
Copyright 1996 by Addison-Wesley Publishing Company 1

Chapter 1

Pointers, Arrays, and Structures

Copyright 1996 by Addison-Wesley Publishing Company 2

Pointer illustration

X = 5

Y = 7

1000

(&X) 1000

(&Y) 1004

(&Ptr) 1200

5

Ptr X

Copyright 1996 by Addison-Wesley Publishing Company 3

Result of *Ptr=10

X = 10

Y = 7

Ptr = &X = 1000

(&X) 1000

(&Y) 1004

(&Ptr) 1200

10

Ptr X

Copyright 1996 by Addison-Wesley Publishing Company 4

Uninitialized pointer

X = 5

Y = 7

Ptr = ?

(&X) 1000

(&Y) 1004

(&Ptr) 1200

5

Ptr X

Copyright 1996 by Addison-Wesley Publishing Company 5

(a) Initial state; (b) Ptr1=Ptr2 starting from initial state;
(c) *Ptr1=*Ptr2 starting from initial state

Ptr1 X Ptr1 X Ptr1

Ptr2 Y Ptr2 Y Ptr2

5

7

5

7

(a) (b)

Copyright 1996 by Addison-Wesley Publishing Company 6

Memory model for arrays (assumes 4 byte int); declara-
tion is int A[3]; int i;

A[0]

A[1]

A[2]

A=1000

&A[0] (1000)

&A[1] (1004)

&A[2] (1008)

&A (5620)

i&i (1012)

...

Copyright 1996 by Addison-Wesley Publishing Company 7

1 size_t strlen(const char *Str);
2 char * strcpy(char *Lhs, const char *Rhs);
3 char * strcat(char *Lhs, const char *Rhs);
4 int strcmp(const char *Lhs, const char *Rhs);

Some of the string routines in <string.h>

Copyright 1996 by Addison-Wesley Publishing Company 8

1 void
2 F(int i)
3 {
4 int A1[10];
5 int *A2 = new int [10];
6
7 ...
8 G(A1);
9 G(A2);

10
11 // On return, all memory associated with A1 is freed
12 // On return, only the pointer A2 is freed;
13 // 10 ints have leaked
14 // delete [] A2; // This would fix the leak
15 }

Two ways to allocate arrays; one leaks memory

Copyright 1996 by Addison-Wesley Publishing Company 9

int *Original = A2; // 1. Save pointer to the original
A2 = new int [12]; // 2. Have A2 point at more memory
for(int i = 0; i < 10; i++) // 3. Copy the old data over
 A2[i] = Original[i];
delete [] Original; // 4. Recycle the original array

Memory reclamation

A1 A2

Copyright 1996 by Addison-Wesley Publishing Company 10

Array expansion: (a) starting point: A2 points at 10 inte-
gers; (b) after step 1: Original points at the 10 inte-
gers; (c) after steps 2 and 3: A2 points at 12 integers, the
first 10 of which are copied from Original ; (d) after step
4: the 10 integers are freed

A2

A2

A2

A2

Original

Original

Original

(a)

(b)

(c)

(d)

Copyright 1996 by Addison-Wesley Publishing Company 11

Pointer arithmetic: X=&A[3]; Y=X+4

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

A Ptr X Y

Copyright 1996 by Addison-Wesley Publishing Company 12

1 // Test that Strlen1 and Strlen2 give same answer
2 // Source file is ShowProf.cpp
3
4 #include <iostream.h>
5
6 main()
7 {
8 char Str[512];
9

10 while(cin >> Str)
11 {
12 if(Strlen1(Str) != Strlen2(Str))
13 cerr << "Oops!!!!" << endl;
14 }
15
16 return 0;
17 }

 %time cumsecs #call ms/call name
 26.6 0.34 25145 0.01 ___rs__7istreamFPc
 22.7 0.63 25144 0.01 _Strlen2__FPCc
 14.8 0.82 mcount
 12.5 0.98 25144 0.01 _Strlen1__FPCc
 8.6 1.09 25145 0.00 _do_ipfx__7istreamFi
 6.2 1.17 25145 0.00 _eatwhite__7istreamFv
 4.7 1.23 204 0.29 _read
 3.1 1.27 1 40.00 _main

First eight lines from prof for program

 %time cumsecs #call ms/call name
 34.4 0.31 mcount
 26.7 0.55 25145 0.01 ___rs__7istreamFPc
 8.9 0.63 25145 0.00 _do_ipfx__7istreamFi
 6.7 0.69 25144 0.00 _Strlen1__FPCc
 6.7 0.75 25144 0.00 _Strlen2__FPCc
 6.7 0.81 25145 0.00 _eatwhite__7istreamFv
 6.7 0.87 204 0.29 _read
 3.3 0.90 1 30.00 _main

First eight lines from prof with highest optimization

Copyright 1996 by Addison-Wesley Publishing Company 13

struct Student
{
 char FirstName[40];
 char LastName[40];
 int StudentNum;
 double GradePointAvg;
};

Student structure

StudentNum

GradePointAvg

FirstName

LastName

Copyright 1996 by Addison-Wesley Publishing Company 14

Illustration of a shallow copy in which only pointers are cop-
ied

12345 12345

"Nina"

"Weiss"

S
FirstName

LastName

EmployeeNum

Copyright 1996 by Addison-Wesley Publishing Company 15

Illustration of a simple linked list

A0 A1 A2

First Last

Copyright 1996 by Addison-Wesley Publishing Company 16

Chapter 2

Objects and Classes

Copyright 1996 by Addison-Wesley Publishing Company 17

1 // MemoryCell class
2 // int Read() --> Returns the stored value
3 // void Write(int X) --> X is stored
4
5 class MemoryCell
6 {
7 public:
8 // Public member functions
9 int Read() { return StoredValue; }

10 void Write(int X) { StoredValue = X; }
11 private:
12 // Private internal data representation
13 int StoredValue;
14 };

A complete declaration of a MemoryCell class

Copyright 1996 by Addison-Wesley Publishing Company 18

MemoryCell members: Read and Write are acces-
sible, but StoredValue is hidden

Read Write StoredV

Copyright 1996 by Addison-Wesley Publishing Company 19

1 // Exercise the MemoryCell class
2
3 main()
4 {
5 MemoryCell M;
6
7 M.Write(5);
8 cout << "Cell contents are " << M.Read() << '\n';
9 // The next line would be illegal if uncommented

10 // cout << "Cell contents are " << M.StoredValue << '\n';
11 return 0;
12 }

A simple test routine to show how MemoryCell objects
are accessed

Copyright 1996 by Addison-Wesley Publishing Company 20

1 // MemoryCell interface
2 // int Read() --> Returns the stored value
3 // void Write(int X) --> X is stored
4
5 class MemoryCell
6 {
7 public:
8 int Read();
9 void Write(int X);

10 private:
11 int StoredValue;
12 };
13
14
15
16 // Implementation of the MemoryCell class members
17
18 int
19 MemoryCell::Read()
20 {
21 return StoredValue;
22 }
23
24 void
25 MemoryCell::Write(int X)
26 {
27 StoredValue = X;
28 }

A more typical MemoryCell declaration in which inter-
face and implementation are separated

Copyright 1996 by Addison-Wesley Publishing Company 21

1 // BitArray class: support access to an array of bits
2 //
3 // CONSTRUCTION: with (a) no initializer or (b) an integer
4 // that specifies the number of bits
5 // All copying of BitArray objects is DISALLOWED
6 //
7 // ******************PUBLIC OPERATIONS**********************
8 // void ClearAllBits() --> Set all bits to zero
9 // void SetBit(int i) --> Turn bit i on

