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F undamentals of Finite Element Analysis is intended to be the text for a
senior-level finite element course in engineering programs. The most
appropriate major programs are civil engineering, engineering mechan-

ics, and mechanical engineering. The finite element method is such a widely used
analysis-and-design technique that it is essential that undergraduate engineering
students have a basic knowledge of the theory and applications of the technique.
Toward that objective, I developed and taught an undergraduate “special topics”
course on the finite element method at Washington State University in the sum-
mer of 1992. The course was composed of approximately two-thirds theory and
one-third use of commercial software in solving finite element problems. Since
that time, the course has become a regularly offered technical elective in the
mechanical engineering program and is generally in high demand. During
the developmental process for the course, I was never satisfied with any text that
was used, and we tried many. I found the available texts to be at one extreme or
the other; namely, essentially no theory and all software application, or all theory
and no software application. The former approach, in my opinion, represents
training in using computer programs, while the latter represents graduate-level
study. I have written this text to seek a middle ground. 

Pedagogically, I believe that training undergraduate engineering students to
use a particular software package without providing knowledge of the underlying
theory is a disservice to the student and can be dangerous for their future employ-
ers. While I am acutely aware that most engineering programs have a specific
finite element software package available for student use, I do not believe that the
text the students use should be tied only to that software. Therefore, I have writ-
ten this text to be software-independent. I emphasize the basic theory of the finite
element method, in a context that can be understood by undergraduate engineer-
ing students, and leave the software-specific portions to the instructor.

As the text is intended for an undergraduate course, the prerequisites required
are statics, dynamics, mechanics of materials, and calculus through ordinary dif-
ferential equations. Of necessity, partial differential equations are introduced
but in a manner that should be understood based on the stated prerequisites.
Applications of the finite element method to heat transfer and fluid mechanics are
included, but the necessary derivations are such that previous coursework in
those topics is not required. Many students will have taken heat transfer and fluid
mechanics courses, and the instructor can expand the topics based on the stu-
dents’ background.

Chapter 1 is a general introduction to the finite element method and in-
cludes a description of the basic concept of dividing a domain into finite-size
subdomains. The finite difference method is introduced for comparison to the
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finite element method. A general procedure in the sequence of model definition,
solution, and interpretation of results is discussed and related to the generally
accepted terms of preprocessing, solution, and postprocessing. A brief history of
the finite element method is included, as are a few examples illustrating applica-
tion of the method. 

Chapter 2 introduces the concept of a finite element stiffness matrix and
associated displacement equation, in terms of interpolation functions, using the
linear spring as a finite element. The linear spring is known to most undergradu-
ate students so the mechanics should not be new. However, representation of
the spring as a finite element is new but provides a simple, concise example of
the finite element method. The premise of spring element formulation is ex-
tended to the bar element, and energy methods are introduced. The first theorem
of Castigliano is applied, as is the principle of minimum potential energy.
Castigliano’s theorem is a simple method to introduce the undergraduate student
to minimum principles without use of variational calculus.

Chapter 3 uses the bar element of Chapter 2 to illustrate assembly of global
equilibrium equations for a structure composed of many finite elements. Trans-
formation from element coordinates to global coordinates is developed and
illustrated with both two- and three-dimensional examples. The direct stiffness
method is utilized and two methods for global matrix assembly are presented.
Application of boundary conditions and solution of the resultant constraint equa-
tions is discussed. Use of the basic displacement solution to obtain element strain
and stress is shown as a postprocessing operation.

Chapter 4 introduces the beam/flexure element as a bridge to continuity
requirements for higher-order elements. Slope continuity is introduced and this
requires an adjustment to the assumed interpolation functions to insure continuity.
Nodal load vectors are discussed in the context of discrete and distributed loads,
using the method of work equivalence.

Chapters 2, 3, and 4 introduce the basic procedures of finite-element model-
ing in the context of simple structural elements that should be well-known to the
student from the prerequisite mechanics of materials course. Thus the emphasis
in the early part of the course in which the text is used can be on the finite ele-
ment method without introduction of new physical concepts. The bar and beam
elements can be used to give the student practical truss and frame problems for
solution using available finite element software. If the instructor is so inclined,
the bar and beam elements (in the two-dimensional context) also provide a rela-
tively simple framework for student development of finite element software
using basic programming languages. 

Chapter 5 is the springboard to more advanced concepts of finite element
analysis. The method of weighted residuals is introduced as the fundamental
technique used in the remainder of the text. The Galerkin method is utilized
exclusively since I have found this method is both understandable for under-
graduate students and is amenable to a wide range of engineering problems. The
material in this chapter repeats the bar and beam developments and extends the
finite element concept to one-dimensional heat transfer. Application to the bar
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and beam elements illustrates that the method is in agreement with the basic me-
chanics approach of Chapters 2–4. Introduction of heat transfer exposes the stu-
dent to additional applications of the finite element method that are, most likely,
new to the student.

Chapter 6 is a stand-alone description of the requirements of interpolation
functions used in developing finite element models for any physical problem.
Continuity and completeness requirements are delineated. Natural (serendipity)
coordinates, triangular coordinates, and volume coordinates are defined and used
to develop interpolation functions for several element types in two- and three-
dimensions. The concept of isoparametric mapping is introduced in the context of
the plane quadrilateral element. As a precursor to following chapters, numerical
integration using Gaussian quadrature is covered and several examples included.
The use of two-dimensional elements to model three-dimensional axisymmetric
problems is included.

Chapter 7 uses Galerkin’s finite element method to develop the finite ele-
ment equations for several commonly encountered situations in heat transfer.
One-, two- and three-dimensional formulations are discussed for conduction and
convection. Radiation is not included, as that phenomenon introduces a nonlin-
earity that undergraduate students are not prepared to deal with at the intended
level of the text. Heat transfer with mass transport is included. The finite differ-
ence method in conjunction with the finite element method is utilized to present
methods of solving time-dependent heat transfer problems. 

Chapter 8 introduces finite element applications to fluid mechanics. The
general equations governing fluid flow are so complex and nonlinear that the
topic is introduced via ideal flow. The stream function and velocity potential
function are illustrated and the applicable restrictions noted. Example problems
are included that note the analogy with heat transfer and use heat transfer finite
element solutions to solve ideal flow problems. A brief discussion of viscous
flow shows the nonlinearities that arise when nonideal flows are considered. 

Chapter 9 applies the finite element method to problems in solid mechanics
with the proviso that the material response is linearly elastic and small deflection.
Both plane stress and plane strain are defined and the finite element formulations
developed for each case. General three-dimensional states of stress and axisym-
metric stress are included. A model for torsion of noncircular sections is devel-
oped using the Prandtl stress function. The purpose of the torsion section is to
make the student aware that all torsionally loaded objects are not circular and the
analysis methods must be adjusted to suit geometry.

Chapter 10 introduces the concept of dynamic motion of structures. It is not
presumed that the student has taken a course in mechanical vibrations; as a re-
sult, this chapter includes a primer on basic vibration theory. Most of this mater-
ial is drawn from my previously published text Applied Mechanical Vibrations.
The concept of the mass or inertia matrix is developed by examples of simple
spring-mass systems and then extended to continuous bodies. Both lumped and
consistent mass matrices are defined and used in examples. Modal analysis is the
basic method espoused for dynamic response; hence, a considerable amount of
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text material is devoted to determination of natural modes, orthogonality, and
modal superposition. Combination of finite difference and finite element meth-
ods for solving transient dynamic structural problems is included. 

The appendices are included in order to provide the student with material
that might be new or may be “rusty” in the student’s mind. 

Appendix A is a review of matrix algebra and should be known to the stu-
dent from a course in linear algebra. 

Appendix B states the general three-dimensional constitutive relations for
a homogeneous, isotropic, elastic material. I have found over the years that un-
dergraduate engineering students do not have a firm grasp of these relations. In
general, the student has been exposed to so many special cases that the three-
dimensional equations are not truly understood. 

Appendix C covers three methods for solving linear algebraic equations.
Some students may use this material as an outline for programming solution
methods. I include the appendix only so the reader is aware of the algorithms un-
derlying the software he/she will use in solving finite element problems. 

Appendix D describes the basic computational capabilities of the FEPC
software. The FEPC (FEPfinite element program for the PCpersonal computer)
was developed by the late Dr. Charles Knight of Virginia Polytechnic Institute
and State University and is used in conjunction with this text with permission of
his estate. Dr. Knight’s programs allow analysis of two-dimensional programs
using bar, beam, and plane stress elements. The appendix describes in general
terms the capabilities and limitations of the software. The FEPC program is
available to the student at www.mhhe.com/hutton.

Appendix E includes problems for several chapters of the text that should be
solved via commercial finite element software. Whether the instructor has avail-
able ANSYS, ALGOR, COSMOS, etc., these problems are oriented to systems
having many degrees of freedom and not amenable to hand calculation. Addi-
tional problems of this sort will be added to the website on a continuing basis.

The textbook features a Web site (www.mhhe.com/hutton) with finite ele-
ment analysis links and the FEPC program. At this site, instructors will have
access to PowerPoint images and an Instructors’ Solutions Manual. Instructors
can access these tools by contacting their local McGraw-Hill sales representative
for password information. 

I thank Raghu Agarwal, Rong Y. Chen, Nels Madsen, Robert L. Rankin,
Joseph J. Rencis, Stephen R. Swanson, and Lonny L. Thompson, who reviewed
some or all of the manuscript and provided constructive suggestions and criti-
cisms that have helped improve the book.

I am grateful to all the staff at McGraw-Hill who have labored to make this
project a reality. I especially acknowledge the patient encouragement and pro-
fessionalism of Jonathan Plant, Senior Editor, Lisa Kalner Williams, Develop-
mental Editor, and Kay Brimeyer, Senior Project Manager.

David V. Hutton
Pullman, WA
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Basic Concepts of the
Finite Element Method

1.1 INTRODUCTION
The finite element method (FEM), sometimes referred to as finite element
analysis (FEA), is a computational technique used to obtain approximate solu-
tions of boundary value problems in engineering. Simply stated, a boundary
value problem is a mathematical problem in which one or more dependent vari-
ables must satisfy a differential equation everywhere within a known domain of
independent variables and satisfy specific conditions on the boundary of the
domain. Boundary value problems are also sometimes called field problems. The
field is the domain of interest and most often represents a physical structure.
The field variables are the dependent variables of interest governed by the dif-
ferential equation. The boundary conditions are the specified values of the field
variables (or related variables such as derivatives) on the boundaries of the field.
Depending on the type of physical problem being analyzed, the field variables
may include physical displacement, temperature, heat flux, and fluid velocity to
name only a few.

1.2 HOW DOES THE FINITE ELEMENT
METHOD WORK?

The general techniques and terminology of finite element analysis will be intro-
duced with reference to Figure 1.1. The figure depicts a volume of some material
or materials having known physical properties. The volume represents the
domain of a boundary value problem to be solved. For simplicity, at this point,
we assume a two-dimensional case with a single field variable �(x, y) to be
determined at every point P(x, y) such that a known governing equation (or equa-
tions) is satisfied exactly at every such point. Note that this implies an exact

C H A P T E R 1
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mathematical solution is obtained; that is, the solution is a closed-form algebraic
expression of the independent variables. In practical problems, the domain may
be geometrically complex as is, often, the governing equation and the likelihood
of obtaining an exact closed-form solution is very low. Therefore, approximate
solutions based on numerical techniques and digital computation are most
often obtained in engineering analyses of complex problems. Finite element
analysis is a powerful technique for obtaining such approximate solutions with
good accuracy.

A small triangular element that encloses a finite-sized subdomain of the area
of interest is shown in Figure 1.1b. That this element is not a differential element
of size dx × dy makes this a finite element. As we treat this example as a two-
dimensional problem, it is assumed that the thickness in the z direction is con-
stant and z dependency is not indicated in the differential equation. The vertices
of the triangular element are numbered to indicate that these points are nodes. A
node is a specific point in the finite element at which the value of the field vari-
able is to be explicitly calculated. Exterior nodes are located on the boundaries
of the finite element and may be used to connect an element to adjacent finite
elements. Nodes that do not lie on element boundaries are interior nodes and
cannot be connected to any other element. The triangular element of Figure 1.1b
has only exterior nodes.

P(x, y)

(a)

1 2

3

(b)

(c)

Figure 1.1
(a) A general two-dimensional domain of field variable �(x, y).
(b) A three-node finite element defined in the domain. (c) Additional
elements showing a partial finite element mesh of the domain.
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If the values of the field variable are computed only at nodes, how are values
obtained at other points within a finite element? The answer contains the crux of
the finite element method: The values of the field variable computed at the nodes
are used to approximate the values at nonnodal points (that is, in the element
interior) by interpolation of the nodal values. For the three-node triangle exam-
ple, the nodes are all exterior and, at any other point within the element, the field
variable is described by the approximate relation

�(x , y) = N1(x , y)�1 + N2(x , y)�2 + N3(x , y)�3 (1.1)

where �1, �2, and �3 are the values of the field variable at the nodes, and N1, N2,
and N3 are the interpolation functions, also known as shape functions or blend-
ing functions. In the finite element approach, the nodal values of the field vari-
able are treated as unknown constants that are to be determined. The interpola-
tion functions are most often polynomial forms of the independent variables,
derived to satisfy certain required conditions at the nodes. These conditions are
discussed in detail in subsequent chapters. The major point to be made here is
that the interpolation functions are predetermined, known functions of the inde-
pendent variables; and these functions describe the variation of the field variable
within the finite element.

The triangular element described by Equation 1.1 is said to have 3 degrees
of freedom, as three nodal values of the field variable are required to describe
the field variable everywhere in the element. This would be the case if the field
variable represents a scalar field, such as temperature in a heat transfer problem
(Chapter 7). If the domain of Figure 1.1 represents a thin, solid body subjected to
plane stress (Chapter 9), the field variable becomes the displacement vector and
the values of two components must be computed at each node. In the latter case,
the three-node triangular element has 6 degrees of freedom. In general, the num-
ber of degrees of freedom associated with a finite element is equal to the product
of the number of nodes and the number of values of the field variable (and pos-
sibly its derivatives) that must be computed at each node.

How does this element-based approach work over the entire domain of in-
terest? As depicted in Figure 1.1c, every element is connected at its exterior
nodes to other elements. The finite element equations are formulated such that, at
the nodal connections, the value of the field variable at any connection is the
same for each element connected to the node. Thus, continuity of the field vari-
able at the nodes is ensured. In fact, finite element formulations are such that
continuity of the field variable across interelement boundaries is also ensured.
This feature avoids the physically unacceptable possibility of gaps or voids oc-
curring in the domain. In structural problems, such gaps would represent physi-
cal separation of the material. In heat transfer, a “gap” would manifest itself in
the form of different temperatures at the same physical point.

Although continuity of the field variable from element to element is inherent
to the finite element formulation, interelement continuity of gradients (i.e., de-
rivatives) of the field variable does not generally exist. This is a critical observa-
tion. In most cases, such derivatives are of more interest than are field variable
values. For example, in structural problems, the field variable is displacement but
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the true interest is more often in strain and stress. As strain is defined in terms of
first derivatives of displacement components, strain is not continuous across ele-
ment boundaries. However, the magnitudes of discontinuities of derivatives can
be used to assess solution accuracy and convergence as the number of elements
is increased, as is illustrated by the following example.

1.2.1 Comparison of Finite Element and Exact Solutions

The process of representing a physical domain with finite elements is referred to
as meshing, and the resulting set of elements is known as the finite element mesh.
As most of the commonly used element geometries have straight sides, it is gen-
erally impossible to include the entire physical domain in the element mesh if the
domain includes curved boundaries. Such a situation is shown in Figure 1.2a,
where a curved-boundary domain is meshed (quite coarsely) using square ele-
ments. A refined mesh for the same domain is shown in Figure 1.2b, using
smaller, more numerous elements of the same type. Note that the refined mesh
includes significantly more of the physical domain in the finite element repre-
sentation and the curved boundaries are more closely approximated. (Triangular
elements could approximate the boundaries even better.)

If the interpolation functions satisfy certain mathematical requirements
(Chapter 6), a finite element solution for a particular problem converges to the
exact solution of the problem. That is, as the number of elements is increased and
the physical dimensions of the elements are decreased, the finite element solution
changes incrementally. The incremental changes decrease with the mesh refine-
ment process and approach the exact solution asymptotically. To illustrate
convergence, we consider a relatively simple problem that has a known solution.
Figure 1.3a depicts a tapered, solid cylinder fixed at one end and subjected to
a tensile load at the other end. Assuming the displacement at the point of load
application to be of interest, a first approximation is obtained by considering
the cylinder to be uniform, having a cross-sectional area equal to the average area

(a) (b)

Figure 1.2
(a) Arbitrary curved-boundary domain modeled using square elements. Stippled
areas are not included in the model. A total of 41 elements is shown. (b) Refined
finite element mesh showing reduction of the area not included in the model. A
total of 192 elements is shown.
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of the cylinder (Figure 1.3b). The uniform bar is a link or bar finite element
(Chapter 2), so our first approximation is a one-element, finite element model.
The solution is obtained using the strength of materials theory. Next, we model
the tapered cylinder as two uniform bars in series, as in Figure 1.3c. In the two-
element model, each element is of length equal to half the total length of the
cylinder and has a cross-sectional area equal to the average area of the corre-
sponding half-length of the cylinder. The mesh refinement is continued using a
four-element model, as in Figure 1.3d, and so on. For this simple problem, the
displacement of the end of the cylinder for each of the finite element models is as
shown in Figure 1.4a, where the dashed line represents the known solution. Con-
vergence of the finite element solutions to the exact solution is clearly indicated.

x

rL

F

ro

r

L

(a) (b)

A �
Ao � AL

2

(c)

Element 1

Element 2

(d)

Figure 1.3
(a) Tapered circular cylinder subjected to tensile loading:
r(x) � r0 � (x/L)(r0 � rL). (b) Tapered cylinder as a single axial
(bar) element using an average area. Actual tapered cylinder
is shown as dashed lines. (c) Tapered cylinder modeled as
two, equal-length, finite elements. The area of each element
is average over the respective tapered cylinder length.
(d) Tapered circular cylinder modeled as four, equal-length
finite elements. The areas are average over the respective
length of cylinder (element length � L�4).
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On the other hand, if we plot displacement as a function of position along the
length of the cylinder, we can observe convergence as well as the approximate
nature of the finite element solutions. Figure 1.4b depicts the exact strength of
materials solution and the displacement solution for the four-element models.
We note that the displacement variation in each element is a linear approximation
to the true nonlinear solution. The linear variation is directly attributable to the
fact that the interpolation functions for a bar element are linear. Second, we note
that, as the mesh is refined, the displacement solution converges to the nonlinear
solution at every point in the solution domain.

The previous paragraph discussed convergence of the displacement of the
tapered cylinder. As will be seen in Chapter 2, displacement is the primary field
variable in structural problems. In most structural problems, however, we are
interested primarily in stresses induced by specified loadings. The stresses must
be computed via the appropriate stress-strain relations, and the strain compo-
nents are derived from the displacement field solution. Hence, strains and
stresses are referred to as derived variables. For example, if we plot the element
stresses for the tapered cylinder example just cited for the exact solution as well
as the finite element solutions for two- and four-element models as depicted in
Figure 1.5, we observe that the stresses are constant in each element and repre-
sent a discontinuous solution of the problem in terms of stresses and strains. We
also note that, as the number of elements increases, the jump discontinuities in
stress decrease in magnitude. This phenomenon is characteristic of the finite ele-
ment method. The formulation of the finite element method for a given problem
is such that the primary field variable is continuous from element to element but

0.25

(b)

0.5 0.75 1.0
x
L

x L
�
(

)

Exact
Four elements

(a)

1

Exact

Number of elements

�
(x

�
L

)

2 3 4

Figure 1.4
(a) Displacement at x � L for tapered cylinder in tension of Figure 1.3. (b) Comparison of the exact solution
and the four-element solution for a tapered cylinder in tension.
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0.5 0.75 1.0
x
L

� �
0

Exact
Two elements
Four elements

Figure 1.5
Comparison of the computed axial stress value in a
tapered cylinder: �0 � F�A0.

the derived variables are not necessarily continuous. In the limiting process of
mesh refinement, the derived variables become closer and closer to continuity.

Our example shows how the finite element solution converges to a known
exact solution (the exactness of the solution in this case is that of strength of
materials theory). If we know the exact solution, we would not be applying the
finite element method! So how do we assess the accuracy of a finite element solu-
tion for a problem with an unknown solution? The answer to this question is not
simple. If we did not have the dashed line in Figure 1.3 representing the exact
solution, we could still discern convergence to a solution. Convergence of a
numerical method (such as the finite element method) is by no means assurance
that the convergence is to the correct solution. A person using the finite element
analysis technique must examine the solution analytically in terms of (1) numeri-
cal convergence, (2) reasonableness (does the result make sense?), (3) whether the
physical laws of the problem are satisfied (is the structure in equilibrium? Does the
heat output balance with the heat input?), and (4) whether the discontinuities in
value of derived variables across element boundaries are reasonable. Many
such questions must be posed and examined prior to accepting the results of a finite
element analysis as representative of a correct solution useful for design purposes.

1.2.2 Comparison of Finite Element and Finite
Difference Methods

The finite difference method is another numerical technique frequently used to
obtain approximate solutions of problems governed by differential equations.
Details of the technique are discussed in Chapter 7 in the context of transient heat
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transfer. The method is also illustrated in Chapter 10 for transient dynamic analy-
sis of structures. Here, we present the basic concepts of the finite difference
method for purposes of comparison.

The finite difference method is based on the definition of the derivative of a
function f (x ) that is

d f (x )

dx
= lim

�x→0

f (x + �x ) − f (x )

�x
(1.2)

where x is the independent variable. In the finite difference method, as implied
by its name, derivatives are calculated via Equation 1.2 using small, but finite,
values of �x to obtain

d f (x )

dx
≈ f (x + �x ) − f (x )

�x
(1.3)

A differential equation such as

d f

dx
+ x = 0 0 ≤ x ≤ 1 (1.4)

is expressed as

f (x + �x ) − f (x )

�x
+ x = 0 (1.5)

in the finite difference method. Equation 1.5 can be rewritten as

f (x + �x ) = f (x ) − x (�x ) (1.6)

where we note that the equality must be taken as “approximately equals.” From
differential equation theory, we know that the solution of a first-order differential
equation contains one constant of integration. The constant of integration must
be determined such that one given condition (a boundary condition or initial con-
dition) is satisfied. In the current example, we assume that the specified condition
is x (0) = A = constant. If we choose an integration step �x to be a small, con-
stant value (the integration step is not required to be constant), then we can write

xi+1 = xi + �x i = 0, N (1.7)

where N is the total number of steps required to cover the domain. Equation 1.6
is then

fi+1 = fi − xi (�x ) f0 = A i = 0, N (1.8)

Equation 1.8 is known as a recurrence relation and provides an approximation to
the value of the unknown function f (x) at a number of discrete points in the do-
main of the problem.

To illustrate, Figure 1.6a shows the exact solution f (x ) = 1 − x 2/2 and a
finite difference solution obtained with �x = 0.1. The finite difference solution is
shown at the discrete points of function evaluation only. The manner of variation



Hutton: Fundamentals of 
Finite Element Analysis

1. Basic Concepts of the 
Finite Element Method

Text © The McGraw−Hill 
Companies, 2004

1.2 How Does the Finite Element Method Work? 9

of the function between the calculated points is not known in the finite difference
method. One can, of course, linearly interpolate the values to produce an ap-
proximation to the curve of the exact solution but the manner of interpolation is
not an a priori determination in the finite difference method.

To contrast the finite difference method with the finite element method,
we note that, in the finite element method, the variation of the field variable in
the physical domain is an integral part of the procedure. That is, based on the
selected interpolation functions, the variation of the field variable throughout a
finite element is specified as an integral part of the problem formulation. In the
finite difference method, this is not the case: The field variable is computed at
specified points only. The major ramification of this contrast is that derivatives
(to a certain level) can be computed in the finite element approach, whereas the
finite difference method provides data only on the variable itself. In a structural
problem, for example, both methods provide displacement solutions, but the
finite element solution can be used to directly compute strain components (first
derivatives). To obtain strain data in the finite difference method requires addi-
tional considerations not inherent to the mathematical model.

There are also certain similarities between the two methods. The integration
points in the finite difference method are analogous to the nodes in a finite
element model. The variable of interest is explicitly evaluated at such points.
Also, as the integration step (step size) in the finite difference method is reduced,
the solution is expected to converge to the exact solution. This is similar to the
expected convergence of a finite element solution as the mesh of elements is
refined. In both cases, the refinement represents reduction of the mathematical
model from finite to infinitesimal. And in both cases, differential equations are
reduced to algebraic equations.

0.2
0

0

0.2

0.4

0.6

0.8

1

0.4 0.80.6 1
x

f(
x)

Figure 1.6
Comparison of the exact and finite difference
solutions of Equation 1.4 with f0 � A � 1.
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Probably the most descriptive way to contrast the two methods is to note that
the finite difference method models the differential equation(s) of the problem
and uses numerical integration to obtain the solution at discrete points. The finite
element method models the entire domain of the problem and uses known phys-
ical principles to develop algebraic equations describing the approximate solu-
tions. Thus, the finite difference method models differential equations while the
finite element method can be said to more closely model the physical problem at
hand. As will be observed in the remainder of this text, there are cases in which
a combination of finite element and finite difference methods is very useful and
efficient in obtaining solutions to engineering problems, particularly where dy-
namic (transient) effects are important.

1.3 A GENERAL PROCEDURE FOR FINITE
ELEMENT ANALYSIS

Certain steps in formulating a finite element analysis of a physical problem are
common to all such analyses, whether structural, heat transfer, fluid flow, or
some other problem. These steps are embodied in commercial finite element
software packages (some are mentioned in the following paragraphs) and are
implicitly incorporated in this text, although we do not necessarily refer to the
steps explicitly in the following chapters. The steps are described as follows.

1.3.1 Preprocessing

The preprocessing step is, quite generally, described as defining the model and
includes

Define the geometric domain of the problem.
Define the element type(s) to be used (Chapter 6).
Define the material properties of the elements.
Define the geometric properties of the elements (length, area, and the like).
Define the element connectivities (mesh the model).
Define the physical constraints (boundary conditions).
Define the loadings.

The preprocessing (model definition) step is critical. In no case is there a better
example of the computer-related axiom “garbage in, garbage out.” A perfectly
computed finite element solution is of absolutely no value if it corresponds to the
wrong problem.

1.3.2 Solution

During the solution phase, finite element software assembles the governing alge-
braic equations in matrix form and computes the unknown values of the primary
field variable(s). The computed values are then used by back substitution to
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compute additional, derived variables, such as reaction forces, element stresses,
and heat flow.

As it is not uncommon for a finite element model to be represented by tens
of thousands of equations, special solution techniques are used to reduce data
storage requirements and computation time. For static, linear problems, a wave
front solver, based on Gauss elimination (Appendix C), is commonly used. While
a complete discussion of the various algorithms is beyond the scope of this text,
the interested reader will find a thorough discussion in the Bathe book [1].

1.3.3 Postprocessing

Analysis and evaluation of the solution results is referred to as postprocessing.
Postprocessor software contains sophisticated routines used for sorting, printing,
and plotting selected results from a finite element solution. Examples of opera-
tions that can be accomplished include

Sort element stresses in order of magnitude.
Check equilibrium.
Calculate factors of safety.
Plot deformed structural shape.
Animate dynamic model behavior.
Produce color-coded temperature plots.

While solution data can be manipulated many ways in postprocessing, the most
important objective is to apply sound engineering judgment in determining
whether the solution results are physically reasonable.

1.4 BRIEF HISTORY OF THE FINITE
ELEMENT METHOD

The mathematical roots of the finite element method dates back at least a half
century. Approximate methods for solving differential equations using trial solu-
tions are even older in origin. Lord Rayleigh [2] and Ritz [3] used trial functions
(in our context, interpolation functions) to approximate solutions of differential
equations. Galerkin [4] used the same concept for solution. The drawback in the
earlier approaches, compared to the modern finite element method, is that the
trial functions must apply over the entire domain of the problem of concern.
While the Galerkin method provides a very strong basis for the finite element
method (Chapter 5), not until the 1940s, when Courant [5] introduced the con-
cept of piecewise-continuous functions in a subdomain, did the finite element
method have its real start.

In the late 1940s, aircraft engineers were dealing with the invention of the jet
engine and the needs for more sophisticated analysis of airframe structures to
withstand larger loads associated with higher speeds. These engineers, without
the benefit of modern computers, developed matrix methods of force analysis,
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collectively known as the flexibility method, in which the unknowns are the
forces and the knowns are displacements. The finite element method, in its most
often-used form, corresponds to the displacement method, in which the un-
knowns are system displacements in response to applied force systems. In this
text, we adhere exclusively to the displacement method. As will be seen as we
proceed, the term displacement is quite general in the finite element method and
can represent physical displacement, temperature, or fluid velocity, for example.
The term finite element was first used by Clough [6] in 1960 in the context of
plane stress analysis and has been in common usage since that time.

During the decades of the 1960s and 1970s, the finite element method was
extended to applications in plate bending, shell bending, pressure vessels, and
general three-dimensional problems in elastic structural analysis [7–11] as well
as to fluid flow and heat transfer [12, 13]. Further extension of the method to
large deflections and dynamic analysis also occurred during this time period
[14 , 15]. An excellent history of the finite element method and detailed bibliog-
raphy is given by Noor [16].

The finite element method is computationally intensive, owing to the required
operations on very large matrices. In the early years, applications were performed
using mainframe computers, which, at the time, were considered to be very pow-
erful, high-speed tools for use in engineering analysis. During the 1960s, the finite
element software code NASTRAN [17] was developed in conjunction with the
space exploration program of the United States. NASTRAN was the first major
finite element software code. It was, and still is, capable of hundreds of thousands
of degrees of freedom (nodal field variable computations). In the years since the
development of NASTRAN, many commercial software packages have been in-
troduced for finite element analysis. Among these are ANSYS [18], ALGOR [19],
and COSMOS/M [20]. In today’s computational environment, most of these
packages can be used on desktop computers and engineering workstations to
obtain solutions to large problems in static and dynamic structural analysis, heat
transfer, fluid flow, electromagnetics, and seismic response. In this text, we do not
utilize or champion a particular code. Rather, we develop the fundamentals for
understanding of finite element analysis to enable the reader to use such software
packages with an educated understanding.

1.5 EXAMPLES OF FINITE ELEMENT 
ANALYSIS

We now present, briefly, a few examples of the types of problems that can be
analyzed via the finite element method. Figure 1.7 depicts a rectangular region
with a central hole. The area has been “meshed” with a finite element grid of two-
dimensional elements assumed to have a constant thickness in the z direction.
Note that the mesh of elements is irregular: The element shapes (triangles and
quadrilaterals) and sizes vary. In particular, note that around the geometric dis-
continuity of the hole, the elements are of smaller size. This represents not only
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Figure 1.7
A mesh of finite elements over a rectangular region having a
central hole.

an improvement in geometric accuracy in the vicinity of the discontinuity but
also solution accuracy, as is discussed in subsequent chapters.

The geometry depicted in Figure 1.7 could represent the finite element
model of several physical problems. For plane stress analysis, the geometry
would represent a thin plate with a central hole subjected to edge loading in the
plane depicted. In this case, the finite element solution would be used to exam-
ine stress concentration effects in the vicinity of the hole. The element mesh
shown could also represent the case of fluid flow around a circular cylinder. In
yet another application, the model shown could depict a heat transfer fin at-
tached to a pipe (the hole) from which heat is transferred to the fin for dissipa-
tion to the surroundings. In each case, the formulation of the equations govern-
ing physical behavior of the elements in response to external influences is quite
different.

Figure 1.8a shows a truss module that was at one time considered a
building-block element for space station construction [21]. Designed to fold in
accordion fashion into a small volume for transport into orbit, the module, when
deployed, extends to overall dimensions 1.4 m × 1.4 m × 2.8 m. By attaching
such modules end-to-end, a truss of essentially any length could be obtained.
The structure was analyzed via the finite element method to determine the
vibration characteristics as the number of modules, thus overall length, was
varied. As the connections between the various structural members are pin or
ball-and-socket joints, a simple axial tension-compression element (Chapter 2)
was used in the model. The finite element model of one module was composed
of 33 elements. A sample vibration shape of a five-module truss is shown in
Figure 1.8b.

The truss example just described involves a rather large structure modeled
by a small number of relatively large finite elements. In contrast, Figure 1.9
shows the finite element model of a very thin tube designed for use in heat



Hutton: Fundamentals of 
Finite Element Analysis

1. Basic Concepts of the 
Finite Element Method

Text © The McGraw−Hill 
Companies, 2004

(a)

XG

ZGYG

(b)

Figure 1.8
(a) Deployable truss module showing details of folding joints.
(b) A sample vibration-mode shape of a five-module truss as obtained
via finite element analysis. (Courtesy: AIAA)

14
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0.00197�

Z X

0.25�

0.488�

Figure 1.9
Finite element model of a thin-walled
heat exchanger tube.

transfer in a spacecraft application. The tube has inside diameter of 0.976 in. and
wall thickness 0.00197 in. and overall length 36 in. Materials considered for
construction of the tube were copper and titanium alloys. Owing to the wall
thickness, prototype tubes were found to be very fragile and difficult to handle
without damage. The objectives of the finite element analysis were to examine
the bending, torsional, and buckling loads allowable. The figure shows the finite
element mesh used to model a section of the tube only 0.25 in. in length. This
model contains 1920 three-dimensional solid elements, each having eight nodes
with 3 degrees of freedom at each node. Such a large number of elements was
required for a small structure in consideration of computational accuracy. The
concern here was the so-called aspect ratio of the elements, as is defined and
discussed in subsequent chapters.

As a final example, Figure 1.10a represents the finite element model of the
main load-carrying component of a prosthetic device. The device is intended to
be a hand attachment to an artificial arm. In use, the hand would allow a lower
arm amputee to engage in weight lifting as part of a physical fitness program.
The finite element model was used to determine the stress distribution in the
component in terms of the range of weight loading anticipated, so as to properly
size the component and select the material. Figure 1.10b shows a prototype of the
completed hand design.
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(a)

Figure 1.10
(a) A finite element model of a prosthetic hand for weightlifting. (b) Completed
prototype of a prosthetic hand, attached to a bar. 
(Courtesy of Payam Sadat. All rights reserved.)

1.6 OBJECTIVES OF THE TEXT
I wrote Fundamentals of Finite Element Analysis for use in senior-level finite
element courses in engineering programs. The majority of available textbooks
on the finite element method are written for graduate-level courses. These
texts are heavy on the theory of finite element analysis and rely on mathematical
techniques (notably, variational calculus) that are not usually in the repertoire of
undergraduate engineering students. Knowledge of advanced mathematical tech-
niques is not required for successful use of this text. The prerequisite study is
based on the undergraduate coursework common to most engineering programs:
linear algebra, calculus through differential equations, and the usual series of
statics, dynamics, and mechanics of materials. Although not required, prior study
of fluid mechanics and heat transfer is helpful. Given this assumed background,
the finite element method is developed on the basis of physical laws (equilib-
rium, conservation of mass, and the like), the principle of minimum potential en-
ergy (Chapter 2), and Galerkin’s finite element method (introduced and devel-
oped in Chapter 5).

(b)
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As the reader progresses through the text, he or she will discern that we
cover a significant amount of finite element theory in addition to application
examples. Given the availability of many powerful and sophisticated finite
element software packages, why study the theory? The finite element method is
a tool, and like any other tool, using it without proper instruction can be quite
dangerous. My premise is that the proper instruction in this context includes
understanding the basic theory underlying formulation of finite element models
of physical problems. As stated previously, critical analysis of the results of a
finite element model computation is essential, since those results may eventually
become the basis for design. Knowledge of the theory is necessary for both
proper modeling and evaluation of computational results.
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C H A P T E R 2
Stiffness Matrices, Spring
and Bar Elements

2.1 INTRODUCTION
The primary characteristics of a finite element are embodied in the element
stiffness matrix. For a structural finite element, the stiffness matrix contains the
geometric and material behavior information that indicates the resistance of
the element to deformation when subjected to loading. Such deformation may
include axial, bending, shear, and torsional effects. For finite elements used in
nonstructural analyses, such as fluid flow and heat transfer, the term stiffness
matrix is also used, since the matrix represents the resistance of the element to
change when subjected to external influences. 

This chapter develops the finite element characteristics of two relatively
simple, one-dimensional structural elements, a linearly elastic spring and an elas-
tic tension-compression member. These are selected as introductory elements be-
cause the behavior of each is relatively well-known from the commonly studied
engineering subjects of statics and strength of materials. Thus, the “bridge” to the
finite element method is not obscured by theories new to the engineering student.
Rather, we build on known engineering principles to introduce finite element
concepts. The linear spring and the tension-compression member (hereafter re-
ferred to as a bar element and also known in the finite element literature as a spar,
link, or truss element) are also used to introduce the concept of interpolation
functions. As mentioned briefly in Chapter 1, the basic premise of the finite ele-
ment method is to describe the continuous variation of the field variable (in this
chapter, physical displacement) in terms of discrete values at the finite element
nodes. In the interior of a finite element, as well as along the boundaries (applic-
able to two- and three-dimensional problems), the field variable is described via
interpolation functions (Chapter 6) that must satisfy prescribed conditions.

Finite element analysis is based, dependent on the type of problem, on sev-
eral mathematic/physical principles. In the present introduction to the method,
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we present several such principles applicable to finite element analysis. First, and
foremost, for spring and bar systems, we utilize the principle of static equilib-
rium but—and this is essential—we include deformation in the development;
that is, we are not dealing with rigid body mechanics. For extension of the finite
element method to more complicated elastic structural systems, we also state and
apply the first theorem of Castigliano [1] and the more widely used principle of
minimum potential energy [2]. Castigliano’s first theorem, in the form presented,
may be new to the reader. The first theorem is the counterpart of Castigliano’s
second theorem, which is more often encountered in the study of elementary
strength of materials [3]. Both theorems relate displacements and applied forces
to the equilibrium conditions of a mechanical system in terms of mechanical
energy. The use here of Castigliano’s first theorem is for the distinct purpose of
introducing the concept of minimum potential energy without resort to the higher
mathematic principles of the calculus of variations, which is beyond the mathe-
matical level intended for this text.

2.2 LINEAR SPRING AS A FINITE ELEMENT
A linear elastic spring is a mechanical device capable of supporting axial loading
only and constructed such that, over a reasonable operating range (meaning ex-
tension or compression beyond undeformed length), the elongation or contrac-
tion of the spring is directly proportional to the applied axial load. The constant
of proportionality between deformation and load is referred to as the spring con-
stant, spring rate, or spring stiffness [4], generally denoted as k, and has units
of force per unit length. Formulation of the linear spring as a finite element is
accomplished with reference to Figure 2.1a. As an elastic spring supports axial
loading only, we select an element coordinate system (also known as a local co-
ordinate system) as an x axis oriented along the length of the spring, as shown.
The element coordinate system is embedded in the element and chosen, by geo-
metric convenience, for simplicity in describing element behavior. The element

1 2

u1

kf1 f 2 x

u2

(a) (b)

Fo
rc

e,
 f

Deflection, � � u2 � u1

1
k

Figure 2.1
(a) Linear spring element with nodes, nodal displacements, and nodal forces.
(b) Load-deflection curve.
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or local coordinate system is contrasted with the global coordinate system. The
global coordinate system is that system in which the behavior of a complete
structure is to be described. By complete structure is meant the assembly of
many finite elements (at this point, several springs) for which we desire to com-
pute response to loading conditions. In this chapter, we deal with cases in which
the local and global coordinate systems are essentially the same except for trans-
lation of origin. In two- and three-dimensional cases, however, the distinctions
are quite different and require mathematical rectification of element coordinate
systems to a common basis. The common basis is the global coordinate system.

Returning attention to Figure 2.1a, the ends of the spring are the nodes and
the nodal displacements are denoted by u1 and u2 and are shown in the positive
sense. If these nodal displacements are known, the total elongation or contraction
of the spring is known as is the net force in the spring. At this point in our devel-
opment, we require that forces be applied to the element only at the nodes (dis-
tributed forces are accommodated for other element types later), and these are
denoted as f1 and f2 and are also shown in the positive sense.

Assuming that both the nodal displacements are zero when the spring is un-
deformed, the net spring deformation is given by

� = u2 − u1 (2.1)

and the resultant axial force in the spring is

f = k� = k(u2 − u1) (2.2)

as is depicted in Figure 2.1b.
For equilibrium, f1 + f2 = 0 or f1 = − f2, and we can rewrite Equation 2.2

in terms of the applied nodal forces as

f1 = −k(u2 − u1) (2.3a)

f2 = k(u2 − u1) (2.3b)

which can be expressed in matrix form (see Appendix A for a review of matrix
algebra) as [

k −k

−k k

]{
u1

u2

}
=

{
f1

f2

}
(2.4)

or

[ke]{u} = { f } (2.5)

where

[ke] =
[

k −k

−k k

]
(2.6)

is defined as the element stiffness matrix in the element coordinate system (or
local system), {u} is the column matrix (vector) of nodal displacements, and { f}
is the column matrix (vector) of element nodal forces. (In subsequent chapters,
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the matrix notation is used extensively. A general matrix is designated by
brackets [ ] and a column matrix (vector) by braces { }.)

Equation 2.6 shows that the element stiffness matrix for the linear spring
element is a 2 × 2 matrix. This corresponds to the fact that the element exhibits
two nodal displacements (or degrees of freedom) and that the two displacements
are not independent (that is, the body is continuous and elastic). Furthermore, the
matrix is symmetric. A symmetric matrix has off-diagonal terms such that ki j =
kji. Symmetry of the stiffness matrix is indicative of the fact that the body is lin-
early elastic and each displacement is related to the other by the same physical
phenomenon. For example, if a force F (positive, tensile) is applied at node 2
with node 1 held fixed, the relative displacement of the two nodes is the same as
if the force is applied symmetrically (negative, tensile) at node 1 with node 2
fixed. (Counterexamples to symmetry are seen in heat transfer and fluid flow
analyses in Chapters 7 and 8.) As will be seen as more complicated structural
elements are developed, this is a general result: An element exhibiting N degrees
of freedom has a corresponding N × N, symmetric stiffness matrix.

Next consider solution of the system of equations represented by Equa-
tion 2.4. In general, the nodal forces are prescribed and the objective is to solve
for the unknown nodal displacements. Formally, the solution is represented by

{
u1

u2

}
= [ke]−1

{
f1

f2

}
(2.7)

where [ke]−1 is the inverse of the element stiffness matrix. However, this inverse
matrix does not exist, since the determinant of the element stiffness matrix is
identically zero. Therefore, the element stiffness matrix is singular, and this also
proves to be a general result in most cases. The physical significance of the
singular nature of the element stiffness matrix is found by reexamination of
Figure 2.1a, which shows that no displacement constraint whatever has been im-
posed on motion of the spring element; that is, the spring is not connected to any
physical object that would prevent or limit motion of either node. With no con-
straint, it is not possible to solve for the nodal displacements individually.
Instead, only the difference in nodal displacements can be determined, as this
difference represents the elongation or contraction of the spring element owing
to elastic effects. As discussed in more detail in the general formulation of inter-
polation functions (Chapter 6) and structural dynamics (Chapter 10), a properly
formulated finite element must allow for constant value of the field variable. In
the example at hand, this means rigid body motion. We can see the rigid body
motion capability in terms of a single spring (element) and in the context of sev-
eral connected elements. For a single, unconstrained element, if arbitrary forces
are applied at each node, the spring not only deforms axially but also undergoes
acceleration according to Newton’s second law. Hence, there exists not only
deformation but overall motion. If, in a connected system of spring elements, the
overall system response is such that nodes 1 and 2 of a particular element dis-
place the same amount, there is no elastic deformation of the spring and therefore
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no elastic force in the spring. This physical situation must be included in the
element formulation. The capability is indicated mathematically by singularity
of the element stiffness matrix. As the stiffness matrix is formulated on the basis
of deformation of the element, we cannot expect to compute nodal displacements
if there is no deformation of the element.

Equation 2.7 indicates the mathematical operation of inverting the stiffness
matrix to obtain solutions. In the context of an individual element, the singular
nature of an element stiffness matrix precludes this operation, as the inverse of a
singular matrix does not exist. As is illustrated profusely in the remainder of the
text, the general solution of a finite element problem, in a global, as opposed to
element, context, involves the solution of equations of the form of Equation 2.5. For
realistic finite element models, which are of huge dimension in terms of the matrix
order (N × N) involved, computing the inverse of the stiffness matrix is a very in-
efficient, time-consuming operation, which should not be undertaken except for the
very simplest of systems. Other, more-efficient solution techniques are available,
and these are discussed subsequently. (Many of the end-of-chapter problems
included in this text are of small order and can be efficiently solved via matrix in-
version using “spreadsheet” software functions or software such as MATLAB.)

2.2.1 System Assembly in Global Coordinates

Derivation of the element stiffness matrix for a spring element was based on
equilibrium conditions. The same procedure can be applied to a connected sys-
tem of spring elements by writing the equilibrium equation for each node. How-
ever, rather than drawing free-body diagrams of each node and formally writing
the equilibrium equations, the nodal equilibrium equations can be obtained more
efficiently by considering the effect of each element separately and adding the
element force contribution to each nodal equation. The process is described as
“assembly,” as we take individual stiffness components and “put them together”
to obtain the system equations. To illustrate, via a simple example, the assembly
of element characteristics into global (or system) equations, we next consider the
system of two linear spring elements connected as shown in Figure 2.2.

For generality, it is assumed that the springs have different spring constants
k1 and k2. The nodes are numbered 1, 2, and 3 as shown, with the springs sharing
node 2 as the physical connection. Note that these are global node numbers. The
global nodal displacements are identified as U1, U2, and U3, where the upper case
is used to indicate that the quantities represented are global or system displace-
ments as opposed to individual element displacements. Similarly, applied nodal

1 2

U1

k1 k2
F1 F2 3 F3

U2 U3

1 2

Figure 2.2 System of two springs with node numbers,
element numbers, nodal displacements, and nodal forces.
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Figure 2.3 Free-body diagrams of elements and nodes for the
two-element system of Figure 2.2.

forces are F1, F2, and F3. Assuming the system of two spring elements to be
in equilibrium, we examine free-body diagrams of the springs individually (Fig-
ure 2.3a and 2.3b) and express the equilibrium conditions for each spring, using
Equation 2.4, as [

k1 −k1

−k1 k1

] {
u (1)

1

u (1)
2

}
=

{
f (1)

1

f (1)
2

}
(2.8a)

[
k2 −k2

−k2 k2

] {
u (2)

1

u (2)
2

}
=

{
f (2)

2

f (2)
3

}
(2.8b)

where the superscript is element number.
To begin “assembling” the equilibrium equations describing the behavior

of the system of two springs, the displacement compatibility conditions, which
relate element displacements to system displacements, are written as

u(1)

1 = U1 u(1)

2 = U2 u (2)

1 = U2 u(2)

2 = U3 (2.9)

The compatibility conditions state the physical fact that the springs are con-
nected at node 2, remain connected at node 2 after deformation, and hence, must
have the same nodal displacement at node 2. Thus, element-to-element displace-
ment continuity is enforced at nodal connections. Substituting Equations 2.9 into
Equations 2.8, we obtain[

k1 −k1

−k1 k1

]{
U1

U2

}
=

{
f (1)

1

f (1)
2

}
(2.10a)

and [
k2 −k2

−k2 k2

]{
U2

U3

}
=

{
f (2)

2

f (2)
3

}
(2.10b)

Here, we use the notation f ( j)
i to represent the force exerted on element j at

node i.
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Equation 2.10 is the equilibrium equations for each spring element expressed
in terms of the specified global displacements. In this form, the equations clearly
show that the elements are physically connected at node 2 and have the same dis-
placement U2 at that node. These equations are not yet amenable to direct combi-
nation, as the displacement vectors are not the same. We expand both matrix
equations to 3 × 3 as follows (while formally expressing the facts that element 1
is not connected to node 3 and element 2 is not connected to node 1):

[ k1 −k1 0
−k1 k1 0

0 0 0

]{ U1

U2

0

}
=




f (1)
1

f (1)
2

0


 (2.11)

[ 0 0 0
0 k2 −k2

0 −k2 k2

]{ 0
U2

U3

}
=




0
f (2)

2

f (2)
3


 (2.12)

The addition of Equations 2.11 and 2.12 yields

[ k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

]{ U1

U2

U3

}
=




f (1)
1

f (1)
2 + f (2)

2

f (2)
3


 (2.13)

Next, we refer to the free-body diagrams of each of the three nodes depicted in
Figure 2.3c, 2.3d, and 2.3e. The equilibrium conditions for nodes 1, 2, and 3
show that

f (1)
1 = F1 f (1)

2 + f (2)
2 = F2 f (2)

3 = F3 (2.14)

respectively. Substituting into Equation 2.13, we obtain the final result:[
k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2

]{
U1

U2

U3

}
=

{
F1

F2

F3

}
(2.15)

which is of the form [K ]{U} = {F}, similar to Equation 2.5. However, Equa-
tion 2.15 represents the equations governing the system composed of two con-
nected spring elements. By direct consideration of the equilibrium conditions,
we obtain the system stiffness matrix [K ] (note use of upper case) as

[K ] =
[

k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

]
(2.16)

Note that the system stiffness matrix is (1) symmetric, as is the case with all lin-
ear systems referred to orthogonal coordinate systems; (2) singular, since no
constraints are applied to prevent rigid body motion of the system; and (3) the
system matrix is simply a superposition of the individual element stiffness
matrices with proper assignment of element nodal displacements and associated
stiffness coefficients to system nodal displacements. The superposition proce-
dure is formalized in the context of frame structures in the following paragraphs.
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Consider the two element system depicted in Figure 2.2 given that

Node 1 is attached to a fixed support, yielding the displacement constraint U1 = 0.

k1 = 50 lb./in., k2 = 75 lb./in., F2 = F3 = 75 lb.

for these conditions determine nodal displacements U2 and U3.

■ Solution
Substituting the specified values into Equation 2.15 yields


 50 −50 0

−50 125 −75
0 −75 75







0
U2

U3


 =




F1

75
75




and we note that, owing to the constraint of zero displacement at node 1, nodal force F1

becomes an unknown reaction force. Formally, the first algebraic equation represented in
this matrix equation becomes

−50U2 = F1

and this is known as a constraint equation, as it represents the equilibrium condition
of a node at which the displacement is constrained. The second and third equations
become

[
125 −75
−75 75

]{
U2

U3

}
=

{
75
75

}

which can be solved to obtain U2 = 3 in. and U3 = 4 in. Note that the matrix equations
governing the unknown displacements are obtained by simply striking out the first row
and column of the 3 × 3 matrix system, since the constrained displacement is zero.
Hence, the constraint does not affect the values of the active displacements (we use the
term active to refer to displacements that are unknown and must be computed). Substitu-
tion of the calculated values of U2 and U3 into the constraint equation yields the value
F1 = −150 lb., which value is clearly in equilibrium with the applied nodal forces of
75 lb. each. We also illustrate element equilibrium by writing the equations for each
element as

[
50 −50

−50 50

]{
0
3

}
=

{
f (1)

1

f (1)
2

}
=

{ −150
150

}
lb. for element 1

[
75 −75

−75 75

]{
3
4

}
=

{
f (2)

2

f (2)
3

}
=

{ −75
75

}
lb. for element 2

Example 2.1 illustrates the general procedure for solution of finite element mod-
els: Formulate the system equilibrium equations, apply the specified constraint
conditions, solve the reduced set of equations for the “active” displacements, and
substitute the computed displacements into the constraint equations to obtain the
unknown reactions. While not directly applicable for the spring element, for

EXAMPLE 2.1
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(a)

W

2k

W

k

W

3k

(b)

3k

U1

U2

1

2k 2

U3

U4

k 3

1

2

3

4

Figure 2.4 Example 2.2: elastic
spring supporting weights.

more general finite element formulations, the computed displacements are also
substituted into the strain relations to obtain element strains, and the strains are,
in turn, substituted into the applicable stress-strain equations to obtain element
stress values.

Figure 2.4a depicts a system of three linearly elastic springs supporting three equal
weights W suspended in a vertical plane. Treating the springs as finite elements, deter-
mine the vertical displacement of each weight.

■ Solution
To treat this as a finite element problem, we assign node and element numbers as shown
in Figure 2.4b and ignore, for the moment, that displacement U1 is known to be zero by
the fixed support constraint. Per Equation 2.6, the stiffness matrix of each element is
(preprocessing)

[
k (1)

] =
[

3k −3k
−3k 3k

]

[
k (2)

] =
[

2k −2k
−2k 2k

]

[
k (3)

] =
[

k −k
−k k

]

EXAMPLE 2.2
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The element-to-global displacement relations are

u (1)
1 = U1 u (1)

2 = u (2)
1 = U2 u (2)

2 = u (3)
1 = U3 u (3)

2 = U4

Proceeding as in the previous example, we then write the individual element equations as



3k −3k 0 0
−3k 3k 0 0

0 0 0 0
0 0 0 0







U1

U2

U3

U4




=




f (1)
1

f (1)
2

0
0




(1)




0 0 0 0
0 2k −2k 0
0 −2k 2k 0
0 0 0 0







U1

U2

U3

U4




=




0
f (2)

1

f (2)
2

0




(2)




0 0 0 0
0 0 0 0
0 0 k −k
0 0 −k k







U1

U2

U3

U4




=




0
0

f (3)
1

f (3)
2




(3)

Adding Equations 1–3, we obtain

k




3 −3 0 0
−3 5 −2 0
0 −2 3 −1
0 0 −1 1







U1

U2

U3

U4




=




F1

W
W
W




(4)

where we utilize the fact that the sum of the element forces at each node must equal the
applied force at that node and, at node 1, the force is an unknown reaction.

Applying the displacement constraint U1 = 0 (this is also preprocessing), we obtain

−3kU2 = F1 (5)

as the constraint equation and the matrix equation

k


 5 −2 0

−2 3 −1
0 −1 1







U2

U3

U4


 =




W
W
W


 (6)

for the active displacements. Again note that Equation 6 is obtained by eliminating the
constraint equation from 4 corresponding to the prescribed zero displacement.

Simultaneous solution (the solution step) of the algebraic equations represented by
Equation 6 yields the displacements as

U2 = W

k
U3 = 2W

k
U4 = 3W

k

and Equation 5 gives the reaction force as

F1 = −3W

(This is postprocessing.)
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k 3k 2k

�

F2 � �F

F4 � 2F1

2

3

2

3 4

1

Figure 2.5 Example 2.3: Three-element system with specified
nonzero displacement at node 3.

Note that the solution is exactly that which would be obtained by the usual statics
equations. Also note the general procedure as follows:

Formulate the individual element stiffness matrices.

Write the element to global displacement relations.

Assemble the global equilibrium equation in matrix form.

Reduce the matrix equations according to specified constraints.

Solve the system of equations for the unknown nodal displacements (primary
variables).

Solve for the reaction forces (secondary variable) by back-substitution.

Figure 2.5 depicts a system of three linear spring elements connected as shown. The node
and element numbers are as indicated. Node 1 is fixed to prevent motion, and node 3 is
given a specified displacement � as shown. Forces F2 = −F and F4 = 2F are applied at
nodes 2 and 4. Determine the displacement of each node and the force required at node 3
for the specified conditions. 

■ Solution
This example includes a nonhomogeneous boundary condition. In previous examples, the
boundary conditions were represented by zero displacements. In this example, we have
both a zero (homogeneous) and a specified nonzero (nonhomogeneous) displacement
condition. The algebraic treatment must be different as follows. The system equilibrium
equations are expressed in matrix form (Problem 2.6) as 




k −k 0 0
−k 4k −3k 0
0 −3k 5k −2k
0 0 −2k 2k







U1

U2

U3

U4




=




F1

F2

F3

F4




=




F1

−F
F3

2F




Substituting the specified conditions U1 = 0 and U3 = � results in the system of
equations




k −k 0 0
−k 4k −3k 0
0 −3k 5k −2k
0 0 −2k 2k







0
U2

�

U4




=




F1

−F
F3

2F




EXAMPLE 2.3
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Since U1 = 0, we remove the first row and column to obtain

 4k −3k 0

−3k 5k −2k
0 −2k 2k







U2

�

U4


 =




−F
F3

2F




as the system of equations governing displacements U2 and U4 and the unknown nodal
force F3. This last set of equations clearly shows that we cannot simply strike out the row
and column corresponding to the nonzero specified displacement � because it appears in
the equations governing the active displacements. To illustrate a general procedure, we
rewrite the last matrix equation as


 5k −3k −2k

−3k 4k 0
−2k 0 2k







�

U2

U4


 =




F3

−F
2F




Next, we formally partition the stiffness matrix and write

 5k −3k −2k

−3k 4k 0
−2k 0 2k







�

U2

U4


 =

[
[K��] [K�U ]
[KU �] [KUU ]

]{ {�}
{U}

}
=

{ {F�}
{FU }

}

with

[K��] = [5k]

[K�U ] = [−3k −2k]

[KU �] = [K�U ]T =
[ −3k

−2k

]

[KUU ] =
[

4k 0
0 2k

]

{�} = {�}

{U } =
{

U2

U4

}

{F�} = {F3}

{FU } =
{ −F

2F

}

From the second “row” of the partitioned matrix equations, we have

[KU �]{�} + [KUU ]{U } = {FU }
and this can be solved for the unknown displacements to obtain

{U } = [KUU ]−1({F } − [KU �]{�})
provided that [KUU ]−1 exists. Since the constraints have been applied correctly, this
inverse does exist and is given by

[KUU ]−1 =




1

4k
0

0
1

2k



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Substituting, we obtain the unknown displacements as

{U} =
{

U2

U4

}
=




1

4k
0

0
1

2k




{−F + 3k�

2F + 2k�

}
=




− F

4k
+ 3�

4

F

k
+ �




The required force at node 3 is obtained by substitution of the displacement into the upper
partition to obtain

F3 = − 5

4
F + 3

4
k�

Finally, the reaction force at node 1 is

F1 = −kU2 = F

4
− 3

4
k�

As a check on the results, we substitute the computed and prescribed displacements into
the individual element equations to insure that equilibrium is satisfied.

Element 1 [
k −k

−k k

]{
0

U2

}
=

{−kU2

kU2

}
=




f (1)
1

f (1)
2




which shows that the nodal forces on element 1 are equal and opposite as required for
equilibrium.

Element 2
[

3k −3k
−3k 3k

]{
U2

U3

}
=

[
3k −3k

−3k 3k

]


− F

4k
+ 3

4
�

�




=




−3F

4k
− 3

4
k�

3F

4k
+ 3

4
k�




=
{

f (2)
2

f (2)
3

}

which also verifies equilibrium.

Element 3
[

2k −2k
−2k 2k

]{
U3

U4

}
=

[
2k −2k

−2k 2k

] {
�

F

k
+ �

}
=

{ −2F
2F

}
=

{
f (3)

3

f (3)
4

}

Therefore element 3 is in equilibrium as well.

2.3 ELASTIC BAR, SPAR/LINK/TRUSS ELEMENT
While the linear elastic spring serves to introduce the concept of the stiffness ma-
trix, the usefulness of such an element in finite element analysis is rather limited.
Certainly, springs are used in machinery in many cases and the availability of a
finite element representation of a linear spring is quite useful in such cases. The
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spring element is also often used to represent the elastic nature of supports for
more complicated systems. A more generally applicable, yet similar, element is
an elastic bar subjected to axial forces only. This element, which we simply call
a bar element, is particularly useful in the analysis of both two- and three-
dimensional frame or truss structures. Formulation of the finite element charac-
teristics of an elastic bar element is based on the following assumptions:

1. The bar is geometrically straight.
2. The material obeys Hooke’s law.
3. Forces are applied only at the ends of the bar.
4. The bar supports axial loading only; bending, torsion, and shear are not

transmitted to the element via the nature of its connections to other
elements.

The last assumption, while quite restrictive, is not impractical; this condition is
satisfied if the bar is connected to other structural members via pins (2-D) or ball-
and-socket joints (3-D). Assumptions 1 and 4, in combination, show that this is
inherently a one-dimensional element, meaning that the elastic displacement of
any point along the bar can be expressed in terms of a single independent vari-
able. As will be seen, however, the bar element can be used in modeling both
two- and three-dimensional structures. The reader will recognize this element
as the familiar two-force member of elementary statics, meaning, for equilib-
rium, the forces exerted on the ends of the element must be colinear, equal in
magnitude, and opposite in sense.

Figure 2.6 depicts an elastic bar of length L to which is affixed a uniaxial
coordinate system x with its origin arbitrarily placed at the left end. This is the
element coordinate system or reference frame. Denoting axial displacement at
any position along the length of the bar as u(x), we define nodes 1 and 2 at each
end as shown and introduce the nodal displacements u1 = u(x = 0) and
u2 = u(x = L ) . Thus, we have the continuous field variable u(x), which is to be
expressed (approximately) in terms of two nodal variables u1 and u2. To accom-
plish this discretization, we assume the existence of interpolation functions
N1(x ) and N2(x ) (also known as shape or blending functions) such that 

u(x ) = N1(x )u1 + N2(x )u2 (2.17)

21

u1 u2

x
x u(x)

L

Figure 2.6 A bar (or truss) element with element
coordinate system and nodal displacement
notation.
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(It must be emphasized that, although an equality is indicated by Equation 2.17,
the relation, for finite elements in general, is an approximation. For the bar ele-
ment, the relation, in fact, is exact.) To determine the interpolation functions, we
require that the boundary values of u(x ) (the nodal displacements) be identically
satisfied by the discretization such that

u(x = 0) = u1 u(x = L ) = u2 (2.18)

Equations 2.17 and 2.18 lead to the following boundary (nodal) conditions:

N1(0) = 1 N2(0) = 0 (2.19)

N1(L ) = 0 N2(L ) = 1 (2.20)

which must be satisfied by the interpolation functions. It is required that the dis-
placement expression, Equation 2.17, satisfy the end (nodal) conditions identi-
cally, since the nodes will be the connection points between elements and the
displacement continuity conditions are enforced at those connections. As we
have two conditions that must be satisfied by each of two one-dimensional func-
tions, the simplest forms for the interpolation functions are polynomial forms:

N1(x ) = a0 + a1x (2.21)

N2(x ) = b0 + b1x (2.22)

where the polynomial coefficients are to be determined via satisfaction of the
boundary (nodal) conditions. We note here that any number of mathematical
forms of the interpolation functions could be assumed while satisfying the
required conditions. The reasons for the linear form is explained in detail in
Chapter 6. 

Application of conditions represented by Equation 2.19 yields a0 = 1,
b0 = 0 while Equation 2.20 results in a1 = −(1/L ) and b1 = x/L . Therefore,
the interpolation functions are

N1(x ) = 1 − x/L (2.23)

N2(x ) = x/L (2.24)

and the continuous displacement function is represented by the discretization

u(x ) = (1 − x/L )u1 + (x/L )u2 (2.25)

As will be found most convenient subsequently, Equation 2.25 can be expressed
in matrix form as 

u(x ) = [N1(x ) N2(x )]
{ u1

u2

}
= [N ] {u} (2.26)

where [N ] is the row matrix of interpolation functions and {u} is the column
matrix (vector) of nodal displacements.

Having expressed the displacement field in terms of the nodal variables, the
task remains to determine the relation between the nodal displacements and
applied forces to obtain the stiffness matrix for the bar element. Recall from
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elementary strength of materials that the deflection � of an elastic bar of length L
and uniform cross-sectional area A when subjected to axial load P is given by

� = PL

AE
(2.27)

where E is the modulus of elasticity of the material. Using Equation 2.27, we
obtain the equivalent spring constant of an elastic bar as 

k = P

�
= AE

L
(2.28)

and could, by analogy with the linear elastic spring, immediately write the stiff-
ness matrix as Equation 2.6. While the result is exactly correct, we take a more
general approach to illustrate the procedures to be used with more complicated
element formulations.

Ultimately, we wish to compute the nodal displacements given some loading
condition on the element. To obtain the necessary equilibrium equations relating
the displacements to applied forces, we proceed from displacement to strain,
strain to stress, and stress to loading, as follows. In uniaxial loading, as in the bar
element, we need consider only the normal strain component, defined as

εx = du

dx
(2.29)

which, when applied to Equation 2.25, gives

εx = u2 − u1

L
(2.30)

which shows that the spar element is a constant strain element. This is in accord
with strength of materials theory: The element has constant cross-sectional area
and is subjected to constant forces at the end points, so the strain does not vary
along the length. The axial stress, by Hooke’s law, is then

�x = Eεx = E
u2 − u1

L
(2.31)

and the associated axial force is

P = �x A = AE

L
(u2 − u1) (2.32)

Taking care to observe the correct algebraic sign convention, Equation 2.32 is
now used to relate the applied nodal forces f1 and f2 to the nodal displacements
u1 and u2. Observing that, if Equation 2.32 has a positive sign, the element is in
tension and nodal force f2 must be in the positive coordinate direction while
nodal force f1 must be equal and opposite for equilibrium; therefore,

f1 = − AE

L
(u2 − u1) (2.33)

f2 = AE

L
(u2 − u1) (2.34)
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Equations 2.33 and 2.34 are expressed in matrix form as

AE

L

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

f2

}
(2.35)

Comparison of Equation 2.35 to Equation 2.4 shows that the stiffness matrix for
the bar element is given by

[ke] = AE

L

[
1 −1

−1 1

]
(2.36)

As is the case with the linear spring, we observe that the element stiffness matrix
for the bar element is symmetric, singular, and of order 2 × 2 in correspondence
with two nodal displacements or degrees of freedom. It must be emphasized that
the stiffness matrix given by Equation 2.36 is expressed in the element coordi-
nate system, which in this case is one-dimensional. Application of this element
formulation to analysis of two- and three-dimensional structures is considered in
the next chapter.

Figure 2.7a depicts a tapered elastic bar subjected to an applied tensile load P at one end
and attached to a fixed support at the other end. The cross-sectional area varies linearly
from A0 at the fixed support at x = 0 to A0/2 at x = L . Calculate the displacement of the
end of the bar (a) by modeling the bar as a single element having cross-sectional area
equal to the area of the actual bar at its midpoint along the length, (b) using two bar
elements of equal length and similarly evaluating the area at the midpoint of each, and
(c) using integration to obtain the exact solution.

■ Solution
(a) For a single element, the cross-sectional area is 3A0/4 and the element “spring

constant” is

k = AE

L
= 3A0 E

4L

and the element equations are

3A0 E

4L

[
1 −1

−1 −1

] {
U1

U2

}
=

{
F1

P

}

The element and nodal displacements are as shown in Figure 2.7b. Applying the
constraint condition U1 = 0, we find

U2 = 4PL

3A0 E
= 1.333

PL

A0 E

as the displacement at x = L .
(b) Two elements of equal length L/2 with associated nodal displacements are

depicted in Figure 2.7c. For element 1, A1 = 7A0/8 so

k1 = A1E

L 1
= 7A0 E

8(L/2)
= 7A0 E

4L

EXAMPLE 2.4
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Figure 2.7
(a) Tapered axial bar, (b) one-element model, (c) two-element model, (d) free-body diagram
for an exact solution, (e) displacement solutions, (f) stress solutions.
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while for element 2, we have

A1 = 5A0

8
and k2 = A2 E

L 2
= 5A0 E

8(L/2)
= 5A0 E

4L

Since no load is applied at the center of the bar, the equilibrium equations for the
system of two elements is


 k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2







U1

U2

U3


 =




F1

0
P




Applying the constraint condition U1 = 0 results in[
k1 + k2 −k2

−k2 k2

]{
U2

U3

}
=

{
0
P

}

Adding the two equations gives 

U2 = P

k1
= 4PL

7A0 E

and substituting this result into the first equation results in

U3 = k1 + k2

k2
= 48PL

35A0 E
= 1.371

PL

A0 E

(c) To obtain the exact solution, we refer to Figure 2.7d, which is a free-body diagram of
a section of the bar between an arbitrary position x and the end x = L. For equilibrium,

�x A = P and since A = A(x ) = A0

(
1 − x

2L

)

the axial stress variation along the length of the bar is described by

�x = P

A0

(
1 − x

2L

)

Therefore, the axial strain is 

εx = �x

E
= P

EA0

(
1 − x

2L

)

Since the bar is fixed at x = 0, the displacement at x = L is given by

� =
L∫

0

εx dx = P

EA0

L∫

0

dx(
1 − x

2L

)

= 2PL

EA0
[−ln(2L − x )]

∣∣L

0
= 2PL

EA0
[ln(2L ) − ln L ] = 2PL

EA0
ln 2 = 1.386

PL

A0 E
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Comparison of the results of parts b and c reveals that the two element solution
exhibits an error of only about 1 percent in comparison to the exact solution from
strength of materials theory. Figure 2.7e shows the displacement variation along the
length for the three solutions. It is extremely important to note, however, that the
computed axial stress for the finite element solutions varies significantly from that of
the exact solution. The axial stress for the two-element solution is shown in Fig-
ure 2.7f, along with the calculated stress from the exact solution. Note particularly
the discontinuity of calculated stress values for the two elements at the connecting
node. This is typical of the derived, or secondary, variables, such as stress and strain,
as computed in the finite element method. As more and more smaller elements are
used in the model, the values of such discontinuities decrease, indicating solution
convergence. In structural analyses, the finite element user is most often more inter-
ested in stresses than displacements, hence it is essential that convergence of the
secondary variables be monitored.

2.4 STRAIN ENERGY, CASTIGLIANO’S 
FIRST THEOREM

When external forces are applied to a body, the mechanical work done by those
forces is converted, in general, into a combination of kinetic and potential ener-
gies. In the case of an elastic body constrained to prevent motion, all the work
is stored in the body as elastic potential energy, which is also commonly
referred to as strain energy. Here, strain energy is denoted Ue and mechanical
work W. From elementary statics, the mechanical work performed by a force �F
as its point of application moves along a path from position 1 to position 2 is
defined as

W =
2∫

1

�F · d�r (2.37)

where

d�r = dx�i + dy �j + dz�k (2.38)

is a differential vector along the path of motion. In Cartesian coordinates, work
is given by

W =
x2∫

x1

Fx dx +
y2∫

y1

Fy dy +
z2∫

z1

Fz dz (2.39)

where Fx , Fy , and Fz are the Cartesian components of the force vector.
For linearly elastic deformations, deflection is directly proportional to ap-

plied force as, for example, depicted in Figure 2.8 for a linear spring. The slope
of the force-deflection line is the spring constant such that F = k�. Therefore,
the work required to deform such a spring by an arbitrary amount �0 from its
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Fo
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e,
F

Deflection, �

1
k

Figure 2.8 Force-deflection
relation for a linear elastic
spring.

free length is

W =
�0∫

0

F d� =
�0∫

0

k� d� = 1

2
k�2

0 = Ue (2.40)

and we observe that the work and resulting elastic potential energy are quadratic
functions of displacement and have the units of force-length. This is a general
result for linearly elastic systems, as will be seen in many examples throughout
this text.

Utilizing Equation 2.28, the strain energy for an axially loaded elastic bar
fixed at one end can immediately be written as

Ue = 1

2
k�2 = 1

2

AE

L
�2 (2.41)

However, for a more general purpose, this result is converted to a different form
(applicable to a bar element only) as follows:

Ue = 1

2
k�2 = 1

2

AE

L

(
PL

AE

)2

= 1

2

(
P

A

)(
P

AE

)
AL = 1

2
�εV (2.42)

where V is the total volume of deformed material and the quantity 1
2 �ε is strain

energy per unit volume, also known as strain energy density. In Equation 2.42,
stress and strain values are those corresponding to the final value of applied
force. The factor 1

2 arises from the linear relation between stress and strain as the
load is applied from zero to the final value P. In general, for uniaxial loading, the
strain energy per unit volume ue is defined by

ue =
ε∫

0

� dε (2.43)

which is extended to more general states of stress in subsequent chapters. We note
that Equation 2.43 represents the area under the elastic stress-strain diagram.
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Presently, we will use the work-strain energy relation to obtain the govern-
ing equations for the bar element using the following theorem.

Castigliano’s First Theorem [1]

For an elastic system in equilibrium, the partial derivative of total strain energy
with respect to deflection at a point is equal to the applied force in the direction
of the deflection at that point.

Consider an elastic body subjected to N forces Fj for which the total strain
energy is expressed as

Ue = W =
N∑

j=1

�j∫
0

Fj d�j (2.44)

where �j is the deflection at the point of application of force Fj in the direction of
the line of action of the force. If all points of load application are fixed except
one, say, i, and that point is made to deflect an infinitesimal amount ��i by an
incremental infinitesimal force �Fi , the change in strain energy is

�Ue = �W = Fi��i +
��i∫
0

�Fi d�i (2.45)

where it is assumed that the original force Fi is constant during the infinitesimal
change. The integral term in Equation 2.45 involves the product of infinitesimal
quantities and can be neglected to obtain

�Ue

��i
= Fi (2.46)

which in the limit as ��i approaches zero becomes

∂U

∂�i
= Fi (2.47)

The first theorem of Castigliano is a powerful tool for finite element formu-
lation, as is now illustrated for the bar element. Combining Equations 2.30, 2.31,
and 2.43, total strain energy for the bar element is given by

Ue = 1

2
�x εx V = 1

2
E

(
u2 − u1

L

)2

AL (2.48)

Applying Castigliano’s theorem with respect to each displacement yields

∂Ue

∂u1
= AE

L
(u1 − u2) = f1 (2.49)

∂Ue

∂u2
= AE

L
(u2 − u1) = f2 (2.50)

which are observed to be identical to Equations 2.33 and 2.34.
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The first theorem of Castigliano is also applicable to rotational displace-
ments. In the case of rotation, the partial derivative of strain energy with respect
to a rotational displacement is equal to the moment/torque applied at the point of
concern in the sense of the rotation. The following example illustrates the appli-
cation in terms of a simple torsional member.

A solid circular shaft of radius R and length L is subjected to constant torque T. The shaft
is fixed at one end, as shown in Figure 2.9. Formulate the elastic strain energy in terms of
the angle of twist � at x = L and show that Castigliano’s first theorem gives the correct
expression for the applied torque.

■ Solution
From strength of materials theory, the shear stress at any cross section along the length of
the member is given by

� = Tr

J
where r is radial distance from the axis of the member and J is polar moment of inertia of
the cross section. For elastic behavior, we have

� = �

G
= Tr

JG

where G is the shear modulus of the material, and the strain energy is then

Ue = 1

2

∫
V

�� dV = 1

2

L∫
0


∫

A

(
Tr

J

)(
Tr

JG

)
dA


dx

= T 2

2J 2G

L∫
0

∫
A

r2 dA dx = T 2 L

2JG

where we have used the definition of the polar moment of inertia

J =
∫

A

r 2 d A

L T

R

Figure 2.9 Example 2.5:
Circular cylinder subjected to
torsion.

EXAMPLE 2.5
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Again invoking the strength of materials results, the angle of twist at the end of the mem-
ber is known to be

� = TL

JG

so the strain energy can be written as

Ue = 1

2

L

JG

(
JG�

L

)2

= JG

2L
�2

Per Castangliano’s first theorem,

∂Ue

∂�
= T = JG�

L

which is exactly the relation shown by strength of materials theory. The reader may think
that we used circular reasoning in this example, since we utilized many previously known
results. However, the formulation of strain energy must be based on known stress and
strain relationships, and the application of Castigliano’s theorem is, indeed, a different
concept.

For linearly elastic systems, formulation of the strain energy function in
terms of displacements is relatively straightforward. As stated previously, the
strain energy for an elastic system is a quadratic function of displacements. The
quadratic nature is simplistically explained by the facts that, in elastic deforma-
tion, stress is proportional to force (or moment or torque), stress is proportional
to strain, and strain is proportional to displacement (or rotation). And, since the
elastic strain energy is equal to the mechanical work expended, a quadratic func-
tion results. Therefore, application of Castigliano’s first theorem results in linear
algebraic equations that relate displacements to applied forces. This statement
follows from the fact that a derivative of a quadratic term is linear. The coeffi-
cients of the displacements in the resulting equations are the components of the
stiffness matrix of the system for which the strain energy function is written.
Such an energy-based approach is the simplest, most-straightforward method for
establishing the stiffness matrix of many structural finite elements.

(a) Apply Castigliano’s first theorem to the system of four spring elements depicted in
Figure 2.10 to obtain the system stiffness matrix. The vertical members at nodes 2
and 3 are to be considered rigid.

(b) Solve for the displacements and the reaction force at node 1 if 

k1 = 4 N/mm k2 = 6 N/mm k3 = 3 N/mm

F2 = − 30 N F3 = 0 F4 = 50 N

EXAMPLE 2.6
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F2 F4

k2

k2

k1 k31

2 3
4

Figure 2.10 Example 2.6: Four spring elements.

■ Solution
(a) The total strain energy of the system of four springs is expressed in terms of the

nodal displacements and spring constants as

Ue = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]
+ 1

2
k3(U4 − U3)2

Applying Castigliano’s theorem, using each nodal displacement in turn,

∂Ue

∂U1
= F1 = k1(U2 − U1)(−1) = k1(U1 − U2)

∂Ue

∂U2
= F2 = k1(U2 − U1) + 2k2(U3 − U2)(−1) = −k1U1 + (k1 + 2k2)U2 − 2k2U3

∂Ue

∂U3
= F3 = 2k2(U3 − U2) + k3(U4 − U3)(−1) = −2k2U2 + (2k2 + k3)U3 − k3U4

∂Ue

∂U4
= F4 = k3(U4 − U3) = −k3U3 + k3U4

which can be written in matrix form as




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4




=




F1

F2

F3

F4




and the system stiffness matrix is thus obtained via Castigliano’s theorem.
(b) Substituting the specified numerical values, the system equations become




4 −4 0 0
−4 16 −12 0
0 −12 15 −3
0 0 −3 3







0
U2

U3

U4




=




F1

−30
0
50




Eliminating the constraint equation, the active displacements are governed by

 16 −12 0

−12 15 −3
0 −3 3







U2

U3

U4


 =




−30
0
50




which we solve by manipulating the equations to convert the coefficient matrix (the
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stiffness matrix) to upper-triangular form; that is, all terms below the main
diagonal become zero.

Step 1. Multiply the first equation (row) by 12, multiply the second equation (row) by
16, add the two and replace the second equation with the resulting equation
to obtain


 16 −12 0

0 96 −48
0 −3 3







U2

U3

U4


 =




−30
−360

50




Step 2. Multiply the third equation by 32, add it to the second equation, and replace
the third equation with the result. This gives the triangularized form desired:


 16 −12 0

0 96 −48
0 0 48







U2

U3

U4


 =




−30
−360
1240




In this form, the equations can now be solved from the “bottom to the top,” and it will be
found that, at each step, there is only one unknown. In this case, the sequence is

U4 = 1240

48
= 25.83 mm

U3 = 1

96
[−360 + 48(25.83)] = 9.17 mm

U2 = 1

16
[−30 + 12(9.17)] = 5.0 mm

The reaction force at node 1 is obtained from the constraint equation

F1 = −4U2 = −4(5.0) = −20 N

and we observe system equilibrium since the external forces sum to zero as required.

2.5 MINIMUM POTENTIAL ENERGY
The first theorem of Castigliano is but a forerunner to the general principle of
minimum potential energy. There are many ways to state this principle, and it has
been proven rigorously [2]. Here, we state the principle without proof but expect
the reader to compare the results with the first theorem of Castigliano. The prin-
ciple of minimum potential energy is stated as follows:

Of all displacement states of a body or structure, subjected to external loading,
that satisfy the geometric boundary conditions (imposed displacements), the dis-
placement state that also satisfies the equilibrium equations is such that the total
potential energy is a minimum for stable equilibrium.
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We emphasize that the total potential energy must be considered in applica-
tion of this principle. The total potential energy includes the stored elastic poten-
tial energy (the strain energy) as well as the potential energy of applied loads. As
is customary, we use the symbol � for total potential energy and divide the total
potential energy into two parts, that portion associated with strain energy Ue and
the portion associated with external forces UF. The total potential energy is

� = Ue + UF (2.51)

where it is to be noted that the term external forces also includes moments and
torques.

In this text, we will deal only with elastic systems subjected to conservative
forces. A conservative force is defined as one that does mechanical work
independent of the path of motion and such that the work is reversible or recov-
erable. The most common example of a nonconservative force is the force of
sliding friction. As the friction force always acts to oppose motion, the work
done by friction forces is always negative and results in energy loss. This loss
shows itself physically as generated heat. On the other hand, the mechanical
work done by a conservative force, Equation 2.37, is reversed, and therefore
recovered, if the force is released. Therefore, the mechanical work of a conserv-
ative force is considered to be a loss in potential energy; that is,

UF = −W (2.52)

where W is the mechanical work defined by the scalar product integral of Equa-
tion 2.37. The total potential energy is then given by

� = Ue − W (2.53)

As we show in the following examples and applications to solid mechanics
in Chapter 9, the strain energy term Ue is a quadratic function of system dis-
placements and the work term W is a linear function of displacements. Rigor-
ously, the minimization of total potential energy is a problem in the calculus of
variations [5]. We do not suppose that the intended audience of this text is
familiar with the calculus of variations. Rather, we simply impose the minimiza-
tion principle of calculus of multiple variable functions. If we have a total poten-
tial energy expression that is a function of, say, N displacements Ui , i = 1, . . . , N;
that is,

� = �(U1, U2, . . . , UN ) (2.54)

then the total potential energy will be minimized if 

∂�

∂Ui
= 0 i = 1, . . . , N (2.55)

Equation 2.55 will be shown to represent N algebraic equations, which form the
finite element approximation to the solution of the differential equation(s) gov-
erning the response of a structural system.
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Repeat the solution to Example 2.6 using the principle of minimum potential energy.

■ Solution
Per the previous example solution, the elastic strain energy is

Ue = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]
+ 1

2
k3(U4 − U3)2

and the potential energy of applied forces is

UF = −W = −F1U1 − F2U2 − F3U3 − F4U4

Hence, the total potential energy is expressed as

� = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]

+ 1

2
k3(U4 − U3)2 − F1U1 − F2U2 − F3U3 − F4U4

In this example, the principle of minimum potential energy requires that

∂�

∂Ui
= 0 i = 1, 4

giving in sequence i = 1, 4, the algebraic equations

∂�

∂U1
= k1(U2 − U1)(−1) − F1 = k1(U1 − U2) − F1 = 0

∂�

∂U2
= k1(U2 − U1) + 2k2(U3 − U2)(−1) − F2

= −k1U1 + (k1 + 2k2)U2 − 2k2U3 − F2 = 0

∂�

∂U3
= 2k2(U3 − U2) + k3(U4 − U3)(−1) − F3

= −2k2U2 + (2k2 + k3)U3 − k3U4 − F3 = 0

∂�

∂U4
= k3(U4 − U3) − F4 = −k3U3 + k3U4 − F4 = 0

which, when written in matrix form, are



k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4




=




F1

F2

F3

F4




and can be seen to be identical to the previous result. Consequently, we do not resolve the
system numerically, as the results are known.

EXAMPLE 2.7
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We now reexamine the energy equation of the Example 2.7 to develop a more-
general form, which will be of significant value in more complicated systems to
be discussed in later chapters. The system or global displacement vector is

{U} =




U1

U2

U3

U4


 (2.56)

and, as derived, the global stiffness matrix is 

[K ] =




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3


 (2.57)

If we form the matrix triple product

1

2
{U }T [K ]{U } = 1

2
[ U1 U2 U3 U4 ]

×




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4


 (2.58)

and carry out the matrix operations, we find that the expression is identical to the
strain energy of the system. As will be shown, the matrix triple product of Equa-
tion 2.58 represents the strain energy of any elastic system. If the strain energy
can be expressed in the form of this triple product, the stiffness matrix will have
been obtained, since the displacements are readily identifiable.

2.6 SUMMARY
Two linear mechanical elements, the idealized elastic spring and an elastic tension-
compression member (bar) have been used to introduce the basic concepts involved in
formulating the equations governing a finite element. The element equations are obtained
by both a straightforward equilibrium approach and a strain energy method using the first
theorem of Castigliano. The principle of minimum potential also is introduced. The next
chapter shows how the one-dimensional bar element can be used to demonstrate the finite
element model assembly procedures in the context of some simple two- and three-
dimensional structures.
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PROBLEMS
2.1–2.3 For each assembly of springs shown in the accompanying figures

(Figures P2.1–P2.3), determine the global stiffness matrix using the system
assembly procedure of Section 2.2.

Figure P2.1

Figure P2.2

Figure P2.3

2.4 For the spring assembly of Figure P2.4, determine force F3 required to displace
node 2 an amount � = 0.75 in. to the right. Also compute displacement of
node 3. Given

k1 = 50 lb./in. and k2 = 25 lb./in.

Figure P2.4

2.5 In the spring assembly of Figure P2.5, forces F2 and F4 are to be applied such
that the resultant force in element 2 is zero and node 4 displaces an amount

F3

k1 k2

1 2 3

�

k1 k2 k3

1 2 4
…

3

kN�2 kN�1

N � 1 N

k3

k3

k1 k2

1 2 3
4

k1 k2 k3

1 2 43
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� = 1 in. Determine (a) the required values of forces F2 and F4, (b) displacement
of node 2, and (c) the reaction force at node 1.

Figure P2.5

2.6 Verify the global stiffness matrix of Example 2.3 using (a) direct assembly and
(b) Castigliano’s first theorem.

2.7 Two trolleys are connected by the arrangement of springs shown in Figure P2.7.
(a) Determine the complete set of equilibrium equations for the system in the
form [K ]{U } = {F }. (b) If k = 50 lb./in., F1 = 20 lb., and F2 = 15 lb., compute
the displacement of each trolley and the force in each spring.

Figure P2.7

2.8 Use Castigliano’s first theorem to obtain the matrix equilibrium equations for the
system of springs shown in Figure P2.8.

Figure P2.8

2.9 In Problem 2.8, let k1 = k2 = k3 = k4 = 10 N/mm, F2 = 20 N, F3 = 25 N,
F4 = 40 N and solve for (a) the nodal displacements, (b) the reaction forces at
nodes 1 and 5, and (c) the force in each spring.

2.10 A steel rod subjected to compression is modeled by two bar elements, as shown
in Figure P2.10. Determine the nodal displacements and the axial stress in each
element. What other concerns should be examined?

Figure P2.10

1 2 3

12 kN
0.5 m 0.5 m

E � 207 GPa        A � 500 mm2

k1 k2
1 2 3 k3

4 k4
5

F2 F3 F4

F2

F1

k
2k

2k

k

k1 � k3 � 30 lb./in. k2 � 40 lb./in.

F4

k1 k2

1 2 3

k3

4

F2 �
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2.11 Figure P2.11 depicts an assembly of two bar elements made of different
materials. Determine the nodal displacements, element stresses, and the
reaction force.

Figure P2.11

2.12 Obtain a four-element solution for the tapered bar of Example 2.4. Plot element
stresses versus the exact solution. Use the following numerical values:

E = 10 × 106 lb./in.2 A0 = 4 in.2 L = 20 in. P = 4000 lb.

2.13 A weight W is suspended in a vertical plane by a linear spring having spring
constant k. Show that the equilibrium position corresponds to minimum total
potential energy.

2.14 For a bar element, it is proposed to discretize the displacement function as

u(x ) = N1(x )u1 + N2(x )u2

with interpolation functions

N1(x ) = cos
	x

2L

N2(x ) = sin
	x

2L

Are these valid interpolation functions? (Hint: Consider strain and stress
variations.)

2.15 The torsional element shown in Figure P2.15 has a solid circular cross section
and behaves elastically. The nodal displacements are rotations �1 and �2 and the
associated nodal loads are applied torques T1 and T2. Use the potential energy
principle to derive the element equations in matrix form.

Figure P2.15

�2, T2

�1, T1

L

R

A1 � 4 in.2

E1 � 15 
 106 lb./in.2

L1 � 20 in.

A2 � 2.25 in.2

E2 � 10 
 106 lb./in.2

L2 � 20 in.

1 2
3

20,000 lb.

A1, E1, L1 A2, E2, L2
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C H A P T E R 3
Truss Structures:
The Direct Stiffness
Method

3.1 INTRODUCTION
The simple line elements discussed in Chapter 2 introduced the concepts of
nodes, nodal displacements, and element stiffness matrices. In this chapter, cre-
ation of a finite element model of a mechanical system composed of any number
of elements is considered. The discussion is limited to truss structures, which we
define as structures composed of straight elastic members subjected to axial
forces only. Satisfaction of this restriction requires that all members of the truss
be bar elements and that the elements be connected by pin joints such that each
element is free to rotate about the joint. Although the bar element is inherently
one dimensional, it is quite effectively used in analyzing both two- and three-
dimensional trusses, as is shown.

The global coordinate system is the reference frame in which displace-
ments of the structure are expressed and usually chosen by convenience in con-
sideration of overall geometry. Considering the simple cantilever truss shown in
Figure 3.1a, it is logical to select the global XY axes as parallel to the predomi-
nant geometric “axes” of the truss as shown. If we examine the circled joint, for
example, redrawn in Figure 3.1b, we observe that five element nodes are physi-
cally connected at one global node and the element x axes do not coincide with
the global X axis. The physical connection and varying geometric orientation
of the elements lead to the following premises inherent to the finite element
method:

1. The element nodal displacement of each connected element must be the
same as the displacement of the connection node in the global coordinate
system; the mathematical formulation, as will be seen, enforces this
requirement (displacement compatibility).
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(a)

3

X

Y

1 5

4 8 106
2

9

7

(b)

3 7

4
62

Figure 3.1
(a) Two-dimensional truss composed of ten elements. (b) Truss joint connecting five
elements.

2. The physical characteristics (in this case, the stiffness matrix and element
force) of each element must be transformed, mathematically, to the global
coordinate system to represent the structural properties in the global system
in a consistent mathematical frame of reference.

3. The individual element parameters of concern (for the bar element, axial
stress) are determined after solution of the problem in the global coordinate
system by transformation of results back to the element reference frame
(postprocessing).

Why are we basing the formulation on displacements? Generally, a design
engineer is more interested in the stress to which each truss member is subjected,
to compare the stress value to a known material property, such as the yield
strength of the material. Comparison of computed stress values to material prop-
erties may lead to changes in material or geometric properties of individual ele-
ments (in the case of the bar element, the cross-sectional area). The answer to the
question lies in the nature of physical problems. It is much easier to predict the
loading (forces and moments) to which a structure is subjected than the deflec-
tions of such a structure. If the external loads are specified, the relations between
loads and displacements are formulated in terms of the stiffness matrix and we
solve for displacements. Back-substitution of displacements into individual ele-
ment equations then gives us the strains and stresses in each element as desired.
This is the stiffness method and is used exclusively in this text. In the alternate
procedure, known as the flexibility method [1], displacements are taken as the
known quantities and the problem is formulated such that the forces (more gen-
erally, the stress components) are the unknown variables. Similar discussion ap-
plies to nonstructural problems. In a heat transfer situation, the engineer is most
often interested in the rate of heat flow into, or out of, a particular device. While
temperature is certainly of concern, temperature is not the primary variable of
interest. Nevertheless, heat transfer problems are generally formulated such that
temperature is the primary dependent variable and heat flow is a secondary,
computed variable in analogy with strain and stress in structural problems.

Returning to consideration of Figure 3.1b, where multiple elements are con-
nected at a global node, the geometry of the connection determines the relations
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between element displacements and global displacements as well as the contribu-
tions of individual elements to overall structural stiffness. In the direct stiffness
method, the stiffness matrix of each element is transformed from the element
coordinate system to the global coordinate system. The individual terms of each
transformed element stiffness matrix are then added directly to the global stiffness
matrix as determined by element connectivity (as noted, the connectivity relations
ensure compatibility of displacements at joints and nodes where elements are
connected). For example and simply by intuition at this point, elements 3 and 7 in
Figure 3.1b should contribute stiffness only in the global X direction; elements 2
and 6 should contribute stiffness in both X and Y global directions; element 4
should contribute stiffness only in the global Y direction. The element transfor-
mation and stiffness matrix assembly procedures to be developed in this chapter
indeed verify the intuitive arguments just made.

The direct stiffness assembly procedure, subsequently described, results in
exactly the same system of equations as would be obtained by a formal equilib-
rium approach. By a formal equilibrium approach, we mean that the equilibrium
equations for each joint (node) in the structure are explicitly expressed, including
deformation effects. This should not be confused with the method of joints [2],
which results in computation of forces only and does not take displacement into
account. Certainly, if the force in each member is known, the physical properties
of the member can be used to compute displacement. However, enforcing com-
patibility of displacements at connections (global nodes) is algebraically tedious.
Hence, we have another argument for the stiffness method: Displacement com-
patibility is assured via the formulation procedure. Granted that we have to
“backtrack” to obtain the information of true interest (strain, stress), but the back-
tracking is algebraic and straightforward, as will be illustrated.

3.2 NODAL EQUILIBRIUM EQUATIONS
To illustrate the required conversion of element properties to a global coordinate
system, we consider the one-dimensional bar element as a structural member of a
two-dimensional truss. Via this relatively simple example, the assembly procedure
of essentially any finite element problem formulation is illustrated. We choose
the element type (in this case we have only one selection, the bar element); spec-
ify the geometry of the problem (element connectivity); formulate the algebraic
equations governing the problem (in this case, static equilibrium); specify the
boundary conditions (known displacements and applied external forces); solve
the system of equations for the global displacements; and back-substitute dis-
placement values to obtain secondary variables, including strain, stress, and reac-
tion forces at constrained locations (boundary conditions). The reader is advised
to note that we use the term secondary variable only in the mathematical sense;
strain and stress are secondary only in the sense that the values are computed after
the general solution for displacements. The strain and stress values are of primary
importance in design.
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(a)

F3Y

�2

�1

Y

X

F3X

1

2

1

2
3

Figure 3.2
(a) A two-element truss with node and element numbers. (b) Global displacement notation.

(b)

U6

U5

1

U6

U5
U4

U3

U2

U1

2

Conversion of element equations from element coordinates to global coordi-
nates and assembly of the global equilibrium equations are described first in the
two-dimensional case with reference to Figure 3.2a. The figure depicts a simple
two-dimensional truss composed of two structural members joined by pin con-
nections and subjected to applied external forces. The pin connections are taken
as the nodes of two bar elements as shown; node and element numbers, as well
as the selected global coordinate system are also shown. The corresponding
global displacements are shown in Figure 3.2b. The convention used here for
global displacements is that U2i−1 is displacement in the global X direction of
node i and U2i is displacement of node i in the global Y direction. The convention
is by no means restrictive; the convention is selected such that displacements in
the direction of the global X axis are odd numbered and displacements in the
direction of the global Y axis are even numbered. (In using FEM software, the
reader will find that displacements are denoted in various fashions, UX, UY, UZ,
etc.) Orientation angle � for each element is measured as positive from the global
X axis to the element x axis, as shown. Node numbers are circled while element
numbers are in boxes. Element numbers are superscripted in the notation.

To obtain the equilibrium conditions, free-body diagrams of the three con-
necting nodes and the two elements are drawn in Figure 3.3. Note that the exter-
nal forces are numbered via the same convention as the global displacements.
For node 1, (Figure 3.3a), we have the following equilibrium equations in the
global X and Y directions, respectively:

F1 − f (1)
1 cos �1 = 0 (3.1a)

F2 − f (1)
1 sin �1 = 0 (3.1b)
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(a)

F2

f 1
(1)

F1
�1

(b)

f 2
(2)

F4

F3

�2

(c)

f 3
(1)

f 3
(2)

F5

F6

Figure 3.3
(a)–(c) Nodal free-body diagrams. (d) and (e) Element free-body diagrams.

(d)

�1

f 3
(1)

f 1
(1)

(e)

�2

f 2
(2)

f 3
(2)

and for node 2,

F3 − f (2)
2 cos �2 = 0 (3.2a)

F4 − f (2)
2 sin �2 = 0 (3.2b)

while for node 3,

F5 − f (1)
3 cos �1 − f (2)

3 cos �2 = 0 (3.3a)

F6 − f (1)
3 sin �1 − f (2)

3 sin �2 = 0 (3.3b)

Equations 3.1–3.3 simply represent the conditions of static equilibrium from a
rigid body mechanics standpoint. Assuming external loads F5 and F6 are known,
these six nodal equilibrium equations formally contain eight unknowns (forces).
Since the example truss is statically determinate, we can invoke the additional
equilibrium conditions applicable to the truss as a whole as well as those for the
individual elements (Figures 3.3d and 3.3e) and eventually solve for all of the
forces. However, a more systematic procedure is obtained if the formulation is
transformed so that the unknowns are nodal displacements. Once the transfor-
mation is accomplished, we find that the number of unknowns is exactly the
same as the number of nodal equilibrium equations. In addition, static indeter-
minacy is automatically accommodated. As the reader may recall from study of
mechanics of materials, the solution of statically indeterminate systems requires



Hutton: Fundamentals of 
Finite Element Analysis

3. Truss Structures: The 
Direct Stiffness Method

Text © The McGraw−Hill 
Companies, 2004

56 CHAPTER 3 Truss Structures: The Direct Stiffness Method

specification of one or more displacement relations; hence, the displacement for-
mulation of the finite element method includes such situations.

To illustrate the transformation to displacements, Figure 3.4a depicts a bar
element connected at nodes i and j in a general position in a two-dimensional
(2-D) truss structure. As a result of external loading on the truss, we assume that
nodes i and j undergo 2-D displacement, as shown in Figure 3.4b. Since the ele-
ment must remain connected at the structural joints, the connected element nodes
must undergo the same 2-D displacements. This means that the element is sub-
jected not only to axial motion but rotation as well. To account for the rotation,
we added displacements v1 and v2 at element nodes 1 and 2, respectively, in the
direction perpendicular to the element x axis. Owing to the assumption of smooth
pin joint connections, the perpendicular displacements are not associated with
element stiffness; nevertheless, these displacements must exist so that the ele-
ment remains connected to the structural joint so that the element displacements
are compatible with (i.e., the same as) joint displacements. Although the element
undergoes a rotation in general, for computation purposes, orientation angle � is
assumed to be the same as in the undeformed structure. This is a result of the
assumption of small, elastic deformations and is used throughout the text.

To now relate element nodal displacements referred to the element coordi-
nates to element displacements in global coordinates, Figure 3.4c shows element
nodal displacements in the global system using the notation

U (e)
1 = element node 1 displacement in the global X direction

U (e)
2 = element node 1 displacement in the global Y direction

U (e)
3 = element node 2 displacement in the global X direction

U (e)
4 = element node 2 displacement in the global Y direction

(a)

j

i

�

u2
(e)

u1
(e)

Figure 3.4
(a) Bar element at orientation �. (b) General displacements of a bar element. (c) Bar element
global displacements.

(b)

j

i

After loading

Original

u2
(e) v2

(e)

u1
(e)

v1
(e)

(c)

j

i

�

U 4
(e)

U 3
(e)

U 1
(e)

U 2
(e)
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Again, note the use of capital letters for global quantities and the superscript
notation to refer to an individual element. As the nodal displacements must be
the same in both coordinate systems, we can equate vector components of global
displacements to element system displacements to obtain the relations

u (e)
1 = U (e)

1 cos � + U (e)
2 sin �

v(e)
1 = −U (e)

1 sin � + U (e)
2 cos �

(3.4a)

u (e)
2 = U (e)

3 cos � + U (e)
4 sin �

v(e)
1 = −U (e)

3 sin � + U (e)
4 cos �

(3.4b)

As noted, the v displacement components are not associated with element stiff-
ness, hence not associated with element forces, so we can express the axial de-
formation of the element as

�(e) = u (e)
2 − u (e)

1 = (
U (e)

3 − U (e)
1

)
cos � + (

U (e)
4 − U (e)

2

)
sin � (3.5)

The net axial force acting on the element is then

f (e) = k (e)�(e) = k (e)
{(

U (e)
3 − U (e)

1

)
cos � + (

U (e)
4 − U (e)

2

)
sin �

}
(3.6)

Utilizing Equation 3.6 for element 1 (Figure 3.3d) while noting that the dis-
placements of element 1 are related to the specified global displacements as
U (1)

1 = U1, U (1)
2 = U2, U (1)

3 = U5, U (1)
4 = U6, we have the force in element 1 as

f (1)
3 = − f (1)

1 = k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1] (3.7)

and similarly for element 2 (Figure 3.3e):

f (2)
3 = − f (2)

2 = k (2) [(U5 − U3)cos �2 + (U6 − U4)sin �2] (3.8)

Note that, in writing Equations 3.7 and 3.8, we invoke the condition that the dis-
placements of node 3 (U5 and U6) are the same for each element. To reiterate, this
assumption is actually a requirement, since on a physical basis, the structure
must remain connected at the joints after deformation. Displacement compatibil-
ity at the nodes is a fundamental requirement of the finite element method.

Substituting Equations 3.7 and 3.8 into the nodal equilibrium conditions
(Equations 3.1–3.3) yields

−k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]cos �1 = F1 (3.9)

−k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]sin �1 = F2 (3.10)

−k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]cos �2 = F3 (3.11)

−k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]sin �2 = F4 (3.12)

k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2] cos �2

+ k (1)[(U5 − U3)cos �1 + (U6 − U4)sin �1]cos �1 = F5 (3.13)

k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]sin �2

+ k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]sin �1 = F6 (3.14)
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Equations 3.9 through 3.14 are equivalent to the matrix form


k(1)c2�1 k(1)s�1c�1 0 0 −k(1)c2�1 −k(1)s�1c�1

k(1)s�1c�1 k(1)s2�1 0 0 −k(1)s�1c�1 −k(1)s2�1

0 0 k(2)c2�2 k(2)s�2c�2 −k(2)c2�2 −k(2)s�2c�2

0 0 k(2)s�2c�2 k(2)s2�2 −k(2)s�2c�2 −k(2)s2�2

−k(1)c2�12 −k1s�1c�1 −k(2)c2�2 −k(2)s�2c�2
k(1)c2�1+

k(2)c2�2

k(1)s�1c�1+
k(2)s�2c�2

−k1s�1c�1 −k(1)s2�1 −k(2)s�2c�2 −k(2)s2�2
k(1)s�1c�1+

k(2)s�2c�2

k(1)s2�1+
k(2)s2�2







U1

U2

U3

U4

U5

U6




=




F1

F2

F3

F4

F5

F6




(3.15)

The six algebraic equations represented by matrix Equation 3.15 express the
complete set of equilibrium conditions for the two-element truss. Equation 3.15
is of the form

[K ]{U } = {F } (3.16)

where [K ] is the global stiffness matrix, {U } is the vector of nodal displace-
ments, and {F } is the vector of applied nodal forces. We observe that the global
stiffness matrix is a 6 × 6 symmetric matrix corresponding to six possible global
displacements. Application of boundary conditions and solution of the equations
are deferred at this time, pending further discussion.

3.3 ELEMENT TRANSFORMATION
Formulation of global finite element equations by direct application of equilib-
rium conditions, as in the previous section, proves to be quite cumbersome ex-
cept for the very simplest of models. By writing the nodal equilibrium equations
in the global coordinate system and introducing the displacement formulation,
the procedure of the previous section implicitly transformed the individual ele-
ment characteristics (the stiffness matrix) to the global system. A direct method
for transforming the stiffness characteristics on an element-by-element basis
is now developed in preparation for use in the direct assembly procedure of the
following section.

