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Chapter 1

Pointers, Arrays, and Structures
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Pointer illustration

X = 5

Y = 7

1000

(&X) 1000

(&Y) 1004

(&Ptr) 1200

5

Ptr X
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Result of *Ptr=10

X = 10

Y = 7

Ptr = &X = 1000

(&X) 1000

(&Y) 1004

(&Ptr) 1200

10

Ptr X
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Uninitialized pointer

X = 5

Y = 7

Ptr = ?

(&X) 1000

(&Y) 1004

(&Ptr) 1200

5

Ptr X
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(a) Initial state; (b) Ptr1=Ptr2  starting from initial state; 
(c) *Ptr1=*Ptr2  starting from initial state

Ptr1 X Ptr1 X Ptr1

Ptr2 Y Ptr2 Y Ptr2

5

7

5

7

(a) (b)
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Memory model for arrays (assumes 4 byte int ); declara-
tion is int A[3]; int i;

A[0]

A[1]

A[2]

A=1000

&A[0] (1000)

&A[1] (1004)

&A[2] (1008)

&A    (5620)

i&i    (1012)

...
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1 size_t strlen( const char *Str );
2 char * strcpy(       char *Lhs, const char *Rhs );
3 char * strcat(       char *Lhs, const char *Rhs );
4 int    strcmp( const char *Lhs, const char *Rhs );

Some of the string routines in <string.h>
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1 void
2 F( int i )
3 {
4     int A1[ 10 ];
5     int *A2 = new int [ 10 ];
6
7     ...
8     G( A1 );
9     G( A2 );

10
11     // On return, all memory associated with A1 is freed
12     // On return, only the pointer A2 is freed;
13     // 10 ints have leaked
14     // delete [ ] A2;   // This would fix the leak
15 }

Two ways to allocate arrays; one leaks memory
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int *Original = A2;      // 1. Save pointer to the original
A2 = new int [ 12 ];     // 2. Have A2 point at more memory
for( int i = 0; i < 10; i++ ) // 3. Copy the old data over
    A2[ i ] = Original[ i ];
delete [ ] Original;     // 4. Recycle the original array

Memory reclamation

A1 A2
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Array expansion: (a) starting point: A2 points at 10 inte-
gers; (b) after step 1: Original  points at the 10 inte-
gers; (c) after steps 2 and 3: A2 points at 12 integers, the 
first 10 of which are copied from Original ; (d) after step 
4: the 10 integers are freed

A2

A2

A2

A2

Original

Original

Original

(a)

(b)

(c)

(d)
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Pointer arithmetic: X=&A[3]; Y=X+4

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

A Ptr X Y



Copyright  1996 by Addison-Wesley Publishing Company 12

1 // Test that Strlen1 and Strlen2 give same answer
2 // Source file is ShowProf.cpp
3
4 #include <iostream.h>
5
6 main( )
7 {
8     char Str[ 512 ];
9

10     while( cin >> Str )
11     {
12         if( Strlen1( Str ) != Strlen2( Str ) )
13             cerr << "Oops!!!!" << endl;
14     }
15
16     return 0;
17 }

 %time  cumsecs  #call  ms/call  name
  26.6     0.34  25145     0.01  ___rs__7istreamFPc
  22.7     0.63  25144     0.01  _Strlen2__FPCc
  14.8     0.82                  mcount
  12.5     0.98  25144     0.01  _Strlen1__FPCc
   8.6     1.09  25145     0.00  _do_ipfx__7istreamFi
   6.2     1.17  25145     0.00  _eatwhite__7istreamFv
   4.7     1.23    204     0.29  _read
   3.1     1.27      1    40.00  _main

First eight lines from prof  for program

 %time  cumsecs  #call  ms/call  name
  34.4     0.31                  mcount
  26.7     0.55  25145     0.01  ___rs__7istreamFPc
   8.9     0.63  25145     0.00  _do_ipfx__7istreamFi
   6.7     0.69  25144     0.00  _Strlen1__FPCc
   6.7     0.75  25144     0.00  _Strlen2__FPCc
   6.7     0.81  25145     0.00  _eatwhite__7istreamFv
   6.7     0.87    204     0.29  _read
   3.3     0.90      1    30.00  _main

First eight lines from prof  with highest optimization
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struct Student
{
    char FirstName[ 40 ];
    char LastName[ 40 ];
    int StudentNum;
    double GradePointAvg;
};

Student  structure

StudentNum

GradePointAvg

FirstName

LastName
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Illustration of a shallow copy in which only pointers are cop-
ied

12345 12345

"Nina"

"Weiss"

S
FirstName

LastName

EmployeeNum
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Illustration of a simple linked list

A0 A1 A2

First Last
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Chapter 2

Objects and Classes
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1 // MemoryCell class
2 //  int Read( )         -->  Returns the stored value
3 //  void Write( int X ) -->  X is stored
4
5 class MemoryCell
6 {
7   public:
8         // Public member functions
9     int Read( )           { return StoredValue; }

10     void Write( int X )   { StoredValue = X; }
11   private:
12         // Private internal data representation
13     int StoredValue;
14 };

A complete declaration of a MemoryCell  class



Copyright  1996 by Addison-Wesley Publishing Company 18

MemoryCell  members: Read and Write  are acces-
sible, but StoredValue  is hidden

Read Write StoredV
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1 // Exercise the MemoryCell class
2
3 main( )
4 {
5     MemoryCell M;
6
7     M.Write( 5 );
8     cout << "Cell contents are " << M.Read( ) << '\n';
9         // The next line would be illegal if uncommented

10 //  cout << "Cell contents are " << M.StoredValue << '\n';
11     return 0;
12 }

A simple test routine to show how MemoryCell  objects 
are accessed
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1 // MemoryCell interface
2 //  int Read( )         -->  Returns the stored value
3 //  void Write( int X ) -->  X is stored
4
5 class MemoryCell
6 {
7   public:
8     int Read( );
9     void Write( int X );

10   private:
11     int StoredValue;
12 };
13
14
15
16 // Implementation of the MemoryCell class members
17
18 int
19 MemoryCell::Read( )
20 {
21     return StoredValue;
22 }
23
24 void
25 MemoryCell::Write( int X )
26 {
27     StoredValue = X;
28 }