10 // void ClearBit(int i) --> Turn bit i off
11 // int GetBit(int i) --> Return status of bit i
12 // int NumItems() --> Return capacity of bit array
13
14 #include <iostream.h>
15
16 class BitArray
17 {
18 public:
19 // Constructor
20 BitArray(int Size = 320); // Basic constructor
21
22 // Destructor
23 ~BitArray() { delete [] TheArray; }
24
25 // Member Functions
26 void ClearAllBits();
27 void SetBit(int i);
28 void ClearBit(int i);
29 int GetBit(int i) const;
30 int NumItems() const { return N; }
31 private:
32 // 3 data members
33 int *TheArray; // The bit array
34 int N; // Number of bits
35 int ArraySize; // Size of the array
36
37 enum { IntSz = sizeof(int) * 8 };
38 int IsInRange(int i) const;// Check range with error msg
39
40 // Disable operator= and copy constructor
41 const BitArray & operator=(const BitArray & Rhs);
42 BitArray(const BitArray & Rhs);
43 };

Interface for BitArray class

Copyright 1996 by Addison-Wesley Publishing Company 22

BitArray members

SetBit

NumItems

TheArrayN ArraySize

Constructor

IsInRange

Destructor

ClearBitGetBit

ClearAllBits

Copy constru

Copy assignm

IntSize

this

Visible members Hidden member functions Hidden data

Copyright 1996 by Addison-Wesley Publishing Company 23

1 BitArray A; // Call with Size = 320
2 BitArray B(50); // Call with Size = 50
3 BitArray C = 50; // Same as above
4 BitArray D[50]; // Calls 50 constructors, with Size 320
5 BitArray *E = new BitArray; // Allocates BitArray of Size 320
6 E = new BitArray(20);// Allocates BitArray of size 20; leaks
7 BitArray F = "wrong"; // Does not match basic constructor
8 BitArray G(); // This is wrong!

Construction examples

Copyright 1996 by Addison-Wesley Publishing Company 24

Chapter 3

Templates

Copyright 1996 by Addison-Wesley Publishing Company 25

Array position 0 1 2 3 4 5

Initial State: 8 5 9 2 6 3

After A[0..1] is sorted: 5 8 9 2 6 3

After A[0..2] is sorted: 5 8 9 2 6 3

After A[0..3] is sorted: 2 5 8 9 6 3

After A[0..4] is sorted: 2 5 6 8 9 3

After A[0..5] is sorted: 2 3 5 6 8 9

Basic action of insertion sort (shaded part is sorted)

Copyright 1996 by Addison-Wesley Publishing Company 26

Array position 0 1 2 3 4 5

Initial State: 8 5

After A[0..1] is sorted: 5 8 9

After A[0..2] is sorted: 5 8 9 2

After A[0..3] is sorted: 2 5 8 9 6

After A[0..4] is sorted: 2 5 6 8 9 3

After A[0..5] is sorted: 2 3 5 6 8 9

Closer look at action of insertion sort (dark shading indi-
cates sorted area; light shading is where new element was
placed)

Copyright 1996 by Addison-Wesley Publishing Company 27

1 // Typical template interface
2 template <class Etype >
3 class ClassName
4 {
5 public:
6 // Public members
7 private:
8 // Private members
9 };

10
11
12 // Typical member implementation
13 template <class Etype >
14 ReturnType
15 ClassName <Etype >:: MemberName(Parameter List) /* const */
16 {
17 // Member body
18 }

Typical layout for template interface and member functions

Copyright 1996 by Addison-Wesley Publishing Company 28

Chapter 4

Inheritance

Copyright 1996 by Addison-Wesley Publishing Company 29

1 class Derived : public Base
2 {
3 // Any members that are not listed are inherited unchanged
4 // except for constructor, destructor,
5 // copy constructor, and operator=
6 public:
7 // Constructors, and destructors if defaults are not good
8 // Base members whose definitions are to change in Derived
9 // Additional public member functions

10 private:
11 // Additional data members (generally private)
12 // Additional private member functions
13 // Base members that should be disabled in Derived
14 };

General layout of public inheritance

Copyright 1996 by Addison-Wesley Publishing Company 30

Public inheritance situation Public Protected Private

Base class member function accessing M Yes Yes Yes
Derived class member function accessing M Yes Yes No

main , accessing B.M Yes No No
main , accessing D.M Yes No No

Derived class member function accessing Yes No No
B is an object of the base class; D is an object of the publicly derived class; M is a

member of the base class.

Access rules that depend on what M ’s visibility is in the
base class

Copyright 1996 by Addison-Wesley Publishing Company 31

Public inheritance situation Public Protected Private

F accessing B.MB Yes Yes Yes
F accessing D.MD Yes No No
 F accessing D.MB Yes Yes Yes

B is an object of the base class; D is an object of the publicly derived class; MB is a
member of the base class. MD is a member of the derived class. F is a friend of the

base class (but not the derived class)

Friendship is not inherited

Copyright 1996 by Addison-Wesley Publishing Company 32

1 const VectorSize = 20;
2 Vector<int> V(VectorSize);
3 BoundedVector<int> BV(VectorSize, 2 * VectorSize - 1);
4 ...
5 BV[VectorSize] = V[0];

Vector and BoundedVector classes with calls to
operator[] that are done automatically and correctly

Copyright 1996 by Addison-Wesley Publishing Company 33

1 Vector<int> *Vptr;
2 const int Size = 20;
3 cin >> Low;
4 if(Low)
5 Vptr = new BoundedVector<int>(Low, Low + Size - 1);
6 else
7 Vptr = new Vector<int>(Size)
8
9 ...

10 (*Vptr)[Low] = 0; // What does this mean?

Vector and BoundedVector classes

Copyright 1996 by Addison-Wesley Publishing Company 34

The hierarchy of shapes used in an inheritance example

Square

Rectangle

Shape

Circle

Copyright 1996 by Addison-Wesley Publishing Company 35

1. Nonvirtual functions: Overloading is resolved at compile
time. To ensure consistency when pointers to objects are
used, we generally use a nonvirtual function only when the
function is invariant over the inheritance hierarchy (that is,
when the function is never redefined). The exception to this
rule is that constructors are always nonvirtual, as mentioned
in Section 4.5.

2. Virtual functions: Overloading is resolved at run time. The
base class provides a default implementation that may be
overridden by the derived classes. Destructors should be
virtual functions, as mentioned in Section 4.5.

3. Pure virtual functions: Overloading is resolved at run time.
The base class provides no implementation. The absence of
a default requires that the derived classes provide an imple-
mentation.

Summary of nonvirtual, virtual, and pure virtual functions

Copyright 1996 by Addison-Wesley Publishing Company 36

1. Provide a new constructor.
2. Examine each virtual function to decide if we are willing to

accept its defaults; for each virtual function whose defaults
we do not like, we must write a new definition.

