = 213 GPa

min; (b) SiC, Al2O3, or tungsten
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CHAPTER 6

(Note: For tubes and spherical shells, thin-wall approximations are used where possible.)

Prob. σ1 σ2 τ3 θn σmax τmax

6.1 8 4 2 45◦ CW 8 −5
6.2 7.1 −7.1 7.1 22.5◦ (CCW) 7.1 3.6
6.3 40 −18 29 21.8◦ (CW) 40 20
6.5 37.9 18.1 9.9 22.5◦ (CCW) 37.9 19
6.7 129.3 −84.3 106.8 8.2◦ (CCW) 129.3 64.7

Note: All values except θn are stresses in MPa units.

Prob. σ1 σ2 σ3 τ1 τ2 τ3 σmax τmax θn

6.10 4.4 −5.4 −3 1.2 3.7 4.9 4.4 4 45◦ CW
6.11 14 −56 70 63 28 35 70 63 0
6.12 241 −41 250 146 5 141 250 146 22.5◦ (CCW)

Notes: All values except θn are stresses in MPa units. Rotation θn in x-y plane gives 1- and 2-axes;
z-axis is 3-axis.

6.15 (a) σ1,2,3 = 200, 100,0; τmax = 100 MPa; 6.17 σmax = 535, τmax = 268 MPa
6.19 σmax = 304, τmax = 157.1 MPa; 6.20 σmax = 306, τmax = 164.0 MPa
6.22 σmax = 281, τmax = 159.1 MPa; 6.25 σmax = 130.5, τmax = 79.6 MPa

6.26 (a) τmax = 2

πd2

√
P2 +

(
8T

d

)2

, (b) d = 45.8 mm

6.28 (a) τmax = 3pr3
1r3

2

4R3(r3
2 − r3

1 )
; (b) σ1,2,3 = 339, 339, −300; τ1,2,3 = 320, 320, 0 MPa

6.30 τmax = 151.1 MPa
6.32 (a) For R = 160 mm: σr = 81.1, σt = 206 MPa; (b) σmax = 338, τmax = 168.9 MPa

Prob. σ1 σ2 σ3 τ1 τ2 τ3 σmax τmax

6.34 140.0 10.0 200 95.0 30.0 65.0 200 95.0
6.36 117.5 28.7 −56.2 42.4 86.8 44.4 117.5 86.8
6.38 450 0 −400 200 425 225 450 425
6.41 88.1 −62.5 −125.6 31.6 106.9 75.3 88.1 106.9
6.43 48.7 3.22 −31.9 17.57 40.3 22.7 48.7 40.3

Note: All values are stresses in MPa units.
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Prob. l1 m1 n1 l2 m2 n2 l3 m3 n3

6.34 0.555 0.832 0 −0.832 0.555 0 0 0 1.000
6.36 −0.300 0.945 0.1296 0.0803 −0.1103 0.991 0.951 0.308 −0.0428
6.38 0.485 0.485 0.728 0.707 −0.707 0 0.514 0.514 −0.686
6.41 0.928 0.1337 0.348 0.325 0.1695 −0.930 −0.1835 0.976 0.1138
6.43 0.657 −0.612 −0.440 0.449 0.787 −0.423 0.605 0.0807 0.792

6.46 σh = 138, τh = 178.2 MPa

6.47 σmax = 1

2

(
σx +

√
σ 2

x + 4τ 2
xy

)
, τmax = 1

2

√
σ 2

x + 4τ 2
xy, τh =

√
2

3

√
σ 2

x + 3τ 2
xy

6.50 τh =
√

2

3

pr2
1r2

2

R2(r2
2 − r2

1 )

6.53 ε1,2,3 = 213 × 10−6, −783 × 10−6, 236 × 10−6;
γ1,2,3 = 1019 × 10−6, 23.1 × 10−6, 996 × 10−6

6.55 ε1,2,3 = 2439 × 10−6, 711 × 10−6, −1659 × 10−6;
γ1,2,3 = 2370 × 10−6, 4098 × 10−6, 1728 × 10−6

6.57 εy = 1

3
(2ε60 + 2ε120 − εx ), γxy = 2√

3
(ε60 − ε120)

CHAPTER 7

(Note: For tubes and spherical shells, thin-wall approximations are used where possible.)

7.1 X N T = 4.08; 7.3 X N T = 2.25; 7.5 (a) X S = 2.91, (b) X H = 3.29

7.7 (a) X S = 1.59 (b) X H = 1.84 ; 7.9 (a) σoS = 252, (b) σoH = 218.6 MPa

7.11 XS = 1.60, or X H = 1.82; 7.13 X S = 1.42, or X H = 1.46

7.14 (a) dS =
(

32 T X

πσo

)1/3

, (b) dH =
(

16
√

3 T X

πσo

)1/3

; 7.16 X S = 1.637, or X H = 1.692

7.18 X H = 4.93; 7.20 X S = 2.04, or X H = 2.15

7.21 (a) X S = 1.215, or X H = 1.340, (b) dS = 88.5, or dH = 84.5 mm

7.23 (a) dS =
(

32X

πσo

√
M2 + T 2

)1/3

, (b) dH =
(

16X

πσo

√
4M2 + 3T 2

)1/3

7.24 (a) X S = 0.855, or X H = 0.983, (b) AISI 4142 steel (450◦C): X S = 1.627, or X H = 1.873

7.26 (a) σz = σo(1 − ν)

1 − 2ν
, (b) same, (c) σzH = −1817 MPa

7.28 τxy = 108.3 MPa; 7.30 X S = 2.56, or X H = 2.93

7.33 (a) r2S = r1

(
σo

σo − 2pX

)1/2

, or r2H = r1

(
σo

σo − √
3pX

)1/2

,

(b) r2S = 53.8, or r2H = 51.1 mm
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7.35 (a) dS = 52.1 mm, mS = 16.76 kg, or dH = 50.5 mm, m H = 15.74 kg

7.37 (a) dS =
(

32

πσo

√
(YM M)2 + (YT T )2

)1/3

, (b) dH =
(

16

πσo

√
4(YM M)2 + 3(YT T )2

)1/3

7.39 (a) σz = −89.7 MPa; 7.42 (a) τi = 34.6 MPa, μ = 1.477

7.43 (a) m = 0.794, τi = 33.4 MPa, μ = 1.307, φ = 52.6◦, θc = 18.71◦,
(c) σ ′

uc = −197.3, σ ′
ut = 22.6 MPa

7.45 (a) m = 0.631, τi = 11.54 MPa, μ = 0.814, φ = 39.1◦, θc = 25.4◦,
(c) σ ′

uc = −48.5, σ ′
ut = 10.97 MPa

7.49 σ3 = −73.2 MPa; 7.50 (a) X M M = 2.38, (b) σx = σy = −5.37 MPa
7.52 (a) X M M = 1.880, (b) p = 33.4 MPa; 7.54 T = 2.22 kN·m
7.56 (a) X M M = 5.04, (b) X M M = 3.80

CHAPTER 8

(Note: Small-crack approximate F values are used where possible.)

8.2 (c) at = 2.36 mm, at = 20.87 mm, respectively
8.4 (a) For AISI 4130 steel, at = 3.24 mm; for SiC, at = 0.106 mm
8.6 At α = 0.8, Fa = 1.808, Fb = 1.8, Fc = 1.565; 8.7 (a) X K = 3.47, (b) X ′

o = 3.76, (c) X ′
o = 3.01

8.10 (a) P = 11.28 kN, (b) a = 5.09 mm
8.11 (a) a = 0.719 mm, (b) a = 11.5 mm
8.13 (a) KI c = 20.80 MPa

√
m, (b) σo = 46.9 MPa

8.16 (a) X K = 1.72, X ′
o = 2.19, (b) b = 20.26 mm

8.17 Using α = a/b: (a) Po = πb2σo(1 − α)2, (b) Mo = 4

3
b3σo(1 − α)3

8.19 X K = 0.584, Xo = 1.85; 8.20 (a) M = 146.4 kN·m
8.22 (a) X K = 3.05, X ′

o = 5.22 (ignoring crack); 8.25 (a) t = 12.30 mm
8.27 (a) do = 55.28 mm, (b) dc = 63.28 mm, (c) d = 63.28 mm
8.28 (a) X K = 5.25, (b) X K = 3.62 (exact F)

8.31 p = 1.236 MPa; 8.33 X K = 2.91, X ′
o = 3.16

8.34 (a) Xo = 6.27, Xa = 2.99; (b) Xo = 2.74, Xa = 24.7; (c) K I c = 112.8 MPa
√

m,
(d) X K = 3.00

8.36 X K = 3.14, Xo = 4.15; 8.38 (a) Mo = 6.40 kN·m, (b) Mc = 1.721 kN·m
8.39 (a) Sgc = 46.6 MPa, (b) Sgo = 82.8 MPa

8.41 (a) For S-L glass: �T = −23.7◦C, (b) f2 = K I c(1 − ν)

Eα
8.42 (a) do = 45.9 mm, dc = 29.4 mm; (b) d = 45.9 mm; (c) d = 38.7 mm, σo = 1340 MPa; (d) for

a = 0.50 mm: d = 37.9 mm, σo = 1420 MPa; for a = 2.0 mm: d = 39.3 mm, σo = 1275 MPa
8.46 X K = 3.10; 8.48 (a) K Q = 37.5 MPa

√
m; (b) not plane strain, LEFM not applicable

8.49 (a, b) KQ = K I c = 49.7 MPa
√

m, (c) 2roε = 0.1378 mm
8.52 For ac = 3.00 mm: (a) SgK = 680 MPa, (b) SgK e = 498 MPa
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CHAPTER 9

9.3 (a) D = σ1 − σ2

log N1 − log N2
, C = σ1 − D log N1, (b) D = −170.0 MPa, C = 1450 MPa

9.5 (b) σ ′
f = 2569.3674 MPa, b = −0.1954; 9.6 (b) σ ′

f = 1106.47 MPa, b = −0.0759

9.8 (b) σ ′
f = 2025.59 MPa, b = −0.185

9.10 (a) X S = 1.2, X N = 5.91; (b) N̂ = 28, 507 cycles

Prob.
N f , cycles

(a) (b) (c)

9.21 6.7 × 104 3.7 × 104 1.16 × 105

9.23 6.7 × 104 3.51 × 104 1.788× 105

9.25 3.003 × 104 6.89 × 103 2.39 × 105

9.27 1.422 × 105 1.798 × 104 7.84 × 105

9.29 For σa in MPa: (a) σa = 738(2N f )
−0.0648, (b) σa = 938(2N f )

−0.0648,

(c) σa = 1138(2N f )
−0.0648

9.31 (a) For σa = 379, σm = 621 MPa: σar = 550 MPa, σa/σar = 0.690
9.32 For σa = 379, σm = 621: (a) σar = 616, (b) σar = 532 MPa
9.35 For σmax = 469 MPa, R = 0.60: (a) σar = 383, (b) σar = 257, (c) σar = 119.4,

(d) σar = 210 MPa
9.37 X S = 1.271, X N = 10.49 by Morrow; X S = 1.173, X N = 4.785 by SWT
9.39 By SWT: (a) X N = 104.02; (b) Ym = 1.62; by Morrow: (a) X N = 337; (b) Ym = 1.69
9.41 For SWT and σ̄H : (a) p = 15.65 MPa, (b) X H = 1.71
9.42 (a) N f = 284,000 cycles, (b) Xo = 1.122, (c) d = 52.5 mm, (d, e) d = 55.1 mm
9.45 B f = 49.8 reps by Morrow, or 375 reps by SWT
9.46 B f = 21,200 reps by Morrow, or 3,520 reps by SWT
9.48 B f = 101,100 reps by Morrow, or 53,300 reps by SWT
9.50 B f = 4110 reps by Morrow, or 2770 reps by SWT
9.52 B f = 3260 reps by SWT; 9.53 X S = 1.215, X N = 6.52
9.54 By SWT: (a) B f = 1.538 × 109 revs, 128,200 hrs, (b) Y = 1.541 for 2000 hrs; by Morrow:

(a) B f = 5.96 × 109 revs, 497,000 hrs, (b) Y = 1.725 for 2000 hrs

CHAPTER 10

(Note: For determining k f , the Peterson equation is used unless Neuber is indicated.)

10.2 kt = 3.10, k f = 2.4; or k f = 2.5 by Neuber
10.4 kt = 3.40, k f = 3.2, Ser = 123 MPa; or k f = 3.00, Ser = 131 MPa by Neuber
10.5 kt = 1.85, k f = 1.83, σar = 426 MPa
10.6 kt = 2.7, k f = 2.04, Ma = 14.38 N·m

10.10 Ma = 2.55 kN·m; 10.12 Ta = 140.5 N·m by Juvinall
10.14 (a) Sa = 1013 − 156.7 log N f MPa; (b) N f = 23,100 cycles by Eq. 10.21, or 22,500 cycles

by Eq. 10.28
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10.15 (a) Smax= 356 MPa, (b) Smax= 325 MPa; 10.17 (a) Pm = 33.9 kN, (b) Pm = 10.26 kN
10.18 X S = 0.727, X N = 26
10.20 (a) X S = 1.43, (b) ρ = 1.65 mm by Eq. 10.28
10.21 For Smax = 207, Sm = 69 MPa: (a) Sar = 159.9 MPa, (b) Sar = 169.0 MPa, (c) k f = 1.92

by Neuber, k f m = 1.55, Sar = 175.3 MPa
10.23 A = 1312 MPa, B = −0.208, γ = 0.775; 10.25 A = 799 MPa, B = −0.1996, γ = 0.479
10.26 A = 1811 MPa, B = −0.1074, γ = 0.652
10.30 (a) σar = 1515 N−0.1271

f MPa (103 ≤ N f ≤ 106), (b) N f = 10,790 cycles

10.33 (a) Sar = 417 N−0.0739
f , (b) Sar = 536 N−0.0962

f MPa (103 ≤ N f ≤ 106)

10.35 Sar = 353 N−0.0873
f MPa (103 ≤ N f ≤ 106), by Neuber

10.37 (a) B f = 10.88 reps for Smax = 240 MPa, B f = 19.05 reps for Smax = 209 MPa
10.40 (a) B f = 8.19 reps; 10.41 (a) B f = 7.45 reps
10.43 (a) B f = 203 years; (b) X N = 2.71, X S = 1.393

CHAPTER 11

(Notes: For Eq. 11.32, F is approximated as Fi . And F is varied to find a f where possible.)

Prob. m C ,
mm/cycle

(MPa
√

m)m
Prob. m C ,

mm / cycle

(MPa
√

m)m

11.1 3.16 2.12 × 10−9 11.7 (b) 3.01 9.38 × 10−8

11.3 24.0 3.84 × 10−19 11.9 4.33 1.296 × 10−8

11.5 (b) 2.90 5.18 × 10−8 11.11 3.53 4.59 × 10−9

11.14 C0.5 = 6.80 × 10−8 mm/cycle
/
(MPa

√
m)m ; 11.15 p = mγ, q = m(1 − γ )

11.17 (a) m = 2.46, γ = 0.762, C0 = 2.57 × 10−8 mm/cycle
/
(MPa

√
m)m

11.19 (b) m = 2.96, γ = 0.553, C0 = 4.08 × 10−8 mm/cycle
/
(MPa

√
m)m

11.22 �K th = 7.11 MPa
√

m, γth = 0.218

11.26 Ni f = ln (a f /ai )

πC(F �S)2
; 11.28 Ni f = a f − ai

C

(
t
√

b

0.89 �P

)m

11.30 (a) Ni f = 1

πC �S2

(
ln sin

πa f

2b
− ln sin

πai

2b

)
; 11.31 Ni f = 46,600 cycles

11.33 Ni f = 16,730 cycles; 11.35 Ni f = 38,900 cycles; 11.37 ai = 0.473 mm
11.39 (a) ai = 0.883 mm, (b) for X N = 5.0, Np = 20,000 cycles
11.42 Ni f = 1,346,000 cycles; 11.43 (a) a f = 28.8 mm, (b) Ni f = 739,000 cycles
11.44 Ni f = 45,400 cycles; 11.46 Ni f = 2,615,000 cycles
11.48 (a) Ni f = 425,000 cycles, (b) X K = 2.97
11.50 Bi f = 3760 reps; 11.53 Bi f = 1700 reps; 11.54 Bi f = 1509 reps
11.56 (a) Ni f = 56,800 cycles, (b) X N = 0.946, (c) ad = 0.268 mm, (d) Np = 18,930 cycles,

(e) Snew / Sold = 0.720
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11.58 Soda: n = 20.3, A = 1.67 m/s
/
(MPa

√
m)n ;

Ultra: n = 36.5, A = 2.05 × 107 m/s
/
(MPa

√
m)n

11.59 ti f = (C2/S)20.3 for ti f in seconds, S in MPa; C2 = 166.1, 121.5, 88.9 for ai = 5, 10, 20 μm

CHAPTER 12

12.1 E = 52,200 MPa, σo = 783 MPa, δ = 0.13
12.3 Eq. 12.1: E = 206,200 MPa, σo = 830 MPa
12.4 Eq. 12.8: E = 201,300 MPa, H1 = 1759 MPa, n1 = 0.0468
12.7 Eq. 12.12: E = 198,400 MPa, H = 3020 MPa, n = 0.1093

12.9 Parabola: σ = −53,800ε2 + 3790ε MPa; 12.12
dVe

Ve
= (5 − 4ν)pr

2t E
+ √

3

(√
3 pr

2t H

)1/n

12.14 ε2 = (λ − ν)
σ1

E
+ (λ − 0.5)

(
1 − λ + λ2

)
(1−n)/(2n)

(σ1

H

)1/n
;

ε3 = −ν(1 + λ)
σ1

E
− 0.5(1 + λ)

(
1 − λ + λ2

)
(1−n)/(2n)

(σ1

H

)1/n

12.16 γ = τ

G
(τ ≤ τo); γ = τo

G
+ (2ν − 1 + 3/δ)

τ − τo

2G(1 + ν)
(τ ≥ τo)

12.18 (a) σ2 = ν̃σ1, σ1 = σ̄√
1 − ν̃ + ν̃2

, ε1 = ε̄ (1 − ν̃2)√
1 − ν̃ + ν̃2

12.20 (a, c) σmax = 600, σmin = −600 MPa; (b) σmax = 600, σmin = −240 MPa
12.21 (a) σmax = 570, σmin = −570 MPa; (b) σ = 690, −350, 750 MPa
12.24 σmax = 1400, σmin = −800 MPa; 12.26 σmax = 478, σmin = −311 MPa
12.27 σmin = −478, σmax = 311 MPa; 12.32 (a) H ′ = 770 MPa, n′ = 0.106
12.35 (a) H ′

τ = 594 MPa, n′ = 0.212; (b) G = 79,100 MPa, H ′
τ = 648 MPa, n′ = 0.208

12.36 (a) σmax = 577, σmin = −191.1 MPa; (b) σmi = 193.0, σm50,000 = 38.0 MPa
12.38 σA,B,C = −478, 278, 354 MPa; 12.40 σA,B,C = 770 MPa, −240 MPa, 912 MPa
12.41 σA,B,C = 1513 MPa, −1927 MPa, 1660 MPa

CHAPTER 13

13.1 M = 2bc2 H2ε
n2
c

(
1

(n2 + 2)(n2 + 3)

)

13.2 (a) M = 2c2
2 H2ε

n2
c2

n2 + 2

(
(t1 − t2)