Recalling the bar element equations expressed in the element frame as

AE

L

[
1 −1

−1 1

]{
u (e)

1

u (e)
2

}
=

[
ke −ke

−ke ke

]{
u (e)

1

u (e)
2

}
=

{
f (e)

1

f (e)
2

}
(3.17)

the present objective is to transform these equilibrium equations into the global
coordinate system in the form

[
K (e)]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=




F (e)
1

F (e)
2

F (e)
3

F (e)
4




(3.18)
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In Equation 3.18, [K (e)] represents the element stiffness matrix in the global co-
ordinate system, the vector {F (e)} on the right-hand side contains the element
nodal force components in the global frame, displacements U (e)

1 and U (e)
3 are

parallel to the global X axis, while U (e)
2 and U (e)

4 are parallel to the global Y axis.
The relation between the element axial displacements in the element coordinate
system and the element displacements in global coordinates (Equation 3.4) is

u (e)
1 = U (e)

1 cos � + U (e)
2 sin � (3.19)

u (e)
2 = U (e)

3 cos � + U (e)
4 sin � (3.20)

which can be written in matrix form as

{
u(e)

1

u(e)
2

}
=

[
cos � sin � 0 0

0 0 cos � sin �

]



U (e)
1

U (e)
2

U (e)
3

U (e)
4




= [R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




(3.21)

where

[R] =
[

cos � sin � 0 0
0 0 cos � sin �

]
(3.22)

is the transformation matrix of element axial displacements to global displace-
ments. (Again note that the element nodal displacements in the direction perpen-
dicular to the element axis, v1 and v2, are not considered in the stiffness matrix
development; these displacements come into play in dynamic analyses in
Chapter 10.) Substituting Equation 3.22 into Equation 3.17 yields

[
ke −ke

−ke ke

][
cos � sin � 0 0

0 0 cos � sin �

]



U (e)
1

U (e)
2

U (e)
3

U (e)
4




=
{

f (e)
1

f (e)
2

}
(3.23)

or

[
ke −ke

−ke ke

]
[R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=
{

f (e)
1

f (e)
2

}
(3.24)

While we have transformed the equilibrium equations from element displace-
ments to global displacements as the unknowns, the equations are still expressed
in the element coordinate system. The first of Equation 3.23 is the equilibrium
condition for element node 1 in the element coordinate system. If we multiply
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this equation by cos �, we obtain the equilibrium equation for the node in the
X direction of the global coordinate system. Similarly, multiplying by sin � , the
Y direction global equilibrium equation is obtained. Exactly the same procedure
with the second equation expresses equilibrium of element node 2 in the global
coordinate system. The same desired operations described are obtained if we
premultiply both sides of Equation 3.24 by [R]T , the transpose of the transfor-
mation matrix; that is,

[R]T

[
ke −ke

−ke ke

]
[R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=




cos � 0
sin � 0

0 cos �
0 sin �




{
f (e)

1

f (e)
2

}
=




f (e)
1 cos �

f (e)
1 sin �

f (e)
2 cos �

f (e)
2 sin �




(3.25)

Clearly, the right-hand side of Equation 3.25 represents the components of the
element forces in the global coordinate system, so we now have

[R]T

[
ke −ke

−ke ke

]
[R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=




F (e)
1

F (e)
2

F (e)
3

F (e)
4




(3.26)

Matrix Equation 3.26 represents the equilibrium equations for element nodes 1
and 2, expressed in the global coordinate system. Comparing this result with
Equation 3.18, the element stiffness matrix in the global coordinate frame is seen
to be given by

[
K (e)

] = [R]T

[
ke −ke

−ke ke

]
[R] (3.27)

Introducing the notation c = cos � , s = sin � and performing the matrix multi-
plications on the right-hand side of Equation 3.27 results in

[
K (e)] = ke




c2 sc −c2 −sc

sc s2 −sc −s2

−c2 −sc c2 sc

−sc −s2 sc s2


 (3.28)

where ke = AE/L is the characteristic axial stiffness of the element. 
Examination of Equation 3.28 shows that the symmetry of the element stiff-

ness matrix is preserved in the transformation to global coordinates. In addition,
although not obvious by inspection, it can be shown that the determinant is zero,
indicating that, after transformation, the stiffness matrix remains singular. This is
to be expected, since as previously discussed, rigid body motion of the element
is possible in the absence of specified constraints.
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3.3.1 Direction Cosines

In practice, a finite element model is constructed by defining nodes at specified
coordinate locations followed by definition of elements by specification of the
nodes connected by each element. For the case at hand, nodes i and j are defined
in global coordinates by (Xi, Yi) and (Xj, Yj). Using the nodal coordinates, element
length is readily computed as

L = [( X j − Xi )
2 + (Yj − Yi )

2]1/2 (3.29)

and the unit vector directed from node i to node j is

� = 1

L
[( X j − Xi )I + (Yj − Yi )J] = cos �X I + cos �Y J (3.30)

where I and J are unit vectors in global coordinate directions X and Y, respec-
tively. Recalling the definition of the scalar product of two vectors and referring
again to Figure 3.4, the trigonometric values required to construct the element
transformation matrix are also readily determined from the nodal coordinates as
the direction cosines in Equation 3.30

cos � = cos �X = � · I = X j − Xi

L
(3.31)

sin � = cos �Y = � · J = Yj − Yi

L
(3.32)

Thus, the element stiffness matrix of a bar element in global coordinates can
be completely determined by specification of the nodal coordinates, the cross-
sectional area of the element, and the modulus of elasticity of the element material.

3.4 DIRECT ASSEMBLY OF GLOBAL
STIFFNESS MATRIX

Having addressed the procedure of transforming the element characteristics of
the one-dimensional bar element into the global coordinate system of a two-
dimensional structure, we now address a method of obtaining the global equilib-
rium equations via an element-by-element assembly procedure. The technique of
directly assembling the global stiffness matrix for a finite element model of a
truss is discussed in terms of the simple two-element system depicted in Fig-
ure 3.2. Assuming the geometry and material properties to be completely speci-
fied, the element stiffness matrix in the global frame can be formulated for each
element using Equation 3.28 to obtain

[
K (1)] =




k(1)
11 k(1)

12 k(1)
13 k(1)

14

k(1)
21 k(1)

22 k(1)
23 k(1)

24

k(1)
31 k(1)

32 k(1)
33 k(1)

34

k(1)
41 k(1)

42 k(1)
43 k(1)

44


 (3.33)
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for element 1 and 

[
K (2)] =




k(2)
11 k(2)

12 k(2)
13 k(2)

14

k(2)
21 k(2)

22 k(2)
23 k(2)

24

k(2)
31 k(2)

32 k(2)
33 k(2)

34

k(2)
41 k(2)

42 k(2)
43 k(2)

44




(3.34)

for element 2. The stiffness matrices given by Equations 3.33 and 3.34 contain
32 terms, which together will form the 6 × 6 system matrix containing 36 terms.
To “assemble” the individual element stiffness matrices into the global stiffness
matrix, it is necessary to observe the correspondence of individual element dis-
placements to global displacements and allocate the associated element stiffness
terms to the correct location in the global matrix. For element 1 of Figure 3.2, the
element displacements correspond to global displacements per

{
U (1)} =




U (e)
1

U (e)
2

U (e)
3

U (e)
4




⇒




U1

U2

U5

U6




(3.35)

while for element 2

{
U (2)} =




U (e)
1

U (e)
2

U (e)
3

U (e)
4




⇒




U3

U4

U5

U6




(3.36)

Equations 3.35 and 3.36 are the connectivity relations for the truss and explicitly
indicate how each element is connected in the structure. For example, Equa-
tion 3.35 clearly shows that element 1 is not associated with global displacements
U3 and U4 (therefore, not connected to global node 2) and, hence, contributes no
stiffness terms affecting those displacements. This means that element 1 has no
effect on the third and fourth rows and columns of the global stiffness matrix.
Similarly, element 2 contributes nothing to the first and second rows and columns.

Rather that write individual displacement relations, it is convenient to place
all the element to global displacement data in a single table as shown in Table 3.1.

Table 3.1 Nodal Displacement Correspondence Table

Global Displacement Element 1 Displacement Element 2 Displacement

1 1 0
2 2 0
3 0 1
4 0 2
5 3 3
6 4 4
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The first column contains the entire set of global displacements in numerical
order. Each succeeding column represents an element and contains the number of
the element displacement corresponding to the global displacement in each row.
A zero entry indicates no connection, therefore no stiffness contribution. The
individual terms in the global stiffness matrix are then obtained by allocating the
element stiffness terms per the table as follows:

K11 = k (1)
11 + 0

K12 = k (1)
12 + 0

K13 = 0 + 0

K14 = 0 + 0

K15 = k (1)
13 + 0

K16 = k (1)
14 + 0

K22 = k (1)
22 + 0

K23 = 0 + 0

K24 = 0 + 0

K25 = k (1)
23 + 0

K26 = k (1)
24 + 0

K33 = 0 + k (2)
11

K34 = 0 + k (2)
12

K35 = 0 + k (2)
13

K36 = 0 + k (2)
14

K44 = 0 + k (2)
22

K45 = 0 + k (2)
23

K46 = 0 + k (2)
24

K55 = k (1)
33 + k (2)

33

K56 = k (1)
34 + k (2)

34

K66 = k (1)
44 + k (2)

44

where the known symmetry of the stiffness matrix has been implicitly used to
avoid repetition. It is readily shown that the resulting global stiffness matrix is
identical in every respect to that obtained in Section 3.2 via the equilibrium
equations. This is the direct stiffness method; the global stiffness matrix is
“assembled” by direct addition of the individual element stiffness terms per the
nodal displacement correspondence table that defines element connectivity.
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For the truss shown in Figure 3.2, �1 = �/4, �2 = 0, and the element properties are such
that k1 = A1 E1/L 1 , k2 = A2 E2/L 2 . Transform the element stiffness matrix of each ele-
ment into the global reference frame and assemble the global stiffness matrix.

■ Solution
For element 1, cos �1 = sin �1 =

√
2/2 and c2�1 = s2�1 = c�1s�1 = 1

2
, so substitution

into Equation 3.33 gives

[
K (1)

] = k1

2




1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1




For element 2, cos �2 = 1, sin �2 = 0 which gives the transformed stiffness matrix as

[
K (2)

] = k2




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0




Assembling the global stiffness matrix directly using Equations 3.35 and 3.36 gives

K11 = k1/2

K12 = k1/2

K13 = 0

K14 = 0

K15 = −k1/2

K16 = −k1/2

K22 = k1/2

K23 = 0

K24 = 0

K25 = −k1/2

K26 = −k1/2

K33 = k2

K34 = 0

K35 = −k2

K36 = 0

K44 = 0

K45 = 0

K46 = 0

EXAMPLE 3.1
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K55 = k1/2 + k2

K56 = k1/2

K66 = k1/2

The complete global stiffness matrix is then

[K ] =




k1/2 k1/2 0 0 −k1/2 −k1/2

k1/2 k1/2 0 0 −k1/2 −k1/2

0 0 k2 0 −k2 0

0 0 0 0 0 0

−k1/2 −k1/2 −k2 0 k1/2 + k2 k1/2

−k1/2 −k1/2 0 0 k1/2 k1/2




The previously described embodiment of the direct stiffness method is
straightforward but cumbersome and inefficient in practice. The main problem
inherent to the method lies in the fact that each term of the global stiffness ma-
trix is computed sequentially and accomplishment of this sequential construction
requires that each element be considered at each step. A technique that is much
more efficient and well-suited to digital computer operations is now described. In
the second method, the element stiffness matrix for each element is considered in
sequence, and the element stiffness terms added to the global stiffness matrix per
the nodal connectivity table. Thus, all terms of an individual element stiffness
matrix are added to the global matrix, after which that element need not be con-
sidered further. To illustrate, we rewrite Equations 3.33 and 3.34 as

1 2 5 6

[
K (1)] =




k(1)
11 k(1)

12 k(1)
13 k(1)

14

k(1)
21 k(1)

22 k(1)
23 k(1)

24

k(1)
31 k(1)

32 k(1)
33 k(1)

34

k(1)
41 k(1)

42 k(1)
43 k(1)

44




1

2

5

6

(3.37)

3 4 5 6

[
K (2)] =




k(2)
11 k(2)

12 k(2)
13 k(2)

14

k(2)
21 k(2)

22 k(2)
23 k(2)

24

k(2)
31 k(2)

32 k(2)
33 k(2)

34

k(2)
41 k(2)

42 k(2)
43 k(2)

44




3

4

5

6

(3.38)

In this depiction of the stiffness matrices for the two individual elements, the
numbers to the right of each row and above each column indicate the global
displacement associated with the corresponding row and column of the element
stiffness matrix. Thus, we combine the nodal displacement correspondence table
with the individual element stiffness matrices. For the element matrices, each
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individual component is now labeled as associated with a specific row-column
position of the global stiffness matrix and can be added directly to that location.
For example, Equation 3.38 shows that the k (2)

24 component of element 2 is to be
added to global stiffness component K46 (and via symmetry K64). Thus, we can
take each element in turn and add the individual components of the element stiff-
ness matrix to the proper locations in the global stiffness matrix.

The form of Equations 3.37 and 3.38 is convenient for illustrative purposes
only. For actual computations, inclusion of the global displacement numbers
within the element stiffness matrix is unwieldy. A streamlined technique suitable
for computer application is described next. For a 2-D truss modeled by spar
elements, the following conventions are adopted:

1. The global nodes at which each element is connected are denoted by i and j.
2. The origin of the element coordinate system is located at node i and the

element x axis has a positive sense in the direction from node i to node j.
3. The global displacements at element nodes are U2i−1, U2i, U2j−1, and U2j

as noted in Section 3.2.

Using these conventions, all the information required to define element con-
nectivity and assemble the global stiffness matrix is embodied in an element-
node connectivity table, which lists element numbers in sequence and shows the
global node numbers i and j to which each element is connected. For the two-
element truss of Figure 3.2, the required data are as shown in Table 3.2.

Using the nodal data of Table 3.2, we define, for each element, a 1 × 4 ele-
ment displacement location vector as[

L (e)
] = [2i − 1 2i 2 j − 1 2 j ] (3.39)

where each value is the global displacement number corresponding to element
stiffness matrix rows and columns 1, 2, 3, 4 respectively. For the truss of Fig-
ure 3.2, the element displacement location vectors are [

L (1)
] = [1 2 5 6] (3.40)[

L (2)
] = [3 4 5 6] (3.41)

Before proceeding, let us note the quantity of information that can be
obtained from simple-looking Table 3.2. With the geometry of the structure
defined, the (X, Y) global coordinates of each node are specified. Using these
data, the length of each element and the direction cosines of element orientation

Table 3.2 Element-Node Connectivity Table
for Figure 3.2

Node

Element i j

1 1 3
2 2 3
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are computed via Equations 3.29 and 3.30, respectively. Specification of the
cross-sectional area A and modulus of elasticity E of each element allows com-
putation of the element stiffness matrix in the global frame using Equation 3.28.
Finally, the element stiffness matrix terms are added to the global stiffness matrix
using the element displacement location vector.

In the context of the current example, the reader is to imagine a 6 × 6 array
of mailboxes representing the global stiffness matrix, each of which is originally
empty (i.e., the stiffness coefficient is zero). We then consider the stiffness ma-
trix of an individual element in the (2-D) global reference frame. Per the location
vector (addresses) for the element, the individual values of the element stiffness
matrix are placed in the appropriate mailbox. In this fashion, each element is
processed in sequence and its stiffness characteristics added to the global matrix.
After all elements are processed, the array of mailboxes contains the global stiff-
ness matrix.

3.5 BOUNDARY CONDITIONS,
CONSTRAINT FORCES

Having obtained the global stiffness matrix via either the equilibrium equations
or direct assembly, the system displacement equations for the example truss of
Figure 3.2 are of the form

[K ]




U1

U2

U3

U4

U5

U6




=




F1

F2

F3

F4

F5

F6




(3.42)

As noted, the global stiffness matrix is a singular matrix; therefore, a unique so-
lution to Equation 3.42 cannot be obtained directly. However, in developing
these equations, we have not yet taken into account the constraints imposed on
system displacements by the support conditions that must exist to preclude rigid
body motion. In this example, we observe the displacement boundary conditions

U1 = U2 = U3 = U4 = 0 (3.43)

leaving only U5 and U6 to be determined. Substituting the boundary condition
values and expanding Equation 3.42 we have, formally,

K15U5 + K16U6 = F1

K25U5 + K26U6 = F2

K35U5 + K36U6 = F3

K45U5 + K46U6 = F4

K55U5 + K56U6 = F5

K56U5 + K66U6 = F6

(3.44)
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as the reduced system equations (this is the partitioned set of matrix equations,
written explicitly for the active displacements). In this example, F1, F2, F3, and
F4 are the components of the reaction forces at constrained nodes 1 and 2, while
F5 and F6 are global components of applied external force at node 3. Given the
external force components, the last two of Equations 3.44 can be explicitly solved
for displacements U5 and U6. The values obtained for these two displacements
are then substituted into the constraint equations (the first four of Equations 3.44)
and the reaction force components computed.

A more general approach to application of boundary conditions and compu-
tation of reactions is as follows. Letting the subscript c denote constrained
displacements and subscript a denote unconstrained (active) displacements, the
system equations can be partitioned (Appendix A) to obtain

[
Kcc Kca

Kac Kaa

]{
Uc

Ua

}
=

{
Fc

Fa

}
(3.45)

where the values of the constrained displacements Uc are known (but not neces-
sarily zero), as are the applied external forces Fa. Thus, the unknown, active
displacements are obtained via the lower partition as

[Kac]{Uc} + [Kaa]{Ua} = {Fa} (3.46a)

{Ua} = [Kaa]−1({Fa} − [Kac]{Uc}) (3.46b)

where we have assumed that the specified displacements {Uc} are not necessar-
ily zero, although that is usually the case in a truss structure. (Again, note that, for
numerical efficiency, methods other than matrix inversion are applied to obtain
the solutions formally represented by Equations 3.46.) Given the displacement
solution of Equations 3.46, the reactions are obtained using the upper partition of
matrix Equation 3.45 as

{Fc} = [Kcc]{Uc} + [Kca]{Ua} (3.47)

where [Kca] = [Kac]T by the symmetry property of the stiffness matrix.

3.6 ELEMENT STRAIN AND STRESS
The final computational step in finite element analysis of a truss structure is to
utilize the global displacements obtained in the solution step to determine the
strain and stress in each element of the truss. For an element connecting nodes i
and j, the element nodal displacements in the element coordinate system are
given by Equations 3.19 and 3.20 as

u (e)
1 = U (e)

1 cos � + U (e)
2 sin �

u (e)
2 = U (e)

3 cos � + U (e)
4 sin �

(3.48)
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and the element axial strain (utilizing Equation 2.29 and the discretization and
interpolation functions of Equation 2.25) is then

ε(e) = du (e)(x )

dx
= d(e)

dx
[N1(x ) N2(x )]

{
u (e)

1

u (e)
2

}

=
[ −1

L (e)

1

L (e)

] {
u (e)

1

u (e)
2

}
= u (e)

2 − u (e)
1

L (e)
(3.49)

where L (e) is element length. The element axial stress is then obtained via appli-
cation of Hooke’s law as

� (e) = Eε(e) (3.50)

Note, however, that the global solution does not give the element axial displace-
ment directly. Rather, the element displacements are obtained from the global
displacements via Equations 3.48. Recalling Equations 3.21 and 3.22, the ele-
ment strain in terms of global system displacements is

ε(e) = du(e)(x)

dx
= d

dx
[N1(x) N2(x)][R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




(3.51)

where [R] is the element transformation matrix defined by Equation 3.22. The
element stresses for the bar element in terms of global displacements are those
given by

�(e) = Eε(e) = E
du(e)(x)

dx
= E

d(e)

dx
[N1(x) N2(x)][R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




(3.52)

As the bar element is formulated here, a positive axial stress value indicates that
the element is in tension and a negative value indicates compression per the usual
convention. Note that the stress calculation indicated in Equation 3.52 must be
performed on an element-by-element basis. If desired, the element forces can be
obtained via Equation 3.23.

The two-element truss in Figure 3.5 is subjected to external loading as shown. Using the
same node and element numbering as in Figure 3.2, determine the displacement com-
ponents of node 3, the reaction force components at nodes 1 and 2, and the element
displacements, stresses, and forces. The elements have modulus of elasticity E1 = E2 =
10 × 106 lb/in.2 and cross-sectional areas A1 = A2 = 1.5 in.2.

EXAMPLE 3.2
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2

1

2

1

3

(0, 40)

(0, 0)

(40, 40)

500 lb

300 lb

Figure 3.5 Two-element truss with
external loading.

■ Solution
The nodal coordinates are such that �1 = �/4 and �2 = 0 and the element lengths are
L 1 = √

402 + 402 ≈ 56.57 in., L2 = 40 in. The characteristic element stiffnesses are then

k1 = A1 E1

L 1
= 1.5(10)(106)

56.57
= 2.65(105) lb/in.

k2 = A2 E2

L 2
= 1.5(10)(106)

40
= 3.75(105) lb/in.

As the element orientation angles and numbering scheme are the same as in Example 3.1,
we use the result of that example to write the global stiffness matrix as

[K ] =




1.325 1.325 0 0 −1.325 −1.325
1.325 1.325 0 0 −1.325 −1.325

0 0 3.75 0 −3.75 0
0 0 0 0 0 0

−1.325 −1.325 −3.75 0 5.075 1.325
−1.325 −1.325 0 0 1.325 1.325




105 lb/in.

Incorporating the displacement constraints U1 = U2 = U3 = U4 = 0 , the global equilib-
rium equations are

105




1.325 1.325 0 0 −1.325 −1.325
1.325 1.325 0 0 −1.325 −1.325

0 0 3.75 0 −3.75 0
0 0 0 0 0 0

−1.325 −1.325 −3.75 0 5.075 1.325
−1.325 −1.325 0 0 1.325 1.325


��������������������

�
�
�
�
�
�
�




0
0
0
0

U5

U6


�

=




F1

F2

F3

F4

500
300


��
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and the dashed lines indicate the partitioning technique of Equation 3.45. Hence, the
active displacements are governed by

105

[
5.075 1.325
1.325 1.325

]{
U5

U6

}
=

{
500
300

}

Simultaneous solution gives the displacements as

U5 = 5.333 × 10−4 in. and U6 = 1.731 × 10−3 in.

As all the constrained displacement values are zero, the reaction forces are obtained via
Equation 3.47 as




F1

F2

F3

F4




= {Fc} = [Kca ]{Ua } = 105




−1.325 −1.325
−1.325 −1.325
−3.75 0

0 0




{
0.5333
1.731

}
10−3 =




−300
−300
−200

0




lb

and we note that the net force on the structure is zero, as required for equilibrium. A check
of moments about any of the three nodes also shows that moment equilibrium is satisfied.

For element 1, the element displacements in the element coordinate system are

{
u(1)

1

u(1)
2

}
= [

R(1)
]



U1

U2

U5

U6




=
√

2

2

[
1 1 0 0
0 0 1 1

]



0
0

0.5333
1.731




10−3 =
{

0
1.6

}
10−3 in.

Element stress is computed using Equation 3.52:

�(1) = E1

[
− 1

L1

1

L1

][
R(1)]




U1

U2

U5

U6




Using the element displacements just computed, we have

� (1) = 10(106)

[
− 1

56.57

1

56.57

]{
0

1.6

}
10−3 ≈ 283 lb/in. 2

and the positive results indicate tensile stress.
The element nodal forces via Equation 3.23 are{

f (1)
1

f (1)
2

}
=

[
k1 −k1

−k1 k1

]{
u (1)

1

u (1)
2

}
= 2.65(105)

[
1 −1

−1 1

]{
0

1.6

}
10−3

=
{ −424

424

}
lb

and the algebraic signs of the element nodal forces also indicate tension.
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For element 2, the same procedure in sequence gives

{
u(2)

1

u(2)
2

}
= [

R(2)
]



U1

U2

U5

U6




=
[

1 0 0 0
0 0 1 0

]



0
0

0.5333
1.731




10−3 =
{

0
0.5333

}
10−4 in.

�(2) = 10(106)

[
− 1

40

1

40

]{
0

0.5333

}
10−3 ≈ 133 lb/in.2

{
f (2)

1

f (2)
2

}
=

[
k2 −k2

−k2 k2

]{
u(2)

1

u(2)
2

}
= 3.75(105)

[
1 −1

−1 1

]{
0

0.5333

}
10−3 =

{−200
200

}
lb

also indicating tension.
The finite method is intended to be a general purpose procedure for analyzing prob-

lems for which the general solution is not known; however, it is informative in the exam-
ples of this chapter (since the bar element poses an exact formulation) to check the
solutions in terms of axial stress computed simply as F/A for an axially loaded member.
The reader is encouraged to compute the axial stress by the simple stress formula for each
example to verify that the solutions via the stiffness-based finite element method are
correct.

3.7 COMPREHENSIVE EXAMPLE
As a comprehensive example of two-dimensional truss analysis, the structure de-
picted in Figure 3.6a is analyzed to obtain displacements, reaction forces, strains,
and stresses. While we do not include all computational details, the example
illustrates the required steps, in sequence, for a finite element analysis.

(a)

6000 lb

40 in. 40 in.

40 in.

4000 lb

2000 lb

2000 lb

Figure 3.6
(a) For each element, A = 1.5 in.2, E = 10 × 106 psi. (b) Node, element, and global displacement notation.

(b)

U7

642

73

51

U6

U8

4

Y

2

U4

U3

U12

U11

U10

U9 X

8

6

53 U51

U2

U1
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Step 1. Specify the global coordinate system, assign node numbers, and
define element connectivity, as shown in Figure 3.6b.

Step 2. Compute individual element stiffness values:

k (1) = k (3) = k (4) = k (5) = k (7) = k (8) = 1.5(107)

40
= 3.75(105) lb/in.

k (2) = k (6) = 1.5(107)

40
√

2
= 2.65(105) lb/in.

Step 3. Transform element stiffness matrices into the global coordinate
system. Utilizing Equation 3.28 with

�1 = �3 = �5 = �7 = 0 �4 = �8 = �/2 �2 = �/4 �6 = 3�/4

we obtain

[
K (1)] = [

K (3)] = [
K (5)] = [

K (7)] = 3.75(105)




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0




[
K (4)] = [

K (8)] = 3.75(105)




0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




[
K (2)] = 2.65(105)

2




1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1




[
K (6)] = 2.65(105)

2




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1




Step 4a. Construct the element-to-global displacement correspondence table.
With reference to Figure 3.6c, the connectivity and displacement
relations are shown in Table 3.3.

Step 4b. Alternatively and more efficiently, form the element-node
connectivity table (Table 3.4), and the corresponding element global
displacement location vector for each element is

L (1) = [1 2 5 6]

L (2) = [1 2 7 8]

L (3) = [3 4 7 8]

L (4) = [5 6 7 8]
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Table 3.3 Connectivity and Displacement Relations

Global Elem. 1 Elem. 2 Elem. 3 Elem. 4 Elem. 5 Elem. 6 Elem. 7 Elem. 8

1 1 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 2 0 0 0 0 0
5 3 0 0 1 1 0 0 0
6 4 0 0 2 2 0 0 0
7 0 3 3 3 0 3 1 0
8 0 4 4 4 0 4 2 0
9 0 0 0 0 3 1 0 1

10 0 0 0 0 4 2 0 2
11 0 0 0 0 0 0 3 3
12 0 0 0 0 0 0 4 4

Table 3.4 Element-Node Connectivity

Node

Element i j

1 1 3
2 1 4
3 2 4
4 3 4
5 3 5
6 5 4
7 4 6
8 5 6

L (5) = [5 6 9 10]

L (6) = [9 10 7 8]

L (7) = [7 8 11 12]

L (8) = [9 10 11 12]

Step 5. Assemble the global stiffness matrix per either Step 4a or 4b. The
resulting components of the global stiffness matrix are 

K11 = k (1)
11 + k (2)

11 = (3.75 + 2.65/2)105

K12 = k (1)
12 + k (2)

12 = (0 + 2.65/2)105

K13 = K14 = 0

K15 = k (1)
13 = −3.75(105)

K16 = k (1)
14 = 0

K17 = k (2)
13 = −(2.65/2)105
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K18 = k (2)
14 = −(2.65/2)105

K19 = K1,10 = K1,11 = K1,12 = 0

K22 = k (1)
22 + k (2)

22 = 0 + (2.65/2)105

K23 = K24 = 0

K25 = k (1)
23 = 0

K26 = k (1)
24 = 0

K27 = k (2)
23 = −(2.65/2)105

K28 = k (2)
24 = −(2.65/2)105

K29 = K2,10 = K2,11 = K2,12 = 0

K33 = k (3)
11 = 3.75(105)

K34 = k (3)
12 = 0

K35 = K36 = 0

K37 = k (3)
13 = −3.75(105)

K38 = k (3)
14 = 0

K39 = K3,10 = K3,11 = K3,12 = 0

K44 = k (3)
22 = 0

K45 = K46 = 0

K47 = k (3)
23 = 0

K48 = k (3)
24 = 0

K49 = K4,10 = K4,11 = K4,12 = 0

K55 = k (1)
33 + k (4)

11 + k (5)
11 = (3.75 + 0 + 3.75)105

K56 = k (1)
34 + k (4)

12 + k (5)
12 = 0 + 0 + 0 = 0

K57 = k (4)
13 = 0

K58 = k (4)
14 = 0

K59 = k (5)
13 = −3.75(105)

K5,10 = k (5)
14 = 0

K5,11 = K5,12 = 0

K66 = k (2)
44 + k (4)

22 + k (5)
22 = (0 + 3.75 + 0)105

K67 = k (4)
23 = 0

K68 = k (4)
24 = −3.75(10)5
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K69 = k (5)
23 = 0

K6,10 = k (5)
24 = 0

K6,11 = K6,12 = 0

K77 = k (2)
33 + k (3)

33 + k (4)
33 + k (6)

33 + k (7)
11

= (2.65/2 + 3.75 + 0 + 2.65/2 + 3.75)105

K78 = k (2)
34 + k (3)

34 + k (4)
34 + k (6)

34 + k (7)
12

= (2.65/2 + 0 + 0 − 2.65/2 + 0)105 = 0

K79 = k (6)
13 = −(2.65/2)105

K7,10 = k (6)
23 = (2.65/2)105

K7,11 = k (7)
13 = −3.75(105)

K7,12 = k (7)
14 = 0

K88 = k (2)
44 + k (3)

44 + k (4)
44 + k (6)

44 + k (7)
22

= (2.65/2 + 0 + 3.75 + 2.65/2 + 0)105

K89 = k (6)
14 = (2.65/2)105

K8,10 = k (6)
24 = −(2.65/2)105

K8,11 = k (7)
23 = 0

K8,12 = k (7)
24 = 0

K99 = k (5)
33 + k (6)

11 + k (8)
11 = (3.75 + 2.65/2 + 0)105

K9,10 = k (5)
34 + k (6)

12 + k (8)
12 = (0 − 2.65/2 + 0)105

K9,11 = k (8)
13 = 0

K9,12 = k (8)
14 = 0

K10,10 = k (5)
44 + k (6)

22 + k (8)
22 = (0 + 2.65/2 + 3.75)105

K10,11 = k (8)
23 = 0

K10,12 = k (8)
24 = −3.75(105)

K11,11 = k (7)
33 + k (8)

33 = (3.75 + 0)105

K11,12 = k (7)
34 + k (8)

34 = 0 + 0

K12,12 = k (7)
44 + k (8)

44 = (0 + 3.75)105

Step 6. Apply the constraints as dictated by the boundary conditions. In this
example, nodes 1 and 2 are fixed so the displacement constraints are

U1 = U2 = U3 = U4 = 0
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Therefore, the first four equations in the 12 × 12 matrix system

[K ] {U } = {F }
are constraint equations and can be removed from consideration since
the applied displacements are all zero (if not zero, the constraints are
considered as in Equation 3.46, in which case the nonzero constraints
impose additional forces on the unconstrained displacements). The
constraint forces cannot be obtained until the unconstrained
displacements are computed. So, we effectively strike out the
first four rows and columns of the global equations to obtain 

[Kaa]




U5

U6

U7

U8

U9

U10

U11

U12




=




0
−2000

0
0

2000
0

4000
6000




as the system of equations governing the “active” displacements.
Step 7. Solve the equations corresponding to the unconstrained

displacements. For the current example, the equations are solved
using a spreadsheet program, inverting the (relatively small) global
stiffness matrix to obtain



U5

U6

U7

U8

U9

U10

U11

U12




=




0.02133
0.04085

−0.01600
0.04619
0.04267
0.15014

−0.00533
0.16614




in.

Step 8. Back-substitute the displacement data into the constraint equations
to compute reaction forces. Utilizing Equation 3.37, with {Uc} = {0},
we use the four equations previously ignored to compute the force
components at nodes 1 and 2. The constraint equations are of the form

Ki5U5 + Ki6U6 + · · · + Ki,12U12 = Fi i = 1, 4

and, on substitution of the computed displacements, yield



F1

F2

F3

F4


 =




−12,000
−4,000
6,000

0


 lb
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The reader is urged to utilize these reaction force components and
check the equilibrium conditions of the structure.

Step 9. Compute strain and stress in each element. The major computational
task completed in Step 7 provides the displacement components of
each node in the global coordinate system. With this information and
the known constrained displacements, the displacements of each
element in its element coordinate system can be obtained; hence, the
strain and stress in each element can be computed.

For element 2, for example, we have

u (2)
1 = U1 cos �2 + U2 sin �2 = 0

u (2)
2 = U7 cos �2 + U8 sin �2 = (−0.01600 + 0.04618)

√
2/2

= 0.02134

The axial strain in element 2 is then

ε(2) = u (2)
2 − u (2)

1

L (2)
= 0.02133

40
√

2
= 3.771(10−4)

and corresponding axial stress is

� (2) = Eε(2) = 3771 psi

The results for element 2 are presented as an example only. In finite
element software, the results for each element are available and
can be examined as desired by the user of the software
(postprocessing).

Results for each of the eight elements are shown in Table 3.5; and
per the usual sign convention, positive values indicate tensile stress
while negative values correspond to compressive stress. In obtaining
the computed results for this example, we used a spreadsheet program
to invert the stiffness matrix, MATLAB to solve via matrix inversion,
and a popular finite element software package. The solutions resulting
from each procedure are identical.

Table 3.5 Results for the Eight Elements

Element Strain Stress, psi

1 5.33(10−4) 5333
2 3.77(10−4) 3771
3 −4.0(10−4) −4000
4 1.33(10−4) 1333
5 5.33(10−4) 5333
6 −5.67(10−4) −5657
7 2.67(10−4) 2667
8 4.00(10−4) 4000
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3.8 THREE-DIMENSIONAL TRUSSES
Three-dimensional (3-D) trusses can also be modeled using the bar element,
provided the connections between elements are such that only axial load is trans-
mitted. Strictly, this requires that all connections be ball-and-socket joints. Even
when the connection restriction is not precisely satisfied, analysis of a 3-D truss
using bar elements is often of value in obtaining preliminary estimates of mem-
ber stresses, which in context of design, is valuable in determining required
structural properties. Referring to Figure 3.7 which depicts a one-dimensional
bar element connected to nodes i and j in a 3-D global reference frame, the unit
vector along the element axis (i.e., the element reference frame) expressed in the
global system is

�(e) = 1

L
[( X j − Xi )I + (Yj − Yi )J + ( Z j − Zi )K] (3.53)

or

�(e) = cos �x I + cos �yJ + cos �zK (3.54)

Thus, the element displacements are expressed in components in the 3-D global
system as

u (e)
1 = U (e)

1 cos �x + U (e)
2 cos �y + U (e)

3 cos �z (3.55)

u (e)
2 = U (e)

4 cos �x + U (e)
5 cos �y + U (e)

6 cos �z (3.56)

Here, we use the notation that element displacements 1 and 4 are in the global X
direction, displacements 2 and 5 are in the global Y direction, and element
displacements 3 and 6 are in the global Z direction.

U3j�1

U3i�1

Y

X

Z

�(e)

U3j�2

U3i�2

U3j

U3i

j

i

�Y

�X

�Z

Figure 3.7 Bar element in a 3-D global coordinate
system.



Hutton: Fundamentals of 
Finite Element Analysis

3. Truss Structures: The 
Direct Stiffness Method

Text © The McGraw−Hill 
Companies, 2004

80 CHAPTER 3 Truss Structures: The Direct Stiffness Method

Analogous to Equation 3.21, Equations 3.55 and 3.56 can be expressed as

{
u(e)

1

u(e)
2

}
=

[
cos �x cos �y cos �z 0 0 0

0 0 0 cos �x cos �y cos �z

]




U (e)
1

U (e)
2

U (e)
3

U (e)
4

U (e)
5

U (e)
6




= [R]
{
U (e)} (3.57)

where [R] is the transformation matrix mapping the one-dimensional element
displacements into a three-dimensional global coordinate system. Following the
identical procedure used for the 2-D case in Section 3.3, the element stiffness
matrix in the element coordinate system is transformed into the 3-D global co-
ordinates via

[
K (e)

] = [R]T

[
ke −ke

−ke ke

]
[R] (3.58)

Substituting for the transformation matrix [R] and performing the multiplication
results in

[
K (e)] = ke




c2
x cx cy cx cz −c2

x −cx cy −cx cz

cx cy c2
y cycz −cx cx −c2

y −cycz

cx cz cycz c2
z −cx cz −cycz −c2

z

−c2
x −cx cx −cx cz c2

x cx cy cx cz

−cx cy −c2
y −cycz cx cy c2

y cycz

−cx cz −cycz −c2
z cx cz cycz c2

z




(3.59)

as the 3-D global stiffness matrix for the one-dimensional bar element where 

cx = cos �x

cy = cos �y

cz = cos �z

(3.60)

Assembly of the global stiffness matrix (hence, the equilibrium equations),
is identical to the procedure discussed for the two-dimensional case with the ob-
vious exception that three displacements are to be accounted for at each node.

The three-member truss shown in Figure 3.8a is connected by ball-and-socket joints and
fixed at nodes 1, 2, and 3. A 5000-lb force is applied at node 4 in the negative Y direction,
as shown. Each of the three members is identical and exhibits a characteristic axial stiff-
ness of 3(105) lb/in. Compute the displacement components of node 4 using a finite
element model with bar elements.

EXAMPLE 3.3
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■ Solution
First, note that the 3-D truss with four nodes has 12 possible displacements. However,
since nodes 1–3 are fixed, nine of the possible displacements are known to be zero. There-
fore, we need assemble only a portion of the system stiffness matrix to solve for the three
unknown displacements. Utilizing the numbering scheme shown in Figure 3.8b and the
element-to-global displacement correspondence table (Table 3.6), we need consider only
the equations


 K10,10 K10,11 K10,12

K11,10 K11,11 K11,12

K12,10 K12,11 K12,12







U10

U11

U12


 =




0
−5000

0




Prior to assembling the terms required in the system stiffness matrix, the individual
element stiffness matrices must be transformed to the global coordinates as follows.

Element 1

�(1) = 1

50
[(40 − 0)I + (0 − 0)J + (0 − 30)K] = 0.8I − 0.6K

Hence, cx = 0.8, cy = 0, cz = −0.6, and Equation 3.59 gives

[
K (1)

] = 3(105)




0.64 0 −0.48 −0.64 0 0.48
0 0 0 0 0 0

−0.48 0 0.36 0.48 0 −0.36
−0.64 0 0.48 0.64 0 −0.48

0 0 0 0 0 0
0.48 −0 −0.36 −0.48 0 0.36




lb/ln.

(a)

(0, 0, �30)

(40, 0, 0)

Y

XZ

(0, 0, 30)

5000 lb
(0, �30, 0)

2

3

1

4

Figure 3.8
(a) A three-element, 3-D truss. (b) Numbering scheme.

2

3

1 4

U5

U4
U6

U11

U10
U12

U8

U7
U9

U2

U1
U3

1

2

3

(b)
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Element 2

�(2) = 1

50
[(40 − 0)I + (0 − 0)J + (0 − (−30))K] = 0.8I + 0.6K

[
K (2)

] = 3(105)




0.64 0 0.48 −0.64 0 −0.48
0 0 0 0 0 0

0.48 0 0.36 −0.48 0 −0.36
−0.64 0 −0.48 0.64 0 0.48

0 0 0 0 0 0
−0.48 0 −0.36 0.48 0 0.36




lb/in.

Element 3

�(3) = 1

50
[(40 − 0)I + (0 − (−30))J + (0 − 0)K] = 0.8I + 0.6J

[
K (3)

] = 3(105)




0.64 0.48 0 −0.64 −0.48 0
0.48 0.36 0 −0.48 −0.36 0

0 0 0 0 0 0
−0.64 −0.48 0 0.64 0.48 0
−0.48 −0.36 0 0.48 0.36 0

0 0 0 0 0 0




lb/in.

Referring to the last three rows of the displacement correspondence table, the required
terms of the global stiffness matrix are assembled as follows:

K10,10 = k(1)
44 + k(2)

44 + k(3)
44 = 3(105)(0.64 + 0.64 + 0.64) = 5.76(105) lb/in.

K10,11 = K11,10 = k(1)
45 + k(2)

45 + k(3)
45 = 3(105)(0 + 0 + 0.48) = 1.44(105) lb/in.

K10,12 = K12,10 = k(1)
46 + k(2)

46 + k(3)
46 = 3(105)(−0.48 + 0.48 + 0) = 0 lb/in.

K11,11 = k(1)
55 + k(2)

55 + k(3)
55 = 3(105)(0 + 0 + 0.36) = 1.08(105) lb/in.

K11,12 = K12,11 = k(1)
56 + k(2)

56 + k(3)
56 = 3(105)(0 + 0 + 0) = 0 lb/in.

K12,12 = k(1)
66 + k(2)

66 + k(3)
66 = 3(105)(0.36 + 0.36 + 0) = 2.16(105) lb/in.

Table 3.6 Element-to-Global Displacement Correspondence

Global Displacement Element 1 Element 2 Element 3

1 1 0 0
2 2 0 0
3 3 0 0
4 0 1 0
5 0 2 0
6 0 3 0
7 0 0 1
8 0 0 2
9 0 0 3

10 4 4 4
11 5 5 5
12 6 6 6
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The system of equations to be solved for the displacements of node 4 are

105


 5.76 1.44 0

1.44 1.08 0
0 0 2.16







U10

U11

U12


 =




0
−5000

0




and simultaneous solution yields

U10 � 0.01736 in.

U11 � �0.06944 in.

U12 � 0

While the complete analysis is not conducted in the context of this example, the re-
action forces, element strains, and element stresses would be determined by the same pro-
cedures followed in Section 3.7 for the two-dimensional case. It must be pointed out that
the procedures required to obtain the individual element resultants are quite readily
obtained by the matrix operations described here. Once the displacements have been cal-
culated, the remaining (so-called) secondary variables (strain, stress, axial force) are
readily computed using the matrices and displacement interpolation functions developed
in the formulation of the original displacement problem.

3.9 SUMMARY
This chapter develops the complete procedure for performing a finite element analysis of
a structure and illustrates it by several examples. Although only the simple axial element
has been used, the procedure described is common to the finite element method for all
element and analysis types, as will become clear in subsequent chapters. The direct stiff-
ness method is by far the most straightforward technique for assembling the system
matrices required for finite element analysis and is also very amenable to digital computer
programming techniques.
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PROBLEMS
3.1 In the two-member truss shown in Figure 3.2, let �1 = 45◦ , �2 = 15◦ , and

F5 = 5000 lb, F6 = 3000 lb.
a. Using only static force equilibrium equations, solve for the force in each

member as well as the reaction force components. 
b. Assuming each member has axial stiffness k = 52000 lb/in., compute the

axial deflection of each member. 
c. Using the results of part b, calculate the X and Y displacements of node 3.
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3.2 Calculate the X and Y displacements of node 3 using the finite element approach
and the data given in Problem 3.1. Also calculate the force in each element. How
do your solutions compare to the results of Problem 3.1?

3.3 Verify Equation 3.28 by direct multiplication of the matrices.
3.4 Show that the transformed stiffness matrix for the bar element as given by

Equation 3.28 is singular.
3.5 Each of the bar elements depicted in Figure P3.5 has a solid circular cross-

section with diameter d = 1.5 in. The material is a low-carbon steel having
modulus of elasticity E = 30 × 106 psi. The nodal coordinates are given
in a global (X, Y ) coordinate system (in inches). Determine the element stiffness
matrix of each element in the global system.

Figure P3.5

3.6 Repeat Problem 3.5 for the bar elements in Figure P3.6. For these elements,
d = 40 mm, E = 69 GPa, and the nodal coordinates are in meters.

Figure P3.6

(b)

2

(0, 0)

(0.2, �0.2)

1

(a)

2

(0.1, 0.1)

(0.4, 0.2)
1

(e)

(0, 0)

2
(40, �10)

1

(d)

2
(�20, 30)

(10, 10)
1

(c)

2

(0, 0)

(5, 30)

1

(b)

2

(20, 10)

(30, 15)

1

(a)

1

(0, 0)

2 (30, 30)

Y

X



Hutton: Fundamentals of 
Finite Element Analysis

3. Truss Structures: The 
Direct Stiffness Method

Text © The McGraw−Hill 
Companies, 2004

Problems 85

Figure P3.6 (Continued )

3.7 For each of the truss structures shown in Figure P3.7, construct an element-
to-global displacement correspondence table in the form of Table 3.1.

Figure P3.7

(b)

10

1

2

3 5
7

64

2

3

4

8

95

6

7

1

(a)

6

2 53 97 211917151311

10 14 183

1

5 7 9 11

4 81 12 16 202 4 6 8 10

12

(e)

2
(3, 4)

(0, 0)

1

(d)

2

(0, 1.2)

(�0.5, 0)

1

(c)

2

(1, 2)

(�0.3, 3)

1
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Figure P3.7 (Continued )

3.8 For each of the trusses of Figure P3.7, express the connectivity data for each
element in the form of Equation 3.39.

3.9 For each element shown in Figure P3.9, the global displacements have been
calculated as U1 = 0.05 in., U2 = 0.02 in., U3 = 0.075 in., U4 = 0.09 in. Using
the finite element equations, calculate
a. Element axial displacements at each node.
b. Element strain.
c. Element stress.
d. Element nodal forces.
Do the calculated stress values agree with � = F/A? Let A = 0.75 in.2,
E = 10 × 106 psi, L = 40 in. for each case.

(e)

4

53
1 7

62

4
1

2 53

(d)

1

2

4 8

7

9

5

6

3

14

10

12

13 15

11
17

162

3

5

6

1

4 7

8

10

11

9

(c)

12

13

10

11

1 791

2
3

7

4

6

5 8

2

3 6

5

8

4
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Figure P3.9

3.10 The plane truss shown in Figure P3.10 is subjected to a downward vertical load
at node 2. Determine via the direct stiffness method the deflection of node 2 in
the global coordinate system specified and the axial stress in each element. For
both elements, A = 0.5 in.2, E = 30 × 106 psi.

Figure P3.10

3.11 The plane truss shown in Figure P3.11 is composed of members having a square
15 mm × 15 mm cross section and modulus of elasticity E = 69 GPa.
a. Assemble the global stiffness matrix.
b. Compute the nodal displacements in the global coordinate system for the

loads shown.
c. Compute the axial stress in each element.

Figure P3.11

3

2 4

1

3 kN

5 kN

1.5 m

1.5 m

X

1500 lb

(30, �10)

(40, 0)(0, 0)
1

2

3

Y

(c)

U2

U1

U4

U3

110�

(b)

U2

U1

U4

U3

30�

(a)

U2

U1

U4

U3

45�
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3.12 Repeat Problem 3.11 assuming elements 1 and 4 are removed.
3.13 The cantilever truss in Figure P3.13 was constructed by a builder to support a

winch and cable system (not shown) to lift and lower construction materials. The
truss members are nominal 2 × 4 southern yellow pine (actual dimensions
1.75 in. × 3.5 in.; E = 2 × 106 psi). Using the direct stiffness method, calculate
a. The global displacement components of all unconstrained nodes.
b. Axial stress in each member.
c. Reaction forces at constrained nodes.
d. Check the equilibrium conditions.

Figure P3.13

3.14 Figure P3.14 shows a two-member plane truss supported by a linearly elastic
spring. The truss members are of a solid circular cross section having d = 20 mm
and E = 80 GPa. The linear spring has stiffness constant 50 N/mm. 
a. Assemble the system global stiffness matrix and calculate the global

displacements of the unconstrained node.
b. Compute the reaction forces and check the equilibrium conditions.
c. Check the energy balance. Is the strain energy in balance with the

mechanical work of the applied force?

Figure P3.14

15 kN

4 m
k

50�

3 m

Y

X
45�

30� 30�

500 lb

3

4

5
2

1

Node

1

2

3

4

5

X

0

0

96

96

192

(inches)

Y

0

96

96

151.4

96
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3.15 Repeat Problem 3.14 if the spring is removed.
3.16 Owing to a faulty support connection, node 1 in Problem 3.13 moves 0.5 in.

horizontally to the left when the load is applied. Repeat the specified
computations for this condition. Does the solution change? Why or why not?

3.17 Given the following system of algebraic equations




10 −10 0 0
−10 20 −10 0

0 −10 20 −10
0 0 −10 10







x1

x2

x3

x4




=




F1

F2

F3

F4




and the specified conditions 

x1 = 0 x3 = 1.5 F2 = 20 F4 = 35

calculate x2 and x4. Do this by interchanging rows and columns such that x1 and
x3 correspond to the first two rows and use the partitioned matrix approach of
Equation 3.45.

3.18 Given the system




50 −50 0 0
−50 100 −50 0

0 −50 75 −25
0 0 −25 25







U1

U2

U3

U4




=




30
F2

40
40




and the specified condition U2 = 0.5, use the approach specified in Problem 3.17
to solve for U1, U3, U4, and F2.

3.19 For the truss shown in Figure P3.19, solve for the global displacement
components of node 3 and the stress in each element. The elements have cross-
sectional area A = 1.0 in.2 and modulus of elasticity 15 × 106 psi.

Figure P3.19

3.20 Each bar element shown in Figure P3.20 is part of a 3-D truss. The nodal
coordinates (in inches) are specified in a global (X, Y, Z) coordinate system.
Given A = 2 in.2 and E = 30 × 106 psi, calculate the global stiffness matrix of
each element.

72 in.
3

21

4

60�

30� 60�
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Figure P3.20

3.21 Verify Equation 3.59 via direct computation of the matrix product.
3.22 Show that the axial stress in a bar element in a 3-D truss is given by

� = E ε = E

[
dN1

dx

dN2

dx

]{
u (e)

1

u (e)
2

}
= E

[
− 1

L

1

L

]
[R]

{
U (e)

}

and note that the expression is the same as for the 2-D case.
3.23 Determine the axial stress and nodal forces for each bar element shown in

Figure P3.20, given that node 1 is fixed and node 2 has global displacements
U4 = U5 = U6 = 0.06 in.

3.24 Use Equations 3.55 and 3.56 to express strain energy of a bar element in terms of
the global displacements. Apply Castigliano’s first theorem and show that the
resulting global stiffness matrix is identical to that given by Equation 3.58.

3.25 Repeat Problem 3.24 using the principle of minimum potential energy.
3.26 Assemble the global stiffness matrix of the 3-D truss shown in Figure P3.26 and

compute the displacement components of node 4. Also, compute the stress in
each element.

Figure P3.26 Coordinates given in inches. For each
element E = 10 × 106 psi, A = 1.5 in.2.

FY � �1500 lb
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4.1 INTRODUCTION
The one-dimensional, axial load-only elements discussed in Chapters 2 and 3 are
quite useful in analyzing the response to load of many simple structures. How-
ever, the restriction that these elements are not capable of transmitting bending
effects precludes their use in modeling more commonly encountered structures
that have welded or riveted joints. In this chapter, elementary beam theory is
applied to develop a flexure (beam) element capable of properly exhibiting trans-
verse bending effects. The element is first presented as a line (one-dimensional)
element capable of bending in a plane. In the context of developing the dis-
cretized equations for this element, we present a general procedure for determin-
ing the interpolation functions using an assumed polynomial form for the field
variable. The development is then extended to two-plane bending and the effects
of axial loading and torsion are added.

4.2 ELEMENTARY BEAM THEORY
Figure 4.1a depicts a simply supported beam subjected to a general, distributed,
transverse load q (x ) assumed to be expressed in terms of force per unit length.
The coordinate system is as shown with x representing the axial coordinate and y
the transverse coordinate. The usual assumptions of elementary beam theory are
applicable here:

1. The beam is loaded only in the y direction.
2. Deflections of the beam are small in comparison to the characteristic

dimensions of the beam.
3. The material of the beam is linearly elastic, isotropic, and homogeneous.
4. The beam is prismatic and the cross section has an axis of symmetry in the

plane of bending.

C H A P T E R 4
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(a)

h

Figure 4.2 Beam cross sections:
(a) and (b) satisfy symmetry conditions
for the simple bending theory, (c) does
not satisfy the symmetry requirement.

(b) (c)

The ramifications of assumption 4 are illustrated in Figure 4.2, which de-
picts two cross sections that satisfy the assumption and one cross section that
does not. Both the rectangular and triangular cross sections are symmetric about
the xy plane and bend only in that plane. On the other hand, the L-shaped section
possesses no such symmetry and bends out of the xy plane, even under loading
only in that plane. With regard to the figure, assumption 2 can be roughly quan-
tified to mean that the maximum deflection of the beam is much less than di-
mension h. A generally applicable rule is that the maximum deflection is less
than 0.1h.

Considering a differential length dx of a beam after bending as in Figure 4.1b
(with the curvature greatly exaggerated), it is intuitive that the top surface has de-
creased in length while the bottom surface has increased in length. Hence, there
is a “layer” that must be undeformed during bending. Assuming that this layer is
located distance � from the center of curvature O and choosing this layer (which,
recall, is known as the neutral surface) to correspond to y = 0, the length after
bending at any position y is expressed as

ds = (� − y) d� (4.1)

(a)

y

x

q(x)

Figure 4.1
(a) Simply supported beam subjected to arbitrary (negative) distributed load.
(b) Deflected beam element. (c) Sign convention for shear force and bending
moment.

O

y

d�

(b)

�

�M

�V

�V
�M

(c)
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and the bending strain is then

εx = ds − dx

dx
= (� − y) d� − � d�

� d�
= − y

�
(4.2)

From basic calculus, the radius of curvature of a planar curve is given by

� =

[
1 +

(
dv

dx

)2
]3/2

d2v

dx 2

(4.3)

where v = v(x) represents the deflection curve of the neutral surface.
In keeping with small deflection theory, slopes are also small, so Equa-

tion 4.3 is approximated by

� = 1

d2v

dx 2

(4.4)

such that the normal strain in the direction of the longitudinal axis as a result of
bending is

εx = −y
d2v

dx 2
(4.5)

and the corresponding normal stress is

�x = Eεx = −E y
d2v

dx 2
(4.6)

where E is the modulus of elasticity of the beam material. Equation 4.6 shows
that, at a given cross section, the normal stress varies linearly with distance from
the neutral surface.

As no net axial force is acting on the beam cross section, the resultant force
of the stress distribution given by Equation 4.6 must be zero. Therefore, at any
axial position x along the length, we have

Fx =
∫
A

�x d A = −
∫
A

E y
d2v

dx 2
d A = 0 (4.7)

Noting that at an arbitrary cross section the curvature is constant, Equation 4.7
implies ∫

A

y d A = 0 (4.8)

which is satisfied if the xz plane (y = 0) passes through the centroid of the area.
Thus, we obtain the well-known result that the neutral surface is perpendicular to
the plane of bending and passes through the centroid of the cross-sectional area.
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Similarly, the internal bending moment at a cross section must be equivalent to
the resultant moment of the normal stress distribution, so

M (x ) = −
∫
A

y�x d A = E
d2v

dx 2

∫
A

y2 d A (4.9)

The integral term in Equation 4.9 represents the moment of inertia of the cross-
sectional area about the z axis, so the bending moment expression becomes

M (x ) = EI z
d2v

dx 2
(4.10)

Combining Equations 4.6 and 4.10, we obtain the normal stress equation for
beam bending:

�x = − M (x )y

Iz
= −yE

d2v

dx 2
(4.11)

Note that the negative sign in Equation 4.11 ensures that, when the beam is sub-
jected to positive bending moment per the convention depicted in Figure 4.1c,
compressive (negative) and tensile (positive) stress values are obtained correctly
depending on the sign of the y location value.

4.3 FLEXURE ELEMENT
Using the elementary beam theory, the 2-D beam or flexure element is now de-
veloped with the aid of the first theorem of Castigliano. The assumptions and re-
strictions underlying the development are the same as those of elementary beam
theory with the addition of

1. The element is of length L and has two nodes, one at each end.
2. The element is connected to other elements only at the nodes.
3. Element loading occurs only at the nodes.

Recalling that the basic premise of finite element formulation is to express
the continuously varying field variable in terms of a finite number of values eval-
uated at element nodes, we note that, for the flexure element, the field variable of
interest is the transverse displacement v(x) of the neutral surface away from its
straight, undeflected position. As depicted in Figure 4.3a and 4.3b, transverse de-
flection of a beam is such that the variation of deflection along the length is not
adequately described by displacement of the end points only. The end deflections
can be identical, as illustrated, while the deflected shape of the two cases is quite
different. Therefore, the flexure element formulation must take into account the
slope (rotation) of the beam as well as end-point displacement. In addition to
avoiding the potential ambiguity of displacements, inclusion of beam element
nodal rotations ensures compatibility of rotations at nodal connections between
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v1 v2

(a)

Figure 4.3
(a) and (b) Beam elements with identical end deflections but quite different
deflection characteristics. (c) Physically unacceptable discontinuity at the
connecting node.

v1 v2
v � 0

(b) (c)

elements, thus precluding the physically unacceptable discontinuity depicted in
Figure 4.3c.

In light of these observations regarding rotations, the nodal variables to be
associated with a flexure element are as depicted in Figure 4.4. Element nodes 1
and 2 are located at the ends of the element, and the nodal variables are the trans-
verse displacements v1 and v2 at the nodes and the slopes (rotations) �1 and �2.
The nodal variables as shown are in the positive direction, and it is to be noted
that the slopes are to be specified in radians. For convenience, the superscript (e)
indicating element properties is not used at this point, as it is understood in con-
text that the current discussion applies to a single element. When multiple ele-
ments are involved in examples to follow, the superscript notation is restored.

The displacement function v(x) is to be discretized such that

v(x ) = f (v1, v2, �1, �2, x ) (4.12)

subject to the boundary conditions

v(x = x1) = v1 (4.13)

v(x = x2) = v2 (4.14)

dv

dx

∣∣∣∣
x=x1

= �1 (4.15)

dv

dx

∣∣∣∣
x=x2

= �2 (4.16)

�1

�2

y

x

v1 v2

L
1 2

Figure 4.4 Beam element nodal
displacements shown in a positive
sense.
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M1

�M1

Mz F1L � M2 � M1

F1L � M1

M2

x

F1 F2

1 2

Figure 4.5 Bending moment diagram for
a flexure element. Sign convention per the
strength of materials theory.

Before proceeding, we assume that the element coordinate system is chosen such
that x1 = 0 and x2 = L to simplify the presentation algebraically. (This is not at
all restrictive, since L = x2 − x1 in any case.)

Considering the four boundary conditions and the one-dimensional nature of
the problem in terms of the independent variable, we assume the displacement
function in the form

v(x ) = a0 + a1x + a2x 2 + a3x 3 (4.17)

The choice of a cubic function to describe the displacement is not arbitrary.
While the general requirements of interpolation functions is discussed in
Chapter 6, we make a few pertinent observations here. Clearly, with the specifi-
cation of four boundary conditions, we can determine no more than four con-
stants in the assumed displacement function. Second, in view of Equations 4.10
and 4.17, the second derivative of the assumed displacement function v(x ) is
linear; hence, the bending moment varies linearly, at most, along the length of the
element. This is in accord with the assumption that loads are applied only at
the element nodes, as indicated by the bending moment diagram of a loaded
beam element shown in Figure 4.5. If a distributed load were applied to the ele-
ment across its length, the bending moment would vary at least quadratically.

Application of the boundary conditions 4.13–4.16 in succession yields

v(x = 0) = v1 = a0 (4.18)

v(x = L ) = v2 = a0 + a1 L + a2 L 2 + a3 L 3 (4.19)
dv

dx

∣∣∣∣
x=0

= �1 = a1 (4.20)

dv

dx

∣∣∣∣
x=L

= �2 = a1 + 2a2 L + 3a3 L 2 (4.21)
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Equations 4.18–4.21 are solved simultaneously to obtain the coefficients in terms
of the nodal variables as

a0 = v1 (4.22)

a1 = �1 (4.23)

a2 = 3

L 2
(v2 − v1) − 1

L
(2�1 + �2) (4.24)

a3 = 2

L 3
(v1 − v2) + 1

L 2
(�1 + �2) (4.25)

Substituting Equations 4.22–4.25 into Equation 4.17 and collecting the coeffi-
cients of the nodal variables results in the expression

v(x ) =
(

1 − 3x 2

L 2
+ 2x 3

L 3

)
v1 +

(
x − 2x 2

L
+ x 3

L 2

)
�1

+
(

3x 2

L 2
− 2x 3

L 3

)
v2 +

(
x 3

L 2
− x 2

L

)
�2 (4.26)

which is of the form

v(x ) = N1(x )v1 + N2(x )�1 + N3(x )v2 + N4(x )�2 (4.27a)

or, in matrix notation,

v(x) = [N1 N2 N3 N4]




v1

�1

v2

�2


 = [N ] {�} (4.27b)

where N1, N2, N3, and N4 are the interpolation functions that describe the dis-
tribution of displacement in terms of nodal values in the nodal displacement
vector {�}.

For the flexure element, it is convenient to introduce the dimensionless
length coordinate

� = x

L
(4.28)

so that Equation 4.26 becomes

v(x ) = (1 − 3� 2 + 2� 3)v1 + L (� − 2� 2 + � 3)�1 + (3� 2 − 2� 3)v2

+ L� 2(� − 1)�2 (4.29)

where 0 ≤ � ≤ 1. This form proves more amenable to the integrations required
to complete development of the element equations in the next section.

As discussed in Chapter 3, displacements are important, but the engineer is
most often interested in examining the stresses associated with given loading
conditions. Using Equation 4.11 in conjunction with Equation 4.27b, the normal
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stress distribution on a cross section located at axial position x is given by

�x (x , y) = −y E
d2[N ]

dx 2
{�} (4.30)

Since the normal stress varies linearly on a cross section, the maximum and min-
imum values on any cross section occur at the outer surfaces of the element,
where distance y from the neutral surface is largest. As is customary, we take the
maximum stress to be the largest tensile (positive) value and the minimum to be
the largest compressive (negative) value. Hence, we rewrite Equation 4.30 as

�x (x ) = ymax E
d2[N ]

dx 2
{�} (4.31)

and it is to be understood that Equation 4.31 represents the maximum and mini-
mum normal stress values at any cross section defined by axial coordinate x. Also
ymax represents the largest distances (one positive, one negative) from the neutral
surface to the outside surfaces of the element. Substituting for the interpolation
functions and carrying out the differentiations indicated, we obtain

�x (x ) = ymax E

[(
12x

L 3
− 6

L 2

)
v1 +

(
6x

L 2
− 4

L

)
�1 +

(
6

L 2
− 12x

L 3

)
v2

+
(

6x

L 2
− 2

L

)
�2

]
(4.32)

Observing that Equation 4.32 indicates a linear variation of normal stress along
the length of the element and since, once the displacement solution is obtained,
the nodal values are known constants, we need calculate only the stress values
at the cross sections corresponding to the nodes; that is, at x = 0 and x = L . The
stress values at the nodal sections are given by

�x (x = 0) = ymax E

[
6

L 2
(v2 − v1) − 2

L
(2�1 + �2)

]
(4.33)

�x (x = L ) = ymax E

[
6

L 2
(v1 − v2) + 2

L
(2�2 + �1)

]
(4.34)

The stress computations are illustrated in following examples.

4.4 FLEXURE ELEMENT STIFFNESS MATRIX
We may now utilize the discretized approximation of the flexure element dis-
placement to examine stress, strain, and strain energy exhibited by the element
under load. The total strain energy is expressed as 

Ue = 1

2

∫
V

�x εx dV (4.35)
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where V is total volume of the element. Substituting for the stress and strain per
Equations 4.5 and 4.6,

Ue = E

2

∫
V

y2

(
d2v

dx 2

)2

dV (4.36)

which can be written as

Ue = E

2

L∫
0

(
d2v

dx2

)2

∫

A

y2 dA


 dx (4.37)

Again recognizing the area integral as the moment of inertia Iz about the cen-
troidal axis perpendicular to the plane of bending, we have 

Ue = EI z

2

L∫
0

(
d2v

dx 2

)2

dx (4.38)

Equation 4.38 represents the strain energy of bending for any constant cross-
section beam that obeys the assumptions of elementary beam theory. For the
strain energy of the finite element being developed, we substitute the discretized
displacement relation of Equation 4.27 to obtain

Ue = EI z

2

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)2

dx (4.39)

as the approximation to the strain energy. We emphasize that Equation 4.39 is an
approximation because the discretized displacement function is not in general an
exact solution for the beam flexure problem.

Applying the first theorem of Castigliano to the strain energy function with
respect to nodal displacement v1 gives the transverse force at node 1 as

∂Ue

∂v1
= F1 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N1

dx 2
dx

(4.40)

while application of the theorem with respect to the rotational displacement
gives the moment as

∂Ue

∂�1
= M1 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N2

dx 2
dx

(4.41)
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For node 2, the results are

∂Ue

∂v2
= F2 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N3

dx 2
dx

(4.42)

∂Ue

∂�2
= M2 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N4

dx 2
dx

(4.43)

Equations 4.40–4.43 algebraically relate the four nodal displacement values to
the four applied nodal forces (here we use force in the general sense to include
applied moments) and are of the form




k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44







v1

�1

v2

�2




=




F1

M1

F2

M2




(4.44)

where kmn , m , n = 1, 4 are the coefficients of the element stiffness matrix. By
comparison of Equations 4.40–4.43 with the algebraic equations represented by
matrix Equation 4.44, it is seen that

kmn = knm = EIz

L∫
0

d2 Nm

dx2

d2 Nn

dx2
dx m, n = 1, 4 (4.45)

and the element stiffness matrix is symmetric, as expected for a linearly elastic
element.

Prior to computing the stiffness coefficients, it is convenient to convert the
integration to the dimensionless length variable � = x/L by noting

L∫
0

f (x ) dx =
1∫

0

f (� )L d� (4.46)

d

dx
= 1

L

d

d�
(4.47)

so the integrations of Equation 4.45 become

kmn = knm = EI z

L∫
0

d2 Nm

dx 2

d2 Nn

dx 2
dx = EI z

L 3

1∫
0

d2 Nm

d� 2

d2 Nn

d� 2
d� m , n = 1, 4

(4.48)
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The stiffness coefficients are then evaluated as follows:

k11 = EI z

L 3

1∫
0

(12� − 6)2 d� = 36EI z

L 3

1∫
0

(4� 2 − 4� + 1) d�

= 36EI z

L 3

(
4

3
− 2 + 1

)
= 12EI z

L 3

k12 = k21 = EI z

L 3

1∫
0

(12� − 6)(6� − 4)L d� = 6EI z

L 2

k13 = k31 = EI z

L 3

1∫
0

(12� − 6)(6 − 12� ) d� = − 12EI z

L 3

k14 = k41 = EI z

L 3

1∫
0

(12� − 6)(6� − 2)L d� = 6EI z

L 2

Continuing the direct integration gives the remaining stiffness coefficients as

k22 = 4EI z

L

k23 = k32 = − 6EI z

L 2

k24 = k42 = 2EI z

L

k33 = 12EI z

L 3

k34 = k43 = − 6EI z

L 3

k44 = 4EI z

L

The complete stiffness matrix for the flexure element is then written as

[ke] = EIz

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


 (4.49)

Symmetry of the element stiffness matrix is apparent, as previously observed.
Again, the element stiffness matrix can be shown to be singular since rigid body
motion is possible unless the element is constrained in some manner. The ele-
ment stiffness matrix as given by Equation 4.49 is valid in any consistent system
of units provided the rotational degrees of freedom (slopes) are expressed in
radians.
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(a)

M1 M2

F1 F2

(b)

M M

V V

(c)

x
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P
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V

M
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Mc

�

�

Figure 4.6
(a) Nodal load positive convention. (b) Positive convention from the strength of materials theory.
(c) Shear and bending moment diagrams depicting nodal load effects.

4.5 ELEMENT LOAD VECTOR
In Equations 4.40–4.43, the element forces and moments were treated as required
by the first theorem of Castigliano as being in the direction of the associated dis-
placements. These directions are in keeping with the assumed positive directions
of the nodal displacements. However, as depicted in Figures 4.6a and 4.6b, the
usual convention for shear force and bending moment in a beam are such that




F1

M1

F2

M2


 ⇒




−V1

−M1

V2

M2


 (4.50)

In Equation 4.50, the column matrix (vector) on the left represents positive
nodal forces and moments per the finite element formulations. The right-hand
side contains the corresponding signed shear forces and bending moments per
the beam theory sign convention.

If two flexure elements are joined at a common node, the internal shear
forces are equal and opposite unless an external force is applied at that node, in
which case the sum of the internal shear forces must equal the applied load.
Therefore, when we assemble the finite element model using flexure elements,
the force at a node is simply equal to any external force at that node. A similar
argument holds for bending moments. At the juncture between two elements
(i.e., a node), the internal bending moments are equal and opposite, thus self-
equilibrating, unless a concentrated bending moment is applied at that node. In
this event, the internal moments sum to the applied moment. These observations
are illustrated in Figure 4.6c, which shows a simply supported beam subjected to
a concentrated force and concentrated moment acting at the midpoint of the
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P

(a)

L
2

L
2

v3v2v1

(b)

�1

�2 �3

11 32 2

(c)

�2

v1 � �1 � 0 v3 � 0v2

�3

Figure 4.7
(a) Loaded beam of Example 4.1. (b) Element and displacement designations.
(c) Displacement solution.

beam length. As shown by the shear force diagram, a jump discontinuity exists at
the point of application of the concentrated force, and the magnitude of the dis-
continuity is the magnitude of the applied force. Similarly, the bending moment
diagram shows a jump discontinuity in the bending moment equal to the magni-
tude of the applied bending moment. Therefore, if the beam were to be divided
into two finite elements with a connecting node at the midpoint, the net force at
the node is the applied external force and the net moment at the node is the ap-
plied external moment.

Figure 4.7a depicts a statically inderminate beam subjected to a transverse load applied at
the midspan. Using two flexure elements, obtain a solution for the midspan deflection.

■ Solution
Since the flexure element requires loading only at nodes, the elements are taken to be of
length L/2, as shown in Figure 4.7b. The individual element stiffness matrices are then

[
k(1)

] = [
k(2)

] = EIz

(L/2)3




12 6L/2 −12 6L/2
6L/2 4L2/4 −6L/2 2L2/4
−12 −6L/2 12 −6L/2
6L/2 2L2/4 −6L/2 4L2/4




= 8EIz

L3




12 3L −12 3L
3L L2 −3L L2/2
−12 −3L 12 −3L
3L L2/2 −3L L2




Note particularly that the length of each element is L/2. The appropriate boundary con-
ditions are v1 = �1 = v3 = 0 and the element-to-system displacement correspondence
table is Table 4.1.

EXAMPLE 4.1
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Table 4.1 Element-to-System Displacement Correspondence

Global Displacement Element 1 Element 2

1 1 0
2 2 0
3 3 1
4 4 2
5 0 3
6 0 4

Assembling the global stiffness matrix per the displacement correspondence table
we obtain in order (and using the symmetry property)

K11 = k (1)
11 = 96EI z

L 3

K12 = k (1)
12 = 24EI z

L 2

K13 = k (1)
13 = −96EI z

L 3

K14 = k (1)
14 = 24EI z

L 2

K22 = k (1)
22 = 8EI z

L

K23 = k (1)
23 = −24EI z

L 2

K24 = k (1)
24 = 4EI z

L

K25 = K26 = 0

K33 = k (1)
33 + k (2)

11 = 192EI z

L 3

K34 = k (1)
34 + k (2)

12 = 0

K35 = k (2)
13 = −96EI z

L 3

K36 = k (2)
14 = 24EI z

L 2

K44 = k (1)
44 + k (1)

22 = 16EI z

L

K45 = k (2)
23 = −24EI z

L 2
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K46 = k (2)
24 = 4EI z

L

K55 = k (2)
33 = 96EI z

L 3

K56 = k (2)
34 = −24EI z

L 2

K66 = k (2)
44 = 8EI z

L
Using the general form 

[K ]{U } = {F }
we obtain the system equations as

EIz

L3




96 24L −96 24L 0 0
24L 8L2 −24L 4L2 0 0
−96 −24L 192 0 −96 24L
24L 4L2 0 16L2 −24L 4L2

0 0 −96 −24L 96 24L
0 0 24L 4L2 24L 8L2







v1

�1

v2

�2

v3

�3




=




F1

M1

F2

M2

F3

M3




Invoking the boundary conditions v1 = �1 = v3 = 0, the reduced equations become

EIz

L3


 192 0 24L

0 16L2 4L2

24L 4L2 8L2







v2

�2

�3


 =




−P
0
0




Yielding the nodal displacements as

v2 = −7PL3

768EI z
�2 = −PL2

128EI z
�3 = PL2

32EI z

The deformed beam shape is shown in superposition with a plot of the undeformed shape
with the displacements noted in Figure 4.7c. Substitution of the nodal displacement val-
ues into the constraint equations gives the reactions as

F1 = EI z

L 3
(−96v2 + 24L�2) = 11P

16

F3 = EI z

L 3
(−96v2 − 24L�2 − 24L�3) = 5P

16

M1 = EI z

L 3
(−24Lv2 + 4L 2�2) = 3PL

16

Checking the overall equilibrium conditions for the beam, we find

∑
Fy = 11P

16
− P + 5P

16
= 0
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and summing moments about node 1,

∑
M = 3PL

16
− P

L

2
+ 5P

16
L = 0

Thus, the finite element solution satisfies global equilibrium conditions.

The astute reader may wish to compare the results of Example 4.1 with those
given in many standard beam deflection tables, in which case it will be found that
the results are in exact agreement with elementary beam theory. In general, the
finite element method is an approximate method, but in the case of the flexure
element, the results are exact in certain cases. In this example, the deflection
equation of the neutral surface is a cubic equation and, since the interpolation
functions are cubic, the results are exact. When distributed loads exist, however,
the results are not necessarily exact, as will be discussed next.

4.6 WORK EQUIVALENCE
FOR DISTRIBUTED LOADS

The restriction that loads be applied only at element nodes for the flexure ele-
ment must be dealt with if a distributed load is present. The usual approach is to
replace the distributed load with nodal forces and moments such that the me-
chanical work done by the nodal load system is equivalent to that done by the
distributed load. Referring to Figure 4.1, the mechanical work performed by the
distributed load can be expressed as

W =
L∫

0

q (x )v(x ) dx (4.51)

The objective here is to determine the equivalent nodal loads so that the work
expressed in Equation 4.51 is the same as

W =
L∫

0

q (x )v(x ) dx = F1qv1 + M1q�1 + F2qv2 + M2q�2 (4.52)

where F1q , F2q are the equivalent forces at nodes 1 and 2, respectively, and
M1q and M2q are the equivalent nodal moments. Substituting the discretized dis-
placement function given by Equation 4.27, the work integral becomes

W =
L∫

0

q (x )[N1(x )v1 + N2(x )�1 + N3(x )v2 + N4(x )�2] dx (4.53)
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Comparison of Equations 4.52 and 4.53 shows that

F1q =
L∫

0

q (x ) N1(x ) dx (4.54)

M1q =
L∫

0

q (x ) N2(x ) dx (4.55)

F2q =
L∫

0

q (x ) N3(x ) dx (4.56)

M2q =
L∫

0

q (x ) N4(x ) dx (4.57)

Hence, the nodal force vector representing a distributed load on the basis of work
equivalence is given by Equations 4.54–4.57. For example, for a uniform load
q (x ) = q = constant, integration of these equations yields




F1q

M1q

F2q

M2q




=




qL

2
qL2

12
qL

2
−qL2

12




(4.58)

The equivalence of a uniformly distributed load to the corresponding nodal loads
on an element is shown in Figure 4.8.

The simply supported beam shown in Figure 4.9a is subjected to a uniform transverse
load, as shown. Using two equal-length elements and work-equivalent nodal loads, ob-
tain a finite element solution for the deflection at midspan and compare it to the solution
given by elementary beam theory.  

(a)

q

L
1 2

x

(b)

qL
2

qL2

12
qL2

12

qL
2

Figure 4.8 Work-equivalent nodal forces and moments for a uniform
distributed load.

EXAMPLE 4.2
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(a)

q

y

x

L

(b)

v3v1

�2 �3

�1

v2

11 32 2

(c)

q

L
2

1 2

q

L
2

2 3

qL2

48
qL2

48

qL
4

qL
4

qL2

48
qL2

48

qL
4

qL
4

(d)

Figure 4.9
(a) Uniformly loaded beam of Example 4.2. (b) Node, element, and displacement notation. (c) Element
loading. (d) Work-equivalent nodal loads.

■ Solution
Per Figure 4.9b, we number the nodes and elements as shown and note the boundary con-
ditions v1 = v3 = 0. We could also note the symmetry condition that �2 = 0. However, in
this instance, we let that fact occur as a result of the solution process. The element stiff-
ness matrices are identical, given by

[
k(1)

] = [
k(2)

] = EIz

(L/2)3




12 6L/2 −12 6L/2
6L/2 4L2/4 −6L/2 2L2/4
−12 −6L/2 12 −6L/2
6L/2 2L2/4 −6L/2 4L2/4




= 8EIz

L3




12 3L −12 3L
3L L2 −3L L2/2
−12 −3L 12 −3L
3L L2/2 −3L L2




(again note that the individual element length L/2 is used to compute the stiffness
terms), and Table 4.2 is the element connectivity table, so the assembled global stiffness
matrix is

[K ] = 8EIz

L3




12 3L −12 3L 0 0
3L L2 −3L L2/2 0 0
−12 −3L 24 0 −12 3L
3L L2/2 0 2L2 −3L L2/2
0 0 −12 −3L 12 −3L
0 0 3L L2/2 −3L L2




The work-equivalent loads for each element are computed with reference to Figure 4.9c
and the resulting loads shown in Figure 4.9d. Observing that there are reaction forces at
both nodes 1 and 3 in addition to the equivalent forces from the distributed load, the
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global equilibrium equations become 

[K ]




v1

�1

v2

�2

v3

�3




=




−qL

4
+ F1

−qL2

48
−qL

2
0

−qL

4
+ F3

qL2

48




where the work-equivalent nodal loads have been utilized per Equation 4.58, with each
element length = L/2 and q (x ) = −q , as shown in Figure 4.9c. Applying the constraint
and symmetry conditions, we obtain the system

8EIz

L3




L2 −3L L2/2 0
−3L 24 0 3L
L2/2 0 2L2 L2/2

0 3L L2/2 L2







�1

v2

�2

�3




=




−qL2

48
−qL

2
0

qL2

48




which, on simultaneous solution, gives the displacements as

�1 = − qL3

24EI z

�2 = 0

v2 = − 5qL4

384EI z

�3 = qL3

24EI z

As expected, the slope of the beam at midspan is zero, and since the loading and sup-
port conditions are symmetric, the deflection solution is also symmetric, as indicated by

Table 4.2 Element Connectivity

Global Displacement Element 1 Element 2

1 1 0
2 2 0
3 3 1
4 4 2
5 0 3
6 0 4
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(a)

300 mm

O

D

B C

300 mm

200 mm

F � 10 kN
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U5

U6

U3U1

U4U2
2

3

1

(b)

v1
(1) v2

(1)

�1
(1)

�2
(1)

v1
(2) v2

(2)

�1
(2)

�2
(2)

v2
(3)

v1
(3)

u2
(3)

u1
(3)

(c)

Figure 4.10
(a) Supported beam. (b) Global coordinate system and variables. (c) Individual
element displacements.

the end slopes. The nodal displacement results from the finite element analysis of this
example are exactly the results obtained by a strength of materials approach. This is due
to applying the work-equivalent nodal loads. However, the general deflected shape as
given by the finite element solution is not the same as the strength of materials result. The
equation describing the deflection of the neutral surface is a quartic function of x and,
since the interpolation functions used in the finite element model are cubic, the deflection
curve varies somewhat from the exact solution. 

In Figure 4.10a, beam OC is supported by a smooth pin connection at O and supported at
B by an elastic rod BD, also through pin connections. A concentrated load F = 10 kN is
applied at C. Determine the deflection of point C and the axial stress in member BD. The
modulus of elasticity of the beam is 207 GPa (steel) and the dimensions of the cross sec-
tion are 40 mm × 40 mm. For elastic rod BD, the modulus of elasticity is 69 GPa (alu-
minum) and the cross-sectional area is 78.54 mm2.

■ Solution
This is the first example in which we use multiple element types, as the beam is modeled
with flexure elements and the elastic rod as a bar element. Clearly, the horizontal member

EXAMPLE 4.3
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Table 4.3 Displacement Scheme

Global Figure 4.10b Element 1 Element 2 Element 3

1 U1 v(1)
1 0 0

2 U2 �(1)
1 0 0

3 U3 v(1)
2 v(2)

1 u(3)
1

4 U4 �(1)
2 �(2)

1 0

5 U5 0 v(2)
2 0

6 U6 0 �(2)
2 0

7 U7 0 0 u(3)
2

is subjected to bending loads, so the assumptions of the bar element do not apply to this
member. On the other hand, the vertical support member is subjected to only axial load-
ing, since the pin connections cannot transmit moment. Therefore, we use two different
element types to simplify the solution and modeling. The global coordinate system and
global variables are shown in Figure 4.10b, where the system is divided into two flexure
elements (1 and 2) and one spar element (3). For purposes of numbering in the global
stiffness matrix, the displacement scheme in Table 4.3 is used.

While the notation shown in Figure 4.10b may appear to be inconsistent with previ-
ous notation, it is simpler in terms of the global equations to number displacements suc-
cessively. By proper assignment of element displacements to global displacements, the
distinction between linear and rotational displacements are clear. The individual element
displacements are shown in Figure 4.10c, where we show the bar element in its general
2-D configuration, even though, in this case, we know that v(3)

1 = v(3)
2 = 0 and those dis-

placements are ignored in the solution. 
The element displacement correspondence is shown in Table 4.4. For the beam

elements, the moment of inertia about the z axis is

Iz = bh3

12
= 40(403)

12
= 213333 mm4

For elements 1 and 2,

EI z

L 3
= 207(103)(213333 )

3003
= 1635 .6 N/mm

Table 4.4 Element-Displacement Correspondence

Global Displacement Element 1 Element 2 Element 3

1 1 0 0
2 2 0 0
3 3 1 1
4 4 2 0
5 0 3 0
6 0 4 0
7 0 0 3
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Table 4.5 Global Stiffness Matrix

1 2 3 4 5 6 7

1 19,627.2 2.944 × 106 −19,627.2 2.944 × 106 0 0 0

2 2.944 × 106 5.888 × 108 −2.944 × 106 2.944 × 108 0 0 0

3 −19,627.2 −2.944 × 106 66,350.4 0 −19,627.2 2.944 × 106 −27,096

4 2.944 × 106 2.944 × 108 0 11.78 × 108 −2.944 × 106 2.944 × 108 0

5 0 0 −19,627.2 −2.944 × 106 19,627.2 −2.944 × 106 0

6 0 0 2.944 × 106 2.944 × 108 −2.944 × 106 5.889 × 108 0

7 0 0 −27,096 0 0 0 27,096

so the element stiffness matrices are (per Equation 4.48)

[
k(1)

] = [
k(2)

] = 1,635.6




12 1,800 −12 1,800
1,800 360,000 −1,800 180,000
−12 −1,800 12 −1,800

1,800 180,000 −1,800 360,000




while for element 3,

AE

L
= 78.54(69)(103)

200
= 27096 N/mm

so the stiffness matrix for element 3 is

[
k (3)

] = 27,096

[
1 −1

−1 1

]

Assembling the global stiffness matrix per the displacement correspondence table (noting
that we use a “short-cut” for element 3, since the stiffness of the element in the global X
direction is meaningless), we obtain the results in Table 4.5. The constraint conditions are
U1 = U7 = 0 and the applied force vector is



F1

M1

F2

M2

F3

M3

F4




=




R1

0
0
0

−10,000
0
R4




where we use R to indicate a reaction force. If we apply the constraint conditions and
solve the resulting 5 × 5 system of equations, we obtain the results

�1 = 9.3638(10−4) rad

v2 = −0.73811 mm

�2 = −0.0092538 rad

v3 = −5.5523 mm

�3 = −0.019444 rad
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(Note that we intentionally carry more significant decimal digits than necessary to avoid
“round-off” inaccuracies in secondary calculations.) To obtain the axial stress in member
BD, we utilize Equation 3.52 with � (3) = 	/2:

�BD = 69(103)

[
− 1

200

1

200

][
0 1 0 0
0 0 0 1

]



0
−0.7381

0
0




= 254.6 MPa

The positive result indicates tensile stress. 
The reaction forces are obtained by substitution of the computed displacements into

the first and seventh equations (the constraint equations):

R1 = 2.944(106)[9.3638(10−4)] − 19,627.2(−0.73811 )

+ 2.944(106)(−0.0092538 ) ≈ −10,000 N

R4 = −27,096(−0.73811 ) + 27,096(0) = 20,000 N

and within the numerical accuracy used in this example, the system is in equilibrium. The
reader is urged to check moment equilibrium about the left-hand node and note that, by
statics alone, the force in element 3 should be 20,000 N and the axial stress computed by
F/A is 254.6 MPa.

The bending stresses at nodes 1 and 2 in the flexure elements are computed via Equa-
tions 4.33 and 4.34, respectively, noting that for the square cross section ymax/min =
20 mm. For element 1,

�
(1)
x (x = 0) = ±20(207)(103)

[
6

3002
(−0.738 − 0) − 2

300
(−(2)0.00093 − 0.0092)

]

≈ 0

at node 1. Note that the computed stress at node 1 should be identically zero, since this
node is a pin joint and cannot support bending moment. 

For node 2 of element 1, we find

�
(1)
x (x = L ) = ±20(207)(103)

[
6

3002
(0 + 0.738) + 2

300
(−(2)0.0092 − 0.00093 )

]

≈ ±281.3 MPa

For element 2, we similarly compute the stresses at each node as

�(2)
x (x = 0) = ±20(207)(103)

×
[

6

3002
(−5.548 + 0.738) − 2

300
(−(2)0.0092 − 0.0194)

]
≈ ±281.3 MPa

�(2)
x (x = L) = ±20(207)(103)

×
[

6

3002
(−0.73811 + 5.5523) + 2

300
(−(2)0.019444 − 0.009538)

]
≈ 0 MPa

and the latter result is also to be expected, as the right end of the beam is free of bending
moment. We need to carefully observe here that the bending stress is the same at the
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juncture of the two flexure elements; that is, at node 2. This is not the usual situation in
finite element analysis. The formulation requires displacement and slope continuity but,
in general, no continuity of higher-order derivatives. Since the flexure element developed
here is based on a cubic displacement function, the element does not often exhibit mo-
ment (hence, stress) continuity. The convergence of derivative functions is paramount to
examining the accuracy of a finite element solution to a given problem. We must exam-
ine the numerical behavior of the derived variables as the finite element “mesh” is refined. 

4.7 FLEXURE ELEMENT WITH AXIAL LOADING
The major shortcoming of the flexure element developed so far is that force load-
ing must be transverse to the axis of the element. Effectively, this means that the
element can be used only in end-to-end modeling of linear beam structures.
If the element is formulated to also support axial loading, the applicability is
greatly extended. Such an element is depicted in Figure 4.11, which shows, in ad-
dition to the nodal transverse deflections and rotations, axial displacements at the
nodes. Thus, the element allows axial as well as transverse loading. It must be
pointed out that there are many ramifications to this seemingly simple extension.
If the axial load is compressive, the element could buckle. If the axial load is ten-
sile and significantly large, a phenomenon known as stress stiffening can occur.
The phenomenon of stress stiffening can be likened to tightening of a guitar
string. As the tension is increased, the string becomes more resistant to motion
perpendicular to the axis of the string.

The same effect occurs in structural members in tension. As shown in Fig-
ure 4.12, in a beam subjected to both transverse and axial loading, the effect of
the axial load on bending is directly related to deflection, since the deflection at
a specific point becomes the moment arm for the axial load. In cases of small
elastic deflection, the additional bending moment attributable to the axial loading
is negligible. However, in most finite element software packages, buckling and
stress stiffening analyses are available as options when such an element is used
in an analysis. (The reader should be aware that buckling and stress stiffening ef-
fects are checked only if the software user so specifies.) For the present purpose,
we assume the axial loads are such that these secondary effects are not of concern
and the axial loading is independent of bending effects.

ui ujji
�j�i

vi vj

Figure 4.11 Nodal displacements
of a beam element with axial
stiffness.
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F xF
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(a) (b)

F
F

M

v(x)

M(x)
M(x) � M � Fv(x)

Figure 4.12
(a) Beam with bending moment and axial load. (b) Section of beam, illustrating
how tensile load reduces bending moment, hence, “stiffening” the beam.

This being the case, we can simply add the spar element stiffness matrix to
the flexure element stiffness matrix to obtain the 6 × 6 element stiffness matrix
for a flexure element with axial loading as

[ke] =




AE

L

−AE

L
0 0 0 0

−AE

L

AE

L
0 0 0 0

0 0
12EIz

L3

6EIz

L2

−12EIz

L3

6EIz

L2

0 0
6EIz

L2

4EIz

L

−6EIz

L2

2EIz

L

0 0
−12EIz

L3

−6EIz

L2

12EIz

L3

−6EIz

L2

0 0
6EIz

L2

2EIz

L

−6EIz

L2

4EIz

L




(4.59)

which is seen to be simply

[ke] =
[

[kaxial] [0]
[0] [kflexure]

]
(4.60)

and is a noncoupled superposition of axial and bending stiffnesses.
Adding axial capability to the beam element eliminates the restriction that

such elements be aligned linearly and enables use of the element in the analysis
of planar frame structures in which the joints have bending resistance. For such
applications, orientation of the element in the global coordinate system must be
considered, as was the case with the spar element in trusses. Figure 4.13a depicts
an element oriented at an arbitrary angle 
 from the X axis of a global reference
frame and shows the element nodal displacements. Here, we use 
 to indicate
the orientation angle to avoid confusion with the nodal slope, denoted �. Fig-
ure 4.13b shows the assigned global displacements for the element, where again
we have adopted a single symbol for displacement with a numerically increasing
subscript from node to node. Before proceeding, note that it is convenient here to
reorder the element stiffness matrix given by Equation 4.59 so that the element
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displacement vector in the element reference frame is given as

{�} =




u1

v1

�1

u2

v2

�2




(4.61)

and the element stiffness matrix becomes

[ke] =




AE

L
0 0

−AE

L
0 0

0
12EIz

L3

6EIz

L2
0

−12EIz

L3

6EIz

L2

0
6EIz

L2

4EIz

L
0 −6EIz

L2

2EIz

L
−AE

L
0 0

AE

L
0 0

0
−12EIz

L3

−6EIz

L2
0

12EIz

L3

−6EIz

L2

0
6EIz

L2

2EIz

L
0

−6EIz

L2

4EIz

L




(4.62)

Using Figure 4.13, the element displacements are written in terms of the
global displacements as

u1 = U1 cos 
 + U2 sin 


v1 = −U1 sin 
 + U2 cos 


�1 = U3

u2 = U4 cos 
 + U5 sin 


v2 = −U4 sin 
 + U5 cos 


�2 = U6

(4.63)

(a)

v1

v2

u2

�1

�2

�u1

y x

(b)

U2

U3

U1

U6

U5

U4

Y

X

Figure 4.13
(a) Nodal displacements in the element coordinate system. (b) Nodal displacements
in the global coordinate system.
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(a)

20 in.

20 in.

10 lb/in.

O

CB

(b)

2

1

Y

U5

U4

U8

U7

U6 U9

U3

U2

X

U1

(c)

u2

�2

�1

v2

u1

v1

� � 	�2

Figure 4.14
(a) Frame of Example 4.4. (b) Global coordinate system and displacement
numbering. (c) Transformation of element 1.

Equations 4.63 can be written in matrix form as




u1

v1

�1

u2

v2

�2




=




cos 
 sin 
 0 0 0 0
−sin 
 cos 
 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 
 sin 
 0
0 0 0 −sin
 cos 
 0
0 0 0 0 0 1







U1

U2

U3

U4

U5

U6




= [R]{U} (4.64)

where [R] is the transformation matrix that relates element displacements to
global displacements. In a manner exactly analogous to that of Section 3.3, it is
readily shown that the 6 × 6 element stiffness matrix in the global system is
given by

[Ke] = [R]T [ke][R] (4.65)

Owing to its algebraic complexity, Equation 4.65 is not expanded here to obtain
a general result. Rather, the indicated computations are best suited for specific
element characteristics and performed by computer program. 

Assembly of the system equations for a finite element model using the beam-
axial element is accomplished in an identical fashion to the procedures followed
for trusses as discussed in Chapter 3. The following simple example illustrates
the procedure.

The frame of Figure 4.14a is composed of identical beams having a 1-in. square cross
section and a modulus of elasticity of 10 × 106 psi. The supports at O and C are to be con-
sidered completely fixed. The horizontal beam is subjected to a uniform load of intensity
10 lb/in., as shown. Use two beam-axial elements to compute the displacements and
rotation at B.

EXAMPLE 4.4
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■ Solution
Using the specified data, The cross-sectional area is

A = 1(1) = 1 in.2

And the area moment of inertia about the z axis is

Iz = bh3/12 = 1/12 = 0.083 in.4

The characteristic axial stiffness is 

AE/L = 1(10 × 106)/20 = (5 × 105) lb/in.

and the characteristic bending stiffness is

EI z/L 3 = 10 × 106(0.083)/203 = 104.2 lb/in.

Denoting member OB as element 1 and member BC as element 2, the stiffness
matrices in the element coordinate systems are identical and given by

[
k (1)

] = [
k (2)

] =




5(105) 0 0 −5(105) 0 0
0 1,250.4 12,504 0 −1,250.4 12,504
0 12,504 166,720 0 −12,504 83,360

−5(105) 0 0 5(105) 0 0
0 −1,250.4 −12,504 0 1,250.4 −12,504
0 12,504 83,360 0 −12,504 166,720




Choosing the global coordinate system and displacement numbering as in Figure 4.14b,
we observe that element 2 requires no transformation, as its element coordinate system is
aligned with the global system. However, as shown in Figure 4.14c, element 1 requires
transformation. Using 
 = 	/2, Equations 4.64 and 4.65 are applied to obtain

[
K (1)

] =




1,250.4 0 −12,504 1,250.4 0 −12,504
0 5(105) 0 0 −5(105) 0

−12,504 0 166,720 12,504 0 83,360
1,250.4 0 12,504 1,250.4 0 12,504

0 −5(105) 0 0 5(105) 0
−12,504 0 83,360 12,504 0 166,720




Note particularly how the stiffness matrix of element 1 changes as a result of the 90°
rotation. The values of individual components in the stiffness matrix are unchanged. The
positions of the terms in the matrix are changed to reflect, quite simply, the directions of
bending and axial displacements of the element when described in the global (system)
coordinate system.

The displacement correspondence table is shown in Table 4.6 and the assembled sys-
tem stiffness matrix, by the direct assembly procedure, is in Table 4.7. Note, as usual, the
“overlap” of the element stiffness matrices at the displacements associated with the com-
mon node. At these positions in the global stiffness matrix, the stiffness terms from the
individual element stiffness matrices are additive.
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Table 4.6 Displacement Correspondence

Global Element 1 Element 2

1 1 0
2 2 0
3 3 0
4 4 1
5 5 2
6 6 3
7 0 4
8 0 5
9 0 6

Table 4.7 System Stiffness Matrix

[K ] =




1,250.4 0 −12,504 1,250.4 0 −12,504 0 0 0
0 500,000 0 0 −500,000 0 0 0 0

−12,504 0 166,720 12,504 0 833,360 0 0 0
1,250.4 0 12,504 501,250.4 0 12,504 −500,000 0 0

0 −500,000 0 0 501,250.4 12,504 0 −1,250.4 12,504
−12,504 0 83,360 12,504 12,504 333,440 0 −12,504 83,360

0 0 0 −500,000 0 0 500,000 0 0
0 0 0 0 −1,250.4 −12,504 0 1,250.4 −12,504
0 0 0 0 12,504 83,360 0 −12,504 166,720




Using the system stiffness matrix, the assembled system equations are

[K ]




U1

U2

U3

U4

U5

U6

U7

U8

U9




=




RX 1

RY 1

MR1

0
−100

−333.3
RX 3

RY 3 − 100
MR3 + 333.3




where we denote the forces at nodes 1 and 3 as reaction components, owing to the dis-
placement constraints U1 = U2 = U3 = U7 = U8 = U9 = 0. Taking the constraints into
account, the equations to be solved for the active displacements are then


 501,250.4 0 12,504

0 501,250.4 12,504
12,504 12,504 333,440







U4

U5

U6


 =




0
−100
−16.7



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Simultaneous solution gives the displacement values as

U4 = 2.47974 (10−5) in.

U5 = −1.74704 (10−4) in.

U6 = −9.94058 (10−4) rad

As usual, the reaction components can be obtained by substituting the computed dis-
placements into the six constraint equations.

For the beam element with axial capability, the stress computation must take into
account the superposition of bending stress and direct axial stress. For element 1, for
example, we use Equation 4.63 with 
 = 	/2 to compute the element displacement as




u1

v1

�1

u2

v2

�2




=




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1







U1

U2

U3

U4

U5

U6




=




0
0
0

−1.74704(10−4)
−2.47974(10−5)
−9.94058(10−4)




The bending stress is computed at nodes 1 and 2 via Equations 4.33 and 4.34 as

�x (x = 0) = ±0.5(10)(106)

[
6

202
(−2.47974 )(10−5) − 2

20
(−9.94058 (10−4)

]

= ±495.2 psi

�x (x = L ) = ±0.5(10)(106)

[
6

202
(2.47974 )(10−5) + 2

20
(2)(−9.94058 )(10−4)

]

= ±992.2 psi

and the axial stress is

�axial = 10(106)
−1.74704 (10−4)

20
= −87.35 psi

Therefore, the largest stress magnitude occurs at node 2, at which the compressive axial
stress adds to the compressive portion of the bending stress distribution to give

� = 1079 .6 psi (compressive)

4.8 A GENERAL THREE-DIMENSIONAL
BEAM ELEMENT

A general three-dimensional beam element is capable of both axial and torsional
deflections as well as two-plane bending. To examine the stiffness characteristics
of such an element and obtain the element stiffness matrix, we first extend the
beam-axial element of the previous section to include two-plane bending, then
add torsional capability.

Figure 4.15a shows a beam element with an attached three-dimensional ele-
ment coordinate system in which the x axis corresponds to the longitudinal axis
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x
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�y2

qz(x)

�y1

(b)

Figure 4.15
(a) Three-dimensional beam element. (b) Nodal displacements in
element xz plane.

of the beam and is assumed to pass through the centroid of the beam cross sec-
tion. The y and z axes are assumed to correspond to the principal axes for area
moments of inertia of the cross section [1]. If this is not the case, treatment of
simultaneous bending in two planes and superposition of the results as in the
following element development will not produce correct results [2].

For bending about the z axis (i.e., the plane of bending is the xy plane), the
element stiffness matrix is given by Equation 4.48. For bending about the y axis,
the plane of bending is the xz plane, as in Figure 4.15b, which depicts a beam
element defined by nodes 1 and 2 and subjected to a distributed load qz(x ) shown
acting in the positive z direction. Nodal displacements in the z direction are de-
noted w1 and w2, while nodal rotations are �y1 and �y2. For this case, it is neces-
sary to add the axis subscript to the nodal rotations to specifically identify the
axis about which the rotations are measured. In this context, the rotations corre-
sponding to xy plane bending henceforth are denoted �z1 and �z2. It is also im-
portant to note that, in Figure 4.15b, the y axis is perpendicular to the plane of the
page with the positive sense into the page. Therefore, the rotations shown are
positive about the y axis per the right-hand rule. Noting the difference in the pos-
itive sense of rotation relative to the linear displacements, a development analo-
gous to that used for the flexure element in Sections 4.3 and 4.4 results in the
element stiffness matrix for xz plane bending as

[ke]xz = EIy

L3




12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2


 (4.66)

The only differences between the xz plane bending stiffness matrix and that for
xy plane bending are seen to be sign changes in the off-diagonal terms and the
fact that the characteristic stiffness depends on the area moment of inertia Iy.

Combining the spar element stiffness matrix, the xy plane flexure stiffness
matrix, and the xz plane stiffness matrix given by Equation 4.60, the element
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T2
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T1

x

L

(a)

Mx2

Mx1

x

1
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(b)

Figure 4.16
(a) Circular cylinder subjected to torsion. (b) Torsional finite element notation.

equilibrium equations for a two-plane bending element with axial stiffness are
written in matrix form as


 [kaxial] [0] [0]

[0] [kbending]xy [0]
[0] [0] [kbending]xz







u1

u2

v1

�z1

v2

�z2

w1

�y1

w2

�y2




=




fx1

fx2

fy1

Mz1

fy2

Mz2

fz1

My1

fz2

My2




(4.67)

where the 10 × 10 element stiffness matrix has been written in the shorthand form

[ke] =

 [kaxial] [0] [0]

[0] [kbending]xy [0]
[0] [0] [kbending]xz


 (4.68)

The equivalent nodal loads corresponding to a distributed load are computed on
the basis of work equivalence, as in Section 4.6. For a uniform distributed load
qz(x ) = qz , the equivalent nodal load vector is found to be




fqz1

Mqz1

fqz2

Mqz2




=




qz L

2
−qz L2

12
qz L

2
qz L2

12




(4.69)

The addition of torsion to the general beam element is accomplished with
reference to Figure 4.16a, which depicts a circular cylinder subjected to torsion
via twisting moments applied at its ends. A corresponding torsional finite element
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is shown in Figure 4.16b, where the nodes are 1 and 2, the axis of the cylinder is
the x axis, and twisting moments are positive according to the right-hand rule.
From elementary strength of materials, it is well known that the angle of twist per
unit length of a uniform, elastic circular cylinder subjected to torque T is given by

� = T

JG
(4.70)

where J is polar moment of inertia of the cross-sectional area and G is the shear
modulus of the material. As the angle of twist per unit length is constant, the total
angle of twist of the element can be expressed in terms of the nodal rotations and
twisting moments as

�x2 − �x1 = TL

JG
(4.71)

or

T = JG

L
(�x2 − �x1) = kT (�x2 − �x1) (4.72)

Comparison of Equation 4.72 with Equation 2.2 for a linearly elastic spring and
consideration of the equilibrium condition Mx1 + Mx2 = 0 lead directly to the
element equilibrium equations:

JG

L

[
1 −1

−1 1

] {
�x1

�x2

}
=

{
Mx1

Mx2

}
(4.73)

so the torsional stiffness matrix is

[ktorsion] = JG

L

[
1 −1

−1 1

]
(4.74)

While this development is, strictly speaking, applicable only to a circular cross
section, an equivalent torsional stiffness Jeq G/L is known for many common
structural cross sections and can be obtained from standard structural tables or
strength of materials texts.

Adding the torsional characteristics to the general beam element, the element
equations become




[kaxial] [0] [0] [0]
[0] [kbending]xy [0] [0]
[0] [0] [kbending]xz [0]
[0] [0] [0] [ktorsion]







u1

u2

v1

�z1

v2

�z2

w1

�y1

w2

�y2

�x1

�x2




=




fx1

fx2

fy1

Mz2

fy2

Mz2

fz1

My1

fz2

My2

Mx1

Mx2




(4.75)
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and the final stiffness matrix for a general 3-D beam element is observed to be a
12 × 12 symmetric matrix composed of the individual stiffness matrices repre-
senting axial loading, two-plane bending, and torsion.

The general beam element can be utilized in finite element analyses of three-
dimensional frame structures. As with most finite elements, it is often necessary
to transform the element matrices from the element coordinate system to the
global coordinates. The transformation procedure is quite similar to that dis-
cussed for the bar and two-dimensional beam elements, except, of course, for the
added algebraic complexity arising from the size of the stiffness matrix and
certain orientation details required.

4.9 CLOSING REMARKS
In this chapter, finite elements for beam bending are formulated using elastic
flexure theory from elementary strength of materials. The resulting elements are
very useful in modeling frame structures in two or three dimensions. A general
three-dimensional beam element including axial, bending, and torsional effects
is developed by, in effect, superposition of a spar element, two flexure elements,
and a torsional element. 

In development of the beam elements, stiffening of the elements owing to
tensile loading, the possibility of buckling under compressive axial loading, and
transverse shear effects have not been included. In most commercial finite
element software packages, each of these concerns is an option that can be taken
into account at the user’s discretion.
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PROBLEMS
4.1 Two identical beam elements are connected at a common node as shown in

Figure P4.1. Assuming that the nodal displacements vi , �i are known, use
Equation 4.32 to show that the normal stress �x is, in general, discontinuous
at the common element boundary (i.e., at node 2). Under what condition(s)
would the stress be continuous?

Figure P4.1

1 2 3
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4.2 For the beam element loaded as shown in Figure P4.2, construct the shear force
and bending moment diagrams. What is the significance of these diagrams with

respect to Equations 4.10, 4.17, and the relation V = dM

dx
from strength of

materials theory?

Figure P4.2

4.3 For a uniformly loaded beam as shown in Figure P4.3, the strength of materials
theory gives the maximum deflection as

vmax = − 5qL4

384EI z

at x = L/2. Treat this beam as a single finite element and compute the maximum
deflection. How do the values compare?

Figure P4.3

4.4 The beam element shown in Figure P4.4 is subjected to a linearly varying load
of maximum intensity qo. Using the work-equivalence approach, determine the
nodal forces and moments.

Figure P4.4

4.5 Use the results of Problem 4.4 to calculate the deflection at node 2 of the beam
shown in Figure P4.5 if the beam is treated as a single finite element.

Figure P4.5

qo

y

x
E, Iz, L

1 2

qo
y

x
L

q

y

x

L

L
F

M1 M2
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4.6 For the beam element of Figure P4.5, compute the reaction force and moment at
node 1. Compute the maximum bending stress assuming beam height is 2h . How
does the stress value compare to the maximum stress obtained by the strength of
materials approach?

4.7 Repeat Problem 4.5 using two equal length elements. For this problem, let
E = 30 × 106 psi, Iz = 0.1 in.4, L = 10 in., qo = 10 lb/in.

4.8 Consider the beam shown in Figure P4.8. What is the minimum number of
elements that can be used to model this problem? Construct the global nodal load
vector corresponding to your answer.