3. Write a definition for each pure virtual function.
4. Write additional member functions if appropriate.

Programmer responsibilities for derived class

Copyright 1996 by Addison-Wesley Publishing Company 37

Chapter 5

Algorithm Analysis

Copyright 1996 by Addison-Wesley Publishing Company 38

Running times for small inputs

0

2

4

6

8

10

10 20 30 40 50 60 70 80

Linear
O(N log N)

Quadratic
Cubic

R
un

ni
ng

 t
im

e
(m

ill
is

ec
o

nd
s)

Input size (N)

Copyright 1996 by Addison-Wesley Publishing Company 39

Running time for moderate inputs

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000

Linear
O(N log N)

Quadratic
Cubic

R
u

nn
in

g
tim

e
 (

se
co

nd
s)

Input Size (N)

Copyright 1996 by Addison-Wesley Publishing Company 40

Function Name

Constant

Logarithmic

Log-squared

Linear

N log N

Quadratic

Cubic

Exponential

Functions in order of increasing growth rate

c

log N

Nlog2

N

N log N

N2

N3

2N

Copyright 1996 by Addison-Wesley Publishing Company 41

The subsequences used in Theorem 5.2

i j j +1 q

< 0 Sj+1,q

<Sj+1,q

Copyright 1996 by Addison-Wesley Publishing Company 42

The subsequences used in Theorem 5.3. The sequence
from p to q has sum at most that of the subsequence from i
to q. On the left, the sequence from i to q is itself not the
maximum (by Theorem 5.2). On the right, the sequence
from i to q has already been seen.

i j j +1 q

Si,q

p-1 p

>=0 <=Si,q

i

Si,q

p-1 p

>=0 <=Si,q

Copyright 1996 by Addison-Wesley Publishing Company 43

DEFINITION: (Big-Oh) if there are pos-
itive constants c and such that when

.

DEFINITION: (Big-Omega) if there are
positive constants c and such that when

.

DEFINITION: (Big-Theta) if and only if
 and .

DEFINITION: (Little-Oh) if there are
positive constants c and such that when

.

T N() O F N()()=
N0 T N() cF N()≤

N N0≥

T N() Ω F N()()=
N0 T N() cF N()≥

N N0≥

T N() Θ F N()()=
T N() O F N()()= T N() Ω F N()()=

T N() o F N()()=
N0 T N() cF N()<

N N0≥

Copyright 1996 by Addison-Wesley Publishing Company 44

Mathematical expression Relative rates of growth

Growth of is growth of

Growth of is growth of

Growth of is growth of

Growth of is growth of

Meanings of the various growth functions

T N() O F N()()= T N() ≤ F N()

T N() Ω F N()()= T N() ≥ F N()

T N() Θ F N()()= T N() = F N()

T N() o F N()()= T N() < F N()

Copyright 1996 by Addison-Wesley Publishing Company 45

10 0.00103 0.00045 0.00066 0.00034

100 0.47015 0.01112 0.00486 0.00063

1,000 448.77 1.1233 0.05843 0.00333

10,000 NA 111.13 0.68631 0.03042

100,000 NA NA 8.01130 0.29832

Observed running times (in seconds) for various maximum
contiguous subsequence sum algorithms

N O N3() O N2() O(N log N) O(N)

Copyright 1996 by Addison-Wesley Publishing Company 46

CPU time
(milliseconds)

10,000 100 0.01000000 0.00000100 0.00075257

20,000 200 0.01000000 0.00000050 0.00069990

40,000 440 0.01100000 0.00000027 0.00071953

80,000 930 0.01162500 0.00000015 0.00071373

160,000 1960 0.01225000 0.00000008 0.00070860

320,000 4170 0.01303125 0.00000004 0.00071257

640,000 8770 0.01370313 0.00000002 0.00071046

Empirical running time for N binary searches in an N-item
array

N T T N⁄ T N2⁄ T N log N()⁄

Copyright 1996 by Addison-Wesley Publishing Company 47

Chapter 6

Data Structures

Copyright 1996 by Addison-Wesley Publishing Company 48

1 #include <iostream.h>
2 #include "Stack.h"
3
4 // Simple test program for stacks
5
6 main()
7 {
8 Stack<int> S;
9

10 for(int i = 0; i < 5; i++)
11 S.Push(i);
12
13 cout << "Contents:";
14 do
15 {
16 cout << ' ' << S.Top();
17 S.Pop();
18 } while(!S.IsEmpty());
19 cout << '\n';
20
21 return 0;
22 }

Sample stack program; output is
Contents: 4 3 2 1 0

Copyright 1996 by Addison-Wesley Publishing Company 49

Stack model: input to a stack is by Push , output is by
Top , deletion is by Pop

Stack

Pop, TopPush

Copyright 1996 by Addison-Wesley Publishing Company 50

1 #include <iostream.h>
2 #include "Queue.h"
3
4 // Simple test program for queues
5
6 main()
7 {
8 Queue<int> Q;
9

10 for(int i = 0; i < 5; i++)
11 Q.Enqueue(i);
12
13 cout << "Contents:";
14 do
15 {
16 cout << ' ' << Q.Front();
17 Q.Dequeue();
18 } while(!Q.IsEmpty());
19 cout << '\n';
20
21 return 0;
22 }

Sample queue program; output is
Contents:0 1 2 3 4

Copyright 1996 by Addison-Wesley Publishing Company 51

Queue model: input is by Enqueue , output is by Front ,
deletion is by Dequeue

Queue
Enqueue Dequeue

Front

Copyright 1996 by Addison-Wesley Publishing Company 52

1 #include <iostream.h>
2 #include "List.h"
3
4 // Simple test program for lists
5
6 main()
7 {
8 List<int> L;
9 ListItr<int> P = L;

10
11 // Repeatedly insert new items as first elements
12 for(int i = 0; i < 5; i++)
13 {
14 P.Insert(i);
15 P.Zeroth(); // Reset P to the start
16 }
17
18 cout << "Contents:";
19 for(P.First(); +P; ++P)
20 cout << ' ' << P();
21 cout << "end\n";
22
23 return 0;
24 }

Sample list program; output is Contents: 4 3 2 1
0 end

Copyright 1996 by Addison-Wesley Publishing Company 53

Link list model: inputs are arbitrary and ordered, any item
may be output, and iteration is supported, but this data
structure is not time-efficient

List

Insert Find and Remove
any item by name
or by rank

Copyright 1996 by Addison-Wesley Publishing Company 54

A simple linked list

A0 A1 A2

First Last

Copyright 1996 by Addison-Wesley Publishing Company 55

A tree

A

B C D E

F G H I J

K

Copyright 1996 by Addison-Wesley Publishing Company 56

Expression tree for (a+b)*(c-d)

*

+ -

a b c d

Copyright 1996 by Addison-Wesley Publishing Company 57

1 #include <iostream.h>
2 #include "Bst.h"
3
4 // Simple test program for binary search trees
5
6 main()
7 {
8 SearchTree<String> T;
9

10 T.Insert("Becky");
11
12 // Simple use of Find/WasFound
13 // Appropriate if we need a copy
14 String Result1 = T.Find("Becky");
15 if(T.WasFound())
16 cout << "Found " << Result1 << ';';
17 else
18 cout << "Becky not found;";
19
20 // More efficient use of Find/WasFound
21 // Appropriate if we only need to examine
22 const String & Result2 = T.Find("Mark");
23 if(T.WasFound())
24 cout << " Found " << Result2 << ';';
25 else
26 cout << " Mark not found; ";
27
28 cout << '\n';
29
30 return 0;
31 }

Sample search tree program;
output is Found Becky; Mark not found;

Copyright 1996 by Addison-Wesley Publishing Company 58

Binary search tree model; the binary search is extended to
allow insertions and deletions

Binary

Insert Find and Remove
any item by name
or rank

Search Tree

Copyright 1996 by Addison-Wesley Publishing Company 59

1 #include <iostream.h>
2 #include "Hash.h"
3
4 // A good hash function is given in Chapter 19
5 unsigned int Hash(const String & Element, int TableSize);
6
7 // Simple test program for hash tables
8
9 main()