(
c1

c2

)n2+2

+ t2

)
; (b) M = h2

2 H2ε
n2
h2

2(n2 + 2)

(
b2 − b1

(
h1

h2

)n2+2
)

13.7 (a) M = 2
√

π c3 H2ε
n2
c

n2 + 3

�(1 + n2/2)

�(1.5 + n2/2)
;

(b) M = 2
√

π c3
2 H2ε

n2
c2

n2 + 3

�(1 + n2/2)

�(1.5 + n2/2)

(
1 −

(
c1

c2

)n2+3
)
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13.8 (a) 1st: M = 13.80 kN·m, σrc = −166 MPa, εrc = 0.00044; 2nd: M′ = 15.60 kN·m,
σrc = −266 MPa, εrc = 0.00311; 3rd: M = 15.933 kN·m, σrc = −285 MPa, εrc = 0.00604

13.12 T = 2πc3
2 H3γ

n3
c2

n3 + 3

(
1 −

(
c1

c2

)n3+3
)

13.16 Typical values: (1) γc = 0.00500, T = 117.78 kN·m; (2) γc = 0.01, T = 46.125 kN·m
13.18 (a) σ 1 = 462.85 MPa, ε1 = 0.00385; (b) σ 1 = 630 MPa, ε1 = 0.00525;

(c) σ 1 = 822.85 MPa, ε1 = 0.00685

13.21 (a) For kt S ≥ σo: ε = σo

2δE

(
δ − 1 +

√
(1 − δ)2 + 4δ(kt S/σo)2

)
,

σ = σo

2

(
1 − δ +

√
(1 − δ)2 + 4δ(kt S/σo)2

)
; (c) σ = 716.8 MPa, ε = 0.00196, kσ = 2.867,

kε = 3.136

13.23 Typical values: σy = 485 MPa, εy = 0.0214, P = 128.7 kN

13.25 (a) For kt S ≥ σo: ε = σo

2E
+ (kt S)2

2Eσo
, (b) S = 1

kt

√
σ 2 + 2Eσ

n + 1

( σ

H

)1/n
,

(c) Typical values: σy = 485 MPa, εy = 0.0214, P = 164.0 kN

13.26 (a) σr = −490.57 MPa, εr = 0.0155; (b) σr = 0 MPa, εr = 0
13.28 (a) σr = 0 MPa, εr = 0; (b) σr = −396.75 MPa, εr = 0.011
13.30 (a) σmax = 300 MPa, εmax = 0.001500, σmin = −60.0 MPa, εmin = −0.000300;

(b, c, d) σmax = 400 MPa, εmax = 0.00450; (b) σmin = −320 MPa, εmin = 0.000900;
(c) σmin = −400 MPa, εmin = −0.000563; (d) σmin = −400 MPa, εmin = −0.00450

13.31 σmax = 1070 MPa, εmax = 0.01432, σmin = −999 MPa, εmin = −0.00967
13.32 σmax = 214.314 MPa, εmax = 0.00422, σmin = −115.446 MPa, εmin = −0.00116
13.35 σmin = −540 MPa, εmin = −0.00610, σmax = 280 MPa, εmax = −0.001673
13.38 (a) Typical values: (1) σa = 500 MPa, εa = 0.00242, Pa = 5.69 kN; (2) σa = 1000 MPa,

εa = 0.01987, Ma = 23.1 kN
13.39 σmax = 769 MPa, εmax = 0.00659, σmin = −233 MPa, εmin = 0.001531
13.40 σA,B,C,D = 1072, −588, 411, −734 MPa;

εA,B,C,D = 0.01793, 0.00217, 0.01072, −0.000989
13.43 σA,B,C,D,E,F = 585, −500, 509, −420, 345, −541 MPa;

εA,B,C,D,E,F = 0.01112, −0.001438, 0.00681, 0.000877, 0.00485, −0.00526

CHAPTER 14

Prob. σ ′
f , MPa b ε′

f c

14.4 939 −0.0916 0.272 −0.449
14.6 3149 −0.1014 0.251 −0.891

14.8 Shaft: ms = 0.77, md = 0.817, σ ′
f d = 775 MPa, bs = −0.1100, ε′

f d = 0.213, c = −0.445
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Prob.
N f , cycles

(a) Morrow (b) mod Mor (c) SWT (d) Walker

14.11 41 990 42 170 30 595 27 931
14.12 86 920 86 310 138 308 155 247
14.14 24 562 17 676 83 556 160 838

14.18 N f = 41,207 cycles by Morrow, or 21,729 by SWT
14.20 For modified Morrow approach, N f = 50, 670 cycles and for Walker approach, N f =

73, 918 cycles
14.24 For σa = 1379, σm = −345 MPa: (a) εa = 0.00676, N∗

mi = 1345 cycles;
(b) σmaxεa = 6.99 MPa

14.25 (a) For σa = 517, σm = 414 MPa: εa = 0.00264, N∗
w = 210,400 cycles

14.26 For N f = 10,000 cycles: (a) γa = 0.00827, (b) γa = 0.01376

14.28 ε1a = 1 − 2νβ

1 − β

σ ′
f

E
(2N f )

b + ε′
f (2N f )

c

14.30 N f = 904 cycles by Morrow (not recommended), or 878 by SWT
14.33 N f = 1,344,000 cycles by Morrow, or 2,089,000 by SWT
14.34 N f = 34,280 cycles by Morrow, or 32,880 by SWT
14.35 For Smax = Sa = 110 MPa: εca = 0.00640, N f = 5030 cycles
14.37 (b) For σa = 850 MPa: εa = 0.00751, Pa = 13.09 kN, N f = 1113 cycles
14.39 (a) B f = 95,570 reps by Morrow, or 3236 by SWT; (b) B f = 4670 reps by Morrow, or 668

by SWT
14.41 B f = 36.5 reps by Morrow (not recommended), or 43.4 by SWT
14.42 B f = 564 reps by Morrow (not recommended), or 450 by SWT
14.44 B f = 402 reps by Morrow, or 555 by SWT
14.47 B f = 303 reps by Morrow, or 347 by SWT; 14.49 B f = 118.5 reps by SWT
14.50 (a) B f = 10.24 reps by SWT, (b) Bi f = 1.76 reps for crack growth, 12.0 total
14.52 Ma = 1.399 kN·m by Morrow
14.53 By Morrow: (a) N f = 245,400 cycles, (b) N f = 9,417,000 cycles, (b) using monotonic yield

to A: N f = 6,422,000 cycles

CHAPTER 15

15.1 (b) B = 1.596 × 10−5 1/min

MPam , m = 2.14

15.6 ε̇ = Bσm ; for T = 900, 1200, 1450 K: B = 6.74 × 10−24, 2.43 × 10−19,

1.112 × 10−16 1/s

MPam

15.8 (a) ε = 0.00297, (b) σ = 37.9 MPa, (c) T = 931 K

15.11 A3 = 2640
K/s

MPam , m = 1.495, Q = 39,600 J/mol
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15.13 (a) ε̇ = 5.8 × 10−3 1/s, (b) ε̇ = 5.8 × 10−9 1/s, (c) Mar-M200, d = 1.0 mm

15.15 (a) T̂ = 832.8◦C, (b) Xt = 1.52; 15.17 (a) t̂ = 5.45 hours, (b) Xσ = 2.704
15.19 (a) tr = 3090 h, (b) Xσ = 1.09
15.21 (a) T̂ = 211◦C, (b) Xt = 1.52, (c) �T f = 333 k
15.23 (a) tr = 21,100 h, (b) Xσ = 1.379, (c) �T f = 25.0◦C
15.25 (a) b0,1,2,3 = 128,210, −141,530, 64,375, −9,960; (b) a0,1,2,3 = 135.45, −216.1, 99.30,

−15.424
15.27 Q = 84,490 cal/mole, a0,1,2,3 = −11.902, 3.962, −2.094, −0.15378
15.28 (a) C = 14.569, b0,1,2,3 = −38,400, 114,200, −62,300, 10,382; (b) Q = 107,640 cal/mole,

a0,1,2,3 = −40.12, 47.92, −25.49, 3.989

15.30 (a) σ = 7.3 MPa, (b) γ = 0.66 mm, (c) γ = 12.67 mm
15.32 (a) σc = 138.14 MPa, (b) εc = 0.075, (c) t f = 263 MPa

15.34 D = 8.27 × 10−5 1

MPaδsφ
, δ = 1.742, φ = 0.206

15.36 σ = σi(
E D3tφ(δ − 1)σ δ−1

i + 1
)1/(δ−1)

, σi = Eε′

15.37 (a) t0.5 = 652 h, (b) d = 119 μm, (c) T = 467◦C; 15.39 (b) For t= 5.0 h: σ = 22.3 MPa
15.41 (a) ε̇ = 5.54 × 10−9 1/s, (b) �d = 3.59 mm, using σz = −p/2

15.43 γ = τ

G
+ 3(δ+1)/2 D3τ

δtφ

15.45 (a) ¯̇ε = 8.88 × 10−11 1/s, (b) 100 �d/d = 1.912%, 100 �L/L = 0.819%, using σz = −p/2
15.46 (a) σ = 5.00 MPa, (b) ve = 0.2085 mm, (c) v = 0.712 mm
15.49 (a) For R = 70 mm: σr = 2.93, σt = 7.68 MPa; (b) �r1 = 3.01 μm/day, 1.101 mm/year;

(c) �r2 = 2.95 μm/day, 1.076 mm/year

15.51 (a) γc = 3(m+1)/2 Bt

(
T (1 + 3m)

2πmc3

)m

, (b) γc = 3(δ+1)/2 D3tφ
(

T (1 + 3δ)

2πδc3

)δ

15.53 (a) εc = 0.00740, (b) εc = 0.01366; 15.55 (a) b = c = 53.2 mm, (b) b = c = 53.6 mm

15.58 (a) �U = 2J Lbcσ 2
ca

3
, (b) Q−1

v = J E

π
, (c) �U = 2J Lbcσ 2

cLa

9

15.60 (a) �u = 4σo

(
εa − σo

E

)
, (b) �U = 4Lbcσo

εca

(
εca − σo

E

)2

15.61 �U = 8π Lc2τ
1+1/n′
ca

(H ′
τ )

1/n′

(
1 − n′

1 + n′

)⎛⎝ n′
3n′+1 + β

2 + β2

3+n′

(1 + β)2

⎞
⎠, β = γpca

τca/G
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E1049 for cycle counting, 472, 474
E1290, for fracture, 398
E1681 for environmental cracking, 617
E1820, for fracture, 373, 394, 397–398

Ausforming process, 79
Austenite (γ -iron), 77
Austenitic stainless steels, 79

B

Bailey bridges, 527
Bauschinger effect, 639–641, 664
Beach marks, 440–441
Beams, 884–885
Bend (fracture) specimen, 351, 371–373, 396–397
Bending shears, moments, deflections, 884–885
Bend strength, 170–171
Bending

analysis for creep, 851–854
elastic analysis of, 694–696, 880–882
in cyclic loading, 722–724
plastic analysis of, 694–703, 891–895
residual stresses for, 703–707

Bending and torsion tests, 118–119, 169–175
bending (flexure) tests, 170–171
heat-deflection test, 171–172
modulus of rupture in bending, 171
testing of thin-walled tubes in torsion, 173–175
torsion test, 169–170

Beryllium, 47, 70
Beryllium copper, 83
Biaxial stresses. See Multiaxial stress effects;

Three-dimensional states of stress
Blending, defined, 92
Blunting line, 397–398
Body-centered cubic (BCC) structure, 46, 61, 376
Bolts, bolted joints, 536–537
Bonding in solids, 42–46

primary chemical bonds, 42–44
secondary chemical bonds, 44–46

Bone, 100
Borides, 59
Boron, 59, 66, 102
Boron carbide (B4C), 95, 161
Boron nitride (BN), 98
Boundary integral equation method, 354
Brale indenter, 162
Branching in polymers, 88
Brass, 41, 83, 202
Bridge Design Specifications (AASHTO), 30,

534–535
Bridge structures, cracks in, 336
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Bridgman correction for hoop stress, 146–147
Bridgman, P. W., 146
Brinell hardness test, 159, 163, 175
British Standards Institution (BSI), 122
Brittle behavior, 21–22, 40, 894–895

effects of cracks on, 342–344
multiaxial criteria for, 299–320
in notch fatigue, 510–511
in tension tests, 126, 133

Brittle fracture, 23–24, 37, 334–400
safety factors against, 356

Bronze, 41, 83
Buckling, 22, 152, 174
Budynas, S-N curve estimate, 520, 522–523
Bulk modulus, 210

C

Carbon, 44, 59, 66, 72, 74, 76–78, 84, 93, 101, 111
Carbon steel, 76–77

AISI–SAE designations for (table), 75
Carburizing, 447, 540
Cast irons, 72, 74–76, 126, 138, 152, 305
Casting, 66
Cellulose, 100
Cemented carbides, 41, 97–98, 112
Cementite, 76
Center-cracked plates, 342, 349, 352, 394, 569
Ceramics, 40–41, 59, 94–98, 112, 223, 298

chemical bonding in, 44, 94
clay products, 94–97
concrete, 94, 96–97
creep in, 802, 813
ductility, 137
elastic moduli of, 95, 137
engineering, 94, 97, 112
fatigue crack growth in, 585, 589, 592
fracture toughness of, 341, 344, 373, 376
hardness of, 160–161
natural stone, 94, 96

Cermets, 97–98, 112
Chain molecules, 40, 44–46, 61, 84, 88–90
Charpy V-notch test, 165–169
Chemical bonding in solids. See Bonding in solids
Chemical vapor deposition, 97–98
Chromium, 66, 78–79, 82, 84, 803

plating, 447, 540
Circular cracks, 360

Circular shafts, torsion of, 707–710, 881–882,
894–895

Circumferential cracks, 352, 354
Clay products, 41, 94–96, 112
Cleavage, 376–378, 587
Climb (dislocation), 815
Closed-loop servohydraulic test system, 121–122,

435
Close-packed directions, planes, 57
Cobalt, 34, 66, 67, 83–84, 97–98, 111, 803
Coble creep, 814–815
Coefficient of tensile viscosity, 193
Coefficient of thermal expansion, 212–213
Coffin, L. F., 751, 834
Coffin–Manson relationship, 751
Coherent precipitate, 70, 102
Cold rolling, 539
Cold work, 68–69, 79, 80–83, 672
Collagen, 100
Combined stresses, yielding and fracture, 275–322
Comet passenger airliner, 343
Compact specimen, 353, 373–374, 396–397, 569
Completely reversed cycling, 420
Compliance method, 348, 395–396
Component, 33
Component S-N data, 527–535

Bailey bridge example, 527–529
curves for welded members, 531–535
matching to notched specimen data, 531
mean stress and variable amplitude cases life, 529

Component testing, 32–34
Composite materials, 40–41, 94, 100–105, 112

defined, 100
elastic constants for, 217–222
failure criteria for, 299
fibrous composites, 102–104
laminated composites, 104–105
particulate composites, 100–102
tensile behavior of, 137, 140
uses of, 100–101

Compression tests, 118, 151–156, 175
materials properties in compression, 153–154
strengths from, 95, 97
trends in compressive behavior, 154–156,

299–300
with lateral pressure, 156

Concrete, 41, 94, 96–97, 100, 112, 305, 341, 906
creep in, 820–821
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Constant amplitude loading (of cracked members)
life estimates for, 590–601
closed-form solutions, 593–594
crack length at failure, 594–595
solutions by numerical integration, 598–601

Constant amplitude stressing, 418–420
Constant-life diagram, 452–453
Constitutive equations. See Stress–strain

relationships
Constraint, geometric, 212, 293–295, 387–389,

717–718
Copolymerization, 93
Copper and alloys, 41, 67, 68, 83, 202
Corner crack, 360–361
Corrected true stress, 146–149
Corrosion, 20, 28
Corrosion fatigue, 28, 449, 589, 621
Corten–Dolan cumulative damage method, 542
Costs of fracture, 36–37, 417
Costs of materials, relative, 106, 110
Coulomb–Mohr (C–M) fracture criterion, 301–311,

321–322
development of, 302–307
effective stress for, 309–310
graphical representation of, 307–309

Covalent bonding, 42–44, 47–48, 94
Crack growth. See Environmental crack growth;

Fatigue crack growth
Crack growth analysis, need for, 561–563
Crack growth effect on k f , 495–496
Crack growth retardation, 606
Crack surface displacement, modes of, 344
Crack velocity, 616–617
Cracked members, fracture of, 334–400
Cracks

application of K to design and analysis,
348–370

cases of special practical interest, 359–364
leak-before-break in pressure vessels, 369–371
safety factors, 356–359
superposition for combined loading, 366–367

behavior at crack tips in real materials, 338–339
effects on brittle vs. ductile behavior, 342–344
effects on strength, 339–341
growing from notches, 364–366
inclined or parallel to an applied stress, 367–369
inspection for, 336, 616

periodic inspections for, 562–563

internally flawed materials, 344
mathematical concepts, 344–348
mixed mode, 381
nonpropagating, 496
strain energy release rate G, 344–346
stress intensity factor K , 346–348
as stress raisers, 337–338
See also Fracture mechanics; Fracture toughness

Crack-tip opening displacement (CTOD), 338, 392,
397–400

Crack-tip plastic zone. See Plastic zone (at crack tip)
Crazing, craze zone, 140, 338
Creep, 190–191, 196–198, 223, 802–866

activation energies, evaluation of, 816–817
Coble type, 814–815
in concrete, 820–821
in crystalline materials, 61, 813–816
cycle-dependent type, 678–679
defined, 22–23, 60
deformation mechanism maps, 817–819
dislocation type, 813–816
fracture mechanism maps, 807, 810
isochronous stress–strain curves, 809, 836–838,

850–854, 864–865
Nabarro–Herring type, 814–815
physical mechanisms of, 809–820
in polymers, 813
power-law type, 814–816
rheological models for, 196–198, 836–838
steady-state (secondary) stage, 191–193, 805, 847
stress-strain analysis of components for

linear viscoelasticity, 850–853
nonlinear behavior, 853–855

tertiary stage, 805–806
transient (primary) stage, 192–194, 805
viscous type, 810–813, 815

Creep cavitation, 821
Creep deformation, 22–23, 37, 40, 55, 60–61,

196–198, 200–201, 802–803
application involving (example), 23
for linear viscoelasticity, 836–838
for multiaxial stress, 848–850
for nonlinear behavior, 838–841
recovery of, 841–842
for varying stress, 841–848

for linear viscoelastic models, 844–846
stress relaxation, 842–844
time- and strain-hardening rules, 846–848
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Creep failure under varying stress, 833–836
creep rupture under step loading, 833–834
creep–fatigue interaction, 834–836

Creep rupture, 25, 37, 804, 821
for multiaxial stress, 833
safety factors for, 831–833
for step loading, 833–834
time-temperature parameters and life estimates,

821–833
Creep tests, 804–806

behavior observed in, 804–806
presentation of results, 806–809

Creep–fatigue interaction, 27, 757, 834–836
Critical plane approach, 466, 769–771
Cross-links, 89–91, 92, 112
Crystal structure, defined, 46
Crystalline grains, 48
Crystalline materials

basic crystal structures, 46–47
complex crystal structures, 47–48
creep in, 60–61, 813–816
structure in, 46–50