Figure P4.8

4.9 What is the justification for writing Equation 4.36 in the form of Equation 4.37?
4.10–4.15 For each beam shown in the associated figure, compute the deflection at

the element nodes. The modulus of elasticity is E = 10 × 106 psi and the
cross section is as shown in each figure. Also compute the maximum bending
stress. Use the finite element method with the minimum number of elements
for each case.

Figure P4.10

Figure P4.11

Figure P4.12

45 N/m

0.3 m0.3 m

40 mm

10 mm

30 mm

10 lb/in.

10 in. 10 in.
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500 lb
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Figure P4.13

Figure P4.14

Figure P4.15

4.16 The tapered beam element shown in Figure P4.16 has uniform thickness t and
varies linearly in height from 2h to h. Beginning with Equation 4.37, derive the
strain energy expression for the element in a form similar to Equation 4.39.

Figure P4.16

4.17 Use the result of Problem 4.16 to derive the value of component k11 of the
element stiffness matrix.

4.18 The complete stiffness matrix for the tapered element of Figure P4.16 is given by

[k] = Eth3

60L3




243 156L −243 87L
156L 56L2 −156L 42L2

−243 −156L 243 −87L
87L 42L2 −87L 45L2




y

x

L

2h h

10 in.10 in. 20 in.

200 lb 300 lb

0.25 in.

2 in.

2 in.

10 in. 8 in.8 in.

500 lb 200 lb

400 in.-lb
D1�1.5 in. D2�1.0 in.

D

18 in. 6 in.
2 in.

200 lb

1 in.

400 lb/in.



Hutton: Fundamentals of 
Finite Element Analysis

4. Flexure Elements Text © The McGraw−Hill 
Companies, 2004

128 CHAPTER 4 Flexure Elements

Figure P4.18

a. Using the given stiffness matrix with E = 10(106), compute the deflection
of node 2 for the tapered element loaded as shown in Figure P4.18a.

b. Approximate the tapered beam using two straight elements, as in
Figure P4.18b, and compute the deflection.

c. How do the deflection results compare?
d. How do the stress computations compare?

4.19 The six equilibrium equations for a beam-axial element in the element coordinate
system are expressed in matrix form as

[ke] {�} = { fe}
with {�} as given by Equation 4.61, [ke] by Equation 4.62, and { fe} as the nodal
force vector

{ fe} = [ f1x f1y M1 f2x f2y M2]T

For an element oriented at an arbitrary angle 
 relative to the global X axis,
convert the equilibrium equations to the global coordinate system and verify
Equation 4.65.

4.20 Use Equation 4.63 to express the strain energy of a beam-axial element in terms
of global displacements. Apply the principle of minimum potential energy to
derive the expression for the element equilibrium equations in the global
coordinate system. (Warning: This is algebraically tedious.)

4.21 The two-dimensional frame structure shown in Figure P4.21 is composed of
two 2 × 4 in. steel members (E = 10 × 106 psi), and the 2-in. dimension is
perpendicular to the plane of loading. All connections are treated as welded
joints. Using two beam-axial elements and the node numbers as shown,
determine

(b)

6 in. 6 in.

0.875 in.

t � 0.25 in.

10 lb

0.625 in.

(a)

12 in.

1 in. 0.5 in.

t � 0.25 in.

10 lb
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Figure P4.21

a. The global stiffness matrix.
b. The global load vector.
c. The displacement components of node 2.
d. The reaction forces and moments at nodes 1 and 3.
e. Maximum stress in each element.

4.22 Repeat Problem 4.21 for the case in which the connection at node 2 is a
pin joint.

4.23 The frame structure shown in Figure P4.23 is the support structure for a hoist
located at the point of application of load W. The supports at A and B are
completely fixed. Other connections are welded. Assuming the structure to be
modeled using the minimum number of beam-axial elements:

Figure P4.23

a. How many elements are needed?
b. What is the size of the assembled global stiffness matrix?
c. What are the constraint (boundary) conditions?
d. What is the size of the reduced global stiffness matrix after application of the

constraint conditions?
e. Assuming a finite element solution is obtained for this problem, what steps

could be taken to judge the accuracy of the solution?

W

A B

30 in.

20 lb/in.

1500 in.� lb3
2

1

1200 lb

30 in.
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4.24 Repeat Problem 4.23 for the frame structure shown in Figure P4.24.

Figure P4.24

4.25 Verify Equation 4.69 by direct calculation.
4.26 The cantilevered beam depicted in Figure P4.26 is subjected to two-plane

bending. The loads are applied such that the planes of bending correspond to the
principal moments of inertia. Noting that no axial or torsional loadings are
present, model the beam as a single element (that is, construct the 8 × 8 stiffness
matrix containing bending terms only) and compute the deflections of the free
end, node 2. Determine the exact location and magnitude of the maximum
bending stress. (Use E = 207 GPa.)

Figure P4.26

4.27 Repeat Problem 4.26 for the case in which the concentrated loads are replaced
by uniform distributed loads qy = 6 N/cm and qz = 4 N/cm acting in the positive
coordinate directions, respectively.

1.5 m 500 N

300 N

y

z

x
z

y

3 cm

6 cm

A

B
(pin joint)

W
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Residuals

5.1 INTRODUCTION
Chapters 2, 3, and 4 introduced some of the basic concepts of the finite element
method in terms of the so-called line elements. The linear elastic spring, the bar
element and the flexure element are line elements because structural properties
can be described in terms of a single spatial variable that identifies position along
the longitudinal axis of the element. The displacement-force relations for the line
elements are straightforward, as these relations are readily described using only
the concepts of elementary strength of materials. To extend the method of finite
element analysis to more general situations, particularly nonstructural appli-
cations, additional mathematical techniques are required. In this chapter, the
method of weighted residuals is described in general and Galerkin’s method of
weighted residuals [1] is emphasized as a tool for finite element formulation for
essentially any field problem governed by a differential equation.

5.2 METHOD OF WEIGHTED RESIDUALS
It is a basic fact that most practical problems in engineering are governed by
differential equations. Owing to complexities of geometry and loading, rarely
are exact solutions to the governing equations possible. Therefore, approximate
techniques for solving differential equations are indispensable in engineering
analysis. Indeed, the finite element method is such a technique. However, the
finite element method is based on several other, more-fundamental, approximate
techniques, one of which is discussed in detail in this section and subsequently
applied to finite element formulation.

The method of weighted residuals (MWR) is an approximate technique for
solving boundary value problems that utilizes trial functions satisfying the

C H A P T E R 5
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prescribed boundary conditions and an integral formulation to minimize error, in
an average sense, over the problem domain. The general concept is described
here in terms of the one-dimensional case but, as is shown in later chapters,
extension to two and three dimensions is relatively straightforward. Given a
differential equation of the general form

D[y(x ), x ] = 0 a < x < b (5.1)

subject to homogeneous boundary conditions

y(a) = y(b) = 0 (5.2)

the method of weighted residuals seeks an approximate solution in the form

y*(x ) =
n∑

i=1

ci Ni (x ) (5.3)

where y* is the approximate solution expressed as the product of ci unknown,
constant parameters to be determined and Ni (x ) trial functions. The major
requirement placed on the trial functions is that they be admissible functions;
that is, the trial functions are continuous over the domain of interest and satisfy
the specified boundary conditions exactly. In addition, the trial functions should
be selected to satisfy the “physics” of the problem in a general sense. Given these
somewhat lax conditions, it is highly unlikely that the solution represented by
Equation 5.3 is exact. Instead, on substitution of the assumed solution into the
differential Equation 5.1, a residual error (hereafter simply called residual)
results such that

R(x ) = D[y*(x ), x ] �= 0 (5.4)

where R(x) is the residual. Note that the residual is also a function of the
unknown parameters ci. The method of weighted residuals requires that the
unknown parameters ci be evaluated such that

b∫
a

wi (x ) R(x ) dx = 0 i = 1, n (5.5)

where wi (x ) represents n arbitrary weighting functions. We observe that, on
integration, Equation 5.5 results in n algebraic equations, which can be solved for
the n values of ci. Equation 5.5 expresses that the sum (integral) of the weighted
residual error over the domain of the problem is zero. Owing to the requirements
placed on the trial functions, the solution is exact at the end points (the boundary
conditions must be satisfied) but, in general, at any interior point the residual
error is nonzero. As is subsequently discussed, the MWR may capture the exact
solution under certain conditions, but this occurrence is the exception rather than
the rule.

Several variations of MWR exist and the techniques vary primarily in how
the weighting factors are determined or selected. The most common techniques
are point collocation, subdomain collocation, least squares, and Galerkin’s
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method [1]. As it is quite simple to use and readily adaptable to the finite element
method, we discuss only Galerkin’s method.

In Galerkin’s weighted residual method, the weighting functions are chosen
to be identical to the trial functions; that is,

wi (x ) = Ni (x ) i = 1, n (5.6)

Therefore, the unknown parameters are determined via
b∫

a

wi (x ) R(x ) dx =
b∫

a

Ni (x ) R(x ) = 0 i = 1, n (5.7)

again resulting in n algebraic equations for evaluation of the unknown param-
eters. The following examples illustrate details of the procedure.

Use Galerkin’s method of weighted residuals to obtain an approximate solution of the
differential equation

d2 y

dx 2
− 10x 2 = 5 0 ≤ x ≤ 1

with boundary conditions y(0) = y(1) = 0.

■ Solution
The presence of the quadratic term in the differential equation suggests that trial functions
in polynomial form are suitable. For homogeneous boundary conditions at x = a and
x = b, the general form

N (x ) = (x − xa ) p (x − xb)q

with p and q being positive integers greater than zero, automatically satisfies the bound-
ary conditions and is continuous in xa ≤ x ≤ xb . Using a single trial function, the sim-
plest such form that satisfies the stated boundary conditions is

N1(x ) = x (x − 1)

Using this trial function, the approximate solution per Equation 5.3 is

y*(x ) = c1 x (x − 1)

and the first and second derivatives are

dy*

dx
= c1(2x − 1)

d2 y*

dx 2
= 2c1

respectively. (We see, at this point, that the selected trial solution does not satisfy the
physics of the problem, since we have obtained a constant second derivative. The differ-
ential equation is such that the second derivative must be a quadratic function of x. Never-
theless, we continue the example to illustrate the procedure.)

EXAMPLE 5.1
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Substitution of the second derivative of y*(x) into the differential equation yields the
residual as

R(x ; c1) = 2c1 − 10x 2 − 5

which is clearly nonzero. Substitution into Equation 5.7 gives

1∫

0

x (x − 1)(2c1 − 10x 2 − 5) dx = 0

which after integration yields c1 = 4, so the approximate solution is obtained as

y*(x ) = 4x (x − 1)

For this relatively simple example, we can compare the approximate solution result with
the exact solution, obtained by integrating the differential equation twice as follows:

dy

dx
=

∫
d2 y

dx 2
dx =

∫
(10x 2 + 5) dx = 10x 3

3
+ 5x + C1

y(x ) =
∫

dy

dx
dx =

∫ (
10x 3

3
+ 5x + C1

)
dx = 5x 4

6
+ 5x 2

2
+ C1 x + C2

Applying the boundary condition y(0) = 0 gives C2 = 0, while the condition y(1) = 0
becomes

5

6
+ 5

2
+ C1 = 0

from which C1 = −10/3. Hence, the exact solution is given by

y(x ) = 5

6
x 4 + 5

2
x 2 − 10

3
x

0
0.10 0.2 0.3 0.4 0.5

x

y(x)

0.6 0.7 0.8 0.9 1.0

�0.2

�0.4

�0.6

�0.8

�1.0

�1.2

Exact
Galerkin

Figure 5.1 Solutions to Example 5.1.
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A graphical comparison of the two solutions is depicted in Figure 5.1, which shows that
the approximate solution is in reasonable agreement with the exact solution. However,
note that the one-term approximate solution is symmetric over the interval of interest.
That this is not correct can be seen by examining the differential equation. The prime
driving “force” is the quadratic term in x; therefore, it is unlikely that the solution is
symmetric. The following example expands the solution and shows how the method
approaches the exact solution.

Obtain a two-term Galerkin solution for the problem of Example 5.1 using the trial
functions

N1(x ) = x (x − 1) N2(x ) = x 2(x − 1)

■ Solution
The two-term approximate solution is

y* = c1 x (x − 1) + c2 x 2(x − 1)

and the second derivative is

d2 y*

dx 2
= 2c1 + 2c2(3x − 1)

Substituting into the differential equation, we obtain the residual

R(x ; c1, c2) = 2c1 + 2c2(3x − 1) − 10x 2 − 5

Using the trial functions as the weighting functions per Galerkin’s method, the residual
equations become

1∫

0

x (x − 1)[2c1 + 2c2(3x − 1) − 10x 2 − 5] dx = 0

1∫

0

x 2(x − 1)[2c1 + 2c2(3x − 1) − 10x 2 − 5] dx = 0

After integration and simplification, we obtain the algebraic equations

− c1

3
− c2

6
+ 4

3
= 0

− c1

6
− 2c2

15
+ 3

4
= 0

Simultaneous solution results in

c1 = 19

6
c2 = 5

3

EXAMPLE 5.2
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so the two-term approximate solution is

y* = 19

6
x (x − 1) + 5

3
x 2(x − 1) = 5

3
x 3 + 3

2
x 2 − 19

6
x

For comparison, the exact, one-term and two-term solutions are plotted in Figure 5.2. The
differences in the exact and two-term solutions are barely discernible.

Use Galerkin’s method of weighted residuals to obtain a one-term approximation to the
solution of the differential equation

d2 y

dx 2
+ y = 4x 0 ≤ x ≤ 1

with boundary conditions y(0) = 0, y(1) = 1.

■ Solution
Here the boundary conditions are not homogeneous, so a modification is required. Unlike
the case of homogeneous boundary conditions, it is not possible to construct a trial solu-
tion of the form c1 N1(x ) that satisfies both stated boundary conditions. Instead, we as-
sume a trial solution as

y* = c1 N1(x ) + f (x )

where N1(x ) satisfies the homogeneous boundary conditions and f(x) is chosen to
satisfy the nonhomogeneous condition. (Note that, if both boundary conditions were
nonhomogeneous, two such functions would be included.) One such solution is

y* = c1 x (x − 1) + x

which satisfies y(0) = 0 and y(1) = 1 identically.

EXAMPLE 5.3

0
0.10 0.2 0.3 0.4 0.5

x

y(x)

0.6 0.7 0.8 0.9 1.0

�0.2

�0.4

�0.6

�0.8

�1.0

�1.2

Exact
1 term
2 terms

Figure 5.2 Solutions to Example 5.2.
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Substitution into the differential equation results in the residual

R(x ; c1) = d2 y*

dx 2
+ y* − 4x = 2c1 + c1 x 2 − c1 x + x − 4x = c1 x 2 − c1 x + 2c1 − 3x

and the weighted residual integral becomes

1∫

0

N1(x ) R(x ; c1) dx =
1∫

0

x (x − 1)(c1 x 2 + c1 x − 2c1 − 3x ) dx = 0

While algebraically tedious, the integration is straightforward and yields

c1 = 5/6

so the approximate solution is

y*(x ) = 5

6
x (x − 1) + x = 5

6
x 2 + 1

6
x

As in the previous example, we have the luxury of comparing the approximate solution
to the exact solution, which is 

y(x ) = 4x − 3.565 sin x

The approximate solution and the exact solution are shown in Figure 5.3 for comparison.
Again, the agreement is observed to be reasonable but could be improved by adding a
second trial function.

How does one know when the MWR solution is accurate enough? That is,
how do we determine whether the solution is close to the exact solution? This
question of convergence must be addressed in all approximate solution tech-
niques. If we do not know the exact solution, and we seldom do, we must

1.2

0.10 0.2 0.3 0.4 0.5
x

y(x)

0.6 0.7 0.8 0.9 1.0

1.0

0.8

0.6

0.4

0.2

0

Exact
Galerkin

Figure 5.3 Solutions to Example 5.3.
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develop some criterion to determine accuracy. In general, for the method of
weighted residuals, the procedure is to continue obtaining solutions while
increasing the number of trial functions and note the behavior of the solution. If
the solution changes very little as we increase the number of trial functions, we
can say that the solution converges. Whether the solution converges to the cor-
rect solution is yet another question. While beyond the scope of this book, a large
body of theoretical mathematics addresses the questions of convergence and
whether the convergence is to the correct solution. In the context of this work, we
assume that a converging solution converges to the correct solution. Certain
checks, external to the solution procedure, can be made to determine the “reason-
ableness” of a numerical solution in the case of physical problems. These checks
include equilibrium, energy balance, heat and fluid flow balance, and others dis-
cussed in following chapters.

In the previous examples, we used trial functions “concocted” to satisfy
boundary conditions automatically but not based on a systematic procedure.
While absolutely nothing is wrong with this approach, we now present a proce-
dure, based on polynomial trial functions, that gives a method for increasing the
number of trial functions systematically and, hence, aids in examining conver-
gence. The procedure is illustrated in the context of the following example.

Solve the problem of Examples 5.1 and 5.2 by assuming a general polynomial form for
the solution as

y*(x ) = c0 + c1 x + c2 x 2 + · · ·

■ Solution
For a first trial, we take only the quadratic form

y*(x ) = c0 + c1 x + c2 x 2

and apply the boundary conditions to obtain

y*(0) = 0 = c0

y*(1) = 0 = c1 + c2

The second boundary condition equations show that c1 and c2 are not independent if the
homogeneous boundary condition is to be satisfied exactly. Instead, we obtain the con-
straint relation c2 = −c1 . The trial solution becomes

y*(x ) = c1 x + c2 x 2 = c1 x − c1 x 2 = c1 x (1 − x )

and is the same as the solution obtained in Example 5.1.
Next we add the cubic term and write the trial solution as

y*(x ) = c0 + c1 x + c2 x 2 + c3 x 3

EXAMPLE 5.4
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Application of the boundary conditions results in

y*(0) = 0 = c0

y*(1) = 0 = c1 + c2 + c3

so we have the constraint relation

c1 + c2 + c3 = 0

Expressing the constraint as c3 = −(c1 + c2), the trial solution becomes

y*(x ) = c1 x + c2 x 2 + c3 x 3 = c1 x + c2 x 2 − (c1 + c2)x 3 = c1 x (1 − x 2) + c2 x 2(1 − x )

and we have obtained two trial functions, each identically satisfying the boundary condi-
tions. Determination of the constants for the two-term solution is left as and end-of-
chapter exercise. Instead, we add the quartic term and examine the trial solution

y*(x ) = c0 + c1 x + c2 x 2 + c3 x 3 + c4 x 4

and the boundary conditions give
c0 = 0

c1 + c2 + c3 + c4 = 0

We use the constraint relation to eliminate (arbitrarily) c4 to obtain

y*(x ) = c1 x + c2 x 2 + c3 x 3 − (c1 + c2 + c3)x 4

= c1 x (1 − x 3) + c2 x 2(1 − x 2) + c3 x 3(1 − x )

Substituting into the differential equation, the residual is found to be

R(x ; c1, c2, c3) = −12c1 x 2 + c2(2 − 12x 2) + c3(6x − 12x 2) − 10x 2 − 5

If we set the residual expression equal to zero and equate coefficients of powers of x, we
find that the residual is exactly zero if

c1 = − 10

3

c2 = 5

2
c3 = 0

c4 = 5

6

so that y*(x ) = 5

6
x 4 + 5

2
x 2 − 10

3
x and we have obtained the exact solution.

The procedure detailed in the previous example represents a systematic pro-
cedure for developing polynomial trial functions and is also applicable to the
case of nonhomogeneous boundary conditions. Algebraically, the process is
straightforward but becomes quite tedious as the number of trial functions is
increased (i.e., the order of the polynomial). Having outlined the general tech-
nique of Galerkin’s method of weighted residuals, we now develop Galerkin’s
finite element method based on MWR.
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5.3 THE GALERKIN FINITE ELEMENT METHOD
The classic method of weighted residuals described in the previous section
utilizes trial functions that are global; that is, each trial function must apply over
the entire domain of interest and identically satisfy the boundary conditions. Par-
ticularly in the more practical cases of two- and three-dimensional problems
governed by partial differential equations, “discovery” of appropriate trial func-
tions and determination of the accuracy of the resulting solutions are formi-
dable tasks. However, the concept of minimizing the residual error is readily
adapted to the finite element context using the Galerkin approach as follows. For
illustrative purposes, we consider the differential equation

d2 y

dx 2
+ f (x ) = 0 a ≤ x ≤ b (5.8)

subject to boundary conditions

y(a) = ya y(b) = yb (5.9)

The problem domain is divided into M “elements” (Figure 5.4a) bounded by
M + 1 values xi of the independent variable, so that x1 = xa and xM+1 = xb to

(a)

1

x1

(xa) (xb)

x2 x3 xM xM�1

2 3 M

Figure 5.4
(a) Domain xa ≤ x ≤ xb discretized into M elements. (b) First four trial functions. Note the overlap
of only two trial functions in each element domain.

(b)

0
x1

n1(x)

x2 x3 x4 x5

1

0 x1

n2(x)

x2 x3 x4 x5

1

0
x1

n3(x)

x2 x3 x4 x5

1

0
x1

n4(x)

x2 x3 x4 x5

1
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ensure inclusion of the global boundaries. An approximate solution is assumed
in the form

y*(x ) =
M+1∑
i=1

yi ni (x ) (5.10)

where yi is the value of the solution function at x = xi and ni (x ) is a correspond-
ing trial function. Note that, in this approach, the unknown constant parameters
ci of the method of weighted residuals become unknown discrete values of the
solution function evaluated at specific points in the domain. There also exists a
major difference in the trial functions. As used in Equation 5.10, the trial func-
tions ni(x) are nonzero over only a small portion of the global problem domain.
Specifically, a trial function ni (x ) is nonzero only in the interval xi−1 < x < xi+1,
and for ease of illustration, we use linear functions defined as follows:

ni (x ) = x − xi−1

xi − xi−1
xi−1 ≤ x ≤ xi

ni (x ) = xi+1 − x

xi+1 − xi
xi ≤ x ≤ xi+1 (5.11)

ni (x ) = 0 x < xi−1 x > xi+1

Clearly, in this case, the trial functions are simply linear interpolation functions
such that the value of the solution y(x ) in xi < x < xi+1 is a linear combination
of adjacent “nodal” values yi and yi+1. The first four trial functions are as shown
in Figure 5.4b, and we observe that, in the interval x2 ≤ x ≤ x3, for example, the
approximate solution as given by Equation 5.10 is

y*(x ) = y2n2(x ) + y3n3(x ) = y2
x3 − x

x3 − x2
+ y3

x − x2

x3 − x2
(5.12)

(The trial functions used here are linear but higher-order functions can also be
used, as is subsequently demonstrated by application of the technique to a beam
element.)

Substitution of the assumed solution (5.10) into the governing Equation 5.8
yields the residual

R(x ; yi ) =
M+1∑
i=1

[
d2 y*

dx 2
+ f (x )

]
=

M+1∑
i=1

[
d2

dx 2
{yi ni (x )} + f (x )

]
(5.13)

to which we apply Galerkin’s weighted residual method, using each trial function
as a weighting function, to obtain

xb∫
xa

n j (x ) R(x ; yi ) dx =
xb∫

xa

n j (x )
M+1∑
i=1

[
d2

dx 2
{yi ni (x )} + f (x )

]
dx = 0

j = 1, M + 1 (5.14)
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In light of Equation 5.11 and Figure 5.4b, we observe that, in any interval
xj ≤ x ≤ xj+1, only two of the trial functions are nonzero. Taking this observa-
tion into account, Equation 5.14 can be expressed as

xj+1∫
xj

n j (x )

[
d2

dx 2
(yj n j (x ) + yj+1n j+1(x )) + f (x )

]
dx = 0 j = 1, M + 1

(5.15)

Integration of Equation 5.15 yields M + 1 algebraic equations in the M + 1 un-
known nodal solution values yj, and these equations can be written in the matrix
form

[K ]{y} = {F } (5.16)

where [K ] is the system “stiffness” matrix, {y} is the vector of nodal “displace-
ments” and {F } is the vector of nodal “forces.” Equation 5.14 is the formal
statement of the Galerkin finite element method and includes both element for-
mation and system assembly steps. Written in terms of integration over the full
problem domain, this formulation clearly shows the mathematical basis in the
method of weighted residuals. However, Equations 5.15 show that integration
over only each element is required for each of the equations. We now proceed to
examine separate element formulation based on Galerkin’s method.

5.3.1 Element Formulation

If the exact solution for Equation 5.8 is obtained, then that solution satisfies the
equation in any subdomain in (a, b) as well. Consider the problem

d2 y

dx 2
+ f (x ) = 0 xj ≤ x ≤ xj+1 (5.17)

where xj and xj+1 are contained in (a, b) and define the nodes of a finite element.
The appropriate boundary conditions applicable to Equation 5.17 are

y(xj ) = yj y(xj+1) = yj+1 (5.18)

and these are the unknown values of the solution at the end points of the sub-
domain. Next we propose an approximate solution of the form

y (e)(x ) = yj N1(x ) + yj+1 N2(x ) (5.19)

where superscript (e) indicates that the solution is for the finite element and the
interpolation functions are now defined as

N1(x ) = xj+1 − x

xj+1 − xj
x j ≤ x ≤ xj+1 (5.20a)

N2(x ) = x − xj

x j+1 − xj
x j ≤ x ≤ xj+1 (5.20b)
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Note the relation between the interpolation functions defined in Equation 5.20
and the trial functions in Equation 5.11. The interpolation functions correspond
to the overlapping portions of the trial functions applicable in a single element
domain. Also note that the interpolation functions satisfy the conditions

N1(x = xj ) = 1 N1(x = xj+1) = 0

N2(x = xj ) = 0 N2(x = xj+1) = 1
(5.21)

such that the element boundary (nodal) conditions, Equation 5.18, are identically
satisfied. Substitution of the assumed solution into Equation 5.19 gives the resid-
ual as

R (e)(x ; yj , yj+1) = d2 y (e)

dx 2
+ f (x ) = d2

dx 2
[yj N1(x ) + yj+1 N2(x )] + f (x ) �= 0

(5.22)

where the superscript is again used to indicate that the residual is for the element.
Applying the Galerkin weighted residual criterion results in 

xj+1∫
xj

Ni (x ) R (e)(x ; yj , yj+1) dx =
xj+1∫
xj

Ni (x )

[
d2 y (e)

dx 2
+ f (x )

]
dx = 0 i = 1, 2

(5.23)
or

xj+1∫
xj

Ni (x )
d2 y (e)

dx 2
dx +

xj+1∫
xj

Ni (x ) f (x ) dx = 0 i = 1, 2 (5.24)

as the element residual equations. 
Applying integration by parts to the first integral results in

Ni (x )
dy (e)

dx

∣∣∣∣
xj+1

xj

−
xj+1∫
xj

dNi

dx

dy (e)

dx
dx +

xj+1∫
xj

Ni (x ) f (x ) dx = 0 i = 1, 2

(5.25)

which, after evaluation of the nonintegral term and rearranging is equivalent to
the two equations, is

xj+1∫
xj

dN1

dx

dy (e)

dx
dx =

xj+1∫
xj

N1(x ) f (x ) dx + dy (e)

dx

∣∣∣∣
xj

(5.26a)

xj+1∫
xj

dN2

dx

dy (e)

dx
dx =

xj+1∫
xj

N2(x ) f (x ) dx − dy (e)

dx

∣∣∣∣
xj+1

(5.26b)

Note that, in arriving at the form of Equation 5.26, explicit use has been made of
Equation 5.21 in evaluation of the interpolation functions at the element nodes.
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Integration of Equation 5.24 by parts results in three benefits [2]:

1. The highest order of the derivatives appearing in the element equations has
been reduced by one.

2. As will be observed explicitly, the stiffness matrix was made symmetric.
If we did not integrate by parts, one of the trial functions in each equation
would be differentiated twice and the other trial function not differentiated
at all.

3. Integration by parts introduces the gradient boundary conditions at the
element nodes. The physical significance of the gradient boundary
conditions becomes apparent in subsequent physical applications.

Setting j = 1 for notational simplicity and substituting Equation 5.19 into
Equation 5.26 yields

x2∫
x1

dN1

dx

[
y1

dN1

dx
+ y2

dN2

dx

]
dx =

x2∫
x1

N1(x ) f (x ) dx + dy (e)

dx

∣∣∣∣
x1

(5.27a)

x2∫
x1

dN2

dx

[
y1

dN1

dx
+ y2

dN2

dx 2

]
dx =

x2∫
x1

N2(x ) f (x ) dx − dy (e)

dx

∣∣∣∣
x2

(5.27b)

which are of the form [
k11 k12

k21 k22

] {
y1

y2

}
=

{
F1

F2

}
(5.28)

The terms of the coefficient (element stiffness) matrix are defined by

ki j =
x2∫

x1

dNi

dx

dNj

dx
dx i, j = 1, 2 (5.29)

and the element nodal forces are given by the right-hand sides of Equation 5.27.
If the described Galerkin procedure for element formulation is followed and

the system equations are assembled in the usual manner of the direct stiffness
method, the resulting system equations are identical in every respect to those
obtained by the procedure represented by Equation 5.13. It is important to
observe that, during the assembly process, when two elements are joined at a
common node as in Figure 5.5, for example, the assembled system equation for
the node contains a term on the right-hand side of the form

− dy (3)

dx

∣∣∣∣
x4

+ dy (4)

dx

∣∣∣∣
x4

(5.30)

If the finite element solution were the exact solution, the first derivatives for each
element indicated in expression 5.30 would be equal and the value of the expres-
sion would be zero. However, finite element solutions are seldom exact, so these
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terms are not, in general, zero. Nevertheless, in the assembly procedure, it is
assumed that, at all interior nodes, the gradient terms appear as equal and oppo-
site from the adjacent elements and thus cancel unless an external influence acts
at the node. At global boundary nodes however, the gradient terms may be spec-
ified boundary conditions or represent “reactions” obtained via the solution
phase. In fact, a very powerful technique for assessing accuracy of finite element
solutions is to examine the magnitude of gradient discontinuities at nodes or,
more generally, interelement boundaries. 

Use Galerkin’s method to formulate a linear finite element for solving the differential
equation

x
d2 y

dx 2
+ dy

dx
− 4x = 0 1 ≤ x ≤ 2

subject to y(1) = y(2) = 0.

■ Solution
First, note that the differential equation is equivalent to

d

dx

(
x

dy

dx

)
− 4x = 0

which, after two direct integrations and application of boundary conditions, has the exact
solution

y(x ) = x 2 − 3

ln 2
ln x − 1

For the finite element solution, the simplest approach is to use a two-node element for
which the element solution is assumed as

y(x ) = N1(x ) y1 + N2(x ) y2 = x2 − x

x2 − x1
y1 + x − x1

x2 − x1
y2

where y1 and y2 are the nodal values. The residual equation for the element is
x2∫

x1

Ni

[
d

dx

(
x

dy

dx

)
− 4x

]
dx = 0 i = 1, 2

x3 x4 x5

3 4

y(3)(x4) � y(4)(x4)

dy(3)

dx x4

dy(4)

dx x4
�

Figure 5.5 Two elements
joined at a node.

EXAMPLE 5.5
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which becomes, after integration of the first term by parts,

Ni x
dy

dx

∣∣∣∣
x2

x1

−
x2∫

x1

x
dNi

dx

dy

dx
dx −

x2∫
x1

4x Ni dx = 0 i = 1, 2

Substituting the element solution form and rearranging, we have
x2∫

x1

x
dNi

dx

(
dN1

dx
y1 + dN2

dx
y2

)
dx = Ni x

dy

dx

∣∣∣∣
x2

x1

−
x2∫

x1

4x Ni dx i = 1, 2

Expanding the two equations represented by the last result after substitution for the inter-
polation functions and first derivatives yields

1

(x2 − x1)2

x2∫
x1

x ( y1 − y2) dx = −x1
dy

dx

∣∣∣∣
x1

− 4

x2∫
x1

x
x2 − x

x2 − x1
dx

1

(x2 − x1)2

x2∫
x1

x ( y2 − y1) dx = x2
dy

dx

∣∣∣∣
x2

− 4

x2∫
x1

x
x − x1

x2 − x1
dx

Integration of the terms on the left reveals the element stiffness matrix as

[
k (e)

] = x 2
2 − x 2

1

2(x2 − x1)2

[
1 −1

−1 1

]

while the gradient boundary conditions and nodal forces are evident on the right-hand
side of the equations.

To illustrate, a two-element solution is formulated by taking equally spaced nodes at
x = 1, 1.5, 2 as follows.

Element 1

x1 = 1 x2 = 1.5 k = 2.5

F (1)
1 = −4

1.5∫

1

x
1.5 − x

1.5 − 1
dx = −1.166666 . . .

F (1)
2 = −4

1.5∫

1

x
x − 1

1.5 − 1
dx = −1.33333 . . .

Element 2

x1 = 1.5 x2 = 2 k = 3.5

F (2)
1 = −4

2∫

1.5

x
2 − x

2 − 1.5
dx = −1.66666 . . .

F (2)
2 = −4

2∫

1.5

x
x − 1.5

2 − 1.5
dx = −1.83333 . . .



Hutton: Fundamentals of 
Finite Element Analysis

5. Method of Weighted 
Residuals

Text © The McGraw−Hill 
Companies, 2004

5.3 The Galerkin Finite Element Method 147

The element equations are then

[
2.5 −2.5

−2.5 2.5

]{
y(1)

1

y(1)
2

}
=




−1.1667 − dy

dx

∣∣∣∣
x1

−1.3333 + 1.5
dy

dx

∣∣∣∣
x2




[
3.5 −3.5

−3.5 3.5

]{
y(2)

1

y(2)
2

}
=




−1.6667 − 1.5
dy

dx

∣∣∣∣
x2

−1.8333 + 2
dy

dx

∣∣∣∣
x3




Denoting the system nodal values as Y1, Y2, Y3 at x = 1, 1.5, 2, respectively, the assem-
bled system equations are


 2.5 −2.5 0

−2.5 6 −3.5
0 −3.5 3.5







Y1

Y2

Y3


 =




−1.1667 − dy

dx

∣∣∣∣
x1

−3

−1.8333 + 2
dy

dx

∣∣∣∣
x3




Applying the global boundary conditions Y1 = Y3 = 0, the second of the indicated equa-
tions gives Y2 = −0.5 and substitution of this value into the other two equations yields
the values of the gradients at the boundaries as

dy

dx

∣∣∣∣
x1

= −2.4167
dy

dx

∣∣∣∣∣
x3

= 1.7917

For comparison, the exact solution gives

y(x = 1.5) = Y2 = −0.5049
dy

dx

∣∣∣∣
x1

= −2.3281
dy

dx

∣∣∣∣
x3

= 1.8360

While the details will be left as an end-of-chapter problem, a four-element solution
for this example (again, using equally spaced nodes xi ⇒ (1, 1.25, 1.5, 1.75, 2)) results
in the global equations




4.5 −4.5 0 0 0
−4.5 10 −5.5 0 0

0 −5.5 12 −6.5 0
0 0 −6.5 14 −7.5
0 0 0 −7.5 7.5







Y1

Y2

Y3

Y4

Y5




=




−0.5417 − dy

dx

∣∣∣∣
x1−1.25

−1.5
−1.75

−0.9583 + 2
dy

dx

∣∣∣∣
x5




Applying the boundary conditions Y1 = Y5 = 0 and solving the remaining 3 × 3 system
gives the results

Y2 = −0.4026

Y3 = −0.5047

Y4 = −0.3603

dy

dx

∣∣∣∣
x1

= −2.350

dy

dx

∣∣∣∣
x5

= 1.831



Hutton: Fundamentals of 
Finite Element Analysis

5. Method of Weighted 
Residuals

Text © The McGraw−Hill 
Companies, 2004

148 CHAPTER 5 Method of Weighted Residuals

For comparison, the exact, two-element, and four-element solutions are shown in Fig-
ure 5.6. The two-element solution is seen to be a crude approximation except at the
element nodes and derivative discontinuity is significant. The four-element solution has
the computed values of y(x) at the nodes being nearly identical to the exact solution. With
four elements, the magnitudes of the discontinuities of first derivatives at the nodes are
reduced but still readily apparent. 

5.4 APPLICATION OF GALERKIN’S METHOD
TO STRUCTURAL ELEMENTS

5.4.1 Spar Element

Reconsidering the elastic bar or spar element of Chapter 2 and recalling that the
bar is a constant strain (therefore, constant stress) element, the applicable equi-
librium equation is obtained using Equations 2.29 and 2.30 as

d�x

dx
= d

dx
( Eεx ) = E

d2u(x )

dx 2
= 0 (5.31)

where we assume constant elastic modulus. Denoting element length by L, the
displacement field is discretized by Equation 2.17:

u(x ) = u1 N1(x ) + u2 N2(x ) = u1

(
1 − x

L

)
+ u2

x

L
(5.32)

0
1.25 1.5 1.75 2.0

�0.1

�0.2

�0.3

�0.4

�0.5

�0.6

Exact

Two elements

Four elements

Figure 5.6 Two-element, four-element, and exact
solutions to Example 5.5.
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And, since the domain of interest is the volume of the element, the Galerkin
residual equations become

∫∫∫
V

Ni (x )

(
E

d2u

dx 2

)
dV =

L∫
0

Ni

(
E

d2u

dx 2

)
A dx = 0 i = 1, 2 (5.33)

where dV = A dx and A is the constant cross-sectional area of the element.
Integrating by parts and rearranging, we obtain

AE

L∫
0

dNi

dx

du

dx
dx =

[
Ni AE

du

dx

∣∣∣∣
L

0

(5.34)

which, utilizing Equation 5.32, becomes

AE

L∫
0

dN1

dx

d

dx
(u1 N1 + u2 N2) dx = −AE

du

dx

∣∣∣∣
x=0

= −AE ε|x=0 = −A�|x=0

(5.35a)

AE

L∫
0

dN2

dx

d

dx
(u1 N1 + u2 N2) dx = AE

du

dx

∣∣∣∣∣
x=L

= AEε|x=L = A�x=L

(5.35b)

From the right sides of Equation 5.35, we observe that, for the bar element, the
gradient boundary condition simply represents the applied nodal force since
� A = F.

Equation 5.35 is readily combined into matrix form as

AE

L∫
0




dN1

dx

dN1

dx

dN1

dx

dN2

dx

dN1

dx

dN2

dx

dN2

dx

dN2

dx


dx

{
u1

u2

}
=

{
F1

F2

}
(5.36)

where the individual terms of the matrix are integrated independently.
Carrying out the indicated differentiations and integrations, we obtain

AE

L

[
1 −1

−1 1

] {
u1

u2

}
=

{
F1

F2

}
(5.37)

which is the same result as obtained in Chapter 2 for the bar element. This sim-
ply illustrates the equivalence of Galerkin’s method and the methods of equilib-
rium and energy (Castigliano) used earlier for the bar element. 

5.4.2 Beam Element

Application of the Galerkin method to the beam element begins with consid-
eration of the equilibrium conditions of a differential section taken along the
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longitudinal axis of a loaded beam as depicted in Figure 5.7 where q(x) repre-
sents a distributed load expressed as force per unit length. Whereas q may vary
arbitrarily, it is assumed to be constant over a differential length dx . The condi-
tion of force equilibrium in the y direction is

−V +
(

V + dV

dx
dx

)
+ q (x ) dx = 0 (5.38)

from which

dV

dx
= −q (x ) (5.39)

Moment equilibrium about a point on the left face is expressed as

M + dM

dx
dx − M +

(
V + dV

dx
dx

)
dx + [q (x ) dx ]

dx

2
= 0 (5.40)

which (neglecting second-order differentials) gives

dM

dx
= −V (5.41)

Combining Equations 5.39 and 5.41, we obtain

d2 M

dx 2
= q (x ) (5.42)

Recalling, from the elementary strength of materials theory, the flexure formula
corresponding to the sign conventions of Figure 5.7 is

M = E Iz
d2v

dx 2
(5.43)

(where in keeping with the notation of Chapter 4, v represents displacement in
the y direction), which in combination with Equation 5.42 provides the govern-
ing equation for beam flexure as

d2

dx 2

(
E Iz

d2v

dx 2

)
= q (x ) (5.44)

dx

q(x)

x

y

M

V

M � dx
dM
dx

V � dx
dV
dx

Figure 5.7 Differential section of a loaded beam.



Hutton: Fundamentals of 
Finite Element Analysis

5. Method of Weighted 
Residuals

Text © The McGraw−Hill 
Companies, 2004

5.4 Application of Galerkin’s Method to Structural Elements 151

Galerkin’s finite element method is applied by taking the displacement solu-
tion in the form

v(x ) = N1(x )v1 + N2(x )�1 + N3(x )v2 + N4(x )�2 =
4∑

i=1

Ni (x )�i (5.45)

as in Chapter 4, using the interpolation functions of Equation 4.26. Therefore, the
element residual equations are

x2∫
x1

Ni (x )

[
d2

dx 2

(
EIz

d2v

dx 2

)
− q (x ) dx

]
= 0 i = 1, 4 (5.46)

Integrating the derivative term by parts and assuming a constant EIz, we obtain

Ni (x ) EIz
d3v

dx 3

∣∣∣∣
x2

x1

− EIz

x2∫
x1

dNi

dx

d3v

dx 3
dx −

x2∫
x1

Ni q (x ) dx = 0 i = 1, 4 (5.47)

and since

V = − dM

dx
= − d

dx

(
EIz

d2v

dx 2

)
= −EIz

d3v

dx 3
(5.48)

we observe that the first term of Equation 5.47 represents the shear force condi-
tions at the element nodes. Integrating again by parts and rearranging gives

EIz

x2∫
x1

d2 Ni

dx 2

d2v

dx 2
dx =

x2∫
x1

Ni q (x ) dx − Ni EIz
d3v

dx 3

∣∣∣∣
x2

x1

+ dNi

dx
EIz

d2v

dx 2

∣∣∣∣
x2

x1

i = 1, 4 (5.49)

and, per Equation 5.43, the last term on the right introduces the moment condi-
tions at the element boundaries. Integration by parts was performed twice in the
preceding development for reasons similar to those mentioned in the context of
the bar element. By so doing, the order of the two derivative terms appearing in
the first integral in Equation 5.49 are the same, and the resulting stiffness matrix
is thus symmetric, and the shear forces and bending moments at element nodes
now explicitly appear in the element equations.

Equation 5.49 can be written in the matrix form [k]{�} = {F } where the
terms of the stiffness matrix are defined by

ki j = EIz

x2∫
x1

d2 Ni

dx 2

d2 Nj

dx 2
dx i, j = 1, 4 (5.50)
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which is identical to results previously obtained by other methods. The terms of
the element force vector are defined by

Fi =
x2∫

x1

Ni q (x ) dx − Ni EI z
d3v

dx 3

∣∣∣∣
x2

x1

+ dNi

dx
EI z

d2v

dx 2

∣∣∣∣
x2

x1

i = 1, 4 (5.51a)

or, using Equations 5.43 and 5.48,

Fi =
x2∫

x1

Ni q (x ) dx + Ni V (x )|x2
x1

+ dNi

dx
M (x )|x2

x1
i = 1, 4 (5.51b)

where the integral term represents the equivalent nodal forces and moments pro-
duced by the distributed load. If q (x ) = q = constant (positive upward), substi-
tution of the interpolation functions into Equation 5.51 gives the element nodal
force vector as

{F} =




q L

2
− V1

q L2

12
− M1

q L

2
+ V2

−q L2

12
+ M2




(5.52)

Where two beam elements share a common node, one of two possibilities
occurs regarding the shear and moment conditions:

1. If no external force or moment is applied at the node, the shear and
moment values of Equation 5.52 for the adjacent elements are equal and
opposite, cancelling in the assembly step.

2. If a concentrated force is applied at the node, the sum of the boundary
shear forces for the adjacent elements must equal the applied force.

Similarly, if a concentrated moment is applied, the sum of the boundary bending
moments must equal the applied moment. Equation 5.52 shows that the effects of
a distributed load are allocated to the element nodes. Finite element software
packages most often allow the user to specify a “pressure” on the transverse face
of the beam. The specified pressure actually represents a distributed load and is
converted to the nodal equivalent loads in the software.

5.5 ONE-DIMENSIONAL HEAT CONDUCTION
Application of the Galerkin finite method to the problem of one-dimensional,
steady-state heat conduction is developed with reference to Figure 5.8a, which
depicts a solid body undergoing heat conduction in the direction of the x axis
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only. Surfaces of the body normal to the x axis are assumed to be perfectly
insulated, so that no heat loss occurs through these surfaces. Figure 5.8b shows
the control volume of differential length dx of the body, which is assumed to be
of constant cross-sectional area and uniform material properties. The principle of
conservation of energy is applied to obtain the governing equation as follows:

E in + Egenerated = E increase + Eout (5.53)

Equation 5.53 states that the energy entering the control volume plus energy gen-
erated internally by any heat source present must equal the increase in internal
energy plus the energy leaving the control volume. For the volume of Fig-
ure 5.8b, during a time interval dt, Equation 5.53 is expressed as

qx A dt + Q A dx dt = �U +
(

qx + ∂qx

∂x
dx

)
A dt (5.54)

where
qx = heat flux across boundary (W/m2, Btu/hr-ft2);
Q = internal heat generation rate (W/m3, Btu/hr-ft3);
U = internal energy (W, Btu).

The last term on the right side of Equation 5.54 is a two-term Taylor series
expansion of qx(x, t) evaluated at x + dx . Note the use of partial differentiation,
since for now, we assume that the dependent variables vary with time as well as
spatial position.

The heat flux is expressed in terms of the temperature gradient via Fourier’s
law of heat conduction:

qx = −kx
∂T

∂x
(5.55)

(a)

qx(xa)

qx(xb)

x

a

b

Insulated

Figure 5.8 Insulated body in one-dimensional heat
conduction.

(b)

qx

dx

A

qx � dx
dqx

dx
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where kx = material thermal conductivity in the x direction (W/m-°C,
Btu/hr-ft-°F) and T = T (x , t ) is temperature. The increase in internal energy is

�U = c� A dx dT (5.56)
where

c = material specific heat (J/kg-°C, Btu/slug-°F);
� = material density (kg/m 3, slug/ft 3).

Substituting Equations 5.55 and 5.56 into 5.54 gives

Q A dx dt = c� A dx dT + ∂

∂x

(
−kx

∂T

∂x

)
A dx dt (5.57)

Assuming that the thermal conductivity is constant, Equation 5.57 becomes

Q = c�
∂T

∂ t
− kx

∂T 2

∂x 2
(5.58)

For now we are interested only in steady-state heat conduction and for the steady
state ∂T /∂t = 0, so the governing equation for steady-state, one-dimensional
conduction is obtained as

kx
d2T

dx 2
+ Q = 0 (5.59)

Next, the Galerkin finite element method is applied to Equation 5.59 to
obtain the element equations. A two-node element with linear interpolation func-
tions is used and the temperature distribution in an element expressed as

T (x ) = N1(x )T1 + N2(x )T2 (5.60)

where T1 and T2 are the temperatures at nodes 1 and 2, which define the element,
and the interpolation functions N1 and N2 are given by Equation 5.20. As in pre-
vious examples, substitution of the discretized solution (5.60) into the governing
differential Equation 5.55 results in the residual integrals:

x2∫
x1

(
kx

d2T

dx2
+ Q

)
Ni (x) A dx = 0 i = 1, 2 (5.61)

where we note that the integration is over the volume of the element, that is, the
domain of the problem, with dV = A dx .

Integrating the first term by parts (for reasons already discussed) yields

kx AN i (x )
dT

dx

∣∣∣∣
x1

x1

− kx A

x2∫
x1

dNi

dx

dT

dx
dx + A

x2∫
x1

Q N i (x ) dx = 0 i = 1, 2

(5.62)
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Evaluating the first term at the limits as indicated, substituting Equation 5.60
into the second term, and rearranging, Equation 5.58 results in the two
equations

kx A

x2∫
x1

dN1

dx

(
dN1

dx
T1 + dN2

dx
T2

)
dx = A

x2∫
x1

Q N 1 dx − kx A
dT

d x

∣∣∣∣
x1

(5.63)

kx A

x2∫
x1

dN2

dx

(
dN1

dx
T1 + dN2

dx
T2

)
dx = A

x2∫
x1

Q N 2 dx + kx A
dT

dx

∣∣∣∣
x2

(5.64)

Equations 5.63 and 5.64 are of the form

[k]{T } = { fQ} + { fg} (5.65)

where [k] is the element conductance (“stiffness”) matrix having terms defined
by

klm = kx A

x2∫
x1

dNl

dx

dNm

dx
dx l , m = 1, 2 (5.66)

The first term on the right-hand side of Equation 5.65 is the nodal “force” vector
arising from internal heat generation with values defined by

fQ1 = A

x2∫
x1

Q N 1 dx

fQ2 = A

x2∫
x1

Q N 2 dx

(5.67)

and vector { fg} represents the gradient boundary conditions at the element
nodes. Performing the integrations indicated in Equation 5.66 gives the conduc-
tance matrix as

[k] = kx A

L

[
1 −1

−1 1

]
(5.68)

while for constant internal heat generation Q, Equation 5.67 results in the nodal
vector

{ fQ} =




Q AL

2
Q AL

2




(5.69)
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The element gradient boundary conditions, using Equation 5.55, described by

{ fg} = kx A




−dT

dx

∣∣∣∣
x1

dT

dx

∣∣∣∣
x2




= A

{
q|x1

−q|x2

}
(5.70)

are such that, at internal nodes where elements are joined, the values for the
adjacent elements are equal and opposite, cancelling mathematically. At external
nodes, that is, at the ends of the body being analyzed, the gradient values may be
specified as known heat flux input and output or computed if the specified bound-
ary condition is a temperature. In the latter case, the gradient computation is
analogous to computing reaction forces in a structural model. Also note that the
area is a common term in the preceding equations and, since it is assumed to
be constant over the element length, could be ignored in each term. However, as
will be seen in later chapters when we account for other heat transfer conditions,
the area should remain in the equations as defined. These concepts are illustrated
in the following example.

The circular rod depicted in Figure 5.9 has an outside diameter of 60 mm, length of 1 m,
and is perfectly insulated on its circumference. The left half of the cylinder is aluminum,
for which kx = 200 W/m-°C and the right half is copper having kx = 389 W/m-°C. The
extreme right end of the cylinder is maintained at a temperature of 80°C, while the left
end is subjected to a heat input rate 4000 W/m2. Using four equal-length elements, deter-
mine the steady-state temperature distribution in the cylinder.

■ Solution
The elements and nodes are chosen as shown in the bottom of Figure 5.9. For aluminum
elements 1 and 2, the conductance matrices are

[kal ] = kx A

L

[
1 −1

−1 1

]
= 200(	/4)(0.06)2

0.25

[
1 −1

−1 1

]
= 2.26

[
1 −1

−1 1

]
W/◦C

EXAMPLE 5.6

qin
Al

1

Cu
qout

1 2 3 42

0.25 m

3 4 5

0.25 m 0.25 m 0.25 m

Figure 5.9 Circular rod of Example 5.6.



Hutton: Fundamentals of 
Finite Element Analysis

5. Method of Weighted 
Residuals

Text © The McGraw−Hill 
Companies, 2004

5.5 One-Dimensional Heat Conduction 157

while, for copper elements 3 and 4,

[kcu ] = kx A

L

[
1 −1

−1 1

]
= 389(	/4)(0.06)2

0.25

[
1 −1

−1 1

]
= 4.40

[
1 −1

−1 1

]
W/◦C

Applying the end conditions T5 = 80°C and q1 = 4000 W/m2, the assembled system
equations are




2.26 −2.26 0 0 0
−2.26 4.52 −2.26 0 0

0 −2.26 6.66 −4.40 0
0 0 −4.40 8.80 −4.40
0 0 0 −4.40 4.40







T1

T2

T3

T4

80




=




4000
0
0
0

−q5




	(0.06)2

4

=




11.31
0
0
0

−0.0028q5




Accounting for the known temperature at node 5, the first four equations can be written as




2.26 −2.26 0 0
−2.26 4.52 −2.26 0

0 −2.26 6.66 −4.40
0 0 −4.40 8.80







T1

T2

T3

T4




=




11.31
0
0

352.0




The system of equations is triangularized (used here simply to illustrate another solution
method) by the following steps. Replace the second equation by the sum of the first and
second to obtain




2.26 −2.26 0 0
0 2.26 −2.26 0
0 −2.26 6.66 −4.40
0 0 −4.40 8.80







T1

T2

T3

T4




=




11.31
11.31

0
352.0




Next, replace the third equation by the sum of the second and third




2.26 −2.26 0 0
0 2.26 −2.26 0
0 0 4.40 −4.40
0 0 −4.40 8.80







T1

T2

T3

T4




=




11.31
11.31
11.31
352.0




Finally, replace the fourth with the sum of the third and fourth to obtain




2.26 −2.26 0 0
0 2.26 −2.26 0
0 0 4.40 −4.40
0 0 0 4.40







T1

T2

T3

T4




=




11.31
11.31
11.31
363.31



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The triangularized system then gives the nodal temperatures in succession as

T4 = 82.57◦C

T3 = 85.15◦C

T2 = 90.14◦C

T1 = 95.15◦C

The fifth equation of the system is

−4.40T4 + 4.40(80) = −0.0028q5

which, on substitution of the computed value of T4, results in

q5 = 4038 .6 W/m2

As this is assumed to be a steady-state situation, the heat flow from the right-hand end of
the cylinder, node 5, should be exactly equal to the inflow at the left end. The discrepancy
in this case is due simply to round-off error in the computations, which were accom-
plished via a hand calculator for this example. If the values are computed to “machine
accuracy” and no intermediate rounding is used, the value of the heat flow at node 5 is
found to be exactly 4000 W/m2. In fact, it can be shown that, for this example, the finite
element solution is exact.

5.6 CLOSING REMARKS
The method of weighted residuals, especially the embodiment of the Galerkin
finite element method, is a powerful mathematical tool that provides a technique
for formulating a finite element solution approach to practically any problem for
which the governing differential equation and boundary conditions can be writ-
ten. For situations in which a principle such as the first theorem of Castigliano
or the principle of minimum potential energy is applicable, the Galerkin method
produces exactly the same formulation. In subsequent chapters, the Galerkin
method is extended to two- and three-dimensional cases of structural analysis,
heat transfer, and fluid flow. Prior to examining specific applications, we exam-
ine, in the next chapter, the general requirements of interpolation functions for
the formulation of a finite element approach to any type of problem.
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PROBLEMS
5.1 Verify the integration and subsequent determination of c1 in Example 5.1.
5.2 Using the procedure discussed in Example 5.4, determine three trial functions for

the problem of Example 5.1.
5.3 It has been stated that the trial functions used in the method of weighted residuals

generally satisfy the physics of the problem described by the differential equation
to be solved. Why does the trial function assumed in Example 5.3 not satisfy the
physics of the problem?

5.4 For each of the following differential equations and stated boundary conditions,
obtain a one-term solution using Galerkin’s method of weighted residuals and the
specified trial function. In each case, compare the one-term solution to the exact
solution.

a. d2 y

dx 2
+ y = 2x 0 ≤ x ≤ 1

y(0) = 0

y(1) = 0

N1(x ) = x (1 − x 2)

b. d2 y

dx 2
+ y = 2 sin x 0 ≤ x ≤ 1

y(0) = 0

y(1) = 0

N1(x ) = sin 	x

c. dy

dx
+ y2 = 4x 0 ≤ x ≤ 1

y(0) = 0

y(1) = 0

N1(x ) = x 2(1 − x )

d. dy

dx
− y = 2 0 ≤ x ≤ 10

y(0) = 0

y(10) = 0

N1(x ) = x 2(10 − x )2

e. d2 y

dx 2
− 3

dy

dx
+ y = x 0 ≤ x ≤ 1

y(0) = 0

y(1) = 0

N1(x ) = x (x − 1)2
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5.5(a)–(e) For each of the differential equations given in Problem 5.4, use the
method of Example 5.4 to determine the trial functions for a two-term
approximate solution using Galerkin’s method of weighted residuals.

5.6 For the four-element solution of Example 5.5, verify the correctness of the
assembled system equations. Apply the boundary conditions and solve the
reduced system of equations. Compute the first derivatives at each node of each
element. Are the derivatives continuous across the nodal connections between
elements?

5.7 Each of the following differential equations represents a physical problem, as
indicated. For each case given, formulate the finite element equations (that is,
determine the stiffness matrix and load vectors) using Galerkin’s finite element
method for a two-node element of length L with the interpolation functions

N1(x ) = 1 − x

L
N2(x ) = x

L

a. One-dimensional heat conduction with linearly varying internal heat
generation

kx A
d2 T

dx 2
+ Q0 Ax = 0

where kx, Q0, and A are constants.
b. One-dimensional heat conduction with surface convection

kx A
d2 T

dx 2
− h P T = h P T a

where kx, Q0, A, h, P, and Ta are constants.
c. Torsion of an elastic circular cylinder

J G
d2�

dx 2
= 0

where J and G are constants.
5.8 A two-dimensional beam is subjected to a linearly varying distributed load given

by q (x ) = q0 x , 0 ≤ x ≤ L , where L is total beam length and q0 is a constant.
For a finite element located between nodes at arbitrary positions xi and xj so that
xi < xj and Le = xj − xi is the element length, determine the components of the
force vector at the element nodes using Galerkin’s finite element method. (Note
that this is simply the last term in Equation 5.47 adjusted appropriately for
element location.)

5.9 Repeat Problem 5.8 for a quadratrically distributed load q (x ) = q0 x 2.

5.10 Considering the results of either Problem 5.8 or 5.9, are the distributed loads
allocated to element nodes on the basis of static equilibrium? If your answer is
no, why not and how is the distribution made?

5.11 A tapered cylinder that is perfectly insulated on its periphery is held at constant
temperature 212°F at x = 0 and at temperature 80°F at x = 4 in. The cylinder
diameter varies from 2 in. at x = 0 to 1 in. at x = L = 4 in. per Figure P5.11.
The conductance coefficient is kx = 64 Btu/hr – ft – °F. Formulate a four-element
finite element model of this problem and solve for the nodal temperatures and
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d � 2 in. d � 1 in.

x

T � 212
 F
T � 80
 F

4 in.

Insulated

Figure P5.11

the heat flux values at the element boundaries. Use Galerkin’s finite element
method.

5.12 Consider a tapered uniaxial tension-compression member subjected to
an axial load as shown in Figure P5.12. The cross-sectional area varies as
A = A0(1 − x/2L ) , where L is the length of the member and A0 is the area at
x = 0. Given the governing equation

E
d2u

dx 2
= 0

as in Equation 5.31, obtain the Galerkin finite element equations per
Equation 5.33.

x

L

A0

A � A0(1 � )x
2L

Figure P5.12

Uniform thickness t � 0.75 in.
E � 30 � 106 lb/in.2

2 in.

6 in.

x

y

1 in.

Figure P5.14

5.13 Many finite element software systems have provision for a tapered beam
element. Beginning with Equation 5.46, while noting that Iz is not constant,
develop the finite element equations for a tapered beam element.

5.14 Use the results of Problem 5.13 to determine the stiffness matrix for the tapered
beam element shown in Figure P5.14.
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5.15 Consider a two-dimensional problem governed by the differential equation

∂ 2�

∂ x 2
+ ∂ 2�

∂y2
= 0

(this is Laplace’s equation) in a specified two-dimensional domain with specified
boundary conditions. How would you apply the Galerkin finite element method
to this problem?

5.16 Reconsider Equation 5.24. If we do not integrate by parts and simply substitute
the discretized solution form, what is the result? Explain.

5.17 Given the differential equation

d2 y

dx 2
+ 4y = x

Assume the solution as a power series

y(x ) =
n∑

i=0

ai x
i = a0 + a1 x + a2 x 2 + · · ·

and obtain the relations governing the coefficients of the power series solution.
How does this procedure compare to the Galerkin method?

5.18 The differential equation

dy

dx
+ y = 3 0 ≤ x ≤ 1

has the exact solution
y(x ) = 3 + C e−x

where C = constant. Assume that the domain is 0 ≤ x ≤ 1 and the specified
boundary condition is y(0) = 0. Show that, if the procedure of Example 5.4 is
followed, the exact solution is obtained.



Hutton: Fundamentals of 
Finite Element Analysis

6. Interpolation Functions 
for General Element 
Formulation

Text © The McGraw−Hill 
Companies, 2004

163

C H A P T E R 6
Interpolation Functions
for General Element
Formulation

6.1 INTRODUCTION
The structural elements introduced in the previous chapters were formulated on
the basis of known principles from elementary strength of materials theory. We
have also shown, by example, how Galerkin’s method can be applied to a heat
conduction problem. This chapter examines the requirements for interpolation
functions in terms of solution accuracy and convergence of a finite element
analysis to the exact solution of a general field problem. Interpolation functions
for various common element shapes in one, two, and three dimensions are de-
veloped, and these functions are used to formulate finite element equations for
various types of physical problems in the remainder of the text. 

With the exception of the beam element, all the interpolation functions dis-
cussed in this chapter are applicable to finite elements used to obtain solutions
to problems that are said to be C 0 -continuous. This terminology means that,
across element boundaries, only the zeroth-order derivatives of the field
variable (i.e., the field variable itself) are continuous. On the other hand, the
beam element formulation is such that the element exhibits C1-continuity, since
the first derivative of the transverse displacement (i.e., slope) is continuous
across element boundaries, as discussed previously and repeated later for em-
phasis. In general, in a problem having Cn-continuity, derivatives of the field
variable up to and including nth-order derivatives are continuous across ele-
ment boundaries.
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(a)

F

(c) (d) (e)

4

Exact

16
Number of elements

�max

64

x
x

x

(b)

Figure 6.1 Example showing convergence as element mesh is refined.

6.2 COMPATIBILITY AND COMPLETENESS
REQUIREMENTS

The line elements (spring, truss, beam) illustrate the general procedures used to
formulate and solve a finite element problem and are quite useful in analyzing
truss and frame structures. Such structures, however, tend to be well defined in
terms of the number and type of elements used. In most engineering problems, the
domain of interest is a continuous solid body, often of irregular shape, in which
the behavior of one or more field variables is governed by one or more partial dif-
ferential equations. The objective of the finite element method is to discretize the
domain into a number of finite elements for which the governing equations are
algebraic equations. Solution of the resulting system of algebraic equations then
gives an approximate solution to the problem. As with any approximate tech-
nique, the question, How accurate is the solution? must be addressed.

In finite element analysis, solution accuracy is judged in terms of conver-
gence as the element “mesh” is refined. There are two major methods of mesh
refinement. In the first, known as h-refinement, mesh refinement refers to the
process of increasing the number of elements used to model a given domain, con-
sequently, reducing individual element size. In the second method, p-refinement,
element size is unchanged but the order of the polynomials used as interpolation
functions is increased. The objective of mesh refinement in either method is to
obtain sequential solutions that exhibit asymptotic convergence to values repre-
senting the exact solution. While the theory is beyond the scope of this book,
mathematical proofs of convergence of finite element solutions to correct solu-
tions are based on a specific, regular mesh refinement procedure defined in [1].
Although the proofs are based on regular meshes of elements, irregular or un-
structured meshes (such as in Figure 1.7) can give very good results. In fact, use
of unstructured meshes is more often the case, since (1) the geometries being
modeled are most often irregular and (2) the automeshing features of most finite
element software packages produce irregular meshes.

An example illustrating regular h-refinement as well as solution convergence
is shown in Figure 6.1a, which depicts a rectangular elastic plate of uniform
thickness fixed on one edge and subjected to a concentrated load on one corner.
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This problem is modeled using rectangular plane stress elements (Chapter 9) and
three meshes used in sequence, as shown (Figure 6.1b–6.1d). Solution conver-
gence is depicted in Figure 6.1e in terms of maximum normal stress in the
x direction. For this example, the exact solution is taken to be the maximum
bending stress computed using elementary beam theory. The true exact solution
is the plane stress solution from the theory of elasticity. However, the maximum
normal stress is not appreciably changed in the elasticity solution.

The need for convergence during regular mesh refinement is rather clear.
If convergence is not obtained, the engineer using the finite element method
has absolutely no indication whether the results are indicative of a meaningful
approximation to the correct solution. For a general field problem in which the
field variable of interest is expressed on an element basis in the discretized
form

�(e)(x , y, z) =
M∑

i=1

Ni (x , y, z)�i (6.1)

where M is the number of element degrees of freedom, the interpolation functions
must satisfy two primary conditions to ensure convergence during mesh refine-
ment: the compatibility and completeness requirements, described as follows.

6.2.1 Compatibility

Along element boundaries, the field variable and its partial derivatives up to one
order less than the highest-order derivative appearing in the integral formula-
tion of the element equations must be continuous. Given the discretized repre-
sentation of Equation 6.1, it follows that the interpolation functions must meet
this condition, since these functions determine the spatial variation of the field
variable.

Recalling the application of Galerkin’s method to the formulation of the
truss element equations, the first derivative of the displacement appears in Equa-
tion 5.34. Therefore, the displacement must be continuous across element bound-
aries, but none of the displacement derivatives is required to be continuous
across such boundaries. Indeed, as observed previously, the truss element is a
constant strain element, so the first derivative is, in general, discontinuous at the
boundaries. Similarly, the beam element formulation, Equation 5.49, includes
the second derivative of displacement, and compatibility requires continuity of
both the displacement and the slope (first derivative) at the element boundaries. 

In addition to satisfying the criteria for convergence, the compatibility con-
dition can be given a physical meaning as well. In structural problems, the
requirement of displacement continuity along element boundaries ensures that
no gaps or voids develop in the structure as a result of modeling procedure. Sim-
ilarly the requirement of slope continuity for the beam element ensures that no
“kinks” are developed in the deformed structure. In heat transfer problems, the
compatibility requirement prevents the physically unacceptable possibility of
jump discontinuities in temperature distribution.
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6.2.2 Completeness

In the limit as element size shrinks to zero in mesh refinement, the field variable
and its partial derivatives up to, and including, the highest-order derivative
appearing in the integral formulation must be capable of assuming constant
values. Again, because of the discretization, the completeness requirement is
directly applicable to the interpolation functions.

The completeness requirement ensures that a displacement field within a
structural element can take on a constant value, representing rigid body motion,
for example. Similarly, constant slope of a beam element represents rigid body ro-
tation, while a state of constant temperature in a thermal element corresponds to
no heat flux through the element. In addition to the rigid body motion considera-
tion, the completeness requirement also ensures the possibility of constant values
of (at least) first derivatives. This feature assures that a finite element is capable of
constant strain, constant heat flow, or constant fluid velocity, for example.

The foregoing discussion of convergence and requirements for interpolation
functions is by no means rigorous nor greatly detailed. References [1–5] lead the
interested reader to an in-depth study of the theoretical details. The purpose here
is to present the requirements and demonstrate application of those requirements
to development of appropriate interpolation functions to a number of commonly
used elements of various shape and complexity.

6.3 POLYNOMIAL FORMS:
ONE-DIMENSIONAL ELEMENTS

As illustrated by the methods and examples of Chapter 5, formulation of finite
element characteristics requires differentiation and integration of the interpola-
tion functions in various forms. Owing to the simplicity with which polynomial
functions can be differentiated and integrated, polynomials are the most com-
monly used interpolation functions. Recalling the truss element development of
Chapter 2, the displacement field is expressed via the first-degree polynomial

u(x ) = a0 + a1x (6.2)

In terms of nodal displacement, Equation 6.2 is determined to be equivalent to

u(x ) =
(

1 − x

L

)
u1 + x

L
u2 (6.3)

The coefficients a0 and a1 are obtained by applying the nodal conditions
u(x = 0) = u1 and u(x = L ) = u2. Then, collecting coefficients of the nodal
displacements, the interpolation functions are obtained as

N1 = 1 − x

L
N2 = x

L
(6.4)

Equation 6.3 shows that, if u1 = u2, the element displacement field corre-
sponds to rigid body motion and no straining of the element occurs. The first
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derivative of Equation 6.3 with respect to x yields a constant value that, as we
already know, represents the element axial strain. Hence, the truss element satis-
fies the completeness requirement, since both displacement and strain can take
on constant values regardless of element size. Also note that the truss element
satisfies the compatibility requirement automatically, since only displacement is
involved, and displacement compatibility is enforced at the nodal connections
via the system assembly procedure.

In light of the completeness requirement, we can now see that choice of the
linear polynomial representation of the displacement field, Equation 6.2, was not
arbitrary. Inclusion of the constant term a0 ensures the possibility of rigid body
motion, while the first-order term provides for a constant first derivative. Further,
only two terms can be included in the representation, as only two boundary con-
ditions have to be satisfied, corresponding to the two element degrees of free-
dom. Conversely, if the linear term were to be replaced by a quadratic term a2x 2,
for example, the coefficients could still be obtained to mathematically satisfy the
nodal displacement conditions, but constant first derivative (other than a value of
zero) could not be obtained under any circumstances.

Determination of the interpolation functions for the truss element, as just
described, is quite simple. Nevertheless, the procedure is typical of that used to
determine the interpolation functions for any element in which polynomials
are utilized. Prior to examination of more complex elements, we revisit the
development of the beam element interpolation functions with specific reference
to the compatibility and completeness requirements. Recalling from Chapter 5
that the integral formulation (via Galerkin’s method, Equation 5.49 for the two-
dimensional beam element includes the second derivative of displacement, the
compatibility condition requires that both displacement and the first derivative of
displacement (slope) be continuous at the element boundaries. By including
the slopes at element nodes as nodal variables in addition to nodal displacements,
the compatibility condition is satisfied via the system assembly procedure. As we
have seen, the beam element then has 4 degrees of freedom and the displacement
field is represented as the cubic polynomial

v(x ) = a0 + a1x + a2x 2 + a3x 3 (6.5)

which is ultimately to be expressed in terms of interpolation functions and nodal
variables as

v(x) = N1v1 + N2�1 + N3v2 + N4�2 = [N1 N2 N3 N4]




v1

�1

v2

�2


 (6.6)

Rewriting Equation 6.5 as the matrix product,

v(x) = [1 x x2 x3]




a0

a1

a2

a3


 (6.7)



Hutton: Fundamentals of 
Finite Element Analysis

6. Interpolation Functions 
for General Element 
Formulation

Text © The McGraw−Hill 
Companies, 2004

168 CHAPTER 6 Interpolation Functions for General Element Formulation

the nodal conditions 

v(x = 0) = v1

dv

dx

∣∣∣∣
x=0

= �1

v(x = L ) = v2

dv

dx

∣∣∣∣
x=L

= �2

(6.8)

are applied to obtain

v1 = [1 0 0 0]




a0

a1

a2

a3


 (6.9)

�1 = [0 1 0 0]




a0

a1

a2

a3


 (6.10)

v2 = [1 L L2 L3]




a0

a1

a2

a3


 (6.11)

�2 = [0 1 2L 3L2]




a0

a1

a2

a3


 (6.12)

The last four equations are combined into the equivalent matrix form



v1

�1

v2

�2


 =




1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2







a0

a1

a2

a3


 (6.13)

The system represented by Equation 6.13 can be solved for the polynomial coef-
ficients by inverting the coefficient matrix to obtain




a0

a1

a2

a3


 =




1 0 0 0
0 1 0 0

− 3

L2
− 2

L

3

L2
− 1

L
2

L3

1

L2
− 2

L3

1

L2







v1

�1

v2

�2


 (6.14)
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The interpolation functions can now be obtained by substituting the coeffi-
cients given by Equation 6.14 into Equation 6.5 and collecting coefficients of the
nodal variables. However, the following approach is more direct and alge-
braically simpler. Substitute Equation 6.14 into Equation 6.7 and equate to Equa-
tion 6.6 to obtain

v(x) = [1 x x2 x3]




1 0 0 0
0 1 0 0

− 3

L2
− 2

L

3

L2
− 1

L
2

L3

1

L2
− 2

L3

1

L2







v1

�1

v2

�2




= [N1 N2 N3 N4]




v1

�1

v2

�2


 (6.15)

The interpolation functions are

[N1 N2 N3 N4] = [ 1 x x2 x3 ]




1 0 0 0
0 1 0 0

− 3

L2
− 2

L

3

L2
− 1

L
2

L3

1

L2
− 2

L3

1

L2




(6.16)

and note that the results of Equation 6.16 are identical to those shown in
Equation 4.26.

The reader may wonder why we repeat the development of the beam element
interpolation functions. The purpose is twofold: (1) to establish a general proce-
dure for use with polynomial representations of the field variable and (2) to re-
visit the beam element formulation in terms of compatibility and completeness
requirements. The general procedure begins with expressing the field variable as
a polynomial of order one fewer than the number of degrees of freedom exhib-
ited by the element. Using the examples of the truss and beam elements, it has
been shown that a two-node element may have 2 degrees of freedom, as in the
truss element where only displacement continuity is required, or 4 degrees of
freedom, as in the beam element where slope continuity is required. Next the
nodal (boundary) conditions are applied and the coefficients of the polynomial
are computed accordingly. Finally, the polynomial coefficients are substituted
into the field variable representation in terms of nodal variables to obtain the
explicit form of the interpolation functions.

Examination of the completeness condition for the beam element requires a
more-detailed thought process. The polynomial representation of the displace-
ment field is such that only the third derivative is guaranteed to have a constant
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1 2 3 x

L
2

L
2

Figure 6.2 A three-node
line element. Node 2 is an
interior node.

value, since any lower-order derivative involves the spatial variable. However, if
we examine the conditions under which the element undergoes rigid body trans-
lation, for example, we find that the nodal forces must be of equal magnitude and
the same sense and the applied nodal moments must be zero. Also, for rigid body
translation, the slopes at the nodes of the element are zero. In such case, the sec-
ond derivative of deflection, directly proportional to bending moment, is zero
and the shear force, directly related to the third derivative of deflection, is con-
stant. (Simply recall the shear force and bending moment relations from the
mechanics of materials theory.) Therefore, the field variable representation as a
cubic polynomial allows rigid body translation. In the case of the beam element,
we must also verify the possibility of rigid body rotation. This consideration, as
well as those of constant bending moment and shear force, is left for end-of-
chapter problems.

6.3.1 Higher-Order One-Dimensional Elements

In formulating the truss element and the one-dimensional heat conduction ele-
ment (Chapter 5), only line elements having a single degree of freedom at each
of two nodes are considered. While quite appropriate for the problems consid-
ered, the linear element is by no means the only one-dimensional element that
can be formulated for a given problem type. Figure 6.2 depicts a three-node line
element in which node 2 is an interior node. As mentioned briefly in Chapter 1,
an interior node is not connected to any other node in any other element in the
model. Inclusion of the interior node is a mathematical tool to increase the order
of approximation of the field variable. Assuming that we deal with only 1 degree
of freedom at each node, the appropriate polynomial representation of the field
variable is

�(x ) = a0 + a1x + a2x 2 (6.17)

and the nodal conditions are

�(x = 0) = �1

�

(
x = L

2

)
= �2

�(x = L) = �3

(6.18)



Hutton: Fundamentals of 
Finite Element Analysis

6. Interpolation Functions 
for General Element 
Formulation

Text © The McGraw−Hill 
Companies, 2004

6.3 Polynomial Forms: One-Dimensional Elements 171

Applying the general procedure outlined previously in the context of the beam
element, we apply the nodal (boundary) conditions to obtain

{
�1

�2

�3

}
=




1 0 0

1
L

2

L2

4
1 L L2




{ a0

a1

a2

}
(6.19)

from which the interpolation functions are obtained via the following sequence

{ a0

a1

a2

}
=




1 0 0

− 3

L

4

L
− 1

L
2

L2
− 4

L2

2

L2




{
�1

�2

�3

}
(6.20a)

�(x) = [1 x x2]




1 0 0

− 3

L

4

L
− 1

L
2

L2
− 4

L2

2

L2




{
�1

�2

�3

}

= [N1 N2 N3]

{
�1

�2

�3

}
(6.20b)

N1(x ) = 1 − 3

L
x + 2

L 2
x 2

N2(x ) = 4x

L

(
1 − x

L

)

N3(x ) = x

L

(
2x

L
− 1

)
(6.20c)

Note that each interpolation function varies quadratically in x and has value
of unity at its associated node and value zero at the other two nodes, as illustrated
in Figure 6.3. These observations lead to a shortcut method of concocting the
interpolation functions for a C 0 line element as products of monomials as fol-
lows. Let s = x/L such that s1 = 0, s2 = 1/2, s3 = 1 are the nondimensional
coordinates of nodes 1, 2, and 3, respectively. Instead of following the formal
procedure used previously, we hypothesize, for example,

N1(s) = C1(s − s2)(s − s3) (6.21)

where C1 is a constant. The first monomial term ensures that N1 has a value of zero
at node 2 and the second monomial term ensures the same at node 3. Therefore,
we need to determine only the value of C1 to provide unity value at node 1.
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Figure 6.3 Spatial variation of interpolation
functions for a three-node line element.

EXAMPLE 6.1

1 2 3 4 x

L
3

L
3

L
3

Figure 6.4 Four-node line
element of Example 6.1.

Substituting s = 0, we obtain

N1(s = 0) = 1 = C1

(
0 − 1

2

)
(0 − 1) (6.22)

yielding C1 = 2 and

N1(s) = 2

(
s − 1

2

)
(s − 1) (6.23)

Following similar logic and procedure shows that

N2(s) = −4s(s − 1) (6.24)

N3(s) = 2s

(
s − 1

2

)
(6.25)

Substituting s = x/L in Equations 6.23–6.25 and expanding shows that the
results are identical to those given in Equation 6.20. The monomial-based proce-
dure can be extended to line elements of any order as illustrated by the following
example.

Use the monomial method to obtain the interpolation functions for the four-node line
element shown in Figure 6.4. 
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■ Solution
Using s = x/L , we have s1 = 0, s2 = 1/3, s3 = 2/3, and s4 = 1. The monomial terms of
interest are s, s − 1/3, s − 2/3, and s − 1. The monomial products

N1(s) = C1

(
s − 1

3

)(
s − 2

3

)
(s − 1)

N2(s) = C2s

(
s − 2

3

)
(s − 1)

N3(s) = C3s

(
s − 1

3

)
(s − 1)

N4(s) = C4s

(
s − 1

3

)(
s − 2

3

)

automatically satisfy the required zero-value conditions for each interpolation function.
Hence, we need evaluate only the constants Ci such that Ni (s = si ) = 1, i = 1, 4. Apply-
ing each of the four unity-value conditions, we obtain

N1(0) = 1 = C1

(
− 1

3

)(
− 2

3

)
(−1)

N2

(
1

3

)
= 1 = C2

(
1

3

)(
− 1

3

)(
− 2

3

)

N3

(
2

3

)
= 1 = C3

(
2

3

)(
1

3

)(
− 1

3

)

N4(1) = 1 = C4(1)

(
2

3

)(
1

3

)

from which C1 = − 9

2
, C2 = 27

2
, C3 = − 27

2
, C4 = 9

2
.

The interpolation functions are then given as

N1(s) = − 9

2

(
s − 1

3

)(
s − 2

3

)
(s − 1)

N2(s) = 27

2
s

(
s − 2

3

)
(s − 1)

N3(s) = − 27
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Figure 6.5 Pascal triangle for polynomials
in two dimensions.

6.4 POLYNOMIAL FORMS:
GEOMETRIC ISOTROPY

The previous discussion of one-dimensional (line) elements revealed that the
polynomial representation of the field variable must contain the same number of
terms as the number of nodal degrees of freedom. In addition, to satisfy the com-
pleteness requirement, the polynomial representation for an M-degree of free-
dom element should contain all powers of the independent variable up to and
including M − 1. Another way of stating the latter requirement is that the poly-
nomial is complete. In two and three dimensions, polynomial representations of
the field variable, in general, satisfy the compatibility and completeness require-
ments if the polynomial exhibits the property known as geometric isotropy [1]. A
mathematical function satisfies geometric isotropy if the functional form does
not change under a translation or rotation of coordinates. In two dimensions, a
complete polynomial of order M can be expressed as

PM (x , y) =
N (2)

t∑
k=0

ak x i y j i + j ≤ M (6.26)

where N (2)
t = [( M + 1)( M + 2)]/2 is the total number of terms. A complete

polynomial as expressed by Equation 6.26 satisfies the condition of geometric
isotropy, since the two variables, x and y, are included in each term in similar
powers. Therefore, a translation or rotation of coordinates is not prejudicial to
either independent variable.

A graphical method of depicting complete two-dimensional polynomials is
the so-called Pascal triangle shown in Figure 6.5. Each horizontal line represents
a polynomial of order M. A complete polynomial of order M must contain all
terms shown above the horizontal line. For example, a complete quadratic poly-
nomial in two dimensions must contain six terms. Hence, for use in a finite ele-
ment representation of a field variable, a complete quadratic expression requires
six nodal degrees of freedom in the element. We examine this particular case in
the context of triangular elements in the next section.

In addition to the complete polynomials, incomplete polynomials also
exhibit geometric isotropy if the incomplete polynomial is symmetric. In this
context, symmetry implies that the independent variables appear as “equal and
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opposite pairs,” ensuring that each independent variable plays an equal role in
the polynomial. For example, the four-term incomplete quadratic polynomial

P (x , y) = a0 + a1x + a2 y + a3x 2 (6.27)

is not symmetric, as there is a quadratic term in x but the corresponding quadratic
term in y does not appear. On the other hand, the incomplete quadratic polynomial

P (x , y) = a0 + a1x + a2 y + a3x y (6.28)

is symmetric, as the quadratic term gives equal “weight” to both variables.
A very convenient way of visualizing some of the commonly used incom-

plete but symmetric polynomials of a given order is also afforded by the Pascal
triangle. Again referring to Figure 6.5, the dashed lines show the terms that must
be included in an incomplete yet symmetric polynomial of a given order. (These
are, of course, not the only incomplete, symmetric polynomials that can be
constructed.) All terms above the dashed lines must be included in a polynomial
representation if the function is to exhibit geometric isotropy. This feature of
polynomials is utilized to a significant extent in following the development of
various element interpolation functions.

As in the two-dimensional case, to satisfy the geometric isotropy require-
ments, the polynomial expression of the field variable in three dimensions must
be complete or incomplete but symmetric. Completeness and symmetry can also
be depicted graphically by the “Pascal pyramid” shown in Figure 6.6. While the
three-dimensional case is a bit more difficult to visualize, the basic premise

1
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x3

y3

z3

z2
xz

xz2x2z

xy

xyz

xy2

x 2y
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y2z

y2

yz2
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Figure 6.6 Pascal “pyramid” for
polynomials in three dimensions.
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(a) (b) (c)

Figure 6.7 Triangular elements:
(a) 3-node linear, (b) 6-node quadratic,
(c) 10-node cubic.

remains that each independent variable must be of equal “strength” in the poly-
nomial. For example, the 3-D quadratic polynomial

P (x , y, z) = a0 + a1x + a2 y + a3z + a4x 2 + a5 y2 + a6z2

+ a7x y + a8x z + a9 yz (6.29)

is complete and could be applied to an element having 10 nodes. Similarly, an
incomplete, symmetric form such as 

P (x , y, z) = a0 + a1x + a2 y + a3z + a4x 2 + a5 y2 + a6z2 (6.30)

or

P (x , y, z) = a0 + a1x + a2 y + a3z + a4x y + a5x z + a6 yz (6.31)

could be used for elements having seven nodal degrees of freedom (an unlikely
case, however).

Geometric isotropy is not an absolute requirement for field variable
repesentation [1], hence, interpolation functions. As demonstrated by many
researchers, incomplete representations are quite often used and solution conver-
gence attained. However, in terms of h-refinement, use of geometrically isotropic
representations guarantees satisfaction of the compatibility and completeness
requirements. For the p-refinement method, the reader is reminded that the inter-
polation functions in any finite element analysis solution are approximations to
the power series expansion of the problem solution. As we increase the number
of element nodes, the order of the interpolation functions increases and, in the
limit, as the number of nodes approaches infinity, the polynomial expression of
the field variable approaches the power series expansion of the solution.

6.5 TRIANGULAR ELEMENTS
The interpolation functions for triangular elements are inherently formulated in
two dimensions and a family of such elements exists. Figure 6.7 depicts the first
three elements (linear, quadratic, and cubic) of the family. Note that, in the case
of the cubic element, an internal node exists. The internal node is required to
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obtain geometric isotropy, as is subsequently discussed. The triangular elements
are not limited to two-dimensional problems. In fact, the triangular elements can
be used in axisymmetric 3-D cases (discussed later in this chapter) as well as in
structural analyses involving out-of-plane bending, as in plate and shell struc-
tures. In the latter cases, the nodal degrees of freedom include first derivatives of
the field variable as well as the field variable itself. While plate and shell prob-
lems are beyond the scope of this book, we allude to those problems again briefly
in Chapter 9.

Figure 6.8 depicts a general, three-node triangular element to which we
attach an element coordinate system that is, for now, assumed to be the same as
the global system. Here, it is assumed that only 1 degree of freedom is associated
with each node. We express the field variable in the polynomial form

�(x , y) = a0 + a1x + a2 y (6.32)

Applying the nodal conditions

�(x1, y1) = �1

�(x2, y2) = �2 (6.33)

�(x3, y3) = �3

and following the general procedure previously outlined, we obtain
 1 x1 y1

1 x2 y2

1 x2 y2







a0

a1

a2


 =




�1

�2

�3


 (6.34)

To solve for the polynomial coefficients, the matrix of coefficients in Equa-
tion 6.34 must be inverted. Inversion of the matrix is algebraically tedious but
straightforward, and we find

a0 = 1

2 A
[�1(x2 y3 − x3 y2) + �2(x3 y1 − x1 y3) + �3(x1 y2 − x2 y1)]

1 (x1, y1)

2 (x2, y2)

3 (x3, y3)

y

x

Figure 6.8 A general three-
node triangular element
referred to global coordinates.
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a1 = 1

2 A
[�1(y2 − y3) + �2(y3 − y1) + �3(y1 − y2)]

(6.35)

a2 = 1

2 A
[�1(x3 − x2) + �2(x1 − x3) + �3(x2 − x1)]

Substituting the values into Equation 6.32 and collecting coefficients of the nodal
variables, we obtain

�(x , y) = 1

2A




[(x2 y3 − x3 y2) + (y2 − y3)x + (x3 − x2)y]�1

+ [(x3 y1 − x1 y3) + (y3 − y1)x + (x1 − x3)y]�2

+ [(x1 y2 − x2 y1) + (y1 − y2)x + (x2 − x1)y]�3


 (6.36)

Given the form of Equation 6.36, the interpolation functions are observed to be 

N1(x , y) = 1

2 A
[(x2 y3 − x3 y2) + (y2 − y3)x + (x3 − x2)y]

N2(x , y) = 1

2 A
[(x3 y1 − x1 y3) + (y3 − y1)x + (x1 − x3)y] (6.37)

N3(x , y) = 1

2 A
[(x1 y2 − x2 y1) + (y1 − y2)x + (x2 − x1)y]

where A is the area of the triangular element. Given the coordinates of the three
vertices of a triangle, it can be shown that the area is given by

A = 1

2

∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣ (6.38)

Note that the algebraically complex form of the interpolation functions
arises primarily from the choice of the element coordinate system of Figure 6.8.
As the linear representation of the field variable exhibits geometric isotropy,
location and orientation of the element coordinate axes can be chosen arbitrarily
without affecting the interpolation results. If, for example, the element coordi-
nate system shown in Figure 6.9 is utilized, considerable algebraic simplification
results. In the coordinate system shown, we have x1 = y1 = y2 = 0, 2 A = x2 y3 ,

y
x

1 (0, 0)

2
(x2, 0)

3 (x3, y3)

Figure 6.9 Three-node
triangle having an element
coordinate system attached
to the element.
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and the interpolation functions become

N1(x , y) = 1

x2 y3
[x2 y3 − y3x + (x3 − x2)y]

N2(x , y) = 1

x2 y3
[y3x − x3 y] (6.39)

N3(x , y) = y

y3

which are clearly of a simpler form than Equation 6.37. The simplification is
not without cost, however. If the element coordinate system is directly associ-
ated with element orientation, as in Figure 6.9, the element characteristic matri-
ces must be transformed to a common global coordinate system during model
assembly. (Recall the transformation of stiffness matrices demonstrated for bar
and beam elements earlier.) As finite element models usually employ a large
number of elements, the additional computations required for element trans-
formation can be quite time consuming. Consequently, computational efficiency
is improved if each element coordinate system is oriented such that the axes
are parallel to the global axes. The transformation step is then unnecessary
when model assembly takes place. In practice, most commercial finite element
software packages provide for use of either type element coordinate as a user
option [6].

Returning to Equation 6.32, observe that it is possible for the field variable
to take on a constant value, as per the completeness requirement, and that the first
partial derivatives with respect to the independent variables x and y are constants.
The latter shows that the gradients of the field variable are constant in both coor-
dinate directions. For a planar structural element, this results in constant strain
components. In fact, in structural applications, the three-node triangular element
is commonly known as a constant strain triangle (CST, for short). In the case of
heat transfer, the element produces constant temperature gradients, therefore,
constant heat flow within an element.

6.5.1 Area Coordinates

When expressed in Cartesian coordinates, the interpolation functions for the
triangular element are algebraically complex. Further, the integrations required
to obtain element characteristic matrices are cumbersome. Considerable sim-
plification of the interpolation functions as well as the subsequently required
integration is obtained via the use of area coordinates. Figure 6.10 shows a
three-node triangular element divided into three areas defined by the nodes and
an arbitrary interior point P (x , y). Note: P is not a node. The area coordinates of
P are defined as

L 1 = A1

A
L 2 = A2

A
L 3 = A3

A
(6.40)
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3

P

P�

2

1

3

2

L1 � 1

L1 � 0

1

1
2

L1 �

(a) (b)

Figure 6.11 
(a) Area A1 associated with either P or P ′ is constant.
(b) Lines of the constant area coordinate L1.

where A is the total area of the triangle. Clearly, the area coordinates are not
independent, since

L 1 + L 2 + L 3 = 1 (6.41)

The dependency is to be expected, since Equation 6.40 expresses the location of
a point in two-dimensions using three coordinates.

The important properties of area coordinates for application to triangular
finite elements are now examined with reference to Figure 6.11. In Figure 6.11a,
a dashed line parallel to the side defined by nodes 2 and 3 is indicated. For any
two points P and P ′ on this line, the areas of the triangles formed by nodes 2 and
3 and either P or P ′ are identical. This is because the base and height of any tri-
angle so formed are constants. Further, as the dashed line is moved closer to node
1, area A1 increases linearly and has value A1 = A, when evaluated at node 1.
Therefore, area coordinate L 1 is constant on any line parallel to the side of the tri-
angle opposite node 1 and varies linearly from a value of unity at node 1 to value
of zero along the side defined by nodes 2 and 3, as depicted in Figure 6.11b. Sim-
ilar arguments can be made for the behavior of L 2 and L 3. These observations

3

A1

A3

A2

P

2

1
Figure 6.10 Areas used to define area
coordinates for a triangular element.
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can be used to write the following conditions satisfied by the area coordinates
when evaluated at the nodes:

Node 1: L 1 = 1 L 2 = L 3 = 0

Node 2: L 2 = 1 L 1 = L 3 = 0 (6.42)

Node 3: L 3 = 1 L 1 = L 2 = 0

The conditions expressed by Equation 6.42 are exactly the conditions that
must be satisfied by interpolation functions at the nodes of the triangular ele-
ment. So, we express the field variable as

�(x , y) = L 1�1 + L 2�2 + L 3�3 (6.43)

in terms of area coordinates. Is this different from the field variable representa-
tion of Equation 6.36? If the area coordinates are expressed explicitly in terms
of the nodal coordinates, the two field variable representations are shown to be
identical. The true advantages of area coordinates are seen more readily in
developing interpolation functions for higher-order elements and performing
integration of various forms of the interpolation functions.

6.5.2 Six-Node Triangular Element

A six-node element is shown in Figure 6.12a. The additional nodes 4, 5, and 6 are
located at the midpoints of the sides of the element. As we have six nodes, a com-
plete polynomial representation of the field variable is

�(x , y) = a0 + a1x + a2 y + a3x 2 + a4x y + a5 y2 (6.44)

3

2
4

5
6

1

(a) (b)

4

56

3

2
1

L1 � 0

L3 � 0

L3 � 1

L2 � 0

L2 � 1

L1 � 1

1
2

L1 �

1
2

L3 �

1
2

L2 �

Figure 6.12 Six-node triangular elements: (a) Node numbering convention.
(b) Lines of constant values of the area coordinates.
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which is ultimately to be expressed in terms of interpolation functions and nodal
values as

�(x , y) =
6∑

i=1

Ni (x , y)�i (6.45)

As usual, each interpolation function must be such that its value is unity when
evaluated at its associated node and zero when evaluated at any of the other five
nodes. Further, each interpolation is a quadratic function, since the field variable
representation is quadratic.

Figure 6.12b shows the six-node element with lines of constant values of the
area coordinates passing through the nodes. Using this figure and a bit of logic,
the interpolation functions are easily “constructed” in area coordinates. For
example, interpolation function N1(x , y) = N1(L 1, L 2, L 3) must have value of
zero at nodes 2, 3, 4, 5, and 6. Noting that L 1 = 1/2 at nodes 4 and 6, inclusion
of the term L 1 − 1/2 ensures a zero value at those two nodes. Similarly, L 1 = 0
at nodes 2, 3, 4, so the term L 1 satisfies the conditions at those three nodes.
Therefore, we propose

N1 = L 1

(
L 1 − 1

2

)
(6.46)

However, evaluation of Equation 6.46 at node 1, where L 1 = 1, results in
N1 = 1/2. As N1 must be unity at node 1, Equation 6.46 is modified to

N1 = 2L 1

(
L 1 − 1

2

)
= L 1(2L 1 − 1) (6.47a)

which satisfies the required conditions at each of the six nodes and is a quadratic
function, since L 1 is a linear function of x and y.

Applying the required nodal conditions to the remaining five interpolation
functions in turn, we obtain

N2 = L 2(2L 2 − 1) (6.47b)

N3 = L 3(2L 3 − 1) (6.47c)

N4 = 4L 1 L 2 (6.47d)

N5 = 4L 2 L 3 (6.47e)

N6 = 4L 1 L 3 (6.47f)

Using a similarly straightforward procedure, interpolation functions for addi-
tional higher-order triangular elements can be constructed. The 10-node cubic
element is left as an exercise.

6.5.3 Integration in Area Coordinates

As seen in Chapter 5 and encountered again in later chapters, integration of var-
ious forms of the interpolation functions over the domain of an element are
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required in formulating element characteristic matrices and load vectors. When
expressed in area coordinates, integrals of the form∫∫

A

La
1 L b

2 L c
3 d A (6.48)

(where A is the total area of a triangle defined by nodes 1, 2, 3) must often be
evaluated. The relation∫∫

A

La
1 L b

2 L c
3 d A = (2 A)

a!b!c!

(a + b + c + 2)!
(6.49)

has been shown [7] to be valid for all exponents a, b, c that are positive integers
(recall 0! = 1). Therefore, integration in area coordinates is quite straight-
forward.

As will be shown in Chapter 7, the convection terms of the stiffness matrix for a 2-D heat
transfer element are of the form

ki j =
∫

A

h Ni Nj d A

where h is the convection coefficient and A is element area. Use the interpolation func-
tions for a six-node triangular element given by Equation 6.47 to compute k24 .

■ Solution
Using Equation 6.47b and 6.47d, we have

N2 = L 2(2L 2 − 1)

N4 = 4L 1 L 2

so (assuming h is a constant)

k24 = h

∫

A

L 2(2L 2 − 1)4L 1 L 2 d A = h

∫

A

(
8L 1 L 3

2 − 4L 1 L 2
2

)
d A

Applying Equation 6.49, we have

h

∫

A

8L 1 L 3
2 d A = 8h(2 A)

(1!)(3!)(0!)

(1 + 3 + 0 + 2)!
= 96h A

720
= 2h A

15

h

∫

A

4L 1 L 2
2 d A = 4h(2 A)

(1!)(2!)(0!)

(1 + 2 + 0 + 2)!
= 16h A

120
= 2h A

15

Therefore,

k24 = 2h A

15
− 2h A

15
= 0

EXAMPLE 6.2
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6.6 RECTANGULAR ELEMENTS
Rectangular elements are convenient for use in modeling regular geometries, can
be used in conjunction with triangular elements, and form the basis for develop-
ment of general quadrilateral elements. The simplest of the rectangular family of
elements is the four-node rectangle shown in Figure 6.13, where it is assumed
that the sides of the rectangular are parallel to the global Cartesian axes. By con-
vention, we number the nodes sequentially in a counterclockwise direction, as
shown. As there are four nodes and 4 degrees of freedom, a four-term polynomial
expression for the field variable is appropriate. Since there is no complete four-
term polynomial in two dimensions, the incomplete, symmetric expression

�(x , y) = a0 + a1x + a2 y + a3x y (6.50)

is used to ensure geometric isotropy. Applying the four nodal conditions and
writing in matrix form gives




�1

�2

�3

�4


 =




1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

1 x4 y4 x4 y4







a0

a1

a2

a3


 (6.51)

which formally gives the polynomial coefficients as



a0

a1

a2

a3


 =




1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

1 x4 y4 x4 y4




−1 


�1

�2

�3

�4


 (6.52)

In terms of the nodal values, the field variable is then described by

�(x , y) = [1 x y xy]{a} = [1 x y xy]




1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

1 x4 y4 x4 y4




−1


�1

�2

�3

�4




(6.53)
from which the interpolation functions can be deduced.

1 (x1, y1)

3 (x3, y3)4 (x4, y4)

y

x 2 (x2, y2)

Figure 6.13 A four-node
rectangular element defined in
global coordinates.
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The form of Equation 6.53 suggests that expression of the interpolation
functions in terms of the nodal coordinates is algebraically complex. Fortunately,
the complexity can be reduced by a more judicious choice of coordinates. For
the rectangular element, we introduce the normalized coordinates (also known as
natural coordinates or serendipity coordinates) r and s as

r = x − x̄

a
s = y − ȳ

b
(6.54)

where 2a and 2b are the width and height of the rectangle, respectively, and the
coordinates of the centroid are

x̄ = x1 + x2

2
ȳ = y1 + y4

2
(6.55)

as shown in Figure 6.14a. Therefore, r and s are such that the values range from
−1 to +1, and the nodal coordinates are as in Figure 6.14b.

Applying the conditions that must be satisfied by each interpolation function
at each node, we obtain (essentially by inspection)

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

(6.56a)

hence

�(x , y) = �(r, s) = N1(r, s)�1 + N2(r, s)�2 + N3(r, s)�3 + N4(r, s)�4

(6.56b)

y

x

–y

–x

(a)

4 3

21

s

r

(b)

4 (�1, 1) 3 (1, 1)

2 (1, �1)1 (�1, �1)

s

r

Figure 6.14 A four-node rectangular element showing
(a) the translation to natural coordinates, (b) the natural
coordinates of each node.
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As in the case of triangular elements using area coordinates, the interpolation
functions are much simpler algebraically when expressed in terms of the natural
coordinates. Nevertheless, all required conditions are satisfied and the functional
form is identical to that used to express the field variable in Equation 6.50.
Also as with area coordinates, integrations involving the interpolation functions
expressed in the natural coordinates are simplified, since the integrands are rela-
tively simple polynomials (for rectangular elements) and the integration limits
(when integrating over the area of the element) are –1 and +1. Further discussion
of such integration requirements, particularly numerical integration techniques,
is postponed until later in this chapter.

To develop a higher-order rectangular element, the logical progression is to
place an additional node at the midpoint of each side of the element, as in Fig-
ure 6.15. This poses an immediate problem, however. Inspection of the Pascal
triangle shows that we cannot construct a complete polynomial having eight
terms, but we have a choice of two incomplete, symmetric cubic polynomials:

�(x , y) = a0 + a1x + a2 y + a3x 2 + a4x y + a5 y2 + a6x 3 + a7 y3 (6.57a)

�(x , y) = a0 + a1x + a2 y + a3x 2 + a4x y + a5 y2 + a6x 2 y + a7x y2 (6.57b)

Rather than grapple with choosing one or the other, we use the natural coordi-
nates and the nodal conditions that must be satisfied by each interpolation func-
tion to obtain the functions serendipitously. For example, interpolation function
N1 must evaluate to zero at all nodes except node 1, where its value must be
unity. At nodes 2, 3, and 6, r = 1, so including the term r − 1 satisfies the zero
condition at those nodes. Similarly, at nodes 4 and 7, s = 1 so the term s − 1 en-
sures the zero condition at those two nodes. Finally, at node 5, (r, s) = (0, −1),
and at node 8, (r, s) = (−1, 0) . Hence, at nodes 5 and 8, the term r + s + 1 is
identically zero. Using this reasoning, the interpolation function associated with
node 1 is to be of the form

N1(r, s) = (1 − r )(1 − s)(r + s + 1) (6.58)

Evaluating at node 1 where (r, s) = (−1, −1), we obtain N1 = −4, so a
correction is required to obtain the unity value. The final form is then

N1(r, s) = 1

4
(r − 1)(1 − s)(r + s + 1) (6.59a)

y

x

7

5

68

4 3

21

s

r

Figure 6.15 Eight-node
rectangular element showing
both global and natural
coordinate axes.
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A parallel procedure for the interpolation functions associated with the other
three corner nodes leads to

N2(r, s) = 1

4
(r + 1)(1 − s)(s − r + 1) (6.59b)

N3(r, s) = 1

4
(1 + r )(1 + s)(r + s − 1) (6.59c)

N4(r, s) = 1

4
(r − 1)(1 + s)(r − s + 1) (6.59d)

The form of the interpolation functions associated with the midside nodes is
simpler to obtain than those for the corner nodes. For example, N5 has a value of
zero at nodes 2, 3, and 6 if it contains the term r − 1 and is also zero at nodes 1,
4, and 8 if the term 1 + r is included. Finally, if a zero value is at node 7,
(r, s) = (0, 1) is obtained by inclusion of s − 1. The form for N5 is

N5 = 1

2
(1 − r )(1 + r )(1 − s) = 1

2
(1 − r 2)(1 − s) (6.59e)

where the leading coefficient ensures a unity value at node 5. For the other mid-
side nodes,

N6 = 1

2
(1 + r )(1 − s2) (6.59f)

N7 = 1

2
(1 − r 2)(1 + s) (6.59g)

N8 = 1

2
(1 − r )(1 − s2) (6.59h)

are determined in the same manner. 
Many other, successively higher-order, rectangular elements have been de-

veloped [1]. In general, these higher-order elements include internal nodes that,
in modeling, are troublesome, as they cannot be connected to nodes of other
elements. The internal nodes are eliminated mathematically. The elimination
process is such that the mechanical effects of the internal nodes are assigned
appropriately to the external nodes. 

6.7 THREE-DIMENSIONAL ELEMENTS
As in the two-dimensional case, there are two main families of three-dimensional
elements. One is based on extension of triangular elements to tetrahedrons and
the other on extension of rectangular elements to rectangular parallelopipeds
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(often simply called brick elements). The algebraically cumbersome techniques
for deriving interpolation functions in global Cartesian coordinates has been
illustrated for two-dimensional elements. Those developments are not repeated
here for three-dimensional elements; the procedures are algebraically identical
but even more complex. Instead, we utilize only the more amenable approach of
using natural coordinates to develop the interpolation functions for the two basic
elements of the tetrahedral and brick families.

6.7.1 Four-Node Tetrahedral Element

A four-node tetrahedral element is depicted in Figure 6.16 in relation to a
global Cartesian coordinate system. The nodes are numbered 1–4 per the con-
vention that node 1 can be selected arbitrarily and nodes 2–4 are then specified
in a counterclockwise direction from node 1. (This convention is the same as
used by most commercial finite element analysis software and is very impor-
tant in assuring geometrically correct tetrahedrons. On the other hand, tetra-
hedral element definition for finite element models is so complex that it is
almost always accomplished by automeshing capabilities of specific software
packages.)

In a manner analogous to use of area coordinates, we now introduce the con-
cept of volume coordinates using Figure 6.17. Point P (x , y, z) is an arbitrary
point in the tetrahedron defined by the four nodes. As indicated by the dashed
lines, point P and the four nodes define four other tetrahedra having volumes 

V1 = vol(P234) V2 = vol(P134)

V3 = vol(P124) V4 = vol(P123)
(6.60)

3

1

24

Figure 6.16 A four-node
tetrahedral element.