10 {
11 HashTable<String> H;
12
13 H.Insert("Becky");
14
15 const String & Result2 = H.Find("Mark");
16 if(H.WasFound())
17 cout << " Found " << Result2 << ';';
18 else
19 cout << " Mark not found; ";
20
21 cout << '\n';
22
23 return 0;
24 }

Sample hash table program;
output is Found Becky; Mark not found;

Copyright 1996 by Addison-Wesley Publishing Company 60

The hash table model: any named item can be accessed or
deleted in essentially constant time

Insert Find and Remove
any item by name

Hash
Table

Copyright 1996 by Addison-Wesley Publishing Company 61

1 #include <iostream.h>
2 #include "BinaryHeap.h"
3
4 // Simple test program for priority queues
5
6 main()
7 {
8 BinaryHeap<int> PQ;
9

10 PQ.Insert(4); PQ.Insert(2); PQ.Insert(1);
11 PQ.Insert(5); PQ.Insert(0);
12
13 cout << "Contents:";
14 do
15 {
16 cout << ' ' << PQ.FindMin();
17 PQ.DeleteMin();
18 } while(!PQ.IsEmpty());
19 cout << '\n';
20
21 return 0;
22 }

Sample program for priority queues;
output is Contents: 0 1 2 3 4

Copyright 1996 by Addison-Wesley Publishing Company 62

Priority queue model: only the minimum element is acces-
sible

Priority
Queue

Insert
DeleteMin

FindMin

Copyright 1996 by Addison-Wesley Publishing Company 63

Data
Structure Access Comments

Stack Most recent only, Pop, Very very fast

Queue Least recent only, Dequeue , Very very fast

Linked list Any item

Search Tree Any item by name or rank, Average case, can be made
worst case

Hash Table Any named item, Almost certain

Priority Queue FindMin , ,

DeleteMin ,

Insert is on

average worst
case

Summary of some data structures

O 1()

O 1()

O(N)

O(log N)

O 1()

O 1()
O(log N)

O 1()
O(log N)

Copyright 1996 by Addison-Wesley Publishing Company 64

Chapter 7

Recursion

Copyright 1996 by Addison-Wesley Publishing Company 65

Stack of activation records

main()

S(4)

S(3)

S(2)TOP:

Copyright 1996 by Addison-Wesley Publishing Company 66

Trace of the recursive calculation of the Fibonacci numbers

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F

Copyright 1996 by Addison-Wesley Publishing Company 67

• Divide: Smaller problems are solved recursively (except, of
course, base cases).

• Conquer: The solution to the original problem is then formed
from the solutions to the subproblems.

Divide-and-conquer algorithms

Copyright 1996 by Addison-Wesley Publishing Company 68

First Half Second Half

4 -3 5 -2 -1 2 6 -2 Values

4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem
into halves

Copyright 1996 by Addison-Wesley Publishing Company 69

Trace of recursive calls for recursive maximum contiguous
subsequence sum algorithm

Copyright 1996 by Addison-Wesley Publishing Company 70

Assuming N is a power of 2, the solution to the equation
, with init ial condit ion is

.

Basic divide-and-conquer running time theorem

T N() 2T N 2⁄() N+= T 1() 1=
T N() N log N N+=

Copyright 1996 by Addison-Wesley Publishing Company 71

The so lu t i on to the equa t ion
, where and ,

is

if

if

if

General divide-and-conquer running time theo-
rem

T N() AT N B⁄() O Nk()+= A 1≥ B 1>

T N()

=

O N ABlog() A Bk>

O Nk Nlog() A Bk=

O Nk() A Bk<

Copyright 1996 by Addison-Wesley Publishing Company 72

Some of the subproblems that are solved recursively in
Figure 7.15

1

1 1

25 25 10 1 21

21

21

21

21 21 10 1062

2

61

21

42

31

32

 1

Copyright 1996 by Addison-Wesley Publishing Company 73

Alternative recursive algorithm for coin-changing problem

+

+

+

+

+

1

5

10

21

25

21 21 10 10

25 21 10 1 1

21 21 10 1

21 21

25 10 1 1 1

Copyright 1996 by Addison-Wesley Publishing Company 74

Chapter 8

Sorting Algorithms

Copyright 1996 by Addison-Wesley Publishing Company 75

• Words in a dictionary are sorted (and case distinctions are
ignored).

• Files in a directory are often listed in sorted order.
• The index of a book is sorted (and case distinctions are

ignored).
• The card catalog in a library is sorted by both author and title.
• A listing of course offerings at a university is sorted, first by

department and then by course number.
• Many banks provide statements that list checks in increasing

order (by check number).
• In a newspaper, the calendar of events in a schedule is gener-

ally sorted by date.
• Musical compact disks in a record store are generally sorted

by recording artist.
• In the programs that are printed for graduation ceremonies,

departments are listed in sorted order, and then students in
those departments are listed in sorted order.

Examples of sorting

Copyright 1996 by Addison-Wesley Publishing Company 76

Operators Definition

operator> (A, B) return B < A;

operator>=(A, B) return !(A < B);

operator<=(A, B) return !(B < A);

operator!=(A, B) return A < B || B < A;

operator==(A, B) return !(A < B || B < A);

Deriving the relational and equality operators from
operator<

Copyright 1996 by Addison-Wesley Publishing Company 77

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Shellsort after each pass, if increment sequence is {1, 3, 5}

Copyright 1996 by Addison-Wesley Publishing Company 78

N Insertion
sort

Shellsort

Shell’s Odd gaps only Dividing by 2.2

1,000 122 11 11 9
2,000 483 26 21 23
4,000 1,936 61 59 54
8,000 7,950 153 141 114

16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and
Shellsort with various increment sequences

Copyright 1996 by Addison-Wesley Publishing Company 79

Linear-time merging of sorted arrays (first four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 13 24 26 2 15 27 38

BptrAptr Cptr

1

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13

Copyright 1996 by Addison-Wesley Publishing Company 80

Linear-time merging of sorted arrays (last four steps)

1 13 24 26 2 15 27 38

BptrAptr Cp

1 2 13 15

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

Copyright 1996 by Addison-Wesley Publishing Company 81

The basic algorithm Quicksort(S) consists of the following four
steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.
3. Partition S – {v} (the remaining elements in S) into two dis-

joint groups: L = and R =
.

4. Return the result of Quicksort(L) followed by v followed by
Quicksort(R).

Basic quicksort algorithm

x S v{ }– x v≤∈{ }
x S v{ }–∈ x v≥{ }

Copyright 1996 by Addison-Wesley Publishing Company 82

The steps of quicksort

13

81

92

43

65

31
57

26
75

0

Select pivot

13

81

92

43

65

31
57

26
75

0

Partition

13
0

26
43

57

31 65
92

Quicksort Quicksor

0 13 26 31 43 57 65 7

 0 13 26 31 43 57 65 75 81 92

large itemsmall items

Copyright 1996 by Addison-Wesley Publishing Company 83

Because recursion allows us to take the giant leap of faith, the
correctness of the algorithm is guaranteed as follows:

• The group of small elements is sorted, by virtue of the recur-
sion.

• The largest element in the group of small elements is not
larger than the pivot, by virtue of the partition.

• The pivot is not larger than the smallest element in the group
of large elements, by virtue of the partition.

• The group of large elements is sorted, by virtue of the recur-
sion.

