
TE
AM
FL
Y

Team-Fly®

Microsoft®

Excel VBA

DUANE BIRNBAUM

Programming

00 XLVBA FM.qxd 2/25/03 7:12 AM Page i

© 2002 by Premier Press, Inc. All rights reserved. No part
of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, includ-
ing photocopying, recording, or by any information
storage or retrieval system without written permission
from Premier Press, except for the inclusion of brief
quotations in a review.

The Premier Press logo, top edge printing,
and related trade dress are trademarks of
Premier Press, Inc. and may not be used
without written permission. All other
trademarks are the property of their
respective owners.

Microsoft is a registered trademark of Microsoft
Corporation.

Important: Premier Press cannot provide software sup-
port. Please contact the appropriate software manufac-
turer’s technical support line or Web site for assistance.

Premier Press and the author have attempted through-
out this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization
style used by the manufacturer.

Information contained in this book has been obtained
by Premier Press from sources believed to be reliable.
However, because of the possibility of human or
mechanical error by our sources, Premier Press, or oth-
ers, the Publisher does not guarantee the accuracy, ade-
quacy, or completeness of any information and is not
responsible for any errors or omissions or the results
obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an
ever-changing entity. Some facts may have changed
since this book went to press.

ISBN: 1-931841-04-7

Library of Congress Catalog Card Number: 2001099839

Printed in the United States of America

02 03 04 05 RI 10 9 8 7 6 5 4 3 2 1

Publisher:
Stacy L. Hiquet

Marketing Manager:
Heather Buzzingham

Managing Editor:
Sandy Doell

Series Editor:
Andy Harris

Project Editor:
Estelle Manticas

Editorial Assistant:
Margaret Bauer

Technical Reviewer:
Greg Perry

Copy Editor:
Linda Seifert

Interior Layout:
Shawn Morningstar

Cover Design:
Mike Tanamachi

Indexer:
Sherry Massey

Proofreader:
Jenny Davidson

00 XLVBA FM.qxd 2/25/03 7:12 AM Page ii

pecial thanks to my family—Jill, Aaron, and Joshua. You were all won-
derfully patient with me while I worked on this book. Your love and
understanding are greatly appreciated.

Thanks to all the people at Premier Press, especially Stacy, who gave me the
opportunity to write this book, and to everyone else behind the scenes who
worked to make it look good. Special thanks to Estelle for all the help, and for
putting up with my numerous changes during the review process.

I would also like to thank Andy Harris for recommending me to Premier, and for
his guidance in the early development of the book. Thanks to Greg Perry for an
outstanding technical review. I only wish I’d had time to include more of his sug-
gestions; doing so would have made the book even better.

Finally, thanks to all of the contributors of the software and support files on the
CD and to the reader who supports them (and who, of course, also purchases this
book).

Acknowledgments

S

00 XLVBA FM.qxd 2/25/03 7:12 AM Page iii

uane Birnbaum began programming in graduate school, where he
wrote custom software for interfacing the various electronic devices
required for his experiments and analyzing the data obtained from
them. Since completing his Ph.D. in physical chemistry, he has been

working as a post-doctoral and research scientist in academia and industry while
continuing to teach on a part-time basis. For the last five years he has been work-
ing as a research scientist in the biotechnology industry and serving as a part-
time lecturer in the Computer Science department of Indiana University/Purdue
University. He teaches introductory classes in data analysis, database design, and
Visual Basic.

About the Author

D

00 XLVBA FM.qxd 2/25/03 7:12 AM Page iv

Introduction. x

Visual Basic for
Applications with Excel. 1

Project: Colorful Header . 2
The VBA Integrated Development Environment (IDE) 3

Getting to the IDE from Excel . 3
Components of the IDE . 4

Programming Components within Excel 8
Macro Selection . 8
The Visual Basic Toolbar . 9

Getting Help with VBA . 13
Excel Help. 14
VBA Help . 14
Installing VBA Help Files . 15

Constructing the Colorful Header Program 15
Chapter Summary . 19

Beginning Programs with VBA. . 21

Project: Time of Your Life . 22
Variables, Data Types, and Constants. 22

Declaring Variables . 23
Data Types . 27
Constants . 36

Simple Input and Output with VBA 37
Collecting User Input with InputBox() 37
Output with MsgBox() . 38

Manipulating Strings with VBA Functions 39
Fun with Strings. 40

Contents

1
C H A P T E R

2
C H A P T E R

00 XLVBA FM.qxd 2/25/03 7:12 AM Page v

Constructing the Time of Your Life Program 44
Project Statement. 44
Project Tools. 44
Project Algorithm . 44
Adding the Code . 45

Chapter Summary . 49

Procedures and Conditions . . . 51

Project: Poker Dice . 52
VBA Procedures . 52

Event Procedures . 52
Sub Procedures . 56
Function Procedures . 61
Logical Operators in VBA. 64
Conditionals and Branching. 67

Constructing the Poker Dice Program 72
Project Statement. 73
Project Tools. 73
Project Algorithm . 75
Adding the Code . 76

Chapter Summary . 84

Loops and Arrays 87

Project: The Math Game . 88
Looping with VBA . 88

Do Loops . 89
For Loops . 91

Input Validation . 94
Validation with the InputBox() Function 95
Validation with a Spreadsheet Cell 97

Arrays . 99
One-Dimensional Arrays . 101
Multi-Dimensional Arrays . 104
Dynamic Arrays . 106

Programming Formulas into Worksheet Cells 109
A1 Style References . 109
R1C1 Style References . 111

vi
T
a

b
l e

o
f

C
o

n
te

n
t s

3
C H A P T E R

4
C H A P T E R

00 XLVBA FM.qxd 2/25/03 7:12 AM Page vi

Chapter Project: Math Game. 112
Project Statement. 112
Project Tools. 113
Project Algorithm . 119
Adding the Code . 122

Chapter Summary . 131

Basic Excel Objects 133

Project: Battlecell. 134
VBA and OOP . 134
Objects Defined . 135
VBA Collection Objects . 137
The Object Browser. 139
Top-Level Excel Objects . 144

The Application Object. 145
The Workbook and Window Objects 145
The Worksheet Object . 153
The Range Object. 154
Working with Objects. 157

Chapter Project: Battlecell . 161
Project Statement. 161
Project Tools. 162
Project Algorithm . 162
Adding the Code . 164

Chapter Summary . 184

Enhancing VBA Programs:
Adding Multimedia
and Intelligence 187

Project: Enhanced Battlecell . 188
Adding Multimedia to a Program . 188

Animation in VBA. 188
Sound in VBA. 200

Simulating Intelligence in Programs. 203
Chapter Project: Enhanced Battlecell 204

Project Statement. 204
Project Tools. 205
Project Algorithm . 205

vii
T
a

b
le

o
f C

o
n

te
n

ts

5
C H A P T E R

6
C H A P T E R

00 XLVBA FM.qxd 2/25/03 7:12 AM Page vii

Adding the Code . 208
Chapter Summary . 224

UserForms and
Additional Controls 227

Project: Blackjack. 228
UserForms . 228

Adding a UserForm to a Project 229
Components of the UserForm Object 229
Adding ActiveX Controls to a UserForm 231
Showing and Hiding UserForms 233
Modal Forms . 233
Custom Dialog Boxes with UserForms 235

Chapter Project: Blackjack . 246
Project Statement. 247
Project Tools. 247
Project Algorithm . 247
Adding the Code . 250

Chapter Summary . 267

Data Access, File I/O, Error
Handling, and Debugging. . . . 269

Project: Word Find. 270
File Input and Output (I/O) . 270

Using VBA File I/O Methods . 271
Error Handling . 283

Using the On Error Statement . 283
Debugging . 287

Break Mode . 287
The Immediate Window. 289
The Watch Window . 290
The Locals Window . 291

Chapter Project: Word Find. 292
Project Statement. 292
Project Tools. 293
Project Algorithm . 293
Adding the Code . 296

Chapter Summary . 310

viii
T
a

b
l e

o
f

C
o

n
te

n
t s

7
C H A P T E R

8
C H A P T E R

00 XLVBA FM.qxd 2/25/03 7:12 AM Page viii

Excel Charts 313

Project: The Alienated Game . 314
The Chart Object . 314

Accessing Existing Charts . 314
Manipulating Charts. 318
Creating Charts. 322
Chart Events . 326

Chapter Project: The Alienated Game. 332
Project Statement. 333
Project Tools. 333
Project Algorithm . 333
Adding the Code . 335

Chapter Summary . 355

VBA Shapes 357

Project: Excetris . 358
The Shapes Collection and Shape Objects. 358

Manipulating a Shape Object . 360
The ShapeRange Collection Object 362
Activating Shape Objects . 365
The OLEObjects Collection . 366
Chapter Project: Excetris . 368

Project Statement. 369
Project Tools. 369
Project Algorithm . 370
Adding the Code . 372

Chapter Summary . 395
A Final Word . 396

Index. 397

ix
T
a

b
le

o
f C

o
n

te
n

ts

9
C H A P T E R

10
C H A P T E R

00 XLVBA FM.qxd 2/25/03 7:12 AM Page ix

isual Basic for Applications (VBA for short) is a programming environ-
ment designed to work with Microsoft’s Office applications (Excel, Word,
Access, etc.). Components in each application (for example, worksheets or
documents) are exposed as objects and made available to the program-

mer to use and manipulate to a desired end. Anything you can do through normal
use of the Office applications can also be automated through programming.

You can also extend the abilities of the application through the use of additional
reusable objects provided for the programmer. These reusable objects are
referred to as ActiveX controls, and I will demonstrate their use throughout this
book. ActiveX controls are pre-built, reusable programming components that you
can add to your own programming projects. Common examples include text
boxes, buttons, labels, and image controls. They are very useful to program devel-
opers because they are reusable and serve to handle common programming
tasks. Because ActiveX controls are reusable they only have to be developed once,
thus saving valuable time. VBA includes several common ActiveX controls for use
in Office projects. You can also import ActiveX controls from third party vendors,
though licensing and copyrights may restrict their use in your VBA project.

Why VBA?

As a beginning language, VBA will suit your needs well. VBA is not as vast as
many popular languages because such extensiveness is simply unnecessary. VBA
was built to work with and extend the capabilities of MS Office applications, so
it doesn’t need the substance of a programming language used to build full-
blown applications from scratch. The relative simplicity of VBA makes it easier
for people to pick up and learn and also makes it less intimidating to the begin-
ner. However, VBA does share many of the programming constructs common to
all languages, so it also serves as a great introduction to programming. For these
reasons, and the fact that MS Excel is the most popular spreadsheet application
available, I am writing this book.

As a scientist I never really gave the business-orientated Excel a chance. At first,
it didn’t even have graphical capabilities, and even after they were added, Excel
still couldn’t match other spreadsheet applications geared toward the scientist.

Introduction

V

00 XLVBA FM.qxd 2/25/03 7:12 AM Page x

TE
AM
FL
Y

Team-Fly®

After ignoring Excel for several years, I started a new job where Excel was the only
spreadsheet application available; it was then that I discovered that it used a
macro language based on the already very popular Visual Basic. I started writing
programs to handle some of the routine data analyses required around the lab,
and the time I have saved using these programs has sold me on Excel as a valu-
able component in any lab or business.

Who Should Read This Book?

The goal of this book is to help you learn VBA programming with Excel. No prior
programming experience is required or expected. Although you do not have to be
an Excel user, you should have a good understanding of the basic tools involved
in using any spreadsheet application. This includes a basic understanding of
ranges and cell references, formulas, built-in functions, and charts. If you’re not
comfortable with spreadsheet applications or it’s been a while since you have
used a spreadsheet, then I recommend you consider purchasing another intro-
ductory book on how to use the Excel application (Microsoft Excel Fast & Easy, by
Faith Wempen, is a good choice). In addition to spreadsheets, I also expect you to
have a basic understanding of the Windows operating system.

What’s in This Book?

I developed the programs in this book using Excel 2000 for Windows. It doesn’t
matter if you’re using a slightly older or newer version of Excel (97 or XP); VBA
has changed very little between these three versions. I have added folders to the
accompanying CD-ROM that include versions of the chapter projects that run
without error in these other versions. If you are a Macintosh user, you can still
use the programs in this book. There are small differences in the object model
for Excel Windows and Excel Macintosh but in most cases you will not notice
them. The most notable difference is in how each operating system specifies a
file path (Windows uses a backslash and Macintosh a colon).

The chapter projects in this book feature the development of games using VBA with
Excel. This is somewhat unusual in the sense that prior to writing this book, I had
never seen an Excel application that runs any kind of a game. However, it does serve
to make programming more fun. After all, what’s the first thing anybody does when
they get a new computer? Answer: Find the games that are installed and start play-
ing. With this book, you get to write the program and then play the game. It actu-
ally works very well. The games developed in this book illustrate the use of basic
programming techniques and structures found in all programming languages as
well as all of the common (and some less common) components in Excel.

xi
I n

t r
o

d
u

c
t io

n

00 XLVBA FM.qxd 2/25/03 7:12 AM Page xi

xii
I n

t r
o

d
u

c
ti

o
n

What’s on the CD-ROM?

The CD that accompanies this book includes two “bonus” chapters, Chapters 11
and 12. These chapters are in PDF (Portable Document Format), and must be viewed
with the Adobe Acrobat Reader software. If you do not currently have the Acrobat
Reader software, you can download it for free from http://www.adobe.com.

Chapter 11 shows you how to import data from external sources (MS Access data-
base, the World Wide Web, and text files) into an Excel worksheet. Chapter 11
also covers some Web-related objects and methods that allow you to view and
save your worksheet as a Web page, and add hyperlinks to a worksheet. The pro-
gramming project uses several of the objects and methods discussed in the chap-
ter to import data from an MS Access database for use in the game of Hangman.

Chapter 12 shows you how to create custom toolbars and menus that appear
when your VBA programs are loaded into Excel. In addition, you will learn how
to store your VBA programs as add-ins that can be loaded by the user when
needed. The programming project uses the Excetris and Hangman programs
from Chapters 10 and 11 and connects them to a custom toolbar with two but-
tons used to start each game. The project is stored as an add-in, so it can be eas-
ily loaded and run in any worksheet.

In addition to the bonus chapters, the CD-ROM also includes the following:

• All source code from the book, including all supporting image and
sound files.

• Links to several helpful VBA and Excel Web sites.

• The GIMP, a powerful graphics creation and editing tool.

• Sawcutter 1.0, a software synthesizer and wave editor that allows wave-
forms to be hand drawn. You can also load external sound files and run
them through several banks of effects that can be adjusted in real-time

• Audacity. Records audio directly and also imports/exports WAV, AIFF and
MP3 files. Supports envelope editing, mixing, simple built-in effects, and
plug-in effects, all with unlimited undo.

Sample VBA programs for Excel. A collection of add-ins and worksheets with
attached VBA programs for your perusal and enjoyment.

00 XLVBA FM.qxd 2/25/03 7:12 AM Page xii

I
n this first chapter I will introduce you to the programmer’s tools available

through Excel. These tools include the VBA IDE (Integrated Development

Environment), controls and functions available through the main Excel

application, and online help from both the Excel and VBA environments. Finally, I will

take you through a very short and simple program that takes textual input from the

user, places it in a spreadsheet cell, and then formats the cell with a large font, bright

colors, and a border.

Specifically this chapter will cover:

• The VBA IDE and its components

• Programming tools within Excel

• Installing and using the online help

• Chapter project: Colorful Header

Visual Basic for
Applications
with Excel

1
C H A P T E R

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 1

Project: Colorful Header

The project in this chapter is short and simple but will serve as your first intro-
duction to the VBA programming environment, ActiveX controls, event-driven
programming, and using VBA to interact with your spreadsheet. Figure 1.1 shows
a view of the Colorful Header spreadsheet.

Event-driven programming refers to the creation of a program that is designed
to run when the user generates a stimulus. For example, a keystroke or a mouse
click may trigger specific pieces of a program to execute. The event-driven
programming model has been popular for years and is now commonplace. It is
vastly superior to older programs that did not allow for much user interaction
because the programmers dictated the flow of the program. In event-driven
programming, the user dictates the flow of the program, and it is up to program-
mers to anticipate the user’s needs.

Don’t concern yourself with syntax at this time. In later chapters I will show you
the tools you need to build VBA projects. For right now I just want you to see how
easy it is to make something work, and for you to recognize that many of the key-
words we use in VBA programming projects in this book are already familiar to
you as an Excel user.

Keywords are words used by the programming language for a special purpose,
and are therefore reserved. This means you cannot use a keyword in your pro-
gram for anything other than what was designed into the language.

2
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.1

The Colorful
Header project

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 2

The VBA Integrated
Development Environment (IDE)

Before learning how to program in VBA you have to learn how to use the software
required for creating your projects. The VBA development software is included
with each component of the Microsoft Office suite of programs, including Excel.
Starting the VBA development software places you in the VBA programming envi-
ronment IDE, which provides you with a number of tools for use in the develop-
ment of your project.

Getting to the IDE from Excel

Before you begin creating projects with VBA you must know your way around the
IDE. You can access the IDE from Excel in a couple of different ways. In Excel,
select Tools, Macro, Visual Basic Editor (as shown in Figure 1.2), or use the key-
stroke Alt+F11.

3
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

IN THE REAL WORLD

An IDE is software used by programmers for rapid application development

(RAD). IDEs are available for numerous programming languages and are often

quite expensive to purchase (several hundred dollars or more for a single

license). The price is worth it because IDEs provide tools that enable program-

mers to develop applications quickly, saving them considerable time and

money. But the most important component of any development software is the

compiler, which for many languages can be obtained at no cost. The compiler

converts your program into the binary code your computer understands. If you

have the compiler, all you really need to create an application, albeit with con-

siderably more effort, is a text editor. Excel comes with its own IDE and VBA

compiler, thus making it more of a value than you may realize. Yet there are

many companies that purchase large site licenses for Excel only to use the appli-

cation side, never taking advantage of the enhancements VBA can provide.

FIGURE 1.2

Accessing the VBA
IDE from the Tools

menu in Excel

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 3

Alternatively, select the Visual Basic toolbar from the View/Toolbars menu item
in Excel. When the toolbar is displayed, select the Visual Basic Editor icon in the
middle of the toolbar (see Figure 1.3).

Components of the IDE

After opening the VBA IDE you may find yourself looking at a window similar to
that shown in Figure 1.4. This figure shows the VBA IDE and some of the tools
that can be used to create projects.

Like in most applications, there is a menu bar across the top of the window. You
may only recognize a few items that exist within this menu, but don’t worry. I’ll
show you the function of most of these items as we proceed through the book.

The Standard toolbar is one of four toolbars available from the IDE. Like any tool-
bar, its function is to give the user fast access to common tools available within
the application. Again, I will explain the use of many of these functions, as well
as the use of other toolbars, as we proceed through the book.

Of particular importance is the Project Explorer window, shown in the upper left
corner of the IDE window in Figure 1.4. The Project Explorer lists all projects cur-
rently open, including those opened by Excel upon startup. The Project Explorer

4
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.3

Accessing the VBA
IDE from the Visual

Basic toolbar

The
View/Toolbars

menu item

The list representing
available toolbars

The Visual
Basic toolbar

The Visual Basic
Editor icon

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 4

also lists the components of any opened projects. For example, Figure 1.4 shows
that there is currently one project, called Book2, open, and that this project con-
tains four Excel objects: Sheet1, Sheet2, Sheet3, and ThisWorkbook. I will discuss
Excel objects in detail in Chapter 5. For right now, recognize that these objects rep-
resent familiar components from Excel (the workbook and worksheets it contains).

Prior to opening the IDE, I created a new workbook from the file menu in Excel.
Excel gave the default name Book2 to the workbook (I had already closed Book1),
and the workbook includes three worksheets (default names Sheet1, Sheet2, and
Sheet3) because that’s what I have set in my options from the Tools menu in
Excel. If I open more workbooks, or add more worksheets to a currently open
workbook in Excel, then their names will appear on the component list in the
Project Explorer window.

Just below the Project Explorer window in Figure 1.4 is the Properties window.
The Properties window displays a list of attributes or properties of the currently
selected object in the Project Explorer window. These properties are used to
manipulate the behavior and appearance of the object to which they belong. The
properties of Sheet1 are displayed in Figure 1.4 because it has been selected in the
Project Explorer. Choosing a different object will result in a different properties
list in the Properties window, as not all objects have the same properties. As a
simple exercise in manipulating the properties of a worksheet, open a new work-
book in Excel, note the name of your workbook and any worksheets it contains

5
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

FIGURE 1.4

The VBA IDE

The Menu bar

The Standard
toolbar

The Project
Explorer window

A Standard Code
window

The Properties
window

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 5

(do not change any names), then open the VBA IDE. Once in the IDE, display the
Project Explorer and Properties windows. If the Project Explorer and Properties
windows are not already displayed you can access them through the View menu
item (see Figure 1.5). You can also use the keystrokes Ctrl+R and F4 to access the
Project Explorer and Properties windows, respectively.

Once the Project Explorer window is displayed, find the project that represents
the workbook you opened while in Excel (probably Book1 or Book2). If the com-
ponents of the workbook you opened in Excel are not displayed, click on the
+ sign next to the Microsoft Excel Objects folder directly underneath the project
name. Now find the component labeled Sheet1, select it with your mouse, and
then turn your attention to the Properties window. Scroll down the Properties
window until you come to the Name property (the one without the parentheses
around it). Delete the text entered to the right of the Name property and enter
MySheet. Figure 1.6 illustrates how to find the Name property.

Toggle back to Excel by pressing Alt+F11, or select it from the taskbar in Win-
dows. You will note that the name of Sheet1 has now been replaced with MySheet
in your Excel workbook, as shown in Figure 1.7.

See how easy it is to alter properties of a worksheet in Excel using VBA? As VBA
developers, however, we will seldom, if ever, alter the properties of a workbook
or worksheet at design time. The bulk of the work affecting workbooks and work-
sheets will occur at run time; however, we will alter properties of ActiveX con-
trols at design time.

Design time refers to project development and the manipulation of object proper-
ties using the VBA IDE prior to running any code. Conversely, run time will refer
to the manipulation of object properties using a program, thus, the properties of
the object do not change until the code is executed.

Finally, I will show you one more component of the VBA IDE. If you look back at
Figure 1.4 you will also see a Standard Code window. Windows such as these are
used as containers for your program(s). This is where you type in the code for
your program, so these windows are essentially text editors very similar to
Notepad. You must be aware that there are pre-defined code windows for specific
Excel objects, namely the workbook (for example, ThisWorkbook) and the work-
sheets (for example, Sheet1). The code window displayed in Figure 1.4 represents
Sheet1 contained within the workbook Book2.

You will also be able to add components to your project and they will have their
own code windows. I will explain how to use code windows more thoroughly as we
proceed through this book. For now, know that you can open a code window by

6
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 6

7
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

FIGURE 1.5

Accessing the
Project Explorer
and Properties

windows

FIGURE 1.6

Accessing the
Name property of

a worksheet

The View
Code icon

The View
Object icon

The Sheet1
selection

The Name
property

FIGURE 1.7

The altered
workbook in Excel

The worksheet
name

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 7

double-clicking on any object listed in the Project Explorer. You can also select the
object in the Project Explorer and click on the View Code icon at the top left of the
window (refer to Figure 1.6), select Code from the tools menu, or hit F7 (refer to Fig-
ure 1.5). Note that you can also view the selected object in Excel by selecting the
appropriate item from these same locations (refer to Figures 1.6 and 1.7).

There are, of course, more components to the VBA IDE, but I’ve shown you enough
to get you started for now. As the need arises, I will introduce more tools from the
IDE that will aid in the development of various projects.

Programming Components within Excel

Not everything of interest to the VBA programmer can be found in the VBA IDE.
There are a few programming-related components that you access from the Excel
application. The components I am referring to are the Macro items found under
the Tools menu, and three of the available toolbars—Visual Basic, Control Toolbox,
and Forms—found in the View menu in Excel.

Macro Selection

Now that you’ve had an introduction to the VBA IDE, it’s time to look at develop-
ment tools accessed directly from Excel. To begin, take a closer look at the Macro
selection from the Tools menu, shown back in Figure 1.2. Notice two other items
displayed in Figure 1.2 that I have not yet discussed: Macros and Record New
Macro. Essentially the Record Macro tool will allow you to create a VBA program
by simply selecting various tasks in Excel through the normal interface. The
Record Macro tool is quite helpful, as you’ll see in Chapter 4 when I discuss it in
detail. The Macros menu item will simply display a dialog box with a list of some
or all of the currently loaded VBA programs. Again, I will explain the Macro menu
item in more detail later in the book, but for now remember that it is one way to
access and run desired VBA programs. Figure 1.8 shows the Macro dialog box.

Macros typically refer to programs that are recorded as the user executes a
series of tasks from the normal application interface. They are useful when a
user repeatedly performs the same tasks in Excel. Instead of having to repeat
tasks, the user can simply record his/her actions once, then “play back” the
macro when he/she needs to repeat the same series of tasks. However, it is
possible to access programs that were not recorded through the Macro menu
item, thus I will use the term macro to refer to both recorded programs and
those programs written from scratch.

8
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 8

TE
AM
FL
Y

Team-Fly®

The Visual Basic Toolbar

The Visual Basic toolbar shown in Figure 1.3 provides another set of tools for the
VBA developer. We have already seen how selecting the Visual Basic Editor icon
from this toolbar gives us access to the VBA IDE. There are several other useful
items on the Visual Basic toolbar—including Run Macro, Record Macro, and
Design Mode—that we will discuss later. Also included on the Visual Basic toolbar
is an icon for the Control toolbox, denoted by the crossed hammer and wrench,
as shown in Figure 1.9. The Control toolbox can also be accessed via the Toolbars
item on the View menu.

The Control toolbox provides you with the ActiveX controls mentioned earlier (see
the Introduction for a discussion of these controls). The Text Box, Command Button,
Label, and Image controls are just some of the controls available and are specifically
labeled in Figure 1.9. You place controls on a worksheet by first clicking on the
desired control and then drawing it onto the worksheet. Start by selecting the Com-
mand Button control and drawing it on a worksheet, as shown in Figure 1.10.

After the Command Button is placed on the worksheet, you will notice that it is
selected and the application is currently in Design Mode (check that the Design
Mode icon in the upper left corner of the Control toolbox appears “pressed in”).

9
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

FIGURE 1.8

The Macro dialog
box displaying
available VBA

programs

Currently selected
macro

List of available
macros

FIGURE 1.9

The Control toolbox

Design
Mode
toggle

Label
control

Properties
Window toggle

Command
Button control

Text box control

Image control

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 9

You can access the properties of the Command Button control while in design
mode. With the Command Button control selected while in design mode, select
the Properties icon from the Control toolbox. A window much like the Properties
window in the VBA IDE will appear. The Properties window lists all of the attrib-
utes or properties used to describe the Command Button control. Figure 1.11
shows the Properties window.

10
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.10

The Command
Button control

placed on a
worksheet

FIGURE 1.11

The Properties
window of the

Command Button
control

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 10

In the Properties window of the Command Button control, change the Caption
property to Click Me and then notice how the new caption is displayed on the
control. Changing the Name property to cmdColorChange allows you to experiment
with some of the other properties, such as Font, ForeColor, BackColor, Width, and
Height to change the appearance of the control. You can even display a picture
within the Command Button control through the Picture property, and then
select an image file from your computer.

The Name property is an important property of any ActiveX control. The value
of the Name property should be changed to something meaningful as soon as the
control is added to the worksheet. Typically, an abbreviated word telling us the
type of control (the cmd at the beginning of the name above denotes a Command
Button) and its function in the program, will work well. The Name property of an
ActiveX control should be changed if you will refer to it in your program. A mean-
ingful name will help you remember it, as well as make the code more readable.

Once the appearance of your Command Button control is to your liking, select
the View Code icon from the Control toolbox, or double-click on the Command
Button control to access the code window. You will be taken immediately to the
VBA IDE. Now it’s time to make the Command Button control functional, and you
can only do that by adding code to its code window. Figure 1.12 shows the code
window for the Command Button control.

The title bar tells us the object to which this code window belongs. In this case,
the code window belongs to the worksheet named Sheet1 in the workbook named
Book2. This is because I placed the Command Button control on Sheet1 of Book2
in the Excel application. You may recall that I changed the name of the worksheet
in Excel to MySheet, but the name of the worksheet as it will have to be referenced
in code is still Sheet1. In the upper left corner of the code window is a dropdown

11
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

FIGURE 1.12

The VBA IDE
showing the code

window for the
worksheet named

Sheet1

The title bar

The object list

The procedure list

The editor

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 11

list box containing the names of all objects contained within the selected work-
sheet. The name of the Command Button control is displayed because the cursor
in the editor is within an event procedure of this Command Button control.

Event procedures are self-contained blocks of code that require some type of
stimulus in order to run. The stimulus often comes directly from the user (for
example, a mouse click), but may also result from another piece of code.

Event procedures are pre-defined for ActiveX controls and other Excel objects,
such as workbooks and worksheets. All event procedures for the selected object
are listed in the upper right corner of the code window in a dropdown list box. I
will discuss event procedures in more depth in Chapter 3. For now, just take a
look at the Click() event. The Click() event is a very common event procedure
that is built into most ActiveX controls. Any code placed within the predefined
procedure will trigger when the user clicks once on the object—in this case, the
Command Button control named cmdColorChange. The procedure is defined and
listed in Figure 1.12 with the following two lines of code:

Private Sub cmdColorChange_Click()

End Sub

The name of the procedure will always be the name of the object with an under-
score followed by the name of the event. You cannot change the name of a prede-
fined event procedure. If you do change the name of the event procedure, the
code within the procedure will not run when you want it to. The keyword Sub is
required and is used as the defining opening of any procedure—event-type or
programmer-defined. Private is an optional keyword; I’ll discuss it in Chapter 3.
The second line, End Sub, is always used to close a procedure. Now type the fol-
lowing line of code within the Click() event procedure of the Command Button
control named cmdColorChange.

Cells.Interior.ColorIndex = Int(Rnd * 56) + 1

This line will set the fill color of all cells in the worksheet to one of 56 possible
colors. This is the equivalent of a user first selecting all the cells in a worksheet
and then changing the fill color from the formatting toolbar in the Excel appli-
cation. The color of the cells is chosen randomly and will change with each click
of the Command Button control because the above code will run once with each
click event. So the entire procedure now looks like the following:

Private Sub cmdColorChange_Click()

Cells.Interior.ColorIndex = Int(Rnd * 56) + 1

End Sub

12
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 12

Return to the Excel application and exit the design mode by toggling the icon on
the Control Toolbox (refer to Figure 1.9). Now test the program by clicking on the
Command Button control. The color of all cells in the worksheet will change
color with each click. Figure 1.13 shows my worksheet after one click on the Com-
mand Button control.

You can save the workbook as you would an Excel workbook. The Command But-
ton control and event procedure code will be saved with the workbook.

Getting Help with VBA

I can’t emphasize enough how important it is that you become comfortable with
the online help in the VBA IDE (not to mention in the Excel application). The
online help provides fast access to solutions for any programming problems you
have with your project. Books make good resources, and are much better at
teaching you how to program, but they don’t cover everything. Often all you need
to see is a simple example of how to use a particular function or other keyword,
and the online help does contain documentation on every keyword, program-
ming construct, and object you might use in your project. The bottom line is:
there is always something helpful online, it’s just a matter of finding the right
document.

13
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

FIGURE 1.13

The Color Changer
program

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 13

Excel Help

If you are a regular Excel or MS Office user then chances are you’ve used the
online help. Whether or not you use the Office Assistant, you probably know how
to get to the Help window shown in Figure 1.14. No matter what your opinion
concerning that paper clip, it is absolutely critical that you get comfortable with
the online help.

You can select this window from the Help menu in the Excel application. If you
have the Office Assistant turned on, then you must access the Help window after
first going through its paces. Once the Help window is displayed, keywords can
be entered in order to get a list of potential documents that may be helpful.
Select the document and view it on the right side of the window. Personally, I
find the index option the most useful, and I use it exclusively, though I recom-
mend you at least explore the table of contents and Answer Wizard. Finding the
answers you need is usually a matter of typing in the right keywords. I can’t teach
you how to choose the right keywords, but I know from experience that you will
get better as you gain experience with Excel and VBA and develop a better under-
standing of the subject matter.

VBA Help

Using the online help with VBA subject matter is identical to using the online
help in Excel. To access the VBA help, you must have the IDE open and active.

14
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.14

The Excel Help
window

Index tab

The Keywords
entry box

The selected Help
document

The Topic list

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 14

Otherwise everything is exactly the same, from the Help menu to the Help win-
dow and even to the Office Assistant, if you choose to use it.

To look up documentation concerning a known keyword in VBA, (for example,
the syntax requirements for a particular VBA keyword), first select that keyword
in the code, hit F1, and the document that describes that keyword will immedi-
ately appear in the Help window.

Installing VBA Help Files

Unfortunately, the VBA help files are not installed with Excel or the Office suite
of programs with the typical installation. You must custom-install VBA help files
yourself. Don’t worry—it’s quick and easy to do so. I’ll take you through the cus-
tom installation of VBA help files for Office XP. The selections that appear with
the installation of previous versions of Office will be slightly different, but you
should get the general idea as to what needs to be done.

With the Excel or Office CD inserted into the appropriate drive, do the following:

1. Select Settings/Control Panel from the Start menu.

2. From the Control Panel window, select Add/Remove Programs.

3. From the resulting dialog box, select Microsoft Office XP, Microsoft Excel,
or similar item, and click on Add/Remove.

4. Select Add or Remove Features, then click Next.

5. From the displayed list of components, open Office Shared Features, then
open Visual Basic for Applications.

6. Select Visual Basic Help and click Update.

With the help files installed you will now be able to access the VBA documenta-
tion online.

Constructing the Colorful Header Program

Before I begin a programming project, I like to break up the problem I’m trying to
solve into specific pieces. I begin with a simple statement of what I am trying
to accomplish, followed by a statement of what tools I know are available for me to
use in the project. I then write an algorithm, or approach, that I will follow when
beginning the project. Andy Harris, a computer science instructor at Indiana Uni-
versity Purdue University at Indianapolis, first introduced this method to me. The
method is intuitive and I think you’ll probably realize that you’ve used a similar
approach when solving problems of your own.

15
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 15

Project Statement

I want to create a program demonstrating the use of ActiveX controls on a work-
sheet. The program will accept text from the user and then display this text in a
spreadsheet cell. The text should be formatted with color, a large font size, and a
matching color border.

Project Tools

Now I’ll list the tools I know are available for creating the project defined above.
It is often hard to think of every tool available, so I try to be aware of this and
look for more or different tools as I work on the project.

The project will use three ActiveX controls: the Text Box control, the Label control,
and the Command Button control. Each of these controls will be placed on a sin-
gle worksheet in Excel, and will interact with a single spreadsheet cell. The Click()
event procedure of the Command Button control will contain all of the code for
the project.

Project Algorithm

The controls will be placed in a logical location near the upper left corner of the
worksheet. The Label control will serve to let the user know to enter text for the
header in the Text Box control. The Command Button control will hold all the
program code in its click event procedure. Table 1.1 shows just some of the val-
ues I chose for the properties of the ActiveX controls. I recommend that you
change a few more properties in order to get comfortable with these controls.

To view the properties of a particular control, either select the specific control
first or select the desired control from the drop-down list at the top of the Prop-
erties window (refer to Figure 1.11).

Label controls are often used to describe what should be entered in a Text Box
or other control. Thus, Label controls are not often referred to in code. For this
reason, it is not necessary to change the name property of a Label control unless
it will be referred to in code.

When the user clicks on the Command Button control, the text entered in the
Text Box control will be copied to a spreadsheet cell, and that cell will be for-
matted with the following specifications:

• Bold text

• Arial font

16
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 16

• Font size: 72

• Font color: Dark Blue

• Cell Color: Cyan

• Thick border

• Border Color: Dark Blue

Adding the Code

As I stated in the algorithm, all of the code is to be placed in the Click() event
procedure of the Command Button control. The code window can be accessed via
the VBA IDE by double-clicking on the Command Button control while in design
mode. You can also select the appropriate object (cmdInsertHeading) from the
object drop-down list in the code window for the worksheet on which the ActiveX
controls were placed (see Figure 1.15).

17
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

ActiveX Control Properties Value

Label Caption Enter Header Text Here

BackStyle Opaque

BackColor Black

ForeColor White

Text Box Name txtHeading

BackColor Light Gray

ForeColor Black

Text None…left blank

BackStyle Opaque

BorderStyle None

Command Button Name cmdInsertHeading

Caption Insert Text

Visible Makes Command Button visible or not during
runtime

Font Arial

TABLE 1.1 SELECTED PROPERTIES OF

ACTIVEX CONTROLS USED IN THE

COLORFUL HEADER PROJECT

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 17

As you can see, the following code was placed in the Click() event procedure of
the cmdInsertHeading Command Button control. Now let’s take a closer look at
each line of code.

The very first and last lines define the type of procedure as a Click() event, as
described earlier in this chapter. Immediately following the opening line of code
are four lines of comments.

Comments (or remarks) are notes left in the code by the programmer to help
describe the function of the program. Comments make it easier to find problems
with the code, or add different features to the code at a later time. Enter com-
ments into the code by beginning the line with an apostrophe (or Rem). You must
enter another apostrophe for each new line, and the VBA text editor will color
each comment line green. Comments are not part of the program, and are ignored
when the program runs; thus, comments do not decrease the execution speed of
a program.

Private Sub cmdInsertHeading_Click()

‘This procedure copies the text from a Text Box

‘control to cell D1 of the selected worksheet.

‘The cell and its contents are then formatted

‘with color and borders.

18
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.15

VBA IDE showing
the code window
for the worksheet

containing the
ActiveX controls

of the Colorful
Header project.

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 18

TE
AM
FL
Y

Team-Fly®

Cells(1, “D”).Value = txtHeading.Text

Cells(1, “D”).Select

With Selection

.Font.Bold = True

.Font.Name = “Arial”

.Font.Size = 72

.Font.Color = RGB(0, 0, 255) ‘Dark blue

.Columns.AutoFit

.Interior.Color = RGB(0, 255, 255) ‘Cyan

.Borders.Weight = xlThick

.Borders.Color = RGB(0, 0, 255) ‘Dark Blue

End With

txtHeading.Activate

End Sub

I will discuss code structures, Excel objects, and object syntax in subsequent chap-
ters. If you are even somewhat familiar with Excel, however, you probably have a
pretty good idea as to what’s happening in the above code. First, the text entered
in the Text Box control (txtHeading) is placed in cell D1 of the worksheet, and this
cell is selected as if the user clicked on this cell with the mouse. With cell D1
selected, it is formatted in the manner stated in the algorithm. After formatting
cell D1, the cursor is placed in the Text Box control by making it the active object.

That’s all there is to it! This code will run once each time the Command Button
control is clicked (don’t forget to exit the design mode first). If you want a differ-
ent heading, just enter new text in the Text Box control and click on the Command
Button.

Chapter Summary

Well, I didn’t show you very much program code in this chapter, but you did get
a solid introduction to the VBA programming environment. You learned how to
access the VBA IDE and how to view, and use, some of its major components. You
also learned how to add ActiveX controls to a worksheet, change their properties,
and add code to their event procedures. After a brief look at using the online help
and installing the VBA help files, you developed a small project that used ActiveX
controls on a worksheet to insert a column header into a worksheet and format
the cell with color, font properties, and a border.

19
C

h
a

p
te

r
1

V
i s

u
a

l
B

a
s

i c
f o

r
A

p
p

l ic
a

t io
n

s
w

i th
E
x

c
e
l

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 19

In Chapter 2 you’ll learn about some basic programming concepts and tools,
variables and data types; I’ll focus particularly on the string data type.

20
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Open a new workbook in Excel, then access the VBA IDE to find the names

of the different Event procedures for a worksheet. In particular note the

SelectionChange Event procedure of any worksheet.

2. While in the Excel application, add a Label Control to a worksheet. Change

the name property of the Label control to lblCellAddress. Change the cap-

tion and appearance properties as desired.

3. Add the following line of code to the SelectionChange Event procedure of

the worksheet to which you added the Label control:

lblCellAddress.Caption = “You selected cell “ & Target.Address

4. Return to the worksheet, exit design mode, and click on any cell in the

worksheet containing the Label control. What happens?

5. Return to the VBA IDE and the line of code above. Place the cursor within

the word Caption and hit F1. Repeat with the Address keyword.

01 XLVBA CH01.qxd 2/25/03 7:15 AM Page 20

N
ow that you know your way around the VBA IDE for

Excel, it’s time to introduce some basic program-

ming concepts common to all languages. The next

three chapters are devoted to these basic programming

structures that, although they may not be that exciting, are

essential for developing VBA projects.

Specifically, in this chapter you will examine:

• Variables and data types

• Constants

• Simple input and output

• String functions

• Chapter project: Time of Your Life

Beginning
Programs with

VBA

2
C H A P T E R

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 21

Project: Time of Your Life

The Time of Your Life spreadsheet begins by asking for the user’s name and birth
date. The program then calculates the length of the user’s life in years, months,
days, hours, and seconds. Following the user input, the user’s name, birth date,
and age (in several units) are displayed in the worksheet (see Figure 2.1).

This program demonstrates the use of several variable types, including numbers,
text, and dates. The program also demonstrates the use of some of VBA’s built-in
functions—primarily those used to manipulate text and dates.

Variables, Data Types, and Constants

Because this book focuses on a spreadsheet application, it’s only natural that I
introduce variables by asking you to think about what types of values can be
entered into a spreadsheet cell, and how you might use them. You know that you
can enter numbers and text into any spreadsheet cell in Excel. You may also know
that the format of a spreadsheet cell can be changed to one of several possibili-
ties. For example, a number can be formatted such that the value is displayed
with or without digits to the right of the decimal point. Numbers can also be for-
matted as currency or as percentages (along with a few other options). Text can
be displayed as entered or be automatically converted to a date or time. The con-
tents or value of a spreadsheet cell can be changed or deleted at any time.

22
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.1

The Time of Your
Life spreadsheet

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 22

The contents of a spreadsheet cell (text or numbers) in Excel will be referred to
as its value. You have already seen in the Chapter 1 project, and will continue to
see throughout this book, the use of the Value property to access or change the
contents of a spreadsheet cell.

In essence, spreadsheet cells are temporary storage containers for numbers and
text that can be displayed and used in a number of different formats. The last sen-
tence also describes a variable in any programming language. You can use vari-
ables in programs for temporary storage of data. For example, if you ask the user
for input (possibly from a Text Box control), then the value entered by the user
could be stored in a variable and used later in the program. In the Colorful Header
project from Chapter 1, the following line of code acts a lot like a variable:

Cells(1, “D”).Value = txtHeading.Text

Here the value from the Text Box control is copied to a spreadsheet cell. I could
have just as easily copied the value from the Text Box control into a program vari-
able first and then copied the contents of the variable to the spreadsheet cell. I
didn’t use an additional program variable because I wanted to save a couple of
steps and because, as discussed earlier, spreadsheet cells already act a lot like vari-
ables. To accomplish the same task using a program variable, use the following:

Dim myHeading as String

myHeading = txtHeading.Text

Cells(1,”D”).Value = myHeading

The variable myHeading is first declared (declaration is discussed in the next sec-
tion) and then assigned the value from the Text Box control. The value of spread-
sheet cell D1 is then assigned the value stored in the variable myHeading.

Declaring Variables

To declare a variable is to tell the computer to reserve space in memory for later
use. To declare a variable, use a Dim (short for Dimension) statement.

Dim myVar As Integer

The name of the variable is myVar. The name must begin with an alphabetic char-
acter, and cannot exceed 255 characters or contain any spaces. You should avoid
the use of punctuation marks or other unusual characters in the variable name, as
many of them are not allowed. However, the underscore character is allowed and
works well for separating multiple words contained within a single variable name
(for example, First_Name). Avoid using reserved VBA keywords and don’t repeat

23
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 23

variable names within the same scope (discussed later in this chapter). As a con-
vention, the variable name should be descriptive of the value it will hold. For exam-
ple, if you use a variable to hold someone’s first name, then a good name for that
variable might be firstName or FirstName. My preference is to begin a variable name
with a lowercase letter and then capitalize the first letter of any subsequent words
appearing in the name. I try to keep the length to a minimum (fewer than12 char-
acters) only because I don’t like typing long names. Of course, you can adopt your
own conventions as long as they don’t contradict rules established by VBA.

Use Option Explicit in the general declarations section of a module win-
dow to force explicit variable declarations (see Figures 2.2 and 2.3). Otherwise
variables can be dimensioned implicitly (without a Dim statement) as they are
required in code. In other words, you can begin using a new variable without
ever declaring it with a Dim statement if you don’t use the Option Explicit
statement. This is not good programming practice, as it makes your code harder
to read, and subsequently more difficult to debug. You can automatically have
Option Explicit typed into each module window by checking the Require
Variable Declaration option in the Tools/Options menu item of the VBA IDE.

Following the variable name, the data type is specified for the variable. In the
example above, the variable is declared as an integer data type. This tells VBA
what kind of data can be stored in this variable and how much memory must be
reserved for the variable. I will discuss data types in detail later in this chapter.

Component and Standard Modules

Modules refer to a related set of declarations and procedures. Each module will
have a separate window in the VBA IDE and, depending on the origination of the
module, it will have different behavior with regard to variable declarations. I will
refer to the module window shown in Figure 2.2 as a component module.

VBA makes no distinction between component and standard modules. You may
run across the term standard module in the online help, but component module is
a term I have invented to help distinguish between modules created by VBA for
various components of the Excel application and modules created by the pro-
grammer. As you shall soon see, identical syntax in these two types of modules
can result in significantly different program behavior.

This module will automatically contain all event procedures associated with the
worksheet Sheet1, and any ActiveX controls added to this worksheet. Component
modules may also contain programmer-defined procedures (I cover procedures
in Chapter 3, “Procedures and Conditions”). Each worksheet will have a separate
code window, as will the workbook.

24
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 24

A standard module must be added to the project via the Insert menu of the VBA
IDE, as shown in Figure 2.3.

Standard modules are contained within a separate folder in the Project Explorer
and may be renamed in the Properties window (see Figure 2.3). Standard modules
contain variable declarations and programmer-defined procedures.

25
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

FIGURE 2.2

The code module
for an Excel
worksheet

FIGURE 2.3

Inserting a
standard module

Adding a
module from

the Insert menu

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 25

Modularized code aids in the encapsulation of program code. Encapsulation is
the process of breaking a large programming problem into several smaller prob-
lems and then solving each of these smaller problems separately. Encapsulation
is vital in the development of software applications.

Variable Scope

Scope in the context of variables refers to the time when a variable is visible, or
available to the program. When a variable is in its scope, it can be accessed and/or
manipulated. When a variable is out of scope, it is unavailable—essentially invis-
ible to the program.

A variable declared within the code block of a procedure (such as the Click()
event procedure of the Command Button control) is a procedural level variable.
Procedural level variables are only available while program execution occurs
within the procedure that the variable was declared. In Figure 2.2, the variable
myVar4 is only visible to the program while the code in the Worksheet_Activate()
event procedure executes. When program execution is triggered by the Work-
sheet_Activate() event, the variable myVar4 is dimensioned in memory. Program
execution proceeds through the event procedure until reaching the End Sub line
of code, after which the variable is released from memory and is no longer avail-
able. Each time the procedure executes, the variable is created and destroyed.
Thus, myVar4 will not retain its value between calls to the procedure. If necessary,
the Static keyword can be used to tell VBA to remember the value of the variable
between calls to a procedure. Consider the following example:

Private Sub Worksheet_Activate()

Static myVar4 As Integer

myVar4 = myVar4 + 1

End Sub

In this procedure the variable myVar4 will increment its value by one with each
call to the procedure. If you replace the Static keyword with Dim, myVar4 will
never exceed a value of 1.

Declaring a variable outside of a procedure with a Dim statement makes it a mod-
ule level variable. The scope of a module level variable depends on the type of
module in which it is declared, as well as the keyword used in the declaration.
For example, in Figure 2.2 the variables myVar, myVar2, and myVar3 are declared
outside all procedures.

26
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 26

The area outside of any defined procedure is known as the general declarations
section of a module (component or standard). This area can only be used for
declarations.

These three variables are declared with the Dim, Private, and Public keywords.
The Private and Public keywords are only allowed for variable declaration in the
general declarations section of a module. Each of the three variables, myVar,
myVar2, and myVar3 are visible to any procedure within this module and nowhere
else in the project. Thus, the Dim, Private, and Public keywords have identical
functions in a component module.

Now consider the standard module shown in Figure 2.3. Again the variables
myVar, myVar2, and myVar3 are declared outside of any procedure in the general
declarations section of the module. Again, each of the three variables, myVar,
myVar2, and myVar3 are visible to any procedure within this module. However, the
variable myVar3, declared with the Public keyword, is also visible to every proce-
dure in the project, regardless of the module. In fact, the variable myVar3 is visi-
ble to all projects in all Office applications that are currently open. Variables that
are visible throughout a programming project are often called global, although
VBA refers to them as public variables.

To summarize: the keywords Dim and Private have the same function in variable
declarations when used in the general declarations section of any module; the
Public keyword can be used to declare module level variables in a component
module and global variables in a standard module.

Use Dim or Private, not Public, to declare module level variables in a compo-
nent module. Because Public can be used to declare global variables in a stan-
dard module, it can be confusing if it is also used in a component module.

Data Types

Data types define the kind of value that may be stored within the memory allo-
cated for a variable. As with spreadsheet cells, there are numerous data types; the
most common are defined in Table 2.1.

TABLE 2.1 SUBSET OF SUPPORTED DATA TYPES,
STORAGE SIZE, AND RANGE OF ALLOWED VALUES IN

VBA

27
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 27

Numbers in Table 2.1 that end with an E followed by a number are written in sci-
entific notation. Scientific notation is a type of shorthand notation used to express
very large or very small numbers. The number to the right of the E refers to the
number of times the value to the left of the E should be multiplied by 10 (positive
numbers) or divided by 10 (negative numbers). For example, the number 3.45E3 is
the equivalent of 3.45 x 10 x 10 x 10 or 3,450. Likewise, the number 3.45E-3 is the
equivalent of 3.45/10/10/10 or 0.00345. Thus, the largest value that can be stored in
a variable of type Single is 340,282,300,000,000,000,000,000,000,000,000,000,000.

Numerical Data Types

The numerical data types listed in Table 2.1 are Integer, Long, Single, and Double.
A variable declared as an integer or long data type can hold whole numbers or
non-fractional values within the specified ranges. If you need a variable to hold
fractional or “floating point” values, then use a single or double data type. Pay

28
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Data type Storage size Range

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,647

Single (floating-point) 4 bytes -3.402823E38 to -1.401298E-45 for
negative values; 1.401298E-45 to
3.402823E38 for positive values

Double (floating-point) 8 bytes -1.79769313486231E308 to
-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive
values

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

String (variable-length) 10 bytes+ string length 0 to approximately 2 billion

String (fixed-length) Length of string 1 to approximately 65,400

Variant (with numbers) 16 bytes Any numeric value up to the range of
a Double

Variant (with characters) 22 bytes + string length Same range as for variable-length String

User-defined (using Type) Number required The range of each element is the
by elements same as the range of its data type.

TABLE 2.1 COMMON DATA TYPES

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 28

TE
AM
FL
Y

Team-Fly®

attention to the value of the number that might have to be stored within the vari-
able. If the value gets too large for the data type your program will crash. For
example, the following code will generate an overflow error because the value
50000 is outside the allowed range for an integer data type:

Dim myNum As Integer

MyNum=50000

You must also be careful about mixing numerical data types, because you may
not get the result you want. The following code will execute without errors, but
the variable answer will hold the value 32 after execution of this block, not 31.8
as you might want.

Dim answer As Integer

Dim num1 As Single

Dim num2 As Integer

num1 = 5.3

num2 = 6

answer = num1 * num2

Changing the variable answer to a single data type will correct the problem. Using
the code as shown above is a good way to ensure that an integer is stored within a
variable that receives its value from a computation involving floating point num-
bers. Notice that the value stored in answer is rounded to the nearest whole integer.

By using variables with numerical data types, you can carry out mathematical
operations as you normally would using just the numbers the variables con-
tained. You can add, subtract, multiply, and divide variables. You can square and
cube numerical variables or raise them to any desired power. See Table 2.2 for a
list of the operators used for common mathematical operations in VBA.

29
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

Operation Operator

Addition +

Subtraction -

Multiplication *

Division /

Exponential ^

TABLE 2.2 COMMON MATHEMATICAL

OPERATORS USED IN VBA

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 29

Basically, any mathematical operation that can be performed on a number can
be performed on a numerical variable. The following are a few examples:

Dim num1 As Integer

Dim num2 As Integer

Dim answer As Integer

num1 = 10

num2 = 5

answer = num1 + num2 ‘ answer Holds 15

answer = num1 - num2 ‘ answer Holds 5

answer = num1 * num2 ‘ answer Holds 50

answer = num1 / num2 ‘ answer Holds 2

answer = num1 ^ 2 ‘ answer Holds 100

answer = 2 ^ num2 ‘ answer Holds 32

After declaring the variables num1, num2, and answer, a few mathematical opera-
tions are carried out over several lines of code. The result of each line is given as
a comment within the same line of code. In the code above, the equals (=) does
not designate equality; instead it works as an assignment operator. For example,
the variable answer gets the result of adding the two variables num1 and num2.

Next, I will look at a fairly simple spreadsheet that uses integer variables and
some simple math.

Although not required, it is a good idea to place all variable declarations for a
procedure at the start of your code. With variable declarations at the beginning
of your code, you will be able to find them quickly when you need to debug.

Magic Squares

I think I was first introduced to magic squares in seventh grade math. The idea
is to fill a square grid with numbers such that the sum of all rows, columns, and
diagonals add up to the same value. The number of columns/rows in the grid is
an odd number and you can only use each value once. For example, a 3 × 3 grid
must be filled with the numbers 1 through 9 so that everything sums up to 15. A
5 × 5 grid uses 1 through 25 and all rows, columns, and diagonals add up to 65.
The 3 × 3 is pretty easy even if you don’t know or see the pattern.

Figure 2.4 shows the spreadsheet containing the 3 × 3 grid. The Magic Square
spreadsheet is available on the CD-ROM that accompanies this book.

The Magic Square spreadsheet is preformatted for colors, borders, and font size.

30
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 30

The program will be contained entirely within the Worksheet_SelectionChange()
event procedure of the worksheet. To get to the Worksheet_SelectionChange() event
procedure, double click the worksheet name in the VBA Project window to open its
component module. Select Worksheet from the object’s dropdown list, then select
SelectionChange from the procedure dropdown list. The program will simply
calculate the sum of all rows, columns, and diagonals in the magic square and
display the result in adjacent cells. The program code is listed below. The
Worksheet_SelectionChange() event procedure will trigger every time the user
selects a new cell in the worksheet.

First, variables are declared for holding the summations of the rows, columns, and
diagonals in the magic square. I am using integer data types because I know that I
will not be working with floating point values, and the numbers used will be small.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Dim row1 As Integer

Dim row2 As Integer

Dim row3 As Integer

Dim col1 As Integer

Dim col2 As Integer

Dim col3 As Integer

Dim diagonal1 As Integer

Dim diagonal2 As Integer

31
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

FIGURE 2.4

A 3 × 3 Magic
Square

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 31

Next, the values of three cells are added and stored in the previously-dimen-
sioned variables. The values of the individual spreadsheet cells are obtained in
what should now be a familiar way. Notice that within a row, the row index in
the Cells property does not change in the sum of the three values. Similarly, the
column index does not change in the sum of the three values within a column.
Finally, both row and column indices change in the sum over the diagonals.

row1 = Cells(3, “B”).Value + Cells(3, “C”).Value + Cells(3, “D”).Value

row2 = Cells(4, “B”).Value + Cells(4, “C”).Value + Cells(4, “D”).Value

row3 = Cells(5, “B”).Value + Cells(5, “C”).Value + Cells(5, “D”).Value

col1 = Cells(3, “B”).Value + Cells(4, “B”).Value + Cells(5, “B”).Value

col2 = Cells(3, “C”).Value + Cells(4, “C”).Value + Cells(5, “C”).Value

col3 = Cells(3, “D”).Value + Cells(4, “D”).Value + Cells(5, “D”).Value

diagonal1 = Cells(3, “B”).Value + Cells(4, “C”).Value + Cells(5, “D”).Value

diagonal2 = Cells(5, “B”).Value + Cells(4, “C”).Value + Cells(3, “D”).Value

Next, the contents of these summations are copied to the spreadsheet cells in the
corresponding row or column.

Cells(6, “B”).Value = col1

Cells(6, “C”).Value = col2

Cells(6, “D”).Value = col3

Cells(3, “E”).Value = row1

Cells(4, “E”).Value = row2

Cells(5, “E”).Value = row3

Cells(6, “E”).Value = diagonal1

Cells(2, “E”).Value = diagonal2

End Sub

As the user enters the numbers into the Magic Square, the procedure above is
triggered and the values of the summations are updated, as shown in Figure 2.5.

I could have bypassed using variables and simply copied the summation of the three
cells directly to the appropriate spreadsheet cell, but using variables with descrip-
tive names makes it a little easier to understand the function of the program.

You have probably realized that the Magic Square isn’t anything you couldn’t do
with formatting and formulas directly in the Excel application. However, if you
use a program you can show the spreadsheet to a friend or colleague who knows

32
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 32

Excel and he or she will wonder how you did it, as there aren’t any formulas in
the spreadsheet cells that hold the summations of the rows and columns. Your
friend might even be impressed. You can also try a 5 × 5, or any size grid as long
as the number of rows and columns is odd and equal. The median value of the
number set multiplied by the grid dimension will tell you the sum that the val-
ues in all rows, columns, and diagonals should equal.

As you may have realized by now, VBA is not case-sensitive. That is, it does not
matter if you type your code with uppercase or lowercase letters. However, VBA
does preserve capitalization wherever it’s used. This is helpful with variable def-
initions. If you use uppercase letters when declaring a variable, any additional
references to that variable within the same scope will automatically follow the
same capitalization scheme. So after a variable is defined with a Dim statement,
you can type additional references to that variable using all lowercase letters
and VBA will automatically convert the capitalization for you. This is a handy
feature to ensure that you are spelling your variable names correctly as you type
them in your code.

String Data Types

Variables with string data types are used to hold characters as text. The characters
can be numbers, letters, or special symbols (for example, punctuation marks).
Basically, just about anything you can type on your keyboard can be held within

33
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

FIGURE 2.5

Magic Squares in
action

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 33

a string variable. To declare a string data type, use the String keyword. To initial-
ize a string variable, place the string value within double quotes.

Dim myText As String

myText = “VBA is fun”

There are two types of string variables, variable length and fixed length. The
example above is that of a variable length string because myText can hold just
about any length of text (see Table 2.1). Following is an example of a declaration
for a fixed length string:

Dim myString As String * 8

Dim myNum As Integer

myString = “ABCDEFGHIJKL”

In the example above, the string variable myString can hold a maximum of eight
characters. You can try to initialize the variable with more characters (as was
done above), but only the first eight characters in this example will be stored in
the variable. The value of myString is then “ABCDEFGH.” Fixed length strings are
more commonly used as a part of a user-defined data type discussed in a later
chapter. In most cases, you will not know the length of the string to be stored in
a variable, so you should use the variable length type.

I will discuss string manipulation a little later in this chapter. Next I will finish my
discussion on data types by looking at variants and a few less common data types.

Variant Data Types

Variant data types are analogous to the General category in the number format
of a spreadsheet cell in the Excel application. Variables are declared as variants
by leaving off the type designation.

Dim myVar

34
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

IN THE REAL WORLD

A lot of what programmers do with strings revolves around extracting desirable

information out of them. For example, a search engine on the Internet will look

for certain keywords on a Web page and store them in a database. The search

engine may load the entire textual content of a Web page into a string variable

and then extract various keywords from that variable. Then when a user

searches that database by entering in various keywords, the user’s keywords

are stored in string variables and compared to database content.

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 34

Variant type variables can hold any type of data except a fixed length string. Vari-
ant data types relax the restrictions on the value a particular variable can hold
and thus give the programmer more flexibility. However, variant data types can
also be dangerous if overused—they can slow down program execution, and pro-
grams with a large number of variant data types can be very difficult to debug.
So while I don’t recommend using them, I do recognize that many programmers
do use variants, and the online help is filled with examples using variants, so I
will offer a brief example here:

Dim myVar As Integer

myVar = 10

myVar = “Testing”

The example above will generate a type mismatch error because an attempt is
made to enter the string “Testing” into an integer variable. However, if you
change the variable myVar to a variant, the code will execute and myVar will hold
the string value “Testing” when all is complete. The following code will run with-
out error:

Dim myVar

myVar = 10

myVar = “Testing”

Using variants allows you to use the same variable to hold multiple data types
(one at a time). The variable myVar holds the integer value 10 (albeit briefly) before
being assigned the string value “Testing.”

You are probably starting to see the danger of using variant data types. Imagine
a large program with numerous procedures and variables. Within this program
are two variables of the type that initially hold numerical values and will need
to be used within the same mathematical operation before the program is fin-
ished executing. If one variable is mistakenly reinitialized with a string before
the mathematical operation, an error will result and may crash the program (or
at least taint the result). Debugging this program may present problems that
depend on how hard it is to find the string initialization of the variant variable,
and additional problems associated with the string variant. So even though it
may be tempting to use variants as a way to prevent errors that crash your pro-
gram (as in the example above), in actuality the use of variants make your code
“loose,” and may result in logic errors that are difficult to find.

35
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 35

Logic errors are the result of a mistake in a programming algorithm. They may or
may not cause your program to crash, depending on the specific nature of the
error. Trying to multiply variables of a string and integer data type would crash
program execution, making the error relatively easy to find. Adding when you
should have multiplied is a type of logic error that will not crash a program, but
will certainly give you the wrong result. Logic errors can be very serious
because you may never find them or even know they exist.

Other Data Types

There are just a couple more data types that need to be mentioned. You will see
them in action in subsequent chapters.

The Boolean data type holds the value true or false. You can also represent true
as a 1 and false as a 0. Boolean variables will be very useful when dealing with
programming structures that use conditions, as you will see in the next chapter.
Declare and initialize a Boolean variable as follows:

Dim rollDice As Boolean

rollDice = False

You can also specify variables of type date. Variables of type date are actually
stored as floating point numbers with the integer portion representing a date
between 1 January, 100 and 31 December 9999, and the decimal portion repre-
senting a time between 0:00:00 to 23:59:59. The date data type is mostly a conve-
nience when you need to work with dates or times. There are a handful of VBA
functions that use variables of type date that add to this convenience. You will
see a couple of examples of date functions in the chapter project.

Constants

Constants allow you to assign a meaningful name to a number or string that will
make your code easier to read. This is analogous to using named ranges in your
spreadsheet formulas. There are numerous mathematical constants for which it
makes sense to use constant data types. A constant string might be used when
you need frequent use of a particular spreadsheet label. Constants are declared
using the Const keyword as shown below.

Const PI = 3.14159

Dim circumference As Single

Dim diameter As Single

diameter =10.32

circumference = PI* diameter

36
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 36

The declaration and initialization of a constant occur in the same line of code.
The value of a constant can never change, so it is a good idea to use constants
when you need the same value throughout the life of your program. Constant
names are uppercase as a convention only; it is not required by VBA.

Simple Input and Output with VBA

You have already seen how to get input from the user through the use of the
Value property of a spreadsheet cell. Conversely, you can generate output for the
user through the spreadsheet. Yet there may be times when you want something
more dynamic and dramatic than a spreadsheet cell. The easiest method for
gathering input from the user and sending output back is using the InputBox()
and MsgBox() functions.

Just as Excel comes with a large number of functions for the user to use in
spreadsheet formulas (for example, the SUM() function), VBA contains numerous
functions for the programmer. VBA programming functions, just like Excel functions,
typically require one or more values (called parameters) to be passed to them, and
then return one or more values (most commonly one) back to the program.

Collecting User Input with InputBox()

When you need to prompt the user for input and want to force a response before
program execution continues, then the InputBox() function is the tool to use.
The InputBox() function sends to the screen a dialog box that must be addressed
by the user before program execution proceeds. Figure 2.6 shows the dialog box.

The InputBox() function returns the data entered by the user as a string if the OK
button is clicked or the Enter key is pressed on the keyboard. If the user clicks the
Cancel button, then a zero-length string is returned (“”). Here is the syntax
required for creating an InputBox() (parameters in brackets are optional):

InputBox(prompt [,title] [,default] [,xpos] [,ypos] [,helpfile, context])

The prompt is the only required parameter that must be passed to the function.

37
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

FIGURE 2.6

The InputBox()
dialog box

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 37

Typically, the prompt, title, and sometimes the default are used. You must assign
the return value of the function to a variable of type string.

Dim name As String

name = InputBox(“Please enter your name.”, “Name”, “Last, First”)

The prompt and title must be strings, which is why they are enclosed in double
quotes. Alternatively, you can use string variables for these parameters. The title
parameter is displayed in the title bar of the dialog box. The default parameter is
displayed in the text box of the dialog box. Including a little help in the prompt
or default parameter will increase the chances of getting the desired input
returned. In the example above, I included a default parameter that serves to tell
the user in what format I want the name entered.

Output with MsgBox()

The MsgBox() function outputs a message to the user in the form of a message box
like the one shown in Figure 2.7.

The MsgBox() function is a good way to alert the user about some type of problem,
or ask a question that requires a yes/no answer. Here is the syntax for the MsgBox()
function:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The prompt is the only required parameter, although buttons and title are usu-
ally included. The following example was used to generate the message box in
Figure 2.7:

userResponse = MsgBox(“Testing the Message Box”, vbInformation + vbOKOnly

+ vbMsgBoxHelpButton, “Message”)

The prompt must be a string or string variable and is used as the message you
want the user to read. The buttons parameter requires a numeric expression
(either an integer or constant) and tells VBA what buttons and/or icons are to be
placed on the message box. There are several choices for buttons, including OK,
OK/Cancel, Abort/Retry/Ignore, and Yes/No. You can also display an icon (warn-
ings or information type), a help button, and add some additional formatting

38
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.7

The Message box

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 38

TE
AM
FL
Y

Team-Fly®

with your choice of buttons. For a complete list of button choices, look up the
MsgBox() function in the on-line help by typing msgbox in the keyword field of
the help window (see Figure 2.8). The references vbOKOnly, vbInformation, and
vbMsgBoxHelpButton in the preceding expression are actually constants associated
with this function. For example, the value of vbOKOnly is zero. I used the constant
expression because it’s easier to read the code and know exactly what I am ask-
ing for in the appearance of the message box. Finally, the title can be included as
a string or string variable.

The MsgBox() function returns an integer between 1 and 7, depending on the but-
ton selected. Obviously this is only useful when there is more than one button.
The return value should then be used to select a course of action in your program.

Finally, you should take care not to use too many message boxes in your program.
Always ask yourself if you can get the input or display the message in another
way when you are thinking of including a message box. Most users (including
myself) find it extremely annoying to have to answer a message box when it’s not
really necessary.

Manipulating Strings with VBA Functions

Now it’s time to get back to strings and have a little fun. Strings are more of an
unknown to the programmer in the sense that you seldom know how long they are,
or how much of the string actually represents useful information. Thankfully, there

39
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

FIGURE 2.8

Settings for the
buttons argument

with the MsgBox()
function

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 39

is a plethora of functions designed to work on string variables that you can use to
extract the information you need. Table 2.3 summarizes many of these functions.

As with most functions, the string functions require one or more parameters be
passed. All functions must return a value, so the syntax will look something like this:

myVar = FunctionName(parameter list)

where myVar is a variable of the proper type for the return value of the function,
FunctionName is the name of the VBA function, and parameter list is a list of one
or more values to be passed to the function. Parameters can be literals (for exam-
ple, 5.2 or “Hello”), but are usually in the form of variables.

Fun with Strings

The best way to learn these functions is to use them, so let’s create a program
that asks for the user’s name and then outputs components of the name to a
worksheet. I call it “Fun with Strings,” and Figure 2.9 shows the spreadsheet,
which can also be found on the CD-ROM.

40
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Function Name Returns

Str() A string representation of a number

Val() A numerical representation of a string

Trim() A string with leading and trailing spaces removed

Left() A portion of a string beginning from the left side

Right() A portion of a string beginning from the right side

Mid() Any portion of a string

InStr() A number representing the place value of a particular character within
a string

Len() A number of characters in a string

LCase() A string with all characters lowercase

UCase() A string will all characters uppercase

StrConv() A string converted to one of several possible formats

StrComp() A number indicating the result of a string comparison

Asc() Number representing the ANSI code of a character

Chr() One character string representing the ANSI code of a number

TABLE 2.3 VBA STRING FUNCTIONS

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 40

Specifically, the program will output the user’s first name and last name along
with the number of characters in each name to separate cells in the spreadsheet.
The program will also convert the user’s name to all uppercase and all lowercase
characters as well as reverse the order of the first and last name. The code is
placed in the Click() event procedure of a Command Button control placed on
the worksheet. The name property of the Command Button control was changed
to cmdBegin and the Caption property to “Begin.” When the user clicks on the
command button, code execution begins. After some variable declarations, the
InputBox() function is used to prompt the user for his/her first and last name.
You will notice that I am assuming the user enters his/her first name followed by
one space and then the last name.

Input validation is an important component in any program that requires user
input. I have not yet covered enough programming constructs to discuss input
validation; I will wait until Chapter 4 to discuss it.

Everything entered by the user is stored in the string variable userName.

Option Explicit

Private Sub cmdBegin_Click()

Dim userName As String

Dim firstName As String

41
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

FIGURE 2.9

Fun with Strings

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 41

Dim lastName As String

Dim strLength As Integer

Dim spaceLoc As Integer

userName = InputBox(“Enter your first and last name.”, “Name”)

To help picture what will happen in the rest of the program, let’s assume the
variable userName contains the string “Fred Flintstone.” This string is 15 charac-
ters long; Table 2.4 shows the locations of each character.

Next, the location of the space is determined by using the InStr() function. The
InStr() function is passed three parameters, the number 1, the string variable user-
Name, and a single character string containing a space. The parameter 1 represents
the location to start searching within the string passed in the next parameter, in
this case, userName. The last string is a space and this represents the character the
InStr() function is searching for within the value of userName. The InStr() function
then returns an integer value representing the location of the space within the
userName string. This integer value is the location of the space between the first and
last name of the user, location 5 in this example (see Table 2.4), and is stored in the
integer variable spaceLoc. The Left() function is then passed two parameters,
the userName string, and the length of the portion of the userName string to return.
The variable spaceLoc is holding the location of the space (5 in our example), so
using spaceLoc – 1 for the length parameter in the Left() function returns just the
first name (Fred). The Len() function is used to return the length of the firstName
string as an integer and this value is stored in the variable strLength. The values of
the firstName string and strLength variables are then copied to the worksheet.

spaceLoc = InStr(1, userName, “ “)

firstName = Left(userName, spaceLoc - 1)

Cells(3, “C”).Value = firstName

strLength = Len(firstName)

Cells(4, “C”).Value = strLength

42
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Character F r e d F l i

n t s t o n e

Location 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

TABLE 2.4 CHARACTER LOCATIONS IN A STRING

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 42

The Mid() function is used to return the last name of the user to the string vari-
able lastName. The Mid() function takes three parameters: the original string
userName (Fred Flintstone), the starting location of the new string (spaceLoc – 1),

and the length of the string to return (strLength – spaceLoc). The variable strLength
was reinitialized to the length of userName prior to using the Mid() function.
Again, the variables holding the last name and the number of characters in the
last name are copied to the worksheet.

strLength = Len(userName)

lastName = Mid(userName, spaceLoc + 1, strLength - spaceLoc)

Cells(5, “C”).Value = lastName

strLength = Len(lastName)

Cells(6, “C”).Value = strLength

The UCase() and LCase() functions convert the userName string to all uppercase
and all lowercase letters, respectively. Finally, the ampersand (&) character is
used to concatenate strings and rearrange the user’s name such that the last
name is first, followed by a comma and the first name.

Cells(7, “C”).Value = UCase(userName)

Cells(8, “C”).Value = LCase(userName)

Cells(9, “C”).Value = lastName & “, “ & firstName

End Sub

String concatenation is the process of combining one or more strings together
to form a new string. The strings are combined from left to right using either the
ampersand (&) or addition (+) operators. To avoid ambiguity with the addition
operator, I recommend that you always use the ampersand (&) operator for string
concatenation.

You did not see all the string functions in action in the Fun with Strings pro-
gram. You will see more in the next project and throughout this book. I will
explain their use in detail as they appear in various code snippets and program-
ming projects. In the meantime, I recommend you play with the string functions
I have already discussed in order to get comfortable using them.

43
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 43

Constructing the
Time of Your Life Program

This project will utilize several of the VBA programming components discussed in
this chapter. The project contains several different examples of data types, includ-
ing integer, floating point, string and date types. I introduce some new functions
designed to work with the date and string data types. The project also demonstrates
nesting functions, the use of constants, and some simple mathematical operations.

Project Statement

I want to create a program that will take the user’s name and birth date as input,
then calculate the time of the user’s life in several units. These time units should
then be displayed in a worksheet along with the user’s name and birth date for-
matted to display the day of the week and month (see Figure 2.1). As always, the
project spreadsheet can be found on the CD-ROM.

Project Tools

Possible tools for this project include the InputBox() function for getting informa-
tion from the user, numerical, string, and date data types for processing the
information, and numerous functions that work with string and date values for
manipulating the information. Possible functions include the string functions listed
in Table 2.3 and numerous date functions, two of which are Now and DateDiff().

The VBA function Now is a rare example of a function that is not passed any
arguments. No information is required by the Now function because all it does is
return the current time and date from the computer’s clock. VBA functions that do
not accept arguments will be written without ending parentheses.

The Click() event procedure of a Command Button control can be used to hold
and start the program. The worksheet can be preformatted for font, borders, and
color with the Excel application.

Project Algorithm

You will develop the project by doing the following:

1. Formatting the worksheet with a large font (Arial 20 pt) and color.

2. Entering data input from the program in ranges B2:C2 for the user’s
name, C3:E3 for the user’s birth date, and C5:C10 for the various lengths
of time converted from the user’s birth date.

44
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 44

3. Adding appropriate labels to adjacent cells.

4. Filling in black the columns and rows that border the working area of
the worksheet.

5. Adding a Command Button control to the worksheet. Change its name
property to cmdStart and its Caption property to “Start.”

6. Placing all code in the Click() event procedure of the Command Button
control.

7. Writing code that will accept user input (name and birth date) using the
InputBox() function.

8. Calculating the length of the user’s life in seconds using the Now and
DateDiff() functions.

9. Converting the length of the user’s life to units of minutes, hours, days,
months, and years using simple mathematical operations.

10. Formatting variables holding the user’s birthday such that the day and
month are displayed as text (for example, Sunday, January, etc.).

11. Separating the user’s first and last names into new variables using
suitable string functions.

12. Copying all information to the appropriate cells in the worksheet.

See Figure 2.1 as a guide to spreadsheet cell locations for labels and variable out-
put by the program.

Adding the Code

Variable declaration is required by adding Option Explicit to the general decla-
rations section of the component module for the Time of Your Life worksheet. All
other code is added to the Click() event procedure of the Command Button con-
trol named cmdStart. Variable declarations are placed at the top of the procedure.
Several string variables will be used to hold the information obtained from the
user. Numerical variables will be used for holding the various lengths of time the
user has been alive and the numerical components of the user’s birthday.

Option Explicit

Private Sub cmdStart_Click()

Dim userName As String

Dim firstName As String

Dim lastName As String

Dim yearsPassed As Single

45
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 45

Dim monthsPassed As Single

Dim daysPassed As Single

Dim hoursPassed As Single

Dim minutesPassed As Long

Dim secondsPassed As Single

Dim userBirthday As Date

Dim currentDate As Date

Dim bDay As String

Dim bMonth As String

Dim bDay2 As Integer

Dim bYear As Integer

Const secsPerMin = 60

Const minsPerHour = 60

Const hoursPerDay = 24

Const daysPerYear = 365.25

Input is gathered from the user with the InputBox() function. Notice that I
placed the InputBox() function inside the parameter list of the LCase() function.
This is called nesting functions. In nested functions, the innermost function
runs first, in this case InputBox(), then whatever the user enters in the input box
is passed to the next function, LCase(). The string entered by the user is then
stored in the userName variable with all characters lowercase. Another InputBox()
function is used to retrieve the user’s birthday. Again the InputBox() is nested in
another function. The DateValue() function is used to convert the string entered
by the user in the form of date to an actual value of type date. The date is then
store in the variable userBirthday.

userName = LCase(InputBox(“What is your first and last name?”, “Name”))

userBirthday = DateValue(InputBox(“When was your birthday?