A more typical MemoryCell  declaration in which inter-
face and implementation are separated
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1 // BitArray class: support access to an array of bits
2 //
3 // CONSTRUCTION: with (a) no initializer or (b) an integer
4 //     that specifies the number of bits
5 // All copying of BitArray objects is DISALLOWED
6 //
7 // ******************PUBLIC OPERATIONS**********************
8 // void ClearAllBits( )   --> Set all bits to zero
9 // void SetBit( int i )   --> Turn bit i on

10 // void ClearBit( int i ) --> Turn bit i off
11 // int GetBit( int i )    --> Return status of bit i
12 // int NumItems( )        --> Return capacity of bit array
13
14 #include <iostream.h>
15
16 class BitArray
17 {
18   public:
19     // Constructor
20     BitArray( int Size = 320 );          // Basic constructor
21
22     // Destructor
23     ~BitArray( ) { delete [ ] TheArray; }
24
25     // Member Functions
26     void ClearAllBits( );
27     void SetBit( int i );
28     void ClearBit( int i );
29     int  GetBit( int i ) const;
30     int  NumItems( ) const { return N; }
31   private:
32         // 3 data members
33     int *TheArray;                       // The bit array
34     int N;                               // Number of bits
35     int ArraySize;                       // Size of the array
36
37     enum { IntSz = sizeof( int ) * 8 };
38     int IsInRange( int i ) const;// Check range with error msg
39
40         // Disable operator= and copy constructor
41     const BitArray & operator=( const BitArray & Rhs );
42     BitArray( const BitArray & Rhs );
43 };

Interface for BitArray  class
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BitArray  members

SetBit

NumItems

TheArrayN ArraySize

Constructor

IsInRange

Destructor

ClearBitGetBit

ClearAllBits

Copy constru

Copy assignm

IntSize

this

Visible members Hidden member functions Hidden data 
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1 BitArray A;            // Call with Size = 320
2 BitArray B( 50 );      // Call with Size = 50
3 BitArray C = 50;       // Same as above
4 BitArray D[ 50 ];      // Calls 50 constructors, with Size 320
5 BitArray *E = new BitArray; // Allocates BitArray of Size 320
6 E = new BitArray( 20 );// Allocates BitArray of size 20; leaks
7 BitArray F = "wrong";  // Does not match basic constructor
8 BitArray G( );         // This is wrong!

Construction examples
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Chapter 3

Templates
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Array position 0 1 2 3 4 5

Initial State: 8 5 9 2 6 3

After A[0..1] is sorted: 5 8 9 2 6 3

After A[0..2] is  sorted: 5 8 9 2 6 3

After A[0..3] is sorted: 2 5 8 9 6 3

After A[0..4] is  sorted: 2 5 6 8 9 3

After A[0..5] is  sorted: 2 3 5 6 8 9

Basic action of insertion sort (shaded part is sorted)
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Array position 0 1 2 3 4 5

Initial State: 8 5

After A[0..1] is sorted: 5 8 9

After A[0..2] is  sorted: 5 8 9 2

After A[0..3] is sorted: 2 5 8 9 6

After A[0..4] is  sorted: 2 5 6 8 9 3

After A[0..5] is  sorted: 2 3 5 6 8 9

Closer look at action of insertion sort (dark shading indi-
cates sorted area; light shading is where new element was 
placed)
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1 // Typical template interface
2 template <class  Etype >
3 class  ClassName
4 {   
5   public:
6     // Public members
7   private:
8     // Private members
9 };   

10
11
12 // Typical member implementation
13 template <class  Etype >
14 ReturnType
15 ClassName <Etype >:: MemberName(  Parameter List  )  /* const */
16 {  
17     // Member body
18 }  

Typical layout for template interface and member functions
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Chapter 4

Inheritance
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1 class  Derived : public  Base
2 {  
3     // Any members that are not listed are inherited unchanged
4     // except for constructor, destructor,
5     // copy constructor, and operator=
6   public:
7     // Constructors, and destructors if defaults are not good
8     // Base members whose definitions are to change in Derived
9     // Additional public member functions

10   private:
11     // Additional data members (generally private)
12     // Additional private member functions
13     // Base members that should be disabled in Derived
14 };  

General layout of public inheritance
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Public inheritance situation Public Protected Private

Base class member function accessing M Yes Yes Yes
Derived class member function accessing M Yes Yes No

main , accessing B.M Yes No No
main , accessing D.M Yes No No

Derived class member function accessing Yes No No
B is an object of the base class; D is an object of the publicly derived class; M is a 

member of the base class. 

Access rules that depend on what M ’s visibility is in the 
base class
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Public inheritance situation Public Protected Private

F accessing B.MB Yes Yes Yes
F accessing D.MD Yes No No
 F accessing D.MB Yes Yes Yes

B is an object of the base class; D is an object of the publicly derived class; MB is a 
member of the base class. MD is a member of the derived class. F is a friend of the 

base class (but not the derived class)

Friendship is not inherited
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1     const VectorSize = 20;
2     Vector<int> V( VectorSize );
3     BoundedVector<int> BV( VectorSize, 2 * VectorSize - 1 );
4         ...
5     BV[ VectorSize ] = V[ 0 ];

Vector  and BoundedVector  classes with calls to 
operator[]  that are done automatically and correctly
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1     Vector<int> *Vptr;
2     const int Size = 20;
3     cin >> Low;
4     if( Low )
5         Vptr = new BoundedVector<int>( Low, Low + Size - 1 );
6     else
7         Vptr = new Vector<int>( Size )
8
9         ...

10     (*Vptr)[ Low ] = 0;       // What does this mean?

Vector  and BoundedVector  classes
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The hierarchy of shapes used in an inheritance example

   

Square

Rectangle

Shape

Circle
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1. Nonvirtual functions: Overloading is resolved at compile 
time. To ensure consistency when pointers to objects are 
used, we generally use a nonvirtual function only when the 
function is invariant over the inheritance hierarchy (that is, 
when the function is never redefined). The exception to this 
rule is that constructors are always nonvirtual, as mentioned 
in Section 4.5.