Correctness of quicksort

Copyright 1996 by Addison-Wesley Publishing Company 84

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: pivot element 6 is placed at the end

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: i stops at large element 8; j stops
at small element 2

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: out-of-order elements 8 and 2 are
swapped

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 5

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: out-of-order elements 9 and 5 are
swapped

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 3

2 1 4 5 0 3 6 8 7 9

Partitioning algorithm: swap pivot and element in position i

Copyright 1996 by Addison-Wesley Publishing Company 85

8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9 6 3 5 2 7 8

Result of sorting three elements (first, middle, and last)

0 1 4 9 7 3 5 2 6 8

Result of swapping the pivot with next to last element

Copyright 1996 by Addison-Wesley Publishing Company 86

• We should not swap the pivot with the element in the last
position. Instead, we should swap it with the element in the
next to last position.

• We can start i at Low+1 and j at High-2 .
• We are guaranteed that, whenever i searches for a large ele-

ment, it will stop because in the worst case it will encounter
the pivot (and we stop on equality).

• We are guaranteed that, whenever j searches for a small ele-
ment, it will stop because in the worst case it will encounter
the first element (and we stop on equality).

Median-of-three partitioning optimizations

Copyright 1996 by Addison-Wesley Publishing Company 87

1. If the number of elements in S is 1, then presumably k is
also 1, and we can return the single element in S.

2. Pick any element v in S. This is the pivot.
3. Partition S – {v} into L and R, exactly as was done for

quicksort.
4. If k is less than or equal to the number of elements in L, then

the item we are searching for must be in L. Call Quickselect(
L, k) recursively. Otherwise, if k is exactly equal to one
more than the number of items in L, then the pivot is the kth
smallest element, and we can return it as the answer. Other-
wise, the kth smallest element lies in R, and it is the (k – |L| –
1)th smallest element in R. Again, we can make a recursive
call and return the result.

Quickselect algorithm

Copyright 1996 by Addison-Wesley Publishing Company 88

Using an array of pointers to sort

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Ptr[0] Ptr[1] Ptr[2] Ptr[3] Ptr[4]

Copyright 1996 by Addison-Wesley Publishing Company 89

Data structure used for in-place rearrangement

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Loc[0] Loc[1] Loc[2] Loc[3] Loc[4]

1 0 4 2 3

Copyright 1996 by Addison-Wesley Publishing Company 90

Chapter 9

Randomization

Copyright 1996 by Addison-Wesley Publishing Company 91

Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

Distribution of lottery winners if expected number of win-
ners is 2

Copyright 1996 by Addison-Wesley Publishing Company 92

An important nonuniform distribution that occurs in simula-
tions is the Poisson distribution. Occurrences that happen under
the following circumstances satisfy the Poisson distribution:

• The probability of one occurrence in a small region is propor-
tional to the size of the region.

• The probability of two occurrences in a small region is pro-
portional to the square of the size of the region and is usually
small enough to be ignored.

• The event of getting k occurrences in one region and the event
of getting j occurrences in another region disjoint from the
first region are independent. (Technically this statement
means that you can get the probability of both events simulta-
neously occurring by multiplying the probability of individ-
ual events.)

• The mean number of occurrences in a region of some size is
known.

Then if the mean number of occurrences is the constant a, then
the probability of exactly k occurrences is .

Poisson distribution

ake a– k!⁄

Copyright 1996 by Addison-Wesley Publishing Company 93

Chapter 10

Fun and Games

Copyright 1996 by Addison-Wesley Publishing Company 94

0 1 2 3
0 t h i s

1 w a t s

2 o a h g

3 f g d t

Sample word search grid

Copyright 1996 by Addison-Wesley Publishing Company 95

for each word W in the word list
 for each row R
 for each column C
 for each direction D
 check if W exists at row R, column C
 in direction D

Brute-force algorithm for word search puzzle

Copyright 1996 by Addison-Wesley Publishing Company 96

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column C
 in direction D form a word

Alternate algorithm for word search puzzle

Copyright 1996 by Addison-Wesley Publishing Company 97

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column
 C in direction D form a word
 if they do not form a prefix,
 break; // the innermost loop

Improved algorithm for word search puzzle; incorporates a
prefix test

Copyright 1996 by Addison-Wesley Publishing Company 98

1. If the position is terminal (that is, can immediately be evalu-
ated), return its value.

2. Otherwise, if it is the computer’s turn to move, return the
maximum value of all positions reachable by making one
move. The reachable values are calculated recursively.

3. Otherwise, it is the human’s turn to move. Return the mini-
mum value of all positions reachable by making one move.
The reachable values are calculated recursively.

Basic minimax algorithm

Copyright 1996 by Addison-Wesley Publishing Company 99

Alpha-beta pruning: After H2A is evaluated, C2, which is the
minimum of the H2’s, is at best a draw. Consequently, it
cannot be an improvement over C1. We therefore do not
need to evaluate H2B, H2C, and H2D, and can proceed
directly to C3

C1 C3

DRAW

U

U

C2

H2A

DRAW

H2B

?

H2C

?

H2D

?

Copyright 1996 by Addison-Wesley Publishing Company 100

Two searches that arrive at identical positions

X

X O X

X O X

O X

X O

X

Copyright 1996 by Addison-Wesley Publishing Company 101

Chapter 11

Stacks and Compilers

Copyright 1996 by Addison-Wesley Publishing Company 102

Stack operations in balanced symbol algorithm

(
[
((

([] }*)*

{

[eof*

Errors (indicated by *):
 } when expecting)
) with no matching opening symb o
 [unmatched at end of input

Copyright 1996 by Addison-Wesley Publishing Company 103

Steps in evaluation of a postfix expression

1
2
1 -1

4
-1

1 2 - 4

1024
-1
^

3
1024

-1
3

3072
-1
*

6
3072

-1
6

18432
-1
*

2
7

18432
-1
2

2
2
7

18432
-1
2

4
7

18432
-1
^

2401
18432

-1
^

7
-1
/

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^

Copyright 1996 by Addison-Wesley Publishing Company 104

Infix expression Postfix expression Associativity

2 + 3 + 4 2 3 + 4 + Left associative: Input + is
lower than stack +

2 ^ 3 ^ 4 2 3 4 ^ ^ Right associative: Input ^ is
higher than stack ^

Associativity rules

Copyright 1996 by Addison-Wesley Publishing Company 105

• Operands: Immediately output.
• Close parenthesis: Pop stack symbols until an open parenthe-

sis is seen.
• Operator: Pop all stack symbols until we see a symbol of

lower precedence or a right associative symbol of equal pre-
cedence. Then push the operator.

• End of input: Pop all remaining stack symbols.

Various cases in operator precedence parsing

Copyright 1996 by Addison-Wesley Publishing Company 106

Infix to postfix conversion

Infix: 1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7

1

1

-

-

2

-
2

^

^
-

3

^
-

3

3

^
^
-

3

-

-
^^-

(

(
-

4

(
-

4

+

+
(
-

*

*

+
(
-

*

6

+
(
-

6

)

-
* +

*

*
-

7

*
7

Copyright 1996 by Addison-Wesley Publishing Company 107

Expression tree for (a+b)*(c-d)