3

P

1

24

Figure 6.17 A four-node
tetrahedral element, showing
an arbitrary interest point
defining four volumes.
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The volume coordinates are defined as

L1 = V1

V

L2 = V2

V

L3 = V3

V

L4 = V4

V

(6.61)

where V is the total volume of the element given by

V = 1

6

∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣
(6.62)

As with area coordinates, the volume coordinates are not independent, since

V1 + V2 + V3 + V4 = V (6.63)

Now let us examine the variation of the volume coordinates through the
element. If, for example, point P corresponds to node 1, we find V1 = V ,
V2 = V3 = V4 = 0. Consequently L 1 = 1, L 2 = L 3 = L 4 = 0 at node 1. As P
moves away from node 1, V1 decreases linearly, since the volume of a tetrahe-
dron is directly proportional to its height (the perpendicular distance from P to
the plane defined by nodes 2, 3, and 4) and the area of its base (the triangle
formed by nodes 2, 3, and 4). On any plane parallel to the base triangle of nodes
2, 3, 4, the value of L 1 is constant. Of particular importance is that, if P lies in the
plane of nodes 2, 3, 4, the value of L 1 is zero. Identical observations apply to
volume coordinates L 2, L 3, and L 4. So the volume coordinates satisfy all re-
quired nodal conditions for interpolation functions, and we can express the field
variable as

�(x , y, z) = L 1�1 + L 2�2 + L 3�3 + L 4�4 (6.64)

Explicit representation of the interpolation functions (i.e., the volume co-
ordinates) in terms of global coordinates is, as stated, algebraically complex
but straightforward. Fortunately, such explicit representation is not generally
required, as element formulation can be accomplished using volume coordinates
only. As with area coordinates, integration of functions of volume coordinates
(required in developing element characteristic matrices and load vectors) is rela-
tively simple. Integrals of the form

∫∫∫
V

La
1 L b

2 L c
3 L d

4 dV (6.65)
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where a, b, c, d are positive integers and V is total element volume, appear in
element formulation for various physical problems. As with area coordinates,
integration in volume coordinates is straightforward [7], and we have the inte-
gration formula

∫∫∫
V

La
1 L b

2 L c
3 L d

4 dV = a!b!c!d !

(a + b + c + d + 3)!
(6V ) (6.66)

which is the three-dimensional analogy to Equation 6.49.
As another analogy with the two-dimensional triangular elements, the tetra-

hedral element is most useful in modeling irregular geometries. However, the
tetrahedral element is not particularly amenable to use in conjunction with other
element types, strictly as a result of the nodal configurations. This incompati-
bility is discussed in the following sections. As a final comment on the four-
node tetrahedral element, we note that the field variable representation, as given
by Equation 6.64, is a linear function of the Cartesian coordinates. Therefore,
all the first partial derivatives of the field variable are constant. In structural
applications, the tetrahedral element is a constant strain element; in general, the
element exhibits constant gradients of the field variable in the coordinate
directions.

Other elements of the tetrahedral family are depicted in Figure 6.18. The
interpolation functions for the depicted elements are readily written in volume
coordinates, as for higher-order two-dimensional triangular elements. Note par-
ticularly that the second element of the family has 10 nodes and a cubic form for
the field variable and interpolation functions. A quadratic tetrahedral element
cannot be constructed to exhibit geometric isotropy even if internal nodes are
included.

(a) (b)

Figure 6.18 Higher-order tetrahedral elements:
(a) 10 node. (b) 20 node.
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6.7.2 Eight-Node Brick Element

The so-called eight node brick element (rectangular parellopiped) is shown in
Figure 6.19a in reference to a global Cartesian coordinate system. Here, we
utilize the natural coordinates r, s, t of Figure 6.19b, defined as

r = x − x̄

a

s = y − ȳ

b

t = z − z̄

c

(6.67)

where 2a, 2b, 2c are the dimensions of the element in the x, y, z coordinates,
respectively, and the coordinates of the element centroid are

x̄ = x2 − x1

2

ȳ = y3 − y2

2

z̄ = z5 − z1

2

(6.68)

The natural coordinates are defined such that the coordinate values vary between
−1 and +1 over the domain of the element. As with the plane rectangular
element, the natural coordinates provide for a straightforward development of
the interpolation functions by using the appropriate monomial terms to satisfy
nodal conditions. As we illustrated the procedure in several previous develop-
ments, we do not repeat the details here. Instead, we simply write the interpola-
tion functions in terms of the natural coordinates and request that the reader

(a)

x

y

z

1 2

6

78

4
5

2a

2b
2c

3

(b)

(1, �1, �1)

(1, �1, 1)

(�1, 1, �1) (1, 1, �1)

(�1, 1, 1)

(�1, �1, 1)

s

t
r

Figure 6.19 Eight-node brick element: (a) Global Cartesian coordinates. (b) Natural
coordinates with an origin at the centroid.
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verify satisfaction of all nodal conditions. The interpolation functions are

N1 = 1

8
(1 − r)(1 − s)(1 + t)

N2 = 1

8
(1 + r)(1 − s)(1 + t)

N3 = 1

8
(1 + r)(1 + s)(1 + t)

N4 = 1

8
(1 − r)(1 + s)(1 + t)

N5 = 1

8
(1 − r)(1 − s)(1 − t)

N6 = 1

8
(1 + r)(1 − s)(1 − t)

N7 = 1

8
(1 + r)(1 + s)(1 − t)

N8 = 1

8
(1 − r)(1 + s)(1 − t)

(6.69)

and the field variable is described as 

�(x , y, z) =
8∑

i=1

Ni (r, s, t )�i (6.70)

If Equation 6.70 is expressed in terms of the global Cartesian coordinates, it
is found to be of the form

�(x , y, z) = a0 + a1x + a2 y + a3z + a4x y + a5x z + a6 yz + a7x yz (6.71)

showing that the field variable is expressed as an incomplete, symmetric polyno-
mial. Geometric isotropy is therefore assured. The compatibility requirement is
satisfied, as is the completeness condition. Recall that completeness requires that
the first partial derivatives must be capable of assuming constant values (for C 0

problems). If, for example, we take the first partial derivative of Equation 6.71
with respect to x, we obtain

∂�

∂x
= a1 + a4 y + a5z + a7 yz (6.72)

which certainly does not appear to be constant at first glance. However, if we
apply the derivative operation to Equation 6.70 while noting that

∂�

∂x
= 1

a

∂�

∂r
(6.73)
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the result is

∂�

∂x
= 1

8a
(1 − s)(1 + t )(�2 − �1) + 1

8a
(1 + s)(1 + t )(�3 − �4)

+ 1

8a
(1 − s)(1 − t )(�6 − �5) + 1

8a
(1 + s)(1 − t )(�7 − �8) (6.74)

Referring to Figure 6.19, observe that, if the gradient of the field variable in the
x direction is constant, ∂�/∂ x = C, the nodal values are related by

�2 = �1 + ∂�

∂x
dx = �1 + C (2a)

�3 = �4 + ∂�

∂x
dx = �4 + C (2a)

�6 = �5 + ∂�

∂x
dx = �5 + C (2a)

�7 = �8 + ∂�

∂x
dx = �8 + C (2a)

(6.75)

Substituting these relations into Equation 6.74, we find

∂�

∂x
= 1

8a
[(1 − s)(1 + t )(2aC ) + (1 + s)(1 + t )(2aC )

+ (1 − s)(1 + t )(2aC ) + (1 + s)(1 − t )(2aC )] (6.76a)

which, on expansion and simplification, results in

∂�

∂x
≡ C (6.76b)

Observing that this result is valid at any point (r, s, t) within the element, it
follows that the specified interpolation functions indeed allow for a constant gra-
dient in the x direction. Following similar procedures shows that the other partial
derivatives also satisfy the completeness condition.

6.8 ISOPARAMETRIC FORMULATION
The finite element method is a powerful technique for analyzing engineering
problems involving complex, irregular geometries. However, the two- and three-
dimensional elements discussed so far in this chapter (triangle, rectangle, tetra-
hedron, brick) cannot always be efficiently used for irregular geometries.
Consider the plane area shown in Figure 6.20a, which is to be discretized via a
mesh of finite elements. A possible mesh using triangular elements is shown in
Figure 6.20b. Note that the outermost “row” of elements provides a chordal ap-
proximation to the circular boundary, and as the size of the elements is decreased
(and the number of elements increased), the approximation becomes increasingly
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closer to the actual geometry. However, also note that the elements in the inner
“rows” become increasingly slender (i.e., the height to base ratio is large). In gen-
eral, the ratio of the largest characteristic dimension of an element to the smallest
characteristic dimension is known as the aspect ratio. Large aspect ratios increase
the inaccuracy of the finite element representation and have a detrimental effect
on convergence of finite element solutions [8]. An aspect ratio of 1 is ideal but
cannot always be maintained. (Commercial finite element software packages pro-
vide warnings when an element’s aspect ratio exceeds some predetermined limit.)
In Figure 6.20b, to maintain a reasonable aspect ratio for the inner elements, it
would be necessary to reduce the height of each row of elements as the center of
the sector is approached. This observation is also in keeping with the convergence
requirements of the h-refinement method. Although the triangular element can be
used to closely approximate a curved boundary, other considerations dictate a
relatively large number of elements and associated computation time.

If we consider rectangular elements as in Figure 6.20c (an intentionally
crude mesh for illustrative purposes), the problems are apparent. Unless the
elements are very small, the area of the domain excluded from the model (the

(a) (b)

(c) (d)

Figure 6.20 
(a) A domain to be modeled. (b) Triangular elements.
(c) Rectangular elements. (d) Rectangular and quadrilateral
elements.
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shaded area in the figure) may be significant. For the case depicted, a large num-
ber of very small square elements best approximates the geometry.

At this point, the astute reader may think, Why not use triangular and rec-
tangular elements in the same mesh to improve the model? Indeed, a combina-
tion of the element types can be used to improve the geometric accuracy of the
model. The shaded areas of Figure 6.20c could be modeled by three-node tri-
angular elements. Such combination of element types may not be the best in
terms of solution accuracy since the rectangular element and the triangular ele-
ment have, by necessity, different order polynomial representations of the field
variable. The field variable is continuous across such element boundaries; this is
guaranteed by the finite element formulation. However, conditions on derivatives
of the field variable for the two element types are quite different. On a curved
boundary such as that shown, the triangular element used to fill the “gaps” left by
the rectangular elements may also have adverse aspect ratio characteristics.

Now examine Figure 6.20d, which shows the same area meshed with rectan-
gular elements and a new element applied near the periphery of the domain. The
new element has four nodes, straight sides, but is not rectangular. (Please note
that the mesh shown is intentionally coarse for purposes of illustration.) The new
element is known as a general two-dimensional quadrilateral element and is seen
to mesh ideally with the rectangular element as well as approximate the curved
boundary, just like the triangular element. The four-node quadrilateral element is
derived from the four-node rectangular element (known as the parent element)
element via a mapping process. Figure 6.21 shows the parent element and its
natural (r, s) coordinates and the quadrilateral element in a global Cartesian
coordinate system. The geometry of the quadrilateral element is described by

x =
4∑

i=1

Gi (x , y)xi (6.77)

y =
4∑

i=1

Gi (x , y)yi (6.78)

where the Gi (x , y) can be considered as geometric interpolation functions, and
each such function is associated with a particular node of the quadrilateral

3 (1, 1)

2 (1, �1)1 (�1, �1)

4 (�1, 1)

s

r

3 (x3, y3)

2 (x2, y2)
1 (x1, y1)

4 (x4, y4)

y

x

Figure 6.21 Mapping of a parent element into an isoparametric
element. A rectangle is shown for example.
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element. Given the geometry and the form of Equations 6.77 and 6.78, each
function Gi (x , y) must evaluate to unity at its associated node and to zero at each
of the other three nodes. 

These conditions are exactly the same as those imposed on the interpolation
functions of the parent element. Consequently, the interpolation functions for the
parent element can be used for the geometric functions, if we map the coordi-
nates so that

(r, s) = (−1, −1) ⇒ (x1, y1)

(r, s) = (1, −1) ⇒ (x2, y2)

(r, s) = (1, 1) ⇒ (x3, y3)

(r, s) = (−1, 1) ⇒ (x4, y4)

(6.79)

where the symbol ⇒ is read as “maps to” or “corresponds to.” Note that the (r, s)
coordinates used here are not the same as those defined by Equation 6.54. In-
stead, these are the actual rectangular coordinates of the 2 unit by 2 unit parent
element.

Consequently, the geometric expressions become

x =
4∑

i=1

Ni (r, s)xi

y =
4∑

i=1

Ni (r, s)yi

(6.80)

Clearly, we can also express the field variable variation in the quadrilateral ele-
ment as

�(x , y) = �(r, s) =
4∑

i=1

Ni (r, s)�i (6.81)

if the mapping of Equation 6.79 is used, since all required nodal conditions are
satisfied. Since the same interpolation functions are used for both the field vari-
able and description of element geometry, the procedure is known as isopara-
metric (constant parameter) mapping. The element defined by such a procedure
is known as an isoparametric element. The mapping of element boundaries is
illustrated in the following example.

Figure 6.22 shows a quadrilateral element in global coordinates. Show that the mapping
described by Equation 6.80 correctly describes the line connecting nodes 2 and 3 and
determine the (x , y) coordinates corresponding to (r, s) = (1, 0.5)

■ Solution
First, we determine the equation of the line passing through nodes 2 and 3 strictly by
geometry, using the equation of a two-dimensional straight line y = m x + b. Using the

EXAMPLE 6.3
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known coordinates of nodes 2 and 3, we have

Node 2: 1 = 3m + b

Node 3: 2 = 2.5m + b

Solving simultaneously, the slope is

m = −2

and the y intercept is

b = 7

Therefore, element edge 2-3 is described by

y = −2x + 7

Using the interpolation functions given in Equation 6.56 and substituting nodal x and y
coordinates, the geometric mapping of Equation 6.80 becomes

x = 1

4
(1 − r )(1 − s)(1) + 1

4
(1 + r )(1 − s)(3) + 1

4
(1 + r )(1 + s)(2.5)

+ 1

4
(1 − r )(1 + s)(1.25)

y = 1

4
(1 − r )(1 − s)(1) + 1

4
(1 + r )(1 − s)(1) + 1

4
(1 + r )(1 + s)(2)

+ 1

4
(1 − r )(1 + s)(1.75)

Noting that edge 2-3 corresponds to r = 1, the last two equations become

x = 3

2
(1 − s) + 2.5

2
(1 + s) = 5.5

2
− 0.5

2
s

y = 1

2
(1 − s) + (1 + s) = 3

2
+ 1

2
s

Eliminating s gives

2x + y = 14

2

2 (3, 1)1 (1, 1)

4 (1.25, 1.75)

3 (2.5, 2)

y

x

Figure 6.22 Quadrilateral element for
Example 6.3.
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which is the same as

y = −2x + 7

as desired.
For (r, s) = (1, 0.5), we obtain

x = 5.5

2
− 0.5

2
(0.5) = 2.625

y = 3

2
+ 1

2
(0.5) = 1.75

In formulating element characteristic matrices, various derivatives of the in-
terpolation functions with respect to the global coordinates are required, as pre-
viously demonstrated. In isoparametric elements, both element geometry and
variation of the interpolation functions are expressed in terms of the natural
coordinates of the parent element, so some additional mathematical complica-
tion arises. Specifically, we must compute ∂ Ni/∂ x and ∂ Ni/∂ y (and, possibly,
higher-order derivatives). Since the interpolation functions are expressed in
(r, s) coordinates, we can formally write these derivatives as

∂ Ni

∂x
= ∂ Ni

∂r

∂r

∂x
+ ∂ Ni

∂s

∂s

∂x

∂ Ni

∂y
= ∂ Ni

∂r

∂r

∂y
+ ∂ Ni

∂s

∂s

∂y

(6.82)

However, unless we invert the relations in Equation 6.80, the partial derivatives
of the natural coordinates with respect to the global coordinates are not known.
As it is virtually impossible to invert Equation 6.80 to explicit algebraic expres-
sions, a different approach must be taken.

We take an indirect approach, by first examining the partial derivatives of the
field variable with respect to the natural coordinates. From Equation 6.81, the
partial derivatives of the field variable with respect to the natural coordinates can
be expressed formally as

∂�

∂r
= ∂�

∂x

∂x

∂r
+ ∂�

∂y

∂y

∂r

∂�

∂s
= ∂�

∂x

∂x

∂s
+ ∂�

∂y

∂y

∂s

(6.83)

In light of Equation 6.81, computation of the partial derivatives of the field vari-
able requires the partial derivatives of each interpolation function as

∂Ni

∂r
= ∂Ni

∂x

∂x

∂r
+ ∂Ni

∂y

∂y

∂r

∂Ni

∂s
= ∂Ni

∂x

∂x

∂s
+ ∂N i

∂y

∂y

∂s

i = 1, 4 (6.84)
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Writing Equation 6.84 in matrix form,



∂Ni

∂r
∂Ni

∂s




=




∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s







∂Ni

∂x
∂Ni

∂y




i = 1, 4 (6.85)

we observe that the 2 × 1 vector on the left-hand side is known, since the inter-
polation functions are expressed explicitly in the natural coordinates. Similarly,
the terms in the 2 × 2 coefficient matrix on the right-hand side are known via
Equation 6.80. The latter, known as the Jacobian matrix, denoted [J], is given
by

[J] =




∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s


 =




4∑
i=1

∂Ni

∂r
xi

4∑
i=1

∂Ni

∂r
yi

4∑
i=1

∂Ni

∂s
xi

4∑
i=1

∂Ni

∂s
yi


 (6.86)

If the inverse of the Jacobian matrix can be determined, Equation 6.85 can be
solved for the partial derivatives of the interpolation functions with respect to the
global coordinates to obtain




∂Ni

∂x
∂Ni

∂y




= [J]−1




∂Ni

∂r
∂Ni

∂s




=
[

I11 I12

I21 I22

]



∂Ni

∂r
∂Ni

∂s




i = 1, 4 (6.87)

with the terms of the inverse of the Jacobian matrix denoted Ii j for convenience.
Equation 6.87 can be used to obtain the partial derivatives of the field variable
with respect to the global coordinates, as required in discretizing a governing dif-
ferential equation by the finite element method. In addition, the derivatives are
required in computing the “secondary” variables, including strain (then stress) in
structural problems and heat flux in heat transfer. These and other problems are
illustrated in subsequent chapters.

As we also know, various integrations are required to obtain element stiff-
ness matrices and load vectors. For example, in computing the terms of the con-
ductance matrix for two-dimensional heat transfer elements, integrals of the
form

∫∫
A

(
∂ Ni

∂x

∂ Nj

∂x

)
d A

are encountered, and the integration is to be performed over the area of the
element in global coordinates. However, for an isoparametric element such as
the quadrilateral being discussed, the interpolation functions are in terms of the
parent element coordinates. Hence, it is necessary to transform such integrals to
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the natural coordinates. From Equation 6.87, we have

∂Ni

∂x

∂Nj

∂x
=

(
I11

∂Ni

∂r
+ I12

∂Ni

∂s

)(
I11

∂Nj

∂r
+ I12

∂Nj

∂s

)
(6.88)

so the integrand is transformed using the terms of [J]−1. As shown in advanced
calculus [9], the differential area relationship is

d A = dx dy = |J| dr ds (6.89)

so integrals of the form described previously become

∫∫
A

(
∂Ni

∂x

∂Nj

∂x

)
dA =

1∫
−1

1∫
−1

(
I11

∂Ni

∂r
+ I12

∂Ni

∂s

)(
I11

∂Nj

∂r
+ I12

∂Nj

∂s

)
|J| dr ds

(6.90)

Such integrals are discussed in greater detail in later chapters in problem-specific
contexts. The intent of this discussion is to emphasize the importance of the
Jacobian matrix in development of isoparametric elements. 

Rather than work with individual interpolation functions, it is convenient to
combine Equations 6.84 and 6.85 into matrix form as



∂[N ]

∂r

∂[N ]

∂s




=




∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s







∂[N ]

∂x

∂[N ]

∂y




(6.91)

where [N] is the 1 × 4 row matrix

[N ] = [N1 N2 N3 N4] (6.92)

and Equation 6.91 in matrix notation is the same as


∂

∂r
∂

∂s




[N ] =




∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s







∂

∂x

∂

∂y




[N ] (6.93)

We use this matrix notation to advantage in later chapters, when we examine
specific applications.

While the isoparametric formulation just described is mathematically
straightforward, the algebraic complexity is significant, as illustrated in the
following example.

Determine the Jacobian matrix for a four-node, two-dimensional quadrilateral element
having the parent element whose interpolation functions are given by Equation 6.56.

EXAMPLE 6.4
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(a) (b)

Figure 6.23 Isoparametric mapping of quadratic elements into curved elements:
(a) Six-node triangle. (b) Eight-node rectangle.

■ Solution
The partial derivatives of x and y with respect to r and s per Equations 6.56 and 6.80 are

∂ x

∂r
=

4∑
i=1

∂ Ni

∂r
xi = 1

4
[−(1 − s)x1 + (1 − s)x2 + (1 + s)x3 − (1 + s)x4]

∂y

∂r
=

4∑
i=1

∂ Ni

∂r
yi = 1

4
[−(1 − s) y1 + (1 − s) y2 + (1 + s) y3 − (1 + s) y4]

∂ x

∂s
=

4∑
i=1

∂ Ni

∂s
xi = 1

4
[−(1 − r )x1 − (1 + r )x2 + (1 + r )x3 + (1 − r )x4]

∂y

∂s
=

4∑
i=1

∂ Ni

∂s
yi = 1

4
[−(1 − r ) y1 − (1 + r ) y2 + (1 + r ) y3 + (1 − r ) y4]

The Jacobian matrix is then

[J] = 1

4

[
(1 − s)(x2 − x1) + (1 + s)(x3 − x4) (1 − s)( y2 − y1) + (1 + s)( y3 − y4)
(1 − r )(x4 − x1) + (1 + r )(x3 − x2) (1 − r )( y4 − y1) + (1 + r )( y3 − y2)

]

Note that finding the inverse of this Jacobian matrix in explicit form is not an envi-
able task. The task is impossible except in certain special cases. For this reason, isopara-
metric element formulation is carried out using numerical integration, as discussed in
Section 6.10.

The isoparametric formulation is by no means limited to linear parent ele-
ments. Many higher-order isoparametric elements have been formulated and
used successfully [1]. Figure 6.23 depicts the isoparametric elements corre-
sponding to the six-node triangle and the eight-node rectangle. Owing to the
mapping being described by quadratic functions of the parent elements, the
resulting elements have curved boundaries, which are also described by qua-
dratic functions of the global coordinates. Such elements can be used to closely
approximate irregular boundaries. However, note that curved elements do not,
in general, exactly match a specified boundary curve.
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(a)

r

z

�

(b)

(r1, z1)

(r2, z2)

(r3, z3)

z

r

Figure 6.24 
(a) An axisymmetric body and cylindrical coordinates. (b) A three-
node triangle in cylindrical coordinates at an arbitrary value �.

6.9 AXISYMMETRIC ELEMENTS
Many three-dimensional field problems in engineering exhibit symmetry about
an axis of rotation. Such problems, known as axisymmetric problems, can be
solved using two-dimensional finite elements, which are most conveniently de-
scribed in cylindrical (r, �, z) coordinates. The required conditions for a problem
to be axisymmetric are as follows:

1. The problem domain must possess an axis of symmetry, which is
conventionally taken as the z axis; that is, the domain is geometrically
a solid of revolution.

2. The boundary conditions are symmetric about the axis of revolution;
thus, all boundary conditions are independent of the circumferential
coordinate �.

3. All loading conditions are symmetric about the axis of revolution; thus,
they are also independent of the circumferential coordinate.

In addition, the material properties must be symmetric about the axis of revolu-
tion. This condition is, of course, automatically satisfied for isotropic materials.

If these conditions are met, the field variable � is a function of radial and
axial (r, z) coordinates only and described mathematically by two-dimensional
governing equations.

Figure 6.24a depicts a cross section of an axisymmetric body assumed to be
the domain of an axisymmetric problem. The cross section could represent the
wall of a pressure vessel for stress or heat transfer analysis, an annular region
of fluid flow, or blast furnace for steel production, to name a few examples. In
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r

z

�

Figure 6.25 A three-dimensional
representation of an axisymmetric
element based on a three-node
triangular element.

Figure 6.24b, a three-node triangular element is shown having nodal coordinates
(ri , zi ). In the axisymmetric case, the field variable is discretized as

�(r, z) =
3∑

i=1

Ni (r, z)�i (6.94)

where the interpolation functions Ni (r, z) must satisfy the usual nodal conditions.
Noting that the nodal conditions are satisfied by the interpolation functions

defined by Equation 6.37 if we simply substitute r for x and z for y, the inter-
polation functions for the axisymmetric triangular element are immediately
obtained. Similarly, the interpolation functions in terms of area coordinates are
also applicable.

Since, by definition of an axisymmetric problem, the problem, therefore its
solution, is independent of the circumferential coordinate �, so must be the inter-
polation functions. Consequently, any two-dimensional element and associated
interpolation functions can be used for axisymmetric elements. What is the dif-
ference? The axisymmetric element is physically three dimensional. As depicted
in Figure 6.25, the triangular axisymmetric element is actually a prism of revo-
lution. The “nodes” are circles about the axis of revolution of the body, and the
nodal conditions are satisfied at every point along the circumference defined by
the node of a two-dimensional element. Although we use a triangular element
for illustration, we reiterate that any two-dimensional element can be used to
formulate an axisymmetric element.

As is shown in subsequent chapters in terms of specific axisymmetric
problems, integration of various functions of the interpolation functions over the
volume are required for element formulation. Symbolically, such integrals are
represented as

F (r, �, z) =
∫∫∫

V

f (r, �, z) dV =
∫∫∫

f (r, �, z)r dr d� dz (6.95)
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dz

dr

d�

r
Figure 6.26 Differential volume
in cylindrical coordinates.

where V is the volume of an element and dV = r dr d� dz is the differential vol-
ume depicted in Figure 6.26. For axial symmetry, the integrand is independent of
the circumferential coordinate �, so the integration indicated in Equation 6.95
becomes

F (r, �, z) = F (r, z) = 2�

∫∫
A

f (r, z)r dr dz (6.96)

Equation 6.96 shows that the integration operations required for formulation of
axisymmetric elements are distinctly different from those of two-dimensional
elements, even though the interpolation functions are essentially identical. As
stated, we show applications of axisymmetric elements in subsequent chapters.
Also, any two-dimensional element can be readily converted to an axisymmetric
element, provided the true three-dimensional nature of the element is taken into
account when element characteristic matrices are formulated.

In following chapters, we show that integrals of the form
∫

V

Ni Nj dV

where Ni , Nj are interpolation functions and V is element volume, must be evaluated in
formulation of element matrices. Evaluate the integral with i = 1, j = 2 for an axisym-
metric element based on the three-node triangle using the area coordinates as the interpo-
lation functions.

■ Solution
For the axisymmetric element, we use Equation 6.96 to write

∫

V

Ni Nj dV = 2�

∫

A

Ni Nj r dr dz = 2�

∫

A

L i L j r dr dz

where A is the element area. Owing to the presence of the variable r in the integrand, the
integration formula, Equation 6.49, cannot be applied directly. However, we can express
r in terms of the nodal coordinates r1, r2, r3 and the area coordinates as

r = L 1r1 + L 2r2 + L 3r3

EXAMPLE 6.5
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Then, noting that dr dz = d A , we have

2�

∫

A

L i L j r dr dz = 2�

∫

A

L i L j (L 1r1 + L 2r2 + L 3r3) d A

which is of the appropriate form for application of the integration formula. For i = 1,
j = 2, the integral becomes

2�

∫

A

L 1 L 2r dr dz = 2�

∫

A

L 1 L 2(L 1r1 + L 2r2 + L 3r3) d A

= 2�r1

∫

A

L 2
1 L 2 d A + 2�r2

∫

A

L 1 L 2
2 d A + 2�r3

∫

A

L 1 L 2 L 3 d A

Applying the integration formula to each of the three integrals on the right,

2�

∫

A

L 1 L 2r dr dz

= 4� A

[
r1

(2!)(1!)(0!)

(2 + 1 + 0 + 2)!
+ r2

(1!)(2!)(0!)

(1 + 2 + 0 + 2)!
+ r3

(1!)(1!)(1!)

(1 + 1 + 1 + 2)!

]

= 4� A

(
2r1

120
+ 2r2

120
+ r3

120

)
= � A

30
(2r1 + 2r2 + r3)

The integration technique used in Example 6.5 is also applicable to higher-
order, straight-sided triangular elements, as shown in the next example.

For an axisymmetric element based on the six-node, quadratic triangular element having
interpolation functions given by Equation 6.47, evaluate the integral

I =
∫

V

N2 N4 dV

■ Solution
Using Equation 6.93,

I =
∫

V

N2 N4 dV = 2�

∫

A

N2 N4r dr dz = 2�

∫

A

L 2(2L 2 − 1)(4L 1 L 2)r dr dz

Now observe that, even though the interpolation functions vary quadratically over the
element area, the area coordinates, by definition, vary linearly. Since the element sides
are straight, the radial coordinate can still be expressed as

r = L 1r1 + L 2r2 + L 3r3

Therefore, we have

I = 2�

∫

A

L 2(2L 2 − 1)(4L 1 L 2)(L 1r1 + L 2r2 + L 3r3) d A

EXAMPLE 6.6
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or

I = 16�

∫

A

(
L 2

1 L 3
2r1 + L 1 L 4

2r2 + L 1 L 3
2 L 3r3

)
d A

− 8�

∫

A

(
L 2

1 L 2
2r1 + L 1 L 3

2r2 + L 1 L 2
2 L 3r3

)
d A

Application of the integration formula, Equation 6.49, to each of the six integrals repre-
sented here (left as an exercise), we find

I = � A

315
(6r2 − 4r1 − 2r3)

6.10 NUMERICAL INTEGRATION:
GAUSSIAN QUADRATURE

Previous chapters show that integration of various functions of the field variable
are required for formulation of finite element characteristic matrices. Chapter 5
reveals that the Galerkin method requires integration over the element domain
(and, as seen, physical volume), once for each interpolation function (trial solu-
tion). In fact, an integration is required to obtain the value of every component of
the stiffness matrix of a finite element. In addition, integrations are required to
obtain nodal equivalents of nonnodal loadings. 

In this chapter, we focus primarily on polynomial representations of the dis-
cretized representations of the field variable. In subsequent formulation of ele-
ment characteristic matrices, we are faced with integrations of polynomial forms. 
A simple polynomial is relatively easy to integrate in closed form. In many cases,
however, the integrands are rational functions, that is, ratios of polynomials; and
these are quite tedious to integrate directly. In either case, in the finite element
context, where large numbers of elements, hence huge numbers of integrations,
are required, analytical methods are not efficient. Finite element software pack-
ages do not incorporate explicit integration of the element formulation equations.
Instead, they use numerical techniques, the most popular of which is Gaussian
(or Gauss-Legendre) quadrature [10].

The concept of Gaussian quadrature is first illustrated in one dimension in
the context of an integral of the form

I =
x2∫

x1

h(x ) dx (6.97)

Via the change of variable r = ax + b, Equation 6.97 can be converted to

I =
1∫

−1

f (r ) dr (6.98)
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with dr = a dx .The coefficients a and b are determined so that the integration
limits become minus and plus unity. This is conventional for the numerical inte-
gration procedure and also accords nicely with the range of the natural coordi-
nates of many of the elements discussed in this chapter.

Per the Gaussian integration procedure, the integration represented by Equa-
tion 6.98 can be approximated by

I =
m∑

i=1

Wi f (ri ) (6.99)

where Wi are Gaussian weighting factors and ri are known as sampling points
or Gauss points. The weighting factors and sampling points are determined [9]
to minimize error, particularly in terms of polynomial functions. Of particular
import in finite element analysis, a polynomial of order n can be exactly inte-
grated. Referring to Equation 6.99, use of m sampling points and weighting
factors results in an exact value of the integral for a polynomial of order 2m − 1,
if the sampling points and weighting factors are chosen in accordance with
Table 6.1. This means, for example, that a cubic polynomial can be exactly inte-
grated by Equation 6.99, using only two sampling points and evaluating the
integrand at those points, multiplying by the weighting factors, and summing
the results.

To illustrate how the sampling points and weighting factors are determined,
we formally integrate a general polynomial in one dimension as

1∫
−1

(a0 + a1r + a2r 2 + a3r 3 + · · · + anr n) dr

= 2a0 + 2

3
a2 + 2

5
a4 + · · · + 2

n + 1
an (6.100)

Table 6.1 Sampling points and weighting factors for Gaussian quadrature numerical

integration of 
1∫

−1
f ( r ) dr ≈

m∑
i =1

Wi f ( r i ) . This is an abridged table, giving values

sufficient for exact integration of a polynomial of order seven or less 

m ri Wi

1 0.0 2.0

2 0.577350269189626. . . 1.0
−0.577350269189626. . . 1.0

3 0.0 0.888888888888889
0.774596669241483 0.555555555555556

−0.774596669241483 0.555555555555556

4 0.339981043583856 0.652145154862526
−0.339981043583856 0.652145154862526

0.861136311590453 0.347854845137454
−0.861136311590453 0.347854845137454
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and we observe that, owing to the symmetry of the integration limits, all odd
powers integrate to zero. Also note that we assume here that n is an even integer.
The approximation to the integral per Equation 6.99 is

I ≈
m∑

i=1

Wi f (ri ) = W1

(
a0 + a1r1 + a2r 2

1 + a3r 3
1 + · · · + anr n

1

)
+ W2

(
a0 + a1r2 + a2r 2

2 + a3r 3
2 + · · · + anr n

2

)
+ W3

(
a0 + a1r3 + a2r 2

3 + a3r 3
3 + · · · + anr n

3

)
...

+ Wm

(
a0 + a1rm + a2r 2

m + a3r 3
m + · · · + anr n

m

)
(6.101)

Comparing Equations 6.100 and 6.101 in terms of the coefficients aj of the poly-
nomial, the approximation of Equation 6.101 becomes exact if

m∑
i=1

Wi = 2

m∑
i=1

Wiri = 0

m∑
i=1

Wir
2
i = 2

3
m∑

i=1

Wir
3
i = 0 (6.102)

m∑
i=1

Wir
4
i = 2

5
...

m∑
i=1

Wir
n−1
i = 0

m∑
i=1

Wir
n
i = 2

n + 1

where m is the number of sampling (Gauss) integration points.
Equation 6.102 represents n equations in 2m + 1 unknowns. The unknowns

are the weighting factors Wi , the sampling point values ri , and most trouble-
some, the number of sampling points m. While we do not go into the complete
theory of Gaussian quadrature, we illustrate by example how the sampling points
and weights can be determined using both the equations and logic. First, note that
the equations corresponding to odd powers of the polynomial indicate a zero
summation. Second, note that the first equation is applicable regardless of the
order of the polynomial; that is, the weighting factors must sum to the value of
2 if exactness is to be achieved.
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If, for example, we have a linear polynomial n = 1, the first two of Equa-
tion 6.102 are applicable and lead to the conclusions that we need only one sam-
pling point and that the appropriate values of the weighting factor and sample
point to satisfy the two equations (in this case) are W1 = 2 and r1 = 0. Next, con-
sider the case of a cubic polynomial, n = 3. In this case, we have

m∑
i=1

Wi = 2

m∑
i=1

Wiri = 0

m∑
i=1

Wir
2
i = 2

3

representing three equations in 2m + 1 unknowns. If we let m = 1, the first two
equations lead to W1 = 2, r1 = 0, but the third equation cannot be satisfied. On
the other hand, if m = 2, we have

W1 + W2 = 2

W1r1 + W2r2 = 0

W1r 2
1 + W2r 2

2 = 2

3

a system of three equations in four unknowns. We cannot directly solve these
equations, but if we examine the case W1 = W2 = 1 and r1 = −r2, the first two
equations are satisfied and the third equation becomes

r2
1 + r2

2 = 2r2
1 = 2

3
⇒ r1 =

√
1

3
=

√
3

3
= 0.57735. . .

corresponding exactly to the second entry in Table 6.1. These weighting factors
and Gauss points also integrate a quadratic polynomial exactly. The reader is
urged to note that, because of the zero result from integrating the odd powers in
the polynomial, exact results are obtained for two polynomial orders for each set
of sampling points and weighting factors.

This discussion is by no means intended to be mathematically rigorous in
terms of the theory underlying numerical integration. The intent is to give some
insight as to the rationale behind the numerical values presented in Table 6.1. 

Evaluate the integral 

f (r ) =
1∫

−1

(r 2 − 3r + 7) dr

using Gaussian quadrature so that the result is exact.

EXAMPLE 6.7
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■ Solution
As the integrand is a polynomial of order 2, we have, for exact integration, 2m − 1 = 2,
which results in the required number of sampling points as m = 3/2. The calculated
number of sampling points must be rounded up to the nearest integer value, so in this
case, we must use two sampling points. Per Table 6.1, the sampling points are ri =
±0.5773503 and the weighting factors are Wi = 1.0, i = 1, 2. Therefore,

1∫

−1

(r 2 − 3r + 7) dr = (1)[(0.5773503)2 − 3(0.5773503) + 7]

+ (1)[(−0.5773503)2 − 3(−0.5773503) + 7]

1∫

−1

(r 2 − 3r + 7) dr = 14.666667

The result is readily verified as, indeed, being exact by direct integration.

The Gaussian quadrature numerical integration procedure is by no means
limited to one dimension. In finite element analysis, integrals of the forms

I =
1∫

−1

1∫
−1

f (r, s) dr ds

I =
1∫

−1

1∫
−1

1∫
−1

f (r, s, t ) dr ds dt

(6.103)

are frequently encountered. Considering the first of Equation 6.103, we integrate
first with respect to r (using the Gaussian technique) to obtain

I =
1∫

−1

1∫
−1

f (r, s) dr ds =
1∫

−1

n∑
i=1

[Wi f (ri , s)] ds =
1∫

−1

g(s) ds (6.104)

which, in turn, is integrated via quadrature to obtain

I =
m∑

j=1

Wj g(sj ) (6.105)

combining Equations 6.98 and 6.99, we find

I =
1∫

−1

1∫
−1

f (r, s) dr ds =
m∑

j=1

n∑
i=1

Wj Wi f (ri , sj ) (6.106)
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Equations 6.104–6.106 show that, for integration in two dimensions, we simply
apply the Gaussian procedure sequentially, just as when we integrate formally.
At each step, if we desire an exact result, the number of sampling points (hence,
the weighting factors) is chosen by the order of the respective polynomial terms
in r and s. The numerical result is exact. In practice, the number of sampling
points is chosen to be the same for each integration step, with the higher-order
prevailing, as illustrated in the following example.

Use Gaussian quadrature to obtain an exact value for the integral

I =
1∫

−1

1∫

−1

(r 3 − 1)(s − 1)2 dr ds

■ Solution
Considering first the integration with respect to r, we have a cubic order that requires two
sampling points, which from Table 6.1 are given as ri = ±0.5773503, and each of the
corresponding weighting factors is unity. Similarly, for the integration with respect to s,
the order is quadratic so the factors are the same. (In the following solution, we note, for
simplicity of presentation, that the sampling points are numerically equal to 

√
3/3.) Equa-

tion 6.106 is then, for this example,

I =
2∑

j=1

2∑
i=1

Wj Wi f (ri , sj )

=



(√
3

3

)3

− 1




(√
3

3
− 1

)2

+



(
−√

3

3

)3

− 1




(√
3

3
− 1

)2

+



(√
3

3

)3

− 1




(
−√

3

3
− 1

)2

+



(
−√

3

3

)3

− 1




(
−√

3

3
− 1

)2

= 5.33333333

And, as again may be verified by direct integration, the result is exact.

An analogous procedure shows that, for the three-dimensional case,

I =
1∫

−1

1∫
−1

1∫
−1

f (r, s, t ) dr ds dt ≈
l∑

k=1

m∑
j=1

n∑
i=1

Wk Wj Wi f (ri , sj , tk) (6.107)

As in the case of one- and two-dimensional integration, the approximation de-
scribed by Equation 6.107 can be made to give an exact value for a polynomial
integrand if the sampling points are selected as previously described. The fol-
lowing example illustrates the procedure.

EXAMPLE 6.8
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Use Gaussian quadrature to obtain an exact value of the integral

I =
1∫

−1

1∫

−1

1∫

−1

r 2(s2 − 1)(t 4 − 2) dr ds dt

■ Solution
In this case, we have a quadratic polynomial in r, so two sampling points are required, with
ri = ±0.5773503 = ±√

3/3 and Wi = 1 per Table 6.1. The quadratic in s similarly requires
two sampling points, sj = ±0.5773503 = ±√

3/3, with weighting factors Wj = 1.0. For
the quartic function in t, three sampling points are required for exactness and the values
and weighting factors per Table 6.1 are

t1 = 0.0

t2 = 0.7745967

t3 = −0.7745967

W1 = 0.8888889

W2 = 0.5555556

W3 = 0.5555556

For an exact solution, we then have

I =
3∑

k=1

2∑
j=1

2∑
i=1

Wk Wj Wi f (ri , sj , tk )

so a total of 12 terms is required. The required calculations are summarized in Table 6.2.
So we obtain

I =
1∫

−1

1∫

−1

1∫

−1

r 2(s2 − 1)(t 4 − 2) dr ds dt = 3.2

and this result is exact.

EXAMPLE 6.9

Table 6.2 Sampling Points, Weighting Factors, and Calculations for Example 6.9  

Cumulative
Point ri sj tk Wi Wj Wk f(ri, sj, tk) Sum

1 0.57735 0.57735 0 1 1 0.88888889 0.395062 0.395062
2 0.57735 0.57735 0.774597 1 1 0.55555556 0.202469 0.597531
3 0.57735 0.57735 −0.774597 1 1 0.55555556 0.202469 0.8
4 0.57735 −0.57735 0 1 1 0.88888889 0.395062 1.195062
5 0.57735 −0.57735 0.774597 1 1 0.55555556 0.202469 1.397531
6 0.57735 −0.57735 −0.774597 1 1 0.55555556 0.202469 1.6
7 −0.57735 0.57735 0 1 1 0.88888889 0.395062 1.995062
8 −0.57735 0.57735 0.774597 1 1 0.55555556 0.202469 2.197531
9 −0.57735 0.57735 −0.774597 1 1 0.55555556 0.202469 2.4

10 −0.57735 −0.57735 0 1 1 0.88888889 0.395062 2.795062
11 −0.57735 −0.57735 0.774597 1 1 0.55555556 0.202469 2.997531
12 −0.57735 −0.57735 −0.774597 1 1 0.55555556 0.202469 3.2
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Lest the reader be lulled into the false impression that numerical integration
can always be made exact, we present the following example to illustrate that
(1) numerical integration is not always exact but (2) numerical integration con-
verges to exactness as the number of integration points is increased.

Evaluate the integral

I =
1∫

−1

r 2 − 1

(r + 3)2
dr

using Gaussian integration with one, two, and three integration points.

■ Solution
The integration procedure requires that we evaluate the integrand at discrete points and
sum the results as follows (we do not present all the calculation details: the reader is urged
to check our calculations)

One Integration Point

W1 = 2 r1 = 0

I ≈ 2

( −1

3

)
= −0.666667

Two Integration Points

W1 = W2 = 1 r1 =
√

3

3
r2 = −r1

I ≈ −0.16568

Three Terms

W1 = 0.8888888 W2 = 0.5555555 . . . W3 = −0.5555555 . . .

r1 = 0 r2,3 = ±0.7745966

I ≈ −0.15923

Continuing with the four-point integration results in

I ≈ −0.15891

Hence, we see a convergence to a value. If the exact result is obtained by formal integra-
tion, the result is I = −0.15888. As illustrated by this example, the Gaussian integration
procedure is not always exact but does, indeed, converge to exact solutions as the num-
ber of sampling or Gauss points is increased.

EXAMPLE 6.10
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6.11 CLOSING REMARKS
The developments presented in this chapter show how interpolation functions for
one-, two-, and three-dimensional elements can be obtained via a systematic pro-
cedure. Also, the algebraically tedious procedure can often be bypassed using
intuition and logic when natural coordinates are used. The interpolation func-
tions discussed are standard polynomial forms but by no means exhaustive of the
interpolation functions that have been developed for use in finite element analy-
sis. For example, we make no mention of Legendre or Hermite polynomials for
application to finite elements. These and other forms are well known and dis-
cussed in the finite element literature. As the objective of this text is to present the
fundamentals of finite element analysis, the material of this chapter is intended to
cover the basic concepts of interpolation functions without proposing to be com-
prehensive. The treatment here is intended to form a basis for formulation of
finite element models of various physical problems in following chapters. In gen-
eral, every element and the associated interpolation functions discussed here can
be applied to specific problems, as is illustrated in the remainder of the text.
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PROBLEMS
6.1 Verify that Equation 6.6, with the interpolation functions given by Equation 6.16,

allows for rigid body translation of a two-dimensional beam element. (Hint: For
the rigid body translation, v1 = v2, �1 = �2 = 0.)
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6.2 Verify that Equation 6.6, with the interpolation functions given by Equation 6.16,
allows for rigid body rotation of a two-dimensional beam element.

6.3 Consider the case of a two-dimensional beam element subjected to pure bending.
Show that Equation 6.6 results in d2v/dx 2 = constant, as required.

6.4 Show that shear force in a two-dimensional beam element is constant regardless
of the values of the nodal displacements.

6.5 Show that interpolations function N1(s) in Example 6.1 is the same as

N1(s) = (s − s2)(s − s3)(s − s4)

(s1 − s2)(s1 − s3)(s1 − s4)

(Note: N1(s), as just given, is a particular case of the Lagrange polynomial of
order n

L j (s) =
n∏

i=1, i �= j

s − si

sj − si

where the symbol 
∏

indicates the product of all terms.)
6.6 Use the definition of the Lagrange polynomial given in Problem 6.5 to find the

cubic polynomials corresponding to j = 2 and j = 3.
6.7 Use the Lagrange polynomial to determine the interpolation functions for the

five-node line element shown in Figure P6.7.

Figure P6.7

6.8 The quadratic polynomial

P (x , y) = a0 + a1 x 2 + a2 x y + a3 y2

is incomplete but symmetric. Is this function suitable for representing the field
variable in a four-node rectangular element having 1 degree of freedom per
node? Explain.

6.9 Determine all possible symmetric, incomplete fourth-order polynomials in two
dimensions. Which of these might be useful for C 0 problems in finite element
analysis?

6.10 Repeat Problem 6.9 for cubic polynomials in three dimensions.
6.11 Derive Equation 6.38.
6.12 Show that Equations 6.36 and 6.43 are identical.
6.13 Using area coordinates, develop interpolation functions for the 10-node

triangular element shown in Figure P6.13. Note that the nodes are equally spaced
on their edges.

1 2 3 4 5 x

x1 � 2
x2 � 2.25
x3 � 2.5
x4 � 2.75
x5 � 3
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Figure P6.13

6.14 Show that node 10 in Figure P6.13 is located at the element centroid.
6.15 Use the integration formula for area coordinates to evaluate the following

integrals in terms of total area A:

a.
∫∫

A

L 2
2(2L 2 − 1)2 d A

b.
∫∫

A

4L 1 L 2 L 3(2L 1 − 1) d A

c.
∫∫

A

L 3
1 L 2 L 3 d A

d.
∫∫

A

L 1 L 3
2 L 3 d A

6.16 The interpolation functions for the four-node rectangular element as given by
Equation 6.56 are such that

4∑
i=1

Ni (r, s) = 1

What is the significance of this observation?
6.17 Show that Equation 6.56 is such that constant values of the partial derivatives

∂�/∂r, ∂�/∂ s are possible in an element. Note that this ensures satisfaction of
the completeness requirement for C 0 problems.

6.18 Two three-node triangular elements share a common boundary, as shown in
Figure P6.18. Show that the field variable � is continuous across this
interelement boundary.

3

8

9

1
4

10

5

2

6

7
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Figure P6.18

6.19 Repeat Problem 6.18 for the two four-node rectangular elements shown in
Figure P6.19. The interpolation functions are as given by Equation 6.56.

Figure P6.19

6.20 Examine the behavior of the partial derivatives ∂�/∂r, ∂�/∂ s across and along
the interelement boundary defined by nodes 2 and 3 in Problem 6.19.

6.21 Determine the continuity conditions on � and the partial derivatives ∂�/∂r,
∂�/∂ s on the boundary between the two eight-node rectangular elements shown
in Figure P6.21. The interpolation functions are given by Equation 6.59.

Figure P6.21

6.22 Verify that the interpolation functions given by Equations 6.59 satisfy the
condition

8∑
i=1

Ni (r, s) = 1

6.23 Verify that Equation 6.62 correctly defines the volume of a tetrahedron.
6.24 In Example 6.5, the expression r = L 1r1 + L 2r2 + L 3r3 is used to allow

application of the integration formula in area coordinates. Prove that this
expression is correct.

9 10 11 12 13

1 2

6 7 8

3 4 5

4 3 6

1 2 5

3

4

1

2
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6.25 Use the integration formula of Equation 6.49 to confirm the result of Example 6.6.
6.26 Use the integration formula for area coordinates to show that

A =
∫

A

d A =
∫∫

dx dy =
1∫

0

1−L 2∫

0

dL 1 dL 2

6.27 Consider the isoparametric quadrilateral element in Figure P6.27. Map the point
r = 0.5, s = 0 in the parent element to the corresponding physical point in the
quadrilateral element.

Figure P6.27

6.28 Again referring to the element in Figure P6.27, map the line r = 0 in the parent
element to the physical element. Plot the mapping on a scaled drawing of the
quadrilateral element.

6.29 Repeat Problem 6.28 for the line s = 0 in the parent element.
6.30 Consider the two-node line element in Figure P6.30 with interpolation functions

N1(r ) = 1 − r N2(r ) = r

Using this as the parent element, examine the isoparametric mapping

x = N1(r )x1 + N2(r )x2

for arbitrary values x1 and x2 such that x1 < x2 .
a. What has been accomplished by the mapping?
b. Determine the Jacobian matrix for the transformation.

Figure P6.30

6.31 Consider the three-node line element in Figure P6.31 with interpolation functions

N1(r ) = (2r − 1)(r − 1)

N2(r ) = 4r (1 − r )

N3(r ) = r (2r − 1)

1

r

r1 � 0 r2 � 1
2

1 (2, 2)

4 (2, 2.5)

3 (2.4, 2.6)

2 (2.5, 2.1)

y

x
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Use the element as the parent element in the isoparametric mapping

x = N1(r )x1 + N2(r )x2 + N3(r )x3

with x1 < x2 < x3 but otherwise arbitrary nodal coordinates. 
a. How does the x coordinate vary between nodes of the isoparametric element?
b. Has the basic element geometry changed from that of the parent element? 
c. Determine the Jacobian matrix for the transformation. 
d. Find the inverse of the Jacobian matrix.

Figure P6.31

6.32 Consider again the three-node line element of Figure P6.31 as the parent element
for the two-dimensional mapping defined by

x = N1(r )x1 + N2(r )x2 + N2(r )x3

y = N1(r ) y1 + N2(r ) y2 + N2(r ) y3

where (xi , yi ) are the coordinates of node i.
a. Let (x1, y1) = (1, 1), (x2, y2) = (2, 3), (x3, y3) = (4, 2) and plot the

geometry of the isoparametric element to scale.
b. Could the resulting isoparametric element be used in a finite element analysis

of heat conduction (refer to Chapter 5) through a curved solid with ideally
insulated surfaces? Explain your answer.

6.33 Show by analytical integration that the result given in Example 6.9 is exact.
6.34 Use Gaussian quadrature to obtain exact values for the following integrals.

Verify exactness by analytical integration.

a.

3∫

0

(x 2 − 1) dx

b.

6∫

1

( y3 + 2y) dy

c.

1∫

−1

(4r 3 + r ) dr

d.

1∫

−1

(r 4 + 3r 2) dr

e.

1∫

−1

(r 4 + r 3 + r 2 + r + 1) dr

1

r

r1 � 0 r3 � 1
3

r2 � 0.5
2
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6.35 Use Gaussian quadrature to obtain exact values for the following integrals in two
dimensions. Verify exactness by analytical integration.

a.

1∫

0

2∫

0

x y dx dy

b.

1∫

−1

1∫

−1

(r 2 + 2r s + s2) dr ds

c.

1∫

−1

1∫

−1

(r 3 − 1)(s2 + s) dr ds

d.

1∫

−1

1∫

−1

(r 5 − 2r 3)(s3 + s) dr ds

e.

1∫

−1

1∫

−1

(6r 4 − 1)(s2 + s + 1) dr ds

6.36 Use Gaussian quadrature to obtain exact values for the following three-
dimensional integrals. Verify exactness by analytical integration.

a.

2∫

0

2∫

0

2∫

0

x yz dx dy dz

b.

1∫

−1

1∫

−1

1∫

−1

t (r − 1)(s2 − 2) dr ds dt

c.

1∫

−1

1∫

−1

1∫

−1

t 3r 3s2 dr ds dt

d.

1∫

−1

1∫

−1

1∫

−1

t 2(r − 2)4(s2 − 1) dr ds dt

e.

1∫

−1

1∫

−1

1∫

−1

(r 3 − r )(s + 4)(t 2 − 1) dr ds dt

6.37 Evaluate each of the following integrals using two-point Gaussian quadrature.
Compare each result with the corresponding analytical solution.

a.

1∫

−1

cos2 �r dr
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b.

1∫

−1

r

r 2 + 1
dr

c.

1∫

−1

sin �r cos �r dr

d.

1∫

−1

1∫

−1

r 2s

(r 3 + s2)
dr ds

6.38 Repeat Problem 6.37 using three-point Gaussian quadrature. Are the results
converging to the exact solutions?

6.39 The integral
1∫

−1

(r 3 + 2r 2 + 1) dr

can be evaluated exactly by using two-point Gaussian quadrature. Examine the
effect on the result if three-point integration is applied.
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Applications in
Heat Transfer

7.1 INTRODUCTION
In this chapter, the Galerkin method introduced in Chapter 5 and the interpola-
tion function concepts of Chapter 6 are applied to several heat transfer
situations. Conduction with convection is discussed for one-, two-, and three-
dimensional problems. Boundary conditions and forcing functions include
prescribed heat flux, insulated surfaces, prescribed temperatures, and convec-
tion. The one-dimensional case of heat transfer with mass transport is also
developed. The three-dimensional case of axial symmetry is developed in detail
using appropriately modified two-dimensional elements and interpolation
functions. Heat transfer by radiation is not discussed, owing to the nonlinear
nature of radiation effects. However, we examine transient heat transfer and
include an introduction to finite difference techniques for solution of transient
problems.

7.2 ONE-DIMENSIONAL CONDUCTION:
QUADRATIC ELEMENT

Chapter 5 introduced the concept of one-dimensional heat conduction via the
Galerkin finite element method. In the examples of Chapter 5, linear, two-node
finite elements are used to illustrate the concepts involved. Given the develop-
ment of the general interpolation concepts in Chapter 6, we now apply a higher-
order (quadratic) element to a previous example to demonstrate that (1) the basic
procedure of element formulation is unchanged, (2) the system assembly proce-
dure is unchanged, and (3) the results are quite similar.

7 C H A P T E R
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(a)

kal �200 W/m-� C kcu �389 W/m-� C

0.5 m 0.5 m

Alqin Cu 80� C

Insulated

Figure 7.1
(a) Geometry and data for Example 7.1, outside diameter = 60 mm,
qin = 4000 W/m2. (b) Two-element model, using quadratic elements.

(b)

1 2

E1 E2

3 4 5

Solve Example 5.4 using two, three-node line elements with equally spaced nodes. The
problem and numerical data are repeated here as Figure 7.1a. 

■ Solution
Per Equation 5.62, the element equations are

kx ANi (x )
dT

dx

∣∣∣∣
x2

x1

− kx A

x2∫
x1

dNi

dx

dT

dx
dx + A

x2∫
x1

Q Ni (x ) dx = 0 i = 1, 3

where now there are three interpolation functions per element.
The interpolation functions for a three-node line element are, per Equations 6.23–

6.25

N1(s) = 2

(
s − 1

2

)
(s − 1)

N2(s) = −4s(s − 1)

N3(s) = 2s

(
s − 1

2

)

The components of the conductance matrix are then calculated as

ki j = kx A

x2∫
x1

dNi

dx

dNj

dx
dx i, j = 1, 3

and the heat generation vector components are

f Qi = A

x2∫
x1

Q Ni dx i = 1, 3

and all f Q components are zero in this example, as there is no internal heat source.

EXAMPLE 7.1
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In terms of the dimensionless coordinate s = x/L , we have dx = Lds and d/dx =
(1/L ) d/ds, so the terms of the conductance matrix are expressed as

ki j = kx A

L

1∫

0

dNi

ds

dNj

ds
ds i, j = 1, 3

The derivatives of the interpolation functions are

dN1

ds
= 4s − 3

dN2

ds
= 4(1 − 2s)

dN3

ds
= 4s − 1

Therefore, on substitution for the derivatives,

k11 = kx A

L

1∫

0

(4s − 3)2 ds = kx A

L

1∫

0

(16s2 − 24s + 9) ds

= kx A

L

(
16s3

3
− 12s2 + 9s

)1

0

= 7kx A

3L

Via mathematically identical procedures, the remaining terms of the conductance matrix
are found to be

k12 = k21 = − 8kx A

3L

k13 = k31 = kx A

3L

k22 = 16kx A

3L

k23 = k32 = − 8kx A

3L

k33 = 7kx A

3L

A two-element model with node numbers is shown in Figure 7.1b. Substituting
numerical values, we obtain, for the aluminum half of the rod (element 1),

[
k(1)

] = 200(�/4)(0.006)2

3(0.5)


 7 −8 1

−8 16 −8
1 −8 7


 =


 2.6389 −3.0159 0.3770

−3.0159 6.0319 −3.0159
0.3770 −3.0159 2.6389



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and for the copper portion (element 2),

[
k(2)

] = 389(�/4)(0.006)2

3(0.5)


 7 −8 1

−8 16 −8
1 −8 7


 =


 5.1327 −5.8660 0.7332

−5.8660 11.7320 −5.8660
0.7332 −5.8660 5.1327




At the internal nodes of each element, the flux terms are zero, owing to the nature of the
interpolation functions [N2(x1) = N2(x2) = 0]. Similarly, at the junction between the
two elements, the flux must be continuous and the equivalent “forcing” functions are
zero. As no internal heat is generated, Q = 0, that portion of the force vector is zero for
each element. Following the direct assembly procedure, the system conductance matrix
is found to be

[K ] =




2.6389 −3.0159 0.3770 0 0
−3.0159 6.0319 −3.0159 0 0
0.3770 −3.0159 7.7716 −5.8660 0.7332

0 0 −5.8660 11.7320 −5.8660
0 0 0.7332 −5.8660 5.1327


W/◦C

and we note in particular that “overlap” exists only at the juncture between elements. The
gradient term at node 1 is computed as

fg1 = − kx A
dT

dx

∣∣∣∣
x1

= q1 A = 4000

(
�

4

)
(0.06)2 = 11.3097 W

while the heat flux at node 5 is an unknown to be calculated via the system equations.
The system equations are given by




2.6389 −3.0159 0.3770 0 0

−3.0159 6.0319 −3.0159 0 0

0.3770 −3.0159 7.7716 −5.8660 0.7332

0 0 −5.8660 11.7320 −5.8660

0 0 0.7332 −5.8660 5.1327







T1

T2

T3

T4

80




=




11.3097

0

0

0

−Aq5




Prior to solving for the unknown nodal temperatures T1–T4 , the nonhomogeneous bound-
ary condition T5 = 80◦C must be accounted for properly. In this case, we reduce the sys-
tem of equations to 4 × 4 by transposing the last term of the third and fourth equations
to the right-hand side to obtain




2.3689 −3.0159 0.3770 0
−3.0159 6.0319 −3.0159 0
0.3770 −3.0159 7.7716 −5.8660

0 0 −5.8660 11.7320







T1

T2

T3

T4




=




11.3907
0

−0.7332(80)
5.8660(80)




=




11.3097
0

−58.6560
489.2800






Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

226 CHAPTER 7 Applications in Heat Transfer

EXAMPLE 7.2

Solving the equations by Gaussian elimination (Appendix C), the nodal tempera-
tures are

T1 = 95.11◦C

T2 = 90.14◦C

T3 = 85.14◦C

T4 = 82.57◦C

and the heat flux at node 5 is calculated using the fifth equation

−Aq5 = 0.7332 T3 − 5.8660 T4 + 5.1327(80)

to obtain

q5 = 4001 .9 W/m2

which is observed to be in quite reasonable numerical agreement with the heat input at
node 1.

The solution for the nodal temperatures in this example is identical for both
the linear and quadratic interpolation functions. In fact, the solution we obtained
is the exact solution (Problem 7.1) represented by a linear temperature distribu-
tion in each half of the bar. It can be shown [1] that, if an exact solution exists
and the interpolation functions used in the finite element formulation include the
terms appearing in the exact solution, then the finite element solution corre-
sponds to the exact solution. In this example, the quadratic interpolation func-
tions include the linear terms in addition to the quadratic terms and thus capture
the exact, linear solution. The following example illustrates this feature in terms
of the field variable representation.

For the quadratic field variable representation 

�(x ) = a0 + a1 x + a2 x 2

determine the explicit form of the coefficients a0 , a1 , a2 in terms of the nodal variables if
the three nodes are equally spaced. Then use the results of Example 7.1 to show a2 = 0
for that example.

■ Solution
Using the interpolation functions from Example 7.1, we can write the field variable
representation in terms of the dimensionless variable s as

�(s) = (2s2 − 3s + 1)�1 + 4(s − s2)�2 + (2s2 − s)�3

Collecting coefficients of similar powers of s,

�(s) = �1 + (4�2 − 3�1 − �3)s + (2�1 − 4�2 + 2�3)s2
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Therefore,

a0 = �1

a1 = 4�2 − 3�1 − �3

a2 = 2�1 − 4�2 + 2�3

Using the temperature results of Example 7.1 for the aluminum element, we have

�1 = T1 = 95.14

�2 = T2 = 90.14

�3 = T3 = 85.14

a2 = 2(95.14) − 4(90.14) + 2(85.14) = 0

For element 2, representing the copper portion of the bar, the same result is obtained.

7.3 ONE-DIMENSIONAL CONDUCTION
WITH CONVECTION

One-dimensional heat conduction, in which no heat flows from the surface of the
body under consideration (as in Figure 5.8), is not commonly encountered. A
more practical situation exists when the body is surrounded by a fluid medium
and heat flow occurs from the surface to the fluid via convection. Figure 7.2a
shows a solid body, which we use to develop a one-dimensional model of heat
transfer including both conduction and convection. Note that the representation
is the same as in Figure 5.8 with the very important exception that the assump-
tion of an insulated surface is removed. Instead, the body is assumed to be sur-
rounded by a fluid medium to which heat is transferred by convection. If the fluid
is in motion as a result of some external influence (a fan or pump, for example),
the convective heat transfer is referred to as forced convection. On the other
hand, if motion of the fluid exists only as a result of the heat transfer taking place,
we have natural convection. Figure 7.2b depicts a control volume of differential
length, which is assumed to have a constant cross-sectional area and uniform

qout

Ta
Convection

qin

(a)

Figure 7.2 One-dimensional conduction with surface convection.
(a) General model. (b) Differential element as a control volume.

qx

dx

qh

Q
�U qx � dx

dqx

dx

(b)
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material properties. The convective heat transfer across the surface, denoted qh ,
represents the heat flow rate (heat flux) across the surface per unit surface area.
To apply the principle of conservation of energy to the control volume, we need
only add the convection term to Equation 5.54 to obtain

qx A dt + Q A dx dt = �U +
(

qx + ∂qx

∂x
dx

)
A dt + qh P dx dt (7.1)

where all terms are as previously defined except that P is the peripheral dimen-
sion of the differential element and qh is the heat flux due to convection. The con-
vective heat flux is given by [2]

qh = h(T − Ta) (7.2)

where
h = convection coefficient, W/(m2-◦C), Btu/(hr-ft2-◦F)
T = temperature of surface of the body
Ta = ambient fluid temperature

Substituting for qh and assuming steady-state conditions such that �U = 0,
Equation 7.1 becomes

Q A = A
dqx

dx
+ h P (T − Ta) (7.3)

which, via Fourier’s law Equation 5.55, becomes

kx
d2T

dx 2
+ Q = h P

A
(T − Ta) (7.4)

where we have assumed kx to be constant.
While Equation 7.4 represents the one-dimensional formulation of conduc-

tion with convection, note that the temperature at any position x along the length
of the body is not truly constant, owing to convection. Nevertheless, if the cross-
sectional area is small relative to the length, the one-dimensional model can give
useful results if we recognize that the computed temperatures represent average
values over a cross section.

7.3.1 Finite Element Formulation

To develop the finite element equations, a two-node linear element for which

T (x ) = N1(x )T1 + N2(x )T2 (7.5)

is used in conjunction with Galerkin’s method. For Equation 7.4, the residual
equations (in analogy with Equation 5.61) are expressed as

x2∫
x1

[
kx

d2T

dx 2
+ Q − h P

A
(T − Ta)

]
Ni (x ) A dx = 0 i = 1, 2 (7.6)
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or

A

x2∫
x1

kx
d2T

dx 2
Ni (x ) dx − h P

x2∫
x1

T (x ) Ni (x ) dx + A

x2∫
x1

Q N i (x ) dx

+ h P T a

x2∫
x1

Ni (x ) dx = 0 i = 1, 2 (7.7)

Integrating the first term by parts and rearranging,

kx A

x2∫
x1

dNi

dx

dT

dx
dx + h P

x2∫
x1

T (x ) Ni (x ) dx

= A

x2∫
x1

Q N i (x ) dx + h P T a

x2∫
x1

Ni (x ) dx + kx ANi (x )
dT

dx

∣∣∣∣
x2

x1

i = 1, 2

(7.8)

Substituting for T (x ) from Equation 7.5 yields

kx A

x2∫
x1

dNi

dx

(
dN1

dx
T1 + dN2

dx
T2

)
dx + h P

x2∫
x1

Ni (x )[N1(x )T1 + N2(x )T2] dx

= A

x2∫
x1

Q N i (x ) dx + h P T a

x2∫
x1

Ni (x ) dx + kx ANi (x )
dT

dx

∣∣∣∣
x2

x1

i = 1, 2

(7.9)

The two equations represented by Equation 7.9 are conveniently combined into
a matrix form by rewriting Equation 7.5 as

T (x ) = [N1 N2]

{
T1

T2

}
= [N ]{T } (7.10)

and substituting to obtain

kx A

x2∫
x1

[
dN

dx

]T [
dN

dx

]
{T } dx + h P

x2∫
x1

[N ]T [N ]{T } dx

= A

x2∫
x1

Q[N ]T dx + h P T a

x2∫
x1

[N ]T dx + kx A [N ]T dT

dx

∣∣∣∣
x2

x1

(7.11)

Equation 7.11 is in the desired finite element form:[
k (e)

] {T } = {
f (e)

Q

} + {
f (e)

h

} + {
f (e)

g

}
(7.12)
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where [k (e)] is the conductance matrix defined as

[
k (e)

] = kx A

x2∫
x1

[
dN

dx

]T [
dN

dx

]
dx + h P

x2∫
x1

[N ]T [N ] dx (7.13)

The first integral is identical to that in Equation 5.66, representing the axial con-
duction effect, while the second integral accounts for convection.

Without loss of generality, we let x1 = 0, x2 = L so that the interpolation
functions are

N1 = 1 − x

L

N2 = x

L

(7.14)

The results of the first integral are as given in Equation 5.68, so we need perform
only the integrations indicated in the second term (Problem 7.2) to obtain

[
k (e)

] = kx A

L

[
1 −1

−1 1

]
+ h P L

6

[
2 1
1 2

]
= [

k (e)
c

] + [
k (e)

h

]
(7.15)

where [k (e)
c ] and [k (e)

h ] represent the conductive and convective portions of the
matrix, respectively. Note particularly that both portions are symmetric.

The forcing function vectors on the right-hand side of Equation 7.12 include
the internal heat generation and boundary flux terms, as in Chapter 5. These are
given by

{
f (e)

Q

} = A




L∫
0

QN 1 dx

L∫
0

QN 2 dx




(7.16)

{
f (e)

g

} = kx A




−dT

dx

∣∣∣∣
0

dT

dx

∣∣∣∣
L




= A

{
qx=0

−qx=L

}
= A

{
q1

−q2

}
(7.17)

where q1 and q2 are the boundary flux values at nodes 1 and 2, respectively. In
addition, the forcing function arising from convection is

{
f (e)

h

} = h PT a




1∫
0

N1 dx

1∫
0

N2 dx




= h PT a L

2

{
1
1

}
(7.18)

where it is evident that the total element convection force is simply allocated
equally to each node, like constant internal heat generation Q.
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7.3.2 Boundary Conditions

In the one-dimensional case of heat transfer under consideration, two boundary
conditions must be specified. Typically, this means that, if the finite element
model of the problem is composed of M elements, one boundary condition is
imposed at node 1 of element 1 and the second boundary condition is imposed at
node 2 of element M. The boundary conditions are of three types:

1. Imposed temperature. The temperature at an end node is a known value;
this condition occurs when an end of the body is subjected to a constant
process temperature and heat is removed from the process by the body.

2. Imposed heat flux. The heat flow rate into, or out of, an end of the body is
specified; while distinctly possible in a mathematical sense, this type of
boundary condition is not often encountered in practice.

3. Convection through an end node. In this case, the end of the body is in
contact with a fluid of known ambient temperature and the conduction flux
at the boundary is removed via convection to the fluid media. Assuming
that this condition applies at node 2 of element M of the finite element
model, as in Figure 7.3, the convection boundary condition is expressed as

kx
dT

dx

∣∣∣∣
M+1

= −qM+1 = −h(TM+1 − Ta) (7.19)

indicating that the conduction heat flux at the end node must be carried
away by convection at that node. The area for convection in Equation 7.19
is the cross-sectional area of element M; as this area is common to each of
the three terms in the equation, the area has been omitted. An explanation
of the algebraic signs in Equation 7.19 is appropriate here. If TM+1 > Ta ,
the temperature gradient is negative (given the positive direction of the x
axis as shown); therefore, the flux and convection are positive terms.
The following example illustrates application of the one-dimensional
conduction/convection problem.

Figure 7.4a depicts a cylindrical pin that is one of several in a small heat exchange device.
The left end of the pin is subjected to a constant temperature of 180◦F. The right end of
the pin is in contact with a chilled water bath maintained at constant temperature of 40◦F.

EXAMPLE 7.3

M�31

BC1

x

BC2

Convection
2 3 4 M�2 M�1 M M�1

Figure 7.3 Convection boundary condition at node M + 1 of an M-element,
one-dimensional heat transfer finite element model.
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(a)

4 in.

72� F

40� F180� F

Figure 7.4 Example 7.3: (a) Cylindrical pin.
(b) Finite element model.

(b)

1 5432

T �180�F
q�h(T5� 40)1 2 3 4

The exterior surface of the pin is in contact with moving air at 72◦F. The physical data are
given as follows:

D = 0.5 in., L = 4 in., kx = 120 Btu/(hr-ft-◦F),

hair = 50 Btu/(hr-ft2-◦F), hwater = 100 Btu/(hr-ft2-◦F)

Use four equal-length, two-node elements to obtain a finite element solution for the
temperature distribution across the length of the pin and the heat flow rate through the pin.

■ Solution
Figure 7.4b shows the elements, node numbers, and boundary conditions. The boundary
conditions are expressed as follows

At node 1: T1 = 180◦F

At node 5: kx
dT

dx

∣∣∣∣
5

= −q5 = −h(T5 − 40)

Element geometric data is then

L e = 1 in., P = �(0.5) = 1.5708 in., A = (�/4)(0.5)2 = 0.1963 in.2

The leading coefficients of the conductance matrix terms are

kx A

L e
=

120

(
0.1963

144

)

1

12

= 1.9630 Btu/(hr-◦F)

hair PLe

6
=

50

(
1.5708

12

)(
1

12

)

6
= 0.0909 Btu/(hr-◦F)

where conversion from inches to feet is to be noted.
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Substituting into Equation 7.15, the element conductance matrix is

[
k (e)

] = 1.9630

[
1 −1

−1 1

]
+ 0.0909

[
2 1
1 2

]
=

[
2.1448 −1.8721

−1.8721 2.1448

]

Following the direct assembly procedure, the system conductance matrix is

[K ] =




2.1448 −1.8721 0 0 0
−1.8721 4.2896 −1.8721 0 0

0 −1.8721 4.2896 −1.8721 0
0 0 −1.8721 4.2896 −1.8721
0 0 0 −1.8721 2.1448




As no internal heat is generated, f Q = 0. The element convection force components per
Equation 7.18 are

{
f (e)

h

} = h P T a L

2

{
1
1

}
=

50

(
1.5708

12

)
(72)

(
1

12

)

2
=

{
19.6375
19.6375

}
Btu/hr

Assembling the contributions of each element at the nodes gives the system convection
force vector as

{Fh } =




19.6375
39.2750
39.2750
39.2750
19.6375




Btu/hr

Noting the cancellation of terms at nodal connections, the system gradient vector
becomes simply

{Fg} =




Aq1

0
0
0

−Aq5




=




Aq1

0
0
0

−Ahwater (T5 − 40)




=




Aq1

0
0
0

−0.1364T5 + 5.4542




Btu/hr

and the boundary condition at the pin-water interface has been explicitly incorporated.
Note that, as a result of the convection boundary condition, a term containing unknown
nodal temperature T5 appears in the gradient vector. This term is transposed in the final
equations and results in a increase in value of the K55 term of the system matrix. The final
assembled equations are




2.1448 −1.8721 0 0 0
−1.8721 4.2896 −1.8721 0 0

0 −1.8721 4.2896 −1.8721 0
0 0 −1.8721 4.2896 −1.8721
0 0 0 −1.8721 2.2812







180
T2

T3

T4

T5




=




19.6375 + Aq1

39.2750
39.2750
39.2750
25.0917



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Eliminating the first equation while taking care to include the effect of the specified tem-
perature at node 1 on the remaining equations gives




4.2896 −1.8571 0 0
−1.8721 4.2896 −1.8721 0

0 −1.8721 4.2896 −1.8721
0 0 −1.8721 2.2812







T2

T3

T4

T5




=




376.2530
39.2750
39.2750
25.0917




Solving by Gaussian elimination, the nodal temperatures are obtained as

T2 = 136.16◦F

T3 = 111.02◦F

T4 = 97.23◦F

T5 = 90.79◦F

The heat flux at node 1 is computed by back substitution of T2 into the first equation:

2.1448(180) − 1.8721(136.16) = 19.6375 + Aq1

Aq1 = 111.5156 Btu/hr

q1 = 111.5156

0.1963/144
≈ 81,805 Btu/hr-ft2

Although the pin length in this example is quite small, use of only four elements rep-
resents a coarse element mesh. To illustrate the effect, recall that, for the linear, two-node
element the first derivative of the field variable, in this case, the temperature gradient, is
constant; that is,

dT

dx
= �T

�x
= �T

L e

Using the computed nodal temperatures, the element gradients are

Element 1:
dT

dx
= 136.16 − 180

1
= −43.84

◦F

in.

Element 2:
dT

dx
= 111.02 − 136.16

1
= −25.14

◦F

in.

Element 3:
dT

dx
= 97.23 − 111.02

1
= −13.79

◦F

in.

Element 4:
dT

dx
= 90.79 − 97.23

1
= −6.44

◦F

in.

where the length is expressed in inches for numerical convenience. The computed gradi-
ent values show significant discontinuities at the nodal connections. As the number of
elements is increased, the magnitude of such jump discontinuities in the gradient values
decrease significantly as the finite element approximation approaches the true solution.
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Table 7.1 Nodal Temperature Solutions

Four Elements, Eight Elements,
x (inches) T (◦F) T (◦F)

0 180 180
0.5 158.08* 155.31
1.0 136.16 136.48
1.5 123.59* 122.19
2.0 111.02 111.41
2.5 104.13* 103.41
3.0 97.23 97.62
3.5 94.01* 93.63
4.0 90.79 91.16

To illustrate convergence as well as the effect on gradient values, an eight-element solu-
tion was obtained for this problem. Table 7.1 shows the nodal temperature solutions for
both four- and eight-element models. Note that, in the table, values indicated by * are
interpolated, nonnodal values.

7.4 HEAT TRANSFER IN TWO DIMENSIONS
A case in which heat transfer can be considered to be adequately described by a
two-dimensional formulation is shown in Figure 7.5. The rectangular fin has
dimensions a × b × t , and thickness t is assumed small in comparison to a and
b. One edge of the fin is subjected to a known temperature while the other three
edges and the faces of the fin are in contact with a fluid. Heat transfer then occurs
from the core via conduction through the fin to its edges and faces, where con-
vection takes place. The situation depicted could represent a cooling fin remov-
ing heat from some process or a heating fin moving heat from an energy source
to a building space.

To develop the governing equations, we refer to a differential element of a
solid body that has a small dimension in the z direction, as in Figure 7.6, and
examine the principle of conservation of energy for the differential element. As
we now deal with two dimensions, all derivatives are partial derivatives. Again,
on the edges x + dx and y + dy , the heat flux terms have been expanded in first-
order Taylor series. We assume that the differential element depicted is in the
interior of the body, so that convection occurs only at the surfaces of the element
and not along the edges. Applying Equation 5.53 under the assumption of steady-
state conditions (i.e., �U = 0), we obtain

qx t dy + qyt dx + Qt dy dx =
(

qx + ∂qx

∂x
dx

)
t dy +

(
qy + ∂qy

∂y
dy

)
t dx

+ 2h(T − Ta) dy dx (7.20)



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

236 CHAPTER 7 Applications in Heat Transfer

where
t = thickness
h = the convection coefficient from the surfaces of the differential element

Ta = the ambient temperature of the surrounding fluid

Utilizing Fourier’s law in the coordinate directions

qx = −kx
∂T

∂x

qy = −ky
∂T

∂y

(7.21)

then substituting and simplifying yields

Qt dy dx = ∂

∂x

(
−kx

∂T

∂x

)
t dy dx + ∂

∂y

(
−ky

∂T

∂y

)
t dy dx + 2h(T − Ta) dy dx

(7.22)

where kx and ky are the thermal conductivities in the x and y directions, respec-
tively. Equation 7.22 simplifies to

∂

∂x

(
tkx

∂T

∂x

)
+ ∂

∂y

(
tky

∂T

∂y

)
+ Qt = 2h(T − Ta) (7.23)

Equation 7.23 is the governing equation for two-dimensional conduction with
convection from the surfaces of the body. Convection from the edges is also
possible, as is subsequently discussed in terms of the boundary conditions.

7.4.1 Finite Element Formulation

In developing a finite element approach to two-dimensional conduction with
convection, we take a general approach initially; that is, a specific element geom-
etry is not used. Instead, we assume a two-dimensional element having M nodes

t
a

b

qh

qh

qhT

Figure 7.5 Two-dimensional
conduction fin with face and
edge convection.

qx

dy

dx

Q, �U

qy
h(T �Ta)

qy � dy
�qy

�y

qx � dx
�qx

�x

Figure 7.6 Differential element depicting
two-dimensional conduction with surface
convection.



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

7.4 Heat Transfer in Two Dimensions 237

such that the temperature distribution in the element is described by

T (x , y) =
M∑

i=1

Ni (x , y)Ti = [N ]{T } (7.24)

where Ni (x , y) is the interpolation function associated with nodal temperature
Ti , [N ] is the row matrix of interpolation functions, and {T } is the column matrix
(vector) of nodal temperatures.

Applying Galerkin’s finite element method, the residual equations corre-
sponding to Equation 7.23 are∫∫
A

Ni (x , y)

[
∂

∂x

(
tkx

∂T

∂x

)
+ ∂

∂y

(
tky

∂T

∂y

)
+ Qt − 2h(T − Ta)

]
d A = 0

i = 1, M (7.25)

where thickness t is assumed constant and the integration is over the area of the
element. (Strictly speaking, the integration is over the volume of the element,
since the volume is the domain of interest.) To develop the finite element
equations for the two-dimensional case, a bit of mathematical manipulation is
required.

Consider the first two integrals in Equation 7.25 as

t

∫∫
A

[
∂

∂x

(
kx

∂T

∂x

)
Ni + ∂

∂y

(
ky

∂T

∂y

)
Ni

]
d A

= −t

∫∫
A

(
∂qx

∂x
Ni + ∂qy

∂y
Ni

)
d A (7.26)

and note that we have used Fourier’s law per Equation 7.21. For illustration, we
now assume a rectangular element, as shown in Figure 7.7a, and examine

t

∫∫
A

∂qx

∂x
Ni d A = t

y2∫
y1

x2∫
x1

∂qx

∂x
Ni dx dy (7.27)

(a)

(x1, y1) (x2, y1)

(x1, y2) (x2, y2)

Figure 7.7 Illustration of boundary heat flux in x direction.

(b)

qx(x1, y) qx(x2, y) x

y

a� b�

a b
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Integrating by parts on x with u = Ni and dv = ∂qx

∂x
dx , we obtain, formally,

t

∫∫
A

∂qx

∂x
Ni d A = t

y2∫
y1

qx Ni

∣∣x2

x1
dy − t

y2∫
y1

x2∫
x1

qx
∂ Ni

∂x
dx dy

= t

y2∫
y1

qx Ni

∣∣x2

x1
dy + t

∫
A

kx
∂T

∂x

∂ Ni

∂x
d A (7.28)

Now let us examine the physical significance of the term

t

y2∫
y1

qx Ni

∣∣x2

x1
dy = t

y2∫
y1

[qx (x2, y) Ni (x2, y) − qx (x1, y) Ni (x1, y)] dy (7.29)

The integrand is the weighted value (Ni is the scalar weighting function) of the
heat flux in the x direction across edges a-a ′ and b-b′ in Figure 7.7b. Hence, when
we integrate on y, we obtain the difference in the weighted heat flow rate in the
x direction across b-b′ and a-a ′, respectively. Noting the obvious fact that the
heat flow rate in the x direction across horizontal boundaries a-b and a ′-b′ is zero,
the integral over the area of the element is equivalent to an integral around the
periphery of the element, as given by

t

∫∫
A

qx Ni d A = t

∮
S

qx Ni nx dS (7.30)

In Equation 7.30, S is the periphery of the element and nx is the x component
of the outward unit vector normal (perpendicular) to the periphery. In our exam-
ple, using a rectangular element, we have nx = 1 along b-b′, nx = 0 along b′-a ′,
nx = −1 along a ′-a , and nx = 0 along a-b. Note that the use of the normal vec-
tor component ensures that the directional nature of the heat flow is accounted
for properly. For theoretical reasons beyond the scope of this text, the integration
around the periphery S is to be taken in the counterclockwise direction; that is,
positively, per the right-hand rule.

An identical argument and development will show that, for the y-direction
terms in equation Equation 7.26,

t

∫∫
A

∂

∂y

(
ky

∂T

∂y

)
Ni d A = −t

∮
S

qy Ni n y dS −
∫
A

ky
∂T

∂y

∂ Ni

∂y
d A (7.31)

These arguments, based on the specific case of a rectangular element, are
intended to show an application of a general relation known as the Green-Gauss
theorem (also known as Green’s theorem in the plane) stated as follows: Let
F (x , y) and G (x , y) be continuous functions defined in a region of the x-y plane
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(for our purposes the region is the area of an element); then∫∫
A

(
	

∂ F

∂x
+ 	

∂G

∂y

)
=

∮
S

(	 Fnx + 	Gn y) dS

−
∫∫
A

(
∂ F

∂x

∂	

∂x
+ ∂G

∂y

∂	

∂y

)
d A (7.32)

Returning to Equation 7.26, we let F = kx
∂T
∂x , G = ky

∂T
∂y , and 	 = Ni (x , y), and

apply the Green-Gauss theorem to obtain

t

∫∫
A

[
∂

∂x

(
kx

∂T

∂x

)
Ni + ∂

∂y

(
∂T

∂y

)
Ni

]
d A

= −t

∮
S

(qx nx + qyn y) Ni dS − t

∫∫
A

(
kx

∂T

∂x

∂ Ni

∂x
+ ky

∂T

∂y

∂ Ni

∂y

)
d A (7.33)

Application of the Green-Gauss theorem, as in this development, is the two-
dimensional counterpart of integration by parts in one dimension. The result is
that we have introduced the boundary gradient terms as indicated by the first
integral on the right-hand side of Equation 7.33 and ensured that the conductance
matrix is symmetric, per the second integral, as will be seen in the remainder of
the development.

Returning to the Galerkin residual equation represented by Equation 7.25
and substituting the relations developed via the Green-Gauss theorem (being
careful to observe arithmetic signs), Equation 7.25 becomes∫∫
A

(
kx

∂T

∂x

∂ Ni

∂x
+ ky

∂T

∂y

∂ Ni

∂y

)
t d A + 2h

∫∫
A

T Ni d A

=
∫∫
A

Q N i t d A + 2hTa

∫∫
A

Ni d A − t

∮
S

(qx nx + qyn y) Ni dS i = 1, M

(7.34)

as the system of M equations for the two-dimensional finite element formulation
via Galerkin’s method. In analogy with the one-dimensional case of Equa-
tion 7.8, we observe that the left-hand side includes the unknown temperature
distribution while the right-hand side is composed of forcing functions, repre-
senting internal heat generation, surface convection, and boundary heat flux.

At this point, we convert to matrix notation for ease of illustration by
employing Equation 7.24 to convert Equation 7.34 to
∫∫
A

(
kx

[
∂N

∂x

]T[
∂N

∂x

]
+ ky

[
∂N

∂y

]T[
∂N

∂y

])
{T }t dA + 2h

∫∫
A

[N ]T [N ]{T } dA

=
∫∫
A

Q[N ]T t dA + 2hTa

∫∫
A

[N ]T dA −
∮
S

qsns[N ]T t dS (7.35)
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which is of the form [
k (e)

] {T } = {
f (e)

Q

} + {
f (e)

h

} + {
f (e)

g

}
(7.36)

as desired.
Comparison of Equations 7.35 and 7.36 shows that the conductance matrix is

[
k (e)

] =
∫∫
A

(
kx

[
∂ N

∂x

]T [
∂ N

∂x

]
+ ky

[
∂ N

∂y

]T [
∂ N

∂y

] )
t d A

+ 2h

∫∫
A

[N ]T [N ] d A (7.37)

which for an element having M nodes is an M × M symmetric matrix. While we
use the term conductance matrix, the first integral term on the right of Equa-
tion 7.37 represents the conduction “stiffness,” while the second integral repre-
sents convection from the lateral surfaces of the element to the surroundings. If
the lateral surfaces do not exhibit convection (i.e., the surfaces are insulated), the
convection terms are removed by setting h = 0. Note that, in many finite element
software packages, the convection portion of the conductance matrix is not auto-
matically included in element matrix formulation. Instead, lateral surface (as
well as edge) convection effects are specified by applying convection “loads” to
the surfaces as appropriate. The software then modifies the element matrices as
required.

The element forcing functions are described in column matrix (vector)
form as {

f (e)
Q

} =
∫∫
A

Q[N ]T t d A =
∫∫
A

Q{N } t d A

{
f (e)

h

} = 2hTa

∫∫
A

[N ]T d A = 2hTa

∫∫
A

{N } d A

{
f (e)

g

} = −
∮
S

qsns[N ]T t dS = −
∮
S

qsns{N } t dS

(7.38)

where [N ]T = {N } is the M × 1 column matrix of interpolation functions.
Equations 7.36–7.38 represent the general formulation of a finite element for

two-dimensional heat conduction with convection from the surfaces. Note in
particular that these equations are valid for an arbitrary element having M nodes
and, therefore, any order of interpolation functions (linear, quadratic, cubic, etc.).
In following examples, use of specific element geometries are illustrated.

7.4.2 Boundary Conditions

The boundary conditions for two-dimensional conduction with convection may
be of three types, as illustrated by Figure 7.8 for a general two-dimensional
domain. On portion S1 of the boundary, the temperature is prescribed as a known
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S1

S2q*

S3

h(T �Ta)

T �T*

Figure 7.8 Types of boundary
conditions for two-dimensional
conduction with convection.

constant value TS1 = T ∗. In a finite element model of such a domain, every ele-
ment node located on S1 has known temperature and the corresponding nodal
equilibrium equations become “reaction” equations. The reaction “forces” are
the heat fluxes at the nodes on S1. In using finite element software packages, such
conditions are input data; the user of the software (“FE programmer”) enters
such data as appropriate at the applicable nodes of the finite element model (in
this case, specified temperatures).

The heat flux on portion S2 of the boundary is prescribed as qS2 = q∗. This
is analogous to specified nodal forces in a structural problem. Hence, for all ele-
ments having nodes on S2, the third of Equation 7.38 gives the corresponding
nodal forcing functions as

{
f (e)

g

} = −
∮
S2

q∗nS2{N }t dS (7.39)

Finally, a portion S3 of the boundary illustrates an edge convection condi-
tion. In this situation, the heat flux at the boundary must be equilibrated by the
convection loss from S3. For all elements having edges on S3, the convection
condition is expressed as

{
f (e)

g

} = −
∮
S3

qS3 nS3{N }t dS = −
∮
S3

h(T (e) − Ta){N }t dS (7.40)

Noting that the right-hand side of Equation 7.40 involves the nodal temper-
atures, we rewrite the equation as

{
f (e)

g

} = −
∮
S3

h[N ]T [N ]{T }t dS3 +
∮
S3

hTa{N }t dS3 (7.41)

and observe that, when inserted into Equation 7.36, the first integral term on the
right of Equation 7.41 adds stiffness to specific terms of the conductance matrix
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associated with nodes on S3. To generalize, we rewrite Equation 7.41 as

{
f (e)

g

} = −[
k (e)

hS

]{T } + {
f (e)

hS

}
(7.42)

where

[
k (e)

hS

] =
∮
S

h[N ]T [N ]t dS (7.43)

is the contribution to the element conductance matrix owing to convection on
portion S of the element boundary and

{
f (e)

hS

} =
∮
S

hTa{N }t dS (7.44)

is the forcing function associated with convection on S.
Incorporating Equation 7.42 into Equation 7.36, we have

[
k (e)

] {T } = {
f (e)

Q

} + {
f (e)

h

} + {
f (e)

g

} + {
f (e)

hS

}
(7.45)

where the element conductance matrix is now given by

[
k (e)

] =
∫∫
A

(
kx

[
∂ N

∂x

]T [
∂ N

∂x

]
+ ky

[
∂ N

∂y

]T [
∂ N

∂y

] )
t d A

+ 2h

∫∫
A

[N ]T [N ] d A + h

∮
S

[N ]T [N ] t dS (7.46)

which now explicitly includes edge convection on portion(s) S of the element
boundary subjected to convection.

Determine the conductance matrix (excluding edge convection) for a four-node, rectan-
gular element having 0.5 in. thickness and equal sides of 1 in. The material has thermal
properties kx = ky = 20 Btu/(hr-ft-◦F) and h = 50 Btu/(hr-ft2-◦F).

■ Solution
The element with node numbers is as shown in Figure 7.9 and the interpolation functions,
Equation 6.56, are

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

EXAMPLE 7.4

1

34

s

r

2

Figure 7.9 Element
node numbering
for Example 7.4;
the length of each
edge is 1 in.
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N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

in terms of the normalized coordinates r and s. For the 1-in. square element, we have
2a = 2b = 1 and d A = dx dy = ab dr ds . The partial derivatives in terms of the nor-
malized coordinates, via the chain rule, are

∂ Ni

∂ x
= ∂ Ni

∂r

∂r

∂ x
= 1

a

∂ Ni

∂r
i = 1, 4

∂ Ni

∂y
= ∂ Ni

∂s

∂s

∂y
= 1

b

∂ Ni

∂s
i = 1, 4

Therefore, Equation 7.37 becomes

[
k (e)

] =
1∫

−1

1∫

−1

(
kx

[
∂ N

∂r

]T [
∂ N

∂r

]
1

a2
+ ky

[
∂ N

∂s

]T [
∂ N

∂s

]
1

b2

)
tab dr ds

+ 2h

1∫

−1

[N ]T [N ]ab dr ds

or, on a term by term basis,

ki j =
1∫

−1

1∫

−1

(
kx

∂ Ni

∂r

∂ Nj

∂r

1

a2
+ ky

∂ Ni

∂s

∂ Nj

∂s

1

b2

)
tab dr ds

+ 2h

1∫

−1

1∫

−1

Ni Nj ab dr ds i, j = 1, 4

or

ki j =
1∫

−1

1∫

−1

(
kx

∂ Ni

∂r

∂ Nj

∂r

b

a
+ ky

∂ Ni

∂s

∂ Nj

∂s

a

b

)
t dr ds

+ 2h

1∫

−1

1∫

−1

Ni Nj ab dr ds i, j = 1, 4

Assuming that kx and ky are constants, we have

ki j = kx t
b

a

1∫

−1

1∫

−1

∂ Ni

∂r

∂ Nj

∂r
dr ds + ky t

a

b

1∫

−1

1∫

−1

∂ Ni

∂s

∂ Nj

∂s
dr ds

+ 2 hab

1∫

−1

1∫

−1

Ni Nj dr ds i, j = 1, 4
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The required partial derivatives are

∂ N1

∂r
= 1

4
(s − 1)

∂ N1

∂s
= 1

4
(r − 1)

∂ N2

∂r
= 1

4
(1 − s)

∂ N2

∂s
= − 1

4
(1 + r )

∂ N3

∂r
= 1

4
(1 + s)

∂ N3

∂s
= 1

4
(1 + r )

∂ N4

∂r
= − 1

4
(1 + s)

∂ N4

∂s
= 1

4
(1 − r )

Substituting numerical values (noting that a = b), we obtain, for example,

k11 = 20

1∫

−1

1∫

−1

[
1

16
(s − 1)2 + 1

16
(r − 1)2

] (
0.5

12

)
dr ds

+ 2(50)

1∫

−1

1∫

−1

1

16
(1 − r )2 (1 − s)2

(
0.5

12

)2

dr ds

Integrating first on r,

k11 = 20(0.5)

16(12)

1∫

−1

(s − 1)2 r
∣∣1

−1
+ (r − 1)3

3

∣∣∣∣
1

−1

ds

− 100

16

(
0.5

12

)2
1∫

−1

(1 − s)2 (1 − r )3

3

∣∣∣∣
1

−1

ds

or

k11 = 20(0.5)

16(12)

1∫

−1

[
(s − 1)2(2) + 8

3

]
ds + 100

16

(
0.5

12

)2
1∫

−1

(1 − s)2 8

3
ds

Then, integrating on s, we obtain

k11 = 20(0.5)

16(12)

(
2(s − 1)3

3
+ 8

3
s

)∣∣∣∣
1

−1

− 100

16

(
0.5

12

)2 ( 8

3

)(
(1 − s)3

3

)1

−1

or

k11 = 20(0.5)

16(12)

(
16

3
+ 16

3

)
+ 100

16

(
0.5

12

)2( 8

3

)(
8

3

)
= 0.6327 Btu/(hr-◦F)

The analytical integration procedure just used to determine k11 is not the method used by
finite element software packages; instead, numerical methods are used, primarily the
Gauss quadrature procedure discussed in Chapter 6. If we examine the terms in the inte-
grands of the equation defining ki j , we find that the integrands are quadratic functions
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of r and s. Therefore, the integrals can be evaluated exactly by using two Gauss points
in r and s. Per Table 6.1, the required Gauss points and weighting factors are ri , sj =
± 0.57735 and Wi , Wj = 1.0, i, j = 1, 2. Using the numerical procedure for k11 , we write

k11 = kx t
b

a

1∫

−1

1∫

−1

1

16
(s − 1)2 dr ds + ky t

b

a

1∫

−1

1∫

−1

1

16
(r − 1)2 dr ds

+ 2hab

1∫

−1

1

16
(r − 1)2(s − 1)2 dr ds

= kx t
b

a

2∑
i=1

2∑
j=1

1

16
Wi Wj (sj − 1)2 + ky t

a

b

2∑
i=1

2∑
j=1

1

16
Wi Wj (ri − 1)2

+ 2hab
2∑

i=1

2∑
j=1

1

16
Wi Wj (1 − ri )

2(1 − sj )
2

and, using the specified integration points and weighting factors, this evaluates to 

k11 = kx t
b

a

(
1

3

)
+ ky t

a

b

(
1

3

)
+ 2hab

(
4

9

)

It is extremely important to note that the result expressed in the preceding equation is the
correct value of k11 for any rectangular element used for the two-dimensional heat con-
duction analysis discussed in this section. The integrations need not be repeated for each
element; only the geometric quantities and the conductance values need be substituted to
obtain the value. Indeed, if we substitute the values for this example, we obtain

k11 = 0.6327 Btu/(hr-◦F)

as per the analytical integration procedure.
Proceeding with the Gaussian integration procedure (calculation of some of these

terms are to be evaluated as end-of-chapter problems), we find

k11 = k22 = k33 = k44 = 0.6327 Btu/(hr-◦F)

Why are these values equal?
The off-diagonal terms (again using the numerical integration procedure) are calcu-

lated as

k12 = −0.1003

k13 = −0.2585

k14 = −0.1003

k23 = −0.1003

k24 = −0.2585

k34 = −0.1003
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Btu/(hr-◦F), and the complete element conductance matrix is

[
k(e)

] =




0.6327 −0.1003 −0.2585 −0.1003
−0.1003 0.6327 −0.1003 −0.2585
−0.2585 −0.1003 0.6327 −0.1003
−0.1003 −0.2585 −0.1003 0.6327


 Btu/(hr-◦F)

Figure 7.10a depicts a two-dimensional heating fin. The fin is attached to a pipe on its
left edge, and the pipe conveys water at a constant temperature of 180◦F. The fin
is surrounded by air at temperature 68◦F. The thermal properties of the fin are as given
in Example 7.4. Use four equal-size four-node rectangular elements to obtain a finite
element solution for the steady-state temperature distribution in the fin. 

■ Solution
Figure 7.10b shows four elements with element and global node numbers. Given the
numbering scheme selected, we have constant temperature conditions at global nodes
1, 2, and 3 such that

T1 = T2 = T3 = 180◦F

while on the other edges, we have convection boundary conditions that require a bit of
analysis to apply. For element 1 (Figure 7.10c), for instance, convection occurs along
element edge 1-2 but not along the other three element edges. Noting that s = −1 and

EXAMPLE 7.5

(a)

2 in.

2 in. 68� F180� F

Figure 7.10 Example 7.5:
(a) Two-dimensional fin. (b) Finite element model.
(c) Element 1 edge convection. (d) Element 2 edge
convection.

(b)

4

1 2

5

4 7

2

1

3 6 9

8

3

(c)

1

1

2 5

4

(d)

2

4

5 8

7
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N3 = N4 = 0 on edge 1-2, Equation 7.43 becomes

[
k(1)

h S

]
=

(
1

4

)
ht

1∫
−1




1 − r
1 + r

0
0




[ 1 − r 1 + r 0 0 ] a dr

= hta

4

1∫
−1




(1 − r)2 1 − r2 0 0
1 − r2 (1 + r)2 0 0

0 0 0 0
0 0 0 0


dr

Integrating as indicated gives

[
k(1)

hS

]
= hta

4(3)




8 4 0 0
4 8 0 0
0 0 0 0
0 0 0 0


 = 50(0.5)2

4(3)(12)2




8 4 0 0
4 8 0 0
0 0 0 0
0 0 0 0




=




0.0579 0.0290 0 0
0.0290 0.0579 0 0

0 0 0 0
0 0 0 0




where the units are Btu/(hr-◦F).
The edge convection force vector for element 1 is, per Equation 7.44,

{
f (1)

hS

}
= hTa t

2

1∫
−1




1 − r
1 + r

0
0




a dr = hTa ta

2




2
2
0
0




= 50(68)(0.5)2

2(12)2




2
2
0
0




=




5.9028
5.9028

0
0




Btu/hr

where we again utilize s = −1, N3 = N4 = 0 along the element edge bounded by nodes
1 and 2.

Next consider element 2. As depicted in Figure 7.10d, convection occurs along two
element edges defined by element nodes 1-2 (s = −1) and element nodes 2-3 (r = 1).
For element 2, Equation 7.43 is

[
k(2)

h S

]
= ht

4




1∫
−1




1 − r
1 + r

0
0




[ 1 − r 1 + r 0 0 ]a dr

+
1∫

−1




0
1 − s
1 + s

0




[ 0 1 − s 1 + s 0 ]b ds



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or, after integrating,

[
k(2)

hS

]
= hta

4(3)




8 4 0 0
4 8 0 0
0 0 0 0
0 0 0 0


 + htb

4(3)




0 0 0 0
0 8 4 0
0 4 8 0
0 0 0 0




and, since a = b,

[
k(2)

hS

]
= 50(0.5)2

4(3)(12)2




8 4 0 0
4 16 4 0
0 4 8 0
0 0 0 0


 =




0.0579 0.0290 0 0
0.0290 0.1157 0.0290 0

0 0.0290 0.0579 0
0 0 0 0


Btu/(hr-◦F)

Likewise, the element edge convection force vector is obtained by integration along the
two edges as

{
f (2)

hS

}
= hTa t

2




1∫
−1




1 − r
1 + r

0
0




a dr +
1∫

−1




0
1 − s
1 + s

0




b ds




= 50(68)(0.5)2

2(12)2




2
4
2
0




=




5.9028
11.8056
5.9028

0




Btu/hr

Identical procedures applied to the appropriate edges of elements 3 and 4 result in

[
k(3)

hS

]
= 50(0.5)2

4(3)(12)2




0 0 0 0
0 8 4 0
0 4 16 4
0 0 4 8


 =




0 0 0 0
0 0.0579 0.0290 0
0 0.0290 0.1157 0.0290
0 0 0.0290 0.0579


Btu/(hr-◦F)

[
k(4)

hS

]
= 50(0.5)2

4(3)(12)2




0 0 0 0
0 0 0 0
0 0 8 4
0 0 4 8


 =




0 0 0 0
0 0 0 0
0 0 0.0579 0.0290
0 0 0.0290 0.0579


Btu/(hr-◦F)

{
f (3)

hS

}
=




0
5.9028
11.8056
5.9028




Btu/hr

{
f (4)

hS

}
=




0
0

5.9028
5.9028




Btu/hr
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As no internal heat is generated, the corresponding { f (e)
Q } force vector for each element is

zero; that is,

{
f (e)

Q

}
=

∫∫
A

Q{N } dA = {0}

for each element.
On the other hand, each element exhibits convection from its surfaces, so the lateral

convection force vector is

{
f (e)

h

}
= 2hTa

∫∫
A

{N } dA = 2hTa

1∫
−1

1∫
−1

(
1

4

)



(1 − r)(1 − s)

(1 + r)(1 − s)

(1 + r)(1 + s)

(1 − r)(1 + s)




ab dr ds

which evaluates to

{
f (e)

h

}
= 2hTa ab

4




4
4
4
4




= 2(50)(68)(0.5)2

4(12)2




4
4
4
4




=




11.8056
11.8056
11.8056
11.8056




and we note that, since the element is square, the surface convection forces are distributed
equally to each of the four element nodes.