(month/day/year)”, “Age”))

Now you must process the information obtained from the user. First get the
current date and time by using the Now function and store it in the date variable
currentDate. The Now function is somewhat unusual in that it does not take any para-
meters. The currentDate and userBirthday variables are passed to the DateDiff()
function along with the single character string “s” The DateDiff() function cal-
culates the difference between two dates in the interval specified, in this case
“s” for seconds. Once the user’s life in seconds is known, it’s a simple matter to
convert this number to minutes, hours, days, months, and years using the con-
stants defined earlier.

46
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 46

The DateDiff() function returns a value of type variant (long). This means
that the function will return a long integer unless the value exceeds its range
(2,147,483,647), in which case it will promote the return value to the next largest
data type with integer values. In the Time of Your Life program, the range of the
long data type will be exceeded by anyone more than 68 years old. Thus, to avoid
a possible data-type error, the variable secondsPassed was declared as a
single data type. This ensures the value from DateDiff() will be within the
variable’s allowed range of values. I did not want a floating-point number for
the value of secondsPassed, but I don’t need to be concerned because I know
the DateDiff() function will only return a whole number.

currentDate = Now

secondsPassed = DateDiff(“s”, userBirthday, currentDate)

minutesPassed = secondsPassed / secsPerMin

hoursPassed = minutesPassed / minsPerHour

daysPassed = hoursPassed / hoursPerDay

yearsPassed = daysPassed / daysPerYear

monthsPassed = yearsPassed * 12

The Format() function can be used with numerical, string, and date data. Here
Format() is used to return the weekday the user was born, and the month as text
rather than the numerical representation. The dates are passed as variables
along with format strings (“dddd” and “mmmm”). These strings tell the function
what format to use on the return value. For example, “dd” would return the
numerical value for the day of the month, and “ddd” would return the three-let-
ter abbreviation.

Next, the Day() and Year() functions are used to return the day of the month and
year as integers.

bDay = Format(userBirthday, “dddd”)

bMonth = Format(userBirthday, “mmmm”)

bDay2 = Day(userBirthday)

bYear = Year(userBirthday)

Using some of the string functions from Table 2.3, the first and last names are
extracted from the userName string and formatted to ensure the proper capitaliza-
tion. Two approaches are used for the first and last names in order to demonstrate
a couple of different string functions. The first name is extracted form userName
with the Left() function, then a nested Instr() function is used to determine the
length parameter that must be passed to the Left() function. The next line formats

47
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 47

the firstName string for proper case. The first letter of the firstName string is
extracted with the Left() function and is converted to uppercase with the UCase()
function. The first letter is then concatenated with the rest of the name, which was
extracted with the Right() function and a nested Len() function to set the length
parameter. You have probably noticed that the firstName string variable being
passed to the functions is the same variable to which the result is stored. This is
perfectly acceptable when you don’t need the current value of the variable, so you
pass it to a function for altering and overwrite the old value.

firstName = Left(userName, InStr(1, userName, “ “))

firstName = UCase(Left(firstName, 1)) & Right(firstName,

Len(firstName) - 1)

Extract the user’s last name from the userName string with the Right() function
with nested Len() and Instr() functions to set the length parameter. Then use
the StrConv() function to convert it to proper case, where vbProperCase repre-
sents a numerical constant of the function. This is considerably easier than the
method used with the firstName variable, and illustrates the fact that there can
be more than one way to work with available functions for solving a problem.

lastName = Right(userName, (Len(userName) - InStr(1, userName, “ “)))

lastName = StrConv(lastName, vbProperCase)

Finally, now that all values have been calculated and formatted as desired, they
are output to the appropriate cells in the worksheet. The only new element here
is the Str() function which converts a numerical value to a string data type. The
Str() function is not really needed for the conversion in this case. Since the & is
used as the string concatenation operator, VBA assumes I want the variable bDay2
treated as if it were a string when the Str() function is omitted. If + is used as the
string concatenation operator, then the Str() function must be used to avoid a
type mismatch error.

The converse of the Str() function is the Val() function. The Val() function
is used to convert string data to numerical data.

Cells(2, “B”).Value = firstName

Cells(2, “C”).Value = lastName

Cells(3, “C”).Value = bDay

Cells(3, “D”).Value = bMonth & “ “ & Str(bDay2)

Cells(3, “E”).Value = bYear

Cells(5, “C”).Value = yearsPassed

Cells(6, “C”).Value = monthsPassed

48
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 48

TE
AM
FL
Y

Team-Fly®

Cells(7, “C”).Value = daysPassed

Cells(8, “C”).Value = hoursPassed

Cells(9, “C”).Value = minutesPassed

Cells(10, “C”).Value = secondsPassed

End Sub

That concludes this chapter’s project. Although it’s not exactly a long program,
you may be feeling a bit overwhelmed by the number of functions used. Don’t
worry about learning all the functions available in VBA and how to use them—
you can’t! There are way too many, so it’s a waste of time to try to memorize them
all. I am familiar with the string functions because I use them quite often,
although I still had to look up syntax and parameter lists a couple of times while
writing this project. The date functions are another matter. I didn’t know any of
the date functions before writing this program. What I did know is the essence
of how a function works. I also realized that VBA was very likely to have a num-
ber of functions that worked on the date data type. Then it was a simple matter
of searching the online help and looking at my choices.

Chapter Summary

This chapter introduced you to some important basics of programming, includ-
ing variables, data types, and constants. I placed particular emphasis on the most
common data types, numbers, and strings. I also took a look at programming
modules in VBA and their effect on the scope of a variable. Finally I discussed sev-
eral functions used to manipulate values of type string and date.

In Chapter 3 I will give you a more in-depth look at VBA modules and procedures.
Then I will examine some more basic programming constructs with conditional
operators and If/Then/Else type structures.

49
C

h
a

p
te

r
2

B
e
g

i n
n

in
g

P
r
o

g
r
a

m
s

w
it h

V
B

A

CHALLENGES

1. Write a program that will add two numbers input by the user and display

the result in a spreadsheet. Use an input box and the Val() function to con-

vert the user input to a numerical data type.

2. Place a Command Button control on a worksheet and write a program in

the Click() event procedure that increments a variable by 5 with every

click of the mouse. Output the value of this variable in a message box.

3. Write a program that extracts the time from the string returned by the Now
function and outputs it in a message box.

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 49

02 XLVBA CH02.qxd 2/25/03 7:17 AM Page 50

This page intentionally left blank

A
lthough the two topics in this chapter title don’t

necessarily go hand in hand, they do represent

basic constructs essential for any program. In this

chapter you’ll take a close look at both procedures and con-

ditions in order to establish some basic tools with which to

work in VBA.

Specifically, in this chapter I will discuss:

• Sub procedures

• Function procedures

• Event procedures

• Conditional logic

• Conditional statements and the If/Then/Else

and Select/Case code structures

• Chapter project: Poker Dice

Procedures and
Conditions

3
C H A P T E R

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 51

Project: Poker Dice

Poker Dice is a variation of five-card draw using dice instead of cards. This is the
first functional program that can’t be created in the Excel application alone. The
Poker Dice spreadsheet is shown in Figure 3.1.

The program introduces two new controls (Check Box and Image controls) and a
conditional programming structure (If/Then/Else).

VBA Procedures

I briefly discussed programming modules in Chapter 2. You may remember that a
module is a segment of your project that contains a related set of declarations and
procedures. You may also remember that every module has its own window within
the VBA IDE and, depending on whether or not it is a component module or a stan-
dard module, slightly different behavior regarding variables. Programming proce-
dures can be constructed within each of these module windows if they are not
already defined. Let’s take a look at the different type of procedures that can be
used and/or built using VBA.

Event Procedures

You have already seen a few examples of event procedures, such as the Click() event
procedure of a command button and the SelectionChange() event procedure of a
worksheet. These procedures are predefined by VBA in the sense that we cannot
change the name of the procedure, component, or object within Excel to which the
procedure belongs, or the conditions under which the procedure is triggered. For
the most part, all we can do with these procedures is add the code to be executed
when the event is triggered. Typically, several events are associated with each Excel

52
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.1

The Poker Dice
program

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 52

object, whether it is a worksheet, workbook, chart, or ActiveX control. Figure 3.2
shows the component module for a worksheet and displays all of the events associ-
ated with a worksheet in Excel.

Event procedures are defined with the Sub keyword followed by the name of the
procedure.

Private Sub Worksheet_Activate()

‘Event procedure code is listed here.

End Sub

The name of the procedure listed above is Worksheet_Activate(), although it will
be more commonly referred to as the Activate() event. No parameters are passed
to this procedure because the parentheses are empty. This procedure is triggered
when the worksheet to which it is associated is activated. That is, when you
switch between two different windows or worksheets, the Activate() event of the
currently selected worksheet is triggered. The procedure ends with the line End
Sub, unless the statement Exit Sub is used within the procedure code.

Private, Public, and Procedure Scope

The Private and Public keywords used with procedure definitions have a similar
function to that used with variable declarations. Private and Public are used to
define the procedure’s scope. The Public keyword makes the procedure visible to
all other procedures in all modules in all projects. The Private keyword ensures

53
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

FIGURE 3.2

Worksheet events
in Excel

Dropdown list
of events

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 53

that the procedure is visible to other procedures within the same module but
keeps it inaccessible to all other procedures outside the module in which it is
defined. The Private and Public keywords are optional, but VBA includes them
in predefined event procedures. If Private or Public is omitted, then the proce-
dure is public by default.

Use the Option Private statement in the general declarations section of a
module to keep public modules visible only within the project. Omit Option
Private if you want to create reusable procedures that will be available for
any project.

Parameters with Event Procedures

Parameters are the list of one or more variables or literals passed to the event pro-
cedure when it is triggered. The values of the parameters passed to the event pro-
cedure contain information related to the event. A comma separates multiple
variables, and the variable data type is also declared. VBA defines everything
about the parameters passed to the event procedure, including the number of
parameters, the name of each parameter and their data types, and the method
in which they are passed. Although it is possible to change the name of the vari-
ables in the parameter list under certain circumstances, I do not recommend
editing the event procedure definition in any way.

The following example shows the MouseDown() event procedure of a Command
Button control. This procedure triggers when the user clicks on the Command
Button control with the mouse. The first and last lines of the procedure are auto-
matically created by VBA. I added the four lines of code within the procedure.

Private Sub CommandButton1_MouseDown(ByVal Button As Integer, ByVal Shift

As Integer, ByVal X As Single, ByVal Y As Single)

Cells(2, “A”).Value = Button

Cells(2, “B”).Value = Shift

Cells(2, “C”).Value = X

Cells(2, “D”).Value = Y

End Sub

There are four parameters passed to the MouseDown() event procedure: Button,
Shift, X, and Y; they have all been declared as numerical data types. These para-
meters contain numerical information describing the event that just occurred,
and they can be used as variables within the procedure because they have already
been declared. The ByVal keyword will be discussed later in this chapter, so just

54
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 54

ignore it for now. The previous code was added to the MouseDown() event proce-
dure of a Command Button control placed on a worksheet with a few column
headers, as shown in Figure 3.3.

The values of the parameter variables are copied to the appropriate cells in this
worksheet when the user clicks on the Command Button control with his or her
mouse. The variable Button represents the mouse button that was clicked—a value
of 1 for the left mouse button, 2 for the right mouse button, and 3 for the middle
mouse button (if it exists). The variable Shift represents the combination of Shift,
Ctrl, and Alt keys held down while the mouse button was clicked. Since there are
eight possible combinations of these three keys, the variable Shift can hold an
integer value between 0 and 7. The variables X and Y represent the location of the
mouse cursor within the Command Button control when the mouse button was
clicked. The values of X and Y fall within 0 to the value of the Width property of the
Command Button control for X, and 0 to the value of the Height property for Y. The
upper left corner of the Command Button control is X = 0, Y = 0.

You now see how helpful the information within these parameters can be. For
example, a programmer might use the MouseDown() and MouseUp() event proce-
dures of an ActiveX control to catch a right click of the mouse button over that
control. The MouseDown() event procedure might be used to display a menu with
various options, and the MouseUp() event procedure would then be used to hide
the menu. Does this sound familiar?

55
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

FIGURE 3.3

Parameter
values of the
MouseDown()

event procedure

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 55

It is both impractical and unnecessary to discuss all of the event procedures of
all Excel objects and ActiveX controls in this book. The examples you have seen
so far are a good representation of how to use event procedures in VBA. In order
to establish which event procedures (if any) should be used in your program, do
the following:

• Ask yourself, “When should something happen?”

• Search for the event procedure(s) that will be triggered by the answer to the
question, “When should something happen?” The event procedures have
sensible names related to the action that triggers them, however it may be
useful to look up the description of the event procedure in the online help.

• If you cannot find an event procedure that triggers when desired, re-
design your program with ActiveX controls that do contain a useful event
procedure. If you still can’t find anything, then there are probably errors
in the logic of your algorithm.

• Test possible procedures by writing simple programs such as the one for
the MouseDown() event procedure described earlier.

• Insert the code that carries out the tasks you want once you recognize the
proper event procedure.

Sub Procedures

Although all procedures are really sub (short for subroutine) procedures, I will
use the term to refer to those procedures created entirely by the programmer.
The basic syntax and operation of a sub procedure is the same as for an event pro-
cedure. You define the procedure with the scope using the Public or Private key-
words, followed by the keyword Sub, the procedure name, and the parameter list
(if any). Sub procedures end with the End Sub statement. You can either type in
the procedure definition or use the Insert/Procedure menu item to bring up the
“Add Procedure” dialog box, as shown in Figure 3.4.

56
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.4

The Add Procedure
dialog box

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 56

Private Sub myProcedure(parameter list)

‘Sub procedure code is listed here.

End Sub

Sub procedures differ from event procedures in that

• the programmer defines the procedure name and any variable names in
the parameter list.

• the programmer decides how many (if any) variables are in the parameter
list.

• they can be placed in both component and standard modules.

• execution begins when they are “called” using code from other parts of
the program and cannot be automatically triggered.

The following program collects two numbers from the user, adds them, and out-
puts the result. This program can reside in any module. For simplicity, I tested
this program by running it directly from the VBA IDE. To begin program execu-
tion from the VBA IDE, first insert the mouse cursor within the procedure to be
executed, and then hit F5 or select the appropriate icon from the Standard tool-
bar or Run menu, as shown in Figure 3.5.

First, variable declaration is required with Option Explicit and a module level
variable (answer) is declared.

Option Explicit

Dim answer As Integer

57
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

FIGURE 3.5

Running a program
from the VBA IDE

The Run
Macro button

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 57

The sub procedure Main() is declared as Private and serves as the central proce-
dure for the program. Two procedure-level integer variables (num1 and num2) are
declared and assigned to the return value of input boxes. The Val() function is
used to convert the string type return value from the InputBox() function to a
numerical value.

Private Sub Main()

Dim num1 As Integer

Dim num2 As Integer

num1 = Val(InputBox(“Please enter the first addend”, “First Addend”))

num2 = Val(InputBox(“Please enter the second addend”, “Second

Addend”))

The Call keyword is used to send program execution to the sub procedure called
AddUserInput() and the variables num1 and num2 are passed to this procedure. The
Call keyword is required when passing parameters; otherwise it is unnecessary.
After the AddUserInput() procedure executes, program execution resumes in the
Main() procedure where it left off. The line SendResult is another procedure call
and sends program execution to the SendResult() sub procedure. As no parame-
ters are passed, the Call keyword is omitted (although you may include it if you
like). The Main() procedure, and consequently the program, terminates after pro-
gram execution returns from the SendResult() procedure.

Call AddUserInput(num1, num2)

SendResult

End Sub

The AddUserInput() procedure’s only purpose is to accept the two addends from
the Main() procedure, add them together, and store the result in the module level
variable answer. Note that I used the same variable names for the two addends
when defining the AddUserInput() procedure. This is perfectly legal, as this is out-
side the scope of the original num1 and num2 variables.

Private Sub AddUserInput(num1 As Integer, num2 As Integer)

answer = num1 + num2

End Sub

Finally, the SendResult() procedure is used to output the answer using a basic
message box. A Str() function is used to convert the numerical variable answer to
a string before it is concatenated to the rest of the message.

Private Sub SendResult()

MsgBox (“The answer is “ & Str(answer))

End Sub

58
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 58

TE
AM
FL
Y

Team-Fly®

Keep your procedures as short as possible. You will find that as your procedures
get longer, they get harder to read and debug. As a general rule I try to keep my
procedures to a length such that all of the code is visible on my monitor. If your
procedure gets much longer than one screen, break the procedure into two or
more procedures.

ByVal and ByRef

You should have noticed the ByVal keyword in the parameter list of the MouseDown()
event procedure shown earlier in the chapter. The ByVal keyword tells VBA to make
a copy of the value stored in the accompanying variable. Thus, any manipulation
of the copied value within the procedure does not affect the original variable.

The alternative to passing a variable by value is to pass a variable to another pro-
cedure by reference; the ByRef keyword is used to do so. When you pass by refer-
ence you are essentially passing the original variable to the procedure. Any
manipulation of the variable in the new procedure is permanent, so the variable
does not retain its original value when program execution proceeds back to the
calling procedure. This is true even if you use a new variable name in the proce-
dure that accepts the variable passed by reference. Passing by reference is the
default behavior, so you can omit the ByRef keyword if you want to.

The following short program will make the behavior of ByVal and ByRef clear. I
suggest inserting a new module into a project, adding the code below, and run-
ning the program from the procedure Main().

Private Sub Main()

Dim num1 As Integer

Dim num2 As Integer

num1 = 10

num2 = 15

Call passByRef(num1)

Call passByVal(num2)

MsgBox (num1 & “ “ & num2)

End Sub

Private Sub passByRef(ByRef num3 As Integer)

num3 = 20

End Sub

Private Sub passByVal(ByVal num2 As Integer)

num2 = 20

End Sub

Figure 3.6 shows the message box output by this program.

59
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 59

First, two integer variables are declared and initialized to the values 10 and 15.
The first variable, num1, is passed by reference to the procedure passByRef() in
a variable called num3. The value 20 is assigned to the num3 variable inside the
passByRef() procedure. Next the variable num2 is passed by value to the passByVal()
procedure, where it is copied to another variable called num2. The num2 variable in
the passByVal() procedure is then assigned the value 20. The program ends with
the output of the original num1 and num2 variables in a message box.

Now ask yourself: “What values are output in the message box?” The answer is 20
for the num1 variable, and 15 for the num2 variable. The variable num1 holds the value
20 at the end of the Main() procedure because it was changed in the passByRef()
procedure. Even though a different variable name was used in the passByRef()
procedure, the num3 variable still refers to the same memory location holding the
value assigned to the num1 variable. Essentially, we have one variable with two
names, each with its own scope. The num2 variable retains its value of 15 at the end
of Main() procedure because it had been passed by value to the passByVal() pro-
cedure. Passing by value makes a copy of the variable’s value to a new variable,
even if the variable in the accepting procedure (passByVal) has the same name. In
this case, there are two variables with the same name.

60
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.6

Message Box
output from sub

procedure Main()

IN THE REAL WORLD

At the most basic level, you can think of a memory location in your computer as

a sequence of electrical switches that can be on or off. With these two possible

conditions we have the basis for the binary language a computer understands

(0 for off and 1 for on). The values stored by a programming variable are then

just a patterned sequence of switches that are either on or off.

Some languages, such as C or C++, allow the programmer to directly access mem-

ory locations of variables. This extends the power of a programming language dra-

matically, but is not without dangers. For example, if you change the state of the

wrong memory location you can easily cause the computer to crash. VBA handles

memory management for you, so it is inherently safer than these other languages.

However, with this safety you sacrifice some powerful capabilities.

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 60

You pass a variable by reference to a procedure in order to change the value of
the original variable, or when the variable is needed in the procedure but its
value does not have to be changed. If the variable needs to be altered for another
purpose but must retain its original value, then pass the variable by value using
the ByVal keyword.

Function Procedures

Function procedures are very much like other procedures, but with one signifi-
cant difference: they return a value to the calling procedure. Now you might be
concerned or confused by the fact that I used the term functions back in Chap-
ter 2 in reference to Excel’s spreadsheet functions and VBA’s string and date func-
tions. So, what’s the difference? There is no difference. Everything I have called
or will call a function is essentially the same thing. A function is a small program
built with a specific purpose that, when used, will return a value to the calling
procedure or spreadsheet cell(s).

If you are familiar with the built-in functions available in the Excel application,
such as SUM(), AVERAGE, and STDEV(), then you already have a basic understanding
of how they work. Functions are often (but not always) passed one or more values
and they always return at least one value. For example, if I enter the formula
=AVERAGE(A2:A10) into cell A11 on a worksheet in the Excel application, I know
that the average of the nine values given in the range A2:A10 will be calculated
and returned to cell A11. Excel recognizes the AVERAGE keyword in the formula as
one of its built-in functions. Excel then calls the function procedure AVERAGE()
and passes the range of values specified in parentheses—in this case, nine values.
The function procedure AVERAGE() then calculates the average of the values
passed in as parameters and returns the result to the spreadsheet cell containing
the formula. In VBA, you can also call function procedures such as Left(), Mid(),
and DateDiff(), as we have seen in previous examples. You can even use the built-
in functions of the Excel application. Finally, you can create your own function
procedures in VBA.

Creating Your Own VBA Functions

The basic syntax for creating a function procedure in VBA is as follows:

Private/Public Function FunctionName(paramter list) as type
‘Function procedure code is listed here

FunctionName = Return value
End Function

61
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 61

This is similar to the syntax for any procedure with the procedure name, parame-
ter list, and an End statement. You can, and should, include a Private or Public key-
word to define the scope of the function. One obvious difference is the Function
keyword replaces Sub. Also, you should define a return type to the function. The
return data type is used for the value that the function sends back to the calling
procedure. If you do not specify the data type, then the function’s return value will
be of type variant. The function returns a value by assigning the desired value to
the name of the function, although the return value is usually stored in a variable.

Use Exit Sub or Exit Function if you need to return program execution to
the calling procedure before the rest of the code in the procedure executes.

Functions are called from expressions where you would normally insert a vari-
able or literal. For example, instead of assigning a literal to a variable, a function
call can be used to assign the function’s return value to the variable.

myVar = MyFunction(param1)

Here, the variable myVar is assigned the return value of the function named
MyFunction that is passed one parameter in the form of a variable named param1.

Now let’s consider an example of a function that mimics one of Excel’s built-in
functions. The following function calculates the result of raising a number to a
specified power. I named the function PowerDB and set its return value as type dou-
ble. The PowerDB function accepts two numerical values for input, the number to
which the exponent will be applied (number), and the value of the exponent (n). The
function has been given public scope.

The code is really very simple. The value of the variable number is raised to the
power of the value of the variable n, and then the result is restored in the variable
number. The value of the variable number is assigned to the function so that it may
be returned to the calling procedure.

Public Function PowerDB(ByVal number As Double, n As Single) As Double

number = number ^ n

PowerDB = number

End Function

A procedure that uses the PowerDB function can be written as follows:

Private Sub testPower()

Dim number As Double

Dim n As Single

Dim result As Double

62
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 62

number = Val(InputBox(“Enter a number.”, “Number”))

n = Val(InputBox(“Enter the value of the exponent.”, “Exponent”))

result = PowerDB(number, n)

MsgBox (number & “^” & n & “ = “ & result)

End Sub

The only new idea here is the line that calls the PowerDB() function, result =
PowerDB(number, n). The variable result is assigned the return value of the func-
tion and output in a message box. The variable number was passed to the PowerDB()
function by value because if I passed it by reference its value would be changed
by the function. Since I want to use the original value of number in the final out-
put, I must pass it by value. The variable n was passed by reference because I did
not change its value in the function procedure and VBA is more efficient when
passing values by reference.

A public scope for the function PowerDB makes it visible to all other office projects
and the Excel application. Thus, this function can now be used like any other
function in Excel. Returning to the Excel application and entering the formula
=PowerDB(2,8) into any worksheet cell will return the value 256 to that cell. The
PowerDB function is even listed in Excel’s paste function tool, as shown in Figure
3.7 and 3.8.

You now see that I named the function PowerDB in order to avoid a conflict with
Excel’s POWER() function. You can create your own library of VBA functions to use
in your spreadsheet applications. Toward the end of the book, I will show you
how to create add-ins with Excel and have your VBA functions, as well as any
other programs you create, automatically available every time you run Excel.

63
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

FIGURE 3.7

Step 1 of the Paste
Function tool in the
Excel application

FIGURE 3.8

Step 2 of the Paste
Function tool in the
Excel application

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 63

Using Excel Application Functions in VBA

Now that you know how to write functions in VBA and make them available to
your spreadsheets, you are also aware that you can re-create any function already
available in the Excel application. Although re-creating Excel’s functions would
be a good way to improve your VBA programming skills, it’s certainly not a prac-
tical use of your time. Why re-invent what’s already been created for you? It
would be nice if you could use Excel’s application functions in your VBA code, as
they are mostly complimentary, not repetitive, to VBA’s set of functions. That
way, if you need a specific function performed in your program that is not
already included with VBA, you don’t have to write it yourself.

Well, there is a method to use the Excel application functions, of course, and it
is really quite simple.

result = Application.WorksheetFunction.Power(number, n)

Replacing the call to the PowerDB() function in the testPower() Sub procedure
shown earlier with the line of code above will give the exact same result. The dif-
ference is that this code uses Excel’s POWER() function and not the PowerDB() func-
tion. The syntax will be explained in detail in Chapter 5, “Basic Excel Objects,”
but you can probably guess what’s happening from the names used in this line
of code. The component Application.WorksheetFunction will return all functions
available from the Excel application. From there it is a simple matter of adding
on the name of the function and inserting the required parameters into the
parentheses. Two more examples illustrate the use of the AVERAGE() and STDEV()
functions from the Excel application.

myVar = Application.WorksheetFunction.Average(5, 7, 9)

myVar2 = Application.WorksheetFunction.StDev(3, 7, 11)

The examples above will return the value 7 to the variable myVar and 4 to the vari-
able myVar2.

Logical Operators in VBA

Logic as applied to a computer program is evaluating an expression as true or
false. An expression is typically, but not always, a comparison of two variables
such as var1>var2 or var1=var2 (see Table 3.1 for a list of available comparison
operators). A programmer reads these expressions as asking the questions

• Is the value of var1 greater than the value of var2?

• Is the value of var1 equal to the value of var2?

then answering the questions with true or false.

64
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 64

Imagine a simple device that takes a single expression as input, evaluates that
expression as true or false, spits out the answer, and then moves on to the next
expression. The evaluation of the expression is a simple task since there are only
two choices and computers are very good at assigning 1’s (true) or 0’s (false) to
things. The difficulty arises from trying to make sense out of the expressions that
have been evaluated as true or false. This is where Boolean (after the nineteenth-
century mathematician George Boole) algebra comes in to play. Boolean algebra
refers to the use of the operators AND, OR, NOT, and a few others to evaluate one or
more expressions as true or false. Then, based on the result of the logic, the pro-
gram selects a direction in which to proceed.

AND, OR, and NOT Operators

VBA uses logical AND to make a decision based on the value of two conditions. The
value of each condition can be one of two values, true or false. Consider the fol-
lowing two conditions.

Condition1 Condition2

myVar > 10 myVar < 20

The expression “Condition1 AND Condition2” evaluates as true only if Condition1
and Condition2 are both true. If either or both conditions evaluate to false then
the overall result is false. The evaluation of expressions using logical operators is
easily displayed in truth tables. Table 3.2 shows the truth table for logical AND.

The logical operator OR returns true from an expression when at least one of the
conditions within the expression is true.

65
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

Operator Function

= Tests for equality

<> Tests for inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

TABLE 3.1 COMPARISON OPERATORS IN VBA

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 65

The expression “Condition1 OR Condition2” evaluates as true when either Condi-
tion1 or Condition2 is true or if both conditions are true. Table 3.3 shows the
truth table for logical OR.

The NOT operator simply returns the opposite logic of the condition. So if the con-
dition is false, NOT will return true and vice versa. Table 3.4 shows the truth table.

There are a few other logical operators (Xor, Eqv, and Imp) but they are seldom
used or needed, so let’s turn our attention to the practical use of Boolean algebra
within the code structures If/Then/Else and Select Case.

66
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Condition1 Condition2 Condition1 AND Condition2

True True True

True False False

False True False

False False False

TABLE 3.2 TRUTH TABLE FOR THE AND OPERATOR

Condition1 Condition2 Condition1 OR Condition2

True True True

True False True

False True True

False False False

TABLE 3.3 TRUTH TABLE FOR THE OR OPERATOR

Condition1 NOT Condition1

True False

False True

TABLE 3.4 TRUTH TABLE FOR THE NOT OPERATOR

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 66

Conditionals and Branching

It may seem like I’ve covered a fair amount of VBA programming, but in reality,
I’ve barely even started. Right now you can’t really do much with the VBA pro-
grams you’ve created so far, because you haven’t yet learned any programming
structures. However, that is about to change as I begin to examine a simple yet
very useful VBA code structure. The If/Then/Else structure is known as both a
conditional and branching structure because it uses conditional statements to
change the flow or direction of program execution.

If/Then/Else

There are several ways to implement this code structure. The most basic uses the
two required keywords If and Then.

If (condition) Then Code statement

In the example above, the code statement following Then will execute if condition
evaluates as true, otherwise code execution proceeds with the next statement.
The entire structure takes just one line of code. It’s convenient when you have
just one brief code statement that needs to be executed if the condition is true.
Multiple statements can be entered on the same line if you separate them with
colons (:), but then your code may be hard to read. If you need more than one
code statement executed, then for the sake of readability you should use the
block form of If/Then/Else .

If (condition) Then

‘Block of code statements

End If

Again, the condition must be true or the block of code statements will not exe-
cute. When using more than one line in the program editor for If/Then you must
end the structure with End If.

The following procedure is a simple number-guessing game where the computer
comes up with a number between 0 and 10 and asks the user for a guess. Three
If/Then structures are used to determine the message output to the user depend-
ing on the guess.

Private Sub NumberGuess()

Dim userGuess As Integer

Dim answer As Integer

67
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 67

The variable answer is used to store a number generated by the Rnd function that
returns a random number of type single between 0 and 10. Using an integer data
type for the variable answer ensures that the calculated value is rounded and
stored as an integer.

answer = Rnd * 10

userGuess = Val(InputBox(“I’m thinking of a number between 0 and 10.

Try and guess.”, “Number Guess”))

The If/Then structures each use one condition that compares the values stored in
the userGuess and answer variables. Only one of these conditions can be true, and
the message box in the If/Then structure with the true condition executes.

If (userGuess > answer) Then

MsgBox (“Too high!”)

MsgBox (“The answer is “ & answer)

End If

If (userGuess < answer) Then

MsgBox (“Too low!”)

MsgBox (“The answer is “ & answer)

End If

If (userGuess = answer) Then MsgBox (“You got it!”)

End Sub

If you know you want one block of code executed when a condition is true and
another block of code executed when the same condition is false, then use the
Else keyword.

If (condition)

‘This block of code executes if the condition is true

Else

‘This block of code executes if the condition is false.

End If

The If/Then structures in the number guess procedure can also be written as fol-
lows, where <> is the “not equal” operator (see Table 3.1):

If (userGuess <> answer) Then

MsgBox (“Wrong! The answer is “ & answer)

Else

MsgBox (“You got it!”)

End If

68
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 68

TE
AM
FL
Y

Team-Fly®

This time, instead of using additional If/Then statements the keyword Else is
used to direct the program to another block of code that is executed if the con-
dition (userGuess <> answer) evaluates to false.

There is no limit on the number of conditions you can use with an If/Then code
structure. The condition

If (userGuess <> answer) Then

can also be written as

If (userGuess < answer) Or (userGuess > answer) Then

Where the logical operator Or is used in the expression for the conditional. Thus,
if only one conditional evaluates as true, then the expression returns true and
the logic is maintained. You can use more than two conditionals if needed; how-
ever, your code will get harder to read as the number of conditionals in one line
of code increases. You will see an excessive use of conditionals in the Poker Dice
project at the end of this chapter.

There are numerous possibilities for achieving the same logic when using
If/Then/Else and conditionals. You can also nest the If/Then/Else code structure if
you want to. The procedure below outputs a short message to the user depending
on the current time and day of the week. After some variable declarations, a few
familiar date functions are used to determine the current time and day of the week.

Private Sub myTime()

Dim time As Date

Dim theHour As Integer

Dim theDayOfTheWeek As Integer

time = Now

theHour = Hour(time)

theDayOfTheWeek = Weekday(time)

The first If/Then/Else structure is checking whether the time of the day is
between 8:00 A.M. and 5:00 P.M., since the variable theHour holds an integer value
between 0 and 23. If the expression is true then another If/Then/Else structure
will execute. This If/Then/Else structure is “nested” in the first one and is check-
ing the value for the day of the week. If the day of the week is Monday through
Friday, then a message box is used to display the string “You should be at work.”
(Remember that it had to be between 8:00 A.M. and 5:00 P.M to get to this point.)
Otherwise, the nested If/Then/Else outputs the message “I love weekends.” If the
time of day is not between 8:00 A.M. and 5:00 P.M, then the message “You should
not be at work!” is displayed in a message box.

69
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 69

If (theHour > 8) And (theHour < 17) Then

If (theDayOfTheWeek > 0) And (theDayOfTheWeek < 6) Then

MsgBox (“You should be at work!”)

Else

MsgBox (“I love weekends”)

End If

Else

MsgBox (“You should not be at work!”)

End If

End Sub

There is no limit to the number of nested If/Then statements you can use; how-
ever, after three or four levels, keeping track of the logic can be difficult and your
program may be difficult to read and debug.

It is a good idea to indent your code with each level of logic. You will find your
programs much easier to read and debug if indented properly.

Another option regarding If/Then/Else structures is the ElseIf clause. The
ElseIf clause is used like the Else clause with a conditional expression. You must
also include Then when using ElseIf. The following example uses a series of
ElseIf clauses to display the day of the week in a message box.

If (theDayOfTheWeek = 0) Then

MsgBox (“It’s Sunday!”)

ElseIf (theDayOfTheWeek = 1) Then

MsgBox (“It’s Monday!”)

ElseIf (theDayOfTheWeek = 2) Then

MsgBox (“It’s Tuesday!”)

ElseIf (theDayOfTheWeek = 3) Then

MsgBox (“It’s Wednesday!”)

ElseIf (theDayOfTheWeek = 4) Then

MsgBox (“It’s Thursday!”)

ElseIf (theDayOfTheWeek = 5) Then

MsgBox (“It’s Friday!”)

Else

MsgBox (“It’s Saturday!”)

End If

70
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 70

There is no limit to the number of ElseIf clauses that can be used. However,
ElseIf cannot be used after an Else clause. You can also nest more If/Then/Else
structures inside an ElseIf clause.

Select Case

There are innumerable ways to accomplish the same task with If/Then/Else and
ElseIf code structures. But keep in mind that using a large number of
If/Then/Else and ElseIf statements can make it difficult to follow the logic of
your program. You should consider using the Select/Case code structure in situ-
ations where you find yourself using a large number of ElseIf statements. The
Select/Case code structure is used when you need to test the value of a variable
multiple times and, based on the outcome of those tests, execute a single block
of code. The Select/Case syntax is fairly simple and easy to understand.

Select Case expression

Case condition1

‘This block of code executes if condition1 is true.

Case condition2

‘This block of code executes if condition2 is true.

…’There is no limit on the number of cases you can use

Case Else

‘This block of code executes if none of the other conditions were true.

End Select

A Select/Case structure must begin with Select Case and end with End Select.
The expression immediately following Select Case is typically a variable of
numerical or string data type. Next, a list of one or more code blocks is entered
just beneath the keyword Case and a condition. The condition is a comparison to
the expression in the opening line of the structure. VBA proceeds down the list
until it finds a condition that evaluates as true, then executes the block of code
within that case element. Any additional case elements following one that eval-
uates as true are ignored, even if their conditions are also true. Thus, order of the
case elements is important. The last case element should use Case Else. This
ensures that at least one block of code executes if all other conditions are false.

The following example uses a Select/Case structure in a VBA function designed
to work with an Excel spreadsheet. The input value should be numerical and
expressed as a percentage. This percentage represents a student’s score and is
passed into the function and stored in the variable studentScore. The variable
studentScore is used as the test expression for the Select/Case structure.

71
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 71

Public Function AssignGrade(studentScore As Single) As String

Select Case studentScore

Case 90 To 100

AssignGrade = “A”

Case Is >= 80

AssignGrade = “B”

Case 70 To 80

AssignGrade = “C”

Case Is >= 60

AssignGrade = “D”

Case Else

AssignGrade = “F”

End Select

End Function

There are two forms for writing the conditionals in the case elements; both are
shown in this example. The first case element uses Case 90 To 100. This condi-
tion is specified as a range of values with the lower value inserted first followed
by the To keyword and then the upper value of the range. This condition evalu-
ates as true if the value stored in the variable studentScore is greater or equal to
90 and less than or equal to 100.

If the value of studentScore is less than 90, VBA proceeds to the next case ele-
ment, which is Case Is >= 80. This is the other form for a condition using the Is
keyword to specify a range with a comparison operator >= (greater than or equal
to). If the value of studentScore is greater than or equal to 80 this condition is
true and the block of code within this element executes. Again, VBA will proceed
down the list until it finds a true condition and then evaluate that case ele-
ment’s code block. If Case Is >= 60 and the AssignGrade() function is placed at
the top of the Select/Case structure, then all students with a percentage higher
than 60 would be assigned a grade of “D,” even they have a score of 100%.

Constructing the Poker Dice Program

Poker Dice is a variation on five-card draw using dice instead of cards. Since there
are six possible values per die instead of 13 and no suits, you will get much better
hands with this game. This program illustrates the use of conditionals with
If/Then/Else and ElseIf code structures. The code for Poker Dice will be contained
in two Click() event procedures of Command Button controls and one sub proce-
dure. Poker Dice will also introduce you to a couple of new ActiveX controls, the

72
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 72

Image control and the Check Box control. The project along with the images of the
dice can be found on the accompanying CD.

Project Statement

I want to create a program that simulates five-card draw using images of dice
instead of cards. The program should use an Excel spreadsheet as the interface
and display five dice when started. The user should be given one draw before the
final result of the hand is displayed. Thus, the program should be able to evaluate
the user’s hand.

Project Tools

The images of the dice will be displayed on the spreadsheet in Image controls.
Command Button controls will be used to start the game and take a draw, and
Check Box controls will be used to hold a die so it is not replaced on a draw. I will
use multiple If/Then/Else code structures to determine the value of a hand. A
spreadsheet cell or a Label control can be used to display the value of the hand,
and the worksheet containing the game can be preformatted for the desired
appearance. The code will be placed in Click() Event procedures of the Command
Button controls as well as any Sub procedures that may be deemed necessary.

The Image Control

The Image control is used to hold images of type bitmap (.bmp extension). This is
somewhat of a nuisance if your images are not in the bitmap format, but you can
use just about any image-editing software to convert them. The Image control
can be added to a worksheet from the control toolbox like any other ActiveX con-
trol. Figure 3.9 shows the icon for the Image control.

73
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

FIGURE 3.9

The Control Toolbox

The Check
Box control

The Image
control

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 73

Image files can be loaded into the Image control at design time or run time via
the Picture property. Table 3.5 summarizes some of the more important proper-
ties of the Image control.

The image control also has several event procedures, most notably the Click(),
BeforeDragOver(), and BeforeDropOrPaste() event procedures. Although we will
not be using any of the Image control event procedures in the Poker Dice pro-
gram, you should at least know how to use the Click() event procedure by now.

The Check Box Control

The Check Box control is a familiar and relatively easy control to use. Figure 3.9
shows the icon for the Check Box control. Check Box controls are designed to give
the user multiple selections from a group.

Use the OptionButton control if you wish to limit the user to only one choice.

Table 3.6 lists the most important properties of the Check Box control.

Most of the properties of the Check Box control are related to its appearance, and
you will have to use more than what is listed in Table 3.6. However, these are the
properties most commonly manipulated at run time. The Name property is used
to reference the Check Box control and the Value property is used to test whether
or not the user has it selected. The Check Box control has several event proce-
dures associated with it, but you will seldom use anything other than its Click()
event procedure.

74
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Property Function

Name Used for referencing the control in your program

AutoSize If true, the control will automatically resize itself to fit the image size.

BackStyle Use the transparent setting if you don’t want the user to know it’s
there until an image is loaded.

Picture The path to the image file to be displayed

PictureAlignment Aligns the image to the specified location

PictureSizeMode Clip, Stretch, or Zoom. Not important if AutoSize is true. May distort
the image.

TABLE 3.5 SELECTED PROPERTIES OF

THE IMAGE CONTROL

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 74

Project Algorithm

Follow these instructions to create the Poker Dice program:

1. Format the worksheet for the desired appearance.

2. Add five image controls in a neat row. Set their properties as listed in
Table 3.7.

3. Add five Check Box controls, placing one each centered above an Image
control. Set the properties of the Check Box controls as listed in Table 3.8.

4. Add two Command Button controls to the worksheet and center under
the dice. Set their Name properties to cmdRollDice and cmdClear, and their
Caption properties to Roll Dice and New Game.

5. Format the range B11:D12 to merge the cells and center the text. Give the
merged region a thick black border. This area will be used to hold the
result output by the program.

75
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

Property Function

Name Used for referencing the control in your program

Caption Displays text that describes a choice for the user

Value True if checked

TABLE 3.6 SELECTED PROPERTIES OF THE

CHECK BOX CONTROL

Property Value

Width, Height 75

Name imgDice1, imgDice2, etc.

BackStyle transparent

AutoSize True

BorderStyle None

SpecialEffect Flat

TABLE 3.7 PROPERTY SETT INGS OF IMAGE

CONTROLS IN THE POKER DICE PROGRAM

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 75

6. Use the Click() event procedure of cmdRollDice to load the images into the
Image controls where the associated Check Box control is left unchecked.
The image to be displayed should be selected randomly.

7. Display the result of the hand in the worksheet with each roll of the dice.
Use a sub procedure and If/Then/Else code structures to determine the
result of the hand. Disable cmdRollDice after two selections and enable
cmdClear.

8. Use the Click() event procedure of cmdClear to clear the contents of the
Image controls, Check Box controls, and worksheet cell containing the
result. Enable the Command Button cmdRollDice and disable the Com-
mand Button cmdClear.

Adding the Code

As stated in the algorithm, the program used two click event procedures and one
sub procedure. All code will be added to the component module of the Poker Dice
worksheet. The general declarations section of this module contains Option
Explicit, so variable declaration is required.

Option Explicit

The Click() event procedure to the Command Button control named cmdClear is
fairly straightforward. First the value property of all Check Box controls is set to
false to remove any checks selected by the user.

Private Sub cmdClear_Click()

ckBox1.Value = False

ckBox2.Value = False

76
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Property Value

Name ckBox1, ckBox2, etc.

BackStyle Transparent

Caption Empty

SpecialEffect Sunken

Value False

TABLE 3.8 PROPERTY SETT INGS OF CHECK BOX

CONTROLS IN THE POKER DICE PROGRAM

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 76

ckBox3.Value = False

ckbox4.Value = False

ckBox5.Value = False

The value property of the merged cells on the worksheet is set to an empty string.
Note that when referring to cells that have been merged, use the row and column
indices of the upper left cell in the merged group.

Cells(11, “B”).Value = “”

Set the enabled property of an ActiveX control to true in order to activate the
control for use. Set the enabled property of an ActiveX control to false to make it
unavailable to the user (Note: the caption will be grayed out).

cmdRollDice.Enabled = True

cmdClear.Enabled = False

Remove the images from the Image controls by passing an empty string to VBA’s
LoadPicture() function.

imgDice1.Picture = LoadPicture(“”)

imgDice2.Picture = LoadPicture(“”)

imgDice3.Picture = LoadPicture(“”)

imgDice4.Picture = LoadPicture(“”)

imgDice5.Picture = LoadPicture(“”)

End Sub

The Click() event procedure of the Command Button control named cmdRollDice
is used to load images of dice into Image controls. The image for each control is
selected randomly from one of six choices.

Private Sub cmdRollDice_Click()

A static integer variable is used to keep track of how many times the user has
clicked on this control. The user is only allowed two clicks per game. Additional
string variables are used to hold the name of the file and path to that file.

Static I As Integer

Dim imageFile As String

Dim imagePath As String

The file path is stored in a variable so that if it needs to be changed later, there
is only one line of code to edit. (The syntax used to get the file path string will
make more sense after you have read Chapter 5.) When the workbook containing
Poker Dice is loaded, Excel keeps track of the file path to the loaded workbook
(pokerDice.xls). The line of code below accesses this information using the Path

77
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 77

property of the Workbook object. This will actually prevent a “file not found”
error if the workbook is copied to a new location on the same, or another, com-
puter. An additional backslash is concatenated onto the string for later use.

imagePath = Workbooks(“pokerDice.xls”).Path & “\”

The variable I is incremented by one and the Command Button name cmdClear is
disabled. Next the Randomize statement is used to initialize VBA’s random num-
ber generator. Without any arguments passed to it, Randomize will use the system
clock to set a seed value for random number generation. Without the Randomize
statement, the same seed value will be used for random number generation. As
a result, the same random number sequence will be reproduced each time the
program is run.

I = I + 1

cmdClear.Enabled = False

Randomize

An If/Then/Else code structure is used to check the Value property of the Check-
Box controls. If the value is false, then a randomly-chosen image is loaded into
the Image control. The random number is converted to an integer with the Int()
function. As written, the value of the random number can only fall between 1
and 6. I am storing the random number in a spreadsheet cell because I will need
to access this value in another procedure later in the program in order to check
the result of the hand. Alternatively, I could use a set of module-level variables to
hold the result from the random number generation. The entire path to the
desired image file is stored in the string variable imageFile. I used filenames
“1.bmp,” “2.bmp,” etc., for my image files in order to make the string concatena-
tion easy. Finally, the image is loaded into the Image control by passing the file
path to the LoadPicture() function. This If/Then/Else block is repeated for each
of the five Image controls.

If ckBox1.Value = False Then

Cells(1, “A”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Cells(1, “A”).Value)) & “.bmp”

imgDice1.Picture = LoadPicture(imageFile)

End If

If ckBox2.Value = False Then

Cells(1, “B”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Cells(1, “B”).Value)) & “.bmp”

imgDice2.Picture = LoadPicture(imageFile)

End If

78
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 78

TE
AM
FL
Y

Team-Fly®

If ckBox3.Value = False Then

Cells(1, “C”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Cells(1, “C”).Value)) & “.bmp”

imgDice3.Picture = LoadPicture(imageFile)

End If

If ckbox4.Value = False Then

Cells(1, “D”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Cells(1, “D”).Value)) & “.bmp”

imgDice4.Picture = LoadPicture(imageFile)

End If

If ckBox5.Value = False Then

Cells(1, “E”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Cells(1, “E”).Value)) & “.bmp”

imgDice5.Picture = LoadPicture(imageFile)

End If

Another If/Then/Else structure is used to test the value of the variable I. The
Command Button controls named cmdRollDice and cmdClear are disabled and
enabled, respectively, after the user has rolled twice. The variable I is reinitial-
ized to zero for the next game.

If I = 2 Then

cmdRollDice.Enabled = False

cmdClear.Enabled = True

I = 0

End If

The sub procedure DisplayResult() is called without passing parameters in order
to determine the result of the user’s hand.

DisplayResult

End Sub

The sub procedure DisplayResult() determines the result of the user’s hand by
using several If/Then/Else code structures, and numerous conditional expressions,
to recognize the various combinations the dice can exhibit. The DisplayResult()
procedure is somewhat long but the logic is easy to follow, so I did not break it up
into more than one sub procedure.

Private Sub DisplayResult()

Several integer variables will keep track of possible dice combinations and a
string variable will hold the result of the hand.

79
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 79

Dim numOnes As Integer

Dim numTwos As Integer

Dim numThrees As Integer

Dim numFours As Integer

Dim numFives As Integer

Dim numSixes As Integer

Dim result As String

The first set of If/Then code structures checks the value of the dice stored in the
first row of the spreadsheet for each possible value. A variable is then incre-
mented if its associated value is found in a spreadsheet cell. These If/Then code
structures effectively determine how many dice show the value 1, 2, 3, 4, 5, or 6.

If Cells(1, “A”).Value = 1 Then numOnes = numOnes + 1

If Cells(1, “B”).Value = 1 Then numOnes = numOnes + 1

If Cells(1, “C”).Value = 1 Then numOnes = numOnes + 1

If Cells(1, “D”).Value = 1 Then numOnes = numOnes + 1

If Cells(1, “E”).Value = 1 Then numOnes = numOnes + 1

If Cells(1, “A”).Value = 2 Then numTwos = numTwos + 1

If Cells(1, “B”).Value = 2 Then numTwos = numTwos + 1

If Cells(1, “C”).Value = 2 Then numTwos = numTwos + 1

If Cells(1, “D”).Value = 2 Then numTwos = numTwos + 1

If Cells(1, “E”).Value = 2 Then numTwos = numTwos + 1

If Cells(1, “A”).Value = 3 Then numThrees = numThrees + 1

If Cells(1, “B”).Value = 3 Then numThrees = numThrees + 1

If Cells(1, “C”).Value = 3 Then numThrees = numThrees + 1

If Cells(1, “D”).Value = 3 Then numThrees = numThrees + 1

If Cells(1, “E”).Value = 3 Then numThrees = numThrees + 1

If Cells(1, “A”).Value = 4 Then numFours = numFours + 1

If Cells(1, “B”).Value = 4 Then numFours = numFours + 1

If Cells(1, “C”).Value = 4 Then numFours = numFours + 1

If Cells(1, “D”).Value = 4 Then numFours = numFours + 1

If Cells(1, “E”).Value = 4 Then numFours = numFours + 1

If Cells(1, “A”).Value = 5 Then numFives = numFives + 1

If Cells(1, “B”).Value = 5 Then numFives = numFives + 1

If Cells(1, “C”).Value = 5 Then numFives = numFives + 1

If Cells(1, “D”).Value = 5 Then numFives = numFives + 1

If Cells(1, “E”).Value = 5 Then numFives = numFives + 1

80
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 80

If Cells(1, “A”).Value = 6 Then numSixes = numSixes + 1

If Cells(1, “B”).Value = 6 Then numSixes = numSixes + 1

If Cells(1, “C”).Value = 6 Then numSixes = numSixes + 1

If Cells(1, “D”).Value = 6 Then numSixes = numSixes + 1

If Cells(1, “E”).Value = 6 Then numSixes = numSixes + 1

The potential hands we will test for first are when the user has either a 5 or 6
high straight or nothing. The opening If/Then/Else code structure uses six con-
ditional expressions. I said earlier in the chapter there would be an excessive use
of conditionals—at this point, it can’t be helped much, but I have used a line con-
tinuation character (_) in an effort to make the code easier to read.

The line continuation character (_) tells VBA that I really want just one line of
code but I need to type it on more than one line in the editor. Make sure there is
a single space between the last character and the underscore before proceeding
to the next line.

In the next chapter, I will introduce more code structures that will help clean up
this code. The six conditionals are all linked with logical AND. This means that all
conditionals must be true if the block of code within the first If/Then statements
is to be executed. If the number of occurrences of each die value is equal to or
less than one, a nested If/Then/Else code structure is then used to determine if
the hand is a “6 High Straight,” a “6 High,” or a “5 High Straight.”

If (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

If (numSixes = 1) And (numOnes = 0) Then

result = “6 High Straight”

ElseIf (numSixes = 1) And (numOnes = 1) Then

result = “6 High”

Else

result = “5 High Straight”

End If

End If

Next we test for one pair of dice with the same value. Another If/Then/Else code
structure and six condition expressions for each If/Then or ElseIf/Then statement
will determine whether the user has just a single pair of dice with the same value.

If (numOnes = 2) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

result = “Pair of Ones”

81
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 81

ElseIf (numOnes <= 1) And (numTwos = 2) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

result = “Pair of Twos”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees = 2) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

result = “Pair of Threes”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours = 2) And (numFives <= 1) And (numSixes <= 1) Then

result = “Pair of Fours”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives = 2) And (numSixes <= 1) Then

result = “Pair of Fives”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes = 2) Then

result = “Pair of Sixs”

End If

To test for two pair of dice with the same value, all possible scenarios are tested for
with conditional expressions. This time logical OR is used with logical AND to find
the combination of dice that make up “two pair.” Pay close attention to the use of
parentheses in the conditional expression. I am using parentheses to group each
possible combination of dice that returns “two pair.” For example, (numOnes = 2 And
numTwos = 2) is one possible combination. Each of these combinations are linked
with logical OR because if only one of them is true, then the result is “two pair.”

If (numOnes = 2 And numTwos = 2) Or _

(numOnes = 2 And numThrees = 2) Or _

(numOnes = 2 And numFours = 2) Or _

(numOnes = 2 And numFives = 2) Or _

(numOnes = 2 And numSixes = 2) Or _

(numTwos = 2 And numThrees = 2) Or _

(numTwos = 2 And numFours = 2) Or _

(numTwos = 2 And numFives = 2) Or _

(numTwos = 2 And numSixes = 2) Or _

(numThrees = 2 And numFours = 2) Or _

(numThrees = 2 And numFives = 2) Or _

(numThrees = 2 And numSixes = 2) Or _

(numFours = 2 And numFives = 2) Or _

(numFours = 2 And numSixes = 2) Or _

(numFives = 2 And numSixes = 2) Then

result = “Two Pair”

End If

82
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 82

The next If/Then/Else code structure tests for three of a kind, or three dice with
the same value. There is nothing new here, so take a close look and try to follow
the logic.

If (numOnes = 3 And numTwos < 2 And numThrees < 2 And numFours < 2

And numFives < 2 And numSixes < 2) Then

result = “Three Ones”

ElseIf (numOnes < 2 And numTwos = 3 And numThrees < 2 And numFours <

2 And numFives < 2 And numSixes < 2) Then

result = “Three Twos”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees = 3 And numFours <

2 And numFives < 2 And numSixes < 2) Then

result = “Three Threes”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees < 2 And numFours =

3 And numFives < 2 And numSixes < 2) Then

result = “Three Fours”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees < 2 And numFours <

2 And numFives = 3 And numSixes < 2) Then

result = “Three Fives”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees < 2 And numFours <

2 And numFives < 2 And numSixes = 3) Then

result = “Three Sixs”

End If

Testing for four and five values that are the same is easy because there is only one
variable to test with each conditional expression.

If numOnes = 4 Then result = “Four Ones”

If numTwos = 4 Then result = “Four Twos”

If numThrees = 4 Then result = “Four Threes”

If numFours = 4 Then result = “Four Fours”

If numFives = 4 Then result = “Four Fives”

If numSixes = 4 Then result = “Four Sixs”

If numOnes = 5 Then result = “Five Ones”

If numTwos = 5 Then result = “Five Twos”

If numThrees = 5 Then result = “Five Threes”

If numFours = 5 Then result = “Five Fours”

If numFives = 5 Then result = “Five Fives”

If numSixes = 5 Then result = “Five Sixs”

Finally, we test for a full house, where three dice have the same value and the
other two dice have the same value but are different from the other set of three.

83
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 83

This is just like the test for two pair, except we have more combinations to test.

If (numOnes = 3 And numTwos = 2) Or (numOnes = 3 And numThrees = 2) Or _

(numOnes = 3 And numFours = 2) Or (numOnes = 3 And numFives = 2) Or _

(numOnes = 3 And numSixes = 2) Or (numTwos = 3 And numOnes = 2) Or _

(numTwos = 3 And numThrees = 2) Or (numTwos = 3 And numFours = 2) Or _

(numTwos = 3 And numFives = 2) Or (numTwos = 3 And numSixes = 2) Or _

(numThrees = 3 And numOnes = 2) Or (numThrees = 3 And numTwos = 2) Or _

(numThrees = 3 And numFours = 2) Or (numThrees = 3 And numFives = 2) Or _

(numThrees = 3 And numSixes = 2) Or (numFours = 3 And numOnes = 2) Or _

(numFours = 3 And numTwos = 2) Or (numFours = 3 And numThrees = 2) Or _

(numFours = 3 And numFives = 2) Or (numFours = 3 And numSixes = 2) Or _

(numFives = 3 And numOnes = 2) Or (numFives = 3 And numTwos = 2) Or _

(numFives = 3 And numThrees = 2) Or (numFives = 3 And numFours = 2) Or _

(numFives = 3 And numSixes = 2) Or (numSixes = 3 And numOnes = 2) Or _

(numSixes = 3 And numTwos = 2) Or (numSixes = 3 And numThrees = 2) Or _

(numSixes = 3 And numFours = 2) Or (numSixes = 3 And numFives = 2) Then

result = “Full House”

End If

Finally, the result is displayed in the spreadsheet.

Cells(11, “B”).Value = result

End Sub

That concludes Poker Dice. It really is a pretty simple program. The difficulty is
in following the logic of the large number of conditions contained in the expres-
sions with the If/Then/Else code structures. The DisplayResult() Sub procedure
is a longer procedure than I normally write because of the number of condition-
als involved. As you may have already guessed, the DisplayResult() Sub proce-
dure can be simplified significantly with the use of different programming
structures and techniques. You will look at a couple of these structures in the
next chapter.

Chapter Summary

In this chapter you covered a considerable amount of material on some of the
tools required to help you build a strong programming foundation. You started
by taking an in-depth look at procedures in VBA—specifically, event, sub, and
function procedures. You learned how to use and build these procedures while
considering the procedures scope, available parameters, and return values (func-
tion procedures). You even learned how to build new function procedures to use

84
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 84

within formulas created in the Excel application. Finally, you saw two new code
structures, If/Then/Else and Select/Case, and you learned how to use Boolean
logic within conditional expressions so a program could branch off in different
directions in terms of code execution. In essence, you learned how to write a pro-
gram that can make simple decisions.

85
C

h
a

p
te

r
3

P
r
o

c
e
d

u
r
e
s

a
n

d
C

o
n

d
i ti o

n
s

CHALLENGES

1. Draw a simple image of a smiley face using MS Paint then load the image

into an Image control placed on a worksheet in Excel. Using the MouseDown()
Event procedure of the Image control, write a program that displays a mes-

sage to the user every time the user clicks on the image. The message

should tell the user if he/she clicks on the eyes, nose, mouth, or face of the

image and which button they used. The message can be displayed with a

message box, or in a Label control, or on the spreadsheet.

2. Write a function procedure in VBA that returns the square root of a number.

The function should be made available to the Excel application.

3. Write a sub procedure in VBA that either adds, subtracts, multiplies, or

divides two numbers. The procedure should be called by another sub pro-

cedure that collects the two numbers from the user and asks the user which

mathematical operation is desired. The calling procedure should also out-

put the result, displaying the original values and the answer.

4. Add a few Check Box controls or Option Button controls to a worksheet,

then use a Select/Case code structure in a sub procedure that outputs a

message to the user telling them which check box has been selected.

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 85

03 XLVBA CH03.qxd 2/25/03 7:19 AM Page 86

This page intentionally left blank

I
n Chapter 3, “Procedures and Conditions,” you started building your pro-

gramming foundation with the branching structures If/Then/Else and

Select/Case. In this chapter you will significantly expand on that founda-

tion with looping code structures and arrays. Loops and arrays are fundamental to

all programming languages; they expand the capabilities of a program significantly

and make them easier to write. You’ll begin this chapter by looking at the different

looping structures available in VBA before moving on to arrays.

Specifically, this chapter will cover:

• Do loops

• For loops

• Input validation

• Arrays

• Multi-dimensional arrays

• Dynamic arrays

• Recording macros

• The Forms toolbar controls

• Chapter project: Math Game

Loops and
Arrays

4
C H A P T E R

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 87

Project: The Math Game

The Math Game is a natural choice for programming with a spreadsheet appli-
cation like Excel. The Math Game requires only basic math skills, so it may be
more fun for kids to play, but it’s a lot of fun for adults to write. To play the Math
Game, you answer as many questions as you can in the allotted time. After you
finish, the questions are reviewed and scored. The Math Game spreadsheet is
shown in Figure 4.1.

Looping with VBA

Program looping is the repetition of a specific block of code a specified number
of times. The number of times the block of code is repeated may be well defined
or based on a conditional statement. All computer languages have looping struc-
tures because these structures are excellent at solving problems that would oth-
erwise require repetitive code. Imagine a program that had to search for a
specific name in a column of data with one hundred entries. A program with one
hundred If/Then statements testing the value property of each cell for the
required name will solve the problem. The program would be technically easy to
create, but it would be a pain to type in all that repetitive code and it would look
awful. Fortunately, we have looping code structures to help us.

88
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.1

The Math Game
project

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 88

TE
AM
FL
Y

Team-Fly®

Each execution of the block of code inside a looping structure represents one
iteration of the loop.

Do Loops

Do loops will execute a given block of code repetitively based on the value of a
conditional expression. The three required keywords are Do, Loop, and While or
Until. The keywords are used to build four basic representations of the Do-Loop.
The first two representations use the keyword Until with a conditional statement
that determines if, and how many times the code inside the loop executes. With
the conditional statement at the end of the loop, the code inside the loop exe-
cutes at least one time.

Do

‘Block of code executes at least once and continues to loop if condition

is false.

Loop Until (condition)

When the conditional statement is at the beginning of the loop, the code inside
the loop will not be executed unless the logic of the conditional statement allows
it. When using Until, the code inside the loop will execute if the conditional
statement is false.

Do Until (condition)
‘Block of code executes only if condition is false.

Loop

The next two representations of the Do-Loop use the keyword While with a condi-
tional statement that determines if, and how many times, the code inside the
loop executes. When While is used, the code inside the loop executes when the
conditional statement is true.

Do

‘Block of code executes at least once and continues to loop if condition

is true.

Loop While (condition)

When deciding on which representation of the Do-Loop to use, ask yourself
whether you need the code inside the loop to execute at least once. If you do,
then put the conditional at the end. The choice of While or Until depends on the
logic of the conditional expression.

89
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 89

Do While (condition)
‘Block of code executes only if condition is true.

Loop

Beware of creating loops that never stop repeating, otherwise known as infinite
loops. When constructing your Do-Loop, create it with a conditional expression
that will change its logical value (true to false and vice-versa) at some point dur-
ing execution of the code within the loop. It is easier to create an infinite loop
than you might think. The following example is supposed to find the first occur-
rence of the string Flintstone in the first column of a worksheet, output a mes-
sage to the screen, and then quit:

Dim I As Integer

I = 1

Do

If (Cells(I, “A”).Value = “Flintstone”) Then

MsgBox (“Yabba Dabba Do! I found a Flintstone in row “ &

Str(I))

End If

I = I + 1

Loop Until (Cells(I, “A”).Value = “Flintstone”)

The loop will always fail for two reasons. First, if the string Flintstone does not
appear in the first column of the worksheet, then the loop is infinite because the
conditional statement at the end of the loop, (Cells(I, “A”).Value = “Flintstone”),
will never be true. Second, even if the string Flintstone does appear in the first col-
umn of the worksheet, the output from the MsgBox() function will not appear
because the conditional statement at the end of the loop will be true before the con-
ditional statement associated with the If/Then structure.

If you find your program stuck in an infinite loop, use Ctrl+Alt+Break to suspend
program execution.

In most cases you can construct a loop with logical expressions that will work
with both While or Until, so using one or the other is simply a matter of personal
preference. The following Do-Loops have the exact same function, but the first
loop uses While and the second uses Until:

Dim I As Integer

I = 1

Do

If (Cells(I, “A”).Value = “Flintstone”) Then

MsgBox (“Yabba Dabba Do! I found a Flintstone in row “ &

90
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 90

Str(I))

End If

I = I + 1

Loop While (Cells(I, “A”).Value <> “”)

If I change the conditional operator to = (is equal to), then I change the logic of
the conditional statement, so I must use the keyword Until to get the same result
from the loop.

Dim I As Integer

I = 1

Do

If (Cells(I, “A”).Value = “Flintstone”) Then

MsgBox (“Yabba Dabba Do! I found a Flintstone in row “ &

Str(I))

End If

I = I + 1

Loop Until (Cells(I, “A”).Value = “”)

Both of these loops search the first column in a worksheet for the string Flint-
stone. Once the desired string is found, a message box outputs a statement with
the index of the worksheet row in which the string was found. In both examples,
the Do-Loop continues until an empty cell is found. Both loops will execute at
least once, because the conditional expression is at the end of the loop. Neither
loop will be infinite because Excel will always add empty rows to the end of a
spreadsheet as more rows of data are added.

For Loops

When you know the number of iterations required from a loop, the For/Next loop
is the best choice of structures. The syntax is very simple.

For variable = start To end Step value
‘Block of code

Next variable

The required keywords are For, To, and Next. A counting variable is also required
to keep track of the number of iterations through the loop. Starting and ending
values for the counting variable are also required. The keyword Step is optional,
but if it’s used, the value that follows it is used to denote the step size of the
counting variable with each iteration through the loop. The value of the step can
be any positive or negative integer; the default value is +1 when Step is omitted.
Table 4.1 lists a few examples of For/Next loops.

91
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 91

The variable I in Table 4.1 should be declared as an integer prior to use, and the
ending value for the loop is usually another variable rather than a constant. In
most cases, you will want to use the default step size of +1, so the keyword Step
is omitted.

Use the statement Exit Do or Exit For to force code execution to leave a
looping structure and proceed with the first line of code after the loop. Normally,
Exit Do or Exit For will be within a branching structure (If/Then or
Select/Case) inside of the loop.

The following example of a VBA function mimics the FACT function in the Excel
application by calculating the factorial of an integer:

Public Function Factorial(myValue As Integer) As Long

Dim I As Integer

Dim factorialValue As Long

‘

factorialValue = 1

For I = 2 To myValue

factorialValue = factorialValue * I

Next I

Factorial = factorialValue

End Function

92
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Loop Example Output from Message Box

For I = 0 To 10 11 iterations: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10
MsgBox (I)

Next I

For I = 0 To 10 Step 2 6 iterations: 0, 2, 4, 6, 8, and 10
MsgBox (I)

Next I

For I = 0 To 10 Step 3 4 iterations: 0, 3, 6, and 9
MsgBox (I)

Next I

For I = 10 To 0 Step –5 3 iterations: 10, 5, and 0
MsgBox (I)

Next I

TABLE 4.1 EXAMPLES OF FOR/NEXT

LOOPS IN VBA

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 92

The For/Next loop is a natural choice, because you need the looping variable to
increment by one with each iteration until it reaches the value of the integer
passed into the function. Each iteration through the For/Next loop multiplies the
next factor by the previous result, effectively producing the factorial of the value
stored in the variable myValue. For example, if myValue is 5 then the variable
factorialValue will be calculated as 1×2×3×4×5.

Finally, consider the most obvious example of looping in spreadsheet applica-
tions, which is looping through a range of cells in a worksheet. For now, I will
illustrate looping through a worksheet range using a For/Next loop.

For I = 1 To 10

For J = 4 To 7

Cells(I, Chr(J + 64)).Value = I * J

Next J

Next I

93
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

IN THE REAL WORLD

The factorial function can also be written as a recursive procedure.
A recursive procedure is one that calls itself.

Public Function Factorial(N As Integer) As Integer

If N <= 1 Then

Factorial = 1

Else

Factorial = Factorial(N - 1) * N

End If

End Function

Although the factorial example above is a nice illustration of recursion, it
is not a practical example. Recursive procedures can be very demanding
on system resources and they must contain logic that will eventually stop
the procedure from calling itself.

Recursive procedures are most often and most effectively applied to tree-
like data structures such as the file system on a computer.

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 93

The looping structures I have discussed so far are not the best choice for looping
through a range of cells, even though doing so is a simple enough task. A better
looping structure for handling this task is the For/Each loop discussed in
Chapter 5, “Basic Excel Objects.”

The example just given uses two nested For/Next loops to loop through the work-
sheet range D1:G10. The nested (inside) loop will execute to completion (four
iterations) with each iteration of the outer loop. In the example just given, the
value of J iterates from 4 through 7 for each value of I. The code loops through
the range by rows, as the variable used for the row index (I) is also the counting
variable for the outer loop. The Chr() function is used to convert a numerical
input representing an ASCII (American Standard Code for Information Inter-
change) value to its corresponding keyboard character. In this case the values 68
through 71 will be converted to the uppercase letters D through G. The Chr()
function in VBA works with values 0–255. Table 4.2 lists a few of the more com-
mon characters in the set.

Input Validation

Trusting that a user will input the type of data required by your program is a leap
of faith. You can, and should, provide hints to the user indicating the type and
format your program requires. However, you should also include code in your
program to check what the user enters against a required format. The process of
checking user input for correctness is known as validation. Validation should be

94
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

ASCII Value Keyboard Character

8 backspace

9 tab

10 line feed

13 carriage return

32 space

48-57 0-9

65-90 A-Z

97-122 a-z

TABLE 4.2 SELECTED ASCII CONVERSION

CHARACTERS

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 94

included whenever input is required from the user and the format of that input
cannot be guaranteed. Examples discussed thus far in this book include the
InputBox() function, the Text Box control, and spreadsheet cells. This may seem
like a daunting task at first, but asking where the validation code needs to be
entered in a program, and when it needs to run, simplifies the task considerably.

Validation with the InputBox() Function

In the Chapter 3 project, the program asks the user to input his/her name and
birthday. The program assumed the user would enter the information in the
proper format. For the user’s name, the desired format was first name-space-last
name and for the user’s birthday, a date format had to be used (for example,
3/4/86 or 3-4-1986). The DateValue() function handled some of the input valida-
tion for us by allowing multiple date formats, but more validation is required.

Consideration of where the validation code should go and when it should run is
easy with the InputBox() function. The validation should occur as soon as the
user enters the data. The best way to do this is to put the InputBox() function
inside a Do-Loop. In the Time of Your Life project in Chapter 2, user validation
could be added as follows:

Dim userName As String

Dim userBirthday As Date

Dim nameOk As Boolean

The InputBox() function is inserted inside a Do-Loop where the return value is
tested by the function procedure ValidateName(). The ValidateName() procedure
returns true if the name satisfies the desired format, otherwise it returns false.
The loop is repeated if the ValidateName() name procedure returns false, or the
user hits the Cancel button (InputBox() returns an empty string) on the input box.

nameOk = True

Do

userName = InputBox(“What is your first and last name?”, “Name”)

If (userName <> “”) Then nameOk = ValidateName(userName)

Loop While (nameOk = False) Or (userName <> “”)

The ValidateName() function procedure accepts the string entered by the user as
input and tests for the number of spaces inside the string.

Private Function ValidateName(userName As String) As Boolean

Dim strLength As Integer

Dim I As Integer

95
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 95

Dim numSpaces As Integer

Dim tempString As String

Dim msb As Integer

Any leading or trailing spaces on the string entered by the user are removed
using the Trim() function, so extra spaces before or after the names are forgiven.
The length of the resulting string is then stored in the strLength variable for use
in the subsequent For/Next loop.

userName = Trim(userName)

strLength = Len(userName)

The For/Next loop tests the leftmost character for equality to a space before
removing this character. If the character is a space, then a variable keeping track
of the number of spaces in the string is incremented by one. Essentially, the
For/Next loop iterates through each character in the string and counts the num-
ber of spaces found within that string.

For I = 1 To strLength

If Left(userName, 1) = “ “ Then

numSpaces = numSpaces + 1

End If

userName = Right(userName, Len(userName) - 1)

Next I

If more than one space (or less than one space) is found in the string entered by
the user, then the function returns false; otherwise it returns true.

If (numSpaces <> 1) Then

ValidateName = False

msb = MsgBox(“Please enter just two names separated by one space”,

vbCritical, “Error”)

Else

ValidateName = True

End If

End Function

For example, if the user enters either of the strings FredFlintstone or Fred J Flint-
stone in the input box, then the ValidateName() function returns false to the calling
procedure just after outputting the message Please enter just two names separated
by one space in a message box.

Obviously, the ValidateName() function procedure does not test for all possible
mistakes users might make entering in their names, but it does illustrate how to

96
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 96

use input validation with the InputBox() function. To test for other potential
errors by the user, simply add more code (specific to the type of error you are
looking for) to the ValidateName() function procedure.

Validation with a Spreadsheet Cell

Validating input from a specific spreadsheet cell can be a bit more complicated,
although the basic idea of writing a validation procedure to test the input for the
desired format is the same. Validating input in one or multiple worksheet cells
is no different, except that you have to loop through the range of cells, calling
the validation procedure with each iteration through the loop. The difficulty is
in deciding where to put the initial code that sends the user input to the valida-
tion procedure. With the proper design, you can give yourself several choices for
the validation procedure. Consider the sample spreadsheet shown in Figure 4.2.

This spreadsheet simulates an address database in which the user is allowed to
edit records and enter new records. Input validation should be included for every
field (name, address, phone number, and so on). For simplicity, we will consider
validation of the area code only; however, the techniques discussed can be
applied to every field.

The question is: Where should we put the validation sub procedure? There are
several possibilities. The most obvious place for the validation procedure is in the
Click() event of the Command Button control labeled Update. A click of the

97
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.2

An address
database

spreadsheet

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 97

Update command button will send code execution to the click() event procedure
of that button. Within the Click() event procedure of this Command Button, sim-
ply add a call to the validation sub procedure. The validation sub procedure will
loop through the cells containing the displayed records information. If all fields
pass validation, then the record is updated (stored to a file), if not, then specific
information containing the error(s) is output to the user.

Another possible approach to input validation is to call the input validation pro-
cedure as each field is entered. For this example, the simplest choice is to use the
Worksheet_Change() event procedure of the worksheet. The Worksheet_Change()
event procedure is triggered when cells on the worksheet are changed by the
user. Consider the following code:

Private Sub Worksheet_Change(ByVal Target As Range)

The cell range edited by the user is passed to the Worksheet_Change() event proce-
dure and stored in a variable named Target. The variable Target is of type range,
which you can think of as using our Cells() property to return a specific cell on
a worksheet. So when the user edits a cell on the worksheet, this procedure is
called as soon as the user selects another worksheet cell. Again, it is the range of
the edited cell that is passed to this procedure.

Dim cellContents As String

Dim valLength As Integer

The next line is critical to the validation of the input data. First, the innermost VBA
function Val() is passed the value of the edited cell. If the user’s input was a
numerical value, then the Val() function will not change anything except the data
type. However, if the user input a non-numerical value, then the Val() function
will return 0 or any numerical value that started the input string (for example, if
the string 714XYZ is passed to Val() then the function will return 714). The result-
ing number returned by the Val() function is passed to the Str() function to con-
vert it to a string. Leading and trailing spaces on the string are removed with the
Trim() function and the final result is stored in the string variable cellContents.

cellContents = Trim(Str(Val(Target.Value)))

The length of the cellContents variable is checked for inequality to 3, and if true,
a message box is displayed and the selection is returned to the edited cell. Oth-
erwise, the input is validated and cell selection is sent to the next cell in the
phone number (cell D9).

valLength = Len(cellContents)

If valLength <> 3 Then

98
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 98

TE
AM
FL
Y

Team-Fly®

MsgBox (“Please enter a 3 digit area code.”)

Cells(9, “C”).Select

Else

If the user input to cell C9 does not contain exactly three numbers at the start of
the input string, then the message above is displayed in the message box. The
only non-numerical value that will pass this validation procedure is a string that
begins with three numerical values and is followed by something else (for exam-
ple, 123abc). Since the Val() function returns just the numerical portion of such
a string, the line below is used to return that number to the edited cell.

Cells(9, “C”).Value = cellContents

Cells(9, “D”).Select

End If

End Sub

This example demonstrates input validation on one specific cell in the simulated
database application shown in Figure 4.2. Obviously, the code will depend on the
type of information input by the user (numerical, string, date, and so on), so its
complexity will vary. The key questions are: when and where do you want the val-
idation procedure to run? and how demanding should the validation procedure
be on the user’s input? or in other words, how much are you going to let the user
get away with?

Arrays

Normally, arrays are not discussed until the end of beginning programming
books. However, as you are already familiar with spreadsheet applications, the
concept of an array should come easily. An array is a variable that can hold mul-
tiple values. You should use arrays when a related set of values is to be stored in
a variable. Doing so relieves you from having to declare a new variable with a
unique name for each value in the set. Arrays are convenient and they simplify
program code tremendously.

A spreadsheet column that contains data is basically the same thing as an array—
it’s a group of related values. Each cell within a spreadsheet column containing
the related set of values is referenced by a row and column index. Values in an
array are also referenced using indices.

I’m assuming that you organize your spreadsheets in the normal way—by placing
data inside columns rather than rows. But the argument is the same whether
you equate a spreadsheet column or row to an array.