*

+ -

a b a b

Copyright 1996 by Addison-Wesley Publishing Company 108

Chapter 12

Utilities

Copyright 1996 by Addison-Wesley Publishing Company 109

Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
i 010 12 36
s 011 3 9
t 100 4 12

sp 101 13 39
nl 110 1 3

Total 174

A standard coding scheme

Copyright 1996 by Addison-Wesley Publishing Company 110

Representation of the original code by a tree

a e i s t sp nl

Copyright 1996 by Addison-Wesley Publishing Company 111

A slightly better tree

a e i s t sp

nl

Copyright 1996 by Addison-Wesley Publishing Company 112

Optimal prefix code tree

t

a

sp

nl

e

s

i

Copyright 1996 by Addison-Wesley Publishing Company 113

Character Code Frequency Total Bits

a 001 10 30
e 01 15 30
i 10 12 24
s 00000 3 15
t 0001 4 16

sp 11 13 26
nl 00001 1 5

Total 146

Optimal prefix code

Copyright 1996 by Addison-Wesley Publishing Company 114

Huffman’s algorithm after each of first three merges

i se ta sp
10 15 12 3 4 13

i te spa
10 15 12 4 13

T1

s

4

i spea
10 15 12 13

T2

T1

nls

8

spie
15 12 13

t

T2

T3

T1

nls

1

Copyright 1996 by Addison-Wesley Publishing Company 115

Huffman’s algorithm after each of last three merges

e
15

sp

T4

i

25

t

T2

T3

T1

nls

18

sp

T4

i

25

t

T5

aT2

T3

T1

nls

3

t

T5

aT2

T3

T1

T6

nl

e

s

T4

i

58

Copyright 1996 by Addison-Wesley Publishing Company 116

Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 i 12 10 0
3 s 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0

10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)

Copyright 1996 by Addison-Wesley Publishing Company 117

IdNode data members: Word is a String ; Lines is
a pointer to a Queue

Lines

Word Dynamically al

Copyright 1996 by Addison-Wesley Publishing Company 118

The object in the tree is a copy of the temporary; after the
insertion is complete, the destructor is called for the tempo-
rary

Dynamical

NewWord

Temporary

Object stored in the tree

Tree

143

que

Copyright 1996 by Addison-Wesley Publishing Company 119

Chapter 13

Simulation

Copyright 1996 by Addison-Wesley Publishing Company 120

1. At the start, the potato is at player 1; after one pass it is at
player 2.

2. Player 2 is eliminated, player 3 picks up the potato, and
after one pass it is at player 4.

3. Player 4 is eliminated, player 5 picks up the potato and
passes it to player 1.

4. Player 1 is eliminated, player 3 picks up the potato, and
passes it to player 5.

5. Player 5 is eliminated, so player 3 wins.

The Josephus problem

1 2 3

45

1 3

45

31

5

(a) (b) (c)

Copyright 1996 by Addison-Wesley Publishing Company 121

1 User 0 dials in at time 0 and connects for 1 minutes
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes
27 User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems;
a dial in is attempted every minute; average connect time is
5 minutes; simulation is run for 19 minutes

Copyright 1996 by Addison-Wesley Publishing Company 122

1. The first DialIn request is inserted
2. After DialIn is removed, the request is connected result-

ing in a Hangup and a replacement DialIn request
3. A Hangup request is processed
4. A DialIn request is processed resulting in a connect. Thus

both a Hangup and DialIn event are added (three times)
5. A DialIn request fails; a replacement DialIn is gener-

ated (three times)
6. A Hangup request is processed (twice)
7. A DialIn request succeeds, Hangup and DialIn are

added.

Steps in the simulation

Copyright 1996 by Addison-Wesley Publishing Company 123

Priority queue for modem bank after each step

1 Hangup
User 0, Len 1 1 DialIn

User 1, Len 5

1 DialIn
User 1, Len 5

0 DialIn
User 0, Len 1

6 Hangup
User 1, Len 5 2 DialIn

User 2, Len 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 3 DialIn
User 3, Len 11

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 5

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 6

6 Hangup
User 2, Len 4 14 Hangup

User 3, Len 11 7 DialIn
User 7, Len 8

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 7

14 Hangup
User 3, Len 11 7 DialIn

User 7, Len 8

14 Hangup
User 3, Len 11 15 Hangup

User 7, Len 8 8 DialIn
User 8, Len 6

Copyright 1996 by Addison-Wesley Publishing Company 124

Chapter 14

Graphs and Paths

Copyright 1996 by Addison-Wesley Publishing Company 125

A directed graph

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10 31 4

5 8 4 6

Copyright 1996 by Addison-Wesley Publishing Company 126

Adjacency list representation of graph in Figure 14.1;
nodes in list i represent vertices adjacent to i and the cost
of the connecting edge

4 (10)

0 (4)

4 (2)

6 (6)

1 (2)

5 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

3 (1)0

1

2

3

4

5

6

Copyright 1996 by Addison-Wesley Publishing Company 127

• Dist : The length of the shortest path (either weighted or
unweighted, depending on the algorithm) from the starting
vertex to this vertex. This value is computed by the shortest
path algorithm.

• Prev : The previous vertex on the shortest path to this vertex.
• Name: The name corresponding to this vertex. This is estab-

lished when the vertex is placed into the dictionary and will
never change. None of the shortest path algorithms examine
this member. It is only used to print a final path.

• Adj : A pointer to a list of adjacent vertices. This is estab-
lished when the graph is read. None of the shortest path algo-
rithms will change the pointer or the linked list.

Information maintained by the Graph table

Copyright 1996 by Addison-Wesley Publishing Company 128

Data structures used in a shortest path calculation, with
input graph taken from a file: shortest weighted path from A
to C is: A to B to E to D to C (cost 76)

D C 10
A B 12
D B 23
A D 87
E D 43
B E 11
C A 19

Input

0

3

4

1

2

Dist Prev Name

D

C

A

B

E

Adj

3

0

Dictio

D (0)

B (
A (2)

A B

C D E

12

11

4310

19 2387

Visual representation of graph

66

76

0

12

23

4

0

-1

2

3
Graph table

Copyright 1996 by Addison-Wesley Publishing Company 129

Graph after marking the start node as reachable in zero
edges

V1V0

V2 V3 V4

V5 V6

0

Copyright 1996 by Addison-Wesley Publishing Company 130

Graph after finding all vertices whose path length from the
start is 1

V1V0

V2 V3 V4

V5 V6

1

0

1

Copyright 1996 by Addison-Wesley Publishing Company 131

Graph after finding all vertices whose shortest path from
the start is 2

V1V0

V2 V3 V4

V5 V6

1 2

0

1

2

Copyright 1996 by Addison-Wesley Publishing Company 132

Final shortest paths

V1V0

V2 V3 V4

V5 V6

1 2

0 3

1 3

2

Copyright 1996 by Addison-Wesley Publishing Company 133

How the graph is searched in unweighted shortest path
computation

V1V0

V2 V3 V4

V5 V6

0

V0

V2 V3

V5

0

1

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V0

V2 V3

V5

0

1

2

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0 3

1

2

1 2

Copyright 1996 by Addison-Wesley Publishing Company 134

Eyeball is at v; w is adjacent; Dw should be lowered to 6

wv

S

3 8

0

3

2

u

6

Copyright 1996 by Addison-Wesley Publishing Company 135

If Dv is minimal among all unseen vertices and all edge
costs are nonnegative, then it represents the shortest path

v

S
0

Du

u

Dv

d 0≥

Copyright 1996 by Addison-Wesley Publishing Company 136

Stages of Dijkstra’s algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8

3

9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8

3

6

1

0

V0

V2 V3

V5

2

2

1

14

5 8

3

8

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

Copyright 1996 by Addison-Wesley Publishing Company 137

Graph with negative cost cycle

V1V0

V2 V3 V4

V5 V6

2

2 2

1

 -10 31 4

5 8 4 6

Copyright 1996 by Addison-Wesley Publishing Company 138

Topological sort

V1V0

V2 V3 V4

V5 V6

0 2

3 2

3

V0

V2 V3

V5

0

2

2

1 0

V0

V2 V3

V5

0

2

0

0

V1V0

V2 V3 V4

V5 V6

0 2

2 2

1

0 0

V1V0

V2 V3 V4

V5 V6

0 0

0 0

0

0 0

V0

V2 V3

V5

0

0

0

0

V0

V2 V3

V5

0

1

0

0

V1V0

V2 V3 V4

V5 V6

0 0

1 1

0

0 0

1

Copyright 1996 by Addison-Wesley Publishing Company 139

Stages of acyclic graph algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8 4