2. Virtual functions: Overloading is resolved at run time. The 
base class provides a default implementation that may be 
overridden by the derived classes. Destructors should be 
virtual functions, as mentioned in Section 4.5.

3. Pure virtual functions: Overloading is resolved at run time. 
The base class provides no implementation. The absence of 
a default requires that the derived classes provide an imple-
mentation.

Summary of nonvirtual, virtual, and pure virtual functions
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1. Provide a new constructor.
2. Examine each virtual function to decide if we are willing to 

accept its defaults; for each virtual function whose defaults 
we do not like, we must write a new definition.

3. Write a definition for each pure virtual function.
4. Write additional member functions if appropriate.

Programmer responsibilities for derived class
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Chapter 5

Algorithm Analysis
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Running times for small inputs
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Running time for moderate inputs
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Function Name

Constant

Logarithmic

Log-squared

Linear

N log N

Quadratic

Cubic

Exponential

Functions in order of increasing growth rate

c

log N

Nlog2

N

N log N

N2

N3

2N
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The subsequences used in Theorem 5.2

i j j +1 q

< 0 Sj+1,q

<Sj+1,q
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The subsequences used in Theorem 5.3. The sequence 
from p to q has sum at most that of the subsequence from i 
to q. On the left, the sequence from i to q is itself not the 
maximum (by Theorem 5.2). On the right, the sequence 
from i to q has already been seen.

i j j +1 q

Si,q

p-1   p

>=0 <=Si,q

i

Si,q

p-1   p

>=0 <=Si,q
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DEFINITION: (Big-Oh)  if there are pos-
itive constants c and  such that  when

.

DEFINITION: (Big-Omega)  if there are
positive constants c and  such that  when

.

DEFINITION: (Big-Theta)  if and only if
 and .

DEFINITION: (Little-Oh)  if there are
positive constants c and  such that  when

.

T N(  ) O F N(  )(  )=
N0 T N(  ) cF N(  )≤

N N0≥

T N(  ) Ω F N(  )(  )=
N0 T N(  ) cF N(  )≥

N N0≥

T N(  ) Θ F N(  )(  )=
T N(  ) O F N(  )(  )= T N(  ) Ω F N(  )(  )=

T N(  ) o F N(  )(  )=
N0 T N(  ) cF N(  )<

N N0≥
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Mathematical expression Relative rates of growth

Growth of  is  growth of 

Growth of  is  growth of 

Growth of  is  growth of 

Growth of  is  growth of 

Meanings of the various growth functions

T N(  ) O F N(  )(  )= T N(  ) ≤ F N(  )

T N(  ) Ω F N(  )(  )= T N(  ) ≥ F N(  )

T N(  ) Θ F N(  )(  )= T N(  ) = F N(  )

T N(  ) o F N(  )(  )= T N(  ) < F N(  )
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10 0.00103 0.00045 0.00066 0.00034

100 0.47015 0.01112 0.00486 0.00063

1,000 448.77 1.1233 0.05843 0.00333

10,000 NA 111.13 0.68631 0.03042

100,000 NA NA 8.01130 0.29832

Observed running times (in seconds) for various maximum 
contiguous subsequence sum algorithms

N O N3(  ) O N2(  ) O( N log N ) O( N )
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CPU time 
(milliseconds)

10,000 100 0.01000000 0.00000100 0.00075257

20,000 200 0.01000000 0.00000050 0.00069990

40,000 440 0.01100000 0.00000027 0.00071953

80,000 930 0.01162500 0.00000015 0.00071373

160,000 1960 0.01225000 0.00000008 0.00070860

320,000 4170 0.01303125 0.00000004 0.00071257

640,000 8770 0.01370313 0.00000002 0.00071046

Empirical running time for N binary searches in an N-item 
array

N T T N⁄ T N2⁄ T N log N(  )⁄
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Chapter 6

Data Structures
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1 #include <iostream.h>
2 #include "Stack.h"
3
4 // Simple test program for stacks
5
6 main( )
7 {
8     Stack<int> S;
9

10     for( int i = 0; i < 5; i++ )
11         S.Push( i );
12
13     cout << "Contents:";
14     do
15     {
16         cout << ' ' << S.Top( );
17         S.Pop( );
18     } while( !S.IsEmpty( ) );
19     cout << '\n';
20
21     return 0;
22 }

Sample stack program; output is
Contents: 4 3 2 1 0
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Stack model: input to a stack is by Push , output is by 
Top , deletion is by Pop

Stack

Pop, TopPush
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1 #include <iostream.h>
2 #include "Queue.h"
3
4 // Simple test program for queues
5
6 main( )
7 {
8     Queue<int> Q;
9

10     for( int i = 0; i < 5; i++ )
11         Q.Enqueue( i );
12
13     cout << "Contents:";
14     do
15     {
16         cout << ' ' << Q.Front( );
17         Q.Dequeue( );
18     } while( !Q.IsEmpty( ) );
19     cout << '\n';
20
21     return 0;
22 }

Sample queue program; output is
Contents:0 1 2 3 4
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Queue model: input is by Enqueue , output is by Front , 
deletion is by Dequeue

Queue
Enqueue Dequeue

Front
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1 #include <iostream.h>
2 #include "List.h"
3
4 // Simple test program for lists
5
6 main( )
7 {
8     List<int> L;
9     ListItr<int> P = L;

10
11         // Repeatedly insert new items as first elements
12     for( int i = 0; i < 5; i++ )
13     {
14         P.Insert( i );
15         P.Zeroth( ); // Reset P to the start
16     }
17
18     cout << "Contents:";
19     for( P.First( ); +P; ++P )
20         cout << ' ' << P( );
21     cout << "end\n";
22
23     return 0;
24 }

Sample list program; output is Contents: 4 3 2 1 
0 end
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Link list model: inputs are arbitrary and ordered, any item 
may be output, and iteration is supported, but this data 
structure is not time-efficient

List

Insert Find  and Remove
any item by name
or by rank
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A simple linked list

A0 A1 A2

First Last
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A tree

A

B C D E

F G H I J

K
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Expression tree for (a+b)*(c-d)