99
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 99

Before starting with the simplest example of an array (the one-dimensional array),
consider a sub procedure that uses a worksheet column much as a programmer
would use an array in an application that does not work with a spreadsheet.

In previous chapters, and throughout this chapter, I use the Cells property of the
Excel application object in code examples. The Cells property is straightfor-
ward, with a row and column index that corresponds to a single spreadsheet
cell. Although discussed in detail in Chapter 5, be aware as you look at the
examples in this chapter that the Cells property acts like a function that returns
a Range object consisting of a single spreadsheet cell. I have used the Value
property of the Range object extensively thus far, but the Range object has many
other properties for the VBA programmer to use besides the Value property, and
you will see many examples in this chapter and subsequent chapters.

The BubbleSort() procedure sorts a column of integer values from lowest to high-
est value. Two integer variables and a Boolean variable are all you need.

Public Sub BubbleSort()

Dim tempVar As Integer

Dim AnotherIteration As Boolean

Dim I As Integer

A For/Next loop nested inside a Do-Loop will iterate through a column of ten val-
ues until the data is sorted from lowest to highest value. The nested For/Next loop
effectively pushes the largest value from wherever it is located to the last posi-
tion, much like a bubble rising from the depths to the surface. The For/Next loop
starts at the beginning and compares two successive values. If the first value in
the comparison is larger than the second value, then the position of the two val-
ues are swapped with help from the variable tempVar. The next two values are
then compared, where the first of these values was the second value in the pre-
vious comparison (or first if it had been swapped). Note the row index in the
Cells property uses I + 1, so the looping variable in the For/Next loop works from
1 to 9, even though the procedure sorts ten values.

Do

anotherIteration = False

For I = 1 To 9

If Cells(I, “A”).Value > Cells(I + 1, “A”).Value Then

tempVar = Cells(I, “A”).Value

Cells(I, “A”).Value = Cells(I + 1, “A”).Value

Cells(I + 1, “A”).Value = tempVar

100
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 100

If a swap of two values has to be made, then the Boolean variable anotherIteration
is set to True to ensure the outer Do-Loop continues with at least one more iteration.

anotherIteration = True

End If

Next I

Each iteration through the Do-Loop moves the next largest value in the set down
the column to its correct position. Thus, it will take up to N iterations to sort the
data, where N is the number of values in the set. This does not make the Bubble-
Sort() procedure terribly efficient, but it works well for small data sets. The
worksheet shown in Figure 4.3 illustrates what happens to a set of numbers after
each iteration through the Do-Loop. Note that Figure 4.3 was created for display
only; the BubbleSort() procedure sorts and copies values within column A only.

Loop While anotherIteration = True

End Sub

One-Dimensional Arrays

An array is a variable used to hold a group of related values, and it must be
declared just as a variable is declared. An array is declared with a single name
and the number of elements (values) that can be stored in the array.

Dim myArray(number of elements) As Type

You may also declare arrays using the Public or Private keywords to define the
scope as you would with a regular variable declaration. If you do not specify
a data type, then, like a variable, the array will be a variant type. Arrays may be

101
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.3

Worksheet
illustration of the
BubbleSort()
sub procedure

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 101

declared as any available data type in VBA. All elements in arrays with numerical
data types are initialized with the value 0. Elements of string arrays are initial-
ized with an empty string. When specifying the number of elements, you must
consider the lower bound of the array. The default lower bound is 0.

Dim myArray(10) As Integer

When you need multiple array declarations of the same size, use a constant to
specify the size of the arrays in the declarations.

Const ARRAYSIZE=10

Dim myArray1(ARRAYSIZE) As Integer

Dim myArray2(ARRAYSIZE) As Integer

Dim myArray3(ARRAYSIZE) As Integer

This way, if you have to edit the size of your arrays you only need to change the
value of the constant.

Thus, the integer array myArray declared above has 11 elements accessed with the
indices 0 through 10. To override the default, set the lower bound of the array in
the declaration.

Dim myArray(1 To 10) As Integer

The array myArray now has just ten elements because the lower bound has been
explicitly set to 1.

Use the statement Option Base 1 in the general declarations section of a mod-
ule to change the default lower bound of all arrays declared in the module to 1.

You can initialize a single element in the array as you would a variable.

myArray(5) = 7

However, arrays are typically initialized inside a loop. To insert the values of the
first ten cells of column A in a spreadsheet into an array, do the following:

Dim I As Integer

Dim myArray(10) As Integer

For I = 0 To 9

myArray(I) = Cells(I + 1, “A”).Value

Next I

102
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 102

Then use another loop to output the values of the array. The following loop
squares the values stored in the array myArray before copying them to column B
of the spreadsheet:

For I = 0 To 9

Cells(I + 1, “B”).Value = myArray(I)^2

Next I

Now let’s revisit the BubbleSort() procedure, this time using an array. The sub
procedure BubbleSort2() works exactly like the BubbleSort() procedure, except
that the tests and swaps are performed on the values in the set after they have
been loaded into an array rather than just using the worksheet column.

Public Sub BubbleSort2()

Dim tempVar As Integer

Dim anotherIteration As Boolean

Dim I As Integer

Dim myArray(10) As Integer

After variable declarations, the values in column A of the worksheet are loaded
into the array with a simple For/Next loop.

For I = 1 To 10

myArray(I - 1) = Cells(I, “A”).Value

Next I

The For/Next loop nested in the Do-Loop is just as it was in the BubbleSort() pro-
cedure, except now the Cells property has been replaced with the array named
myArray. The looping variable in the For/Next loop now runs from 0 to 8 because
the lower bound for the array is 0 not 1.

Do

anotherIteration = False

For I = 0 To 8

If myArray(I) > myArray(I + 1) Then

When the first value is greater than the second, the values are swapped.

tempVar = myArray(I)

myArray(I) = myArray(I + 1)

myArray(I + 1) = tempVar

anotherIteration = True

End If

Next I

Loop While anotherIteration = True

103
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 103

Finally, the sorted values are copied to column B in the worksheet.

For I = 1 To 10

Cells(I, “B”).Value = myArray(I - 1)

Next I

End Sub

Multi-Dimensional Arrays

If one-dimensional arrays are analogous to a single column in a spreadsheet,
then two-dimensional arrays are analogous to multiple columns in a spread-
sheet. Three-dimensional arrays are analogous to using multiple worksheets, and
higher dimensions than three are a bit difficult to imagine but nevertheless are
available. You can declare multi-dimensional arrays in VBA with up to 60 dimen-
sions. Unless you’re comfortable imagining multi-dimensional spaces greater
than dimension three, I suggest keeping the number of dimensions in an array
to three or less.

Dim myArray(10, 2) As Integer

The above declaration creates a two-dimensional integer array with 11 rows and
three columns (remember the lower-bound is 0). Access the individual elements
of the array using the row and column indices.

myArray(5, 1) = Cells(6, “B”).Value

This example assigns the value of the spreadsheet cell B6 to the sixth row and sec-
ond column in the array myArray.

As with one-dimensional arrays, multi-dimensional arrays are typically accessed
within loops; however, we need to use nested loops in order to access both indices
in a multi-dimensional array.

The sub procedure below transposes the values of a group of cells in a worksheet.
This sub procedure takes input from the first ten rows and three columns in a
worksheet and transposes the values to the first three rows and ten columns in the
same worksheet. See Figure 4.4 and Figure 4.5 for depictions of the initial spread-
sheet and the spreadsheet resulting from running the Transpose() sub procedure.

Public Sub Transpose()

Dim I As Integer

Dim J As Integer

Dim transArray(9, 2) As Integer

104
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 104

After variable declarations, the values in the spreadsheet are loaded into the two-
dimensional array named transArray.

A three-dimensional array is declared with three values within the parentheses
of its declaration (for example, Dim myArray(9, 2, 2)). You could use a
three-dimensional array to keep track of rows and columns from multiple work-
sheets, whereas a two-dimensional array would keep track of rows and columns
from a single worksheet.

As shown in previous examples, the Chr() function is used to convert an ASCII
value to its corresponding keyboard character to use as the column index in the
Cells property.

The looping variables in the nested For/Next loops are used to access the row and
column indices of the array transArray. The looping variables I and J are used as
the column and row indices, respectively, in both the array and worksheet.

For I = 1 To 3

For J = 1 To 10

transArray(J - 1, I - 1) = Cells(J, Chr(I + 64)).Value

Next J

Next I

105
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.4

An Excel
spreadsheet prior

to running the
Transpose()
sub procedure

FIGURE 4.5

An Excel
spreadsheet after

running the
Transpose()
sub procedure

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 105

The contents of the worksheet are cleared. The Range object will be covered in
detail in Chapter 5.

Range(“A1:C10”).ClearContents

To transpose the values, the looping variables I and J are now used to access the
opposite index (that is, I is used for the row index and J is used for the column
index) in the Cells property. However, the array transArray uses the indices as in
the previous For/Next loop. These nested For/Next loops effectively transpose the
values, as shown in Figure 4.5.

For I = 1 To 3

For J = 1 To 10

Cells(I, Chr(J + 64)).Value = transArray(J - 1, I - 1)

Next J

Next I

End Sub

Dynamic Arrays

The BubbleSort2() and Transpose() sub procedures used arrays with fixed lengths.
The number of values in fixed length arrays cannot be changed while the program
is running. This is fine as long as you know the required length of the array before
running the program. However, the use of dynamic arrays allows programmers to
create a more robust program. Wouldn’t the BubbleSort2() procedure be more
useful if it sorted data with any number of values rather than just ten values? A
similar question can be asked of the Transpose() procedure—wouldn’t it be more
useful if it worked with any size data set rather than just a set with ten rows and
three columns? If we do not want to limit the BubbleSort2() and Transpose() sub
procedures to constant-sized data sets, then we must use dynamic arrays.

The size of a dynamic array can be changed (increased or decreased) as necessary
while the program runs. To declare a dynamic array, use empty parentheses
instead of a value for the bound(s).

Dim myArray() As Integer

After the required length of the array has been determined the array is re-dimensioned
using the ReDim keyword.

ReDim can also be used as a declarative statement with arrays, but potential
conflicts may arise if there are variables of the same name within your project—
even if they are of different scope. Therefore, avoid using ReDim as a declarative
statement, but use it to resize previously declared arrays.

106
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 106

ReDim myArray(size)

The ReDim statement will re-initialize (erase) all elements of the array. If you need
to preserve the existing values then use the Preserve keyword.

ReDim Preserve myArray(size)

If the new size of the array is smaller than the original size, then the values of the
elements at the end of the array are lost. Normally, an array is re-dimensioned
with the Preserve keyword only when the new size is larger than the previous size
of the array. When resizing an array with the Preserve keyword, you can only
change the size of the last dimension; you cannot change the number of dimen-
sions, and you can only change the value of the upper bound. You’ll see an exam-
ple of using ReDim Preserve in the Math Game project at the end of the chapter.

The BubbleSort2() and Transpose() sub procedures are now rewritten using
dynamic arrays.

Public Sub DynamicBubble()

Dim tempVar As Integer

Dim anotherIteration As Boolean

Dim I As Integer

Dim arraySize As Integer

Dim myArray() As Integer

After the dynamic array is declared, you must determine the required size of the
array. A Do-Loop is used to iterate through the cells in column A of the worksheet
until an empty cell is found. By keeping track of the number of iterations with
the variable I, the number of values in the column—and hence the required size
of the array—is discovered. Then the array is re-dimensioned with the appropri-
ate variable and ReDim statement.

This is not the best method for learning how many values the user has entered
into column A of the worksheet, as the potential for error is high. For example,
any text entered into a cell will be counted as a value and the procedure will try
to use it as a number. This will eventually generate a type mismatch error. The
procedure also limits the sort to data entered into column A of the worksheet. In
the next two chapters I’ll discuss additional methods for allowing the user more
flexibility in terms of where the data can be input, and gathering user input such
that ambiguities in the data are minimized.

Do

arraySize = I

I = I + 1

107
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 107

Loop Until Cells(I, “A”).Value = “”

ReDim myArray(arraySize - 1)

The rest of the procedure is the same as the BubbleSort2() procedure except the
upper limit of all looping variables are set to the same value as the size of the array.

For I = 1 To arraySize

myArray(I - 1) = Cells(I, “A”).Value

Next I

Do

anotherIteration = False

For I = 0 To arraySize - 2

If myArray(I) > myArray(I + 1) Then

tempVar = myArray(I)

myArray(I) = myArray(I + 1)

myArray(I + 1) = tempVar

anotherIteration = True

End If

Next I

Loop While anotherIteration = True

‘

For I = 1 To arraySize

Cells(I, “B”).Value = myArray(I - 1)

Next I

End Sub

The Transpose() sub procedure is rewritten using a dynamic array that is re-
dimensioned with two dimensions. One dimension is for the number of rows in
the grid of values to be transposed and the other dimension is for the number of
columns.

Public Sub DynamicTranspose()

Dim I As Integer

Dim J As Integer

Dim transArray() As Integer

Dim numRows As Integer

Dim numColumns As Integer

Once again, Do-Loops are used to determine the number of rows and columns
holding values in the worksheet. The array transArray is then re-dimensioned to
the same number of rows and columns. Don’t forget that the lower bound on
each dimension is 0. The rest of the procedure is the same, with the exception of
the upper limit on the looping variables used in the For/Next loops.

108
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 108

TE
AM
FL
Y

Team-Fly®

Do

numRows = I

I = I + 1

Loop Until Cells(I, “A”).Value = “”

‘

I = 0

Do

numColumns = I

I = I + 1

Loop Until Cells(1, Chr(I + 64)).Value = “”

ReDim transArray(numRows - 1, numColumns - 1)

‘

For I = 1 To numColumns

For J = 1 To numRows

transArray(J - 1, I - 1) = Cells(J, Chr(I + 64)).Value

Next J

Next I

‘

Range(“A1:C10”).ClearContents

‘

For I = 1 To numColumns

For J = 1 To numRows

Cells(I, Chr(J + 64)).Value = transArray(J - 1, I - 1)

Next J

Next I

End Sub

Programming Formulas
into Worksheet Cells

If you’re going to be an Excel VBA programmer, then it is inevitable that you will
have to create programs that enter formulas into worksheet cells. Thankfully, it
is a pretty simple thing to do; however, you must decide on the reference style
you wish to use—A1 type or R1C1 type.

A1 Style References

The A1 style uses the column and row headings (letters and numbers, respec-
tively) as indices to reference a particular worksheet cell (for example, A1, B5,
C2). Dollar signs in front of an index denote an absolute reference, and the

109
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 109

lack of a dollar sign on an index denotes a relative reference. The A1 style refer-
ence is the preferred style of most Excel users.

Creating a formula using VBA is easy. Instead of using the Value property of the
range returned by the Cells property, you use the Formula property and assign a
string value. The string should be in the form of an Excel formula.

The following example inserts a formula in cell A11 of a worksheet that calcu-
lates the sum of the values in the range A2:A10 using the Excel application’s SUM
function:

Dim formulaString As String

formulaString = “=SUM(A2:A10)”

Cells(11, “A”).Formula = formulaString

If you want to create a set of related formulas in a column, you can use a looping
structure to iterate through the cells that receive the formula. The following
example uses formulas inserted into the cells of column B in a worksheet to cal-
culate a running sum of column A:

Dim formulaString As String

Dim I As Integer

Cells(1, “B”).Value = Cells(1, “A”).Value

For I = 2 To 10

formulaString = “=A” & Trim(Str(I)) & “+B” & Trim(Str(I - 1))

Cells(I, “B”).Formula = formulaString

Next I

Looping through the cells is not the most efficient method available in VBA for
inserting formulas. Using loops to insert formulas can slow your program down
considerably, especially if it is running on an older machine with a relatively
slow processor. You would not enter individual formulas in the Excel application
when it is possible to copy and paste, so why do it with your VBA code? Instead,
you can use Copy and Paste or AutoFill functions that run much faster.

Dim formulaString As String

Dim I As Integer

Cells(1, “B”).Value = Cells(1, “A”).Value

formulaString = “=A2+B1”

Cells(2, “B”).Formula = formulaString

To use the Copy function and Paste method, first insert the formula in the origi-
nal cell as before, execute the Copy function of the Cells property, select the
desired range, and paste the formula.

110
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 110

Cells(2, “B”).Copy

Range(“B2:B10”).Select

ActiveSheet.Paste

A method is yet another type of procedure that performs a specific action on a
program component or object. The Paste method performs its action on an
Excel worksheet by pasting the contents of the clipboard onto the worksheet.

Or, use the AutoFill function by specifying the destination range. The term Des-
tination is a named argument predefined for the AutoFill function in VBA.
Named arguments allow the programmer to pass values to a function without
having to worry about the order of the arguments or how many commas must be
included for optional arguments that are not used. Use the named argument
operator (:=) to assign the value to the name.

Cells(2, “B”).AutoFill Destination:=Range(“B2:B10”)

Or, if you prefer, you can still pass the arguments in a list.

Cells(2, “B”).AutoFill Range(“B2:B10”)

The second line of code using the AutoFill function works because Destination
is the first argument/parameter that must be passed to the function. (As it turns
out, the Destination argument is the only required parameter of the AutoFill
function.) Using the named argument with the named argument operator makes
the code more readable, so the first example with the AutoFill function is prob-
ably better. You can use named arguments with any procedure in VBA.

Specifically, the Copy and AutoFill functions are associated with the range object
returned by the Cells property, and the Paste method is associated with the
worksheet object. I’ll discuss these objects in detail in the next chapter.

R1C1 Style References

The R1C1 style uses the letters R for row and C for column followed by numbers
to reference spreadsheet cells. For example, R[-1]C[2] is a relative reference to the
cell one row lower and two columns higher than the cell that contains this for-
mula. To denote an absolute reference, leave off the brackets (for example, R-1C2).
The R1C1 reference style can be turned on in the Excel application by clicking on
Tools, Options, General, and then clicking on R1C1 reference style as shown in
Figure 4.6.

You can use the R1C1 reference style in your VBA code any time. It can be a prefer-
able style to use when dealing with references to columns, as the indices use a

111
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 111

numerical value. The value of the string variable formulaString in the previous
example can be assigned as shown here:

formulaString = “=R[0]C[-1]+ R[-1]C[0]”

Cells(2, “B”).FormulaR1C1 = formulaString

Although the Formula property of the range object returned by the Cells property
would work just as well, I have used the FormulaR1C1 property for consistency.

Whether you use the A1 style or R1C1 reference style in your VBA code is of no
consequence to the user. The user will see whichever style they have set their
Excel application to use.

Chapter Project: Math Game

The Math Game is designed as an exercise in basic math skills suitable for an ele-
mentary school child. The game gives the user one minute to correctly answer as
many questions as possible with the selected operation (addition, subtraction,
multiplication, and division). After the one-minute interval, the user’s answers
are scored and the result displayed on the worksheet. The game uses several tech-
niques discussed in this chapter, including loops and arrays.

Project Statement

I wish to create a program in VBA that simulates a timed test of the user’s basic
math skills. The program should continually ask math questions until a one-
minute timer runs down to zero. The user’s answers should be graded and the
results displayed in the worksheet.

112
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.6

Selecting the R1C1
reference selection

in the Excel
application

The R1C1
reference style

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 112

Project Tools

The program interface will be through an Excel worksheet in the Excel applica-
tion. The formatting tools in Excel and the macro-recording tool can be used to
create and save most of the interface design. ActiveX controls (option buttons and
a command button) can be used to provide the user with a selection of mathe-
matical operations to be tested on, and an easy way to start the program. The pro-
gram can use several sub procedures, looping code structures, decision
structures, and arrays to handle the appearance of the interface, and data
input/output to the worksheet. The VBA OnTime method can be used to control a
timer that displays the number of seconds the user has left to answer questions
and stops execution of the program when time runs down to zero.

Recording Macros

Up to this point, all chapter projects have been preformatted with no specific
instructions on how it was done. You could certainly type code into a VBA mod-
ule that formats the worksheet as you want, but this is often a tedious exercise
and is not really necessary, as the worksheet is saved to a file. However, there will
be occasions when you need to create new worksheets and format them using
VBA programs. You will know how you want the worksheet formatted; you just
don’t want it done until the user has reached a certain stage in your program.
This is one example of when recording a macro is very handy. The basic steps for
recording a macro are as follows:

1. First turn on Excel’s macro recorder.

2. Format the worksheet as desired.

3. Stop the recorder.

4. Proceed to the VBA IDE and find the VBA code you just recorded.

5. Clean the recorded code for readability and add it to your program.

Another situation in which recording macros is useful is when you need to learn
how to use a particular VBA function. If you can’t find what you need in the
online help or get your code to run correctly, simply record a macro that uses the
desired function of the Excel application. Of course, you must know how to per-
form the same task within the Excel application that you are trying to add to
your VBA code. Once the task is recorded, return to the VBA IDE and examine the
recorded VBA code.

To begin recording a macro, in the Excel application select Tools, Macros, Record
New Macro, as shown in Figure 4.7. You can also click the Record Macro button
on the Visual Basic toolbar.

113
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 113

A dialog box will appear, as shown in Figure 4.8, asking you to input a name for
your macro, where you want to store the code (a new workbook, the current
workbook, or a personal macro workbook), and for a description of the macro.
You can enter in new values or use the default. I recommend at least changing
the name of the macro to something meaningful. Store the macro in whatever
workbook you want, but keep in mind the macro will be saved with the work-
book you choose, and will only be available when this workbook is open.

After selecting the name and location of the macro, a small toolbar with a small
square button will appear, as shown in Figure 4.9. After you are finished record-
ing the macro, click this button to stop the recorder. Until you click the stop but-
ton, every action you perform in the Excel application is recorded as VBA code.

After stopping the recorder, you can find the new VBA code stored in a module in
the current project. The module and code window that results from recording a
macro that formats cells A1, B1, and C1 for the Math Game is shown in Figure 4.10.

To record this macro, I followed the procedure above, and then formatted the
cells before stopping the recorder. Specific tasks carried out in the Excel applica-
tion while the recorder was on were: adding the text to the cells, and specifying

114
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.7

Starting the Macro
Recorder

The Record
Macro button

FIGURE 4.8

Naming and storing
the macro

FIGURE 4.9

The Stop Recording
button

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 114

font size, bold, centered text, word wrapped text, a border, row height, and col-
umn widths. The code, exactly as recorded, is as follows:

Sub MathGameFormat()

‘

‘ MathGameFormat Macro

‘ Macro recorded 11/30/2001 by Duane Birnbaum

‘

‘

Range(“A1”).Select

ActiveCell.FormulaR1C1 = “Question”

Range(“B1”).Select

ActiveCell.FormulaR1C1 = “Answer”

Range(“C1”).Select

ActiveCell.FormulaR1C1 = “Correct Answer”

Range(“A1:C1”).Select

Selection.Font.Bold = True

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlBottom

.WrapText = False

.Orientation = 0

115
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
sFIGURE 4.10

The VBA IDE
showing a

recorded macro

Module added by
macro recorder

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 115

.AddIndent = False

.ShrinkToFit = False

.MergeCells = False

End With

Selection.Borders(xlDiagonalDown).LineStyle = xlNone

Selection.Borders(xlDiagonalUp).LineStyle = xlNone

Selection.Borders(xlEdgeLeft).LineStyle = xlNone

Selection.Borders(xlEdgeTop).LineStyle = xlNone

With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic

End With

Selection.Borders(xlEdgeRight).LineStyle = xlNone

Selection.Borders(xlInsideVertical).LineStyle = xlNone

Rows(“1:1”).RowHeight = 31.5

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlBottom

.WrapText = True

.Orientation = 0

.AddIndent = False

.ShrinkToFit = False

.MergeCells = False

End With

With Selection.Font

.Name = “Arial”

.Size = 12

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ColorIndex = xlAutomatic

End With

Columns(“A:A”).ColumnWidth = 13.14

Columns(“B:B”).ColumnWidth = 12.14

Columns(“C:C”).ColumnWidth = 10.29

Range(“A2”).Select

End Sub

116
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 116

As you can see, recording just a few tasks will generate a considerable amount of
code. Because of the volume of code generated by the macro recorder, I do not
recommend recording many tasks at any one time. You want to be able to record
small pieces, then clean up the recorded code and proceed to the next task.

Much of the recorded code can be eliminated by deleting the setting of default
values and compressing multiple statements into one line of code. The macro I
just showed you can be quickly reduced to the following:

Sub MathGameFormat()

‘ MathGameFormat Macro

‘ Macro recorded 11/30/2001 by Duane Birnbaum

‘

Range(“A1”).FormulaR1C1 = “Question”

Range(“B1”).FormulaR1C1 = “Answer”

Range(“C1”).FormulaR1C1 = “Correct Answer”

Range(“A1:C1”).Select

With Selection

.Font.Bold = True

.Font.Name = “Arial”

.Font.Size = 12

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlBottom

.WrapText = True

End With

With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

End With

Rows(“1:1”).RowHeight = 31.5

Columns(“A:A”).ColumnWidth = 13.14

Columns(“B:B”).ColumnWidth = 12.14

Columns(“C:C”).ColumnWidth = 10.29

Range(“A2”).Select

End Sub

The macro is public by default and is contained inside a standard module.

The With/End With code structure is used to execute a series of statements on
the same Excel object. This removes the requirement of constantly qualifying the
object before setting one of its properties. The With/EndWith programming
structure will be covered in Chapter 5.

117
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 117

To run a recorded macro, in the Excel application select Tools, Macro, Macros, or
press Alt+F8. A dialog box displaying a list of available macros will appear, as
shown in Figure 4.11.

Select the macro you want and press the Run button to execute the code in the
macro.

Any public procedure (recorded or not) stored in a standard or component mod-
ule will appear in the list of available macros.

After recording the formatting of the worksheet cells A1 through C1, I record
another manageable amount of formatting, clean up the code, and paste it
within the previously recorded procedure. After all recording is completed and
the code is reduced, it can be copied to any sub procedure necessary to fulfill the
algorithm for the program. For example, the recorded code may be needed inside
the Click() event procedure of a Command Button control.

The macro-recording tool in Excel was really designed for non-programming
users as a method to extend the capabilities of their spreadsheets and eliminate
the tedium of repetitive tasks. As it turns out, the macro-recording tool can also
serve the VBA programmer as a method of eliminating tedious programming
tasks and learning how to carry out specific tasks in Excel with VBA code.

The Forms Toolbar

Along with the macro recorder, Excel comes with a few other controls similar to
ActiveX controls that are designed for use with recorded macros. The controls are
available from the Forms toolbar and can be accessed through the View menu in
the Excel Application (see Figure 4.12).

Most of these controls are the same as the controls on the Control toolbox and
their function is basically the same. The difference is in how the controls on the
Forms toolbar are used. These controls are designed for non-programmers to use

118
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.11

Selecting an
available macro

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 118

TE
AM
FL
Y

Team-Fly®

with recorded macros, so they don’t have code windows other than the module
containing the recorded macro. To attach a macro to a control from the Forms
toolbar, first draw the control on a worksheet and right click on the control to
view its menu, then select Assign Macro. The Assign Macro dialog box, shown in
Figure 4.13, will appear with a list of all available procedures (any procedure
declared with the Public keyword) currently open in Excel.

Select the procedure that you want executed and click the OK button. The macro
will be assigned to the major event of the control (typically a Click() event).

You can use these controls to initiate VBA procedures just as you would with con-
trols from the control toolbox. However, you sacrifice considerable flexibility with
respect to properties and events associated with the control. Nevertheless, if all
you need is code initiation, the Forms toolbar controls offer a simple set of tools.

Project Algorithm

The Math Game was constructed using the guidance of the following plan. You will
notice that the program does not actually follow this algorithm to the letter, nor
does the algorithm contain every detail in the program. As a program is written,

119
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.12

The Forms toolbar

FIGURE 4.13

The Assign Macro
dialog box

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 119

I will inevitably change a few small details or perhaps leave out pieces I originally
included in the algorithm. This is normal; however, any major changes to the algo-
rithm are included here to ensure I have a complete plan before I continue writing
the program. Figure 4.14 displays the layout of the Math Game worksheet.

Format the worksheet to display the following:

• A timer

• Two numbers and a mathematical operator for the user’s question

• Column labels for the question asked, the user’s answer, and the correct
answer

• ActiveX controls: A command button for starting the program and five
option buttons for choosing the mathematical operation.

The program should be constructed such that the user can enter answers quickly.
The best way to do this is through the keyboard. The numeric keypad and the enter
key should be all the user needs to use once the program begins. The program
should start with a click of a button that will trigger a programming sequence to:

1. Start a timer that will countdown from 60 seconds with an update every
second.

120
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.14

The Math Game
worksheet

Game results

Selection of the
mathematical

operation

The question The timer Starting the gameUser’s answer
entered here

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 120

2. Display a mathematical question consisting of two random numbers
between 1 and 10 and a mathematical operator selected by the user.

3. Force the user to enter the answer in only one particular worksheet cell.
Validate the user’s answer for a numerical value (optional).

4. As the user enters his/her answers, the program should store the results
(question and user’s answer) then display the next question.

5. When the timer runs down to 0, the user’s results should be graded and
displayed in the worksheet. Wrong answers can be formatted in a different
color (red).

The timer is handled best with the OnTime method. This function will call a sin-
gle procedure for repeated execution at a given timer interval. The most impor-
tant aspect of this function is that in between procedure calls, the system will
yield to other processes. Practically speaking, this means that while the program
is running, the user will still be able to enter answers into the worksheet. The
procedure called by the timer will check the state of the timer, and if the timer
is at zero, then the program will output the results and terminate the program.

The numbers for the questions will be integer values between 1 and 10, chosen
randomly with the Rnd function. The user will choose the operator using option
buttons, so the value property of the option buttons will have to be checked
when the program first starts. If the user selects the “any” operator, then the
operator will be chosen randomly. An integer variable will be used to keep track
of the operator (1=addition, 2=subtraction, 3=multiplication, and 4=division). If
division is chosen as the operation, then the random numbers will be selected
such that the correct answer is also an integer value.

Option Button controls are very much like Check Box controls except that the
user is only allowed one selection.

The Worksheet_SelectionChange() event procedure associated with the worksheet
will be used to control the program after it begins. The user will be forced to
enter the answer in one specific cell. When the user hits Enter to enter the
answer, the Worksheet_SelectionChange() event procedure will be triggered. Code
placed in this procedure will store the result and display the next question.

The program will use as many sub and function procedures as necessary to han-
dle the tasks listed above. Small details, such as formatting the output, enabling
and disabling controls, and anything else that comes up will be handled as they
are encountered while writing the program.

121
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 121

Table 4.3. lists the ActiveX controls used in the Math Game, as well as their prop-
erties as set at design time.

Adding the Code

The Math Game program uses a component module and a standard module. The
component module (named MathGameSheet) contains a majority of the code
including all event procedures associated with the ActiveX controls and the
worksheet. As the game begins with a click on the cmdBegin command button, we
will start with its Click() event procedure.

Several module level variables are declared, including three dynamic arrays for
storing the questions, operators, and the user’s answers. The variable opType will
tell the program what mathematical operation is currently being used in the

122
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

ActiveX Control Property Value

Command Button Name cmdBegin

Caption Begin

Option Button Name optAdd

Value True

Caption Add

Option Button Name optSubtract

Value False

Caption Subtract

Option Button Name optMultiply

Value False

Caption Multiply

Option Button Name optDivide

Value False

Caption Divide

Option Button Name optAny

Value False

Caption Any

TABLE 4.3 SELECTED PROPERTIES OF THE ACTIVEX
CONTROLS USED IN THE MATH GAME

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 122

question. The variables numQuestions, num1, and num2 store the number of ques-
tions asked, and the two values used in the question. These variables are declared
at module level because the program needs to access and/or manipulate them in
more than one procedure in this module.

Option Explicit

Dim mathQuestions() As Integer

Dim mathOperators() As String

Dim userAnswers() As Integer

Dim opType As Integer

Dim numQuestions As Integer

Dim num1 As Integer

Dim num2 As Integer

The Click() event procedure of the cmdBegin Command Button control serves as
the main procedure in the Math Game program. This procedure initializes a few
variables and gets the worksheet ready for the user before calling the procedure
that actually begins the game.

Private Sub cmdBegin_Click()

Dim numCells As Integer

numQuestions = 0

The three lines of code below represent small details and were actually added after
the program was written and working as desired. Excel’s COUNTA function is used to
return the number of cells in column A of the worksheet that contains some type
of value (text or numerical). The range of cells from A2 through the desired length
is then cleared. This removes the results output to the user after playing the game.

numCells = Application.WorksheetFunction.CountA(Range(“A:A”))

If numCells = 1 Then numCells = 2

Range(“A2:C” & (numCells)).ClearContents

The mathematical operator chosen by the user is determined by checking the
Value property of the Option Button controls on the worksheet. Only one option
button can be selected, so only one of these conditions will be true. An integer
value (1, 2, 3, or 4) is used to code the type of operator used in the question and
is stored in the variable opType.

Cells(8, “L”).Select

If optAdd.Value = True Then opType = 1

If optSubtract.Value = True Then opType = 2

If optMultiply.Value = True Then opType = 3

If optDivide.Value = True Then opType = 4

123
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 123

If the user has selected the Any Option button, then a call to the sub procedure
GetRandomOperator() will randomly choose one of the four mathematical operators.

If optAny.Value = True Then GetRandomOperator

Sending program execution to the DisableControls() sub procedure disables the
ActiveX controls while the program runs.

DisableControls

The GetRandomNumbers() sub procedure generates the numbers used for the ques-
tions. The two random integers generated are stored in the module level vari-
ables, num1 and num2 and copied to the appropriate worksheet cells.

GetRandomNumbers

Cells(8, “F”).Value = num1

Cells(8, “I”).Value = num2

The current date is stored in the public (global) variable curDate using VBA’s Now
function. This value will be used with the games timer. Finally the MathGame() sub
procedure is called to start the timer and begin the game.

curDate = Now

MathGame

End Sub

A standard module is used to hold the MathGame() sub procedure and one public
(global) variable, curDate, is declared in its general declarations section.

Option Explicit

Public curDate As Date

Public Sub MathGame()

Dim nextTime As Date

Dim numSeconds As Integer

Const TIMEALLOWED = 61

The integer variable numSeconds is used to hold the amount of time left in the game.
The length of the game is held in the constant TIMEALLOWED. The number of seconds
left in the game is calculated by the VBA function DateDiff() using the current
time and the time the program was initiated with the click of the cmdBegin com-
mand button. This is why the curDate variable is declared as public in a standard
module—to make it visible to both modules used in the program.

numSeconds = DateDiff(“s”, curDate, Now)

Cells(3, “I”).Value = TIMEALLOWED – numSeconds

124
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 124

The variable nextTime is used to store a date one second later than the current time.

nextTime = Now + TimeValue(“00:00:01”)

The most interesting statement in the procedure comes next. The OnTime method
that belongs to the Application object (more in Chapter 5) is used to repeatedly
call the MathGame() sub procedure. The OnTime method takes up to four parame-
ters for input, two of which are required. Because I only need to pass the OnTime
method three parameters, I am using named arguments.

Application.OnTime EarliestTime:=nextTime, Procedure:=”MathGame”,

Schedule:=True

The EarliestTime parameter represents the next time the system will call the pro-
cedure specified by the Procedure parameter, in this case the MathGame() procedure.
The EarliestTime and Procedure parameters are required. The other two parame-
ters, both of which are optional, are LatestTime and Schedule. The LatestTime para-
meter represents the latest time the procedure specified by the Procedure
parameter can be called; however, it is not required here. The Schedule parameter
is used to schedule a new call to the procedure specified by the Procedure parame-
ter. In this case, Schedule must be used and set to true in order to ensure that the
next call to the MathGame() procedure occurs. It is important to point out that in
between calls to the MathGame() procedure, the system is allowed to process other
events. Thus, the system is not locked up processing code as it would be if you used
a looping structure to handle the timer. This allows the user to enter answers into
the appropriate worksheet cell.

An If/Then decision structure is used to check the value of the timer. If the timer is
less than or equal to zero, then the OnTime method is used to disable the timer by
setting the Schedule parameter to False. Thus, the MathGame procedure will no longer
be called. Without this statement, the MathGame procedure will be called every sec-
ond and drastic action (Ctrl+Alt+Break) will have to be taken to stop the program.

If (TIMEALLOWED - numSeconds <= 0) Then

Application.OnTime nextTime, “MathGame”, , False

After the timer reaches zero, procedure calls are made to enable the ActiveX con-
trols, clear the values in the spreadsheet cells containing the question and
answer, and score the results of the game. Because the EnableControls, ClearBoard,
and ScoreAnswers sub procedures are contained in a component module, they can
only be accessed from a standard module by specifying the entire path. The path
to these procedures is through the component module name MathGameSheet. Fur-
thermore, the EnableControls, ClearBoard, and ScoreAnswers sub procedures must
be declared public or they will not be visible from the standard module.

125
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 125

MathGameSheet.EnableControls

MathGameSheet.ClearBoard

MathGameSheet.ScoreAnswers

End If

End Sub

The remaining procedures in the component module (MathGameSheet) are listed
below. The Click() event of the Option Button controls is used to set the value of
the opType variable and display the mathematical operator in the worksheet.

Private Sub optAdd_Click()

Cells(8, “H”).Value = “+”

opType = 1

End Sub

Private Sub optAny_Click()

Cells(8, “H”).Value = “”

End Sub

Private Sub optDivide_Click()

Cells(8, “H”).Value = “/”

opType = 4

End Sub

Private Sub optMultiply_Click()

Cells(8, “H”).Value = “x”

opType = 3

End Sub

Private Sub optSubtract_Click()

Cells(8, “H”).Value = “-”

opType = 2

End Sub

The Worksheet_Change() event procedure will trigger every time the user enters
an answer. The parameter passed to this procedure when an answer is entered in
the appropriate worksheet cell is the reference to cell L8.

Private Sub Worksheet_Change(ByVal Target As Range)

If the user has entered the answer in the correct cell, a series of statements are
executed. A modicum of input validation is included in the conditional for the
If/Then decision structure. If the user presses Enter without typing in an answer,
then no code inside the If/Then decision structure is executed. Thus, the game
does not display the next question and the user can reselect cell L8 and enter the
answer to the existing question.

If (Target.Address = “L8”) And (Cells(8, “L”).Value <> “”) Then

126
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 126

If the user does answer an question, then the numQuestions variable is incremented
by one, the StoreQuestions() sub procedure is called, and a new question is
obtained from calls to the GetRandomOperator() (if required) and GetRandomNumbers()
procedures and displayed.

numQuestions = numQuestions + 1

StoreQuestions

If optAny.Value = True Then GetRandomOperator

GetRandomNumbers

Cells(8, “F”).Value = num1

Cells(8, “I”).Value = num2

Cells(8, “L”).Select

Selection.Value = “”

End If

End Sub

The GetRandomNumbers() sub procedure generates two random integer values for the
game’s questions. If the mathematical operation is division, the code loops until
two values are found that result in a non-fractional answer. The VBA operator Mod
is used to test the two random numbers for a remainder of zero. This procedure is
called from the cmdBegin_Click() and the Worksheet_Change() event procedures.

Private Sub GetRandomNumbers()

Randomize

If opType = 4 Then

Do

num1 = Int(10 * Rnd) + 1

num2 = Int(10 * Rnd) + 1

Loop Until (num1 Mod num2 = 0)

Else

num1 = Int(10 * Rnd) + 1

num2 = Int(10 * Rnd) + 1

End If

End Sub

The sub procedure DisableControls() disables the ActiveX controls on the work-
sheet by setting their Value property to false. This procedure is called from the
cmdBegin_Click() event procedure.

Private Sub DisableControls()

cmdBegin.Enabled = False

optAdd.Enabled = False

optSubtract.Enabled = False

127
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 127

optDivide.Enabled = False

optMultiply.Enabled = False

optAny.Enabled = False

End Sub

The StoreQuestions() sub procedure is called from the Worksheet_Change() event
procedure, so the code within is executed every time the user enters an answer
to a question. The dynamic variable arrays declared at module level are re-dimen-
sioned to increase their size by one with each call to this procedure. The Preserve
keyword is used to ensure that previously stored values are not lost.

The two-dimensional array mathQuestions maintains the same number of dimen-
sions, and only the upper bound of the last dimension changes, as required when
using the Preserve keyword. Thus, the mathQuestions array can be thought of as
containing two rows (indexed by 0 and 1) and N columns where N is equal to the
number of questions asked during the game.

Private Sub StoreQuestions()

ReDim Preserve mathQuestions(1, numQuestions) As Integer

ReDim Preserve mathOperators(numQuestions) As String

ReDim Preserve userAnswers(numQuestions) As Integer

The first (cell F8) and second (cell I8) values for each question are stored in rows
0 and 1 of the mathQuestions array, respectively. The mathematical operator used
and the user’s answers are stored in the arrays mathOperators and userAnswers,
respectively. The index value in the arrays used to store the mathematical opera-
tors and the user’s answers is identical to the index value in the array used to
store the corresponding question. This is critical for outputting these values to
the correct worksheet cells later in the program.

mathQuestions(0, numQuestions - 1) = Cells(8, “F”).Value

mathQuestions(1, numQuestions - 1) = Cells(8, “I”).Value

mathOperators(numQuestions - 1) = Cells(8, “H”).Value

The user’s answer is passed to the Val() function before storing in the array. This
serves as more input validation. If the user enters a non-numerical string, then
the answer will usually be set to zero depending on the string, as discussed ear-
lier in this chapter.

userAnswers(numQuestions - 1) = Val(Cells(8, “L”).Value)

End Sub

The GetRandomOperator() sub procedure is called only if the user selects the Any
Option Button control. When the Any Option button is selected, the program will

128
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 128

TE
AM
FL
Y

Team-Fly®

randomly choose an operator with each question. The GetRandomOperator() sub
procedure uses the Rnd function to choose an integer value between 1 and 4. A
Select/Case decision structure is used to display the operator in the appropriate
cell on the worksheet. The operator is stored when the StoreQuestions() sub pro-
cedure is called.

Private Sub GetRandomOperator()

Randomize

opType = Int(4 * Rnd) + 1

Select Case opType

Case Is = 1

Cells(8, “H”).Value = “+”

Case Is = 2

Cells(8, “H”).Value = “-”

Case Is = 3

Cells(8, “H”).Value = “x”

Case Is = 4

Cells(8, “H”).Value = “/”

Case Else

Cells(8, “H”).Value = “+”

End Select

End Sub

The EnableControls() and ClearBoard() sub procedures are called at the end of
the game from the MathGame() procedure. They must be public or they will not be
visible from the standard module containing the Mathgame() procedure. Their
content is straightforward, as they are simply used to reset controls and cells on
the worksheet.

Public Sub EnableControls()

cmdBegin.Enabled = True

optAdd.Enabled = True

optSubtract.Enabled = True

optDivide.Enabled = True

optMultiply.Enabled = True

optAny.Enabled = True

End Sub

Public Sub ClearBoard()

Cells(8, “F”).Value = “”

Cells(8, “I”).Value = “”

Cells(8, “L”).Value = “”

End Sub

129
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 129

The ScoreAnswers() sub procedure called at the end of the game from the MathGame()
procedure reads the questions asked during the game from variable arrays and
then displays them on the worksheet. This procedure also checks the user’s
answers and outputs the score as a percentage of questions answered correctly.

Public Sub ScoreAnswers()

Dim I As Integer

Dim numWrong As Integer

A For/Next loop is used to iterate through the arrays holding the questions and
answers, because we know the number of questions that were asked. The lower
bound on the arrays are zero, so the looping variable ranges from zero to the
number of questions less one.

For I = 0 To numQuestions – 1

String concatenation is used to output the questions asked during the game to
column A on the worksheet. The user’s answers are output to column B on the
worksheet. Using the looping variable as the indices for the arrays guarantees
that the questions match their corresponding answer.

Cells(I + 2, “A”).Value = mathQuestions(0, I) & mathOperators(I) &

mathQuestions(1, I)

Cells(I + 2, “B”).Value = userAnswers(I)

To display the correct answer in column C of the worksheet, a formula string is
created and copied to the appropriate cell using the formula property of the cell
range. Since a × was used as the display for multiplication, an If/Then decision
structure is used to replace it with an * for those questions that used the multi-
plication operator.

If mathOperators(I) = “x” Then

Cells(I + 2, “C”).Formula = “=” & mathQuestions(0, I) & “*” &

mathQuestions(1, I)

Cells(I + 2, “B”).Font.Color = RGB(0, 0, 0)

Else

Cells(I + 2, “C”).Formula = “=” & mathQuestions(0, I) &

mathOperators(I) & mathQuestions(1, I)

Cells(I + 2, “B”).Font.Color = RGB(0, 0, 0)

End If

If the user entered a wrong answer, the answer is displayed in red and the inte-
ger variable numWrong is incremented by one.

130
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 130

If Cells(I + 2, “B”).Value <> Cells(I + 2, “C”).Value Then

Cells(I + 2, “B”).Font.Color = RGB(255, 0, 0)

numWrong = numWrong + 1

End If

Next I

Finally, the user’s score is calculated and output to the end of column B on the
worksheet as a formula.

Cells(I + 2, “A”).Value = “Score (%)”

Cells(I + 2, “B”).Font.Color = RGB(0, 0, 0)

Cells(I + 2, “B”).Formula = “=” & (numQuestions - numWrong) /

numQuestions & “*100”

End Sub

This concludes the Math Game program. I wrote the program following the algo-
rithm described earlier. I added small details usually related to formatting the
spreadsheet to the appropriate procedures after the program was working to sat-
isfaction. Although no procedure is included to process all of the worksheet for-
matting, one could easily be recorded. In fact, I recorded and added small pieces
of code for the Math Game program (and the previous chapter projects) to the
appropriate procedures.

I wrote the Math Game program using two modules, one component and one
standard. This adds complexity to the program but serves as a good example for
demonstrating interaction between variables and procedures in two separate
modules. The Math Game program could have easily been contained within the
MathGameSheet component module. This would have eliminated the need for
the public variable and some of the public procedures. Changing the Math Game
program such that it is contained entirely within a component module is left up
to you for an exercise.

Chapter Summary

You covered a significant number of topics concerning VBA programs in this
chapter. The looping code structures (Do-Loop and For/Next) and variable arrays
provide enormous power by allowing you write more efficient and significantly
shorter code.

You also examined a number of methods used for interaction with an Excel work-
sheet including input validation, entering formulas in spreadsheet cells, and
using the Worksheet_Change event procedures of a worksheet.

131
C

h
a

p
te

r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 131

The Math Game used all of these tools plus a special method (OnTime) of the appli-
cation object to repeatedly call a procedure at a specified time interval.

You also examined macro recorder and Forms toolbar controls.

The next chapter introduces the Excel object model concentrating on the objects
at the top of the hierarchy. You have seen many examples of Excel objects in the
first four chapters of this book. Now it is time to take an in depth look at these
objects, their properties, and their methods.

132
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Write a procedure that outputs a random number to the first 100 cells in

column A of an Excel worksheet.

2 Add a statement to the procedure from the previous question that inserts

a formula into cell A101 that calculates the sum of the first 100 cells. If you

can’t get it on your own, record a macro and examine the code.

3. Write a VBA procedure that uses a For/Next loop to store the contents

of the first 10 cells in row 1 of an Excel worksheet to a variable array.

4. Write a VBA procedure that uses nested For/Next loops to store the con-

tents of the range A1:E5 in an Excel worksheet to a two-dimensional array.

5. Write a VBA procedure that uses nested For/Next loops to store the

contents of the range A1:E5 in each of three Excel worksheets to a three-

dimensional array.

6. Change the procedures above using an input box to ask the user for the

number of rows and/or columns and/or worksheets in which to retrieve val-

ues for storage in the same arrays. Use Do-Loops and dynamic arrays. Add

validation to the input box.

7. Record a macro that formats a worksheet to look like the worksheet in the

Math Game, less the ActiveX controls.

8. Change the Math Game program such that it uses only one component

module. Hint: copy the MathGame() procedure and curDate variable to the

MathGameSheet module. In the OnTime method, you will have to specify the

entire path to the MathGame() procedure in the parameter list. Reduce the

scope of as many variables and procedures as possible.

04 XLVBA CH04.qxd 2/25/03 7:23 AM Page 132

T
he preceding chapters concentrated on fundamental programming con-

structs common to all languages. Now it is time to introduce some VBA- and

Excel-specific programming concepts and capabilities. You will be using

programming tools referred to as objects, specifically some of the objects available in

VBA and Excel.

In this chapter you will learn about:

• Objects

• VBA Collection Objects

• The Object Browser

• Application and Workbook Objects

• The Range object

• Working with objects

• Chapter project: Battlecell

Basic Excel
Objects

5
C H A P T E R

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 133

Project: Battlecell

The Battlecell program will familiarize you with many of Excel’s top level and
most common objects, as well as reinforce code and data structures previously
discussed. You will also become familiar with the Object Browser, in order to
access all of the objects in the available libraries, not just in the Excel library. The
Battlecell program relies heavily on Excel’s Application, Workbook, Worksheet,
and Range objects. The program is a computer simulation of the classic Battle-
ship game you may have played as a kid, and a natural choice for a spreadsheet
application. Figure 5.1 shows the Battlecell game board designed from an Excel
worksheet.

VBA and OOP

If VBA or Visual Basic is your first programming language, then chances are you
have not heard of object-oriented programming (OOP for short). Don’t worry if you
haven’t heard of it, because neither Visual Basic (version 6 or earlier) nor VBA qual-
ifies as an OOP language. There are some technicalities that disqualify VBA from
calling itself OOP, but VBA still shares many of the same concepts as genuine OOP
languages. Mainly, OOP languages share with VBA the existence of objects and
some of the tools used to manipulate these objects. These tools include properties,
events, and methods (other languages may call these tools something different,
but they are really the same thing).

134
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.1

The Battlecell
game sheet

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 134

You have already seen several VBA objects in action. For example, in Chapter 1 the
project code contained many references to Excel objects and some of their prop-
erties. Objects must be discussed in VBA at a relatively early stage. Objects show
up early, often, and everywhere in your VBA code. This is a good thing, because
your programs can’t really do much without them.

Objects Defined

There is no need to get too abstract here with the definition of an object. It really
is a pretty simple thing to understand. You can think of objects as separate com-
puter programs with specific (and often common) functions that are available for
repeated use in your programs. Objects are dynamic in that they can be easily
manipulated in code with the various parameters used to define them.

In one common analogy, objects are equated to nouns in the English language. A
programming object can be described with adjectives (properties), be capable of
performing different actions (methods), and be built out of other objects. As an
example, consider a bicycle. A bicycle can be described by its size, color, and type

135
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

IN THE REAL WORLD

Although C++ has been around for a few years, most object-oriented languages

are relatively new. Java is an object-oriented language that gained popularity

with the rise in popularity of the World Wide Web. Other languages, such as

Visual Basic (version 6.0 and earlier), VBA, and some Web-based languages (for

example, Javascript and Perl) are also fairly new but do not satisfy all the defi-

nitions required for the object-oriented label. However, all of these languages

use objects extensively and thus serve as a good introduction to object-based

programming, if they aren’t totally object-oriented.

Program objects, such as ActiveX controls in VBA, allow greater flexibility and

power in software development because they can be developed by one group

of programmers and used by other groups in virtually any application. It is this

ability to re-use program objects and the time savings it creates that make

objects so popular among programmers.

The requirements for a language to be designated as object-oriented are really

quite strict. The new version of Visual Basic (VB.net), and the new development

language C# satisfy object-orientation requirements. The popularity of object-

oriented languages is likely to continue and the migration of object-based lan-

guages to true object-oriented status is also probable (if they survive). However,

it appears that for the time being, VBA will remain object-based, and not object-

oriented.

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 135

(among other things). For example, it might be a 26” blue ten-speed. The color,
size, and type are all adjectives that describe the bicycle. Thus, they are all prop-
erties of the bicycle. A bicycle can also perform various actions; it can move
straight or turn when ridden. Moving and turning are actions that tell us what
tasks the bicycle can perform. Moving and turning are methods of the bicycle.
Finally, the bicycle is built out of other objects such as a frame, wheels, handle-
bars, and pedals. These objects, in turn, have their own properties and methods.
For example, a bicycle wheel is of a certain diameter, is built out of aluminum or
titanium alloys, and it turns or rolls. The diameter and type of material are prop-
erties of the wheel object, and to turn or roll would be two of its methods. So you
see, there is sort of a hierarchy to the objects in your bicycle and the bicycle
object itself sits at the top of the hierarchy.

I could take it further. For example, a wheel is built from a tire, rim, and spoke
objects. The tires are built from organic polymers, and so on, and so on. The
description continues until eventually you will get to the objects at the very bot-
tom of the hierarchy. These objects may have properties and methods but they
are not built out of any other objects. It may take you a while to get to this level
if you really think about your bicycle. Eventually you could break the bicycle
down to its subatomic components and then you would have to stop because you
have reached the limit of human knowledge. Fortunately, in any program the
object hierarchy does not extend that far and is well defined by the programmer.
In this case, you get help from Excel and VBA in defining the objects, but it is still
up to you to choose which objects you want or need to use in your program.

Now there is one more attribute of an object that has not yet been mentioned (at
least not here; it was discussed in Chapter 3). Consider what happens when a tire
on your bicycle goes flat, or when the rider pedals the bicycle, or when the rider
turns the handlebars on the bicycle. These are all events that occur when some
action is carried out. Don’t be confused with the method of the bicycle turning
and the event of the rider turning the handlebars. They are not the same—one
depends on the other. In this particular case, the bicycle turns when the rider
turns the handlebars. Events are actions triggered by an external stimulus of the
object. You write code using the turn_bicycle method when the rider triggers the
handlebar_turn event. The code that is executed (invoking the turn_bicycle
method) is a coded response to the user’s stimulus (handlebar_turn event).

Object events are very powerful programming tools, as they allow for a much
more interactive experience between the program and the user. Think about what
a program would be like without events. Once you started the program running,
you would not do anything else except maybe type in some information when
prompted by the program. That is, the programmer would completely dictate the

136
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 136

flow of the program. If you remember computers prior to GUI’s then you may
remember this kind of programming. You have already seen some of the events
associated with a couple of Excel’s objects in previous chapters. Now you should
have a little better understanding as to why events exist.

Now let’s consider some of the objects in Excel. If you are a regular user of Excel or
any spreadsheet program, then you are already familiar with many of its objects.
For example, there are workbook objects, worksheet objects, range objects, chart
objects, and many more. The rest of this chapter is devoted to showing you how to
use a few of Excel’s objects, and in particular, some of its top-level objects.

VBA Collection Objects

Collection objects in VBA are fairly straightforward—they are exactly what the
name implies: a group or collection of the same object types. Using the bicycle
example again, consider a collection of bicycles. The bicycle objects in your bicy-
cle collection can be different sizes, colors, and types, but they are all bicycles.

Collection objects allow you to work with objects as a group rather than just work-
ing with a single object. In VBA, the objects that have Collection objects (not all
do) are typically denoted with the plural form of the object word. For example,
any Workbook object belongs to a Workbooks Collection object. The Workbooks
Collection object contains all open Workbook objects. The Excel window shown in
Figure 5.2 contains three open Workbook objects (Book1, Book2, and Book3).

137
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.2

Excel Workbook
objects

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 137

To select a Workbook object from the Workbooks Collection object, the code would
look like this:

Workbooks(2).Activate

This line of code uses the Workbooks property of the Application object (more on
this later) to return a single Workbook object from the Workbooks Collection
object and then uses the Activate method of the Workbook object to select the
desired object.

The required syntax when addressing objects in VBA is object.property
or object.method. You may also specify more than one object to reach the
desired property or method. For example, ActiveSheet.Range(“A1”).
Font.Bold = True is of the form object.object.object.property
because ActiveSheet, Range(“A1”), and Font all represent objects. Bold
is a Boolean property of the Font object and its value is set to true. As you may
have guessed, this line of code turns on bold formatting in cell A1 of the current
worksheet.

So, from the collection of Workbook objects shown in Figure 5.2, which Work-
book object does the above line of code return? If you answered Book2, you’d be
wrong, although that is the intuitive answer. The number in parentheses refers
to a relative index number for each workbook as it was created (in this case,
Book1 was created first, Book2 second, and Book3 third). The confusing part is
that an index value of 1 is reserved for the currently selected Workbook object,
regardless of when that Workbook object was created. So to select Book2 you
would actually have to use an index value of 3 in the above line of code. An index
value of 2 would return Book1 and an index value of 1 or 4 would return Book3.

There will always be two choices of an index for the currently selected Workbook
object, the value 1 because it is reserved for the currently selected object, and the
value corresponding to its sequence in being created. The behavior of the Work-
books Collection object can be confusing, but with practice, patience, and above
all, testing, I’m sure you can figure it out.

To avoid confusion, you can select a workbook unambiguously— if you know the
name of the desired Workbook object—using the following line of code:

Workbooks(“Book2”).Activate

Here you simply include the name of the object as a string in place of the index
number. Obviously, this is much less confusing and makes your code easier to
read, so I recommend doing it this way whenever possible.

138
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 138

TE
AM
FL
Y

Team-Fly®

When you need to step through several objects in a collection, use a loop and a
looping variable to represent the index of the object to be returned.

For I = 1 To 3

If Workbooks(I).Saved = True Then Workbooks(I).Close

Next I

Other examples of Collection objects include Worksheets, Windows, and Charts.
For example, each of the Workbook objects in Figure 5.2 contains three Work-
sheet objects that belong to separate Worksheets Collection objects. There are
three Worksheets Collection objects in this example because they are lower in
the object hierarchy than the Workbook object.

The Object Browser

The VBA IDE includes a convenient and very useful tool for browsing through all
available objects for a project and viewing their properties, methods, and events. It
is called the Object Browser, and you’ll use it to view Excel’s object model and learn
about what objects are available for you to use in your programs. You can also view
all procedures and constants from your current project.

To open the Object Browser, select Tools, View, Object Browser, as shown in Figure
5.3, or simply hit F2. Figure 5.4 shows the Object Browser window.

To use the Object Browser, first select the library from which you need to view
the desired object, or select All Libraries (see Figure 5.5).

An object library is a collection of objects provided by a specific application. You
may notice libraries for Excel, Office, VBA, and VBAProject. You may see others as
well, but it is these specific libraries that are of the most interest to you now.

139
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.3

Selecting the
Object Browser

from the VBA IDE

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 139

As you might have guessed, the Excel library contains objects specific to Excel and
the Office library contains objects common to all MS Office applications (Word,
PowerPoint, Excel, etc.). The VBA library adds a few objects specific to the VBA pro-
gramming language, and the VBAProject library represents objects in the project
currently open in Excel (that is, a workbook). In this chapter, it is the Excel library
that is of the most interest to you because it’s the library that contains specific
objects that will allow you to interact with and extend Excel’s capabilities.

After selecting the Excel library you’ll see a list of all available objects within
Excel in the bottom left window of the Object Browser (refer to Figure 5.4 or 5.5).
The window is labeled Classes, but don’t let that confuse you. A class is just an
object definition. A class definition is used to create an instance of the object it
defines. This is all just technical jargon that you don’t need to worry about right
now—just remember that when you see the word class, you should immediately

140
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.4

The Object Browser

Object libraries

Object members
(properties,

methods, and
events)

Object definitions
(Classes)

FIGURE 5.5

Selecting an
object library

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 140

think “object.” Also, remember that the class/object list represents all objects
available for you to use in your program. After selecting an object from the list,
the available properties, methods, and events of the selected object will be dis-
played in the window on the bottom right side of the Object Browser (refer to Fig-
ure 5.4). This window is labeled Members, because these items belong to or are
members of the selected object. When you select an item in the Members list,
information about that member—the member type, required syntax, and data
type—will be displayed at the very bottom of the Object Browser. Once you
become more familiar with the Object Browser, and VBA in general, you should
find this information more helpful.

To learn more about a specific object or one of its members, simply select an
item in the Object Browser and press F1. The Help window will appear, display-
ing the result for the selected item in much more detail than what you see in the
Object Browser.

If you prefer a more graphical representation of the Excel object model, look for
the Object Model chart in the Help window under Microsoft Excel Objects. The
chart, shown in Figure 5.6, displays the object hierarchy and provides links to
documentation on the entire Excel object model.

Whatever tool you prefer (the Object Browser or Object Model chart), keep in
mind that there is a hierarchy of objects that must be followed. You should think

141
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.6

The Excel
object model

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 141

of the object hierarchy as a path to the object of interest much like a file path in
a computer’s operating system. It is a good idea to use these tools to set a specific
object property or invoke an object’s method when you’re having difficulty nav-
igating through the object hierarchy.

Consider a simple example. How do you insert the string “VBA is fun!” into cell
A4 of Sheet2 in Book2 from the project shown in Figure 5.2? From examples in pre-
vious chapters, you know that you can use the Cells property of the Range object.

Cells(4, “A”).Value = “VBA is fun!”

However, the line of code above will insert the string into the current or active
worksheet, and this may not be your target worksheet. To ensure the string finds
the correct target, first select the desired workbook.

Workbooks(“Book2”).Activate

To find the next object in the desired path to cell A4 of Sheet2 of Book2, look at the
Object Browser. Since the above line of code gets you to the Workbook object, start
by selecting the Excel object library and Workbook from the list of objects. Imme-
diately, the members of the Workbook object are displayed on the right. If you
scroll through this list you will eventually come to a property called Worksheets, as
shown in Figure 5.7.

To select Sheet2, use the following code.

Workbooks(“Book2”).Worksheets(“Sheet2”).Activate

The second part of this statement (Worksheets(“Sheet2”)) is really the same code as
written for selecting the Workbook object from the Workbooks Collection object.
The Worksheet object Sheet2 is selected from the Worksheets Collection object.

142
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.7

Viewing the
Worksheets
property of the

Workbook object

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 142

This code uses the Worksheets property of the Workbook object to return a Work-
sheet object from the Worksheets Collection object. Since the Worksheet object is
lower in the object hierarchy than the Workbook object, it follows it in the line of
code above. Finally, the Activate method of the Worksheet object selects Sheet2
within the Workbook Book2. That was a mouthful, but if you work through the
hierarchy slowly, and view each of these components through the Object Browser,
it will make sense.

To add the string “VBA is fun!” to cell A4, use the following code:

Workbooks(“Book2”).Sheets(“Sheet2”).Range(“A4”).Value = “VBA is fun!”

It is often easier to read code containing a long object path from right to left.
For example, the previous statement can be read as follows: Assign the string,
“VBA is fun!” to the value in range A4 of the sheet named Sheet2 located
within the workbook named Book2.

The Range property is found in the list of members for the Worksheet object, as
shown in Figure 5.8. Note that the Cells property could have also been used.

Workbooks(“Book2”).Sheets(“Sheet2”).Cells(4, “A”).Value = “VBA is fun!”

The Range property returns a Range object that represents one or more cells in a
continuous block on a worksheet. In this case, the Range property returns the
Range object that represents cell A4. Next, the Value property of the Range object
is used to set the contents of cell A4 to the desired string “VBA is fun!”, as shown
in Figure 5.9.

143
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.8

Viewing the Range
property of the

Worksheet object

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 143

You may be wondering if you really need to work your way through the entire
object hierarchy to set one property. The answer is yes, but only if each object ref-
erenced in the code needs to be identified out of a collection of objects. For exam-
ple, if there is only one Workbook object open, then

Sheets(“Sheet2”).Range(“A4”).Value = “VBA is fun!”

works just as well as the previous code. Actually, this code will execute regardless
of how many Workbook objects are open, but it will put the string in the cur-
rently selected, or active, workbook. Likewise,

Range(“A4”).Value = “VBA is fun!”

executes, but it will put the string in the active worksheet. Thus, each object
qualifier is necessary only as long as it is needed to identify one specific object
out of several possibilities.

Top-Level Excel Objects

I will start at the top of the hierarchy in the Excel object model and work my
way through the first few objects. There are too many objects in the model to
cover them all, but the goal of this chapter is to get you comfortable navigating
through the object model and learning how to use new objects on your own.

144
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.9

Inserting a string in
a worksheet cell

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 144

The Application Object

The Application object is the top-level object in Excel’s object model. It represents
the entirety of the Excel application (see Figure 5.6). As the top-level object it is
unique, and thus seldom needs to be addressed in code. However, there are a few
occasions when you must use the Application object’s qualifier in code. One exam-
ple is the OnTime method used in the Math Game program in Chapter 4. Other
examples where the Application object must be explicitly referenced in code
include the Width and Height properties used to set the size of the application win-
dow, and the DisplayFormulaBar property used to show or hide the formula bar.

Application.Width = 600

Application.Height = 450

Application.DisplayFormulaBar = True

For the most part, you need to use the Application object qualifier to set proper-
ties pertaining to the appearance of the Excel window, such as shown above, or
the overall behavior of Excel, as shown below.

Application.Calculation = xlManual

Application.EditDirectlyInCell = False

Application.DefaultFilePath = “C:\My Documents”

However, if you just need to set properties of lower-level objects, then the Appli-
cation object qualifier is not needed.

ActiveCell.Formula = “=SUM(A1:A10)”

The line of code above uses the ActiveCell property of the Application object to
return a Range object. The Range object returned by this line of code is the cur-
rently selected spreadsheet cell. The Formula property of the Range object is then
set with the given string. The formula is then entered into the cell and the result
calculated as normal by Excel. To view all the Application object’s properties,
methods, and events, select it from the Classes list in the Object Browser, as
shown in Figure 5.10.

The Workbook and Window Objects

You have already seen in action, in some of the examples in this chapter, the Work-
books and Worksheets Collection objects, as well as the Workbook and Worksheet
objects. The difference between Collection objects and regular objects was discussed
earlier. When working with these objects, keep in mind that the Workbook object
is higher in the hierarchy than the Worksheet object. If you are familiar with Excel,
this makes sense to you because a single workbook can hold multiple worksheets.

145
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 145

However, the Window object may be unfamiliar and/or a bit confusing. Window
objects refer to instances of windows within either the same workbook, or the
application. Within the Application object, the Windows Collection object con-
tains all Window objects currently opened; this includes all workbooks and copies
of any workbooks. The Window objects are indexed according to their layering.
For example, in Figure 5.2, you could retrieve Book2 with the following code:

Application.Windows(2).Activate

because Book2 is the center window in a total of three Window objects. After
Book2 is retrieved and thus brought to the top layer its index would change to 1
when using the Windows Collection object. This is different from accessing
Book2 using the Workbooks Collection object. As stated previously, Workbook
objects are indexed according to the order of their creation after the value of 1,
which is reserved for the selected, or top-level Workbook object.

You may be thinking that the Windows Collection object within the Application
object is essentially the same as the Workbooks Collection. This may or may not
be true depending whether or not the user creates a new window by selecting
New Window from the Window menu in the Excel application. This effectively
makes a copy of the currently selected workbook. You may also use the NewWindow
method of either the Window or Workbook object in your code to accomplish the
same task.

Application.Windows(1).NewWindow

146
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.10

The Application
object as viewed

through the Object
Browser

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 146

When a new window is created, the caption in the title bar from the original win-
dow is concatenated with a colon and an index number. For example, MyWork-
book.xls becomes MyWorkbook.xls:1, and MyWorkbook.xls:2 when a new
window is created (These captions can be changed in code by manipulating the
Caption property of the Window object). Do not confuse the creation of a new
window from the Window menu with that of a new workbook. New workbooks
are created when the user selects New from the File menu, or by using the Add
method of the Workbooks Collection object. Of course, creating a new workbook
also creates a new window, but the reverse is not true. If a new Window object is
created through the use of the Window menu in Excel (or NewWindow method in
VBA), then this window does not belong to the Workbooks Collection object and
thus cannot be accessed in code by using the following:

Application.Workbooks(“MyWorkbook.xls:2”).Activate

This code fails because “MyWorkbook.xls:2” does not belong to the Workbooks col-
lection but to the Windows collection of either the Application object or the
Workbook object named MyWorkbook.xls. It could be accessed with either of the
following lines of code:

Workbooks(“MyWorkbook.xls”).Windows(“MyWorkbook.xls:2”).Activate

Or

Application.Windows(“MyWorkbook.xls:2”).Activate

These examples and the above descriptions demonstrate that there may be more
than one path to retrieving an object of interest in your code, and that differ-
ences between some objects may be quite subtle. I recommend that you play with
these examples and create instances of new windows and new workbooks in your
code. Then access these objects through as many paths as you can think of. You
will find that it doesn’t take long to get comfortable working with the Work-
books collection, Windows collection, Workbook, and Window objects.

All properties, methods, and events for these objects can be viewed in the Object
Browser. Let’s take a closer look at a few of them via an example, starting with
the Workbooks Collection object, shown in Figure 5.4.

The ability of the properties and methods of the Workbooks Collection object are
straightforward. Add the following procedure to a standard module in a workbook.

Public Sub AddWorkbooks()

Dim I As Integer

For I = 1 To 3

Workbooks.Add

147
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 147

Next I

End Sub

If you execute this procedure by selecting AddWorkbooks from the Macro menu in
Excel, you will immediately see three new workbooks opened in Excel. To select a
specific workbook, insert the following line of code at the end of the AddWorkbooks()
sub procedure:

Workbooks(Workbooks.Count).Activate

This is another example of nesting, and it will activate the last workbook to be
opened in Excel. The statement Workbooks.Count returns the number of open
workbooks in Excel and is then used as the index to activate the last workbook
added. If you prefer, edit the above code to make it more readable:

Dim numWorkbooks as Integer

NumWorkbooks = Workbooks.Count

Workbooks(NumWorkbooks).Activate

Through the Object Browser, you will notice that the Workbooks Collection object
only has a few members. They are relatively straightforward to use, and you have
already seen a couple of them (the Add method and Count property). You may find
the Open and Close methods and Item property useful as well. Some of these mem-
bers will be addressed later, albeit with different objects. You will find that many of
the collection objects share the same properties and methods. This is not unusual,
but be aware that depending on the object you use, the parameters that are either
available or required for these members may vary. Figure 5.11 shows that the Work-
books Collection object and the Workbook object both have Close methods.

If you look at the bottom of the Object Browser windows displayed in Figure 5.11,
you will see that the Close method of the Workbooks Collection object does not
accept any parameters, but the Close method of the Workbook object can accept
up to three parameters, all of which are optional (denoted by the brackets).

Consider the following VBA procedure illustrating the use of the Close method of
the Workbook object. The code can be placed in a standard or component module.

Public Sub CloseFirstLast()

Workbooks(Workbooks.Count).Close (False)

Workbooks(1).Close (False)

End Sub

This procedure will close the first and last workbooks opened in Excel without
prompting the user to save changes. However, if this procedure is contained
somewhere in the component module of the last workbook to be opened, then

148
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 148

TE
AM
FL
Y

Team-Fly®

only the last workbook will be closed. This is because the module containing this
code will close before the last line (Workbooks(1).Close (False)) is executed. In
the example above, the Close method of the Workbook object is used, not the
Close method of the Workbooks Collection object. This must be the case because
an index value was specified, and therefore only the Workbook object designated
by an index of 1 is available. Because the Workbook object is used, optional argu-
ments can be used with the method. In this case, the prompt to the user for sav-
ing changes to the workbook is set to false (the default is true), so the workbook
closes immediately. If you want to close all workbooks simultaneously, then use
the Close method of the Workbooks Collection object.

Workbooks.Close

In this case, there are no optional arguments allowed, so the user will be prompted
to save the currently selected workbook. All open workbooks will be closed using
the line of code above. There is no way to close a single workbook using the Work-
books Collection object. To close just one workbook, you need to use the Close
method for a Workbook object.

Now consider an example that sizes and centers the application in the middle of
the user’s screen such that one-fourth of the screen on every side is unused by
Excel. In addition, the workbook is sized so that it just fits inside the available
space provided by the application window.

The following code was added to a workbook component module and saved as
Center.xls on this book’s CD-ROM:

Option Explicit

149
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.11

The Close
methods of the

Workbooks
Collection and

Workbook objects

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 149

Explicit variable declaration is turned on, as usual, in the general declarations sec-
tion of the code window. The code is contained within the Workbook_Open() event
procedure to ensure that the program is executed immediately after the work-
book is opened. You can access the component module for the workbook through
the ThisWorkbook selection in the Project Explorer, as shown in Figure 5.12.

The name of the module ThisWorkbook can be changed via the Name property in
the Properties window for the Workbook object.

Private Sub Workbook_Open()

Dim maxWidth As Integer

Dim maxHeight As Integer

Application.WindowState = xlMaximized

maxWidth = Application.Width

maxHeight = Application.Height

Call CenterApp(maxWidth, maxHeight)

Call CenterBook

End Sub

After a couple of variable declarations, maximize the application window (fill the
user’s screen) by using the WindowState property (xlMaximized is a constant defined
by the property) of the Application object. The application window is set to fill the

150
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.12

The ThisWorkbook
component module

The ThisWorkbook
Workbook Object

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 150

user’s screen so that its maximum size can be determined. The variables maxWidth
and maxHeight are used to hold the integer values that represent the maximized
width and height of the application window

Different users will have different monitor resolution settings, so to ensure con-
sistency from one machine to another you must first learn the dimensions of the
user’s screen. Most languages provide a Screen object from which to determine
these properties. VBA has no Screen object, therefore you have to be a bit less
elegant about getting the desired width and height.

The rest of the procedure contains two calls to sub procedures. The Call keyword
is used for calls to both procedures, however, it is only required when passing
parameters. The Call keyword is used with the CenterBook() procedure only for
consistency.

The first procedure called from the Workbook_Open() event procedure is to the
CenterApp() sub procedure. This procedure receives two parameters, maxWidth and
maxHeight. The function of the CenterApp() procedure is to center the application
window within the user’s screen, leaving one fourth of the screen (on all sides)
unoccupied by Excel.

Private Sub CenterApp(maxWidth As Integer, maxHeight As Integer)

Dim appLeft As Integer

Dim appTop As Integer

Dim appWidth As Integer

Dim appHeight As Integer

After variable declarations, the state of the application window is returned to
normal. This is the equivalent of the user clicking the middle window icon at the
top right corner of the workbook window. The application window must be
returned to a normal state because you cannot move a maximized window. Thus,
trying to set the Left property of the Application object in the subsequent state-
ment will cause an error and the program will crash.

Application.WindowState = xlNormal

After returning the window state to normal, the application window is resized
according to your specifications.

appLeft = maxWidth / 4

appTop = maxHeight / 4

appWidth = maxWidth / 2

appHeight = maxHeight / 2

Application.Left = appLeft

151
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 151

Application.Top = appTop

Application.Width = appWidth

Application.Height = appHeight

End Sub

Next, the Workbook_Open() event procedure calls the CenterBook() sub procedure
without passing parameters. The CenterBook() procedure is called for the pur-
pose of filling the workbook within the Excel application window.

Private Sub CenterBook()

Dim bookWidth As Integer

Dim bookHeight As Integer

After variable declarations, the UsableWidth and UsableHeight properties of the
Application object are used to retrieve the values for the width and height of the
workbook window.

bookWidth = Application.UsableWidth

bookHeight = Application.UsableHeight

The workbook window is set to a normal state just like the application window
so that it may be resized.

ActiveWindow.WindowState = xlNormal

Next, the Windows property of the Workbook object is used to return the top-level
window (Windows(1)). The size (Width and Height) properties of the window are set
to the usable width and height of the application window via the bookWidth and
bookHeight variables. Finally, the position (Left, Top) properties of the window are
set to the upper-left corner of the application window (0,0).

Workbooks(“Center.xls”).Windows(1).Width = bookWidth

Workbooks(“Center.xls”).Windows(1).Height = bookHeight

Workbooks(“Center.xls”).Windows(1).Left = 0

Workbooks(“Center.xls”).Windows(1).Top = 0

End Sub

It is not necessary to use Workbooks(“Center.xls”) in the code shown above. I did
this only to illustrate the path to the desired object. If the reference to the Work-
book Object Center.xls were to be omitted, then VBA would simply use the
default object path. The default object path is to the active window of the cur-
rent workbook. Since this code is run immediately after opening Center.xls, it is
the current workbook. An index of 1 is used to select the active or top-level win-
dow. As there is only one window in Center.xls, you don’t have to worry about get-
ting to the desired window. However, if you created multiple windows in the

152
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 152

Center.xls workbook, then you might want to use the Window object’s Caption
property instead of an index number.

The Worksheet Object

The Worksheet object falls just under the Workbook object in Excel’s object hier-
archy. To investigate some of the events of the Worksheet Object, the following
code has been added to the SelectionChange() event procedure of Sheet1 in the
Center.xls workbook.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Dim msgOutput As String

msgOutput = “The name of this worksheet is “ & Worlsheets(1).Name

MsgBox (msgOutput)

Worksheets(2).Select

End Sub

The SelectionChange() event procedure was first introduced in Chapter 2, and is
found in the component module of a worksheet. The SelectionChange() event
procedure is triggered whenever the user changes the current selection in the
worksheet. The Target parameter passed to the SelectionChange() event proce-
dure is of type Range and represents the range of cells selected by the user. I will
discuss the Range object shortly; for right now ignore it, because the current
example does not use the passed parameter.