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8 4

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8 4
6

1

0

V0

V2 V3

V5

2

2

1

14

5 8 4
9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

9 5

1

0 2

Copyright 1996 by Addison-Wesley Publishing Company 140

Activity-node graph

C 3

B 2

A 3

G 2

K 4

H 1

F 3

E 1

D 2 FinishStart

Copyright 1996 by Addison-Wesley Publishing Company 141

Top: Event node grap; Bottom: Earliest completion time,
latest completion time, and slack (additional edge item)

1 6d

3

2

8d

7d

5

4

6

9

8

7

A 3

B 2

0

0

C 3

D 2

E 1 K 4

F 3

G 2

0

0

0

0

0

0

0

1 6d

3

2

8d

7d

5

4

6

9

8

7

A 3 0

B 2 2

0

0

C 3 0

D 2 1

E 1 2 K 4 2

F 3 0

G 2 2

0

0

0

0

0

0

0

3 6 6 9

0 3 5 5 7

2 3 7

3 6 6 9

0 4 6 7 9

4 5 9

Copyright 1996 by Addison-Wesley Publishing Company 142

Chapter 15

Stacks and Queues

Copyright 1996 by Addison-Wesley Publishing Company 143

How the stack routines work: empty stack, Push(A) ,
Push(B) , Pop

TOS (0)

TOS (1)

TOS (-1)

A A

B

Copyright 1996 by Addison-Wesley Publishing Company 144

Basic array implementation of the queue

Front

Front

Front

Front

Front

Back

Back

Back

Back

Back

A

A B

B

Size = 0

Size = 1

Size = 2

Size = 1

Size = 0

MakeEmpty

Enqueue(A)

Enqueue(B)

Dequeue()

Dequeue()

Copyright 1996 by Addison-Wesley Publishing Company 145

Array implementation of the queue with wraparound

Front

Front

Front

F

Front

Back

Back

B

Back

Back

F

F

Size = 3

Size = 4

Size = 3

Size = 2

Size = 1

After 3 Enqueues

Enqueue(F)

Dequeue()

Dequeue()

Dequeue()

F

F

D

C D

C D

Copyright 1996 by Addison-Wesley Publishing Company 146

Linked list implementation of the stack

ABCD

TopOfStack

Copyright 1996 by Addison-Wesley Publishing Company 147

Linked list implementation of the queue

A B C D

Front Back

Copyright 1996 by Addison-Wesley Publishing Company 148

Enqueue operation for linked-list-based implementation

Back

X

Back

...

...

Before

After

Copyright 1996 by Addison-Wesley Publishing Company 149

Chapter 16

Linked Lists

Copyright 1996 by Addison-Wesley Publishing Company 150

Basic linked list

A B C D

FrontOfList

Copyright 1996 by Addison-Wesley Publishing Company 151

Insertion into a linked list: create new node (Tmp), copy in
X, set Tmp’s next pointer, set Current ’s next pointer

Current

... .

X

A B

Tmp

Copyright 1996 by Addison-Wesley Publishing Company 152

Deletion from a linked list

Current

...
XA B

Copyright 1996 by Addison-Wesley Publishing Company 153

Using a header node for the linked list

A B C

Header

Copyright 1996 by Addison-Wesley Publishing Company 154

Empty list when header node is used

Header

Copyright 1996 by Addison-Wesley Publishing Company 155

Doubly linked list

Head Tail

A B

Copyright 1996 by Addison-Wesley Publishing Company 156

Empty doubly linked list

Head Tail

Copyright 1996 by Addison-Wesley Publishing Company 157

Insertion into a doubly linked list by getting new node and
then changing pointers in order indicated

... A B

X
a b
c d

Copyright 1996 by Addison-Wesley Publishing Company 158

Circular doubly linked list

First

A B C

Copyright 1996 by Addison-Wesley Publishing Company 159

Chapter 17

Trees

Copyright 1996 by Addison-Wesley Publishing Company 160

A tree

A

B C D E

F G H I J

K

Copyright 1996 by Addison-Wesley Publishing Company 161

Tree viewed recursively

...

Root

T1 T2 T3 Tk

Copyright 1996 by Addison-Wesley Publishing Company 162

First child/next sibling representation of tree in Figure 17.1

A

B C D E

F G H I J

K

Copyright 1996 by Addison-Wesley Publishing Company 163

UNIX directory

mark*

books* courses*

ecp*dsaa* ipps*

ch1 ch2 ch1 ch2 ch2ch1

cop3223* cop353

syl syl

.

Copyright 1996 by Addison-Wesley Publishing Company 164

mark
 books
 dsaa
 ch1
 ch2
 ecp
 ch1
 ch2
 ipps
 ch1
 ch2
 courses
 cop3223
 syl
 cop3530
 syl
 .login

The directory listing for tree in Figure 17.4

Copyright 1996 by Addison-Wesley Publishing Company 165

UNIX directory with file sizes

mark*(1)

books*(1) courses*(1)

ecp*(1)dsaa*(1) ipps*(1)

ch1(9) ch2(7) ch1(4) ch2(6) ch2(8)ch1(3)

cop3223*(1) cop353

syl(2) syl(

.

Copyright 1996 by Addison-Wesley Publishing Company 166

 ch1 9
 ch2 7
 dsaa 17
 ch1 4
 ch2 6
 ecp 11
 ch1 3
 ch2 8
 ipps 12
 books 41
 syl 2
 cop3223 3
 syl 3
 cop3530 4
 courses 8
 .login 2
mark 52

Trace of the Size function

Copyright 1996 by Addison-Wesley Publishing Company 167

Uses of binary trees: left is an expression tree and right is a
Huffman coding tree

+

a *

- d

a

d

b cb c

Copyright 1996 by Addison-Wesley Publishing Company 168

Result of a naive Merge operation

T1.Root

Root
X

Copyright 1996 by Addison-Wesley Publishing Company 169

Aliasing problems in the Merge operation; T1 is also the
current object

T2.Root

Root
X

OldRoot
OldT1.Root

T1.Root

Copyright 1996 by Addison-Wesley Publishing Company 170

Recursive view used to calculate the size of a tree: ST = SL
+ SR + 1

SL SR

Copyright 1996 by Addison-Wesley Publishing Company 171

Recursive view of node height calculation: HT = Max(
HL+1, HR +1)

HL

HL+1

HR

HR +1

Copyright 1996 by Addison-Wesley Publishing Company 172

Preorder, postorder, and inorder visitation routes

1

2 3

4 6

75

7

1 6

3 5

42

1

Copyright 1996 by Addison-Wesley Publishing Company 173

Stack states during postorder traversal

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1

d

a

b

c 0
a 2

e 0
c 1
a 2

e 1
c 1
a 2

e 2
c 1
a 2

c 1
a 2

e

c 2
a 2 a 2

c a

a

b c

ed

Copyright 1996 by Addison-Wesley Publishing Company 174

Chapter 18

Binary Search Trees

Copyright 1996 by Addison-Wesley Publishing Company 175

Two binary trees (only the left tree is a search tree)