Crystalline polymers, 86, 88
Crystals, defects in, 48–50
Cubic crystal, 46
Cubic material, 216
Cumulative fatigue damage. See Palmgren–Miner

rule; Variable amplitude loading
Cycle counting, 469, 471–475, 677, 775–776,

780–781, 789
Cycle-dependent creep, 678–679
Cycle-dependent hardening, 668–669, 732
Cycle-dependent relaxation, 678–681
Cycle-dependent softening, 668–669, 732
Cyclic bending, analyzing, 722–724
Cyclic loading, 416–418

accidental loads, 429
alternating stress, 419
closed-loop servohydraulic testing machines, 435
completely reversed cycling, 419–420
constant amplitude stressing, 418–419
and fatigue crack growth, 560, 569
fatigue under, 25–27

fatigue crack growth, 560–615, 621–622
strain-based approach, 745–790
stress-based approach, 416–479, 491–543

rheological modeling for, 640–641, 659–661,
664–668

sources of, 429–430
and static loads, 429
stress amplitude, 418–419
stress range, 418–419
stress ratio R, 419
stress–strain analysis of, 722–733

bending, 722–725
generalized methodology, 725–728
irregular load vs. time histories, 728–732

stress–strain behavior during, 640, 668–681
and time-dependent deformation, 803, 833–836
vibratory loads, 429
working loads, 429
zero-to-tension cycling, 419–420

Cyclic plastic zone, 611–612
Cyclic stress–strain behavior of materials

cyclic stress–strain curves, 671–673, 747
cyclic stress–strain tests and behavior, 668–671
cyclic yield strength, 671–673, 680
hysteresis loop curve shapes, 673–677
mean stress relaxation, 678–681

D

Damage intensification, 438
Damage tolerant design, 343, 563, 607–608
Damping in materials, 804, 855–863

anelastic type, 855
from rheological models, 855–857
definitions of variables describing, 858
in engineering components, 862–863
importance of, 855
low-stress mechanisms in metals, 858–860
magnetoelastic type, 860
plastic strain type, 860–863
Snoek effect, 858
thermal current type, 859

Deformation, 19–20, 66, 190, 223
characteristics of the various types of (table), 201
creep, 22–23, 25, 37, 60–61, 190, 223, 802–866
elastic type, 21–22, 37, 50–53, 191, 201–213,

223–224
plastic type, 21–22, 37, 55–59, 190, 223

behavior and models for materials, 638–683
Deformation behavior models

creep deformation, 190–194, 196–198, 836–838
discussion of, 200–201
elastic deformation, 191–193
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Deformation behavior models (Continued)
plastic deformation, 191–193, 194–196, 648–649,

659–668
relaxation behavior, 198–199, 842–844
rheological models, defined, 191

Deformation mechanism maps, 817–820
Deformation plasticity theory, 641, 650–659

incremental plasticity theory vs., 658–659
Delaminations in layered materials, 335
Delta iron, 47
Design, 28–34

allowable stress, 32, 296
creep, 802–803
defined, 28–29, 37
durability, 29
environmental cracking, 618–619
fatigue, 448, 536–542
fatigue crack growth, 563, 607–609
load factor, 32, 296–297
material selection, 66, 105–111
safety factors, 29, 30–32
service experience, 34

Design truck, 534
Diamond cubic structure, of carbon, 48
Diffusion, 810–811
Diffusional flow, 60, 813–815
Dimpled rupture, 376, 378
Direction cosines, 253
Disc, rotation stresses, 887–889
Discontinuous stress–strain curves, 699–701
Dislocation climb, 815
Dislocation creep, 815–816
Dislocation motion, plastic deformation by, 56–58
Dislocations, 50
Dispersion hardening, 101–102
Distortion energy criterion. See Octahedral shear

stress yield criterion
Drawing, 66, 68–69
Ductile behavior, 21–22

effects of cracks on, 342–343
multiaxial stress effect, 318–320
in notched members, 894–898
in notch fatigue, 506–513
in a tension test, 126–127

Ductile fracture, 24–25, 37, 391–399
Ductile iron. See Cast irons
Ductility

engineering fracture strain, 131

engineering measures of, 130–132
and necking, 131–132
percent elongation, 22, 131
percent reduction in area, 131

Durability, durability testing, 29, 33
Dynamic modulus, 858
Dynamic recrystallization, 821
Dynamic tear test, 165

E

Ebonite, 92
Economics of fracture, 36–37, 417
Edge dislocation, 50
Edge-cracked tension member, 349, 353–354
Effective mean stress, 465–466
Effective plastic strain, 650
Effective strain rate, 849
Effective stress, 278–279, 281, 283, 290, 309–310,

314, 650–651, 653, 849
Effective stress amplitude, 465
Effective stress–strain curve, 653–654
Effective total strain, 650–651, 653

for fatigue life, 768–769
Elastic bending, 694–696, 880–882
Elastic constants, 128–129, 202–204, 214–218
Elastic deformation, 21, 37, 50–53, 190–191,

201–224
anisotropic case, 214–218
bulk modulus, 210–211
hydrostatic stress, 209–211
isotropic case, 201–213
orthotropic case, 215–217
physical mechanisms of, 51–52
and theoretical strength, 53–55
thermal strains, 211–213
and volume change, 209–210, 213
volumetric strain, 209–211

Elastic limit, 130
Elastic, linear-hardening stress-strain relationship,

194–195, 643–644
Elastic modulus, 21, 52–53, 105, 128, 193,

201–204
parallel to fibers, 219–220
for polymers, 88, 91
time dependent type, 837–838, 851, 865
transverse to fibers, 220–221
values, trends in, 52–53
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Elastic, perfectly plastic stress–strain relationship,
194–195, 641–643

in bending, 699
in notched members, 715
residual stresses in bending, 704–707
in torsion, 710

Elastic, power-hardening stress-strain relationship,
644

Elastic strain. See Elastic deformation
Elastic strains, Hooke’s law for, 204–206, 649–650
Elastic stress concentration factor, 337–338, 420,

493, 508–509, 511–513, 536–537, 712,
889–891

Elastically calculated stresses, 717
Elastomers, 84, 88, 90–91, 111, 861

elastic moduli of, 137
Elliptic integral of the second kind, 360–362
Elliptical cracks, 360–364, 392
Elongation, percent, 22, 130–132, 138–140
Embrittlement, 616
Endo, T., 471
Endurance limits. See Fatigue limits
Energy capacity, engineering measures of, 132–134
Energy dissipation. See Damping in materials
Energy, impact, 164–169
Engineering ceramics, 94, 97, 112
Engineering components

materials selection for, 105–111
Engineering design. See Design
Engineering fracture strain, 131
Engineering fracture strength, 129
Engineering materials, 40

classes and examples of, 41
general characteristics of (table), 41
size scales for, 41–42
survey of, 65–112

Engineering metals, 66, 72–84
Engineering plastics, 86
Engineering shear strains, 262, 650
Engineering size crack, 787–788
Engineering stress and strain, 125–137, 149–150,

175
Engineering stress–strain properties (from tension

tests), 128–136
ductility, 130–132
elastic constants, 128–129
elastic limit, 130
elastic (Young’s) modulus, 21, 128

elongation, 22, 131–132
engineering fracture strength, 129
engineering measures of ductility, 130–132
engineering measures of energy capacity, 132–134

versus fracture toughness, 134
engineering measures of strength, 129–130
lower yield point, 130
necking behavior and ductility, 131–132
offset yield strength, 130
proportional limit, 130
reduction in area, 131–132
strain hardening, 134
tangent modulus, 129
trends in 137–143
ultimate tensile strength, 22, 129
upper yield point, 130
yielding, 21, 129–130

Environmental crack growth, 560–561, 616–621, 622
static loading, life estimates for, 616–618

Environmental cracking, 25, 36, 616–621
and creep, 803

Environmental effects
in creep-fatigue, 834–836
in fatigue, 445
in fatigue crack growth, 587–589
in static fracture, 320–321

Epoxies, 41, 90, 102–103, 105, 139, 202, 341
Equivalent completely reversed stress amplitude,

456, 478, 760
Equivalent completely reversed uniaxial stress, 466
Equivalent constant amplitude stress, 475–476, 479,

535, 603
and safety factors, 475–477

Equivalent life, for zero-mean stress, 760–762, 765
European Standards (European Union), 122
Extensometers, 122
Extrusion, 68

F

Face-centered cubic (FCC) structure, 46–47, 61
Factor of safety. See Safety factors
Failure criteria, 275–322

brittle vs. ductile behavior, 318–320
comparison of, 295–296
cracks, time-dependent effects of, 320–321
fracture in brittle materials, 299–301
load factor design, 296–297
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Failure criteria (Continued)
stress raiser effects, 297–298
See also Fracture criteria; Yield criteria

Failure envelope, for Mohr’s circle, 301
Failure surface, 278
Fatigue, 25–27, 36, 416–479, 491–543

corrosion with, 28, 445, 589
crack initiations in, 25–26, 435–441, 757,

787–789
cyclic loading, 418–420

sources of, 429–430
definitions for, 418–421
designs for, 536–537
fatigue damage, physical nature of, 435–441
fatigue limit behavior, 447–449
fatigue testing apparatus and specimens, 430–435
fracture mechanics approach, 417, 560–622
fretting, 27–28, 536
high-cycle and low-cycle types, 26, 423–424, 754
mean stresses, 451–462

life estimates with, 456–461
normalized amplitude-mean diagrams, 452–454
presentation of mean stress data, 451–452
safety factors with, 461–462

multiaxial stresses, 463–467
effective mean stress, 465–466
effective stress amplitude, 465–466
equivalent completely reversed uniaxial stress,

466
notch effects, 443, 491–501, 506–513, 771–785
point stresses versus nominal stresses, 420–421
prevention of, 25–26
residual stress effects, 446–447, 539–541, 785
safety factors for S-N curves, 427–429
size effects, 503, 758
statistical scatter in, 449–451
strain-based approach, 417, 745–790
stress versus life (S-N ) curves, 421–426

equations for, 423
estimating, 520–527
trends in, 441–451

stress-based approach, 416–479, 491–543
surface finish effects, 503, 757
variable amplitude loading, 468–477

cycle counting for irregular histories, 471–474
equivalent stress level and safety factors,

475–477, 535
Palmgren–Miner rule, 468–470, 786–787

Fatigue crack growth, 27, 560–622
arrested, 606
behavior, 584–590

trends with material, 584–587
trends with temperature and environment,

587–590
behavior, describing, 564–568
constant amplitude loading, life estimates for,

590–601
crack growth analysis, need for, 561–563
damage-tolerant design, 563, 607–609
definitions for, 564
design considerations, 607–609
fatigue crack growth tests, 569–574

geometry independence of da/dN vs. �K
curves, 573

test methods and data analysis, 569–572
test variables, 572–573

Forman equation, 580–581
Paris equation, 564–565
plasticity aspects and limitations of LEFM for,

609–615
limitations for small cracks, 613–615
plasticity at crack tips, 610–612
thickness effects, 612–613

R-ratio effects, 574–584, 590
sequence effects on, 606–607
and stiffeners, 608–609
threshold value �Kth , 565, 621
variable amplitude loading, life estimates for,

601–607
Walker equation, 574–580

Fatigue crack growth rate, 560, 569–570
Fatigue Design Handbook (SAE), 455, 474,

540, 694
Fatigue failure

design details, 536–539
designing to avoid, 536–541, 607–609
surface residual stresses, 539–541

Fatigue limits, 423
behavior of, 447–449
and engineering design, 448
estimating, 501–506
factors affecting, 502–503
reduction factors, 504–506

load type, size, and surface finish, 504
in variable amplitude fatigue, 449, 469, 534–535,

787
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Fatigue notch factor, 493–501, 788–789
at short life, 506–510, 783
for mean stress, 510–513, 783

Fatigue strength, 423–424
Fatigue testing, 430–435

component tests, 526–529
crack growth tests, 569–574
reciprocating bending test, 433–434
resonant vibration test, 434–435
rotating bending test, 430–433
strain-life tests, 668–671, 748–753
test apparatus and specimens, 430–435

Ferrite (α-iron), 76
Ferritic stainless steel, 79
Ferromagnetic metals, 862
Ferrous alloys, 72
Fiberglass, 41, 94
Fibrous composites, 102–104, 217–218
Finite element analysis, 191, 298, 354, 420, 694, 717
Fir tree design, 492, 536
Flaw shape factor, 360
Flexure tests and strength, 170–171
Fluctuating dipole bond, 45
Forging, 66, 68, 335
Forman equation, 580–581
Fracture, 19–20

brittle, 23, 299–300
cleavage, 376–378
costs of, 36–37, 417
of cracked members, 334–400
dimpled rupture, 376–378
ductile, 24–25
intergranular, 610–611, 619
modes, 344
for static and impact loading, 23–25
in torsion tests, 172
transgranular, 611
types of, 20

Fracture criteria, 275, 279–281, 299–301
Coulomb-Mohr, 301–311
maximum normal stress, 279–282, 314
modified Mohr, 311–318

Fracture mechanics, 23–24, 37, 277, 334–336, 417
application to design and analysis, 348–371
for environmental cracking, 616–621
extensions of, 391–398

crack-tip opening displacement (CTOD), 398
fracture toughness tests for JI c, 395–398

J -integral, 393–400
plastic zone adjustment, 392–393

for fatigue crack growth, 560–615
plasticity limitations, 386–390, 612–613
plastic zone size, 381–386, 611–612
strain energy release rate G, 345, 348
stress intensity factor K , 346–348

Fracture mechanism map, 807
Fracture strain

engineering type, 131
true type, 149–151

Fracture strength, true, 149–151
Fracture surface, 278
Fracture toughness, 23–24, 134, 168–169, 334, 339

effects of cyclic loading, 583
effects of temperature and loading rate, 376–379
effect of thickness on, 387–389
microstructural influences, 379–381
mixed-mode fracture, 381
values and trends, 371–381

Fracture toughness testing, 371–381, 390–391,
395–398

Frequency-modified fatigue approach (Coffin), 834
Fretting, 27–28, 536
Full yielding (in fatigue), 508–510
Fully plastic limit load (force or moment), 357, 392,

400, 700–701, 890–899
Fully plastic yielding, 594, 713–714
F-111 aircraft crash (1969), 343

G

Gage length, 125
Gamma iron, 47
Gas-turbine engines, 34
Gaussian distribution, 451, 902–904
Generalized Hooke’s law, 204–206, 223–224
Generalized plane stress, 234, 244–246
Generalized Poisson’s ratio, 653, 718
Geometric constraint, 212–213, 293–295, 385–386,

388, 717–718
Geometric discontinuities, 491
Gerber parabola, 455
Glass, 40–41, 93–100, 102, 112, 126, 161, 202, 223,

341
chemical bonding in, 40
creep in, 810
ductility, 137
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Glass transition temperature, 52–53, 88–91
Glass-fiber-reinforced thermoplastics, 106, 443
Glinka’s rule, 717
Goodman equation, 454

for notched members, 510–511
Grain boundaries, 48, 50, 59–60, 813–815
Grain boundary sliding, 813–814
Grain refinement, 69
Graphite, 55, 102
Graphite-epoxy, 41, 106, 218
Gray cast iron. See Cast irons
Griffith, A. A., 344

H

Hardening
cycle-dependent, 668
dispersion, 101–102
isotropic, 641
kinematic, 641, 661
precipitation, 70–72, 79–84, 101
strain, 134
surface hardening treatments, 540

Hardness correlations and conversions, 163–164
Hardness tests, 157–164

Brinell hardness test, 159, 175
Mohs hardness scale, 157
Rockwell hardness test, 162–163, 175
Scleroscope hardness test, 157
Vickers hardness test, 160–162, 175

Haynes 188 (superalloy), 83
Heat treatment, 66, 76–77, 81
Heat-deflection temperature, 172
Heat-deflection test, 171–172
Hexagonal close-packed (HCP) crystal structure, 47,

61, 82
High-carbon steels, 76–77
High-cycle fatigue, 26, 423–424, 754
High-impact polystyrene (HIPS), 93
High-performance composites, 100, 103–104,

106, 112
High-strength low-alloy (HSLA) steels, 78
High-temperature creep, 817
Hill anisotropic yield criterion, 298–299
Homogeneous material, 202
Hooke’s law, 213, 264, 277, 848

anistropic case, 214–218
for elastic strains (with plasticity), 649–651

isotropic case, 204–213
orthotropic case, 215–216

Hot isostatic pressing, 97
Hydrogen bond, 45–46
Hydrogen embrittlement, 616
Hydrostatic stress, 210

effect on fracture, 318–320
effect on yielding, 285–286, 291, 295
as octahedral normal stress, 261

Hysteresis loops, 664–667, 722, 725–733, 748–749,
775–781, 860

curve shapes, 673–677
elliptical, 856–857

I

Impact energy tests, 164–169
Impact loading, fracture under, 23
Impurity (interstitial, substitutional), 48–49
Inclusions, fracture effect, 335, 379–381

for fatigue, 436, 438
Inconel 736(superalloy), 83, 582
Incremental plasticity theory, 641, 658

deformation plasticity theory vs., 658–659
Indentation hardness, 157–164
Inelastic deformation, 55–61
Initial yielding (in fatigue), 512–513
Initial yielding force or moment, 700, 713, 891–894
Inspection for cracks, 336–337, 561–563, 607–609
Instron Corp. testing machine, 121
Intergranular fracture, 25, 610–611, 619–620
Intermetallic compounds, 44, 48, 70
Internal combustion engine, 34
Internal friction. See Damping in materials
Internally flawed materials, 344
International Organization for Standardization

(ISO), 122
Interstitial, 49
Invariant quantities, 211, 257, 261
Ionic bonding, 42–44, 47–48
Irons, cast. See Cast irons
Irregular load vs. time histories. See Variable

amplitude loading
Irwin, G. R., 345, 386
Isochronous stress–strain curves, 809, 836–838,

850–854, 864–865
Isothermal modulus, 860
Isotropic behavior, 191, 202–203
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Isotropic hardening, 641
Izod tests, 139, 165

J

Jet engines, 34
J -integral, JI c tests, 393–400
Juvinall, R. C.

mean stress approach, 513
S-N curve estimate, 520, 522–523

K

Kevlar, 85–86, 93, 103, 105, 218
K -field, 386–387
Kinematic hardening, 641, 661

L

Laminated composites, 101, 102–105
Langer, B. F., 468
Larson–Miller (L-M) time-temperature parameter,

822, 825–830
Lattice plane and site, 48
Lead, 66, 67, 202
Leak-before-break condition, 369–371
Liberty Ships and tankers, 343
Lignin, 100
Line defects (dislocations), 48, 50
Linear-elastic fracture mechanics (LEFM), 339,

347, 386, 398
See also Fracture mechanics

Linear elastic material, 203
Linear hardening, 194, 643–644
Linear polymers, 87–88
Linear variable differential transformers (LVDTs),

122
Linear viscoelasticity, 196, 223, 836–838

component analysis for, 850–853
damping for, 855–863, 865–866
step loading for, 844–846

Liquid metal embrittlement, 616
Load cells, 122
Load factor design, 32, 296–297, 318, 321

in fatigue, 461–462, 476, 534
Loading path dependence, 658–659
Local yielding, 508–509, 511–513, 710, 714–717
Log decrement, 858

Lognormal distribution, 451, 908
Loss coefficient, 858
Low-alloy steels, 34, 74, 77–78