The code in the SelectionChange() event procedure is straightforward. First, a
string variable is created and assigned a value (“The name of this worksheet is”)
that is then concatenated with the name of the worksheet obtained from the Name
property of the Worksheet object. The full object path is not used to return the
name of the worksheet, as this code will only be executed when the user changes
the selection in the first worksheet of the Worksheets Collection object (Sheet1).
Therefore, the object path travels through the current Workbook object. This is
why index numbers can be used with the Worksheets property of the Workbook
object without returning the wrong sheet. After displaying the concatenated
string in a message box, the Select method of the Worksheet object is used to
select the second worksheet in the Worksheets Collection object. (This will gener-
ate an error if only one worksheet exists in the collection.)

Next, code is added to the Worksheet_Activate() event procedure of Sheet2. The
Worksheet_Activate() event procedure is triggered when a worksheet is first
selected by the user or, in this case, by selecting the worksheet using program code
(Worksheets(2).Select). The code is essentially the same as the previous example.

153
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 153

Private Sub Worksheet_Activate()

Dim msgOutput As String

msgOutput = “This worksheet is “ & Workheets(2).Name

MsgBox (msgOutput)

End Sub

The Worksheet_Activate() event procedure is not triggered when a work-
book is first opened, so it is not a good place for initialization routines intended
to run as soon as a workbook is opened. These procedures should be placed in
the Workbook_Open() event procedure.

You may have noticed in the object browser an object called Sheets. The Sheets
Collection object is nearly identical to the Worksheets Collection object and the
two objects can often be used interchangeably (as is the case in the previous
two examples). The difference between these two objects is that the Sheets
Collection object will also contain any chart sheets open in the active work-
book. So if you expect chart sheets to be open in the workbook of interest, you
should access worksheets using the Sheets Collection object; otherwise, either
Collection object will suffice.

The Range Object

The Range object represents a group of one or more contiguous cells in an Excel
worksheet. The Range object is one level beneath the Worksheet object in Excel’s
object hierarchy, and is extremely useful, as it allows you to manipulate the prop-
erties of an individual cell or groups of cells in a worksheet. You will probably find
yourself using the Range object in every program you write using VBA for Excel.

Consider the following code examples that use properties of the Range object:

Range(“A1”).Value=”Column A”

Range(“A1:G1”).Columns.AutoFit

Range(“A1:C1”, “E1:F1”).Font.Bold = True

First, note that a long object path is omitted from the examples above. Thus,
these lines of code will operate on the currently selected worksheet. The first line
inserts the text “Column A” into cell A1 by setting its Value property. The Range
object was used to return a single cell (A1) in this example. You have already seen
several examples of the Value property in this book. Although the Value property
exists for several objects, it is the Range object for which it is most commonly
used. The second line of code above uses the AutoFit method of the Range object
to adjust the width of columns A through G such that the contents of row 1 will

154
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 154

just fit into their corresponding cells without overlapping into adjacent
columns. This is equivalent to the user selecting Format, Column, AutoFit Selec-
tion from the Excel application menu.

Entries in other rows that are longer than the entries in row 1 will still run into
the next column. To automatically adjust the width of these columns such that
the contents of every cell in the columns fit within cell boundaries, use the range
A:G instead of A1:G1. The third and last example demonstrates setting the Bold
property of the Font object to true for two distinct ranges in the active worksheet.
The two ranges are A1:C1 and E1:F1. You are allowed to return a maximum of two
ranges, so adding a third range to the arguments in the parentheses would gen-
erate a run-time error.

The examples above demonstrate just a couple of formatting methods and prop-
erties belonging to the Range object (AutoFit, Columns, and Font). If you are a reg-
ular user of Excel, then you have probably surmised that there are numerous
other properties and methods related to formatting spreadsheet cells. You can
either search the Object Browser or the online help for more examples on how to
use formatting options of interest. However, when you know what formatting
options you want to include in your VBA program, record a macro. It is a quick
and easy way to generate the code you need without having to search the docu-
mentation for descriptions of the desired objects, properties, and methods. After
you have recorded the macro in a separate module, you can clean up the recorded
code and then cut and paste into your program as needed.

You may have noticed that the range arguments used in the examples above (A1,
A1:G1, etc.) are of the same form used with cell references in the Excel applica-
tion. The identical syntax is highly convenient because of its familiarity.

Finally, it is time to take a closer look at the Cells property, specifically the Cells
property of the Application, Range, and Worksheet objects.

Using the Cells Property

The Cells property returns a Range object containing all (no indices used) or one
(row and column indices are specified) of the cells in the active worksheet. When
returning all of the cells in a worksheet you should only use the Cells property
with the Application and Worksheet objects, as it would be redundant, and thus
confusing, to use it with the Range object. For example,

Range(“A1:A10”).Cells

returns cells A1 through A10, thus making the use of the Cells property unnec-
essary.

155
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 155

The Cells property will fail when used with the Application object, unless the
active document is a worksheet.

To return a single cell from a Worksheet object you must specify an index. The
index can be a single value beginning with the upper-left most cell in the work-
sheet (for example, Cells(5) returns cell E1) or the index can contain a reference
to the row and column index (recommended), as shown below.

Cells(1, 4).Value=5

Cells(1, “D”).Value =5

This is the familiar notation used throughout this book. Both lines of code will
enter the value 5 into cell D1 of the active worksheet. You can either use numer-
ical or string values for the column reference. You should note that the column
reference comes second in both examples and is separated from the row refer-
ence by a comma. I recommend using the second example above, as there is no
ambiguity in the cell reference—though on occasion it is convenient to use a
numerical reference for the column index.

Now consider some examples using the Cells property of the Range object.

Range(“C5:E7”).Cells(2, 2).Value = 50

Range(“C5:E7”).Cells(2, “A”).Value = 50

The above two lines of code may confuse you, because they appear to be trying to
return two different ranges within the same line of code. That is not the case, but
you can use these examples to more carefully illustrate how the Cells property
works.

Before reading on, guess in what worksheet cell each of these lines places the
value 50. If you guessed cells B2 and A2 respectively, you’re wrong. Instead, the
value 50 is entered in cells D6 and A6, respectively, when using the above lines of
code. Why? It’s because the Cells property uses references relative to the selected
range. Without the reference to the Range object in each statement
(Range(“C5:E7”)), the current range is the entire worksheet, thus Cells(2,2)
returns the range B2. However, when the selected range is C5:E7, Cells(2,2) will
return the second row from this range (row 6) and the second column (column D).
Using a string in the Cells property to index the column forces the selection of
that column regardless of the range selected. The row index is still relative. There-
fore, the second example above returns the range A6.

156
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 156

Working with Objects

You have now seen numerous examples of objects and how to set their properties
and invoke their methods and events. But there are a couple of more tools that
can be of tremendous use when working with objects: the With/End With code
structure that, although never required, works well to simplify code, and the
Object data type, which allows the VBA programmer to reference existing objects
or even create new objects. The Object data type is not as easy to use as the
numerical and string data types you’re now familiar with, but it is an essential
tool for the creation of useful and powerful VBA programs.

The With/End With Structure

VBA includes a programming structure designed to reduce the number of object
qualifiers required in your code. Although the With/End With structure discussed
in this section is not required under any circumstances, its use is often recom-
mended because it makes your programs more readable. Also you will often see
the With/End With structure in recorded macros. Consider the programming pro-
ject from Chapter 1 as an example.

This is the Click() event procedure of a command button named cmdInsertText
placed on the worksheet. You may remember that this program takes the value
from the Text property of a Textbox control and inserts it into cell D1. After
inserting the text in the cell, several formatting tools are used to visually
enhance the text.

Private Sub cmdInsertText_Click()

Start at the beginning of the procedure, where the value of the Text property of
the Textbox control txtName is inserted into cell D1 using the Cells property of the
Worksheet object (not explicitly referenced, so the current worksheet is used).

Cells(1, “D”).Value = txtName.Text

The worksheet cell D1 is then selected with the Select method of the Range
object. The Select method applies to several objects, including the Worksheet
and Chart objects. You will notice that using the Select method with the Range
object will cause the selected range to be highlighted in the worksheet, just as if
the user used the mouse to make the selection.

Cells(1, “D”).Select

Immediately after you invoke the Select method, the With/End With structure
appears. The With statement requires an object qualifier to immediately follow.

157
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 157

In this case, the Selection property is used to return the selected object (a Range
object). The statement could have just as easily been written without the Select
method and Selection property and entered using the Cells property to return
the desired Range object (for example, With Cells(1, “D”)).

With Selection

Once inside the structure, any property of the object can be set without having to
qualify the object in each line of code. Subordinate objects and their properties
can also be accessed. Each line within the structure must begin with the dot oper-
ator followed by the property or object name, then the method or assignment.

.Font.Bold = True

.Font.Name = “Arial”

.Font.Size = 72

.Font.Color = RGB(0, 0, 255)

.Columns.AutoFit

.Interior.Color = RGB(0, 255, 255)

.Borders.Weight = xlThick

.Borders.Color = RGB(0, 0, 255)

After all desired properties and/or methods have been invoked for the given
object, the structure closes with End With.

End With

The Textbox control is activated (selected) before the procedure ends.

txtname.Activate

End Sub

The With/End With structure is straightforward and particularly useful when a
large number of properties or methods of one object are to be addressed sequen-
tially in a program.

The same procedure, written without the With/End With structure, follows:

Private Sub cmdInsertText_Click()

Cells(1, “D”).Value = txtName.Text

Cells(1, “D”).Select

Cells(1, “D”).Font.Bold = True

Cells(1, “D”).Font.Name = “Arial”

Cells(1, “D”).Font.Size = 72

Cells(1, “D”).Font.Color = RGB(0, 0, 255)

Cells(1, “D”).Columns.AutoFit

158
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 158

TE
AM
FL
Y

Team-Fly®

Cells(1, “D”).Interior.Color = RGB(0, 255, 255)

Cells(1, “D”).Borders.Weight = xlThick

Cells(1, “D”).Borders.Color = RGB(0, 0, 255)

txtname.Activate

End Sub

Clearly, the use of the With/End With code structure makes the procedure neater
and easier to read.

The Object Data Type

A chapter on Excel objects would not be complete without a discussion of the
Object data type. If you find multiple instances of the same object in your pro-
gram, then you can use an object variable to handle the reference rather than
constantly retyping the qualifiers. Also, variables can be assigned meaningful
names, making the program easier to interpret. Object variables are similar to
other VBA data types in that they must be declared in code. For example,

Dim myObject as Object

declares an object variable named myObject. However, assigning a value to an
object variable differs from assignments to more common data types. The Set
keyword must be used to assign an object reference to a variable.

Set myObject = Range(“A1:A15”)

This will assign the Range object representing cells A1 through A15 to the vari-
able myObject. Properties of the object can then be initialized in the usual way.

myObject.Font.Bold = True

This will set the values in cells A1 through A15 to be displayed in boldface type.
Declaring variables using the general Object data type is not recommended
because the object will not be bound to the variable until run-time. If VBA has
trouble resolving references to various properties and methods when checking
them at run-time, it can significantly slow down execution of a program. I rec-
ommend that you use object-specific data types whenever possible. Any object
type can be used—just consult the Object Browser for a list of available types.
Using the Range object, the above example can be rewritten thusly:

Dim myRange as Excel.Range

Set myRange=Range(“A1:A15”)

myRange.Font.Bold = True

You may also include the library (Excel) in your declaration to avoid any ambi-
guity. However, it is the object type (Range) that is important. Now the object will

159
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 159

be referenced at compile time and VBA will have no trouble working out refer-
ences to the properties and methods of the object, as the type of object and the
library to which it belongs have been explicitly declared. You will see more exam-
ples of object variable types in the next section, in subsequent chapters, and in
the Battlecell program.

For/Each and Looping through a Range

As stated at the beginning of this chapter, objects are often built from other
objects. For example, a Workbook object may contain several Worksheet objects,
which in turn contain multiple Range objects. It may be necessary, on occasion,
to select individual objects contained within other objects. For example, you may
want to access each individual Worksheet object in a Worksheets collection in
order to set certain properties. If you’re thinking loops then you are right on
track, but you’re not going to use any of the looping structures previously dis-
cussed. Instead, you’ll use a looping structure specifically designed to iterate
through collections. This is the For/Each loop, and its use is illustrated in the
example that follows.

In this example, the background of a group of cells is changed to all different col-
ors. To accomplish this, each cell is accessed individually as a Range object before
setting the Color property of the Interior object. The For/Each loop is used for this
purpose.

A few variable declarations are required to use with the For/Each loop. The object
variable myRange will represent a collection of cells, while the object variable
myCell will be used to represent each individual cell within myRange.

Dim myRange As Excel.Range

Dim myCell As Excel.Range

Dim I As Integer

The reference to the object variable myRange is set to cells A1 through A15.

Set myRange = Range(“A1:A15”)

The loop begins with the keywords For Each, followed by the variable that is to
represent the individual elements in the collection—myCell, in this example. The
keyword In is followed by the name of the collection—myRange, in this example.

For Each myCell In myRange

Inside the loop, properties and methods of the individual elements can be
addressed. In this case, the Color property of the Interior object is changed using
the QBColor() function. The QBColor() function accepts a value between 0 and 15

160
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 160

to return one of 16 standard color values. The variable I is used to change the
color returned by the QBColor() function with each iteration through the loop.
The variable I does not serve the function of the loop in any capacity whatsoever.
Instead, the variable I is used to ensure that a different value is passed to the
QBColor() function with each iteration through the loop. Once each statement
within the loop is executed, the Next keyword is used to continue the loop.

myCell.Interior.Color = QBColor(I)

I = I + 1

Next

When all elements of the collection have been accessed and each statement exe-
cuted, program execution resumes at the end of the loop as normal. The above
code was added to a standard module in a sub procedure named CellColors()
and executed. Figure 5.13 shows the result.

This a common technique for iterating through a group of spreadsheet cells. You
will see more examples of this technique in the Battlecell program.

Chapter Project: Battlecell

The Battlecell game is a computer simulation of the classic board game Battle-
ship. It is a natural choice for a game program using Excel because of the grid-
like layout used in the game.

Project Statement

I want to create a computerized version of Battleship. A single Excel worksheet
will serve as the game board. The game should begin with each player (the user

161
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.13

Using the
QBColor()
function in a

For/Each loop

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 161

and the computer) setting five ships of varying size on a 10 × 10 grid. Then the
players take turns “firing” at individual grid elements in hopes of striking an
area occupied by a ship. Different ships can take a different number of hits before
they are sunk. The game ends when one player manages to sink all of his or her
opponent’s ships.

Project Tools

A single worksheet in Excel can be formatted prior to any programming such that
its appearance simulates a Battlecell game board. If you want, formatting code
can be generated using the macro recorder. ActiveX controls (command buttons
and labels) can be used with the interface. The program will require the use of
event procedures belonging to the Workbook and Worksheet objects, as well as
additional sub and function procedures. I expect the program to require extensive
use of the Range object, various looping and decision code structures, and arrays.
The code should reside in two component modules (one workbook and one work-
sheet). You can also use Standard modules, but they may not be necessary.

Project Algorithm

The Battlecell game programming will follow these rules:

1. The game board will be pre-formatted on a single Excel Worksheet.

2. The worksheet will clearly define two 10 × 10 grids, one for the player to
place ships and one for the player to fire upon.

3. The worksheet will contain two Command Button controls for starting
and resetting the game and two Label controls for displaying messages
to the player.

4. The program will begin upon loading with a procedure that centers the
application window, fills the application window with the workbook,
and sets the display such that the entire game board is visible. The
Workbook_Open() event procedure and the sub procedures created earlier
in this chapter should work well for these tasks.

5. The worksheet will be protected to prevent the player from accidentally
changing its appearance. Properties of the Worksheet object can be used
to toggle the protection on and off when the game requires a change in
the appearance of the worksheet.

6. To start the game, the player clicks on a Command Button control. The click
event procedure of this control will contain code that initializes the neces-
sary variables and displays instructions for the player on how to begin.

162
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 162

7. A Label control is used to tell the player to select a pre-defined number
of cells that will simulate the placement of ships. With the placement of
each ship on the grid, the program calls a validation procedure to ensure
a legal selection has been made.

8. The validation procedures for the player’s ship placements will test the
selection for correct length, being within the proper grid or cell range,
being either a single row or single column (no diagonals), and for no
overlap with a previous selection.

9. The location of the player’s ships will be displayed in blue.

10. After the player finishes placing ships, the click of a Command Button
control will trigger the program to place the computer’s ships in the
appropriate grid following the same rules as stated above. The computer’s
ships must be marked without being visible to the player.

11. A message will be displayed via Label control to begin the game.

12. The player will begin by selecting a cell from the target grid. Validation
procedures will test the selection for being within the correct range,
correct length (one cell only), end of the game, and whether or not
the cell has been selected previously.

13. For the player, the color of each selected cell will change to blue for a miss
and red for a hit.

14. The computer’s turn will occur automatically after each turn of the
player’s following the same rules. For now the selection of the cell by
the computer will occur randomly within the proper grid or cell range.
Intelligence will be added later.

15. For the computer, the color of each selected cell will change to red for a
hit and green for a miss.

16. Label controls will be used to display messages for a hit or a miss and
when the game is over.

17. A Command Button control will be available to the player at all times for
resetting the game.

18. When a game ends the program will disable all functionality until the
player selects the reset button.

19. When the player closes the workbook, the worksheet should be initialized
to a startup appearance.

163
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 163

Adding the Code

The worksheet was formatted as shown in Figure 5.1. The formatting was
recorded and stored in a standard module with the rest of the Battlecell project.
The code from the recorded macro will not have to be executed unless the for-
matting on the worksheet is changed. The Name property of the ActiveX controls
will have to be changed to the original values in design time.

First handle centering the application window and displaying the workbook such
that the entire game board can be seen. As with Center.xls, the Workbook_Open()
event procedure is used to trigger the code that centers the application window.

Private Sub Workbook_Open()

Dim bookWidth As Integer

Dim bookHeight As Integer

Dim gameWidth As Integer

Dim gameHeight As Integer

Dim maxWidth As Integer

Dim maxHeight As Integer

Dim percentChangeW As Single

Dim percentChangeH As Single

The player’s screen width and height are obtained using the Width and Height
properties of the Application object after the Excel window has been maximized.

Application.WindowState = xlMaximized

maxWidth = Application.Width

maxHeight = Application.Height

The size of the application window is set to 600 × 450 points, which equates to
800 × 600 pixels. Program execution is then sent to the CenterApp() and CenterBook()
sub procedures.

Application.WindowState = xlNormal

Application.Width = 600

Application.Height = 450

bookWidth = Application.UsableWidth

bookHeight = Application.UsableHeight

Call CenterApp(maxWidth, maxHeight)

Call CenterBook(bookWidth, bookHeight)

The state of the current window is set to normal, and its Zoom property is set to
100%. This causes the worksheet to be displayed such that the game board is par-
tially obscured behind the application window, as shown in Figure 5.14.

164
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 164

ActiveWindow is a property of the Application object and returns a Window object.

ActiveWindow.WindowState = xlNormal

ActiveWindow.Zoom = 100

The dimensions of the game board are obtained from the Width and Height prop-
erties of the Range objects (returned by the Range property of the Application
object) that define the number of columns and rows used in the worksheet for
the game’s layout. To account for the width of the borders (title bar, scroll bars,
and row numbers) along the workbook window, the Range objects were defined
with a couple of extra columns and rows. As there is only one Worksheet object,
the path to these Range objects does not have to be specified. The Range objects
are obtained from the current or active worksheet, which must be the Battlecell
worksheet, as it has just been opened.

gameWidth = Range(“A1:AA1”).Width

gameHeight = Range(“A1:A18”).Height

The fraction that represents the difference between the size of the window and
the currently oversized game board is calculated for both dimensions. The larger
of these two values is used to decrease the Zoom property on the Window object
that is obtained using the ActiveWindow property of the Application object.

percentChangeW = 1 - bookWidth / gameWidth

percentChangeH = 1 - bookHeight / gameHeight

165
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.14

Battlecell
worksheet with the
zoom set at 100%

Window Zoom
property

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 165

If percentChangeH >= percentChangeW Then

ActiveWindow.Zoom = ActiveWindow.Zoom - percentChangeH *

ActiveWindow.Zoom

Else

ActiveWindow.Zoom = ActiveWindow.Zoom - percentChangeW *

ActiveWindow.Zoom

End If

The scroll bars are set such that row 1 is at the top of the window and column 1
(A) is at the left of the window (all the way to the top and left).

ActiveWindow.ScrollRow = 1

ActiveWindow.ScrollColumn = 1

End Sub

The CenterApp() and CenterBook() sub procedures are essentially the same as in
the Center.xls application. The application is centered in the player’s screen
because the width and height of the Application object is 600 × 450 points.

Private Sub CenterApp(maxWidth As Integer, maxHeight As Integer)

Dim appLeft As Integer

Dim appTop As Integer

appLeft = maxWidth / 2 - 300

appTop = maxHeight / 2 - 225

Application.Left = appLeft

Application.Top = appTop

End Sub

Figure 5.15 illustrates the result of setting some of the properties of the Applica-
tion object listed in this program.

You can use the the ActiveWindow property of the Application object throughout
these procedures without having to worry about the wrong object being
returned. This is because these procedures will only be executed when the Bat-
tlecell application is first opened. Thus, the ActiveWindow property will always
return the newly opened Battlecell.xls Window object.

Private Sub CenterBook(bookWidth As Integer, bookHeight As Integer)

ActiveWindow.WindowState = xlNormal

ActiveWindow.Width = bookWidth

ActiveWindow.Height = bookHeight

ActiveWindow.Left = 0

ActiveWindow.Top = 0

End Sub

166
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 166

You can use the full object path if you prefer. For example, Application.Windows
(“Battlecell.xls”).Top = 0 leaves no ambiguity as to the Window object that
will be altered.

The rest of the code is contained in the component module belonging to the Bat-
tlecell worksheet. Several module-level variables are declared in the general dec-
larations section of the module. The function of these variables will be discussed
as they are used in the program.

Option Explicit

Dim playerRange As Range

Dim targetRange As Range

Dim allowSelection As Boolean

Dim totalCells

Dim numCellsInShip As Integer

Dim shipType

Dim nextShip As Integer

Dim bombsAway As Boolean

Dim numPlayerHits As Integer

Dim numTargetHits As Integer

167
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

FIGURE 5.15

The player’s
computer screen

after opening
Battlecell.xls

Application.Top

Application.Left

Application.WindowState = xlNormal

Application.HeightApplication.Width

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 167

The Click() event procedure of a Command Button control is used to begin the
game. The Caption property of the control is initially set to “Start” but after the
player’s ships are placed, the Caption property is set to “Done.” If the game is just
starting, then code execution is sent to the BeginGame() sub procedure. The vari-
able numCellsInShip is used to keep track of the number of worksheet cells that
must be selected by the player for each ship placed.

Private Sub cmdPlaceShips_Click()

If cmdPlaceShips.Caption = “Start” Then

numCellsInShip = 5

BeginGame

After the player’s ships are placed, the same Command Button control is used to
initialize variables and send program execution to the next phase of the game.
First, the Command Button control is disabled and the Caption properties of the
Label controls are set to tell the player to begin firing at the computer’s ships.
The variable bombsAway is used to tell the program that the game is in the active
phase—when the player and computer are firing at each other’s ships. The deci-
sion structure ends with a call to the TargetShips() sub procedure that is used to
place the computer’s ships on the appropriate grid.

ElseIf cmdPlaceShips.Caption = “Done” Then

cmdPlaceShips.Enabled = False

lblDefense.Caption = “”

lblOffense.Caption = “You may begin.”

bombsAway = True

TargetShips

End If

End Sub

The BeginGame() sub procedure is used to initialize several variables for starting
the game. The shipType variable declared in the general declarations section of
the module as a variant is converted to an array using the Array() function and
initialized with five strings. These strings represent the type of ship that is to be
placed on the game board by the player. The Array() function is also used to ini-
tialize the totalCells variable with integer values that represent the number of
cells in each type of ship. It is a bit unusual to create variable arrays in this man-
ner. However, when the array is small and the values the array must hold are
unordered (in the sense that they cannot be easily initialized with a loop), then
the Array() function is a good choice.

Private Sub BeginGame()

shipType = Array(“Carrier”, “Destroyer”, “Battleship”, “Submarine”,

168
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 168

TE
AM
FL
Y

Team-Fly®

“Patrol Boat”)

totalCells = Array(5, 4, 3, 3, 2)

The Command Button control is disabled and its caption removed to prevent the
player from triggering the click event procedure during the wrong phase of the
game.

cmdPlaceShips.Enabled = False

cmdPlaceShips.Caption = “”

A message is displayed using the Caption property of a Label control. String con-
catenation is used to build a string out of the appropriate variables that tells the
player how many cells to select for placement of the first ship.

lblDefense.Caption = “Place the “ & shipType(0) & Chr(13) & “Choose “

& numCellsInShip & _

“ Contiguous Cells”

The variable allowSelection is used throughout the program to toggle player
interaction with the game board (worksheet) on and off.

allowSelection = True

numPlayerHits = 0

numTargetHits = 0

End Sub

The game now enters a phase in which the player must place his/her ships on the
game board. There are a total of five ships to be placed. The size of these ships
varies from five cells (simulating an aircraft carrier) to two cells (simulating a
patrol boat). Highlighting worksheet cells of the correct length within the Player
section of the game board places the ships. This will require input from the player
and, thus, validation sub procedures. The Worksheet_SelectionChange() event pro-
cedure is used to capture the player’s selection. The Worksheet_SelectionChange()
event procedure is triggered whenever the player selects a new range on the work-
sheet. Excel passes the range of cells selected by the player to this event procedure.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Dim inRange As Boolean

First, the value of the allowSelection variable is checked to see if the game is in a
phase where player interaction with the worksheet is turned on. If the value of
the allowSelection variable is false, then the program exits this procedure imme-
diately, otherwise program execution proceeds through the rest of the procedure.

If allowSelection = False Then Exit Sub

169
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 169

If the game is to the point where the player and computer are firing at each
other’s ships, then the bombsAway variable is true and the code inside this decision
structure is executed. The If/Then decision structure listed below tests a Boolean
variable (bombsAway), therefore the rest of the conditional expression (for exam-
ple, If bombsAway = True) can be omitted.

If bombsAway Then

The function procedure CheckTarget() is used to validate the player’s selection. If the
player’s selection is valid, then the CheckTarget() function procedure returns true
and the program calls two more sub procedures. The sub procedure HitOrMiss() will
check the player’s selection for a hit or miss on the computer’s ships. The sub proce-
dure ComputerFire() will simulate the computer’s counterattack.

inRange = CheckTarget(Target)

If Not inRange Then Exit Sub

Call HitOrMiss(Target)

ComputerFire

If the player and computer are not firing at each other, then the player is placing
ships on the game board. Since the requirements of the player’s selection differ,
a different validation procedure, CheckRange(), is used to test the selection. If the
selection is valid, then the sub procedure AssignShip() is called to change the
color of the selected cells, increment the necessary variables, and display the
message that tells the player to place the next ship on the board.

Else

inRange = CheckRange(Target)

If inRange Then

Call AssignShip(Target)

End If

End If

End Sub

The CheckRange() function procedure is used to validate the player’s selection for
placing a ship on the game board. The cell range representing the player’s selec-
tion is passed to the procedure as a range variable named userSelection. The selec-
tion must be tested for length, being within the correct range, being within one
row or one column, and to make sure there’s no overlap with a previous selection.

Private Function CheckRange(userSelection As Range) As Boolean

Dim col1 As String

170
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 170

Dim col2 As String

Dim row1 As Integer

Dim row2 As Integer

Dim c As Range

Checking for proper length is easy. The Count property of the Range object repre-
senting the player’s selection is compared to the value stored in the numCellsInShip
variable. If these two values are not equivalent, then the function procedure is
assigned the value false and the function is immediately exited.

If userSelection.Count = numCellsInShip Then

CheckRange = True

Else

MsgBox (“Please select “ & numCellsInShip & “ cells”)

CheckRange = False

Exit Function

End If

After the player’s selection passes the test for length it must be tested for being
within the proper range of cells on the game board. First the column and row
indices are extracted from the selected range using VBA string functions (Mid()
and Instr()) and the Address property of the Range object. The Address property
returns a string representation of the Range object (for example, “C4:E4”).

col1 = Mid(userSelection.Address, 2, 1)

col2 = Mid(userSelection.Address, InStr(1, userSelection.Address, “:”,

1) + 2, 1)

row1 = userSelection.Row

row2 = Val(Mid(userSelection.Address, InStr(4, userSelection.Address,

col2, 1) + 2, 2))

The values extracted above are tested to see if they fall between rows 2 and 11 and
between columns B and K. If the test fails, the function procedure is assigned the
value false and the function is immediately exited.

If ((row1 > 1) And (row2 < 12)) And ((col1 > “A”) And (col2 < “L”))

Then

CheckRange = True

Else

MsgBox (“Selection out of range”)

CheckRange = False

Exit Function

End If

171
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 171

Next, the selection is tested to make sure it falls within a single row or column.
This test really only applies to the placement of the destroyer (4 cells), as the test
for length will rule out any other combination (that is, you can’t select an odd
number of cells across more than one column or row). Again, if the test fails, the
function procedure is assigned the value false and the function is immediately
exited.

If (col1 <> col2) And (row1 <> row2) Then

MsgBox (“Selection must be within the same row or column”)

CheckRange = False

Exit Function

End If

Finally, the selection is tested to see if it overlaps a previous selection. To accom-
plish this task, a For/Each loop is used to compare the color of the cells in the
selected range to the value returned for the color blue. The range variable c is
used to represent each element in the range variable userSelection. Essentially,
the color of each individual cell in the selected range is tested, and if any of them
are blue then the function is assigned the value false. The Color property of the
Interior object subordinate to the Range object is used to return the long integer
used to represent color. This is compared to the long integer returned by VBA’s
RGB() function. The RGB() function receives three integer values between 0 and
255. The three parameters represent the red, green, and blue components of the
desired color. The larger the value of the parameter the larger the contribution
from that color to the final color returned by the function. The values 0, 0, and
255 are used in the RGB() function because these are the values used to set the
color in the AssignShip() sub procedure.

For Each c In userSelection

If c.Interior.Color = RGB(0, 0, 255) Then

MsgBox (“Selection cannot overlap another ship!”)

CheckRange = False

End If

Next

End Function

The sub procedure AssignShip() is called from the Worksheet_SelectionChange()
event procedure after the player’s selection has been validated. The range of cells
is passed to this procedure as a Range object and stored in the range variable
named Target.

Private Sub AssignShip(Target As Range)

172
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 172

The protection on the worksheet is turned off so that the color of the selected
range can be changed to blue. The RGB() function is used to select the color. The
color is changed by altering the Color property of the Interior object subordinate
to the Range object in the Excel object model. After altering the color, the work-
sheet protection is turned back on using the Protect method of the Worksheet
object. No arguments are passed to the Unprotect and Protect methods, because
the default behavior is all that is needed (that is, no password is required and the
contents of the worksheet will be protected).

ActiveSheet.Unprotect

Target.Interior.Color = RGB(0, 0, 255)

ActiveSheet.Protect

The module-level variable nextShip which is used to determine the type and
length of the ship to be placed on the game board, is incremented by one. When
the value of nextShip reaches 5 the player has placed all ships and you’re ready
to start the game.

nextShip = nextShip + 1

If nextShip = 5 Then

lblDefense.Caption = “All ships are Placed”

After all the player’s ships have been placed, the Command Button control used to
start the game is enabled and its Caption property set to “Done.” The allowSelection
variable is set to false to disable the code in the Worksheet_SelectionChange() event
procedure. This forces the player to click on a Command Button control to continue
program execution.

cmdPlaceShips.Enabled = True

cmdPlaceShips.Caption = “Done”

allowSelection = False

Else

If there are more ships to be placed, then the variable numCellsInShip is set to the
value stored in the variable array totalCells at index value nextShip. Thus, if the
previous ship required five cells, then the next ship requires four cells, followed
by three cells, and finally two cells. The length of the next ship to be placed is
then passed on to the player via the Caption property of a Label control.

numCellsInShip = totalCells(nextShip)

lblDefense.Caption = “Place the “ & shipType(nextShip) & Chr(13) &

“Choose “ & numCellsInShip & _

“ Contiguous Cells”

173
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 173

End If

End Sub

At this point in the program the game board appears, as shown in Figure 5.16.

After the player’s ships are placed, the Command Button control with its Caption
property set to “Done” must be selected by the player to continue the game. The
activated code is in the cmdPlaceShips_Click() event procedure listed previously.
The sub procedure called from this sequence of events is TargetShips(). The
TargetShips() sub procedure is used to randomly place the computer’s ships on
the game board within the target grid.

Private Sub TargetShips()

Dim randomCol As Integer

Dim randomRow As Integer

Dim randomRowOrCol As Integer

Dim rangeStr As String

Dim tempStr As String

Dim upperBoundCol As Integer

Dim lowerBoundCol As Integer

Dim upperBoundRow As Integer

Dim lowerBoundRow As Integer

Dim compSelection As Range

174
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.16

The Battlecell game
board after player

ship placement

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 174

The random number generator is initialized and the nextShip variable is set to 0
so it can be used to set the length of the computer’s ships.

Randomize

nextShip = 0

A Do-Loop is used to iterate through the code that places the computer’s ships on
the game board. A For/Next loop is not a good choice here because even though
the program must place exactly five ships on the game board, it may take more
than five iterations through the loop to place these ships.

Do

numCellsInShip = totalCells(nextShip)

Four variables are used to set the lower and upper bounds for ship placement.
The range of allowed rows is between row 2 and 7 if the ship to be placed is the
carrier (5 cells). The range of allowed columns is between column O and column
T for placement of the carrier. Since ships will be placed starting from the lower
bound to the upper bound, the upper bound in the cell range is dependent on
the number of cells in the ship.

upperBoundRow = 11 - numCellsInShip + 1

lowerBoundRow = 2

upperBoundCol = 24 - numCellsInShip + 1

lowerBoundCol = 15

Whether a ship is placed inside a column or row is chosen randomly along with
the row or column that will contain the computer’s ship. Since the Rnd function
returns a number between 0 and 1, the Int() function is used to convert the
result to an integer.

randomRowOrCol = Int(2 * Rnd)

The random numbers returned to represent the row or column fall between the
lower and upper bounds defined above.

randomRow = Int((upperBoundRow - lowerBoundRow + 1) * Rnd + lowerBoundRow)

randomCol = Int((upperBoundCol - lowerBoundCol + 1) * Rnd + lowerBoundCol)

Once the lower and upper bounds are determined, a string representing the
range of cells containing the computer’s ship is constructed. Concatenation and
several string functions are used to construct the strings. For example, if the ship
that requires five cells is to be placed in column 15 (“O”), and the lower bound on
the row is 2, then the resultant string stored in the variable rangeStr is “O2:O6.”

175
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 175

If randomRowOrCol = 1 Then

rangeStr = Chr(randomCol + 64) & Trim(Str(randomRow)) & “:” &

Chr(randomCol + 64) & _

Trim(Str(randomRow + numCellsInShip - 1))

Else

rangeStr = Chr(randomCol + 64) & Trim(Str(randomRow)) & “:” &

Chr(randomCol + 64 + numCellsInShip - 1) _

& Trim(Str(randomRow))

End If

The Range property of the Worksheet object is used to convert the string variable
rangeStr to a Range object and store it in the range variable compSelection.

Set compSelection = Range(rangeStr)

The range variable compSelection is passed to the validation function procedure
CheckRangeComp() to test for a previous selection. If the range passes validation,
then the sub procedure AssignShipComp() is called to set the ship on the game
board. If the range fails validation, then it will take another iteration through
the loop to place the ship.

If CheckRangeComp(compSelection) = True Then

Call AssignShipComp(compSelection)

The variable nextShip is incremented so that the next ship to be placed can be
selected for the next iteration through the Do-Loop.

nextShip = nextShip + 1

End If

Loop While (nextShip < 5)

End Sub

The function procedure CheckRangeComp() is used to test the computer-generated
range variable compSelection from the TargetShips() sub procedure for overlap
with a previous selection. Cells that hold a computer’s ship have a Value property
of “X” as set by the AssignShipComp() sub procedure. (The cells in the target grid
have been preformatted such that the background and foreground colors are
equivalent, thus the X is not visible to the player.)

It is possible for the player to cheat by highlighting all cells in the target range.
This will make the X visible for as long as the cells are highlighted. A better
choice of strings to use in place of X would be a space. However, this is hard
to illustrate in text, so stick with the X.

176
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 176

The CheckRangeComp() function procedure uses a simple For/Each loop to test each
element in the range variable compSelection for a Value property of “X”. If an “X”
is found within the selected range, then the function returns false and the com-
puter must select another location to place its ship.

Private Function CheckRangeComp(compSelection As Range) As Boolean

Dim c As Range

CheckRangeComp = True

For Each c In compSelection

If c.Value = “X” Then

CheckRangeComp = False

End If

Next

End Function

The AssignShipComp() sub procedure is used to set the Value property of each cell
in the range selected by the computer to “X”. The protection must be toggled off
before changing the Value property of the cells.

Private Sub AssignShipComp(compSelection As Range)

Dim c As Range

ActiveSheet.Unprotect

For Each c In compSelection

c.Value = “X”

Next

ActiveSheet.Protect

End Sub

After all ships are placed and the message to the player to begin the game is dis-
played, the game board appears as shown in Figure 5.17.

At this point, the player can begin the game by firing at the computer’s ships in
the target region of the game board. When the player makes a selection in the
target region, the Worksheet_SelectionChange() event procedure listed earlier is
triggered. Re-examination of the code in the Worksheet_SelectionChange() event
procedure will tell you that, at this phase of the program, execution proceeds to
the CheckTarget() function procedure. The range selected by the player is passed
to the function as a range variable that is stored in another range variable named
playerSelection. The CheckTarget() function procedure validates the player’s
selection for length (one cell), being within the correct range of cells, and equiv-
alence to a previous selection.

Private Function CheckTarget(playerSelection As Range) As Boolean

177
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 177

The variable c should be familiar by now. It will be used in a For/Each loop to iter-
ate through a range of cells. Using the Range property of the Worksheet object,
the module-level variable targetRange is set to the range of cells representing the
target grid that holds the computer’s ships.

Dim c As Range

Set targetRange = Range(“O2:X11”)

If the Count property of the Range object representing the player’s selection
returns a value greater than one, then an error message is displayed in a message
box and the function is exited.

If playerSelection.Count > 1 Then

MsgBox (“You can only fire at one cell!”)

CheckTarget = False

Exit Function

End If

A For/Each loop iterates through the range of cells representing the target grid
on the game board. First, the Address property of each element is checked for
equality with the Address property of the player’s selection. If the two strings are
equal, then the player’s selection is validated for proper range and the function
is assigned the value true. If the player selects a cell outside the required range,
then nothing happens and the function procedure returns its default value of
false and the player must make another selection.

178
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.17

The Battlecell game
board after all ships

are placed

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 178

TE
AM
FL
Y

Team-Fly®

For Each c In targetRange

If c.Address = playerSelection.Address Then

CheckTarget = True

If the player’s selection is within the required range, then the value returned by
the Color property of the Interior object of the selected cell is tested for equality
to the value returned by the RGB() function for the color red (used to denote a hit)
or blue (used to denote a miss). If the conditional evaluates as true, then the cell
was selected previously and the appropriate error message is sent to the player
via a message box.

If c.Interior.Color = RGB(0, 0, 255) Or c.Interior.Color =

RGB(255, 0, 0) Then

MsgBox (“You have already selected that cell!”)

CheckTarget = False

End If

End If

Next

End Function

If the player’s selection is valid, then the code in the Worksheet_Selection-
Change() event procedure next sends program execution to the HitOrMiss() sub
procedure. Again the player’s selection is passed in a range variable. As the name
indicates, the HitOrMiss() sub procedure tests the player’s selection for a hit or
miss on one of the computer’s ships.

Private Sub HitOrMiss(Target As Range)

Basically, if the cell selected by the player contains an X, then the player scores a
hit. The color of the cell is set to red, the result of the selection is displayed for
the player via the Caption property of a Label control, and the module-level vari-
able numTargetHits is incremented by one.

If Target.Value = “X” Then

ActiveSheet.Unprotect

Target.Interior.Color = RGB(255, 0, 0)

ActiveSheet.Protect

lblOffense.Caption = “HIT!”

lblDefense.Caption = “”

numTargetHits = numTargetHits + 1

The variable numTargetHits is tested to see if the player has sunk all the com-
puter’s ships (the total number of cells occupied by all five ships is 17). If all ships
have been sunk, then the game is over and the appropriate message is displayed.

179
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 179

The variables bombsAway and allowSelection are set to False to effectively turn off
the Worksheet_SelectionChange() event procedure and end the game.

If (numTargetHits = 17) Then

lblOffense.Caption = “All Ships Sunk! YOU WIN!”

bombsAway = False

allowSelection = False

End If

Exit Sub

End If

If the cell selected by the player does not contain an X, then the player is
informed of the miss and the color of the cell is changed to blue.

lblOffense.Caption = “You Missed!”

ActiveSheet.Unprotect

Target.Interior.Color = RGB(0, 0, 255)

ActiveSheet.Protect

End Sub

Immediately after the player’s selection is evaluated with the CheckTarget() and
HitOrMiss() procedures, the Worksheet_SelectionChange() event procedure sends
program execution to the ComputerFire() sub procedure. The ComputerFire() sub
procedure simulates the computer’s turn at firing upon the player’s ships.

Private Sub ComputerFire()

Dim colIndex As String

Dim rowIndex As String

Dim targetCell As String

Dim targetRange As Range

Dim tryAgain As Boolean

The computer will fire at the player’s ships randomly with no consideration of
previous hits and/or misses. This makes the Battlecell game pretty easy for the
player to win. In the next chapter, some intelligence will be added to the pro-
gram to make the game a bit more challenging. The code in this procedure runs
inside of a Do-Loop until a valid cell is randomly obtained.

Randomize

Do

First, a string is constructed representing a single cell within the desired range
and converted to a range variable. This is the same method used to randomly con-
struct range variables representing the location of the computer’s ships in the
TargetShips() sub procedure.

180
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 180

colIndex = Chr(Int(10 * Rnd + 2) + 64)

rowIndex = Trim(Str(Int(10 * Rnd + 2)))

targetCell = colIndex & rowIndex

Set targetRange = Range(targetCell)

The random selection must be tested to see if it has been selected previously. If the
selection was used previously, then the variable used to continue the Do-Loop is set
to true and it will require at least one more iteration through the Do-Loop to select
a cell.

If targetRange.Interior.Color = RGB(255, 0, 0) Or

targetRange.Interior.Color = RGB(0, 255, 0) Then

tryAgain = True

End If

If the color of the selected cell is blue, then it contains one of the player’s ships. A
message signifying the hit is displayed in a Label control, the cell color is changed
to red, and the module-level variable numPlayerHits is incremented by one.

If targetRange.Interior.Color = RGB(0, 0, 255) Then

lblDefense.Caption = “HIT!”

ActiveSheet.Unprotect

targetRange.Interior.Color = RGB(255, 0, 0)

ActiveSheet.Protect

numPlayerHits = numPlayerHits + 1

tryAgain = False

After the Do-Loop conditional variable tryAgain is set to false, the numPlayerHits
variable is tested to see if the game is over, this time with the computer winning.

If (numPlayerHits = 17) Then

lblDefense.Caption = “All Ships Sunk! COMPUTER WINS!”

allowSelection = False

bombsAway = False

Exit Sub

End If

The first part of the decision structure tested the selection for the color blue. The
next part of the decision structure tests if the selection is green or red. If the
selected cell is not green or red, then its color is changed to green, signifying a
miss by the computer. The Do-Loop conditional variable is set to false, and a mes-
sage is displayed in a Label control.

181
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 181

ElseIf targetRange.Interior.Color <> RGB(0, 255, 0) And _

targetRange.Interior.Color <> RGB(255, 0, 0) Then

ActiveSheet.Unprotect

targetRange.Interior.Color = RGB(0, 255, 0)

ActiveSheet.Protect

tryAgain = False

lblDefense.Caption = “A Miss!”

End If

Loop While (tryAgain = True)

End Sub

After a valid selection is made by the computer and the results displayed, it is
again the player’s turn and play proceeds until a winner is declared. Figure 5.18
shows the appearance of the game board after the player has won a game.

The player always has the option of restarting the game with a click on the Com-
mand Button control with the Caption property of “Reset”. This triggers the
Click() event procedure of the Command Button control that is listed below.

The cmdReset_Click() event procedure is used to re-initialize some of the vari-
ables described earlier. The procedure also calls the ClearBoard() sub procedure
that is used to reset the game board.

182
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.18

The Battlecell game
board after a win

by the player

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 182

Private Sub cmdReset_Click()

cmdPlaceShips.Caption = “Start”

cmdPlaceShips.Enabled = True

ClearBoard

allowSelection = False

bombsAway = False

End Sub

The sub procedure ClearBoard() resets the game board by removing the color from
both the target range and player range. Also cleared are the cells in the target
range containing an X that were used to set the location of the computer’s ships.

Public Sub ClearBoard()

Dim c As Range

Set playerRange = Range(“B2:K11”)

Set targetRange = Range(“O2:X11”)

ActiveSheet.Unprotect

playerRange.Interior.ColorIndex = xlNone

targetRange.Clear

The ColorIndex property of the Interior object is used to reset the color of the
cells. The ColorIndex property accepts integer values between 1 and 56 or two
constants (xlNone and xlAutomatic). The RGB() function could have been used with
the Color property instead of the ColorIndex property.

targetRange.Interior.ColorIndex = xlNone

Although pre-formatted this way, the color of the font is set to white to ensure
that any text entered in these cells remains invisible.

targetRange.Font.ColorIndex = 2

Finally, the Caption properties of the Label controls and a couple of module-level
variables are re-initialized.

lblOffense.Caption = “”

lblDefense.Caption = “”

ActiveSheet.Protect

numCellsInShip = 5

nextShip = 0

End Sub

The last procedure to be examined in the Battlecell game is contained back in the
component module representing the Workbook object. The Workbook_BeforeClose()

183
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 183

event procedure is used to trigger code that resets the game board before the work-
book is closed. This procedure was added just in case the player does not reset the
game board with the Command Button control before closing the workbook.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

The ClearBoard() procedure contained in the component module representing the
Worksheet object containing the game is called via its full path (Battlebook is the
Name property of the project, Battlesheet is the Name property of the worksheet).

Battlebook.Battlesheet.ClearBoard

To alter a property of an ActiveX control, the Object property of the OLEObjects
Collection object (discussed in Chapter 10), subordinate to the Worksheet object,
is used to return the ActiveX object.

ActiveSheet.OLEObjects(“cmdPlaceShips”).Object.Enabled = True

ActiveSheet.OLEObjects(“cmdPlaceShips”).Object.Caption = “Start”

The next line saves the workbook to prevent a prompt to the player asking whether
or not changes should be saved. This is a bit dangerous since it is possible for a
player to alter the workbook in such a way that the game won’t work if the changes
are saved. However, to do so the player would have to remove the protection from
the worksheet and/or edit the code for the program from the VBA IDE.

ActiveWorkbook.Save

End Sub

This concludes the Battlecell program. The program is not terribly long or even
that complex, but is starting to approach a level of programming that makes the
game fun even for adults. The intention of the program is to help you get com-
fortable using VBA objects and navigating through Excel’s object hierarchy. The
Range object is used extensively in the Battlecell program, and that will be typical
of the VBA programs you write. The use of Workbook and Worksheet object event
procedures is also prevalent in the Battlecell program. To take full advantage of the
power of VBA, you should get comfortable identifying and using these procedures.

Chapter Summary

This chapter represents a critical phase in your development as a VBA program-
mer. Understanding objects and their role in creating dynamic and powerful
applications is critical in any programming language including VBA.

In this chapter you learned how to use several of Excel’s top-level objects and how
to navigate through its object model. Specifically, you looked at the Application,

184
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 184

Workbook, Window, Worksheet, and Range objects in detail. Some of the event
procedures, methods, and properties of these objects were also introduced.

Next you learned about some of the tools available in VBA for working with
objects. This included the Object Browser for navigating through the object hier-
archy and getting fast help to an object of interest. The With/End With code struc-
ture, object data type, and For/Each loop were also introduced.

Finally, the Battlecell program illustrated a practical and fun programming
example that relied heavily on Excel’s top-level objects. As there is a tendency for
such things to occur, a few subordinate objects also appeared in the program.

185
C

h
a

p
t e

r
5
 B

a
s

ic
E
x

c
e
l

O
b

j e
c
ts

CHALLENGES

1. Write a VBA procedure that outputs a range after being selected by the user

(one statement will do it).

2. Write a VBA procedure that firsts asks the user to input some text and then

changes the caption of the current window to the text value input by the user.

3. Write a VBA procedure that adds three additional workbooks to the appli-

cation and ten additional worksheets to each workbook added. Hint: Use

object variables and nested For/Each loops.

4. Write a VBA procedure that deletes all but one worksheet in all workbooks

currently open in the Excel application. Again use nested For/Each loops. To

turn off prompts to the user, use the DisplayAlerts property of the Appli-

cation object.

5. Open a workbook with more than one worksheet. Write a procedure that

inserts a string in each cell in the range A1:E5 in every worksheet. Make the

string a concatenation of the worksheet name and cell address (for exam-

ple, Sheet1:A3).

6. Use the Worksheet_Change() event procedure to alter the properties of the

Font object (Bold, Size, Color, etc.) after the user enters text into a cell. Use

a With/End With code structure.

7. Create a spreadsheet that contains several names in multiple rows and

columns.

8. Write a VBA procedure that finds a specific name within a highlighted

range on the spreadsheet. Use the Find method of the Range object and

the Worksheet_SelectionChange() event procedure of the Worksheet

object. Refer to the Object Browser or online help for syntactic require-

ments. Then record a macro with a similar function and compare the

recorded procedure to your own.

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 185

05 XLVBA CH05.qxd 2/25/03 7:27 AM Page 186

This page intentionally left blank

T
he Battlecell program from Chapter 5 is a chal-

lenging and fun project for a beginning program-

mer. However, the game may not be much fun for

the player because it is rather plain and very easy to win.

This chapter will examine methods that make a program

more visually and intellectually stimulating by adding intel-

ligence and multimedia elements to the Battlecell program

from Chapter 5. Multimedia elements will include adding

animation and sound to a VBA program.

This chapter will cover

• Multimedia (animation and sound)

• Artificial intelligence

• Chapter project: Enhanced Battlecell

Enhancing
VBA Programs:

Adding
Multimedia and

Intelligence

6
C H A P T E R

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 187

Project: Enhanced Battlecell

The Battlecell program from Chapter 5 will be enhanced to add intelligence on
the computer’s side in an effort to make the game more challenging for the
player. The Battlecell program will also be made more aesthetically appealing
using animation and sound. Figure 6.1 shows an example of the enhanced Bat-
tlecell game in progress.

Adding Multimedia to a Program

Multimedia is the use of multiple forms of communication. In programming,
there are basically three methods for communicating with the player: text,
sound, and graphics. There are a number of choices available to the programmer
for delivering each form of communication, ranging from very simple methods
of displaying text (font type, size, and color) to more complex methods of pre-
senting audio and visual elements (hand-drawn animations, movies, interactive
graphics, and so on). This chapter will take a look at some relatively simple meth-
ods available in VBA for including animation and sound in a program.

Animation in VBA

Most people think of animation as the presentation of a sequence of images at a
rate fast enough that the elements within the image appear to be moving in a

188
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.1

The enhanced
Battlecell game

(in progress)

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 188

TE
AM
FL
Y

Team-Fly®

realistic fashion. You’ve probably seen one of those little books containing a
sequence of images that, when flipped through very quickly with a thumb, give
the illusion of movement. This is one form of animation and you’ll see examples
of this type later in the chapter. However, if you define animation as any “visual
dynamic,” then you have more choices available.

There are a number of simple techniques you can use in VBA and Excel to include
animation in a program. Some of these techniques are

• Changing cell formatting, such as color and borders.

• Animating text with a number of possible techniques.

• Altering the properties of ActiveX controls such that they move around
the screen.

• Displaying a sequence of images within a single Image control.

Regardless of the type, your animation will certainly involve the use of a timed
sequence of events. Typically, this means the program will have to access the sys-
tem clock. You may recall that the Math Game project from Chapter 3 used the
OnTime method of the Application object to repeatedly execute a specified proce-
dure at a set interval (one second). The basic syntax of the OnTime method follows:

Application.OnTime(EarliestTime, Procedure, LatestTime, Schedule)

The Math Game can be considered an example of animation, as it displays a visual
dynamic with the timer used to count down from 60 seconds. Although the OnTime
method of the Application object could be an excellent tool for creating anima-
tions in VBA, it is severely limited by the minimum time interval (one second) in
which it works. Unfortunately, the EarliestTime argument requires a specified

189
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

IN THE REAL WORLD

Several people are needed to build large software applications that use sophis-

ticated multimedia elements and intelligence algorithms. A team of profession-

als that typically includes software engineers, business managers, graphic

artists, and—of course, programmers—create these applications. The group of

people responsible for the creation of an application must follow rigid timelines,

making the planning stage of software development even more critical. Unfor-

tunately, the planning stage is often overlooked, resulting in missed deadlines

and lost jobs. You can’t make a deadline if you are following a plan that will ulti-

mately fail to deliver the desired product.

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 189

time in date format, and it is not possible to format the Date data type with frac-
tional values for the second. This limits the OnTime method to timers and clocks, or
other examples in which the visual dynamic (animation) in the program can be
relatively slow (that is, does not have to be updated more frequently than once per
second). Another programming example illustrating the use of the OnTime method
is included with the source code for this chapter (AnimationDemos.xls).

To create an interesting animation you must be able to access the system clock at
intervals smaller than one second. The only way to access the system clock using
tools provided within VBA is with the Timer function. The Timer function takes no
arguments and returns a value of type Single representing the number of sec-
onds passed since midnight.

On the Macintosh, the resolution of the Timer function is one second.

The following code example, when executed, will display in a message box the
number of seconds passed since midnight. It is important to note that the preci-
sion of the number returned by the Timer function is to two decimal places, as
shown in Figure 6.2.

Dim seconds As Single

seconds = Timer

MsgBox (seconds)

To use the Timer function with animation, create a procedure that delays pro-
gram execution by a specified interval of time.

Private Sub Delay(pauseTime As Single)

Dim begin As Single

begin = Timer

Do While Timer < (begin + pauseTime)

DoEvents

Loop

End Sub

190
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.2

Message box
displayed from the

code example
illustrating the use

of the Timer
function

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 190

This procedure accepts one parameter (pauseTime) that is used to set the length of the
delay in program execution when called. The delay is caused by the Do-Loop that will
execute as long as its condition is true. The condition Timer <(begin + pauseTime)
will only be true for the time increment specified by the variable pauseTime. The
value of pauseTime can be any number within the range of allowed values for the
Single data type. However, the variable pauseTime will typically be set to a value less
than one. Since the precision of the Timer function extends to two decimal places,
the pauseTime variable should not be set to a value less than 0.01.

The DoEvents function yields program execution to the operating system, thus
allowing other events to be processed. The DoEvents function is placed inside the
Do-Loop to prevent the loop from tying up the operating system while it executes.
Without DoEvents, the user will be unable to interact with your program while
code execution proceeds through the loop. This can have the dangerous effect of
locking up the operating system, forcing the user to either exit the application
in an undesirable way or even to reboot his or her machine.

Animation Using Cell Formatting

Let’s consider some examples using the Delay() sub procedure to animate vari-
ous elements of Excel. The following program animates the interior color of a
range of cells representing a framed area on the worksheet. The cells alternate
color from red to black in a continuous fashion. The workbook containing the
code is called AnimationDemos.xls. The worksheet containing the program is
called AnimateCells, and the code is contained in a component module of the
worksheet shown in Figure 6.3.

The source code for all the animation demos in this chapter can be found with
the AnimationDemos.xls file on the CD that comes with this book. Accompanying
image files are also included. If you copy the Excel file to your hard drive, then
you must copy the image files to preserve the path to these files. Alternatively,
you can open the Excel file directly from the CD and the image files will be
loaded as needed by the programs.

Notice that a scroll bar has been added to the worksheet shown in Figure 6.3. The
scroll bar is another ActiveX control available from the Control Toolbox, shown
again in Figure 6.4.

Table 6.1 summarizes the properties of the Scroll Bar control that are typically
changed at design time.

191
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 191

192
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.3

Using color to
animate a
worksheet

FIGURE 6.4

The Scroll Bar
control on the

Control Toolbox

The Scroll Bar
control

Property Function

Name Sets the name of the control for referencing in code

Min Sets the minimum value allowed for the Value property

Max Sets the maximum value allowed for the Value property

Value Holds the current value of the scroll bar

LargeChange Sets the increment the scroll box moves when the user clicks between the
box and the arrow

SmallChange Sets the increment the scroll box moves when the user clicks on the arrow

TABLE 6.1 SELECTED PROPERTIES OF

THE SCROLL BAR CONTROL

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 192

The AnimateCells program does not contain any unfamiliar code structures or
references to new objects other than the Scroll Bar control. The program con-
tains a total of five procedures, four of which are listed below; the fifth is the
Delay() procedure listed earlier in this chapter.

Two module-level variables are used to toggle the animation on and off and to set
the delay time passed to the Delay() procedure.

Option Explicit

Dim animationOn As Boolean

Dim cellDelay As Integer

The Click() event of the Command Button control named cmdAnimate (labeled Start),
and shown in Figure 6.3, is used to initiate the animation.

Private Sub cmdAnimate_Click()

The Value property of the Scroll Bar control named scrDelay is used to set the
delay time for the animation. The variable cellDelay will later be divided by 100
and passed to the Delay() sub procedure.

cellDelay = scrDelay.Value

The Command Button control cmdAnimate is used to both start and stop the ani-
mation; thus, a decision structure is used to dictate program action.

If cmdAnimate.Caption = “Start” Then

animationOn = True

cmdAnimate.Caption = “Stop”

If the caption displays Start, then the module-level Boolean variable animationOn
is set to true and the Caption property of the Command Button control is updated.
Next, the sub procedure AnimateCells() is called to begin the animation.

AnimateCells

Else

If the caption displays Stop, the looping variable animationOn is set to false, which
will serve to stop the animation in the AnimateCells() procedure. The Caption
property of the Command Button control is also updated.

animationOn = False

cmdAnimate.Caption = “Start”

End If

End Sub

193
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 193

The Change() event procedure of the Scroll Bar control named scrDelay is trig-
gered when the user moves the scroll box and changes its Value property. The
variable cellDelay is used to catch the user’s action.

Private Sub scrDelay_Change()

cellDelay = scrDelay.Value

End Sub

The AnimateCells() sub procedure contains the looping structure used to control
the animation.

Private Sub AnimateCells()

Dim frameRange As Range

Dim c As Range

Dim colorVal As Integer

Dim prevColor As Integer

Set frameRange = Range(“A1:H15”)

colorVal = 0

A Do-Loop is used to control the animation. The loop will continue as long as the
variable animationOn holds the value true.

Do

A For/Each loop is used to iterate through each cell contained within the range
of cells specified in the frameRange variable set earlier.

For Each c In frameRange

If the cell is in column A or H, or in row 1 or 15, then its interior color is set to
either black or red using the QBColor() function (0=black, 12=light red; see the
online help for remaining colors).

The QBColor() function is a holdover from the old QBasic programming lan-
guage. In those days, 16 colors was about all a programmer had to work with.
The QBColor() function is used here because I’m not concerned with the
number of colors available, and I want to illustrate that there are always several
functions available for selecting colors (remember RGB() and ColorIndex).

The variable prevColor is used to hold the current value of the color so that it can
be used to change the cell color with the next iteration through the For/Each loop.

If (c.Column = 1 Or c.Column = 8) Or (c.Row = 1 Or c.Row = 15) Then

c.Interior.Color = QBColor(colorVal)

prevColor = colorVal

194
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 194

After the cell color is changed, the Delay() sub procedure is called to pause code
execution within the For/Each loop. The length of the delay will vary between
approximately ten milliseconds (0.01 seconds) and one second, as the Min and Max
properties of the Scroll Bar control are set to 1 and 100, respectively.

Delay (cellDelay / 100)
End If
If prevColor = 0 Then colorVal = 12
If prevColor = 12 Then colorVal = 0

Next

The following If/Else structure ensures that the cell colors will alternate between
black and red with each iteration through the Do-Loop.

If colorVal = 12 Then
colorVal = 0

Else
colorVal = 12

End If
Loop While animationOn = True

End Sub

Finally, a call to the AnimateCells() sub procedure is placed in the SelectionChange()
event procedure of the Worksheet object in order to ensure that the animation con-
tinues when the user edits the worksheet. Without the Worksheet_SelectionChange()
procedure, code execution will be directed out of the AnimateCells() sub procedure
when the user edits the worksheet. Without a directive to send execution back to the
AnimateCells() sub procedure, the program effectively quits.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

If animationOn = True Then AnimateCells

End Sub

The program above may not be all that useful in your applications, but it does illus-
trate how you can use cell formatting to create an animation that users may find
appealing. You don’t have to limit your animations to the alteration of cell colors.
With the creative use of borders and text, you can create some visually appealing
animations. A very short and simple example of animated text (in the form of a
scrolling text box) is included on the CD-ROM in the source code with this chapter.

Animation Using Properties of Controls

The next example animates an image of a ball by moving an Image control around
a worksheet via the Left and Top properties of the control. Again, a component
module of a worksheet contains the code. Figure 6.5 displays the worksheet.

195
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 195

An Image control named imgBall is added to the worksheet with its AutoSize
property set to true and Picture property set to hold the image stored as Ball.gif.
The BackStyle and BorderStyle properties of the Image control are set to trans-
parent and none, respectively. A Command Button control name cmdAnimateBall
is used to start and stop the animation. The code is very similar to that of the Ani-
mateCells program, and it uses the same Delay() sub procedure. The most sig-
nificant difference from the AnimateCells program is in the sub procedure that
controls the movement of the Image control.

Option Explicit

Dim animationOn As Boolean

Private Sub cmdAnimateBall_Click()

If cmdAnimateBall.Caption = “Start” Then

animationOn = True

cmdAnimateBall.Caption = “Stop”

AnimateBall

Else

animationOn = False

cmdAnimateBall.Caption = “Start”

imgBall.Left = 0

imgBall.Top = 0

End If

End Sub

196
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.5

The Animated Ball
worksheet

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 196

The AnimateBall() sub procedure controls the animation by altering the Left and
Top properties of the Image control inside a Do-Loop. The variables xInc and yInc
are used to increment or decrement the value of the Top and Left properties of
the Image control. The upper left corner of the worksheet (or upper left corner
of cell A1) represents the position where Top=0 and Left =0.

Private Sub AnimateBall()

Dim yInc As Integer

Dim xInc As Integer

The values of xInc and yInc are set to give a reasonable illusion of a bouncing
ball. Increasing or decreasing the values of the xInc and yInc variables can adjust
the perceived speed of the ball. However, as the values of these variables increase,
the animation will degrade, because the user will begin to see the skip of the
Image control from one location to the next. Large increments of xInc and yInc
will give the animation a “choppy” look.

xInc = 3

yInc = 7

The ball is contained within the range A1:H14 by using the Height and Width prop-
erties of both the Range object and Image control. When the ball travels to the
right or bottom edge of the range A1:H14, the sign is reversed for the xInc and
yInc variables, respectively. Reversing the sign of these variables effectively sends
the ball in the opposite direction, with respect to the axis variable altered. For
example, yInc is positive if the ball is moving in a downward direction and neg-
ative if the ball is moving in an upward direction.

Do

If imgBall.Top > (Range(“A1:A14”).Height - imgBall.Height) Or

imgBall.Top < 1 Then yInc = -yInc

If imgBall.Left > (Range(“A1:H1”).Width - imgBall.Width) Or

imgBall.Left < 1 Then xInc = -xInc

imgBall.Left = imgBall.Left + xInc

imgBall.Top = imgBall.Top + yInc

The delay is set to 10 milliseconds with our familiar call to the Delay() sub proce-
dure. The speed of the ball is partially defined by the value passed to the Delay()
procedure. Typically, a variable would be used to hold the value of the delay time,
as it would allow the programmer to change the speed of the ball during the
course of program execution.

The delay time is currently set to the smallest possible value that can be used
with the Delay() procedure. To make the ball travel faster you can remove the call

197
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 197

to the Delay() procedure, but be sure to add DoEvents to prevent the creation of
an infinite loop. The speed of the ball without the call to the Delay() sub proce-
dure will vary from one computer to another, depending on the speed of the
processor. For a consistent animation, you must use a well-defined delay time in
your animation loop.

Delay (0.01)

Another click of the Command Button control changes the value of the animationOn
variable and program execution exits the loop.

Loop While animationOn = True

End Sub

Images such as Ball.gif (found on the CD) can be created with any image pro-
cessing software that can handle transparency. Without transparency, the back-
ground color of the image would have to match the background color of the
application in which the file is animated in order to create a realistic animation.

Reducing the size of the image also helps the appearance of the animation. The
human eye will more easily perceive jumping of the Image control from one
location to the next as the area of the Image control increases.

The previous two examples are simple and somewhat crude examples of anima-
tions in Excel. Animations such as these should only be executed for brief peri-
ods of time. These animations should not be run continuously because processor
control is being toggled between the program and the Excel application with
each call to the Delay() sub procedure. The toggling of processor control back
and forth between Excel and the program is noticeable to the user in a couple of
ways. First, the animation may appear a bit jittery when the Image control moves
position, and second, the mouse icon will transition between the pointer and the
hourglass at the same rate the Delay() sub procedure is being called. This makes
for a less elegant animation, and can be distracting to the user.

Animation Using Image Frames

The final example of animation is probably more familiar. It involves giving the
illusion of movement by showing a sequence of images in rapid succession. This is
the equivalent of thumbing through the pages of an animated book very quickly.

The first requirement in building an animation from a series of images is, of course,
the creation of the images. This can be easy or difficult depending on the software
and your artistic ability. Regardless of ability, you can at least use something like MS
Paint to create a few simple images for testing in a program. As this is not a book
about graphic arts, creating the images will be left up to you.

198
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 198

TE
AM
FL
Y

Team-Fly®

The next animation gives the illusion of a ball rolling toward you across a floor. The
worksheet is named AnimateBallonOnFloor in the AnimationDemos.xls workbook.
There are ten images in the sequence; they are shown in Figure 6.6.

The idea is to quickly display the sequence of images in an Image control to give
the illusion of a ball rolling across a floor. The techniques used to do this are not
difficult and involve little code.

Images can be optimized for animation by eliminating those sections of the
image that do not change from one frame to the next. This can significantly
reduce file size, saving system resources. Animated gifs commonly found on
Web pages use this technique.

The animation procedure is really quite simple. An image array is created to load
all images into the computer’s memory. The image data type is a specific form of
the object data type. After object variable declaration, each image to be stored in
the array must be assigned a reference to the variable array using the Set state-
ment. A For/Next loop is used to set the reference for each Image object and the
LoadPicture method is used to load all ten images into the array. From there it is
easy to animate the images using another For/Next loop and a call to the Delay()
sub procedure listed earlier.

Private Sub cmdAnimate_Click()

Dim I As Integer

Dim filePath As String

Dim myImages(9) As Image

For I = 0 To 9

Set myImages(I) = New Image

The Path property of the workbook object is used to return a string containing the
file path to the AnimationDemos.xls workbook. Therefore, the Ball_Animation
_Images folder containing the images of the ball must be in the same directory
as the workbook.

199
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

FIGURE 6.6

The sequence
of images used

to simulate a
rolling ball

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 199

filePath = ActiveWorkbook.Path & “\Ball_Animation_Images\ball” &

Trim(Str(I)) & “.bmp”

myImages(I).Picture = LoadPicture(filePath)

Next I

To animate the ball, copy the picture from the image array myImages to the Image
control named imgBall.

For I = 0 To 9

imgBall.Picture = myImages(I).Picture

Delay (0.1)

Next I

End Sub

This concludes the animation section of this chapter. However, this section cer-
tainly does not cover every tool available for animation in your VBA project. You
may be able to find third-party ActiveX controls, or create your own ActiveX con-
trols using Visual Basic (6.0 or earlier). Multimedia and animation controls do
exist, but they usually have very specific requirements for the media to be deliv-
ered (for example, Microsoft’s Animation control requires .avi files).

Sound in VBA

Earlier versions of Excel (Excel 95) offered the ability to add sound to a VBA pro-
gram via the SoundNote property of the Range object. However, support for play-
ing sound files has since been removed from VBA. This leaves two choices for
playing sounds in Excel applications with VBA: ActiveX controls and the Win-
dows API (application programming interface).

There are numerous ActiveX controls available for playing sound in VBA appli-
cations. However, many of these controls are either expensive or lack documen-
tation. Whether or not to use these controls depends on the sound requirements
of your project as well as financial resources and licensing. Even if an ActiveX
control is freely available, it may be difficult to get it to work in a VBA program
because of a lack of documentation and/or serious bugs in its source code.

As there are no ActiveX controls for playing sound that currently ship with VBA,
the Windows API will be used for adding sound to the VBA programs in this book.

The Windows API

The Windows Application Programming Interface (API) is the interface used to
programmatically control the Windows operating system. The Windows API is

200
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 200

comprised of numerous procedures that provide programmatic access to the fea-
tures of the Windows operating system (for example, windows functions, file
functions, and so on). The API procedures are stored in the system directory of
Windows as .dll (dynamic link library) files. There can be dozens of procedures
stored within a single .dll file. The API procedures are conceptually the same as
procedures used in any programming language, including VBA. However,
because the API procedures are written in C/C++, accessing them via the VBA pro-
gramming environment can be difficult and in some cases impossible.

Normally, the Windows API is left as an advanced programming topic for some
very good reasons. Using the Windows API can be dangerous, as it bypasses all of
the safety features built into VBA to prevent the misuse of system resources and
the subsequent system crashes they usually cause (but nothing that can’t be
fixed by turning your computer off and back on). However, the API can greatly
extend the ability and therefore, the power of a program.

Fortunately, tapping into the Windows API to play a .wav file (Wave Form Audio)
is about as easy as it gets. This section of the book will only show you how to play
.wav files using the Windows API and will not discuss the Windows API in any
detail. Instead, the Windows API is left as an advanced topic for you to consider
after becoming comfortable with VBA. The Windows API is the best (and proba-
bly easiest) tool available to all VBA programmers for adding sound to a program,
but it should not be used extensively by beginning programmers; therefore, I will
only show you how to use it to add sound to a VBA program.

To use a function from the Windows API in VBA, open a standard module and use
a Declare statement in the general declarations section to create a reference to
the external procedure (Windows API function). Note that that line continuation
character has been used in the declaration below due to its length.

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

In reality, this is a relatively short API call. This declaration creates a reference to
the sndPlaySoundA() function found in the file winmm.dll. It looks a lot like a
function call in VBA, but it is only a declaration; the call to the function will
come later. Capitalization is important and will not be corrected automatically if
typed incorrectly. Although the function can take more, only two parameters are
included in the declaration. The argument lpszSoundName is the named parame-
ter (type String) for the .wav file to be played, and the argument uFlags is the
named parameter (type Long) used to denote whether or not program execution
should proceed immediately or wait until after the file is done playing. The

201
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 201

sndPlaySoundA() function returns a value of type Long that may be discarded.
Hence, calls to the sndPlaySoundA() function from a VBA procedure can appear as
follows:

sndPlaySoundA “Path to .wav file”, 1

returnVal = sndPlaySoundA(“Path to .wav file”, 0)

Playing .Wav files via the Windows API

The Sounds worksheet included in the AnimationDemos.xls workbook uses the
Windows API to play .wav files simulating a cannon firing and an explosion. The
sound files are courtesy of http://www.a1freesoundeffects.com. Two Button con-
trols are used to play the files. The source code, which can be found in the Mod-
ules folder contained in the AnimationDemos.xls project file, is listed below.

Option Explicit

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

The PlayWav() sub procedure is used to call the Windows API function declared
above. The parameter, WavFile, is a string variable and holds the path to the
desired .wav file.

Public Sub PlayWav(WavFile As String)

The CanPlaySounds property of the Application object is used to test the user’s
computer for the ability to play sounds. If the user’s machine does not have the
ability to play sounds (for instance, it has no sound card), then the appropriate
message is displayed and the procedure is immediately exited.

If Application.CanPlaySounds = False Then

MsgBox “Sorry, sound is not supported on your system.”

Exit Sub

End If

The Dir() function is used to test the input path to the .wav file. If an empty
string is returned by the Dir() function, then the file was not found and the pro-
cedure is exited after displaying an error message.

If Dir(WavFile) = “” Then

MsgBox (“Wave file not found”)

Exit Sub

End If

202
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 202

Finally, the call to the Windows API function sndPlaySoundA is made, passing the
string containing the path to the .wav file, and the value 1 is passed to the uFlags
parameter so that program execution will not wait for the sound file to finish play-
ing (use 0 for uFlags to halt program execution until the sound file finishes playing).

sndPlaySoundA WavFile, 1

End Sub

Two public procedures linked to Button controls are used to initiate the playing
of each sound file. The files must be in a directory labeled Sounds, found within
the same directory as the AnimationDemos.xls workbook file. Each of these pro-
cedures simply calls the PlayWav() sub procedure listed above, while passing it
the string variable containing the path to the desired sound file.

Public Sub TestPlayWav1()

Dim filePath As String

filePath = ActiveWorkbook.Path

PlayWav (filePath & “\Sounds\cannon.wav”)

End Sub

Public Sub TestPlayWav2()

Dim filePath As String

filePath = ActiveWorkbook.Path

PlayWav (filePath & “\Sounds\explode.wav”)

End Sub

You can see how easy it is to play sound files using the Windows API. Although
programming via the Windows API is an advanced technique, there really is
nothing simpler for the VBA programmer to use for playing sound files.

Simulating Intelligence in Programs

Even if you have been out of touch with the computer industry, you have proba-
bly heard or read about artificial intelligence. Artificial intelligence (AI) is a topic
that has been covered extensively in the mainstream media, and, of course, Hol-
lywood has been using it as a subject in television shows and movies for decades.

AI refers to the ability of a computer program to simulate human intellectual
thought processes. Artificial intelligence is a popular research subject in the
field of computer science for both intellectual and economic reasons. The bene-
fits of AI in software applications are enormous and have been used for years. The
obvious example is in the computer gaming industry (remember IBM’s Deep Blue
Supercomputer and its defeat of the chess master Gary Kasparov?).

203
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 203

There are more subtle examples of AI in commercial software. For instance, I’m
writing this chapter using Microsoft Word 2000, which checks my spelling and
grammar as I type and will suggest corrections if asked. The ability of MS Word
to check a document for mistakes and offer corrections is a relatively simple
example of AI, in terms of what we as humans consider intelligence. However, I
doubt it seemed so simple a task for the programmers who wrote the code that
simulates these features in MS Word.

If you have used the last several versions of MS Word (or any other word proces-
sor with these features), then you have noticed the improvement in these AI fea-
tures, and have probably also thought that there is still plenty of room for more
improvement. This describes the status of AI in the computer industry: plenty of
room for improvement. We are a long way from creating a program that can fully
mimic human intellectual thought, so don’t be fooled by Hollywood and media
hype that tends to focus on the negative sides of the issue. Creating AI in a pro-
gram is a difficult task. You will get a taste of just how difficult it is by using a
relatively simple example—the Battlecell program from the last chapter.

Incorporating AI into a program does not involve additional code structures or
objects that I have not already discussed. The code used to simulate AI will typi-
cally involve numerous decision structures and the program branches that result
from these structures. The most difficult step in adding AI to a program is the
algorithm development. Without a detailed plan of what is to be accomplished
by the AI added to a program, the code can be exceedingly difficult and frustrat-
ing to write. Let’s move along with the example for adding AI to the Battlecell
program from Chapter 5.

Chapter Project: Enhanced Battlecell

The enhanced version of Battlecell contains a modicum of AI that may be enough to
allow the computer to win a game once in a while, if the user isn’t careful. Anima-
tion and sound have also been added to make the game more appealing to the user.

The enhanced version of Battlecell and all associated image and sound files can
be found on the accompanying CD-ROM. The Excel file is stored as BattlecellII.xls.