The global equations for the four-element model can now be assembled by writing
the element-to-global nodal correspondence relations as

[
L (1)

] = [ 1 4 5 2 ][
L (2)

] = [ 4 7 8 5 ][
L (3)

] = [ 5 8 9 6 ][
L (4)

] = [ 2 5 6 3 ]

and adding the edge convection terms to obtain the element stiffness matrices as

[
k(1)

] =




0.6906 −0.0713 −0.2585 −0.1003
−0.0713 0.6906 −0.1003 −0.2585
−0.2585 −0.1003 0.6327 −0.1003
−0.1003 −0.2585 −0.1003 0.6327




[
k(2)

] =




0.6906 −0.0713 −0.2585 −0.1003
−0.0713 0.7484 −0.0713 −0.2585
−0.2585 −0.0713 0.6906 −0.1003
−0.1003 −0.2585 −0.1003 0.6327




[
k(3)

] =




0.6327 −0.1003 −0.2585 −0.1003
−0.1003 0.6906 −0.0713 −0.2585
−0.2585 −0.0713 0.7484 −0.0713
−0.1003 −0.2585 −0.0713 0.6906



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[
k(4)

] =




0.6327 −0.1003 −0.2585 −0.1003
−0.1003 0.6327 −0.1003 −0.2585
−0.2585 −0.1003 0.6906 −0.0713
−0.1003 −0.2585 −0.0713 0.6906




Utilizing the direct assembly-superposition method with the element-to-global node
assignment relations, the global conductance matrix is

[K ] =




0.6906 −0.1003 0 −0.0713 −0.2585 0 0 0 0
−0.1003 1.2654 −0.1003 −0.2585 −0.2006 −0.2585 0 0 0

0 −0.1003 0.6906 0 −0.2585 −0.0713 0 0 0
−0.0713 −0.2585 0 1.3812 −0.2006 0 −0.0713 −0.2585 0
−0.2585 −0.2006 −0.2585 −0.2006 2.5308 −0.2006 −0.2585 −0.2006 −0.2585

0 −0.2585 −0.0713 0 −0.2006 1.3812 0 −0.2585 −0.0713
0 0 0 −0.0713 −0.2585 0 0.7484 −0.2585 0
0 0 0 −0.2585 −0.2006 −0.2585 −0.2585 1.3812 −0.0713
0 0 0 0 −0.2585 −0.0713 0 −0.0713 0.7484




The nodal temperature vector is

{T } =




180
180
180
T4

T5

T6

T7

T8

T9




and we have explicitly incorporated the prescribed temperature boundary conditions.
Assembling the global force vector, noting that no internal heat is generated, we

obtain

{F} =




17.7084 + F1

35.4168 + F2

17.7084 + F3

35.4168
47.2224
35.4168
23.6112
35.4168
23.6112




Btu/hr

where we use F1 , F2 , and F3 as general notation to indicate that these are unknown
“reaction” forces. In fact, as will be shown, these terms are the heat flux components at
nodes 1, 2, and 3.
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The global equations for the four-element model are then expressed as




0.6906 −0.1003 0 −0.0713 −0.2585 0 0 0 0
−0.1003 1.2654 −0.1003 −0.2585 −0.2006 −0.2585 0 0 0

0 −0.1003 0.6906 0 −0.2585 −0.0713 0 0 0
−0.0713 −0.2585 0 1.3812 −0.2006 0 −0.0713 −0.2585 0
−0.2585 −0.2006 −0.2585 −0.2006 2.5308 −0.2006 −0.2585 −0.2006 −0.2585

0 −0.2585 −0.0713 0 −0.2006 1.3812 0 −0.2585 −0.0713
0 0 0 −0.0713 −0.2585 0 0.7484 −0.2585 0
0 0 0 −0.2585 −0.2006 −0.2585 −0.2585 1.3812 −0.0713
0 0 0 0 −0.2585 −0.0713 0 −0.0713 0.7484




������������������������������������

�
�
�
�
�
�
�
�
�
�




180
180
180
T4

T5

T6

T7

T8

T9




��

=




17.7084 + F1

35.4168 + F2

17.7084 + F3

35.4168
47.2224
35.4168
23.6112
35.4158
23.6112




�����

Taking into account the specified temperatures on nodes 1, 2, and 3, the global equations
for the unknown temperatures become




1.3812 −0.2006 0 −0.0713 −0.2585 0
−0.2006 2.5308 −0.2006 −0.2585 −0.2006 −0.2585

0 −0.2006 1.3812 0 −0.2585 −0.0713
−0.0713 −0.2585 0 0.7484 −0.2585 0
−0.2585 −0.2006 −0.2585 −0.2585 1.3812 −0.0713

0 −0.2585 −0.0713 0 −0.0713 0.7484







T4

T5

T6

T7

T8

T9




=




94.7808
176.3904
94.7808
23.6112
35.4168
23.6112




The reader is urged to note that, in arriving at the last result, we partition the global matrix
as shown by the dashed lines and apply Equation 3.46a to obtain the equations governing
the “active” degrees of freedom. That is, the partitioned matrix is of the form

[
Kcc Kca

Kac Kaa

] {
Tc

Ta

}
=

{
Fc

Fa

}

where the subscript c denotes terms associated with constrained (specified) temperatures
and the subscript a denotes terms associated with active (unknown) temperatures. Hence,
this 6 × 6 system represents

[Kaa ]{Ta } = {Fa } − [Kac]{Tc}

which now properly includes the effects of specified temperatures as forcing functions on
the right-hand side.
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Simultaneous solution of the global equations (in this case, we inverted the global
stiffness matrix using a spreadsheet program) yields the nodal temperatures as




T4

T5

T6

T7

T8

T9




=




106.507

111.982

106.507

89.041

90.966

89.041




◦F

If we now back substitute the computed nodal temperatures into the first three of the
global equations, specifically,

0.6906T1 − 0.1003T2 − 0.0713T4 − 0.2585T5 = 17.7084 + F1

− 0.1003T1 + 1.2654T2 − 0.1003T3 − 0.2585T4 − 0.2006T5 − 0.2585T6 = 35.4168 + F2

− 0.1003T2 + 0.6906T3 − 0.2585T5 − 0.0713T6 = 17.7084 + F3

we obtain the heat flow values at nodes 1, 2, and 3 as



F1

F2

F3


 =




52.008
78.720
52.008


Btu/hr

Note that, in terms of the matrix partitioning, we are now solving

[Kcc]{Tc} + [Kca ]{Ta } = {Fc}
to obtain the unknown values in {Fc}.

Since there is no convection from the edges defined by nodes 1-2 and 1-3 and the
temperature is specified on these edges, the reaction “forces” represent the heat input
(flux) across these edges and should be in balance with the convection loss across the lat-
eral surfaces of the body, and its edges, in a steady-state situation. This balance is a check
that can and should be made on the accuracy of a finite element solution of a heat trans-
fer problem and is analogous to checking equilibrium of a structural finite element
solution.

Example 7.5 is illustrated in great detail to point out the systematic proce-
dures for assembling the global matrices and force vectors. The astute reader
ascertains, in following the solution, that symmetry conditions can be used to
simplify the mathematics of the solution. As shown in Figure 7.11a, an axis
(plane) of symmetry exists through the horizontal center of the plate. Therefore,
the problem can be reduced to a two-element model, as shown in Figure 7.11b.
Along the edge of symmetry, the y-direction heat flux components are in balance,
and this edge can be treated as a perfectly insulated edge. One could then use
only two elements, with the appropriately adjusted boundary conditions to obtain
the same solution as in the example.



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

7.4 Heat Transfer in Two Dimensions 253

Plane of
symmetry

(a)

Figure 7.11 Model of Example 7.5,
showing (a) the plane of symmetry and
(b) a two-element model with adjusted
boundary conditions. 

(b)

1

1 3 5

62

2T �180�F
4

7.4.3 Symmetry Conditions

As mentioned previously in connection with Example 7.5, symmetry conditions
can be used to reduce the size of a finite element model (or any other computa-
tional model). Generally, the symmetry is observed geometrically; that is, the
physical domain of interest is symmetric about an axis or plane. Geometric sym-
metry is not, however, sufficient to ensure that a problem is symmetric. In addi-
tion, the boundary conditions and applied loads must be symmetric about the
axis or plane of geometric symmetry as well. To illustrate, consider Figure 7.12a,
depicting a thin rectangular plate having a heat source located at the geometric
center of the plate. The model is of a heat transfer fin removing heat from a cen-
tral source (a pipe containing hot fluid, for example) via conduction and convec-
tion from the fin. Clearly, the situation depicted is symmetric geometrically. But,
is the situation a symmetric problem? The loading is symmetric, since the heat
source is centrally located in the domain. We also assume that kx = ky so that the
material properties are symmetric. Hence, we must examine the boundary condi-
tions to determine if symmetry exists. If, for example, as shown in Figure 7.12b,
the ambient temperatures external to the fin are uniform around the fin and the
convection coefficients are the same on all surfaces, the problem is symmetric
about both x and y axes and can be solved via the model in Figure 7.12c. For this
situation, note that the heat from the source is conducted radially and, conse-
quently, across the x axis, the heat flux qy is zero and, across the y axis, the heat
flux qx must also be zero. These observations reveal the boundary conditions for
the quarter-symmetry model shown in Figure 7.12d and the internal forcing
function is taken as Q/4. On the other hand, let us assume that the upper edge of
the plate is perfectly insulated, as in Figure 7.12e. In this case, we do not have



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

254 CHAPTER 7 Applications in Heat Transfer

(a)

2b

2a

Q x

y

Figure 7.12 Illustrations of symmetry dictated by boundary conditions.
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symmetric conditions about the x axis but symmetry about the y axis exists. For
these conditions, we can use the “half-symmetry” model shown in Figure 7.12f,
using the symmetry (boundary) condition qx = 0 across x = 0 and apply the
internal heat generation term Q/2.

Symmetry can be used to reduce the size of finite element models signifi-
cantly. It must be remembered that symmetry is not simply a geometric occur-
rence. For symmetry, geometry, loading, material properties, and boundary
conditions must all be symmetric (about an axis, axes, or plane) to reduce the
model.

7.4.4 Element Resultants

In the approach just taken in heat transfer analysis, the primary nodal variable
computed is temperature. Most often in such analyses, we are more interested in
the amount of heat transferred than the nodal temperatures. (This is analogous to
structural problems: We solve for nodal displacements but are more interested in
stresses.) In finite element analyses of heat transfer problems, we must back sub-
stitute the nodal temperature solution into the “reaction” equations to obtain
global heat transfer values. (As in Example 7.5, when we solved the partitioned
matrices for the heat flux values at the constrained nodes.) Similarly, we can back
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substitute the nodal temperatures to obtain estimates of heat transfer properties
of individual elements as well.

The heat flux components for a two-dimensional element, per Fourier’s law,
are

q (e)
x = −kx

∂T (e)

∂x
= −kx

M∑
i=1

∂ Ni

∂x
T (e)

i

q (e)
y = −ky

∂T (e)

∂y
= −ky

M∑
i=1

∂ Ni

∂y
T (e)

i

(7.47)

where we again denote the total number of element nodes as M. With the excep-
tion of the three-node triangular element, the flux components given by Equa-
tion 7.47 are not constant but vary with position in the element. As an example,
the components for the four-node rectangular element are readily computed
using the interpolation functions of Equation 6.56, repeated here as

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

(7.48)

Recalling that

∂

∂x
= 1

a

∂

∂r
and

∂

∂y
= 1

b

∂

∂s

we have

q (e)
x = − kx

a

4∑
i=1

∂ Ni

∂r
T (e)

i

= − kx

4a

[
(s − 1)T (e)

1 + (1 − s)T (e)
2 + (1 + s)T (e)

3 − (1 + s)T (e)
4

]

q (e)
y = − ky

b

4∑
i=1

∂ Ni

∂s
T (e)

i

= − ky

4b

[
(r − 1)T (e)

1 − (1 + r )T (e)
2 + (1 + r )T (e)

3 + (1 − r )T (e)
4

]

(7.49)
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and these expressions simplify to

q (e)
x = − kx

4a

[
(1 − s)

(
T (e)

2 − T (e)
1

) + (1 + s)
(
T (e)

3 − T (e)
4

)]

q (e)
y = − ky

4b

[
(1 − r )

(
T (e)

4 − T (e)
1

) + (1 + r )
(
T (e)

3 − T (e)
2

)] (7.50)

The flux components, therefore the temperature gradients, vary linearly in a four-
node rectangular element. However, recall that, for a C 0 formulation, the gradi-
ents are not, in general, continuous across element boundaries. Consequently, the
element flux components associated with an individual element are customarily
taken to be the values calculated at the centroid of the element. For the rectangu-
lar element, the centroid is located at (r, s) = (0, 0), so the centroidal values are
simply

q (e)
x = − kx

4a

(
T (e)

2 + T (e)
3 − T (e)

1 − T (e)
4

)

q (e)
y = − ky

4b

(
T (e)

3 + T (e)
4 − T (e)

1 − T (e)
2

) (7.51)

The centroidal values calculated per Equation 7.51, in general, are quite accurate
for a fine mesh of elements. Some finite element software packages compute the
values at the integration points (the Gauss points) and average those values for
an element value to be applied at the element centroid. In either case, the com-
puted values are needed to determine solution convergence and should be
checked at every stage of a finite element analysis.

Calculate the centroidal heat flux components for elements 2 and 3 of Example 7.5.

■ Solution
From Example 7.4, we have a = b = 0.5 in., kx = ky = 20 Btu/(hr-ft-◦F) , and from
Example 7.5, the nodal temperature vector is

{T } =




T1

T2

T3

T4

T5

T6

T7

T8

T9




=




180
180
180

106.507
111.982
106.507
89.041
90.966
89.041




◦F

For element 2, the element-global nodal correspondence relation can be written as[
T (2)

1 T (2)
2 T (2)

3 T (2)
4

] = [T4 T7 T8 T5]

= [106.507 89.041 90.966 111.982]

EXAMPLE 7.6



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

7.4 Heat Transfer in Two Dimensions 257

Substituting numerical values into Equation 7.49,

q (2)
x = − 12(20)

4(0.5)
(89.041 + 90.966 − 106.507 − 111.982) = 4617 .84 Btu/(hr-ft2)

q (2)
y = − 12(20)

4(0.5)
(90.966 + 111.982 − 106.507 − 89.041) = −888.00 Btu/(hr-ft2)

and, owing to the symmetry conditions, we have

q (3)
x = 4617 .84 Btu/(hr-ft2)

q (3)
y = 888.00 Btu/(hr-ft2)

as may be verified by direct calculation. Recall that these values are calculated at the
location of the element centroid. 

The element resultants representing convection effects can also be readily
computed once the nodal temperature solution is known. The convection resul-
tants are of particular interest, since these represent the primary source of heat
removal (or absorption) from a solid body. The convective heat flux, per Equa-
tion 7.2, is

qx = h(T − Ta) Btu/(hr-ft2) or W/m2 (7.52)

where all terms are as previously defined. Hence, the total convective heat flow
rate from a surface area A is

Ḣh =
∫∫

A

h(T − Ta ) d A (7.53)

For an individual element, the heat flow rate is

Ḣ (e)
h =

∫∫

A

h(T (e) − Ta ) d A =
∫∫

A

h([N ]{T } − Ta ) d A (7.54)

The area of integration in Equation 7.54 includes all portions of the element sur-
face subjected to convection conditions. In the case of a two-dimensional element,
the area may include lateral surfaces (that is, convection perpendicular to the plane
of the element) as well as the area of element edges located on a free boundary.

Determine the total heat flow rate of convection for element 3 of Example 7.5. 

■ Solution
First we note that, for element 3, the element-to-global correspondence relation for nodal
temperatures is [

T (3)
1 T (3)

2 T (3)
3 T (3)

4

] = [T5 T8 T9 T6]

EXAMPLE 7.7
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Second, element 3 is subjected to convection on both lateral surfaces as well as the two
edges defined by nodes 8-9 and 6-9. Consequently, three integrations are required as
follows:

Ḣ (e)
h = 2

∫∫

A(e)

h([N ]{T } − Ta ) d A(e) +
∫∫

A8−9

h([N ]{T } − Ta ) d A8−9

+
∫∫

A6−9

h([N ]{T } − Ta ) d A6−9

where A(e) is element area in the xy plane and the multiplier in the first term (2) accounts
for both lateral surfaces.

Transforming the first integral to normalized coordinates results in

I1 = 2hab

1∫

−1

1∫

−1

([N ] {T } − Ta ) dr ds = 2hab

1∫

−1

1∫

−1

[N ] dr ds {T } − 2habTa

1∫

−1

dr ds

= 2h A

4

1∫

−1

1∫

−1

[N ] dr ds {T } − 2hAT a

Therefore, we need integrate the interpolation functions only over the area of the element,
as all other terms are known constants. For example,

1∫

−1

1∫

−1

N1 dr ds =
1∫

−1

1∫

−1

1

4
(1 − r )(1 − s) dr ds = 1

4

(1 − r )2

2

∣∣∣∣
1

−1

(1 − s)2

2

∣∣∣∣
1

−1

= 1

An identical result is obtained when the other three functions are integrated. The integral
corresponding to convection from the element lateral surfaces is then

I1 = 2h A

(
T (3)

1 + T (3)
2 + T (3)

3 + T (3)
4

4
− Ta

)

The first term in the parentheses is the average of the nodal temperatures, and this is a
general result for the rectangular element. Substituting numerical values

I1 = 2(50)(1)2

144

(
111.982 + 90.966 + 89.041 + 106.507

4
− 68

)
= 21.96 Btu/hr

Next, we consider the edge convection terms. Along edge 8-9,

I2 =
∫∫

A8−9

h([N ]{T } − Ta ) d A8−9

and, since r = 1 along that edge, d A8−9 = tb ds, and the integral becomes

I2 = htb

1∫

−1

([Nr=1]{T } − Ta ds)

= htb

1∫

−1

1

4
[0 1 − s 1 + s 0] ds {T } − htbTa

1∫

−1

ds
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= h(2tb)

[
0

1

2

1

2
0

]
{T } − h(2tb)Ta

= h Aedge

(
T (3)

2 + T (3)
3

2
− Ta

)

Again, we observe that the average temperature of the nodes associated with the area of
the edge appears. Stated another way, the convection area is allocated equally to the two
nodes, and this is another general result for the rectangular element. Inserting numerical
values,

I2 = 50(0.5)(1)

144

(
90.966 + 89.041

2
− 68

)
= 3.82 Btu/hr

By analogy, the edge convection along edge 6-9 is

I3 = h Aedge

(
T (3)

3 + T (3)
4

2
− Ta

)
= 50(0.5)(1)

144

(
89.041 + 106.507

2
− 68

)

= 5.17 Btu/hr

The total convective heat flow rate for element 3 is then

Ḣ (3)
h = I1 + I2 + I3 = 30.95 Btu/hr

7.4.5 Internal Heat Generation

To this point in the current discussion of heat transfer, only examples having
no internal heat generation ( Q = 0) have been considered. Also, for two-
dimensional heat transfer, we considered only thin bodies such as fins. Certainly
these are not the only cases of interest. Consider the situation of a body of
constant cross section having length much larger than the cross-sectional dimen-
sions, as shown in Figure 7.13a (we use a rectangular cross section for conve-
nience). In addition, an internal heat source is imbedded in the body and runs
parallel to the length. Practical examples include a floor slab containing a hot
water or steam pipe for heating and a sidewalk or bridge deck having embedded
heating cables to prevent ice accumulation. The internal heat generation source
in this situation is known as a line source.

Except very near the ends of such a body, heat transfer effects in the z direc-
tion can be neglected and the situation treated as a two-dimensional problem,
as depicted in Figure 7.13b. Assuming the pipe or heat cable to be small in
comparison to the cross section of the body, the source is treated as acting at a
single point in the cross section. If we model the problem via the finite element
method, how do we account for the source in the formulation? Per the first of
Equation 7.38, the nodal force vector corresponding to internal heat generation is

{
f (e)

Q

} =
∫∫
A

Q[N ]T t d A =
∫∫
A

Q{N }t d A (7.55)
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where, as before, t is element thickness. In this type of problem, it is customary
to take t as unity, so that all computations are per unit length. In accordance with
this convention, the source strength is denoted Q∗, having units typically
expressed as Btu/(hr-ft2) or W/m2. Equation 7.55 then becomes

{
f (e)

Q

} =
∫∫
A

Q∗[N ]T d A =
∫∫
A

Q∗{N } d A (7.56)

The question is now mathematical: How do we integrate a function applicable at
a single point in a two-dimensional domain? Mathematically, the operation is
quite simple if the concept of the Dirac delta or unit impulse function is intro-
duced. We choose not to take the strictly mathematical approach, however, in the
interest of using an approach based on logic and all the foregoing information
presented on interpolation functions.

For illustrative purposes, the heat source is assumed to be located at a known
point P = (x0, y0) in the interior of a three-node triangular element, as in Fig-
ure 7.14. If we know the temperature at each of the three nodes of the element,
then the temperature at point P is a weighted combination of the nodal tempera-
tures. By this point in the text, the reader is well aware that the weighting factors
are the interpolation functions. If nodal values are interpolated to a specific point,
a value at that point should properly be assigned to the nodes via the same inter-
polation functions evaluated at the point. Using this premise, the nodal forces for

1

2

P(x0, y0)

3

Figure 7.14
Concentrated heat
source Q* located at
point P(x0, y0) in a
triangular element.

(a)

Heat source

x

z

y

Figure 7.13
(a) Long, slender body with internal heat source.
(b) 2-D representation (unit thickness in
z-direction).

(b)

x

y
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the triangular element become (assuming Q∗ to be constant)

{
f (e)

Q

} = Q∗
∫∫
A




N1(x0, y0)
N2(x0, y0)
N3(x0, y0)


 dA (7.57)

For a three-node triangular element, the interpolation functions (from Chapter 6)
are simply the area coordinates, so we now have

{
f (e)

Q

} = Q∗
∫∫
A




L1(x0, y0)
L2(x0, y0)
L3(x0, y0)


 dA = Q∗ A




L1(x0, y0)
L2(x0, y0)
L3(x0, y0)


 (7.58)

Now consider the “behavior” of the area coordinates as the position of the inte-
rior point P varies in the element. As P approaches node 1, for example, area
coordinate L 1 approaches unity value. Clearly, if the source is located at node 1,
the entire source value should be allocated to that node. A similar argument can
be made for each of the other nodes. Another very important point to observe
here is that the total heat generation as allocated to the nodes by Equation 7.58 is
equivalent to the source. If we sum the individual nodal contributions given in
Equation 7.58, we obtain

3∑
i=1

Q∗(e)
i =

3∑
i=1

(
L (e)

1 + L (e)
2 + L (e)

3

)
Q∗ A = Q∗ A (7.59)

since
3∑

i=1

Li = 1 is known by the definition of area coordinates.

The foregoing approach using logic and our knowledge of interpolation
functions is without mathematical rigor. If we approach the situation of a line
source mathematically, the result is exactly the same as that given by Equa-
tion 7.58 for the triangular element. For any element chosen, the force vector
corresponding to a line source (keep in mind that, in two-dimensions, this looks
like a point source) the nodal force contributions are

{
f (e)

Q

} = Q∗
∫∫
A

{N (x0, y0)} d A (7.60)

Thus, a source of internal heat generation is readily allocated to the nodes of a
finite element via the interpolation functions of the specific element applied.

7.5 HEAT TRANSFER WITH MASS TRANSPORT
The finite element formulations and examples previously presented deal with
solid media in which heat flows as a result of conduction and convection. An ad-
ditional complication arises when the medium of interest is a flowing fluid.
In such a case, heat flows by conduction, convection, and via motion of the
media. The last effect, referred to as mass transport, is considered here for the
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one-dimensional case. Figure 7.15a is essentially Figure 7.2a with a major phys-
ical difference. The volume shown in Figure 7.15a represents a flowing fluid (as
in a pipe, for example) and heat is transported as a result of the flow. The heat
flux associated with mass transport is denoted qm , as indicated in the figure. The
additional flux term arising from mass transport is given by

qm = ṁcT (W or Btu/hr) (7.61)

where ṁ is mass flow rate (kg/hr or slug/hr), c is the specific heat of the fluid
(W-hr/(kg-◦C) or Btu/(slug-◦F)), and T (x ) is the temperature of the fluid (◦C or
◦F). A control volume of length dx of the flow is shown in Figure 7.15b, where
the flux terms have been expressed as two-term Taylor series as in past deri-
vations. Applying the principle of conservation of energy (in analogy with
Equation 7.1),

qx A dt + qm dt + Q A dx dt = �U +
(

qx + dqx

dx
dx

)
A dt

+
(

qm + dqm

dx
dx

)
dt + qh P dx dt (7.62)

Considering steady-state conditions, �U = 0, using Equations 5.51 and 7.2 and
simplifying yields

d

dx

(
kx

dT

dx

)
+ Q = dqm

dx
+ hP

A
(T − Ta) (7.63)

where all terms are as previously defined. Substituting for qm into Equation 7.63,
we obtain

d

dx

(
kx

dT

dx

)
+ Q = d

dx

(
ṁc

A
T

)
+ hP

A
(T − Ta) (7.64)

which for constant material properties and constant mass flow rate (steady state)
becomes

kx
d2T

dx 2
+ Q = ṁc

A

dT

dx
+ hP

A
(T − Ta) (7.65)

(a)

qout

qin �qx �qm

Convection

Figure 7.15
(a) One-dimensional conduction with convection and mass transport. (b) Control volume for
energy balance.

(b)

qx �qm

dx

Q,
�U qx � dx �

dqx

dx
dxqm �

dqm

dx

qh
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With the exception of the mass transport term, Equation 7.65 is identical to
Equation 7.4. Consequently, if we apply Galerkin’s finite element method, the
procedure and results are identical to those of Section 7.3, except for additional
stiffness matrix terms arising from mass transport. Rather than repeat the deriva-
tion of known terms, we develop only the additional terms. If Equation 7.65
is substituted into the residual equations for a two-node linear element (Equa-
tion 7.6), the additional terms are

x2∫
x1

ṁc
dT

dx
Ni dx i = 1, 2 (7.66)

Substituting for T via Equation 7.5, this becomes
x2∫

x1

ṁc

[
dN1

dx
T1 + dN2

dx
T2

]
Ni dx i = 1, 2 (7.67)

Therefore, the additional stiffness matrix resulting from mass transport is

[kṁ] = ṁc

x2∫
x1




N1
dN1

dx
N1

dN2

dx

N2
dN1

dx
N2

dN2

dx


dx (7.68)

Explicitly evaluate the stiffness matrix given by Equation 7.68 for the two-node element. 

■ Solution
The interpolation functions are

N1 = 1 − x

L

N2 = x

L

and the required derivatives are

dN1

dx
= − 1

L

dN2

dx
= 1

L

Utilizing the change of variable s = x/L , Equation 7.68 becomes

[kṁ ] = ṁc

L

1∫
0

[−(1 − s) (1 − s)
−s s

]
L ds = ṁc




−1

2

1

2

−1

2

1

2


 = ṁc

2

[−1 1
−1 1

]

and note that the matrix is not symmetric.

EXAMPLE 7.8
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Using the result of Example 7.8, the stiffness matrix for a one-dimensional
heat transfer element with conduction, convection, and mass transport is given
by

[
k (e)

] = kx A

L

[
1 −1

−1 1

]
+ h P L

6

[
2 1
1 2

]
+ ṁc

2

[
−1 1
−1 1

]

= [
k (e)

c

] + [
k (e)

h

] + [
k (e)

ṁ

]
(7.69)

where the conduction and convection terms are identical to those given in Equa-
tion 7.15. Note that the forcing functions and boundary conditions for the one-
dimensional problem with mass transport are the same as given in Section 7.3,
Equations 7.16 through 7.19.

Figure 7.16a shows a thin-walled tube that is part of an oil cooler. Engine oil enters the
tube at the left end at temperature 50◦C with a flow rate of 0.2 kg/min. The tube is sur-
rounded by air flowing at a constant temperature of 15◦C. The thermal properties of the
oil are as follows: 

Thermal conductivity: kx = 0.156 W/(m-◦C)

Specific heat: c = 0.523 W-hr/(kg-◦C)

The convection coefficient between the thin wall and the flowing air is h =
300 W/(m2-◦C). The tube wall thickness is such that conduction effects in the wall are to
be neglected; that is, the wall temperature is constant through its thickness and the same
as the temperature of the oil in contact with the wall at any position along the length of
the tube. Using four two-node finite elements, obtain an approximate solution for the tem-
perature distribution along the length of the tube and determine the heat removal rate via
convection.

■ Solution
The finite element model is shown schematically in Figure 7.16b, using equal length
elements L = 25 cm = 0.025 m. The cross-sectional area is A = (�/4)(20/1000)2 =

(a)

T �50� C

100 cm

Air, 15� C

m� m�
20 mm

Figure 7.16
(a) Oil cooler tube of Example 7.9. (b) Element and node numbers for a
four-element model.

(b)

1 2 3 4 5

1 2 3 4

EXAMPLE 7.9
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3.14(10−4) m2 . And the peripheral dimension (circumference) of each element is
P = �(20/1000) = 6.28(10−2) m. The stiffness matrix for each element (note that all
elements are identical) is computed via Equation 7.69 as follows:

[
k (e)

c

] = kx A

L

[
1 −1

−1 1

]
= 0.156(3.14)(10−4)

0.025

[
1 −1

−1 1

]

=
[

1.9594 −1.9594
−1.9594 1.9594

]
(10−3)

[
k (e)

h

] = h P L

6

[
2 1
1 2

]
= 300(6.28)(10−2)(0.025)

6

[
2 1
1 2

]
=

[
0.157 0.0785

0.0785 0.157

]

[
k (e)

ṁ

] = ṁc

2

[ −1 1
−1 1

]
= (0.2)(60)(0.523)

2

[ −1 1
−1 1

]
=

[ −3.138 3.138
−3.138 3.138

]

[
k (e)

] =
[ −2.9810 3.2165

−3.0595 3.2950

]

At this point, note that the mass transport effects dominate the stiffness matrix and we an-
ticipate that very little heat is dissipated, as most of the heat is carried away with the flow.
Also observe that, owing to the relative magnitudes, the conduction effects have been
neglected.

Assembling the global stiffness matrix via the now familiar procedure, we obtain

[K ] =




−2.9810 3.2165 0 0 0
−3.0595 0.314 3.2165 0 0

0 −3.0595 0.314 3.2165 0
0 0 −3.0595 0.314 3.2165
0 0 0 −3.0595 3.2950




The convection-driven forcing function for each element per Equation 7.18 is

{
f (e)

h

} = h P T a L

2

{
1
1

}
= 300(6.28)(10−2)(15)(0.025)

2

{
1
1

}
=

{
3.5325
3.5325

}

As there is no internal heat generation, the per-element contribution of Equation 7.16 is
zero. Finally, we must examine the boundary conditions. At node 1, the temperature is
specified but the heat flux q1 = F1 is unknown; at node 5 (the exit), the flux is also un-
known. Unlike previous examples, where a convection boundary condition existed, here
we assume that the heat removed at node 5 is strictly a result of mass transport. Physi-
cally, this means we define the problem such that heat transfer ends at node 5 and the
heat remaining in the flow at this node (the exit) is carried away to some other process.
Consequently, we do not consider either a conduction or convection boundary condition
at node 5. Instead, we compute the temperature at node 5 then the heat removed at this
node via the mass transport relation. In terms of the finite element model, this means
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that we do not consider the heat flow through node 5 as an unknown (reaction force).
With this in mind, we assemble the global force vector from the element force vectors
to obtain

{F} =




3.5325 + F1

7.065
7.065
7.065
3.5325




The assembled system (global) equations are then

[K ]{T } =




−2.9801 3.2165 0 0 0
−3.0595 0.314 3.2165 0 0

0 −3.0595 0.314 3.2165 0
0 0 −3.0595 0.314 3.2165
0 0 0 −3.0595 3.2950







T1

T2

T3

T4

T5




=




3.5325 + F1

7.065
7.065
7.065
3.5325




Applying the known condition at node 1, T = 50◦C, the reduced system equations
become




0.314 3.2165 0 0
−3.0595 0.314 3.2165 0

0 −3.0595 0.314 3.2165
0 0 −3.0595 3.2950







T2

T3

T4

T5




=




160.04
7.065
7.065
3.5325




which yields the solution for the nodal temperatures as



T2

T3

T4

T5




=




47.448
45.124
42.923
40.928




◦C

As conduction effects have been seen to be negligible, the input rate is computed as

qin = qm1 = ṁcT1 = 0.2(60)(0.523)(50) = 3138 W

while, at node 5, the output rate is

qm5 = ṁcT5 = 0.2(60)(0.523)(40.928) = 2568 .6 W

The results show that only about 18 percent of input heat is removed, so the cooler is not
very efficient.
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7.6 HEAT TRANSFER IN THREE DIMENSIONS
As the procedure has been established, the governing equation for heat transfer
in three dimensions is not derived in detail here. Instead, we simply present the
equation as

∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂ z

(
kz

∂T

∂ z

)
+ Q = 0 (7.70)

and note that only conduction effects are included and steady-state conditions are
assumed. In the three-dimensional case, convection effects are treated most effi-
ciently as boundary conditions, as is discussed.

The domain to which Equation 7.70 applies is represented by a mesh of finite
elements in which the temperature distribution is discretized as

T (x , y, z) =
M∑

i=1

Ni (x , y, z)Ti = [N ]{T } (7.71)

where M is the number of nodes per element. Application of the Galerkin method
to Equation 7.70 results in M residual equations:∫∫∫

V

[
∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂ z

(
kz

∂T

∂ z

)
+ Q

]
Ni dV = 0

i = 1, . . . , M (7.72)

where, as usual, V is element volume.
In a manner analogous to Section 7.4 for the two-dimensional case, the

derivative terms can be written as

∂

∂x

(
kx

∂T

∂x

)
Ni = ∂

∂x

(
kx

∂T

∂x
Ni

)
− kx

∂T

∂x

∂ Ni

∂x

∂

∂y

(
ky

∂T

∂y

)
Ni = ∂

∂y

(
ky

∂T

∂y
Ni

)
− ky

∂T

∂y

∂ Ni

∂y

∂

∂ z

(
kz

∂T

∂ z

)
Ni = ∂

∂ z

(
kz

∂T

∂ z
Ni

)
− kz

∂T

∂ z

∂ Ni

∂ z

(7.73)

and the residual equations become
∫∫∫

V

[
∂

∂x

(
kx

∂T

∂x
Ni

)
+ ∂

∂y

(
ky

∂T

∂y
Ni

)
+ ∂

∂z

(
kz

∂T

∂z
Ni

)]
dV +

∫∫∫
V

QNi dV

=
∫∫∫

V

(
kx

∂T

∂x

∂Ni

∂x
+ ky

∂T

∂y

∂Ni

∂y
+ kz

∂T

∂z

∂Ni

∂z

)
dV i = 1, . . . , M (7.74)

The integral on the left side of Equation 7.74 contains a perfect differential
in three dimensions and can be replaced by an integral over the surface of the
volume using Green’s theorem in three dimensions: If F(x, y, z), G(x, y, z), and
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H(x, y, z) are functions defined in a region of xyz space (the element volume in
our context), then∫∫∫

V

(
∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂ z

)
dV =

∫∫
©
A

(Fnx + Gny + Hnz) d A (7.75)

where A is the surface area of the volume and nx , n y , nz are the Cartesian com-
ponents of the outward unit normal vector of the surface area. This theorem is the
three-dimensional counterpart of integration by parts discussed earlier in this
chapter.

Invoking Fourier’s law and comparing Equation 7.75 to the first term of
Equation 7.74, we have

−
∫∫
©
A

(qx nx + qyn y + qznz) Ni d A +
∫∫∫

V

Q Ni dV

=
∫∫∫

V

(
kx

∂T

∂x

∂ Ni

∂x
+ ky

∂T

∂y

∂ Ni

∂y
+ kz

∂T

∂ z

∂ Ni

∂ z

)
dV i = 1, . . . , M (7.76)

Inserting the matrix form of Equation 7.71 and rearranging, we have∫∫∫
V

(
kx

∂ [N ]

∂x

∂ Ni

∂x
+ ky

∂ [N ]

∂y

∂ Ni

∂y
+ kz

∂ [N ]

∂ z

∂ Ni

∂ z

)
{T } dV

=
∫∫∫

V

Q Ni dV −
∫∫
©
A

(qx nx + qyn y + qznz) Ni d A i = 1, . . . , M (7.77)

Equation 7.77 represents a system of M algebraic equations in the M unknown
nodal temperatures {T}. With the exception that convection effects are not in-
cluded here, Equation 7.77 is analogous to the two-dimensional case represented
by Equation 7.34. In matrix notation, the system of equations for the three-
dimensional element formulation is∫∫∫

V

(
kx

∂ [N ]T

∂x

∂ [N ]

∂x
+ ky

∂ [N ]

∂y

T ∂ [N ]

∂y
+ kz

∂ [N ]T

∂ z

∂ [N ]

∂ z

)
dV {T }

=
∫∫∫

V

Q[N ]T dV −
∫∫
©
A

(qx nx + qyn y + qznz)[N ]T d A (7.78)

and Equation 7.76 is in the desired form[
k (e)

] {
T (e)

} = {
f (e)

Q

} + {
f (e)

q

}
(7.79)

Comparing the last two equations, the element conductance (stiffness) matrix is

[
k (e)

] =
∫∫∫

V

(
kx

∂ [N ]T

∂x

∂ [N ]

∂x
+ ky

∂ [N ]

∂y

T ∂ [N ]

∂y
+ kz

∂ [N ]T

∂ z

∂ [N ]

∂ z

)
dV

(7.80)
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the element force vector representing internal heat generation is

{
f (e)

Q

} =
∫∫∫

V

Q[N ]T dV (7.81)

and the element nodal force vector associated with heat flux across the element
surface area is

{
f (e)

q

} = −
∫∫
©
A

(qx nx + qyn y + qznz)[N ]T d A (7.82)

7.6.1 System Assembly and Boundary Conditions

The procedure for assembling the global equations for a three-dimensional
model for heat transfer analysis is identical to that of one- and two-dimensional
problems. The element type is selected (tetrahedral, brick, quadrilateral solid,
for example) based on geometric considerations, primarily. The volume is then
divided into a mesh of elements by first defining nodes (in the global coordinate
system) throughout the volume then each element by the sequence and number
of nodes required for the element type. Element-to-global nodal correspondence
relations are then determined for each element, and the global stiffness (con-
ductance) matrix is assembled. Similarly, the global force vector is assembled
by adding element contributions at nodes common to two or more elements.
The latter procedure is straightforward in the case of internal generation, as
given by Equation 7.81. However, in the case of the element gradient terms,
Equation 7.82, the procedure is best described in terms of the global boundary
conditions.

In the case of three-dimensional heat transfer, we have the same three types
of boundary conditions as in two dimensions: (1) specified temperatures,
(2) specified heat flux, and (3) convection conditions. The first case, specified
temperatures, is taken into account in the usual manner, by reducing the system
equations by simply substituting the known nodal temperatures into the system
equations. The latter two cases involve only elements that have surfaces (element
faces) on the outside surface of the global volume. To illustrate, Figure 7.17a
shows two brick elements that share a common face in an assembled finite ele-
ment model. For convenience, we take the common face to be perpendicular to
the x axis. In Figure 7.17b, the two elements are shown separately with the asso-
ciated normal vector components identified for the shared faces. For steady-state
heat transfer, the heat flux across the face is the same for each element and, since
the unit normal vectors are opposite, the gradient force terms cancel. The result
is completely analogous to internal forces in a structural problem via Newton’s
third law of action and reaction. Therefore, on interelement boundaries (which
are areas for three-dimensional elements), the element force terms defined by
Equation 7.82 sum to zero in the global assembly process.

What of the element surface areas that are part of the surface area of the vol-
ume being modeled? Generally, these outside areas are subjected to convection
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conditions. For such convection boundary conditions, the flux conditions of
Equation 7.82 must be in balance with the convection from the area of concern.
Mathematically, the condition is expressed as

{
f (e)

q

} = −
∫∫
©
A

(qx nx + qyn y + qznz)[N ]T d A = −
∫∫
©
A

qnn[N ]T d A

= −
∫∫
©
A

h
(
T (e) − Ta

)
[N ]T d A (7.83)

where qn is the flux normal to the surface area A of a specific element face on the
global boundary and n is the unit outward normal vector to that face. As in two-
dimensional analysis, the convection term in the rightmost integral of Equation
7.83 adds to the stiffness matrix when the expression for T (e) in terms of inter-
polation functions and nodal temperatures is substituted. Similarly, the ambient
temperature terms add to the forcing function vector.

In most commercial finite element software packages, the three-dimensional
heat transfer elements available do not explicitly consider the gradient force vec-
tor represented by Equation 7.82. Instead, such programs compute the system
(global) stiffness matrix on the basis of conductance only and rely on the user to
specify the flux or convection boundary conditions (and the specified tempera-
ture conditions, of course) as part of the loading (input) data.

(a)

x

z

y

1

2

Figure 7.17
(a) Common face in two 3-D elements. (b) Edge view of
common face, illustrating cancellation of conduction
gradient terms.

(b)

1

qx

�n1�(1, 0, 0)
x

2

qx

�n2 � (�1, 0, 0)
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Owing to the algebraic volume of calculation required, examples of general
three-dimensional heat transfer are not presented here. A few three-dimensional
problems are included in the end-of-chapter exercises and are intended to be
solved by digital computer techniques.

7.7 AXISYMMETRIC HEAT TRANSFER
Chapter 6 illustrated the approach for utilizing two-dimensional elements and
associated interpolation functions for axisymmetric problems. Here, we illustrate
the formulation of finite elements to solve problems in axisymmetric heat trans-
fer. Illustrated in Figure 7.18 is a body of revolution subjected to heat input at its
base, and the heat input is assumed to be symmetric about the axis of revolution.
Think of the situation as a cylindrical vessel heated by a source, such as a gas
flame. This situation could, for example, represent a small crucible for melting
metal prior to casting.

As an axisymmetric problem is three-dimensional, the basic governing
equation is Equation 7.70, restated here under the assumption of homogeneity, so
that kx = ky = kz = k , as

k

(
∂2T

∂x 2
+ ∂T 2

∂y2
+ ∂2T

∂ z2

)
+ Q = 0 (7.84)

Equation 7.84 is applicable to steady-state conduction only and is expressed
in rectangular coordinates. For axisymmetric problems, use of a cylindrical
coordinate system (r, 
, z) is much more amenable to formulating the problem.
To convert to cylindrical coordinates, the partial derivatives with respect to x and
y in Equation 7.84 must be converted mathematically into the corresponding par-
tial derivatives with respect to radial coordinate r and tangential (circumferential)

z

qz

r

Figure 7.18 An axisymmetric
heat transfer problem. All
properties and inputs are
symmetric about the z axis.
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coordinate 
. In the following development, we present the general approach but
leave the details as an end-of-chapter exercise.

The basic relations between the rectangular coordinates x, y and the cylin-
drical (polar) coordinates r, 
 are

x = r cos 


y = r sin 

(7.85)

and inversely,
r 2 = x 2 + y2

tan 
 = y

x

(7.86)

Per the chain rule of differentiation, we have

∂T

∂x
= ∂T

∂r

∂r

∂x
+ ∂T

∂


∂


∂x

∂T

∂y
= ∂T

∂r

∂r

∂y
+ ∂T

∂


∂


∂y

(7.87)

By implicit differentiation of Equation 7.86,

2r
∂r

∂x
= 2x ⇒ ∂r

∂x
= x

r
= cos 


2r
∂r

∂y
= 2y ⇒ ∂r

∂y
= y

r
= sin 


1

sec2 


∂


∂x
= − y

x 2
⇒ ∂


∂x
= − sin 


r

1

sec2 


∂


∂y
= 1

x
⇒ ∂


∂y
= cos 


r

(7.88)

so that Equation 7.87 becomes

∂T

∂x
= cos 


∂T

∂r
− sin 


r

∂T

∂


∂T

∂y
= sin 


∂T

∂r
+ cos 


r

∂T

∂


(7.89)

For the second partial derivatives, we have

∂2T

∂x 2
= ∂

∂x

(
∂T

∂x

)
= cos 


∂

∂r

(
∂T

∂x

)
− sin 


r

∂

∂


(
∂T

∂x

)

∂2T

∂y2
= ∂

∂y

(
∂T

∂y

)
= sin 


∂

∂r

(
∂T

∂y

)
+ cos 


r

∂

∂


(
∂T

∂y

) (7.90)
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Applying Equation 7.89 to the operations indicated in Equation 7.90 yields (with
appropriate use of trigonometric identities)

∂2T

∂x 2
+ ∂2T

∂y2
= ∂2T

∂r 2
+ 1

r

∂T

∂r
+ 1

r 2

∂2T

∂
2
(7.91)

where the derivation represents a general change of coordinates. To relate to an
axisymmetric problem, recall that there is no dependence on the tangential coor-
dinate 
. Consequently, when Equations 7.84 and 7.91 are combined, the gov-
erning equation for axisymmetric heat transfer is

k

(
∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂ z2

)
+ Q = 0 (7.92)

and, of course, note the absence of the tangential coordinate.

7.7.1 Finite Element Formulation

Per the general procedure, the total volume of the axisymmetric domain is dis-
cretized into finite elements. In each element, the temperature distribution is
expressed in terms of the nodal temperatures and interpolation functions as

T (e) =
M∑

i=1

Ni (r, z)T (e)
i (7.93)

where, as usual, M is the number of element nodes. Note particularly that the
interpolation functions vary with radial coordinate r and axial coordinate z.
Application of Galerkin’s method using Equations 7.92 and 7.93 yields the
residual equations
∫∫∫

V

[
k

(
∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂ z2

)
+ Q

]
Nir dr d
 dz = 0 i = 1, . . . , M

(7.94)

Observing that, for the axisymmetric case, the integrand is independent of the
tangential coordinate 
, Equation 7.94 becomes

2�

∫∫

A(e)

[
k

(
∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂ z2

)
+ Q

]
Nir dr dz = 0 i = 1, . . . , M

(7.95)

where A(e) is the area of the element in the rz plane. The first two terms of the
integrand can be combined to obtain

2�

∫∫

A(e)

[
k

(
1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂ z2

)
+ Q

]
Nir dr dz = 0 i = 1, . . . , M

(7.96)
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Observing that r is independent of z, Equation 7.96 becomes

2�

∫∫

A(e)

[
k

[
∂

∂r

(
r
∂T

∂r

)
+ ∂

∂ z

(
r

(
∂T

∂ z

))]
+ Qr

]
Ni dr dz = 0

i = 1, . . . , M (7.97)

As in previous developments, we invoke the chain rule of differentiation as, for
example,

∂

∂r

(
r Ni

∂T

∂r

)
= Ni

∂

∂r

(
r
∂T

∂r

)
+ r

∂T

∂r

∂ Ni

∂r
⇒ Ni

∂

∂r

(
r
∂T

∂r

)

= ∂

∂r

(
r Ni

∂T

∂r

)
− r

∂T

∂r

∂ Ni

∂r
i = 1, . . . , M (7.98)

Noting that Equation 7.98 is also applicable to the z variable, the residual equa-
tions represented by Equation 7.97 can be written as

2�

∫∫

A(e)

k

[
∂

∂r

(
r Ni

∂T

∂r

)
+ ∂

∂ z

(
r Ni

∂T

∂ z

)]
dr dz + 2�

∫∫

A(E)

Q Nir dr dz

= 2�

∫∫

A(e)

k

(
∂T

∂r

∂ Ni

∂r
+ ∂T

∂ z

∂ Ni

∂ z

)
r dr dz i = 1, . . . , M (7.99)

The first integrand on the left side of Equation 7.99 is a perfect differential in two
dimensions, and the Green-Gauss theorem can be applied to obtain

2�

∮

S(e)

(
k
∂T

∂r
nr + k

∂T

∂ z
nz

)
r Ni dS + 2�

∫∫

A(e)

Q Nir dr dz

= 2�

∫∫

A(e)

k

(
∂T

∂r

∂ Ni

∂r
+ ∂T

∂ z

∂ Ni

∂ z

)
r dr dz i = 1, . . . , M (7.100)

where S is the boundary (periphery) of the element and nr and nz are the radial
and axial components of the outward unit vector normal to the boundary. Apply-
ing Fourier’s law in cylindrical coordinates,

qr = −k
∂T

∂r

qz = −k
∂T

∂ z

(7.101)

and noting the analogy with Equation 7.33, we rewrite Equation 7.100 as

2�k

∫∫

A(e)

(
∂T

∂r

∂ Ni

∂r
+ ∂T

∂ z

∂ Ni

∂ z

)
r dr dz

= 2�

∫∫

A(e)

Q Nir dr dz − 2�

∮

S(e)

qsns Nir dS i = 1, . . . , M (7.102)
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The common term 2� could be omitted, but we leave it as a reminder of the
three-dimensional nature of an axisymmetric problem. In particular, note that
this term, in conjunction with r in the integrand of the last integral on the right-
hand side of Equation 7.102, reinforces the fact that element boundaries are
actually surfaces of revolution.

Noting that Equation 7.102 represents a system of M equations, the form of
the system is that of [

k (e)
] {

T (e)
} = {

f (e)
Q

} + {
f (e)

g

}
(7.103)

where [k (e)] is the element conductance matrix having individual terms defined
by

ki j = 2�k

∫∫

A(e)

(
∂ Ni

∂r

∂ Nj

∂r
+ ∂ Ni

∂ z

∂ Nj

∂ z

)
r dr dz i, j = 1, . . . , M (7.104)

and {T (e)} is the column matrix (vector) of element nodal temperatures per Equa-
tion 7.93. The element forcing functions include the internal heat generation
terms given by

{
f (e)

Q

} = 2�

∫∫

A(e)

Q {N } r dr dz (7.105)

and the boundary gradient (flux) components

{
f (e)

g

} = −2�

∮

S(e)

qsns {N } r dS (7.106)

As has been discussed for other cases, on boundaries common to two elements,
the flux terms are self-canceling in the model assembly procedure. Therefore,
Equation 7.106 is applicable to element boundaries on a free surface. For such sur-
faces, the boundary conditions are of one of the three types delineated in previous
sections: specified temperature, specified heat flux, or convection conditions.

Calculate the terms of the conductance matrix for an axisymmetric element based on the
three-node plane triangular element. 

■ Solution
The element and nodal coordinates are as shown in Figure 7.19. From the discussions in
Chapter 6, if we are to derive the interpolation functions from basic principles, we first
express the temperature variation throughout the element as

T (r, z) = a0 + a1r + a2z = N1(r, z)T1 + N2(r, z)T2 + N3(r, z)T3

apply the nodal conditions, and solve for the constants. Rearranging the results in terms
of nodal temperatures then reveals the interpolation functions. However, the results are
exactly the same as those of Chapter 6, if we simply replace x and y with r and z, so that

EXAMPLE 7.10
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the interpolation functions are of the form

N1(r, z) = 1

2 A(e)
(b1 + c1r + d1z)

N2(r, z) = 1

2 A(e)
(b2 + c2r + d2z)

N3(r, z) = 1

2 A(e)
(b3 + c3r + d3z)

where
b1 = r2z3 − r3z2 b2 = r3z1 − r1z3 b3 = r1z2 − r2z1

c1 = z2 − z3 c2 = z3 − z1 c3 = z1 − z2

d1 = r3 − r1 d2 = r1 − r3 d3 = r2 − r1

and A(e) is the area of the element in the rz plane.
Since the interpolation functions are linear, the partial derivatives are constants, so

Equation 7.102 becomes

ki j = 2�k

(
∂ Ni

∂r

∂ Nj

∂r
+ ∂ Ni

∂ z

∂ Nj

∂ z

) ∫∫

A(e)

r dr dz

= �k

2
(

A(e)
)2

(ci cj + di dj )

∫∫

A(e)

r dr dz i, j = 1, 3

Recalling from elementary statics that the integral in the last equation represents the first
moment of the area of the element about the z axis, we have∫∫

A(e)

r dr dz = r̄ A(e)

where r̄ is the radial coordinate of the element centroid. The components of the conduc-
tance matrix are then 

ki j = �kr̄

2 A(e)
(ci cj + di dj ) i, j = 1, 3

and the symmetry of the conductance matrix is evident.

z

r

2
(r2, z2)

1
(r1, z1)

3
(r3, z3)

Figure 7.19 Cross section of
a three-node axisymmetric
element. Recall that the
element is a body of revolution.
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7.8 TIME-DEPENDENT HEAT TRANSFER
The treatment of finite element analysis of heat transfer has, to this point, been lim-
ited to cases of steady-state conditions. No time dependence is included in such
analyses, as we have assumed conditions such that a steady state is reached, and
the transient conditions are not of interest. Certainly, transient, time-dependent
effects are often quite important, and such effects determine whether a steady state
is achieved and what that steady state will be. To illustrate time-dependent heat
transfer in the context of finite element analysis, the one-dimensional case is
discussed here.

The case of one-dimensional conduction without convection is detailed in
Chapter 5. The governing equation, by consideration of energy balance in a con-
trol volume, Equation 5.54, is 

qx A dt + Q A dx dt = �U +
(

qx + ∂T

∂x
dx

)
A dt (7.107)

where the temperature distribution T (x , t ) is now assumed to be dependent on
both position and time. Further, the change in internal energy �U is not zero.
Rather, the increase in internal energy during a small time interval is described
by Equation 5.56, and the differential equation governing the temperature distri-
bution, Equation 5.58, is

kx
∂2T

∂x 2
+ Q = c�

∂T

∂ t
(7.108)

where c and � denote material specific heat and density, respectively, and t is
time. For time-dependent conduction, the governing equation is a second-order
partial differential equation with constant coefficients.

Application of the finite element method for solution of Equation 7.108
proceeds by dividing the problem domain into finite-length, one-dimensional
elements and discretizing the temperature distribution within each element as

T (x , t ) = N1(x )T1(t ) + N2(x )T2(t ) = [N (x )] {T (t )} (7.109)

which is the same as Equation 5.60 with the notable exception that the nodal tem-
peratures are functions of time.

Let us now apply Galerkin’s finite element method to Equation 7.108 to
obtain the residual equations

x2∫
x1

(
kx

∂2T

∂x 2
+ Q − c�

∂T

∂ t

)
Ni (x ) A dx i = 1, 2 (7.110)

Noting that

Ni
∂2T

∂x 2
= ∂

∂x

(
Ni

∂T

∂x

)
− ∂ Ni

∂x

∂T

∂x
(7.111)
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the residual equations can be rearranged and expressed as
x2∫

x1

kx
∂ Ni

∂x

∂T

∂x
A dz +

x2∫
x1

c�
∂T

∂ t
Ni A dx

=
x2∫

x1

Q Ni A dx +
x2∫

x1

kx
∂

∂x

(
Ni

∂T

∂x

)
A dx i = 1, 2 (7.112)

Comparing Equation 7.112 to Equations 5.63 and 5.64, we observe that the first
integral on the left includes the conductance matrix, the first integral on the right
is the forcing function associated with internal heat generation, and the second
integral on the right represents the gradient boundary conditions. Utilizing Equa-
tion 7.109, Equation 7.112 can be written in detailed matrix form as

c � A

x2∫
x1

[
N1

N2

]
[N1 N2] dx

{
Ṫ1

Ṫ2

}

+ kx A

x2∫
x1




dN1

dx
dN2

dx



[

dN1

dx

dN2

dx

]
dx

{
T1(t )
T2(t )

}
= { fQ} + { fg} (7.113)

where the dot denotes differentiation with respect to time. Note that the deriva-
tives of the interpolation functions have now been expressed as ordinary deriva-
tives, as appropriate. Equation 7.113 is most often expressed as

[
C (e)

]{
Ṫ (e)

} + [
k (e)

]{
T (e)

} = {
f (e)

Q

} + {
f (e)

g

}
(7.114)

where [C (e)] is the element capacitance matrix defined by

[
C (e)

] = c � A

x2∫
x1

[
N1

N2

]
[N1 N2] dx = c � A

x2∫
x1

[N ]T [N ] dx (7.115)

and, as implied by the name, indicates the capacity of the element for heat stor-
age. The capacitance matrix defined by Equation 7.115 is known as the consis-
tent capacitance matrix. The consistent capacitance matrix is so called because
it is formulated on the basis of the same interpolation functions used to describe
the spatial distribution of temperature. In our approach, using Galerkin’s method,
the consistent matrix is a natural result of the mathematical procedure. An alter-
nate approach produces a so-called lumped capacitance matrix. Whereas the con-
sistent matrix distributes the capacitance throughout the element by virtue of the
interpolation functions, the lumped capacitance matrix ascribes the storage
capacity strictly to the nodes independently. The difference in the two ap-
proaches is discussed in terms of heat transfer and, in more detail, in Chapter 10
in the context of structural dynamics.
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The model assembly procedure for a transient heat transfer problem is ex-
actly the same as for a steady-state problem, with the notable exception that we
must also assemble a global capacitance matrix. The rules are the same. Element
nodes are assigned to global nodes and the element capacitance matrix terms are
added to the appropriate global positions in the global capacitance matrix, as
with the conductance matrix terms. Hence, on system assembly, we obtain the
global equations

[C ]{Ṫ } + [K ]{T } = {FQ} + {Fg} (7.116)

where we must recall that the gradient force vector {Fg} is composed of either
(1) unknown heat flux values to be determined (unknown reactions) or (2) con-
vection terms to be equilibrated with the flux at a boundary node.

7.8.1 Finite Difference Methods for the Transient
Response: Initial Conditions

The finite element discretization procedure has reduced the one-dimensional
transient heat transfer problem to algebraic terms in the spatial variable via the
interpolation functions. Yet Equation 7.116 represents a set of ordinary, coupled,
first-order differential equations in time. Consequently, as opposed to the steady-
state case, there is not a solution but multiple solutions as the system responds
to time-dependent conditions. The boundary conditions for a transient problem
are of the three types discussed for the steady-state case: specified nodal tem-
peratures, specified heat flux, or convection conditions. However, note that the
boundary conditions may also be time dependent. For example, a specified nodal
temperature could increase linearly with time to some specified final value. In
addition, an internal heat generation source Q may also vary with time.

A commonly used approach to obtaining solutions for ordinary differential
equations of the form of Equation 7.116 is the finite difference method. As dis-
cussed briefly in Chapter 1, the finite difference method is based on approximat-
ing derivatives of a function as incremental changes in the value of the function
corresponding to finite changes in the value of the independent variable. Recall
that the first derivative of a function f (t ) is defined by

ḟ = d f

dt
= lim

�t→0

f (t + �t ) − f (t )

�t
(7.117)

Instead of requiring �t to approach zero, we obtain an approximation to the
value of the derivative by using a small, nonzero value of �t to obtain

ḟ ∼= f (t + �t ) − f (t )

�t
(7.118)

and the selected value of �t is known as the time step.
To apply the procedure to transient heat transfer, we approximate the time

derivative of the nodal temperature matrix as

{Ṫ } ∼= {T (t + �t )} − {T (t )}
�t

(7.119)



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

280 CHAPTER 7 Applications in Heat Transfer

Substituting, Equation 7.116 becomes

[C ]
{T (t + �t )} − {T (t )}

�t
+ [K ]{T (t )} = {FQ(t )} + {Fg(t )} (7.120)

Note that, if the nodal temperatures are known at time t and the forcing functions
are evaluated at time t, Equation 7.120 can be solved, algebraically, for the nodal
temperatures at time t + �t . Denoting the time at the ith time step as ti = i (�t ),
i = 0, 1, 2, . . . , we obtain

[C ] {T (ti+1)} = [C ] {T (ti )} − [K ] {T (ti )} �t + {FQ(ti )}�t + {Fg(ti )}�t

(7.121)

as the system of algebraic equations that can be solved for {T (ti+1)}. Formally,
the solution is obtained by multiplying Equation 7.121 by the inverse of the
capacitance matrix. For large matrices common to finite element models, invert-
ing the matrix is very inefficient, so other techniques such as Gaussian elimina-
tion are more often used. Note, however, that the system of algebraic equations
given by Equation 7.121 must be solved only once to obtain an explicit solution
for the nodal temperatures at time ti+1.

The method just described is known as a forward difference scheme (also
known as Euler’s method) and Equation 7.121 is a two-point recurrence rela-
tion. If the state of the system (nodal temperatures and forcing functions) is
known at one point in time, Equation 7.121 gives the state at the next point in
time. Solving the system sequentially at increasing values of the independent
variable is often referred to as marching in time. To begin the solution proce-
dure, the state of the system must be known at t = 0. Therefore, the initial con-
ditions must be specified in addition to the applicable boundary conditions.
Recall that the general solution to an ordinary, first-order differential equation
contains one constant of integration. As we have one such equation correspond-
ing to each nodal temperature, the value of each nodal temperature must be
specified at time zero. If the initial conditions are so known, the recurrence rela-
tion can be used to compute succeeding nodal temperatures. Prior to discussing
other schemes and the ramifications of time step selection, the following simple
example is presented.

Figure 7.20a shows a cylindrical rod having diameter of 12 mm and length of 100 mm.
The pin is of a material having thermal conductivity 230 W/(m-◦C), specific heat
900 J/(kg-◦C), and density 2700 kg/m3. The right-hand end of the rod is held in contact
with a medium at a constant temperature of 30◦C. At time zero, the entire rod is at a tem-
perature of 30◦C when a heat source is applied to the left end, bringing the temperature of
the left end immediately to 80◦C and maintaining that temperature indefinitely. Using the
forward difference method and four two-node elements, determine both transient and
steady-state temperature distributions in the rod. No internal heat is generated.

EXAMPLE 7.11
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■ Solution
In the solution for this example, we set up the general procedure then present the results
for one solution using one time step for the transient portion. The node numbers and
element numbers are as shown in Figure 7.20b. Since the length and area of each element
are the same, we compute the element capacitance matrix as

[
C (e)

] = c� AL

6

[
2 1
1 2

]
=

900(2700)
�

4
(0.012)2(0.025)

6

[
2 1
1 2

]

=
[

2.2902 1.1451
1.1451 2.2902

]
J/◦C

where we have implicitly performed the integrations indicated in Equation 7.115 and
leave the details as an end-of-chapter exercise. Similarly, the element conductance
matrix is

[
k (e)

] = k A

L

[
1 −1

−1 1

]
=

200
�

4
(0.012)2

0.025

[
1 −1

−1 1

]

=
[

0.9408 −0.9408
−0.9408 0.9408

]
W/◦C

For the one-dimensional case with uniform geometry and material properties, the system
assembly is straightforward and results in the global matrices

[C] =




2.2902 1.1451 0 0 0
1.1451 4.5804 1.1451 0 0

0 1.1451 4.5804 1.1451 0
0 0 1.1451 4.5804 1.1451
0 0 0 1.1451 2.2902




[K ] =




0.9408 −0.9408 0 0 0
−0.9408 1.8816 −0.9408 0 0

0 −0.9408 1.8816 −0.9408 0
0 0 −0.9408 1.8816 −0.9408
0 0 0 −0.9408 0.9408




As no internal heat is generated {FQ } = 0 and, as we have specified boundary tempera-
tures, the flux forcing term is an unknown. Note that, in the transient case, the flux terms

(a)

Insulated

30� C
T �30� C, t � 0
T �80� C, t 
 0

L

d

Figure 7.20
(a) Cylindrical rod of Example 7.11. (b) Node and element numbers.

(b)

1 5432

1 2 3 4

25 mm
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at the boundaries (the “reactions”) are time dependent and can be computed at each time
step, as will be explained. Hence, the gradient “force vector” is

{Fg} =




q1 A
0
0
0

−q5 A




Having taken care of the boundary conditions, we now consider the initial conditions
and examine the totality of the conditions on the solution procedure. It should be
clear that, since we have the temperature of two nodes specified, the desired solution
should provide the temperatures of the other three nodes and, therefore, should be a
3 × 3 system. The reduction to the 3 × 3 system is accomplished via the following
observations:

1. If T1 = 80◦C = constant, then Ṫ1 = 0.

2. If T5 = 30◦C = constant, then Ṫ5 = 0.

The equations can be modified accordingly. In this example, the general equations
become

[C]




0
Ṫ2

Ṫ3

Ṫ4

0




+ [K ]




80
T2

T3

T4

30




=




q1 A
0
0
0

−q5 A




Consequently, the first and fifth equations become

1.1451 Ṫ2 + 0.9408(80) − 0.9408 T2 = q1 A

1.1451 Ṫ4 − 0.9408 T4 + 0.9408(30) = −q5 A

respectively. The three remaining equations are then written as


 4.5804 1.1451 0

1.1451 4.5804 1.1451
0 1.1451 4.5804






Ṫ2

Ṫ3

Ṫ4


 +


 1.8816 −0.9408 0

−0.9408 1.8816 −0.9408
0 −0.9408 1.8816






T2

T3

T4




=



75.264
0

28.224




For this example, the capacitance matrix is inverted (using a spreadsheet program) to
obtain

[C]−1 =

 0.2339 −0.0624 0.0156

−0.0624 0.2495 −0.0624
0.0156 −0.0624 0.2339



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where [C] now represents the reduced 3 × 3 capacitance matrix. Utilizing Equation 7.121
and multiplying by [C ]−1 yields


T2

T3

T4




i+1

=



T2

T3

T4




i

−

 0.4988 −0.3521 0.0880

−0.3521 0.5869 −0.3521
0.0880 −0.3521 0.4988






T2

T3

T4




i

�t +



18.0456
−6.4558
7.7762


�t

as the two-point recurrence relation.
Owing to the small matrix involved, the recurrence relation was programmed into a

standard spreadsheet program using time step �t = 0.1 sec. Calculations for nodal tem-
peratures T2, T3 , and T4 are carried out until a steady state is reached. Time histories of
each of the nodal temperature are shown in Figure 7.21. The figure shows that steady-
state conditions T2 = 67.5◦C, T3 = 55◦C, and T4 = 42.5◦C are attained in about 30 sec.
Interestingly, the results also show that the temperatures of nodes 3 and 4 initially
decrease. Such phenomena are physically unacceptable and associated with use of a con-
sistent capacitance matrix, as is discussed in Chapter 10.

7.8.2 Central Difference and Backward
Difference Methods

The forward difference method discussed previously and used in Example 7.11
is but one of three commonly used finite difference methods. The others are the
backward difference method and the central difference method. Each of these is
discussed in turn and a single two-point recurrence relation is developed incor-
porating the three methods.

In the backward difference method, the finite approximation to the first
derivative at time t is expressed as

Ṫ (t ) ∼= T (t ) − T (t − �t )

�t
(7.122)

5
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Figure 7.21 Time histories of the nodal
temperatures.
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so that we, in effect, look back in time to approximate the derivative during the
previous time step. Substituting this relation into Equation 7.116 gives

[C]
{T (t)} − {T (t − �t)}

�t
+ [K ]{T (t)} = {FQ(t)} + {Fg(t)} (7.123)

In this method, we evaluate the nodal temperatures at time t based on the state of
the system at time t − �t , so we introduce the notation t = ti , ti−1 = t − �t ,
i = 1, 2, 3, . . . . Using the described notation and rearranging, Equation 7.123
becomes

([C] + [K ]�t){T (ti )} = [C]{T (ti−1)} + FQ(ti )�t + Fg(ti )�t i = 1, 2, 3, . . .

(7.124)

If the nodal temperatures are known at time ti−1, Equation 7.124 can be solved
for the nodal temperatures at the next time step (it is assumed that the forcing
functions on the right-hand side are known and can be determined at ti ). Noting
that the time index is relative, Equation 7.125 can also be expressed as

([C ] + [K ]�t ) {T (ti+1)}
= [C ] {T (ti )} + FQ(ti )�t + Fg(ti )�t i = 0, 1, 2, . . . (7.125)

If we compare Equation 7.125 with Equation 7.121, we find that the major dif-
ference lies in the treatment of the conductance matrix. In the latter case, the
effects of conductance are, in effect, updated during the time step. In the case of
the forward difference method, Equation 7.121, the conductance effects are held
constant at the previous time step. We also observe that Equation 7.125 cannot be
solved at each time step by “simply” inverting the capacitance matrix. The coef-
ficient matrix on the left-hand side changes at each time step; therefore, more
efficient methods are generally used to solve Equation 7.125.

Another approach to approximation of the first derivative is the central differ-
ence method. As the name implies, the method is a compromise of sorts between
forward and backward difference methods. In a central difference scheme, the
dependent variable and all forcing functions are evaluated at the center (midpoint)
of the time step. In other words, average values are used. In the context of transient
heat transfer, the time derivative of temperature is still as approximated by Equa-
tion 7.119 but the other terms in Equation 7.120 are evaluated at the midpoint of
the time step. Using this approach, Equation 7.120 becomes

[C ]
{T (t + �t )} − {T (t )}

�t
+ [K ]

{
T (t + �t ) + T (t )

2

}

=
{

FQ(t + �t ) + FQ(t )

2

}
+

{
Fg(t + �t ) + Fg(t )

2

}
(7.126)

The forcing functions on the right-hand side of Equation 7.126 are either known
functions and can be evaluated or “reactions,” which are subsequently computed
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via the constraint equations. The left-hand side of Equation 7.126 is now, however,
quite different, in that the unknowns at each step Ti (t + �t ) appear in both capac-
itance and conductance terms. Multiplying by �t and rearranging Equation 7.126,
we obtain
(

[C ] + [K ]
�t

2

)
{T (t + �t )}

=
(

[C] − [K ]
�t

2

)
{T (t)} +

{
FQ(t + �t) + FQ(t)

2

}
+

{
Fg(t + �t) + Fg(t)

2

}

(7.127)

Equation 7.127 can be solved for the unknown nodal temperatures at time t + �t
and the “marching” solution can progress in time until a steady state is reached.
The central difference methods is, in general, more accurate than the forward or
backward difference method, in that it does not give preference to either temper-
atures at t or t + �t but, rather, gives equal credence to both.

In finite difference methods, the key parameter governing solution accuracy
is the selected time step �t . In a fashion similar to the finite element method, in
which the smaller the elements are, physically, the better is the solution, the finite
difference method converges more rapidly to the true solution as the time step
is decreased. These ideas are amplified in Chapter 10, when we examine the
dynamic behavior of structures.

7.9 CLOSING REMARKS
In Chapter 7, we expand the application of the finite element method into two-
and three-dimensional, as well as axisymmetric, problems in heat transfer. While
the majority of the chapter focuses on steady-state conditions, we also present
the finite difference methods commonly used to examine transient effects. The
basis of our approach is the Galerkin finite element method, and this text stays
with that procedure, as it is so general in application. As we proceed into appli-
cations in fluid mechanics, solid mechanics, and structural dynamics in the fol-
lowing chapters, the Galerkin method is the basis for the development of many
of the finite element models.
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PROBLEMS
7.1 For Example 7.1, determine the exact solution by integrating Equation 5.59 and

applying the boundary conditions to evaluate the constants of integration.
7.2 Verify the convection-related terms in Equation 7.15 by direct integration.
7.3 For the data given in Example 7.4, use Gaussian quadrature with four integration

points (two on r, two on s) to evaluate the terms of the stiffness matrix. Do your
results agree with the values given in the example?

7.4 Using the computed nodal temperatures and heat flux values calculated in
Example 7.5, perform a check calculation on the heat flow balance. That is,
determine whether the heat input is in balance with the heat loss due to convection.
How does this check indicate the accuracy of the finite element solution?

7.5 Consider the circular heat transfer pin shown in Figure P7.5. The base of the pin
is held at constant temperature of 100◦C (i.e., boiling water). The tip of the pin
and its lateral surfaces undergo convection to a fluid at ambient temperature Ta .
The convection coefficients for tip and lateral surfaces are equal. Given kx =
380 W/m-◦C, L = 8 cm, h = 2500 W/m2-◦C, d = 2 cm, Ta = 30◦C. Use a two-
element finite element model with linear interpolation functions (i.e., a two-node
element) to determine the nodal temperatures and the heat removal rate from the
pin. Assume no internal heat generation.

Figure P7.5

7.6 Repeat Problem 7.5 using four elements. Is convergence indicated? 
7.7 The pin of Figure P7.5 represents a heating unit in a water heater. The base of the

pin is held at fixed temperature 30◦C. The pin is surrounded by flowing water at
55◦C. Internal heat generation is to be taken as the constant value Q = 25 W/cm3.
All other data are as given in Problem 7.5. Use a two-element model to determine
the nodal temperatures and the net heat flow rate from the pin.

7.8 Solve Problem 7.5 under the assumption that the pin has a square cross section
1 cm × 1 cm . How do the results compare in terms of heat removal rate?

7.9 The efficiency of the pin shown in Figure P7.5 can be defined in several ways.
One way is to assume that the maximum heat transfer occurs when the entire pin
is at the same temperature as the base (in Problem 7.5, 100◦C), so that
convection is maximized. We then write

qmax =
L∫

0

h P (Tb − Ta ) dx + h A(Tb − Ta )

where Tb represents the base temperature, P is the peripheral dimension, and A
is cross-sectional area at the tip. The actual heat transfer is less than qmax , so we

L

h, Ta

h, Ta100� C
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define efficiency as

� = qact

qmax

Use this definition to determine the efficiency of the pin of Problem 7.5.
7.10 Figure P7.10 represents one tube of an automotive engine’s radiator. The

engine coolant is circulated through the tube at a constant rate determined by
the water pump. Cooling is primarily via convection from flowing air around
the tube as a result of vehicle motion. Coolant enters the tube at a temperature
of 195◦F and the flow rate is 0.3 gallons per minute (specific weight is
68.5 lb/ft3). The physical data are as follows: L = 18 in., d = 0.3125 in.,
kx = 225 Btu/hr-ft-◦F, h = 37 Btu/ft2-hr-◦F. Determine the stiffness matrix
and load vector for an element of arbitrary length to use in modeling this
problem, assuming steady-state conditions. Is the assumption of steady-state
conditions reasonable?

Figure P7.10

7.11 Use the results of Problem 7.10 to model the tube with four equal length
elements and determine the nodal temperatures and the total heat flow from
surface convection.

7.12 Consider the tapered heat transfer pin shown in Figure P7.12a. The base of the
pin is held at constant temperature Tb , while the lateral surfaces and tip are
surrounded by a fluid media held at constant temperature Ta . Conductance kx

and the convection coefficient h are known constants. Figure P7.12b shows the
pin modeled as four tapered finite elements. Figure P7.12c shows the pin
modeled as four constant cross-section elements with the area of each element
equal to the average area of the actual pin. What are the pros and cons of the two
modeling approaches? Keep in mind that use of four elements is only a starting

t �0.03 in.

Tair �20� C

m�

d

L
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point, many more elements are required to obtain a convergent solution. How
does the previous statement affect your answer?

Figure P7.12

7.13 A cylindrical pin is constructed of a material for which the thermal conductivity
decreases with temperature according to

kx = k0 − cT

and c is a positive constant. For this situation, show that the governing equation
for steady-state, one-dimensional conduction with convection is

k0
d2 T

dx 2
− d

dx

(
cT

dT

dx

)
+ Q = h P

A
(T − Ta )

7.14 The governing equation for the situation described in Problem 7.13 is nonlinear.
If the Galerkin finite element method is applied, an integral of the form

x2∫
x1

Ni
d

dx

(
cT

dT

dx

)
dx

appears in the conductance matrix formulation. Integrate this term by parts and
discuss the results in terms of boundary flux conditions and the conductance
matrix.

7.15 A vertical wall of “sandwich” construction shown in Figure P7.15a is held at
constant temperature T1 = 68◦F on one surface and T2 = 28◦F on the other
surface. Using only three elements (one for each material), as in Figure P7.15b,
determine the nodal temperatures and heat flux through the wall per unit area.
The dimensions of the wall in the y and z directions are very large in comparison
to wall thickness.

1 2 3 4 5

(c)

1 2 3 4 5

(b)

(a)

h, Ta

h, TaTb
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Figure P7.15

7.16 The wall of Problem 7.15 carries a centrally located electrical cable, which is
to be treated as a line heat source of strength Q∗ = constant , as shown in
Figure P7.16. With this change, can the problem still be treated as one
dimensional? If your answer is yes, solve the problem using three elements
as in Problem 7.15. If your answer is no, explain.

Figure P7.16

7.17 A common situation in polymer processing is depicted in Figure P7.17, which
shows a “jacketed” pipe. The inner pipe is stainless steel having thermal
conductivity k; the outer pipe is carbon steel and assumed to be perfectly
insulated. The annular region between the pipes contains a heat transfer medium
at constant temperature T1 . The inner pipe contains polymer material flowing

Q*

(b)

1
2 3

4
1 2 3

(a)

5�8 in. 5�8 in.2 in.

ba c xT2T1

Figure P7.17

Carbon steel

Stainless steel

Flow R

t

T1

x
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at constant mass flow rate ṁ . The convection coefficient between the stainless
steel pipe wall and the polymer is h. Polymer specific heat c is also taken to be
constant. Is this a one-dimensional problem? How would you solve this problem
using the finite element method?

7.18 An office heater (often incorrectly called a radiator, since the heat transfer mode
is convection) is composed of a central pipe containing heated water at constant
temperature, as depicted in Figure P7.18. Several two-dimensional heat transfer
fins are attached to the pipe as shown. The fins are equally spaced along the
length of the pipe. Each fin has thickness of 0.125 in. and overall dimensions
4 in. × 4 in. Convection from the edges of the fins can be neglected. Consider the
pipe as a point source Q∗ = 600 Btu/hr-ft2 and determine the net heat transfer to
the ambient air at 20◦C, if the convection coefficient is h = 300 Btu/(hr-ft2-◦F).
Use four finite elements with linear interpolation functions (consider symmetry
conditions here).

Figure P7.18

7.19 One who seriously considers the symmetry conditions of Problem 7.18 would
realize that quarter symmetry exists and four elements represent 16 elements in
the full problem domain. What are the boundary conditions for the symmetric
model?

7.20 The rectangular fins shown in Figure P7.20 are mounted on a centrally located
pipe carrying hot water. Temperature at the contact surface between fin and
pipe is a constant T1 . For each case depicted, determine the applicable symmetry
conditions and the boundary conditions applicable to a finite element model.

Figure P7.20

(d)

T1

T2

(c)

Ta

TaTa Ta

T1

T2

(b)

Ta Ta

(a)
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Note that the cross-hatched edges are perfectly insulated and it is assumed that
the convection coefficients on all surfaces is the same constant.

7.21 Solve Example 7.5 using the two-element model in Figure 7.11b. How do the
results compare to those of the four-element model?

7.22 The rectangular element shown in Figure P7.22 contains a line source of constant
strength Q∗ located at the element centroid. Determine { f (e)

Q }.

Figure P7.22

7.23 Determine the forcing function components of { f (e)
Q } for the axisymmetric

element of Example 7.10 for the case of uniform internal heat generation Q.
7.24 A steel pipe (outside diameter of 60 mm and wall thickness of 5 mm) contains

flowing water at constant temperature 80◦C, as shown in Figure P7.24. The
convection coefficient between the water and pipe is 2000 W/m2-◦C. The pipe
is surrounded by air at 20◦C, and the convection at the outer pipe surface is
20 W/m2-◦C. The thermal conductivity of the pipe material is 60 W/m-◦C.
Determine the stiffness matrices and nodal forcing functions for the two
axisymmetric elements shown.

Figure P7.24

z

r

Flow

1 2 2.5 mm

2.5 mm

4

1 2

3

(2, 2)

Q*

(4, 2)

(4, 4)(2, 4)

y

x



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

292 CHAPTER 7 Applications in Heat Transfer

7.25 Assemble the global equations for the two elements of Problem 7.24. Use the
global node numbers shown in Figure P7.25. Compute the nodal temperatures,
and find the net heat flow (per unit surface area) into the surrounding air.

Figure P7.25

7.26 Solve the problem of Example 7.11 using a time step �t = 0.01 sec. How do the
results compare to those of the example solution?

1

1 2 3

4 5 6

2
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Applications in Fluid
Mechanics

8.1 INTRODUCTION
The general topic of fluid mechanics encompasses a wide range of problems of
interest in engineering applications. The most basic definition of a fluid is to state
that a fluid is a material that conforms to the shape of its container. Thus, both
liquids and gases are fluids. Alternately, it can be stated that a material which,
in itself, cannot support shear stresses is a fluid. The reader familiar with the dis-
tortion energy theory of solids will recall that geometric distortion is the result of
shear stress while normal stress results in volumetric change. Thus, a fluid read-
ily distorts, since the resistance to shear is very low, and such distortion results
in flow.

The physical behavior of fluids and gases is very different. The differences in
behavior lead to various subfields in fluid mechanics. In general, liquids exhibit
constant density and the study of fluid mechanics of liquids is generally referred
to as incompressible flow. On the other hand, gases are highly compressible
(recall Boyle’s law from elementary physics [1]) and temperature dependent.
Therefore, fluid mechanics problems involving gases are classified as cases of
compressible flow.

In addition to considerations of compressibility, the relative degree to which
a fluid can withstand some amount of shear leads to another classification of fluid
mechanics problems. (Regardless of the definition, all fluids can support some
shear.) The resistance of a fluid to shear is embodied in the material property
known as viscosity. In a very practical sense, viscosity is a measure of the “thick-
ness” of a fluid. Consider the differences encountered in stirring a container
of water and a container of molasses. The act of stirring introduces shearing
stresses in the fluid. The “thinner,” less viscous, water is easy to stir; the “thicker,”
more viscous, molasses is harder to stir. The physical effect is represented by
the shear stresses applied to the “stirrer” by the fluid. The concept of viscosity is

C H A P T E R 8
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embodied in Newton’s law of viscosity [2], which states that the shear stress in a
fluid is proportional to the velocity gradient.

In a one-dimensional case, the velocity gradient and Newton’s law of vis-
cosity can be described in reference to Figure 8.1a. A long flat plate is moving
with velocity U̇ in the x direction and separated from a fixed surface located at
y = 0 by a thin fluid film of thickness h. Experiments show that the fluid adheres
to both surfaces, so that the fluid velocity at the fixed surface is zero, and at the
moving plate, the fluid velocity is U̇ (this phenomenon is known as the no slip
condition). If pressure is constant throughout the fluid, the velocity distribution
between the moving plate and the fixed surface is linear, as in Figure 8.1b, so the
fluid velocity at any point is given by

u̇(y) = y

h
U̇ (8.1)

To maintain the motion, a force in the direction of motion must be applied to the
plate. The force is required to keep the plate in equilibrium, since the fluid exerts
a friction force that opposes the motion. It is known from experiments that
the force per unit area (frictional shearing stress) required to maintain motion is
proportional to velocity U̇ of the moving plate and inversely proportional to dis-
tance h. In general, the frictional shearing stress is described in Newton’s law of
viscosity as

� = �
du̇

dy
(8.2)

where the proportionality constant � is called the absolute viscosity of the fluid.
Absolute viscosity (hereafter simply viscosity) is a fundamental material prop-
erty of fluid media since, as shown by Equation 8.2, the ability of a fluid to sup-
port shearing stress depends directly on viscosity.

The relative importance of viscosity effects leads to yet other subsets of fluid
mechanics problems, as mentioned. Fluids that exhibit very little viscosity are
termed inviscid and shearing stresses are ignored; on the other hand, fluids with
significant viscosity must be considered to have associated significant shear
effects. To place the discussion in perspective, water is considered to be an in-
compressible, viscous fluid, whereas air is a highly compressible yet inviscid

(a)

U�

x

y h

(b)

U�

h

Figure 8.1 
(a) Moving plate separated by a fluid layer from a fixed
surface. (b) Velocity profile across the fluid thickness.
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fluid. In general, liquids are most often treated as incompressible but the viscos-
ity effects depend specifically on the fluid. Gases, on the other hand, are gener-
ally treated as compressible but inviscid.

In this chapter, we examine only incompressible fluid flow. The mathemat-
ics and previous study required for examination of compressible flow analysis is
deemed beyond the scope of this text. We, however, introduce viscosity effects in
the context of two-dimensional flow and present the basic finite element formu-
lation for solving such problems. The extension to three-dimensional fluid flow
is not necessarily as straightforward as in heat transfer and (as shown in Chap-
ter 9) in solid mechanics. Our introduction to finite element analysis of fluid flow
problems shows that the concepts developed thus far in the text can indeed be
applied to fluid flow but, in the general case, the resulting equations, although
algebraic as expected from the finite element method, are nonlinear and special
solution procedures must be applied.

8.2 GOVERNING EQUATIONS
FOR INCOMPRESSIBLE FLOW

One of the most important physical laws governing motion of any continuous
medium is the principle of conservation of mass. The equation derived by appli-
cation of this principle is known as the continuity equation. Figure 8.2 shows a
differential volume (a control volume) located at an arbitrary, fixed position in
a three-dimensional fluid flow. With respect to a fixed set of Cartesian axes,
the velocity components parallel to the x, y, and z axes are denoted u, v, and w,
respectively. (Note that here we take the standard convention of fluid mechanics
by denoting velocities without the “dot” notation.) The principle of conservation
of mass requires that the time rate of change of mass within the volume must

Figure 8.2 Differential volume element in
three-dimensional flow.

y

x

z

w

dx

dy
dz

u

v

u � dx
�u
�x

w � dz
�w
�z

v � dy
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be in balance with the net mass flow rate into the volume. Total mass inside the
volume is � dV, and since dV is constant, we must have

∂�

∂ t
dV =

∑
(mass flow in − mass flow out)

and the partial derivative is used because density may vary in space as well as
time. Using the velocity components shown, the rate of change of mass in the
control volume resulting from flow in the x direction is

ṁ x = � u dy dz −
[

� u + ∂ (� u)

∂x
dx

]
dy dz (8.3a)

while the corresponding terms resulting from flow in the y and z directions are

ṁ y = � v dx dz −
[

� v + ∂ (� v)

∂y
dy

]
dx dz (8.3b)

ṁ z = � w dx dy −
[

� w + ∂ (� w)

∂ z
dz

]
dx dy (8.3c)

The rate of change of mass then becomes

∂�

∂ t
dV = ṁ x + ṁ y + ṁ z = −

[
∂ (� u)

∂x
+ ∂ (� v)

∂y
+ ∂ (� w)

∂ z

]
dx dy dz (8.4)

Noting that dV = dx dy dz , Equation 8.4 can be written as

∂�

∂ t
+ u

∂�

∂x
+ v

∂�

∂y
+ w

∂�

∂ z
+ �

[
∂u

∂x
+ ∂v

∂y
+ ∂w

∂ z

]
= 0 (8.5)

Equation 8.5 is the continuity equation for a general three-dimensional flow
expressed in Cartesian coordinates.

Restricting the discussion to steady flow (with respect to time) of an incom-
pressible fluid, density is independent of time and spatial coordinates so Equa-
tion 8.5 becomes

∂u

∂x
+ ∂v

∂y
+ ∂w

∂ z
= 0 (8.6)

Equation 8.6 is the continuity equation for three-dimensional, incompressible,
steady flow expressed in Cartesian coordinates. As this is one of the most funda-
mental equations in fluid flow, we use it extensively in developing the finite
element approach to fluid mechanics.

8.2.1 Rotational and Irrotational Flow

Similar to rigid body dynamics, consideration must be given in fluid dynamics
as to whether the flow motion represents translation, rotation, or a combination
of the two types of motion. Generally, in fluid mechanics, pure rotation (i.e.,
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rotation about a fixed point) is not of as much concern as in rigid body dynamics.
Instead, we classify fluid motion as rotational (translation and rotation com-
bined) or irrotational (translation only). Owing to the inherent deformability of
fluids, the definitions of translation and rotation are not quite the same as for
rigid bodies. To understand the difference, we focus on the definition of rotation
in regard to fluid flow.

A flow field is said to be irrotational if a typical element of the moving fluid
undergoes no net rotation. A classic example often used to explain the concept is
that of the passenger carriages on a Ferris wheel. As the wheel turns through one
revolution, the carriages also move through a circular path but remain in fixed
orientation relative to the gravitational field (assuming the passengers are well-
behaved). As the carriage returns to the starting point, the angular orientation of
the carriage is exactly the same as in the initial orientation, hence no net rotation
occurred. To relate the concept to fluid flow, we consider Figure 8.3, depicting
two-dimensional flow through a conduit. Figure 8.3a shows an element of fluid
undergoing rotational flow. Note that, in this instance, we depict the fluid ele-
ment as behaving essentially as a solid. The fluid has clearly undergone transla-
tion and rotation. Figure 8.3b depicts the same situation in the case of irrotational
flow. The element has deformed (angularly), and we indicate that angular defor-
mation via the two angles depicted. If the sum of these two angles is zero, the
flow is defined to be irrotational. As is shown in most basic fluid mechanics text-
books [2], the conditions for irrotationality in three-dimensional flow are

∂v

∂x
− ∂u

∂y
= 0

∂w

∂x
− ∂u

∂ z
= 0

∂w

∂y
− ∂v

∂ z
= 0

(8.7)

When the expressions given by Equations 8.7 are not satisfied, the flow is rota-
tional and the rotational rates can be defined in terms of the partial derivatives of
the same equation. In this text, we consider only irrotational flows and do not
proceed beyond the relations of Equation 8.7.

Figure 8.3 Fluid element in (a) rotational flow and (b) irrotational flow.

t

t � dt

(a) (b)

t

t � dt
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8.3 THE STREAM FUNCTION IN 
TWO-DIMENSIONAL FLOW

We next consider the case of two-dimensional, steady, incompressible, irrota-
tional flow. (Note that we implicitly assume that viscosity effects are negligible.)
Applying these restrictions, the continuity equation is

∂u

∂x
+ ∂v

∂y
= 0 (8.8)

and the irrotationality conditions reduce to

∂u

∂y
− ∂v

∂x
= 0 (8.9)

Equations 8.8 and 8.9 are satisfied if we introduce (define) the stream function
�(x , y) such that the velocity components are given by

u = ∂�

∂y

v = − ∂�

∂x

(8.10)

These velocity components automatically satisfy the continuity equation. The
irrotationality condition, Equation 8.10, becomes

∂u

∂y
− ∂v

∂x
= ∂

∂y

(
∂�

∂y

)
− ∂

∂x

(
− ∂�

∂x

)
= ∂2�

∂x 2
+ ∂2�

∂y2
= ∇ 2� = 0 (8.11)

Equation 8.11 is Laplace’s equation and occurs in the governing equations for
many physical phenomena. The symbol ∇ represents the vector derivative oper-
ator defined, in general, by

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂ z
k in Cartesian coordinates and ∇ 2 = ∇ · ∇

Let us now examine the physical significance of the stream function �(x , y)
in relation to the two-dimensional flow. In particular, we consider lines in the
(x, y) plane (known as streamlines) along which the stream function is constant.
If the stream function is constant, we can write

d� = ∂�

∂x
dx + ∂�

∂y
dy = 0 (8.12)

or

d� = −v dx + u dy = 0 (8.13)

The tangent vector at any point on a streamline can be expressed as
nt = dx i + dyj and the fluid velocity vector at the same point is V = ui + vj.
Hence, the vector product V × nt = (−v dx + u dy)k has zero magnitude, per
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Equation 8.13. The vector product of two nonzero vectors is zero only if the vec-
tors are parallel. Therefore, at any point on a streamline, the fluid velocity vector
is tangent to the streamline.

8.3.1 Finite Element Formulation

Development of finite element characteristics for fluid flow based on the stream
function is straightforward, since (1) the stream function �(x , y) is a scalar
function from which the velocity vector components are derived by differen-
tiation and (2) the governing equation is essentially the same as that for two-
dimensional heat conduction. To understand the significance of the latter point,
reexamine Equation 7.23 and set � = T , kx = ky = 1, Q = 0, and h = 0. The
result is the Laplace equation governing the stream function.

The stream function over the domain of interest is discretized into finite
elements having M nodes:

�(x , y) =
M∑

i=1

Ni (x , y)� i = [N ]{�} (8.14)

Using the Galerkin method, the element residual equations are∫

A(e)

Ni (x , y)

(
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 i = 1, M (8.15)

or ∫

A(e)

[N ]T

(
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 (8.16)

Application of the Green-Gauss theorem gives∫

S(e)

[N ]T ∂�

∂x
nx dS −

∫

A(e)

∂ [N ]T

∂x

∂�

∂x
dx dy +

∫

S(e)

[N ]T ∂�

∂y
n y dS

−
∫

A(e)

∂ [N ]T

∂y

∂�

∂y
dx dy = 0 (8.17)

where S represents the element boundary and (nx , n y) are the components of the
outward unit vector normal to the boundary. Using Equations 8.10 and 8.14
results in∫

A(e)

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
dx dy {�} =

∫

S(e)

[N ]T (un y − vnx ) dS

(8.18)
and this equation is of the form[

k (e)
] {�} = {

f (e)
}

(8.19)
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The M × M element stiffness matrix is

[
k (e)

] =
∫

A(e)

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
dx dy (8.20)

and the nodal forces are represented by the M × 1 column matrix

{
f (e)

} =
∫

S(e)

[N ]T (un y − vnx ) dS (8.21)

Since the nodal forces are obtained via integration along element boundaries and
the unit normals for adjacent elements are equal and opposite, the forces on
interelement boundaries cancel during the assembly process. Consequently, the
forces defined by Equation 8.21 need be computed only for element boundaries
that lie on global boundaries. This observation is in keeping with similar obser-
vations made previously in context of other problem types.

8.3.2 Boundary Conditions

As the governing equation for the stream function is a second-order, partial dif-
ferential equation in two independent variables, four boundary conditions must
be specified and satisfied to obtain the solution to a physical problem. The man-
ner in which the boundary conditions are applied to a finite element model is
discussed in relation to Figure 8.4a. The figure depicts a flow field between two
parallel plates that form a smoothly converging channel. The plates are assumed
sufficiently long in the z direction that the flow can be adequately modeled as
two-dimensional. Owing to symmetry, we consider only the upper half of the
flow field, as in Figure 8.4b. Section a-b is assumed to be far enough from the
convergent section that the fluid velocity has an x component only. Since we ex-
amine only steady flow, the velocity at a-b is Uab = constant. A similar argument
applies at section c-d, far downstream, and we denote the x-velocity component
at that section as Ucd = constant. How far upstream or downstream is enough to
make these assumptions? The answer is a question of solution convergence. The
distances involved should increase until there is no discernible difference in the
flow solution. As a rule of thumb, the distances should be 10–15 times the width
of the flow channel.

As a result of the symmetry and irrotationality of the flow, there can be no
velocity component in the y direction along the line y = 0 (i.e., the x axis). The
velocity along this line is tangent to the line at all values of x. Given these obser-
vations, the x axis is a streamline; hence, � = � 1 = constant along the axis.
Similarly, along the surface of the upper plate, there is no velocity component
normal to the plate (imprenetrability), so this too must be a streamline along
which � = � 2 = constant. The values of � 1 and � 2 are two of the required
boundary conditions. Recalling that the velocity components are defined as
first partial derivatives of the stream function, the stream function must be
known only within a constant. For example, a stream function of the form
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Figure 8.4
(a) Uniform flow into a converging channel. (b) Half-symmetry
model showing known velocities and boundary values of the stream
function. (c) A relatively coarse finite element model of the flow
domain, using three-node triangular elements. This model includes
65 degrees of freedom before applying boundary conditions.
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d

(a)
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Uab
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(c)
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b
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Uab

Ucd

a

b
�2

�1

�(x , y) = C + f (x , y) contributes no velocity terms associated with the con-
stant C. Hence, one (constant) value of the stream function can be arbitrarily
specified. In this case, we choose to set � 1 = 0. To determine the value of � 2, we
note that, at section a-b (which we have arbitrarily chosen as x = 0, the velocity
is

u = ∂�

∂y
= Uab = constant = � 2 − � 1

yb − ya
= � 2

yb
(8.22)
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so � 2 = ybUab . At any point on a-b, we have � = (� 2/yb)y = Uab y , so the
value of the stream function at any finite element node located on a-b is known.
Similarly, it can be shown that � = (� 2/yc)y = Uab(yb/yc)y along c-d, so nodal
values on that line are also known. If these arguments are carefully considered,
we see that the boundary conditions on � at the “corners” of the domain are con-
tinuous and well-defined.

Next we consider the force conditions across sections a-b and c-d. As noted,
the y-velocity components along these sections are zero. In addition, the y com-
ponents of the unit vectors normal to these sections are zero as well. Using these
observations in conjunction with Equation 8.21, the nodal forces on any element
nodes located on these sections are zero. The occurrence of zero forces is equiv-
alent to stating that the streamlines are normal to the boundaries.

If we now utilize a mesh of triangular elements (for example), as in Fig-
ure 8.4c, and follow the general assembly procedure, we obtain a set of global
equations of the form

[K ]{�} = {F } (8.23)

The forcing function on the right-hand side is zero at all interior nodes. At the
boundary nodes on sections a-b and c-d, we observe that the nodal forces are zero
also. At all element nodes situated on the line y = 0, the nodal values of the
stream function are � = 0, while at all element nodes on the upper plate profile
the values are specified as � = ybUab . The � = 0 conditions are analogous to
the specification of zero displacements in a structural problem. With such con-
ditions, the unknowns are the forces exerted at those nodes. Similarly, the speci-
fication of nonzero value of the stream function � along the upper plate profile
is analogous to a specified displacement. The unknown is the force required to
enforce that displacement.

The situation here is a bit complicated mathematically, as we have both zero
and nonzero specified values of the nodal variable. In the following, we assume
that the system equations have been assembled, and we rearrange the equations
such that the column matrix of nodal values is

{�} =



{�0}
{� s}
{�u}


 (8.24)

where {� 0} represents all nodes along the streamline for which � = 0, {� s} rep-
resents all nodes at which the value of � is specified, and {� u} corresponds to all
nodes for which � is unknown. The corresponding global force matrix is

{F} =



{F0}
{Fs}
{0}


 (8.25)

and we note that all nodes at which � is unknown are internal nodes at which the
nodal forces are known to be zero.
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Using the notation just defined, the system equations can be rewritten (by
partitioning the stiffness matrix) as

 [K00] [K0s] [K0u]
[Ks0] [Kss] [Ksu]
[Ku0] [Kus] [Kuu]







{�0}
{� s}
{�u}


 =




{F0}
{Fs}
{0}


 (8.26)

Since �0 = 0, the first set of partitioned equations become

[K0s]{� s} + [K0u]{� u} = {F0} (8.27)

and the values of F0 can be obtained only after solving for {� u} using the re-
maining equations. Hence, Equation 8.27 is analogous to the reaction force equa-
tions in structural problems and can be eliminated from the system temporarily.
The remaining equations are[

[Kss] [Ksu]
[Kus] [Kuu]

] {
{� s}
{� u}

}
=

{
{Fs}
{0}

}
(8.28)

and it must be noted that, even though the stiffness matrix is symmetric, [Ksu]
and [Kus] are not the same. The first partition of Equation 8.28 is also a set of
“reaction” equations given by

[Kss] {� s} + [Ksu] {� u} = {Fs} (8.29)

and these are used to solve for {Fs} but, again, after {� u} is determined. The sec-
ond partition of Equation 8.28 is

[Kus] {� s} + [Kuu] {� u} = {0} (8.30)

and these equations have the formal solution

{� u} = −[Kuu]−1[Kus] {� s} (8.31)

since the values in {� s} are known constants. Given the solution represented by
Equation 8.31, the “reactions” in Equations 8.27 and 8.28 can be computed
directly.

As the velocity components are of major importance in a fluid flow, we must
next utilize the solution for the nodal values of the stream function to compute
the velocity components. This computation is easily accomplished given Equa-
tion 8.14, in which the stream function is discretized in terms of the nodal values.
Once we complete the already described solution procedure for the values of the
stream function at the nodes, the velocity components at any point in a specified
finite element are

u(x , y) = ∂�

∂y
=

M∑
i=1

∂ Ni

∂y
� i = ∂ [N ]T

∂y
{�}

v(x , y) = − ∂�

∂x
= −

M∑
i=1

∂ Ni

∂x
� i = − ∂ [N ]T

∂x
{�}

(8.32)
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Note that if, for example, a three-node triangular element is used, the velocity
components as defined in Equation 8.32 have constant values everywhere in the
element and are discontinuous across element boundaries. Therefore, a large
number of small elements are required to obtain solution accuracy. Application
of the stream function to a numerical example is delayed until we discuss an
alternate approach, the velocity potential function, in the next section.

8.4 THE VELOCITY POTENTIAL FUNCTION 
IN TWO-DIMENSIONAL FLOW

Another approach to solving two-dimensional incompressible, inviscid flow
problems is embodied in the velocity potential function. In this method, we
hypothesize the existence of a potential function �(x , y) such that 

u(x , y) = − ∂�

∂x

v(x , y) = − ∂�

∂y

(8.33)

and we note that the velocity components defined by Equation 8.33 automati-
cally satisfy the irrotationality condition. Substitution of the velocity definitions
into the continuity equation for two-dimensional flow yields

∂u

∂x
+ ∂v

∂y
= ∂2�

∂x 2
+ ∂2�

∂y2
= 0 (8.34)

and, again, we obtain Laplace’s equation as the governing equation for 2-D flow
described by a potential function. 

We examine the potential formulation in terms of the previous example of a
converging flow between two parallel plates. Referring again to Figure 8.4a, we
now observe that, along the lines on which the potential function is constant, we
can write

d� = ∂�

∂x
dx + ∂�

∂y
dy = −(u dx + v dy) = 0 (8.35)

Observing that the quantity u dx + v dy is the magnitude of the scalar product of
the velocity vector and the tangent to the line of constant potential, we conclude
that the velocity vector at any point on a line of constant potential is perpendic-
ular to the line. Hence, the streamlines and lines of constant velocity potential
(equipotential lines) form an orthogonal “net” (known as the flow net) as de-
picted in Figure 8.5.

The finite element formulation of an incompressible, inviscid, irrotational
flow in terms of velocity potential is quite similar to that of the stream function
approach, since the governing equation is Laplace’s equation in both cases. By
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Figure 8.5 Flow net of lines of constant stream function � and
constant velocity potential �.

a

c

d

b

� � Constant
� � Constant

� � Constant

direct analogy with Equations 8.14–8.17, we write

�(x , y) =
M∑

i=1

Ni (x , y)�i = [N ] {�} (8.36)

∫

A(e)

Ni (x , y)

(
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 i = 1, M (8.37)

∫

A(e)

[
N T

] (
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 (8.38)

∫

S(e)

[N ]T ∂�

∂x
nx dS −

∫

A(e)

∂ [N ]T

∂x

∂�

∂x
dx dy +

∫

S(e)

[N ]T ∂�

∂y
n y dS

−
∫

A(e)

∂ [N ]T

∂y

∂�

∂y
dx dy = 0 (8.39)

Utilizing Equation 8.36 in the area integrals of Equation 8.39 and substituting the
velocity components into the boundary integrals, we obtain

∫

A(e)

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
dx dy {�} = −

∫

S(e)

[N ]T (unx + vn y) dS

(8.40)
or [

k (e)
] {�} = {

f (e)
}

(8.41)
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The element stiffness matrix is observed to be identical to that of the stream
function method. The nodal force vector is significantly different, however. Note
that, in the right-hand integral in Equation 8.40, the term in parentheses is the
scalar product of the velocity vector and the unit normal to an element boundary.
Therefore, the nodal forces are allocations to the nodes of the flow across the
element boundaries. (Recall that we assume unit dimension in the z direction, so
the terms on the right-hand side of Equation 8.40 are volumetric flow rates.) As
usual, on internal element boundaries, the contributions from adjacent elements
are equal and opposite and cancel during the assembly step. Only elements on
global boundaries have nonzero nodal force components. 

To illustrate both the stream function and velocity potential methods, we now examine
the case of a cylinder placed transversely to an otherwise uniform stream, as shown in
Figure 8.6a. The underlying assumptions are

1. Far upstream from the cylinder, the flow field is uniform with u = U = constant
and v = 0.

2. Dimensions in the z direction are large, so that the flow can be considered two
dimensional.

3. Far downstream from the cylinder, the flow is again uniform in accordance with
assumption 1.

EXAMPLE 8.1

U

y

x

(a)

d

cb

a e

� � Uyb

� � 0

� � 0

��

�x
� Constant

(b)

Figure 8.6
(a) Circular cylinder in a uniform, ideal flow. (b) Quarter-symmetry
model of cylinder in a uniform stream.
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■ Velocity Potential
Given the assumptions and geometry, we need consider only one-fourth of the flow field,
as in Figure 8.6b, because of symmetry. The boundary conditions first are stated for
the velocity potential formulation. Along x = 0 (a-b), we have u = U = constant and
v = 0. So,

u(0, y) = U = − ∂�

∂ x

v(0, y) = 0 = − ∂�

∂y

and the unit (outward) normal vector to this surface is (nx , n y ) = (−1, 0) . Hence,
for every element having edges (therefore, nodes) on a-b, the nodal force vector is
known as

{
f (e)

} = −
∫

S (e)

[N ]T (unx + vn y ) dS = U

∫

S (e)

[N ]T dS

and the integration path is simply dS = dy between element nodes. Note the change in
sign, owing to the orientation of the outward normal vector. Hence, the forces associated
with flow into the region are positive and the forces associated with outflow are negative.
(The sign associated with inflow and outflow forces depend on the choice of signs in
Equation 8.33. If, in Equation 8.33, we choose positive signs, the formulation is essen-
tially the same.)

The symmetry conditions are such that, on surface (edge) c-d, the y-velocity compo-
nents are zero and x = xc , so we can write

v = − ∂�

∂y
= − d�(xc , y)

dy
= 0

This relation can be satisfied if � is independent of the y coordinate or �(xc , y) is con-
stant. The first possibility is quite unlikely and requires that we assume the solution form.
Hence, the conclusion is that the velocity potential function must take on a constant value
on c-d. Note, most important, this conclusion does not imply that the x-velocity compo-
nent is zero.

Along b-c, the fluid velocity has only an x component (impenetrability), so we can
write this boundary condition as 

∂�

∂n
= ∂�

∂ x
nx + ∂�

∂y
n y = −(unx + vn y ) = 0

and since v = 0 and nx = 0 on this edge, we find that all nodal forces are zero along b-c,
but the values of the potential function are unknown.

The same argument holds for a-e-d. Using the symmetry conditions along this sur-
face, there is no velocity perpendicular to the surface, and we arrive at the same conclu-
sion: element nodes have zero nodal force values but unknown values of the potential
function.
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In summary, for the potential function formulation, the boundary conditions are

1. Boundary a-b: � unknown, forces known.
2. Boundary b-c: � unknown, forces = 0.
3. Boundary c-d: � = constant, forces unknown.
4. Boundary a-e-d: � unknown, forces = 0.

Now let us consider assembling the global equations. Per the usual assembly proce-
dure, the equations are of the matrix form

[K ]{�} = {F }
and the force vector on the right-hand side contains both known and unknown values. The
vector of nodal potential values {�} is unknown—we have no specified values. We do
know that, along c-d, the nodal values of the potential function are constant, but we do not
know the value of the constant. However, in light of Equation 8.33, the velocity compo-
nents are defined in terms of first partial derivatives, so an arbitrary constant in the po-
tential function is of no consequence, as with the stream function formulation. Therefore,
we need specify only an arbitrary value of � at nodes on c-d in the model, and the system
of equations becomes solvable.

■ Stream Function Formulation
Developing the finite element model for this particular problem in terms of the stream
function is a bit simpler than for the velocity potential. For reasons that become clear when
we write the boundary conditions, we also need consider only one-quarter of the flow field
in the stream function approach. The model is also as shown in Figure 8.6b. Along a-e, the
symmetry conditions are such that the y-velocity components are zero. On e-d, the veloc-
ity components normal to the cylinder must be zero, as the cylinder is impenetrable.
Hence, a-e-d is a streamline and we arbitrarily set � = 0 on that streamline. Clearly, the
upper surface b-c is also a streamline and, using previous arguments from the convergent
flow example, we have � = U yb along this edge. (Note that, if we had chosen the value of
the stream function along a-e-d to be a nonzero value C, the value along b-c would be
� = U yb + C .) On a-b and c-d, the nodal forces are zero, also per the previous discussion,
and the nodal values of the stream function are unknown. Except for the geometrical
differences, the solution procedure is the same as that for the converging flow.