AISI-SAE designations for (table), 75
Low-carbon steel, 76
Low-cycle fatigue, 26, 423–424, 754
Low-density polyethylene (LDPE), 91–92, 139
Lower yield point, 130
Low-temperature creep, 817

M

Magnesium and alloys, 41, 47, 66–67, 83, 111, 138,
152, 202

Magnetoelastic damping, 860
Major Poisson’s ratio, 221
Malleable iron, 76
Manganese, 47, 66, 76
Manson, S. S., 750, 834
Maps, for creep mechanisms, 807, 817
Maraging steels, 79, 138, 152, 340
MARM 302 (superalloy), 83
Martensite, 77
Martensitic stainless steel, 79
Materials damping, 804, 855–862, 865–866

See also Damping in materials
Materials selection, 66, 105–112
Maximum normal stress fracture criterion, 279–282,

311, 314
Maximum shear stress, 246–251
Maximum shear stress yield criterion, 282–286

development of, 282–284
graphical representation of, 284–285
hydrostatic stresses and, 285–286

Mean stress, 418–419
discussion of, 765, 782–785
effects of, 451–452, 758–767
equivalent life for, 761–762, 765
in fatigue crack growth, 574–583
life estimates with, 456–461
mean stress equations, 454–456, 760–765
mean stress tests, 759
normalized amplitude-mean diagrams, 452–454
for notched members, 510–520, 523
presentation of mean stress data, 451–452
safety factors with, 461–462
in strain-based fatigue, 758–767

modified Morrow approach, 762–763
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Mean stress (Continued)
Morrow equation, 761–762, 765
Smith, Watson, and Topper (SWT) parameter,

763–764
Walker relationship, 764–765

Mean stress relaxation, 678–681, 783–785
Mechanical behavior of materials, 19, 37
Mechanical testing, 118–176

bending and torsion tests, 169–175
closed-loop servohydraulic test system, 121–122
compression tests, 151–156
creep tests, 804–809
cyclic stress–strain tests, 668–671
engineering stress–strain properties (in tension),

128–137
environmental crack growth tests, 616–618
extensometers, 122
fatigue tests

crack growth, 569–574
strain-life, 748–753
stress–life (S-N ), 430–435, 527–529

fracture toughness tests, 371–374, 390–391,
395–398

hardness tests, 157–164
hardness correlations and conversions, 163–164

Instron Corp. testing machine, 121
linear variable differential transformers (LVDTs),

122
load cells, 122
MTS Systems Corp., 121
notch-impact tests, 164–169
specimens, 118–119
standard test methods, 122–123
strain gages, 122
tensile behavior, 137–143
tension tests, 123–128
test equipment, 119–122
true stress–strain curves and properties, 148–150
universal testing machines, 119–121

Medium-carbon steels, 76–77
Memory effect, 196, 661, 677, 730, 734, 775–776,

789
Metallic bonding, 43–44
Metals, 40–41

alloying/processing of, 66–72
creep in, 802, 813–819
cyclic deformation in, 668–676
environmental crack growth in, 616–621

fatigue in, 435–451, 754–757
fatigue crack growth in, 584–590
fracture in, 374–381
irons and steels, 72–79
low-stress damping in, 858–862
nonferrous metals, 80–84
strengthening methods for, 68–72

Microcracks, 338, 786, 820–821
Microstrain, 126
Microvoid coalescence. See Dimpled rupture
Mild steel, 76
Miner, M. A., 468
Minimum detectable crack length, 562
Mixed-mode fracture, 381
Models. See Rheological models
Modified Goodman equation and line, 454
Modified Mohr fracture criterion, 311–314, 321–322
Modulus of elasticity. See Elastic modulus
Mohr, Otto, 240, 255
Mohr’s circle, 240–244, 247, 250–251, 255, 263–264

as failure envelope, 301
Mohs hardness scale, 157
Molybdenum, 66, 79
Monotonic loading, 639
Monotonic plastic zone, 611
Monotonic proportional loading, 658–659
Monotonic straining, 194
Morrow, J., 455, 761
Morrow mean stress relationship, 455–456, 761–763
MTS Systems Corp., 121
Multiaxial stress effects

creep, 833, 848–850
elastic deformation, anisotropic case, 214–223
elastic deformation, isotropic case, 204–213
fatigue, 463–467, 767–771
fracture, cracked members, 381, 387–389
fracture, uncracked members, 279–282, 299–318
plastic deformation, 649–659, 717–718
yielding, 282–295
See also Three-dimensional stress–strain

relationships

N

Nabarro–Herring creep, 814–815
NASGRO, 602
Natural stone, 94, 96, 112
Naval brass, 83
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Necking, 131–132, 138–140, 805
Network modifiers, 98
Neuber constant, 499
Neuber, H., 499
Neuber’s rule, 694, 714–717, 720, 727, 733,

772–774, 789
strain-based fatigue method, 771–781
residual stresses and strains at notches, 719–722

Neutron radiation effects, 381
Nickel, 34, 47, 49, 66, 67, 70, 83–84, 98, 587, 803,

807, 817
plating, 447

Nickel-base superalloys, 41, 83, 582, 751,
824, 827

Niobium, 66
Nitrides, 59
Nitriding of steels, 447, 540
Nodular iron, 75
Nominal stresses, 420

point stresses vs., 420–421
Nonferrous metals, 80–84

aluminum alloys, 80–82, 111
copper alloys, 83
magnesium alloys, 83, 111
superalloys, 83, 111
titanium alloys, 82–83, 111

Nonlinear creep equations, 838–841
Nonlinear hardening, rheological modeling of,

648–649
Nonpropagating cracks, 496, 789
Nonproportional loading, 463, 466, 658–659,

732–733, 769–770, 780
Normal distribution, 451, 902–904
Normal stress fracture criterion, 279–282, 311, 314
Normalized amplitude-mean diagram, 452–454
Notch effects in fatigue, 443, 491–497

crack growth effect, 495–496
fatigue notch factor, 493–494, 497–501
at intermediate and short lives, 506–510
and mean stress, 510–520
process zone size and weakest-link effects,

494–495
reversed yielding effect, 496–497

Notch sensitivity, 497–501
Notched members, 710–722

elastic behavior and initial yielding, 712–713
elastic stress concentration factor, 337–338, 420,

889–890

fracture criteria for, 297–298
fully plastic yielding, 713–714, 894–899
local yielding analysis

Neuber’s rule, 694, 714–717, 720, 727, 733,
772, 774, 789

strain energy (Glinka) method, 717
residual stresses and strains in, 539–540, 719–722,

732
strain-based fatigue method, 771–785
stress-based fatigue method, 491–543
yield criteria for, 297–298

Notched specimens, 119, 435, 531
Notch-impact tests, 164–169, 336

Charpy V-notch test, 165
dynamic tear test, 165
fracture toughness vs., 168–169, 379
Izod tests, 165
temperature-transition behavior, 168

Numerical integration (for crack growth), 598–601
Nylons, 41, 86, 111, 139, 140, 202

O

Octahedral planes, stresses on, 260–262
Octahedral shear stress yield criterion, 288–295

development of, 288–290
energy of distortion, 292
graphical representation of, 290–292

Offset yield strength, 130
Opening mode crack, 344
Orthotropic materials, 215–217
Overall range, 471
Overload effects. See Sequence effects in fatigue
Oxidation, and creep, 803
Oxides, 59, 94, 96–99

P

Palmgren, A., 468
Palmgren–Miner rule, 468–469, 475, 478,

527, 529, 535, 542, 775–776, 786–787,
833–834

Paris equation, 564–565, 621
Particulate composites, 100–102
Peaks, 471
Pearlite, 76
Percent elongation, 22, 131–132
Percent reduction in area (%RA), 131–132
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Perfectly plastic stress–strain curve, 194–196,
641–643

See also Elastic, perfectly plastic stress–strain
relationship

Periodic inspections for cracks, 562–563, 607
Periodic overstrains (in fatigue), 449, 787
Peterson constant, 497–499
Phase angle, 856, 858
Plain-carbon steels, 72, 76
Plane strain fracture toughness, 339, 373–381,

390–391, 399–400
Plain strain, 263

crack plastic zone, 385–386
fracture effect, 373–374, 387–389, 391
in notch, 717–718

Plane stress, 235–245, 249–253
crack plastic zone, 384–385
fracture effect, 387–389, 391
generalized, 244–245, 263–264
Mohr’s circle for, 240–242
plastic deformation for, 654–657
principal stresses, 237–239
rotation of coordinate axes, 236–237

Plastic collapse, 693, 700, 890–899
Plastic deformation, 21–22, 55–59, 190, 194–196,

200–201, 223
behavior and models for materials, 638–683
in bending, 694–703

analysis by integration, 696–698
discontinuous stress–strain curves, 699–701
elastic bending, 694–696
Ramberg–Osgood Stress–strain curve, 701–703
rectangular cross sections, 698

of components under cyclic loading, 722–734
cyclic stress–strain behavior of materials,

668–681
cyclic stress–strain curves and trends, 671–673
cyclic stress–strain tests and behavior, 668–670
hysteresis loop curve shapes, 673–677
mean stress relaxation, 678–681

by dislocation motion, 56–58
fracture methods for, 391–398
memory effect in, 196, 661, 677, 730, 775, 776,

789
in notched members, 496, 506–513, 710–722
rheological modeling of, 194–196, 641–644,

648–649, 659–668
cyclic loading behavior, 664–667

irregular strain versus time histories, 667–668
unloading behavior, 661–664

significance of, 638–639
stress-strain curves, 641–649, 681

elastic, linear-hardening relationship, 643–644
elastic, perfectly plastic relationship, 641–643,

681, 699, 710, 715
elastic, power-hardening relationship, 644, 716
Ramberg–Osgood relationship, 644–645, 671,

701–703, 708, 710, 716, 771
simple power-hardening relationship, 698, 709

three-dimensional stress–strain relationships,
649–659

application to plane stress, 654–656
deformation plasticity theory, 650–653
deformation vs. incremental theories, 658–659
effective stress–strain curve, 653–654

time dependence of, 639
in torsion, 707–710
unloading and cyclic loading behavior from

rheological models, 659–668
Plastic hinge, 700–701
Plastic modulus, 651–652
Plastic strain, 21, 190, 200–201, 638

See also Plastic deformation
Plastic strain damping, 860–862
Plastic zone (at crack tip), 338, 381–390, 392

for cyclic loading, 610–612
for plane strain, 385–386
for plane stress, 384–385
plane stress versus plane strain, 387–389
plasticity limitations on LEFM, 386–387

Plasticity. See Plastic deformation
Plasticizers, 93
Plastics. See Polymers
Plating, 447, 540
Plywood, 41, 104
Point defects, 48–49

interstitial impurity, 49
self interstitial, 49
substitutional impurity, 48
vacancy, 48–49

Poisson’s ratio, 129, 202–204, 213, 682
for anistropic materials, 216–217, 221
generalized, 653
and Hooke’s law, 204–206, 652

Polaris missile, 343
Polycarbonate (PC), 86, 88, 106, 139, 202
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Polycrystalline materials, 48
Polyethylene (PE), 41, 44, 55, 85–86, 88, 111, 139,

202, 813, 839
crystal structure of, 87

Polyethylene terephthalate (PET), 86
Polyisoprene, 88, 90
Polymers, 40–41, 84–94, 111, 203

amorphous, 48, 88
atactic, isotactic, syndiotactic, 88
classes, examples, and uses of (table), 85
combining and modifying, 92–94
covalent bonds in, 46
creep in, 802–803, 813
crystalline, 88
and cyclic loading, 445, 672–673
damping in, 861
elastomers, 84, 90–91
fatigue in, 441, 445, 752
fatigue crack growth in, 585
fracture toughness of, 373, 376
linear, 88
molecular structures of, 84–86, 91
naming conventions, 84
strengthening effects, 91–92
tensile stress-strain curves for, 126–127, 130–131
thermoplastics, 84–86

crystalline versus amorphous, 86–88
molecular structure of, 84–86

thermosetting plastics, 84, 89–90
yield criteria for, 299
yield strengths in compression, 299
yield strengths in tension, 130

Polymethyl methacrylate (PMMA), 84–85, 88
Polyoxymethylene (POM), 86, 88
Polyphenylene oxide (PPO), 86
Polypropylene (PP), 85–86, 88
Polystyrene (PS), 41, 85–86, 88, 139, 341
Polytetrafluoroethylene (PTFE), 84–86, 140
Polyurethane elastomers, 90
Polyvinyl chloride (PVC), 41, 46, 85, 86, 88, 139,

341
Poncelet, J. V., 417
Pop-in crack, 390
Porcelain, 94, 95, 112, 161
Potential drop method, 396, 569
Potential energy, in fracture, 345, 393–394
Power-hardening stress–strain relationship, 148, 644

in bending, 698

in notched members, 716
in torsion, 709

Power-law creep, 813–816
in bending, 854
relaxation for, 843–844

Precipitate, coherent, 70, 102
Precipitation hardening, 70–72, 79–83, 101
Precipitation-hardening stainless steels, 73, 79, 578,

582
Precrack, 390, 395–396, 569
Prepregs, 103
Presetting, 446–447, 539
Pressure effect. See Hydrostatic stress
Pressure vessels

cracks in, 336
leak-before-break design, 369–371
stresses in, 884–888

Primary chemical bonds, 42–44
Primary stage of creep, 805

See also Transient creep
Primitive cubic (PC) structure, 46–47
Principal axes, 235, 255
Principal strains, 263
Principal stresses, 235, 237–240, 256–257

directions for, 235, 237–240, 257–260
and the maximum shear stress, 245–253
principal normal stresses, 237, 245, 255
principal shear stresses, 246–251

Process zone size, 494–495
Product liability costs, 36
Proportional limit, 130
Proportional loading, 280, 658–659
Prototype, 32–34

Q

Quality factor, 858
Quasi-isotropic material, 221
Quenching and tempering of steels, 72–73, 76–77, 79

R

Radiation embrittlement, 381
Rainflow cycle counting, 471–474, 677, 775–777
Ramberg–Osgood relationship, 148, 644–648

in bending, 701–703
for biaxial stress, 656
for cyclic stress–strain curve, 671, 747
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Ramberg–Osgood relationship (Continued)
in notched members, 716
in pure shear, 708
for tension test, 148–151
time variable added, 840
in torsion, 710

Range of stress, 418–419, 471, 564
Ratchetting, 678–679
R-curve, 397–398
Reaction bonding, 97
Reciprocating bending test, 433–434
Recovery of creep strain, 198, 201, 223, 813,

820–821, 841–842
Redistributed stress, 298, 338, 384
Reduction in area, 131, 132, 149
Refractory metals, 66
Region of K -dominance, 386
Reinforcement in polymers, 93–94
Relative P-M rule, 542
Relaxation behavior, 198–199, 223, 842–844

for mean stress, 678–680, 783–785
Remnant displacement, 856, 858
Repeating unit in polymers, 84
Residual stresses and strains, 446–447, 536

for bending, 703–707
analysis for interior of the beam, 706–707

and fatigue, 446–447, 539–541
at notches, 539–541, 719–722
and plastic deformation, 638–640

Resonant vibration, 434
Reversed yielding (at notches), 496–497, 511–513
Rheological models, 190–200, 223, 640, 659–661

damping behavior of, 855–857
creep in, 191–194, 196–198, 836–838, 844
linear viscoelastic behavior of, 836–838
plastic deformation in, 194–196, 641–644,

648–649
recovery in, 198, 813–814
relaxation in, 198–200, 842–844
unloading and cyclic loading behavior from

cyclic loading behavior, 664–665
irregular strain versus time histories, 667–668
unloading behavior, 661–663

Rockwell hardness test, 162–163, 175
Rolling, 66, 68
Rosettes, strain gage, 266–267
Rotating bending test, 430–433
Rotating disc, stresses, 887–889

R-ratio, 419–420
effects in crack growth, 574–584
in mean stress equations, 455–456, 514, 516–517,

765
Rubbers, 41, 90–91
Rupture

in creep, 25, 37, 804–807, 821–834
dimpled, 376, 378
modulus of, in bending, 171

S

SAE Fatigue Design Handbook, 455, 474, 540, 694
SAE steel nomenclature, 73–75
Safety, 29
Safety factors, 30–32, 278

for crack growth, 562–563
for cracked members, 356–359
for creep rupture, 831–833
in design, 30–32
for fatigue, 427–429, 461, 475–477
for uncracked member fracture, 279–281, 310,

314, 321
for yielding, 284, 290, 296

Safety margin in temperature, 831
Sandwich materials, 105
Scarf joints, 537
Scleroscope hardness test, 157
Screw dislocation, 50
Secant modulus, 652, 653
Secondary chemical bonds, 44–46
Secondary stage of creep, 805
Self interstitial, 49
Sequence effects in fatigue, 449, 469, 542, 601,

606–607, 785–787, 790
Service experience, 34
Servo-hydraulic machines, 121–122, 435
Shear center, 695
Shear lip, 441
Shear modulus, 106, 173, 205, 216

for composite materials, 216–217, 221
Shear stress yield criterion, 282–288
Sherby–Dorn (S-D) time-temperature parameter,

822–825
Shigley, J. E., S-N curve estimate, 520
Ship structures, cracks in, 336, 343
Short cracks, defined, 613–614
Shot peening, 446, 539
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SiC-aluminum composite, 41, 102, 140
Silica (SiO2), 98
Silica glasses. See Glass
Silicon, 55, 59, 66
Silicon carbide (SiC), 55, 95, 102, 104, 161, 202, 341
Silicon nitride (Si3N4), 95, 97, 161, 341
Simple range, 471
Simpson’s rule, 598
Simulated service testing, 33
Sintering, 97
Size effect, in fatigue, 494–495, 503–505, 758
Sliding mode crack, 344
Slip (in crystals), 56–58, 436–437, 815
Slope reduction factor, 643, 649
Slow-stable crack growth, 390–391, 399
Small cracks, defined, 613–615

limitations for, 613–615
transition length, 615

Small-strain theory, 204
Smith, Watson, and Topper (SWT) equation, 455

for notched members, 510, 513–516
for strain-life curves, 763–764

Smooth specimens, 118, 435
S-N (stress vs. fatigue life) curves, 421–426, 746,

750
component S-N data, use of, 527–535

Bailey bridge example, 527–529
curves for welded members, 531–535
matching to notched specimen data, 531
mean stress and variable amplitude cases, 529

equations for, 423, 443, 456–457, 516–520,
531–535

estimating, 520–527
safety factors for, 427–429, 461, 476, 535
trends in, 441–451

environment and frequency effects, 445
geometry, 443
mean stress, 443
microstructure, effects of, 445–446
ultimate strength, 441–443

Walker equation fit, 516–520
Snoek effect, 858–859
S-N -P curves, 451
Solid solution strengthening, 69–70, 80, 82, 83
Solution heat treatment. See Precipitation hardening
Specimens, test, 118–119, 169

for bending, 170
for compression, 151

for fatigue, 434–435, 748
for fatigue crack growth, 569
for fracture toughness, 371–373
for notch-impact, 165–166
for tension, 123–124
for torsion, 172–175

Spherulites, 87
Spring and slider rheological models, 194–196,

659–668
Stacking fault, 50
Stainless steels, 34, 72, 78–79
Standard test methods, 122–123

See also ASTM Standards
State-of-stress effects. See Multiaxial stress effects
Static loading

fracture under, 23
life estimates for crack growth, 616–621

Static loads, 429
Stationary loading, 602
Statistical variation

in fatigue, 449–451
in fracture toughness, 376, 906
in materials properties, 900–908