Project Statement

I want to create animations in the Battlecell program that simulate the following:

• Entrance of the player and computer’s ships onto the game board.

204
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 204

• The firing of a cannon from each ship.

• The hitting of an opponents ship via cannon fire.

• The destruction of a ship when all ships have been sunk and the game
has ended.

In addition to the animations, the Battlecell program should play sound files that
simulate a cannon firing and an explosion. The playing of the sound files should
be synchronized to the appropriate animation.

Finally, I wish to add intelligence to the Battlecell program so that the computer
can more easily locate the player’s ships once they have been hit.

Project Tools

Animation images can be created with any reasonable image creation and edit-
ing software (I used the GIMP), and can be presented in the program using Image
controls and a frame-by-frame technique (just like the rolling ball example dis-
cussed earlier in this chapter). Sound can be added to the program at the appro-
priate time during the animation with calls to the Windows API function
sndPlaySoundA(). Intelligence can be added to the program using standard coding
structures and techniques and by carefully following an appropriate algorithm.

Project Algorithm

There are basically three animation sequences to add. The first animation will
simply show a battleship moving to the center of an image and will run after the
player’s ships are placed. Figure 6.7 shows the first animation is a sequence of the
14 images. A sub procedure called from the cmdPlaceShips_Click() event proce-
dure will handle the first animation.

The second animation will simulate the ship firing one of its big guns and will
run immediately after the player or computer fires. Figure 6.8 shows the second
animation is a sequence of 13 images. A sub procedure called from the Worksheet
_SelectionChange() event procedure and the ComputerFire() sub procedures will
handle the second animation.

The third animation will simulate a hit of an opponent’s ship and, if appropri-
ate, the sinking of that ship. Figure 6.9 shows the sequence of 16 images used for
the third animation. When a player scores a hit but has not yet won the game,
only the first four images in the sequence are used. A sub procedure called from
the HitOrMiss() sub procedure and the ComputerFire() sub procedure will handle
the third animation.

205
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 205

Sound files simulating cannon fire and an explosion will be played when the
player’s and the computer’s ships fire at each other and score a hit. Calls to sub pro-
cedures from the Worksheet_SelectionChange() event procedure, the ComputerFire()

206
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.7

The images used in
the first animation
for the enhanced

version of Battlecell

FIGURE 6.8

The sequence of
images used to

display a firing ship

FIGURE 6.9

The sequence
of images used

to display a
sinking ship

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 206

sub procedure, and the HitOrMiss() sub procedure that use a call to the Windows
API will handle the playing of the appropriate sound file.

Intelligence will be added to the program and used by the computer when looking
for a cell location to select for the firing simulation. To search for a cell location on
the player’s grid to serve as a target, do the following:

1. Search the player’s grid for all red colored cells.

2. If there are no red-colored cells in the player’s grid, then select a cell
randomly to use as the target cell.

3. For each red-colored cell found, determine potential target cells. Store
the cell location of all potential target cells in a variable array.

4. To find potential target cells, test for sequential red cells in a worksheet
column or row.

5. If sequential red cells exist, add two target cells to the list (array) located
at the beginning and end of the row or column of red cells discovered.

6. If an isolated red cell is found, then add four target cells to the list
(one cell above, below, to the right and left of the red cell discovered).

7. Remove potential target cells that do not fall within the player’s grid.

8. When firing, loop through the array holding the cell locations of the
target cells, testing each cell for a previous selection.

9. The first cell not selected previously will be used as the target cell.

10. If all cells in the target list have been previously selected, then choose
a target randomly.

After reading this list of requirements you can see that there will be a number of
If/Then statements used to handle the selection of a target cell for the computer. As
more requirements are added to the list, more decisions have to be made and it
doesn’t take very long before the list becomes difficult to manage. Therefore, it is
best to encapsulate the problem starting at the top of the list and solving small man-
ageable pieces of the algorithm one at a time until the entire problem is solved.

The list of requirements above will double the length of the Battlecell program,
but only allow the computer to find the player’s ship once one has been hit. The
initial targeting is still done randomly. This means that it will still be fairly easy
to defeat the computer.

Adding targeting selection that chooses the next cell logically rather than ran-
domly when there is no target list will further improve the algorithm. Construct-
ing procedures that recognize when individual ships have been sunk would also
aid in the selection of target cells and bring the skill level of the computer up to

207
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 207

a point where it might actually win a few games. The addition of the last two ele-
ments does not require any special programming structures or objects that have
not been previously discussed. Careful planning and implementation are the most
important skills you need, because these exercises are left for you. Good luck!

Adding the Code

Only the procedures that have undergone significant editing are included here,
along with the new procedures added to the Battlecell program. The workbook
with all the source code can be found in the Excel file stored as BattlecellII.xls.

The first procedure to be altered is the Click() event procedure of the Command
Button control name cmdPlaceShips. There are only a couple of changes in this
procedure. First, there is now just one Label control in the enhanced version of
Battlecell, named lblOutput, and its Caption property is changed. Second, a call
to the first animation sub procedure AnimateShips_Place(), is used to display the
computer’s and player’s ships.

Private Sub cmdPlaceShips_Click()

If cmdPlaceShips.Caption = “Start” Then

numCellsInShip = 5

BeginGame

ElseIf cmdPlaceShips.Caption = “Done” Then

cmdPlaceShips.Enabled = False

lblOutput.Caption = “Please wait while I place my ships.”

AnimateShips_Place

TargetShips

lblOutput.Caption = “You may begin.”

allowSelection = True

bombsAway = True

End If

End Sub

Two Image controls named imgPlayer and imgComputer are used to display all ani-
mations. The first animation simply displays a ship moving into the center of the
Image control and represents the placement of the player’s ships. Then, the mir-
ror image of the first animation is used in the second Image control to represent
the placement of the computer’s ships. The image sequence used for each ani-
mation totals 14 images (see Figure 6.7).

Private Sub AnimateShips_Place()

Dim I As Integer

208
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 208

TE
AM
FL
Y

Team-Fly®

Dim filePath As String

Dim shipImages(12) As Image

Dim imagePath As String

Dim J As Integer

I created two sets of images that are identical, except that one set has been flipped
180 degrees horizontally. The image names are identical, but the files are stored
in two different directories—one each for the player’s and computer’s ships.
Nested For/Next loops are used to load and display the images.

For J = 0 To 1

If J = 0 Then imagePath = ActiveWorkbook.Path & “\playerAnimation\”

If J = 1 Then imagePath = ActiveWorkbook.Path & “\compAnimation\”

A For/Next loop is used to load the images into the image array variable shipImages.
The first iteration loads the images of the player’s ship (J = 0) and the second iter-
ation loads the images of the computer’s ship (J = 1). The file path is constructed
from the Path property of the Workbook object, and a string representing the
remainder of the file path. The LoadPicture() function is used to load the images
into the Picture property of each Image object in the shipImages array.

For I = 0 To 12

If J = 0 Then Set shipImages(I) = New Image

filePath = imagePath & Trim(Str(I)) & “.jpg”

shipImages(I).Picture = LoadPicture(filePath)

Next I

Next, another For/Next loop is used to display the images in sequence with a 150
millisecond delay between images. The Delay() sub procedure called here is the
same procedure used throughout this chapter.

For I = 0 To 12

Call Delay(0.15)

If J = 0 Then imgPlayer.Picture = shipImages(I).Picture

If J = 1 Then imgComputer.Picture = shipImages(I).Picture

Next I

Call Delay(1)

Next J

End Sub

The player begins the action by selecting a cell within the target grid. You may
recall that the Worksheet_SelectionChange() event procedure was used to capture
the cell selected by the player. This procedure has been lengthened to include a
call to another animation sub procedure. Otherwise it is essentially the same.

209
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 209

Private Sub Worksheet_SelectionChange(ByVal target As Range)

Dim inRange As Boolean

If allowSelection = False Then Exit Sub

‘

If bombsAway Then

inRange = CheckTarget(target)

If Not inRange Then Exit Sub

The variables allowSelection and bombsAway are temporarily set to false while the
animation plays to prevent the player from selecting more than one cell. The sub
procedure AnimateShips_Fire() is used to animate the player’s and the com-
puter’s ships firing at each other. A string parameter is passed to this procedure
to specify which competitor is firing.

allowSelection = False

bombsAway = False

Call AnimateShips_Fire(“player”)

Call HitOrMiss(target)

If numTargetHits < 17 Then

ComputerFire

If the computer has not sunk all of the player’s ships, then the allowSelection
and bombsAway variables must be set to true so the player will be allowed to make
another selection. The remainder of the procedure is the same as in the previous
version of the game. It includes the validation procedure CheckRange() and the
sub procedure AssignShip() used to set the player’s cell selection when placing
his/her ships.

If numPlayerHits < 17 Then

allowSelection = True

bombsAway = True

End If

End If

Else

rangeStatus = CheckRange(target)

If inRange Then

Call AssignShip(target)

End If

End If

End Sub

The HitOrMiss() sub procedure is still used to check whether or not the player
has scored a hit on the computer’s ships and test for the end of the game. This

210
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 210

procedure is essentially the same as before, with the exception of the Boolean
variable sinkShip and the call to the sub procedure AnimateHit().

Private Sub HitOrMiss(target As Range)

Dim sinkShip As Boolean

sinkShip = False

If target.Value = “X” Then

ActiveSheet.Unprotect

target.Interior.Color = RGB(255, 0, 0)

ActiveSheet.Protect

lblOutput.Caption = “You Hit My Ship!”

numTargetHits = numTargetHits + 1

If (numTargetHits = 17) Then

bombsAway = False

lblOutput.Caption = “All Ships Sunk! YOU WIN!”

allowSelection = False

sinkShip = True

End If

The AnimateHit() sub procedure is used to animate a hit on an opponent’s ship
and, if the game is over (sinkShip = True), to animate the sinking of the ship.

Call AnimateHit(“player”, sinkShip)

Exit Sub

End If

lblOutput.Caption = “You Missed!”

ActiveSheet.Unprotect

target.Interior.Color = RGB(0, 0, 255)

ActiveSheet.Protect

End Sub

The ComputerFire() sub procedure is used to simulate the computer’s return fire
at the player’s ships. This procedure also checks for a hit and the end of the game.
However, there are a few more modifications that need to be carried out with
this procedure.

Private Sub ComputerFire()

Dim randomGuess As Boolean

Dim I As Integer

Dim targetCell As String

Dim targetRange As Range

Dim sinkShip As Boolean

211
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 211

Again, the Boolean variable sinkShip will be passed to an animation procedure
for signaling whether or not to display the images of a sinking ship.

sinkShip = False

Delay (2)

The AnimateShips_Fire() sub procedure is used to display the animations that
simulate the firing of the player’s and the computer’s ships.

AnimateShips_Fire (“computer”)

The module-level variable array targetCells holds the list of cell locations repre-
senting possible targets for the computer to fire upon. This array is re-initialized
at the beginning of the procedure with a ReDim statement. The function proce-
dure CountRedCells scans the player’s grid for cells previously hit by the com-
puter and returns the number of red cells to the integer variable numRedCells.

ReDim targetCells(0)

numRedCells = CountRedCells

randomGuess = True

If at least one red cell is found, then the sub procedure FindTargets() is called to locate
potential target cells and load their locations into the variable array targetCells.

If numRedCells > 0 Then

FindTargets

A For/Next loop is used to iterate through each potential target cell listed in the
variable array targetCells until a candidate is found that has not been previously
used. For the upper bound in the For/Next loop I used the UBound() function to
return the largest available index for an array. Then I subtract one from this
index because the program is working in Option Base 0. If all cell locations have
been previously used, then a target cell will be chosen randomly.

For I = 0 To UBound(targetCells) - 1
targetCell = targetCells(I)
Set targetRange = Range(targetCell)
If targetRange.Interior.Color <> RGB(255, 0, 0) And _

targetRange.Interior.Color <> RGB(0, 255, 0) Then
randomGuess = False
Exit For

Else
randomGuess = True

End If
Next I

End If

212
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 212

A Do-Loop is used to run the code that randomly selects a target cell. A loop is
used in case the random selection has been previously used.

If randomGuess = True Then

Randomize

ReDim targetCells(0)

Do

A string is built to represent the address of a single cell for the randomly selected
target. The column reference is built from a random number between 66 and 75
that is converted to an uppercase letter between B and K by the Chr() function.
The row reference is built from a random number between 2 and 12. The result-
ing string is passed to the Range property of the Application object and returns a
reference to a Range object that is stored in the variable targetRange.

targetCells(0) = “$” & Chr(Int(10 * Rnd + 66)) & “$” &

Trim(Str(Int(10 * Rnd + 2)))

targetCell = targetCells(0)

Set targetRange = Range(targetCell)

Loop While (targetRange.Interior.Color = RGB(255, 0, 0) Or

targetRange.Interior.Color = RGB(0, 255, 0))

End If

The target range is tested to see if it has hit the player’s ship (true if the cell’s
color is blue). If the computer scores a hit, then the cell is colored red, the inte-
ger variable numPlayerHits is incremented, and the game is tested for its end.
Next the AnimateHit() sub procedure is called and passed the appropriate para-
meters. If the computer’s shot missed the player’s ship, then a message is dis-
played in the Label control and the game continues.

If targetRange.Interior.Color = RGB(0, 0, 255) Then

lblOutput.Caption = “I Hit Your Ship!”

ActiveSheet.Unprotect

targetRange.Interior.Color = RGB(255, 0, 0)

ActiveSheet.Protect

numPlayerHits = numPlayerHits + 1

If (numPlayerHits = 17) Then

lblOutput.Caption = “All Ships Sunk! I WIN!”

allowSelection = False

bombsAway = False

sinkShip = True

End If

Delay (1)

213
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 213

Call AnimateHit(“computer”, sinkShip)

Else

ActiveSheet.Unprotect

targetRange.Interior.Color = RGB(0, 255, 0)

ActiveSheet.Protect

lblOutput.Caption = “I Missed!”

End If

End Sub

The AnimateShips_Fire() and AnimateHit() sub procedures control animations for
both the player and computer. They simulate the ships firing at their opponent,
direct hits, and the sinking of the ships. These procedures are essentially the same
as those for the rolling ball animation and the first animation (AnimateShips
_Place()) sub procedure used for the enhanced version of Battlecell.

Private Sub AnimateShips_Fire(player As String)

Dim I As Integer

Dim filePath As String

Dim shipImages(11) As Image

Dim imagePath As String

If player = “player” Then imagePath = ActiveWorkbook.Path &

“\playerAnimation\”

If player = “computer” Then imagePath = ActiveWorkbook.Path &

“\compAnimation\”

The looping variable I is set to iterate from 13 to 24, because these are the num-
bers used in the filenames of the images needed for the animations.

For I = 13 To 24

Set shipImages(I - 13) = New Image

filePath = imagePath & Trim(Str(I)) & “.jpg”

shipImages(I - 13).Picture = LoadPicture(filePath)

Next I

For I = 13 To 24

Delay (0.15)

If I = 16 Then

The PlayCannon() sub procedure is called to play the sound file simulating can-
non fire. The sound file is timed to begin playing when the fourth image (file
16.jpg) is being displayed in the animation.

PlayCannon

End If

214
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 214

If player = “player” Then imgPlayer.Picture = shipImages(I -

13).Picture

If player = “computer” Then imgComputer.Picture = shipImages(I -

13).Picture

Next I

End Sub

The AnimateHit() sub procedure will display from 4 to 16 images depending on
whether or not the game is at an end and the animation of a sinking ship needs
to be executed.

Private Sub AnimateHit(player As String, sinkShip As Boolean)

Dim I As Integer

Dim filePath As String

Dim shipImages(15) As Image

Dim imagePath As String

Dim endLoop As Integer

The integer variable endLoop sets the number of images to be used in the anima-
tion and is used as the upper bound in the For/Next loops.

If sinkShip = True Then endLoop = 40

If sinkShip = False Then endLoop = 28

If player = “computer” Then imagePath = ActiveWorkbook.Path &

“\playerAnimation\”

If player = “player” Then imagePath = ActiveWorkbook.Path &

“\compAnimation\”

For I = 25 To endLoop

Set shipImages(I - 25) = New Image

filePath = imagePath & Trim(Str(I)) & “.jpg”

shipImages(I - 25).Picture = LoadPicture(filePath)

Next I

For I = 25 To endLoop

If sinkShip = False Then Delay (0.05)

If sinkShip = True Then Delay (0.2)

If I = 26 Then

The PlayExplode() sub procedure plays the sound file used to simulate an explo-
sion when either player scores a hit on the other’s ship.

PlayExplode

End If

215
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 215

If player = “player” Then imgComputer.Picture = shipImages(I -

25).Picture

If player = “computer” Then imgPlayer.Picture = shipImages(I -

25).Picture

Next I

If sinkShip = False Then

Delay (1)

If the game has not ended and the animation only displays a hit on an oppo-
nent’s ship, then the animation is extended by replaying the same four images
in reverse sequence.

For I = endLoop To 25 Step -1

Delay (0.3)

If player = “player” Then imgComputer.Picture = shipImages(I

- 25).Picture

If player = “computer” Then imgPlayer.Picture = shipImages(I

- 25).Picture

Next I

End If

End Sub

The sub procedures PlayWav(), PlayCannon(), and PlayExplode() are used to play
the sound files cannon.wav and explode.wav. The code statements in these pro-
cedures were discussed previously in this chapter.

Private Sub PlayWav(WavFile As String)

If Dir(WavFile) = “” Then Exit Sub

sndPlaySound WavFile, 1

End Sub

Private Sub PlayCannon()

Dim filePath As String

filePath = ActiveWorkbook.Path

PlayWav (filePath & “\Sounds\cannon.wav”)

End Sub

Private Sub PlayExplode()

Dim filePath As String

filePath = ActiveWorkbook.Path

PlayWav (filePath & “\Sounds\explode.wav”)

End Sub

Don’t forget to add the API declaration to the Windows .dll file used to play
sounds to the general declarations section of a standard module.

216
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 216

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszsoundname As String, ByVal uflags As Long) As Long

The remaining procedures added to enhance the Battlecell game are used to help
the computer locate potential target cells when firing at the player’s ships. The
CountRedCells() function procedure counts the number of red cells in the cell range
used for holding the player’s ships, stores the location of each red cell found in the
variable array redCells, and returns the integer number of red cells found. Remem-
ber that a cell is colored red if the computer has previously scored a hit on that cell.

Private Function CountRedCells() As Integer

Dim I As Integer

Dim c As Range

I = 0

numRedCells = 0

Set playerRange = Range(“B2:K11”)

A For/Each loop is used to iterate through the 100 individual cells in the range
representing the grid that holds the player’s ships.

For Each c In playerRange

If c.Interior.Color = RGB(255, 0, 0) Then

numRedCells = numRedCells + 1

When a red cell is found, the dynamic variable array redCells is re-dimensioned
and the Address property of the Range object representing the location of that
red cell is used to store the cell location in the array.

ReDim Preserve redCells(numRedCells)

redCells(I) = c.Address

I = I + 1

End If

Next

CountRedCells = numRedCells

End Function

The sub procedure FindTargets() looks for potential targets on the player’s grid
based on the cells already identified as hit.

Private Sub FindTargets()

Dim isColumn As Boolean

Dim isRow As Boolean

Dim testCell As String

Dim startCell As String

217
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 217

Dim endCell As String

Dim I As Integer

isColumn = False

isRow = False

A For/Next loop is used to iterate through each red-colored cell whose locations
are stored in the variable array redCells.

For I = 0 To numRedCells - 1

testCell = redCells(I)

Each red cell is tested for its presence in a column or row of adjacent red cells
using the CheckForCol() and CheckForRow() function procedures. The procedures
are passed a string value representing the address of a red-colored cell and return
a Boolean value (true if the cell is in a row or column, false if not).

isColumn = CheckForCol(testCell)

isRow = CheckForRow(testCell)

The FindBegin(), FindEnd(), and FindNeighbors() procedures are called to locate
the beginning and ending cells of a row or column of red cells and the adjacent
cells to a row or column of red cells, respectively. The values of the parameters
passed to these procedures are based on the return values of the CheckForCol()
and CheckForRow() function procedures.

If isColumn = True And isRow = False Then

startCell = FindBegin(testCell, “col”)

endCell = FindEnd(testCell, “col”)

Call FindNeighbors(“col”, startCell, endCell)

End If

If isRow = True And isColumn = False Then

startCell = FindBegin(testCell, “row”)

endCell = FindEnd(testCell, “row”)

Call FindNeighbors(“row”, startCell, endCell)

End If

If isColumn = False And isRow = False Then

startCell = testCell

endCell = testCell

Call FindNeighbors(“onecell”, startCell, endCell)

End If

isColumn = False

isRow = False

Next I

End Sub

218
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 218

TE
AM
FL
Y

Team-Fly®

Figure 6.10 shows the shot order the computer will take at a player’s ship after scor-
ing a single hit. In this example, the computer will fire seven more shots before
random shot selection resumes.

The CheckForCol() function procedure takes the address of a red-colored cell as
input and tests its two adjacent cells within the column for their presence within
the variable array redCells. For example, if the address of cell C5 is passed to the
CheckForCol() function procedure, then the addresses of cells C4 and C6 are
tested for their presence in the array redCells. If either of the addresses of cells
C4 or C6 are found in the array, then the red-colored cell C5 must be within a col-
umn of red cells. The AlterIndex() function procedure is used to increment and
decrement the row index for the variables testCell1 and testCell2.

Private Function CheckForCol(testCell As String) As Boolean
Dim I As Integer
Dim testCell1 As String
Dim testCell2 As String
testCell1 = AlterIndex(testCell, “col”, False)
testCell2 = AlterIndex(testCell, “col”, True)
For I = 0 To UBound(redCells) - 1

If testCell1 = redCells(I) Or testCell2 = redCells(I) Then
CheckForCol = True

End If
Next I

End Function

219
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

FIGURE 6.10

Computer’s shot
selection after

scoring an initial hit

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 219

The CheckForRow() function procedure works just like the CheckForCol() proce-
dure, except that the column index is incremented and decremented by the
AlterIndex() function procedure so the test cell can be checked for its presence
within a row of red-colored cells.

Private Function CheckForRow(testCell As String) As Boolean

Dim I As Integer

Dim testCell1 As String

Dim testCell2 As String

testCell1 = AlterIndex(testCell, “row”, False)

testCell2 = AlterIndex(testCell, “row”, True)

For I = 0 To UBound(redCells) - 1

If testCell1 = redCells(I) Or testCell2 = redCells(I) Then

CheckForRow = True

End If

Next I

End Function

The AlterIndex() function simply adds or subtracts one unit from a row or column
index of a cell address passed in as a string. The string “row” or the string “col” is
passed to the function to use as an indicator for altering either the column or row
index.

Private Function AlterIndex(testCell As String, rowOrCol As String, incre-

ment As Boolean) As String Dim lowCell As String

Dim highCell As String

Dim rowIndex As Integer

Dim colIndex As Integer

Basically, the address passed to the function is ripped apart using string func-
tions to find either its row or column index. The row or column index is then
decremented and incremented and two new strings are created (lowCell and
highCell) using the altered indices. If the string “C10” and string value “col”
are passed to the function, the variable lowCell will hold “C9” and the variable
highCell will hold “C11”.

If rowOrCol = “col” Then

rowIndex = Val(Right(testCell, 2))

lowCell = Left(testCell, 3) & Trim(Str(rowIndex - 1))

highCell = Left(testCell, 3) & Trim(Str(rowIndex + 1))

If rowIndex = 0 Then

rowIndex = Val(Right(testCell, 1))

lowCell = Left(testCell, 3) & Trim(Str(rowIndex - 1))

220
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 220

highCell = Left(testCell, 3) & Trim(Str(rowIndex + 1))

End If

ElseIf rowOrCol = “row” Then

colIndex = Asc(Mid(testCell, 2, 1))

lowCell = “$” & Chr(colIndex - 1) & Right(testCell, Len(testCell) - 2)

highCell = “$” & Chr(colIndex + 1) & Right(testCell, Len(testCell) - 2)

Else

MsgBox (“Error! Row or column not specified!”)

End If

A Boolean value is also passed to the AlterIndex() function to tell it which value
to return. The AlterIndex() function then has to be called twice (see the Check-
ForCol() and CheckForRow() procedures) in order to get both the decremented
and incremented cell addresses.

If increment = True Then

AlterIndex = highCell

Else

AlterIndex = lowCell

End If

End Function

The function procedures FindBegin() and FindEnd() loop through the list of red-
colored cells comparing the address of a test cell to each cell address in the list.
The column or row index of the test cell is either decremented or incremented,
depending on the procedure to which it is sent. Thus, if the altered test cell is
found within the list of red-colored cells, the outer Do-Loop continues. This effec-
tively finds the beginning or ending red-colored cell contained within a row or
column of red-colored cells.

Private Function FindBegin(testCell As String, rowOrCol As String) As String

Dim I As Integer

Dim firstCell As String

Dim foundOne As Boolean

foundOne = False

firstCell = testCell

The outer Do-Loop will continue as long as the cell address altered by the
AlterIndex() function procedure is found within the list of red-colored cells. This
means that the test cell is not at the beginning of a row or column so the loop
must continue.

Do

foundOne = False

221
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 221

A nested For/Next loop is used to compare the altered cell address to the list of
red-colored cells contained in the variable array redCells.

For I = 0 To UBound(redCells) - 1

If (AlterIndex(testCell, rowOrCol, False)) = redCells(I) Then

firstCell = redCells(I)

foundOne = True

End If

Next I

If the comparison of the altered cell address to the list of red-colored cells is true,
then the variable testCell is assigned the string value of the red-colored cell
stored in the variable firstCell for use in the next iteration of the Do-Loop. The
process continues until the altered cell address is not found within the list of red-
colored cells.

If foundOne = True Then testCell = firstCell

Loop While (foundOne = True)

FindBegin = firstCell

End Function

The FindEnd() function procedure works exactly like the FindBegin() function
procedure, except that the altered cell address is incremented rather than decre-
mented.

Private Function FindEnd(testCell As String, rowOrCol As String) As String

Dim I As Integer

Dim lastCell As String

Dim foundOne As Boolean

foundOne = False

lastCell = testCell

Do

foundOne = False

For I = 0 To UBound(redCells) - 1

If (AlterIndex(testCell, rowOrCol, True)) = redCells(I) Then

lastCell = redCells(I)

foundOne = True

End If

Next I

If foundOne = True Then testCell = lastCell

Loop While (foundOne = True)

FindEnd = lastCell

End Function

222
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 222

The last procedure added to the enhanced Battlecell program is FindNeighbors().
This sub procedure is used to find the nearest neighbors to an isolated red-colored
cell, and a row or column of red-colored cells. The neighboring cells represent
potential targets for the computer. The parameters passed to the FindNeighbors()
sub procedure are all strings representing the beginning and ending cells in a row
or column of red-colored cells.

Private Sub FindNeighbors(rowOrCol As String, startCell As String, endCell

As String)

Dim target(3) As String

Dim I As Integer

Dim J As Integer

For I = 0 To 3

target(I) = “A1”

Next I

If the beginning and ending cells are in a row or column, then there are only two
potential targets that need to be considered. If the cell is isolated, then there are
four potential targets: above, below, and to either side. The AlterIndex() function
procedure is used to produce the strings representing the targets.

If rowOrCol = “col” Then

target(0) = AlterIndex(startCell, “col”, False)

target(1) = AlterIndex(endCell, “col”, True)

ElseIf rowOrCol = “row” Then

target(0) = AlterIndex(startCell, “row”, False)

target(1) = AlterIndex(endCell, “row”, True)

ElseIf rowOrCol = “onecell” Then

target(0) = AlterIndex(startCell, “row”, False)

target(1) = AlterIndex(endCell, “row”, True)

target(2) = AlterIndex(startCell, “col”, False)

target(3) = AlterIndex(endCell, “col”, True)

End If

The potential target cells just saved to the variable array target are first tested for
their location within the player’s grid. The value of the target cell is changed to
the string literal “A1” if the potential target cell is outside the desired range.

For I = 0 To 3

If (Range(target(I)).Column < 2) Or (Range(target(I)).Column > 11) Or _

(Range(target(I)).Row < 2) Or (Range(target(I)).Row > 11) Then

target(I) = “A1”

223
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 223

Next, potential target cells are tested to see if they have already been added to the
list of target cells the computer will use in the ComputerFire() sub procedure.
The value of the target cell is changed to the string literal “A1” if it has already
been recorded as a target.

For J = 0 To UBound(targetCells) - 1
If target(I) = targetCells(J) Then target(I) = “A1”

Next J

Finally, the potential target cells are added to the list of targets the computer will
use in the ComputerFire() sub procedure unless their value is “A1”.

If target(I) <> “A1” Then
targetCells(UBound(targetCells)) = target(I)
ReDim Preserve targetCells(1 + UBound(targetCells))

End If
Next I

End Sub

I made other minor adjustments to the program, but they make no significant
contribution to these enhancements. They are included on the CD-ROM in the
source code for your perusal.

Although the enhancements to the intelligence of the Battlecell program are sig-
nificant, they are still not enough to make the computer competitive. Further-
more, if the additional enhancements discussed earlier are to be added to the
Battlecell program, then I would suggest considering a different algorithm for
finding potential target cells. The above procedures work fairly well for finding
targets once a player’s ship has been hit, but significant room for improvement
still exists. The important thing to note here is that the larger problem of find-
ing potential targets for the computer was encapsulated in the algorithim into a
list of smaller problems that were much easier to solve.

Chapter Summary

This has been one of the more fun chapters to write, and I expect it was one of
the most fun for you to read. Multimedia events in a program are what make a
program fun, both for the player and the programmer.

In this chapter you learned how to add simple animations to your VBA/Excel pro-
grams using a number of techniques, all involving the use of a Delay() sub procedure
and the Timer function. You also learned how to play sound files using the Windows
API. Finally, you considered the problem of adding intelligence to a program and
learned that it doesn’t necessarily involve special programming techniques but,
instead, careful planning and implementation of the plan.

224
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 224

225
C

h
a

p
te

r
6

E
n

h
a

n
c
in

g
V

B
A

P
r
o

g
r
a

m
s

:
A

d
d

i n
g

M
u

lt im
e
d

ia
a

n
d

I n
t e

l li g
e
n

c
e

CHALLENGES

1. Create an animation in Excel using cell formatting to spell your first name.

Use borders and color along with the width and height properties of the

Range object to create the animation.

2. Use any image creation software application to create a few images for ani-

mation. Then, using the procedures from the rolling ball animation demo,

animate your images. If you are artistically challenged, then do something

simple, such as changing an expression on a face from a frown to a smile.

You can also animate text by creating images with the text placed in differ-

ent positions.

3. Add a scroll bar to the rolling ball animation to use for controlling the speed

of the ball.

4. Create a tic-tac-toe game in Excel that cannot be beaten. Use either work-

sheet cells and the Worksheet_SelectionChange() event procedure or nine

Command Button controls and the Click() event procedure to mark the

squares with X’s and O’s. Add sound to the game when an X or an O is

played (you can find hundreds of sound files on the Internet).

5. Add further intelligence enhancements to the Battlecell II program to make

it more difficult to defeat the computer.

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 225

06 XLVBA CH06.qxd 2/25/03 7:29 AM Page 226

This page intentionally left blank

U
serForms enable you to build customized windows

that can be added to an application. UserForms

serve as containers for ActiveX controls that are

typically added to create custom dialog boxes used for gath-

ering specific input from the user.

In this chapter I will specifically examine:

• UserForms

• The Frame control

• The ListBox and ComboBox controls

• Modal and modeless UserForms

• Chapter project: Blackjack

UserForms and
Additional
Controls

7
C H A P T E R

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 227

Project: Blackjack

Blackjack is a standard on most computers. You can find numerous versions of this
game in Windows, Java, and JavaScript. This chapter reproduces the game using
VBA UserForms with Excel, which is something you probably have not seen before.
Figure 7.1 shows the Blackjack game in the Excel application.

UserForms

If you have ever programmed in Visual Basic (even as a novice), then UserForms
will be very familiar, because they will remind you of Visual Basic forms. If you
have never used Visual Basic, then UserForms will probably look just like another
window. However, UserForms are not quite VB forms or regular windows, because
they don’t have as many features. For example, there are no minimize and max-
imize buttons in the upper-right corner. Also, there are fewer properties and
methods that can be used to alter the appearance and behavior of the UserForm.

UserForms are included in VBA to allow programmers to build custom dialog
boxes with their office applications. Up to this point, input from the user via dia-
log boxes has been limited to the use of the InputBox() and MsgBox() functions.
Because UserForms can be customized using a number of ActiveX controls, they
greatly extend the abilities of VBA programmers to collect user input.

228
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.1

The Blackjack
game

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 228

TE
AM
FL
Y

Team-Fly®

Adding a UserForm to a Project

To add a UserForm to a VBA project, select Insert/UserForm from the menu bar in
the VBA IDE, as shown in Figure 7.2.

A new folder labeled Forms appears in the Project Explorer window. An example
of a UserForm just added to a project is shown in Figure 7.3

Components of the UserForm Object

UserForms are VBA objects that are similar to ActiveX controls. So when a User-
Form is selected, its properties will appear in the Properties window in the VBA
IDE (see Figure 7.3). Table 7.1 defines a few of the properties of UserForms com-
monly set at design time.

The UserForm object has several additional appearance properties besides
those listed in Table 7.1. BorderColor, BorderStyle, and SpecialEffect
are others that may be used for aesthetic appeal.

229
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

IN THE REAL WORLD

The graphical user interface (GUI) that made operating systems such as Macin-

tosh and Windows so popular was first made available in the early 1980s by Apple

computers. However, the technology was actually developed by researchers at

Xerox.

Macintosh computers remained extremely popular until Microsoft’s release of

Windows 95, the first version of Windows that matched Macintosh for ease of use.

FIGURE 7.2

Inserting a
UserForm from

the VBA IDE

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 229

UserForms represent separate entities in a VBA project and have their own code
window. To view the code window (module) associated with the UserForm, select
the View Code icon from the Project Explorer, or select View, Code (with the User-
Form selected). You can also double-click the UserForm to open its code window.
The structure of a UserForm code window (usually referred to as a form module)
is the same as any other module window. The upper-left corner contains a drop-
down list with all objects contained within the form, including the UserForm

230
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.3

A new UserForm
as viewed from

the VBA IDE

The ListBox control

The ComboBox
control

The Frame control

The Forms folder in
the Project Explorer

Properties of the
UserForm object

The Toolbox
containing ActiveX

controls

Property Description

Name Sets the name of the UserForm for use as a code reference to the object

BackColor Sets the color of the UserForm

Caption Sets the text displayed in the title bar

Height Sets the height of the UserForm

StartUpPosition Sets the position of the UserForm on the screen when displayed

Width Sets the width of the UserForm

TABLE 7.1 SELECTED PROPERTIES

OF THE USERFORM

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 230

object. The upper-right corner contains a drop-down list of all event procedures
associated with the various objects that may be contained in the UserForm. There
is also a general declarations section for making module level declarations in the
form module. An example code window for a UserForm is shown in Figure 7.4.

The behavior of the variables and procedures declared with the Dim, Private, and
Public keywords in a form module are identical to that of a component module
as discussed in Chapter 3, “Procedures and Conditions.” Thus, the scope of vari-
ables and procedures declared as Public in the general declarations section of the
module are module-level, not global. Variables and procedures declared as Public
in a form module can be accessed from procedures in other modules when the
full path is specified (ModuleName.VariableName or ModuleName.ProcedureName).

The UserForm object has several event procedures, including Click(), Activate(),
and QueryClose(), among others. To view the full list of event procedures of the
UserForm object, select the UserForm object in the object list and then select the
event procedure drop-down list from the form module (see Figure 7.4). Some of
these event procedures should be familiar, as they are common to several ActiveX
controls.

Adding ActiveX Controls to a UserForm

Like the Worksheet object, the UserForm is a container object, which means it can
be used to hold other objects. UserForms are specifically used as a container for
ActiveX controls. When a UserForm is added to a project, the control toolbox
should automatically appear (see Figure 7.3). If the ActiveX control toolbox does
not appear, select View/Toolbox from the menu bar. There will be a couple of addi-
tional controls displayed in the control toolbox when viewed with a UserForm.
Most notable is the Frame control that will be discussed later in this chapter.

231
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

FIGURE 7.4

The code window
of a UserForm

Object
drop-down list

Event procedure
drop-down list

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 231

ActiveX controls are added to a UserForm in the same manner that they are added
to worksheets. When added to a UserForm, the properties and events of an ActiveX
control can be accessed via the Properties and Module windows, respectively. To
illustrate the use of ActiveX controls on UserForms, access the frmMessage User-
Form from the FormDemo.xls Excel file located on the CD-ROM. The frmMessage
UserForm, as viewed at design time, from the VBA IDE is shown in Figure 7.5.

To create this application, a UserForm was inserted into the project, and Label and
Command Button controls were added. Properties (Name, Caption, and some appear-
ance properties) were changed at design time by selecting the object and altering
the values in the Properties window exactly as is done when using ActiveX controls
with an Excel worksheet. The application contains just one line of code contained
in the Click() event procedure of the Command Button control.

Private Sub cmdHello_Click()

lblOutput.Caption = “Hello!”

End Sub

When the user clicks the Command Button control name cmdHello, the preced-
ing procedure is triggered and the Caption property of the Label control named
lblOutput is changed.

To test the application, select the UserForm and click on Run/Sub UserForm from the
IDE standard toolbar or menu bar, or press F5 on the keyboard. The UserForm appears

232
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.5

The frmMessage
UserForm

Run Sub/UserForm

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 232

as a window above the Excel application. To close the UserForm, click on the X in
the upper-right corner of the window.

Showing and Hiding UserForms

To display a UserForm from the Excel application, use the Show method of the
UserForm object in a procedure that can be triggered from Excel (a public proce-
dure in a standard module or an event procedure from a component module).
The basic syntax follows:

UserFormName.Show Modal

To load a UserForm into system memory without displaying it, use the Load
statement.

Load UserFormName

The UserForm object and all its components can be accessed from a VBA
program after loading the object into memory.

For example, to display a UserForm named frmMessage when a Click() event pro-
cedure of a Command Button control (named cmdShowForm) placed on a worksheet
is triggered, use the following code:

Private Sub cmdShowForm_Click()

frmMessage.Show

End Sub

To hide a UserForm from the user but retain programmatic control, use the Hide
method of the UserForm object.

UserFormName.Hide

The Hide method does not remove the UserForm object from system memory, so
the UserForm and its components can still be accessed from a VBA program. To
remove a UserForm from system memory, use the UnLoad statement.

UnLoad UserFormName

Modal Forms

The Show method of the UserForm object takes an optional Boolean parameter
that specifies whether the UserForm is modal. The default value of the modal

233
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 233

parameter is true, which creates a modal UserForm. A modal UserForm must be
addressed by the user and subsequently closed (by the user or the program) before
any other part of the Excel application can be used. If the UserForm is modeless,
then the user may select between any open windows in the Excel application.

Modeless UserForms are only supported in MS Office 2000 and Office XP. Trying
to create a modeless UserForm in an earlier version of MS Office will generate a
runtime error.

A modal form is safest and should be used unless user interaction with the Excel
application is required while the UserForm is displayed. The UserForm can be dis-
played via the Show method from anywhere in a VBA program. However, be aware
that program execution may proceed differently depending on where in a pro-
cedure the UserForm is shown and whether the UserForm is modal. For example,
the two procedures that follow will yield different results.

In the first example, the Show method is used with a UserForm object to display
a modeless UserForm. Next a MsgBox() function is used to display some text. In
this example, code execution proceeds through the entire procedure, first dis-
playing the UserForm, then the message box, so both dialogs are displayed to the
user at the same time.

Private Sub MyProcedure()

frmMyUserForm.Show False

MsgBox(“The message box is displayed immediately after the UserForm”)

End Sub

In the second example the UserForm is displayed modally, so code execution
within the procedure pauses while the UserForm is displayed. After the user
closes the UserForm, program execution proceeds to the next line of code. Thus,
when using a modal UserForm, program behavior is identical to the MsgBox() and
InputBox() functions.

Private Sub MyProcedure()

frmMyUserForm.Show True

MsgBox(“The message box is displayed after the UserForm is closed.”)

End Sub

To determine which version of Excel is running on a user’s computer, use the
Version property of the Application object. The Version property returns
a read-only string containing a number that represents the version of Excel
currently running on your computer (8.0 for Excel 97, 9.0 for Excel 2000, and
10.0 for Excel XP/2002).

234
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 234

Now that you know how to display a UserForm in a program, it’s time to take a
look at the ActiveX controls that can be used with it, as well as how to use User-
Forms to interact with the Excel application.

Custom Dialog Boxes with UserForms

As mentioned earlier, UserForms are generally used as dialog boxes to collect user
input relevant to the current application. You can use ActiveX controls to expand
the capabilities of UserForms well beyond that of the InputBox() and MsgBox()
functions. ActiveX controls are the same as those used with an Excel worksheet,
so there is no need to spend more time discussing how to use them. Instead, let’s
look at a couple of ActiveX controls that have not yet been introduced.

The Frame Control

The Frame control is used to group ActiveX controls on the UserForm. The
ActiveX controls grouped within a Frame control may be related by content, or
in the case of OptionButton controls, be made mutually exclusive. The properties
of the Frame control are seldom referenced in code. The Name and Caption prop-
erties, along with a couple of appearance properties (BorderStyle, Font, and so
on), are typically set at design time.

A sample form using the two Frame controls to group three OptionButton con-
trols is shown in Figure 7.6.

The purpose of the UserForm shown in Figure 7.6 is to give the user a selection of
font types and font sizes. The result of the user’s selections is displayed in the
Label control. The Frame control is used to group the OptionButton controls by
content and make each set mutually exclusive. Without at least one Frame con-
trol the user would only be allowed to select one of the six option buttons.

In this example, I used the Click() event procedure of each OptionButton control
to set the desired property of the Label control. For example, the procedures shown
here are used to set the font size to 24 and the font type to Times New Roman.

235
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

FIGURE 7.6

Using the Frame
control on a

UserForm

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 235

Private Sub OptionButton3_Click()

lblOutput.Font.Size = 24

End Sub

Private Sub OptionButton4_Click()

lblOutput.Font.Name = “Times New Roman”

End Sub

Selecting a Worksheet Range with a Custom Dialog Box

A common requirement for custom dialog boxes is that they allow the user to select
a range of cells from the active worksheet before performing a specific task. Prior to
modeless forms this was a somewhat tedious programming task that often pro-
duced mixed results. The following example uses methods designed to work with
modal and modeless forms, allowing the user to easily select a range of cells on a
worksheet for the calculation of some simple statistics. The UserForm displayed at
runtime is shown in Figure 7.7. To access this UserForm, load the FormDemos.xls
workbook file from the CD-ROM and run the ShowForm() sub procedure (select Run
Macro from the Visual Basic toolbar) while in Sheet1. The worksheet contains a
series of random numbers to use for testing the UserForm’s function.

The UserForm contains two Frame controls, one for grouping the controls
responsible for selecting the worksheet range and the other for grouping the
Label controls used to display the statistics. At the bottom of the UserForm are
three Command Button controls, two of which are used for navigating through

236
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.7

Selecting a
worksheet range

with a custom
dialog box

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 236

the worksheets in the current workbook and the other for outputting the statis-
tical results to a new worksheet.

The form module named frmInput contains the following code:

Option Explicit

Dim selectCells As Boolean

Dim col1 As String

Dim row1 As Integer

Dim col1Value As Integer

After module-level variable declarations, the Activate() event procedure of the
UserForm will be triggered as soon as the UserForm is loaded and displayed.

Unlike with other ActiveX controls, changing the Name property of the UserForm
does not change the name of its event procedures.

The Activate() event procedure sends code execution to the CalcStats() sub pro-
cedure that calculates a few statistical values associated with the currently
selected cell(s) on the active worksheet.

Private Sub UserForm_Activate()

CalcStats

End Sub

The CalcStats() sub procedure uses Excel’s built-in functions to do most of the
work. These functions are accessed via the WorksheetFunction property of the
Application object.

Public Sub CalcStats()

Const noValue = “N/A”

Because some of the statistical functions used can generate divide-by-zero errors,
the next line is used to catch these errors and send code execution to the next
line after it. You will learn more about error trapping in Chapter 8, “Data Access
and File I/O.”

On Error Resume Next

The Address property of the Range object defined by the currently selected range
in the active worksheet is copied to the TextBox control named txtInput. This is
followed by calls to Excel’s worksheet functions that calculate the desired statis-
tics and display the results in various Label controls. If the worksheet function
used generates an error, the string constant N/A is displayed in the Label control,
and code execution skips to the next line because of the On Error Resume Next line
of code listed earlier in the procedure.

237
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 237

If txtInput.Text = “” Then txtInput.Text = Selection.Address

lblSum.Caption =

Application.WorksheetFunction.Sum(Range(txtInput.Text))

lblCount.Caption =

Application.WorksheetFunction.Count(Range(txtInput.Text))

lblAverage.Caption = noValue

lblAverage.Caption =

Format(Application.WorksheetFunction.Average(Range(txtInput.Text)), “#.##”)

lblMedian.Caption =

Application.WorksheetFunction.Median(Range(txtInput.Text))

lblMode.Caption = noValue

lblMode.Caption =

Application.WorksheetFunction.Mode(Range(txtInput.Text))

lblStanDev.Caption = noValue

lblStanDev.Caption =

Format(Application.WorksheetFunction.StDev(Range(txtInput.Text)), “#.##”)

End Sub

The next three sub procedures use mouse events of a Label control to allow the
user to select a range of cells in the active worksheet. These procedures are
designed to work with modal forms that do not allow the user to select other
windows in the Excel application while a UserForm is displayed. This makes
these procedures more useful with versions of Excel prior to Office 2000.

The location of the mouse pointer, when the mouse button is initially pressed by
the user, is sent to the MouseDown() event procedure of the Label control and
stored in the variables X and Y. The values of the variables X and Y will range
between the minimum and maximum values of the Width and Height properties
of the Label control, respectively. In this example, the Width and Height proper-
ties of the Label control are set to 104 and 50, respectively.

Private Sub lblCellSelect_MouseDown(ByVal Button As Integer, ByVal Shift

As Integer, ByVal X As Single, ByVal Y As Single)

If X < 104 And X > 0 And Y > 0 And Y < 51 Then

selectCells = True

The module-level variable selectCells is set to true for later use in the MouseMove()
event procedure. The range of cells the user has to choose from is limited to
approximately the first 100 rows and first 25 columns by multiplying and divid-
ing the values of the variables X and Y by integers, then storing the results in two
module-level variables named col1 and row1. The values of col1 and row1 are used
to set a reference cell to the range of cells that will be selected by the user.

238
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 238

TE
AM
FL
Y

Team-Fly®

col1 = Chr(65 + Int(X / 4))

row1 = Int(Y * 2)

col1Value = Int(X / 4)

The values of col1 and row1 are converted to a string and copied to the Text prop-
erty of txtInput, which is then converted to a Range object. The referenced cell is
then selected on the active worksheet via the Select method of the Range object.

txtInput.Text = “$” & col1 & “$” & row1

Range(txtInput.Text).Select

lblCellSelect.Caption = “”

End If

End Sub

The MouseMove() event procedure is used to catch the user’s movement of the
mouse through the Label control.

Private Sub lblCellSelect_MouseMove(ByVal Button As Integer, ByVal Shift

As Integer, ByVal X As Single, ByVal Y As Single)

Dim col2 As String

Dim row2 As Integer

Dim col2Value As Integer

Again the location of the mouse within the Label control is captured and stored
in two new variables, col2 and row2.

col2 = Chr(65 + Int(X / 4))

row2 = Int(Y * 2)

col2Value = Int(X / 4)

The module-level variable selectCells is tested to ensure that cells are selected
while the user holds down the mouse. The value of the second reference cell in
the selected range is set as with the MouseDown() event procedure. The values of
both reference cells are then tested such that the range displayed in the text box
is of the proper form (for example, A1:B5 instead of B5:A1).

If selectCells = True And X < 104 And X > 0 And Y > 0 And Y < 51 Then

If (col1Value <= col2Value) And (row1 <= row2) Then

txtInput.Text = “$” & col1 & “$” & row1 & “:$” & col2 & “$” & row2

ElseIf (col2Value <= col1Value) And (row2 <= row1) Then

txtInput.Text = “$” & col2 & “$” & row2 & “:$” & col1 & “$” & row1

ElseIf (col2Value <= col1Value) And (row1 <= row2) Then

txtInput.Text = “$” & col2 & “$” & row1 & “:$” & col1 & “$” & row2

ElseIf (col1Value <= col2Value) And (row2 <= row1) Then

239
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 239

txtInput.Text = “$” & col1 & “$” & row2 & “:$” & col2 & “$” & row1

End If

Range(txtInput.Text).Select

End If

End Sub

The MouseUp() event procedure is used to set the user’s selected range and call the
CalcStats() sub procedure listed earlier.

Private Sub lblCellSelect_MouseUp(ByVal Button As Integer, ByVal Shift As

Integer, ByVal X As Single, ByVal Y As Single)

selectCells = False

Range(txtInput.Text).Select

CalcStats

lblCellSelect.Caption = “Click and drag in this box to select cell

range if form is modal.”

End Sub

The process of collecting a user-selected range with a modal form is not trivial.
Even though the preceding procedures are relatively simple to code, the user will
find the process a bit frustrating. To improve the process, a control with a larger
area can be used for the selection of the range, perhaps with some type of grid
displayed so the user knows approximately where to start the selection (for exam-
ple, a Frame control containing numerous Label controls stacked in rows and
columns). Of course, the user can also just enter the range directly into the
TextBox control.

The Click() event procedures of two Command Button controls (cmdNext and cmd-
Prev) are used to navigate through all open worksheets in the current workbook.

Private Sub cmdNext_Click()

Dim wkIndex As Integer

The Index property of the Worksheet object is used to determine the currently
selected worksheet. If the currently selected worksheet is not the last worksheet
in the workbook, then the value of the index is incremented by one and the next
worksheet is made active with the Select method.

wkIndex = ActiveSheet.Index

The Count property of the Worksheet object returns the number of Worksheet
objects in the active workbook. This effectively tells you the index of the last work-
sheet in the collection. This procedure appears to do nothing when the last work-
sheet in the current workbook is selected.

240
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 240

If wkIndex >= Worksheets.Count Then

wkIndex = Worksheets.Count

Else

wkIndex = wkIndex + 1

End If

Worksheets(wkIndex).Select

ActiveSheet.Range(txtInput.Text).Select

CalcStats

End Sub

The Click() event procedure of cmdPrev uses the same code, except that now the
first worksheet in the collection has an index value of 1. This procedure appears
to do nothing when the first worksheet in the current workbook is selected.

Private Sub cmdPrev_Click()

Dim wkIndex As Integer

wkIndex = ActiveSheet.Index

If wkIndex <= 1 Then

wkIndex = 1 ‘Worksheets.Count + 1

Else

wkIndex = wkIndex - 1

End If

Worksheets(wkIndex).Select

ActiveSheet.Range(txtInput.Text).Select

CalcStats

End Sub

Outputting to a worksheet data that has been manipulated within form-module
procedures is easy and really no different than previous methods discussed. The
following Click() event procedure outputs the statistical results calculated in
the sub procedure CalcStats() to a new worksheet added to the current work-
book. To output data to a workbook other than the one currently selected, spec-
ify the full path in code.

Most of this procedure is simple formatting of the cells used to hold the statisti-
cal results and the corresponding labels. The Add method of the Worksheet object
is used to create a new worksheet. The Add method can take several optional para-
meters that are used to specify the location, type, and number of worksheets to
be added. If these parameters are omitted, then one worksheet is inserted before
the active sheet and the new worksheet becomes the active sheet.

Private Sub cmdOutput_Click()

Worksheets.Add

241
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 241

Range(“A1”).Value = Worksheets(ActiveSheet.Index + 1).Name & “:”

ActiveSheet.Name = Worksheets(ActiveSheet.Index + 1).Name & “ Stats”

Range(“A1”).HorizontalAlignment = xlRight

Range(“B1”).Value = txtInput.Text

Range(“A2”).Value = “Statistic”

Range(“B2”).Value = “Value”

Range(“A2:B2”).Font.Bold = True

Range(“A2:B2”).Borders(xlEdgeBottom).Weight = xlThick

Range(“A2:B2”).HorizontalAlignment = xlCenter

Range(“A3”).Value = “Sum”

Range(“A4”).Value = “Count”

Range(“A5”).Value = “Average”

Range(“A6”).Value = “Median”

Range(“A7”).Value = “Mode”

Range(“A8”).Value = “Stan. Dev.”

Range(“A3:A8”).HorizontalAlignment = xlRight

Range(“B3:B8”).HorizontalAlignment = xlCenter

Range(“A:B”).Columns.AutoFit

Range(“B3”).Value = lblSum.Caption

Range(“B4”).Value = lblCount.Caption

Range(“B5”).Value = lblAverage.Caption

Range(“B6”).Value = lblMedian.Caption

Range(“B7”).Value = lblMode.Caption

Range(“B8”).Value = lblStanDev.Caption

End Sub

The resulting worksheet created from the previous procedure is shown in Figure 7.8.

The QueryClose() event procedure is used to capture the user’s action when the
UserForm is closed by clicking the X in the upper-right corner of the UserForm.
The keyword Me sets a reference to the current active object, in this case the User-
Form named frmInput. If preferred, the name of the object can also be used.

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Unload Me

End Sub

If the UserForm is modeless, then the SelectionChange() event procedure of the
Worksheet object can be used to capture the range selected by the user. If a program
must run on a new worksheet that does not contain code, then the Click() event of
a Command Button control will work just as well. You can test this by selecting a
range in Sheet1 of FormDemos.xls and then running the ShowForm() sub procedure.

242
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 242

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

frmInput.txtInput.Text = Target.Address

The CalcStats() procedure has public scope, so it can be accessed from the com-
ponent module of the worksheet.

frmInput.CalcStats

End Sub

Finally, a public procedure in a standard module is used to give the user access
to the program from the Tools menu or from the Visual Basic toolbar in the Excel
application.

Public Sub ShowForm()

frmInput.Show False

End Sub

The ListBox and ComboBox Controls

The ListBox control (refer to Figure 7.3) is used to display data in a list from which
the user may select one or more items. The ComboBox control combines the fea-
tures of a ListBox control with a TextBox control, allowing the user to enter a new
value if desired. Properties of the ListBox and ComboBox controls commonly set
at design time and runtime are listed in Table 7.2.

243
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

FIGURE 7.8

New worksheet
created from the

frmInput
UserForm

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 243

The ListBox control may be drawn on the UserForm with varying height and
width such that it displays one or multiple items in the list. If there are more
items in the list than can be displayed in the area provided, the scroll bars will
automatically appear. Normally, the ListBox control is drawn with the Height
property set to a value large enough for several values to be displayed, because it
is difficult to see the scroll bar when the control is at a minimum height. If space
on the UserForm is at a premium, use the ComboBox control and set the Style
property to drop-down list.

Data is added to the ListBox and ComboBox controls at runtime using the AddItem
method.

ControlName.Additem (item)

The AddItem method must be used for every row of data added to the list. A loop-
ing code structure will often work well to complete this task. The example User-
Form frmComboList (FormDemo.xls), shown in Figure 7.9, is used to display the
values of individual rows and columns in a worksheet.

244
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Property Description

Name Sets the name of the control for use as a code reference to the object

MultiSelect ListBox control only. Indicates whether the user will be able to select
multiple items in the list.

ColumnCount Sets the number of data columns to be displayed in the list

ListStyle Indicates whether option buttons (single selection) or check boxes
(multi selection) should appear with items in the list

Value Holds the current selection in the list. If a multi-select ListBox control
is used, the BoundColumn property must be used to identify the
column from which the value property is set.

BoundColumn Identifies the column that sets the source of the Value property in
a multi-select ListBox

List Runtime only. Used to access the items in the control.

ListCount Runtime only. Returns the number of entries in the control.

ListIndex Runtime only. Identifies the currently selected item in the control.

Style ComboBox control only. Specifies the behavior of the control as a
combo box or a drop-down list box.

TABLE 7.2 SELECTED PROPERTIES OF THE

LISTBOX AND COMBOBOX CONTROLS

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 244

The UserForm contains a ComboBox control, a ListBox control, two ScrollBar con-
trols, and a Label control. The vertical scroll bar (scrRows) is used to set the row num-
ber to be displayed in the ComboBox control. The horizontal scroll bar (scrColumns)
is used to set the column number to be displayed in the ListBox control. The Label
control displays the user’s selection from either the ComboBox or ListBox control.

The code contained in the form module is minimal and straightforward. The
Change() event procedure of the ComboBox control (cmbRows) and Click() event
procedure of the ListBox control (lstColumns) are used to display the currently
selected item in the Label control (lblDisplay). The choice of the Click() event pro-
cedure or the Change() event procedure for the ComboBox and ListBox controls is
arbitrary.

Private Sub cmbRows_Change()

lblDisplay.Caption = cmbRows.Value

End Sub

Private Sub lstColumns_Click()

lblDisplay.Caption = lstColumns.Value

End Sub

The ScrollBar control (scrColumns) is used to set the column from which the List-
Box control will receive its data. The Min and Max properties of scrColumns are set
to 1 and 26, respectively. The ScrollBar control (scrRows) sets the row from which

245
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

FIGURE 7.9

Using the ListBox
and ComboBox
controls on a

UserForm

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 245

the ComboBox control receives data. The Min and Max properties of scrRows are set
to 1 and 100, respectively. The Change() event procedures of each scroll bar con-
trol are used to clear any items in the list before adding the data from the newly
selected column. The AddItem method of the ComboBox or ListBox control is used
inside a For/Next loop. The Cells property of the Range object returns each value
from the respective row or column in the worksheet where the looping variable
I sets the reference to the row or column.

Private Sub scrRows_Change()

Dim I As Integer

cmbRows.Clear

For I = 1 To 26

cmbRows.AddItem (Cells(scrRows.Value, I).Value)

Next I

End Sub

Private Sub scrColumns_Change()

Dim I As Integer

lstColumns.Clear

For I = 1 To 100

lstColumns.AddItem (Cells(I, scrColumns.Value).Value)

Next I

End Sub

Again, the QueryClose() event procedure of the UserForm object is used to clear
the object from system memory.

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Unload Me

End Sub

Use the Me keyword to access all controls associated with the current object,
including their properties and methods. For example, Me.scrColumns.Value = 3
will set the Scroll Bar control in the previous example to the value of 3, which
changes the items in the ListBox control to the values in column 3 of the worksheet.

Chapter Project: Blackjack

Blackjack is a favorite for beginning programmers because it is relatively
straightforward programming and can be a lot of fun to customize. The game is
saved as Blackjack.xls on the CD-ROM accompanying this book. I added some
sound to the game, but it also could easily be dressed up with features such as
animation or odd rule twists.

246
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 246

This particular version of Blackjack uses an Excel UserForm and various ActiveX
controls to simulate the card game. There are two players, the user and the com-
puter, and the game follows most of the standard rules of Blackjack. The idea is
to draw as many as five cards with a total value that comes as close to 21 as pos-
sible without going over. Face cards are worth 10 and aces are 1 or 11. All other
cards are face value. The game begins with two cards dealt to each player. One of
the computer’s cards is dealt face down so it is unknown to the player. The player
draws cards until the sum of the cards’ value exceeds 21 or the player decides to
stop. After the player is finished, the computer takes its turn.

Project Statement

I want to create a Blackjack game using VBA UserForms and ActiveX controls. The
computer will act as the dealer and play against a single player. The game should
follow most of the standard rules for Blackjack. Some additional features, such
as sound and card counting, should be added to make the game more interest-
ing. Finally, there should be some data exchange between the game and an Excel
worksheet.

Project Tools

This project uses many of the tools discussed in previous chapters of this book,
including various code structures and common ActiveX controls. In particular, the
project includes additional tools discussed in this chapter. These tools are User-
Forms and their code modules, along with Frame, ComboBox, and ListBox controls.

Project Algorithm

The Blackjack game runs from a VBA UserForm that contains several ActiveX con-
trols. The UserForm is separated into a Dealer area and a Player area using Frame
controls. The dealer frame contains the following controls:

• Five Image controls for displaying images of cards representing the
dealer’s hand.

• A ComboBox control (used as a drop-down list) so the player can choose
the number of card decks to be used before reshuffling.

• A Label control for displaying the score of the dealer’s hand.

The player frame contains the following controls:

• Five Image controls for displaying images of cards representing the
player’s hand.

247
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 247

• A ComboBox control for the player to enter or select an amount to bet.

• A ComboBox control (used as a drop-down list) so the player can view
previously used cards.

• A Label control for displaying the player’s score.

• A Label control for displaying the player’s current balance.

• A Command Button control for beginning and selecting a new game.

• A Command Button control for selecting another draw from the deck.

A single Label control is also used to display the result of each hand. Figure 7.10
shows the Blackjack UserForm (named frmTable) in design time after I added
ActiveX controls listed above.

After the player starts the game, the UserForm described previously is displayed.
A single Command Button control is used to begin the game, deal each hand, and
offer the player the choice to stand on the current hand.

When a game first begins, the images of the deck are loaded into a variable array
of type image. The image array should only contain 52 elements regardless of the
number of decks selected by the player to minimize memory usage. A second
UserForm appears to tell the player that the deck is being shuffled. The code
module for the second UserForm contains the procedure that shuffles the deck.
To shuffle a deck, a dynamic integer array is dimensioned to the proper size by
multiplying the number of decks by 52. This dynamic array holds integer values
between 0 and 51 that will serve as the index for the image array when display-
ing the images of the cards on the UserForm. The deck is shuffled randomly by
generating integer random numbers between 0 and the number of elements in

248
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.10

The Blackjack
UserForm at
design time

Frame controls (2)

Image
controls (10)

Label controls (9)
ComboBox
controls (3)

Command
Button controls (2)

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 248

TE
AM
FL
Y

Team-Fly®

the array. Then two elements in the array (chosen randomly) representing two
cards in the deck are swapped. The process of choosing a random number and
swapping two elements in the array is contained within a loop such that it may
be repeated. Figure 7.11 illustrates the process of swapping two values in an array.
When this process is repeated many times the deck is effectively shuffled.

The value of each card is stored in another array of the same length as the deck,
and these elements are swapped inside the same loop to ensure that the value of
each card can be easily tracked. The UserForm displaying the message to the player
that the deck is being shuffled is hidden, using code, after the deck is shuffled.

The game is then played by incrementing a variable from 0 to the number of ele-
ments in the deck. This variable serves as the index for the arrays representing
the deck and the value of each card. The appropriate images are displayed and
the scores of each hand calculated. The player is given the choice of standing or
drawing another card by selecting different Command Button controls. The
player’s score must be checked after each draw. If the player’s score exceeds 21,
then the game is over and the appropriate UserForm controls are updated to dis-
play the result of the hand and give the option to start another hand (Label and
Command Button controls).

If the player stands on a hand that scores less than 21, then a procedure will be called
that simulates the computer drawing cards based on the criterion that the computer
must draw if its score is less than 16, otherwise it must stand on the current hand.

249
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

FIGURE 7.11

Swapping two
cards in the deck

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 249

When the game is over, the winner is declared using a Label control. The player’s
balance is updated and the Command Button caption is reset for another hand.

The start of a new hand triggers a sub procedure that resets the necessary vari-
ables and controls, such as the Image controls and the scores. With the start of
each hand the number of cards left in the simulated deck will be checked, and if
there are fewer than 10 the deck will be reshuffled and the additional variable
representing the place in the deck is reset to 0.

A couple of additional items not really necessary for the game will be added to
enhance the player’s experience. Sounds simulating the shuffling and drawing
of cards will be added at the proper time. A ComboBox control will be used to
keep track of the number and value of cards already played from the deck in case
the player wants to practice card counting skills. The ComboBox control will be
updated with the drawing of each card and reset when the deck is re-shuffled.
Finally, the result of each hand (the player’s and computer’s score and the cur-
rent balance) will be output to the active worksheet.

Adding the Code

Most of the code is contained within the form module for the UserForm repre-
senting the card table (frmTable). Additional procedures will be held within the
formmodule of the UserForm displayed when the deck is reshuffled (frmShuffle).
A standard module contains the API call for the sound along with the procedures
used to play the sound files and the public procedure that can be used to show
the UserForm from the Excel application.

The code contained in the form module for the UserForm named frmTable is
listed first. Several module-level variables are used to hold the images of the
cards and to keep track of the current place in the deck, the dealer’s hidden card,
the number of dealer and player hits (cannot exceed 3), and the scores of each
card in the dealer’s and player’s hands.

Option Explicit

Dim theDeck(51) As Image

Dim numCard As Integer

Dim hiddenCard As Integer

Dim numPlayerHits As Integer

Dim numDlrHits As Integer

Dim dlrScores(4) As Integer

Dim plyrScores(4) As Integer

250
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 250

The Command Button control named cmdDeal has three functions identified by
three captions (“Begin”, “Deal”, and “Stand”) and basically controls the flow of
the game. The procedure-level variables filePath1 and filePath hold the strings
that specify the path to the card images and the sound files, respectively. The
variables playerBet and numDecks hold the values selected in the two ComboBox
controls named cmbBet and cmbNumDecks.

Private Sub cmdDeal_Click()

Dim filePath1 As String

Dim filePath As String

filePath1 = ActiveWorkbook.Path & “\Cards\”

filePath = ActiveWorkbook.Path & “\Sounds\”

A new hand will begin if the Caption property of cmdDeal reads “Deal”. A call to the
sub procedure ResetVariables() is used to reset several variables and controls on
the UserForm between hands. The module-level variable numCard represents the
location of the next draw in the deck. If the value of numCard is within ten cards
from the end of the deck, then the deck is reshuffled by displaying the UserForm
frmShuffle. After the deck is shuffled, the sub procedure InitForm() is used to
reset controls on the UserForm that must be reset between shuffles of the deck.

If cmdDeal.Caption = “Deal” Then

ResetVariables

If (numCard >= UBound(shuffledDeck) - 10) Then

numCard = 0

frmShuffle.Show

InitForm

End If

The variable hiddenCard holds the reference to the dealer’s card not immediately
displayed to the player. Next, four cards are drawn from the deck (two each to the
dealer and the player) and their values stored in the variable arrays dlrScores and
plyrScores. The value of numCard is incremented with each draw and the appro-
priate card images are loaded into the Picture property of the Image controls.
The value of the card is also counted and the list of cards in cmbCardsPlayed is
updated with a call to the ListValue() sub procedure. A sound file is played with
each draw from the deck, using the same techniques covered in the previous
chapter. A small delay is also added between draws from the deck to give the
sound file time to play. Finally, the player’s score is calculated with a call to the
sub procedure CalcScore().

hiddenCard = numCard

dlrScores(0) = cardValues(numCard)

251
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 251

imgDlr1.Picture = LoadPicture(filePath1 & “Back.bmp”)

PlayWav (filePath & “\draw.wav”)

Call Delay(Timer, 0.5)

numCard = numCard + 1

imgDlr2.Picture = theDeck(shuffledDeck(numCard)).Picture

dlrScores(1) = cardValues(numCard)

ListValue (cardValues(numCard))

PlayWav (filePath & “\draw.wav”)

Call Delay(Timer, 0.5)

numCard = numCard + 1

imgPlayer1.Picture = theDeck(shuffledDeck(numCard)).Picture

plyrScores(0) = cardValues(numCard)

ListValue (cardValues(numCard))

PlayWav (filePath & “\draw.wav”)

Call Delay(Timer, 0.5)

numCard = numCard + 1

imgPlayer2.Picture = theDeck(shuffledDeck(numCard)).Picture

plyrScores(1) = cardValues(numCard)

ListValue (cardValues(numCard))

CalcScore (“Plyr”)

PlayWav (filePath & “\draw.wav”)

numCard = numCard + 1

The Caption property of cmdDeal is changed to “Stand”, and the Command Button
control cmdHit is enabled. Figure 7.12 shows these controls immediately after a
new hand is dealt.

cmdDeal.Caption = “Stand”

cmdHit.Enabled = True

252
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.12

The Blackjack
UserForm after a
new hand is dealt

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 252

The Caption property of cmdDeal is set to “Begin” at design time, so this will be the
caption when the UserForm is first shown (see Figure 7.10). When the player clicks
this Command Button several sub procedures are called that serve to initialize
variables and controls, load the images of the deck into an image array, and shuf-
fle the deck. This section of the If/Then code structure will run only when the
game is first started as the Caption property of cmdDeal is set to “Deal” at the end.

ElseIf cmdDeal.Caption = “Begin” Then

Range(“A:B”).Font.Bold = False

InitCombos

InitForm

LoadDeck

frmShuffle.Show

cmdDeal.Caption = “Deal”

Else

The last block of code in the If/Then code structure will be triggered when the
Caption property of cmdDeal reads “Stand”. When this block of code is triggered,
the ability of the player to take another draw from the deck is disabled (see the
Command Button in Figure 7.1), the dealer’s hidden card is displayed, and the
score is calculated. The dealer’s turn at drawing cards is then taken and the game
ends with calls to the DealerDraw() and GameOver() sub procedures.

cmdHit.Enabled = False

imgDlr1.Picture = theDeck(shuffledDeck(hiddenCard)).Picture

ListValue (dlrScores(0))

CalcScore (“Dlr”)

DealerDraw

GameOver

End If

End Sub

The InitForm() and IntiCombos sub procedures are used to initialize some of the
controls on the UserForm. The InitForm() sub procedure must be called after
every shuffle. The InitCombos() sub procedure need only be called when the game
begins.

The InitForm() sub procedure initializes the ComboBox control named cmbCards-
Played.

Private Sub InitForm()

Dim I As Integer

lblResult.Caption = “”

253
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 253

lblDlrScore.Caption = “0”

lblPlyrScore.Caption = “0”

Items listed in a ComboBox or ListBox control must be added in code. First, the con-
tents of the ComboBox controls are cleared before the desired values are added.

cmbCardsPlayed.Clear

cmbCardsPlayed.AddItem (“Aces”)

cmbCardsPlayed.AddItem (“10’s”)

cmbCardsPlayed.AddItem (“9’s”)

cmbCardsPlayed.AddItem (“8’s”)

cmbCardsPlayed.AddItem (“7’s”)

cmbCardsPlayed.AddItem (“6’s”)

cmbCardsPlayed.AddItem (“5’s”)

cmbCardsPlayed.AddItem (“4’s”)

cmbCardsPlayed.AddItem (“3’s”)

cmbCardsPlayed.AddItem (“2’s”)

The ColumnCount property of the ComboBox control used to count the cards
played during the game (cmbCardsPlayed) was set to 2 at design time. The List
property is used to access the second column in the list. The List property takes
two integer parameters used to specify the row and column in the list. Indices for
the row and column parameters begin with zero. A For/Next loop is used to set
all the values of the second column (index value of 1) in cmbCardsPlayed to zero.

For I = 0 To 9

cmbCardsPlayed.List(I, 1) = “0”

Next I

End Sub

The only call to the InitCombos() sub procedure is when the game first begins.
However, this code cannot be placed in the Activate() event procedure of the
UserForm because this event procedure is called every time the UserForm is
made active. With the use of another UserForm for signaling to the player when
the deck is being shuffled, the Activate() event procedure of frmTable will be
called after each shuffling of the deck (when the UserForm frmTable is again
made active). If the following code is run at an inappropriate time the program
could crash, because this code will reset the Value properties of the ComboBox
controls. The Value properties of these ComboBox controls are used later in the
program and must contain data.

Private Sub InitCombos()

cmbNumDecks.Clear

254
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 254

cmbNumDecks.AddItem (“1”)

cmbNumDecks.AddItem (“2”)

cmbNumDecks.AddItem (“3”)

cmbBet.Clear

cmbBet.AddItem (“$2”)

cmbBet.AddItem (“$5”)

cmbBet.AddItem (“$10”)

cmbBet.AddItem (“$25”)

cmbBet.AddItem (“$50”)

cmbBet.AddItem (“$100”)

End Sub

The LoadDeck() sub procedure loads the 52 images representing the deck into an
image variable array. The value of these cards is loaded into another array called
theValues.

Private Sub LoadDeck()

Dim I As Integer

Dim K As Integer

Dim imagePath As String

Dim cardStr As String

The variable array theDeck is module-level. Each element of the array must be
assigned an object reference using the Set statement, as the image data type is a
specific form of the object data type.

For I = 0 To 51

Set theDeck(I) = New Image

Next I

imagePath = ActiveWorkbook.Path + “\Cards\”

The image files are conveniently named (for example, 1Clubs.bmp, 2Clubs.bmp,
etc.) so a nested For/Next loop can be used to load the images and assign the value
of the card to the variable arrays theDeck and theValues. These nested For/Next
loops load the images in order from ace to king starting with clubs, then hearts,
spades, and diamonds.

For K = 0 To 3

For I = 0 To 12

If (K = 0) Then cardStr = (I + 1) & “Clubs.bmp”

If (K = 1) Then cardStr = (I + 1) & “Hearts.bmp”

If (K = 2) Then cardStr = (I + 1) & “Spades.bmp”

If (K = 3) Then cardStr = (I + 1) & “Diamonds.bmp”

255
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 255

theDeck(I + 13* K).Picture = LoadPicture(imagePath & cardStr)

If (I + 1) < 10 Then

theValues(I + 13* K) = I + 1

Else

theValues(I + 13* K) = 10

End If

Next I

Next K

End Sub

The ResetVariables() sub procedure is called from the Click() event procedure
listed immediately above when its caption reads “Deal”. The function of this pro-
cedure is to reset several variables and controls between hands. Multiple hands
are played from a single shuffling of the deck, so not all the variables and con-
trols need to be reset.

Private Sub ResetVariables()

Dim I As Integer

The most interesting part of this procedure is how the images are removed from
the Image controls. First a variable is declared of type control, then a For/Each
loop is used to iterate through each control contained within the Controls col-
lection. The Controls collection is made up of all the controls contained in the
UserForm frmTable, because the name of the UserForm is used to qualify the col-
lection for the looping code structure. This is identical to previous methods in
which we used For/Each loops to iterate through each cell in a collection of Cells
(Range object). As the loop iterates through each control on the form, the Name
property of each control is tested to see if it begins with “img”. Because the only
controls on the form whose Name property begins with “img” are Image controls,
it is relatively simple to remove the images from these controls by passing an
empty string to the LoadPicture function.

Dim imgCtrl As Control

For Each imgCtrl In frmTable.Controls

If Left(imgCtrl.Name, 3) = “img” Then

imgCtrl.Picture = LoadPicture(“”)

End If

Next

The variables numPlayerHits and numDlrHits keep track of the number of draws
made from the deck in each hand and must be reset to zero. The arrays used to
hold the values of the cards in the dealer’s and player’s hands (dlrScores and
plyrScores) must also be reset to zero.

256
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 256

numPlayerHits = 0

numDlrHits = 0

lblDlrScore.Caption = “0”

lblResult.Caption = “”

For I = 0 To 4

dlrScores(I) = 0

plyrScores(I) = 0

Next I

The ComboBox control used for selecting the amount to bet must be disabled to
prevent the player from betting after drawing cards.

cmbBet.Enabled = False

End Sub

When the Command Button control cmdHit is enabled, the player has the choice
of selecting another card from the deck. The code that handles the drawing of
another card by the player is contained in the Click() event procedure of cmdHit.

Private Sub cmdHit_Click()

Dim filePath As String

filePath = ActiveWorkbook.Path

PlayWav (filePath & “\Sounds\draw.wav”)

numPlayerHits = numPlayerHits + 1

After a sound file is played, the image of the drawn card is displayed by using the
integer array shuffledDeck that is used to hold an index value between 0 and 51.
This value is then used as the index for the image array, theDeck. A maximum of
three hits is allowed to each player.

If (numPlayerHits = 1) Then imgPlayer3.Picture =

theDeck(shuffledDeck(numCard)).Picture

If (numPlayerHits = 2) Then imgPlayer4.Picture =

theDeck(shuffledDeck(numCard)).Picture

If (numPlayerHits = 3) Then imgPlayer5.Picture =

theDeck(shuffledDeck(numCard)).Picture

The array that stores the values of the player’s cards (plyrScores) is updated along
with the card count before the score is calculated and the variable numCard is
incremented.

plyrScores(numPlayerHits + 1) = cardValues(numCard)

ListValue (cardValues(numCard))

CalcScore (“Plyr”)

numCard = numCard + 1

257
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 257

If the player has drawn the maximum three cards, then the game is turned over
to the computer. If the player’s score exceeds 21 then the game is over.