*

+ -

a b c d
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1 #include <iostream.h>
2 #include "Bst.h"
3
4 // Simple test program for binary search trees
5
6 main( )
7 {
8     SearchTree<String> T;
9     

10     T.Insert( "Becky" );
11
12         // Simple use of Find/WasFound
13         // Appropriate if we need a copy
14     String Result1 = T.Find( "Becky" );
15     if( T.WasFound( ) )
16         cout << "Found " << Result1 << ';';
17     else
18         cout << "Becky not found;";
19
20         // More efficient use of Find/WasFound
21         // Appropriate if we only need to examine
22     const String & Result2 = T.Find( "Mark" );
23     if( T.WasFound( ) )
24         cout << " Found " << Result2 << ';';
25     else
26         cout << " Mark not found; ";
27
28     cout << '\n';
29
30     return 0;
31 }

Sample search tree program;
output is Found Becky; Mark not found;
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Binary search tree model; the binary search is extended to 
allow insertions and deletions

Binary

Insert Find  and Remove
any item by name
or rank

Search Tree
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1 #include <iostream.h>
2 #include "Hash.h"
3
4 // A good hash function is given in Chapter 19
5 unsigned int Hash( const String & Element, int TableSize );
6
7 // Simple test program for hash tables
8
9 main( )

10 {
11     HashTable<String> H;
12     
13     H.Insert( "Becky" );
14
15     const String & Result2 = H.Find( "Mark" );
16     if( H.WasFound( ) )
17         cout << " Found " << Result2 << ';';
18     else
19         cout << " Mark not found; ";
20
21     cout << '\n';
22
23     return 0;
24 }

Sample hash table program;
output is Found Becky; Mark not found;
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The hash table model: any named item can be accessed or 
deleted in essentially constant time

Insert Find  and Remove
any item by name

Hash
Table
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1 #include <iostream.h>
2 #include "BinaryHeap.h"
3
4 // Simple test program for priority queues
5
6 main( )
7 {
8     BinaryHeap<int> PQ;
9

10     PQ.Insert( 4 ); PQ.Insert( 2 ); PQ.Insert( 1 );
11     PQ.Insert( 5 ); PQ.Insert( 0 );
12
13     cout << "Contents:";
14     do
15     {
16         cout << ' ' << PQ.FindMin( );
17         PQ.DeleteMin( );
18     } while( !PQ.IsEmpty( ) );
19     cout << '\n';
20
21     return 0;
22 }

Sample program for priority queues;
output is Contents: 0 1 2 3 4
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Priority queue model: only the minimum element is acces-
sible

Priority
Queue

Insert
DeleteMin

FindMin
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Data 
Structure Access Comments

Stack Most recent only, Pop, Very very fast

Queue Least recent only, Dequeue , Very very fast

Linked list Any item

Search Tree Any item by name or rank, Average case, can be made 
worst case

Hash Table Any named item, Almost certain

Priority Queue FindMin , ,

DeleteMin , 

Insert  is  on 

average  worst 
case

Summary of some data structures

O 1(  )

O 1(  )

O( N )

O( log N )

O 1(  )

O 1(  )
O( log N )

O 1(  )
O( log N )
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Chapter 7

Recursion
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Stack of activation records

main()

S(4)

S(3)

S(2)TOP:
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Trace of the recursive calculation of the Fibonacci numbers

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F
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• Divide: Smaller problems are solved recursively (except, of 
course, base cases).

• Conquer: The solution to the original problem is then formed 
from the solutions to the subproblems.

Divide-and-conquer algorithms
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First Half Second Half

4 -3 5 -2 -1 2 6 -2 Values

4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem 
into halves
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Trace of recursive calls for recursive maximum contiguous 
subsequence sum algorithm
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Assuming N is a power of 2, the solution to the equation
, with init ial condit ion  is

.

Basic divide-and-conquer running time theorem

T N(  ) 2T N 2⁄(  ) N+= T 1( ) 1=
T N(  ) N log N N+=
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The  so lu t i on  to  the  equa t ion
, where  and ,

is

if 

if 

if 

General divide-and-conquer running time theo-
rem

T N(  ) AT N B⁄(  ) O Nk(  )+= A 1≥ B 1>

T N(  )









=

O N ABlog( ) A Bk>

O Nk Nlog( ) A Bk=

O Nk( ) A Bk<
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Some of the subproblems that are solved recursively in 
Figure 7.15

1

1 1

25 25 10 1 21

21

21

21

21 21 10 1062

2

61

21

42

31

32

  1
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Alternative recursive algorithm for coin-changing problem

+

+

+

+

+

1

5

10

21

25

21 21 10 10

25 21 10 1 1

21 21 10 1

21 21

25 10 1 1 1
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Chapter 8

Sorting Algorithms
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• Words in a dictionary are sorted (and case distinctions are 
ignored).

• Files in a directory are often listed in sorted order.
• The index of a book is sorted (and case distinctions are 

ignored).
• The card catalog in a library is sorted by both author and title.
• A listing of course offerings at a university is sorted, first by 

department and then by course number.
• Many banks provide statements that list checks in increasing 

order (by check number).
• In a newspaper, the calendar of events in a schedule is gener-

ally sorted by date.
• Musical compact disks in a record store are generally sorted 

by recording artist.
• In the programs that are printed for graduation ceremonies, 

departments are listed in sorted order, and then students in 
those departments are listed in sorted order.

Examples of sorting
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Operators Definition

operator> ( A, B ) return B < A;

operator>=( A, B ) return !( A < B );

operator<=( A, B ) return !( B < A );

operator!=( A, B ) return A < B || B < A;

operator==( A, B ) return !( A < B || B < A );

Deriving the relational and equality operators from 
operator<
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Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Shellsort after each pass, if increment sequence is {1, 3, 5}



Copyright  1996 by Addison-Wesley Publishing Company 78

N Insertion
sort

Shellsort

Shell’s Odd gaps only Dividing by 2.2

1,000 122 11 11 9
2,000 483 26 21 23
4,000 1,936 61 59 54
8,000 7,950 153 141 114

16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and 
Shellsort with various increment sequences
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Linear-time merging of sorted arrays (first four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 13 24 26 2 15 27 38

BptrAptr Cptr

1

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13



Copyright  1996 by Addison-Wesley Publishing Company 80

Linear-time merging of sorted arrays (last four steps)

1 13 24 26 2 15 27 38

BptrAptr Cp

1 2 13 15

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2
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The basic algorithm Quicksort(S)  consists of the following four
steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.
3. Partition S – {v} (the remaining elements in S) into two dis-

joint groups: L =  and R = 
.