A relatively coarse mesh of four-node quadrilateral elements used for solving this
problem using the stream function is shown in Figure 8.7a. For computation, the values
U = 40, distance a-b = yb = 5, and cylinder radius = 1 are used. The resulting stream-
lines (lines of constant � ) are shown in Figure 8.7b. Recalling that the streamlines are
lines to which fluid velocity is tangent at all points, the results appear to be correct
intuitively. Note that, on the left boundary, the streamlines appear to be very nearly per-
pendicular to the boundary, as required if the uniform velocity condition on that boundary
is satisfied.

For the problem at hand, we have the luxury of comparing the finite element results
with an “approximately exact” solution, which gives the stream function as

� = U
x 2 + y2 − R2

x 2 + y2
y
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Table 8.1 Selected Nodal Stream Function and Velocity Values for Solution of Example 8.1

Node �FE �Exact VFE VExact

1 0 0 75.184 80
2 0 0 1.963 0
8 0 0 38.735 38.4

16 123.63 122.17 40.533 40.510
20 142.48 137.40 44.903 42.914
21 100.03 99.37 47.109 45.215
22 67.10 64.67 51.535 49.121
23 40.55 39.36 57.836 55.499
24 18.98 18.28 68.142 65.425
45 67.88 65.89 41.706 40.799
46 103.87 100.74 42.359 41.018

This solution is actually for a cylinder in a uniform stream of indefinite extent in both the
x and y directions (hence, the use of the oxymoron, approximately exact) but is sufficient
for comparison purposes. Table 8.1 lists values of � obtained by the finite element solu-
tion and the preceding analytical solution at several selected nodes in the model. The
computed magnitude of the fluid velocity at those points is also given. The nominal errors
in the finite element solution versus the analytical solution are about 4 percent for the
value of the stream function and 6 percent for the velocity magnitude. While not shown
here, a refined element mesh consisting of 218 elements was used in a second solution
and the errors decreased to less than 1 percent for both the stream function value and the
velocity magnitude.

Earlier in the chapter, the analogy between the heat conduction problem and
the stream function formulation is mentioned. It may be of interest to the reader
to note that the stream function solution presented in Example 8.1 is generated
using a commercial software package and a two-dimensional heat transfer
element. The particular software does not contain a fluid element of the type
required for the problem. However, by setting the thermal conductivities to unity
and specifying zero internal heat generation, the problem, mathematically, is the
same. That is, nodal temperatures become nodal values of the stream function.
Similarly, spatial derivatives of temperature (flux values) become velocity com-
ponents if the appropriate sign changes are taken into account. The mathematical
similarity of the two problems is further illustrated by the finite element solution
of the previous example using the velocity potential function.

Obtain a finite element solution for the problem of Example 8.1 via the velocity potential
approach, using, specifically, the heat conduction formulation modified as required.

EXAMPLE 8.2
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■ Solution
First let us note the analogies

u = − ∂�

∂ x
⇒ qx = −kx

∂T

∂ x

v = − ∂�

∂y
⇒ qy = −ky

∂T

∂y

so that, if kx = ky = 1, then the velocity potential is directly analogous to temperature and
the velocity components are analogous to the respective flux terms. Hence, the boundary
conditions, in terms of thermal variables become

qx = U qy = 0 on a-b

qx = qy = 0 on b-c and a-e-d

T = constant = 0 on c-d (the value is arbitrary)

Figure 8.8 shows a coarse mesh finite element solution that plots the lines of constant
velocity potential � (in the thermal solution, these lines are lines of constant temperature,

Figure 8.8 Lines of constant velocity potential � for the finite
element solution of Example 8.2.
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Table 8.2 Velocity Components at Selected Nodes in Example 8.2

Node u v

4 40.423 0.480
19 41.019 0.527
20 42.309 0.594
21 43.339 0.516
5 43.676 0.002

or isotherms). A direct comparison between this finite element solution and that described
for the stream function approach is not possible, since the element meshes are different.
However, we can assess accuracy of the velocity potential solution by examination of the
results in terms of the boundary conditions. For example, along the upper horizontal
boundary, the y-velocity component must be zero, from which it follows that lines of con-
stant � must be perpendicular to the boundary. Visually, this condition appears to be rea-
sonably well-satisfied in Figure 8.8. An examination of the actual data presents a slightly
different picture. Table 8.2 lists the computed velocity components at each node along the
upper surface. Clearly, the values of the y-velocity component v are not zero, so addi-
tional solutions using refined element meshes are in order.

Observing that the stream function and velocity potential methods are
amenable to solving the same types of problems, the question arises as to which
should be selected in a given instance. In each approach, the stiffness matrix is
the same, whereas the nodal forces differ in formulation but require the same
basic information. Hence, there is no significant difference in the two proce-
dures. However, if one uses the stream function approach, the flow is readily
visualized, since velocity is tangent to streamlines. It can also be shown [2] that
the difference in value of two adjacent streamlines is equal to the flow rate (per
unit depth) between those streamlines.

8.4.1 Flow around Multiple Bodies

For an ideal (inviscid, incompressible) flow around multiple bodies, the stream
function approach is rather straightforward to apply, especially in finite element
analysis, if the appropriate boundary conditions can be determined. To begin
the illustration, let us reconsider flow around a cylinder as in Example 8.1. Ob-
serving that Equation 8.11 governing the stream function is linear, the principle
of superposition is applicable; that is, the sum of any two solutions to the equa-
tion is also a solution. In particular, we consider the stream function to be given
by

�(x , y) = � 1(x , y) + a� 2(x , y) (8.42)

where a is a constant to be determined. The boundary conditions at the horizon-
tal surfaces (S1) are satisfied by � 1, while the boundary conditions on the surface
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of the cylinder (S2) are satisfied by � 2. The constant a must be determined so that
the combination of the two stream functions satisfies a known condition at some
point in the flow. Hence, the conditions on the two solutions (stream functions)
are

∂2� 1

∂x 2
+ ∂2� 1

∂y2
= 0 (everywhere in the domain)

(8.43)
∂2� 2

∂x 2
+ ∂2� 2

∂y2
= 0 (everywhere in the domain)

� 1 = U yb on S1 (8.44)

� 1 = 0 on S2 (8.45)

� 2 = 0 on S1 (8.46)

� 2 = 1 on S2 (8.47)

Note that the value of � 2 is (temporarily) set equal to unity on the surface of the
cylinder. The procedure is then to obtain two finite element solutions, one for
each stream function, and associated boundary conditions. Given the two solu-
tions, the constant a can be determined and the complete solution known. The
constant a, for example, is found by computing the velocity at a far upstream
position (where the velocity is known) and calculating a to meet the known
condition.

In the case of uniform flow past a cylinder, the solutions give the trivial result
that a = arbitrary constant, since we have only one surface in the flow, hence one
arbitrary constant. The situation is different if we have multiple bodies, however,
as discussed next.

Consider Figure 8.9, depicting two arbitrarily shaped bodies located in an
ideal fluid flow, which has a uniform velocity profile at a distance upstream
from the two obstacles. In this case, we consider three solutions to the governing

Figure 8.9 Two arbitrary bodies in a uniform stream. The
boundary conditions must be specified on S1, S2, and S3 within a
constant.

U

S3

S1

S2
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equation, so that the stream function can be represented by [3]

�(x , y) = � 1(x , y) + a� 2(x , y) + b� 3(x , y) (8.48)

where a and b are constants to be determined. Again, we know that each inde-
pendent solution in Equation 8.48 must satisfy Equation 8.11 and, recalling that
the stream function must take on constant value on an impenetrable surface, we
can express the boundary conditions on each solution as

� 1 = U yb on S1

� 1 = 0 on S2 and S3

� 2 = 0 on S1 and S3

� 2 = 1 on S2 (8.49)

� 3 = 0 on S1 and S2

� 3 = 1 on S3

To obtain a solution for the flow problem depicted in Figure 8.9, we must

1. Obtain a solution for � 1 satisfying the governing equation and the boundary
conditions stated for � 1.

2. Obtain a solution for � 2 satisfying the governing equation and the boundary
conditions stated for � 2.

3. Obtain a solution for � 3 satisfying the governing equation and the boundary
conditions stated for � 3.

4. Combine the results at (in this case) two points, where the velocity or
stream function is known in value, to determine the constants a and b in
Equation 8.48. For this example, any two points on section a-b are appro-
priate, as we know the velocity is uniform in that section.

As a practical note, this procedure is not generally included in finite element
software packages. One must, in fact, obtain the three solutions and hand calcu-
late the constants a and b, then adjust the boundary conditions (the constant val-
ues of the stream function) for entry into the next run of the software. In this case,
not only the computed results (stream function values, velocities) but the values
of the computed constants a and b are considerations for convergence of the
finite element solutions. The procedure described may seem tedious, and it is to
a certain extent, but the alternatives (other than finite element analysis) are much
more cumbersome.

8.5 INCOMPRESSIBLE VISCOUS FLOW
The idealized inviscid flows analyzed via the stream function or velocity poten-
tial function can reveal valuable information in many cases. Since no fluid is
truly inviscid, the accuracy of these analyses decreases with increasing viscosity
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of a real fluid. To illustrate viscosity effects (and the arising complications) we
now examine application of the finite element method to a restricted class of
incompressible viscous flows.

The assumptions and restrictions applicable to the following developments
are

1. The flow can be considered two dimensional.
2. No heat transfer is involved.
3. Density and viscosity are constant.
4. The flow is steady with respect to time.

Under these conditions, the famed Navier-Stokes equations [4, 5], representing
conservation of momentum, can be reduced to [6]

� u
∂u

∂x
+ � v

∂u

∂y
− �

∂2u

∂x 2
− �

∂2u

∂y2
+ ∂p

∂x
= FBx

� u
∂v

∂x
+ � v

∂v

∂y
− �

∂2v

∂x 2
− �

∂2v

∂y2
+ ∂p

∂y
= FBy

(8.50)

where
u and v = x-, and y-velocity components, respectively

� = density of the fluid
p = pressure
� = absolute fluid viscosity

FBx , FBy = body force per unit volume in the x and y directions, respectively

Note carefully that Equation 8.50 is nonlinear, owing to the presence of the con-
vective inertia terms of the form � u(∂u/∂ x ). Rather than treat the nonlinear
terms directly at this point, we first consider the following special case.

8.5.1 Stokes Flow

For fluid flow in which the velocities are very small, the inertia terms (i.e., the
preceding nonlinear terms) can be shown to be negligible in comparison to the
viscous effects. Such flow, known as Stokes flow (or creeping flow), is commonly
encountered in the processing of high-viscosity fluids, such as molten polymers.
Neglecting the inertia terms, the momentum equations become

−�
∂2u

∂x 2
− �

∂2u

∂y2
+ ∂p

∂x
= FBx

−�
∂2v

∂x 2
− �

∂2v

∂y2
+ ∂p

∂y
= FBy

(8.51)
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Equation 8.51 and the continuity condition, Equation 8.8, form a system of
three equations in the three unknowns u(x, y), v(x, y), and p(x, y). Hence, a finite
element formulation includes three nodal variables, and these are discretized as

u(x , y) =
M∑

i=1

Ni (x , y)ui = [N ]T {u}

v(x , y) =
M∑

i=1

Ni (x , y)vi = [N ]T {v}

p(x , y) =
M∑

i=1

Ni (x , y) pi = [N ]T {p}

(8.52)

Application of Galerkin’s method to a two-dimensional finite element (assumed
to have uniform unit thickness in the z direction) yields the residual equations

∫

A(e)

Ni

(
−�

∂2u

∂x 2
− �

∂2u

∂y2
+ ∂p

∂x
− FBx

)
d A = 0

∫

A(e)

Ni

(
−�

∂2v

∂x 2
− �

∂2v

∂y2
+ ∂p

∂y
− FBy

)
d A = 0

∫

A(e)

Ni

(
∂u

∂x
+ ∂v

∂y

)
d A = 0

i = 1, M (8.53)

As the procedures required to obtain the various element matrices are covered in
detail in previous developments, we do not examine Equation 8.53 in its entirety.
Instead, only a few representative terms are developed and the remaining results
stated by inference.

First, consider the viscous terms containing second spatial derivatives of
velocity components such as

−
∫

A(e)

�Ni

(
∂2u

∂x 2
+ ∂2u

∂y2

)
d A i = 1, M (8.54)

which can be expressed as

−
∫

A(e)

�

[
∂

∂x

(
Ni

∂u

∂x

)
+ ∂

∂y

(
Ni

∂u

∂y

)]
d A +

∫

A(e)

�

(
∂ Ni

∂x

∂u

∂x
+ ∂ Ni

∂y

∂u

∂y

)
d A

i = 1, M (8.55)
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Application of the Green-Gauss theorem to the first integral in expression (8.55)
yields

−
∫

A(e)

�

[
∂

∂x

(
Ni

∂u

∂x

)
+ ∂

∂y

(
Ni

∂u

∂y

)]
d A = −

∫

S(e)

�Ni

(
∂u

∂x
nx + ∂u

∂y
n y

)
dS

i = 1, M (8.56)

where S(e) is the element boundary and (nx, ny) are the components of the unit
outward normal vector to the boundary. Hence, the integral in expression (8.54)
becomes

−
∫

A(e)

�Ni

(
∂2u

∂x 2
+ ∂2u

∂y2

)
d A = −

∫

S(e)

�Ni

(
∂u

∂x
nx + ∂u

∂y
n y

)
dS

+
∫

A(e)

�

(
∂ Ni

∂x

∂u

∂x
+ ∂ Ni

∂y

∂u

∂y

)
d A (8.57)

Note that the first term on the right-hand side of Equation 8.57 represents a nodal
boundary force term for the element. Such terms arise from shearing stress. As
we observed many times, these terms cancel on interelement boundaries and
must be considered only on the global boundaries of a finite element model.
Hence, these terms are considered only in the assembly step. The second integral
in Equation 8.57 is a portion of the “stiffness” matrix for the fluid problem, and
as this term is related to the x velocity and the viscosity, we denote this portion
of the matrix [ku�]. Recalling that Equation 8.57 represents M equations, the
integral is converted to matrix form using the first of Equation 8.52 to obtain

∫

A(e)

�

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
d A {u} = [ku�]{u} (8.58)

Using the same approach with the second of Equation 8.53, the results are
similar. We obtain the analogous result

−
∫

A(e)

�Ni

(
∂2v

∂x 2
+ ∂2v

∂y2

)
d A = −

∫

S(e)

�Ni

(
∂v

∂x
nx + ∂v

∂y
n y

)
dS

+
∫

A(e)

�

(
∂ Ni

∂x

∂v

∂x
+ ∂ Ni

∂y

∂v

∂y

)
d A (8.59)

Proceeding as before, we can write the area integrals on the right as
∫

A(e)

�

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
d A {v} = [kv�]{v} (8.60)
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Considering next the pressure terms and converting to matrix notation, the
first of Equation 8.53 leads to

∫

A(e)

[N ]T ∂ [N ]

∂x
d A {p} = [kpx ]{p} (8.61)

and similarly the second momentum equation contains

∫

A(e)

[N ]T ∂ [N ]

∂y
d A {p} = [kpy]{p} (8.62)

The nodal force components corresponding to the body forces are readily
shown to be given by

{ f Bx} =
∫

A(e)

[N ]T FBx d A

{ f By} =
∫

A(e)

[N ]T FBy d A
(8.63)

Combining the notation developed in Equations 8.58–8.63, the momentum equa-
tions for the finite element are

[ku�]{u} + [kpx ]{p} = { f Bx} + { fx� }
[kv�]{v} + [kpy]{p} = { f By} + { f y� }

(8.64)

where, for completeness, the nodal forces corresponding to the integrals over
element boundaries S(e) in Equations 8.57 and 8.59 have been included.

Finally, the continuity equation is expressed in terms of the nodal velocities
in matrix form as

∫

A(e)

[N ]T ∂ [N ]

∂x
d A{u} +

∫

A(e)

[N ]T ∂ [N ]

∂y
d A{v} = [ku]{u} + [kv]{v} = 0 (8.65)

where

[ku] = [kpx ] =
∫

A(e)

[N ]T ∂ [N ]

∂x
d A

[kv] = [kpy] =
∫

A(e)

[N ]T ∂ [N ]

∂y
d A

(8.66)

As formulated here, Equations 8.64 and 8.65 are a system of 3M algebraic equa-
tions governing the 3M unknown nodal values {u}, {v}, {p} and can be expressed
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formally as the system



[ku�] [0] [kpx ]
[0] [kv�] [kpy]
[ku] [kv] [0]







{u}
{v}
{p}


 =




{ fBx}
{ fBy}
{0}


 ⇒ [

k(e)] {
	(e)} = {

f (e)} (8.67)

where [k (e)] represents the complete element stiffness matrix. Note that the ele-
ment stiffness matrix is composed of nine M × M submatrices, and although the
individual submatrices are symmetric, the stiffness matrix is not symmetric.

The development leading to Equation 8.67 is based on evaluation of both
the velocity components and pressure at the same number of nodes. This is
not necessarily the case for a fluid element. Computational research [7] shows
that better accuracy is obtained if the velocity components are evaluated at
a larger number of nodes than pressures. In other words, the velocity compo-
nents are discretized using higher-order interpolation functions than the pres-
sure variable. For example, a six-node quadratic triangular element could be
used for velocities, while the pressure variable is interpolated only at the cor-
ner nodes, using linear interpolation functions. In such a case, Equation 8.66
does not hold.

The arrangement of the equations and associated definition of the element
stiffness matrix in Equation 8.67 is based on ordering the nodal variables as

{	}T = [u1 u2 u3 v1 v2 v3 p1 p2 p3]

(using a three-node element, for example). Such ordering is well-suited to illus-
trate development of the element equations. However, if the global equations for
a multielement model are assembled and the global nodal variables are similarly
ordered, that is,

{�}T = [U1 U2 · · · V1 V2 · · · P1 P2 · · · PN ]

the computational requirements are prohibitively inefficient, because the global
stiffness has a large bandwidth. On the other hand, if the nodal variables are
ordered as

{�}T = [U1 V1 P1 U2 V2 P2 · · · UN VN PN ]

computational efficiency is greatly improved, as the matrix bandwidth is signifi-
cantly reduced. For a more detailed discussion of banded matrices and associated
computational techniques, see [8].

Consider the flow between the plates of Figure 8.4 to be a viscous, creeping flow and
determine the boundary conditions for a finite element model. Assume that the flow is
fully developed at sections a-b and c-d and the constant volume flow rate per unit thick-
ness is Q.

EXAMPLE 8.3
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Figure 8.10
(a) Velocity of fully developed flow. (b) Boundary conditions.
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■ Solution
For fully developed flow, the velocity profiles at a-b and c-d are parabolic, as shown in
Figure 8.10a. Denoting the maximum velocities at these sections as Uab and Ucd , we have

u(xa , y) = Uab

(
1 − y2

y2
b

)

v(xa , y) = 0

u(xc , y) = Ucd

(
1 − y2

y2
b

)

v(xc , y) = 0

The volume flow rate is obtained by integrating the velocity profiles as

Q = 2

yb∫

0

u(xa , y) dy = 2

yd∫

0

u(xc , y) dy

Substituting the velocity expressions and integrating yields

Uab = 3Q

4yb
Ucd = 3Q

4yd

and thus the velocity components at all element nodes on a-b and c-d are known.
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Next consider the contact between fluid and plate along b-c. As in cases of inviscid
flow discussed earlier, we invoke the condition of impenetrability to observe that veloc-
ity components normal to this boundary are zero. In addition, since the flow is viscous,
we invoke the no-slip condition, which requires that tangential velocity components also
be zero at the fluid-solid interface. Hence, for all element nodes on b-c, both velocity
components ui and vi are zero.

The final required boundary conditions are obtained by observing the condition of
symmetry along a-d, where v = v(x , 0) = 0. The boundary conditions are summarized
next in reference to Figure 8.10b:

UI = Uab

(
1 − y2

I

y2
b

)
VI = 0 on S1 (a-b)

UI = Ucd

(
1 − y2

I

y2
d

)
VI = 0 on S2 (b-c)

UI = VI = 0 on S3 (c-d)

VI = 0 on S4 (a-d)

where I is an element node on one of the global boundary segments.
The system equations corresponding to each of the specified nodal velocities just

summarized become constraint equations and are eliminated via the usual procedures
prior to solving for the unknown nodal variables. Associated with each specified velocity
is an unknown “reaction” force represented by the shear stress-related forces in Equa-
tions 8.56, and these forces can be computed using the constraint equations after the
global solution is obtained. This is the case for all equations associated with element
nodes on segments S1, S2, and S3. On S4, the situation is a little different and additional
comment is warranted. As the velocity components in the x direction along S4 are not
specified, a question arises as to the disposition of the shear-related forces in the x direc-
tion. These forces are given by

fx � =
∫

S (e)

� Ni

(
∂u

∂ x
nx + ∂u

∂y
n y

)
dS

as embodied in Equation 8.57. On the boundary in question, the unit outward normal vec-
tor is defined by (nx , n y ) = (0, −1), so the first term in this integral is zero. In view of the
symmetry conditions about a-c, we also have ∂u/∂ y = 0, so the shear forces in the x
direction along S4 are also zero. With this observation and the boundary conditions, the
global matrix equations become a tractable system of algebraic equations that can be
solved for the unknown values of the nodal variables.

8.5.2 Viscous Flow with Inertia

Having discussed slow flows, in which the inertia terms were negligible, we now
consider the more general, nonlinear case. All the developments of the previous
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section on Stokes flow are applicable here; we now add the nonlinear terms aris-
ing from the convective inertia terms. From the first of Equation 8.50, we add a
term of the form

∫

A(e)

�

(
u

∂u

∂x
+ v

∂u

∂y

)
d A ⇒ �

∫

A(e)

(
[N ]{u}∂ [N ]

∂x
{u} + [N ]{v}∂ [N ]

∂y
{u}

)
d A

(8.68)

and from the second equation of 8.50,

∫

A(e)

�

(
u

∂v

∂x
+ v

∂v

∂y

)
d A ⇒ �

∫

A(e)

(
[N ]{u}∂ [N ]

∂x
{v} + [N ]{v}∂ [N ]

∂y
{v}

)
d A

(8.69)

As expressed, Equation 8.68 is not conformable to matrix multiplication, as in
being able to write the expression in the form [k]{u}, and this is a direct result of
the nonlinearity of the equations. While a complete treatment of the nonlinear
equations governing viscous fluid flow is well beyond the scope of this text, we
discuss an iterative approximation for the problem. 

Let us assume that for a particular two-dimensional geometry, we have
solved the Stokes (creeping) flow problem and have all the nodal velocities of the
Stokes flow finite element model available. For each element in the finite ele-
ment model, we denote the Stokes flow solution for the average velocity compo-
nents (evaluated at the centroid of each element) as (ū , v̄); then, we express the
approximation for the inertia terms (as exemplified by Equation 8.69) as

∫

A(e)

�

(
u

∂u

∂x
+ v

∂u

∂y

)
d A =

∫

A(e)

�

(
ū

∂ [N ]

∂x
+ v̄

∂ [N ]

∂y

)
d A{u} = [kuv]{u}

(8.70)

Similarly, we find the y-momentum equation contribution to be 

∫

A(e)

�

(
u

∂v

∂x
+ v

∂v

∂y

)
d A =

∫

A(e)

�

(
ū

∂ [N ]

∂x
+ v̄

∂ [N ]

∂y

)
d A{v} = [kvu]{v}

(8.71)

Equations 8.70 and 8.71 refer to an individual element. The assembly procedures
are the same as discussed before; now we add additional terms to the stiffness
matrix as a result of inertia. These terms are readily identifiable in Equations 8.70
and 8.71. In the viscous inertia flow, the solution requires iteration to achieve sat-
isfactory results. The use of the Stokes flow velocities and pressures represent
only the first iteration (approximation). At each iteration, the newly computed
velocity components are used for the next iteration.
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For both creeping flow and flow with inertia, the governing equations can also
be developed in terms of a stream function [3]. However, the resulting (single)
governing equation in each case is found to be fourth order. Consequently, ele-
ments exhibiting continuity greater than C0 are required.

8.6 SUMMARY
Application of the finite element method to fluid flow problems is, in one sense,
quite straightforward and, in another sense, very complex. In the idealized cases
of inviscid flow, the finite element problem is easily formulated in terms of a sin-
gle variable. Such problems are neither routine nor realistic, as no fluid is truly
without viscosity. As shown, introduction of the very real property of fluid vis-
cosity and the historically known, nonlinear governing equations of fluid flow
make the finite element method for fluid mechanics analysis difficult and cum-
bersome, to say the least.

The literature of fluid mechanics is rife with research results on the applica-
tion of finite element methods to fluid mechanics problems. The literature is so
voluminous, in fact, that we do not cite references, but the reader will find that
many finite element software packages include fluid elements of various types.
These include “pipe elements,” “acoustic fluid elements,” and “combination
elements.” The reader is warned to be aware of the restrictions and assumptions
underlying the “various sorts” of fluid elements available in a given software
package and use care in application.
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PROBLEMS
8.1 Per the standard definition of viscosity described in Section 8.1, how would you

describe the property of viscosity, physically, in terms of an everyday example
(do not use water and molasses—I already used that example)?

8.2 How would you design an experiment to determine the relative viscosity
between two fluids? What fluids might you use in this test?

8.3 Look into a fluid mechanics text or reference book. What is the definition of a
Newtonian fluid?

8.4 Equation 8.5 is a rather complicated partial differential equation, what does
it really mean? Explain how that equation takes the very simple form of
Equation 8.6.

8.5 If you visually examine a fluid flow, could you determine whether it was
rotational or irrotational? Why? Why not?

8.6 Why do we use the Green-Gauss theorem in going from Equation 8.16 to
Equation 8.17? Refer to Chapter 5.

8.7 Recalling that Equation 8.21 is based on unit depth in a two-dimensional flow,
what do the nodal forces represent physically?

8.8 Given the three-node triangular element shown in Figure P8.8, compute the
nodal forces corresponding to the flow conditions shown, assuming unit depth
into the plane.

Figure P8.8

8.9 Per Equation 8.32, how do the fluid velocity components vary within
a. A linear, three-node triangular element.
b. A four-node rectangular element.
c. A six-node triangular element.
d. An eight-node rectangular element.
e. Given questions a–d, how would you decide which element to use in a finite

element analysis?
8.10 We show, in this chapter, that both stream function and velocity potential

methods are governed by Laplace’s equation. Many other physical problems
are governed by this equation. Consult mathematical references and find
other applications of Laplace’s equation. While you are at it (and learning

1 (0, 0)
2

3
(0, 1)

(1, 0)U
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the history of our profession is part of becoming an engineer), find out
about Laplace.

8.11 Consider the uniform (ideal) flow shown in Figure P8.11. Use the four
triangular elements shown to compute the stream function and derive the
velocity components. Note that, in this case, if you do not obtain a uniform
flow field, you have made errors in either your formulation or your calculations.
The horizontal boundaries are to be taken as fixed surfaces. The coordinates of
node 3 are (1.5, 1).

Figure P8.11

8.12 Now repeat Problem 8.11 with the inlet flow shown in Figure P8.12. Does the
basic finite element formulation change? Do you have to redefine geometry or
elements? Your answer to this question will give you insight as to how to use
finite element software. Once the geometry and elements have been defined,
various problems can be solved by simply changing boundary conditions or
forcing functions.

Figure P8.12

8.13 Consider the flow situation depicted in Figure P8.13. Upstream, the flow is
uniform. At a known point between the two solid walls, a source of constant
strength Q (volume per unit time) exists (via the action of a pump for example).
How would the source be accounted for in a finite element formulation?
(Examine the heat transfer analogy.)

1
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Figure P8.13

8.14 Reconsider Example 8.1 and assume the cylinder is a heating rod held at constant
surface temperature T0. The uniform inlet stream is at known temperature
Ti < T0 . The horizontal boundaries are perfectly insulated and steady-state
conditions are assumed. In the context of finite element analysis, can the flow
problem and the heat transfer problem be solved independently?

U

Q
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C H A P T E R 9
Applications
in Solid Mechanics

9.1 INTRODUCTION
The bar and beam elements discussed in Chapters 2–4 are line elements, as only
a single coordinate axis is required to define the element reference frame, hence,
the stiffness matrices. As shown, these elements can be successfully used to
model truss and frame structures in two and three dimensions. For application
of the finite element method to more general solid structures, the line elements
are of little use, however. Instead, elements are needed that can be used to
model complex geometries subjected to various types of loading and constraint
conditions.

In this chapter, we develop the finite element equations for both two- and
three-dimensional elements for use in stress analysis of linearly elastic solids.
The principle of minimum potential energy is used for the developments, as
that principle is somewhat easier to apply to solid mechanics problems than
Galerkin’s method. It must be emphasized, however, that Galerkin’s method is
the more general procedure and applicable to a wider range of problems.

The constant strain triangle for plane stress is considered first, as the CST is
the simplest element to develop mathematically. The procedure is shown to be
common to other elements as well; a rectangular element formulated for plane
strain is used to illustrate this commonality. Plane quadrilateral, axisymmetric,
and general three-dimensional elements are also examined. An approach for
application of the finite element method to solving torsion problems of noncir-
cular sections is also presented.
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9.2 PLANE STRESS
A commonly occurring situation in solid mechanics, known as plane stress, is
defined by the following assumptions in conjunction with Figure 9.1:

1. The body is small in one coordinate direction (the z direction by
convention) in comparison to the other dimensions; the dimension in the
z direction (hereafter, the thickness) is either uniform or symmetric about
the xy plane; thickness t, if in general, is less than one-tenth of the smallest
dimension in the xy plane, would qualify for “small.”

2. The body is subjected to loading only in the xy plane.
3. The material of the body is linearly elastic, isotropic, and homogeneous.

The last assumption is not required for plane stress but is utilized in this text as
we consider only elastic deformations.

Given a situation that satisfies the plane stress assumptions, the only nonzero
stress components are �x , �y , and �xy . Note that the nominal stresses perpendic-
ular to the xy plane (�z , �xz , �yz) are zero as a result of the plane stress assump-
tions. Therefore, the equilibrium equations (Appendix B) for plane stress are

∂�x

∂x
+ ∂�xy

∂x
= 0

∂�y

∂y
+ ∂�xy

∂y
= 0

(9.1)

where we implicitly assume that �xy = �yx . Utilizing the elastic stress-strain
relations from Appendix B, Equation B.12 with �z = �xz = �yz = 0, the nonzero
stress components can be expressed as (Problem 9.1)

�x = E

1 − �2
(εx + �εy)

�y = E

1 − �2
(εy + �εx )

�xy = E

2(1 + �)
�xy = G�xy

(9.2)

where E is the modulus of elasticity and � is Poisson’s ratio for the material.
In the shear stress-strain relation, the shear modulus G = E/2(1 + �) has been
introduced.

The stress-strain relations given by Equation 9.2 can be conveniently written
in matrix form:




�x

�y

�xy


 = E

1 − �2




1 � 0
� 1 0

0 0
1 − �

2






εx

εy

�xy


 (9.3)
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Figure 9.1 An illustration of plane stress
conditions.

f (x, y)

y

z

t

y

x

F1

F2

or

{�} = [D]{ε} (9.4)

where

{�} =



�x

�y

�xy


 (9.5)

is the column matrix of stress components,

[D] = E

1 − �2




1 � 0
� 1 0

0 0
1 − �

2


 (9.6)

is the elastic material property matrix for plane stress, and

{ε} =



εx

εy

�xy


 (9.7)

is the column matrix of strain components.
For a state of plane stress, the strain energy per unit volume, Equation 2.43,

becomes

ue = 1

2
(�x εx + �yεy + �xy�xy) (9.8)

or, using the matrix notation,

ue = 1

2
{ε}T {�} = 1

2
{ε}T [D]{ε} (9.9)

Use of {ε}T allows the matrix operation to reproduce the quadratic form of the
strain energy. Note that a quadratic relation in any variable z can be expressed
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Figure 9.2
(a) Nodal displacement notation for a plane
stress element. (b) Nodal forces.

f1y

f1x

f3y

f3x

f2y

f2x

v1

u1

v2

u2

v3

u3

2

3

1

(a) (b)

as {z}T [A]{z}, where [A] is a coefficient matrix. This is the subject of an end-of-
chapter problem.

The total strain energy of a body subjected to plane stress is then

Ue = 1

2

∫∫∫
V

{ε}T [D]{ε} dV (9.10)

where V is total volume of the body and dV = t dx dy . The form of Equation 9.10
will in fact be found to apply in general and is not restricted to the case of plane
stress. In other situations, the strain components and material property matrix
may be defined differently, but the form of the strain energy expression does not
change. We use this result extensively in applying the principle of minimum
potential energy in following developments.

9.2.1 Finite Element Formulation: Constant Strain Triangle

Figure 9.2a depicts a three-node triangular element assumed to represent a sub-
domain of a body subjected to plane stress. Element nodes are numbered as
shown, and nodal displacements in the x-coordinate direction are u1, u2, and u3,
while displacements in the y direction are v1, v2, and v3. (For plane stress, dis-
placement in the z direction is neglected). As noted in the introduction, the dis-
placement field in structural problems is a vector field and must be discretized
accordingly. For the triangular element in plane stress, we write the discretized
displacement field as

u(x , y) = N1(x , y)u1 + N2(x , y)u2 + N3(x , y)u3 = [N ]{u}
v(x , y) = N1(x , y)v1 + N2(x , y)v2 + N3(x , y)v3 = [N ]{v} (9.11)

where N1, N2, and N3 are the interpolation functions as defined in Equation 6.37.
Using the discretized representation of the displacement field, the element strain
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components are then

εx = ∂u

∂x
= ∂ N1

∂x
u1 + ∂ N2

∂x
u2 + ∂ N3

∂x
u3

εy = ∂v

∂y
= ∂ N1

∂y
v1 + ∂ N2

∂y
v2 + ∂ N3

∂y
v3 (9.12)

�xy = ∂u

∂y
+ ∂v

∂x
= ∂ N1

∂y
u1 + ∂ N2

∂y
u2 + ∂ N3

∂y
u3 + ∂ N1

∂x
v1 + ∂ N2

∂x
v2 + ∂ N3

∂x
v3

Defining the element displacement column matrix (vector) as

{
�(e)} =




u1

u2

u3

v1

v2

v3




(9.13)

the element strain matrix can be expressed as

{ε} =




∂N1

∂x

∂N2

∂x

∂N3

∂x
0 0 0

0 0 0
∂N1

∂y

∂N2

∂y

∂N3

∂y
∂N1

∂y

∂N2

∂y

∂N3

∂y

∂N1

∂x

∂N2

∂x

∂N3

∂x







u1

u2

u3

v1

v2

v3




= [B]
{
�(e)} (9.14)

where [B] is the 3 × 6 matrix of partial derivatives of the interpolation functions
as indicated, also known as the strain-displacement matrix. Referring to Equa-
tion 6.37, we observe that the partial derivatives appearing in Equation 9.14 are
constants, since the interpolation functions are linear in the spatial variables.
Hence, the strain components are constant throughout the volume of the element.
Consequently, the three-node, triangular element for plane stress is known as a
constant strain triangle.

By direct analogy with Equation 9.10, the elastic strain energy of the ele-
ment is

U (e)
e = 1

2

∫∫∫

V (e)

{ε}T [D]{ε} dV (e) = 1

2

∫∫∫

V (e)

{
�(e)
}

T [B]T [D][B]
{
�(e)
}

dV (e)

(9.15)

As shall be seen in subsequent examples, Equation 9.15 is a generally applicable
relation for the elastic strain energy of structural elements. For the constant strain
triangle, we already observed that the strains are constant over the element vol-
ume. Assuming that the elastic properties similarly do not vary, Equation 9.15
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becomes simply

U (e)
e = 1

2

{
�(e)
}T

[B]T [D][B]
{
�(e)
} ∫ ∫∫

V (e)

dV (e)

= 1

2

{
�(e)
}T (

V (e)[B]T [D][B]
){

�(e)
}

(9.16)

where V (e) is the total volume of the element.
Considering the element forces to be as in Figure 9.2b (for this element for-

mulation, we require that forces be applied only at nodes; distributed loads are
considered subsequently), the work done by the applied forces can be expressed
as

W = f1x u1 + f2x u2 + f3x u3 + f1yv1 + f2yv2 + f3yv3 (9.17)

and we note that the subscript notation becomes unwieldy rather quickly in the
case of 2-D stress analysis. To simplify the notation, we use the force notation

{ f } =




f1x

f2x

f3x

f1y

f2y

f3y




(9.18)

so that we can express the work of the external forces (using Equation 9.13) as

W = {�}T { f } (9.19)

Per Equation 2.53, the total potential energy for an element is then

� = Ue − W = V e

2
{�}T [B]T [D][B]{�} − {�}T { f } (9.20)

If the element is a portion of a larger structure that is in equilibrium, then the
element must be in equilibrium. Consequently, the total potential energy of the
element must be minimum (we consider only stable equilibrium), and for this
minimum, we must have mathematically

∂�

∂�i
= 0 i = 1, 6 (9.21)

If the indicated mathematical operations of Equation 9.21 are carried out on
Equation 9.20, the result is the matrix relation

V e[B]T [D][B]{�} = { f } (9.22)

and this matrix equation is of the form

[k]{�} = { f } (9.23)
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where [k] is the element stiffness matrix defined by

[k] = V e[B]T [D][B] (9.24)

and we must keep in mind that we are dealing with only a constant strain trian-
gle at this point.

This theoretical development may not be obvious to the reader. To make the
process more clear, especially the application of Equation 9.21, we examine the
element stiffness matrix in more detail. First, we represent Equation 9.20 as

� = 1

2
{�}T [k]{�} − {�}T { f } (9.25)

and expand the relation formally to obtain the quadratic function

� = 1

2

(
k11�2

1 + 2k12�1�2 + 2k13�1�3 + 2k14�1�4 + · · · + 2k56�5�6 + k66�2
6

)
− f1x �1 − f2x �2 − f3x �3 − f1y�4 − f2y�5 − f3y�6 (9.26)

The quadratic function representation of total potential energy is characteristic of
linearly elastic systems. (Recall the energy expressions for the strain energy of
spring and bar elements of Chapter 2.)

The partial derivatives of Equation 9.21 are then in the form

∂�

∂�1
= k11�1 + k12�2 + k13�3 + k14�4 + k15�5 + k16�6 − f1x = 0

∂�

∂�2
= k21�1 + k22�2 + k23�3 + k24�4 + k25�5 + k26�6 − f2x = 0

(9.27)

for example. Equations 9.27 are the scalar equations representing equilibrium
of nodes 1 and 2 in the x-coordinate direction. The remaining four equations
similarly represent nodal equilibrium conditions in the respective coordinate
directions.

As we are dealing with an elastic element, the stiffness matrix should be
symmetric. Examining Equation 9.27, we should have k12 = k21, for example.
Whether this is the case may not be obvious in consideration of Equation 9.24,
since [D] is a symmetric matrix but [B] is not symmetric. A fundamental prop-
erty of matrix multiplication (Appendix A) is as follows: If [G ] is a real, sym-
metric N × N matrix and [F ] is a real N × M matrix, the matrix triple product
[F ]T [G ][F ] is a real, symmetric M × M matrix. Thus, the stiffness matrix as
given by Equation 9.24 is a symmetric 6 × 6 matrix, since [D] is 3 × 3 and sym-
metric and [B] is a 6 × 3 real matrix.

9.2.2 Stiffness Matrix Evaluation

The stiffness matrix for the constant strain triangle element given by
Equation 9.24 is now evaluated in detail. The interpolation functions per
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Equation 6.37 are

N1(x , y) = 1

2 A
[(x2 y3 − x3 y2) + (y2 − y3)x + (x3 − x2)y]

= 1

2 A
(�1 + �1x + �1 y)

N2(x , y) = 1

2 A
[(x3 y1 − x1 y3) + (y3 − y1)x + (x1 − x3)y]

= 1

2 A
(�2 + �2x + �2 y) (9.28)

N3(x , y) = 1

2 A
[(x1 y2 − x2 y1) + (y1 − y2)x + (x2 − x1)y]

= 1

2 A
(�3 + �2x + �3 y)

so the required partial derivatives are

∂ N1

∂x
= 1

2 A
(y2 − y3) = �1

2 A

∂ N2

∂x
= 1

2 A
(y3 − y1) = �2

2 A

∂ N3

∂x
= 1

2 A
(y1 − y2) = �3

2 A
(9.29)

∂ N1

∂y
= 1

2 A
(x3 − x2) = �1

2 A

∂ N2

∂y
= 1

2 A
(x1 − x3) = �2

2 A

∂ N3

∂y
= 1

2 A
(x2 − x1) = �3

2 A

The [B] (strain-displacement) matrix is then

[B] = 1

2A


 y2 − y3 y3 − y1 y1 − y2 0 0 0

0 0 0 x3 − x2 x1 − x3 x2 − x1

x3 − x2 x1 − x3 x2 − x1 y2 − y3 y3 − y1 y1 − y2




= 1

2A


�1 �2 �3 0 0 0

0 0 0 �1 �2 �3

�1 �2 �3 �1 �2 �3


 (9.30)

Noting that, for constant thickness, element volume is tA, substitution into Equa-
tion 9.24 results in

[k] = Et

4A(1 − �2)




�1 0 �1

�2 0 �2

�3 0 �3

0 �1 �1

0 �2 �2

0 �3 �3







1 � 0
� 1 0

0 0
1 − �

2




�1 �2 �3 0 0 0

0 0 0 �1 �2 �3

�1 �2 �3 �1 �2 �3




(9.31)
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Performing the matrix multiplications of Equation 9.31 gives the element stiff-
ness matrix as

[k] = Et

4A(1 − �2)




�2
1 + C� 2

1 �1�2 + C�1�2 �1�3 + C�1�3
1 + �

2
�1�1 ��1�2 + C�2�1 ��1�3 + C�3�1

�2
2 + C� 2

2 �2�3 + C�2�3 ��2�1 + C�1�2
1 + �

2
�2�2 ��2�3 + C�3�2

�2
3 + C� 2

3 ��3�1 + C�1�3 ��3�2 + C�2�3
1 + �

2
�3�3

SY M � 2
1 + C�2

1 �1�2 + C�1�2 �1�3 + C�1�3

� 2
2 + C�2

2 �2�3 + C�2�3

� 2
3 + C�2

3




(9.32)

where C = (1 − �)/2. Equation 9.32 is the explicit representation of the stiff-
ness matrix for a constant strain triangular element in plane stress, presented for
illustrative purposes. In finite element software, such explicit representation is
not often used; instead, the matrix triple product of Equation 9.24 is applied
directly to obtain the stiffness matrix.

9.2.3 Distributed Loads and Body Force

Frequently, the boundary conditions for structural problems involve distributed
loading on some portion of the geometric boundary. Such loadings may arise
from applied pressure (normal stress) or shearing loads. In plane stress, these dis-
tributed loads act on element edges that lie on the global boundary. As a general
example, Figure 9.3a depicts a CST element having normal and tangential loads
pn and pt acting along the edge defined by element nodes 2 and 3. Element thick-
ness is denoted t, and the loads are assumed to be expressed in terms of force per
unit area. We seek to replace the distributed loads with equivalent forces acting
at nodes 2 and 3. In keeping with the minimum potential energy approach, the
concentrated nodal loads are determined such that the mechanical work is the
same as that of the distributed loads.

Figure 9.3 Conversion of distributed loading to work-equivalent
nodal forces.

pt

pn

n�

2

3

1

(a)

py

px

(b)

2

3

1 2

3

1

(c)

f 3y
(p)

f 2y
(p)

f 2x
(p)

f 3x
(p)
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First, the distributed loads are converted to equivalent loadings in the global
coordinate directions, as in Figure 9.3b, via

px = pnnx − pt n y

py = pnn y + pt nx
(9.33)

with nx and ny corresponding to the components of the unit outward normal vec-
tor to edge 2-3. Here, we use the notation p for such loadings, as the units are
those of pressure. The mechanical work done by the distributed loads is

Wp = t

3∫
2

px u(x , y) dS + t

3∫
2

pyv(x , y) dS (9.34)

where the integrations are performed along the edge defined by nodes 2 and 3.
Recalling that interpolation function N1(x , y) is zero along edge 2-3, the finite
element representations of the displacements along the edge are

u(x , y) = N2(x , y)u2 + N3(x , y)u3

v(x , y) = N2(x , y)v2 + N3(x , y)v3
(9.35)

The work expression becomes

Wp = t

3∫
2

px [N2(x , y)u2 + N3(x , y)u3] dS

+ t

3∫
2

py[N2(x , y)v2 + N3(x , y)v3] dS (9.36)

and is of the form

Wp = f ( p)
2x u2 + f ( p)

3x u3 + f ( p)
2y v2 + f ( p)

3y v3 (9.37)

Comparison of the last two equations yields the equivalent nodal forces as

f ( p)
2x = t

3∫
2

px N2(x , y) dS

f ( p)
3x = t

3∫
2

px N3(x , y) dS

f ( p)
2y = t

3∫
2

py N2(x , y) dS

f ( p)
3x = t

3∫
2

py N3(x , y) dS

(9.38)
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as depicted in Figure 9.3c. Recalling again for emphasis that N1(x , y) is zero
along the integration path, Equation 9.38 can be expressed in the compact form

{
f ( p)
} =
∫
S

[N ]T

{
px

py

}
t dS (9.39)

with

[N ]T =




N1 0
N2 0
N3 0
0 N1

0 N2

0 N3




(9.40)

{
f ( p)} =




f ( p)
1x

f ( p)
2x

f ( p)
3x

f ( p)
1y

f ( p)
2y

f ( p)
3y




(9.41)

The reader is urged to write out in detail the matrix multiplication indicated in
Equation 9.39 to ensure that the result is correct. Although developed in the con-
text of the three-node triangular element, Equation 9.39 will prove generally
applicable for two-dimensional elements and require only minor modification
for application to three-dimensional problems.

Given the triangular plane stress element shown in Figure 9.4a, determine the nodal
forces equivalent to the distributed loads shown via the method of work equivalence dis-
cussed previously. Element thickness is 0.2 in. and uniform.

■ Solution
Using the nodal coordinates specified, the interpolation functions (with element area
A = 1) are

N1(x , y) = 1

2
[2 − 2x ] = 1 − x

N2(x , y) = 1

2
[2x − y]

N3(x , y) = 1

2
y

EXAMPLE 9.1
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Figure 9.4
(a) Distributed loads on a triangular element.
(b) Work-equivalent nodal forces.

(a)

(1, 2)
3

1
(0, 0)

2
(1, 0)

300 psi

100 psi

Y

X

(b)

2
1

3

10

20

40

10

Y

X

Along edge 1-2, y = 0, px = 0, py = −100 psi; hence, Equation 9.39 becomes

{
f ( p)
} =
∫
S




1 − x 0
x 0
0 0
0 1 − x
0 x
0 0



{

0
−100

}
t dS

= 0.2

1∫
0




1 − x 0
x 0
0 0
0 1 − x
0 x
0 0



{

0
−100

}
dx =




0
0
0

−10
−10

0




lb
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For edge 2-3, we have x = 1, px = 150y, py = 0, so that

{
f ( p)
} =
∫
S




0 0
1

2
(2 − y) 0

y

2
0

0
1

2
(2 − y)

0
y

2
0 0




{
150y

0

}
t dS

= 0.2

2∫
0




0 0
1

2
(2 − y) 0

y

2
0

0
1

2
(2 − y)

0
y

2
0 0




{
150y

0

}
dy =




0
20
40
0
0
0




lb

Combining the results, the nodal force vector arising from the distributed loads for the
element shown is then

{
f ( p)
} =




f1x

f2x

f3x

f1y

f2y

f3y




=




0
20
40

−10
−10

0




lb

as shown in Figure 9.4b.

In addition to distributed edge loads on element boundaries, so-called body
forces may also arise. In general, a body force is a noncontact force acting on a
body on a per unit mass basis. The most commonly encountered body forces
are gravitational attraction (weight), centrifugal force arising from rotational
motion, and magnetic force. Currently, we consider only the two-dimensional

case in which the body force is described by the vector 
{

FB X

FBY

}
in which FB X

and FBY are forces per unit mass acting on the body in the respective coordi-
nate directions. As with distributed loads, the body forces are to be replaced by
equivalent nodal forces. Considering a differential mass � t dx dy undergoing
displacements (u, v) in the coordinate directions, mechanical work done by the
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body forces is

dWb = � FB X ut dx dy + � FBY vt dx dy (9.42)

Considering the volume of interest to be a CST element in which the displace-
ments are expressed in terms of interpolation functions and nodal displace-
ments as

{
u(x , y)
v(x , y)

}
=
[

N1 N2 N3 0 0 0
0 0 0 N1 N2 N3

]



u1

u2

u3

v1

v2

v3




= [N ]

{
u
v

}
(9.43)

the total work done by the body forces acting on the element is expressed in
terms of nodal displacement as

Wb = � t

∫∫
A

FB X ( N1u1 + N2u2 + N3u3) dx dy

+ � t

∫∫
A

FBY ( N1v1 + N2v2 + N3v3) dx dy (9.44)

As desired, Equation 9.44 is in the form

Wb = f (b)
1x u1 + f (b)

2x u2 + f (b)
3x u3 + f (b)

1y v1 + f (b)
2y v2 + f (b)

3y v3 (9.45)

in terms of equivalent concentrated nodal forces. The superscript (b) is used to
indicate nodal-equivalent body force. Comparison of the last two equations
yields the nodal force components as

f (b)
i x = � t

∫
A

Ni FB X dx dy i = 1, 3

f (b)
iy = � t

∫
A

Ni FBY dx dy i = 1, 3

(9.46)

The nodal force components equivalent to the applied body forces can also be
written in the compact matrix form

{
f (b)
} = � t

∫
A

[N ]T

{
FB X

FBY

}
dx dy (9.47)

While developed in the specific context of a constant strain triangular element in
plane stress, Equation 9.47 proves to be a general result for two-dimensional
elements. A quite similar expression holds for three-dimensional elements.
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Determine the nodal force components representing the body force for the element of
Example 9.1, if the body force is gravitational attraction in the y direction, so that{

FB X

FBY

}
=
{

0
−386.4

}
in./sec2

given the density of the element material is � = 7.3 × 10−4 slug/in.3.

■ Solution
As the x component of the body force is zero, the x components of the nodal force vector
will be, too, so we need not consider those components. The y components are computed
using the second of Equation 9.46:

f (b)
i y = � t

∫

A

Ni FBY dx dy i = 1, 3

From the previous example, the interpolation functions are

N1(x , y) = 1

2
[2 − 2x ] = 1 − x

N2(x , y) = 1

2
[2x − y]

N3(x , y) = 1

2
y

We have, in this instance,

f (b)
1y = � t

∫∫

A

FBY N1 dx dy = � t

∫∫

A

FBY (1 − x ) dx dy

f (b)
2y = � t

∫∫

A

FBY N2 dx dy = � t

∫∫

A

FBY

2
(2x − y) dx dy

f (b)
3y = � t

∫∫

A

FBY N3 dx dy = � t

∫∫

A

FBY

2
y dx dy

The limits of integration must be determined on the basis of the geometry of the area. In
this example, we utilize x as the basic integration variable and compute the y-integration
limits in terms of x. For the element under consideration, as x varies between zero and
one, y is the linear function y = 2x so the integrations become

f (b)
1y = � t FBY

1∫

0

2x∫

0

(1 − x ) dy dx = � t FBY

1∫

0

2x (1 − x ) dx = � tY

(
x 2 − 2x 3

3

)∣∣∣∣
1

0

= � t FBY

3
= −0.0189 lb

EXAMPLE 9.2
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f (b)
2y = � t FBY

1∫

0

2x∫

0

1

2
(2x − y) dy dx = � t FBY

2

1∫

0

2x 2 dx

= � t FBY

2

(
2

3

)
= � t FBY

3
= −0.0189 lb

f (b)
3y = � t FBY

2

1∫

0

2x∫

0

y dx dy = � t FBY

2

1∫

0

2x 2 dx = � t FBY

3
= −0.0189 lb

showing that the body force is equally distributed to the element nodes.

If we now combine the concepts just developed for the CST element in plane
stress, we have a general element equation that includes directly applied nodal
forces, nodal force equivalents for distributed edge loadings, and nodal equiva-
lents for body forces as

[k]{�} = { f } + { f ( p)
} + { f (b)

}
(9.48)

where the stiffness matrix is given by Equation 9.24 and the load vectors are as
just described. Equation 9.48 is generally applicable to finite elements used in
elastic analysis. As will be learned in studying advanced finite element analysis,
Equation 9.48 can be supplemented by addition of force vectors arising from plas-
tic deformation, thermal gradients or temperature-dependent material properties,
thermal swelling from radiation effects, and the dynamic effects of acceleration.

9.3 PLANE STRAIN: RECTANGULAR ELEMENT
A solid body is said to be in a state of plane strain if it satisfies all the assump-
tions of plane stress theory except that the body’s thickness (length in the z
direction) is large in comparison to the dimension in the xy plane. Mathemati-
cally, plane strain is defined as a state of loading and geometry such that

εz = ∂w

∂ z
= 0 �xz = ∂u

∂ z
+ ∂w

∂x
= 0 �yz = ∂v

∂ z
+ ∂w

∂y
= 0 (9.49)

(See Appendix B for a discussion of the general stress-strain relations.)
Physically, the interpretation is that the body is so long in the z direction that

the normal strain, induced by only the Poisson effect, is so small as to be negli-
gible and, as we assume only xy-plane loadings are applied, shearing strains
are also small and neglected. (One might think of plane strain as in the example
of a hydroelectric dam—a large, long structure subjected to transverse loading
only, not unlike a beam.) Under the prescribed conditions for plane strain, the
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constitutive equations for the nonzero stress components become

�x = E

(1 + �)(1 − 2�)
[(1 − �)εx + �ey]

�y = E

(1 + �)(1 − 2�)
[(1 − �)εy + �εx ]

�xy = E

2(1 + �)
�xy = G�xy

(9.50)

and, while not zero, the normal stress in the z direction is considered negligible
in comparison to the other stress components.

The elastic strain energy for a body of volume V in plane strain is

Ue = 1

2

∫∫∫
V

(�x εx + �yεy + �xy�xy) dV (9.51)

which can be expressed in matrix notation as

Ue = 1

2

∫∫∫
V

[�x �y �xy]

{ εx

εy

�xy

}
dV (9.52)

Combining Equations 9.50 and 9.52 with considerable algebraic manipulation,
the elastic strain energy is found to be

Ue = 1

2

∫∫∫
V

[ εx εy �xy]
E

(1 + �)(1 − 2�)

×




1 − � � 0
� 1 − � 0

0 0
1 − 2�

2






εx

εy

�xy


 dV (9.53)

and is similar to the case of plane stress, in that we can express the energy as

Ue = 1

2

∫∫∫
V

{ε}T [D]{ε} dV

with the exception that the elastic property matrix for plane strain is defined as

[D] = E

(1 + �)(1 − 2�)




1 − � � 0
� 1 − � 0

0 0
1 − 2�

2


 (9.54)
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The nonzero strain components in terms of displacements are

εx = ∂u

∂x

εy = ∂v

∂y

�xy = ∂u

∂y
+ ∂v

∂x

(9.55)

For a four-node rectangular element (for example only), the column matrix
of strain components is expressed as

{ε} =



εx

εy

�xy


 =




∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N4

∂x
0 0 0 0

0 0 0 0
∂N1

∂y

∂N2

∂y

∂N3

∂y

∂N4

∂y
∂N1

∂y

∂N2

∂x

∂N3

∂y

∂N4

∂y

∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N4

∂x







u1

u2

u3

u4

v1

v2

v3

v4




(9.56)

in terms of the interpolation functions and the nodal displacements. As is cus-
tomary, Equation 9.56 is written as

{ε} = [B]{�} (9.57)

with [B] representing the matrix of derivatives of interpolation functions and {�}
is the column matrix of nodal displacements. Hence, total strain energy of an
element is

Ue = 1

2
{�}T

∫∫∫
V

[B]T [D][B] dV {�} = 1

2
{�}T [k]{�} (9.58)

and the element stiffness matrix is again given by
[
k (e)
] =
∫∫∫

V (e)

[B T ][D][B] dV (e) (9.59)

The interpolation functions for the four-node rectangular element per Equa-
tion 6.56 are

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

(9.60)
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Figure 9.5 A rectangular
element of width 2a and
height 2b.

2

(1, 	1)(	1, 	1)

(	1, 1) (1, 1)

1

4 3

2b

2a

s

r

with the natural coordinates defined as in Figure 9.5. To compute the strain com-
ponents in terms of the natural coordinates, the chain rule is applied to obtain

∂

∂x
= ∂

∂r

∂r

∂x
= 1

a

∂

∂r

∂

∂y
= ∂

∂s

∂s

∂y
= 1

b

∂

∂s

(9.61)

Performing the indicated differentiations, the strain components are found to be

{ε} =



εx

εy

�x y




=




s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a
0 0 0 0

0 0 0 0
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b

s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a







u1

u2

u3

u4

v1

v2

v3

v4




(9.62)

showing that the normal strain εx varies linearly in the y direction, normal strain
εy varies linearly in the x direction, and shear strain �xy varies linearly in both
coordinate directions (realizing that the natural coordinate r corresponds to the
x axis and natural coordinate s corresponds to the y axis).

From Equation 9.62, the [B] matrix is readily identified as

[B] =




s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a
0 0 0 0

0 0 0 0
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b

s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a




(9.63)
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hence, the element stiffness matrix is given, formally, by

The element stiffness matrix as defined by Equation 9.64 is an 8 × 8 symmetric
matrix, which therefore, contains 36 independent terms. Hence, 36 integrations
are required to obtain the complete stiffness matrix. The integrations are straight-
forward but algebraic tedious. Here, we develop only a single term of the stiff-
ness matrix in detail, then discuss the more-efficient numerical methods used in
finite element software packages.

If we carry out the matrix multiplications just indicated, the first diagonal
term of the stiffness matrix is found (after a bit of algebra) to be

k (e)
11 = Etb

16a(1 + 2�)

1∫
−1

1∫
−1

(s − 1)2 dr ds + Eta

32b(1 + �)

1∫
−1

1∫
−1

(r − 1)2 dr ds

(9.65)
and this term evaluates to

k (e)
11 = Etb

16a(1 + 2�)

2(s − 1)3

3

∣∣∣∣
1

−1

+ Eta

32b(1 + �)

2(r − 1)3

3

∣∣∣∣
1

−1

= Etb

16a(1 + 2�)

(
16

3

)
+ Eta

32b(1 + �)

(
16

3

)
(9.66)

[
k(e)
] =
∫∫∫
V (e)

[BT ] [D] [B] dV (e)

= Etab

(1 + �)(1 − 2�)

1∫
−1

1∫
−1




s − 1

4a
0

r − 1

4b
1 − s

4a
0 −1 + r

4b
1 + s

4a
0

1 + r

4b

−1 + s

4a
0

1 − r

4b

0
r − 1

4b

s − 1

4a

0 −1 + r

4b

1 − s

4a

0
1 + r

4b

1 + s

4a

0
1 − r

4b
−1 + s

4a







1 − � � 0
� 1 − � 0

0 0
(1 + �)(1 − 2�)

2(1 + �)




×




s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a
0 0 0 0

0 0 0 0
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b
r − 1

4b
−1 + r

4b

1 + r

4b

1 − r

4b

s − 1

4a

1 − s

4a

1 + s

4a
−1 + s

4a




dr ds (9.64)
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Note that the integrands are quadratic functions of the natural coordinates. In
fact, analysis of Equation 9.64 reveals that every term of the element stiffness
matrix requires integration of quadratic functions of the natural coordinates.
From the earlier discussion of Gaussian integration (Chapter 6), we know that a
quadratic polynomial can be integrated exactly using only two integration (or
evaluation) points. As here we deal with integration in two dimensions, we must
evaluate the integrand at the Gauss points

ri = ±
√

3

3
sj = ±

√
3

3

with weighting factors Wi = Wj = 1. If we apply the numerical integration
technique to evaluation of k (e)

11 , we obtain, as expected, the result identical to that
given by Equation 9.66. More important, the Gauss integration procedure can be
applied directly to Equation 9.64 to obtain the entire element stiffness matrix as

[
k (e)
] = tab

2∑
i=1

2∑
j=1

Wi Wj [B(ri , sj )]T [D][B(ri , sj )] (9.67)

where the matrix triple product is evaluated four times, in accordance with the
number of integration points required. The summations and matrix multiplica-
tions required in Equation 9.67 are easily programmed and ideally suited to
digital computer implementation.

While written specifically for the four-node rectangular element, Equa-
tion 9.67 is applicable to higher-order elements as well. Recall that, as the polyno-
mial order increases, exact integration via Gaussian quadrature requires increase
in both number and change in value of the integration points and weighting fac-
tors. By providing a “look-up” table of values fashioned after Table 6.1, computer
implementation of Equation 9.67 can be readily adapted to higher-order elements.

We use the triangular element to illustrate plane stress and the rectangular
element to illustrate plane strain. If the developments are followed clearly, it is
apparent that either element can be used for either state of stress. The only dif-
ference is in the stress-strain relations exhibited by the [D] matrix. This situation
is true of any element shape and order (in terms of number of nodes and order of
polynomial interpolation functions). Our use of the examples of triangular and
rectangular elements are not meant to be restrictive in any way.

9.4 ISOPARAMETRIC FORMULATION OF
THE PLANE QUADRILATERAL ELEMENT

While useful for analysis of plane problems in solid mechanics, the triangular
and rectangular elements just discussed exhibit shortcomings. Geometrically, the
triangular element is quite useful in modeling irregular shapes having curved
boundaries. However, since element strains are constant, a large number of small
elements are required to obtain reasonable accuracy, particular in areas of high
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Figure 9.6
(a) A four-node, two-dimensional isoparametric element. (b) The parent element in
natural coordinates.
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stress gradients, such as near geometric discontinuities. In comparison, the rec-
tangular element provides the more-reasonable linear variation of strain compo-
nents but is not amenable to irregular shapes. An element having the desirable
characteristic of strain variation in the element as well as the ability to closely ap-
proximate curves is the four-node quadrilateral element. We now develop the
quadrilateral element using an isoparametric formulation adaptable to either
plane stress or plane strain.

A general quadrilateral element is shown in Figure 9.6a, having element
node numbers and nodal displacements as indicated. The coordinates of node i
are (xi, yi) and refer to a global coordinate system. The element is formed by
mapping the parent element shown in Figure 9.6b, using the procedures devel-
oped in Section 6.8. Recalling that, in the isoparametric approach, the geometric
mapping functions are identical to the interpolation functions used to discretize
the displacements, the geometric mapping is defined by

x =
4∑

i=1

Ni (r, s)xi

y =
4∑

i=1

Ni (r, s)yi

(9.68)

and the interpolation functions are as given in Equation 9.60, so that the dis-
placements are described as

u(x , y) =
4∑

i=1

Ni (r, s)ui

v(x , y) =
4∑

i=1

Ni (r, s)vi

(9.69)
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Now, the mathematical complications arise in computing the strain components
as given by Equation 9.55 and rewritten here as

{ε} =



εx

εy

�xy


 =




∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x




=




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x




{
u
v

}
(9.70)

Using Equation 6.83 with 
 = u , we have

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r

∂u

∂s
= ∂u

∂x

∂x

∂s
+ ∂u

∂y

∂y

∂s

(9.71)

with similar expressions for the partial derivative of the v displacement. Writing
Equation 9.71 in matrix form



∂u

∂r
∂u

∂s




=




∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s







∂u

∂x
∂u

∂y




= [J ]




∂u

∂x
∂u

∂y




(9.72)

and the Jacobian matrix is identified as

[J ] =
[

J11 J12

J21 J22

]
=




∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s


 (9.73)

as in Equation 6.83. Note that, per the geometric mapping of Equation 9.68, the
components of [J ] are known as functions of the partial derivatives of the inter-
polation functions and the nodal coordinates in the x y plane. For example,

J11 = ∂x

∂r
=

4∑
i=1

∂ Ni

∂r
xi = 1

4
[(s − 1)x1 + (1 − s)x2 + (1 + s)x3 − (1 + s)x4]

(9.74)

a first-order polynomial in the natural (mapping) coordinate s. The other terms
are similarly first-order polynomials.

Formally, Equation 9.72 can be solved for the partial derivatives of dis-
placement component u with respect to x and y by multiplying by the inverse of
the Jacobian matrix. As noted in Chapter 6, finding the inverse of the Jacobian
matrix in algebraic form is not an enviable task. Instead, numerical methods are
used, again based on Gaussian quadrature, and the remainder of the derivation
here is toward that end. Rather than invert the Jacobian matrix, Equation 9.72
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can be solved via Cramer’s rule. Application of Cramer’s rule results in

∂u

∂x
=

∣∣∣∣∣∣∣∣

∂u

∂r
J12

∂u

∂s
J22

∣∣∣∣∣∣∣∣
|J | = 1

|J | [J22 −J12]




∂u

∂r
∂u

∂s




(9.75)

∂u

∂y
=

∣∣∣∣∣∣∣∣
J11

∂u

∂r

J21
∂u

∂s

∣∣∣∣∣∣∣∣
|J | = 1

|J | [−J21 +J11]




∂u

∂r
∂u

∂s




or, in a more compact form,


∂u

∂x
∂u

∂y




= 1
|J |
[

J22 −J12

−J21 J11

]



∂u

∂r
∂u

∂s




(9.76)

The determinant of the Jacobian matrix |J | is commonly called simply the
Jacobian.

Since the interpolation functions are the same for both displacement compo-
nents, an identical procedure results in



∂v

∂x
∂v

∂y




= 1
|J |
[

J22 −J12

−J21 J11

]



∂v

∂r
∂v

∂s




(9.77)

for the partial derivatives of the v displacement component with respect to global
coordinates.

Let us return to the problem of computing the strain components per
Equation 9.70. Utilizing Equations 9.76 and 9.77, the strain components are
expressed as

{ε} =
{ εx

εy

�xy

}
=




∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x




= 1
|J |


 J22 −J12 0 0

0 0 −J21 J11

−J21 J11 J22 −J12







∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s




= [G]




∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s




(9.78)
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with what we will call the geometric mapping matrix, defined as

[G] = 1
|J |


 J22 −J12 0 0

0 0 −J21 J11

−J21 J11 J22 −J12


 (9.79)

We must expand the column matrix on the extreme right-hand side of Equa-
tion 9.78 in terms of the discretized approximation to the displacements. Via
Equation 9.69, we have


∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s




=




∂N1

∂r

∂N2

∂r

∂N3

∂r

∂N4

∂r
0 0 0 0

∂N1

∂s

∂N2

∂s

∂N3

∂s

∂N4

∂s
0 0 0 0

0 0 0 0
∂N1

∂r

∂N2

∂r

∂N3

∂r

∂N4

∂r

0 0 0 0
∂N1

∂s

∂N2

∂s

∂N3

∂s

∂N4

∂s







u1

u2

u3

u4

v1

v2

v3

v4




(9.80)

where we reemphasize that the indicated partial derivatives are known functions
of the natural coordinates of the parent element. For shorthand notation, Equa-
tion 9.80 is rewritten as 



∂u

∂r
∂u

∂s
∂v

∂r
∂v

∂s




= [P] {�} (9.81)

in which [P ] is the matrix of partial derivatives and {�} is the column matrix of
nodal displacement components.

Combining Equations 9.78 and 9.81, we obtain the sought-after relation for
the strain components in terms of nodal displacement components as

{ε} = [G ][P ]{�} (9.82)

and, by analogy with previous developments, matrix [B] = [G ][P ] has been
determined such that

{ε} = [B]{�} (9.83)

and the element stiffness matrix is defined by

[
k (e)
] = t

∫
A

[B]T [D][B] d A (9.84)
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with t representing the constant element thickness, and the integration is per-
formed over the area of the element (in the physical xy plane). In Equation 9.84,
the stiffness may represent a plane stress element or a plane strain element, de-
pending on whether the material property matrix [D] is defined by Equation 9.6
or 9.54, respectively. (Also note that, for plane strain, it is customary to take the
element thickness as unity.)

The integration indicated by Equation 9.84 are in the x-y global space, but
the [B] matrix is defined in terms of the natural coordinates in the parent element
space. Therefore, a bit more analysis is required to obtain a final form. In the
physical space, we have d A = dx dy , but we wish to integrate using the natural
coordinates over their respective ranges of −1 to +1. In the case of the four-node
rectangular element, the conversion is straightforward, as x is related only to r
and y is related only to s, as indicated in Equation 9.61. In the isoparametric case
at hand, the situation is not quite so simple. The derivation is not repeated here,
but it is shown in many calculus texts [1] that

d A = dx dy = |J | dr ds (9.85)

hence, Equation 9.84 becomes

[
k (e)
] = t

∫
A

[B]T [D][B] |J | dr ds = t

1∫
−1

1∫
−1

[B]T [D][B] |J | dr ds (9.86)

As noted, the terms of the [B] matrix are known functions of the natural
coordinates, as is the Jacobian |J |. The terms in the stiffness matrix represented
by Equation 9.86, in fact, are integrals of ratios of polynomials and the integra-
tions are very difficult, usually impossible, to perform exactly. Instead, Gaussian
quadrature is used and the integrations are replaced with sums of the integrand
evaluated at specified Gauss points as defined in Chapter 6. For p integration
points in the variable r and q integration points in the variable s, the stiffness
matrix is approximated by

[
k (e)
] = t

p∑
i=1

q∑
j=1

Wi W J [B(ri , sj )]T [D][B(ri , sj )]|J (ri , sj )|dr ds (9.87)

Since [B] includes the determinant of the Jacobian matrix in the denominator, the
numerical integration does not necessarily result in an exact solution, since the
ratio of polynomials is not necessarily a polynomial. Nevertheless, the Gaussian
procedure is used for this element, as if the integrand is a quadratic in both r and
s, with good results. In such case, we use two Gauss points for each variable, as
is illustrated in the following example.

Evaluate the stiffness matrix for the isoparametric quadrilateral element shown in Fig-
ure 9.7 for plane stress with E = 30(10)6 psi, � = 0.3, t = 1 in. Note that the properties
are those of steel.

EXAMPLE 9.3
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Figure 9.7 Dimensions are in inches.
Axes are shown for orientation only.
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1
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2
(2, 0)

y

x

■ Solution
The mapping functions are

x (r, s) = 1

4
[(1 − r )(1 − s)(1) + (1 + r )(1 − s)(2) + (1 + r )(1 + s)(2.25)

+ (1 − r )(1 + s)(1.25)]

y(r, s) = 1

4
[(1 − r )(1 − s)(0) + (1 + r )(1 − s)(0) + (1 + r )(1 + s)(1.5)

+ (1 − r )(1 + s)(1)]

and the terms of the Jacobian matrix are

J11 = ∂ x

∂r
= 1

2

J12 = ∂y

∂r
= 1

4
(0.5 − 0.5s)

J21 = ∂ x

∂s
= 1

2

J22 = ∂y

∂s
= 1

4
(2.5 − 0.5r )

and the determinant is

|J | = J11 J22 − J12 J21 = 1

16
(4 − r + s)

Therefore, the geometric matrix [G ] of Equation 9.79 is known in terms of ratios of
monomials in r and s as

[G] = 4

4 − r + s


 2.5 − 0.5r −(0.5 − 0.5s) 0 0

0 0 −2 2
−2 2 2.5 − 0.5r −(0.5 − 0.5s)




For plane stress with the values given, the material property matrix is

[D] = 32.97(10)6


 1 0.3 0

0.3 1 0
0 0 0.35


 psi
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Next, we note that, since the matrix of partial derivatives [P] as defined in Equation 9.81
is also composed of monomials in r and s,

[P] = 1

4




s − 1 1 − s 1 + s −(1 + s) 0 0 0 0
r − 1 −(1 + r) 1 + r 1 − r 0 0 0 0

0 0 0 0 s − 1 1 − s 1 + s −(1 + s)
0 0 0 0 r − 1 −(1 + r) 1 + r 1 − r




the stiffness matrix of Equation 9.86 is no more than quadratic in the natural coordinates.
Hence, we select four integration points given by

ri = sj = ±
√

3

3

and weighting factors

Wi = Wj = 1.0

per Table 6.1.
The element stiffness matrix is then given by

[
k (e)
] = t

2∑
i=1

2∑
j=1

Wi Wj [B(ri , sj )]T [D][B(ri , sj )]|J (ri , sj )|

The numerical results for this example are obtained via a computer program written in
MATLAB using the built-in matrix functions of that software package. The stiffness
matrix is calculated to be

[
k(e)
] =




2305 −1759 −617 72 798 −152 −214 −432
−1759 1957 471 −669 −52 −522 14 560
−617 471 166 −19 −214 41 57 116

72 −669 −19 616 −533 633 143 −244
798 −52 −214 −533 1453 −169 −389 −895

−152 −522 −41 633 −169 993 45 −869
−214 14 57 143 −389 45 104 240
−432 560 116 −244 −895 −869 240 1524




103 lb/in.

A classic example of plane stress analysis is shown in Figure 9.8a. A uniform thin plate
with a central hole of radius a is subjected to uniaxial stress �0. Use the finite element
method to determine the stress concentration factor given the physical data �0 = 1000 psi,
a = 0.5 in., h = 3 in., w = 6 in., E = 10(10)6 psi, and Poisson’s ratio = 0.3.

■ Solution
The solution for this example is obtained using commercial finite element software with
plane quadrilateral elements. The initial (coarse) element mesh, shown in Figure 9.8b, is
composed of 33 elements. Note that the symmetry conditions have been used to reduce
the model to quarter-size and the corresponding boundary conditions are as shown on the
figure. For this model, the maximum stress (as expected) is calculated to occur at node 1
(at the top of the hole) and has a magnitude of 3101 psi.

EXAMPLE 9.4
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Figure 9.8
(a) A uniformly loaded plate in plane stress with a central hole of
radius a. (b) A coarse finite element mesh using quadrilateral
elements. Node numbers are as shown (31 elements).

To examine the solution convergence, a refined model is shown in Figure 9.8c, using
101 elements. For this model, the maximum stress also occurs at node 1 and has a calcu-
lated magnitude of 3032 psi. Hence, between the two models, the maximum stress values
changed on the order of 2.3 percent. It is interesting to note that the maximum displacement
given by the two models is essentially the same. This observation reinforces the need to
examine the derived variables for convergence, not simply the directly computed variables.

As a final step in examining the convergence, the model shown in Figure 9.8d con-
taining 192 elements is also solved. (The node numbers are eliminated for clarity.) The
maximum computed stress, again at node 1, is 3024 psi, a miniscule change relative to
the previous model, so we conclude that convergence has been attained. (The change in
maximum displacement is essentially nil.) Hence, we conclude that the stress concentra-
tion factor Kt = �max /�0 = 3024/1000 = 3.024 is applicable to the geometry and load-
ing of this example. It is interesting to note that the theoretical (hence, the subscript t)



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

356 CHAPTER 9 Applications in Solid Mechanics

stress concentration factor for this problem as computed by the mathematical theory of
elasticity is exactly 3. The same result is shown in many texts on machine design and
stress analysis [2].

9.5 AXISYMMETRIC STRESS ANALYSIS
The concept of axisymmetry is discussed in Chapter 6 in terms of general inter-
polation functions. Here, we specialize the axisymmetric concept to problems
of elastic stress analysis. To satisfy the conditions for axisymmetric stress, the
problem must be such that

1. The solid body under stress must be a solid of revolution; by convention, the
axis of revolution is the z axis in a cylindrical coordinate system (r, �, z).

2. The loading of the body is symmetric about the z axis.

(c)

(d)

Figure 9.8 (Continued)
(c) Refined mesh of 101 elements. Node numbers are removed for
clarity. (d) An additional refined mesh with 192 elements.
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Figure 9.9
(a) Cross section of an axisymmetric body. (b) Differential element in
an rz plane. (c) Differential element in an r-� plane illustrating tangential
deformation. Dashed lines represent deformed positions.

(a)

r

z

(b)

dz

dr

(c)

u

r

u� dr�u
�r

d�

r d�

(r�u) d�

3. All boundary (constraint) conditions are symmetric about the z axis.
4. Materials properties are also symmetric (automatically satisfied by a linearly

elastic, homogeneous, isotropic material).

If these conditions are satisfied, the displacement field is independent of the
tangential coordinate �, and hence the stress analysis is mathematically two-
dimensional, even though the physical problem is three-dimensional. To develop
the axisymmetric equations, we examine Figure 9.9a, representing a solid of rev-
olution that satisfies the preceding requirements. Figure 9.9b is a differential
element of the body in the rz plane; that is, any section through the body for
which � is constant. We cannot ignore the tangential coordinate completely,
however, since as depicted in Figure 9.9c, there is strain in the tangential direc-
tion (recall the basic definition of hoop stress in thin-walled pressure vessels
from mechanics of materials). Note that, in the radial direction, the element
undergoes displacement, which introduces increase in circumference and associ-
ated circumferential strain.

We denote the radial displacement as u, the tangential (circumferential) dis-
placement as v, and the axial displacement as w. From Figure 9.9c, the radial
strain is

εr = 1

dr

(
u + ∂u

∂r
dr − u

)
= ∂u

∂r
(9.88)

The axial strain is

εz = 1

dz

(
w + ∂w

∂ z
dz − w

)
= ∂w

∂ z
(9.89)

and these relations are as expected, since the rz plane is effectively the same as a
rectangular coordinate system. In the circumferential direction, the differential
element undergoes an expansion defined by considering the original arc length



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

358 CHAPTER 9 Applications in Solid Mechanics

versus the deformed arc length. Prior to deformation, the arc length is ds = r d�,
while after deformation, arc length is ds = (r + u) d�. The tangential strain is

ε� = (r + u)(d�) − r d�

r d�
= u

r
(9.90)

and we observe that, even though the problem is independent of the tangential
coordinate, the tangential strain must be considered in the problem formulation.
Note that, if r = 0, the preceding expression for the tangential strain is trouble-
some mathematically, since division by zero is indicated. The situation occurs,
for example, if we examine stresses in a rotating solid body, in which case the
stresses are induced by centrifugal force (normal acceleration). Additional dis-
cussion of this problem is included later when we discuss element formulation.

Additionally, the shear strain components are

�r z = ∂u

∂ z
+ ∂w

∂r

�r� = 0

��z = 0

(9.91)

If we substitute the strain components into the generalized stress-strain relations
of Appendix B (and, in this case, we utilize � = y), we obtain

�r = E

(1 + �)(1 − 2�)
[(1 − �)εr + �(ε� + εz)]

�� = E

(1 + �)(1 − 2�)
[(1 − �)ε� + �(εr + εz)]

�z = E

(1 + �)(1 − 2�)
[(1 − �)εz + �(εr + ε�)]

�r z = E

2(1 + �)
�r z = G�r z

(9.92)

For convenience in finite element development, Equation 9.92 is expressed in
matrix form as



�r

��

�z

�r z


 = E

(1 + �)(1 − 2�)




1 − � � � 0
� 1 − � � 0
� � 1 − � 0

0 0 0
1 − 2�

2







εr

ε�

εz

�ez




(9.93)

in which we identify the material property matrix for axisymmetric elasticity as

[D] = E

(1 + �)(1 − 2�)




1 − � � � 0
� 1 − � � 0
� � 1 − � 0

0 0 0
1 − 2�

2


 (9.94)
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9.5.1 Finite Element Formulation

Recall from the general discussion of interpolation functions in Chapter 6 that es-
sentially any two-dimensional element can be used to generate an axisymmetric
element. As there is, by definition, no dependence on the � coordinate and no cir-
cumferential displacement, the displacement field for the axisymmetric stress
problem can be expressed as

u(r, z) =
M∑

i=1

Ni (r, z)ui

w(r, z) =
M∑

i=1

Ni (r, z)wi

(9.95)

with ui and wi representing the nodal radial and axial displacements, respectively.
For illustrative purposes, we now assume the case of a three-node triangular
element.

The strain components become

εr = ∂u

∂r
=

3∑
i=1

∂ Ni

∂r
ui

ε� = u

r
=

3∑
i=1

Ni

r
ui

εz = ∂w

∂ z
=

3∑
i=1

∂ Ni

∂ z
wi

�r z = ∂u

∂ z
+ ∂w

∂r
=

3∑
i=1

∂ Ni

∂ z
ui +

3∑
i=1

∂ Ni

∂r
wi

(9.96)

and these are conveniently expressed in the matrix form




εr

ε�

εz

�r z




=




∂N1

∂r

∂N2

∂r

∂N3

∂r
0 0 0

N1

r

N2

r

N3

r
0 0 0

0 0 0
∂N1

∂z

∂N2

∂z

∂N3

∂z
∂N1

∂z

∂N2

∂z

∂N3

∂z

∂N1

∂r

∂N2

∂r

∂N3

∂r







u1

u2

u3

w1

w2

w3




(9.97)

In keeping with previous developments, Equation 9.97 is denoted {ε} = [B]{�}
with [B] representing the 4 × 6 matrix involving the interpolation functions.
Thus total strain energy of the elements, as described by Equation 9.15 or 9.58
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and the stiffness matrix, is

[
k (e)
] =
∫∫∫

V (e)

[B]T [D][B] dV (e) (9.98)

While Equation 9.98 is becoming rather familiar, a word or two of caution is
appropriate. Recall in particular that, although the interpolation functions used
here are two dimensional, the axisymmetric element is truly three dimensional
(toroidal). Second, the element is not a constant strain element, owing to the
inverse variation of ε� with radial position, so the integrand in Equation 9.98 is
not constant. Finally, note that [D] is significantly different in comparison to the
counterpart material property matrices for plane stress and plane strain. Taking
the first observation into account and recalling Equation 6.93, the stiffness
matrix is defined by

[
k (e)
] = 2


∫∫

A(e)

[B]T [D][B]r dr dz (9.99)

and is a 6 × 6 symmetric matrix requiring, in theory, evaluation of 21 integrals.
Explicit term-by-term integration is not recommended, owing to the algebraic
complexity. When high accuracy is required, Gauss-type numerical integration
using integration points specifically determined for triangular regions [3] is used.
Another approach is to evaluate matrix [B] at the centroid of the element in an rz
plane. In this case, the matrices in the integrand become constant and the stiff-
ness matrix is approximated by[

k (e)
] ≈ 2
r̄ A[ B̄]T [D][ B̄] (9.100)

Of course, the accuracy of the approximation improves as element size is
decreased.

Referring to a previous observation, formulation of the [B] matrix is trouble-
some if r = 0 is included in the domain. In this occurrence, three terms of Equa-
tion 9.97 “blow up,” owing to division by zero. If the stiffness matrix is evaluated
using the centroidal approximation of Equation 9.100, the problem is avoided,
since the radial coordinate of the centroid of any element cannot be zero in an
axisymmetric finite element model. Nevertheless, radial and tangential strain and
stress components cannot be evaluated at nodes for which r = 0. Physically, we
know that the radial and tangential displacements at r = 0 in an axisymmetric
problem must be zero. Mathematically, the observation is not accounted for in
the general finite element formulation, which is for an arbitrary domain. One
technique for avoiding the problem is to include a hole, coinciding with the z axis
and having a small, but finite radius [4].

9.5.2 Element Loads

Axisymmetric problems often involve surface forces in the form of internal or
external pressure and body forces arising from rotation of the body (centrifugal
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Figure 9.10
(a) Axisymmetric element. (b) Differential length
of the element edge.

3

1
2

pz

pr

z

r
(a)

pz

prdS

(b)

force) and gravity. In each case, the external influences are reduced to nodal
forces using the work equivalence concept previously introduced.

The triangular axisymmetric element shown in Figure 9.10a is subjected to
pressures pr and pz in the radial and axial directions, respectively. The equivalent
nodal forces are determined by analogy with Equation 9.39, with the notable
exception depicted in Figure 9.10b, showing a differential length dS of the ele-
ment edge in question. As dS is located a radial distance r from the axis of sym-
metry, the area on which the pressure components act is 2
r dS. The nodal
forces are given by

{
f ( p)
} =
{

f ( p)
r

f ( p)
z

}
= 2


∫
S

[N ]T

{
pr

pz

}
r dS (9.101)

and the path of integration S is the element edge. In this expression, [N ]T is as
defined by Equation 9.40.

Calculate the nodal forces corresponding to a uniform radial pressure pr = 10 psi acting
as shown on the axisymmetric element in Figure 9.11.

■ Solution
As we have pressure on one face only and no axial pressure, we immediately observe that

fr 2 = fz1 = fz2 = fz3 = 0

The nonzero terms are

fr 1 = 2


∫

S

N1 pr r dS

fr 3 = 2


∫

S

N3 pr r dS

EXAMPLE 9.5
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Using Equation 9.28 with r, z in place of x, y, the interpolation functions are

N1 = 4 − r − z

N2 = r − 3

N3 = z

and along the integration path (r = 3), we have

N1 = 1 − z

N2 = 0

N3 = z

If the integration path is from node 1 to node 3, then dS = dz and

fr 1 = 2
(10)(3)

1∫

0

z dz = 30
 lb

fr 3 = 2
(10)(3)

1∫

0

(1 − z) dz = 30
 lb

Note that, if the integration path is taken in the opposite sense (i.e., from node 3 to
node 2), then dS = −dz and the same results are obtained.

Body forces acting on axisymmetric elements are accounted for in a manner
similar to that discussed for the plane stress element, while taking into consider-
ation the geometric differences. If body forces (force per unit mass) RB and Z B

act in the radial and axial directions, respectively, the equivalent nodal forces are
calculated as

{
f (B)
} = 2
�

∫

A(e)

[N ]T

{
RB

Z B

}
r dr dz (9.102)

For the three-node triangular element, [N ]T would again be as given in Equa-
tion 9.40. Extension to other element types is similar.

Figure 9.11 Uniform radial pressure.
Dimensions are in inches.

z

r

3 (3, 1)

10 psi

1 (3, 0) 2 (4, 0)
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Generally, radial body force arises from rotation of an axisymmetric body
about the z axis. For constant angular velocity �, the radial body force compo-
nent RB is equal to the magnitude of the normal acceleration component r�2 and
directed in the positive radial direction.

The axisymmetric element of Figure 9.11 is part of a body rotating with angular velocity
10 rad/s about the z axis and subjected to gravity in the negative z direction. Compute the
equivalent nodal forces. Density is 7.3(10)−4 lb-s2/in.4

■ Solution
For the stated conditions, we have

RB = r �2 = 100r in./s2

Z B = −g = −386.4 in./s2

Using the interpolation functions as given in Example 9.5,

fr 1 = 2
�

∫

A

N1 RB r dr dz = 2
� (100)

4∫

3

4−r∫

0

(4 − r − z)r 2 dz dr = 0.84 lb

fr 2 = 2
�

∫

A

N2 RB r dr dz = 2
� (100)

4∫

3

4−r∫

0

(r − 3)r 2 dz dr = 0.98 lb

fr 3 = 2
�

∫

A

N3 RB r dr dz = 2
� (100)

4∫

3

4−r∫

0

zr 2 dz dr = 0.84 lb

fz1 = 2
�

∫

A

N1 Z B r dr dz = −2
� (386.4)

4∫

3

4−r∫

0

(4 − r − z)r dz dr = −1.00 lb

fz2 = 2
�

∫

A

N2 Z B r dr dz = −2
� (386.4)

4∫

3

4−r∫

0

(r − 3)r dz dr = −1.08 lb

fz3 = 2
�

∫

A

N3 Z B r dr dz = −2
� (386.4)

4∫

3

4−r∫

0

zr dz dr = −1.00 lb

The integrations required to obtain the given results are straightforward but algebraically
tedious. Another approach that can be used and is increasingly accurate for decreasing
element size is to evaluate the body forces and the integrand at the centroid of the cross
section of the element area as an approximation. Using this approximation, it can be
shown that ∫

A

Ni (r̄ , z̄)r̄ dz dr = r̄ A

3
i = 1, 3

EXAMPLE 9.6
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so the body forces are allocated equally to each node. For the present example, the result is

fr 1 = fr 2 = fr 3 = 0.88 lb

fz1 = fz2 = fz3 = −1.03 lb

Note that, within the numerical accuracy used here, the total radial force and the total
axial force are the same for the two methods.

9.6 GENERAL THREE-DIMENSIONAL
STRESS ELEMENTS

While the conditions of plane stress, plane strain, and axisymmetry are frequently
encountered, more often than not the geometry of a structure and the applied loads
are such that a general three-dimensional state of stress exists. In the general case,
there are three displacement components u, v, and w in the directions of the x, y,
and z axes, respectively, and six strain components given by (Appendix B)

{ε} =




εx

εy

εz

�xy

�xz

�yz




=




∂u

∂x
∂v

∂y
∂w

∂z
∂u

∂y
+ ∂v

∂x
∂u

∂z
+ ∂w

∂x
∂v

∂z
+ ∂w

∂y




(9.103)

For convenience of presentation, the strain-displacement relations of Equa-
tion 9.103 can be expressed as

{ε} =




∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y




{ u
v
w

}
= [L]

{ u
v
w

}
(9.104)

and matrix [L ] is the 6 × 3 matrix of derivative operators.
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The stress-strain relations, Equation B.12, are expressed in matrix form as

{�} =




�x

�y

�z

�x y

�x z

�yz




= E

(1 + �)(1 − 2�)




1 − � � � 0 0 0
� 1 − � � 0 0 0
� � 1 − � 0 0 0

0 0 0
1 − 2�

2
0 0

0 0 0 0
1 − 2�

2
0

0 0 0 0 0
1 − 2�

2




{ε}= [D]{ε}

(9.105)

Note that, for the general case, the material property matrix [D] is a 6 × 6 matrix
involving only the elastic modulus and Poisson’s ratio (we continue to restrict
the presentation to linear elasticity). Also note that the displacement components
are continuous functions of the Cartesian coordinates.

9.6.1 Finite Element Formulation

Following the general procedure established in the context of two-dimensional
elements, a three-dimensional elastic stress element having M nodes is formu-
lated by first discretizing the displacement components as

u(x , y, z) =
M∑

i=1

Ni (x , y, z)ui

v(x , y, z) =
M∑

i=1

Ni (x , y, z)vi

w(x , y, z) =
M∑

i=1

Ni (x , y, z)wi

(9.106)

As usual, the Cartesian nodal displacements are ui , vi , and wi and Ni (x , y, z) is
the interpolation function associated with node i. At this point, we make no as-
sumption regarding the element shape or number of nodes. Instead, we simply
note that the interpolation functions may be any of those discussed in Chapter 6
for three-dimensional elements.

Introducing the vector (column matrix) of nodal displacements,

{�} = [ u1 u2 · · · u M v1 v2 · · · vM w1 w2 · · · wM ]T

(9.107)
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the discretized representation of the displacement field can be written in matrix
form as

{ u
v
w

}
=




[N ] [0] [0]
[0] [N ] [0]
[0] [0] [N ]


{�} = [N3]{�} (9.108)

In the last equation, each submatrix [N ] is the 1 × M row matrix of interpolation
functions

[N ] = [N1 N2 · · · NM ] (9.109)

so the matrix we have chosen to denote as [N3] is a 3 × 3M matrix composed of
the interpolation functions and many zero values. (Before proceeding, we
emphasize that the order of nodal displacements in Equation 9.107 is convenient
for purposes of development but not efficient for computational purposes. Much
higher computational efficiency is obtained in the model solution phase if the
displacement vector is defined as {�} = [u1 v1 w1 u2 v2 w2 · · · u M vM wM ]T .)

Recalling Equations 9.10 and 9.19, total potential energy of an element can
be expressed as

� = Ue − W = 1

2

∫∫∫
V

{ε}T [D]{ε} dV − {�}T { f } (9.110)

The element nodal force vector is defined in the column matrix

{ f } = [ f1x f2x · · · fMx f1y f2y · · · fMy f1z f2z · · · fMz]
T

(9.111)

and may include the effects of concentrated forces applied at the nodes, nodal
equivalents to body forces, and nodal equivalents to applied pressure loadings.

Considering the foregoing developments, Equation 9.110 can be expressed
(using Equations 9.104, 9.105, and 9.108), as

� = Ue − W = 1

2

∫∫∫
V

�T [L ]T [N3]T [D][L ][N3]{�} dV − {�}T { f } (9.112)

As the nodal displacement components are independent of the integration over
the volume, Equation 9.112 can be written as

� = Ue − W = 1

2
{�}T

∫∫∫
V

[L ]T [N3]T [D][L ][N3] dV {�} − {�}T { f } (9.113)

which is in the form

� = Ue − W = 1

2
{�}T

∫∫∫
V

[B]T [D][B] dV {�} − {�}T { f } (9.114)
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In Equation 9.114, the strain-displacement matrix is given by

[B] = [L][N3] =




∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂z

0
∂

∂z

∂

∂y





 [N ] [0] [0]

[0] [N ] [0]
[0] [0] [N ]


 (9.115)

and is observed to be a 6 × 3M matrix composed of the first partial derivatives
of the interpolation functions.

Application of the principle of minimum potential energy to Equation 9.114
yields, in analogy with Equation 9.22,∫∫∫

V

[B]T [D][B] dV {�} = { f } (9.116)

as the system of nodal equilibrium equation for a general three-dimensional stress
element. From Equation 9.116, we identify the element stiffness matrix as

[k] =
∫∫∫

V

[B]T [D][B] dV (9.117)

and the element stiffness matrix so defined is a 3M × 3M symmetric matrix,
as expected for a linear elastic element. The integrations indicated in Equa-
tion 9.117 depend on the specific element type in question. For a four-node,
linear tetrahedral element (Section 6.7), all the partial derivatives of the volume
coordinates are constants, so the strains are constant—this is the 3-D analogy to
a constant strain triangle in two dimensions. In the linear tetrahedral element, the
terms of the [B] matrix are constant and the integrations reduce to a constant
multiple of element volume.

If the element to be developed is an eight-node brick element, the interpolation
functions, Equation 6.69, are such that strains vary linearly and the integrands
in Equation 9.117 are not constant. The integrands are polynomials in the spatial
variables, however, and therefore amenable to exact integration by Gaussian quad-
rature in three dimensions. Similarly, for higher-order elements, the integrations
required to formulate the stiffness matrix are performed numerically.

The eight-node brick element can be transformed into a generally shaped
parallelopiped element using the isoparametric procedure discussed in Sec-
tion 6.8. If the eight-node element is used as the parent element, the resulting
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isoparametric element has planar faces and is analogous to the two-dimensional
quadrilateral element. If the parent element is of higher-order interpolation func-
tions, an element with general (curved) surfaces results.

Regardless of the specific element type or types used in a three-dimensional
finite element analysis, the procedure for assembling the global equilibrium equa-
tions is the same as discussed several times, so we do not belabor the point here.
As in previous developments, the assembled global equations are of the form

[K ]{�} = {F } (9.118)

with [K ] representing the assembled global stiffness matrix, {�} representing the
column matrix of global displacements, and {F } representing the column matrix
of applied nodal forces. The nodal forces may include directly applied external
forces at nodes, the work-equivalent nodal forces corresponding to body forces
and forces arising from applied pressure on element faces.

9.7 STRAIN AND STRESS COMPUTATION
Using the stiffness method espoused in this text, the solution phase of a finite
element analysis results in the computation of unknown nodal displacements as
well as reaction forces at constrained nodes. Computation of strain components,
then stress components, is a secondary (postprocessing) phase of the analysis.
Once the displacements are known, the strain components (at each node in the
model) are readily computed using Equation 9.104, which, given the discretiza-
tion in the finite element context, becomes

{ε} = [L]

{ u
v
w

}
= [L][N3]{�} = [B]{�} (9.119)

It must be emphasized that Equation 9.119 represents the calculation of strain
components for an individual element and must be carried out for every element
in the finite element model. However, the computation is straightforward, since
the [B] matrix has been computed for each element to determine the element
stiffness matrix, hence the element contributions to the global stiffness matrix.

Similarly, element stress components are computed as

{�} = [D][B]{�} (9.120)

and the material property matrix [D] depends on the state of stress, as previously
discussed. Equations 9.119 and 9.120 are general in the sense that the equations
are valid for any state of stress if the strain-displacement matrix [B] and the
material property matrix [D] are properly defined for a particular state of stress. (In
this context, recall that we consider only linearly elastic deformation in this text.)

The element strain and stress components, as computed, are expressed in
the element coordinate system. In general, for the elements commonly used in
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stress analysis, the coordinate system for each element is the same as the global
coordinate system. It is a fact of human nature, especially of engineers, that we
select the simplest frame in which to describe a particular occurrence or event.
This is a way of saying that we tend to choose a coordinate system for conve-
nience and that convenience is most often related to the geometry of the problem
at hand. The selected coordinate system seldom, if ever, corresponds to maxi-
mum loading conditions. Specifically, if we consider the element stress calcula-
tion represented by Equation 9.120, the stress components are referred, and
calculated with reference, to a specified Cartesian coordinate system. To deter-
mine the critical loading on any model, we must apply one of the so-called fail-
ure theories. As we limit the discussion to linearly elastic behavior, the “failure”
in our context is yielding of the material. There are several commonly accepted
failure theories for yielding in a general state of stress. The two most commonly
applied are the maximum shear stress theory and the distortion energy theory. We
discuss each of these briefly. In a general, three-dimensional state of stress, the
principal stresses �1, �2, and �3 are given by the roots of the cubic equation rep-
resented by the determinant [2]∣∣∣∣∣∣

�x − � �xy �xz

�xy �y − � �yz

�xz �yz �z − �

∣∣∣∣∣∣ = 0 (9.121)

Customarily, the principal stresses are ordered so that �1 > �2 > �3. Via the
usual convention, a positive normal stress corresponds to tension, while a nega-
tive normal stress is compressive. So, while �3 is algebraically the smallest of the
three principal stresses, it may represent a compressive stress having signifi-
cantly large magnitude. Also recall that the principal stresses occur on mutually
orthogonal planes (the principal planes) and the shear stress components on
those planes are zero.

Having computed the principal stress components, the maximum shear
stress is

�max = largest of

( |�1 − �2|
2

,
|�1 − �3|

2
,
|�2 − �3|

2

)
(9.122)

The three shear stress components in Equation 9.122 are known to occur on
planes oriented 45◦ from the principal planes.

The maximum shear stress theory (MSST) holds that failure (yielding) in a
general state of stress occurs when the maximum shear stress as given by Equa-
tion 9.122 equals or exceeds the maximum shear stress occurring in a uniaxial
tension test at yielding. It is quite easy to show that the maximum shear stress
in a tensile test at yielding has value equal to one-half the tensile yield strength
of the material. Hence, the failure value in the MSST is �max = Sy/2 = Sys . In
this notation, Sy is tensile yield strength and Sys represents yield strength in shear.

The distortion energy theory (DET) is based on the strain energy stored in a
material under a given state of stress. The theory holds that a uniform tensile or
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compressive state of stress (also known as hydrostatic stress) does not cause dis-
tortion and, hence, does not contribute to yielding. If the principal stresses have
been computed, total elastic strain energy is given by

Ue = 1

2

∫∫∫
V

(�1ε1 + �2ε2 + �3ε3) dV

= 1

2E

[
�2

1 + �2
2 + �2

3 − 2�(�1�2 + �1�3 + �2�3)
]
V (9.123)

To arrive at distortion energy, the average (hydrostatic) stress is defined as

�av = �1 + �2 + �3

3
(9.124)

and the corresponding strain energy is

Uhyd = 3�2
av

2E
(1 − 2�)V (9.125)

The distortion energy is then defined as

Ud = Ue − Uhyd (9.126)

After a considerable amount of algebraic manipulation, the distortion energy in
terms of the principal stress components is found to be given by

Ud = 1 + �

3E

[
(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2

2

]1/2

V (9.127)

The DET states that failure (yielding) occurs in a general state of stress when the
distortion energy per unit volume equals or exceeds the distortion energy per unit
volume occurring in a uniaxial tension test at yielding. It is relatively easy to
show (see Problem 9.20) that, at yielding in a tensile test, the distortion energy is
given by

Ud = 1 + �

3E
S2

y V (9.128)

and, as before, we use Sy to denote the tensile yield strength. Hence, Equa-
tions 9.127 and 9.128 give the failure (yielding) criterion for the DET as[

(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2

2

]1/2

≥ Sy (9.129)

The DET as described in Equation 9.129 leads to the concept of an equivalent
stress (known historically as the Von Mises stress) defined as

�e =
[

(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2

2

]1/2

(9.130)
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Table 9.1 Stress Values (psi) Computed at Node 107 of Example 9.4

�x �y �xy

Element 1 2049.3 187.36 118.4
Element 2 2149.4 315.59 91.89
Element 12 1987.3 322.72 204.13
Element 99 1853.8 186.88 378.36
Average 2009.8 253.14 198.19

and failure (yielding) can then be equivalently defined as

�e ≥ Sy (9.131)

Even though we do not present the algebraic details here, the DET can be shown
to be equivalent to another elastic failure theory, known as the octahedral shear
stress theory (OSST). For all practical purposes, the OSST holds that yielding
occurs when the maximum shear stress exceeds 0.577Sy. In comparison to the
MSST, the OSST gives the material more “credit” for strength in shear.

Why do we go into detail on these failure theories in the context of finite el-
ement analysis? As noted previously, strain and stress components are calculated
in the specified coordinate system. The coordinate system seldom is such that
maximum stress conditions are automatically obtained. Here is the point: Essen-
tially every finite element software package not only computes strain and stress
components in the global and element coordinate systems but also principal
stresses and the equivalent (Von Mises) stress for every element. In deciding
whether a design is acceptable (and this is why we use FEA, isn’t it?), we must
examine the propensity to failure. The examination of stress data is the responsi-
bility of the user of FEA software. The software does not produce results that
indicate failure unless the analyst carefully considers the data in terms of specific
failure criteria.

Among the stress- and strain-related items generally available as a result of
solution are the computed stresses (in the specified coordinate system), the prin-
cipal stresses, the equivalent stress, the principal strains, and strain energy. With
the exception of strain energy, the stress data are available on either a nodal or
element basis. The distinction is significant, and the analyst must be acutely
aware of the distinction. Since strain components (therefore, stress components)
are not in general continuous across element boundaries, nodal stresses are com-
puted as average values based on all elements connected to a specific node. On
the other hand, element stresses represent values computed at the element cen-
troid. Hence, element stress data are more accurate and should be used in mak-
ing engineering judgments. To illustrate, we present some of the stress data
obtained in the solution of Example 9.4 based on two-dimensional, four-node
quadrilateral elements. In the model, node 107 (selected randomly) is common to
four elements. Table 9.1 lists the stresses computed at this node in terms of the
four connected elements. The values are obtained by computing the nodal
stresses for each of the four elements independently, then extracting the values
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for the common node. The last row of the table lists the average values of the
three stress components at the common node. Clearly, the nodal stresses are not
continuous from element to element at the common node. As previously dis-
cussed, the magnitudes of the discontinuities should decrease as the element
mesh is refined.

In contrast, the element stress components for the same four elements are
shown in Table 9.2. The values listed in the table are computed at the element
centroid and include the equivalent (Von Mises) stress as defined previously.
While not included in the table, the principal stress components are also avail-
able from the solution. In general, the element stresses should be used in results
evaluation, especially in terms of application of failure theories.

9.8 PRACTICAL CONSIDERATIONS
Probably the most critical step in application of the finite element method is the
choice of element type for a given problem. The solid elements discussed in this
chapter are among the simplest elements available for use in stress analysis.
Many more element types are available to the finite element analyst. (One com-
mercial software system has no fewer than 141 element types.) The differences
in elements for stress analysis fall into three categories: (1) number of nodes,
hence, polynomial order of interpolation functions; (2) type of material behavior
(elastic, plastic, thermal stress, for example); and (3) loading and geometry of the
structure to be modeled (plane stress, plane strain, axisymmetric, general three
dimensional, bending, torsion).

As an example, consider Figure 9.12, which shows a flat plate supported at
the corners and loaded by a pressure distribution p(x, y) acting in the negative z
direction. The primary mode of deformation of the plate is bending in the z direc-
tion. To adequately describe the behavior, a finite element used to model the plate
must be such that continuity of slope in both xz and yz planes is ensured. There-
fore, a three-dimensional solid element as described in Section 9.8 would not be
appropriate as only the displacement components are included as nodal variables.
Instead, an element that includes partial derivatives representing the slopes must
be included as nodal variables. Plate elements have been developed on the basis
of the theory of thin plates (usually only covered in graduate programs) in which

Table 9.2 Element Stress Components (psi) for Four Elements Sharing a Common Node
in Example 9.4

�x �y �xy �e

Element 1 2553.5 209.71 179.87 2475.8
Element 2 1922.7 351.69 43.55 1774.8
Element 12 1827.5 264.42 154.44 1731.5
Element 99 2189.0 249.14 480.57 2236.4

p(x,y)

x y

z

Figure 9.12
Example of a thin
plate subjected to
bending.
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Figure 9.13
(a) A general, noncircular section in torsion. (b) Motion of a point from P to P′ as a
result of cross-section rotation. (c) A differential element at the surface of a torsion
member. (d) A differential element showing the contribution of shear stress to torque. 
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the bending deflection is governed by a fourth-order partial differential equation.
The simplest such element is a four-node element using cubic interpolation func-
tions and having 4 degrees of freedom (displacement, two slopes, and a mixed
second derivative) at each node [4]. A similar situation exists with shell (thin
curved plate) structures. Specialized elements are required (and available) for
structural analysis of shell structures. The major point here is that a breadth of
knowledge and experience is required for a finite element analyst to become truly
proficient at selecting the correct element type(s) for a finite element model and,
subsequently interpreting the results of the analysis.