If numPlayerHits > 2 Then

cmdHit.Enabled = False

CalcScore (“Dlr”)

End If

If lblPlyrScore.Caption > 21 Then

imgDlr1.Picture = theDeck(shuffledDeck(hiddenCard)).Picture

CalcScore (“Dlr”)

GameOver

End If

End Sub

The DealerDraw() sub procedure is called from the Click() event procedure of
cmdDeal when its Caption property reads “Stand”. The DealerDraw() sub procedure
serves the same purpose as the Click() event procedure for cmdHit and uses much
of the same code. This procedure forces the computer to hit on any score less
than 16 and stand on scores 16 or greater.

Private Sub DealerDraw()

Dim filePath As String

filePath = ActiveWorkbook.Path

A Do-Loop is used to iterate through draws by the computer while the score of its
hand is less than 16. After the third draw, the procedure is exited and returned
to the Click() event procedure of cmdDeal, where the game will end.

Do While (lblDlrScore.Caption < 16)

If (numDlrHits = 3) Then Exit Sub

numDlrHits = numDlrHits + 1

If (numDlrHits = 1) Then imgDlr3.Picture =

theDeck(shuffledDeck(numCard)).Picture

If (numDlrHits = 2) Then imgDlr4.Picture =

theDeck(shuffledDeck(numCard)).Picture

If (numDlrHits = 3) Then imgDlr5.Picture =

theDeck(shuffledDeck(numCard)).Picture

PlayWav (filePath & “\Sounds\draw.wav”)

Call Delay(Timer, 0.5)

dlrScores(numDlrHits + 1) = cardValues(numCard)

ListValue (cardValues(numCard))

CalcScore (“Dlr”)

numCard = numCard + 1

258
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 258

TE
AM
FL
Y

Team-Fly®

Loop

End Sub

The CalcScore() sub procedure is called after each draw of a card from the player
and the computer. This procedure takes a string parameter used to indicate
which players’ score is to be calculated.

Private Sub CalcScore(player As String)

Dim I As Integer

Dim numAces As Integer

Dim score As Integer

The values of the cards in each hand are stored in variable arrays (dlrScores and
plyrScores) as the cards are drawn from the deck. This makes it very simple to cal-
culate the score by summing the values in these arrays. Aces are stored with the
value one and require special treatment.

If player = “Dlr” Then

For I = 0 To 4

score = score + dlrScores(I)

If dlrScores(I) = 1 Then numAces = numAces + 1

Next I

If there are aces held in the hand, then they are counted as 11 as long as the total
score is less than 22; otherwise their value remains at 1. This is accomplished by
first adding an additional value of 10 to the score for each ace (remember that
the value 1 has already been counted for each ace). Second, a For/Next loop is
used to remove 10 points from the score for each ace that keeps the total score
over 21. Thus, if a hand has two or more aces in it, the values of these aces may
be a mix of 1 and 11 depending on the total score of the hand.

If (numAces > 0) Then

score = score + 10 * numAces

For I = 1 To numAces

If (score > 21) Then score = score - 10

Next I

End If

lblDlrScore.Caption = score

Else

An identical process is used to calculate the player’s score.

For I = 0 To 4

score = score + plyrScores(I)

259
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 259

If plyrScores(I) = 1 Then numAces = numAces + 1

Next I

If (numAces > 0) Then

score = score + 10 * numAces

For I = 1 To numAces

If (score > 21) Then score = score - 10

Next I

End If

lblPlyrScore.Caption = score

End If

End Sub

The GameOver() sub procedure is called from the Click() event procedures of cmdHit
and cmdDeal and is used to update the UserForm just before the game ends.

Private Sub GameOver()

Dim earningsLength As Integer

Dim betLength As Integer

earningsLength = Len(lblEarnings.Caption)

betLength = Len(cmbBet.Value)

If the scores of both hands are equivalent, then the game is a tie and the Caption
property of lblResult is updated.

If (lblDlrScore = lblPlyrScore) Then

lblResult.Caption = “Push”

End If

If the player’s score is higher and does not exceed 21, or the computer’s score
exceeds 21, then the player wins the hand. The Caption properties of lblResult
and lblEarnings are updated.

If ((Val(lblDlrScore.Caption) < Val(lblPlyrScore.Caption)) _

And (Val(lblPlyrScore.Caption) < 22)) Or _

((Val(lblPlyrScore.Caption) < 22) And (Val(lblDlrScore.Caption) >

21)) Then

lblResult.Caption = “You Win!”

lblEarnings.Caption = “$” & Val(Right(lblEarnings.Caption,

earningsLength - 1)) + Val(Right(cmbBet.Value, betLength - 1))

End If

Another If/Then decision structure tests for a computer win and updates the
Caption properties of lblResult and lblEarnings accordingly.

260
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 260

If ((Val(lblDlrScore.Caption) > Val(lblPlyrScore.Caption)) And

(Val(lblDlrScore.Caption) < 22) _

Or (Val(lblDlrScore.Caption) < 22) And (Val(lblPlyrScore.Caption) >

21)) Then

lblResult.Caption = “Dealer Wins!”

lblEarnings.Caption = “$” & Val(Right(lblEarnings.Caption,

earningsLength - 1)) - Val(Right(cmbBet.Value, betLength - 1))

End If

The rest of the procedure formats some of the controls on the UserForm to select
the color of the dollar amount displayed in lblEarnings, and gets the UserForm
ready for the next hand.

earningsLength = Len(lblEarnings.Caption)

If Val(Right(lblEarnings.Caption, earningsLength - 1)) < 0 Then

lblEarnings.ForeColor = RGB(255, 0, 0)

Else

lblEarnings.ForeColor = RGB(0, 255, 255)

End If

WorksheetOutput

cmdHit.Enabled = False

cmdDeal.Caption = “Deal”

cmbBet.Enabled = True

End Sub

The ListValue() sub procedure is called whenever a card is drawn by the player
or the computer and is used to update the ComboBox control that keeps track of
the cards that have been played from the deck. The value of the drawn card is
passed to this procedure and a Select/Case decision structure uses this passed
parameter (cardValue) to make short work of the problem. The List property of
the ComboBox control is used to update the current value of the second column
(index value of 1) displayed.

Private Sub ListValue(cardValue As Integer)

Select Case cardValue

Case 1

cmbCardsPlayed.List(0, 1) = cmbCardsPlayed.List(0, 1) + 1

Case 11

cmbCardsPlayed.List(0, 1) = cmbCardsPlayed.List(0, 1) + 1

Case 10

cmbCardsPlayed.List(1, 1) = cmbCardsPlayed.List(1, 1) + 1

Case 9

261
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 261

cmbCardsPlayed.List(2, 1) = cmbCardsPlayed.List(2, 1) + 1

Case 8

cmbCardsPlayed.List(3, 1) = cmbCardsPlayed.List(3, 1) + 1

Case 7

cmbCardsPlayed.List(4, 1) = cmbCardsPlayed.List(4, 1) + 1

Case 6

cmbCardsPlayed.List(5, 1) = cmbCardsPlayed.List(5, 1) + 1

Case 5

cmbCardsPlayed.List(6, 1) = cmbCardsPlayed.List(6, 1) + 1

Case 4

cmbCardsPlayed.List(7, 1) = cmbCardsPlayed.List(7, 1) + 1

Case 3

cmbCardsPlayed.List(8, 1) = cmbCardsPlayed.List(8, 1) + 1

Case 2

cmbCardsPlayed.List(9, 1) = cmbCardsPlayed.List(9, 1) + 1

End Select

End Sub

Figure 7.13 shows the UserForm frmTable after one hand has been played. The
ComboBox control cmbCardsPlayed shows the list of cards played thus far from the
deck. The first column labels the cards and the second column represents the
number of times a card with the specified value has been played from the current
deck. The value of the second column is updated in the ListValue() sub proce-
dure. Since only one hand has been played, the ComboBox lists two cards played
with a face value of 10 (jack of diamonds and king of clubs) and one card each
with face values of 7 and 8. As more hands are played the list will be updated until
the deck is reshuffled and the numbers in the second column are reset to 0.

262
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.13

The Blackjack
game listing the

played cards

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 262

One of the last sub procedures in the form module for the UserForm frmTable
outputs the result of each hand to a worksheet.

Private Sub WorksheetOutput()

Dim c As Range

Dim nextRow As Integer

A For/Each loop is used to find the first empty cell, a technique previously dis-
cussed in Chapter 5. The Row property of the Range object returns an integer
value stored in the variable nextRow that represents the next available row in the
worksheet.

For Each c In Range(“A:A”)

If c.Value = “” Then

nextRow = c.Row

Exit For

End If

Next

Next, the scores for the computer and player are output to the worksheet and for-
matted before the player’s current balance is copied to column C of the worksheet.

Range(“A” & nextRow).Value = lblDlrScore.Caption

Range(“B” & nextRow).Value = lblPlyrScore.Caption

Range(“C” & nextRow).Value = lblEarnings.Caption

If lblResult.Caption = “Dealer Wins!” Then

Range(“A” & nextRow).Font.Bold = True

ElseIf lblResult.Caption = “You Win!” Then

Range(“B” & nextRow).Font.Bold = True

End If

Range(“C” & nextRow).Font.Color = lblEarnings.ForeColor

End Sub

Finally, the QueryClose() event procedure is used to remove the UserForms from
system memory when the player exits the program.

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Unload frmTable

Unload frmShuffle

End Sub

The form module for the UserForm named frmShuffle uses the Activate() event
procedure of the UserForm to hold the code that simulates the shuffling of the
deck. Figure 7.14 shows what the game looks like when the UserForm frmShuffle

263
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 263

appears. This UserForm is programmed to be displayed for at least one second,
and is added to send the player a message that the deck is being shuffled.

Option Explicit

Private Sub UserForm_Activate()

Dim I As Integer

Dim K As Integer

Dim tempInt As Integer

Dim tempInt2 As Integer

Dim ranNum As Integer

Dim filePath As String

Dim curTime As Single

Randomize

filePath = ActiveWorkbook.Path

The dynamic variable arrays cardValues and shuffledDeck are of global scope and
are re-dimensioned to the size of the deck chosen by the player with the ComboBox
control named cmbNumDecks.

ReDim cardValues(52 * frmTable.cmbNumDecks.Value - 1)

curTime = Timer

ReDim shuffledDeck(52 * frmTable.cmbNumDecks.Value - 1)

The variable array shuffledDeck holds integer values between 0 and 51 repre-
senting the index number of a card stored in the image array theDeck. The
sequence of numbers 0 through 51 is repeated for the number of decks chosen
by the player. For example, if there are three decks the sequence 0 through 51 is
repeated in the array shuffledDeck three times. Likewise, the values of the cards
are copied to the array cardValues repetitively using the nested For/Next loops
that follow.

264
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.14

The Blackjack
game during

card reshuffling

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 264

For K = 0 To frmTable.cmbNumDecks.Value - 1

For I = 0 To 51

shuffledDeck(I + K * 52) = I

cardValues(I + K * 52) = theValues(I)

Next I

Next K

PlayWav (filePath & “\Sounds\shuffle.wav”)

The shuffledDeck and cardValues arrays that were just redimensioned and initial-
ized will now be shuffled using nested For/Next loops. The choice for the upper
limit of the outer looping variable is subjective. With more iterations through the
outer loop the deck will become more randomized. However, if the loop uses too
many iterations it may take a considerable amount of time (this is highly depen-
dent on the machine on which the code runs) and annoy the player.

For K = 1 To 50

The inner loop does the shuffling by swapping two values in both the shuffledDeck
and cardValues arrays with each iteration (see Figure 7.11). A random number is
used to determine the element in the array that will be swapped. It is important to
note that the same random number is used to swap values in both arrays. This
ensures that the value of the card can be determined by accessing the cardValues
array with the same index value used to access the shuffledDeck array.

For I = 0 To UBound(shuffledDeck)

ranNum = Int(Rnd * UBound(shuffledDeck))

tempInt = shuffledDeck(I)

tempInt2 = cardValues(I)

shuffledDeck(I) = shuffledDeck(ranNum)

cardValues(I) = cardValues(ranNum)

shuffledDeck(ranNum) = tempInt

cardValues(ranNum) = tempInt2

Next I

Next K

A delay of one second is used in case the preceding For/Next loops run too fast and
the player never sees the UserForm appear and disappear. The variable curTime
was initialized before the For/Next loops, so there is no additional delay if the
loops take more than one second to run.

Call Delay(curTime, 1)

frmShuffle.Hide

End Sub

265
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 265

A standard module is used to hold the public procedures for playing sound files
and the API declarations. The three arrays shuffledDeck, cardValues, and theValues
are global because they must be accessed in both form modules.

Option Explicit

Public shuffledDeck() As Integer

Public theValues(51) As Integer

Public cardValues() As Integer

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

The public procedure Blackjack() gives access to the frmTable UserForm from the
Excel application. The Blackjack() sub procedure can be accessed via the Macro
selection on the Tools menu or through an event procedure of an ActiveX control
(for example, the Click() event of a Command Button) placed on a worksheet. You
will find a Button control on the Forms toolbar on a worksheet in the CD-ROM’s
Blackjack.xls project.

Public Sub Blackjack()

frmTable.Show

End Sub

The last two procedures listed (PlayWav() and Delay()) were discussed in detail in
Chapter 6. They are used to play sound files via the Windows API and to delay pro-
gram execution by a specified number of seconds.

Public Sub PlayWav(WavFile As String)

If Application.CanPlaySounds = False Or Dir(WavFile) = “” Then

Exit Sub

End If

sndPlaySoundA WavFile, 1

End Sub

Public Sub Delay(curTime As Single, pauseTime As Single)

Do While Timer < pauseTime + curTime

DoEvents

Loop

End Sub

That’s it for the Blackjack program. Take the code, play with it, change it, add to it,
learn from it, and enjoy. If you are having trouble, then focus on just a small piece
of the program until you figure it out before moving on to the next problem.

266
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 266

Chapter Summary

This chapter introduced VBA UserForms and a few new ActiveX controls. Specifi-
cally, you learned how to add UserForms to a VBA project and show them in a pro-
gram. This chapter discussed adding ActiveX controls to a UserForm, including
the Frame, ComboBox, and ListBox controls, and how to use the code window of
a UserForm. The use of modal and modeless UserForms was also discussed.

267
C

h
a

p
te

r
7

U
s

e
r
F
o

r
m

s
a

n
d

A
d

d
i ti o

n
a

l
C

o
n

t r
o

ls

CHALLENGES

1. Add a modeless UserForm (ShowModal property) to a VBA project, then use

the Click() event procedures of two Command Button controls placed on

an Excel worksheet to show and hide the UserForm.

2. Add a TextBox control to the UserForm created in the previous challenge

that displays the range selected on the active Excel worksheet. Show the

UserForm as modeless (Office 2000 or later) so the user can select a new

range on the worksheet. Update the range displayed in the TextBox control

via the Click() event procedure of a Command Button control placed on

the UserForm.

3. Create a UserForm that contains a ListBox control. Use the AddItem method

of the ListBox control to display the contents of column A of the active

worksheet in the ListBox. Hint: A For/Each loop in the Activate() event

procedure of the UserForm will work well.

4. Add a Command Button control to the UserForm from the previous chal-

lenge and change the MultiSelect property of the ListBox control to allow

multiple selections. Add code to the Click() event procedure of the Com-

mand Button control that will copy the selected values of the ListBox con-

trol to column B of the worksheet. Hint: Use the Selected property of the

ListBox control to return an array of Boolean values that can be used to

determine which items displayed in the control have been selected by the

user. The ListCount and List properties of the ListBox control used with a

For/Next loop can return the values if the Selected property is true.

5. Alter the Blackjack game to display the used cards on an Excel worksheet.

6. Alter the Blackjack game such that the program knows when the player or

dealer get blackjack (21 with first two cards) so the player does not have to

select Stand and the hand immediately ends.

7. Alter the Blackjack game to display the used cards on another UserForm

that can be toggled on and off (Show and Hide methods) from a Command

Button control on the UserForm frmTable.

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 267

07 XLVBA CH07.qxd 2/25/03 7:31 AM Page 268

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

T
he ability to read and write data to a computer’s disk

drives is fundamental to most programming lan-

guages. This chapter examines the different tools

available in VBA and Excel that allow the programmer to read

and write data to a disk. Additional tools used for error han-

dling and debugging your VBA programs are also discussed.

This chapter discusses:

• File input and output (I/O)

• Error handling

• Debugging

• Chapter project: Word Find

Data Access,
File I/O, Error
Handling, and

Debugging

8
C H A P T E R

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 269

Project: Word Find

The Word Find program allows the user to enter lists of words associated with
various topics into a simple database. The program can also access this database
to create word find puzzles that can be for the user’s enjoyment. The program is
shown in Figure 8.1.

File Input and Output (I/O)

VBA includes several objects, methods, and functions that can be used for file I/O.
You have probably surmised that one possibility for file I/O involves the Work-
book object and its methods for saving and opening files. However, there are
other tools available in VBA, some of which will be discussed in this chapter.

When a VBA application requires file I/O, it often involves a relatively small
amount of data stored in program variables and not in a worksheet or document.
With Excel, the programmer has the choice of copying the data to a worksheet
so the user can save the data in the usual way (File/Save menu item) or saving the
content of the variables directly to a file. It is often more convenient to simply
write the data directly to a file on the hard drive so the user does not have to be
concerned with the task. In fact, it may be undesirable to give the user access to
the data, as he or she might alter it before saving. In this case, reading and writ-
ing simple text files within the program code offers an attractive solution.

270
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.1

The Word Find
program

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 270

Using VBA File I/O Methods

The file I/O methods discussed in this chapter are not associated with any VBA or
Excel objects, although such methods do exist. The Excel object library contains
several file I/O methods found with the Application and Workbook objects. Also,
VBA includes several I/O objects, such as the FileSystem and FileSystemObject
objects, the TextStream object, and the Drive object (among other associated
objects and methods). These objects are conceptually somewhat more difficult to
use than what will be discussed in this chapter. Coupled with the sheer number
of objects involved and space limitations in this book, their use is left up to you
as an exercise.

271
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

IN THE REAL WORLD

There are many types of files stored on a computer’s hard drive including oper-

ating system files (for example, Windows or Macintosh files used to handle spe-

cific tasks performed by the OS), image files, and Excel files. Most of these files

are created by specific applications and are therefore proprietary. Proprietary

files should only be accessed by the applications from which they were created.

In Windows, proprietary files have unique file extensions such as .doc, .xls, and

.xcf, to name just a few. The file extensions are used by the operating system to

identify the application that created the file.

A proprietary file (such as one created by Excel) contains not only the textual

and numerical information entered by the user, but also content that the appli-

cation uses to specify formatting options selected by the user (bold, font size

and type, and so on) as well as any nontextual information entered by the user

(for example, images, and charts). The methods used to write all this additional

information to the file are specific to the application, and therefore can only be

opened by the application that originally created the file.

Access Type Writing Data Reading Data

Sequential Print#, Write# Input#, Input

Random Put Get

TABLE 8.1 FILE ACCESS MODES WITH VBA

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 271

The Open Statement

The Open statement is used to read or write data to a file. Table 8.1 summarizes
the type of access, and modes or functions available for reading and writing data
to a file with VBA.

There is also a Binary access type for reading and writing to any byte position in
a file as might be done with an image. However, this technique is beyond the
scope of this book.

The Open statement requires several arguments, including a string used to desig-
nate the path to a specified file. If the file does not exist, then one will be cre-
ated. The Open statement also requires an access mode (Append, Binary, Input,
Output, or Random) and a file number. Optional parameters include an access para-
meter (Read, Write, or Read Write), lock (used to restrict operations on the file from
other programs), and record length (specifies the length of the buffer or record).

Open “c:\data\Test.txt” For Input As #1

The preceding line opens a file named Test.txt, found at the path “c:\data\” for
input, and assigns the file to the file number 1. If the file is not found, then one
will be created at the designated location with the name Test.txt.

Multiple files can be opened in a VBA program, but they must be assigned
a unique file number.

Sequential Access Files

Writing information to a sequential access file is sort of like recording music to
a cassette tape. The songs vary in length and are recorded one after the other.
Because it is hard to know the location of each song on the tape, it is difficult to
quickly access a particular song. When information is written to a sequential file,
the individual pieces of data (usually stored in variables) vary in length and are
written to the file one after the other. For example, a sequential file containing
names and phone numbers may look something like what’s shown here:

“John Smith”, “111-2222”

“Joe James”, “123-4567”

“Jane Johnson”, “456-7890”

272
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 272

The names and phone numbers were all written to the file as strings so they are
enclosed in quotes. Numerical values written to a sequential access file will not
contain the quotes. The strings containing the names vary in length and will
require different amounts of memory for storage. If access to a part of the
sequential file is desired at a later time (say we want Jane Johnson’s phone num-
ber), the entire file must be read into memory because it is not possible to know
the location of the desired component within the file. After loading the file, the
content must be searched for the desired value. This makes sequential access
inefficient with very large files, because it will take too long to access the desired
information. However, with smaller files that do not take long to read, sequen-
tial access will work well. A VBA sub procedure used to write textual information
to a sequential access file is listed here.

Public Sub CreateSeqFile()

Dim filePath As String

Dim I As Integer

filePath = ActiveWorkbook.Path & “\SeqPhone.txt”

Open filePath For Output As #1

For I = 1 To 3

Write #1, Cells(I, “A”).Value, Cells(I, “B”).Value

Next I

Close #1

End Sub

The preceding procedure uses a For/Next loop to write the contents of the first
three cells of columns A and B to a file called SeqPhone.txt. The I/O operation is
terminated with the Close statement. The resulting file as viewed from Notepad
is shown in Figure 8.2.

Using Write # places quotes around each string value written to the file. The file
contains three lines of data because Write # adds a new line character to the end
of the last value written to the file; because the For/Next loop iterates three times,
the Write # statement was executed three times, resulting in three lines of data.

Because the structure of the file is known, it is a simple task to alter the previous
procedure to create a new procedure that reads the data.

273
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.2

Using Notepad to
view a sequential
file created using

VBA code

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 273

Public Sub ReadSeqFile()

Dim filePath As String

Dim I As Integer

Dim theName As String

Dim theNumber As String

I = 1

filePath = ActiveWorkbook.Path & “\SeqPhone.txt”

Open filePath For Input As #1

Do While Not EOF(1)

Input #1, theName, theNumber

Cells(I, “A”).Value = theName

Cells(I, “B”).Value = theNumber

I = I + 1

Loop

Close #1

End Sub

The Open statement in the preceding procedure was changed to allow for data
input, and Input # replaces Write #. A Do-Loop replaces the For/Next loop and uses
the EOF() function in the conditional. The EOF() function accepts the file num-
ber as an argument and returns true when the end of the file is reached. There-
fore, the loop continues as long as the EOF() function returns false (Do While NOT
False equates to Do While True). Variables must be used to hold the strings
returned from the file. Two variables (theName and theNumber) are used to match
the structure of the procedure that wrote the data to the file.

Random Access Files

Random access files allow the programmer to access specific values within the
file without having to load the entire file into memory. This is accomplished by
ensuring that the individual data elements are of the same length before writing
to the file. Again, consider the example of a phone book. Instead of storing the
information as variable-length strings, the name and phone number can be
stored with fixed length strings. The combination of the two fixed length strings
that follow require the same amount of memory for every line written to the file.
This makes it easy to locate a particular line in the file when the data is input.

Dim theName As String*20

Dim theNumber As String*8

If the name to be stored is fewer than 20 characters, then spaces are added to
match the defined length. If the string exceeds 20 characters, only the first 20
characters of the string are stored. Therefore, it is important to define the length

274
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 274

of the string so that it will be long enough to contain any possible value, yet not
so long that too much memory is wasted by saving lots of spaces. The resulting
data file might then look something like this:

“John Smith ”, “111-2222”

“Joe James ”, “123-4567”

“Jane Johnson ”, “456-7890”

Each line in the file requires the same amount of memory to store and is referred
to as a record. Records can be represented by one or more values of the same or
different data type (string, integer, and so on). Because the length of each record
is identical, finding a specific record in the file without loading the entire file
into memory is relatively easy (as you will see shortly).

Rather than declare the individual elements of a record as separate variables, it
is useful to define a new data type that can be used in a variable declaration. The
variable of the newly defined type can include all the desired elements of the
record. To define a phone record for the previous example, a user-defined data
type that includes both string elements must be declared in the general declara-
tions section of a module.

Private Type Phone

theName As String*20

theNumber As String*8

End Type

With the new data type definition, any variable can now be declared in a proce-
dure as type Phone.

Dim phoneRec As Phone

Individual elements of the phoneRec variable are accessed using the dot operator.

phoneRec.theName = “John Smith”

phoneRec.theNumber = “111-2222”

To take full advantage of the user-defined data type, writing the phoneRec vari-
able to a file should be done using random access.

Open filePath For Random As #1 Len = Len(Phone)

phoneRec.theName = “John Smith”

phoneRec.theNumber = “111-2222”

Put #1, recNum, phoneRec

Close #1

275
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 275

The length of the record is specified using the Len() function. The data is written
to the file using Put and read with Get. An integer variable indicating the record
number (recNum) must also be included with the user-defined variable in the Put
statement so VBA knows where to insert the value within the file.

The Word List program section provides a more in-depth look at using random
access files in VBA.

The Word List Program

The Word List program maintains a file containing a list of words and their asso-
ciated topics, and will be used with the Word Find program described later in this
chapter. The program can be found on the accompanying CD-ROM stored as the
Excel workbook WordList.xls. The idea is to keep a file that contains several top-
ics, and a list of words associated with each topic, for use in the creation of Word
Find puzzles. A random access file is used with each record containing two string
variables, one for the topic and another for the word. The code is contained
within a form module of a UserForm that is shown in Figure 8.3.

The UserForm contains a ComboBox control (named cmbTopics) and ListBox control
(named lstWords) to display the list of topics and associated words. The Style prop-
erty of the ComboBox control is set to drop-down list at design time. Two TextBox
controls (named txtTopic and txtWord) are available for the user to add new topics
and words to the file when a Command Button control (cmdAddRec) is selected. Finally,
a Label control is used to display the number of the current, or next available record.

The program begins with a few module-level variable declarations including a
user-defined data type.

Option Explicit

Dim recNum As Integer

Private Type WordList

topic As String * 15

word As String * 15

End Type

Dim currentTopic As Integer

Dim myWords() As String

Dim myTopics() As String

The integer variable recNum keeps track of the record number when accessing the
file used to store the word lists (Wordfind.txt). The user-defined type WordList is
built from two string variables (topic and word) that are used to hold a word from
the list and its associated topic. The variable currentTopic holds the value of the

276
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 276

ComboBox control. The dynamic variable arrays myWords and myTopics hold the
entire contents of the file for listing in the ListBox and ComboBox controls.

The Activate() event procedure is triggered when the UserForm is loaded and
shown. From this procedure, code execution proceeds through two other sub pro-
cedures before the Caption property of the Label control lblRecNum is updated
with the currently displayed or next available record.

Private Sub UserForm_Activate()

Dim myWord As WordList

GetAllRecords

GetUniqueTopics

lblRecNum.Caption = recNum

End Sub

The GetAllRecords() sub procedure is the first procedure called from the Activate()
event procedure of the UserForm. This procedure loads the records contained in the
file Wordfind.txt and copies their values to the dynamic arrays myWords and
myTopics. The required procedure-level variables include the string variable filePath
for holding the path to the file Wordfind.txt, and the user-defined type variable
myWord for holding the two values (word and topic) in each record.

Private Sub GetAllRecords ()

Dim filePath As String

Dim myWord As WordList

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

The contents of the ComboBox and ListBox controls must be cleared before they
are updated to avoid displaying the same lists of words and topics repetitively.
This has the unfortunate consequence of triggering the Change() event procedure
of the ComboBox control, which is used later in the program. Additional Boolean
variables could be added to prevent this, but as doing so is not critical, it is left
as a reader exercise.

277
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.3

The Word List
program

ComboBox control

ListBox control TextBox controls

Command Button control

Label controls

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 277

cmbTopics.Clear

lstWords.Clear

The module-level variable recNum is initialized to its lowest allowed value and the
file Wordfind.txt is opened for random access.

recNum = 1

Open filePath For Random As #1 Len = Len(myWord)

A Do-Loop effectively loads all records from the file into the dynamic variable
arrays myWords and myTopics. The variable recNum must be incremented with each
iteration through the loop to ensure that the Get statement retrieves successive
records from the file.

Do While Not EOF(1)

Get #1, recNum, myWord

ReDim Preserve myWords(recNum - 1)

myWords(recNum - 1) = myWord.word

ReDim Preserve myTopics(recNum - 1)

myTopics(recNum - 1) = myWord.topic

recNum = recNum + 1

Loop

Close #1

The preceding Do-Loop will iterate one more time than is required before the con-
dition Not EOF(1) evaluates as false, because the variable recNum is incremented
at the end of the loop. Therefore, the variable recNum is decremented by one so it
will hold the value of the next available record before code execution exits this
procedure.

recNum = recNum - 1

End Sub

After code execution returns to the Activate() event procedure of the UserForm,
the GetUniqueTopics() sub procedure is called. The purpose of this procedure is
to pick out unique values stored in the myTopics array and display them in the
ComboBox control cmbTopics.

Private Sub GetUniqueTopics()

Dim I As Integer

Dim K As Integer

Dim addTopic As Boolean

Dim uniqueTopics() As String

Another dynamic variable array is used to hold unique values stored in myTopics.

278
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 278

TE
AM
FL
Y

Team-Fly®

Obviously, the first value in the array myTopics can be added to the list of unique
topics.

ReDim uniqueTopics(0)

uniqueTopics(0) = myTopics(0)

Nested For/Next loops are used to compare the entire list of topics contained in
the array uniqueTopics to each value in the array myTopics (note the different
index variables in the inner loop). If there is even one instance of equality found
while comparing the strings, then the topic has already been added to the list
stored in uniqueTopics and should not be added again.

For I = 1 To UBound(myTopics) - 1

For K = 0 To UBound(uniqueTopics)

If myTopics(I) <> uniqueTopics(K) Then

addTopic = True

Else

addTopic = False

When an identical topic is found, the inner loop must be exited immediately to
prevent the Boolean variable addTopic from being reset to true.

Exit For

End If

Next K

With each iteration through the outer loop, the value of the Boolean variable
addTopic is checked to see if a unique topic was found.

If addTopic = True Then

ReDim Preserve uniqueTopics(UBound(uniqueTopics) + 1)

uniqueTopics(UBound(uniqueTopics)) = myTopics(I)

End If

Next I

Next, the ComboBox control cmbTopics is updated to display the list of unique
topics.

For I = 0 To UBound(uniqueTopics)

cmbTopics.AddItem uniqueTopics(I)

Next I

The ListIndex property of cmbTopics is set to the value stored in the module-level
variable currentTopic. When the program is first activated, the value of current-
Topic is zero, and therefore the Value property of cmbTopics is set to the first item

279
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 279

in its list. This is done to prevent the value displayed in the ComboBox control
from changing when a new record is added to the list and these controls are
updated. This will also trigger the Change() event procedure of cmbTopics. Finally,
the Text properties of the TextBox controls are updated.

cmbTopics.ListIndex = currentTopic

txtTopic.Text = cmbTopics.Text

txtWord.Text = “”

End Sub

The Change() event procedure of cmbTopics is triggered more often than desired,
but is useful for updating the other controls on the UserForm when the user
selects a new topic. First, the Text properties of the TextBox controls are updated
to display the new selection in cmbTopics. The sub procedure GetRecNum() is called
to update the variable recNum to the next available record (number of records in
the file plus one), and this value is copied to the Caption property of lblRecNum.
The GetWords() sub procedure is called to display the list of words associated with
the currently selected topic in the ListBox control lstWords.

Private Sub cmbTopics_Change()

txtTopic.Text = cmbTopics.Text

txtWord.Text = “”

GetRecNum

lblRecNum.Caption = recNum

GetWords

End Sub

The sub procedure GetRecNum() searches through each record in the file
Wordfind.txt until it finds the values for the word and topic that matches the
user’s selection. If there is no match, then GetRecNum() returns the number of the
next available record for storage.

Private Sub GetRecNum()

Dim filePath As String

Dim myWord As WordList

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

recNum = 1

Open filePath For Random As #1 Len = Len(myWord)

Do While Not EOF(1)

Get #1, recNum, myWord

An If/Then decision structure is used to test the values of the currently loaded
record to the Text properties of the TextBox controls. If both values match, then

280
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 280

the sub procedure is immediately exited while the variable recNum holds the
number of the currently displayed record.

If myWord.topic = txtTopic.Text And myWord.word = txtWord.Text

Then

Close #1

Exit Sub

End If

recNum = recNum + 1

Loop

Close #1

recNum = recNum - 1

End Sub

The sub procedure GetWords() is used to copy the list of words stored in the vari-
able array myWords to the ListBox control. An If/Then decision structure is used to
display just those words associated with the currently selected topic in cmbTopics.

Private Sub GetWords()

Dim I As Integer

lstWords.Clear

For I = 0 To UBound(myWords)

If myTopics(I) = cmbTopics.Value Then

lstWords.AddItem myWords(I)

End If

Next I

End Sub

The Click() event procedure of the ListBox control lstWords is triggered when-
ever the user selects an item displayed in the control. The idea here is to imme-
diately display the selected word in the TextBox control for editing. The code
updates the Text property of the TextBox control txtWord before sending code exe-
cution to the sub procedure GetRecNum(). Recall from earlier in the chapter that
GetRecNum() determines the record number of the currently displayed values in
the TextBox controls.

Private Sub lstWords_Click()

txtWord.Text = lstWords.Text

GetRecNum

lblRecNum.Caption = recNum

End Sub

281
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 281

The Click() event procedure of the Command Button control cmdAddRec either
adds a new record to the file entered by the user, or updates the existing record
displayed in the TextBox controls.

Private Sub cmdAddRec_Click()

currentTopic = cmbTopics.ListIndex

After the topic displayed in cmbTopics is copied to the module-level variable cur-
rentTopic, the procedure makes several calls to previously listed sub procedures.
The sub procedure SaveFile() writes the currently displayed record to the file
Wordfind.txt. The other procedures listed below are called to update the controls
on the UserForm to include the record that was just added or updated.

SaveFile

GetAllRecords

GetUniqueTopics

GetWords

End Sub

The SaveFile() sub procedure saves the currently displayed record to the file
Wordfind.txt. The record number is tracked throughout program execution so
that when this procedure is called, the record is written to the proper location in
the file. If the user enters a new record, then it is written to the end of the file.
If the user updates an existing record, then it is written to its original location in
the file.

Private Sub SaveFile()

Dim filePath As String

Dim myWord As WordList

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

If recNum = 0 Then recNum = 1

Open filePath For Random As #1 Len = Len(myWord)

myWord.topic = txtTopic.Text

myWord.word = txtWord.Text

Put #1, recNum, myWord

Close #1

recNum = recNum + 1

txtWord.Text = “”

txtWord.SetFocus

End Sub

Finally, the UserForm is removed from memory when the user closes it.

282
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 282

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Unload Me

End Sub

The Word List program is made available to the user in the Word Find project
listed at the end of this chapter. Not all the code will be listed again, and some of
it will be altered slightly to include error handling.

Error Handling

All programs contain errors (often called bugs). Syntax errors occur when the pro-
grammer violates the rules of the language (for example, misspelled keywords,
missing components of a code structure, or improper declaration of a variable),
preventing the program from compiling. Syntax errors are relatively easy to fix
because the VBA debugger sends you right to the source of the problem. Logic
errors occur when the code contains errors that result in improper program
behavior (for example, infinite loop or wrong variable initialization). Logic errors
do not prevent the program from compiling and executing. Therefore, logic errors
can be difficult to find. However, with proper debugging, the number of errors in
a program can be significantly reduced.

Besides syntax and logic errors, programs may contain errors that can only be
anticipated. Examples might include a divide by zero error (as seen in Chapter 7)
or a file not found error. Left unchecked, these errors will cause the program to
crash. Furthermore, errors of this type cannot be fixed by altering the logic of the
program. In situations such as these, the program requires additional error han-
dling code and procedures. Error handling code should be included whenever
the program interacts with the user or other components of the computer. Vali-
dation procedures are examples of error handling procedures and are relatively
easy to add to the code (see Chapter 4) This section focuses on special statements
and objects available in VBA for handling anticipated errors.

Using the On Error Statement

In the FormDemo project from Chapter 7, the CalcStats() sub procedure con-
tained the statement

On Error Resume Next

The On Error statement enables error handling in a VBA program. The On Error
statement must be followed with instructions to VBA for deciding a course of
action when a runtime error is encountered. The course of action to be taken
depends on the type of error anticipated.

283
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 283

The On Error statement must precede the code that is anticipated to generate
the runtime error. The On Error statement is normally placed near the beginning
of a procedure.

In the case of the CalcStats() sub procedure, a divide by zero error was anticipated
for the AVERAGE, MODE, MEDIAN, and STANDEV worksheet functions. Because the
divide by zero error will only occur under special circumstances, it was handled by
using the Resume Next clause. To inform the user of the error, the Caption proper-
ties of the Label controls meant to display the return values from these functions
were set to “N/A” for not applicable. The CalcStats() sub procedure is listed below.

Public Sub CalcStats()

Const noValue = “N/A”

‘

On Error Resume Next

If txtInput.Text = “” Then txtInput.Text = Selection.Address

lblSum.Caption =

Application.WorksheetFunction.Sum(Range(txtInput.Text))

lblCount.Caption =

Application.WorksheetFunction.Count(Range(txtInput.Text))

In anticipation of an error the Caption property of the Label control lblAverage is
set to “N/A”.

lblAverage.Caption = noValue

The next line will generate a run-time error if the Average() function tries to
divide by 0. If an error is generated, then program execution proceeds to the next
line of code and the Caption property of lblAverage remains “N/A”. If no error is
generated and the Average() function returns a value, then the Caption property
of lblAverage is updated with the desired statistical result.

lblAverage.Caption =

Format(Application.WorksheetFunction.Average(Range(txtInput.Text)), “#.##”)

lblMedian.Caption =

Application.WorksheetFunction.Median(Range(txtInput.Text))

lblMode.Caption = noValue

lblMode.Caption =

Application.WorksheetFunction.Mode(Range(txtInput.Text))

lblStanDev.Caption = noValue

lblStanDev.Caption =

Format(Application.WorksheetFunction.StDev(Range(txtInput.Text)), “#.##”)

End Sub

284
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 284

The Resume Next clause sends program execution to the next line of code following
the line that generated the error. It is the simplest solution for handling runtime
errors and works well in the case of the CalcStats() sub procedure. However, it is
not always the best solution.

When an anticipated error requires execution of a special block of code, use the
GoTo statement after On Error.

On Error GoTo ErrorHandler

The term ErrorHandler refers to a line label used to direct program execution to
the block of code specifically created for handling the runtime error. Line labels
must start at the leftmost position in the editor window and end with a colon.
The error handling code follows the line label.

The use of the GoTo statement goes all the way back to the earliest versions of
Basic and a few other programming languages. The GoTo statement is rarely
seen anymore because when overused, the order of execution of programming
statements can be very difficult to follow and results in what is termed “spaghetti
code.” Spaghetti code is very hard to debug, and for that reason the use of the
GoTo statement in VBA should be limited to error handling routines.

An illustration of the use of an error handling routine apppears in Figure 8.4.

285
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.4

Order of program
execution in a

procedure with
error handling

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 285

The figure shows the order of program execution in a sub procedure that con-
tains error handling code. The order of program execution proceeds as follows:

1. If no error is generated, the main block of code executes but program
execution exits the sub procedure before reaching the ErrorHandler.

2. An error is generated and code execution proceeds to the ErrorHandler.

3. The error is resolved in the ErrorHandler and code execution proceeds
back to the original line of code that generated the error. Then the main
block of code executes before program execution exits the sub procedure.

4. If the error is not resolved, then program execution should exit the sub
without executing the main block of code.

Now consider the ReadSeqFile() sub procedure listed earlier in the chapter. Try-
ing to open a file for sequential access will generate a runtime error if the file
cannot be found at the specified location.

Public Sub ReadSeqFile()

Dim filePath As String

Dim I As Integer

Dim theName As String

Dim theNumber As String

Dim msgReturn As Integer

The error handler must be “turned on” with the On Error statement and a refer-
ence to the line label.

On Error GoTo ErrorHandler

I = 1

filePath = ActiveWorkbook.Path & “\SeqPhone.txt”

Open filePath For Input As #1

Do While Not EOF(1)

Input #1, theName, theNumber

Cells(I, “A”).Value = theName

Cells(I, “B”).Value = theNumber

I = I + 1

Loop

Close #1

The error handling code is not a separate procedure but a block of code isolated
by the line label. Therefore, an exit statement is used near the end of the proce-
dure just before the line label to prevent the code in the error-handling block
from being executed if no error is generated.

Exit Sub

286
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 286

The error handling code follows the line label, and due to the structure of the sub
procedure, will only be executed when a runtime error occurs. In this example,
the error handling code is only one line. A message box with a description of the
error is displayed to the user. The description is obtained from the Description
property of the Err object. The Err object stores information about runtime errors
and is intrinsic to VBA. The properties of the Err object are initialized when a run-
time error occurs with an error handling routine enabled.

ErrorHandler:

msgReturn = MsgBox(filePath & “ “ & Err.Description, vbCritical, “Error”)

‘Additional error handling code

‘Resume

End Sub

Error handling routines are typically longer than the preceding example. Addi-
tional code in this example might include showing a UserForm with code and
ActiveX controls designed to display the file structure of the computer (tech-
niques that are beyond the scope of this book). The user could then navigate
through his computer’s files to find the right file. Another possibility would be
to just create the file at the specified path when the file not found error is raised.
If the error handler fixes the runtime error, then Resume can be used to send pro-
gram execution back to the line of code that generated the error.

Warning! If the error handling routine does not fix the error and contains a
Resume statement, code execution will proceed back and forth between the
error generating line of code and the error handling code, forcing drastic action
to terminate the program.

Debugging

By now, you have probably encountered numerous errors in your programs and
have struggled to correct some of them. Finding bugs in a program can be frus-
trating. Fortunately, VBA has several tools to help debug a program.

Break Mode

When a runtime error is generated while testing a program, the dialog box
shown in Figure 8.5 is displayed.

Selecting the Debug option calls up the VBA IDE and displays the program in
break mode. While in break mode, program execution is paused and can be
stepped through one line at a time to closely examine factors such as order of code

287
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 287

execution and the current values stored within variables. The line of code that
generated the error will be highlighted, as shown in Figure 8.6.

To intentionally enter break mode, insert a breakpoint at the desired location in
the program using the Debug menu item or Debug toolbar (select from the View
menu) in the VBA IDE (refer to Figure 8.6). You can also toggle a breakpoint by
clicking the left margin of the code window next to the line of code at which you
want program execution to pause, or by pressing F9.

Insert breakpoints at locations in code where bugs are suspected or known to exist
and then run the program. Break mode is entered when program execution pro-
ceeds to a line of code containing a breakpoint. At this time, you have the option
of resetting the program, stepping through the program one line at a time, or con-
tinuing normal operation of the program. While in break mode, the value cur-
rently stored in a variable can be checked by holding the cursor over the name of
that variable. Logic errors are often caused by code that assigns the wrong value
to a variable. Break mode can help locate the code that creates these errors.

288
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.5

The run-time error
dialog box

FIGURE 8.6

The VBA IDE in
break mode

Step into

Debug toolbar

Toggle breakpoints

Debug windows

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 288

TE
AM
FL
Y

Team-Fly®

Stepping through code while in break mode is another useful debugging feature.
Use Step Into on the Debug toolbar, or press F8, to execute one line of code at a
time starting from the location of the break. The order of program execution can
be verified, and values stored within variables checked as code execution pro-
ceeds one line at a time.

The Immediate Window

Stepping through code one line at a time can be tedious if the error is not found
quickly. The Immediate window allows you to test program variables and proce-
dures under normal program execution. The Immediate window can be displayed
by selecting it from the View menu or the Debug toolbar in the VBA IDE (refer to
Figure 8.6).

The Immediate window is often used to hold the value of a variable or variables
written to it with debugging statements located at suspected trouble spots in the
program. Debugging statements use the Assert and Print methods of the Debug
object. The Assert method can be used to break program execution based on a
Boolean expression. The Print method is used to write values to the Immediate
window.

Debugging statements are not compiled and stored in the executable program
file, so there is no harm in leaving them in your code.

In the code that follows, the Boolean variable comboOff is used as the expression
with the Assert method of the Debug object that breaks program execution. The
expression does not have to be a variable of type Boolean, but can be any expres-
sion that evaluates as true or false (for example, myVar>5). The Assert method
breaks program execution when the Boolean expression evaluates to false. The
Print method of the Debug object is used to write the value of the variable recNum
to the Immediate window whenever this procedure is called. It is a good idea to
include a string identifying the variable, especially if there are more debugging
statements elsewhere in the program. After (or during) program execution the
Immediate window and its contents can be viewed from the VBA IDE, as shown in
Figure 8.7.

Private Sub cmbTopics_Change()

Debug.Assert comboOff

Debug.Print “Record Number”; recNum

If comboOff = True Then Exit Sub

GetWords

End Sub

289
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 289

The preceding procedure is the Change() event of a ComboBox control. Program
execution enters break mode whenever the procedure is called and the value of
comboOff is false. The value of the recNum variable is written to the Immediate win-
dow each time this procedure is executed. The purpose of these debugging state-
ments is to ensure that the program holds the desired values of comboOff and
recNum when the events that trigger this procedure occur.

The Immediate window can also be used to enter code statements while the pro-
gram is in break mode. Statements that change the value of a variable or the
property of an ActiveX control, or call a procedure, can be entered directly into
the Immediate window. The statements take effect after the Enter key is pressed.
Using the previous example, the value of the variable comboOff can be changed
while in break mode by entering comboOff = True in the Immediate window. This
is useful for re-directing program execution and testing the results without hav-
ing to alter code.

The Watch Window

Besides the Immediate window, another useful tool for debugging VBA programs
is the Watch window. The Watch window makes it possible to track the value of
a variable or expression (property, function call, and so on) from anywhere in a
program. Add a watch to an expression from the Debug menu or right click the
expression and choose Add Watch from the shortcut menu. The resulting dialog
box is shown in Figure 8.8.

Choose either the specific procedure in which you want to watch the expression,
or choose all procedures. Next, choose the specific module in which you want to
watch the expression or select all modules. Finally, select the type of watch
(Watch Expression, Break When Value Is True, or Break When Value Changes).

290
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.7

The Immediate
window

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 290

The watch type selected will be displayed in the Watch window only when the
program enters break mode. Therefore, if the watch type Watch Expression is
selected, a breakpoint will have to be inserted in the procedure(s) containing the
expression before running the program. The other two watch types automati-
cally pause the program at the specified location. A Watch window showing the
value of an expression while the program is in break mode is shown in Figure 8.9.

The Locals Window

The Locals window (see Figure 8.10) is used to display the value of the declared
variables local to the procedure in which program execution has been paused
with a breakpoint. Module-level variables are also listed under the object Me in
the Locals window. Display the Locals window by selecting it from the View menu
or Debug toolbar.

291
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.8

The Add Watch
dialog box

FIGURE 8.9

The Watch window

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 291

When you suspect a procedure contains an error, insert a breakpoint in the proce-
dure, run the program, and display the Locals window before stepping through the
procedure’s code. This is a handy tool for debugging a procedure, as it allows you
to view the values of all local variables while stepping through the code.

Chapter Project: Word Find

The Word Find project can be used to create standard word find puzzles. The top-
ics and words used in a puzzle can be added to a file using the program discussed
earlier in this chapter. The file containing the word lists is accessed and displayed
by the Word Find program. The user can then select individual words and place
them within a 15 × 15 grid running in any direction. After placing the words, the
puzzle is filled with random letters before printing the puzzle. The Word Find
program can be found on the accompanying CD-ROM stored as Wordfind.xls.

Project Statement

In VBA using an Excel worksheet, I want to create a program that makes it easy
for the user to create word find puzzles. The program should allow the user to
place words selected from a list within a 15 × 15 grid. The capability to add new
word lists to the file used by the program should also be included.

292
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.10

The Locals window

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 292

Project Tools

The tools used to create this program include most of the components studied to
this point in the book. This includes the Excel worksheet and its associated
objects, ActiveX controls, UserForms, and all associated programming modules.
Error handling routines should be included in the code to handle any antici-
pated errors that might cause the program to fail.

Project Algorithm

The Word Find program will be built following the approach listed here.

1. Format an Excel worksheet to isolate a range of cells that includes 15 rows
and 15 columns for holding the letters in the puzzle.

2. Format the worksheet to include an area below the puzzle grid that will
be used to list the words added to the puzzle. A sequence of four to five
cells will have to be merged for each word to ensure the word will fit
within the target cell when displayed.

3. Format the worksheet to include an area of merged cells that will be used
to display helpful messages to the user.

The preformatted worksheet is shown in Figure 8.11

293
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.11

The Word Find
worksheet

15 x 15 puzzle grid

Merged cells
for messages

Merged cells
for word list

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 293

Several ActiveX controls are added to the worksheet to handle adding the following:

• A ComboBox control for selecting the puzzle’s topic.

• A ListBox control for displaying the words associated with the selected
topic.

• A Command Button control for loading the topics and lists.

• A Command Button control for resetting the worksheet.

• Command Button controls for choosing the direction of the word.

• A Command Button control for filling in the puzzle with randomly
selected letters.

• A Command Button control for accessing the UserForm that maintains
the word list file.

• A Command Button control for printing the puzzle.

Figure 8.12 shows the ActiveX controls used to display the topics and word list to
the user for selecting a word to add to the puzzle. The Command Button labeled
Get List will retrieve the records from the file Wordfind.txt and display them in
the ComboBox and ListBox controls when clicked. The Command Button labeled
Reset will clear the worksheet of words (puzzle grid and controls) when clicked.

The remaining ActiveX controls placed on the worksheet are shown in Figure 8.13.
The 3 × 3 grid of Command Button controls are used to write the word to the puz-
zle grid in the direction specified by the arrows. The center Command Button con-
trol in the 3 × 3 grid of controls labeled Fill will randomly fill empty cells in the
puzzle grid with uppercase letters when clicked. The Command Button labeled
Print prints the puzzle and list of words used in the puzzle to the user’s default
printer when clicked. Finally, the Command Button control labeled Update Lists
calls the Word List UserForm and program discussed earlier in the chapter.

294
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.12

ActiveX controls
used to retrieve,
view, and select

words for the Word
Find game

Command Button for
loading the topics and lists

Command Button for
resetting the worksheet

ListBox for
displaying

list of words

ComboBox for selecting
puzzle’s topic

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 294

As the program proceeds, the following will be true:

• The program will begin from the Click() event procedure of a Command
Button control that loads the topics and word list into the ComboBox and
ListBox controls, respectively.

• When the user selects a word from the ListBox control and then clicks on
one of eight different Command Button controls, the word will be added
to the grid running in the direction indicated by the image of an arrow
displayed in the Command Button control.

• When the user clicks the Command Button control labeled Fill, the empty
cells in the puzzle grid will be filled with randomly selected letters.

• When the user clicks the Command Button control labeled Print, the area
containing the puzzle grid and the list of words contained in the puzzle
will be printed to the user’s default printer.

• The option of resetting the worksheet will be provided via the Click()
event procedure of a Command Button control. The procedure should
clear the puzzle grid, and the ComboBox and ListBox controls.

• The user can maintain the word lists via the program created and listed
earlier in this chapter. The UserForm that contains the code for this main-
tenance program will be shown modally from the Click() event procedure
of a Command Button control.

• A validation procedure will be added to ensure the user has properly
selected a cell within the puzzle grid for the start of a word. The word
must fit within the puzzle grid.

• A validation procedure will be added to ensure the user has selected a
word from the list before trying to place it in the grid.

• When validation procedures fail, help messages will be displayed to the
user via the Value property of a merged range of cells.

• Error handling routines will be added to the program wherever errors
are anticipated or discovered via testing and debugging.

295
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.13

ActiveX controls
used to place a

word on the puzzle,
print the puzzle,

and call the Word
List UserForm for

updating the
Wordfind.txt file

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 295

Depending on the combination of Windows operating system (98, 2000, XP) and
Excel version (97, 2000, 2002) running on your computer, the Word Find program
(and perhaps others in this book) may generate runtime errors specifying “Can’t
find project or library.” If this happens on your computer, then the simplest solu-
tion is to create a new project in Excel and copy and paste the code from the
loaded project file into the new file (select Move or Copy Sheet from the Edit
menu in Excel).

You will also have to copy the code from any modules not contained in the compo-
nent module of the worksheet that was copied into the new project. Any ActiveX
controls will have to be renamed to their original names before the program will
execute. The error is the result of a missing reference to the needed VBA libraries
and was probably caused by a change in a file path or file name. The code itself is
error-free and the reference error will be resolved when a new project is created
and the code is copied into the new project rather than loaded into Excel.

Adding the Code

Before writing the program, a few properties of the ActiveX controls placed on the
worksheet were changed from their default values. The Caption properties of the
Command Button controls were changed to the values shown in Figure 8.1. For the
Command Button controls displaying the arrows, the Picture property was used to
load an image file. The Style property of the ComboBox control was set to drop-
down list and all controls were given meaningful values for the Name property.

The code listed next is from the component module of the worksheet and begins
with a few module-level variable declarations that include one user-defined type.
These are essentially the same variables used in the program listed earlier in the
chapter that maintained the random access file. A Boolean variable comboOff is
used to toggle the Change() event procedure of the ComboBox control to prevent
it from executing all its code when not required. The variable, puzzleGrid, is used
to define the 15 × 15 grid of worksheet cells that contain the letters of the word
find puzzle.

Option Explicit

Dim recNum As Integer

Private Type WordList

topic As String * 15

word As String * 15

End Type

Dim myWords() As String

296
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 296

Dim myTopics() As String

Dim currentTopic As Integer

Dim comboOff As Boolean

Dim puzzleGrid As Range

The program begins from the Click() event procedure of the Command Button
control named cmdGetList. This procedure calls the same sub procedures listed
earlier in the chapter used to copy the records from the Wordfind.txt file to the
ComboBox and ListBox controls (cmbTopics and lstWords).

Private Sub cmdGetList_Click()

GetAllRecords

GetUniqueTopics

GetWords

comboOff = True

End Sub

The GetAllRecords(), GetWords(), and GetUniqueTopics() sub procedures have
been modified slightly to include error handling. The error handling code is dis-
cussed for the GetAllRecords() and GetWords() sub procedures, which are listed
here. The GetUniqueTopics() sub procedure is not listed again here but can be
viewed from the listing described earlier in the chapter.

Private Sub GetAllRecords()

Dim filePath As String

Dim myWord As WordList

Dim fileExists As Boolean

When opening a file for random access, if the file does not exist then a new file
will be created and no runtime error is generated. The Word Find program
depends on the records contained in the Wordfind.txt file, so it’s preferable to
send program execution to an error handler if the file does not exist.

A call to the function procedure FindFile() is used to return a Boolean value indi-
cating whether the Wordfind.txt file exists in the required directory. If the file is
not found, then code execution proceeds immediately to the ErrorHandler() line
label. The error message “Word list file not found” is displayed to the user and
the program is terminated with the End statement.

fileExists = FindFile(“Wordfind.txt”)

If fileExists = False Then GoTo ErrorHandler

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

cmbTopics.Clear

lstWords.Clear

297
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 297

recNum = 1

Open filePath For Random As #1 Len = Len(myWord)

Do While Not EOF(1)

Get #1, recNum, myWord

ReDim Preserve myWords(recNum - 1)

myWords(recNum - 1) = myWord.word

ReDim Preserve myTopics(recNum - 1)

myTopics(recNum - 1) = myWord.topic

recNum = recNum + 1

Loop

Close #1

recNum = recNum - 1

Exit Sub

ErrorHandler:

Range(“R9”).Value = “Word list file not found”

End

End Sub

The FindFile() function procedure uses the properties of the FileSearch object to
search for the Wordfind.txt file. This procedure could easily be omitted and
replaced with an On Error Goto ErrorHandler statement in the GetAllRecords()
sub procedure. The error handler could then send the Description property of
the Err object to cell R9 (Range(“R9”).Value = Err.Description).

Private Function FindFile(wordFile As String) As Boolean

Dim I As Integer

The NewSearch method resets the FileSearch object to its default property values,
essentially getting it ready to begin a new search. The LookIn property sets the
path to the top-level directory that will be searched. The SearchSubFolders,
MatchTextExactly, and FileType properties are intuitive and are set accordingly
before the Execute method is used to begin the search. Based on the search cri-
teria specified, if the Count property of the FoundFiles object is greater than
zero, then the Wordfind.txt file was found by the search. Next, the value of the
FindFile() function procedure is set to true before code execution is sent back
to the calling procedure.

With Application.FileSearch

.NewSearch

.LookIn = ActiveWorkbook.Path

.SearchSubFolders = False

.Filename = wordFile

298
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 298

TE
AM
FL
Y

Team-Fly®

.MatchTextExactly = True

.FileType = msoFileTypeAllFiles

.Execute

If .FoundFiles.Count > 0 Then

FindFile = True

Else

FindFile = False

End If

End With

End Function

An error handler was added to the GetWords() and GetUniqueTopics() sub proce-
dures in case the user resets (stops) the program. Unlike the case of the form
module of a UserForm, the user’s actions can stop a program contained in a com-
ponent module of a worksheet inadvertently (for example, by toggling the Design
Mode button on the Visual Basic toolbar). Once program execution is stopped,
memory used to hold variables is released and the myWords and myTopics arrays no
longer exist. If the user triggers the Change() event procedure of the ComboBox
control (which calls the GetWords() sub procedure) before the records from the
Wordfind.txt file are loaded again, then a runtime error will be generated from
the code that follows. Specifically, the UBound() function cannot return an upper
index value on an array that does not exist.

Private Sub GetWords()

Dim I As Integer

On Error GoTo ErrorHandler

lstWords.Clear

For I = 0 To UBound(myWords)

If myTopics(I) = cmbTopics.Value Then

lstWords.AddItem myWords(I)

End If

Next I

Exit Sub

ErrorHandler:

Range(“R9”).Value = “Please Reset the game”

End

End Sub

After the file is loaded and its contents are copied to the ComboBox and ListBox
controls, the user selects a word from the list. The selected word is placed on the
puzzle grid by clicking one of the Command Button controls containing an
image of an arrow.

299
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 299

The Click() event procedures of the Command Button controls containing an
image of an arrow sends program execution to the PlaceWord() sub procedure.
The PlaceWord() sub procedure accepts a string parameter used to indicate the
direction in which to place the word (N, NE, E, SE, S, SW, W, and NW). There are
a total of eight Click() event procedures that look like the one listed here, albeit
with different string parameters in the argument list.

Private Sub cmdSE_Click()

PlaceWord (“SE”)

End Sub

The PlaceWord() sub procedure writes the selected word to the specified cells on
the worksheet. For example, if the user clicks on the Command Button control
named cmdSE (bottom right control in the 3 × 3 grid), then the selected word will
be written on a diagonal proceeding down and to the right on the puzzle grid, as
shown in Figure 8.14.

Private Sub PlaceWord(wordDirection As String)

Dim selectionOK As Boolean

Dim wordSelection As String

Dim wordLength As Integer

Dim I As Integer

Dim cellRow As Integer

Dim cellCol As Integer

300
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.14

Placing a word on
the puzzle grid

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 300

An error handler is used to ensure that the user has selected a word from the list
displayed in the ListBox control (lstWords) before trying to place it on the puzzle
grid. Next, the Value property of the Range object that represents the set of
merged cells used to display help messages to the user is reset. The cell reference
R9 is the upper-leftmost cell of the merged range. The next line trims the selected
word of its spaces (remember it was stored as a user-defined type with 15 char-
acters), converts it to all uppercase, and copies it to the wordSelection variable.

On Error GoTo ErrorHandler

Range(“R9”).Value = “”

wordSelection = UCase(Trim(lstWords.Value))

The number of characters in the selected word will be needed later, as will the
row and column index of the cell selected by the user to hold the first letter.

wordLength = Len(wordSelection)

cellRow = Selection.Row

cellCol = Selection.Column

A validation sub procedure (ValidateStartCell()) is called to verify that the user
selected only one cell in the puzzle grid and that the selected word will fit in the
defined puzzle area. If the user’s selection is validated, then code execution pro-
ceeds to the Select/Case decision structure.

selectionOK = ValidateStartCell(wordDirection)

If selectionOK Then

The Select/Case decision structure operates on the string variable wordDirection
that was passed to this procedure. A Do-Loop and the string manipulation function
Mid() is used to select individual characters from the selected word and write that
character to the appropriate cell on the worksheet. For example, the direction NW
indicates that the word should be written to the grid on a diagonal starting from
the lower right cell and proceeding to the upper left cell. Therefore, the row index
variable and column index variable are both decremented by one with every iter-
ation through the Do-Loop. The remaining cases used for the other directions fol-
low the same logic. The only difference is whether or not the column and row
index variables are decremented, incremented, or left unchanged.

Select Case wordDirection

Case Is = “NW”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellRow = cellRow - 1

301
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 301

cellCol = cellCol - 1

Loop While (I < wordLength)

Case Is = “N”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellRow = cellRow - 1

Loop While (I < wordLength)

Case Is = “NE”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellRow = cellRow - 1

cellCol = cellCol + 1

Loop While (I < wordLength)

Case Is = “E”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellCol = cellCol + 1

Loop While (I < wordLength)

Case “SE”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellRow = cellRow + 1

cellCol = cellCol + 1

Loop While (I < wordLength)

Case “S”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellRow = cellRow + 1

Loop While (I < wordLength)

Case “SW”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellRow = cellRow + 1

cellCol = cellCol - 1

302
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 302

Loop While (I < wordLength)

Case “W”

Do

cells(cellRow, cellCol).Value = Mid(wordSelection, I + 1, 1)

I = I + 1

cellCol = cellCol - 1

Loop While (I < wordLength)

End Select

WordToGrid

Range(“R9”).Value = “”

End If

Exit Sub

The error handler uses the Number property of the Err object to catch “Invalid use
of Null” runtime errors generated by the Trim() function when it is passed a null
string because the user did not make a selection from the list of words.

ErrorHandler:

If Err.Number = 94 Then

Range(“R9”).Value = “Please select a word from the list!”

End If

End Sub

The ValidateStartCell() function procedure is called from PlaceWord() sub pro-
cedure and is used to validate the user’s selection of a worksheet cell for holding
the first character in the selected word.

Private Function ValidateStartCell(wordDirection As String) As Boolean

Dim wordSelection As String

Dim wordLength As Integer

Dim maxCells As Integer

wordSelection = Trim(lstWords.Value)

wordLength = Len(wordSelection)

After the number of characters in the selected word is stored for later use, the Count
property of the Range object representing the cells selected by the user is tested.
The user is required to select only one cell, and if this is the case, the function is
assigned the value true (this assignment may change later in the procedure). If
more than one cell is selected, then the function is assigned the value false, an
error message is displayed to the user, and the procedure is immediately exited.

If Selection.Count = 1 Then

ValidateStartCell = True

303
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 303

Else

ValidateStartCell = False

Range(“R9”).Value = “Improper cell selection!”

Exit Function

End If

The selection for a starting cell must also fall within the defined puzzle area,
which is between rows 2 and 16 and columns 2 and 16 (columns B to P). If the
selection is outside the defined area, then the function is assigned the value false
and exited.

If (Selection.Row > 2 And Selection.Row < 16) And (Selection.Column > 2

And Selection.Column < 16) Then

ValidateStartCell = True

Else

ValidateStartCell = False

Range(“R9”).Value = “Improper cell selection!”

Exit Function

End If

Next, the selection of a starting cell is tested to ensure that the selected word will
fit in the puzzle grid. The number of available cells in the puzzle grid is deter-
mined using the CountCells() function procedure. If there are not enough avail-
able cells, then the function is assigned the value false and an error message is
displayed to the user.

maxCells = CountCells(wordDirection)

If wordLength > maxCells Then

Range(“R9”).Value = “The selection does not fit in the target area.”

ValidateStartCell = False

End If

End Function

The CountCells() function procedure is used by the ValidateStartCell() function
procedure to calculate the maximum number of cells available for a word. The cal-
culation is based on the location of the cell used to hold the first character in the
word, and the direction in which the word will be written to the grid. Consider an
example wherein the user selects the word Denver from the ListBox control and
cell D16 on the puzzle grid, as shown in Figure 8.15.

If the user tries to place the word so that it runs from right to left by clicking on
the Command Button control named cmdWest, then the CountCells() function

304
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 304

will calculate a total of three available cells. The number 3 is returned to the
ValidateStartCell() procedure, where it is compared to the number of letters in
the word Denver (6). In this case the user’s selection is invalid because at least
six cells were needed. A message is output to the worksheet telling the user that
the selection does not fit in the grid.

The structure and logic of the CountCells() function procedure is very similar to
that of the PlaceWord() sub procedure. A Select/Case decision structure is used to
distinguish the direction of the word, and a Do-Loop is used to count the number
of available cells. Again, the row and column indexes are initialized via the Row
and Column properties of the Range object (Selection.Row and Selection.Column).
Then the row and column indexes are incremented, decremented, or left
unchanged inside the Do-Loop as the numbers of available cells are counted and
stored in the variable cellCount.

Private Function CountCells(wordDirection As String) As Integer

Dim cellRow As Integer

Dim cellCol As Integer

Dim cellCount As Integer

cellRow = Selection.Row

cellCol = Selection.Column

Select Case wordDirection

Case Is = “NW”

305
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

FIGURE 8.15

Placing a word on
the puzzle grid

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 305

Do

cellRow = cellRow - 1

cellCol = cellCol - 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case Is = “N”

Do

cellRow = cellRow - 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case Is = “NE”

Do

cellRow = cellRow - 1

cellCol = cellCol + 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case Is = “E”

Do

cellCol = cellCol + 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case “SE”

Do

cellRow = cellRow + 1

cellCol = cellCol + 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case “S”

Do

cellRow = cellRow + 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case “SW”

Do

306
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 306

cellRow = cellRow + 1

cellCol = cellCol - 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

Case “W”

Do

cellCol = cellCol - 1

cellCount = cellCount + 1

Loop While (cellRow > 1 And cellRow < 17) And (cellCol > 1

And cellCol < 17)

End Select

CountCells = cellCount

End Function

The region of cells below the puzzle grid is used to display the words selected and
copied to the puzzle by the user. The size of the region is 8 × 15 cells, with five
cells merged into one cell across the rows. Therefore, there are only three avail-
able cells within each of the eight rows, for a total capacity of 24 words.

Private Sub WordToGrid()

Dim I As Integer

Dim K As Integer

Nested For/Next loops iterate through the cells starting with the upper-leftmost
cell (B18) and proceeding down a column, then to the next column until reach-
ing the last cell (L25). The selected word is copied to the first empty cell encoun-
tered in the nested loop. The looping variable K represents the column index, and
I the row index.

For K = 2 To 12 Step 5

For I = 18 To 25

If cells(I, K).Value = “” Then

cells(I, K).Value = lstWords.Value

Exit Sub

End If

Next I

Next K

End Sub

The Click() event procedure of the Command Button control named cmdFill is
used to fill empty cells in the puzzle grid with uppercase letters. A For/Each loop
and a random number between 65 and 90 easily solve the problem.

307
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 307

Private Sub cmdFill_Click()

Dim c As Range

Dim ranNum As Integer

Randomize

Set puzzleGrid = Range(“B2:P16”)

For Each c In puzzleGrid

The ASCII characters A through Z are represented by decimal values 65 through
90. The Chr() function returns the randomly selected character.

ranNum = Int(26 * Rnd + 65)

If c.Value = “” Then c.Value = Chr(ranNum)

Next

Range(“R9”).Value = “”

End Sub

The puzzle is printed via the Click() event procedure of the Command Button
control named cmdPrint.

Private Sub cmdPrint_Click()

Dim rt As Integer

On Error GoTo ErrorHandler

The borders are removed from the area of cells that define the puzzle so they
won’t show on the printout.

Range(“B2:P16”).Select

Selection.Borders(xlEdgeLeft).LineStyle = xlNone

Selection.Borders(xlEdgeTop).LineStyle = xlNone

Selection.Borders(xlEdgeBottom).LineStyle = xlNone

Selection.Borders(xlEdgeRight).LineStyle = xlNone

Selection.Borders(xlInsideVertical).LineStyle = xlNone

Selection.Borders(xlInsideHorizontal).LineStyle = xlNone

Selection.Interior.ColorIndex = xlNone

The print area is defined as the cells containing the puzzle and the list of words
contained within the puzzle before the puzzle is printed.

ActiveSheet.PageSetup.PrintArea = “A1:Q25”

ActiveWindow.SelectedSheets.PrintOut Copies:=1, Collate:=True

The borders and interior color of the puzzle grid are returned to their original
settings.

Selection.Borders(xlEdgeLeft).LineStyle = xlContinuous

Selection.Borders(xlEdgeTop).LineStyle = xlContinuous

308
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 308

TE
AM
FL
Y

Team-Fly®

Selection.Borders(xlEdgeBottom).LineStyle = xlContinuous

Selection.Borders(xlEdgeRight).LineStyle = xlContinuous

Selection.Borders(xlInsideVertical).LineStyle = xlContinuous

Selection.Borders(xlInsideHorizontal).LineStyle = xlContinuous

Selection.Interior.ColorIndex = 34

Exit Sub

An error handler is used to display any runtime errors generated by trying to
print the puzzle (for example, No printer available).

ErrorHandler:

rt = MsgBox(Err.Description, vbCritical, “Error”)

End Sub

The game is reset from the Click() event procedure of the Command Button con-
trol named cmdReset by clearing the puzzle grid, word list, message cell, Com-
boBox control, and ListBox control. This forces the user to start building another
puzzle from the Click() event procedure of cmdGetList, which calls the proce-
dure used to load the records from the Wordfind.txt file. It also initializes all the
necessary variables and controls required for building a puzzle.

Private Sub cmdReset_Click()

Range(“B18:P25”).ClearContents

Set puzzleGrid = Range(“B2:P16”)

puzzleGrid.ClearContents

comboOff = True

cmbTopics.Clear

lstWords.Clear

Range(“R9”).Value = “”

End Sub

When the user selects a new topic, the list of words in the ListBox control named
lstWords is updated with the appropriate values by a call to the GetWords() sub
procedure listed earlier. The Boolean variable comboOff forces program execution
to exit this procedure if set to true.

Private Sub cmbTopics_Change()

If comboOff = True Then Exit Sub

GetWords

End Sub

The DropButtonClick() event procedure is triggered when the user selects the
drop button on a ComboBox control. This event procedure is used to set the vari-
able comboOff to false so that the entire contents of the Change() event procedure

309
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 309

of cmbTopics (listed just above) is executed. This ensures that the GetWords() sub
procedure is called only when the user chooses a new topic, and is not called
when the control is cleared.

Private Sub cmbTopics_DropButtonClick()

comboOff = False

End Sub

The last two procedures listed are the Click() event procedures of the ListBox and
Command Button controls (lstWords and cmdUpdateLists). Selecting a word from
the list displayed in lstWords will display a help message on the worksheet. The
control cmdUpdateLists will show the UserForm frmWordFind used to maintain the
Wordfind.txt file, as discussed earlier in the chapter.

Private Sub lstWords_Click()

Range(“R9”).Value = “Select a location in the puzzle grid and click on

an arrow to specify the words direction.”

End Sub

Private Sub cmdUpdateLists_Click()

frmWordFind.Show

End Sub

This concludes the Word Find program. If you know someone who likes these
word puzzles, you can now create a few for him or her. Add the features described
in the Challenges section at the end of the chapter to more easily create puzzles
with this program.

Chapter Summary

In this chapter, you learned how to create and access text files using sequential
and random methods. VBA includes a number of additional methods for file I/O
not covered in this chapter. However, learning how to read and write text files is
a good first step and often comes in handy with applications that only require
access to small amounts of data. You also learned how to create error-handling
routines in VBA procedures that prevent the program from crashing because of
a runtime error. Finally, you learned how to use some of the debugging tools
available from the VBA IDE to help write nearly error-free code.

This chapter introduced the last of the fundamental programming concepts cov-
ered in this book. The remaining chapters are concerned with programming spe-
cific objects in the Excel object model. Chapter 9 examines the Chart object,
which is a rather substantial object in Excel.

310
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 310

311
C

h
a

p
te

r
8

D
a

ta
A

c
c
e
s

s
,
F
i le

I/O
,
E
r
r
o

r
H

a
n

d
l in

g
,
a

n
d

D
e
b

u
g

g
in

g

CHALLENGES

1. Create a program that stores the string “VBA is Fun” to a sequential access

text file.

2. Extend the previous program to read the contents of the file into a work-

sheet cell.

3. Extend the previous program to write the contents of a selected area on a

worksheet to a sequential access file. The program should also be able to

read the contents of the file into a worksheet. Be sure to include an error

handler for file not found errors.

4. Create a program that writes the contents of a worksheet to a random

access file. Don’t use more than five columns and create a user-defined data

type with a component for each column. Add a UserForm that can be used

to display and update individual records stored in the file.

5. Enhance the Word Find program to include a validation procedure that

ensures that the user’s placement of a word does not overwrite words or

parts of a word previously placed on the puzzle grid.

6. Enhance the Word Find program to include an option for placing an entire

list of words randomly on the puzzle grid with the click of a Command But-

ton control.

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 311

08 XLVBA CH08.qxd 2/25/03 7:33 AM Page 312

This page intentionally left blank

C
harts are valuable tools for data analysis and pre-

sentation in Excel or in any spreadsheet applica-

tion. Unfortunately, the learning curve for creating

charts is typically a bit longer and steeper than for other

spreadsheet components. This is also true with regard to

programming charts in Excel, because the Chart object is a

rather substantial component of the Excel object model.

Before attempting to program with Excel’s Chart object, a

good understanding of the common chart types and their

components is required.

This chapter discusses the following topics:

• The Chart object

• Chart sheets and embedded charts

• Creating and Manipulating charts

• Chart events

• Chapter project: The Alienated Game

Excel Charts
9
C H A P T E R

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 313

Project: The Alienated Game

The Alienated program is similar to a number of games that can be found on the
Internet. The game is played with a bubble chart and interacts with the user via
the mouse. The object of the game is to continuously swap two images to create
a group of three or more aliens in a row or column (please forgive the images—
I’m artistically challenged). The Alienated worksheet with an embedded bubble
chart is shown in Figure 9.1.

The Chart Object

A graphical representation of the Charts collection object and Chart object is shown
in Figure 9.2. The figure shows the objects and collections that are subordinate to
the Chart object. Many of these components also have numerous subordinate
objects, so Figure 9.2 does not illustrate the breadth of the Chart object. You should
not be intimidated, though, because programming the Chart object involves many
of the same techniques that have been discussed throughout this book. The goal of
this chapter is to point out major components and some of the unique properties
involved with programming the Chart object.

Accessing Existing Charts

When creating a chart in Excel you have the choice of embedding the chart in an
existing worksheet or creating a new worksheet to hold the chart. When a chart
is created and placed in a new worksheet it is referred to as a chart sheet. Chart
sheets are special because their only function is to hold a single chart; they can-
not be used for holding any other data. Embedded charts are contained in work-
sheets and there are no limits (other than system memory) to the number of

314
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

IN THE REAL WORLD

Charts are used in spreadsheet applications as a tool for interpreting data. The

analysis may be as simple as a visual inspection of the charted numerical data

or as complex as a multidimensional curve-fit to the data.

Complex data analyses involving searches for parameter minima through mul-

tidimensional space often required customized software that ran on mainframe

(or larger) computers. With the incredible advances in computer technology in

recent years, the same analysis can now often be done on a desktop computer

using ordinary software such as Excel.

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 314

embedded charts a worksheet can hold. Using VBA to programmatically control
chart sheets and embedded charts involves the use of different objects that, at
first, can be a little confusing. However, when you follow the object model, the
differences make sense.

315
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

FIGURE 9.1

The Alienated game

FIGURE 9.2

The Charts
collection object

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 315

Chart Sheets and Embedded Charts

Chart sheets are members of the Sheets Collection object, and as such must be
accessed via the Sheets Collection object. For example, consider a workbook that
contains multiple worksheets and chart sheets. To access a particular chart sheet,
use the Charts property of the Workbook object.

ActiveWorkbook.Charts(1).Select

The Charts property returns the Charts Collection object containing all chart
sheets in the specified workbook. Specifying an index with the Charts property
returns a specific chart sheet from the collection.

The code listed here will access only the chart sheets from the Sheets collection.

The ChartDemo.xls workbook contained on the accompanying CD-ROM contains
the sample code and worksheets discussed in this chapter.