4. Return the result of Quicksort(L) followed by v followed by 
Quicksort(R).

Basic quicksort algorithm

x S v{ }– x v≤∈{ }
x S v{ }–∈ x v≥{ }
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The steps of quicksort

13

81

92

43

65

31
57

26
75

0

Select pivot

13

81

92

43

65

31
57

26
75

0

Partition

13
0

26
43

57

31 65
92

Quicksort Quicksor

0 13 26 31 43 57 65 7

  0 13 26 31 43 57 65 75 81 92

large itemsmall items
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Because recursion allows us to take the giant leap of faith, the
correctness of the algorithm is guaranteed as follows:

• The group of small elements is sorted, by virtue of the recur-
sion.

• The largest element in the group of small elements is not 
larger than the pivot, by virtue of the partition.

• The pivot is not larger than the smallest element in the group 
of large elements, by virtue of the partition.

• The group of large elements is sorted, by virtue of the recur-
sion.

Correctness of quicksort
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8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: pivot element 6 is placed at the end

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: i  stops at large element 8; j  stops 
at small element 2

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: out-of-order elements 8 and 2 are 
swapped

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm:  i  stops at large element 9; j  stops 
at small element 5

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: out-of-order elements 9 and 5 are 
swapped

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: i  stops at large element 9; j  stops 
at small element 3

2 1 4 5 0 3 6 8 7 9

Partitioning algorithm: swap pivot and element in position i
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8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9 6 3 5 2 7 8

Result of sorting three elements (first, middle, and last)

0 1 4 9 7 3 5 2 6 8

Result of swapping the pivot with next to last element
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• We should not swap the pivot with the element in the last 
position. Instead, we should swap it with the element in the 
next to last position.

• We can start i  at Low+1 and j  at High-2 .
• We are guaranteed that, whenever i  searches for a large ele-

ment, it will stop because in the worst case it will encounter 
the pivot (and we stop on equality).

• We are guaranteed that, whenever j  searches for a small ele-
ment, it will stop because in the worst case it will encounter 
the first element (and we stop on equality).

Median-of-three partitioning optimizations
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1. If the number of elements in S is 1, then presumably k is 
also 1, and we can return the single element in S.

2. Pick any element v in S. This is the pivot.
3. Partition S – {v} into L  and R, exactly as was done for 

quicksort.
4. If k is less than or equal to the number of elements in L, then 

the item we are searching for must be in L. Call Quickselect( 
L, k ) recursively. Otherwise, if k is exactly equal to one 
more than the number of items in L, then the pivot is the kth 
smallest element, and we can return it as the answer. Other-
wise, the kth smallest element lies in R, and it is the (k – |L| – 
1)th smallest element in R. Again, we can make a recursive 
call and return the result.

Quickselect algorithm
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Using an array of pointers to sort

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Ptr[0] Ptr[1] Ptr[2] Ptr[3] Ptr[4]
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Data structure used for in-place rearrangement

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Loc[0] Loc[1] Loc[2] Loc[3] Loc[4]

1 0 4 2 3
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Chapter 9

Randomization
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Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

Distribution of lottery winners if expected number of win-
ners is 2
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An important nonuniform distribution that occurs in simula-
tions is the Poisson distribution. Occurrences that happen under
the following circumstances satisfy the Poisson distribution:

• The probability of one occurrence in a small region is propor-
tional to the size of the region.

• The probability of two occurrences in a small region is pro-
portional to the square of the size of the region and is usually 
small enough to be ignored.

• The event of getting k occurrences in one region and the event 
of getting j occurrences in another region disjoint from the 
first region are independent. (Technically this statement 
means that you can get the probability of both events simulta-
neously occurring by multiplying the probability of individ-
ual events.)

• The mean number of occurrences in a region of some size is 
known.

Then if the mean number of occurrences is the constant a, then
the probability of exactly k occurrences is .

Poisson distribution

ake a– k!⁄
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Chapter 10

Fun and Games
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0 1 2 3
0 t h i s

1 w a t s

2 o a h g

3 f g d t

Sample word search grid
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for each word W in the word list
    for each row R
        for each column C
            for each direction D
                check if W exists at row R, column C
                in direction D

Brute-force algorithm for word search puzzle
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for each row R
    for each column C
        for each direction D
            for each word length L
                check if L chars starting at row R column C
                            in direction D form a word

Alternate algorithm for word search puzzle
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for each row R
    for each column C
        for each direction D
            for each word length L
                check if L chars starting at row R column
                            C in direction D form a word
                if they do not form a prefix,
                    break;   // the innermost loop

Improved algorithm for word search puzzle; incorporates a 
prefix test
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1. If the position is terminal (that is, can immediately be evalu-
ated), return its value.

2. Otherwise, if it is the computer’s turn to move, return the 
maximum value of all positions reachable by making one 
move. The reachable values are calculated recursively.

3. Otherwise, it is the human’s turn to move. Return the mini-
mum value of all positions reachable by making one move. 
The reachable values are calculated recursively.

Basic minimax algorithm
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Alpha-beta pruning: After H2A is evaluated, C2, which is the 
minimum of the H2’s, is at best a draw. Consequently, it 
cannot be an improvement over C1. We therefore do not 
need to evaluate H2B, H2C, and H2D, and can proceed 
directly to C3

C1 C3

DRAW

U

U

C2

H2A

DRAW

H2B

?

H2C

?