Steady-state creep, 191–194, 196–197, 805
Steam engines, 34
Steels, 41, 72–79, 98, 111, 298, 343

as-quenched, 77
carbon, 76–77
high-carbon, 76–77
low-alloy, 34, 72, 77–78
low-carbon, 76
medium-carbon, 76–77
mild, 76, 202
naming system for, 73–75
plain-carbon, 72, 76
quenching and tempering, 77
stainless, 34, 72, 78–79, 202
tool, 72, 79

Step loading
creep deformation under, 844–848
creep rupture under, 833–834
of linear viscoelastic models, 844–846

Stiffness, 94, 105, 112
See also Elastic modulus

Storage modulus, 858
Strain, 21, 125–128

complex states of, 262–267
engineering shear strains, 262, 650
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Strain (Continued)
engineering type, 125
plane stress, special considerations for, 263–266
principal strains, 263
strain gage rosettes, 266–267
tensor shear strains, 262, 650
transformation of axes, 262
true type, 144
units for, 126

Strain-based approach to fatigue, 417, 745–790
crack growth effects, 787–789
development of, 746
discussion, 781–789
life estimates for structural components, 771–781

constant amplitude loading, 771–774
irregular load vs. time histories, 775–780
simplified procedure for irregular histories,

780–781
local mean stress, sequence effects related to, 785
mean stress effects, 758–767, 782–785

mean stress tests, 759
multiaxial stress effects, 767–771

critical plane approaches, 769–771
effective strain approach, 768–769

physical damage to the material, sequence effects
related to, 786–787

stress-based approach compared to, 745–746,
781–782

Strain energy density (Glinka) method, 717
Strain energy release rate G, 345, 348, 393–394
Strain gages, 122

rosettes, 266–267
Strain hardening, 134, 194, 643–649
Strain hardening exponent, 148, 644
Strain-hardening rule, in creep, 846–848
Strain–life data, availability of, 750–752
Strain-range partitioning approach, 834–836
Strain versus life curves, 746, 748–758

creep–fatigue interaction, 757
engineering metals, trends for, 754–757
factors affecting, 757–759
strain–life tests and equations, 748–754
surface finish and size effects, 757–758
transition fatigue life, 753–754
mean stress effects, 758–767

Strength, 20, 105, 111, 129–130, 149–150
in bending, 170–171
in compression, 154–156

in tension, 129–130, 149–150
theoretical, 53–55
in torsion, 172–173

Strength coefficient, 148
Strengthening effects in polymers, 91–92
Strengthening methods for metals, 66–72
Stress, 20, 124–128

basic formulas for, 880–882
components of, 235–236
definitions for cycling, 418–420
engineering type, 125
generalized plane stress, 244–245
Mohr’s circle for, 240–244
nominal type, 420
on octahedral planes, 260–262
plane stress, 235–236, 249–253
point stress vs. nominal stress, 420–421
in pressure vessels, tubes, discs, 884–889
principal stresses, 235, 237–240, 245–247,

253–257
three-dimensional states of, 253–260
transformation of axes, 236–237
true type, 143–144
von Mises stress, 298

Stress amplitude, 418–419
Stress and strain concentration factors, 710, 712,

714–717
See also Elastic stress concentration factor;

Notched members
Stress corrosion cracking, 25, 616
Stress field, at crack, 346–347
Stress gradient, 494
Stress intensity factor, 339, 346–348

range for fatigue crack growth, 564, 571
See also Fracture mechanics

Stress invariants, 211, 257, 261
Stress raisers, 491, 889–892

and design details, 536–539
effects of, 297–298
and fatigue strength reduction, 443, 493–500,

541–542
from surface roughness, 503
from welding, 447, 531
See also Notch effects in fatigue; Notched

members
Stress range, 418–419
Stress ratio R, 419
Stress redistribution, 298, 338, 384
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Stress relaxation, 198–199, 223, 2842–844
Stress relief, 540
Stress-based approach to fatigue, 416–479, 491–543

fatigue failure, designing to avoid, 536–541
See also Fatigue limits; Fatigue testing; Mean

stress, effects of; Notch effects in fatigue;
S-N (stress vs. fatigue life) curves

Stress–life curves
for creep, 806–808, 831
for fatigue, 421–426
See also S-N (stress vs. fatigue life) curves

Stress–strain analysis
for creep, 850–855
for cyclic loading, 722–728

in bending, 722–725
with irregular load vs. time histories, 728–732

of notched members, 710–722
elastic behavior and initial yielding, 712–713
estimates of notch stress and strain for local

yielding, 714–717
fully plastic yielding, 713–714
geometric constraint at notches, effects of,

717–718
residual stresses and strains at notches, 719–722

of plastically deforming members, 693–734
plasticity analysis for bending, 694–703

discontinuous stress–strain curves, 699–701
Ramberg–Osgood stress–strain curve, 701–703

plasticity of circular shafts in torsion, 707–710
stress–strain curves for shear, 707–709

residual stresses and strains for bending, 703–707
Stress–strain curves, 126–127, 641–649

biaxiality effect, 654–656
in compression, 153–155
for cyclic loading, 671–677
elastic, linear-hardening relationship, 643–644
elastic, perfectly plastic relationship, 641–643
elastic, power-hardening relationship, 644
isochronous type, 809, 836–838, 850–854,

864–865
Ramberg–Osgood relationship, 148, 644–648,

656, 671, 708, 747, 840
for shear, 707–709
simple power-hardening relationship, 698, 709
in tension, 123–151
with time variable added, 836–841
for unloading, 641, 661–664

Stress–strain relationships, 190–224

anisotropic materials, 214–223
anisotropic Hooke’s law, 214–217
cubic material, 216
elastic modulus parallel to fibers, 219–220
elastic modulus transverse to fibers, 220–221
fibrous composites, 217–218
orthotropic materials, 215–217

creep deformation, 836–841, 848–850
elastic deformation (isotropic case), 201–213

bulk modulus, 210
comparison with plastic and creep

deformations, 213
Hooke’s Law for three dimensions, 204–206
hydrostatic stress, 210
thermal strains, 211–213
volumetric strain, 209–211

plastic deformation, 641–648, 649–658
See also Plastic deformation; Rheological models

Stress–strain–time relationships, 836–841, 848–850
linear viscoelasticity, 836–838
nonlinear creep equations, 838–841

Striations, 441
Subgrains, 50
Substitutional alloys, 69–70
Substitutional impurity, 48
Superalloys, 41, 83–84, 111
Superposition principle in viscoelasticity,

844–846
Superposition for combined loading

in cracked members, 366–369
for stresses, 882

Surface cracks, 360–364
Surface finish effects, 446–447, 503–506, 757
Surface hardening treatments, 540
Surface residual stresses, 446–447, 539–541
SWT. See Smith, Watson, and Topper (SWT)

equation
Symmetric second-order tensors, 262
Synergistic effect, 27–28
Synthesis in design, 30

T

Tangent modulus, 129
Tanker failure, 343
Tantalum, 66
Tapered joints, 537
Tearing mode crack, 344
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Technological challenge, 34–36, 37
Teflon (PTFE), 84–86, 140
Temperature effects

in creep, 802–803, 809–829
in fatigue, 445, 757, 834–836
in fatigue crack growth, 587–589
in fracture toughness, 376–379
in notch-impact, 166–169
in tension, 140–143

Temperature, safety margin in, 831
Temperature transition behavior

in notch-impact tests, 166–169
in fracture toughness, 376–379

Temperature-compensated time, 822
Tempering, 72–73, 76–77, 79
Tensile strength, 22, 106, 129–130
Tensile toughness, 133, 149
Tensile viscosity, 193, 810, 848
Tension test, 123–128

ductile vs. brittle behavior in, 126–127
engineering properties from, 128–134
stress–strain curves, 137–143
test methodology, 123–127
true stress–strain interpretation of, 143–151

Tensor shear strains, 262, 650
Tensors, 262
Tertiary stage of creep, 805
Tests and test methods. See ASTM Standards;

Mechanical testing
Test equipment, 119–122
Test specimens, 118–119

See also Specimens, test
Theoretical strength, 53–55
Theory of linear elasticity, 191, 347
Thermal activation, 811–813
Thermal current damping, 859–860
Thermal fatigue, 26
Thermal strains, 211–213
Thermoelastic effect, 859–860
Thermoplastics, 84–86, 111

crystalline versus amorphous, 86–89
molecular structure of, 84–86

Thermosetting plastics, 84, 89–90, 111–112
Thin-walled tubes. See Tubes
Three-dimensional states of stress, 253–260

principal normal stresses, directions, 256–257
Three-dimensional stress–strain relationships

creep, 848–850

elastic deformation, anisotropic case, 214–217
elastic deformation, isotropic case, 204–213
plastic deformation, 649–659

application to plane stress, 654–656
deformation plasticity theory, 650–653
deformation vs. incremental theories, 658–659
effective stress–strain curve, 653–654

Threshold stress intensity
in environmental cracking, 617
in fatigue crack growth, 565, 572, 581–584

Time to rupture in creep, 806–808, 821–834, 864
Time-based growth rate, of cracks, 616
Time-dependent behavior. See Creep; Damping in

materials; Environmental crack growth
Time-dependent elastic modulus, 837, 851–852,

865
Time-fraction rule, 833–834, 865
Time-hardening rule, 846–848
Time–temperature parameters, in creep, 821–833

fitting equations for, 828–830
Larson–Miller (L-M) parameter, 822, 825–827
Sherby–Dorn (S-D) parameter, 822–825

Tin, 66, 70, 83
Titanium and alloys, 41, 47, 66, 67, 82–83, 106, 111,

202, 340, 751, 906
Titanium aluminide (Ti3Al), 41
Tool steel, 72, 79
Torsion of circular shafts

elastic analysis of, 880–882
plastic analysis of, 707–710, 891–895

Torsion test, 169, 172–175
Total strain plasticity theory, 641, 649–659
Toughness, from tension tests, 133, 149

See also Fracture toughness
Transformation of axes, 237

for plane stress, 236–237
for plane strain, 262–263

Transgranular fracture, 610–611
Transient behavior, mean stress relaxation,

678–681
Transient creep, 192–193, 805, 836–841
Transition crack length, 342
Transition fatigue life, 753–754
Transversely isotropic material, 217
Tresca criterion. See Maximum shear stress yield

criterion
Triaxial stresses. See Multiaxial stress effects;

Three-dimensional states of stress
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Triaxiality factor, 769
True fracture strain and strength, 149–151
True stress–strain interpretation of tension test,

143–152
Bridgman correction for hoop stress, 146–147
constant volume assumption, 144–145
true stresses and strains, defined, 143–144
true stress–strain curves, 148–149
true stress–strain equations, limitations on,

145–146
true stress–strain properties, 149–152
true toughness, 149

Tubes
stresses in, 884–888
torsion tests of, 173–175

Tungsten, 55, 66, 67, 79, 101–102, 202
Tungsten carbide (WC), 41, 97–98
Twin boundary, 50
Type I and II tests in triaxial compression, 311

U

Udimet 500 (superalloy), 83
Ultimate tensile strength, 22, 106, 129
Ultrasonics, and crack inspection, 336, 562
Unit cell, 46
Unit damping energy, 856, 858
Universal gas constants, 812
Universal testing machines, 119–121
Unloading

rheological modeling of, 661–663
stress–strain curves for, 640–641, 663–664

Unloading compliance method, 395–396
Unnotched specimens, 118, 435
UNS System, 74
Upper yield point, 130

V

Vacancy, 48–49
Valleys, 471
Vanadium, 66
Van der Walls bond, 42, 45
Variable amplitude loading, 468–477

cycle counting for irregular histories, 471–475
effect on fatigue limit, 449, 469
equivalent stress level and safety factors,

475–477

life estimates for crack growth, 601–607
crack increments, 601–602
repeating or stationary histories, 602–605
sequence effect, 601, 606–607

Palmgren–Miner rule, 468–470, 786–787
rheological modeling of, 667–668
sources of, 429–430
in strain based fatigue, 775–781, 785
stress-strain analysis of components for, 728–732
stress-strain behavior for, 673–677

Vibratory loads, 429
Vickers hardness test, 160–162, 175
Viscoelasticity, linear. See Linear viscoelasticity
Viscosities, 193, 810, 848
Viscous creep, 810–813, 815
Volume fractions, in composites, 220–221
Volumetric strain, 209–211
von Mises criterion. See Octahedral shear stress yield

criterion
von Mises stress, 298
Vulcanization, 90

W

Walker equation, for crack growth, 574–580,
581–582

Walker mean stress relationship, 455–456
fitting, 516–520
for notched members, 510, 513–514
for strain-life curves, 764–765

Waspaloy (superalloy), 83
Weakest-link effect, 495
Weibull distribution, 451, 908
Weight function method, 354
Welded structural members, component S-N curves

for, 531–535
Welds

and stress raisers, 447, 531, 537
voids in, 335, 531

Whiskers, 102
White iron, 75–76
Wöhler, August, 417, 430
Wood, 100
Working loads, 429
Wrought iron, 74
Wrought metals, 67
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X

X-ray photographs, and crack inspection, 336, 562

Y

Yield criteria, 275
for anisotropic and pressure sensitive materials,

298–299
discussion of, 295–299
maximum shear stress, 282–288
octahedral shear stress, 288–295
for polymers, 299

Yield strength, 21, 105–106, 129–130, 153, 642–645,
671–673

Yield surface, 278, 284–285, 291

Yielding, 21, 129–130, 640, 641
at crack tips, 338, 381–390, 392, 610–612
fully plastic, 357, 583, 594, 713–714, 890–899
initial yielding, 713, 893–895
local notch stress and strain, 714–717
and notch fatigue, 506–514
See also Plastic deformation

Young’s modulus, 128, 193
See also Elastic modulus

Z

Zero-mean-stress-equivalent life, 760–762, 765
Zero-to-tension cycling, 419–420
Zinc, 47, 66, 70, 83
Zirconium, 66



Answers for Problems and
Questions

INSTRUCTOR’S SUPPLEMENT

The pages that follow give the answers for Problems and Questions where a numerical value or
the development of a new equation is requested. Where a series of values needs to be calculated,
a typical set of these is given. Approximately half of these answers are the same as those given in
the textbook itself.

This supplement is not intended for distribution as a unit to students. Of course, it may be useful
to provide students with answers for individual problems from this listing.

CHAPTER 1

1.7 X1 = 1.43
1.8 X1 = 1.615

CHAPTER 3

3.15 (a) pine = 1, CFRP = 2; (b) pine = 1, 1020 steel = 2; (c) pine or 7075 Al
3.16 X and mass: CFRP = 1, Ti-6-4 = 2; X and cost: pine = 1, 4340 steel = 2; �L and mass:

CFRP = 1, 7075 Al = 2; �L and cost: 1020 steel = 1, pine = 2; compromise: 7075 Al, or
neglecting cost, CFRP

3.17 (a) mass: pine = 1, CFRP = 2; (b) cost: pine = 1, 1020 steel = 2
3.18 (a) mass: CFRP = 1, Ti-6-4 = 2; cost: pine = 1, 4340 steel = 2; compromise: 7075 Al or

GFRP; (b) t = 8.076 mm for AISI 1020 steel, t = 11.35 mm for Ti-6Al-4V
3.19 Ti-6-4, GFRP, and CFRP also pass requirements. Ti-6-4 and CFRP are extremely costly.

GFRP costs 1.8 times the 4340 steel, but weighs 54% as much.
3.20 (c) steel h2 = 1.541 mm, Ti h2 = 3.625 mm, CFRP h2 = 4.474 mm; (d) steel economical,

CFRP lightest

CHAPTER 4

4.4 (a) For P = 38.53 kN: σ = 490.5 MPa, ε = 0.0032, (b) σo = 958 MPa, (c) Po2 = 752.41 kN
4.5 (a) E = 207.3 GPa, (b) L A = 100.493 mm, L0 = 100.00 mm, (c) εp = 0.01581, (d) L B =

101.581 mm, L0 = 101.58 mm

1


Typewritten Text
2 problems out of 3 come from the 3rd edition.Instructor solutions manual (ISM) for the 3rd edition c2007 available on torrent.info_hash ("DNA"): ECA34661CF9DF54D84496102137598C2C156E32B
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4.6 E = 72.4 GPa, σo = 302 MPa, σu = 323 MPa, 100ε f = 14.6%, 100εp f = 14.28%, %RA =
28.7%

4.7 E = 97.7 GPa, σo = 180 MPa, σu = 240 MPa, 100ε f = 1.17%, 100εp f = 0.93%, %RA =
9.75%

4.8 E = 206.6 GPa, σo = 831 MPa, σu = 918 MPa, 100ε f = 20.4%, 100εp f = 20.1%, %RA =
64%

4.9 E = 200.3 GPa, σo = 1520 MPa, σu = 2047 MPa, 100ε f = 8.22%, 100εp f = 7.28%, %RA
= 12.2%

4.10 E = 68.9 GPa, σo = 528 MPa, σu = 597 MPa, 100ε f = 15.3%, 100εp f = 14.5%, %RA =
36%

4.11 E = 140.9 GPa, σo = 414 MPa, σu = 483 MPa, 100ε f = 1.45%, 100εp f = 1.10%
4.12 E = 3527.4 MPa, σou = 55.9 MPa, σu = 55.9 MPa, 100ε f = 65%, 100εp f = 48.0%, %RA =

67%
4.13 E = 2530 MPa, σou = 63.3 MPa, σu = 63.3 MPa, 100ε f = 3.19%, 100εp f = 80.0%, %RA =

46.5%
4.14 E = 3730 MPa, σ0.2% = 38 MPa, σu = 66.3 MPa, 100ε f = 3.19%, 100εp f = 1.41%, %RA

small
4.19 (a) For σ = 1970 MPa: σ̃ = 2029 MPa, ε̃ = 0.0296, ε̃p = 0.0195; (b) H = 3196 MPa, n =

0.1186, (c) σ̃ f = 2037 MPa, ε̃ f = 0.0733, ε̃p f = 0.0632, no
4.20 (a) For σ = 319 MPa: σ̃ = 335 MPa, ε̃ = 0.0490, ε̃p = 0.0443; (b) H = 382 MPa, n = 0.0418
4.21 (a) For σ = 587 MPa: σ̃ = 622 MPa, ε̃ = 0.0581, ε̃p = 0.0490; (b) H = 749 MPa, n = 0.0597
4.22 (a) E = 211.9 GPa, σo = 317 MPa, σu = 576 MPa, %RA = 69.3%; (b) For σ = 558 MPa:

ε̃ = 0.341, σ̃B = 725 MPa, ε̃p = 0.337; (c) H = 915 MPa, n = 0.191
4.23 AISI 4142 as quench, H= 3783 MPa, others same procedure
4.24 (c) σu = Hnn/en

4.27 (a) E = 100.7 GPa, σoc = 394 MPa, σuc = 804 MPa, length change = −12.9%, area change
= − 32.6%

4.32 (b) σu = 2.03 × 10−6 HB3 − 4.51 × 10−4 HB2 + 3.33 HB,
(c) σu = 1.87 × 10−6 HV3 − 6.62 × 10−4 HV2 + 3.22 HV

4.36 σ f b = 3L1

4tc2
Pf , E = L1(3L2 − 4L2

1)