Public Sub GetChartSheets()

Dim myCharts As Sheets

Dim chSheet As Chart

Set myCharts = ActiveWorkbook.Charts

For Each chSheet In myCharts

Debug.Print chSheet.Name

Next

End Sub

The variable myCharts is declared as a Sheets Collection object and the reference
to the object is set using the Charts property of the Workbook object (Set
myCharts = ActiveWorkbook.Charts). The Charts property returns a Sheets Collec-
tion object (or, more specifically, a Charts Collection object) that represents all
chart sheets (excluding worksheets) in the active or specified workbook. It may
seem confusing to use the Charts property to return a Sheets Collection object,
although remembering that chart sheets are members of the Sheets Collection
object makes the choice of names more understandable.

Next, the variable chSheet is used to represent a single chart sheet within the
myCharts Sheets Collection object. A For/Next loop iterates through each chart
sheet and outputs the value of its Name property to the Immediate window.

To access embedded charts, use the ChartObjects Collection object and the Chart-
Object object.

ActiveSheet.ChartObjects(1).Select

316
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 316

The ChartObjects Collection object represents all ChartObjects in a single work-
sheet. The ChartObject object is a container object for a single Chart object, so
accessing the actual chart is slightly different from the preceding code listing.
Confusion between the ChartObject object and the Chart object will probably be
a common source of error in your VBA code when programming charts. Consider
the procedure listed here:

Public Sub GetEmbeddedCharts()

Dim myChart As ChartObject

Dim myCharts As ChartObjects

Set myCharts = ActiveSheet.ChartObjects

For Each myChart In myCharts

Debug.Print myChart.Chart.Name

Next

End Sub

The variable myChart is declared as a ChartObject object and is used to access each
embedded chart in the active worksheet. The variable myCharts represents a Chart-
Objects collection referenced to the ChartObjects contained in the active work-
sheet. Again, a For/Each loop iterates through each ChartObject object. However,
to access the actual chart object and not just the container object, the Chart prop-
erty must be used (myChart.Chart.Name). Without the reference to the Chart object,
the preceding procedure would output the value of the Name property of a Chart-
Object object, which is not the same as the Name property of the Chart object.

Table 9.1 summarizes the objects in VBA used to access Excel charts.

317
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

Object Function

Sheets Collection A collection of all sheets in the specified workbook, including chart
sheets and worksheets

Charts Collection A collection of all chart sheets in the specified workbook

Chart Represents a single chart (embedded or as a chart sheet)

ChartObjects Collection A collection of all ChartObject objects in the specified worksheet

ChartObject Represents the container object for an embedded chart

TABLE 9.1 VBA OBJECTS USED TO

ACCESS EXCEL CHARTS

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 317

Manipulating Charts

You can create several different types of charts in Excel, including the common col-
umn and pie charts and the not-so-common doughnut and radar charts. Table 9.2
summarizes the more common chart types available in Excel and their functions.

The Chart object has numerous properties that can be used in your VBA code to
alter the appearance and behavior of an Excel chart. The Excel application file
ChartDemos.xls contains several examples of manipulating charts using VBA pro-
grams. The worksheet named Chart Type is shown in Figure 9.3.

The Chart Type worksheet contains a column of arbitrary data charted in a column
chart. Several ActiveX controls are used to change the properties of the embedded
chart. Option buttons are used to select one of four chart types (Column, Bar, Area,
or Line). Another set of option buttons, along with a scroll bar, is used to change
the color of the chart area, plot area, and data series.

To learn how to manipulate properties of a chart using VBA, record a macro
while changing the desired properties from the Excel application.

To change the type of chart, the integer constant representing the chart type is
passed to the sub procedure SetChartType() where the ChartType property of the
Chart object is set. The constants used to specify the chart type were found in the
online help.

Private Sub optArea_Click()

SetChartType (xlArea)

End Sub

‘

Private Sub optBar_Click()

SetChartType (xlBarClustered)

End Sub

‘

Private Sub optColumn_Click()

SetChartType (xlColumnClustered)

End Sub

‘

Private Sub optLine_Click()

SetChartType (xlLine)

End Sub

‘

Private Sub SetChartType(myType As Integer)

Dim myChart As Chart

318
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 318

TE
AM
FL
Y

Team-Fly®

For example, selecting the Option Button labeled Bar in Figure 9.3 changes the
chart to type bar, as is shown in Figure 9.4.

319
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

Chart Type Function

Column Compares categorized values by charting the data as vertical columns running
from 0 to the charted value. There is one column for each value and all
columns in the same category share the same color.

Bar The same as a column chart, except that the columns now run in a horizontal
direction and are called bars

Line Similar to column and bar charts, except that the values are charted as points
connected by a line.

Pie Charts each value in a data series according to its contribution to the whole

Area Combines a line chart with a pie chart. Shows the contribution to the whole
for several data series over time or categories.

Scatter Plots x,y coordinate pairs as a series of points

Bubble Same as a scatter, except that a third variable can be included that is
represented by the size of the data marker

TABLE 9.2 COMMON EXCEL CHART TYPES

FIGURE 9.3

The Chart Type
worksheet with
a column chart

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 319

The path to the chart traverses the Worksheet object, the ChartObjects Collec-
tion object, and the ChartObject object before finally reaching the destination
Chart object. An index value of one is used to return the specific ChartObject
object from the ChartObjects Collection object. This works because there is only
one chart embedded on the worksheet. If subsequent charts are added to the
worksheet, their index values will proceed in the order they are added (2, 3, 4,
and so on). As with any collection object, be careful when using index values to
return specific objects to ensure that the desired object is returned.

Set myChart = ActiveSheet.ChartObjects(1).Chart

myChart.ChartType = myType

End Sub

Option buttons and a scroll bar are used to set the color of various components
of the chart. The action occurs in the sub procedure ChangeColor.

Private Sub optChartArea_Click()

ChangeColor

End Sub

‘

Private Sub optPlotArea_Click()

ChangeColor

End Sub

‘

320
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.4

The Chart Type
worksheet with

a bar chart

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 320

Private Sub optSeries_Click()

ChangeColor

End Sub

‘

Private Sub scrColor_Change()

ChangeColor

End Sub

A reference to the chart is set with the variable myChart using the same object
path in the SetChartType() sub procedure. A simple test for the value of the
Option Button controls (optChartArea, optPlotArea, and optSeries) sets the vari-
able used as the conditional in a Select/Case decision structure. In the
Select/Case structure, the ColorIndex property of the ChartArea, PlotArea, and
Series objects is assigned to the Value property of the ScrollBar control (scrColor).
The ChartArea object generally represents the background, axes, titles and leg-
end in a chart, but this depends on the chart type. The PlotArea object represents
the area on a chart where the data is plotted (data markers, data labels, gridlines,
and so on). The Series object represents an individual data series and is returned
from the SeriesCollection Collection object.

Private Sub ChangeColor()

Dim component As Integer

Dim myChart As Chart

Set myChart = ActiveSheet.ChartObjects(1).Chart

If optChartArea.Value = True Then component = 1

If optPlotArea.Value = True Then component = 2

If optSeries.Value = True Then component = 3

Select Case component

Case 1

myChart.ChartArea.Interior.ColorIndex = scrColor.Value

Case 2

myChart.PlotArea.Interior.ColorIndex = scrColor.Value

Case 3

If optLine.Value <> True Then

myChart.SeriesCollection(1).Interior.ColorIndex =

scrColor.Value

End If

Case Else

MsgBox (“Please select a chart component”)

End Select

End Sub

321
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 321

The available objects and properties of a Chart object will vary somewhat with
chart type. Therefore, it is very important that you have a good understanding of
the type of chart you are trying to manipulate.

For example, unlike the area, column, and bar charts, a line chart does not have
an Interior object subordinate to its Series object. As a result, you cannot set the
ColorIndex property of the Interior object of the Series object for a line chart.

For a refresher on charts, I recommend Microsoft Excel 2002 Fast & Easy, by
Faithe Wempen.

Although the Chart Type worksheet illustrates the manipulation of a few Chart
object properties, it is not a practical example of a good VBA application because it
is just as easy for the user to manipulate these properties from the Excel application.

Typically, properties of a Chart object are set from VBA code when the chart must
be added to the workbook or worksheet programmatically.

See the ChartDemo.xls workbook for another example of chart manipulation
where a clock is fashioned out of a pie chart. The pie chart displaying the hour
and minute is only updated when the seconds read “00”.

Creating Charts

To write a VBA procedure that creates a chart, you must decide whether to create
a chart sheet or embed the chart in an existing worksheet. The difference
between creating a chart sheet and embedding a chart is subtle; it is presented
in the code listings that follow. These procedures can also be found in the Chart-
Demo.xls file and activated from the worksheet named Create Chart.

The sub procedure AddChartSheet() creates a new chart sheet and a column chart
of sample data selected from a worksheet by the user.

Public Sub AddChartSheet()

Dim dataRange As Range

Set dataRange = Range(frmDataRange.txtDataRange.Text)

frmDataRange.Hide

The worksheet range that contains the data is selected via a custom dialog box
using methods discussed in Chapter 7. The Add method of the Charts Collection
object is used to create a new chart sheet. Remember, the Charts Collection object
represents a collection of chart sheets in a workbook (refer to Table 9.1). After the
chart sheet is added, the chart it contains is automatically made active because it is

322
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 322

the only component of the sheet. Next, a With/End With structure is used to modify
the properties of the Chart object. Many of these subordinate objects and properties
have common sense names, so their function is intuitive. To learn more about any
of the listed objects and properties, see the online help.

Charts.Add

With ActiveChart

.ChartType = xlColumnClustered

.HasLegend = True

.Legend.Position = xlRight

A specific Axis object is returned from the Axes Collection object by passing a
defined constant (for example, xlCategory or xlValue) with the Axes method. The
Axes method returns a specific Axis object and takes up to two parameters: one for
the axis type (xlCategory, xlSeries, or xlValue) and another for the axis group
(xlPrimary or xlSecondary). The axis type xlCategory represents the x-axis on the
chart, and xlValue represents the y-axis. The axis type xlSeries applies only to 3D
charts and represents the z-axis. The axis group is either xlPrimary (default) or
xlSecondary (applies to charts containing multiple Series objects).

The rest of the objects and properties set via the Axis object are fairly straight-
forward and include setting tick marks and chart labels. The upper limit of the
y-axis scale is set using Excel worksheet functions that return the maximum
value from the dataRange range variable (defined at the beginning of the proce-
dure) rounded up to single-digit precision.

.Axes(xlCategory).MinorTickMark = xlOutside

.Axes(xlValue).MinorTickMark = xlOutside

.Axes(xlValue).MaximumScale =

Application.WorksheetFunction.RoundUp(Application.WorksheetFunction.Max(data_

Range), -1)

.Axes(xlCategory).HasTitle = True

.Axes(xlCategory).AxisTitle.Characters.Text = “X-axis Labels”

.Axes(xlValue).HasTitle = True

.Axes(xlValue).AxisTitle.Characters.Text = “Y-axis”

The data is finally added to the chart by setting the Values property of the Series
object (returned from the SeriesCollection collection object) to the range variable
dataRange.

.SeriesCollection(1).Name = “Sample Data”

.SeriesCollection(1).Values = dataRange

End With

End Sub

323
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 323

Figure 9.5 shows the components specifically added to the chart by the preceding
code. The chart also contains components created from default properties of the
various chart related objects. For example, the gridlines in the figure are the major
gridlines on the y-axis and are displayed by default. To prevent them from being dis-
played, I could have added a statement such as ActiveChart.Axes(xlValue).Major
Gridlines = False.

To add an embedded chart to a worksheet, use the Add method of the ChartObjects
collection object.

Public Sub AddEmbeddedChart()

Dim dataRange As Range

Set dataRange = Range(frmDataRange.txtDataRange.Text)

frmDataRange.Hide

When adding an embedded chart, the Add method accepts four parameters that
define the position of the upper-left corner of the chart on the worksheet, as well
as the chart width and height. The position properties of the Add method (Left
and Top) are relative to the upper-left corner of cell A1 and are in units of points.
The Activate method of the ChartObject object is equivalent to selecting the
chart, because only one Chart object is contained in a ChartObject object.

Sheets(“Create Chart”).ChartObjects.Add Left:=200, Top:=50, Width:=500,

Height:=350

Sheets(“Create Chart”).ChartObjects(1).Activate

With ActiveChart

.ChartType = xlColumnClustered

Before you set the properties of the Chart object, the chart must contain at least
one Series object. Thus, the NewSeries method is used to add an empty Series

324
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.5

Creating a chart

MaximumScale

SeriesCollection(1).
Values

ChartType =
xlColumnClustered

MinorTickMark =
xlOutside

HasLegend = True
Legend.Position = xlRight
SeriesCollection(1).Name
=”Sample Data”

HasTitle = True
AxisTitle.Characters.Text
= “X-axis Labels”

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 324

object to the chart. This is another difference from adding chart sheets, where a
Series object is automatically added on creation of the chart sheet. The proper-
ties of the Chart object are then set in the same manner as was done with the
chart sheet.

.SeriesCollection.NewSeries

.HasLegend = True

.Legend.Position = xlRight

.Axes(xlCategory).MinorTickMark = xlOutside

.Axes(xlValue).MinorTickMark = xlOutside

.Axes(xlValue).MaximumScale =

Application.WorksheetFunction.RoundUp(Application.WorksheetFunction.Max(data_

Range), -1)

.Axes(xlCategory, xlPrimary).HasTitle = True

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = “X-axis_

Labels”

.Axes(xlValue, xlPrimary).HasTitle = True

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = “Y-axis”

.SeriesCollection(1).Name = “Sample Data”

.SeriesCollection(1).Values = dataRange

End With

End Sub

The preceding examples demonstrate only a small fraction of the objects, prop-
erties, and methods available in a Chart object. Don’t be intimidated by the
breadth of the Chart object and its components! Always remember that a large
problem can be broken into many smaller, more manageable problems. Once you
learn how to access a chart, setting the properties of any of its component objects
is easy. The hard part is learning what objects are available to the specific chart
being manipulated. The number of component objects in a Chart object varies
with the chart type (column, bar, scatter, and so on) and with the sub-category of
chart type (clustered, stacked, 3D, and so on). For example, a 3D column chart has
Wall, Floor, and Corners objects, but a clustered column chart does not have
these objects.

To learn the differences between chart types, or to just learn what is available for
a specific chart type, use recorded macros. First, create the chart from the Excel
application, then alter its appearance with the macro recorder turned on. Be
careful to record only a small number of actions—say two to three—at one time,
because the macro recorder adds a lot of unnecessary code (setting default val-
ues). Keep in mind that as you select a component of the chart with the mouse,
you are really selecting a component object of the Chart object. The dialog box

325
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 325

that appears when the component object is double-clicked or selected from the
chart menu sets the properties of that object. For example, the Format Axis dia-
log box shown in Figure 9.6 appears when the user double-clicks on a chart axis.

Figure 9.6 shows some of the properties of the Axis object. If the macro recorder is
on while these properties are altered, the VBA code used to set these properties will
be recorded when OK is clicked in the dialog box. After recording a small macro,
proceed to the VBA IDE to examine the recorded code. If any of the code needs clar-
ification, select the unknown keyword and press F1 to retrieve its documentation
from the online help. This is an extremely helpful tool for learning how to program
specific Excel components, and you should exploit the advantage.

Chart Events

The Chart object has several events that are triggered by various user actions.
Some of the events are familiar—like Activate(), MouseDown(), and MouseUp()— but
a few are unique to the Chart object. Table 9.3 summarizes the unique events
associated with the Chart object.

326
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.6

The Format Axis
dialog box

Event Trigger

Calculate When new or changed data is charted

DragOver When a range of cells is dragged over a chart

DragPlot When a range of cells is dragged and dropped on a chart

Resize When the chart is resized

Select When a chart element is selected

SeriesChange When the value of a charted data point changes

TABLE 9.3 CHART OBJECT EVENTS

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 326

Chart Sheets

Chart events are automatically enabled with chart sheets. To catch events trig-
gered by the user in a chart sheet, add code to an event procedure contained in
the module associated with the chart sheet. The code window can be opened in
the same manner as with a worksheet. Figure 9.7 shows the code window of a
chart sheet selected from the project explorer. The active project displayed in Fig-
ure 9.7 is an Excel workbook containing several chart sheets.

Unfortunately, most of the events unique to the Chart object cannot be used with a
chart sheet because there is no manner in which the user can trigger them. For
example, the user cannot drag and drop a range of cells over the chart when the
data is in another worksheet. However, the other chart events work as expected, and
an example using the Select() event procedure of the Chart object is listed here.

Private Sub Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long,

ByVal Arg2 As Long)

If ElementID = 3 And Arg2 > 0 Then

ActiveChart.SeriesCollection(Arg1).Points(Arg2).ApplyDataLabels

Type:=xlShowValue

End If

End Sub

The Select() event procedure of the Chart object accepts three parameters:
ElementID is a long integer that refers to the component or element selected by

327
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

FIGURE 9.7

Adding code to an
event procedure of

a chart sheet

Chart sheets

Chart sheet
component

module

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 327

the user (ChartArea, PlotArea, Series, etc.), and Arg1 and Arg2 are long integers
that refer to specific components of the selected object. In the preceding exam-
ple, when the user selects a single data point on the chart Arg1 holds the index
value of the selected Series object (representing a series of values) and Arg2
holds the index value of the selected Point object (representing the individual
values in the series). Both Arg1 and Arg2 must be greater than zero.

The purpose of the procedure is to add a label to any point in a data series
selected by the user. To accomplish this, the parameter ElementID is tested for
equivalence to three because that’s the value that represents a Series object. If
the user has selected a single point in a data series, the selected point is labeled
with its value by using the ApplyDataLabels method and setting the Type para-
meter to the constant xlShowValue. In this example, Arg2 holds the value –1 if the
entire series is selected and will not hold a meaningful value until the user
selects an individual point from the data series. When the user does select an
individual data point, the value of Arg2 is passed to the Points method, which
returns a Point object from the Points Collection object. In this case, the Points
method returns the specific data point selected by the user.

328
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.8

Chart events

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 328

TE
AM
FL
Y

Team-Fly®

Consider the two identical charts in Figure 9.8, where two data series are plotted
in a scatter chart.

The chart is contained in a chart sheet and the Select() event procedure of the
Chart object contains the previously listed code. In the first chart the user has
selected Series 1 with a single click of the mouse. This triggers the Select() event
procedure but the parameters passed to the procedure are ElementID=3, Arg1=1, and
Arg2=-1, so the conditional expression in the If/Then statement is false. Therefore,
no label is added to the chart. With Series 1 selected, the user then clicks on the
sixth data point in Series 1. Again, the Select() event procedure is triggered, but
this time the parameters passed to it are ElementID=3, Arg1=1, and Arg2=6. This time
the conditional in the If/Then statement is true and the label “16” is added to the
chart (bottom chart in Figure 9.8).

Before writing the code for the Select() event procedure, I recorded a macro
while adding a label to a charted point. This reminded me how to add the label
to individual data points using VBA.

To learn how to use the Select() event procedure of the Chart object, I added
the statement Debug.Print ElementID; Arg1; Arg2 to the procedure and
watched the Immediate window while I clicked on various components of the
Chart object.

Embedded Charts

To make use of all the event procedures of the Chart object, the chart must be
embedded on a worksheet. Unfortunately, chart events are not automatically
enabled for embedded charts. To enable the events of an embedded chart you
must insert a class module (Insert menu in VBA IDE) into the project and declare
an object of type Chart. The Chart object must be declared with events in the gen-
eral declarations section of the class module.

Public WithEvents myChartClass As Chart

After the preceding statement is entered, the myChartClass object appears in the
object drop-down list of the class module with the event procedures of a Chart
object (see Figure 9.9).

Class modules are used to define a new class. You may remember from Chapter
5 that a class represents an object definition. We are not going to define new
objects here, as that is beyond the scope of this book. In this case, there is no
need to create a new object because the Chart object is already defined in VBA.
All that needs to be done is to enable the events for the embedded chart. After

329
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 329

declaring the Chart object with events in the class module, connect it to the
embedded chart with the following declaration and initialization sub procedure.

Dim myClassModule As New EventClassModule

Public Sub InitializeChart()

Set myClassModule.myChartClass = Worksheets(“Chart Events

Data”).ChartObjects(1).Chart

End Sub

In this example, the class module was named EventClassModule using the Prop-
erties window. Thus, the preceding declaration creates an instance of an object
variable of type EventClassModule, much like any other variable declaration. The
object declaration can be located in the general declarations section of any mod-
ule. Before the event procedures created in the class module will work, the spe-
cific embedded chart must be connected to the myClassModule object. This is
accomplished with the InitializeChart() sub procedure that contains a single
line of code used to set the object reference. In this case, the object reference is
set to the first chart embedded on the worksheet named Chart Events Data. The
InitializeChart() sub procedure must run before the event procedures of the
Chart object defined in the class module will work.

The ChartDemos.xls project contains an embedded chart in the worksheet named
Chart Events Data (see Figure 9.10). A form button is used to call the InitializeChart()
sub procedure listed previously.

330
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.9

Enabling event
procedures of an
embedded chart

myChartClass
object selection

Class module
code window

Name property of
class module

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 330

After the InitializeChart() sub procedure is executed, the event procedures of the
referenced chart object contained in the EventClassModule class module are
enabled. The event procedures and all the code from the class module are listed here.

Option Explicit

Public WithEvents myChartClass As Chart

Private Sub myChartClass_DragOver()

Range(“L34”).Value = “You have activated the DragOver() sub procedure.”

End Sub

‘

Private Sub myChartClass_DragPlot()

Range(“L34”).Value = “You have activated the DragPlot() sub procedure.”

End Sub

‘

Private Sub myChartClass_MouseDown(ByVal Button As Long, ByVal Shift As

Long, ByVal x As Long, ByVal y As Long)

Range(“L34”).Value = “You have activated the MouseDown() sub procedure.”

End Sub

‘

Private Sub myChartClass_MouseMove(ByVal Button As Long, ByVal Shift As

Long, ByVal x As Long, ByVal y As Long)

Range(“L34”).Value = “You have activated the MouseMove() sub procedure.”

End Sub

‘

331
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

FIGURE 9.10

An embedded chart
with enabled event

procedures

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 331

Private Sub myChartClass_MouseUp(ByVal Button As Long, ByVal Shift As

Long, ByVal x As Long, ByVal y As Long)

Range(“L34”).Value = “You have activated the MouseUp() sub procedure.”

End Sub

‘

Private Sub myChartClass_Select(ByVal ElementID As Long, ByVal Arg1 As

Long, ByVal Arg2 As Long)

If ElementID = 3 And Arg2 > 0 Then

ActiveChart.SeriesCollection(Arg1).Points(Arg2).ApplyDataLabels

Type:=xlShowValue

End If

End Sub

‘

Private Sub myChartClass_Resize()

Range(“L34”).Value = “You have activated the Resize() sub procedure.”

End Sub

‘

Private Sub myChartClass_SeriesChange(ByVal SeriesIndex As Long, ByVal

PointIndex As Long)

Range(“L34”).Value = “You have activated the SeriesChange() sub

procedure.”

End Sub

The DragOver(), DragPlot(), Resize(), SeriesChange(), and mouse activated event
procedures contain one line of code that outputs a message to the worksheet
when they are executed. The Select() event procedure contains the same code
listed for the chart sheet earlier in this chapter. The DragOver() and DragPlot()
event procedures are triggered when the user drags and releases selected data
over the chart, respectively. The SeriesChange() event procedure is triggered
when the user selects and moves a single point on the chart, changing its value.
Finally, the Resize() event procedure is triggered when the user resizes the chart.
Before using the sample code listed previously, you may want to comment out
the MouseMove() event procedure as it interferes with the messages output by the
SeriesChange() and Resize() event procedures.

Chapter Project: The Alienated Game

The Alienated program illustrates the use of several VBA objects subordinate to
the Chart object. The program uses the less common bubble chart type because
the Point objects in a regular scatter chart cannot hold images. A total of ten data
series with ten values each are charted and randomly filled with seven different

332
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 332

images. The object of the game is to swap two images such that a sequence of
three or more identical images in a column or row is created. When a sequence
of three or more identical images is created, they are removed from the chart,
the images above are moved down, and the empty points at the top of the chart
are randomly filled with new images. The player scores ten points for each image
removed and the game ends when all possible moves are exhausted.

Project Statement

I want to create a game that illustrates the use of the Chart object and its subor-
dinate objects. The game should also make use of event procedures of the Chart
object. The game should display a grid of randomly selected images on a chart,
and the object of the game is for the player to continuously swap two images to
create a sequence of three or more identical images. The game should have a scor-
ing mechanism, along with validation procedures and help for the player to
ensure that it is easily played.

Project Tools

A Chart object and its subordinate objects, events, properties, and methods will
be used to create the game. The chart can be embedded or exist as a chart sheet,
but an embedded chart must be used if ActiveX controls are needed, because
ActiveX controls cannot be placed on chart sheets. To use the event procedures of
an embedded chart, a class module must be used to create an instance of the
embedded chart object. The worksheet module representing the sheet with the
embedded chart, a class module, and a standard module can be used to hold all
program code. Images of the aliens can be created using standard image editing
and creation software.

Project Algorithm

Write the Alienated program following the general approach listed here.

1. Using an embedded chart, the worksheet will be preformatted to include
a range of cells to hold the player’s score, and another range for displaying
help messages. A bubble chart with all the desired formatting (no axis,
titles, legends) will be added to the worksheet. An optional macro will be
recorded/written that can add a formatted bubble chart if needed.

2. The game begins with the click of a Command Button control. Initializa-
tion procedures are called from the Click() event procedure of this control.

333
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 333

3. Initialization procedures handle the following tasks: Setting module-level
and global variables, adding data to a hidden worksheet that will track
the images loaded into the chart, adding ten data series to the chart with
randomly distributed images of the aliens, and initializing the embedded
chart to activate its event procedures. The charted data remains static,
therefore it can be added from a worksheet or from within the VBA code.

4. After the data series with random images are displayed, the chart will be
scanned for sequences of three or more identical images. The score will
be updated as the chart is scanned until there are no more sequences of
three or more identical images. The sub procedure that scans the chart for
consecutive images will also be called after the player selects two images
for swapping.

5. The player will be directed to swap two images by selecting individual
data points on the chart.

6. Validation procedures will be written to test the player’s selections for the
following criteria: The two points selected must be adjacent (within the
same row or column) and the result of the swap must create a sequence
of three or more identical images. If the player’s selection is invalid, a
message will be output to the worksheet explaining the problem.

7. The Select() event procedure of the embedded chart will be used to catch
the player’s selection. The class module will also contain the validation
sub procedures. The rest of the program will be held within the compo-
nent module of the worksheet, except for global variable definitions and
the optional procedure used to add a formatted bubble chart to the
worksheet.

8. After the player’s selection has been validated, the chart will be scanned
for sequences of three or more identical images, as done when the game
began. Image sequences of the required length will be removed from the
chart before the images above them are brought down. Data points at the
top of the chart without an image will be filled with new images in a ran-
dom manner. The chart must be scanned until there are no more
sequences of three or more identical images. The score will be updated
and the game waits for the next selection.

9. The game ends when there are no more allowed moves. Creating a sub
procedure that scans the chart for potential moves is left as an exercise for
you to try on your own.

334
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 334

Adding the Code

The Excel worksheet containing the Alienated game is shown in Figure 9.11. As
per the algorithm, the game begins from the Click() event procedure of a Com-
mand Button control located in the component module of the worksheet.

The Click() event procedure of cmdBegin is used to call several initialization sub
procedures (InitData(), AddSeries(), SwapImages(), and InitializeChart()) that
will be discussed later. The InitData() sub procedure adds data to a hidden work-
sheet that will be used to keep track of the positions of the images in the chart.

Option Explicit

Dim myClassModule As New EventClassModule

Private Sub cmdBegin_Click()

InitData

Prior to calling procedures that will affect the chart, the ScreenUpdating property
of the Application object is set to false. When data is altered, Excel updates the
chart’s appearance. This can be a slow process, because the updating occurs every
time the value of a point is changed. To significantly speed up the code, turn off
screen updating. The Excel application automatically turns the screen updating
back on when code execution stops.

Application.ScreenUpdating = False

335
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

FIGURE 9.11

The Alienated game

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 335

To disable user interaction through the keyboard and mouse, set the Interactive
property of the Application object to false. This property must be assigned true
before the user may interact with Excel.

This is a handy tool when you have a time-consuming program running that you
do not want interrupted by some user action in the Excel application.

The AddSeries() sub procedure adds ten data series to the chart and fills each
point with an image. The SwapImages() sub procedure then randomly fills the
points with one of seven images. Each image is assigned a numerical value that
is stored in a hidden worksheet named Images. The filenames for the images end
with a number between one and seven, making them easy to identify.

AddSeries

SwapImages

After the images are loaded, the chart is scanned for sequences of three or more
identical images. If these sequences are found, the sequential images are
removed, the score is updated, and new images are added to the chart with a call
to the ScanImages() sub procedure. This process is repeated in a Do-Loop for as
long as image sequences of the proper length are found.

Do

scanAgain = False

ScanImages

Loop While scanAgain = True

Worksheets(“Alienated”).Range(“F34”).Select

After the chart is deselected, a call to the sub procedure InitializeChart() is
used to activate the event procedures of the embedded chart, as discussed earlier
in this chapter.

InitializeChart

End Sub

The InitData() sub procedure is called from the Click() event procedure of
cmdBegin and is used for variable initialization and writing data to the Images
worksheet that will be used to keep track of the position of the seven different
images in the chart.

Private Sub InitData()

Dim I As Integer

Dim K As Integer

336
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 336

The global variable filePath must be initialized immediately, because it is used
to set the path to the image files that are loaded throughout the program.

filePath = ActiveWorkbook.Path & “\AlienImages\alien”

Worksheets(“Alienated”).Range(“A16”).Value = “Score”

The merged cells A18:B20 were named “PlayerScore” in the Excel application,
allowing the use of the named range in the program. This is entirely optional but
may be considered more readable than using A18.

Consult the Names Collection object and the Name object in the online help to
learn how to create named ranges dynamically in your VBA programs.

Worksheets(“Alienated”).Range(“PlayerScore”).Value = 0

Initially, only five images are filled into the series points and only one image is
used per series. The values representing the newly added images are stored in the
Images worksheet. These values are stored such that their positions in the Images
worksheet directly correspond to the representative image position in the chart.
For example, if the upper-left cell of the range in the Images worksheet contain-
ing the image identification numbers (cell B2) holds the value one, then point
one of series one holds the image named alien1.png. Data series one holds the
largest y-axis values (9) and therefore is at the top of the chart. See Figure 9.12 for
an illustration of the bubble chart and the Images worksheet just prior to the
execution of the SwapImages() sub procedure.

Nested For/Next loops are used to write the image identification numbers to the
worksheet.

With Worksheets(“Images”)

For I = 2 To 11

For K = 2 To 11

If K < 7 Then

.Cells(K, I).Value = K - 1

Else

.Cells(K, I).Value = K - 6

End If

Next K

Next I

End With

Range(“D28”).Value = “Select two adjacent aliens to swap. Two single

clicks will select a single alien.”

End Sub

337
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 337

The AddSeries() sub procedure is called from the Click() event procedure of cmdBegin
immediately after the InitData() sub procedure. This procedure adds the data to the
chart and fills each point with an image.

Private Sub AddSeries()

Dim ms As Integer

Dim I As Integer

On Error GoTo ErrorHandler

Bubble charts use three values per point, the x,y coordinate pair and a third
value representing the relative size of the point. The third variable representing
size is not needed for this program, but a regular scatter chart does not allow the
plotted points to be filled with images. Consequently, the values of the size of all
data points will be set to the same value and the displayed size will be set with
the next line of code.

ActiveSheet.ChartObjects(“Alienated”).Chart.ChartGroups(1).BubbleScale = 35

The BubbleScale property of the ChartGroup object is assigned a value of 35%,
reducing the size of the plotted point—and thus the size of the images—by about
two-thirds. The ChartGroup object represents one or more series plotted in a
chart with the same format. Because all ten series in the chart have identical for-
matting, the BubbleScale property applies to all points.

Next, the chart is made active using the Activate method of the ChartObject
object and a With/End With structure is used to manipulate the objects and prop-
erties of the chart.

ActiveSheet.ChartObjects(“Alienated”).Activate

With ActiveChart

If .SeriesCollection.count > 0 Then

For I = .SeriesCollection.count To 1 Step -1

.SeriesCollection(I).Delete

338
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.12

The Alienated game
paused just before

execution of the
SwapImages() sub

procedure

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 338

TE
AM
FL
Y

Team-Fly®

Next I

End If

After all existing data series are deleted from the chart, ten new series are added
in the following For/Next loop. The values of the x, y, and size variables are
assigned using the Array() function. Each series will have identical x-values and
sizes, but the y-values vary from 9 to 0 for series 1 through 10, respectively. The
values assigned to each series could just as easily have come from a worksheet.
Either way, these values will not change as the program executes; only the
images held in each point will change.

For I = 1 To 10

.SeriesCollection.NewSeries

.SeriesCollection(I).XValues = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

.SeriesCollection(I).Values = Array(10 - I, 10 - I, 10 - I, 10 - I,_

10 - I, 10 - I, 10 - I, 10 - I, 10 - I, 10 - I)

.SeriesCollection(I).BubbleSizes = Array(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

The images are loaded using the UserPicture method of the FillFormat object
returned by the Fill property of the Series object. This is a somewhat lengthy
voyage through a fairly obscure section of Excel’s object hierarchy. The path
through the object model leading to the UserPicture method for loading an
image into a data point was initially determined from a recorded macro.

As stated earlier, only five different images are initially loaded into the data
points. At this stage of the program, the number of images in the chart doesn’t
really matter, but it is important that every data point contains an image. You
will see why in the next procedure.

If I < 6 Then

.SeriesCollection(I).Fill.UserPicture

PictureFile:=filePath & I & “.png”

Else

.SeriesCollection(I).Fill.UserPicture

PictureFile:=filePath & Trim(Str(I - 5)) & “.png”

End If

Next I

End With

Exit Sub

A minimal error handler is used in this procedure in anticipation of problems
loading the images.

339
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 339

ErrorHandler:

ms = MsgBox(Err.Description, vbCritical, “Error”)

End

End Sub

Immediately after the data is added to the chart, the SwapImages() sub procedure
is called from the Click() event procedure of cmdBegin. This procedure randomly
adds one of seven images to the data points. All the data points must contain an
image before this procedure is called, because there is a chance that some of the
points might be missed in the random selection. The game cannot be properly
played if any of the data points are missing an image.

Private Sub SwapImages()

Dim ms As Integer

Dim ranSeries As Integer

Dim ranPoint As Integer

Dim ranImage As Integer

Dim tempInt As Integer

Dim I As Integer

Dim K As Integer

Randomize

On Error GoTo ErrorHandler

ActiveSheet.ChartObjects(“Alienated”).Activate

A For/Next loop is used to randomly select a data point from one of the Series
objects. The loop iterates 500 times, which may be overkill (5:1 ratio to the num-
ber of data points), but the code runs quickly with the screen updating turned
off. Without the screen updating turned off it would probably take half an hour
for this loop to execute.

For I = 1 To 500

ranSeries = Int(10 * Rnd + 1)

ranPoint = Int(10 * Rnd + 1)

ranImage = Int(7 * Rnd + 1)

ActiveChart.SeriesCollection(ranSeries).Points(ranPoint).

Fill.UserPicture _

PictureFile:=filePath & ranImage & “.png”

With each change in the image held in a data point, the corresponding change
must be made to the image identification number in the Images worksheet, in
order to ensure that these values continue to map directly to the displayed
images in the chart.

340
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 340

Worksheets(“Images”).Cells(ranSeries + 1, ranPoint + 1).Value =

ranImage

Next I

Exit Sub

ErrorHandler:

ms = MsgBox(Err.Description, vbCritical, “Error”)

End

End Sub

The ScanImages() sub procedure is called whenever the chart needs to be checked
for a sequence of three or more consecutive images (immediately after starting
the game and after the player moves two images). The procedure has public scope
because it will have to be called from the class module EventClassModule. This
procedure iterates, checking for consecutive values, through each column and
row containing the image identification numbers in the Images worksheet. The
consecutive values found in the rows and columns of the Images worksheet cor-
respond directly to consecutive, identical images in the chart.

Public Sub ScanImages()

Dim c As Range

Dim curRange As Range

Dim rangeStr As String

Dim I As Integer

Dim count As Integer

Dim curVal As Integer

Dim scoreRange1 As String

Dim scoreRange2 As String

Dim updateScore As Boolean

The procedure works by looping through a series of Range objects representing
the rows and columns in the Images worksheet that contains the image identifi-
cation numbers. A For/Next loop first iterates through the ten columns. Within
the For/Next loop, a For/Each loop iterates through each cell in the column, check-
ing for consecutive image identification numbers. When three or more consecu-
tive image identification numbers are found, the string variable scoreRange2 that
represents the range of cells holding these values is constructed for later use.

For I = 1 To 10

rangeStr = Chr(I + 65) & “2:” & Chr(I + 65) & “11”

Set curRange = Worksheets(“Images”).Range(rangeStr)

The variable curVal holds the image identification number of the current cell in
the Images worksheet as the For/Each loop iterates through a column. The variable

341
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 341

count keeps track of the number of consecutive image identification numbers
found within a column.

curVal = 0

count = 1

For Each c In curRange

If c.Value = curVal Then

count = count + 1

If count > 2 Then

scoreRange2 = scoreRange1 & “:” & c.Address

updateScore = True

scanAgain = True

End If

Else

count = 1

scoreRange1 = c.Address

End If

curVal = c.Value

Next

When three or more consecutive image identification numbers are found, the
Boolean variable updateScore evaluates as true. In this case, calls to the sub pro-
cedures CalcScore() and UpdateImages() are made to update the player’s score
and the images are displayed in the chart.

If updateScore Then

Call CalcScore(scoreRange2)

Call UpdateImages(scoreRange2, “col”)

updateScore = False

End If

Next I

The rows are evaluated for three consecutive image identification numbers using
the same logic as in the preceding code. The choice to search columns for three
or more identical images before rows was arbitrary.

For I = 2 To 11

rangeStr = “B” & I & “:K” & I

Set curRange = Worksheets(“Images”).Range(rangeStr)

curVal = 0

count = 1

For Each c In curRange

If c.Value = curVal Then

342
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 342

count = count + 1

If count > 2 Then

scoreRange2 = scoreRange1 & “:” & c.Address

updateScore = True

scanAgain = True

End If

Else

count = 1

scoreRange1 = c.Address

End If

curVal = c.Value

Next

If updateScore Then

Call CalcScore(scoreRange2)

Call UpdateImages(scoreRange2, “row”)

updateScore = False

End If

Next I

End Sub

The string variable scoreRange representing the worksheet range holding identi-
cal image identification numbers is passed to the CalcScore() sub procedure
from the ScanImages() sub procedure listed previously. The string is used with
the Range property to return a Range object referenced to the variable c. The Count
property of the Range object returns the number of cells in the worksheet range,
which is used to update the player’s score (ten points per image).

Private Sub CalcScore(scoreRange As String)

Dim c As Range

Set c = Range(scoreRange)

Worksheets(“Alienated”).Range(“PlayerScore”).Value = _

Worksheets(“Alienated”).Range(“PlayerScore”).Value +

c.count * 10

End Sub

The sub procedure UpdateImages() is called from ScanImages(); it functions to
replace images in the chart that have been scored. The game requires scored
images to be removed, and any images appearing above a scored image in a col-
umn are moved down. Images at the top of the column are randomly replaced
with new images. The string variables scoreRange and rowOrCol pass in the infor-
mation needed to remove the scored images.

343
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 343

Private Sub UpdateImages(scoreRange As String, rowOrCol As String)

Dim remRange As Range

Dim c As Range

Dim mySeries As Integer

Dim myPoint As Integer

Dim I As Integer

Randomize

Application.ScreenUpdating = False

The bubble chart is activated and the range variable holding the image identifi-
cation numbers (remRange) is used to delete the scored images.

ActiveSheet.ChartObjects(“Alienated”).Activate

Set remRange = Worksheets(“Images”).Range(scoreRange)

For Each c In remRange

mySeries = c.Row - 1

myPoint = c.Column - 1

An image is removed from a charted data point by assigning the constant xlNone
to the ColorIndex property of the Interior object for the Point object that repre-
sents the datum.

ActiveChart.SeriesCollection(mySeries).Points(myPoint).Interior.

ColorIndex = xlNone

Next

If code execution is stopped at this point in the program, then the bubble chart
might look something like that shown in Figure 9.13. In this example, a sequence
of four identical images was removed from the fourth column.

Next, the images above the removed images must be moved down. This is accom-
plished with a call to the MoveColumn() sub procedure, which moves a single col-
umn down the required number of series. If the scored range is within a single
series (that is, row), then the images move down one series, otherwise the images
move down three or more series depending on the number of scored images in
the column. The information passed to the MoveColumn() sub procedure includes
the column reference (remRange.Column) in the Images worksheet containing the
image identification number or numbers to be removed, the starting row index
(remRange.Row) in the Images worksheet of the scored range, and the length of the
scored range (remRange.Count).

If rowOrCol = “col” Then

Call MoveColumn(Chr(remRange.Column + 64), remRange.Row, remRange.count)

Else

344
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 344

If the scored range represents a row in the chart, then the length of the scored
range is 1, so the MoveColumn() sub procedure must be called the same number of
times as there are images to be removed.

For Each c In remRange

Call MoveColumn(Chr(c.Column + 64), c.Row, 1)

Next

End If

End Sub

The MoveColumn() sub procedure is called from UpdateImages() and serves two pur-
poses. First, it updates the image identification numbers in the Images work-
sheet, and then MoveColumn() uses the new image identification numbers to
update the images in the chart.

Private Sub MoveColumn(myCol As String, myRow As Integer, delLength As Integer)

Dim ms As Integer

Dim rangeStr As String

Dim colRange As Range

Dim c As Range

Dim mySeries As Integer

Dim myPoint As Integer

Dim I As Integer

Randomize

345
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

FIGURE 9.13

The Alienated
bubble chart after
the removal of four
consecutive images

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 345

On Error GoTo ErrorHandler

If myRow > 2 Then

If the variable myRow is greater than two, then the scored images were not at the
very top of the chart (series index > 1) and image identification numbers will
have to be moved down the column. The string variable rangeStr represents the
range of cells in a column above the removed image and is used to set a reference
to the range variable colRange.

rangeStr = myCol & “2:” & myCol & Trim(Str(myRow - 1))

Set colRange = Worksheets(“Images”).Range(rangeStr)

The range of cells in the Images worksheet that lie above the cell representing a
removed image is copied to the Clipboard using the Copy method of the Range
object. The Copy method takes an optional parameter specifying the destination
range, which is set as the first cell in the range of cells representing the removed
images.

rangeStr = Chr(colRange.Column + 64) & Trim(Str(colRange.Row +

delLength))

colRange.Copy (Worksheets(“Images”).Range(rangeStr))

The cells at the top of the altered column in the Images worksheet that no longer
represent an image on the chart are replaced with random integers between 1
and 7. If the scored range is a row, then only one random number will be added
to the top of the column. If the scored range is a column, then the number of ran-
dom numbers added is equivalent to the length of the scored range.

rangeStr = Chr(colRange.Column + 64) & “2:” & Chr(colRange.Column

+ 64) & Trim(Str(colRange.Row + delLength - 1))

For Each c In Worksheets(“Images”).Range(rangeStr)

c.Value = Int(7 * Rnd + 1)

Next

If the variable myRow is equal to 2, then the scored range is contained in, or starts
with, series one in the chart (row 2 in the Images worksheet). In this case, nothing
has to be moved down, but a random number still must be added to the column.

Else

For I = 0 To delLength - 1

Worksheets(“Images”).Range(myCol & (myRow + I)).Value = Int(7

* Rnd + 1)

Next I

End If

346
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 346

Finally, the images in the chart are updated by looping through the Altered col-
umn in the Images worksheet to check the new image identification numbers.
Using the image identification numbers, the corresponding images are added to
the chart in the proper location. The location in the chart is determined using
the series and point indices represented by the row and column of the cell hold-
ing the image identification number.

Because it’s easier, I set the loop to iterate through the entire column holding the
image identification numbers. So even if only one number and corresponding
image is removed from the column and bubble chart, the loop will still iterate
ten times and replace nine image identification numbers and nine images with
identical numbers and images. You will not notice a difference in the execution
speed with the screen updating turned off.

rangeStr = myCol & “2:” & myCol & “11”

For Each c In Worksheets(“Images”).Range(rangeStr)

mySeries = c.Row - 1

myPoint = c.Column - 1

ActiveChart.SeriesCollection(mySeries).Points(myPoint).Fill.UserPicture _

PictureFile:=filePath & c.Value & “.png”

Next

Exit Sub

ErrorHandler:

ms = MsgBox(Err.Description, vbCritical, “Error”)

End

End Sub

After execution of the previous procedure, the bubble chart from Figure 9.13 is
updated, and appears as shown in Figure 9.14.

Note that the three images that were at the top of column 4 have each been
moved down four rows and the points above filled with randomly selected
images. These images have been highlighted in Figure 9.14.

As discussed earlier in this chapter, the InitializeChart() sub procedure is used
to set the object reference to the Chart object used for the Alienated game.

Private Sub InitializeChart()

Set myClassModule.myChartClass =

Worksheets(“Alienated”).ChartObjects(“Alienated”).Chart

End Sub

347
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 347

The remainder of the Alienated game program is contained in the class module
named EventClassModule. This module contains the event procedures of the
Chart object used for the game. The event procedures of the Chart object are used
to catch the player’s selection of images for swapping.

Module level declarations include variables that represent the Chart object and
the series and points in the chart selected by the player.

Option Explicit

Public WithEvents myChartClass As Chart

Dim pt1Series As Integer

Dim pt2Series As Integer

Dim pt1Point As Integer

Dim pt2Point As Integer

The Select() event procedure is used to catch the index values of the Series and
Point objects selected by the player. Index values for both Series and Point objects
run from 1 to 10 in the chart and are passed to the Select() event procedure by the
Excel application as parameters Arg1 and Arg2, respectively. A series is selected from
the Chart object with a single click of the mouse on any point. Individual points
are selected from a series with a second mouse click on a previously selected series.
The index values of the Series and Point objects represent rows and columns in the
Images worksheet, respectively. The parameter ElementID represents the compo-
nent of the chart selected by the player where a value of 3 indicates a Series object.

Private Sub myChartClass_Select(ByVal ElementID As Long, ByVal Arg1 As

Long, ByVal Arg2 As Long)

Dim curScore As Integer

348
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.14

The Alienated
bubble chart after

updating

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 348

TE
AM
FL
Y

Team-Fly®

The series and point indices are collected for the player’s first selection and
stored in the module-level variables pt1Series and pt1Point.

If ElementID = 3 And Arg2 > 0 Then

If pt1Series < 1 Or pt1Series > 10 Then

pt1Series = Arg1

pt1Point = Arg2

Worksheets(“Alienated”).Range(“D28”).Value = “One Alien Selected”

If the first image has already been selected, then the series and point indices are
collected for the player’s second selection and passed to the ValidatePt2() sub pro-
cedure for validation of the game rule requiring the selection of adjacent cells.

ElseIf pt2Series < 1 Or pt2Series > 10 Then

If Not ValidatePt2(Arg1, Arg2) Then Exit Sub

If the player’s selection passes the first validation test, the image identification
numbers corresponding to the values held in the variables pt1Series, pt1Point,
pt2Series, and pt2Point are swapped with a call to the ImageIDSwap() sub procedure.

pt2Series = Arg1

pt2Point = Arg2

Worksheets(“Alienated”).Range(“D28”).Value = “Two Aliens Selected”

ImageIDSwap

curScore = Range(“PlayerScore”).Value

The player’s score is stored in the variable curScore before code execution is sent
to the ScanImages() sub procedure contained in the component module for the
worksheet containing the game chart (listed earlier). If a call to ScanImages()
changes the player’s score, then the selection is validated for the requirement
that any move by the player creates a sequence of at least three identical images.

Sheet1.ScanImages

If Range(“PlayerScore”).Value = curScore Then

If the player’s score does not change, then ScanImages() did not find any sequence
of three identical images and the player’s selection is invalid. The image identifi-
cation numbers are swapped back to their original values, a message stating the
nature of the error is sent to the worksheet, variables are re-initialized, and the
procedure is exited.

ImageIDSwap

Worksheets(“Alienated”).Range(“D28”).Value = “Selection must

create 3 or more sequential aliens.”

pt1Series = 0

349
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 349

pt1Point = 0

pt2Series = 0

pt2Point = 0

Exit Sub

End If

If the selection has passed all validation tests, then the images selected by the
player are swapped with a call to the TwoImageSwap() sub procedure.

Application.ScreenUpdating = False

TwoImageSwap

If the selection is valid, a Do-Loop is used to repeatedly call the ScanImages() sub
procedure until no more sequences of three identical images are found. The
ScanImages() sub procedure must be called repeatedly, in case the images added
to the chart from the earlier call to this procedure create a sequence of three or
more identical images.

Do

scanAgain = False

Sheet1.ScanImages

Loop While scanAgain = True

After the chart is updated, variables are reset before the player’s next selection.

Range(“D28”).Value = “Select Two More Aliens”

pt1Series = 0

pt1Point = 0

pt2Series = 0

pt2Point = 0

End If

End If

End Sub

The ValidatePt2() function procedure serves to validate the player’s selection for
adjacent cells. That is, the player must select two adjacent images from either the
same row or the same column. The procedure is called from the Select() event
procedure of the Chart object listed previously, and accepts two arguments that
identify the player’s second image selection.

Private Function ValidatePt2(Arg1 As Long, Arg2 As Long) As Boolean

Dim c As Range

Dim testStr(1 To 4) As String

Dim testRange As Range

350
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 350

Dim testVal As Integer

Dim seqNums As Integer

Dim tempInt As Integer

Dim I As Integer

Dim col2Index As Integer

ValidatePt2 = True

The index of the Point objects selected by the player are stored in the variables
pt1Point and Arg2, and the index of the Series objects are stored in pt1Series and
Arg1. The difference between these indices for the Point and Series objects should
not exceed 1, but the sign can be positive or negative. The Abs() function returns
the absolute value and is used in the decision structure listed below to test if the
player’s selections came from adjacent rows or columns.

If Abs(pt1Series - Arg1) > 1 Or Abs(pt1Point - Arg2) > 1 Then

Worksheets(“Alienated”).Range(“D28”).Value = “You must select_

adjacent cells.”

ValidatePt2 = False

The next listing in the decision structure tests for diagonal selections by the
player; diagonal selections are not allowed.

ElseIf (Abs(pt1Series - Arg1) = 1 And (pt1Point <> Arg2)) Then

Worksheets(“Alienated”).Range(“D28”).Value = “You must select_

adjacent cells.”

ValidatePt2 = False

The final test is for selecting the same point twice, which can occur after the player
selects the first point, selects another series, and then returns to select the first
point.

ElseIf (pt1Series = Arg1) And (pt1Point = Arg2) Then

Worksheets(“Alienated”).Range(“D28”).Value = “You must select_

adjacent cells.”

ValidatePt2 = False

End If

If any of the conditionals evaluate as true in this If/Then/ElseIf decision struc-
ture, then the ValidatePt2() function procedure is assigned the value false. The
ValidatePt2() function then returns false to the calling procedure and the player
must make another selection.

If ValidatePt2 = False Then

pt1Series = 0

351
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 351

Exit Function

End If

End Function

The TwoImageSwap() and ImageIDSwap() sub procedures serve to swap the two
selected chart images and their corresponding identification numbers from the
Images worksheet, respectively. The call from the Select() event procedure to the
TwoImageSwap() sub procedure is made after the player’s selection has been vali-
dated to prevent automatic screen updating of the chart between procedure calls.

Private Sub TwoImageSwap()

Dim ms As Integer

On Error GoTo ErrorHandler

ActiveChart.SeriesCollection(pt1Series).Points(pt1Point).Fill.UserPicture _

PictureFile:=filePath &

Worksheets(“Images”).Cells(pt1Series + 1, pt1Point + 1).Value & “.png”

ActiveChart.SeriesCollection(pt2Series).Points(pt2Point).Fill.UserPicture _

PictureFile:=filePath &

Worksheets(“Images”).Cells(pt2Series + 1, pt2Point + 1).Value & “.png”

Exit Sub

ErrorHandler:

ms = MsgBox(Err.Description, vbCritical, “Error”)

End

End Sub

‘

Private Sub ImageIDSwap()

Dim tempInt As Integer

tempInt = Worksheets(“Images”).Cells(pt1Series + 1, pt1Point + 1)

Worksheets(“Images”).Cells(pt1Series + 1, pt1Point + 1) =

Worksheets(“Images”).Cells(pt2Series + 1, pt2Point + 1)

Worksheets(“Images”).Cells(pt2Series + 1, pt2Point + 1) = tempInt

End Sub

The SeriesChange() event procedure of the Chart object is triggered whenever the
user selects a single data point on the chart and changes its value by dragging the
data point with the mouse. This is an undesirable event, as it can make the chart
hard to read depending on how far the point was moved. The solution is to reas-
sign the original values to the affected series using SeriesIndex and PointIndex
parameters passed to the procedure. The entire series must be used, because the
Point object does not have xValue or Value properties.

352
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 352

Private Sub myChartClass_SeriesChange(ByVal SeriesIndex As Long, ByVal_

PointIndex As Long)

Dim yVal As Integer

yVal = 10 - SeriesIndex

Application.ScreenUpdating = False

ActiveSheet.ChartObjects(“Alienated”).Activate

ActiveChart.SeriesCollection(SeriesIndex).XValues = Array(0, 1, 2, 3, 4,_

5, 6, 7, 8, 9)

ActiveChart.SeriesCollection(SeriesIndex).Values = Array(yVal, yVal,_

yVal, yVal, yVal, yVal, yVal, yVal, yVal, yVal)

End Sub

The last sub procedure I’ll discuss is not involved in the game, but was used to
create the chart and embed it on the worksheet. It is included in a standard mod-
ule called Create Chart with the Alienated game project, and is listed here.

Public Sub AddChart()

To create an embedded chart, the Add method of the ChartObject object must be
used, specifying parameters for position (Left and Top properties), width, and
height. The Chart object is selected before setting the Name property.

The value of the Name property is very important because it can be used to select
a specific chart on a worksheet. If the Name property is not assigned a value in
code, then VBA automatically assigns values of “Chart 1,” “Chart 2,” and so on, as
charts are added to a worksheet. Furthermore, if all charts are deleted from a
worksheet, VBA adds one to the previous index value in the Name property when
adding the next chart. For example, if two charts are added to a worksheet (either
from a VBA program or by the user) and the charts are subsequently deleted, the
next chart added to the worksheet will have a Name property of “Chart 3.” This can
make the selection of a chart via its Name property unpredictable. Therefore, it is
a good idea to assign a value to the Name property of a chart object to remove any
ambiguity when selecting the chart from a VBA program.

ActiveSheet.ChartObjects.Add(124.5, 33.75, 282, 283.5).Select

Selection.Name = “Alienated”

ActiveSheet.ChartObjects(“Alienated”).Activate

After the newly added chart is activated, values for several properties of the Chart
object and its subordinate objects can be assigned. The bubble chart is somewhat
different than other charts because data must be included in the chart before
assigning a value to the ChartType property. The SetSourceData method is used to

353
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 353

set the data range for the chart. At least two cells must be used for a bubble chart,
although a third cell can be used to assign a size to the data point. The PlotBy
parameter specifies whether the data is arranged in worksheet columns or rows.

With ActiveChart

.SetSourceData Source:=Sheets(“Images”).Range(“A15:C15”), PlotBy:=xlColumns

.ChartType = xlBubble

.Legend.Delete

.PlotArea.ClearFormats

.Axes(xlValue).MajorGridlines.Delete

.Axes(xlCategory).MinimumScale = 0

.Axes(xlCategory).MaximumScale = 9.2

.Axes(xlValue).MinimumScale = 0

.Axes(xlValue).MaximumScale = 9

End With

The axes scales are set (the preceding list) to prevent the chart from automati-
cally determining these values. The data from the game ranges from 0 to 9 for
both x and y variables, so comparable values are assigned for the MaximumScale
property of the Axis objects.

The size of the PlotArea object is set to its maximum by equating it to the size of
the ChartArea object. Finally, an image simulating outer space is added to the
plot area.

With ActiveChart.PlotArea

.Width = ActiveChart.ChartArea.Width

.Height = ActiveChart.ChartArea.Height

.Left = 0

.Top = 0

Selection.Fill.UserPicture PictureFile:=ActiveWorkbook.Path &_

“\AlienImages\backgrnd.bmp”

End With

ActiveSheet.ChartObjects(“Alienated”).Chart.ChartGroups(1).BubbleScale = 1

End Sub

This concludes the Alienated game project. The program serves as a demonstra-
tion of programming Excel’s Chart object and several (but certainly not all) of its
subordinate objects. Possible enhancements include the addition of sound, mul-
tiple levels of difficulty, and animation. To animate charted data points, the data
should be assigned to the chart from a worksheet. By changing the values of the
cells holding the data in a looping code structure (with a delay), the charted

354
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 354

points will move. The problem with animating data is that screen updating has
to be turned on and this can make the animation of more than two or three
points very slow.

Chapter Summary

In this chapter, you took a close look at Excel’s Chart object and many of its
related or subordinate objects. You learned how to use specific objects to access
charts existing as chart sheets or embedded charts. You also saw several examples
of manipulating existing charts through the use of the properties and methods
of the chart object and its subordinate objects, and learned how to create charts
(chart sheets or embedded charts) using a VBA procedure. Finally, you saw some
of the unique event procedures associated with the Chart object and learned how
to activate the event procedures of an embedded chart.

355
C

h
a

p
te

r
 9

 E
x

c
e
l

C
h

a
r
t s

CHALLENGES

1. With Excel’s macro recorder turned on, create a column chart (chart sheet

or embedded) in Excel and format the chart to a desired appearance. Stop

the macro recorder and examine the recorded code. Remove any unneces-

sary code in the macro and change the structure of the procedure to make

it more readable. Now run the code from the Excel application.

2. Add an embedded chart to a worksheet along with a ScrollBar control.

Attach code to the Change() event procedure of the ScrollBar control that

changes the maximum value y-axis scale.

3. Add a scatter chart to a worksheet from x- and y-data points entered in two

columns of the worksheet. Create a VBA procedure that animates one of

the charted points by changing its x- and y-values in a looping structure.

Include a delay in the loop as discussed in previous chapters.

4. Write a VBA procedure that adds a chart to a worksheet and formats it to a

desired appearance. The chart should be added after the user selects the

data and clicks on a Command Button control.

5. Add a scatter chart to an existing worksheet and write a VBA procedure that

enables the charts event procedures (use a class module and the declara-

tions described in this chapter). Using the Select() event procedure of the

scatter chart, create a procedure that outputs the values of the ElementID,

Arg1, and Arg2 parameters to the worksheet as the user clicks on various

elements of the chart.

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 355

356
M

i c
r
o

s
o

f t
E
x

c
e

l
V

B
A

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r 6. Spice up the Alienated game by adding different levels of difficulty. For

example, after the player reaches a certain score, start adding new images

to the chart with new identification numbers. This reduces the number of

potential moves the player can make.

7. Add sound, such as a small ding or knock that plays once for each image

that is scored, to the Alienated game.

09 XLVBA CH09.qxd 2/25/03 7:47 AM Page 356

V
BA shapes refer to those objects added to a document

or worksheet from the Drawing toolbar in the appli-

cation. This includes AutoShapes, freeforms, images,

and text. The Drawing toolbar is common to most Microsoft

Office applications, so programming its components only dif-

fers in terms of the document to which its shapes are added (for

example, an Excel worksheet, Word document, or a Power-

Point slide).

The following topics are discussed in this chapter:

• The Shapes collection and Shape objects

• Manipulating a Shape object

• The ShapeRange collection object

• Activating Shape objects

• The OLEObjects collection

• Chapter project: Excetris

VBA Shapes
10

C H A P T E R

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 357

Project: Excetris

Excetris is modeled after the classic Tetris computer game. The object of the
game is to fill a predefined region on an Excel worksheet with five basic shapes
so that gaps between the shapes are avoided. The player is continuously given one
shape to add to the game board within a limited time period. When an entire row
across the game board is filled with shapes, the row is removed and the shapes
above moved down. Play continues until the player runs out of room for adding
more shapes. You will find Excetris on the accompanying CD-ROM, stored as
Excetris.xls. Figure 10.1 shows the Excel version of Excetris.

The Shapes Collection
and Shape Objects

The Shapes Collection object represents all Shape objects in the drawing layer of
the worksheet. The Shapes property of the Worksheet object is used to return the
entire collection of Shape objects in the drawing layer. The following line of code
uses the Count property of the Shapes Collection object to return the total num-
ber of shapes in the drawing layer of the active worksheet:

ActiveSheet.Shapes.Count

358
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.1

The Excetris game

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 358

TE
AM
FL
Y

Team-Fly®

You can think of the drawing layer as a sheet of clear plastic cellophane draped
over the top of the worksheet. Therefore, shapes added to the drawing layer are
positioned on top of the worksheet and mask the cells underneath. The masked
cells can still be used to hold data.

Like other collection objects, an index or name can be specified to return a sin-
gle Shape object from the collection. To return a Shape object by index, specify a
number.

ActiveSheet.Shapes(1).Select

Or, to return a Shape object by name, include the name in quotes.

ActiveSheet.Shapes(“Oval 1”).Select

To add a shape to a worksheet, use one of several Add methods of the Shapes Col-
lection object. For example to add a line, use the AddLine method.

ActiveSheet.Shapes.AddLine(10, 100, 250, 500).Select

The AddLine method accepts four parameters for the starting and ending x- and
y-values representing the x,y coordinate pairs of the two points used to define
the line. The coordinates are specified in points relative to the upper-left corner
of the worksheet. In the preceding example, a line is drawn on the active work-
sheet from point x=10, y=100 to the point x=250, y=500.

The Add methods of the Shapes Collection object also return a reference to the
newly added Shape object, so it is possible to immediately apply a property or
method to the shape in the same statement. It is often convenient to select the
object then use a With/End With structure to manipulate several properties
of the object. You’ll see an example of this in the section “Manipulating a
Shape Object.”

Other Add methods of the Shapes Collection object include AddShape, AddPicture,
AddOLEObject, and AddPolyline, to name just a few. The AddShape method refers to
the AutoShapes found on the Drawing toolbar (see Figure 10.2). The example that
follows adds and selects a rectangle to the active worksheet:

ActiveSheet.Shapes.AddShape(msoShapeIsoscelesTriangle, 230, 220, 25, 20).Select

The AddShape method requires five parameters representing, in order, the shape
type (a VBA defined constant, msoShapeIsoscelesTriangle in the example), and
the Left, Top, Width, and Height properties of the object.

359
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 359

All of the Add methods are implemented in a manner similar to that of the
AddShape method, but the required parameters are specific to the shape type. You
will see more examples of different shape types in the remainder of the chapter.
For details about each method and the parameters it requires, consult the online
help by typing the name of the method in the keyword field.

Manipulating a Shape Object

After a Shape object is selected from the Shapes Collection object, you can edit the
shape through its properties and methods. As always, the properties and methods
available are specific to the type of Shape object. Also, there may be properties and
methods of subordinate objects available for editing. The following example adds
a rectangle to the active worksheet and manipulates a few of its properties; the
result is shown in Figure 10.3.

ActiveSheet.Shapes.AddShape(msoShapeRectangle, 100, 100, 50, 50).Select

With Selection

.Name = “Red Square”

.Left = 10

.Top = 10

End With

With ActiveSheet.Shapes(“Red Square”)

.Fill.ForeColor.RGB = RGB(255, 0, 0)

.ZOrder msoBringToFront

End With

360
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.2

The Drawing
toolbar

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 360

The AddShape method of the Shapes Collection object is used to add a rectangle to
the drawing layer. In the preceding example, the constant msoShapeRectangle sets
the Shape type. The Shape type is followed by four parameters that represent the
Left, Top, Width, and Height properties of the AutoShape, respectively. After the
shape is added to the drawing layer, its Name, Left, and Top properties are edited.
The color of the shape is set as red (using the RGB() function) by returning a Fill-
Format object via the Fill property. Finally, the ZOrder method of the Shape
object is used to bring the shape to the front of the drawing layer.

Not all properties and subordinate objects are immediately available from an
object selected using the Select method. In the previous example, the Fill
property and ZOrder method are not available for the Shape object when it has
been selected using the Select method. Instead, another With/End With
structure is needed to return the Shape object without selecting it before the
Fill property and ZOrder method can be applied.

Unfortunately, it is not always clear which properties and methods are available
for a selected object. The best way to learn what properties and methods are
available is through the online help.

The previous example illustrates some of the properties and methods common to
most shapes. As is the case with the Chart object discussed in Chapter 9, some
shapes and their subordinate objects have unique properties and methods that
cannot be applied to all Shape objects. For example, the TextEffect property of
the Shape object cannot be applied to shapes that do not contain text. Therefore,
when manipulating a shape through a VBA program, be careful to use the prop-
erties and methods that apply to that specific shape to avoid runtime errors.

Looping through a Collection of Shapes

Looping through a collection of Shape objects is essentially the same as looping
through any other collection object. The code listed here loops through the Shapes
Collection object of the active workbook. This is comparable to the methods

361
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

FIGURE 10.3

Adding a Shape
object to a
worksheet

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 361

discussed in earlier chapters for looping through worksheet cells contained
within a range. A variable of type Shape is declared and used as the looping vari-
able in a For/Each loop. The Shape Collection object is returned using the Shapes
property of the Worksheet object. As each Shape object is returned in the For/Each
loop it is tested for type via the Type property, and if the shape represents a line
its name is copied to the worksheet.

Public Sub LoopThruShapes()

Dim sh As Shape

Dim I As Integer

I = 1

For Each sh In ActiveSheet.Shapes

If sh.Type = msoLine Then

Cells(I, 1).Value = sh.Name

I = I + 1

End If

Next

End Sub

The preceding example represents one possible method for selecting and manip-
ulating specific shapes from a collection. Next you’ll see a method for selecting a
subset of shapes from a shape collection using the ShapeRange Collection object.

Sample code listed in this chapter and a couple of additional examples illustrat-
ing the use of various Shape objects can be found in the ShapeDemos.xls Excel
file on the CD-ROM that accompanies this book. Select different worksheets in
the workbook to view the different demonstrations. The worksheet labeled Misc
Shapes is shown in Figure 10.4.

The ShapeRange Collection Object

The ShapeRange Collection object represents a collection of Shape objects that may
contain all, some, or just one of the Shape objects in the drawing layer of a work-
sheet. A ShapeRange Collection object can be constructed from the current shapes
using any of several criteria defined in decision structures (If/Then). For example, a
ShapeRange Collection object could be constructed out of just those shapes that are
of type AutoShape, or perhaps only those Shape objects that are lines.

If you want to return all Shape objects to a ShapeRange Collection object, use the
ShapeRange property of the Selection object when it represents a group of selected
Shape objects.

362
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 362

ActiveSheet.Shapes.SelectAll

Selection.ShapeRange.Rotation = 30

Selection.ShapeRange(1).Rotation = 60

The first line selects all Shape objects in the active workbook. The second line
sets the angle of rotation to 30 degrees for all selected Shape objects. The third
line sets the angle of rotation to 60 degrees for the first Shape object that was
added to the collection (out of those objects currently selected).

To return a subset of the Shape objects as a ShapeRange Collection object, use the
Range property of the Shapes Collection object.

ActiveSheet.Shapes.Range(1).Select

ActiveSheet.Shapes.Range(“Line 1”).Select

ActiveSheet.Shapes.Range(Array(1, 2, 3, 4)).Select

ActiveSheet.Shapes.Range(Array(“Line 1”, “WordArt 2”)).Select

The Range property of the Shapes Collection object accepts an integer, string, or
parameter array as arguments. A parameter array specified with the Array() func-
tion is more practical because the Range property is not needed to select a single
shape from the Shapes Collection object. The parameter array may contain a list of
integers representing the index values of the Shape objects or strings representing
their names. Alternatively, you can build a parameter array holding the integers or
strings representing specific objects based on various conditions. Consider the

363
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

FIGURE 10.4

The Misc Shapes
worksheet from the

ShapeDemos.xls
workbook

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 363

following procedure, used to select all the lines in the drawing layer of the active
worksheet:

Public Sub SelectLines()

Dim numShapes As Integer

Dim numLines As Integer

Dim I As Integer

Dim lineNames()

With ActiveSheet.Shapes

numShapes = .Count

If numShapes > 0 Then

If the Count property of the Shapes Collection object returns a value greater than
zero, then a For/Next loop is used to build a parameter array (lineNames declared
as variant) containing the names of the shapes with type msoLine. The name of
each object of type msoLine is copied to the lineNames array for later use.

For I = 1 To numShapes

If .Item(I).Type = msoLine Then

ReDim Preserve lineNames(numLines)

lineNames(numLines) = .Item(I).Name

numLines = numLines + 1

End If

Next I

End If

Finally, the parameter array built here is passed to the Range property of the
Shapes Collection object, and objects of type msoLine are returned and selected.
Additional code can now be added to modify the selected shapes. In this exam-
ple, the ShapeRange property is used to return all the selected shapes and set the
thickness of the lines via the Weight property.

.Range(lineNames).Select

Selection.ShapeRange.Line.Weight = 4.5

End With

End Sub

Figure 10.5 shows the result of applying the preceding procedure to the shapes
contained in the worksheet displayed in Figure 10.4.

The preceding procedure is somewhat more involved than is the example using the
For/Each loop, but it represents another option for selecting a range of Shape
objects of a particular type when you don’t know the proper names or index values
at design time.

364
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 364

Activating Shape Objects

Since most Shape objects (with the exception of OLEObjects) do not have any asso-
ciated event procedures, you can use the OnAction property of the Shape object to
simulate a Click() event. After the following code is executed, a Shape object
named MyRectangle will activate a VBA procedure called LoopThruShapes() when
clicked. Technically, this is not the action of a Click() event procedure but prac-
tically it serves the same purpose.

ActiveSheet.Shapes.AddShape(msoShapeRectangle, 100, 100, 50, 50).Select

Selection.Name = “MyRectangle”

ActiveSheet.Shapes(“MyRectangle”).OnAction = “LoopThruShapes”

The OnAction property of the Shape object must be executed before a user’s click
will activate the specified procedure (LoopThruShapes()). This can be done any-
where in the program, but including it in the procedure that adds the shape
used to simulate the Click() event is a good idea. The LoopThruShapes() sub pro-
cedure is listed earlier in this chapter. The result of the LoopThruShapes() sub
procedure after application to the Misc. Shapes worksheet is shown in Figure
10.6

365
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
sFIGURE 10.5

The Misc Shapes
worksheet after
execution of the
SelectLines()

sub procedure

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 365

The OLEObjects Collection

The OLEObjects Collection object represents all of the ActiveX controls on a doc-
ument or worksheet and can be accessed from the Worksheet object or the
Shapes Collection object. For example, a Command Button can be added to a
worksheet with either the Add method of the OLEObjects Collection object or the
AddOLEObject method of the Shapes Collection object.

ActiveSheet.OLEObjects.Add(ClassType:=”Forms.CommandButton.1”).Select

Or

ActiveSheet.Shapes.AddOLEObject(ClassType:=”Forms.CommandButton.1”).Select

Properties of the newly added OLEObject object are manipulated in one of two ways.
First, if the property is listed in the Object Browser under the class OLEObject, then
it can be assigned a new value in the usual way by returning the OLEObject from
the OLEObjects Collection object. If the property is not listed under the OLEObject
class in the Object Browser then you must return the actual Control object by using
the Object property before setting the new value of the control’s property.

The sub procedure AddCommandButton() adds a Command Button control to the
active worksheet using the AddOLEObject method of the Shapes Collection object.
Returning the object from the OLEObjects Collection object sets the Name, Left,
and Top properties of the OLEObject. However, to set the Caption property you
must first return the control using the Object property of the OLEObject object.

Public Sub AddCommandButton()

ActiveSheet.Shapes.AddOLEObject(ClassType:=”Forms.CommandButton.1”).

Name = “cmdTest”

With ActiveSheet.OLEObjects(“cmdTest”)

.Left = Range(“C1”).Left

366
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.6

The Misc Shapes
worksheet after
execution of the

LoopThruShapes()

sub procedure

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 366

.Top = Range(“C4”).Top

End With

ActiveSheet.OLEObjects(“cmdTest”).Object.Caption = “Click Me”

End Sub

Event procedures for an OLEObject object can be written prior to their addition
to a worksheet. You must name the event procedure as VBA would name it when
adding the control at design time. For example, if you intend to add a Command
Button control at runtime using the AddCommandButton() sub procedure listed ear-
lier and you need its Click() event procedure, then you must name the proce-
dure cmdTest_Click(). Furthermore, the event procedure must be added to the
component module of the worksheet to which the Command Button control will
be added. The Click() event procedure listed here will trigger when the user
clicks on the Command Button control cmdTest (previously created by running
the AddCommandButton() sub procedure) provided the Click() event procedure is
added to the component module of the same worksheet to which the Command
Button was added.

Private Sub cmdTest_Click()

MsgBox (“Hello”)

End Sub

To execute this code, select the worksheet named OLEObjects in the Shape-
Demos.xls workbook and click on the button labeled Add Command Button. A
Command Button control will immediately appear on the worksheet with the
caption “Click Me.” With a click on the newly added Command Button control a
message box appears with the message “Hello.” This sequence of events is shown
in Figure 10.7.

It is sometimes desirable to create programs that are completely independent of
the active worksheet. The idea is to be able to create programs that run inde-
pendent of the worksheet, so the user can run the program from any worksheet
in the Excel application. This is a relatively simple task when your program does
not require ActiveX controls, because all the worksheet formatting can be han-
dled with code.

Considering the sub procedures listed previously, it may seem tempting to try to
create programs that add ActiveX controls to a worksheet at runtime in order to
avoid the requirements of a specific worksheet. Unfortunately, this task cannot
be completed because the event procedures of the control added at runtime must
still be added to the component module of a specific worksheet. Therefore,
adding ActiveX controls from a VBA program has limited utility and might just
as well be added at design time when the event procedures are written.

367
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 367

Chapter Project: Excetris

The basic objective of the Excetris game was described at the beginning of the
chapter. The objective of the program is to demonstrate the use of the Shapes Col-
lection object and some of its component objects while creating a fun program.

Excetris involves a minimal amount of animation involving a small group of
Shape objects as they move down the area of the worksheet defined as the game
board. The five shapes used for the game are shown in Figure 10.8.

Animation, and some of VBA’s limitations when animating objects, were discussed
in Chapter 6. The same limitations apply to Excetris with regard to the use of the

368
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.7

Adding an
OLEObject object

to a worksheet
with a pre-defined
Click() event

FIGURE 10.8

The five shapes
used for the

Excetris game

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 368

TE
AM
FL
Y

Team-Fly®

OnTime method of the application object. The minimum one-second interval with
the OnTime method limits the level of difficulty at which the game can be played.

Project Statement

I want to create a game modeled after the original Tetris with an emphasis on
programming Shape objects in Excel. The game should be written such that it
can be run from any worksheet in the Excel application. An area of cells on an
Excel worksheet provides the game board and the game pieces are constructed
out of Shape objects (type rectangle). The program tallies a score based on the
number of shapes removed from the game board (worksheet) and assigns bonus
points when multiple rows are removed.

Project Tools

Excetris will be constructed using an Excel worksheet with code contained
within standard modules to avoid any dependence on specific worksheets. This
means that there will not be any ActiveX controls or Form buttons used to start
the game.

The game board is simple, and can be constructed entirely from code using many
of the properties of the Range object. A rectangular Shape object used to trigger an

369
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

IN THE REAL WORLD

Multitasking refers to a computer’s ability to manage multiple processes with a

single CPU. For example, it is common to have more than one application (such

as Microsoft Word and Excel) open at the same time. For each application that

is open and running, the operating system creates a separate execution path,

called a thread. In many programming languages it is also possible to create a

single application that involves multiple threads. Your program can carry out

more than one task at the same time. The ability to create a multithreaded pro-

gram greatly enhances the options available to the programmer for extending

the power of his program. For example, multiple threads can be used to animate

multiple objects in a gaming type application.

Visual Basic and VBA do not fully support the creation of threads. However,

multiple threads can be created in a somewhat limited fashion using either the

Windows API or ActiveX controls. The ActiveX control is the easiest method,

but unfortunately it is not included with VBA.