H2D

?
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Two searches that arrive at identical positions

X

X O X

X O X

O X

X O

X
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Chapter 11

Stacks and Compilers
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Stack operations in balanced symbol algorithm

(
[
( (

( [ ] }* )*

{

[ eof*

Errors (indicated by *):
    } when expecting )
    ) with no matching opening symb o
    [ unmatched at end of input 
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Steps in evaluation of a postfix expression

1
2
1 -1

4
-1

1 2 - 4

1024
-1
^

3
1024

-1
3

3072
-1
*

6
3072

-1
6

18432
-1
*

2
7

18432
-1
2

2
2
7

18432
-1
2

4
7

18432
-1
^

2401
18432

-1
^

7
-1
/

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ 
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Infix expression Postfix expression Associativity

2 + 3 + 4 2 3 + 4 + Left associative: Input + is 
lower than stack +

2 ^ 3 ^ 4 2 3 4 ^ ^ Right associative: Input ^  is 
higher than stack ^

Associativity rules
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• Operands: Immediately output.
• Close parenthesis: Pop stack symbols until an open parenthe-

sis is seen.
• Operator: Pop all stack symbols until we see a symbol of 

lower precedence or a right associative symbol of equal pre-
cedence. Then push the operator.

• End of input: Pop all remaining stack symbols.

Various cases in operator precedence parsing
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Infix to postfix conversion

Infix: 1 - 2 ^ 3 ^ 3 - ( 4 + 5 * 6 ) * 7

1

1

-

-

2

-
2

^

^
-

3

^
-

3

3

^
^
-

3

-

-
^^-

(

(
-

4

(
-

4

+

+
(
-

*

*

+
(
-

*

6

+
(
-

6

)

-
* +

*

*
-

7

*
7



Copyright  1996 by Addison-Wesley Publishing Company 107

Expression tree for (a+b)*(c-d)

*

+ -

a b a b
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Chapter 12

Utilities
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Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
i 010 12 36
s 011  3  9
t 100  4 12

sp 101 13 39
nl 110  1  3

Total 174

A standard coding scheme
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Representation of the original code by a tree

a e i s t sp nl
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A slightly better tree

a e i s t sp

nl



Copyright  1996 by Addison-Wesley Publishing Company 112

Optimal prefix code tree

t

a

sp

nl

e

s

i
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Character Code Frequency Total Bits

a 001 10 30
e 01 15 30
i 10 12 24
s 00000 3 15
t 0001  4 16

sp 11 13 26
nl 00001  1  5

Total 146

Optimal prefix code
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Huffman’s algorithm after each of first three merges

i se ta sp
10 15 12 3 4 13

i te spa
10 15 12 4 13

T1

s

4

i spea
10 15 12 13

T2

T1

nls

8

spie
15 12 13

t

T2

T3

T1

nls

1
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Huffman’s algorithm after each of last three merges

e
15

sp

T4

i

25

t

T2

T3

T1

nls

18

sp

T4

i

25

t

T5

aT2

T3

T1

nls

3

t

T5

aT2

T3

T1

T6

nl

e

s

T4

i

58
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Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 i 12 10 0
3 s 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0

10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)
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IdNode  data members: Word is a String ; Lines  is 
a pointer to a Queue

Lines

Word Dynamically al
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The object in the tree is a copy of the temporary; after the 
insertion is complete, the destructor is called for the tempo-
rary

Dynamical

NewWord

Temporary

Object stored in the tree

Tree

143

que
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Chapter 13

Simulation
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1. At the start, the potato is at player 1; after one pass it is at 
player 2.

2. Player 2 is eliminated, player 3 picks up the potato, and 
after one pass it is at player 4.

3. Player 4 is eliminated, player 5 picks up the potato and 
passes it to player 1.

4. Player 1 is eliminated, player 3 picks up the potato, and 
passes it to player 5.

5. Player 5 is eliminated, so player 3 wins.

The Josephus problem

1 2 3

45

1 3

45

31

5

(a) (b) (c)
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1 User 0 dials in at time 0 and connects for 1 minutes
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes
27 User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems; 
a dial in is attempted every minute; average connect time is 
5 minutes; simulation is run for 19 minutes
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1. The first DialIn  request is inserted
2. After DialIn  is removed, the request is connected result-

ing in a Hangup  and a replacement DialIn  request
3. A Hangup  request is processed
4. A DialIn  request is processed resulting in a connect. Thus 

both  a Hangup  and DialIn  event are added (three times)
5. A DialIn  request fails; a replacement DialIn  is gener-

ated (three times)
6. A Hangup  request is processed (twice)
7. A DialIn  request succeeds, Hangup  and DialIn  are 

added.

Steps in the simulation
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Priority queue for modem bank after each step

1 Hangup
User 0, Len 1 1 DialIn

User 1, Len 5

1 DialIn
User 1, Len 5

0 DialIn
User 0, Len 1

6 Hangup
User 1, Len 5 2 DialIn

User 2, Len 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 3 DialIn
User 3, Len 11

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 5

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 6

6 Hangup
User 2, Len 4 14 Hangup

User 3, Len 11 7 DialIn
User 7, Len 8

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 7

14 Hangup
User 3, Len 11 7 DialIn

User 7, Len 8

14 Hangup
User 3, Len 11 15 Hangup

User 7, Len 8 8 DialIn
User 8, Len 6
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Chapter 14

Graphs and Paths
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A directed graph

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10         31      4   

5           8 4            6
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Adjacency list representation of graph in Figure 14.1; 
nodes in list i represent vertices adjacent to i and the cost 
of the connecting edge

4 (10)

0 (4)

4 (2)

6 (6)

1 (2)

5 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

3 (1)0

1

2

3

4

5

6
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• Dist : The length of the shortest path (either weighted or 
unweighted, depending on the algorithm) from the starting 
vertex to this vertex. This value is computed by the shortest 
path algorithm.

• Prev : The previous vertex on the shortest path to this vertex.
• Name: The name corresponding to this vertex. This is estab-

lished when the vertex is placed into the dictionary and will 
never change. None of the shortest path algorithms examine 
this member. It is only used to print a final path.

• Adj : A pointer to a list of adjacent vertices. This is estab-
lished when the graph is read. None of the shortest path algo-
rithms will change the pointer or the linked list.