32tc3

(
d P

dv

)
4.37 σ f b = 317 MPa, E = 336 GPa
4.38 x̄ = 418.6 MPa, sx = 45.3 MPa, δx = 10.8%

CHAPTER 5

5.2 (a) εe = 0.003125, εp = 0.006875; (b) Yield again at (ε, σ) = (0.006875,−250 MPa)
5.4 εe = 0.0058, εp = 0.0194
5.5 (ε, σ) = (0.01321, 50 MPa) at t = 300 s; (ε, σ) = (0.0125, 0 MPa) at t = 600 s
5.7 (ε, σ) = (0.0250, 50 MPa) at t = 0 s; (ε, σ) = (0.0230, 40 MPa) at t = 86,400 s

5.8 σi = E1ε
′, σ = σi[

t B E1(m − 1)σm−1
i + 1

] 1/(m−1)
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5.9 t50% = 19.7 months
5.10 (a) 25 MPa, (b) 0.01, (c) −0.00375, (d) 2.5 GPa, (e) 0.375, (f) 0.91 GPa
5.11 (a) 254.7 MPa, (b) 0.002523, (c) −0.000883, (d) 200.5 mm, (e) 49.956 mm

5.13 (b) σx = E

1 − ν2
(εx + νεy), σy = E

1 − ν2
(εy + νεx ); (c) εz = − ν

1 − ν
(εx + εy)

5.14 σx = 236.53, σy = 214.1, τxy = 56.11 MPa, εz = −1561.6 × 10−6

5.15 σx = 44.87, σy = −20.87, τxy = 8.352 MPa, εz = 3800 × 10−6

5.16 σx = −341.4, σy = 90, τxy = 48.84 MPa, εz = 347.17 × 10−6

5.17 σx = −5.847 MPa, σy = −201.2 MPa, τxy = 32.56 MPa, εz = 285.9 × 10−6

5.18 σx = 460.82, σy = 179.56, τxy = 28.665 MPa, εz = −1926.48 × 10−6

5.19 E = 70.3 GPa, ν = 0.34

5.20 �r = pr2(1 − ν)

2t E
,�t = −νpr

E

5.21
dVe

Ve
= pD(5 − 4ν)

4t E

5.22
dVe

Ve
= 3pD(1 − ν)

4t E

5.23 (a) E ′ = E

1 − νλ

5.24 (a) σx = σy = νσz

(1 − ν)
, (b) E ′ = E(1 − ν)

(1 + ν)(1 − 2ν)

5.25 (a) σz = νσx (1 + λ), (b) E ′ = E

1 − νλ − ν2(1 + λ)

5.26 (a) σx = σy = −18.39 MPa, εz = 6676.5 × 10−6, εv = 6676.5 × 10−6; (b) E ′ = 4.493 GPa
5.27 σz = −406.78 MPa
5.28 σz = −70 MPa, εx = −133.66 × 10−6, εy = −668.32 × 10−6

5.29 (a) σz = −103.5 MPa, εx = εy = −889.6 × 10−6, εv = −1779.2 × 10−6;
(b) E ′ = 168.6 GPa

5.30 (a) For MgO: �T = −30◦C (down shock), �T = 182◦C (up shock)
5.31 (a) εx = 1618.8 × 10−6, εy = −1059.7 × 10−6, εz = 294.45 × 10−6,

γxy = 2542.37 × 10−6;
(b) εx = 1028 × 10−6, εy = 1649.7 × 10−6, εz = −884.4 × 10−6, γxy = 2542.37 × 10−6

5.32 (a) εx = 1594.4 × 10−6, εy = 150.33 × 10−6, εz = −716.1 × 10−6, γxy = 2890.2 × 10−6;
(b) εx = 2259.4 × 10−6, εy = 814.33 × 10−6, εz = −52.1 × 10−6, γxy = 2890.2 × 10−6

5.33 (b) �T = −11.99◦C
5.35 EX = 216.6, EY = 158.72, G XY = 59.2 GPa, νXY = 0.31165, νY X = 0.228
5.36 EX = 37.95, EY = 6.677, G XY = 2.52 GPa, νXY = 0.275, νY X = 0.04838
5.37 EX = 44.8, EY = 8.16, G XY = 3.08 GPa, νXY = 0.264, νY X = 0.0481
5.38 EX = 75.8, EY = 8.39, G XY = 3.15 GPa, νXY = 0.342, νY X = 0.0379
5.39 EX = 132.2, EY = 8.54, G XY = 3.22 GPa, νXY = 0.252, νY X = 0.0163
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5.40 EX = 320, EY = 8.66, G XY = 3.26 GPa, νXY = 0.252, νY X = 0.00682
5.42 εX = 2061 × 10−6, εY = 1102 × 10−6, γXY = 9524 × 10−6

5.43 σX = 131.2, σY =−15.25, τXY = 11.00 MPa
5.44 σX = 1870, σy = 25 MPa
5.45 (a) EX = 131.8 GPa, νXY = 0.327, EY = 9.61 GPa, νY X = 0.0189, and a better value is

0.0238; (b) Er = 201 GPa
5.46 (a) Vr = 0.651; (b) EX = 48.0, EY = 6.48, G XY = 2.41 GPa, νXY = 0.265, νY X = 0.0358
5.47 (a) Vr = 0.460; (b) EX = 220, EY = 113.0, G XY = 42.5 GPa, νXY = 0.288, νY X = 0.1457
5.48 (a) Vr = 0.454; (b) EX = 225, EY = 112.7, G XY = 42.2 GPa, νXY = 0.315, νY X = 0.1581
5.49 (a) Vr = 0.471; (b) EX = 250, EY = 178.6, G XY = 67.1 GPa, νXY = 0.295, νY X = 0.211
5.50 (a) EX = 170 GPa requires Er = 254 GPa min, and EY = 85 GPa requires Er = 213 GPa

min; (b) SiC, Al2O3, or tungsten

CHAPTER 6

(Note: For tubes and spherical shells, thin-wall approximations are used where possible.)

Prob. σ1 σ2 τ3 θn σmax τmax

6.1 8 4 2 45◦ CW 8 −5
6.2 7.1 −7.1 7.1 22.5◦ (CCW) 7.1 3.6
6.3 40 −18 29 21.8◦ (CW) 40 20
6.4 131 21 55 0 131 65.5
6.5 37.9 18.1 9.9 22.5◦ (CCW) 37.9 19
6.6 365.9 117.1 124.4 16.8◦ (CCW) 365.9 183
6.7 129.3 −84.3 106.8 8.2◦ (CCW) 129.3 64.7
6.8 62.3 −72.3 67.3 24◦ (CCW) 62.3 31.2
6.9 92.4 47.6 22.4 31.7◦ (CW) 92.4 46.2

Note: All values except θn are stresses in MPa units.

Prob. σ1 σ2 σ3 τ1 τ2 τ3 σmax τmax θn

6.10 4.4 −5.4 −3 1.2 3.7 4.9 4.4 4 45◦ CW
6.11 14 −56 70 63 28 35 70 63 0
6.12 241 −41 250 146 5 141 250 146 22.5◦ (CCW)
6.13 367 117 −69 93 218 125 367 218 16.8◦ (CCW)
6.14 276 −126 200 163 38 201 276 201 32.8◦ (CW)

Notes: All values except θn are stresses in MPa units. Rotation θn in x-y plane gives 1- and 2-axes;
z-axis is 3-axis.

6.15 (a) σ1,2,3 = 200, 100,0; τmax = 100 MPa
6.16 σmax = 0, τmax = 83.6 MPa
6.17 σmax = 535, τmax = 268 MPa
6.18 σmax = 18.0 MPa on any plane normal to the surface; τmax = 9.60 MPa on any plane inclined

45◦ to the inside surface.



Answers for Problems and Questions 5

6.19 σmax = 304, τmax = 157.1 MPa
6.20 σmax = 306, τmax = 164.0 MPa
6.21 σmax = 319, τmax = 201 MPa
6.22 σmax = 281, τmax = 159.1 MPa

6.23 (a) τmax = 16
πd3

√
M2 + T 2, (b) 50.3 mm

6.24 σmax = 419, τmax = 251 MPa
6.25 σmax = 130.5, τmax = 79.6 MPa

6.26 (a) τmax = 2

πd2

√
P2 +

(
8T

d

)2

, (b) d = 45.8 mm

6.27 σmax = 250, τmax = 125.0 MPa

6.28 (a) τmax = 3pr3
1r3

2

4R3(r3
2 − r3

1 )
; (b) σ1,2,3 = 339, 339, −300; τ1,2,3 = 320, 320, 0 MPa

6.29 (a) τmax = pr2
1r2

2

R2(r2
2 − r2

1 )
; (b) σ1,2,3 = 177.8, 456, −100; τ1,2,3 = 278, 138.9, 138.9 MPa

6.30 τmax = 151.1 MPa
6.31 τmax = 189.9 MPa
6.32 (a) For R = 160 mm: σr = 81.1, σt = 206 MPa; (b) σmax = 338, τmax = 168.9 MPa

Prob. σ1 σ2 σ3 τ1 τ2 τ3 σmax τmax

6.33 140.0 10.0 0.00 5.00 70.0 65.0 140.0 70.0
6.34 140.0 10.0 200 95.0 30.0 65.0 200 95.0

Note: All values are stresses in MPa units.

Prob. l1 m1 n1 l2 m2 n2 l3 m3 n3

6.33 0.555 −0.832 0 0.832 0.555 0 0 0 1.000
6.34 0.555 0.832 0 −0.832 0.555 0 0 0 1.000

Prob. σ1 σ2 σ3 τ1 τ2 τ3 σmax τmax

6.36 117.5 28.7 −56.2 42.4 86.8 44.4 117.5 86.8
6.37 141.4 0 −141.4 70.7 141.4 70.7 141.4 141.4
6.38 450 0 −400 200 425 225 450 425
6.39 0 −50.0 150.0 100.0 75.0 25.0 150.0 100.0
6.40 122.5 0 −122.5 61.2 122.5 61.2 122.5 122.5
6.41 88.1 −62.5 −125.6 31.6 106.9 75.3 88.1 106.9
6.42 79.9 30.4 4.74 12.83 37.6 24.7 79.9 37.6
6.43 48.7 3.22 −31.9 17.57 40.3 22.7 48.7 40.3

Note: All values are stresses in MPa units.
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Prob. l1 m1 n1 l2 m2 n2 l3 m3 n3

6.36 −0.300 0.945 0.1296 0.0803 −0.1103 0.991 0.951 0.308 −0.0428
6.37 0.500 0.500 0.707 0.707 −0.707 0 0.500 0.500 −0.707
6.38 0.485 0.485 0.728 0.707 −0.707 0 0.514 0.514 −0.686
6.39 −0.577 0.577 0.577 0 0.707 −0.707 0.816 0.408 0.408
6.40 0.908 0.0918 0.408 −0.408 0.408 0.816 −0.0918 −0.908 0.408
6.41 0.928 0.1337 0.348 0.325 0.1695 −0.930 −0.1835 0.976 0.1138
6.42 0.280 0.767 −0.577 0.749 0.202 0.631 0.601 −0.609 −0.518
6.43 0.657 −0.612 −0.440 0.449 0.787 −0.423 0.605 0.0807 0.792

6.44 (a) σ1,2,3 = 90.0, 130.0, −160.0; τmax = 95.0 MPa
6.45 σh = 7.3, τh = 24.2 MPa
6.46 σh = 138, τh = 178.2 MPa

6.47 σmax = 1

2

(
σx +

√
σ 2

x + 4τ 2
xy

)
, τmax = 1

2

√
σ 2

x + 4τ 2
xy, τh =

√
2

3

√
σ 2

x + 3τ 2
xy

6.48 τh =
√

2

3

√
σ 2

x − σxσy + σ 2
y

6.49 τh = 2

3

√
τ 2

1 + τ 2
2 + τ 2

3

6.50 τh =
√

2

3

pr2
1r2

2

R2(r2
2 − r2

1 )

6.51 (a) τh = 125.5 MPa
6.53 ε1,2,3 = 213 × 10−6, −783 × 10−6, 236 × 10−6;

γ1,2,3 = 1019 × 10−6, 23.1 × 10−6, 996 × 10−6

6.55 ε1,2,3 = 2439 × 10−6, 711 × 10−6, −1659 × 10−6;
γ1,2,3 = 2370 × 10−6, 4098 × 10−6, 1728 × 10−6

6.56 ε1 = 11.3 × 10−3, ε2 = −8.2 × 10−3, ε3 = −1.9 × 10−3,
γ1 = 6.3 × 10−3, γ2 = 13.2 × 10−3, γ3 = 19.5 × 10−3

6.57 εy = 1

3
(2ε60 + 2ε120 − εx ), γxy = 2√

3
(ε60 − ε120)

6.58 εh = εx + εy + εz

3
, γh = 2

3

√
(εx − εy)2 + (εy − εz)2 + (εz − εx )2 + 3/

2(γ 2
xy + γ 2

yz + γ 2
zx )

CHAPTER 7

(Note: For tubes and spherical shells, thin-wall approximations are used where possible.)

7.1 X N T = 4.08
7.2 X N T = 1.14
7.3 X N T = 2.25
7.4 X N T = 1.76
7.5 (a) X S = 2.91, (b) X H = 3.29
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7.6 (a) X S = 3.72, (b) X H = 4.28
7.7 (a) X S = 1.59, (b) X H = 1.84
7.8 (a) σoS = 915, (b) σoH = 810 MPa
7.9 (a) σoS = 252, (b) σoH = 218.6 MPa

7.10 (a) σy = σo, (b) σy = σo/2, (c) σy = σo, (d) σy = ∞
7.11 X S = 1.60, or X H = 1.82
7.12 X S = 3.63, or X H = 4.14
7.13 X S = 1.42, or X H = 1.46

7.14 (a) dS =
(

32 T X

πσo

)1/3

, (b) dH =
(

16
√

3 T X

πσo

)1/3

7.15 X S = 1.542, or X H = 1.655
7.16 X S = 1.637, or X H = 1.692
7.17 X S = 2.74, or X H = 2.91
7.18 X H = 4.93
7.19 dS = 56.4, or dH = 54.8 mm
7.20 X S = 2.04, or X H = 2.15
7.21 (a) X S = 1.215, or X H = 1.340, (b) dS = 88.5, or dH = 84.5 mm
7.22 (a) X S = 1.752, or X H = 1.915, (b) tS = 2.82, or tH = 2.60 mm

7.23 (a) dS =
(

32X

πσo

√
M2 + T 2

)1/3

, (b) dH =
(

16X

πσo

√
4M2 + 3T 2

)1/3

7.24 (a) X S = 0.855, or X H = 0.983, (b) AISI 4142 steel (450◦C): X S = 1.627, or X H = 1.873

7.25 (a) σzS = σo, (b) σzH = σo√
1 − ν + ν2

, (c) σzH = −373 MPa

7.26 (a) σz = σo(1 − ν)

1 − 2ν
, (b) same, (c) σzH = −1817 MPa

7.27 If σ̄H used: σy = σo√
1 − λ + λ2 + ν(ν − 1)(1 + λ)2

7.28 τxy = 108.3M Pa
7.29 (a) τxy = 463.8 MPa
7.30 X S = 2.56, or X H = 2.93
7.31 X S = 2.20, or X H = 2.53
7.32 (a) X S = 1.455, or X H = 1.664, (b) r2S = 37.8, or r2H = 36.5 mm

7.33 (a) r2S = r1

(
σo

σo − 2pX

)1/2

, or r2H = r1

(
σo

σo − √
3pX

)1/2

,

(b) r2S = 53.8, or r2H = 51.1 mm

7.34 (a) X S = X H = 1.587, (b) f = 205 rev/s
7.35 (a) dS = 52.1 mm, mS = 16.76 kg, or dH = 50.5 mm, m H = 15.74 kg
7.36 dS = 89.4, or dH = 85.2 mm

7.37 (a) dS =
(

32

πσo

√
(YM M)2 + (YT T )2

)1/3

, (b) dH =
(

16

πσo

√
4(YM M)2 + 3(YT T )2

)1/3
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7.38 T = 1251 N·m
7.39 (a) σz = −89.7 MPa
7.42 (a) τi = 34.6 MPa, μ = 1.477
7.43 (a) m = 0.794, τi = 33.4 MPa, μ = 1.307, φ = 52.6◦, θc = 18.71◦,

(c) σ ′
uc = −197.3, σ ′

ut = 22.6 MPa
7.44 (a) m = 0.497, τi = 9.87 MPa, μ = 0.572, φ = 29.8◦, θc = 30.1◦,

(c) σ ′
uc = −34.0, σ ′

ut = 11.44 MPa
7.45 (a) m = 0.631, τi = 11.54 MPa, μ = 0.814, φ = 39.1◦, θc = 25.4◦,

(c) σ ′
uc = −48.5, σ ′

ut = 10.97 MPa
7.46 (a) h = 4.41, |σ ′

uc| = 48.7 MPa, (b) k = 6.03 MPa1−a , a = 0.912, |σuc| = 45.3 MPa
7.48 (b) σ ′

uc = −1000, σi = −499 MPa, (d) X M M = 1.500, 1.304, 1.667
7.49 σ3 = −73.2 MPa
7.50 (a) X M M = 2.38, (b) σx = σy = −5.37 MPa
7.51 (a) X M M = 11.18, (b) X M M = 1.885, (c) X M M = 9.59
7.52 (a) X M M = 1.880, (b) p = 33.4 MPa
7.53 (a) X M M = 2.80, (b) X M M = 1.893, (c) σz = −10.63 MPa
7.54 T = 2.22 kN·m
7.55 (a) P = 3260 kN C, (b) P = 1132 kN C
7.56 (a) X M M = 5.04, (b) X M M = 3.80

CHAPTER 8

(Note: Small-crack approximate F values are used where possible.)