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 369

event procedure that starts a new game can be added to the worksheet from code.
The game pieces are constructed out of identical Shape objects and animated using
the OnTime method of the Application object. The position of the animated Shape
objects can be tracked using a Range object that corresponds to the underlying
cells of the worksheet. The OnKey method of the Application object can be used to
assign various procedures to simple keystrokes made by the player. This allows the
player to direct the movement of the animated shape using the keyboard. The
active worksheet can be used to mark shapes that have been “played” in order to
determine when a player scores, when shapes should be removed, and when the
game is over. Embellishments can be added to the program (preferably involving
different Shape objects) once the program is functional.

Project Algorithm

Construct Excetris following the general guidelines listed here.

1. Write the code in standard modules to avoid any dependence on specific
worksheets. Format the worksheet selected by the player entirely from the
program using a specific sub procedure.

2. The sub procedure used to format the cells on the worksheet should cre-
ate cells that are identical in size and proportions (height and width). The
game board consists of ten columns and 15 rows. Additional formatting is
required to define an area on the worksheet below the game board for dis-
playing the player’s current score. An area of cells to the right of the game
board will display a message signaling when the game is over. Finally, a
Shape object will be added to the right of the game board and assigned a
procedure with the OnAction property. After the program is functional,
images can be added to the Shape object to simulate the look of a button.

3. Another sub procedure functions to randomly create one of five possible
shapes and add it to the worksheet at the top of the game board. Each of
the five shapes is built out of four AutoShapes of type rectangle. The
dimensions of each Shape object match the dimensions of a worksheet
cell in the game board. This allows for precise placement of the Shape
objects as they move left, right, and down the game board. This procedure
also initializes a Range object that is used to track the location of the
Shape objects as they move down the game board. This Range object holds
the references to the worksheet cells for which the Shape objects are
directly above.

4. After a Shape has been added to the top of the game board another sub
procedure will be called to initiate its downward movement. This proce-

370
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 370

dure calls itself using the OnTime method of the Application object. With
each call to the procedure, the set of four Shape objects move down a dis-
tance of one row in the worksheet. The target range must be validated
before the shapes are moved.

5. The game is played using the keyboard. The OnKey method of the Application
object is used to assign different procedures to specific keystrokes. The left
and right arrows call procedures that move the Shape objects one column to
the left or right on the worksheet. The up arrow rotates the combination of
the four Shape objects 90 degrees counterclockwise and the Tab key drops
the shape to the bottom of the game board. Again, the target range for the
group of four Shape objects must be validated prior to the move.

6. With each move of the Shape objects down the game board, validation
procedures are called that test the target range of the animated Shape
objects. The target range (referred to as the active range) must be within
the defined area of the game board and cannot overlap with any previ-
ously played shapes. The main validation procedure also resets the active
range of the animated shape.

7. When the player chooses to rotate the animated shape, the active range
corresponding to the cell locations below each shape will be altered based
on the type of shape and the number of rotations. The Shape objects then
are mapped to the cell references in the altered active range. Figure 10.9
illustrates the allowed rotations for each animated set of Shape objects and
the cell references used for deciding how to construct the new active range.

8. When the animated set of Shape objects has moved down the worksheet
as far as possible the animation must be turned off by sending false to the
OnTime method of the Application object. The four Shape objects are then
mapped to their static positions on the worksheet by changing their Name
properties to include the column and row indices of the cells they rest
above. The corresponding worksheet cells are marked with an x. This is
used to determine whether a row has been scored.

9. After each animated set of Shape objects has been placed, the game board
will be scanned to see if there are any rows that are completely filled with
shapes. If there are, then the row/rows of Shape objects are removed along
with the corresponding x’s on the worksheet and the score is updated. The
player receives ten points for each shape removed. Bonus points are awarded
when multiple rows are scored at one time. When bonus points are awarded,
Shape objects of type picture and callout will be used to display the message.

10. The game ends when a new shape is added to a group of cells that already
contain shapes.

371
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 371

Adding the Code

The entire program is entered into a single standard module. A main sub proce-
dure is created to initialize variables and call other formatting and initialization
procedures. The main sub procedure is called Excetris() and is given public scope
so that it can be accessed from the Excel application. Excetris is independent of
the worksheet, so the player can run the program from any worksheet in the
Excetris.xls workbook.

I begin with a few module-level variable declarations. These will be explained as
they appear in the various sub procedures in the program.

Option Explicit

Dim sqWidth As Single

Dim sqHeight As Single

Dim shapeType As Integer

Dim activeRange As Range

Dim numRotations As Integer

Const RECTANGLE = 1

Because the Excetris game is independent from the worksheet in which it is
started, the player must start the program by selecting the Excetris() sub proce-
dure from the Run Macro tool on the Visual Basic toolbar.

372
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.9

Mapping shape
rotations to
cell ranges

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 372

Public Sub Excetris()

Dim sh As Shape

The block of code in the If/Then conditional is an embellishment added after the
program was essentially finished. The purpose of this code block is to change the
image in the Shape object used to simulate the action of a button click. This is
the Shape object the player can use to start a new game after one game has
already been played.

If ActiveSheet.Shapes.Count > 1 Then

For Each sh In ActiveSheet.Shapes

If sh.Name = “NewGameButton” Then

ActiveSheet.Shapes(“NewGameButton”).Select

Selection.ShapeRange.Fill.UserPicture ActiveWorkbook.Path_

& “\NewGame2.png”

Delay (0.5)

End If

Next

End If

The rest of the Excetris() sub procedure is making calls to other procedures used
to initialize the worksheet and keyboard and begin the game.

NewGame

FormatSheet

numRotations = 0

SetKeys

AddShape

Range(“A21”).Select

A small time delay ensures that the added shape can be viewed at the top of the
game board (row 3) before it starts to move. The game board refers to worksheet
cells C3:L17.

Delay (0.15)

MoveShape

End Sub

The sub procedure NewGame() is called from Excetris() and removes all Shape
objects from the worksheet and clears the cells representing the game board, the
player’s score, and the game over message.

Private Sub NewGame()

Dim sh As Shape

373
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 373

For Each sh In ActiveSheet.Shapes

If sh.Type = msoAutoShape Then

sh.Delete

End If

Next

Range(“C3:L17”).ClearContents

Range(“F22”).Value = “”

Range(“O12”).Value = “”

End Sub

The sub procedure FormatSheet() is also called from Excetris(); it sets several
properties of the worksheet cells representing the game board, the cells around
the game board, and the player’s score. Shapes will start on row 3 of the game
board and proceed down. The code in the FormatSheet() sub procedure should
look quite familiar to you.

Private Sub FormatSheet()

Dim c As Range

Dim gameBoard As Range

‘

Set gameBoard = Range(“C3:L17”)

gameBoard.ColumnWidth = 4

gameBoard.RowHeight = 24.75

gameBoard.Interior.ColorIndex = 2

‘

Range(“A1:B19,M1:N19”).ColumnWidth = 4

Range(“A1:L2”).RowHeight = 24.75

Range(“A1:B19,M1:N19”).Interior.ColorIndex = 1

Range(“A1:N2,A18:N19”).Interior.ColorIndex = 1

‘

Range(“O12:Q13”).Select

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlCenter

.MergeCells = True

.Font.Name = “Comic Sans MS”

.Font.FontStyle = “Bold”

.Font.Size = 18

End With

374
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 374

The formatting involved for the worksheet range used to display the player’s
score is a bit lengthy, so I used a separate procedure.

FormatScoreCells

The Shape object (type msoShapeRectangle) that simulates a button is added to the
worksheet with an image loaded into the object. The OnAction property of the
Shape object sets the calling procedure to Excetris() when the object is clicked.

ActiveSheet.Shapes.AddShape(RECTANGLE, Range(“O1”).Left + 0.5 *

_Range(“O1”).Width, _

Range(“O10”).Top, 104, 35).Select

Selection.ShapeRange.Fill.UserPicture ActiveWorkbook.Path & “\NewGame.png”

Selection.Name = “NewGameButton”

Selection.OnAction = “Excetris”

End Sub

The sub procedure FormatScoreCells() is called from FormatSheet() and simply
adds a label to the worksheet, merges two ranges, and sets a few of their proper-
ties. This procedure is actually a recorded macro that I cleaned up before adding it
to the program. The code is straightforward and requires no further explanation.

Private Sub FormatScoreCells()

Range(“F20:I21”).Select

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlCenter

.MergeCells = True

.Font.Name = “Comic Sans MS”

.Font.FontStyle = “Bold”

.Font.Size = 14

End With

With Selection.Borders(xlEdgeLeft)

.LineStyle = xlContinuous

.Weight = xlThick

End With

With Selection.Borders(xlEdgeTop)

.LineStyle = xlContinuous

.Weight = xlThick

End With

With Selection.Borders(xlEdgeRight)

.LineStyle = xlContinuous

.Weight = xlThick

375
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 375

End With

ActiveCell.Value = “Score”

Range(“F22:I23”).Select

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlCenter

.MergeCells = True

.Font.Name = “Comic Sans MS”

.Font.FontStyle = “Bold”

.Font.Size = 14

End With

With Selection.Borders(xlEdgeLeft)

.LineStyle = xlContinuous

.Weight = xlThick

End With

With Selection.Borders(xlEdgeBottom)

.LineStyle = xlContinuous

.Weight = xlThick

End With

With Selection.Borders(xlEdgeRight)

.LineStyle = xlContinuous

.Weight = xlThick

End With

With Selection.Borders(xlEdgeTop)

.LineStyle = xlContinuous

.Weight = xlThin

End With

End Sub

The sub procedure SetKeys() initializes the keyboard interface required for the
game. The OnKey method of the Application object sets the procedures that will be
called when either the Tab key, or the left, right, or up arrow keys are pressed by
the player. This procedure is called from Excetris() before the game actually
begins. If you don’t like playing the game with this set of keys, then you can just
change the code entered for the OnKey method. For example, to use the down arrow
instead of the Tab key to call the sub procedure DropShapes(), change the appro-
priate statement to Application.OnKey “{DOWN}”, “DropShapes”. Available keys and
their codes can be found in the online help by entering OnKey in the keyword field.

Private Sub SetKeys()

Application.OnKey “{TAB}”, “DropShapes”

376
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 376

Application.OnKey “{LEFT}”, “MoveLeft”

Application.OnKey “{RIGHT}”, “MoveRight”

Application.OnKey “{UP}”, “RotateCC”

End Sub

The sub procedure AddShape() randomly adds one of five possible shapes to the
game board. The procedure is quite long but the logic is mostly repetitive, so the
code is not hard to follow.

Private Sub AddShape()

Dim sqLeft As Single

Dim sqTop As Single

Dim I As Integer

Randomize

The shape to be played is constructed out of four Shape objects, each of type
AutoShape (msoShapeRectangle). The four shapes are identical in size, and their
width and height are set using the module-level variables sqWidth and sqHeight.
The width and height of each shape is set to exactly match the width and height
of the worksheet cells representing the game board. This is critical for keeping
the shapes properly aligned as the game is played. The module-level variable
shapeType is assigned a random integer value between 1 and 5 and defines the
order in which the four shape objects will be arranged into a single shape (as far
as the player is concerned).

sqWidth = 24.75

sqHeight = sqWidth

shapeType = Int(5 * Rnd) + 1

A Select/Case decision structure operates on the value of the shapeType variable
and is used to construct the shape that will be played.

Select Case shapeType

The first shape is a sequence of four consecutive squares in a single row (refer to
Figure 10.9). With each of four iterations, a For/Next loop adds a new square to
the overall shape. The location of each square is set using the Left and Top prop-
erties of the worksheet cells to which they are mapped. Each square is added
using the AddShape method of the Shapes Collection object, which requires para-
meters representing the shape type, location (Left and Top properties), and size
(Width and Height properties).

The Name property of each Shape object is changed such that the four names are
Shape1, Shape2, Shape3, and Shape4. These are the names that will always rep-
resent the shapes currently being played (animated). Before the shapes are added

377
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 377

to the worksheet the cell location to which they are mapped is tested to see if it
holds the value x. If it does, then there is already a shape present in this location
and the game must end.

Case 1

For I = 1 To 4

If Cells(3, I + 5).Value = “x” Then GameOver

sqLeft = Cells(3, I + 5).Left

sqTop = Cells(3, I + 5).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop, sqWidth,_

sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & I

Next I

The module-level variable activeRange is used throughout the program to keep
track of the location of the four Shape objects representing the shape being
played. At this point in the program the four shapes are added to known loca-
tions on the worksheet, so setting the range is easy. With a shape type of 1, the
four Shape objects are originally located above cells F3, G3, H3, and I3. Row 3 is
the top row of the game board and columns F through I are in the center.

Set activeRange = Range(“F3:I3”)

The second shape type is a 2 × 2 set of four shape objects representing one large
square. The logic used in its construction is essentially the same as with the first
shape except now two For/Next loops are used to add the four shapes.

Case 2

For I = 1 To 2

If Cells(3, I + 6).Value = “x” Then GameOver

sqLeft = Cells(3, I + 6).Left

sqTop = Cells(3, I + 6).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop,_

sqWidth, sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & I

Next I

For I = 3 To 4

If Cells(4, I + 4).Value = “x” Then GameOver

sqLeft = Cells(4, I + 4).Left

378
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 378

TE
AM
FL
Y

Team-Fly®

sqTop = Cells(4, I + 4).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop,_

sqWidth, sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & I

Next I

Set activeRange = Range(“G3:H4”)

The third shape consists of three consecutive shapes in a single row, with a fourth
shape added to a second row just below the last square in the first row (see Figure
10.9).

Case 3

If Cells(4, “H”).Value = “x” Then GameOver

sqLeft = Cells(4, “H”).Left

sqTop = Cells(4, “H”).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop, sqWidth,_

sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & 4

For I = 2 To 4

If Cells(3, I + 4).Value = “x” Then GameOver

sqLeft = Cells(3, I + 4).Left

sqTop = Cells(3, I + 4).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop,_

sqWidth, sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & (I - 1)

Next I

With shape type 3, the value of the variable activeRange must be assigned two
range areas to include just the cell references representing the location of the
four shapes. When setting the range, multiple areas are defined by separating
them with a comma.

Set activeRange = Range(“F3:H3,H4”)

If the random selection is shape type 4 or 5, then the four shapes are added in
the same manner as the others, albeit at different cell locations.

379
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 379

Case 4

If Cells(4, “G”).Value = “x” Then GameOver

sqLeft = Cells(4, “G”).Left

sqTop = Cells(4, “G”).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop, sqWidth,_

sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & 4

For I = 2 To 4

If Cells(3, I + 4).Value = “x” Then GameOver

sqLeft = Cells(3, I + 4).Left

sqTop = Cells(3, I + 4).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop,_

sqWidth, sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & (I - 1)

Next I

Set activeRange = Range(“F3:H3,G4”)

Case 5

For I = 1 To 2

If Cells(3, I + 6).Value = “x” Then GameOver

sqLeft = Cells(3, I + 6).Left

sqTop = Cells(3, I + 6).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop,_

sqWidth, sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & I

Next I

For I = 3 To 4

If Cells(4, I + 3).Value = “x” Then GameOver

sqLeft = Cells(4, I + 3).Left

sqTop = Cells(4, I + 3).Top

ActiveSheet.Shapes.AddShape(RECTANGLE, sqLeft, sqTop,_

sqWidth, sqHeight).Select

Selection.ShapeRange.Line.Weight = 0.5

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)

Selection.ShapeRange.Name = “Square” & I

380
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 380

Next I

Set activeRange = Range(“G3:H3, F4:G4”)

Case Else

End Select

End Sub

To randomly change the color of the each shape added to the game board,
create three new variables—colorRed, colorGreen, and colorBlue—and
assign them random integer values between 0 and 255 at the beginning of the
AddShape() sub procedure. Then replace each instance of the statement
Selection.ShapeRange.Fill.ForeColor.RGB = RGB(125, 125, 125)
with Selection.ShapeRange.Fill.ForeColor.RGB = RGB(colorRed,
colorGreen, colorBlue).

The final sub procedure called from Excetris() is MoveShape(). The sub procedure
MoveShape() starts the newly added set of four Shape objects on their way down
the game board. The shapes are moved down one worksheet row with each call
to this procedure. The MoveShape() sub procedure is set to be called every second
until the shape being played is stopped.

Public Sub MoveShape()

Dim sh As Shape

Dim yInc As Integer

Dim stopShape As Boolean

Dim I As Integer

An error handler is required to keep the program from crashing when the OnTime
method of the Application object fails to clear the next procedure call.

On Error GoTo ErrorHandler:

yInc = sqHeight

stopShape = False

The conditional expression in an If/Then decision structure sends program exe-
cution to the validation procedure NewActiveRange() to test the target range for
the set of shapes currently being played. If the target range is valid, then the
shapes are moved down one row via their Top property. If the target range is
invalid, then the Boolean variable stopShape is set to true.

If NewActiveRange(“Down”) Then

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”,_

“Square2”, “Square1”))

sh.Top = sh.Top + yInc

Next

381
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 381

Else

stopShape = True

End If

Using the OnTime method of the Application object, the MoveShape() procedure is
set to be called every second. If the variable stopShape is true, then the OnTime
method of the Application object is used to clear the call to the MoveShape() pro-
cedure and the sub procedure SetActiveRange() is called to set the four shapes to
their current cell locations.

Application.OnTime Now + TimeValue(“00:00:01”), “MoveShape”, , True

If stopShape = True Then

Application.OnTime Now, “MoveShape”, , False

SetActiveRange

End If

Exit Sub

If the OnTime method fails to clear the next call to MoveShape(), an error is gener-
ated and program execution stops. In this case, the solution to the problem is
simple but not terribly elegant (keep trying until it works!). Using Resume in the
error handler sends program execution back to the line of code that generated
the error. This process repeats until the OnTime method succeeds.

ErrorHandler:

Resume

End Sub

The sub procedure NewActiveRange() serves two purposes. First, it validates the target
range of the group of four Shape objects currently being played. Second, it updates
the variable activeRange that is used to keep track of the location of the shapes. The
procedure is fairly long, but again the logic is mostly repetitive. The NewActiveRange()
sub procedure accepts one string parameter used to specify the direction the pro-
gram has requested the shapes be moved (left, right, down, or rotated).

Private Function NewActiveRange(direction As String) As Boolean

Dim tempStr As String

Dim newStr As String

Dim I As Integer

Dim c As Range

The current location of the four shapes being played is temporarily stored in a
string variable. If the target range is determined to be invalid, then this string
will be needed at the end of the procedure.

tempStr = activeRange.Address

382
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 382

The bulk of this procedure is a Select/Case decision structure that operates on
the string variable direction. The variable direction is passed into this proce-
dure and specifies the direction in which the shapes are to be moved.

Select Case direction

If the program has requested a move down, then the row indices of the range vari-
able activeRange must be incremented by one. The string variable newStr repre-
sents the target range to which the shapes will be moved once the range is
validated. Several string functions are used to construct the target range from the
current range. The number of characters in the row index changes from row 9 to
10, so this consideration must be included when constructing the value of newStr.

Case Is = “Down”

For I = 1 To Len(activeRange.Address)

If Val(Mid(tempStr, I, 2)) > 1 And Val(Mid(tempStr, I, 2)) < 10_

Then

newStr = newStr & Trim(Str(Mid(tempStr, I, 1) + 1))

ElseIf Val(Mid(tempStr, I, 2)) > 1 And Val(Mid(tempStr, I,_

2)) >= 10 Then

newStr = newStr & Trim(Str(Mid(tempStr, I, 2) + 1))

I = I + 1

Else

newStr = newStr & Mid(tempStr, I, 1)

End If

Next I

If the program requests a move to the left or right, then the column indices in the
variable activeRange must be decremented or incremented by one, respectively.

Case Is = “Left”

For I = 1 To Len(activeRange.Address)

If Asc(Mid(tempStr, I, 1)) > 64 Then

newStr = newStr & Chr(Asc(Mid(tempStr, I, 1)) - 1)

Else

newStr = newStr & Mid(tempStr, I, 1)

End If

Next I

Case Is = “Right”

For I = 1 To Len(activeRange.Address)

If Asc(Mid(tempStr, I, 1)) > 64 Then

newStr = newStr & Chr(Asc(Mid(tempStr, I, 1)) + 1)

Else

383
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 383

newStr = newStr & Mid(tempStr, I, 1)

End If

Next I

The request for a rotation is more complicated. The target range is constructed
based on the shape type and the number of times the shape has been rotated. Fig-
ure 10.9 was used to determine how the column and row indices in the variable
activeRange are to be altered with a rotation of the shapes.

Case Is = “CC”

Shape type 1 contains four shapes in a single row. Only two positions are allowed
for this shape—horizontal and vertical. The variable newStr is constructed within
a For/Each loop that iterates through each cell reference in the range variable
activeRange. In the case of shape type 1, only the first and last cell references
must be altered (for example, F3:I3 becomes G1:G4). The variable I tracks the cell
reference selected in the For/Each loop. When I = 0 or I = 3, the first and last cell
reference in the range is selected. The variable numRotations is used to determine
if the shape is in a horizontal or vertical position.

The cell references used in the previous paragraph represent a static example for
determining the magnitude of change required for the row and column indices
in the activeRange variable. I could have used any range as long as it defined the
correct shape type. Consider the first cell reference in the variable activeRange as
it is rotated by 90 degrees. If the original cell reference is F6, then the target cell
reference is G4, a change of +1 in the column index and a change of –2 in the row
index. Therefore, when shape type 1 rotates from a horizontal position to a ver-
tical position (I = 0 and numRotations = 0 or 2) the column and row indices are
incremented by one and decremented by 2, respectively. When rotating from a
vertical position back to a horizontal position (I = 0 and numRotations = 1 or 3),
the opposite change is made where the column index is decremented by one and
the row index is incremented by two. I used the same approach to determine the
change in the last cell reference of the range.

If shapeType = 1 Then

For Each c In activeRange

If I = 0 And (numRotations = 0 Or numRotations = 2)

Then newStr = “$” & Chr(c.Column + 65) & “$” & (c.Row - 2) & “:”

If I = 3 And (numRotations = 0 Or numRotations = 2)

Then newStr = newStr & “$” & Chr(c.Column + 62) & “$” & (c.Row + 1)

If I = 0 And (numRotations = 1 Or numRotations = 3)

Then newStr = “$” & Chr(c.Column + 63) & “$” & (c.Row + 2) & “:”

384
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 384

If I = 3 And (numRotations = 1 Or numRotations = 3)

Then newStr = newStr & “$” & Chr(c.Column + 66) & “$” & (c.Row - 1)

I = I + 1

Next

Shape type 2 is the large square. Because of its symmetry, a rotation does not
affect this shape. Therefore, the variable newStr is assigned the current range.

ElseIf shapeType = 2 Then newStr = activeRange.Address

Shape types 3 and 4 require four rotations to complete one revolution. However,
there is still a symmetry element in the first area of their ranges. For both shape
types, the first area of the range maps three shapes in a single row. With each rota-
tion, this area changes back and forth between two different ranges (for example,
F3:H3 _ G2:G4). In the For/Each loop shown here, when the variable I = 0 or 2, the
first area in the range is being altered and when I = 3, the last area (represented
by a single cell reference, for example, H4) is altered. The last area in the range
changes its cell reference with each rotation until a full revolution is made and it
assumes its original value (for example, H4, H2, F2, F4 for shape type 3). The
changes in the row and column indices for each cell reference specified in the two
range areas are changed accordingly.

ElseIf shapeType = 3 Then

For Each c In activeRange

If I = 0 And (numRotations = 0 Or numRotations = 2)

Then newStr = “$” & Chr(c.Column + 65) & “$” & (c.Row - 1) & “:”

If I = 2 And (numRotations = 0 Or numRotations = 2)

Then newStr = newStr & “$” & Chr(c.Column + 63) & “$” & (c.Row + 1) & “,”

If I = 0 And (numRotations = 1 Or numRotations = 3)

Then newStr = “$” & Chr(c.Column + 63) & “$” & (c.Row + 1) & “:”

If I = 2 And (numRotations = 1 Or numRotations = 3)

Then newStr = newStr & “$” & Chr(c.Column + 65) & “$” & (c.Row - 1) & “,”

If I = 3 And numRotations = 0 Then newStr = newStr &

“$” & Chr(c.Column + 64) & “$” & (c.Row - 2)

If I = 3 And numRotations = 1 Then newStr = newStr &

“$” & Chr(c.Column + 62) & “$” & c.Row

If I = 3 And numRotations = 2 Then newStr = newStr &

“$” & Chr(c.Column + 64) & “$” & (c.Row + 2)

If I = 3 And numRotations = 3 Then newStr = newStr &

“$” & Chr(c.Column + 66) & “$” & c.Row

I = I + 1

Next

385
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 385

ElseIf shapeType = 4 Then

For Each c In activeRange

If I = 0 And (numRotations = 0 Or numRotations = 2)

Then newStr = “$” & Chr(c.Column + 65) & “$” & (c.Row - 1) & “:”

If I = 2 And (numRotations = 0 Or numRotations = 2)

Then newStr = newStr & “$” & Chr(c.Column + 63) & “$” & (c.Row + 1) & “,”

If I = 0 And (numRotations = 1 Or numRotations = 3)

Then newStr = “$” & Chr(c.Column + 63) & “$” & (c.Row + 1) & “:”

If I = 2 And (numRotations = 1 Or numRotations = 3)

Then newStr = newStr & “$” & Chr(c.Column + 65) & “$” & (c.Row - 1) & “,”

If I = 3 And numRotations = 0 Then newStr = newStr &

“$” & Chr(c.Column + 65) & “$” & (c.Row - 1)

If I = 3 And numRotations = 1 Then newStr = newStr &

“$” & Chr(c.Column + 63) & “$” & (c.Row - 1)

If I = 3 And numRotations = 2 Then newStr = newStr &

“$” & Chr(c.Column + 63) & “$” & (c.Row + 1)

If I = 3 And numRotations = 3 Then newStr = newStr &

“$” & Chr(c.Column + 65) & “$” & (c.Row + 1)

I = I + 1

Next

Shape type 5 contains two areas in its range, but is only allowed two rotations
before it assumes its original location (see Figure 10.9). In this case, a total of four
cell references must be altered (two per area) with each rotation.

ElseIf shapeType = 5 Then

For Each c In activeRange

If I = 0 And (numRotations = 0 Or numRotations = 2)

Then newStr = “$” & Chr(c.Column + 63) & “$” & c.Row & “:”

If I = 1 And (numRotations = 0 Or numRotations = 2)

Then newStr = newStr & “$” & Chr(c.Column + 62) & “$” & (c.Row + 1) & “,”

If I = 2 And (numRotations = 0 Or numRotations = 2)

Then newStr = newStr & “$” & Chr(c.Column + 65) & “$” & c.Row & “:”

If I = 3 And (numRotations = 0 Or numRotations = 2)

Then newStr = newStr & “$” & Chr(c.Column + 64) & “$” & (c.Row + 1)

If I = 0 And (numRotations = 1 Or numRotations = 3)

Then newStr = “$” & Chr(c.Column + 65) & “$” & c.Row & “:”

If I = 1 And (numRotations = 1 Or numRotations = 3)

Then newStr = newStr & “$” & Chr(c.Column + 66) & “$” & (c.Row - 1) & “,”

If I = 2 And (numRotations = 1 Or numRotations = 3)

Then newStr = newStr & “$” & Chr(c.Column + 63) & “$” & c.Row & “:”

386
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 386

If I = 3 And (numRotations = 1 Or numRotations = 3)

Then newStr = newStr & “$” & Chr(c.Column + 64) & “$” & (c.Row - 1)

I = I + 1

Next

End If

End Select

The activeRange variable is updated to the target range defined by the variable
newStr.

Set activeRange = Range(newStr)

A For/Each loop is used to validate the new range. If any of the column or row
indices fall outside the allowed values, or if the selected cell already contains an
x, then the new range is invalid. The activeRange variable is reset to its original
value and the function is exited, returning a value of false to the calling proce-
dure. This is the section of the program that prevents you from rotating a shape
when it first appears on the game board (before it has moved down) because the
rotation would place a Shape object over worksheet rows 1 or 2.

For Each c In activeRange

If c.Value = “x” Or c.Column < 3 Or c.Column > 12 Or c.Row < 3 Or_

c.Row > 17 Then

NewActiveRange = False

Set activeRange = Range(tempStr)

Exit Function

End If

Next

NewActiveRange = True

End Function

The next four sub procedures listed, DropShapes(), MoveLeft(), MoveRight(), and
RotateCC(), are called when the player presses one of the keys assigned to these
procedures. The sub procedure DropShapes() is triggered from the Tab key and
functions to move the shapes as far down the game board as possible.

Private Sub DropShapes()

Dim I As Integer

Dim sh As Shape

Dim moveDown As Boolean

An error handler is required to ensure that the OnTime method clears the call to
the MoveShape() sub procedure.

On Error GoTo ErrorHandler:

387
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 387

A Do-loop repeatedly calls the NewActiveRange() sub procedure listed earlier and
passes the string literal “Down”. As long as the target range is validated the Boolean
variable moveDown will be true and the loop continues. The variable I will hold the
number of rows that the shapes are allowed to move down the game board.

Do

I = I + 1

moveDown = NewActiveRange(“Down”)

Loop While (moveDown)

With the allowed increment stored in the variable I, each Shape object is moved
down via its Top property.

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”,

“Square2”, “Square1”))

sh.Top = sh.Top + (I - 1) * sqHeight

Next

After the shapes are moved as far down the game board as possible, the next call
to the MoveShape() sub procedure is cleared and the range representing the loca-
tion of the shapes is set with a call to the SetActiveRange() sub procedure.

Application.OnTime Now, “MoveShape”, , False

SetActiveRange

Exit Sub

ErrorHandler:

Resume

End Sub

The sub procedure MoveLeft() is called when the player presses the left arrow key.
A For/Each loop decrements the Left property of each Shape object by one col-
umn width after the target range has been validated with a call to the NewAc-
tiveRange() sub procedure.

Private Sub MoveLeft()

Dim sh As Shape

If NewActiveRange(“Left”) = True Then

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”,

_“Square2”, “Square1”))

sh.Left = sh.Left - sqWidth

Next

End If

End Sub

388
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 388

TE
AM
FL
Y

Team-Fly®

The MoveRight() sub procedure is triggered with the right arrow key and increments
the Left property of each Shape object by one column width after validation.

Private Sub MoveRight()

Dim sh As Shape

If NewActiveRange(“Right”) = True Then

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”,_

“Square2”, “Square1”))

sh.Left = sh.Left + sqWidth

Next

End If

End Sub

The sub procedure RotateCC() rotates the shape counterclockwise by 90 degrees.
Most of the work is done in the NewActiveRange() sub procedure, which sets the
target range for the shapes and stores it in the module-level range variable
activeRange. It is then a simple matter of using a For/Each loop to iterate through
each cell reference in the activeRange variable and set the Left and Top proper-
ties of each shape to the Left and Top properties of the corresponding cell.

Private Sub RotateCC()

Dim c As Range

Dim I As Integer

I = 1

If NewActiveRange(“CC”) = True Then

For Each c In activeRange

ActiveSheet.Shapes(“Square” & I).Left = c.Left

ActiveSheet.Shapes(“Square” & I).Top = c.Top

I = I + 1

Next

numRotations = numRotations + 1

If numRotations = 4 Then numRotations = 0

ActiveSheet.Range(“C20”).Select

End If

End Sub

When the set of four shapes currently being played can no longer move down the
game board the SetActiveRange() sub procedure is called. The purpose of this pro-
cedure is to mark the cell locations on the game board over which the shapes rest
and change the Name properties of the Shape objects. This procedure also calls the
procedures needed to add the next set of four Shape objects to the game board.

389
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 389

Private Sub SetActiveRange()

Dim c As Range

Dim I As Integer

I = 1

The activeRange variable holds the cell references representing the location of
each of the four Shape objects. It is a simple task to mark these cells by assigning
an x to their Value property. The Name property of each Shape object must be
altered, because the next set of four shapes added to the game board will be
assigned these same names. If you try to assign a name to a Shape object that is
already in use, then a runtime error will be generated and program execution
stops. The value of the Name property of each Shape object is altered to include the
column and row index of the cell it rests above.

For Each c In activeRange

c.Value = “x”

ActiveSheet.Shapes(“Square” & I).Name = “Square” & Chr(c.Column + 64)_

& c.Row

I = I + 1

Next

After the shapes are set, the sub procedure ScanRange() is called to search the
game board for a filled row of Shape objects. When program execution returns,
the next shape is added with some of the same procedure calls originally used in
the Excetris() sub procedure.

ScanRange

numRotations = 0

AddShape

Range(“A21”).Select

Delay (0.5)

MoveShape

End Sub

The sub procedure ScanRange() is called every time a played shape is set to the
game board. Its purpose is to check each row in the game board to see if it is filled
with Shape objects. If such a row is found, the shapes are removed, the shapes
above are moved down one row, and the score is updated.

Private Sub ScanRange()

Dim myRow As Range

Dim c As Range

Dim scoreRow As Boolean

390
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 390

Dim numRows As Integer

Dim I As Integer

Dim K As Integer

Dim J As Integer

To search the game board for a complete row of shapes, I used a For/Next loop with
a looping variable that ranges from the first row to the last row on the game board.

For I = 3 To 17

I define a range variable (myRow) to represent an individual row in the game board
(for example, C3:L3).

Set myRow = Range(“C” & I & “:” & “L” & I)

scoreRow = True

If all Value properties in the range representing the current row hold the value
x, then the row must be removed and scored, otherwise the procedure moves on
to the next row in the game board.

For Each c In myRow

If c.Value <> “x” Then

scoreRow = False

Exit For

End If

Next

If the row is to be scored, then the integer variable numRows is incremented by one.
When the value of numRows exceeds 1, the sub procedure BonusCall() is called to
display a message to the player indicating he has been awarded bonus points.

If scoreRow Then

numRows = numRows + 1

If numRows > 1 Then BonusCall (numRows)

The contents of the cells in the scored row are cleared and the Shape objects are
deleted using the column and row indices referenced in their Name property. The
score is calculated by assigning ten points for each shape removed. If multiple rows
are removed, bonus points are assigned to each shape according to the number of
rows removed (for example, the third row removed scores 30 points for each shape).

For Each c In myRow

c.ClearContents

ActiveSheet.Shapes(“Square” & Chr(c.Column + 64) & c.Row)._

Delete

391
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 391

Range(“F22”).Value = Range(“F22”).Value + 10 * numRows

Next

After the scored row is removed, any shapes resting above must be moved down
one row. This is accomplished by looping up the game board starting from the
row that was just removed. Nested For/Next loops iterate through each row mov-
ing any shapes down one row if an x is found in the corresponding cell. The Value
properties of the cells are also updated to move any x down one row. The outer
loop specifies the row index, and the inner loop specifies the column index as
the value of each cell is checked.

For K = myRow.Row To 3 Step -1

For J = 3 To 12

If Cells(K - 1, J).Value = “x” Then

Cells(K - 1, J).Value = “”

Cells(K, J).Value = “x”

ActiveSheet.Shapes(“Square” & Chr(J + 64) & (K - 1))._

Top = Cells(K, J).Top

ActiveSheet.Shapes(“Square” & Chr(J + 64) & (K - 1))._

Left = Cells(K, J).Left

ActiveSheet.Shapes(“Square” & Chr(J + 64) & (K - 1))._

Name = “Square” & Chr(J + 64) & K

End If

Next J

Next K

Finally, if a bonus message was displayed, then a call to the sub procedure
DeleteBonus removes it from the worksheet.

If numRows > 1 Then DeleteBonus

End If

Next I

End Sub

As another embellishment to the program, I added the BonusCall() sub procedure
after the game was essentially completed. This procedure adds two new Shape
objects to the worksheet, a picture and a callout. The purpose of this procedure is
to display an image and message to the player indicating that he has received
bonus points for scoring more than one row after a shape is played. The procedure
is called from the ScanRange() sub procedure, which passes the numRows variable.

Private Sub BonusCall(factor As Integer)

Dim bonusStr As String

392
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 392

I use a Select/Case decision structure to set the image and message displayed.
The AddPicture method of the Shapes Collection object adds an image to the
drawing layer at the specified location. The parameters passed to the AddPicture
method include the path to the image, and the Left, Top, Width, and Height prop-
erties of the Shape object to be added.

Select Case factor

Case Is = 2

bonusStr = “Double Bonus Points!”

ActiveSheet.Shapes.AddPicture(ActiveWorkbook.Path & “\Smile1.png”,_

True, True, Range(“O6”).Left, Range(“P5”).Top, 50, 50).Select

Case Is = 3

bonusStr = “Triple Bonus Points!”

ActiveSheet.Shapes.AddPicture(ActiveWorkbook.Path & “\Smile2.png”,_

True, True, Range(“O6”).Left, Range(“P5”).Top, 50, 50).Select

Case Is = 4

bonusStr = “Quadruple Bonus Points!”

ActiveSheet.Shapes.AddPicture(ActiveWorkbook.Path & “\Smile3.png”,_

True, True, Range(“O6”).Left, Range(“P5”).Top, 50, 50).Select

End Select

The Name property is changed to make it easier to delete the shape after it has
been displayed.

Selection.Name = “BonusPic”

Next, I add a Shape object of type msoShapeRoundedRectangularCallout to the work-
sheet and set the Text property of the Characters object to the bonusStr variable
defined earlier in the procedure. The text is also formatted using several proper-
ties of the Font object.

ActiveSheet.Shapes.AddShape(msoShapeRoundedRectangularCallout,_

Range(“P6”).Left, Range(“P3”).Top, 90, 55).Select

Selection.Characters.Text = bonusStr

Selection.Name = “BonusCallout”

With Selection.Characters.Font

.Name = “Arial”

.FontStyle = “Bold”

.Size = 12

End With

Selection.HorizontalAlignment = xlCenter

Range(“R9”).Select

End Sub

393
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 393

The DeleteBonus() sub procedure delays program execution for one second before
deleting the image and callout added by the BonusCall() sub procedure.

Private Sub DeleteBonus()

Delay (1)

ActiveSheet.Shapes(“BonusCallout”).Delete

ActiveSheet.Shapes(“BonusPic”).Delete

End Sub

Private Sub Delay(pauseTime As Single)

Dim begin As Single

begin = Timer

Do While Timer < begin + pauseTime

DoEvents

Loop

End Sub

When the AddShape() sub procedure attempts to add a new set of shapes to the
game board but finds that a shape is already present at the location where the
new shapes are to be added, then the GameOver() sub procedure is called to end
the game. This procedure calls the ResetKeys() sub procedure to restore the keys
used in this game to their default action. In addition, a message is sent to the
worksheet indicating that the game is over. The player may then click on the
Shape object holding the image to begin a new game.

Private Sub GameOver()

ResetKeys

Range(“O12”).Value = “Game Over!”

End

End Sub

Private Sub ResetKeys()

Application.OnKey “{TAB}”

Application.OnKey “{LEFT}”

Application.OnKey “{RIGHT}”

Application.OnKey “{UP}”

End Sub

This concludes the code listing for the Excel version of Tetris. The next step in the
development of Excetris would be to add multiple levels of difficulty to the game.
In the original version of Tetris, the game is made more challenging by increas-
ing the speed of the shapes as they move down the game board. Unfortunately,
the shapes cannot be moved any faster using the OnTime method of the Applica-
tion object because the program already uses its minimum time interval of one

394
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 394

second. The shapes could be incremented down two rows instead of one, which
would simulate a faster downward motion of the shapes. Other possibilities
include creating additional shape types that make it harder for the player to find
a fit, or including an occasional “Hot” shape that automatically drops to the bot-
tom of the game board as soon as it’s added (make its color a bright red-orange!).
Use your imagination and you’ll think of methods for making the game harder
and more exciting.

Chapter Summary

In this chapter I discussed the Shape object and the tools available in Excel for
adding shapes to a worksheet and manipulating existing shapes. I also discussed
the Shapes Collection object and some of its properties and methods used to add
and manipulate Shape objects, and demonstrated the use of the ShapeRange Col-
lection object for selecting and manipulating a specific set of Shape objects from
a collection. You also saw the OLEObjects Collection object and learned how to
add an ActiveX control to a worksheet using a VBA program.

395
C

h
a

p
te

r
 1

0
 V

B
A

S
h

a
p

e
s

CHALLENGES

1. Create a program in VBA that adds several lines, rectangles, ovals, and tri-

angles to a worksheet. Use a looping code structure.

2. Create a VBA program that creates a ShapeRange Collection object from

just the ovals in the drawing layer of a worksheet. Then alter the appear-

ance of the ovals by adding a fill color.

3. Using a For/Each loop in a VBA procedure, select just the rectangles created

in the first challenge and align them to column C in the worksheet. Use the

Left property of the Range and Shape objects.

4. Add several Shape objects to the drawing layer of an Excel worksheet, then

use the Group method of the ShapeRange Collection object to group the

range of shapes into a single shape. Rotate the grouped Shape object using

its Rotation property.

5. Edit the Excetris program to include an additional shape type, bringing the

total number of shape types to six. Build the new shape type out of four rec-

tangular shapes as was done with the other five shape types. Edit all pro-

cedures necessary for adding, setting, moving, and keeping track of the

location of the new shape type.

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 395

A Final Word

Congratulations on finishing this book! You are now ready to tackle your own
VBA projects in Excel. You will find that even with the relatively basic program-
ming skills taught in this book you will be able to create robust and helpful pro-
jects for the home and business. Don’t forget that the accompanying CD-ROM
includes two bonus chapters that show you how to use several more VBA objects
and methods. The bonus chapters, Chapter 11 and 12, show you how to query
external data sources, use some of VBA’s Web-related objects, create and use Excel
add-ins, and create custom menus and toolbars.

If you want to learn how to do even more with VBA, then I recommend two
options. First, learn how to program in Visual Basic. Using Visual Basic 5.0 or 6.0
you can create custom ActiveX controls that can be referenced in VBA and used
in your programs. The selection of ActiveX controls that comes with VBA is very
limiting, and extending the number of available controls will give you much
more flexibility in your projects. I should warn you, though, that Microsoft has
effectively killed ActiveX technology with their new release of Visual Basic .NET.
Office XP still supports ActiveX technology but it’s hard to say if the next version
of Office will continue to do so. Second, if you are really gung-ho about pro-
gramming, then I recommend learning how to use the Windows API. The Win-
dows API will significantly extend your programming capabilities and the power
of your programs. Whatever you decide, the most important thing to remember
is that you should have fun!

396
M

i c
r
o

s
o

f t
E
x

c
e
l

V
B

A
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

10 XLVBA CH10.qxd 2/25/03 7:48 AM Page 396

A
A1 style references, formulas, 109–111

access files, sequential, 272–274

Activate() event, event procedure, 53

ActiveX controls

adding to UserForm, 231–233

appearance editing, 11

attaching to macros, 119

captions, 11

ComboBox control, 243–246

Command Button Control, 16–17, 251

Control Toolbox, 9–13

enabling, 77

event procedures, 12

Frame control, 235–236

Image control, 195–198

Label control, 238–239

ListBox control, 243–246

macro attachment, 119

naming conventions, 11

Option button, 121

OptionButton control, 235

Scroll Bar control, 191–194

sounds, 200

Text Box control, 16–17

viewing properties, 16

worksheet placement, 9–11

Add Procedure dialog box, 56

addends, accepting from Main()
subprocedure, 58

AddUserInput() sub (subroutine) procedure, 58

AI (artificial intelligence), described, 203–204

algorithms

Alienated Game project, 333–334

Battlecell project, 162–163

Blackjack project, 247–250

colorful header project, 16–17

Enhanced Battlecell project, 205–208

Excetris project, 370–372

logic errors, 36

Math Game project, 119–122

Poker Dice project, 75–76

time of your life project, 44–45

Word Find project, 293–296

Alienated Game project

appearance updating, 335, 339

axes scales, 354

bubble charts, 338, 344–345, 348

class modules, 348

code, 335–355

copying removed images to the Clipboard, 346

creating an embedded chart, 353

data point loops, 340–341

data series addition, 336

described, 314, 332–333

disabling user interaction, 336

game start up, 335

image assignments, 336–337

image checking, 341

image loading, 339–340

image selections, 349–353

player’s score storage, 349

plot area sizing, 354

project algorithm, 333–334

project statement, 333

project tools, 333

random number generation, 346

repositioning image identification
numbers, 346

repositioning images, 345, 347–348

scanning/removing identical images,
336–337

screen elements, 315, 335

swapping selected images, 352

testing image selections, 351

tracking image identification numbers,
341–344

updating image identification numbers,
345–347

Index

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 397

ampersand (&) character, string
concatenation, 43

AND operator, 65–66

animations

cell colors, 194–195

cell formatting, 191–195

continuing on exit, 195

control property method, 195–198

controlling, 194

defined, 189

Image control, 195–198

image frame method, 198–200

image optimization, 199

starting/stopping, 193

system clock, 189–190

timed sequence of events, 189

timers, 190–191

transparency, 198

VBA techniques, 189

Answer Wizard, Excel Help system, 14

answers, outputting w/message box, 58

Application object

Cells property, 155–156

top-level object, 145

application window, centering, 164, 166

arrays

BubbleSort2() sub procedure, 103

defined, 99

dynamic, 106–109

element initialization, 102

initializing inside of a loop, 102–103

mathQuestions, 128

multiple declarations, 102

multi-dimensional, 104–106

myArray, 102

one-dimensional, 101–104

Preserve keyword, 107

three-dimensional, 105

transArray, 105

variant data type, 101

worksheet column as, 99–101

artificial intelligence (AI), described, 203–204

ASCII conversion characters, 94

Assign Macro dialog box, 119

attributes, object, 5, 136

Axes Collection object, 323

axes, chart element 321, 323

Axis object, 323

B
backgrounds, chart element, 321

Battlecell project

board dimensions, 165–166

centering the application window, 164, 166

cheating, 176

code addition, 164–184

ending the game, 180, 182

game start up, 168, 173, 177

hit/miss indicators, 179, 181–182

invalid selection message, 179

project algorithm, 162–163

project statement, 161–162

project tools, 162

random firing, 180–181

resetting the game board, 183–184

screen elements, 134, 167

scroll bars, 166

selection validations, 170–172

ship placement, 168–169, 173

ship types, 168–169, 173

target grid, 174, 177

upper/lower bounds, 175–176

width/height settings, 164

zoom percentage, 164–165

Blackjack project

ace card value determination, 259

bet tracking, 257

code addition, 250–266

Command Button control, 251

computer (dealer) wins message, 261

counting played cards, 254, 256, 261

dealer “hits”, 258

dealer’s card displayed, 253

dealing a hand, 251–252, 253

drawn card limits, 257–258

hand display, 250–252

image files, 255–256

outputting results to a worksheet, 263

played cards display, 262

player “hits”, 257

player “stands”, 253, 258

player’s score calculation, 251–253, 257–258

project algorithm, 247–250

project statement, 247

project tools, 247

removing UserForms from memory when
exiting, 263

398
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 398

TE
AM
FL
Y

Team-Fly®

screen elements, 228

shuffling deck display, 264

shuffling/reshuffling the deck, 251, 254,
263–265

sounds, 251, 257, 266

tie (push) hands, 260

user (player) wins message, 260

Boolean data type, true/false values, 36

boundaries, column width adjustments, 154–155

branching

Exit For statement, 91

If/Then/Else structure, 67–71

break mode, debugging, 287–289

breakpoints, inserting, 288

bubble charts, Alienated Game project, 338,
344–345, 348

bugs

debugging, 287–289

defined, 283

Button parameter, event procedures, 54–55

ByRef keyword, passing by reference, 59–61

ByVal keyword, copying stored variable
values, 59–61

C
C language, memory location access, 60

C# language, object-oriented, 135

C++ language

memory location access, 60

object-oriented, 135

Call keyword, sub (subroutine) procedure
execution, 58

captions

ActiveX controls, 11

Blackjack project Command Button
control, 251

cell formatting, animation methods, 191–195

Cells property, Range object, 155–156

cells

animation colors, 194–95

column width adjustments, 154–155

fill color, 12

For/Each loops, 160–161

input validation, 97–99

merged references, 77

returning all in worksheet, 155–156

returning number in a column, 123

values, 23

characters

string data type, 33–34

string location, 42

Chart object, 314–315, 317, 326

chart sheets

creating, 316–317

events, 327–329

label positioning, 328–329

ChartObject object, 317

ChartObjects Collection object, 317

Charts Collection object, 314–315, 317

charts

accessing existing, 314–317

adding data to, 323

axes, 321, 323

backgrounds, 321

bubble, 338

changing type, 318–322

chart sheet events, 327–329

colors, 320–321

creating, 322–326

data interpretation, 314

data labels, 321, 323

data markers, 321, 323

data plot area, 321

embedded, 314–317, 324

events, 326–332

gridlines, 321

label positioning, 328–329

legends, 321

line, 322

macro uses, 325–326

manipulating, 318–322

new worksheet creation, 314–317

Object Model, 141

pie, 322

references, 321

tick marks, 323

titles, 321

types, 319

worksheet data range selections, 322–323

worksheet positioning, 324

x-axis, 323

y-axis, 323

z-axis, 323

399
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 399

Check Box Control, Poker Dice project, 74–75

class module

Alienated Game project, 348

embedded chart events, 329–332

Classes window, viewing available
objects, 140–141

classes. See objects

Click() event

colorful header project, 17–18

event procedure, 12

clocks, fashioning from a pie chart, 322

code window

adding code to colorful header project, 17–19

opening, 8

program containers, 6, 8

screen elements, 11–12

UserForm, 230–231

code

Alienated Game project, 335–355

Battlecell project, 164–184

comments, 18

Enhanced Battlecell project, 208–224

Excetris project, 372–395

indenting for clarity, 70

line continuation (_) character for clarity, 81

Math Game project, 122–131

On Error statement placement, 284

Poker Dice project, 76–84

reading object paths, 143

stepping through, 289

time of your life project, 45–49

viewing in Project Explorer window, 7–8

Word Find project, 296–310

collection object, 137–139, 359

colorful header project

ActiveX control properties, 17

adding code, 17–19

Command Button Control, 16–17

constructing, 15–19

project algorithm, 16–17

project statement, 16

project tools, 16

spreadsheet display, 2

Text Box Control, 16–17

colors

adding to shapes, 381

animated cells, 194–195

charts, 320–321

fill, 12

transparency, 198

column widths, adjusting with Range object,
154–155

columns, returning number of cells, 123

ComboBox control

properties, 244

UserForms, 243–246

comma (,) character, multiple variable
separator, 54

Command Button control

adding to worksheet, 366

Blackjack project, 251

Click() event, 12

colorful header project, 16–17

Control Toolbox element, 9

event procedures, 12

MouseDown() event trigger, 54–55

properties, 10–11

VBA IDE code window screen elements, 11–12

worksheet placement, 9–11

commands

Insert, UserForm, 229

Tools, Macro, Macros (Alt+F8), 3, 8, 118

Tools, Macro, Record New Macro, 3, 8

Tools, Macro, Visual Basic Editor (Alt+F11), 3

Tools, Macros, Record New Macro, 113

Tools, View, Object Browser (F2), 139

View, Code (F7), 230

View, Toolbox, 231

comments, defined, 18

communications, multimedia methods, 188

comparison operators, 65, 68

compilers, described, 3

component modules, described, 24–25

computers, memory locations, 60

concatenation, defined, 43

conditional expressions

equals (=) operator, 68

testing, 81–84

conditional statements, Do loop, 89–91

conditionals

If/Then/Else structure, 67–71

linking, 81

Select/Case structure, 71–72

400
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 400

constants

multiple array declarations, 102

string naming, 36

TIMEALLOWED, 124

containers, standard code windows, 6, 8

Control Toolbox

access methods, 9

Design Mode, 9

Image Control, 73–74

Visual Basic toolbar element, 9–13

conversions

ASCII characters, 94

string data to numerical data, 48

Ctrl-Alt-Break key sequence, stopping infinite
loop, 90

current date, global variable storage, 124

D
data labels, 321, 323

data markers, 321, 323

data plot area, 321

data types

Boolean, 36

date, 36

defined, 27

escape characters, 28

long, 47

numerical, 28–33

Object, 159–160

return, 62

scientific notation, 28

string, 33–34

variant, 34–35, 101

date data type, 36

dates, current, 124

debugging

break mode, 287–289

breakpoints, 288

Immediate window, 289–290

Locals window, 291–292

statements, 289

stepping through code, 289

Watch window, 290–291

declarations

constants, 36–37

dynamic arrays, 106–107

general, 27

one-dimensional array, 101–102

string data type, 34

variable, 23–27

variable placement, 30

variant data types, 34–35, 101

Design Mode icon, Control Toolbox element, 9

design time

defined, 6

loading image to an Image Control, 74

dialog boxes

Frame control, 235–236

Label control, 238–239

OptionButton control, 235–236

worksheet range selections, 236–243

Dim (Dimension) statement, variable
declaration, 23–24

Do loops, 89–91

double quotes (“) characters, string data type, 34

drawing layer, described, 359

Drawing toolbar, adding shapes, 360

Drive object, 271

dynamic arrays

declarations, 106–107

ReDim statement, 106–107

robust programming use, 106

sizing, 106–109

dynamic link library files, Windows API, 201

E
Else keyword, If/Then/Else structure, 67–71

ElseIf clause, If/Then/Else structure, 70–71

embedded charts

accessing, 314, 316–317

adding to worksheets, 324

described, 314–315

events, 329–332

encapsulation, defined, 26

End Sub statement, sub (subroutine)
procedures, 56

Enhanced Battlecell project

animation display, 208–209

cell address comparing, 222

cell colors, 217–219

cell selections, 210

computer’s shot selection, 219

firing sequences, 210–211

game start up, 209

401
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 401

Enhanced Battlecell project (continued)

hit/miss indicators, 210–211

image sequences, 208–209

project algorithm, 205–208

project statement, 204–205

project tools, 205

screen elements, 188

sinking ship animation, 212

sound file playback, 214–216

string creation, 220–221

target selections, 212–213, 223–224

targeting neighboring cells, 223–224

equals (=) operator, comparisons, 68

error handling

bugs, 283

divide by zero error, 283

ErrorHandler line label, 285

GoTo statement, 285

logic errors, 283

On Error statement, 283–287

program execution procedure, 285–287

runtime errors, 284

syntax errors, 283

ErrorHandler line label, error handling, 285

escape characters, data types, 28

event procedures

defined, 12

End Sub keyword, 12

Math Game project, 126–127

naming conventions, 12

opening/closing, 12

parameters, 54–56

predefined, 52

Sub keyword, 12, 53

UserForm object, 231

versus sub (subroutine) procedures, 57

Worksheet object, 153–154

event-driven programming, defined, 2

events

Chart object, 326

chart sheets, 327–329

charts, 326–332

embedded charts, 329–332

objects, 136

Excel

built-in functions, 61

Help system (F1), 14

recording macros, 113–118

version display, 234

worksheet event display, 53

Excetris project

adding shapes, 394–395

colors added to shapes, 381

deleting shapes, 393–394

dropping shapes, 387–389

game board view, 374–375

game screen, 358

keyboard interface, 376–377

marking cell references, 389–390

moving shapes, 381–383, 387–389

project algorithms, 370–372

project statement, 369

project tools, 369–370

removing filled rows, 389–393

rotating shapes, 384–387, 389

score sheet appearance, 375–376

selecting shape object, 377–381

shape size, 377

shapes added randomly, 377

shapes used, 368

start game, 372–373

starting new game, 373–374

Exit Do statement, looping structure, 91

Exit For statement, branching structure, 91

expressions, function calls, 62

F
file extensions, types, 271

file I/O

Open statement, 272

random access files, 274–276

sequential access files, 272–274

unique file number assignment, 272

VBA file access modes, 271

Word List program, 276–283

file paths, variable storage, 77–78

files

proprietary, 271

random access, 274–276

sequential access, 272–274

unique file number assignment, 272

FileSearch object, 298

FileSystem object, 271

402
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 402

FileSystemObject object, 271

fill colors, all cells, 12

For loops, 91–94

For/Each loops, 160–161

For/Next loops

array lower bound, 103

character validation, 96

column iteration, 100–101

described, 91–94

form module, UserForm code window, 230–231

Forms toolbar, recorded macro uses, 118–119

forms

modal, 233–235

modeless, 234

formulas

A1 style references, 109–111

programming into worksheet cells, 109–112

R1C1 style references, 111–112

Frame control, custom dialog boxes, 235–236

frames, image, 198–200

Fun with Strings spreadsheet, screen
elements, 40–43

Function keyword, creating functions, 62

function procedures, 61–63

functions

AlterIndex(), 220–221

AutoFill(), 111

Average(), 61, 284

built-in, 61

CheckForCol(), 218

CheckForRow(), 218

Chr(), 94, 105

Counta(), 123

CountCells(), 304–305

CountRedCells(), 217

creating, 61–63

DateDiff(), 46–47, 124

DateValue(), 46

Day(), 47

defined, 61

Dir(), 202

DoEvents(), 191

Factorial(), 93

FindEnd(), 222

FindFile(), 297–298

Format(), 47

Fun with Strings spreadsheet, 40–43

incorporating Excel functions in VBA, 64

InputBox(), 37–38, 95–97

Instr(), 47

LCase(), 43

Left(), 47–48

Len(), 48, 276

LoadPicture(), 77

Median(), 284

Mid(), 43

Mode(), 284

MsgBox(), 38–39

nesting, 46

Now(), 46

OnTime(), 121

parameter passing, 37–38

POWER(), 63–64

PowerDB(), 62–63

QBColor(), 194

Right(), 48

Rnd(), 121

sndPlaySoundA(), 201–202

Standev(), 284

STDEV(), 61

Str(), 48

StrConv(), 48

string manipulation, 39–43

SUM(), 61

Timer(), 190–191

Trim(), 96

UCase(), 43

Val(), 48, 58, 98

ValidateName(), 95–97

ValidateStartCell(), 303

Year(), 47

G
general declarations

defined, 27

Option Base 1 statement, 102

global variables

current date storage, 124

defined, 27

GoTo statement, after anticipated On Error
statement, 285

graphical user interface (GUI), 229

gridlines, chart element, 321

403
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 403

H
Harris, Andy, 15

Help system (F1)

Answer Wizard, 14

Excel screen elements, 14

installing VBA help files, 15

keyword search, 14

Object Browser, 141

Object Model chart, 141

Office Assistant, 14

online help, 13–14

VBA, 14–15

hierarchy

objects, 141–144

Range object, 154–156

Workbook object, 145

Worksheet object, 153

I
If keyword, If/Then/Else structure, 67–71

If/Then/Else structure, conditional and
branching structure, 67–71

Image control

animations, 195–198

Control Toolbox element, 9

Poker Dice project, 73–74

image frames, animation technique, 198–200

images

Alienated Game project assignment,
336–337

Blackjack project, 255–256

loading to an Image Control, 74, 77

optimizing for animation, 199

randomly-chosen loading, 78

transparency, 198

Immediate window, debugging, 289–290

indents, code clarity, 70

index numbers

Cell property, 155–156

workbooks, 138

infinite loops, avoiding, 90

input validation, described, 94–95

installation, VBA help files, 15

Integrated Development Environment (IDE)

access methods, 3–4

break mode, 287–289

code window screen elements, 11

described, 3

inserting UserForm objects, 229

screen elements, 4–5

Internet, string search, 34

J
Java, object-oriented language, 135

K
keywords

ByRef, 59–61

ByVal, 59–61

Call, 58

Const (constant), 36

defined, 2

Dim, 27

Do, 89

Else, 68–71

End Sub, 12

For, 91

Function, 62

Help system (F1) search, 14

If, 67–71

Internet string search, 34

Loop, 89

Me, 246

Next, 91

Preserve, 107

Private, 12, 27, 53–54

Public, 27, 53–54

Sub, 12, 53, 56

Then, 67–71

To, 91

Until, 89

While, 89

L
Label Control

Control Toolbox element, 9

custom dialog boxes, 238–239

renaming guidelines, 16

labels

chart element, 321, 323

chart sheet positioning, 328–329

404
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 404

legends, chart element, 321

libraries, Object Browser, 139–140

line charts, Interior object colors, 322

line continuation (_) character, code clarity, 81

lines, adding to worksheets, 359

linking, conditionals, 81

ListBox control

properties, 244

UserForms, 243–246

Locals window, debugging, 291–292

logic errors

described, 283

reasons for, 36

logical operators

AND, 65–66

described, 64

NOT, 65–66

OR, 65–66

long data type, described, 47

looping

Exit Do statement, 91

shapes, 361–362

loops

array initialization, 102–103

Do, 89–91

For, 91–94

For/Each, 160–161

For/Next, 91–94

infinite, 90

stepping through collection objects, 139

stopping with Ctrl-Alt-Break key sequence, 90

M
Macintosh

graphical user interface (GUI), 229

Timer function resolution, 190

Macro dialog box, 9

Macro Recorder, starting, 113–114

macros

attaching to a control, 119

chart manipulation method, 318

chart uses, 325–326

currently selected display, 9

defined, 8

Forms toolbar, 118–119

listing available, 9

naming conventions, 114

record methods, 113

recording, 113–118

running, 118

selecting, 8–9

stopping a recording, 114

storage considerations, 114

With/End structure, 157

Magic Squares spreadsheet, 30–33

Main() sub (subroutine) procedure, 58

markers, chart element, 321, 323

Math Game project

checking timer values, 125

code addition, 122–131

current date storage, 124

disabling the timer, 125

event procedures, 126–127

Forms toolbar, 118–119

input validation, 126–127

mathematical operators, 123–124

procedure calls, 125

project algorithm, 119–122

project statement, 112

project tools, 113

properties, 122

question storage, 123

question values, 127–129

recording macros, 113–118

scoring, 130–131

scoring results display, 125

spreadsheet display, 88

time left calculation, 124

timer, 120–121

variables, 123

worksheet layout, 120

mathematical constants, 29, 36, 123–124

Members window, viewing selected objects,
140–141

memory, computer locations, 60

menu bar, VBA IDE element, 4–5

merged cells, references, 77

message boxes, outputting answers, 58

methods

adding shapes, 359–360

availability from selected objects, 361

described, 111, 136

details/parameters, 360

paste, 111

showing/hiding UserForms, 233

405
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 405

Microsoft Excel 2002 Fast & Easy (Faithe
Wempen), 322

Microsoft Windows, graphical user interface
(GUI) development, 229

Microsoft Word 2000, AI ability, 204

Misc Shapes worksheet, 363, 365

modal forms

UserForms, 233–235

worksheet range selections, 236–243

modeless forms, worksheet range selections,
236–243

modeless UserForms, MS Office 2000/Office XP
support, 234

module level variables, scope, 26–27

modules

component, 24–25

defined, 24

standard, 24–25

resolution issues, 151

MS Office 2000, modeless UserForm
support, 234

MS Office XP, modeless UserForm support, 234

multi-dimensional arrays, 104

multimedia

animations, 188–200

communication methods, 188

planning importance, 189

sounds, 200–203

multiple files, unique file number
assignment, 272

multitasking, defined, 369

N
names, length parameters, 47–48

naming, worksheets, 6

nested functions, defined, 46

nested loops, multi-dimensional array
access, 104

NOT operator, 65–66

Notepad program, viewing sequential access
file, 273

numbers, raising power, 62–63

numerical data types

Double, 28

Integer, 28

Long, 28

Magic Squares spreadsheet, 30–33

mathematical operations, 29–30

mixing concerns, 29

Single, 28

O
object attributes, Project window display, 5

Object Browser

accessing, 139

Classes window, 140–141

library selections, 139–140

Members window, 140–141

object hierarchy, 141–144

viewing available objects, 140–141

viewing selected objects, 140–141

Object data type, 159–160

object events, described, 136

object list, code window element, 11–12

object methods, described, 136

Object Model chart, object display, 141

object properties, 5, 136

object-oriented languages, described, 135

object-oriented programming (OOP), VBA
similarities, 134–135

objects

Application, 145

assessing with Me keyword, 246

attributes, 136

Axes Collection, 323

Axis, 323

Chart, 314–315, 317, 326

ChartObject, 317

ChartObjects Collection, 317

Charts Collection, 314–315, 317

collection, 137–139, 359

data type, 159–160

defined, 135

Drive, 271

events, 136

FileSearch, 298

FileSystem, 271

FileSystemObject, 271

For/Each loops, 160–161

Help system (F1), 141

hierarchy, 141–144

methods, 136

406
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 406

properties, 136

Range, 154–156

relative index number, 138

returning to ShapeRange Collection,
362–364

Series, 324–325

Shape, 358–365

Shape Collection, 358–362

ShapeRange Collection, 362–364

Sheets Collection, 154, 316

stepping through, 139

TextStream, 271

VBA addressing syntax, 138

viewing in Project Explorer window, 7–8

Window, 145–153

With/End With structure, 157–159

Workbook, 145–153

Workbooks Collection, 138

Worksheet, 145, 153–154, 358

Office Assistant, Excel Help system, 14

Office XP, installing VBA help files, 15

OLEObjects Collection object, 366–368

On Error statement, 283–287

one-dimensional arrays, declarations, 101–102

online help (F1), 14, 39

OOP (object-oriented programming), VBA
similarities, 134–135

Open statement, file I/O, 272

operators

AND, 65–66

comparison, 65

equals (=), 68

logical, 64–66

mathematical, 29

NOT, 65–66

OR, 65–66

Option Base 1 statement, array lower
bound, 102

Option button controls, 121

Option Explicit statement, variable
declarations, 24

Option Private statement, general declarations
section placement, 54

OptionButton control, custom dialog
boxes, 235–236

OR operator, 65–66

P
parameters

event procedures, 54–56

functions, 37–38

prompt, 37–38

Paste Function tool, 63

pie charts, clock creation, 322

playback, Wave Form Audio (wav) file, 202–203

plot area, chart element, 321

Poker Dice project

Check Box Control, 74–75

code addition, 76–84

constructing, 72–84

Image Control, 73–74

project algorithm, 75–76

project statement, 73

project tools, 73

screen elements, 52

powers, numbers, 62–63

Preserve keyword, re-dimensioning arrays, 107

Private keyword

one-dimensional array declarations, 101

procedure scope, 53–54

sub (subroutine) procedures, 56

variable declarations, 27

procedural level variables, scope, 26

procedures

copying between variables, 60

function, 61–64

input validation, 98

naming conventions, 58

passing by reference, 60

sub (subroutine), 56–59

Windows API, 201

program execution, error handling
procedure, 285–287

program looping, described, 88

programming, event-driven, 2

project algorithms

Alienated Game project, 333–334

Battlecell project, 162–163

Blackjack project, 247–250

colorful header project, 16–17

Enhanced Battlecell project, 205–208

Excetris project, 370–372

Math Game project, 119–122

407
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 407

project algorithms (continued)

Poker Dice project, 75–76

time of your life project, 44–45

Word Find project, 293–296

Project Explorer window (Ctrl+R)

opening code windows, 8

VBA IDE element, 4–5

View Code icon (F7), 7–8

workbook display, 5

worksheet display, 5

project statements

Alienated Game project, 333

Battlecell project, 161–162

Blackjack project, 247

colorful header project, 16

Enhanced Battlecell project, 204–205

Excetris project, 369

Math Game project, 112

Poker Dice project, 73

time of your life project, 44

Word Find project, 292

project tools

Alienated Game project, 333

Battlecell project, 162

Blackjack project, 247

colorful header project, 16

Enhanced Battlecell project, 205

Excetris project, 369–370

Math Game project, 113

Poker Dice project, 73

time of your life project, 44

Word Find project, 293

prompt parameter, functions, 37–38

Properties icon, Control Toolbox element, 10

Properties window (F4)

control properties display, 10–11

VBA IDE element, 5

properties

ActiveX control naming conventions, 11

availability from selected objects, 361

Cells, 155–156

Check Box Control, 75–76

colorful header project controls, 17

ComboBox control, 244

Command Button Control, 10–11

described, 136

Image Control, 74–75

ListBox control, 244

Math Game project, 122

object, 5

Scroll Bar control, 192

UserForm object, 229–230

viewing, 16

proprietary files, described, 271

Public keyword

one-dimensional array declarations, 101

procedure scope, 53–54

sub (subroutine) procedures, 56

variable declarations, 27

public variables, defined, 27

Q
question values, Math Game project, 127–129

questions, Math Game project storage, 123

R
R1C1 style references, formulas, 111–112

random access files, 274–276

random number generator, initializing, 78

Range object

Cells property, 155–156

column width adjustments, 154–155

hierarchy, 154

uses, 154

Record Macro button, Visual Basic
toolbar, 113–114

rectangle, adding to worksheet, 360–361

ReDim statement, dynamic arrays, 106–107

references

charts, 321

merged cells, 77

resolution, monitor issues, 151

return data type, creating functions, 62

Run button, running macros, 118

run time

defined, 6

loading image to an Image Control, 74

runtime errors

break mode, 287–289

error handling, 284

On Error statement placement, 284

Word Find project troubleshooting, 296

408
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 408

TE
AM
FL
Y

Team-Fly®

S
scientific notation, defined, 28

scope

defined, 26

module level variables, 26–27

procedural level variables, 26

procedure, 53–54

sub (subroutine) procedures, 56

variables, 26–27

Scroll Bar control, animations, 191–194

searches

Help system, 14

strings, 34

Select/Case structure, 71–72

SendResult() sub (subroutine) procedure, 58

sequential access files, 272–274

Series object, 324–325

Shape Collection object, 358–362

Shape object

activating, 365

adding to worksheet, 360–361

drawing layer contents, 358

example code location, 362

manipulating, 360–362

ShapeRange Collection object, 362–364

shapes

adding to worksheets, 359

described, 357

editing, 360–362

Excetris project, 368

looping through collections, 361–362

selecting size and shape, 377–381

Sheets Collection object, 154, 316, 358–362

Shift parameter, event procedures, 54–55

sounds

ActiveX controls, 200

Blackjack project, 251, 257, 266

Wave Form Audio (wav) file
playback, 202–203

Windows API (Application Programming
Interface), 200–203

spreadsheets

Fun with Strings, 40–43

Magic Squares, 30–33

Standard Code window, VBA IDE element, 5–6

standard modules

Alienated Game project, 353

described, 24–25

Standard toolbar, VBA IDE element, 4–5

statements

colorful header project, 16–17

debugging, 289

Dim (Dimension), 23–24

End Sub, 56

executing, 117

Exit Do, 92

Exit For, 92

GoTo, 285

On Error, 283–287

Open, 272

Option Base 1, 102

Option Explicit, 24

Option Private, 54

Poker Dice project, 73

ReDim, 106–107

static integer variable, control click counting, 77

Stop Recording button, macros, 114

string concatenation, defined, 43

string data types, 33–34

strings

ampersand (&) character, 43

character locations, 42

constants, 36

data to numerical conversion, 48

Internet search, 34

manipulating with VBA functions, 39–43

sequential file access, 273

trimming when validating, 96

value returns, 58

structures, With/End With 117, 157–159

sub (subroutine) procedures

addends, 58

defined, 56

DisableControls(), 124

End Sub statement, 56

GetRandomOperator(), 124

naming conventions, 58

outputting answer w/message box, 58

results determination, 79–81

scope, 56

versus event procedures, 57

worksheet column as array, 100–101

409
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 409

Sub keyword, event procedures, 53

subordinate objects, availability from selected
objects, 361

syntax errors, described, 283

system clock, animations, 189–190

T
Text Box Control

colorful header project, 16–17

Control Toolbox element, 9

TextStream object, 271

Then keyword, If/Then/Else structure, 67–71

threads, described, 369

three-dimensional arrays, 105

tick marks, charts, 323

time interval, user life, 46–47

time of your life project

code addition, 45–49

constructing, 44–49

project algorithm, 44–45

project statement, 44

project tools, 44

spreadsheet display, 22

timers

animations, 190–191

disabling, 125

Math Game project, 120–121

value checking, 125

title bar, code window element, 11

titles, chart element, 321

toolbars

Forms, 118–119

Standard, 4–5

Visual Basic, 4, 9–13

tools, colorful header project, 16–17

transparency, realistic animations, 198

triggers, worksheet selection, 153–154

true/false values, boolean data type, 36

U
user input

clearing check boxes, 76

collecting, 37–38

gathering, 46

processing, 46–47

validating, 95–97

user interaction, disabling, 336

user life, time interval, 46–47

user names

extracting, 48

length parameters, 47–48

UserForms

ActiveX control addition, 231–233

adding to a project, 229

ComboBox control, 243–246

custom dialog boxes, 235–246

described, 228

event procedures, 231

form module, 230–231

Frame control, 235–236

frmComboList, 244–246

frmMessage, 232

Label control, 238–239

ListBox control, 243–246

modal forms, 233–235

modeless, 234

OptionButton control, 235–236

renaming, 237

showing/hiding, 233

viewing the code window, 230–231

worksheet range selections, 236–243

V
validation

defined, 94–95

InputBox() function, 95–97

user input, 95–97

within a spreadsheet cell, 97–99

values

defined, 23

outputting to worksheet cells, 48

returning, 58

variable testing, 71–72

variable testing, 79

variables

comma (,) character as separator, 54

declaration placement, 30

declaring, 23–27

file path storage, 77–78

global, 27

module level, 26–27

naming conventions, 23–24

numSeconds, 124

410
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 410

Object data type, 159–160

procedural level, 26

public, 27

scope, 26–27

static integer, 77

stepping through collection objects, 139

temporary storage of data, 23

value testing, 71–72, 79

variant data type

arrays, 101

declaring, 34–35

VB.net language, object-oriented, 135

VBA

file access modes, 271

Help system (F1), 14

incorporating Excel functions, 64

multiple threads, 369

VBA help files, installing, 15

versions, Excel information display, 234

View Code icon (F7), 7–8

View/Toolbars menu, IDE access method, 4

Visual Basic toolbar

Control Toolbox, 9–13

IDE access method, 4

screen elements, 9

W
Watch window, debugging, 290–291

Wave Form Audio (wav) file, Windows API
playback, 202–203

Wempen, Faithe, 322

Window object, 145–153

Windows API (Application Programming
Interface)

described, 200–201

dynamic link library files, 201

function calls, 201

Wave Form Audio (wav) file
playback, 202–203

windows

centering, 164, 166

Classes, 140

code, 6, 8, 11

form module, 230–231

Immediate, 289–290

Locals, 291–292

Members, 140–141

Project Explorer (Ctrl+R), 4–5

Properties (F4), 5, 10

Standard Code, 5–6

Watch, 290–291

With/End With structure

code clarity, 157–159

executing a series of statements, 117

Word Find project

ASCII character decimal values, 308

beginning the game, 297

border colors, 308–309

code, 296–310

counting available puzzle cells, 304

displaying selected words, 307

distinguishing word direction, 305–307

file searches, 298–299

help message display, 310

opening random access files, 297–298

Please Reset the game message, 299

print area definition, 308

printing puzzles, 308–309

project algorithm, 293–296

project statement, 292

project tools, 293

puzzle grid colors, 308–309

puzzle grid definition, 296

releasing memory when stopped, 299

removing puzzle borders when printing, 308

resetting, 299

screen elements, 270, 293

selected word placement, 299–303

starting a new puzzle, 309–310

testing user’s cell selections, 303–304

troubleshooting runtime errors, 296

updating word lists, 309–310

validating user’s worksheet cell selection, 303

Word list file not found error message, 297

Word List program, file I/O example, 276–283

Workbook object

adding new workbooks, 147–148

closing all open, 149

closing last opened workbook, 148–149

copying currently selected workbook, 146

hierarchy, 145

selecting specific workbook, 148

sizing workbooks, 149–153

Workbooks Collection object, 138

411
In

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 411

workbooks

adding new, 147–148

closing all open, 149

closing last opened, 148–149

copying currently selected, 146

creating new, 147

index numbers, 138

naming conventions, 150

Project Explorer window display, 5

selecting specific, 148

sizing, 149–153

Worksheet object

Cells property, 155–156

event procedures, 153–154

hierarchy, 145, 153

shapes in drawing layer, 358

worksheets

cell fill color, 12

cells, returning all, 155–156

chart creation, 314, 316–317

chart positioning, 324

Command Button Control, 9–11, 366

control placement, 9–11

embedding a chart, 324

masked cells, 359

Misc Shapes, 363, 365

naming, 6

Project Explorer window display, 5

rectangles, adding, 360–361

returning number of cells in a column, 123

selection triggers, 153–154

shapes, adding, 359

user range selections, 236–243

X
X parameter, event procedures, 54–55

x-axis, charts, 323

Xerox, graphical user interface (GUI)
development, 229

Y
Y parameter, event procedures, 54–55

y-axis, charts, 323

Z
z-axis, charts, 323

zoom percentage, Battlecell project, 164–165

412
I n

d
e

x

11 XLVBA INDEX.qxd 2/25/03 7:52 AM Page 412

	sample.pdf
	sterling.com
	Welcome to Sterling Software