Once the element type has been selected, the task becomes that of defining
the model geometry as a mesh of finite elements. In its most rudimentary form,
this task involves defining the coordinate location of every node in the model
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(note that, by default, the nodes define the geometry) followed by definition of all
elements in terms of nodes. Many years ago, in the early development of the
finite element method, the tasks of node and element definition were labor
intensive, as the definitions required use of the specific language statements of a
particular finite element software system. The tasks were laborious, to say the
least, and prone to error. With currently technology, especially graphical user
interfaces and portability of computer-aided design (CAD) databases, these
tasks have been greatly simplified. It is now possible, with many FEA programs,
to “import” the geometry of a component, structure, or assembly directly from a
CAD system, so that geometry does not need to be defined. The finite element
software can then automatically create a mesh (automeshing) of finite elements
to represent the geometry. The advantages of this capability include (1) the finite
element analyst need not redefine the geometry; consequently, (2) the designer’s
intent is not changed inadvertently; and (3) the finite element analyst is relieved
of the burden of specifying the details of the node and element definitions. The
major disadvantage is that the analyst is not in direct control of the meshing op-
eration.

The word direct is emphasized. In automeshing, the software user has some
control over the meshing process. There are two general types of automeshing
software, generally referred to as free meshing and mapped meshing. In free
meshing, the user specifies a general, qualitative mesh description, ranging from
coarse to fine, with 10 or more gradations between the extremes. The software
then generates the mesh accordingly. In mapped meshing, the user specifies quan-
titative information regarding node spacing, hence, element size, and the soft-
ware uses the prescribed information to generate nodes and elements. In either
method, the software user has some degree of control over the element mesh.

A very important aspect of meshing a model with elements is to ensure that,
in regions of geometric discontinuity, a finer mesh (smaller elements) is defined
in the region. This is true in all finite element analyses (structural, thermal, and
fluid), because it is known that gradients are higher in such areas and finer
meshes are required to adequately describe the physical behavior. In mapped
meshing, this is defined by the software user. Fortunately, in free meshing, this
aspect is accounted for in the software. As an example, refer back to Exam-
ple 9.4, in which we examined the stress concentration factor for a hole in a thin
plate subjected to tension. The solution was modeled using the free mesh feature
of a finite element software system. Figure 9.8b is a coarse mesh as generated by
the software. Geometry is defined by four lines and a quarter-circular arc; these,
in turn, define a single area of interest. Having specified the element type (in this
case a plane stress, elastic, quadrilateral), the area meshing feature is used to gen-
erate the elements as shown. It is important to note the relatively fine mesh in the
vicinity of the arc representing the hole. This is generated by the software auto-
matically in recognition of the geometry. The mesh-refined models of Fig-
ure 9.8c and 9.8d are also generated by the free meshing routine. From each of
these cases, we see that, not only does the number of elements increase, but the



Hutton: Fundamentals of 
Finite Element Analysis

9. Applications in Solid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

9.9 Torsion 375

relative size of the elements in the vicinity of the hole is maintained relative to
elements far removed from the discontinuity.

The automeshing capabilities of finite software as briefly described here are
extremely important in reducing the burden of defining a finite element model of
any geometric situation and should be used to the maximum extent. However,
recall that the results of a finite element analysis must be judged by human
knowledge of engineering principles. Automated model definition is a nicety of
modern finite element software; automated analysis of results is not.

Analysis of results is the postprocessing phase of finite element analysis.
Practical models contain hundreds, if not thousands, of elements, and the com-
puted displacements, strains, stresses, and so forth are available for every ele-
ment. Poring through the data can be a seemingly endless task. Fortunately, finite
element software has, as part of the postprocessing phase, routines for sorting
the results data in many ways. Of particular importance in stress analysis, the
data can be sorted in ascending or descending order of essentially any stress
component chosen by the user. Hence, one can readily determine the maximum
equivalent stress, for example, and determine the location of that stress by the
associated element location. In addition, with modern computer technology, it is
possible to produce color-coded stress contour plots of an entire model, to visu-
ally observe the stress distribution, the deformed shape, the strain energy distri-
bution, and many other criteria.

9.9 TORSION
Torsion (twisting) of structural members having circular cross sections is a com-
mon problem studied in elementary mechanics of materials. (Recall that earlier
we developed a finite element for such cases.) A major assumption (and the
assumption is quite valid for elastic deformation) in torsion of circular members
is that plane sections remain plane after twisting. In the case of torsion of a non-
circular cross section, this assumption is not valid and the problem is hence more
complicated. A general structural member subjected to torsion is shown in Fig-
ure 9.13a. The member is subjected to torque T acting about the x axis, and it is
assumed that the cross section is uniform along the length. An arbitrary point
located on a cross section at position x is shown in Figure 9.13b. If the cross sec-
tion twists through angle �, the point moves through arc ds and the displacement
components in the y and z directions are

v = −z�

w = y�
(9.132)

respectively. Since the angle of twist varies along the length of the member, we
conclude that the displacement components of Equation 9.132 are described by

v = v(x , z) w = w(x , y) (9.133)
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Owing to the noncircular cross section, plane sections do not remain plane;
instead, there is warping, hence displacement, in the x direction described by

u = u(y, z) (9.134)

Applying the definitions of the normal strain components to Equation 9.133
and 9.134, we find

εx = ∂u

∂x
= 0

εy = ∂v

∂y
= 0

εz = ∂w

∂ z
= 0

(9.135)

and it follows that the normal stress components are �x = �y = �z = 0. To com-
pute the shear strain components, we introduce the angle of twist per unit length

 such that the rotation of any cross section can be expressed as � = 
x . The dis-
placement components are then expressed as

u = u(y, z) v = −
x z w = 
x y (9.136)

and the shear strain components are

�xy = ∂u

∂y
+ ∂v

∂x
= ∂u

∂y
− 
z

�xz = ∂u

∂ z
+ ∂w

∂x
= ∂u

∂ z
+ 
y

�yz = ∂v

∂ z
+ ∂w

∂y
= 0

(9.137)

It follows from the stress-strain relations that the only nonzero stress components
are �xy and �xz and the only equilibrium equation (Appendix B) not identically
satisfied becomes

∂�xy

∂y
+ ∂�xz

∂ z
= 0 (9.138)

We now hypothesize the existence of a scalar function �(y, z) such that

�xy = ∂�

∂ z
�xz = − ∂�

∂y
(9.139)

In the context of the torsion problem, scalar function � is known as Prandtl’s
stress function and is generally analogous to the stream function and potential
function introduced in Chapter 8 for ideal fluid flow. If the relations of Equa-
tion 9.139 are substituted into Equation 9.138, we find that the equilibrium con-
dition is automatically satisfied. To discover the governing equation for the stress
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function, we compute the stress components as

�xy = G�xy = G

(
∂u

∂y
− 
z

)

�xz = G�yz = G

(
∂u

∂ z
+ 
y

) (9.140)

and note that

∂�xy

∂ z
= G

(
∂2u

∂y ∂ z
− 


)

∂�xz

∂y
= G

(
∂2u

∂y ∂ z
+ 


) (9.141)

Combining the last two equations results in

∂�xy

∂ z
− ∂�xz

∂y
= ∂2�

∂y2
+ ∂2�

∂ z2
= −2G
 (9.142)

as the governing equation for Prandtl’s stress function. As with the fluid formu-
lations of Chapter 8, note the analogy of Equation 9.142 with the case of heat
conduction. Here the term 2G
 is analogous to internal heat generation Q.

9.9.1 Boundary Condition

At the outside surface of the torsion member, no stress acts normal to the surface,
so the resultant of the shear stress components must be tangent to the surface.
This is illustrated in Figure 9.13c showing a differential element dS of the surface
(with the positive sense defined by the right-hand rule). For the normal stress to
be zero, we must have

�xy sin � − �xz cos � = 0 (9.143)

or

�xy
dz

ds
− �xz

dy

ds
= 0 (9.144)

Substituting the stress function relations, we obtain

∂�

dz

dz

ds
+ d�

dy

dy

ds
= d�

ds
= 0 (9.145)

which shows that the value of the stress function is constant on the surface. The
value is arbitrary and most often taken to be zero.

9.9.2 Torque

The stress function formulation of the torsion problem as given previously does
not explicitly include the applied torque. To obtain an expression relating the
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applied torque and the stress function, we must consider the moment equilibrium
condition. Referring to the differential element of a cross section shown in Fig-
ure 9.13d, the differential torque corresponding to the shear stresses acting on the
element is

dT = (y�xz − z�xy) d A (9.146)

and the total torque is computed as

T =
∫∫
A

(y�xz − z�xy) d A = −
∫∫
A

(
y
∂�

∂y
+ z

∂�

dz

)
dy dz = 2

∫∫
A

� d A

(9.147)

The final result in the last equation is obtained by integrating by parts and noting
the condition � = 0 on the surface.

9.9.3 Finite Element Formulation

Since the governing equation for the stress function is analogous to the heat con-
duction equation, it is not necessary to repeat the details of element formulation.
Instead, we reiterate the analogies and point out one very distinct difference in
how a finite element analysis of the torsion problem is conducted when the stress
function is used. First, note that the stress function is discretized as

�{y, z} =
M∑
i

Ni (y, z)� i (9.148)

so that the finite element computations result in nodal values analogous to nodal
temperatures (with the conductivity values set to unity). Second, the torsion term
2G
 is analogous to internal heat generation Q. However, the angle of twist per
unit length 
 is actually the unknown we wish to compute in the first place.
Preferably, in such a problem, we specify the geometry, material properties, and
applied torque, then compute the angle of twist per unit length as well as stress
values. However, the formulation here is such that we must specify a value for
angle of twist per unit length, compute the nodal values of the stress function,
then obtain the torque by summing the contributions of all elements to Equa-
tion 9.147. Since the governing equation is linear, the angle of twist per unit
length and the computed torque can be scaled in ratio as required. The procedure
is illustrated in the following example.

Figure 9.14a shows a shaft having a square cross section with 50-mm sides. The mate-
rial has shear modulus 80 Gpa. Shaft length is 1 m. The shaft is fixed at one end and sub-
jected to torque T at the other end. Determine the total angle of twist if the applied torque
is 100 N-m.

EXAMPLE 9.7
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■ Solution
Observing the symmetry conditions, we model one-fourth of the cross section using
three-node linear triangular elements, as in Figure 9.14b. For simplicity of illustration, we
use only two elements and note that, at nodes 2, 3, and 4, the value of the stress function
is specified as zero, since these nodes are on the surface. Also note that the planes of sym-
metry are such that the partial derivatives of the stress function across those planes are
zero. These conditions correspond to zero normal heat flux (perfect insulation) in a con-
duction problem.

The element stiffness matrices are given by

[
k (e)
] =
∫∫

A

([
∂ N

∂y

]T [
∂ N

∂y

]
+
[

∂ N

∂ z

]T [
∂ N

∂ z

])
d A

and element nodal forces are {
f (e)
} =
∫∫

A

2G
 [N ]T d A

(Note the use of y, z coordinates in accord with the coordinate system used in the preced-
ing developments.)

These relations are obtained by analogy with Equation 7.35 for heat conduction. The
interpolation functions are as defined in Equation 9.28.

Element 1

N1 = 1

2 A
(625 − 25y)

∂ N1

∂y
= − 25

2 A

∂ N1

∂yz
= 0

N2 = 1

2 A
(25y − 25z)

∂ N2

∂y
= 25

2 A

∂ N2

∂ z
= − 25

2 A

N3 = 1

2 A
(25z)

∂ N3

∂y
= 0

∂ N3

∂ z
= 25

2 A

Since the partial derivatives are all constant, the stiffness matrix is

[
k(1)
] = 1

4A




−25
25
0


 [ −25 25 0 ] + 1

4A




0
−25
25


 [ 0 −25 25 ]

Figure 9.14 Finite element model of Example 9.7.

25 mm

(a)

25 mm

(b)

4 3

1 2

2

1
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or

[
k(1)
] = 1

1250


 625 −625 0

−625 625 0
0 0 0


+ 1

1250


 0 0 0

0 625 −625
0 −625 625




=

 0.5 −0.5 0

−0.5 1 −0.5
0 −0.5 0.5




The element nodal forces are readily shown to be given by

{
f (1)
} = 2G
A

3




1
1
1




which we leave in this general form for the time being.

Element 2

N1 = 1

2A
(625 − 25z)

∂N1

∂y
= 0

∂N1

∂z
= − 25

2A

N2 = 1

2A
(25y)

∂N2

∂y
= 25

2A

∂N2

∂z
= 0

N3 = 1

2A
(25z − 25y)

∂N3

∂y
= − 25

2A

∂N3

∂z
= 25

2A

[
k(2)
] = 1

4A




0
25

−25


 [ 0 25 −25 ] + 1

4A




−25
0
25


 [ −25 0 25 ]

[k(2) ] = 1

1250


 0 0 0

0 625 −625
0 −625 625


+ 1

1250


 625 0 −625

0 0 0
−625 0 625




=

 0.5 0 −0.5

0 0.5 −0.5
−0.5 −0.5 1.0




For element 2, the nodal forces are also given by

{
f (2)
} = 2G
A

3




1
1
1




Noting the element to global nodal correspondences, the assembled system equa-
tions are 


1 −0.5 0 −0.5

−0.5 1 −0.5 0
0 −0.5 1 −0.5

−0.5 0 −0.5 1







�1

�2

�3

�4




= 2G
A

3




2
1
2
1



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Since nodes 2, 3, and 4 are on the outside surface, we set � 2 = � 3 = � 4 = 0 to obtain the
solution

� 1 = 4G
A

3

We still have not addressed the problem that the angle of twist per unit length is unknown
and continue to ignore that problem temporarily, since for this very simple two-element
model, we can continue with the hand solution. The torque is given by Equation 9.149 as

T = 2

∫∫

A

� d A

but the integration is over the entire cross section. Hence, we must sum the contribution
from each element and, in this case, since we applied the symmetry conditions to reduce
the model to one-fourth size, multiply the result by 4. For each element, the torque
contribution is

T (e) = 2

∫∫

A

[
N (e)
]

d A
{
� (e)
}

and for the linear triangular element this simply becomes

T (e) = 2 A

3

(
�

(e)
1 + �

(e)
2 + �

(e)
3

)

Accounting for the use of symmetry, the total torque indicated by our two-element solu-
tion is

T = 4
2 A

3

(
�

(1)
1 + �

(2)
2

) = 64

9
G
A2

or

T



= 64

9
G A2

Now we address the problem of unknown angle of twist per unit length. Noting, in the last
equation, the ratio is constant for specified shear modulus and cross-sectional area, we
could simply specify an arbitrary value of 
, follow the solution procedure to compute
the corresponding torque, compute the ratio, and scale the result as needed. If, for exam-
ple, we had assumed 
 = 10−6 rad/mm, our result would be

T = 64

9
(80)(103)(10−6)(312.5)2 = 55555.6 N·mm ⇒ 55.6 N·m

Thus, to answer the original question, we compute the angle of twist per unit length cor-
responding to the specified torque as


 = 100

55.6
(10−6) ≈ 1.8(10−6) rad/mm
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and the total angle of twist would be

� = 
L = 1.8(10−6)(1000) = 1.8(10−3) rad

or about 0.1 degree. The exact solution [5] for this problem shows the angle of twist per
unit length to be 
 = 1.42(10−6) rad/mm . Hence, our very simple model is in error by
about 27 percent.

9.10 SUMMARY
In this chapter, we present the development of the most basic finite elements used
in stress analysis in solid mechanics. As the finite element method was originally
developed for stress analysis, the range of element and problem types that can be
analyzed by the method are very large. Our description of the basic concepts is
intended to give the reader insight on the general procedures used to develop
element equations and understand the ramifications on element, hence, model,
formulation for various states of stress. As mentioned in the context of plate
bending in Section 9.8, finite element analysis involves many advanced topics in
engineering not generally covered in an undergraduate program. The interested
reader is referred to the many advanced-level texts on the finite element method
for further study. The intent here is to introduce the basic concepts and generate
interest in learning more of the subject.
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PROBLEMS
9.1 Use the general stress-strain relations from Appendix B and the assumptions of

plane stress to derive Equations 9.2.
9.2 Let {z} be the N × 1 column matrix [z1 z2 z3 · · · z N ]T and let [A] be an N ×

N real-valued matrix. Show that the matrix product {z}T [A]{z} always results in
a scalar, quadratic function of the components zi.
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9.3 Beginning with the general elastic stress-strain relations, derive Equation 9.50
for the conditions of plane strain.

9.4 Determine the strain-displacement matrix [B] for a three-node triangular element
in plane strain.

9.5 Determine the strain-displacement matrix [B] for a four-node rectangular element
in plane stress.

9.6 Using the interpolation functions given in Equation 9.28, determine the
explicit expression for the strain energy in a three-node triangular element in
plane stress.

9.7 The constant strain triangular element shown in Figure P9.7 is subjected to
a uniformly distributed pressure as shown. Determine the equivalent nodal
forces.

Figure P9.7

9.8 The constant strain triangular element shown in Figure P9.8 is subjected
to the linearly varying pressure as shown and a body force from gravity
(g = 386.4 in./s2) in the negative y direction. Determine the equivalent
nodal forces.

Figure P9.8

9.9 The element of Figure P9.7 is of a material for which the modulus of elasticity is
E = 15 × 106 psi and Poisson’s ratio is � = 0.3. Determine the element stiffness
matrix if the element is subjected to plane stress.

1 (0, 0)

2
(0.5, 1)

3
(	0.1, 0.8)

p0

3 (0.5, 2)

2 (1, 1)

1 (0, 0)

p0
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9.10 Repeat Problem 9.9 for plane strain.
9.11 Repeat Problem 9.9 for an axisymmetric element.
9.12 The overall loading of the element in Problem 9.7 is such that the nodal

displacements are u1 = 0.003 in., v1 = 0, u2 = 0.001 in., v2 = 0.0005 in.,
u3 = 0.0015 in., v3 = 0. Calculate the element strain, stress, and strain energy
assuming plane stress conditions.

9.13 Repeat Problem 9.13 for plane strain conditions.
9.14 A thin plate of unit thickness is supported and loaded as shown in Figure P9.14.

The material is steel, for which E = 30 × 106 and � = 0.3. Using the four
constant strain triangular elements shown by the dashed lines, compute the
deflection of point A. Compare the total strain energy with the work of the
external force system.

Figure P9.14

9.15 Integrate Equation 9.65 by the Gaussian numerical procedure to verify
Equation 9.66.

9.16 A three-node triangular element having nodal coordinates, shown in
Figure P9.16, is to be used as an axisymmetric element. The material properties
are E = 82 GPa and � = 0.3. The dimensions are in millimeters. Calculate the
element stiffness matrix using both the exact definition of Equation 9.99 and
the centroidal approximation of Equation 9.100. Are the results significantly
different?

Figure P9.16

 1
(10, 0)

3
(15, 10)

2
(20, 	10)

20 in.

30 in.

p0 � 300 psi
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9.17 The axisymmetric element in Figure P9.16 is subjected to a uniform, normal
pressure p0 acting on the surface defined by nodes 1 and 3. Compute the
equivalent nodal forces.

9.18 The axisymmetric element in Figure P9.16 is part of a body rotating about
the z axis at a constant rate of 3600 revolutions per minute. Determine the
corresponding nodal forces.

9.19 Consider the higher-order three-dimensional element shown in Figure P9.19,
which is assumed to be subjected to a general state of stress. The element has
20 nodes, but all nodes are not shown for clarity.
a. What is the order of the polynomial used for interpolation functions?
b. How will the strains (therefore, stresses) vary with position in the element?
c. What is the size of the stiffness matrix?
d. What advantages and disadvantages are apparent in using this element in

comparison to an eight-node brick element?

Figure P9.19

9.20 Show that in a uniaxial tension test the distortion energy at yielding is given by
Equation 9.128.

9.21 A finite element analysis of a certain component yields the maximum principal
stresses �1 = 200 MPa, �2 = 0, �3 = −90 MPa. If the tensile strength of the
material is 270 MPa, is yielding indicated according to the distortion energy
theory? If not, what is the “safety factor” (ratio of yield strength to equivalent
stress)?

9.22 Repeat Problem 9.21 if the applicable failure theory is the maximum shear stress
theory.

9.23 The torsion problem as developed in Section 9.9 has a governing equation
analogous to that of two-dimensional heat conduction. The stress function is
analogous to temperature, and the angle of twist per unit length term (2G
) is
analogous to internal heat generation.
a. What heat transfer quantities are analogous to the shear stress components

in the torsion problem?
b. If one solved a torsion problem using finite element software for two-

dimensional heat transfer, how would the torque be computed?
9.24 The torsion problem as developed in Section 9.9 is two-dimensional when posed

in terms of the Prandtl stress function. Could three-dimensional elastic solid
elements (such as the eight-node brick element) be used to model the torsion
problem? If yes, how would a pure torsional loading be applied?

9.25 Figure P9.25 shows the cross section of a hexagonal shaft used in a quick-change
power transmission coupling. The shear modulus of the material is 12 × 106 psi
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Figure P9.25

and the shaft length is 12 in. Determine the total angle of twist when the shaft
is subjected to a net torque of 250 ft-lb. Use linear triangular elements and take
advantage of all appropriate symmetry conditions.

z

y

0.875 in.
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C H A P T E R 10
Structural Dynamics

10.1 INTRODUCTION
In addition to static analyses, the finite element method is a powerful tool for
analyzing the dynamic response of structures. As illustrated in Chapter 7, the
finite element method in combination with the finite difference method can be
used to examine the transient response of heat transfer situations. A similar
approach can be used to analyze the transient dynamic response of mechanical
structures. However, in the analysis of structures, an additional tool is available.
The tool, known as modal analysis, has its basis in the fact that every mechani-
cal structure exhibits natural modes of vibration (dynamic response) and these
modes can be readily computed given the elastic and inertia characteristics of the
structure.

In this chapter, we introduce the concept of natural modes of vibration via the
simple harmonic oscillator system. Using the finite element concepts developed
in earlier chapters, the simple harmonic oscillator is represented as a finite element
system and the basic ideas of natural frequency and natural mode are introduced.
The single degree of freedom simple harmonic oscillator is then extended to mul-
tiple degrees of freedom, to illustrate the existence of multiple natural frequencies
and vibration modes. From this basis, we proceed to more general dynamic analy-
ses using the finite element method.

10.2 THE SIMPLE HARMONIC OSCILLATOR
The so-called simple harmonic oscillator is a combination of a linear elastic
spring having free length L and a concentrated mass as shown in Figure 10.1a.
The mass of the spring is considered negligible. The system is assumed to be
subjected to gravity in the vertical direction, and the upper end of the spring is
attached to a rigid support. With the system in equilibrium as in Figure 10.1b, the
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(a)

L

m

k

�x
�st

(b)

L

m

k

�x

(c)

k (�st �x)

mg
�x

m

Figure 10.1
(a) Simple harmonic oscillator. (b) Static equilibrium
position. (c) Free-body diagram for arbitrary
position x.

gravitational force is in equilibrium with the spring force so∑
Fx = 0 = mg − k�st (10.1)

where �st is the equilibrium elongation of the spring and x is measured positive
downward from the equilibrium position; that is, when x = 0, the system is at its
equilibrium position.

If, by some action, the mass is displaced from its equilibrium position,
the force system becomes unbalanced, as shown by the free-body diagram of
Figure 10.1c. We must apply Newton’s second law to obtain

`
∑

Fx = max = m
d2x

dt 2
= mg − k(�st + x ) (10.2)

Incorporating the equilibrium condition expressed by Equation 10.1, Equation 10.2
becomes

m
d2x

dt 2
+ kx = 0 (10.3)

Equation 10.3 is a second-order, linear, ordinary differential equation with con-
stant coefficients. (And physically, we assume that the coefficients m and k are
positive.) Equation 10.3 is most-often expressed in the form

d2x

dt 2
+ k

m
x = d2x

dt 2
+ �2x = 0 (10.4)

The general solution for Equation 10.4 is 

x (t ) = A sin �t + B cos �t (10.5)

where A and B are the constants of integration. Recall that the solution of a
second-order differential equation requires the specification of two constants to
determine the solution to a specific problem. When the differential equation de-
scribes the time response of a mechanical system, the constants of integration are
most-often called the initial conditions.
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Equation 10.5 shows that the variation of displacement of the mass as a func-
tion of time is periodic. Using basic trigonometric identities, Equation 10.5 can
be equivalently expressed as

x (t ) = C sin(�t + �) (10.6)

where the constants A and B have been replaced by constants of integration C and
�. Per Equation 10.6, the mass oscillates sinusoidally at circular frequency � and
with constant amplitude C. Phase angle � is indicative of position at time 0 since
x (0) = C sin �. Also, note that, since x (t ) is measured about the equilibrium
position, the oscillation occurs about that position. The circular frequency is

� =
√

k

m
rad/sec (10.7)

and is a constant value determined by the physical characteristics of the system.
In this simple case, the natural circular frequency, as it is often called, depends
on the spring constant and mass only. Therefore, if the mass is displaced from the
equilibrium position and released, the oscillatory motion occurs at a constant
frequency determined by the physical parameters of the system. In the case
described, the oscillatory motion is described as free vibration, since the system
is free of all external forces excepting gravitational attraction.

Next, we consider the simple harmonic oscillator in the finite element con-
text. From Chapter 2, the stiffness matrix of the spring is

[
k (e)

] = k

[
1 −1

−1 1

]
(10.8)

and the equilibrium equations for the element are 

k

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

f2

}
(10.9)

which is identical to Equation 2.4. However, the spring element is not in static
equilibrium, so we must examine the nodal forces in detail. 

Figure 10.2 shows free-body diagrams of the spring element and mass,
respectively. The free-body diagrams depict snapshots in time when the system
is in motion and, hence, are dynamic free-body diagrams. As the mass of the
spring is considered negligible, Equation 10.9 is valid for the spring element. For
the mass, we have

∑
Fx = max = m

d2u2

dt 2
= mg − f2 (10.10)

from which the force on node 2 is

f2 = mg − m
d2u2

dt 2
(10.11)

u1

u2 f2

f1

1

2

(a)

f2

mg

(b)

Figure 10.2 Free-
body diagrams of (a) a
spring and (b) a mass,
when treated as parts
of a finite element
system.
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Substituting for f2 in Equation 10.9 gives

k

[
1 −1

−1 1

] {
u1

u2

}
=

{
f1

mg − mü2

}
(10.12)

where ü2 = d2u2/dt 2. The dynamic effect of the inertia of the attached mass is
shown in the second of the two equations represented by Equation 10.12. Equa-
tion 10.12 can also be expressed as[

0 0
0 m

]{
ü1

ü2

}
+ k

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

mg

}
(10.13)

where we have introduced the mass matrix

[m] =
[

0 0
0 m

]
(10.14)

and the nodal acceleration matrix

{ü} =
{

ü1

ü2

}
(10.15)

For the simple harmonic oscillator of Figure 10.1, we have the constraint (bound-
ary) condition u1 = 0, so the first of Equation 10.13 becomes simply −ku2 = f1,
while the second equation is

mü2 + ku2 = mg (10.16)

Note that Equation 10.16 is not the same as Equation 10.3. Do the two equations
represent the same physical phenomenon? To show that the answer is yes, we
solve Equation 10.16 and compare the results with the solution given in Equa-
tion 10.6.

Recalling that the solution of any differential equation is the sum of a homo-
geneous (complementary) solution and a particular solution, both solutions must
be obtained for Equation 10.16, since the equation is not homogeneous (i.e., the
right-hand side is nonzero). Setting the right-hand side to zero, the form of the
homogeneous equation is the same as that of Equation 10.3, so by analogy,
the homogeneous solution is

u2h(t ) = C sin(�t + �) (10.17)

where �, C, and � are as previously defined. The particular solution must satisfy
Equation 10.16 exactly for all values of time. As the right-hand side is constant,
the particular solution must also be constant; hence,

u2p(t ) = mg

k
= �st (10.18)

which represents the static equilibrium solution per Equation 10.1. The complete
solution is then

u2(t ) = u2h(t ) + u2p(t ) = �st + C sin(�t + �) (10.19)
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Equation 10.19 represents a sinusoidal oscillation around the equilibrium posi-
tion and is, therefore, the same as the solution given in Equation 10.6. Given the
displacement of node 2, the reaction force at node 1 is obtained via the constraint
equation as

f1 = −ku2(t ) = −k(�st + C sin(�t + �)) (10.20)

Amplitude C and phase angle � are determined by application of the initial con-
ditions, as illustrated in the following example.

A simple harmonic oscillator has k = 25 lb/in. and mg = 20 lb. The mass is displaced
downward a distance of 1.5 in. from the equilibrium position. The mass is released from
that position with zero initial velocity at t = 0. Determine (a) the natural circular fre-
quency, (b) the amplitude of the oscillatory motion, and (c) the phase angle of the oscil-
latory motion. 

■ Solution
The natural circular frequency is

� =
√

k

m
=

√
25

20/386.4
= 21.98 rad/sec

where, for consistency of units, the mass is obtained from the weight using g = 386.4 in./s2.
The given initial conditions are

u2(t = 0) = �st + 1.5 in. u̇2(t = 0) = 0 in./sec

and the static deflection is �st = W/k = 20/25 = 0.8 in. Therefore, we have u2(0) =
2.3 in. The motion of node 2 (hence, the mass) is then given by Equation 10.19 as

u2(t ) = 0.8 + C sin(21.98t + �) in.

and the velocity is 

u̇2(t ) = du2

dt
= 21.98C cos(21.98t + �) in./sec

Applying the initial conditions results in the equations

u2(t = 0) = 2.3 = 0.8 + C sin �

u̇2(t ) = 0 = 21.98C cos �

The initial velocity equation is satisfied by C = 0 or � = �/2. If the former is true, the
initial displacement equation cannot be satisfied, so we conclude that � = �/2. Substi-
tuting into the displacement equation then gives the amplitude C as 1.5 in. The complete
motion solution is

u2(t ) = 0.8 + 1.5 sin

(
21.98t + �

2

)
= 0.8 + 1.5 cos(21.98t ) in.

EXAMPLE 10.1
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m

k

F(t)�x

Figure 10.3 Simple
harmonic oscillator
subjected to external
force F(t).

indicating that the mass oscillates 1.5 in. above and below the static equilibrium position
continuously in time and completes one cycle every 2�/21.98 sec. Therefore, the cyclic
frequency is

f = �

2�
= 21.98

2�
= 3.5 cycles/sec (Hz)

The cyclic frequency is often simply referred to as the natural frequency. The time required
to complete one cycle of motion is known as the period of oscillation, given by

� = 1

f
= 1

3.5
= 0.286 sec

10.2.1 Forced Vibration

Figure 10.3 shows a simple harmonic oscillator in which the mass is acted on by
a time-varying external force F(t). The resulting motion is known as forced
vibration, owing to the presence of the external forcing function. As the only dif-
ference in the applicable free-body diagrams is the external force acting on the
mass, the finite element form of the system equations can be written directly
from Equation 10.13 as[

0 0
0 m

]{
ü1

ü2

}
+ k

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

mg + F (t )

}
(10.21)

While the constraint equation for the reaction force at node 1 is unchanged, the
differential equation for the motion of node 2 is now

mü2 + ku2 = mg + F (t ) (10.22)

The complete solution for Equation 10.22 is the sum of the homogeneous solu-
tion and two particular solutions, since two nonzero terms are on the right-hand
side. As we already obtained the homogeneous solution and the particular solu-
tion for the mg term, we focus on the particular solution for the external force.
The particular solution of interest must satisfy

mü2 + ku2 = F (t ) (10.23)

exactly for all values of time. Dividing by the mass, we obtain

ü2 + �2u2 = F (t )

m
(10.24)

where �2 = k/m is the square of the natural circular frequency. Of particular
importance in structural dynamic analysis is the case when external forcing func-
tions exhibit sinusoidal variation in time, since such forces are quite common.
Therefore, we consider the case in which

F (t ) = F0 sin � f t (10.25)
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where F0 is the amplitude or maximum value of the force and � f is the circular
frequency of the forcing function, or forcing frequency for short. Equation 10.24
becomes

ü2 + �2u2 = F0

m
sin � f t (10.26)

To satisfy Equation 10.24 exactly for all values of time, the terms on the left must
contain a sine function identical to the sine term on the right-hand side. Since the
second derivative of the sine function is another sine function, we assume a
solution in the form u2(t ) = U sin � f t , where U is a constant to be determined.
Differentiating twice and substituting, Equation 10.26 becomes

−U �2
f sin � f t + U �2 sin � f t = F0

m
sin � f t (10.27)

from which

U = F0/m

�2 − �2
f

(10.28)

The particular solution representing response of the simple harmonic oscillator
to a sinusoidally varying force is then

u2(t ) = F0/m

�2 − �2
f

sin � f t (10.29)

The motion represented by Equation 10.29 is most often simply called the forced
response and exhibits two important characteristics: (1) the frequency of the
forced response is the same as the frequency of the forcing function, and (2) if
the circular frequency of the forcing function is very near the natural circular
frequency of the system, the denominator in Equation 10.29 becomes very small.
The latter is an extremely important observation, as the result is large amplitude
of motion. In the case � f = �, Equation 10.29 indicates an infinite amplitude.
This condition is known as resonance, and for this reason, the natural circular
frequency of the system is often called the resonant frequency. Mathematically,
Equation 10.29 is not a valid solution for the resonant condition (Problem 10.5);
however, the correct solution for the resonant condition nevertheless exhibits
unbounded amplitude growth with time.

The simple harmonic oscillator just modeled contains no device for energy
dissipation (damping). Consequently, the free vibration solution, Equation 10.20,
represents motion that continues without end. Physically, such motion is not pos-
sible, since all systems contain some type of dissipation mechanism, such as
internal or external friction, air resistance, or devices specifically designed for the
purpose. Similarly, the infinite amplitude indicated for the resonant condition
cannot be attained by a real system because of the presence of damping. However,
relatively large, yet bounded, amplitudes occur at or near the resonant frequency.
Hence, the resonant condition is to be avoided if at all possible.As is subsequently
shown, physical systems actually exhibit multiple natural frequencies, so multi-
ple resonant conditions exist.
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m

m

2k

3

2

1

3k

U2

�1

U3

Figure 10.4 A
spring-mass system
exhibiting 2 degrees
of freedom.

10.3 MULTIPLE DEGREES-OF-FREEDOM
SYSTEMS

Figure 10.4 shows a system of two spring elements having concentrated masses
attached at nodes 2 and 3 in the global coordinate system. As in previous exam-
ples, the system is subjected to gravity and the upper spring is attached to a rigid
support at node 1. Of interest here is the dynamic response of the system of two
springs and two masses when the equilibrium condition is disturbed by some
external influence and then free to oscillate without external force. We could take
the Newtonian mechanics approach by drawing the appropriate free-body dia-
grams and applying Newton’s second law of motion to obtain the governing
equations. Instead, we take the finite element approach. By now, the procedure of
assembling the system stiffness matrix should be routine. Following the proce-
dure, we obtain

[K ] =

 3k −3k 0

−3k 5k −2k
0 −2k 2k


 (10.30)

as the system stiffness matrix. But what of the mass/inertia matrix? As the masses
are concentrated at element nodes, we define the system mass matrix as

[M] =

 0 0 0

0 m 0
0 0 m


 (10.31)

The equations of motion can be expressed as

[M]




Ü1

Ü2

Ü3


 + [K ]




U1

U2

U3


 =




R1

mg
mg


 (10.32)

where R1 is the dynamic reaction force at node 1.
Invoking the constraint condition U1 = 0, Equation 10.32 become

[
m 0
0 m

]{
Ü2

Ü3

}
+

⌊
5k −2k

−2k 2k

⌋{
U2

U3

}
=

{
mg
mg

}
(10.33)

which is a system of two second-order, linear, ordinary differential equations in
the two unknown system displacements U2 and U3. As the gravitational forces
indicated by the forcing function represent the static equilibrium condition, these
are neglected and the system of equations rewritten as[

m 0
0 m

]{
Ü2

Ü3

}
+

⌊
5k −2k

−2k 2k

⌋{
U2

U3

}
=

{
0
0

}
(10.34)

As a practical matter, most finite element software packages do not include
the structural weight in an analysis problem. Instead, inclusion of the structural
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weight is an option that must be selected by the user of the software. Whether to
include gravitational effects is a judgment made by the analyst based on the
specifics of a given structural geometry and loading.

The system of second-order, linear, ordinary, homogeneous differential
equations given by Equation 10.34 represents the free-vibration response of the
2 degrees-of-freedom system of Figure 10.4. As a freely oscillating system, we
seek solutions in the form of harmonic motion as

U2(t ) = A2 sin(�t + �)

U3(t ) = A3 sin(�t + �)
(10.35)

where A2 and A3 are the vibration amplitudes of nodes 2 and 3 (the masses at-
tached to nodes 2 and 3); � is an unknown, assumed harmonic circular frequency
of motion; and � is the phase angle of such motion. Taking the second derivatives
with respect to time of the assumed solutions and substituting into Equation 10.34
results in

−�2

[
m 0
0 m

]{
A2

A3

}
sin(�t + �) +

[
5k −2k

−2k 2k

]{
A2

A3

}
sin(�t + �) =

{
0
0

}

(10.36)

or [
5k − m�2 −2k

−2k 2k − m�2

]{
A2

A3

}
sin(�t + �) =

{
0
0

}
(10.37)

Equation 10.37 is a system of two, homogeneous algebraic equations, which
must be solved for the vibration amplitudes A2 and A3. From linear algebra, a
system of homogeneous algebraic equations has nontrivial solutions if and only
if the determinant of the coefficient matrix is zero. Therefore, for nontrivial
solutions, ∣∣∣∣ 5k − m�2 −2k

−2k 2k − m�2

∣∣∣∣ = 0 (10.38)

which gives

(5k − m�2)(2k − m�2) − 4k2 = 0 (10.39)

Equation 10.39 is known as the characteristic equation or frequency equation of
the physical system. As k and m are known positive constants, Equation 10.39 is
treated as a quadratic equation in the unknown �2 and solved by the quadratic
formula to obtain two roots

�2
1 = k

m

�2
2 = 6

k

m

(10.40)



Hutton: Fundamentals of 
Finite Element Analysis

10. Structural Dynamics Text © The McGraw−Hill 
Companies, 2004

396 CHAPTER 10 Structural Dynamics

or

�1 =
√

k

m

�2 =
√

6
k

m

(10.41)

In mathematical rigor, there are four roots, since the negative values correspond-
ing to Equation 10.41 also satisfy the frequency equation. The negative values
are rejected because a negative frequency has no physical meaning and use of the
negative values in the assumed solution (Equation 10.35) introduces only a phase
shift and represents the same motion as that corresponding to the positive root.

The 2 degrees-of-freedom system of Figure 10.4 is found to have two natural
circular frequencies of oscillation. As is customary, the numerically smaller of
the two is designated as �1 and known as the fundamental frequency. The task
remains to determine the amplitudes A2 and A3 in the assumed solution. For this
purpose, Equation 10.37 is[

5k − m�2 −2k
−2k 2k − m�2

]{
A2

A3

}
=

{
0
0

}
(10.42)

As Equation 10.42 is a set of homogeneous equations, we can find no absolute
values of the amplitudes. We can, however, obtain information regarding the
numerical relations among the amplitudes as follows. If we substitute �2 = �2

1 =
k/m into either algebraic equation, we obtain A3 = 2 A2, which defines the
amplitude ratio A3/A2 = 2 for the first, or fundamental, mode of vibration. That
is, if the system oscillates at its fundamental frequency �1, the amplitude of
oscillation of m2 is twice that of m1. (Note that we are unable to calculate the
absolute value of either amplitude; only the ratio can be determined. The absolute
values depend on the initial conditions of motion, as is subsequently illustrated.)
The displacement equations for the fundamental mode are then

U2(t ) = A(1)
2 sin(�1t + �1)

U3(t ) = A(1)
3 sin(�1 + �1) = 2 A(1)

2 sin(�1t + �1)
(10.43)

where the superscript on the amplitudes is used to indicate that the displacements
correspond to vibration at the fundamental frequency.

Next we substitute the second natural circular frequency �2 = �2
2 = 6k/m

into either equation and obtain the relation A3 = −0.5 A2, which defines the sec-
ond amplitude ratio as A3/A2 = −0.5. So, in the second natural mode of vibra-
tion, the masses move in opposite directions. The displacements corresponding
to the second frequency are then

U2(t ) = A(2)
2 sin(�2t + �2)

U3(t ) = A(2)
3 sin(�2 + �2) = −0.5 A(2)

2 sin(�2t + �2)
(10.44)

where again the superscript refers to the frequency.
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Therefore, the free-vibration response of the 2 degree-of-freedom system is
given by

U2(t ) = A(1)
2 sin(�1t + �1) + A(2)

2 sin(�2t + �2)

U3(t ) = 2 A(1)
2 sin(�1t + �1) − 0.5 A(2)

2 sin(�2 + �2)
(10.45)

and we note the four unknown constants in the solution; specifically, these are the
amplitudes A(1)

2 , A(2)
2 and the phase angles �1 and �2. Evaluation of the constants

is illustrated in a subsequent example.
Depending on the reader’s mathematical background, the analysis of the

2 degree-of-freedom vibration problem may be recognized as an eigenvalue
problem [1]. The computed natural circular frequencies are the eigenvalues of
the problem and the amplitude ratios represent the eigenvectors of the problem.
Equation 10.45 represents the response of the system in terms of the natural
modes of vibration. Such a solution is often referred to as being obtained by
modal superposition or simply modal analysis. To represent the complete solu-
tion for the system, we use the matrix notation
{

U2(t )
U3(t )

}
=

{
A(1)

2

2 A(1)
2

}
sin(�1t + �1) +

{
A(2)

2

−0.5 A(2)
2

}
sin(�2t + �2) (10.46)

which shows that the modes interact to produce the overall motion of the system.

Given the system of Figure 10.4 with k = 40 lb/in. and mg = W = 20 lb, determine

(a) The natural frequencies of the system.
(b) The free response, if the initial conditions are 

U2(t = 0) = 1 in. U3(t = 0) = 0.5 in. U̇2(t = 0) = U̇3(t = 0) = 0

These initial conditions are specified in reference to the equilibrium position of the
system, so the computed displacement functions do not include the effect of gravity.

■ Solution
Per Equation 10.41, the natural circular frequencies are

�1 =
√

k

m
=

√
40

20/g
=

√
40(386.4)

20
= 27.8 rad/sec

�2 =
√

6k

m
=

√
6(40)

20/g
=

√
6(40)(386.4)

20
= 68.1 rad/sec

The free-vibration response is given by Equation 10.35 as

U2(t ) = A(1)
2 sin(27.8t + �1) + A(2)

2 sin(68.1t + �2)

U3(t ) = 2 A(1)
2 sin(27.8t + �1) − 0.5 A(2)

2 sin(68.1t + �2)

EXAMPLE 10.2
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The amplitudes and phase angles are determined by applying the initial conditions, which
are

U2(0) = 1 = A(1)
2 sin �1 + A(2)

2 sin �2

U3(0) = 0.5 = 2 A(1)
2 sin �1 − 0.5 A(2)

2 sin �2

U̇2(0) = 0 = 27.8 A(1)
2 cos �1 + 68.1 A(2)

2 cos �2

U̇3(0) = 0 = 2(27.8) A(1)
2 cos �1 − 0.5(68.1) A(2)

2 cos �2

The initial conditions produce a system of four algebraic equations in the four un-
knowns A(1)

2 , A(2)
2 , �1, �2 . Solution of the equations is not trivial, owing to the presence

of the trigonometric functions. Letting P = A(1)
2 sin �1 and Q = A(2)

2 sin �2 , the displace-
ment initial condition equations become

P + Q = 1

2P − 0.5Q = 0.5

which are readily solved to obtain

P = A(1)
2 sin �1 = 0.4 and Q = A(2)

2 sin �2 = 0.6

Similarly, setting R = A(1)
2 cos �1 and S = A(2)

2 sin �2 , the initial velocity equations are

27.8R + 68.1S = 0

2(27.8) R − 0.5(68.1)S = 0

representing a homogeneous system in the variables R and S. Nontrivial solutions exist
only if the determinant of the coefficient matrix is zero. In this case, the determinant is not
zero, as may easily be verified by direct computation. There are no nontrivial solutions;
hence, R = S = 0. Based on physical argument, the amplitudes cannot be zero, so we
must conclude that cos �1 = cos �2 = 0 ⇒ �1 = �2 = �/2. It follows that the sine func-
tion of the phase angles have unity value; hence, A(1)

2 = 0.4 and A(2)
2 = 0.6. Substituting

the amplitudes into the general solution form while noting that sin(�t + �/2) = cos �t ,
the free-vibration response of each mass is

U2(t ) = 0.4 cos 27.8t + 0.6 cos 68.1t

U3(t ) = 0.8 cos 27.8t − 0.3 cos 68.1t

The displacement response of each mass is seen to be a combination of motions corre-
sponding to the natural circular frequencies of the system. Such a phenomenon is charac-
teristic of vibrating structural systems. All the natural modes of vibration participate in
the general motion of a structure. 

10.3.1 Many-Degrees-of-Freedom Systems

As illustrated by the system of two springs and masses, there are two natural
frequencies and two natural modes of vibration. If we extend the analysis to



Hutton: Fundamentals of 
Finite Element Analysis

10. Structural Dynamics Text © The McGraw−Hill 
Companies, 2004

10.3 Multiple Degrees-of-Freedom Systems 399

a system of springs and masses having N degrees of freedom, as depicted in
Figure 10.5, and apply the assembly procedure for a finite element analysis, the
finite element equations are of the form

[M ]{Ü } + [K ]{U } = {0} (10.47)

where [M ] is the system mass matrix and [K ] is the system stiffness matrix. To
determine the natural frequencies and mode shapes of the system’s vibration
modes, we assume, as in the 1 and 2 degrees-of-freedom cases, that

Ui (t ) = Ai sin(�t + �) (10.48)

Substitution of the assumed solution into the system equations leads to the fre-
quency equation

|[K ] − �2[M ]| = 0 (10.49)

which is a polynomial of order N in the variable �2. The solution of Equation 10.49
results in N natural frequencies �j , which, for structural systems, can be shown to
be real but not necessarily distinct; that is, repeated roots can occur. As discussed
many times, the finite element equations cannot be solved unless boundary condi-
tions are applied so that the equations become inhomogeneous. A similar phe-
nomenon exists when determining the system natural frequencies and mode
shapes. If the system is not constrained, rigid body motion is possible and one or
more of the computed natural frequencies has a value of zero.Athree-dimensional
system has six zero-valued natural frequencies, corresponding to rigid body trans-
lation in the three coordinate axes and rigid body rotations about the three coor-
dinate axes. Therefore, if improperly constrained, a structural system exhibits
repeated zero roots of the frequency equation.

Assuming that constraints are properly applied, the frequencies resulting
from the solution of Equation 10.49 are substituted, one at a time, into Equa-
tion 10.47 and the amplitude ratios (eigenvectors) computed for each natural
mode of vibration. The general solution for each degree of freedom is then
expressed as

Ui (t ) =
N∑

j=1

A( j)
i sin(�j t + �j ) i = 1, N (10.50)

illustrating that the displacement of each mass is the sum of contributions from
each of the N natural modes. Displacement solutions expressed by Equa-
tion 10.50 are said to be obtained by modal superposition. We add the indepen-
dent solutions of the linear differential equations of motion.

Determine the natural frequencies and modal amplitude vectors for the 3 degrees-of-
freedom system depicted in Figure 10.6a.

m1

m2

mN

k1

k2

k3

kN

Figure 10. 5 A
spring-mass system
exhibiting arbitrarily
many degrees of
freedom.

EXAMPLE 10.3
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■ Solution
The finite element model is shown in Figure 10.6b, with node and element numbers as
indicated. Assembly of the global stiffness matrix results in

[K ] =




k −k 0 0
−k 3k −2k 0
0 −2k 3k −k
0 0 −k k




Similarly, the assembled global mass matrix is

[M] =




0 0 0 0
0 m 0 0
0 0 m 0
0 0 0 2m




Owing to the constraint U1 = 0, we need consider only the last three equations of motion,
given by


m 0 0

0 m 0
0 0 2m






Ü2

Ü3

Ü4


 +


 3k −2k 0

−2k 3k −k
0 −k k






U2

U3

U4


 =




0
0
0




Assuming sinusoidal response as Ui = Ai sin(�t + �), i = 2, 4 and substituting into the
equations of motion leads to the frequency equation

∣∣∣∣∣∣
3k − �2m −2k 0

−2k 3k − �2m −k
0 −k k − 2�2m

∣∣∣∣∣∣ = 0

k

2k

k

(a)

m

m

2m

(b)

U1�0

U2

1

2

3

4

U3

U4
Figure 10.6 System with
3 degrees of freedom for
Example 10.3.
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Expanding the determinant and simplifying gives

�6 − 6.5
k

m
�4 + 7.5

(
k

m

)2

�2 −
(

k

m

)3

= 0

which will be treated as a cubic equation in the unknown �2 . Setting �2 = C (k/m) , the
frequency equation becomes

(C 3 − 6.5C 2 + 7.5C − 1)

(
k

m

)3

= 0

which has the roots

C1 = 0.1532 C2 = 1.2912 C3 = 5.0556

The corresponding natural circular frequencies are

�1 = 0.3914

√
k

m

�2 = 1.1363

√
k

m

�3 = 2.2485

√
k

m

To obtain the amplitude ratios, we substitute the natural circular frequencies into the
amplitude equations one at a time while setting (arbitrarily) A(i )

2 = 1, i = 1, 2, 3 and solve
for the amplitudes A(i )

3 and A(i )
4 . Using �1 results in

(
3k − �2

1m
)

A(1)
2 − 2k A(1)

3 = 0

−2k A(1)
2 + (

3k − �2
1m

)
A(1)

3 − k A(1)
4 = 0

−k A(1)
3 + (

k − 2�2
1m

)
A(1)

4 = 0

Substituting �1 = 0.3914
√

k/m , we obtain

2.847 A(1)
2 − 2 A(1)

3 = 0

−2 A(1)
2 + 2.847 A(1)

3 − A(1)
4 = 0

−A(1)
3 + 0.694 A(1)

4 = 0

As discussed, the amplitude equations are homogeneous; explicit solutions cannot be
obtained. We can, however, determine the amplitude ratios by setting A(1)

2 = 1 to obtain

A(1)
3 = 1.4235

A(1)
4 = 2.0511

The amplitude vector corresponding to the fundamental mode �1 is then represented as

{
A(1)

} = A(1)
2




1
1.4325
2.0511



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and this is the eigenvector corresponding to the eigenvalue �1 . Proceeding identically
with the values for the other two frequencies, �2 and �3 , the resulting amplitude vectors
are

{
A(2)

} = A(2)
2




1
0.8544

−0.5399




{
A(3)

} = A(3)
2




1
−1.0279
0.1128




This example illustrates that an N degree-of-freedom system exhibits N natural
modes of vibration defined by N natural circular frequencies and the correspond-
ing N amplitude vectors (mode shapes). While the examples deal with discrete
spring-mass systems, where the motions of the masses are easily visualized as
recognizable events, structural systems modeled via finite elements exhibit N
natural frequencies and N mode shapes, where N is the number of degrees of
freedom (displacements in structural systems) represented by the finite element
model. Accuracy of the computed frequencies as well as use of the natural modes
of vibration to examine response to external forces is delineated in following
sections.

10.4 BAR ELEMENTS: CONSISTENT
MASS MATRIX

In the preceding discussions of spring-mass systems, the mass (inertia) matrix
in each case is a lumped (diagonal) matrix, since each mass is directly attached
to an element node. In these simple cases, we neglect the mass of the spring
elements in comparison to the concentrated masses. In the general case of solid
structures, the mass is distributed geometrically throughout the structure and the
inertia properties of the structure depend directly on the mass distribution. To
illustrate the effects of distributed mass, we first consider longitudinal (axial)
vibration of the bar element of Chapter 2.

The bar element shown in Figure 10.7a is the same as the bar element intro-
duced in Chapter 2 with the very important difference that displacements and ap-
plied forces are now assumed to be time dependent, as indicated. The free-body
diagram of a differential element of length dx is shown in Figure 10.7b, where
cross-sectional area A is assumed constant. Applying Newton’s second law to the
differential element gives(

� + ∂�

∂x
dx

)
A − � A = (	 A dx )

∂2u

∂ t 2
(10.51)
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where 	 is density of the bar material. Note the use of partial derivative operators,
since displacement is now considered to depend on both position and time. Sub-
stituting the stress-strain relation � = Eε = E (∂u/∂ x ) , Equation 10.51 becomes

E
∂2u

∂x 2
= 	

∂2u

∂ t 2
(10.52)

Equation 10.52 is the one-dimensional wave equation, the governing equation
for propagation of elastic displacement waves in the axial bar.

In the dynamic case, the axial displacement is discretized as

u(x , t ) = N1(x )u1(t ) + N2(x )u2(t ) (10.53)

where the nodal displacements are now expressed explicitly as time dependent,
but the interpolation functions remain dependent only on the spatial variable.
Consequently, the interpolation functions are identical to those used previously
for equilibrium situations involving the bar element: N1(x ) = 1 − (x/L ) and
N2(x ) = x/L . Application of Galerkin’s method to Equation 10.52 in analogy to
Equation 5.29 yields the residual equations as

L∫
0

Ni (x )

(
E

∂2u

∂x 2
− 	

∂2u

∂ t 2

)
A dx = 0 i = 1, 2 (10.54)

Assuming constant material properties, Equation 10.54 can be written as

	 A

L∫
0

Ni (x )
∂2u

∂ t 2
dx = AE

L∫
0

Ni (x )
∂2u

∂x 2
dx i = 1, 2 (10.55)

Mathematical treatment of the right-hand side of Equation 10.55 is identical to
that presented in Chapter 5 and is not repeated here, other than to recall that the
result of the integration and combination of the two residual equations in matrix
form is

AE

L

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

f2

}
⇒ [k]{u} = { f } (10.56)

(a)

u1(x1, t) u2(x2, t)
�x

u(x, t) 21

(b)

dx

� �
��
�x

dx�

Figure 10.7
(a) Bar element exhibiting time-dependent displacement. (b) Free-body diagram of a
differential element.
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Substituting the discretized approximation for u(x , t ), the integral on the left
becomes

	 A

L∫
0

Ni (x )
∂2u

∂ t 2
dx = 	 A

L∫
0

Ni ( N1ü1 + N2ü2) dx i = 1, 2 (10.57)

where the double-dot notation indicates differentiation with respect to time. The
two equations represented by Equation 10.57 are written in matrix form as

	 A

L∫
0

[
N 2

1 N1 N2

N1 N2 N 2
2

]
dx

{
ü1

ü2

}
= 	 AL

6

[
2 1
1 2

]{
ü1

ü2

}
= [m]{ü} (10.58)

and the reader is urged to confirm the result by performing the indicated integra-
tions. Also note that the mass matrix is symmetric but not singular. Equa-
tion 10.58 defines the consistent mass matrix for the bar element. The term con-
sistent is used because the interpolation functions used in formulating the mass
matrix are the same as (consistent with) those used to describe the spatial varia-
tion of displacement. Combining Equations 10.56 and 10.58 per Equation 10.55,
we obtain the dynamic finite element equations for a bar element as

	 AL

6

[
2 1
1 2

]{
ü1

ü2

}
+ AE

L

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

f2

}
(10.59)

or

[m]{ü} + [k]{u} = { f } (10.60)

and we note that 	 AL = m is the total mass of the element. (Why is the sign of
the second term positive?)

Given the governing equations, let us now determine the natural frequen-
cies of a bar element in axial vibration. Per the foregoing discussion of free
vibration, we set the nodal force vector to zero and write the frequency equa-
tion as

|[k] − �2[m]| = 0 (10.61)

to obtain ∣∣∣∣∣∣∣∣∣

k − �2 m

3
−
(

k + �2 m

6

)

−
(

k + �2 m

6

)
k − �2 m

3

∣∣∣∣∣∣∣∣∣
= 0 (10.62)

Expanding Equation 10.62 results in a quadratic equation in �2

(
k − �2 m

3

)2

−
(

k + �2 m

6

)2

= 0 (10.63)
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or

�2

(
�2 − 12

k

m

)
= 0 (10.64)

Equation 10.64 has roots �2 = 0 and �2 = 12k/m . The zero root arises because
we specify no constraint on the element; hence, rigid body motion is possible
and represented by the zero-valued natural circular frequency. The nonzero nat-
ural circular frequency corresponds to axial displacement waves in the bar,
which could occur, for example, if the free bar were subjected to an axial impulse
at one end. In such a case, rigid body motion would occur but axial vibra-
tion would simultaneously occur with circular frequency �1 = √

12k/m =
(3.46/L )

√
E/	 . The following example illustrates determination of natural cir-

cular frequencies for a constrained bar.

Using two equal-length finite elements, determine the natural circular frequencies of the
solid circular shaft fixed at one end shown in Figure 10.8a.

■ Solution
The elements and node numbers are shown in Figure 10.8b. The characteristic stiffness of
each element is

k = AE

L/2
= 2 AE

L

so that the element stiffness matrices are

[
k (1)

] = [
k (2)

] = 2 AE

L

[
1 −1

−1 1

]

The mass of each element is

m = 	 AL

2

and the element consistent mass matrices are

[
m (1)

] = [
m (2)

] = 	 AL

12

[
2 1
1 2

]

EXAMPLE 10.4

(a)

L

A, E

x
L�2 L�2

(b)

1 2

1 2 3

Figure 10.8
(a) Circular shaft of Example 10.4. (b) Model using two bar elements.
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Following the direct assembly procedure, the global stiffness matrix is

[K ] = 2AE

L


 1 −1 0

−1 2 −1
0 −1 1




and the global consistent mass matrix is

[M] = 	 AL

12


 2 1 0

1 4 1
0 1 2




The global equations of motion are then

	 AL

12


 2 1 0

1 4 1
0 1 2






Ü1

Ü2

Ü3


 + 2AE

L


 1 −1 0

−1 2 −1
0 −1 1






U1

U2

U3


 =




0
0
0




Applying the constraint condition U1 = 0, we have

	 AL

12

[
4 1
1 2

] {
Ü2

Ü3

}
+ 2 AE

L

[
2 −1

−1 1

]{
U2

U3

}
=

{
0
0

}

as the homogeneous equations governing free vibration. For convenience, the last equa-
tion is rewritten as

[
4 1
1 2

]{
Ü2

Ü3

}
+ 24E

	 L 2

[
2 −1

−1 1

]{
U2

U3

}
=

{
0
0

}

Assuming sinusoidal responses

U2 = A2 sin(�t + �) U3 = A3 sin(�t + �)

differentiating twice and substituting results in

−�2

[
4 1
1 2

]{
A2

A3

}
sin(�t + �) + 24E

	 L 2

[
2 −1

−1 1

]{
A2

A3

}
sin(�t + �) =

{
0
0

}

Again, we obtain a set of homogeneous algebraic equations that have nontrivial solutions
only if the determinant of the coefficient matrix is zero. Letting 
 = 24E/	 L 2 , the
frequency equation is given by the determinant∣∣∣∣ 2
 − 4�2 −
 − �2

−
 − �2 
 − 2�2

∣∣∣∣ = 0

which, when expanded and simplified, is

7�4 − 10
�2 + 
2 = 0

Treating the frequency equation as a quadratic in �2 , the roots are obtained as

�2
1 = 0.1082
 �2

2 = 1.3204


Substituting for 
, the natural circular frequencies are

�1 = 1.611

L

√
E

	
�2 = 5.629

L

√
E

	
rad/sec
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For comparison purposes, we note that the exact solution [2] for the natural circular
frequencies of a bar in axial vibration yields the fundamental natural circular frequency
as 1.571/L

√
E/	 and the second frequency as 4.712/L

√
E/	 . Therefore, the error for the

first computed frequency is about 2.5 percent, while the error in the second frequency is
about 19 percent.

It is also informative to note (see Problem 10.12) that, if the lumped mass matrix
approach is used for this example, we obtain

�1 = 1.531

L

√
E

	
�2 = 3.696

L

√
E

	
rad/sec

The solution for Example 10.4 yielded two natural circular frequencies for
free axial vibration of a bar fixed at one end. Such a bar has an infinite number of
natural frequencies, like any element or structure having continuously distributed
mass. In finite element modeling, the partial differential equations governing
motion of continuous systems are discretized into a finite number of algebraic
equations for approximate solutions. Hence, the number of frequencies obtain-
able via a finite element approach is limited by the discretization inherent to the
finite element model.

The inertia characteristics of a bar element can also be represented by a
lumped mass matrix, similar to the approach used in the spring-mass examples
earlier in this chapter. In the lumped matrix approach, half the total mass of the
element is assumed to be concentrated at each node and the connecting material
is treated as a massless spring with axial stiffness. The lumped mass matrix for a
bar element is then

[m] = 	 AL

2

[
1 0
0 1

]
(10.65)

Use of lumped mass matrices offers computational advantages. Since the ele-
ment mass matrix is diagonal, assembled global mass matrices also are diagonal.
On the other hand, although more computationally difficult in use, consistent
mass matrices can be proven to provide upper bounds for the natural circular fre-
quencies [3]. No such proof exists for lumped matrices. Nevertheless, lumped
mass matrices are often used, particularly with bar and beam elements, to obtain
reasonably accurate predictions of dynamic response.

10.5 BEAM ELEMENTS
We now develop the mass matrix for a beam element in flexural vibration. First,
the consistent mass matrix is obtained using an approach analogous to that for the
bar element in the previous section. Figure 10.9 depicts a differential element of
a beam in flexure under the assumption that the applied loads are time dependent.
As the situation is otherwise the same as that of Figure 5.3 except for the use of
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V

My

x
V �

�V
�x

dx

M �
�M
�x

dx

dx

q(x, t)

Figure 10.9 Differential element of a beam
subjected to time-dependent loading.

partial derivatives, we apply Newton’s second law of motion to the differential
element in the y direction to obtain

∑
Fy = may ⇒ V + ∂V

∂x
dx − V − q (x , t ) dx = (	 A dx )

∂2v

∂ t 2
(10.66)

where 	 is the material density and A is the cross-sectional area of the element.
The quantity 	 A represents mass per unit length in the x direction. Equation 10.66
simplifies to

∂V

∂x
− q (x , t ) = 	 A

∂2v

∂ t 2
(10.67)

As we are dealing with the small deflection theory of beam flexure, beam slopes,
therefore rotations, are small. Therefore, we neglect the rotational inertia of the
differential beam element and apply the moment equilibrium equation. The result
is identical to that of Equation 5.37, repeated here as

∂ M

∂x
= −V (10.68)

Substituting the moment-shear relation into Equation 10.67 gives

− ∂2 M

∂x 2
− q (x , t ) = 	 A

∂2v

∂ t 2
(10.69)

Finally, the flexure formula

M = E Iz
∂2v

∂x 2
(10.70)

is substituted into Equation 10.69 to obtain the governing equation for dynamic
beam deflection as

− ∂2

∂x 2

(
E Iz

∂2v

∂x 2

)
− q (x , t ) = 	 A

∂2v

∂ t 2
(10.71)

Under the assumptions of constant elastic modulus E and moment of inertia Iz,
the governing equation becomes

	 A
∂2v

∂ t 2
+ E Iz

∂4v

∂x 4
= −q (x , t ) (10.72)
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As in the case of the bar element, transverse beam deflection is discretized
using the same interpolation functions previously developed for the beam func-
tion. Now, however, the nodal displacements are assumed to be time dependent.
Hence,

v(x , t ) = N1(x )v1(t ) + N2(x )�1(t ) + N3(x )v2(t ) + N4(x )�2(t ) (10.73)

and the interpolation functions are as given in Equation 4.26 or 4.29. Application
of Galerkin’s method to Equation 10.72 for a finite element of length L results in
the residual equations

L∫
0

Ni (x )

(
	 A

∂2v

∂ t 2
+ E Iz

∂4v

∂x 4
+ q

)
= 0 i = 1, 4 (10.74)

As the last two terms of the integrand are the same as treated in Equation 5.42,
development of the stiffness matrix and nodal force vector are not repeated here.
Instead, we focus on the first term of the integrand, which represents the terms of
the mass matrix.

For each of the four equations represented by Equation 10.74, the first integral
term becomes

	 A

L∫
0

Ni (N1v̈1 + N2�̈1 + N3v̈2 + N4�̈2) dx = 	 A

L∫
0

Ni [N ] dx




v̈1

�̈1

v̈2

�̈2




i = 1, 4

(10.75)

and, when all four equations are expressed in matrix form, the inertia terms
become

	 A

L∫
0

[N ]T [N ] dx




v̈1

�̈1

v̈2

�̈2




= [
m(e)]




v̈1

�̈1

v̈2

�̈2




(10.76)

The consistent mass matrix for a two-dimensional beam element is given by

[
m (e)

] = 	 A

L∫
0

[N ]T [N ] dx (10.77)

Substitution for the interpolation functions and performing the required integra-
tions gives the mass matrix as

[
m(e)] = 	 AL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


 (10.78)

and it is to be noted that we have assumed constant cross-sectional area in this
development.
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EXAMPLE 10.5

Combining the mass matrix with previously obtained results for the stiffness
matrix and force vector, the finite element equations of motion for a beam ele-
ment are

[
m(e)]




v̈1

�̈1

v̈2

�̈2




+ [
k(e)]




v1

�1

v2

�2


 = −

L∫
0

[N ]T q(x , t) dx +




−V1(t)
−M1(t)

V2(t)
M2(t)


 (10.79)

and all quantities are as previously defined. In the dynamic case, the nodal shear
forces and bending moments may be time dependent, as indicated.

Assembly procedures for the beam element including the mass matrix are
identical to those for the static equilibrium case. The global mass matrix is directly
assembled, using the individual element mass matrices in conjunction with the
element-to-global displacement relations. While system assembly is procedurally
straightforward, the process is tedious when carried out by hand. Consequently, a
complex example is not attempted. Instead, a relatively simple example of natural
frequency determination is examined.

Using a single finite element, determine the natural circular frequencies of vibration of a
cantilevered beam of length L, assuming constant values of 	 , E, and A.

■ Solution
The beam is depicted in Figure 10.10, with node 1 at the fixed support such that the bound-
ary (constraint) conditions are v1 = �1 = 0. For free vibration, applied force and bending
moment at the free end (node 2) are V2 = M2 = 0 and there is no applied distributed load.
Under these conditions, the first two equations represented by Equation 10.79 are con-
straint equations and not of interest. Using the constraint conditions and the known applied
forces, the last two equations are

	 AL

420

[
156 −22L

−22L 4L 2

]{
v̈2

�̈2

}
+ E Iz

L 3

[
12 −6L

−6L 4L 2

]{
v2

�2

}
=

{
0
0

}

For computational convenience, the equations are rewritten as[
156 −22L

−22L 4L 2

]{
v̈2

�̈2

}
+ 420 E Iz

m L 3

[
12 −6L

−6L 4L 2

]{
v2

�2

}
=

{
0
0

}

1 2

L

x

y

E, Iz

Figure 10.10 The cantilevered beam of
Example 10.5 modeled as one element.
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with m = 	 AL representing the total mass of the beam. Assuming a sinusoidal displace-
ment response, the frequency equation becomes∣∣∣∣ 12
 − 156�2 −6
L + 22�2 L

−6
L + 22�2 L 4L 2(
 − �2)

∣∣∣∣ = 0

with 
 = 420 E Iz/m L 3 . After expanding the determinant and performing considerable
algebraic manipulation, the frequency equation becomes

5�4 − 102
�2 + 3
2 = 0

Solving as a quadratic in �2, the roots are

�2
1 = 0.02945 
 �2

2 = 20.37


Substituting for 
 in terms of the beam physical parameters, we obtain

�1 = 3.517

√
E Iz

mL3
�2 = 92.50

√
E Iz

mL3
rad/sec

as the finite element approximations to the first two natural circular frequencies. For com-
parison, the exact solution gives

�exact
1 = 3.516

√
E Iz

mL3
�exact

2 = 22.03

√
E Iz

mL3
rad/sec

The fundamental frequency computed via a single element is essentially the same as the
exact solution, whereas the second computed frequency is considerably larger than the cor-
responding exact value. As noted previously, a continuous system exhibits an infinite
number of natural modes; we obtained only two modes in this example. If the number of
elements is increased, the number of frequencies (natural modes) that can be computed
increases as the number of degrees of freedom increases. In concert, the accuracy of the
computed frequencies improves.

If the current example is refined by using two elements having length L/2 and the
solution procedure repeated, we can compute four natural frequencies, the lowest two
given by

�1 = 3.516

√
E Iz

m L 3
�2 = 24.5

√
E Iz

m L 3

and we observe that the second natural circular frequency has improved (in terms of the
exact solution) significantly. The third and fourth frequencies from this solution are found
to be quite high in relation to the known exact values. 

As indicated by the foregoing example, the number of natural frequencies
and mode shapes that can be computed depend directly on the number of degrees
of freedom of the finite element model. Also, as would be expected for conver-
gence, as the number of degrees of freedom increases, the computed frequencies
become closer to the exact values. As a general rule, the lower values (numeri-
cally) converge more rapidly to exact solution values. While this is discussed
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in more detail in conjunction with specific examples to follow, a general rule of
thumb for frequency analysis is as follows: If the finite element analyst is inter-
ested in the first P modes of vibration of a structure, at least 2P modes should
be calculated. Note that this implies the capability of calculating a subset of
frequencies rather than all frequencies of a model. Indeed, this is possible and
extremely important, since a practical finite element model may have thousands
of degrees of freedom, hence thousands of natural frequencies. The computa-
tional burden of calculating all the frequencies is overwhelming and unnecessary,
as is discussed further in the following section.

10.6 MASS MATRIX FOR A GENERAL ELEMENT:
EQUATIONS OF MOTION

The previous examples dealt with relatively simple systems composed of linear
springs and the bar and beam elements. In these cases, direct application of
Newton’s second law and Galerkin’s finite element method led directly to the for-
mulation of the matrix equations of motion; hence, the element mass matrices. For
more general structural elements, an energy-based approach is preferred, as for
static analyses. The approach to be taken here is based on Lagrangian mechanics
and uses an energy method based loosely on Lagrange’s equations of motion [4].

Prior to examining a general case, we consider the simple harmonic oscilla-
tor of Figure 10.1. At an arbitrary position x with the system assumed to be in
motion, kinetic energy of the mass is

T = 1

2
mẋ 2 (10.80)

and the total potential energy is

Ue = 1

2
k(�st + x )2 − mg(�st + x ) (10.81)

therefore, the total mechanical energy is

Em = T + Ue = 1

2
mẋ 2 + 1

2
k(�st + x )2 − mg(�st + x ) (10.82)

As the simple harmonic oscillator model contains no mechanism for energy
removal, the principle of conservation of mechanical energy applies; hence,

dEm

dt
= 0 = mẋ ẍ + k(�st + x ) ẋ − mgẋ (10.83)

or

mẍ + k(�st + x ) = mg (10.84)

and the result is exactly the same as obtained via Newton’s second law in Equa-
tion 10.2.
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For the general case, we consider the three-dimensional body depicted in
Figure 10.11 and examine a differential mass dm = 	 dx dy dz located at arbi-
trary position (x , y, z) . Displacement of the differential mass in the coordinate
directions are (u , v, w) and the velocity components are (u̇ , v̇, ẇ), respectively.
As we previously examined the potential energy, we now focus on kinetic energy
of the differential mass given by

dT = 1

2
(u̇2 + v̇2 + ẇ2) dm = 1

2
(u̇2 + v̇2 + ẇ2)	 dx dy dz (10.85)

Total kinetic energy of the body is then

T = 1

2

∫∫∫
(u̇2 + v̇2 + ẇ2) dm = 1

2

∫∫∫
(u̇2 + v̇2 + ẇ2)	 dx dy dz (10.86)

and the integration is performed over the entire mass (volume) of the body.
Considering the body to be a finite element with the displacement field

discretized as

u(x , y, z, t ) =
M∑

i=1

Ni (x , y, z)ui (t ) = [N ]{u}

v(x , y, z, t ) =
M∑

i=1

Ni (x , y, z)vi (t ) = [N ]{v}

w(x , y, z, t ) =
M∑

i=1

Ni (x , y, z)wi (t ) = [N ]{w}

(10.87)

(where M is the number of element nodes), the velocity components can be
expressed as

u̇ = ∂u

∂ t
= [N ]{u̇}

v̇ = ∂v

∂ t
= [N ]{v̇}

ẇ = ∂w

∂ t
= [N ]{ẇ}

(10.88)

dy

dx
dz

y

z
x

Figure 10.11 Differential element of a general
three-dimensional body.
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The element kinetic energy expressed in terms of nodal velocities and interpola-
tion functions is then written as

T (e) = 1

2

∫ ∫

V (e)

∫
({u̇}T [N ]T [N ]{u̇} + {v̇}T [N ]T [N ]{v̇}

+ {ẇ}T [N ]T [N ]{ẇ})	 dV (e) (10.89)

Denoting the nodal velocities as

{�̇} =



{u̇}
{v̇}
{ẇ}


 (10.90)

a 3M × 1 column matrix, the kinetic energy is expressed as

T (e) = 1

2
{�̇}T

∫∫∫
V (e)




[N ]T [N ] 0 0
0 [N ]T [N ] 0
0 0 [N ]T [N ]


	 dV (e){�̇}

= 1

2
{�̇}T

[
m(e)]{�̇} (10.91)

and the element mass matrix is thus identified as

[
m(e)] =

∫∫∫
V (e)




[N ]T [N ] 0 0
0 [N ]T [N ] 0
0 0 [N ]T [N ]


	 dV (e) (10.92)

Note that, in Equation 10.92, the zero terms actually represent M × M null
matrices. Therefore, the mass matrix as derived is a 3M × 3M matrix, which is
also readily shown to be symmetric. Also note that the mass matrix of Equa-
tion 10.92 is a consistent mass matrix. The following example illustrates the
computations for a two-dimensional element.

Formulate the mass matrix for the two-dimensional rectangular element depicted in Fig-
ure 10.12. The element has uniform thickness 5 mm and density 	 = 7.83 × 10−6 kg/mm3.

1
(10, 10)

4
(10, 30) s

r

y

x

3
(40, 30)

2
(40, 10)

Figure 10.12 The rectangular element
of Example 10.6.
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■ Solution
Per Equation 6.56, the interpolation functions in terms of serendipity or natural coordi-
nates are

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

with r = (x − 25)/15 and s = ( y − 20)/10. For integration in the natural coordinates,
dx = 15 dr and dy = 10 ds. The mass matrix is 8 × 8 and the nonzero terms are defined by

∫∫∫

V (e)

[N ]T [N ]	 dV (e) = 	 t

1∫

−1

1∫

−1

[N ]T [N ](15 dr )(10 ds)

= 150(5)	

1∫

−1

1∫

−1

[N ]T [N ] dr ds

In this solution, we compute a few terms for illustration, then present the overall results.
For example,

m11 = 150(5)	

1∫

−1

1∫

−1

N 2
1 dr ds = 150(5)

16
	

1∫

−1

1∫

−1

(1 − r )2(1 − s)2 dr ds

= 150(5)

16
	

[
(1 − r )3

3

(1 − s)3

3

]1

−1

= 750

16
	

(
64

9

)
= 4(750)

9
(7.830)(10)−6

= 2.6(10)−3 kg

Similarly,

m12 = 150(5)	

1∫

−1

1∫

−1

N1 N2 dr ds = 150(5)

16
	

1∫

−1

1∫

−1

(1 − r 2)(1 − s)2 dr ds

= 150(5)

16
	

[(
r − r 3

3

) (
(1 − s)3

3

)
(−1)

]1

−1

= 150(5)

16
(7.83)(10)−6

(
32

9

)
= 1.3(10)−3 kg



Hutton: Fundamentals of 
Finite Element Analysis

10. Structural Dynamics Text © The McGraw−Hill 
Companies, 2004

416 CHAPTER 10 Structural Dynamics

If we carry out all the integrations indicated to form the mass matrix, the final result for
the rectangular element is

[
m(e)

] =




2.6 1.3 0.7 1.3
1.3 2.6 1.3 0.7
0.7 1.3 2.6 1.3
1.3 0.7 1.3 2.6

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2.6 1.3 0.7 1.3
1.3 2.6 1.3 0.7
0.7 1.3 2.6 1.3
1.3 0.7 1.3 2.6




(10)−3 kg

We observe that the element mass matrix is symmetric, as expected. Also note that stor-
ing the entire matrix as shown would be quite inefficient, since only the 4 × 4 submatrix
of nonzero terms is needed.

Having developed a general formulation for the mass matrix of a finite
element, we return to the determination of the equations of motion of a structure
modeled via the finite element method and subjected to dynamic (that is, time-
dependent) loading. If we have in hand, as we do, the mass and stiffness matri-
ces of a finite element, we can assemble the global equations for a finite element
model of a structure and obtain an expression for the total energy in the form

1

2
{q̇}T [M ]{q̇} + 1

2
{q}T [K ]{q} − {q}T { f } = E (10.93)

where {q} is the column matrix of displacements described in the global coordi-
nate system and all other terms are as previously defined. (At this point, we
reemphasize that Equation 10.93 models the response of an ideal elastic system,
which contains no mechanism for energy dissipation.) For a system as described,
total mechanical energy is constant, so that dE/dt = 0. As the mechanical
energy is expressed as a function of both velocity and displacement, the mini-
mization procedure requires that

dE

dt
= ∂ E

∂ q̇i

∂ q̇i

∂ t
+ ∂ E

∂qi

∂qi

∂ t
= 0 i = 1, P (10.94)

where we now represent the total number of degrees of freedom of the model as
P to avoid confusion with the mass matrix notation [M ]. Application of Equa-
tion 10.94 to the energy represented by Equation 10.93 yields a system of ordi-
nary differential equations

[M ]{q̈} + [K ]{q} = {F } (10.95)

Equation 10.94 is not necessarily mathematically rigorous in every case. How-
ever, for the systems under consideration, in which there is no energy removal
mechanism and the total potential energy includes the effect of external forces, the
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resulting equations of motion are the same as those given by both the Lagrangian
approach and variational principles [5].

Examination of Equation 10.95 in light of known facts about the stiffness and
mass matrices reveals that the differential equations are coupled, at least through
the stiffness matrix, which is known to be symmetric but not diagonal. The phe-
nomena embodied here is referred to as elastic coupling, as the coupling terms
arise from the elastic stiffness matrix. In consistent mass matrices, the equations
are also coupled by the nondiagonal nature of the mass matrix; therefore, the term
inertia coupling is applied when the mass matrix is not diagonal. Obtaining solu-
tions for coupled differential equations is not generally a straightforward prode-
cure. We show, however, that the modal characteristics embodied in the equations
of motion can be used to advantage in examining system response to harmonic
(sinusoidal) forcing functions. The so-called harmonic response is a capability of
essentially any finite element software package, and the general techniques are
discussed in the following section, after a brief discussion of natural modes.

In the absence of externally applied nodal forces, Equation 10.95 is a system
of P homogeneous, linear second-order differential equations in the independent
variable time. Hence, we have an eigenvalue problem in which the eigenvalues
are the natural circular frequencies of oscillation of the structural system, and
the eigenvectors are the amplitude vectors (mode shapes) corresponding to the
natural frequencies. The frequency equation is represented by the determinant

|−�2[M ] + [K ]| = 0 (10.96)

If formally expanded, this determinant yields a polynomial of order P in the vari-
able �2. Solution of the frequency polynomial results in computation of P natural
circular frequencies and P modal amplitude vectors. The free-vibration response
of such a system is then described by the sum (superposition) of the natural
vibration modes as

�i (t ) =
P∑

j=1

A( j)
i sin(�j t + �j ) i = 1, P (10.97)

Note that the superposition indicated by Equation 10.97 is valid only for linear
differential equations.

In Equation 10.97, the A( j)
i and �j are to be determined to satisfy given initial

conditions. In accord with previous examples for simpler systems, we know that
the amplitude vectors for a given modal frequency can be determined within a
single unknown constant, so we can write the modal amplitude vectors as

{
A(i)} = A(i)

1




1

�(i)
2

�(i)
3
...

�(i)
P




i = 1, P (10.98)



Hutton: Fundamentals of 
Finite Element Analysis

10. Structural Dynamics Text © The McGraw−Hill 
Companies, 2004

418 CHAPTER 10 Structural Dynamics

where the � terms are known constants resulting from substitution of the natural
circular frequencies into the governing equations for the amplitudes. For a
system having P degrees of freedom, we have 2P unknown constants A(i)

1 and
�i , i = 1, P in the motion solution. The constants are determined by application
of 2P initial conditions, which are generally specified as the displacements and
velocities of the nodes at time t = 0. While the natural modes of free vibration
are important in and of themselves, application of modal analysis to the harmon-
ically forced response of structural systems is a very important concept. Prior to
examination of the forced response, we derive a very important property of the
principal vibration modes.

10.7 ORTHOGONALITY OF
THE PRINCIPAL MODES

The principal modes of vibration of systems with multiple degrees of freedom
share a fundamental mathematical property known as orthogonality. The free-vi-
bration response of a multiple degrees-of-freedom system is described by Equa-
tion 10.95 with {F } = 0 as

[M ]{q̈} + [K ]{q} = {0} (10.99)

Assuming that we have solved for the natural circular frequencies and the modal
amplitude vectors via the assumed solution form qi (t ) = Ai sin(�t + �), substi-
tution of a particular frequency �i into Equation 10.99 gives

−�2
i [M ]

{
A(i)

} + [K ]
{

A(i)
} = 0 (10.100)

and for any other frequency �j

−�2
j [M ]

{
A( j)

} + [K ]
{

A( j)
} = 0 (10.101)

Multiplying Equation 10.100 by {A( j)}T and Equation 10.101 by {A(i)}T gives

−�2
i

{
A( j)

}T
[M ]

{
A(i)

} + {
A( j)

}T
[K ]

{
A(i)

} = 0 (10.102)

−�2
j

{
A(i)

}T
[M ]

{
A( j)

} + {
A(i)

}T
[K ]

{
A( j)

} = 0 (10.103)

Subtracting Equation 10.102 from Equation 10.103, we have{
A( j)

}T
[M ]

{
A(i)

}(
�2

i − �2
j

) = 0 i �= j (10.104)

In arriving at the result represented by Equation 10.104, we utilize the fact from
matrix algebra that [A]T [B][C ] = [C ]T [B][ A] , where [A], [B], [C ] are any
three matrices for which the triple product is defined. As the two circular fre-
quencies in Equation 10.104 are distinct, we conclude that {

A( j)
}T

[M ]
{

A(i)
} = 0 i �= j (10.105)
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Equation 10.105 is the mathematical statement of orthogonality of the principal
modes of vibration. The orthogonality property provides a very powerful mathe-
matical technique for decoupling the equations of motion of a multiple degrees-
of-freedom system.

For a system exhibiting P degrees of freedom, we define the modal matrix as
a P × P matrix in which the columns are the amplitude vectors for each natural
mode of vibration; that is,

[A] = [ {
A(1)

}{
A(2)

}
. . .

{
A( P)

} ]
(10.106)

and consider the matrix triple product [S] = [A]T [M ][ A] . Per the orthogonality
condition, Equation 10.105, each off-diagonal term of the matrix represented
by the triple product is zero; hence, the matrix [S] = [A]T [M ][ A] is a diagonal
matrix. The diagonal (nonzero) terms of the matrix have magnitude

Sii = {
A(i)

}T
[M ]

{
A(i)

}
i = 1, P (10.107)

As each modal amplitude vector is known only within a constant multiple (recall
in earlier examples that we set A(i)

1 = 1 arbitrarily), the modal amplitude vectors
can be manipulated such that the diagonal terms described by Equation 10.107
can be made to assume any desired numerical value. In particular, if the value is
selected as unity, so that

Sii = {
A(i)

}T
[M ]

{
A(i)

} = 1 i = 1, P (10.108)

then the modal amplitude vectors are said to be orthonormal and the matrix triple
product becomes

[S] = [A]T [M ][ A] = [I ] (10.109)

where [I ] is the P × P identity matrix.
Normalizing the modal amplitude vectors per Equation 10.108 is a straight-

forward procedure, as follows. Let a specific modal amplitude be represented by
Equation 10.98 in which the first term is arbitrarily assigned value of unity. The
corresponding diagonal term of the modal matrix is then

P∑
j=1

P∑
k=1

m jk A(i)
j A(i)

k = Sii = constant (10.110)

If we redefine the terms of the modal amplitude vector so that

A(i)
j = A(i)

j√
Sii

= A(i)
j√

P∑
j=1

P∑
k=1

mjk A(i)
j A(i)

k

i = 1, P (10.111)

the matrix described by Equation 10.109 is indeed the identity matrix. 
Having established the orthogonality concept and normalized the modal

matrix, we return to the general problem described by Equation 10.95, in which
the force vector is no longer assumed to be zero. For reasons that will become
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apparent, we introduce the change of variables

{q} = [A]{p} (10.112)

where {p} is the column matrix of generalized displacements, which are linear
combinations of the actual nodal displacements {q}, and [A] is the normalized
modal matrix. Equation 10.95 then becomes

[M ][ A] { p̈} + [K ][ A]{p} = {F } (10.113)

Premultiplying by [A]T , we obtain

[A]T [M ][ A]{ p̈} + [A]T [K ][ A]{p} = [A]T {F } (10.114)

Utilizing the orthogonality principle, Equation 10.114 is

[I ]{ p̈} + [A]T [k][ A]{p} = [A]T {F } (10.115)

Now we must examine the stiffness effects as represented by [A]T [K ][ A] . Given
that [K] is a symmetric matrix, the triple product [A]T [K ][ A] is also a symmet-
ric matrix. Following the previous development of orthogonality of the principal
modes, the triple product [A]T [K ][ A] is also easily shown to be a diagonal ma-
trix. The values of the diagonal terms are found by multiplying Equation 10.100
by

{
A(i)

}T
to obtain

−�2
i

{
A(i)

}T
[M ]

{
A(i)

} + {
A(i)

}T
[K ]

{
A(i)

} = 0 i = 1, P (10.116)

If the modal amplitude vectors have been normalized as described previously,
Equation 10.116 is {

A(i)
}T

[K ]
{

A(i)
} = �2

i i = 1, P (10.117)

hence, the matrix triple product [A]T [K ][ A] produces a diagonal matrix having
diagonal terms equal to the squares of the natural circular frequencies of the prin-
cipal modes of vibration; that is,

[A]T [K ][A] =




�2
1 0 · · · 0

0 �2
2 .

. . .

. . .

. . .

0 · · · �2
P




(10.118)

Finally, Equation 10.115 becomes

[I ]{ p̈} + [�2]{p} = [A]T {F } (10.119)

with matrix [�2] representing the diagonal matrix defined in Equation 10.118.

Using the data of Example 10.3, normalize the modal matrix and verify that [A]T [M ][ A] =
[I ] and[A]T [K ][ A] = [�2].
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■ Solution
For the first mode, we have

S11 = {
A(1)

}T
[M]

{
A(1)

} = [1 1.4325 2.0511]


m 0 0

0 m 0
0 0 2m






1
1.4325
2.0511




= 11.4404 m

so the first modal amplitude vector is normalized by dividing each term by 
√

S11 =
3.3824

√
m, which gives the normalized vector as

{
A(1)

} = 1√
m




0.2956
0.4289
0.6064




Applying the same procedure to the modal amplitude vectors for the second and third
modes gives

{
A(2)

} = 1√
m




0.6575
0.5618

−0.3550




{
A(3)

} = 1√
m




0.6930
−0.7124
0.0782




and the normalized modal matrix is

[A] = 1√
m


 0.2956 0.6575 0.6930

0.4289 0.5618 −0.7124
0.6064 −0.3550 0.0782




To verify Equation 10.109, we form the triple product

[A]T [M][A] = 1

m


 0.2956 0.4289 0.6064

0.6575 0.5618 −0.3550
0.6930 −0.7124 0.0782




m 0 0

0 m 0
0 0 2m




×

 0.2956 0.6575 0.6930

0.4289 0.5618 −0.7124
0.6064 −0.3550 0.0782


 =


 1 0 0

0 1 0
0 0 1




as expected.
The triple product with respect to the stiffness matrix is

[A]T [K ][A] = k

m


 0.2956 0.4289 0.6064

0.6575 0.5618 −0.3550
0.6990 −0.7124 0.0782




 3 −2 0

−2 3 −1
0 −1 1




×

 0.2956 0.6575 0.6990

0.4289 0.5618 −0.7124
0.6064 −0.3550 0.0782




which evaluates to

[A]T [K ][A] = k

m


 0.1532 0 0

0 1.2912 0
0 0 5.0557


 =




�2
1 0 0

0 �2
2 0

0 0 �2
3



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10.8 HARMONIC RESPONSE USING
MODE SUPERPOSITION

The orthogonality condition of the principal modes is especially useful in ana-
lyzing the steady-state response of finite element models to harmonic forcing
functions. In this context, a harmonic forcing function is described as F (t ) =
F0 sin � f t , where F0 is a constant force magnitude and � f is a constant circular
frequency of the forcing function. Prior to applying the mode superposition
method, a complete modal analysis must be performed to obtain the natural cir-
cular frequencies and normalized modal amplitude vectors (hence, the normal-
ized modal matrix). Using the techniques of the previous section, the equations
of motion for the forced case become

[I ]{ p̈} + [�2]{p} = [A]T {F } (10.120)

Assuming that the structural model under consideration exhibits P total degrees
of freedom, Equation 10.120 represents a set of P uncoupled, ordinary differen-
tial equations of the form

p̈i + �2
i pi =

P∑
j=1

A(i)
j Fj (t ) i = 1, P (10.121)

Observing that the right-hand side is a known linear combination of harmonic
forces (these are the so-called generalized forces), the solution to each of the
equations is a summation of particular solutions corresponding to each of the
harmonic force terms. By analogy with the procedure used for forced vibration
of a single degree-of-freedom system in Section 10.2, the solutions of Equa-
tion 10.121 are given by

pi (t ) =
P∑

j=1

A(i)
j Fj0

�2
i − �2

j f

sin �j f t i = 1, P (10.122)

Hence, the generalized displacements pi (t ) are represented by a combination
of independent harmonic motions having frequencies corresponding to the
forcing frequencies. Note that, if a forcing frequency is close in value to one of
the natural frequencies, the denominator term becomes small and the forced
response amplitude is large; hence, there are many possibilities for a resonant
condition.

The mode superposition method provides mathematical convenience in
obtaining the forced response, because the equations of motion become uncou-
pled and solution is straightforward. However, Equation 10.122 gives the dis-
placement response of generalized displacements rather than actual nodal
displacements, owing to the transformation described by Equation 10.112. As the
modal matrix is known, conversion of the generalized displacements to actual
displacements requires only multiplication by the normalized modal matrix.
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Again consider the 3 degrees-of-freedom system of Example 10.3 and determine the
steady state response when a downward force F = F0 sin � f t is applied to mass 2.

■ Solution
For the given conditions, the applied nodal force vector is

{F(t)} =



0
F0 sin � f t

0




and the generalized forces are

[A]T {F} = 1√
m


 0.2956 0.4209 0.6064

0.6575 0.5618 −0.3550
0.6930 −0.7124 0.0782






0
F0 sin � f t

0


 =




0.4209
0.5618

−0.7124




F0 sin � f t√
m

The equations of motion for the generalized coordinates are then

p̈1 + �2
1 p1 = 0.4209F0 sin � f t√

m

p̈2 + �2
2 p2 = 0.5618F0 sin � f t√

m

p̈3 + �2
3 p3 = −0.7124F0 sin � f t√

m

for which the solutions are

p1(t) = 0.4209F0 sin � f t(
�2

1 − �2
f

)√
m

p2(t) = 0.5618F0 sin � f t(
�2

2 − �2
f

)√
m

p3(t) = −0.7124F0 sin � f t(
�2

3 − �2
f

)√
m

The actual displacements, x (t ) = q (t ) in this case, are obtained by application of Equa-
tion 10.112:

{x} = [A]{p} = 1√
m


 0.2956 0.6575 0.6930

0.4209 0.5618 −0.7124
0.6064 −0.3550 0.0782







0.4209

�2
1 − �2

f

0.5618

�2
2 − �2

f

−0.7124

�2
3 − �2

f




F0 sin � f t√
m

EXAMPLE 10.8
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Expanding, the steady-state displacements are given by

x1(t ) =
(

0.1244

�2
1 − �2

f

+ 0.3694

�2
2 − �2

f

+ −0.4937

�2
3 − �2

f

)
F0 sin � f t

m

x2(t ) =
(

0.1772

�2
1 − �2

f

+ 0.3156

�2
2 − �2

f

+ 0.5075

�2
3 − �2

f

)
F0 sin � f t

m

x3(t ) =
(

0.2552

�2
1 − �2

f

+ −0.1994

�2
2 − �2

f

+ −0.0557

�2
3 − �2

f

)
F0 sin � f t

m

A few observations need to be made regarding the displacements calculated in this
example:

1. The displacement of each mass is a sinusoidal oscillation about the equilibrium
position, and the circular frequency of the oscillation is the same as the frequency
of the forcing function.

2. The characterstics of the principal modes of vibration are reflected in the solutions,
owing to the effects of the natural circular frequencies and modal amplitude vectors
in determining the forced oscillation amplitudes. 

3. The displacement solutions represent only the forced motion of each mass; in
addition, free vibration may also exist in superposition with the forced response.

4. Energy dissipation mechanisms are not incorporated into the model.

The mode superposition method may seem quite complicated and, when at-
tempting to obtain solutions by hand, the method is indeed tedious. However, the
required computations are readily amenable to digital computer techniques and
quite easily programmed. Additional ramifications of computer techniques for
the method will be discussed in a following article.

10.9 ENERGY DISSIPATION:
STRUCTURAL DAMPING

To this point, the dynamic analysis techniques dealt only with structural systems
in which there is no mechanism for energy dissipation. As stated earlier, all real
systems exhibit such dissipation and, unlike the simple models presented, do not
oscillate forever, as predicted by the ideal model solutions. In structural systems,
the phenomenon of energy dissipation is referred to as damping. Damping may
take on many physical forms, including devices specifically designed for the pur-
pose (passive and active damping devices), sliding friction, and the internal dis-
sipation characteristics of materials subjected to cyclic loading. In this section,
we begin with an idealized model of damping for the simple harmonic oscillator
and extend the damping concept to full-scale structural models.
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Figure 10.13a depicts a simple harmonic oscillator to which has been added a
dashpot. A dashpot is a damping device that utilizes a piston moving through a
viscous fluid to remove energy via shear stress in the fluid and associated heat gen-
eration. The piston typically has small holes to allow the fluid to pass through but
is otherwise sealed on its periphery, as schematically depicted in Figure 10.13b.
The force exerted by such a device is known to be directly proportional to the
velocity of the piston as

fd = −cẋ (10.123)

where fd is the damping force, c is the damping coefficient of the device, and ẋ
is velocity of the mass assumed to be directly and rigidly connected to the piston
of the damper. The dynamic free-body diagram of Figure 10.13c represents a
situation at an arbitrary time with the system in motion. As in the undamped case
considered earlier, we assume that displacement is measured from the equilib-
rium position. Under the conditions stated, the equation of motion of the mass is

mẍ + cẋ + kx = 0 (10.124)

Owing to the form of Equation 10.124, the solution is assumed in exponential
form as 

x (t ) = Cest (10.125)

where C and s are constants to be determined. Substitution of the assumed solu-
tion yields

(ms2 + cs + k)Cest = 0 (10.126)

As we seek nontrivial solutions valid for all values of time, we conclude that

ms2 + cs + k = 0 (10.127)

must hold if we are to obtain a general solution.  Equation 10.127 is the charac-
teristic equation (also the frequency equation) for the damped single degree-of-
freedom system. From analyses of undamped vibration, we know that the natural

k c

m

(a)

kx cx•

�x

(c)(b)

Figure 10.13
(a) A spring-mass system with damping. (b) The schematic
representation of a dashpot piston. (c) A free-body diagram
of a mass with the damping force included.
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frequency given by �2 = k/m is an important property of the system, so we mod-
ify the characteristic equation to

s2 + c

m
s + �2 = 0 (10.128)

Solving Equation 10.128 by the quadratic formula yields two roots, as expected,
given by

s1 = 1

2


(

c

m

)2

−
√(

c

m

)2

− 4�2


 (10.129a)

s2 = 1

2


(

c

m

)2

+
√(

c

m

)2

− 4�2


 (10.129b)

The most important characteristic of the roots is the value of (c/m)2 − 4�2, and
there are three cases of importance:

1. If (c/m)2 − 4�2 > 0, the roots are real, distinct, and negative; and the
displacement response is the sum of decaying exponentials.

2. If (c/m)2 − 4�2 = 0, we have a case of repeated roots; for this situation,
the displacement is also shown to be a decaying exponential. It is
convenient to define this as a critical case and let the value of the damping
coefficient c correspond to the so-called critical damping coefficient.
Hence, c2

c = 4�2m2 or cc = 2m�.

3. If (c/m)2 − 4�2 < 0, the roots of the characteristic equation are
imaginary; this case can be shown [2] to represent decaying sinusoidal
oscillations.

Regardless of the amount of damping present, the free-vibration response, as
shown by the preceding analysis, is an exponentially decaying function in time.
This gives more credence to our previous discussion of harmonic response, in
which we ignored the free vibrations. In general, a system response is defined
primarily by the applied forcing functions, as the natural (free, principal) vibra-
tions die out with damping. The response of a damped spring-mass system cor-
responding to each of the three cases of damping is depicted in Figure 10.14.

We now define the damping ratio as 
 = c/2m� and note that, if 
 > 1 , we
have what is known as overdamped motion; if 
 = 1, the motion is said to be
critically damped; and if 
 < 1, the motion is underdamped. As most structural
systems are underdamped, we focus on the case of 
 < 1. For this situation, it is
readily shown [2] that the response of a damped harmonic oscillator is described
by

x (t ) = e−
�t ( A sin �d t + B cos �d t ) (10.130)
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where �d is the damped natural circular frequency, given by

�2
d = (1 − 
 2)

k

m
(10.131)

and the coefficients are determined by the initial conditions. 
While we demonstrate the effect of damping via the simple harmonic oscil-

lator, several points can be made that are applicable to any structural system:

1. The natural frequencies of vibration of a system are reduced by the effect
of damping, per Equation 10.131.

2. The free vibrations decay exponentially to zero because of the effects of
damping.

3. In light of point 2, in the case of forced vibration, the steady-state solution
is driven only by the forcing functions.

4. Damping is assumed to be linearly proportional to nodal velocities.

10.9.1 General Structural Damping

An elastic structure subjected to dynamic loading does not, in general, have spe-
cific damping elements attached. Instead, the energy dissipation characteristics
of the structure are inherent to its mechanical properties. How does, for example,
a cantilevered beam, when “tweaked” at one end, finally stop vibrating? (If the
reader has a flexible ruler at hand, many experiments can be performed to exhibit
the change in fundamental frequency as a function of beam length as well as the

x(t)
Xe���t

��1

t

(a)

��1

x(t)

t

x(t)

t

(b)

� �1

(c)

Figure 10.14 Characteristic damped motions: (a) Underdamped.
(b) Critically damped. (c) Overdamped.
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1

c

k

2

Figure 10.15 A model of a
bar element with damping.

decay of the motion.) The answer to the damping question is complex. For
example, structures are subjected to the atmosphere, so that air resistance is a
factor. Air resistance is, in general, proportional to velocity squared, so this effect
is nonlinear. Fortunately, air resistance in most cases is negligible. On the other
hand, the internal friction of a material is not negligible and must be considered. 

If we incorporate the concepts of damping as applied to the simple harmonic
oscillator, the equations of motion of a finite element model of a structure become

[M ]{q̈} + [C ]{q̇} + [K ]{q} = {F (t )} (10.132)

where [C] is the system viscous damping matrix assembled by the usual rules. For
example, a bar element with damping is mathematically modeled as a linear
spring and a dashpot connected in parallel to the element nodes as in Figure 10.15.
The element damping matrix is

[
c(e)

] =
[

c −c
−c c

]
(10.133)

and the element equations of motion are[
m (e)

]{ü} + [
c(e)

]{u̇} + [
k (e)

]{u} = {
f (e)

}
(10.134)

The element damping matrix is symmetric and singular, and the individual terms
are assigned to the global damping matrix in the same manner as the mass and
stiffness matrices. Assembly of the global equations of motion for a finite ele-
ment model of a damped structure is simple. Determination of the effective vis-
cous damping coefficients for structural elements is not so simple. 

Damping due to internal friction is known as structural damping, and exper-
iments on many different elastic materials have shown that the energy loss per
motion cycle in structural damping is proportional to the material stiffness and
the square of displacement amplitude [2]. That is,

�Ucycle = 
k X 2 (10.135)

where 
 is a dimensionless structural damping coefficient, k is the material stiff-
ness, and X is the displacement amplitude. By equating the energy loss per cycle
to the energy loss per cycle in viscous damping, an equivalent viscous damping
coefficient is obtained:

ceq = 
k

�
(10.136)
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where � is circular frequency of oscillation. That the equivalent damping coeffi-
cient depends on frequency is somewhat troublesome, since the implication is
that different coefficients are required for different frequencies. If we consider a
single degree-of-freedom system for which � = √

k/m, the equivalent damping
coefficient given by Equation 10.136 becomes

ceq = 
k

�
= 


k√
k/m

= 

√

km (10.137)

indicating that the damping coefficient is proportional, at least in a general sense,
to both stiffness and mass. We return to this observation shortly.

Next we consider the application of the transformation using the normal-
ized matrix as described in Section 10.7. Applying the transformation to Equa-
tion 10.132 results in

{ p̈} + [A]T [C ][ A]{ ṗ} + [�2]{p} = [A]T {F (t )} (10.138)

The transformed damping matrix

[C ′] = [A]T [C ][ A] (10.139)

is easily shown to be a symmetric matrix, but the matrix is not necessarily diag-
onal. The transformation does not necessarily result in decoupling the equations
of motion, and the simplification of the mode superposition method is not neces-
sarily available. If, however, the damping matrix is such that

[C ] = �[M ] + �[K ] (10.140)

where � and � are constants, then

[C ′] = �[A]T [M ][ A] + �[A]T [K ][ A] = �[I ] + �[�2] (10.141)

is a diagonal matrix and the differential equations of motion are decoupled. Note
that the assertion of Equation 10.140 leads directly to the diagonalization of the
damping matrix as given by Equation 10.141. Hence, Equation 10.138 becomes

{ p̈} + (� + �[�2]){ ṗ} + [�2]{p} = [A]T {F (t )} (10.142)

As the differential equations represented by Equation 10.142 are decoupled, let
us now examine the solution of one such equation 

p̈i + (
� + ��2

i

)
ṗi + �2

i pi =
P∑

j=1

A(i)
j Fj (t ) (10.143)

where P is the total number of degrees of freedom. Without loss of generality and
for convenience of illustration, we consider Equation 10.143 for only one of the
terms on the right-hand side, assumed to be a harmonic force such that

p̈i + (
� + ��2

i

)
ṗi + �2

i pi = F0 sin � f t (10.144)

and assume that the solution is 

pi (t ) = Xi sin � f t + Yi cos � f t (10.145)
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Substitution of the assumed solution into the governing equation yields

−Xi �
2
f sin � f t − Yi �

2
f cos � f t + (

� + ��2
i

)
� f ( Xi cos � f t − Yi sin � f t )

+ �2
i X i sin � f t + �2

i Yi cos � f t = F0 sin � f t (10.146)

Equating coefficients of sine and cosine terms yields the algebraic equations
[

�2
i − �2

f −� f

(
� + ��2

i

)
� f

(
� + ��2

i

)
�2

i − �2
f

] {
Xi

Yi

}
=

{
F0

0

}
(10.147)

for determination of the forced amplitudes Xi and Yi . The solutions are

Xi = F0

(
�2

i − �2
f

)
(
�2

i − �2
f

)2 + �2
f

(
� + ��2

i

)2

Yi = −F0� f

(
� + ��2

i

)
(
�2

i − �2
f

)2 + �2
f

(
� + ��2

i

)2

(10.148)

To examine the character of the solution represented by Equation 10.145, we
convert the solution to the form

pi (t ) = Zi sin(� f t + �i ) (10.149)

with

Zi =
√

X2
i + Y 2

i and �i = tan−1 Yi

Xi

to obtain

pi (t) = F0√(
�2

i − �2
f

)2
+ �2

f

(
� + ��2

i

)2
sin(� f t + �i ) (10.150)

�i = tan−1

(−�2
f

(
� + ��2

i

)
�2

i − �2
f

)
(10.151)

Again, the mathematics required to obtain these solutions are algebraically
tedious; however, Equations 10.150 and 10.151 are perfectly general, in that the
equations give the solution for every equation in 10.142, provided the applied
nodal forces are harmonic. Such solutions are easily generated via digital com-
puter software. The actual displacements are then obtained by application of
Equation 10.112, as in the case of undamped systems.