8.1 (b) at = 10.32 mm, at = 0.142 mm, respectively
8.2 (c) at = 2.36 mm, at = 20.87 mm, respectively
8.3 (a) For AISI 1140 steel, at = 4.75 mm
8.4 (a) For AISI 4130 steel, at = 3.24 mm; for SiC, at = 0.106 mm
8.6 At α = 0.8, Fa = 1.808, Fb = 1.8, Fc = 1.565
8.7 (a) X K = 3.47, (b) X ′

o = 3.76, (c) X ′
o = 3.01

8.8 (a) X K = 1.317, X ′
o = 1.62; (b) X K = 0.95, X ′

o = 1.08
8.9 (a) X K = 1.09, (b) X K = 0.77, (c) a = 6.02 mm, (d) a = 2.6 mm

8.10 (a) P = 11.28 kN, (b) a = 5.09 mm
8.11 (a) a = 0.719 mm, (b) a = 11.5 mm
8.12 a = 24.3 mm
8.13 (a) KI c = 20.80 MPa

√
m, (b) σo = 46.9 MPa

8.14 (a) P = 188.39 kN, (b) P = 70.523 kN
8.15 (a) X K = 1.49, X ′

o = 2.25, (b) X K = 0.529, X ′
o = 0.66

8.16 (a) X K = 1.72, X ′
o = 2.19, (b) b = 20.26 mm

8.17 Using α = a/b: (a) Po = πb2σo(1 − α)2, (b) Mo = 4

3
b3σo(1 − α)3

8.18 M = 5.7 kN·m
8.19 X K = 0.584, Xo = 1.85
8.20 (a) M = 146.4 kN·m
8.21 (b) X K = 2.61, (c) a = 1.132 mm, (d) a = 3.64 mm
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8.22 (a) X K = 3.05, X ′
o = 5.22 (ignoring crack)

8.23 (a) X K = 1.219
8.24 (a) a = 25.05 mm, (b) a = 2.04 mm, (c) Xa = 12.27
8.25 (a) t = 12.30 mm
8.26 (b) X K = 3.53, (c) a = 0.389 mm
8.27 (a) do = 55.28 mm, (b) dc = 63.28 mm, (c) d = 63.28 mm
8.28 (a) X K = 5.25, (b) X K = 3.62 (exact F)

8.29 P = 14.3 kN
8.30 (a) P = 111.94 kN, (b) P = 101 kN
8.31 p = 1.236 MPa
8.32 (a) For α = 0.1, FP2 = 1.040; for α = 0.8, FP2 = 1.272
8.33 X K = 2.91, X ′

o = 3.16
8.34 (a) Xo = 6.27, Xa = 2.99; (b) Xo = 2.74, Xa = 24.7; (c) K I c = 112.8 MPa

√
m,

(d) X K = 3.00
8.35 X K = 3.16, Xo = 2.01
8.36 X K = 3.14, Xo = 4.15
8.37 In order as in Fig. 8.35: a = 37.3, 11.71, 9.71, 3.10 mm
8.38 (a) Mo = 6.40 kN·m, (b) Mc = 1.721 kN·m
8.39 (a) Sgc = 46.6 MPa, (b) Sgo = 82.8 MPa
8.40 (a) Xo = 2.07, X K = 7.20; (b) for d = 53.5 mm, Xo = 3.28, X K = 3.00

8.41 (a) For S-L glass: �T = −23.7◦C, (b) f2 = K I c(1 − ν)

Eα
8.42 (a) do = 45.9 mm, dc = 29.4 mm; (b) d = 45.9 mm; (c) d = 38.7 mm, σo = 1340 MPa; (d) for

a = 0.50 mm: d = 37.9 mm, σo = 1420 MPa; for a = 2.0 mm: d = 39.3 mm, σo = 1275 MPa
8.46 X K = 3.10
8.47 (a) Not plane strain, LEFM applicable; (b) 2roσ = 1.33 mm
8.48 (a) K Q = 37.5 MPa

√
m; (b) not plane strain, LEFM not applicable

8.49 (a, b) KQ = K I c = 49.7 MPa
√

m, (c) 2roε = 0.1378 mm
8.50

Test K Q Plane 2roσ 2roε LEFM Po Fully
No. MPa

√
m Strain? mm mm OK? kN Plastic?

1 31.9 no 1.274 — yes 7.41 no
2 29.7 no 1.102 — yes 15.2 no
3 23.5 yes, K I c — 0.230 yes 48.3 no

8.51 (a) If a < (b − a), h, then Sg
/
σo = 1

/
(2F); (b) Sg

/
σo = 0.500, 0.446, 0.785, respectively

8.52 For ac = 3.00 mm: (a) SgK = 680 MPa, (b) SgK e = 498 MPa

CHAPTER 9

9.3 (a) D = σ1 − σ2

log N1 − log N2
, C = σ1 − D log N1, (b) D = −170.0 MPa, C = 1450 MPa

9.4 (b) σ ′
f = 1272.4125 MPa, b = −0.0697
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9.5 (b) σ ′
f = 2569.3674 MPa, b = −0.1954

9.6 (b) σ ′
f = 1106.47 MPa, b = −0.0759

9.7 (b) σ ′
f = 789.16 MPa, b = −0.0518

9.8 (b) σ ′
f = 2025.59 MPa, b = −0.185

9.9 (a) X N = 3.00, X S = 1.1637
9.10 (a) X S = 1.2, X N = 5.91; (b) N̂ = 28, 507 cycles
9.11 N̂ = 4.526 × 105 cycles, X N = 33.98

Prob.
N f , cycles

(a) (b) (c)

9.21 6.7 × 104 3.7 × 104 1.16 × 105

9.22 6.7 × 104 1.98 × 104 4.27 × 105

9.23 6.7 × 104 3.51 × 104 1.788 × 105

9.24 3.003 × 104 8.723 × 103 9.05 × 104

9.25 3.003 × 104 6.89 × 103 2.39 × 105

9.26 3.003 × 104 1.0714 × 104 1.283 × 105

9.27 1.422 × 105 1.798 × 104 7.84 × 105

9.28 1.422 × 105 2.08 × 104 3.51 × 106

9.29 For σa in MPa: (a) σa = 738(2N f )
−0.0648, (b) σa = 938(2N f )

−0.0648,

(c) σa = 1138(2N f )
−0.0648

9.30 For σa in MPa: (a) N f = 1

2

(√
(σa + 100)σa

900

)1/−0.102

, (b) N f = 1

2

( σa

900

)1/−0.102
,

(c) N f = 1

2

(√
(σa − 100)σa

900

)1/−0.102

9.31 (a) For σa = 379, σm = 621 MPa: σar = 550 MPa, σa/σar = 0.690
9.32 For σa = 379, σm = 621: (a) σar = 616, (b) σar = 532 MPa
9.33 For σa = 293, σm = 592: (a) σar = 685, (b) σar = 548, (c) σar = 399, (d) σar = 509 MPa
9.34 For σa = 447, σm = 267: (a) σar = 593, (b) σar = 536, (c) σar = 539, (d) σar = 565 MPa
9.35 For σmax = 469 MPa, R = 0.60: (a) σar = 383, (b) σar = 257, (c) σar = 119.4,

(d) σar = 210 MPa
9.36 X S = 1.422, X N = 101.5 by Morrow; X S = 1.344, X N = 48.34 by SWT
9.37 X S = 1.271, X N = 10.49 by Morrow; X S = 1.173, X N = 4.785 by SWT
9.38 X S = 1.77, X N = 348.95 by Morrow; X S = 1.68, X N = 202.85 by SWT
9.39 By SWT: (a) X N = 104.02; (b) Ym = 1.62; by Morrow: (a) X N = 337; (b) Ym = 1.69
9.40 By SWT: (a) X N = 1100.8; (b) Ya = 2.74; by Morrow: (a) X N = 22,296; (b) Ya = 2.86
9.41 For SWT and σ̄H : (a) p = 15.65 MPa, (b) X H = 1.71
9.42 (a) N f = 284,000 cycles, (b) Xo = 1.122, (c) d = 52.5 mm, (d, e) d = 55.1 mm
9.43 N3 = 47158 cycles
9.44 B f = 160,500 reps by SWT
9.45 B f = 49.8 reps by Morrow, or 375 reps by SWT
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9.46 B f = 21,200 reps by Morrow, or 3,520 reps by SWT
9.47 B f = 1775 reps by Morrow, or 742 reps by SWT
9.48 B f = 101,100 reps by Morrow, or 53,300 reps by SWT
9.49 B f = 2280 reps by Morrow, or 3080 reps by SWT
9.50 B f = 4110 reps by Morrow, or 2770 reps by SWT
9.51 (a) B f = 36,300 reps by SWT; (b) X S = 1.442, X N = 36.3
9.52 B f = 3260 reps by SWT
9.53 XS = 1.215, X N = 6.52
9.54 By SWT: (a) B f = 1.538 × 109 revs, 128,200 hrs, (b) Y = 1.541 for 2000 hrs; by Morrow:

(a) B f = 5.96 × 109 revs, 497,000 hrs, (b) Y = 1.725 for 2000 hrs

CHAPTER 10

(Note: For determining k f , the Peterson equation is used unless Neuber is indicated.)

10.2 kt = 3.10, k f = 2.4; or k f = 2.5 by Neuber
10.3 kt = 1.62, k f = 1.4, Ser = 98 MPa; or k f = 1.3, Ser = 96 MPa by Neuber
10.4 kt = 3.40, k f = 3.2, Ser = 123 MPa; or k f = 3.00, Ser = 131 MPa by Neuber
10.5 kt = 1.85, k f = 1.83, σar = 426 MPa
10.6 kt = 2.7, k f = 2.04, Ma = 14.38 N·m
10.7 kt = 2.53, k f = 2.31, Pa = 2.70 kN; or k f = 2.07, Pa = 3.01 kN by Neuber
10.8 kt = 1.78, k f = 1.75, Ma= 124 N·m; or k f = 1.71, Ma= 127 N·m by Neuber

10.10 Ma = 2.55 kN·m
10.11 (a) Ma = 10.4 N·m, (b) ρ = 2.63 mm; or (a) 10.6 N·m, (b) 1.91 mm by Neuber
10.12 Ta = 140.5 N·m by Juvinall
10.14 (a) Sa = 1013 − 156.7 log N f MPa; (b) N f = 23,100 cycles by Eq. 10.21, or 22,500 cycles

by Eq. 10.28
10.15 (a) Smax= 356 MPa, (b) Smax= 325 MPa
10.16 (a) Ma = 7.71 N·m, (b) Ma = 7.76 N·m
10.17 (a) Pm = 33.9 kN, (b) Pm = 10.26 kN
10.18 X S = 0.727, X N = 26
10.19 Ma = 6 N·m by Eq. 10.21
10.20 (a) X S = 1.43, (b) ρ = 1.65 mm by Eq. 10.28
10.21 For Smax = 207, Sm = 69 MPa: (a) Sar = 159.9 MPa, (b) Sar = 169.0 MPa, (c) k f = 1.92

by Neuber, k f m = 1.55, Sar = 175.3 MPa
10.22 For Smax = 224, Sm = 138 MPa: (a) Sar = 113.3 MPa, (b) Sar = 138.8 MPa
10.23 A = 1312 MPa, B = −0.208, γ = 0.775
10.24 A = 2066 MPa, B = −0.1280, γ = 0.472
10.25 A = 799 MPa, B = −0.1996, γ = 0.479
10.26 A = 1811 MPa, B = −0.1074, γ = 0.652
10.27 A = 2283 MPa, B = −0.1404, γ = 0.545
10.28 A = 1536 MPa, B = −0.0924, γ = 0.782
10.29 A = 2035 MPa, B = −0.1844, γ = 0.530
10.30 (a) σar = 1515 N−0.1271

f MPa (103 ≤ N f ≤ 106), (b) N f = 10,790 cycles
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10.31 (a) σar = 681 N−0.0934
f MPa (103 ≤ N f ≤ 106), (b) N f = 1.31 × 107 cycles

10.32 X S = 1.70, X N = 40.2
10.33 (a) Sar = 417 N−0.0739

f , (b) Sar = 536 N−0.0962
f MPa (103 ≤ N f ≤ 106)

10.34 (a) Sar = 473 N−0.0739
f , (b) Sar = 603 N−0.0956

f MPa (103 ≤ N f ≤ 106)

10.35 Sar = 353 N−0.0873
f MPa (103 ≤ N f ≤ 106), by Neuber

10.36 X S = 1.26 as designed, X S = 1.00 as made, by Juvinall, Neuber
10.37 (a) B f = 10.88 reps for Smax = 240 MPa, B f = 19.05 reps for Smax = 209 MPa
10.38 (a) B f = 345 reps; (b) X N = 1.725, X S = 0.88
10.39 (a) B f = 2940 reps; (b) X N = 4.90, X S = 1.412
10.40 (a) B f = 8.19 reps
10.41 (a) B f = 7.45 reps
10.42 (a) B f = 3.56, 79.7, 3240 reps, respectively, by Eq. 10.30
10.43 (a) B f = 203 years; (b) X N = 2.71, X S = 1.393
10.44 (a) �Sq = 20.6 MPa; (b) B f = 140.5 years, X N = 1.874, X S = 1.233; (c) 23 years

CHAPTER 11

(Notes: For Eq. 11.32, F is approximated as Fi . Also, F is varied to find a f where possible.)

Prob. m C ,
mm/cycle

(MPa
√

m)m
Prob. m C ,

mm / cycle

(MPa
√

m)m

11.1 3.16 2.12 × 10−9 11.7 (b) 3.01 9.38 × 10−8

11.2 2.69 1.31 × 10−8 11.8 (b) 2.37 4.13 × 10−8

11.3 24.0 3.84 × 10−19 11.9 4.33 1.296 × 10−8

11.4 6.34 1.53 × 10−6 11.10 (a) 3.56 3.77 × 10−8

11.5 (b) 2.90 5.18 × 10−8 11.11 3.53 4.59 × 10−9

11.6 (b) 3.18 9.51 × 10−9 11.12 (a) 2.66 1.396 × 10−8

11.13 (a) C0 = 3.29 × 10−8, C0.5 = 4.69 × 10−8, C0.8 = 7.50 × 10−8 mm/cycle
/
(MPa

√
m)m ;

(b) 1.426 for R = 0.5, and 2.28 for R = 0.8
11.14 C0.5 = 6.80 × 10−8 mm/cycle

/
(MPa

√
m)m

11.15 p = mγ, q = m(1 − γ )

11.16 (a) m = 4.24, γ = 0.735, C0 = 8.20 × 10−11 mm/cycle
/
(MPa

√
m)m

11.17 (a) m = 2.46, γ = 0.762, C0 = 2.57 × 10−8 mm/cycle
/
(MPa

√
m)m

11.18 (b) m = 4.07, γ = 0.738, C0 = 1.536 × 10−10 mm/cycle
/
(MPa

√
m)m

11.19 (b) m = 2.96, γ = 0.553, C0 = 4.08 × 10−8 mm/cycle
/
(MPa

√
m)m

11.20 (b) m = 2.50, γ = 0.781, C0 = 2.52 × 10−8 mm/cycle
/
(MPa

√
m)m

11.22 �K th = 7.11 MPa
√

m, γth = 0.218

11.26 Ni f = ln (a f /ai )

πC(F �S)2
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11.27 Ni f = 1

C

(
t
√

π

�P

)m a1+m/2
f − a1+m/2

i

1 + m/2

11.28 Ni f = a f − ai

C

(
t
√

b

0.89 �P

)m

11.29 Ni f =
(1 − R)Kc(a

1−m2/2
f − a1−m2/2

i )

C2(F �S
√

π)m2(1 − m2/2)
−

a1.5−m2/2
f − a1.5−m2/2

i

C2(F �S
√

π)m2−1(1.5 − m2/2)
(m 	= 2, m 	= 3)

11.30 (a) Ni f = 1

πC �S2

(
ln sin

πa f

2b
− ln sin

πai

2b

)
11.31 Ni f = 46,600 cycles
11.32 Ni f = 86,100 cycles
11.33 Ni f = 16,730 cycles
11.34 (a) Ni f = 98,800 cycles, (b) X N = 0.494, (c) Ni f = 32,900 cycles
11.35 Ni f = 38,900 cycles
11.36 Ni f = 4240 cycles
11.37 ai = 0.473 mm
11.38 �P = 275 kN
11.39 (a) ai = 0.883 mm, (b) for X N = 5.0, Np = 20,000 cycles
11.40 (a) Ni f = 67,600 cycles, (b) ad = 0.400 mm
11.41 Ni f = 84,800 cycles
11.42 Ni f = 1,346,000 cycles
11.43 (a) a f = 28.8 mm, (b) Ni f = 739,000 cycles
11.44 Ni f = 45,400 cycles
11.45 ai = 0.548 mm
11.46 Ni f = 2,615,000 cycles
11.47 Ni f = 1,805,000 cycles
11.48 (a) Ni f = 425,000 cycles, (b) X K = 2.97
11.49 Ni f = 1,493,000 cycles
11.50 Bi f = 3760 reps
11.51 Bi f = 5.16 reps
11.52 Bi f = 109.8 reps
11.53 Bi f = 1700 reps
11.54 Bi f = 1509 reps
11.55 (a) X K = 3.41, X ′

o = 2.28
11.56 (a) Ni f = 56,800 cycles, (b) X N = 0.946, (c) ad = 0.268 mm, (d) Np = 18,930 cycles,

(e) Snew / Sold = 0.720
11.57 (a) Ni f = 465,000 cycles, (b) X N = 0.465, (c) Np = 155,100 cycles, (d) a = 1.70 mm,

(e) X K = 11.29, X ′
o = 2.22

11.58 Soda: n = 20.3, A = 1.67 m/s
/
(MPa

√
m)n ;

Ultra: n = 36.5, A = 2.05 × 107 m/s
/
(MPa

√
m)n

11.59 ti f = (C2/S)20.3 for ti f in seconds, S in MPa; C2 = 166.1, 121.5, 88.9 for ai = 5, 10, 20 μm,
respectively
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CHAPTER 12

12.1 E = 52,200 MPa, σo = 783 MPa, δ = 0.13
12.2 E = 30,000 MPa, σo = 1200 MPa, δ = 0.733
12.3 Eq. 12.1: E = 206,200 MPa, σo = 830 MPa
12.4 Eq. 12.8: E = 201,300 MPa, H1 = 1759 MPa, n1 = 0.0468
12.5 Eq. 12.12: E = 140,900 MPa, H = 820 MPa, n = 0.1105
12.6 Eq. 12.12: E = 71,500 MPa, H = 337 MPa, n = 0.01851
12.7 Eq. 12.12: E = 198,400 MPa, H = 3020 MPa, n = 0.1093
12.8 Eq. 12.12: E = 97,700 MPa; for σ ≤ 173.0 MPa: H = 2060 MPa, n = 0.382;

for σ ≥ 173.0 MPa: H = 592 MPa, n = 0.1898
12.9 Parabola: σ = −53,800ε2 + 3790ε MPa

12.11
�r

r
= (1 − ν)pr

2t E
+ 1

2

( pr

2t H

)1/n

12.12
dVe

Ve
= (5 − 4ν)pr

2t E
+ √

3

(√
3 pr

2t H

)1/n

12.13 ε1 = (1 − νλ)
σ1

E
(σ̄ ≤ σo);

ε1 = λ(0.5 − ν)
σ1

E
+ (1 − 0.5λ)

(
1 − λ + λ2

)
(1−n1)/(2n1)

(
σ1

H1

)1/n1

(σ̄ ≥ σo)

12.14 ε2 = (λ − ν)
σ1

E
+ (λ − 0.5)

(
1 − λ + λ2

)
(1−n)/(2n)

(σ1

H

)1/n
;

ε3 = −ν(1 + λ)
σ1

E
− 0.5(1 + λ)

(
1 − λ + λ2

)
(1−n)/(2n)

(σ1

H

)1/n

12.16 γ = τ

G
(τ ≤ τo); γ = τo

G
+ (2ν − 1 + 3/δ)

τ − τo

2G(1 + ν)
(τ ≥ τo)

12.17 (a) ε1 = (1 − ν − να)
σ1

E
+ 1

2

(
σ1(1 − α)

H

)1/n

12.18 (a) σ2 = ν̃σ1, σ1 = σ̄√
1 − ν̃ + ν̃2

, ε1 = ε̄ (1 − ν̃2)√
1 − ν̃ + ν̃2

12.19 (a) σ2 = ν̃σ1

1 − ν̃
, σ1 = σ̄ (1 − ν̃)

1 − 2ν̃
, ε1 = ε̄ (1 + ν̃)