Information maintained by the Graph table
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Data structures used in a shortest path calculation, with 
input graph taken from a file: shortest weighted path from A 
to C is: A to B to E to D to C (cost 76)

D C 10
A B 12
D B 23
A D 87
E D 43
B E 11
C A 19

Input

0

3

4

1

2

Dist Prev Name

D

C

A

B

E

Adj

3 

0 

Dictio

D (0)

B (
A (2)

A B

C D E

12

11

4310

19 2387

Visual representation of graph

66

76

0

12

23

4

0

-1

2

3
Graph table
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Graph after marking the start node as reachable in zero 
edges

V1V0

V2 V3 V4

V5 V6

0
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Graph after finding all vertices whose path length from the 
start is 1

V1V0

V2 V3 V4

V5 V6

1

0

1
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Graph after finding all vertices whose shortest path from 
the start is 2

V1V0

V2 V3 V4

V5 V6

1 2

0

1

2
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Final shortest paths

V1V0

V2 V3 V4

V5 V6

1 2

0 3

1 3

2
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How the graph is searched in unweighted shortest path 
computation

V1V0

V2 V3 V4

V5 V6

0

V0

V2 V3

V5

0

1

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V0

V2 V3

V5

0

1

2

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0 3

1

2

1 2
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Eyeball is at v; w is adjacent; Dw should be lowered to 6

wv

S

3 8

0

3

2

u

6
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If Dv is minimal among all unseen vertices and all edge 
costs are nonnegative, then it represents the shortest path

v

S
0

Du

u

Dv

d 0≥
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Stages of Dijkstra’s algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8

3

9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8

3

6

1

0

V0

V2 V3

V5

2

2

1

14

5 8

3

8

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2
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Graph with negative cost cycle

V1V0

V2 V3 V4

V5 V6

2

2 2

1

               -10       31     4  

5           8 4            6
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Topological sort

V1V0

V2 V3 V4
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Stages of acyclic graph algorithm
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Activity-node graph

C 3

B 2

A 3

G 2

K  4

H 1

F 3

E 1

D 2 FinishStart
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Top: Event node grap; Bottom: Earliest completion time, 
latest completion time, and slack (additional edge item)
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Chapter 15

Stacks and Queues
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How the stack routines work: empty stack, Push(A) , 
Push(B) , Pop

TOS (0)

TOS (1)

TOS (-1)

A A

B
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Basic array implementation of the queue

Front

Front

Front

Front

Front

Back

Back

Back

Back

Back

A

A B

B

Size = 0

Size = 1

Size = 2

Size = 1

Size = 0

MakeEmpty

Enqueue(A)

Enqueue(B)

Dequeue( )

Dequeue( )
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Array implementation of the queue with wraparound

Front

Front

Front

F

Front

Back

Back

B

Back

Back

F

F

Size = 3

Size = 4

Size = 3

Size = 2

Size = 1

After 3 Enqueues

Enqueue(F)

Dequeue( )

Dequeue( )

Dequeue( )

F

F

D

C D

C D
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Linked list implementation of the stack

ABCD

TopOfStack
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Linked list implementation of the queue

A B C D

Front Back
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Enqueue  operation for linked-list-based implementation

Back

X

Back

...

...

Before

After
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Chapter 16

Linked Lists
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Basic linked list

A B C D

FrontOfList
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Insertion into a linked list: create new node (Tmp), copy in 
X, set Tmp’s next pointer, set Current ’s next pointer

Current

... .

X

A B

Tmp
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Deletion from a linked list

Current

...
XA B
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Using a header node for the linked list

A B C

Header
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Empty list when header node is used

Header
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Doubly linked list

Head Tail

A B
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Empty doubly linked list

Head Tail
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Insertion into a doubly linked list by getting new node and 
then changing pointers in order indicated

... A B

X
a b
c d
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Circular doubly linked list

First

A B C
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Chapter 17

Trees
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A tree

A

B C D E

F G H I J

K
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Tree viewed recursively

...

Root

T1 T2 T3 Tk
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First child/next sibling representation of tree in Figure 17.1

A

B C D E

F G H I J

K
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UNIX directory

mark*

books* courses*

ecp*dsaa* ipps*

ch1 ch2 ch1 ch2 ch2ch1

cop3223* cop353

syl syl

.
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mark
        books
                dsaa
                        ch1
                        ch2
                ecp
                        ch1
                        ch2
                ipps
                        ch1
                        ch2
        courses
                cop3223
                        syl
                cop3530
                        syl
        .login

The directory listing for tree in Figure 17.4
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UNIX directory with file sizes

mark*(1)

books*(1) courses*(1)

ecp*(1)dsaa*(1) ipps*(1)

ch1(9) ch2(7) ch1(4) ch2(6) ch2(8)ch1(3)

cop3223*(1) cop353

syl(2) syl(

.
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                        ch1                         9
                        ch2                         7
                dsaa                               17
                        ch1                         4
                        ch2                         6
                ecp                                11
                        ch1                         3
                        ch2                         8
                ipps                               12
        books                                      41
                        syl                         2
                cop3223                             3
                        syl                         3
                cop3530                             4
        courses                                     8
        .login                                      2
mark                                               52

Trace of the Size  function
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Uses of binary trees: left is an expression tree and right is a 
Huffman coding tree

+

a *

- d

a

d

b cb c
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Result of a naive Merge  operation

T1.Root

Root
X
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Aliasing problems in the Merge  operation; T1 is also the 
current object

T2.Root

Root
X

OldRoot
OldT1.Root

T1.Root
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Recursive view used to calculate the size of a tree: ST = SL 
+ SR + 1

SL SR
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Recursive view of node height calculation: HT = Max( 
HL+1, HR +1 )

HL

HL+1

HR

HR +1
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Preorder, postorder, and inorder visitation routes

1

2 3

4 6

75

7

1 6

3 5

42

1
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Stack states during postorder traversal

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1

d

a

b

c  0
a 2

e 0
c  1
a 2

e 1
c  1
a 2

e 2
c  1
a 2

c  1
a 2

e

c  2
a 2 a 2

c a

a

b c

ed
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Chapter 18

Binary Search Trees
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Two binary trees (only the left tree is a search tree)

2 9

1 5

3

2

1 5

3 8

7 7



Copyright  1996 by Addison-Wesley Publishing Company 176

Binary search trees before and after inserting 6

2 9

1 5

3

7

2

1 5

3 6

7
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Deletion of node 5 with one child, before and after

7

2 9

1 5

3

7

2

1

3
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Deletion of node 2 with two children, before and after