2 9

1 5

3

2

1 5

3 8

7 7

Copyright 1996 by Addison-Wesley Publishing Company 176

Binary search trees before and after inserting 6

2 9

1 5

3

7

2

1 5

3 6

7

Copyright 1996 by Addison-Wesley Publishing Company 177

Deletion of node 5 with one child, before and after

7

2 9

1 5

3

7

2

1

3

Copyright 1996 by Addison-Wesley Publishing Company 178

Deletion of node 2 with two children, before and after

7

2 9

1 5

3

7

3

1

4

5

4

Copyright 1996 by Addison-Wesley Publishing Company 179

Using the Size data member to implement FindKth

X X X

SL SL SLSRSR

K < SL + 1 K == SL + 1 K > S

Copyright 1996 by Addison-Wesley Publishing Company 180

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N–1

Copyright 1996 by Addison-Wesley Publishing Company 181

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other

3

2

21

32

3

1

3

2

11

Copyright 1996 by Addison-Wesley Publishing Company 182

Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)

12

8 16

4 10 14

2 6

12

8

4 10

2 6

1

Copyright 1996 by Addison-Wesley Publishing Company 183

Minimum tree of height H

H–1

H

H–2
SH–1 SH–2

Copyright 1996 by Addison-Wesley Publishing Company 184

Single rotation to fix case 1

k2

k1

k1

A

B

C

A

Copyright 1996 by Addison-Wesley Publishing Company 185

Single rotation fixes AVL tree after insertion of 1

8 16

4 10 14

2 6

4

2 8

1 6 10

k2

k1

A B

C

1

A

B C

k2

k1

1212

Copyright 1996 by Addison-Wesley Publishing Company 186

Symmetric single rotation to fix case 4

k2

k1

k1

A B C

A

Copyright 1996 by Addison-Wesley Publishing Company 187

Single rotation does not fix case 2

k2

k1

P

Q

R P

k1

Copyright 1996 by Addison-Wesley Publishing Company 188

Left-right double rotation to fix case 2

k3

k1

k2

k1

A
B C

D

A
B

k2

Copyright 1996 by Addison-Wesley Publishing Company 189

Double rotation fixes AVL tree after insertion of 5

8 16

4 10 14

2 6

6

4 8

2 105

k3

k1

A

D

5

A C D

k3

k2

C

k2 B

k1

12

B

12

Copyright 1996 by Addison-Wesley Publishing Company 190

Left-right double rotation to fix case 3

k1

k3

k2

A

B C
D A

B

k1

k2

Copyright 1996 by Addison-Wesley Publishing Company 191

A red black tree is a binary search tree with the following order-
ing properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a NULL pointer must contain the

same number of black nodes.

Red black tree properties

Copyright 1996 by Addison-Wesley Publishing Company 192

Example of a red black tree; insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

15

10 20

70

60 85

65 80 90

40 55

30

5 50

Copyright 1996 by Addison-Wesley Publishing Company 193

If S is black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if X is an outside grandchild

B

C D E

A

A B

SP

X

G

X

P

Copyright 1996 by Addison-Wesley Publishing Company 194

If S is black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X is an inside grandchild

P S

XA D E A B C

B C

G X

P

Copyright 1996 by Addison-Wesley Publishing Company 195

If S is red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P

P S

X

B

C D E

A

A B

G

X

P

Copyright 1996 by Addison-Wesley Publishing Company 196

Color flip; only if X’s parent is red do we continue with a
rotation

C1 C2

X

C1 C2

X

Copyright 1996 by Addison-Wesley Publishing Company 197

Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it

15

10 20

70

60 85

65 80 90

40 55

30

5 50

Copyright 1996 by Addison-Wesley Publishing Company 198

Result of single rotation that fixes violation at node 50

15

10 20

60

50 70

55 65 85

80

30

5 40

Copyright 1996 by Addison-Wesley Publishing Company 199

Insertion of 45 as a red node

15

10 20

60

50 70

55 65 85

8045

30

5 40

Copyright 1996 by Addison-Wesley Publishing Company 200

Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip

X T X

P P

Copyright 1996 by Addison-Wesley Publishing Company 201

Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation

P T

X T P

R X

Copyright 1996 by Addison-Wesley Publishing Company 202

Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation

P R

X T P

R X

Copyright 1996 by Addison-Wesley Publishing Company 203

X is black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent

B C B C B

TX P

TX' P

X'

Copyright 1996 by Addison-Wesley Publishing Company 204

The level of a node is

• One if the node is a leaf
• The level of its parent, if the node is red
• One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right chil-
dren may be red).

2. There may not be two consecutive horizontal links (because
there cannot be consecutive red nodes).

3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two

children are at the same level.

AA-tree properties

Copyright 1996 by Addison-Wesley Publishing Company 205

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35

5 10

15

20 35 40 55 65 80

30 70

6050

Copyright 1996 by Addison-Wesley Publishing Company 206

Skew is a simple rotation between X and P

A B C

P X

A B C

P X

Copyright 1996 by Addison-Wesley Publishing Company 207

Split is a simple rotation between X and R; note that R’s
level increases

A B

X R

A B

XG G

R

Copyright 1996 by Addison-Wesley Publishing Company 208

After inserting 45 into sample tree; consecutive horizontal
links are introduced starting at 35

After Split at 35; introduces a left horizontal link at 50

After Skew at 50; introduces consecutive horizontal nodes
starting at 40

5 10 20 35 40 55 65 8045

30 70

50 6015

5 10 20 35 55 65 80

50

45

604015

30 70

5 10 20 35 55 65 80

50

30

45

70

6015 40

Copyright 1996 by Addison-Wesley Publishing Company 209

After Split at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After Skew at 70; this introduces consecutive horizontal
links at 30

After Split at 30; insertion is complete

5 10 20 35 55 65 8045

50

15 40 60

30 70

5 10 20 35 55 65 8045

15 40 60

30 50 70

5 10 20 35 55 65 8045

15 40 60

30 70

50

Copyright 1996 by Addison-Wesley Publishing Company 210

When 1 is deleted, all nodes become level 1, introducing
horizontal left links

3 4 6 71

2 5

Copyright 1996 by Addison-Wesley Publishing Company 211

Five-ary tree of 31 nodes has only three levels

Copyright 1996 by Addison-Wesley Publishing Company 212

B-tree of order 5

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

58

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

59

Copyright 1996 by Addison-Wesley Publishing Company 213

A B-tree of order M is an M-ary tree with the following proper-
ties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to keys to guide the

searching; key i represents the smallest key in subtree .
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between

and M children.
5. All leaves are at the same depth and have between

and L children, for some L.

B-tree properties

M 1–
i 1+

M 2⁄

L 2⁄

Copyright 1996 by Addison-Wesley Publishing Company 214

B-tree after insertion of 57 into tree in Figure 18.70

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

57

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

58

59

Copyright 1996 by Addison-Wesley Publishing Company 215

Insertion of 55 in B-tree in Figure 18.71 causes a split into
two leaves

41 66 87

972 78 8348 51 54 578 18 26 35

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

87
89
90

57
58
59

Copyright 1996 by Addison-Wesley Publishing Company 216

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node

26 41 66 87

72 78 8348 51 54 5735 38

26
28
30
31
32

35
36
37

38
39
40

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

57
58
59

8 18

2
4
6

8
10
12
14
16

18
20
22
24

Copyright 1996 by Addison-Wesley Publishing Company 217

B-tree after deletion of 99 from Figure 18.73

26 41 66 83

72 7848 51 54 5735 38

26

28

30

31

32

35

36

37

38

39

40

41

42

44

46

48

49

50

51

52

53

54

55

56

78

79

81

72

73

74

76

66

68

69

70

57

58

59

8 18

2

4

6

8

10

12

14

16

18

20

22

24