12.20 (a, c) σmax = 600, σmin = −600 MPa; (b) σmax = 600, σmin = −240 MPa
12.21 (a) σmax = 570, σmin = −570 MPa; (b) σ = 690, −350, 750 MPa
12.22 (a) σmax = 629, σmin = −203 MPa; (b) σmax = 629, σmin = −439 MPa
12.23 σmax = 1400, σmin = −800 MPa
12.24 σmax = 1400, σmin = −800 MPa
12.25 σA,B,C,D,A′ = 1400, −1200, 1000, −600, 1400 MPa
12.26 σmax = 478, σmin = −311 MPa
12.27 σmin = −478, σmax = 311 MPa
12.28 σmax = 876, σmin = −494 MPa
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12.29 σmax = 663, σmin = −490 MPa
12.32 (a) H ′ = 770 MPa, n′ = 0.106
12.33 (a) H ′ = 551 MPa, n′ = 0.07
12.34 (a) H ′ = 1076 MPa, n′ = 0.0905
12.35 (a) H ′

τ = 594 MPa, n′ = 0.212; (b) G = 79,100 MPa, H ′
τ = 648 MPa, n′ = 0.208

12.36 (a) σmax = 577, σmin = −191.1 MPa; (b) σmi = 193.0, σm50,000 = 38.0 MPa
12.37 (a) σmax = 1247, σmin = −379 MPa; (b) σmi = 434, σm10,000 = 362 MPa
12.38 σA,B,C = −478, 278, 354 MPa
12.39 σA,B,C = 489, −371, 417 MPa
12.40 σA,B,C = 770 MPa, −240 MPa, 912 MPa
12.41 σA,B,C = 1513 MPa, −1927 MPa, 1660 MPa

CHAPTER 13

13.1 M = 2bc2 H2ε
n2
c

(
1

(n2 + 2)(n2 + 3)

)

13.2 (a) M = 2c2
2 H2ε

n2
c2

n2 + 2

(
(t1 − t2)

(
c1

c2

)n2+2

+ t2

)
; (b) M = h2

2 H2ε
n2
h2

2(n2 + 2)

(
b2 − b1

(
h1

h2

)n2+2
)

13.4 Typical values: (1) εc
/
εo = 0.90, εc = 0.00324, M = 3.241 kN·m;

(2) εc
/
εo = 2.50, εc = 0.00822, M = −7.1193 kN·m

13.6 Typical values: (1) α = 0.85, εc = 0.0035, M = 2.628 kN·m;
(2) α = 2.5, εc = 0.00723, M = 144.687 kN·m

13.7 (a) M = 2
√

π c3 H2ε
n2
c

n2 + 3

�(1 + n2/2)

�(1.5 + n2/2)
;

(b) M = 2
√

π c3
2 H2ε

n2
c2

n2 + 3

�(1 + n2/2)

�(1.5 + n2/2)

(
1 −

(
c1

c2

)n2+3
)

13.8 (a) 1st: M = 13.80 kN·m, σrc = −166 MPa, εrc = 0.00044; 2nd: M′ = 15.60 kN·m,
σrc = −266 MPa, εrc = 0.00311; 3rd: M = 15.933 kN·m, σrc = −285 MPa, εrc = 0.00604

13.9 (a) At y = c, σrc = 210.2 MPa; at yb = 15.00 mm, σrb = 257.14 MPa

13.12 T = 2πc3
2 H3γ

n3
c2

n3 + 3

(
1 −

(
c1

c2

)n3+3
)

13.13 (a) T = 2πc3
2 τo

(
1

3
− 1

12

(
τo

G γc2

)3

− 1

4

G γc2

τo

(
c1

c2

)4
)

; (b) T = πc3
2G γc2

2

(
1 −

(
c1

c2

)4
)

;

(c) To = 2πc3
2τo

3

(
1 −

(
c1

c2

)3
)

13.14 (a) G = 27,500, Hτ = 293 MPa, n = 0.0663; (b) typical values: τc = 220 MPa, γc = 0.0210,
T = 380 N·m

13.16 Typical values: (1) γc = 0.00500, T = 117.78 kN·m; (2) γc = 0.01, T = 46.125 kN·m
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13.17 (a) kσ = 1.403, kε = 3.09; (b) kσ = 1.203, kε = 2.649
13.18 (a) σ 1 = 462.85 MPa, ε1 = 0.00385; (b) σ 1 = 630 MPa, ε1 = 0.00525;

(c) σ 1 = 822.85 MPa, ε1 = 0.00685
13.19 (a) σ 1 = 895.2 MPa, ε1 = 0.00373; (b) σ 1 = 3584 MPa, ε1 = 0.0149;

(c) σ 1 = 8064 MPa, ε1 = 0.0336
13.20 (a) σ 1 = 559.3 MPa, ε1 = 0.00522; (b) σ 1 = 704.93 MPa, ε1 = 0.0166;

(c) σ 1 = 806.94 MPa, ε1 = 0.0326

13.21 (a) For kt S ≥ σo: ε = σo

2δE

(
δ − 1 +

√
(1 − δ)2 + 4δ(kt S/σo)2

)
,

σ = σo

2

(
1 − δ +

√
(1 − δ)2 + 4δ(kt S/σo)2

)
; (c) σ = 716.8 MPa, ε = 0.00196, kσ = 2.867,

kε = 3.136
13.22 σy = 539 MPa, εy = 0.01280
13.23 Typical values: σy = 485 MPa, εy = 0.0214, P = 128.7 kN
13.24 Typical values: σo = 444 MPa, εy = 0.0228, P = 127.0 kN

13.25 (a) For kt S ≥ σo: ε = σo

2E
+ (kt S)2

2Eσo
, (b) S = 1

kt

√
σ 2 + 2Eσ

n + 1

( σ

H

)1/n
,

(c) Typical values: σy = 485 MPa, εy = 0.0214, P = 164.0 kN
13.26 (a) σr = 490.57 MPa, εr = 0.0155; (b) σr =0 MPa, εr = 0
13.27 (a) σr = −238.48 MPa, εr = 0.0101; (b) σr =0 MPa, εr = 0; (c) σr = −252.8 MPa,

εr = 0.014
13.28 (a) σr =0 MPa, εr = 0; (b) σr = − 396.75 MPa, εr = 0.011
13.29 (a) σr = −249 MPa, εr = 0.00537; (b) σr = −375 MPa, εr = 0.01100
13.30 (a) σmax = 300 MPa, εmax = 0.001500, σmin = −60.0 MPa, εmin = −0.000300;

(b, c, d) σmax = 400 MPa, εmax = 0.00450; (b) σmin = −320 MPa, εmin = 0.000900;
(c) σmin = −400 MPa, εmin = −0.000563; (d) σmin = −400 MPa, εmin = −0.00450

13.31 σmax = 1070 MPa, εmax = 0.01432, σmin = −999 MPa, εmin = −0.00967
13.32 σmax = 214.314 MPa, εmax = 0.00422, σmin = −115.446 MPa, εmin = −0.00116
13.33 σmax = 368.3 MPa, εmax = 0.02213, σmin = −368.3 MPa, εmin = −0.02213
13.34 σmax = 575 MPa, εmax = 0.00968, σmin = −182.7 MPa, εmin = 0.00576
13.35 σmin = −540 MPa, εmin = −0.00610, σmax = 280 MPa, εmax = −0.001673
13.36 σmax = 1044 MPa, εmax = 0.01570, σmin = −484 MPa, εmin = 0.001926
13.37 Typical values: σca = 550 MPa, εca = 0.00693, Ma = 63.0 kN·m
13.38 (a) Typical values: (1) σa = 500 MPa, εa = 0.00242, Pa = 5.69 kN; (2) σa = 1000 MPa,

εa = 0.01987, Ma = 23.1 kN
13.39 σmax = 769 MPa, εmax = 0.00659, σmin = −233 MPa, εmin = 0.001531
13.40 σA,B,C,D = 1072, −588, 411, −734 MPa;

εA,B,C,D = 0.01793, 0.00217, 0.01072, −0.000989
13.41 σA,B,C,D = 492, −397, 409, −71.0 MPa; εA,B,C,D = 0.02079, 0.00201, 0.01469, 0.00812
13.42 σA,B,C,D,E,F = 474, −358, 313, −261, 389, −417 MPa;

εA,B,C,D,E,F = 0.01151, −0.00241, 0.00439, −0.000085, 0.00713, −0.00649
13.43 σA,B,C,D,E,F = 585, −500, 509, −420, 345, −541 MPa;

εA,B,C,D,E,F = 0.01112, −0.001438, 0.00681, 0.000877, 0.00485, −0.00526
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CHAPTER 14

Prob. σ ′
f , MPa b ε′

f c

14.4 939 −0.0916 0.272 −0.449
14.5 1695 −0.0945 1.294 −0.721
14.6 3149 −0.1014 0.251 −0.891

14.7 (b) SAE 1015: ms = 0.80, bs = −0.1534; SAE 4142 (380): ms = 0.62, bs = −0.1273
14.8 Shaft: ms = 0.77, md = 0.817, σ ′

f d = 775 MPa, bs = −0.1100, ε′
f d = 0.213, c = −0.445

Prob.
N f , cycles

(a) Morrow (b) mod Mor (c) SWT (d) Walker

14.11 41 990 42 170 30 595 27 931
14.12 86 920 86 310 138 308 155 247
14.13 2 737 4 610 2 011 1 865
14.14 24 562 17 676 83 556 160 838
14.15 5 365 17 671 7 450 9 199
14.16 66 100 25 063 509 675 168 649

14.17 N f = 6821 cycles by Morrow, or 8300 by SWT
14.18 N f = 41,207 cycles by Morrow, or 21,729 by SWT
14.19 N f = 10363 cycles by Morrow, or 7435 by SWT
14.20 For modified Morrow approach, N f = 50, 670 cycles and for Walker approach,

N f = 73, 918 cycles
14.22 (a) Excellent correlation; (b) Poor agreement, curves nonconservative
14.23 (a) Poor agreement, curve nonconservative; (b) Agreement improved
14.24 For σa = 1379, σm = −345 MPa: (a) εa = 0.00676, N∗

mi = 1345 cycles;
(b) σmaxεa = 6.99 MPa

14.25 (a) For σa = 517, σm = 414 MPa: εa = 0.00264, N∗
w = 210,400 cycles

14.26 For N f = 10,000 cycles: (a) γa = 0.00827, (b) γa = 0.01376
14.27 For N f = 1000 cycles, for λ = −1, −0.5, 0, 0.5, and 1: εa1 = 0.00937, 0.01035, 0.01116,

0.00997, and 0.00610, respectively

14.28 ε1a = 1 − 2νβ

1 − β

σ ′
f

E
(2N f )

b + ε′
f (2N f )

c

14.29 (a) N f = 4372 cycles by Morrow (not recommended), or 3974 by SWT; (b) N f = 841
cycles by Morrow (not recommended), or 925 by SWT

14.30 N f = 904 cycles by Morrow (not recommended), or 878 by SWT
14.31 N f = 2517 cycles by Morrow (not recommended), or 1830 by SWT
14.32 N f = 497 cycles by Morrow, or 562 by SWT
14.33 N f = 1,344,000 cycles by Morrow, or 2,089,000 by SWT
14.34 N f = 34,280 cycles by Morrow, or 32,880 by SWT
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14.35 For Smax = Sa = 110 MPa: εca = 0.00640, N f = 5030 cycles
14.36 (a) For σca = 500 MPa: εca = 0.00396, Ma = 52.8 kN·m, N f = 8423 cycles
14.37 (b) For σa = 850 MPa: εa = 0.00751, Pa = 13.09 kN, N f = 1113 cycles
14.38 (b) For τa = 260 MPa: γa = 0.00468, Ta = 0.642 kN·m, N f = 16,190 cycles
14.39 (a) B f = 95,570 reps by Morrow, or 3236 by SWT; (b) B f = 4670 reps by Morrow, or 668

by SWT
14.40 B f = 205 reps by Morrow, or 167 by SWT
14.41 B f = 36.5 reps by Morrow (not recommended), or 43.4 by SWT
14.42 B f = 564 reps by Morrow (not recommended), or 450 by SWT
14.43 B f = 1032 reps by Morrow, or 1389 by SWT
14.44 B f = 402 reps by Morrow, or 555 by SWT
14.45 B f = 60.8 reps by Morrow (not recommended), or 44.9 by SWT
14.46 B f = 840 reps by Morrow, or 970 by SWT
14.47 B f = 303 reps by Morrow, or 347 by SWT
14.48 B f = 160.2 reps by Morrow (not recommended), or 122.1 by SWT
14.49 B f = 118.5 reps by SWT
14.50 (a) B f = 10.24 reps by SWT, (b) Bi f = 1.76 reps for crack growth, 12.0 total
14.51 (a) B f = 11.19 reps by SWT, (b) Bi f = 1.52 reps for crack growth, 12.7 total
14.52 Ma = 1.399 kN·m by Morrow
14.53 By Morrow: (a) N f = 245,400 cycles, (b) N f = 9,417,000 cycles, (b) using monotonic yield

to A: N f = 6,422,000 cycles
14.54 (a) B f ≈ 3 weeks, (b) yes, (c) no

CHAPTER 15

15.1 (b) B = 1.596 × 10−5 1/min

MPam , m = 2.14

15.6 ε̇ = Bσm ; for T = 900, 1200, 1450 K: B = 6.74 × 10−24,

2.43 × 10−19, 1.112 × 10−16 1/s

MPam

15.7 For σ = 30 MPa, t = 1 min, 1 hr, 1 day: ε = 2.48 × 10−4, 3.51 × 10−4, 1.782 × 10−2

15.8 (a) ε = 0.00297, (b) σ = 37.9 MPa, (c) T = 931 K

15.10 ln (ε̇ T ) = m ln σ − q ln d − Q

R

(
1

T

)
+ ln A2

15.11 A3 = 2640
K/s

MPam , m = 1.495, Q = 39,600 J/mol

15.12 (a) �Le = 0.0267 mm, (c) �L = 0.0489, 8.14 mm, (d) �L = 0.0267, 0.0348 mm
15.13 (a) ε̇ = 5.8 × 10−3 1/s, (b) ε̇ = 5.8 × 10−9 1/s, (c) Mar-M200, d = 1.0 mm
15.14 (a) tr = 44471.5 h 851.73 h, 84779.967.65 h
15.15 (a) T̂ = 832.8◦C, (b) Xt = 1.52
15.16 (a) σ = 271.83 MPa, (b) σ̂ = 194.17 MPa, (c) Xt = 23.15
15.17 (a) tr = 5.45 hours, (b) Xσ = 2.704
15.18 (a) tr = 62.3 h, (b) t̂ = 1593.4 h, (c) �T f = 67◦C
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15.19 (a) tr = 3090 h, (b) Xσ = 1.09

15.20 (a) T̂ = 886◦ k, (b) Xt = 12.4, (c) �T f = 37.3◦C

15.21 (a) T̂ = 211◦C, (b) Xt = 1.52, (c) �T f = 333K

15.22 (a) σ = 178.4 MPa, (b) σ̂ = 101.9 MPa, (c) Xt = 10.91

15.23 (a) tr = 21,100 h, (b) Xσ = 1.379, (c) �T f = 25.0◦C

15.24 (a) b0,1,2,3 = 16,510, 11,040, −4856, 403; (b) a0,1,2,3 = −13.815, −0.6435, 1.0127,
−0.5493

15.25 (a) b0,1,2,3 = 128,210, −141,530, 64,375, −9,960; (b) a0,1,2,3 = 135.45, −216.1, 99.30,
−15.424

15.26 218 × 108 hours
15.27 Q = 84,490 cal/mole, a0,1,2,3 = −11.902, 3.962, −2.094, −0.15378
15.28 (a) C = 14.569, b0,1,2,3 = −38,400, 114,200, −62,300, 10,382; (b) Q = 107,640 cal/mole,

a0,1,2,3 = −40.12, 47.92, −25.49, 3.989
15.29 tr = 47,200 h
15.30 (a) σ = 7.3 MPa, (b) γ = 0.66 mm, (c) γ = 12.67 mm
15.31 B f = 54.9 years
15.32 (a) σc = 138.14 MPa, (b) εc = 0.075, (c) t f = 263 hours
15.33 (a) For σ = 80 MPa, and t = 1, 10, 102, 103, and 104 h: ε = 0.001746, 0.00363, 0.00838,

0.0203, 0.0502; (b) for t = 600 h, and σ = 50, 70, and 90 MPa: ε = 0.00260, 0.00970,
0.0269

15.34 D = 8.27 × 10−5 1

MPaδsφ
, δ = 1.742, φ = 0.206

15.35 D3 = 1.518 × 10−10 1

MPaδsφ
, δ = 4.44, φ = 0.1369

15.36 σ = σi(
E D3tφ(δ − 1)σ δ−1

i + 1
)1/(δ−1)

, σi = Eε′

15.37 (a) t0.5 = 652 h, (b) d = 119 μm, (c) T = 467◦C
15.38 (b) For t = 10 h: ε = 0.00580; for t = 30 h: ε = 0.00242
15.39 (b) For t = 5.0 h: σ = 22.3 MPa
15.41 (a) ε̇ = 5.54 × 10−9 1/s, (b) �d = 3.59 mm, using σz = −p/2

15.43 γ = τ

G
+ 3(δ+1)/2 D3τ

δtφ

15.44
�r

r
= 1 − ν

E

( pr

2b

)
+ D3

2

( pr

2b

)δ

tφ

15.45 (a) ¯̇ε = 8.88 × 10−11 1/s, (b) 100 �d/d = 1.912%, 100 �L/L = 0.819%, using σz = −p/2
15.46 (a) σ = 5.00 MPa, (b) ve = 0.2085 mm, (c) v = 0.712 mm
15.47 (a) σ = 12.94 MPa, (b) ve = 0.0759 mm, (c) v = 4.83 mm
15.48 (a) ve = 0.310 mm, (b) v = 2.12 mm
15.49 (a) For R = 70 mm: σr = 2.93, σt = 7.68 MPa; (b) �r1 = 3.01 μm/day, 1.101 mm/year;

(c) �r2 = 2.95 μm/day, 1.076 mm/year
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15.50 (a) εc = Bt

(
M(1 + 2m)

2mbc2

)m

, (b) εc = D3tφ
(

M(1 + 2δ)

2δbc2

)δ

15.51 (a) γc = 3(m+1)/2 Bt

(
T (1 + 3m)

2πmc3

)m

, (b) γc = 3(δ+1)/2 D3tφ
(

T (1 + 3δ)

2πδc3

)δ

15.52 γc2 = D2tφ
(

T (1 + 3δ)

2πδc3
2[1 − (c1/c2)3+1/δ]

)δ

15.53 (a) εc = 0.00740, (b) εc = 0.01366

15.54 εc2 = Bt

(
2M(1 + 2m)

mb2h2
2[1 − (b1/b2)(h1/h2)2+1/m]

)m

15.55 (a) b = c = 53.2 mm, (b) b = c = 53.6 mm
15.56 (a) σ = 53.037 MPa, (b) εc = 1517.43 mm, (c) tr = 293 h

15.58 (a) �U = 2J Lbcσ 2
ca

3
, (b) Q−1

v = J E

π
, (c) �U = 2J Lbcσ 2

cLa

9

15.59 (a) �U = 2J Lbcσ d
ca

d + 1
, (b) Q−1

v = 3J Eσ d−2
ca

π(d + 1)

15.60 (a) �u = 4σo

(
εa − σo

E

)
, (b) �U = 4Lbcσo

εca

(
εca − σo

E

)2

15.61 �U = 8π Lc2τ
1+1/n′
ca

(H ′
τ )

1/n′

(
1 − n′

1 + n′

)⎛⎝ n′
3n′+1 + β

2 + β2

3+n′

(1 + β)2

⎞
⎠, β = γpca

τca/G
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