7

2 9

1 5

3

7

3

1

4

5

4
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Using the Size  data member to implement FindKth

X X X

SL SL SLSRSR

K < SL + 1 K == SL + 1 K > S
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Balanced tree on the left has a depth of log N; unbalanced 
tree on the right has a depth of N–1
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Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice 
as likely as any other

3

2

21

32

3

1

3

2

11
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Two binary search trees: the left tree is an AVL tree, but 
the right tree is not (unbalanced nodes are darkened)

12

8 16

4 10 14

2 6

12

8

4 10

2 6

1
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Minimum tree of height H

H–1

H

H–2
SH–1 SH–2



Copyright  1996 by Addison-Wesley Publishing Company 184

Single rotation to fix case 1

k2

k1

k1

A

B

C

A
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Single rotation fixes AVL tree after insertion of 1

8 16

4 10 14

2 6

4

2 8

1 6 10

k2

k1

A B

C

1

A

B C

k2

k1

1212
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Symmetric single rotation to fix case 4

k2

k1

k1

A B C

A
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Single rotation does not fix case 2

k2

k1

P

Q

R P

k1
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Left-right double rotation to fix case 2

k3

k1

k2

k1

A
B C

D

A
B

k2
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Double rotation fixes AVL tree after insertion of 5

8 16

4 10 14

2 6

6

4 8

2 105

k3

k1

A

D

5

A C D

k3

k2

C

k2 B

k1

12

B

12
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Left-right double rotation to fix case 3

k1

k3

k2

A

B C
D A

B

k1

k2
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A red black tree is a binary search tree with the following order-
ing properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a NULL pointer must contain the 

same number of black nodes.

Red black tree properties
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Example of a red black tree; insertion sequence is 10, 85, 
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

15

10 20

70

60 85

65 80 90

40 55

30

5 50



Copyright  1996 by Addison-Wesley Publishing Company 193

If S is black, then a single rotation between the parent and 
grandparent, with appropriate color changes, restores 
property 3 if X is an outside grandchild

B

C D E

A

A B

SP

X

G

X

P
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If S is black, then a double rotation involving X, the parent, 
and the grandparent, with appropriate color changes, 
restores property 3 if X is an inside grandchild

P S

XA D E A B C

B C

G X

P
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If S is red, then a single rotation between the parent and 
grandparent, with appropriate color changes, restores 
property 3 between X and P

P S

X

B

C D E

A

A B

G

X

P
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Color flip; only if X’s parent is red do we continue with a 
rotation

C1 C2

X

C1 C2

X
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Color flip at 50 induces a violation; because it is outside, a 
single rotation fixes it

15

10 20

70

60 85

65 80 90

40 55

30

5 50
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Result of single rotation that fixes violation at node 50

15

10 20

60

50 70

55 65 85

80

30

5 40



Copyright  1996 by Addison-Wesley Publishing Company 199

Insertion of 45 as a red node

15

10 20

60

50 70

55 65 85

8045

30

5 40



Copyright  1996 by Addison-Wesley Publishing Company 200

Deletion: X has two black children, and both of its sibling’s 
children are black; do a color flip

X T X

P P
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Deletion: X has two black children, and the outer child of its 
sibling is red; do a single rotation

P T

X T P

R X
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Deletion: X has two black children, and the inner child of its 
sibling is red; do a double rotation

P R

X T P

R X
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X is black and at least one child is red; if we fall through to 
next level and land on a red child, everything is good; if not, 
we rotate a sibling and parent

B C B C B

TX P

TX' P

X'
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The level of a node is 

• One if the node is a leaf
• The level of its parent, if the node is red
• One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right chil-
dren may be red).

2. There may not be two consecutive horizontal links (because 
there cannot be consecutive red nodes).

3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two 

children are at the same level.

AA-tree properties
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AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 
30, 50, 65, 80, 90, 40, 5, 55, 35

5 10

15

20 35 40 55 65 80

30 70

6050
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Skew is a simple rotation between X and P

A B C

P X

A B C

P X
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Split  is a simple rotation between X and R; note that R’s 
level increases

A B

X R

A B

XG G

R
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After inserting 45 into sample tree; consecutive horizontal 
links are introduced starting at 35

After Split  at 35; introduces a left horizontal link at 50

After Skew at 50; introduces consecutive horizontal nodes 
starting at 40

5 10 20 35 40 55 65 8045

30 70

50 6015

5 10 20 35 55 65 80

50

45

604015

30 70

5 10 20 35 55 65 80

50

30

45

70

6015 40
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After Split  at 40; 50 is now on the same level as 70, 
thus inducing an illegal left horizontal link

After Skew at 70; this introduces consecutive horizontal 
links at 30

After Split  at 30; insertion is complete

5 10 20 35 55 65 8045

50

15 40 60

30 70

5 10 20 35 55 65 8045

15 40 60

30 50 70

5 10 20 35 55 65 8045

15 40 60

30 70

50
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When 1 is deleted, all nodes become level 1, introducing 
horizontal left links

3 4 6 71

2 5
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Five-ary tree of 31 nodes has only three levels
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B-tree of order 5

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

58

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

59
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A B-tree of order M is an M-ary tree with the following proper-
ties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to  keys to guide the 

searching; key i represents the smallest key in subtree .
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between  

and M children.
5. All leaves are at the same depth and have between  

and L children, for some L.

B-tree properties

M 1–
i 1+

M 2⁄

L 2⁄
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B-tree after insertion of 57 into tree in Figure 18.70

41 66 87

9272 78 8348 51 548 18 26 35
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Insertion of 55 in B-tree in Figure 18.71 causes a split into 
two leaves

41 66 87

972 78 8348 51 54 578 18 26 35
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Insertion of 40 in B-tree in Figure 18.72 causes a split into 
two leaves and then a split of the parent node

26 41 66 87

72 78 8348 51 54 5735 38

26
28
30
31
32

35
36
37
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39
40

41
42
44
46

48
49
50
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72
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66
68
69
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57
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8 18
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14
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20
22
24
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B-tree after deletion of 99 from Figure 18.73

26 41 66 83

72 7848 51 54 5735 38
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