The equivalent viscous damping described in Equation 10.140 is known as
Rayleigh damping [6] and used very often in structural analysis. It can be shown,
by comparison to a damped single degree-of-freedom system that

� + ��2
i = 2�i 
i (10.152)
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where 
i is the damping ratio corresponding to the i th mode of vibration, that is,


i = �

2�i
+ ��i

2
(10.153)

represents the degree of damping for the i th mode.  Equation 10.153 provides a
means of estimating � and � if realistic estimates of the degree of damping for
two modes are known. The realistic estimates are most generally obtained ex-
perimentally or may be applied by rule of thumb. The following example illus-
trates the computations and the effect on other modes.

Experiments on a prototype structure indicate that the effective viscous damping ratio
is 
 = 0.03 (3 percent) when the oscillation frequency is � = 5 rad/sec and 
 = 0.1
(10 percent) for frequency � = 15 rad/sec. Determine the Rayleigh damping factors �
and � for these known conditions.

■ Solution
Applying Equation 10.153 to each of the known conditions yields

0.03 = �

2(5)
+ 5�

2

0.1 = �

2(15)
+ 15�

2

Simultaneous solution provides the Rayleigh coefficients as

� = −0.0375

� = 0.0135

EXAMPLE 10.9

1 3 5 9
�0.05

0

0.05

0.1

0.15

0.2

0.25

11 13
�i

�i

15 17 19 21 23 25 27 297

Figure 10.16 Equivalent damping factor versus frequency for
Example 10.9.
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If we were to apply the equivalent damping given by these values to the entire frequency
spectrum of a structure, the effective damping ratio for any mode would be given by


i = −0.0375 + 0.0135�2
i

2�i

If the values of � and � are applied to a multiple degrees-of-freedom system, the damp-
ing ratio for each frequency is different. To illustrate the variation, Figure 10.16 depicts
the modal damping ratio as a function of frequency. The plot shows that, of course, the
ratios for the specified frequencies are exact and the damping ratios vary significantly for
other frequencies.

Rayleigh damping as just described is not the only approach to structural
damping used in finite element analysis. Finite element software packages also
include options for specifying damping as a material-dependent property, as
opposed to a property of the structure, as well as defining specific damping
elements (finite elements) that may be added at any geometric location in the struc-
ture. The last capability allows the finite element analyst to examine the effects of
energy dissipation elements as applied to specific locations.

10.10 TRANSIENT DYNAMIC RESPONSE
In Chapter 7, finite difference methods for direct numerical integration of finite
element models of heat transfer problems are introduced. In those applications,
we deal with a scalar field variable, temperature, and first-order governing equa-
tions. Therefore, we need only to develop finite difference approximations to first
derivatives. For structural dynamic systems, we have a set of second-order dif-
ferential equations

[M ]{�̈} + [C ]{�̇} + [K ]{�} = {F (t )} (10.154)

representing the assembled finite element model of a structure subjected to gen-
eral (nonharmonic) forcing functions. In applying finite difference methods to
Equation 10.154, we assume that the state of the system is known at time t and
we wish to compute the displacements at time t + �t; that is, we wish to solve

[M ]{�̈(t + �t )} + [C ]{�̇(t + �t )} + [K ]{�(t + �t )} = {F (t + �t )} (10.155)

for {�(t + �t )}.
Many finite difference techniques exist for solving the system of equations

represented by Equation 10.155. Here, we describe Newmark’s method [7] also
referred to as the constant acceleration method. In the Newmark method, it is as-
sumed that the acceleration during an integration time step �t is constant and an
average value. For constant acceleration, we can write the kinematic relations

�(t + �t ) = �(t ) + �̇(t )�t + �̈av
�t 2

2
(10.156)

�̇(t + �t ) = �̇(t ) + �̈av�t (10.157)
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The constant, average acceleration is

�̈av = �̈(t + �t ) + �̈(t )

2
(10.158)

Combining Equations 10.156 and 10.158 yields

�(t + �t ) = �(t ) + �̇(t )�t + [�̈(t + �t ) + �̈(t )]
�t 2

4
(10.159)

which is solved for the acceleration at t + �t to obtain

�̈(t + �t ) = 4

�t 2
[�(t + �t ) − �(t )] − 4

�t
�̇(t ) − �̈(t ) (10.160)

If we also substitute Equations 10.158 and 10.160 into Equation 10.157, we find
the velocity at time t + �t to be given by

�̇(t + �t ) = 2

�t
[�(t + �t ) − �(t )] − �̇(t ) (10.161)

Equations 10.160 and 10.161 express acceleration and velocity at t + �t in
terms of known conditions at the previous time step and the displacement at
t + �t . If these relations are substituted into Equation 10.155, we obtain, after a
bit of algebraic manipulation,

4

�t 2
[M ]{�(t + �t )} + 2

�t
[C ]{�(t + �t )} + [K ]{�(t + �t )}

= {F (t + �t )} + [M ]

(
{�̈(t )} + 4

�t
{�̇(t )} + 4

�t 2
{�(t )}

)

+ [C ]

(
{�̇(t )} + 2

�t
{�(t )}

)
(10.162)

Equation 10.162 is the recurrence relation for the Newmark method. While the
relation may look complicated, it must be realized that the mass, damping, and
stiffness matrices are known, so the equations are just an algebraic system in the
unknown displacements at time t + �t . The right-hand side of the system is
known in terms of the solution at the previous time step and the applied forces.
Equation 10.162 is often written symbolically as

[K̄ ]{�(t + �t )} = {Feff(t + �t )} (10.163)

with

[K̄ ] = 4

�t 2
[M ] + 2

�t
[C ] + [K ] (10.164)

{Feff(t + �t )} = {F (t + �t )}

+ [M ]

(
{�̈(t )} + 4

�t
{�̇(t )} + 4

�t 2
{�(t )}

)

+ [C ]

(
{�̇(t )} + 2

�t
{�(t )}

)
(10.165)
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The system of algebraic equations represented by Equation 10.163 can be solved
at each time step for the unknown displacements. For a constant time step �t ,
matrix [K̄ ] is constant and need be computed only once. The right-hand side
{Feff(t + �t )} must, of course, be updated at each time step. At each time step, the
system of algebraic equations must be solved to obtain displacements. For this rea-
son, the procedure is known as an implicit method. By back substitution through
the appropriate relations, velocities and accelerations can also be obtained.

The Newmark method is known to be unconditionally stable [8]. While the
details are beyond the scope of this text, stability (more to the point, instability) of
a finite difference technique means that, under certain conditions, the computed
displacements may grow without bound as the solution procedure “marches” in
time. Several finite difference methods are known to be conditionally stable,
meaning that accurate results are obtained only if the time step �t is less than a
prescribed critical value. This is not the case with the Newmark method. This
does not mean, however, that the results are independent of the selected time step.
Accuracy of any finite difference technique improves as the time step is reduced,
and this phenomenon is a convergence concern similar to mesh refinement in a
finite element model. For dynamic response of a finite element model, we must
be concerned with not only the convergence related to the finite element mesh
but also the time step convergence of the finite difference method selected. As
discussed in a following section, finite element software for the transient dynamic
response requires the user to specify “load steps,” which represent the change
in loading as a function of time. The software then solves the finite element equa-
tions as if the problem is one of static equilibrium at the specified loading con-
dition. It is very important to note that the system equations represented by Equa-
tion 10.163 are based on the finite element model, even though the solution
procedure is that of the finite difference technique in time.

10.11 BAR ELEMENT MASS MATRIX
IN TWO-DIMENSIONAL TRUSS
STRUCTURES

The bar-element-consistent mass matrix defined in Equation 10.58 is valid only
for axial vibrations. When bar elements are used in modeling two- and three-
dimensional truss structures, additional considerations are required, and the mass
matrix modified accordingly. When a truss undergoes deflection, either statically
or dynamically, individual elements experience both axial and transverse dis-
placement resulting from overall structural displacement and element intercon-
nections at nodes. In Chapter 3, transverse displacement of elements was ignored
in development of the element stiffness matrix as there is no transverse stiffness
owing to the assumption of pin connections, hence free rotation. However, in the
dynamic case, transverse motion introduces additional kinetic energy, which
must be taken into account.
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Consider the differential volume of a bar element undergoing both axial and
transverse displacement, as shown in Figure 10.17. We assume a dynamic situa-
tion such that both displacement components vary with position and time. The
kinetic energy of the differential volume is

dT = 1

2
	 A dx

[(
∂u

∂ t

)2

+
(

∂v

∂ t

)2
]

= 1

2
	 A dx (u̇2 + v̇2) (10.166)

and the total kinetic energy of the bar becomes

T = 1

2
	 A

L∫
0

u̇2 dx + 1

2
	 A

L∫
0

v̇2 dx (10.167)

Observing that the transverse displacement can be expressed in terms of the
transverse displacements of the element nodes, using the same interpolation
functions as for axial displacement, we have

u(x , t ) = N1(x )u1(t ) + N2(x )u2(t )

v(x , t ) = N1(x )v1(t ) + N2(x )v2(t )
(10.168)

Using matrix notation, the velocities are written as

u̇(x , t ) = [N1 N2]

{
u̇1

u̇2

}

v̇(x , t ) = [N1 N2]

{
v̇1

v̇2

} (10.169)

and element kinetic energy becomes

T = 1

2
	 A{u̇}T

L∫
0

[N ]T [N ] dx {u̇} + 1

2
	 A{v̇}T

L∫
0

[N ]T [N ] dx {v̇} (10.170)

v1 u1

v2 u2

1

2

(a)

v (x, t)

u (x, t)

dx

(b)

Figure 10.17 A bar element in two-dimensional motion:
(a) Nodal displacements. (b) Differential element.
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Expressing the nodal velocities as

{�̇} =




u̇1

v̇1

u̇2

v̇2




(10.171)

the kinetic energy expression can be rewritten in the form

T = 1

2
{�̇}T

[
m(e)

2

]{�}

= 1

2
{�̇}T 	 A

L∫
0




N 2
1 0 N1 N2 0

0 N 2
1 0 N1 N2

N1 N2 0 N 2
2 0

0 N1 N2 0 N 2
2


dx{�} (10.172)

From Equation 10.172, the mass matrix of the bar element in two dimensions is
identified as

[
m(e)

2

] = 	 A

L∫
0




N 2
1 0 N1 N2 0

0 N 2
1 0 N1 N2

N1 N2 0 N 2
2 0

0 N1 N2 0 N 2
2


dx = 	 AL

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2




(10.173)

The mass matrix defined by Equation 10.173 is described in the element
(local) coordinate system, since the axial and transverse directions are defined in
terms of the axis of the element. How, then, is this mass matrix transformed to
the global coordinate system of a structure? Recall that, in Chapter 3, the element
axial displacements are expressed in terms of global displacements via a rotation
transformation of the element x axis. To reiterate, the transverse displacements
were not considered, as no stiffness is associated with the transverse motion.
Now, however, the transverse displacements must be included in the transforma-
tion to global coordinates because of the associated mass and kinetic energy. 

Figure 10.18 depicts a single node of a bar element oriented at angle � rela-
tive to the X axis of a global coordinate system. Nodal displacements in the
element frame are u2, v2 and corresponding global displacements are U3, U4,
respectively. As the displacement in the two coordinate systems must be the
same, we have

u2 = U3 cos � + U4 sin �

v2 = −U3 sin � + U4 cos �
(10.174)

or {
u2

v2

}
=

[
cos � sin �
−sin � cos �

] {
U3

U4

}
(10.175)
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As the same relation holds at the other element node, the complete transforma-
tion is


u1

v1

u2

v2


 =




cos � sin � 0 0
−sin � cos � 0 0

0 0 cos � sin �
0 0 −sin � cos �







U1

U2

U3

U4




= [R] {U} (10.176)

Since the nodal velocities are related by the same transformation, substitution
into the kinetic energy expression shows that the mass matrix in the global coor-
dinate system is [

M (e)
2

] = [R]T
[
m (e)

2

]
[R] (10.177)

where we again use the subscript to indicate that the mass matrix is applicable to
two-dimensional structures. 

If the matrix multiplications indicated in Equation 10.177 are performed for
an arbitrary angle, the resulting global mass matrix for a bar element is found to be

[
M (e)

2

] = 	 AL

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2


 (10.178)

and the result is exactly the same as the mass matrix in the element coordinate sys-
tem regardless of element orientation in the global system. This phenomenon
should come as no surprise. Mass is an absolute scalar property and therefore in-
dependent of coordinate system. A similar development leads to the same conclu-
sion when a bar element is used in modeling three-dimensional truss structures.

The complication described for including the additional transverse inertia
effects of the bar element are also applicable to the one-dimensional beam (flex-
ure) element. The mass matrix for the beam element given by Equation 10.78
is applicable only in a one-dimensional model. If the flexure element is used in
modeling two- or three-dimensional frame structures, additional consideration
must be given to formulation of the element mass matrix owing to axial inertia

�

v2

U4

u2

U3

Figure 10.18 The relation
of element and global dis-
placements at a single node.
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EXAMPLE 10.10

effects. For beam elements, most finite software packages include axial effects
(i.e., the beam element is a combination of the bar element and the two-
dimensional flexure element) and all appropriate inertia effects are included in
formulation of the consistent mass matrix.

As a complete example of modal analysis, we return to the truss structure of Section 3.7,
repeated here as Figure 10.19. Note that, for the current example, the static loads applied
in the earlier example have been removed. As we are interested here in the free-vibration
response of the structure, the static loads are of no consequence in the dynamic analysis.
With the additional specification that material density is 	 = 2.6(10)−4 lb-s2/in.4, we
solve the eigenvalue problem to determine the natural circular frequencies and modal
amplitude vectors for free vibration of the structure.

As the global stiffness matrix has already been assembled, the procedure is not
repeated here. We must, however, assemble the global mass matrix using the element
numbers and global node numbers as shown. The element and global mass matrices for
the bar element in two dimensions are given by Equation 10.178 as

[
m(e)

] = 	 AL

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2




As elements 1, 3, 4, 5, 7, and 8 have the same length, area, and density, we have
[
M (1)

] = [
M (3)

] = [
M (4)

] = [
M (5)

] = [
M (7)

] = [
M (8)

]

= (2.6)(10)−4(1.5)(40)

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2




=




5.2 0 2.6 0
0 5.2 0 2.6

2.6 0 5.2 0
0 2.6 0 5.2


 (10)−3 lb-s2/in.

while for elements 2 and 6

[
M (2)

] = [
M (6)

] = 2.6(10)−4(1.5)(40
√

2)

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2




=




7.36 0 3.68 0
0 7.36 0 3.68

3.68 0 7.36 0
0 3.68 0 7.36


(10)−3 lb-s2/in.
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The element-to-global displacement relations are as given in Chapter 3. Using the direct
assembly procedure, the global mass matrix is

51

4
62

7

2

1

4 6

3 5

40 in.

40 in. 40 in.

3

8

Figure 10.19 Eight-element truss of
Example 10.10.

[M] =




12.56 0 0 0 2.6 0 3.68 0 0 0 0 0
0 12.56 0 0 0 2.6 0 3.68 0 0 0 0
0 0 5.2 0 0 0 2.6 0 0 0 0 0
0 0 0 5.2 0 0 0 2.6 0 0 0 0

2.6 0 0 0 7.8 0 2.6 0 2.6 0 0 0
0 2.6 0 0 0 7.8 0 2.6 0 2.6 0 0

3.68 0 2.6 0 2.6 0 22.52 0 3.68 0 2.6 0
0 3.68 0 2.6 0 2.6 0 22.52 0 3.68 0 2.6
0 0 0 0 2.6 0 3.68 0 17.76 0 2.6 0
0 0 0 0 0 2.6 0 3.68 0 17.76 0 2.6
0 0 0 0 0 0 2.6 0 2.6 0 10.4 0
0 0 0 0 0 0 0 2.6 0 2.6 0 10.4




(10)−3

Applying the constraint conditions U1 = U2 = U3 = U4 = 0, the mass matrix for the
active degrees of freedom becomes

[Ma ] =




7.8 0 2.6 0 2.6 0 0 0
0 7.8 0 2.6 0 2.6 0 0

2.6 0 22.52 0 3.68 0 2.6 0
0 2.6 0 22.52 0 3.68 0 2.6

2.6 0 3.68 0 17.76 0 2.6 0
0 2.6 0 3.68 0 17.76 0 2.6
0 0 2.6 0 2.6 0 10.4 0
0 0 0 2.6 0 2.6 0 10.4




(10)−3 lb-s2/in.
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Extracting the data from Section 3.7, the stiffness matrix for the active degrees of free-
dom is

[Ka ] =




7.5 0 0 0 −3.75 0 0 0
0 3.75 0 −3.75 0 0 0 0
0 0 10.15 0 −1.325 1.325 −3.75 0
0 −3.75 0 6.4 1.325 −1.325 0 0

−3.75 0 −1.325 1.325 5.075 −1.325 0 0
0 0 1.325 −1.325 −1.325 5.075 0 −3.75
0 0 −3.75 0 0 0 3.75 0
0 0 0 0 0 −3.75 0 3.75




105 lb/in.

The finite element model for the truss exhibits 8 degrees of freedom; hence, the charac-
teristic determinant

|−�2[M ] + [K ]| = 0

yields, theoretically, eight natural frequencies of oscillation and eight corresponding
modal shapes (modal amplitude vectors). For this example, the natural modes were com-
puted using the student edition of the ANSYS program [9], with the results shown in
Table 10.1. The corresponding modal amplitude vectors (normalized to the mass matrix
as discussed relative to orthogonality) are shown in Table 10.2.

The frequencies are observed to be quite large in magnitude. The fundamental fre-
quency, about 122 cycles/sec is beyond the general comprehension of the human eye-
brain interface (30 Hz is the accepted cutoff based on computer graphics research [10]).
The high frequencies are not uncommon in such structures. The data used in this example
correspond approximately to the material properties of aluminum; a light material with
good stiffness relative to weight. Recalling the basic relation � =

√
k/m , high natural

frequencies should be expected. 
The mode shapes provide an indication of the geometric nature of the natural modes.

As such, the numbers in Table 10.2 are not at all indicative of amplitude values; instead,

Table 10.1 Natural Modes

Frequency

Mode Rad/sec Hz

1 767.1 122.1
2 2082.3 331.4
3 2958.7 470.9
4 4504.8 716.9
5 6790.9 1080.8
6 7975.9 1269.4
7 8664.5 1379.0
8 8977.4 1428.8
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these are relative values of the motion of each node. It is more insightful to examine plots
of the mode shapes; that is, plots of the structure depicting the shape of the structure if it
did indeed oscillate in one of its natural modes. To this end, we present the mode shape
corresponding to mode 1 in Figure 10.20a. Note that, in this fundamental mode, the truss
vibrates much as a cantilevered beam about the constrained nodes. On the other hand,
Figure 10.20b illustrates the mode shape for mode 2 oscillation. In mode 2, the structure
exhibits an antisymmetric motion, in which the “halves” of the structure move in opposi-
tion to one another. Examination of the other modes reveals additional differences in the
mode shapes. 

Noting that Table 10.2 is, in fact, the modal matrix, it is a relatively simple matter to
check the orthogonality conditions by forming the matrix triple products

[A]T [M ][ A] = [I ]

[A]T [K ][ A] = �2[I ]

Within reasonable numerical accuracy, the relations are indeed true for this example. We
leave the detailed check as an exercise.

(a) (b)

Figure 10.20
(a) Fundamental mode shape of the truss in Example 10.10.
(b) Second mode shape of the truss.

Table 10.2 Modal Amplitude Vectors

Mode

Displacement 1 2 3 4 5 6 7 8

U5 0.2605 2.194 1.213 �3.594 �1.445 �1.802 4.772 �4.368
U6 2.207 �3.282 3.125 �2.1412 5.826 �0.934 1.058 0.727
U7 �0.7754 0.7169 2.888 2.370 �0.142 �3.830 �2.174 �0.464
U8 2.128 �2.686 1.957 �0.4322 �4.274 0.569 �0.341 0.483
U9 0.5156 3.855 1.706 �3.934 �0.055 1.981 �2.781 3.956
U10 4.118 2.556 �1.459 1.133 0.908 1.629 �3.319 �4.407
U11 �0.7894 0.9712 4.183 4.917 0.737 6.077 4.392 �1.205
U12 4.213 2.901 �1.888 2.818 0.604 �3.400 4.828 5.344
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10.12 PRACTICAL CONSIDERATIONS
The major problem inherent to dynamic structural analysis is the time-consuming
and costly amount of computation required. In a finite difference technique, such
as that represented by Equation 10.163, the system of equations must be solved at
every time step over the time interval of interest. For convergence, the time step
is generally quite small, so the amount of computation required is huge. In modal
analysis, the burden is in computing natural frequencies and mode shapes. As
practical finite element models can contain tens of thousands of degrees of free-
dom, the time and expense of computing all of the frequencies and mode shapes
is prohibitive. Fortunately, to obtain reasonable approximations of dynamic
response, it is seldom necessary to solve the full eigenvalue problem. Two practi-
cal arguments underlie the preceding statement. First, the lower-valued frequen-
cies and corresponding mode shapes are more important in describing structural
behavior. This is because the higher-valued frequencies most often represent
vibration of individual elements and do not contribute significantly to overall
structural response. Second, when structures are subjected to time-dependent
forcing functions, the range of forcing frequencies to be experienced is reason-
ably predictable. Therefore, only system natural frequencies around that range are
of concern in examining resonance possibilities.

Based on these arguments, many techniques have been developed that allow
the computation (approximately) of a subset of natural frequencies and mode
shapes of a structural system modeled by finite elements. While a complete dis-
cussion of the details is beyond the scope of this text, the following discussion
explains the basic premises. (See Bathe [6] for a very good, rigorous description
of the various techniques.) Using our notation, the eigenvalue problem that must
be solved to obtain natural frequencies and mode shapes is written as

[K ]{A} = �2[M ]{A} (10.179)

The problem represented by Equation 10.179 is reduced in complexity by static
condensation (or, more often, Guyan reduction [11]) using the assumption that
all the structural mass can be lumped (concentrated) at some specific degrees
of freedom without significantly affecting the frequencies and mode shapes of
interest. Using the subscript a (active) to represent degrees of freedom of inter-
est and subscript c (constrained) to denote all other degrees of freedom Equa-
tion 10.179 can be partitioned into [

[Kaa] [Kac]
[Kca] [Kcc]

] { {Aa}
{Ac}

}
= �2

[
[Maa] [0]

[0] [0]

] { {Aa}
{Ac}

}
(10.180)

In Equation 10.180, [Maa] is a diagonal matrix, so the mass has been lumped at
the degrees of freedom of interest. The “constrained” degrees of freedom are
constrained only in the sense that we assign zero mass to those degrees. The
lower partition of Equation 10.180 is

[Kca]{Aa} + [Kcc]{Ac} = {0} (10.181)
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and this equation can be solved as

{Ac} = −[Kcc]−1[Kca]{Aa} (10.182)

to eliminate {Ac}. Substituting Equation 10.182 into the upper partition of Equa-
tion 10.180, we obtain

([Kaa] − [Kac][Kcc]−1[Kca]){Aa} = �2[Maa]{Aa} (10.183)

as the reduced eigenvalue problem. Note that all terms of the original stiffness
matrix are retained but not those of the mass matrix. Another way of saying this
is that the stiffness matrix is exact but the mass matrix is approximate.

The difficult part of this reduction procedure lies in selecting the degrees of
freedom to be retained and associated with the lumped mass terms. Fortunately,
finite element software systems have such selection built into the software.
The user generally need specify only the number of degrees of freedom to be re-
tained, and the software selects those degrees of freedom based on the smallest
ratios of diagonal terms of the stiffness and mass matrices. Other algorithms are
used if the user is interested in obtaining the dynamic modes within a specified
frequency. In any case, the retained degrees of freedom are most often called
dynamic degrees of freedom or master degrees of freedom.

This discussion is meant to be for general information and does not represent
a hard and fast method for reducing and solving eigenvalue problems. Indeed,
reference to Equation 10.182 shows that the procedure requires finding the in-
verse of a huge matrix to accomplish the reduction. Nevertheless, several power-
ful techniques have been developed around the general reduction idea. These
include subspace iteration [12] and the Lanczos method [13]. The user of a par-
ticular finite element analysis software system must become familiar with the
various options presented for dynamic analysis, as multiple computational
schemes are available, depending on model size and user needs.

10.13 SUMMARY
The application of the finite element method to structural dynamics is introduced in the
general context of linear systems. The basic ideas of natural frequency and mode shapes are
introduced using both discrete spring-mass systems and general structural elements. Use of
the natural modes of vibration to solve more-general problems of forced vibration is em-
phasized. In addition, the Newmark finite difference method for solving transient response
to general forcing functions is developed. The chapter is intended only as a general intro-
duction to structural dynamics. Indeed, many fine texts are devoted completely to the topic.
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PROBLEMS
10.1 Verify by direct substitution that Equation 10.5 is the general solution of

Equation 10.4.
10.2 A simple harmonic oscillator has m = 3 kg, k = 5 N/mm . The mass receives

an impact such that the initial velocity is 5 mm/sec and the initial displacement
is zero. Calculate the ensuing free vibration.

10.3 The equilibrium deflection of a spring-mass system as in Figure 10.1 is
measured to be 1.4 in. Calculate the natural circular frequency, the cyclic
frequency, and period of free vibrations.

10.4 Show that the forced amplitude given by Equation 10.28 can be expressed as

U = X 0

1 − r 2
r �= 1

with X 0 = F0/k equivalent static deflection and r = � f /� ≡ frequency ratio.
10.5 Determine the solution to Equation 10.26 for the case � f = �. Note that, for

this condition, Equation 10.29 is not the correct solution.
10.6 Combine Equations 10.5 and 10.29 to obtain the complete response of a simple

harmonic oscillator, including both free and forced vibration terms. Show that,
for initial conditions given by x (t = 0) = x0 and ẋ (t = 0) = v0, the complete
response becomes

x (t ) = v0

�
sin �t + x0 cos �t + X 0

1 − r 2
(sin � f t − r sin �t )

with X 0 and r as defined in Problem 10.4.
10.7 Use the result of Problem 10.6 with x0 = v0 = 0, r = 0.95, X 0 = 2,

� f = 10 rad/sec and plot the complete response x(t) for several motion cycles.
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10.8 For the problem in Example 10.2, what initial conditions would be required so
that the system moved (a) in the fundamental mode only or (b) in the second
mode only?

10.9 Using the data and solution of Example 10.2, normalize the modal matrix per
the procedure of Section 10.7 and verify that the differential equations are
uncoupled by the procedure.

10.10 Using the two-element solution given in Example 10.4, determine the modal
amplitude vectors. Normalize the modal amplitude vectors and show that matrix
product [A]T [M ][ A] is the identity matrix.

10.11 The 2 degrees-of-freedom system in Figure 10.4 is subjected to an external
force F2 = 10 sin 8t lb applied to node 2 and external force F3 = 6 sin 4t lb
applied to node 3. Use the normalized modal matrix to uncouple the differential
equations and solve for the forced response of the nodal displacements. Use the
numerical data of Example 10.2.

10.12 Solve the problem of Example 10.4 using two equal-length bar elements except
that the mass matrices are lumped; that is, take the element mass matrices as

[
m (1)

] = [
m (2)

] = 	 AL

4

[
1 0
0 1

]

How do the computed natural frequencies compare with those obtained using
consistent mass matrices?

10.13 Obtain a refined solution for Example 10.4 using three equal-length elements
and lumped mass matrices. How do the frequencies compare to the two-element
solution?

10.14 Considering the rotational degrees of freedom involved in a beam element, how
would one define a lumped mass matrix for a beam element?

10.15 Verify the consistent mass matrix for the beam element given by Equation 10.78
by direct integration.

10.16 Verify the mass matrix result of Example 10.6 using Gaussian quadrature
numerical integration.

10.17 Show that, within the accuracy of the calculations as given, the sum of all terms
in the rectangular element mass matrix in Example 10.6 is twice the total mass
of the element. Why?

10.18 What are the values of the terms of a lumped mass matrix for the element in
Example 10.6?

10.19 Assume that the dynamic response equations for a finite element have been
uncoupled and are given by Equation 10.120 but the external forces are not
sinusoidal. How would you solve the differential equations for a general forcing
function or functions?

10.20 Given the solution data of Example 10.7, assume that the system is changed to
include damping such that the system damping matrix (after setting u1 = 0) is
given by

[C] =

 2c −c 0

−c 2c −c
0 −c c




Show that the matrix product [A]T [C ][ A] does not result in a diagonal matrix.
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10.21 Perform the matrix multiplications indicated in Equation 10.177 to verify the
result given in Equation 10.178.

10.22 For the truss in Example 10.10, reformulate the system mass matrix using
lumped element mass matrices. Resolve for the frequencies and mode shapes
using the finite element software available to you, if it has the lumped matrix
available as an option (most finite element software includes this option).

10.23 If you formally apply a reduction procedure such as outlined in Section 10.12,
which degrees of freedom would be important to retain if, say, we wish to
compute only four of the eight frequencies? 
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A.1 DEFINITIONS
The mathematical description of many physical problems is often simplified by
the use of rectangular arrays of scalar quantities of the form

[A] =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn


 (A.1)

Such an array is known as a matrix, and the scalar values that compose the array
are the elements of the matrix. The position of each element ai j is identified by
the row subscript i and the column subscript j.

The number of rows and columns determine the order of a matrix. A matrix
having m rows and n columns is said to be of order “m by n” (usually denoted as
m × n). If the number of rows and columns in a matrix are the same, the matrix
is a square matrix and said to be of order n. A matrix having only one row is
called a row matrix or row vector. Similarly, a matrix with a single column is a
column matrix or column vector.

If the rows and columns of a matrix [A] are interchanged, the resulting
matrix is known as the transpose of [A], denoted by [A]T . For the matrix defined
in Equation A.1, the transpose is

[A]T =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

...

a1n a2n · · · amn


 (A.2)

and we observe that, if [A] is of order m by n, then [A]T is of order n by m. For

A P P E N D I X A
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example, if [A] is given by

[A] =
[

2 −1 3
4 0 2

]

the transpose of [A] is

[A]T =

 2 4

−1 0
3 2




Several important special types of matrices are defined next. A diagonal
matrix is a square matrix composed of elements such that ai j = 0 and i �= j .
Therefore, the only nonzero terms are those on the main diagonal (upper left to
lower right). For example,

[A] =

 2 0 0

0 1 0
0 0 3




is a diagonal matrix. 
An identity matrix (denoted [I ]) is a diagonal matrix in which the value of

the nonzero terms is unity. Hence,

[A] = [I ] =

 1 0 0

0 1 0
0 0 1




is an identity matrix.
A null matrix (also known as a zero matrix [0]) is a matrix of any order in

which the value of all elements is 0.
A symmetric matrix is a square matrix composed of elements such that the

nondiagonal values are symmetric about the main diagonal. Mathematically,
symmetry is expressed as ai j = aji and i �= j . For example, the matrix

[A] =

 2 −2 0

−2 4 −3
0 −3 1




is a symmetric matrix. Note that the transpose of a symmetric matrix is the same
as the original matrix.

A skew symmetric matrix is a square matrix in which the diagonal terms aii

have a value of 0 and the off-diagonal terms have values such that ai j = −aji . An
example of a skew symmetric matrix is

[A] =

 0 −2 0

2 0 3
0 −3 0




For a skew symmetric matrix, we observe that the transpose is obtained by
changing the algebraic sign of each element of the matrix.
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A.2 ALGEBRAIC OPERATIONS
Addition and subtraction of matrices can be defined only for matrices of the same
order. If [A] and [B] are both m × n matrices, the two are said to be conformable
for addition or subtraction. The sum of two m × n matrices is another m × n
matrix having elements obtained by summing the corresponding elements of the
original matrices. Symbolically, matrix addition is expressed as

[C ] = [A] + [B] (A.3)

where

ci j = ai j + bi j i = 1, m j = 1, n (A.4)

The operation of matrix subtraction is similarly defined. Matrix addition and sub-
traction are commutative and associative; that is,

[A] + [B] = [B] + [A] (A.5)

[A] + ([B] + [C ]) = ([A] + [B]) + [C ] (A.6)

The product of a scalar and a matrix is a matrix in which every element of
the original matrix is multiplied by the scalar. If a scalar u multiplies matrix [A],
then

[B] = u[A] (A.7)

where the elements of [B] are given by

bi j = uai j i = 1, m j = 1, n (A.8)

Matrix multiplication is defined in such a way as to facilitate the solution of
simultaneous linear equations. The product of two matrices [A] and [B] denoted

[C ] = [A][B] (A.9)

exists only if the number of columns in [A] is the equal to the number of rows in
[B]. If this condition is satisfied, the matrices are said to be conformable for
multiplication. If [A] is of order m × p and [B] is of order p × n , the matrix
product [C ] = [A][B] is an m × n matrix having elements defined by

ci j =
p∑

k=1

aikbk j (A.10)

Thus, each element ci j is the sum of products of the elements in the ith row of [A]
and the corresponding elements in the jth column of [B]. When referring to the
matrix product [A][B], matrix [A] is called the premultiplier and matrix [B] is
the postmultiplier.

In general, matrix multiplication is not commutative; that is,

[A][B] �= [B][ A] (A.11)
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Matrix multiplication does satisfy the associative and distributive laws, and we
can therefore write

([A][B])[C ] = [A]([B][C ])

[A]([B] + [C ]) = [A][B] + [A][C ]

([A] + [B])[C ] = [A][C ] + [B][C ]

(A.12)

In addition to being noncommutative, matrix algebra differs from scalar
algebra in other ways. For example, the equality [A][B] = [A][C ] does not nec-
essarily imply [B] = [C ], since algebraic summing is involved in forming the
matrix products. As another example, if the product of two matrices is a null
matrix, that is, [A][B] = [0], the result does not necessarily imply that either [A]
or [B] is a null matrix.

A.3 DETERMINANTS
The determinant of a square matrix is a scalar value that is unique for a given
matrix. The determinant of an n × n matrix is represented symbolically as

det[A] = |A| =

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣
(A.13)

and is evaluated according to a very specific procedure. First, consider the 2 × 2
matrix

[A] =
[

a11 a12

a21 a22

]
(A.14)

for which the determinant is defined as

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ≡ a11a22 − a12a21 (A.15)

Given the definition of Equation A.15, the determinant of a square matrix of any
order can be determined.

Next, consider the determinant of a 3 × 3 matrix

|A| =
∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣ (A.16)

defined as

|A| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31) (A.17)

Note that the expressions in parentheses are the determinants of the second-order
matrices obtained by striking out the first row and the first, second, and third
columns, respectively. These are known as minors. A minor of a determinant is
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another determinant formed by removing an equal number of rows and columns
from the original determinant. The minor obtained by removing row i and col-
umn j is denoted |Mi j |. Using this notation, Equation A.17 becomes

|A| = a11|M11| − a12|M12| + a13|M13| (A.18)

and the determinant is said to be expanded in terms of the cofactors of the first
row. The cofactors of an element ai j are obtained by applying the appropriate
algebraic sign to the minor |Mi j | as follows. If the sum of row number i and col-
umn number j is even, the sign of the cofactor is positive; if i + j is odd, the sign
of the cofactor is negative. Denoting the cofactor as Ci j we can write

Ci j = (−1)i+ j |Mi j | (A.19)

The determinant given in Equation A.18 can then be expressed in terms of co-
factors as

|A| = a11C11 + a12C12 + a13C13 (A.20)

The determinant of a square matrix of any order can be obtained by expand-
ing the determinant in terms of the cofactors of any row i as

|A| =
n∑

j=1

ai j Ci j (A.21)

or any column j as

|A| =
n∑

i=1

ai j Ci j (A.22)

Application of Equation A.21 or A.22 requires that the cofactors Ci j be further
expanded to the point that all minors are of order 2 and can be evaluated by
Equation A.15.

A.4 MATRIX INVERSION
The inverse of a square matrix [A] is a square matrix denoted by [A]−1 and
satisfies

[A]−1[A] = [A][ A]−1 = [I ] (A.23)

that is, the product of a square matrix and its inverse is the identity matrix of
order n. The concept of the inverse of a matrix is of prime importance in solving
simultaneous linear equations by matrix methods. Consider the algebraic system

a11x1 + a12x2 + a13x3 = y1

a21x1 + a22x2 + a23x3 = y2

a31x1 + a32x2 + a33x3 = y3

(A.24)

which can be written in matrix form as

[A]{x } = {y} (A.25)
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where

[A] =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 (A.26)

is the 3 × 3 coefficient matrix,

{x} =
{ x1

x2

x3

}
(A.27)

is the 3 × 1 column matrix (vector) of unknowns, and

{y} =
{ y1

y2

y3

}
(A.28)

is the 3 × 1 column matrix (vector) representing the right-hand sides of the equa-
tions (the “forcing functions”).

If the inverse of matrix [A] can be determined, we can multiply both sides of
Equation A.25 by the inverse to obtain

[A]−1[A]{x } = [A]−1{y} (A.29)

Noting that

[A]−1[A]{x } = ([A]−1[A]){x } = [I ]{x } = {x } (A.30)

the solution for the simultaneous equations is given by Equation A.29 directly as

{x } = [A]−1{y} (A.31)

While presented in the context of a system of three equations, the result repre-
sented by Equation A.31 is applicable to any number of simultaneous algebraic
equations and gives the unique solution for the system of equations. 

The inverse of matrix [A] can be determined in terms of its cofactors and
determinant as follows. Let the cofactor matrix [C ] be the square matrix having as
elements the cofactors defined in Equation A.19. The adjoint of [A] is defined as

adj[A] = [C ]T (A.32)

The inverse of [A] is then formally given by

[A]−1 = adj[A]

|A| (A.33)

If the determinant of [A] is 0, Equation A.33 shows that the inverse does not
exist. In this case, the matrix is said to be singular and Equation A.31 provides
no solution for the system of equations. Singularity of the coefficient matrix
indicates one of two possibilities: (1) no solution exists or (2) multiple (non-
unique) solutions exist. In the latter case, the algebraic equations are not linearly
independent.
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Calculation of the inverse of a matrix per Equation A.33 is cumbersome and
not very practical. Fortunately, many more efficient techniques exist. One such
technique is the Gauss-Jordan reduction method, which is illustrated using a
2 × 2 matrix:

[A] =
[

a11 a12

a21 a22

]
(A.34)

The gist of the Gauss-Jordan method is to perform simple row and column oper-
ations such that the matrix is reduced to an identity matrix. The sequence of
operations required to accomplish this reduction produces the inverse. If we
divide the first row by a11, the operation is the same as the multiplication

[B1][A] =




1

a11
0

0 1




[
a11 a12

a21 a22

]
=


 1

a12

a11

a21 a22


 (A.35)

Next, multiply the first row by a21 and subtract from the second row, which is
equivalent to the matrix multiplication

[B2][B1][A] =
[

1 0
−a21 1

]
 1

a12

a11

a21 a22


 =




1
a12

a11

0 a22 − a12

a11
a21


 =




1
a12

a11

0
|A|
a11




(A.36)
Multiply the second row by a11/|A|:

[B3][B2][B1][A] =

 1 0

0
a11

|A|







1
a12

a11

0
|A|
a11


 =


 1

a12

a11

0 1


 (A.37)

Finally, multiply the second row by a12/a11 and subtract from the first row:

[B4][B3][B2][B1][A] =

 1 −a12

a11

0 1





 1

a12

a11

0 1


 =

[
1 0
0 1

]
= [I ] (A.38)

Considering Equation A.23, we see that

[A]−1 = [B4][B3][B2][B1] (A.39)

and carrying out the multiplications in Equation A.39 results in

[A]−1 = 1

|A|

[
a22 −a12

−a21 a11

]
(A.40)

This application of the Gauss-Jordan procedure may appear cumbersome, but the
procedure is quite amenable to computer implementation.
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A.5 MATRIX PARTITIONING
Any matrix can be subdivided or partitioned into a number of submatrices of
lower order. The concept of matrix partitioning is most useful in reducing the
size of a system of equations and accounting for specified values of a subset of
the dependent variables. Consider a system of n linear algebraic equations gov-
erning n unknowns xi expressed in matrix form as

[A]{x } = { f } (A.41)

in which we want to eliminate the first p unknowns. The matrix equation can be
written in partitioned form as[

[A11] [A12]
[A21] [A22]

] {
{X1}
{X2}

}
=

{
{F1}
{F2}

}
(A.42)

where the orders of the submatrices are as follows

[A11] ⇒ p × p

[A12] ⇒ p × (n − p)

[A21] ⇒ (n − p) × p

[A22] ⇒ (n − p) × (n − p)

{X1}, {F1} ⇒ p × 1

{X2}, {F12} ⇒ (n − p) × 1

(A.43)

The complete set of equations can now be written in terms of the matrix parti-
tions as

[A11]{X1} + [A12]{X2} = {F1}
[A21]{X1} + [A22]{X2} = {F2}

(A.44)

The first p equations (the upper partition) are solved as

{X1} = [A11]−1({F1} − [A12]{X2}) (A.45)

(implicitly assuming that the inverse of A11 exists). Substitution of Equation A.45
into the remaining n − p equations (the lower partition) yields(

[A22] − [A21]
⌊

A 11

⌋−1
[A12]

){X2} = {F2} − [A21]
⌊

A 11

⌋−1
]{F1} (A.46)

Equation A.46 is the reduced set of n − p algebraic equations representing the
original system and containing all the effects of the first p equations. In the con-
text of finite element analysis, this procedure is referred to as static condensation.

As another application (commonly encountered in finite element analysis),
we consider the case in which the partitioned values {X1} are known but the cor-
responding right-hand side partition {F1] is unknown. In this occurrence, the
lower partitioned equations are solved directly for {X2] to obtain

{X2} = [A22]−1({F2} − [A21]{X1}) (A.47)

The unknown values of {F1] can then be calculated directly using the equations
of the upper partition.
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Equations of Elasticity

B.1 STRAIN-DISPLACEMENT RELATIONS
In general, the concept of normal strain is introduced and defined in the context
of a uniaxial tension test. The elongated length L of a portion of the test specimen
having original length L 0 (the gauge length) is measured and the corresponding
normal strain defined as

ε = L − L 0

L 0
= �L

L 0
(B.1)

which is simply interpreted as “change in length per unit original length” and is
observed to be a dimensionless quantity. Similarly, the idea of shear strain is often
introduced in terms of a simple torsion test of a bar having a circular cross sec-
tion. In each case, the test geometry and applied loads are designed to produce a
simple, uniform state of strain dominated by one major component.

In real structures subjected to routine operating loads, strain is not generally
uniform nor limited to a single component. Instead, strain varies throughout the
geometry and can be composed of up to six independent components, including
both normal and shearing strains. Therefore, we are led to examine the appropri-
ate definitions of strain at a point. For the general case, we denote u = u(x , y, z),
v = v(x , y, z), and w = w(x , y, z) as the displacements in the x, y, and z coordi-
nate directions, respectively. (The displacements may also vary with time; for
now, we consider only the static case.) Figure B.1(a) depicts an infinitesimal el-
ement having undeformed edge lengths dx , dy , dz located at an arbitrary point
(x, y, z) in a solid body. For simplicity, we first assume that this element is loaded
in tension in the x direction only and examine the resulting deformation as shown
(greatly exaggerated) in Figure B.1(b). Displacement of point P is u while that of
point Q is u + (∂u/∂ x ) dx such that the deformed length in the x direction is
given by

dx ′ = dx + u Q − u P = dx + u + ∂u

∂x
dx − u = dx + ∂u

∂x
dx (B.2)
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Figure B.1
(a) A differential element in uniaxial stress; (b) resulting axial
deformation; (c) differential element subjected to shear;
(d) angular changes used to define shear strain.

The normal strain in the x direction at the point depicted is then

εx = dx ′ − dx

dx
= ∂u

∂x
(B.3)

Similar consideration of changes of length in the y and z directions yields the
general definitions of the associated normal strain components as

εy = ∂v

∂y
and εz = ∂w

∂ z
(B.4)

To examine shearing of the infinitesimal solid, we next consider the situation
shown in Figure B.1(c), in which applied surface tractions result in shear of the
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element, as depicted in Figure B.1(d). Unlike normal strain, the effects of shear-
ing are seen to be distortions of the original rectangular shape of the solid. Such
distortion is quantified by angular changes, and we consequently define shear
strain as a “change in the angle of an angle that was originally a right angle.” On
first reading, this may sound redundant but it is not. Consider the definition in the
context of Figure B.1(c) and B.1(d); angle A BC was a right angle in the unde-
formed state but has been distorted to A′ BC ′ by shearing. The change of the
angle is composed of two parts, denoted � and �, given by the slopes of B A′ and
BC ′, respectively as ∂v/∂ x and ∂u/∂ y. Thus, the shear strain is

�xy = ∂u

∂y
+ ∂v

∂x
(B.5)

where the double subscript is used to indicate the plane in which the angular
change occurs. Similar consideration of distortion in xz and yz planes results in

�xz = ∂u

∂ z
+ ∂w

∂x
and �yz = ∂v

∂ z
+ ∂w

∂y
(B.6)

as the shear strain components, respectively.
Equations B.3–B.6 provide the basic definitions of the six possible indepen-

dent strain components in three-dimensional deformation. It must be emphasized
that these strain-displacement relations are valid only for small deformations.
Additional terms must be included if large deformations occur as a result of
geometry or material characteristics. As continually is the case as we proceed, it
is convenient to express the strain-displacement relations in matrix form. To
accomplish this task, we define the displacement vector as

{�} =



u(x , y, z)
v(x , y, z)
w(x , y, z)


 (B.7)

(noting that this vector describes a continuous displacement field) and the strain
vector as

{ε} =




εx

εy

εz

�xy

�xz

�yz




(B.8)

The strain-displacement relations are then expressed in the compact form

{ε} = [L ]{�} (B.9)
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where [L] is the derivative operator matrix given by

[L] =




∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y




(B.10)

B.2 STRESS-STRAIN RELATIONS
The equations between stress and strain applicable to a particular material are
known as the constitutive equations for that material. In the most general type of
material possible, it is shown in advanced work in continuum mechanics that the
constitutive equations can contain up to 81 independent material constants. How-
ever, for a homogeneous, isotropic, linearly elastic material, it is readily shown
that only two independent material constants are required to completely specify
the relations. These two constants should be quite familiar from elementary
strength of materials theory as the modulus of elasticity (Young’s modulus) and
Poisson’s ratio. Again referring to the simple uniaxial tension test, the modulus of
elasticity is defined as the slope of the stress-strain curve in the elastic region or

E = �x

εx
(B.10)

where it is assumed that the axis of loading corresponds to the x axis. As strain is
dimensionless, the modulus of elasticity has the units of stress usually expressed
in lb/in.2 or megapascal (MPa). 

Poisson’s ratio is a measure of the well-known phenomenon that an elastic
body strained in one direction also experiences strain in mutually perpendicular
directions. In the uniaxial tension test, elongation of the test specimen in the load-
ing direction is accompanied by contraction in the plane perpendicular to the load-
ing direction. If the loading axis is x, this means that the specimen changes dimen-
sions and thus experiences strain in the y and z directions as well, even though no
external loading exists in those directions. Formally, Poisson’s ratio is defined as

	 = − unit lateral contraction

unit axial elongation
(B.11)

and we note that Poisson’s ratio is algebraically positive and the negative sign as-
sures this, since numerator and denominator always have opposite signs. Thus, in
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*The double subscript notation used for shearing stresses is explained as follows: The first subscript
defines the axial direction perpendicular to the surface on which the shearing stress acts, while the
second subscript denotes the axis parallel to the shearing stress. Thus, 
xy denotes a shearing stress
acting in the direction of the x axis on a surface perpendicular to the y axis. Via moment equilibrium, it
is readily shown that 
xy = 
yx , 
xz = 
zx , and 
yz = 
zy.

the tension test, if εx represents the strain resulting from applied load, the induced
strain components are given by εy = εz = −	εx .

The general stress-strain relations for a homogeneous, isotropic, linearly elas-
tic material subjected to a general three-dimensional deformation are as follows:

�x = E

(1 + 	)(1 − 2	)
[(1 − 	)εx + 	(εy + εz)] (B.12a)

�y = E

(1 + 	)(1 − 2	)
[(1 − 	)εy + 	(εx + εz)] (B.12b)

�z = E

(1 + 	)(1 − 2	)
[(1 − 	)εz + 	(εx + εy)] (B.12c)


xy = E

2(1 + 	)
�xy = G�xy (B.12d)


xz = E

2(1 + 	)
�xz = G�xz (B.12e)


yz = E

2(1 + 	)
�yz = G�yz (B.12f)

where we introduce the shear modulus or modulus of rigidity, defined by

G = E

2(1 + 	)
(B.13)

We may observe from the general relations that the normal components of stress
and strain are interrelated in a rather complicated fashion through the Poisson ef-
fect but are independent of shear strains. Similarly, the shear stress components*
are unaffected by normal strains. 

The stress-strain relations can easily be expressed in matrix form by defining
the material property matrix [D] as

[D] = E

(1 + 	)(1 − 2	)




1 − 	 	 	 0 0 0
	 1 − 	 	 0 0 0
	 	 1 − 	 0 0 0

0 0 0
1 − 2	

2
0 0

0 0 0 0
1 − 2	

2
0

0 0 0 0 0
1 − 2	

2




(B.14)
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��z
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Figure B.2 A three-dimensional element in a general state of stress.

and writing

{�} =




�x

�y

�z


xy


xz


yz




= [D]{ε} = [D][L]{�} (B.15)

Here {�} denotes the 6 × 1 matrix of stress components. We do not use the term
stress vector, since, as we subsequently observe, that term has a generally ac-
cepted meaning quite different from the matrix defined here.

B.3 EQUILIBRIUM EQUATIONS
To obtain the equations of equilibrium for a deformed solid body, we examine
the general state of stress at an arbitrary point in the body via an infinitesimal dif-
ferential element, as shown in Figure B.2. All stress components are assumed to
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vary spatially, and these variations are expressed in terms of first-order Taylor
series expansions, as indicated. In addition to the stress components shown, it
is assumed that the element is subjected to a body force having axial components
Bx , By , Bz. The body force is expressed as force per unit volume and represents
the action of an external influence that affects the body as a whole. The most
common body force is that of gravitational attraction while magnetic and cen-
trifugal forces are also examples.

Applying the condition of force equilibrium in the direction of the x axis for
the element of Figure B.2 results in
(

�x + ∂�x

∂x
dx

)
dy dz − �x dy dz +

(

xy + ∂
xy

∂y
dy

)
dx dz − 
xy dx dz

+
(


xz + ∂
xz

∂ z
dz

)
dx dy − 
xz dx dy + Bx dx dy dz = 0 (B.16)

Expanding and simplifying Equation B.16 yields

∂�x

∂x
+ ∂
xy

∂y
+ ∂
xz

∂ z
+ Bx = 0 (B.17)

Similarly, applying the force equilibrium conditions in the y and z coordinate
directions yields

∂
xy

∂x
+ ∂�y

∂y
+ ∂
yz

∂ z
+ By = 0 (B.18)

∂
xz

∂x
+ ∂
yz

∂y
+ ∂�z

∂ z
+ Bz = 0 (B.19)

respectively. 

B.4 COMPATIBILITY EQUATIONS
Equations B.3–B.6 define six strain components in terms of three displacement
components. A fundamental premise of the theory of continuum mechanics is
that a continuous body remains continuous during and after deformation. There-
fore, the displacement and strain functions must be continuous and single valued.
Given a continuous displacement field u, v, w, it is straightforward to compute
continuous, single-valued strain components via the strain-displacement rela-
tions. However, the inverse case is a bit more complicated. That is, given a field
of six continuous, single-valued strain components, we have six partial differen-
tial equations to solve to obtain the displacement components. In this case, there
is no assurance that the resulting displacements will meet the requirements of
continuity and single-valuedness. To ensure that displacements are continuous
when computed in this manner, additional relations among the strain components
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have been derived, and these are known as the compatibility equations. There are
six independent compatibility equations, one of which is

∂2εx

∂y2
+ ∂2εy

∂x 2
= ∂2�xy

∂x∂y
(B.20)

The other five equations are similarly second-order relations. While not used
explicitly in this text, the compatibility equations are absolutely essential in
advanced methods in continuum mechanics and the theory of elasticity.
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463

Solution Techniques
for Linear Algebraic
Equations

C.1 CRAMER’S METHOD
Cramer’s method, also known as Cramer’s rule, provides a systematic means of
solving linear equations. In practicality, the method is best applied to systems of
no more than two or three equations. Nevertheless, the method provides insight
into certain conditions regarding the existence of solutions and is included here
for that reason.

Consider the system of equations

a11x1 + a12x2 = f1

a21x1 + a22x2 = f2
(C.1)

or in matrix form

[A]{x } = { f } (C.2)

Multiplying the first equation by a22, the second by a12, and subtracting the sec-
ond from the first gives

(a11a22 − a12a21)x1 = f1a22 − f2a12 (C.3)

Therefore, if (a11a22 − a12a21) �= 0, we solve for x1 as

x1 = f1a22 − f2a12

a11a22 − a12a21
(C.4)

Via a similar procedure,

x2 = f2a11 − f1a21

a11a22 − a12a21
(C.5)
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Note that the denominator of each solution is the same and equal to the determi-
nant of the coefficient matrix

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 (C.6)

and again, it is assumed that the determinant is nonzero. 
Now, consider the numerator of Equation C.4, as follows. Replace the first

column of the coefficient matrix [A] with the right-hand side column matrix { f }
and calculate the determinant of the resulting matrix (denoted [A1]) to obtain

|A1| =
∣∣∣∣ f1 a12

f2 a22

∣∣∣∣ = f1a22 − f2a12 (C.7)

The determinant so obtained is exactly the numerator of Equation C.4. If we sim-
ilarly replace the second column of [A] with the right-hand side column matrix
and calculate the determinant, we have

|A2| =
∣∣∣∣ a11 f1

a21 f2

∣∣∣∣ = f2a11 − f1a21 (C.8)

and the result of Equation C.8 is identical to the numerator of Equation C.5.
Although presented for a system of only two equations, the results are applicable
to any number of linear algebraic equations as follows:

Cramer’s rule: Given a system of n linear algebraic equations in n unknowns xi ,
i = 1, n, expressed in matrix form as

[A]{x } = { f } (C.9)

where { f } is known, solutions are given by the ratio of determinants

xi = |Ai |
|A| i = 1, n (C.10)

provided |A| �= 0.

Matrices [Ai ] are formed by replacing the ith column of the coefficient
matrix [A] with the right-hand side column matrix.

Note that, if the right-hand side { f } = {0}, Cramer’s rule gives the trivial
result {x } = {0}.

Now consider the case in which the determinant of the coefficient matrix is
0. In this event, the solutions for the system represented by Equation C.1 are,
formally,

0x1 = f1a22 − f2a12

0x2 = f2a11 − f1a21
(C.11)

Equations (C.11) must be considered under two cases:

1. If the right-hand sides are nonzero, no solutions exist, since we cannot
multiply any number by 0 and obtain a nonzero result.
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2. If the right-hand sides are 0, the equations indicate that any values of x1

and x2 are solutions; this case corresponds to the homogeneous equations
that occur if { f } = {0}. Thus, a system of linear homogeneous algebraic
equations can have nontrivial solutions if and only if the determinant of the
coefficient matrix is 0. The fact is, however, that the solutions are not just
any values of x1 and x2, and we see this by examining the determinant

|A| = a11a22 − a12a21 = 0 (C.12)

or

a11

a21
= a12

a22
(C.13)

Equation C.13 states that the coefficients of x1 and x2 in the two equations are in
constant ratio. Thus, the equations are not independent and, in fact, represent a
straight line in the x1x2 plane. There do, then, exist an infinite number of solu-
tions (x1, x2), but there also exists a relation between the coordinates x1 and x2.
The argument just presented for two equations is also general for any number of
equations. If the system is homogeneous, nontrivial solutions exist only if the
determinant of the coefficient matrix is 0. 

C.2 GAUSS ELIMINATION
In Appendix A, dealing with matrix mathematics, the concept of inverting the co-
efficient matrix to obtain the solution for a system of linear algebraic equations is
discussed. For large systems of equations, calculation of the inverse of the coeffi-
cient matrix is time consuming and expensive. Fortunately, the operation of
inverting the matrix is not necessary to obtain solutions. Many other methods are
more computationally efficient. The method of Gauss elimination is one such
technique. Gauss elimination utilizes simple algebraic operations (multiplication,
division, addition, and subtraction) to successively eliminate unknowns from a
system of equations generally described by

[A]{x} = { f } ⇒




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann







x1

x2
...

xn




=




f1

f2
...

fn




(C.14a)

so that the system of equations is transformed to the form

[B]{x} = {g} ⇒




b11 b12 · · · b1n

0 b22 · · · b2n

0 0
. . .

...

0 0 0 bnn







x1

x2
...

xn




=




g1

g2
...

gn




(C.14b)
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In Equation C.14b, the original coefficient matrix has been transformed to upper
triangular form as all elements below the main diagonal are 0. In this form, the
solution for xn is simply gn/bnn and the remaining values xi are obtained by suc-
cessive back substitution into the remaining equations. 

The Gauss method is readily amenable to computer implementation, as de-
scribed by the following algorithm. For the general form of Equation C.13, we
first wish to eliminate x1 from the second through nth equations. To accomplish
this task, we must perform row operations such that the coefficient matrix ele-
ment ai1 = 0, i = 2, n. Selecting a11 as the pivot element, we can multiply the
first row by a21/a11 and subtract the result from the second row to obtain

a (1)
21 = a21 − a11

a21

a11
= 0

a (1)
22 = a22 − a12

a21

a11

... (C.15)

a (1)
2n = a2n − a1n

a21

a11

f (1)
2 = f2 − f1

a21

a11

In these relations, the superscript is used to indicate that the results are from op-
eration on the first column. The same procedure is used to eliminate x1 from the
remaining equations; that is, multiply the first equation by ai1/a11 and subtract
the result from the ith equation. (Note that, if ai1 is 0, no operation is required.)
The procedure results in

a (1)
i1 = 0 i = 2, n

a (1)
i j = ai j − a1 j

ai1

a11
i = 2, n j = 2, n

f (1)
i = fi − f1

ai1

a11
i = 2, n

(C.16)

The result of the operations using a11 as the pivot element are represented sym-
bolically as 



a11 a12 · · · a1n

0 a(1)
22 · · · a(1)

2n

0
...

. . .
...

0 a(1)
n2 · · · a(1)

nn







x1

x2
...

xn




=




f1

f (1)
2
...

f (1)
n




(C.17)

and variable x1 has been eliminated from all but the first equation. The procedure
next takes (newly calculated) element a (1)

22 as the pivot element and the operations
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are repeated so that all elements in the second column below a (1)
22 become 0. Car-

rying out the computations, using each successive diagonal element as the pivot
element, transforms the system of equations to the form of Equation C.14. The
solution is then obtained, as noted, by back substitution

xn = gn

bnn

xn−1 = 1

bn−1,n−1
(gn−1 − bn−1,n xn)

...

(C.18)

xi = 1

bii

(
gi −

n∑
j=i+1

bi j x j

)

The Gauss elimination procedure is easily programmed using array storage
and looping functions (DO loops), and it is much more efficient than inverting
the coefficient matrix. If the coefficient matrix is symmetric (common to many
finite element formulations), storage requirements for the matrix can be reduced
considerably, and the Gauss elimination algorithm is also simplified.

C.3 LU DECOMPOSITION
Another efficient method for solving systems of linear equations is the so-called
LU decomposition method. In this method, a system of linear algebraic equa-
tions, as in Equation C.14, are to be solved. The procedure is to decompose the
coefficient matrix [A] into two components [L] and [U ] so that 

[A] = [L][U ] =




L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...

Ln1 Ln2 · · · Lnn







U11 U12 · · · U1n

0 U22 · · · U2n
...

...
. . .

...

0 · · · · · · Unn


 (C.19)

Hence, [L] is a lower triangular matrix and [U] is an upper triangular matrix.
Here, we assume that [A] is a known n × n square matrix. Expansion of Equa-
tion C.19 shows that we have a system of equations with a greater number of
unknowns than the number of equations, so the decomposition into the LU rep-
resentation is not well defined. In the LU method, the diagonal elements of [L]
must have unity value, so that 

[L] =




1 0 · · · 0
L21 1 · · · 0
...

...
. . .

...

Ln1 Ln2 · · · 1


 (C.20)
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For illustration, we assume a 3 × 3 system and write

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 =


 1 0 0

L21 1 0
L31 L32 1





 U11 U12 U13

0 U22 U23

0 0 U33


 (C.21)

Matrix Equation C.21 represents these nine equations:

a11 = U11

a12 = U12

a21 = L21U11

a22 = L21U12 + U22

a13 = U13

a31 = L31U11

a32 = L31U12 + L32U22

a23 = L21U13 + U23

a33 = L31U13 + L32U23 + U33

(C.22)

Equation C.22 is written in a sequence such that, at each step, only a single un-
known appears in the equation. We rewrite the coefficient matrix [A] and divide
the matrix into “zones” as

©1 ©2 ©3

[A] =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


��

�

����

�
� (C.23)

With reference to Equation C.22, we observe that the first equation corresponds
to zone 1, the next three equations represent zone 2, and the last five equations
represent zone 3. In each zone, the equations include only the elements of [A]
that are in the zone and only elements of [L ] and [U ] from previous zones and
the current zone. Hence, the LU decomposition procedure described here is also
known as an active zone method.

For a system of n equations, the procedure is readily generalized to obtain
the following results

U1i = a1i

L ii = 1

i = 1, n
(C.24)

Li1 = ai1

U11
i = 2, n (C.25)
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The remaining terms obtained from active zone i, with i ranging from 2 to n, are

Li j =
ai j −

j−1∑
m=1

LimUmj

Uj j

Uji = aji −
j−1∑

m=1

L jmUmi

i = 2, n j = 2, 3, 4, . . . , i − 1 i �= j (C.26)

Uii = aii −
i−1∑
m=1

LimUmi i = 2, n (C.27)

Thus, the decomposition procedure is straightforward and readily amenable to
computer implementation.

Now that the decomposition procedure has been developed, we return to the
task of solving the equations. As we now have the equations expressed in the
form of the triangular matrices [L ] and [U ] as

[L ][U ]{x } = { f } (C.28)

we see that the product

[U ]{x } = {z} (C.29)

is an n × 1 column matrix, so Equation C.28 can be expressed as

[L ]{z} = { f } (C.30)

and owing to the triangular structure of [L], the solution for Equation C.30 is
obtained easily as (in order)

z1 = f1

zi = fi −
i−1∑
j=1

Li j z j i = 2, n
(C.31)

Formation of the intermediate solutions, represented by Equation C.31, is gener-
ally referred to as the forward sweep.

With the zi value known from Equation C.31, the solutions for the original
unknowns are obtained via Equation C.29 as

xn = zn

Unn

xi = 1

Uii

(
zi −

n∑
j=i+1

Ui j x j

) (C.32)

The process of solution represented by Equation C.32 is known as the backward
sweep or back substitution.
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5 4 3

3 2 1456

2 1

U6, F6 U5, F5 U4, F4 U3, F3 U2, F2 U1, F1

x

Figure C.1 A system of bar elements used to illustrate the frontal
solution method.

In the LU method, the major computational time is expended in decompos-
ing the coefficient matrix into the triangular forms. However, this step need be
accomplished only once, after which the forward sweep and back substitution
processes can be applied to any number of different right-hand forcing functions
{ f }. Further, if the coefficient matrix is symmetric and banded (as is most often
the case in finite element analysis), the method can be quite efficient.

C.4 FRONTAL SOLUTION
The frontal solution method (also known as the wave front solution) is an espe-
cially efficient method for solving finite element equations, since the coefficient
matrix (the stiffness matrix) is generally symmetric and banded. In the frontal
method, assembly of the system stiffness matrix is combined with the solution
phase. The method results in a considerable reduction in computer memory re-
quirements, especially for large models.

The technique is described with reference to Figure C.1, which shows an
assemblage of one-dimensional bar elements. For this simple example, we know
that the system equations are of the form




K11 K12 0 0 0 0
K12 K22 K23 0 0 0
0 K23 K33 K34 0 0
0 0 K34 K44 K45 0
0 0 0 K45 K55 K56

0 0 0 0 K56 K66







U1

U2

U3

U4

U5

U6




=




F1

F2

F3

F4

F5

F6




(C.33)

Clearly, the stiffness matrix is banded and sparse (many zero-valued terms). In
the frontal solution technique, the entire system stiffness matrix is not assembled
as such. Instead, the method utilizes the fact that a degree of freedom (an un-
known) can be eliminated when the rows and columns of the stiffness matrix cor-
responding to that degree of freedom are complete. In this context, eliminating a
degree of freedom means that we can write an equation for that degree of free-
dom in terms of other degrees of freedom and forcing functions. When such an
equation is obtained, it is written to a file and removed from memory. As is
shown, the net result is triangularization of the system stiffness matrix and the
solutions are obtained by simple back substitution.
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For simplicity of illustration, let each element in Figure C.1 have character-
istic stiffness k. We begin by defining a 6 × 6 null matrix [K] and proceed with
the assembly step, taking the elements in numerical order. Adding the element
stiffness matrix for element 1 to the system matrix, we obtain



k −k 0 0 0 0
−k k 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







U1

U2

U3

U4

U5

U6




=




F1

F2

F3

F4

F5

F6




(C.34)

Since U1 is associated only with element 1, displacement U1 appears in none of
the other equations and can be eliminated now. (To illustrate the effect on the
matrix, we do not actually eliminate the degree of freedom from the equations.)
The first row of Equation C.34 is

kU1 − kU2 = F1 (C.35)

and can be solved for U1 once U2 is known. Mathematically eliminating U1 from
the second row, we have



k −k 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







U1

U2

U3

U4

U5

U6




=




F1

F1 + F2

F3

F4

F5

F6




(C.36)

Next, we “process” element 2 and add the element stiffness matrix terms to the
appropriate locations in the coefficient matrix to obtain




k −k 0 0 0 0
0 k −k 0 0 0
0 −k k 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







U1

U2

U3

U4

U5

U6




=




F1

F1 + F2

F3

F4

F5

F6




(C.37)

Displacement U2 does not appear in any remaining equations and is now elimi-
nated to obtain



k −k 0 0 0 0
0 k −k 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







U1

U2

U3

U4

U5

U6




=




F1

F1 + F2

F1 + F2 + F3

F4

F5

F6




(C.38)
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In sequence, processing the remaining elements and following the elimination
procedure results in



k −k 0 0 0 0
0 k −k 0 0 0
0 0 k −k 0 0
0 0 0 k −k 0
0 0 0 0 k −k
0 0 0 0 −k k







U1

U2

U3

U4

U5

U6




=




F1

F1 + F2

F1 + F2 + F3

F1 + F2 + F3 + F4

F1 + F2 + F3 + F4 + F5

F6



(C.39)

Noting that the last equation in the system of Equation C.39 is a constraint equa-
tion (and could have been ignored at the beginning), we observe that the proce-
dure has triangularized the system stiffness matrix without formally assembling
that matrix. If we take out the constraint equation, the remaining equations are
easily solved by back substitution. Also note that the forces are assumed to be
known.

The frontal solution method has been described in terms of one-dimensional
elements for simplicity. In fact, the speed and efficiency of the procedure are of
most advantage in large two- and three-dimensional models. The method is dis-
cussed briefly here so that the reader using a finite element software package that
uses a wave-type solution has some information about the procedure.
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The Finite Element
Personal Computer
Program

With permission of the estate of Dr. Charles E. Knight, the Finite Element
Personal Computer (FEPC) program is available to users of this text
via the website www.mhhe.com/hutton<www.mhhe.com/hutton>.

FEPC is a finite element software package supporting bar, beam, plane solid, and
axisymmetric solid elements and hence is limited to two-dimensional struc-
tural applications. Dr. Knight’s A Finite Element Method Primer for Mechanical
Design is available via the website and includes basic concepts as well as an
appendix delineating FEPC capabilities and limitations. The following material
presents a general description of the programs’ capabilities and limitations. A
complete users guide is available on the website.

FEPC is actually a set of three programs that perform the operations of pre-
processing (model development), model solution, and postprocessing (results
analysis). FEPCIP is the input processor used to input and check a model and pre-
pare data files for the solution program FEPC. The output processor is FEPCOP
and this program reads solution output files and produces graphic displays.

All the programs are menu driven, with automatic branching to submenus
when appropriate. The Files menu of the input processor is used to recall a pre-
viously stored model or store a new model. Models are stored as filename.MOD
where filename is user specified and can contain a maximum of 20 characters.
The analysis file, which becomes the actual input to the FEPC solution phase, is
filename.ANA.

D.1 PREPROCESSING
Model definition is activated by the Model Data menu. Selection of Model Data
leads to a submenu used to define element type, material properties, nodes,
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elements, restraints (displacement constraints), and loads. Element type is lim-
ited to bar (truss), beam, plane stress, plane strain, or axisymmetric. Only a
single element type can be used in a model. Up to 10 material property sets can
be used in a model and should be defined in numerical order. Nodes can be
defined  by direct input of node number and the X, Y coordinates of the node.
Nodes for truss and beam elements are always defined in this manner. Nodes for
plane and axisymmetric elements can also be defined by direct input but an
automeshing capability for two-dimensional (2-D) areas is included and dis-
cussed subsequently. Similarly, elements are defined by specification of the
nodes and material property number. For truss and beam elements, the order of
node specification is of no consequence. However, for plane or axisymmetric
elements, the nodes must be specified in a counterclockwise order around the
element area. Displacement constraints are applied by setting the values and
selecting the node to which the values apply. Loads are applied as nodal forces or
element edge pressures for 2-D solid elements.

The 2-D Automesh Generation section of the program is used for area mesh
generation of two-dimensional plane stress, plane strain, or axisymmetric models.
The approach used is a coordinate transformation mapping of a grid of square
elements in an integer area into a grid of elements in the geometric area. The geo-
metric area is defined using points that are subsequently used to define lines and
arcs that enclose the area. The integer grid is bounded by lines that correspond to
the lines and arcs of the geometric area. Grid points bound the square elements in
the integer area map to element nodes in the geometric area. The mapping process
is iterative and consists of distorting the integer area grid to fit into the geometric
area. Thus the user has some control over element size and shape via the size of
the integer grid.

D.2 SOLUTION
When a model has been defined and saved as filename.ANA, the solution is gen-
erated by the FEPC.EXE program. During execution, several other files are gen-
erated and stored. Also, screen messages are issued to report on progress of the
solution phase. A listing of all printed output is stored in filename.LST. This file
contains the input data, all numerical output, and any error messages issued dur-
ing execution. Two additional files are created for use by the output processor.
The node and element data is placed in filename.MSH and nodal displacement
and element stress data is stored in filename.NVL.

D.3 POSTPROCESSING
The output processor FEPCOP.EXE is used to display the solution results in
graphic form. (The printed form of the numerical output data is in the .LST file.)
Displacement results can be displayed as a plot of the deformed element mesh
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superimposed over a plot of the undeformed model. Displacements are scaled
such that the deformed shape is exaggerated for clarity.

For two-dimensional solid models, stress components can be displayed as
contour plots. The stress components available from the solution are the normal,
shear, and von Mises stress components for plane stress and plane strain, and the
radial, axial, shear, and hoop stress components for axisymmetric models. For
models using truss or beam elements, stress components are plotted as bar charts.
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Problems for Computer
Solution

The following problems are intended for solution using finite element
analysis software. In general, the problems associated with Chapters 3, 4,
and 9 can be solved using the FEPC software (Appendix D) if another

software package is not available. The instructor may choose to change loading,
material properties, or geometry for any of these problems at his or her discretion.

E.1 CHAPTER 3
Problems E3.1–E3.7 involve two-dimensional trusses to be modeled using the
bar element (in some analysis software this may be called a bar, link, spar, or
truss element). In each problem, determine the magnitude and location of the
maximum deflection, the stress in each member, and the reaction forces. Use the
computed reaction forces to check the equilibrium. Node numbers, where in-
cluded, are for reference only and can be changed at the analyst’s discretion.

E3.1 Each member is steel having E = 30(106) psi and the cross-sectional area is 1.2 in.2

Problem E3.1

3 ft

1000 lb

1000 lb1000 lb

1000 lb1000 lb

500 lb

2

3

5

7

9

11

4 6 8 10 12
1

3 ft 3 ft 3 ft 3 ft 3 ft

6 ft

500 lb
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E3.2 All members are hollow circular tubing having outside diameter 100 mm and
wall thickness 10 mm. The modulus of elasticity is 207 GPa.

Problem E3.2

E3.3 All truss members are 2′′ × 4′′ lumber having E = 3(106) psi.

Problem E3.3

E3.4 The truss members are square tubular aluminum members having 2.5′′ outside
dimension and 0.25′′ wall thickness. The modulus of elasticity is 107 psi.

E3.5 All members are identical with cross-sectional area of 1.6 in.2 and modulus of
elasticity 15(106) psi.

E3.6 The horizontal members are solid, square steel bars having basic dimension
30 mm; all other members are flat steel sheet stock 6 mm thick by 50 mm
wide. Use E = 207 GPa. Are the computed stresses reasonable for structural
steel?

700 lb

12 ft12 ft 9 ft

18 ft

18 ft 18 ft 18 ft

9 ft12 ft

700 lb

400 lb

3

1
2 5
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4
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7
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3 m

3 m

4 m 4 m 4 m

5 kN

9 kN

9 kN

5 kN
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4

5

7

9
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Problem E3.4

Problem E3.5

Problem E3.6
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E3.7 The truss is composed of solid circular steel members 2′′ in diameter. The
modulus of elasticity is 30(106) psi, Other than deflection and stress, what
concerns should be considered with this truss? Does your answer relate to the
relatively low computed stress values?

Problem E3.7

E.2 CHAPTER 4
The problems in this section deal with frame structures (that is, structures in
which the joints are fixed and transmit bending moment, unlike the pin joint
assumption of trusses).

E4.1–E4.7 Solve problems E3.1–E3.7, respectively, assuming that the joints are fixed
as in welded or riveted joints. Additional required information is as follows.
For E3.1,

Iz = 0.4 in.4

For E3.5,
Iz = 0.53 in.4

E4.8 The figure shows a basic model of a bicycle frame. All members are 1′′ diameter
circular tubing having wall thickness 0.1′′ and are made of titanium, which has a
modulus of elasticity of 15(106) psi. Determine the maximum deflection and the
stress in each member. The nodal coordinates (in inches) are as follows:

x y

1 0 0
2 18 0
3 11 14
4 9 18
5 27 18
6 29 14
7 36 0

6 ft 6 ft

1500 lb

1200 lb

2000 lb

1000 lb

1

2 12 ft

12 ft

8 ft

4 ft

5

7

4

3 6
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Problem E4.8

E4.9 Determine the maximum deflection and maximum stress in the frame structure
shown if the structural members are 1′′ diameter, solid aluminum tubes for
which E = 10(106) psi.

Problem E4.9

E4.10 The figure shows an arch that is the main support structure for a footbridge.
The arch is constructed of standard AISC 6I17.5 I-beams (height = 6 in.;
A = 5.02 in.2; Iz = 26.0 in.4). Use straight beam elements to model this
bridge and examine convergence of solution as the number of elements
is increased from 6 to 12 to 18. In examining convergence, look at both
deflection and stress. Also note that, owing to the direction of loading, axial
effects must be included. E = 30(106) psi.

Problem E4.10

15 ft 15 ft

5 ft 5 ft 5 ft 5 ft 5 ft 5 ft

6 ft

1000 lb 1000 lb

1500 lb 1500 lb
2000 lb

1
4

2 3
500 lb

1800 ft · lb 200 lb/ft

8 ft
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1 7
2
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3 6

5
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E4.11 The frame structure shown is composed of 10 mm × 10 mm solid square
members having E = 100 GPa. Determine the maximum deflection, maximum
slope, and maximum stress.

Problem E4.11

E4.12 The structure shown is a model of the support for a freeway light post.
For uniformity in wind loading, the structural members are circular. The
outside diameter of each member is 3.0′′ and wall thickness is 0.25′′ .
Compute the deflection at each structural joint and determine maximum
stresses. Examine the effects on your solution of using more elements
(i.e., refine the mesh). E = 107 psi.

Problem E4.12

E.3 CHAPTER 7
E7.1 A tapered circular heat transfer pin (known as a pin fin) is insulated all around

its circumference, as shown. The large end (D = 12 mm) is maintained at a
constant temperature of 90◦C, while the smaller end (D = 6 mm) is at 30◦C.
Determine the steady-state heat flow through the pin using a mesh of straight
elements. Thermal conductivity of the material is k = 200 W/m-◦C.

E7.2 A rectangular duct in a home heating system has dimensions 12′′ × 18′′ as
shown. The duct is insulated with a uniform layer of fiberglass 1′′ thick. The

3.75 ft

2 ft

8 ft 4 ft

800 lb

1500 lb

500 N/m

3 m

2.5 m 1.5 m
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duct (steel sheet metal) is maintained at a constant temperature of 115◦F. The
ambient air temperature around the duct is 55◦F.

Problem E7.2

(a) Calculate the temperature distribution in the insulation and the heat loss per
unit length to the surrounding air. Thermal conductivity of the insulation
is uniform in all directions and has value k = 0.025 Btu/hr-ft-◦F; the
convection coefficient to the ambient air is h = 5 Btu/hr-ft2-◦F.

(b) Repeat the calculations for an insulation thickness of 2 in.
E7.3 The figure represents a cross section of a long bar insulated on the upper and

lower surfaces; hence, the problem is to be treated as two dimensional on a per
unit length basis. The left edge is maintained at constant temperature of 100◦C
and the right edge is maintained at 26◦C. The material has uniform conductivity
k = 35 W/m-◦C. Determine the temperature distribution and the steady-state
heat flow rate. What element should you use? (Triangular, square? Perform the
analysis with different elements to observe differences in the solutions.) Refine
the mesh and examine convergence.

Problem E7.3

E7.4 A thin copper tube (12 mm diameter) containing water at an average temperature
of 95◦C is imbedded in a long slender solid slab, as shown. The vertical edges

100 cm

45 cm100�C 26�C

12 in.

18 in.

115�F

Ta � 55�F

Problem E7.1

6 mm12 mm

150 mm

Insulated
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are insulated. The horizontal edges are exposed to an ambient temperature of
20◦C and the associated convection coefficient is h = 20 W/m2-◦C . The material
has uniform conductivity k = 200 W/m-◦C. Compute the net steady-state heat
transfer rate and the temperature distribution in the cross section.

Problem E7.4

E7.5 The figure shows a horizontal cross section of a chimney exhausting the gases
generated by a wood stove. The flue is insulated with firebrick 6′′ thick and having
uniform conductivity k = 2.5 Btu/hr-ft-◦F. The chimney is surrounded by air at
ambient temperature 40◦F and the convection coefficient is 5 Btu/hr-ft2-◦F. Deter-
mine the temperature distribution in the firebrick and the heat loss per unit length.

Problem E7.5

E7.6 The heat transfer fin shown is attached to a pipe conveying a fluid at average
temperature 120◦C. The thickness of the fin is 3 mm. The fin is surrounded
by air at temperature 30◦C and subject to convection on all surfaces with
h = 20 W/m2-◦C. The fin material has uniform conductivity k = 50 W/m-◦C.
Determine the heat transfer rate from the fin and the temperature distribution
in the fin.

Problem E7.6

25 mm

100 mm

10�

120�C

35 mm

12 in.

6 in.

Ta � 40�F
1200�F

50 mm

25 mm 95�C

Ta � 20�C
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E7.7 The cross section shown is of a campus footbridge, having embedded heat cables
to prevent ice accumulation. The vertical edges are insulated and the horizontal
surfaces are at the steady temperatures shown. The material has uniform conduc-
tivity k = 0.6 Btu/hr-ft-◦F and the cables have source strength 200 Btu/hr-in.
Compute the net heat transfer rate and the temperature distribution.

Problem E7.7

E.4 CHAPTER 9
E9.1 The cantilever beam shown is subjected to a concentrated load F applied at the

end. Model this beam using three-dimensional brick elements and compare the
finite element solution to elementary beam theory. How do you apply the
concentrated load in the FE model?

Problem E9.1

E9.2 Refer to a standard mechanical design text and obtain the geometric parameters
of a standard involute gear tooth profile. Assuming a tooth to be fixed at the root
diameter, determine the stress distribution in a gear tooth when the load acts at
(a) at the tip of the tooth and (b) the pitch diameter. (c) Are your results in accord
with classic geartooth theory?

E9.3 A flat plate of thickness 25 mm is loaded as shown; the material has modulus
of elasticity E = 150 GPa and Poisson’s ratio 0.3. Determine the maximum
deflection, maximum stress, and the reaction forces assuming a state of plane
stress.

E9.4 Repeat Problem E9.3 if the thickness varies from 25 mm at the left end to 15 mm
at the right.

E9.5 A thin, 0.5′′ thickness, steel plate is subjected to the loading shown. Determine
the maximum displacement and the stress distribution in the plate. Use
E = 30(106) and Poisson’s ratio 0.3.

F

h

b

L

2 in.

3 in.

8 in.
12 in.

32�F

15�F
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Problem E9.3

Problem E9.5

E9.6 A uniform thin plate subjected to a uniform tensile stress as shown has a central
rectangular opening. Use the finite element method to determine the stress
concentration factor arising from the cutout. Use the material properties of steel.
Would your results change if you use the material properties of aluminum? Why?
Why not?

Problem E9.6

E9.7 The figure shows a common situation in mechanical design. A fillet radius is
used to smooth the transition between sections having different dimensions.
Use the finite element method to determine the stress concentration factor arising
from the fillet radius at the section change. Material thickness is 0.25′′ and E =
15(106) psi. How do you model the moment loading?

�0 �0

6 in.

3 in.

0.5
in.

150 lb

50 lb/in.

15 in.

40 in.

10,000 N

3 m

9 m
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Problem E9.7

E9.8 The gusset plate shown is attached at the upper left via a 1.5 cm diameter rivet
and held free at the lower left (model as a pin connection). The plate is loaded
as shown. Assuming that the rivet is rigid, compute the stress distribution around
the circumference of the rivet. Also determine the maximum deflection. The
gusset has thickness 14 mm, modulus of elasticity 207 GPa, and Poisson’s
ratio 0.28.

Problem E9.8

E9.9 Noncircular shaft sections are often used for quick-change couplings. The figure
shows a hexagonal cross section used for such a purpose. The shaft length is 6′′

and subjected to a net torque of 2800 in.-lb. If the material is steel, compute the
total angle of twist. (Note: It is highly likely that your FE software will have no
element directly applicable to this problem. Analogy may be required.)

Problem E9.9

1 in.

45 cm

40 cm

5 cm

2.5 cm

8000 N

40 mm

4000 N · m 4000 N · m

58 mm 57 mm

R � 7.5 mm

25 mm
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E.5 CHAPTER 10
E10.1–10.7 For each truss of Problems E3.1–E3.7 and E4.1–4.7, determine the lowest

five natural frequencies and mode shapes. How do these vary with pin joint
versus rigid frame assumptions? (Note that, where a material is not specified,
the instructor will provide the density value.)

E10.8 Use the modal analysis capability of your finite element software to determine
the natural frequencies and mode shapes of the cantilevered beam shown. Use
mesh refinement to observe convergence of the frequencies. Compare with
published values in many standard vibration texts. What do the higher
frequencies represent? How many frequencies can you calculate?

Problem E10.8

L

E, Iz
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A
Absolute viscosity, 294
Active zone, 468
Adjoint, 452
Admissible functions, 132
Air, 294
ALGOR, 12
Amplitude, 389, 391
Amplitude ratio, 396
ANSYS, 12
Applications

fluid mechanics, 293–326. 
See also Fluid mechanics

Galerkin’s method (beam 
element), 149–152

Galerkin’s method (spar 
element), 148–149

heat transfer, 222–292. 
See also Heat transfer

solid mechanics, 327–386. 
See also Solid mechanics

Area coordinates, 179–181
Aspect ratio, 194
Assembly of global stiffness 

matrix, 61–67
Associative, 449
Automeshing, 374–375
Automeshing software, 374
Axial strain, 357
Axial stress, 113, 120
Axisymmetric elements, 202–206
Axisymmetric heat transfer, 271–276
Axisymmetric problems, 202
Axisymmetric stress analysis, 356–364

B
Back substitution, 469
Backward difference method, 283–284
Backward sweep, 469
Bandwidth, 319
Bar element, 19, 31–38
Bar element consistent mass 

matrix, 402–407
Bar element mass matrix 

(two-dimensional truss 
structures), 434–441

Beam cross sections, 92
Beam elements, 407–412
Beam theory. See Flexure elements
Bending stress, 113, 120
Blending functions. See Interpolation

functions
Body force

axisymmetric stress 
analysis, 362–363

equilibrium equations, 461
plane stress, 379

Book, overview, 16–17
Boundary conditions

axisymmetric heat transfer, 275
defined, 1
one-dimensional conduction with

convection, 213
stream function, 300–304
torsion, 377
truss structures, 67–68
two-dimensional conduction with

convection, 240–253
Boundary value problems, 1
Boyle’s law, 293
Brick element, 191–193

C
C0-continuity, 163
C1-continuity, 163
Cn-continuity, 163
Calculus of variations, 45
Capacitance matrix, 278, 279
Castigliano’s first theorem, 40–44
Central difference method, 284–285
Chain rule of differentiation, 272, 274
Characteristic equation, 395
Circular frequency, 389
Coefficient matrix, 452
Cofactor matrix, 452
Cofactors, 451
Column matrix, 447
Column vector, 447
Commutative, 449
Compatibility, 165
Compatibility conditions, 24
Complete polynomial, 174

Complete structure, 21
Completeness, 166
Compressible flow, 293
Compressible flow analysis, 295
Computer software

ALGOR, 12
ANSYS, 12
aspect ratio, 194
automeshing software, 374
conductance matrix, 240
COSMOS/M, 12
damping, 432
FEPC software, 473–475
fluid elements, 323
indication of failure, 371
pressure on transverse face 

of beam, 152
problems for computer 

solution, 476–487
reaction equations, 241
structural weight, 394–395
three-dimensional heat transfer, 270
transient dynamic response, 434

Conditionally stable, 434
Conductance matrix, 240–242
Conformable for multiplication, 449
Conservative force, 45
Consistent capacitance matrix, 278
Consistent mass matrix, 404, 414
Constant acceleration method, 432
Constant parameter mapping, 196
Constant strain triangle 

(CST), 179, 330–333
Constitutive equations, 458
Constraint equation, 25
Continuity equation, 295, 296
Convection, 227
Convective inertia, 315
Convergence

compatibility, 165
displacement of tapered cylinder, 4–6
isoparametric quadrilateral 

element, 355
mesh refinement, 164–165
MWR solution, 137–138
structural dynamics, 442
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COSMOS/M, 12
Coupling, 417
Cramer’s rule, 350, 463–465
Creeping flow, 315
Critical damping coefficient, 426
Critically damped, 426, 427
CST, 179, 330–333
Curved-boundary domain, 4
Cyclic frequency, 392

D
Damped natural circular frequency, 427
Damping, 424–432

critical damping coefficient, 426
matrix, 428
over/underdamped, 426, 427
physical forms, 424
ratio, 426
Rayleigh, 430, 432
software packages, 432
structural, 428

Damping matrix, 428
Damping ratio, 426
Dashpot, 425
Deflected beam element, 92
Degrees of freedom

calculating, 3
dynamics, 443
many degrees-of-freedom 

system, 398–402
master, 443
N degrees-of-freedom system, 402
two degrees-of-freedom system, 395

DET, 369–371
Determinant, 450–451
Diagonal matrix, 419, 420, 448
Differential equation, 388, 390
Differential equation theory, 8
Dirac delta, 260
Direct assembly of global stiffness

matrix, 61–67
Direct stiffness method, 53, 63
Direction cosines, 61
Displacement, 6, 12
Displacement method, 12
Distortion energy theory 

(DET), 369–371
Distributed loads, work 

equivalence, 106–114
Dot notation, 295
Double subscript notation 

(shearing stresses), 459n
Double-dot notation, 404

Dynamic analysis. See Structural
dynamics

Dynamic degrees of freedom, 443

E
Eigenvalue problem, 397
Eigenvector, 402
Eight-node brick 

element, 191–193, 367
Eight-node rectangular element, 186
Elastic bar element, 31–38
Elastic coupling, 417
Elastic failure theory, 369–371
Element capacitance matrix, 278
Element conductance matrix, 242
Element coordinate system, 20
Element damping matrix, 428
Element displacement location 

vector, 66
Element free-body diagrams, 55
Element load vector, 102–106
Element stiffness matrix, 21–22
Element transformation, 58–61
Elementary beam theory, 91–94
Elementary strength of materials

theory, 150
Element-node connectivity table, 66
Elements (matrix), 447
Element-to-system displacement

correspondence, 104
Energy dissipation, 424. 

See also Damping
Equation

characteristics, 395
compatibility, 461–462
constitutive, 458
constraint, 26
continuity, 295, 296
equilibrium, 460–461
frequency, 395, 417
Laplace’s, 298
Navier-Stokes, 315
nodal equilibrium, 53–58
one-dimensional wave, 403

Equations of elasticity, 455–462
compatibility equations, 461–462
equilibrium equations, 460–461
strain-displacement

relations, 455–458
stress-strain relations, 458–460

Equations of motion, 412–418
Equipotential lines, 304
Equivalent stress, 370

Equivalent viscous damping
coefficient, 428

Euler’s method, 280
Exterior nodes, 2

F
Failure theories, 369–371
FEA. See Finite element 

method (FEM)
FEA software. See Computer

software
FEM. See Finite element

method (FEM)
FEPCIP, 473
FEPCOP, 473
Ferris wheel, 297
Field, 1
Field problems, 1
Field variables, 1
Fillet radius, 485
Finite difference method

backward difference 
method, 283–284

central difference method, 284–285
finite element method, 

compared, 7–10
forward difference method, 280
key parameter, 285
time step, 279, 285
what is it, 279

Finite element, 2, 12
Finite element analysis (FEA). 

See Finite element method (FEM)
Finite element formulation

axisymmetric heat transfer, 273–276
axisymmetric stress 

analysis, 359–360
general three-dimensional stress

analysis, 365–368
one-dimensional conduction with

convection, 227–230
plane stress, 330–333
stream function, 299–300
torsion, 378
two-dimensional conduction with

convection, 236–240
Finite element method (FEM)

basic premise, 19
defined, 1
exact solutions, compared, 4–7
examples, 12–15
finite difference method, 

compared, 7–10
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Finite element method—Cont.
historical overview, 11–12
how does it work, 1–4
objective, 164
postprocessing, 11
preprocessing step, 10
solution phase, 10–11

Finite Element Method Primer 
for Mechanical Design, 
A (Knight), 473

Finite element method software. 
See Computer software

Finite Element Personal Computer
(FEPC) program, 473

First derivative, 279
First theorem of Castigliano, 40–44
Flexibility method, 12, 52
Flexure element stiffness 

matrix, 98–101
Flexure element with axial 

loading, 114–120
Flexure elements, 91–130

element load vector, 102–106
elementary beam theory, 91–94
flexure element stiffness 

matrix, 98–101
flexure element with axial 

loading, 114–120
general three-dimensional beam

element, 120–124
stress stiffening, 114
2-D beam (flexure element), 94–98
work equivalence (distributed 

loads), 106–114
Flexure formula, 150
Flow net, 304
Flow with inertia, 321–323
Fluid, 293
Fluid mechanics, 293–326

continuity equation, 295, 296
incompressible viscous 

flow, 314–323
incompressible/compressible

flow, 293
Laplace’s equation, 298
literature, 323
rotational/irrotational flow, 296–297
software packages, 323
Stokes flow, 315–321
stream function, 298–304
velocity potential function, 304–314
viscosity, 293–295
viscous flow with inertia, 321–323

Fluid viscosity, 293–295

Forced convection, 227
Forced response, 393
Forced vibration, 392–393
Forcing frequency, 393
Forcing functions, 452
Formal equilibrium approach, 53
Forward difference scheme, 280
Forward sweep, 469
Fourier’s law

axisymmetric heat transfer, 274
one-dimensional conduction with

convection, 228
three-dimensional conduction with

convection, 267
two-dimensional conduction with

convection, 237–240
Fourier’s law of heat conduction, 153
Four-node quadrilateral element, 195
Four-node rectangular element,

184–185
Four-node tetrahedral element,

188–190
Free meshing, 374
Free vibration, 389
Frequency equation, 395, 417
Friction force, 45
Frontal solution method, 470–472
Function

admissible, 132
forcing, 452
potential, 304
Prandtl’s stress, 376, 377
stream, 298–304

Fundamental frequency, 396

G
Galerkin finite element 

method, 140–148, 285
Galerkin’s weighted residual 

method, 133–139
Garbage in, garbage out, 10
Gases, 295
Gauss elimination, 465–467
Gauss points, 207
Gaussian quadrature, 206–213
Gauss-Jordan reduction, 453
Gauss-Legendre quadrature, 206
General structural damping, 427–432
General three-dimensional beam

element, 120–124
Generalized displacements, 420
Generalized forces, 422
Geometric interpolation 

functions, 195

Geometric isotropy
brick element, 192
complete polynomial, 174
h-refinement, 176
incomplete polynomial, 174
mathematical function, 174
rectangular element, 184
triangular element, 178
two-dimensional conduction with

convection, 240
Geometric mapping matrix, 351
Global capacitance matrix, 279
Global coordinate system, 21
Global damping matrix, 428
Global displacement notation, 54
Global stiffness matrix, 58, 61–67
Green-Gauss theorem, 238
Green’s theorem in the plane, 238
Guyan reduction, 442

H
Half-symmetry model, 254
Harmonic oscillator, 387–393, 412
Harmonic response, 417
Harmonic response using mode

superposition, 422–424
Heat transfer, 222–292

axisymmetric, 271–276
mass transport, with, 261–266
one dimensional conduction with

convection, 227–235
one-dimensional conduction

(quadratic element), 222–227
three-dimensional, 267–271
time-dependent, 277–285. See also

Time-dependent heat transfer
two-dimensional conduction with

convection, 235–261. 
See also Two-dimensional
conduction with convection

Hermite polynomials, 214
Higher-order isoparametric 

elements, 201
Higher-order one-dimensional

elements, 170–173
Higher-order rectangular 

element, 186–187
Higher-order tetrahedral 

elements, 190
Higher-order triangular elements, 182
Historical overview, 11–12
Hooke’s law, 34
h-refinement, 164
Hydrostatic stress, 370
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I
Identity matrix, 448
Incomplete polynomial, 174–175
Incompressible flow, 293
Incompressible flow analysis. 

See Fluid mechanics
Incompressible viscous 

flow, 314–323
Inertia coupling, 417
Initial conditions, 280, 388, 391
Integration step, 8
Interelement boundaries, 145
Interior nodes, 2
Internal heat generation 

(two-dimensional heat 
transfer), 259–261

Interpolation, 3
Interpolation functions, 3, 163–221

axisymmetric elements, 202–206
brick element, 191–193
C0-continuity, 163
compatibility, 165
completeness, 166
geometric isotropy. 

See Geometric isotropy
higher-order one-dimensional

elements, 170–173
isoparametric formulation, 193–201
mesh refinement, 164–165
numerical integration (Gaussian

quadrature), 206–213
polynomial forms (geometric

isotropy), 174–176
polynomial forms (one-dimensional

elements), 166–173
rectangular elements, 184–187
tetrahedral element, 188–190
three-dimensional

elements, 187–193
triangular elements, 176–183

Inverse of a matrix, 177, 451–454
Inverse of the Jacobian matrix, 199
Inviscid, 294
Irrotational flow, 297
Isoparametric element, 196
Isoparametric formulation, 193–201
Isoparametric formulation of plane

quadrilateral element, 347–356
Isoparametric mapping, 196

J
Jacobian, 350
Jacobian matrix, 199, 200, 349

K
Knight, Charles E., 473

L
Lagrangian approach, 417
Lagrangian mechanics, 412
Lagrange’s equations of motion, 412
Lanczos method, 443
Laplace’s equation, 298, 304
Least squares, 132
Legendre polynomials, 214
Line elements, 131
Line source, 259
Linear elastic spring, 20
Linear spring as finite 

element, 20–31
Link element, 19
Liquids, 295
Load-deflection curve, 20
Local coordinate system, 20
Lower triangular matrix, 467
LU decomposition, 467–470
Lumped capacitance matrix, 278
Lumped mass matrix, 407

M
Magnitude of gradient discontinuities

at nodes, 145
Many degree-of-freedom 

system, 398–402
Mapped meshing, 374
Mapping, 195
Marching, 280, 285
Mass, 437
Mass matrix, 390
Mass matrix for general element

(equations of motion), 412–418
Mass transport, 261–266
Master degrees of freedom, 443
Material property matrix, 459
Matrix. See also Matrix mathematics

capacitance, 278, 279
coefficient, 452
cofactor, 452
column, 447
conductance, 240–242
consistent mass, 404
damping, 428
defined, 447
diagonal, 419, 420, 448
geometric mapping, 351
identity, 448
inverse of, 177, 451–453

Jacobian, 199, 200, 349
lower triangular, 467
lumped mass, 407
mass, 390
material property, 459
modal, 419
nodal acceleration, 390
null, 448
order, 447
row, 447
skew symmetric, 448
square, 447
stiffness. See Stiffness matrix
symmetric, 448
system mass, 394
upper triangular, 467
zero, 448

Matrix addition, 449
Matrix inversion, 177, 451–453
Matrix mathematics, 447–454

addition/subtraction, 449
algebraic operations, 449–450
definitions, 447–448
determinants, 450–451
matrix partitioning, 454
multiplication, 449–450
scalar algebra, contrasted, 450

Matrix multiplication, 449–450
Matrix partitioning, 454
Matrix subtraction, 449
Maximum shear stress theory 

(MSST), 369
Megapascal (MPa), 458
Mesh, 4
Mesh refinement, 164–165
Meshing, 4, 374
Mesh-refined models, 374
Method of weighted residuals 

(MWR), 131–162
application of Galerkin’s method to

beam element, 149–152
application of Galerkin’s method to

spar element, 148–149
convergence, 137–138
defined, 131–132
Galerkin finite element 

method, 140–148
Galerkin’s weighted residual 

method, 133–139
general concept, 132
one-dimensional heat 

conduction, 152–158
trial functions, 131, 138, 140
variations, 132–133
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Minimum potential 
energy, 44–47, 158

Minor, 450
Modal analysis, 387, 397
Modal matrix, 419
Modal superposition, 397, 399
Mode superposition, 422–424
Model definition step, 10
Modulus of elasticity, 458
Modulus of rigidity, 459
Molten polymers, 315
MPa, 458
MSC/NASTRAN, 12, 18
MSST, 369
MWR. See Method of weighted

residuals (MWR)

N
N degree-of-freedom system, 402
NASTRAN, 12
Natural circular frequency, 389
Natural convection, 227
Natural coordinates, 185, 186
Natural frequency, 392
Natural modes of vibration, 387, 443
Navier-Stokes equations, 315
Net force, 21
Neutral surface, 92
Newmark method, 432–434
Newton’s law of viscosity, 294
Newton’s second law

bar elements, 402
linear spring, 22
multiple degrees-of-freedom

systems, 394
simple harmonic oscillator, 388

No slip condition, 294
Nodal acceleration matrix, 390
Nodal displacement correspondence

table, 62
Nodal displacements, 21
Nodal equilibrium equations, 53–58
Nodal free-body diagrams, 55
Nodal load positive convention, 102
Node, 2
Noncircular shaft sections, 486
Nonconservative force, 45
Nonhomogeneous boundary 

condition, 29
Normal strain, 455–456
Normalized coordinates, 185
Null matrix, 448
Numerical integration (Gaussian

quadrature), 206–213

O
Octahedral shear stress theory 

(OSST), 371
One dimensional conduction with

convection, 227–235
One-dimensional conduction 

(quadratic element), 222–227
One-dimensional heat 

conduction, 152–158
One-dimensional wave equation, 403
Order (matrix), 447
Orthogonality, 418
Orthogonality of principal 

modes, 418–421
Orthonormal, 419
OSST, 371
Overdamped, 426, 427
Overview of book, 16–17

P
Parent element, 195
Partitioning (matrix), 454
Pascal pyramid, 175
Pascal triangle, 174, 175
Period of oscillation, 392
Phase angle, 389, 391
Plane quadrilateral element, 347–356
Plane strain (rectangular 

element), 342–347
Plane stress, 328–342

assumptions, 328
distributed loads/body face, 335–342
finite element formulation 

(CST), 330–333
stiffness matrix evaluation, 333–335

Plate bending, 372–373
Point collocation, 132
Poisson’s ratio, 458
Polynomial forms

geometric isotropy, 174–176
one-dimensional elements, 166–173

Polynomial trial functions, 138
Postmultiplier, 449
Postprocessing, 11
Potential function, 304
Practical considerations

solid mechanics, 372–375
structural dynamics, 424–443

Prandtl’s stress function, 376, 377
p-refinement, 164
Premultiplier, 449
Preprocessing, 10
Principal planes, 369

Principal stresses, 369
Principle of conservation of 

energy, 153
Principle of conservation of mass, 295
Principle of minimum potential 

energy, 44–47, 158
Product (matrices), 448
Pure rotation, 296

Q
Q/2, 254
Q/4, 253
Quadrilateral element, 194–196
Quarter-symmetry model, 253
Quick-change coupling, 486

R
Radial strain, 357
Ratio

amplitude, 396
aspect, 194
damping, 426
Poisson’s, 458

Rayleigh damping, 430, 432
Reaction equations

stream function, 303
two-dimensional conduction with

convection, 241, 254
Rectangular elements, 184–187
Rectangular parallelopiped (brick

element), 191–193
Recurrence relation, 8
Reduced eigenvalue problem, 443
Refined finite element mesh, 4
Residual error, 132
Resonance, 393
Resonant frequency, 393
Right-hand rule, 238
Rotational flow, 297
Row matrix, 447
Row vector, 447

S
Sampling points, 207
Second-order differential equation, 388
Serendipity coordinates, 185
Shape functions. See Interpolation

functions
Shear modulus, 459
Shear strain, 455–456
Simple cantilever truss, 51–52
Simple harmonic 

oscillator, 387–393, 412
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Singular, 22, 452
Six-node quadratic triangular 

element, 319
Six-node triangular element, 181–182
Skew symmetric matrix, 448
Software packages. See Computer

software
Solid mechanics, 327–386. 

See also Stress
automeshing, 374–375
axisymmetric stress 

analysis, 356–364
DET, 369–371
failure theories, 369–371
general three-dimensional stress

elements, 364–368
isoparametric formulation of plane

quadrilateral element, 347–356
MSST, 369
OSST, 371
plane strain (rectangular 

element), 342–347
plane stress, 328–342
practical considerations, 372–375
strain/stress computation, 368–372
torsion, 375–382

Solution, 476–487
Solution convergence. See Convergence
Solution phase, 10–11
Solution techniques for linear algebraic

equations, 463–472
Cramer’s method, 463–465
frontal solution, 470–472
Gauss elimination, 465–467
LU decomposition, 467–470

Spar element, 19
spar element stiffness matrix, 121
Sparse, 470
Spring constant, 20
Spring rate, 20
Spring stiffness, 20
Spring-mass system, 394–402
Square matrix, 447
Static condensation, 442, 454
Stiffness matrix

element, 21–22
flexure element, 98–101
global, 58, 61–67
spar element, 121
system, 25
xy plane flexure, 121
xz plane bending, 121

Stiffness method, 52
Stokes flow, 315–321

Strain, 4
Strain energy, 38–39
Strain energy density, 39
Strain energy per unit volume, 39
Strain/stress computation, 368–372
Stream function, 298–304
Streamlines, 298
Stress

equivalent, 370
hydrostatic, 370
plane, 338–342
principal, 369
von Mises, 370

Stress analysis. See Solid mechanics
Stress stiffening, 114
Stress vector, 460
Structural damping, 428
Structural dynamics, 387–446

bar element mass matrix 
(two-dimensional truss 
structures), 434–441

bar-element-consistent mass 
matrix, 402–407

beam elements, 407–412
energy dissipation (structural

damping), 424–432. 
See also Damping

harmonic response using mode
superposition, 422–424

mass matrix for general element
(equations of motion), 412–418

multiple degrees-of-freedom
systems, 394–402

Newmark method, 432–434
orthogonality of principal 

modes, 418–421
practical considerations, 442–443
simple harmonic oscillator, 387–393
transient dynamic 

response, 432–434
Subspace iteration, 443
Superposition procedure, 25
Symmetric matrix, 22, 448
Symmetry

incomplete polynomial, 174–175
matrix, 448
simplification of mathematics of

solution, 252
stiffness matrix, 22
two-dimensional conduction with

convection, 253–254
System mass matrix, 394
System stiffness matrix, 25
System viscous damping matrix, 428

T
Tapered cylinder, 4–6
Ten-node tetrahedral element, 188
Tensile stress, 113
Tetrahedral element, 188–190
Theory of continuum mechanics, 461
Theory of thin plates, 372–373
Thin curved plate structures, 373
Three-dimensional elements, 187–193
Three-dimensional heat 

transfer, 267–271
Three-dimensional stress 

elements, 364–368
Three-dimensional trusses, 79–83
Three-node triangular 

element, 178–179
Time step, 279, 285
Time-dependent heat transfer, 277–285

capacitance matrix, 278, 279
finite difference method, 279–285

Torque, 377–378
Torsion, 375–382
Torsional finite element notation, 122
Total potential energy, 45
Transient dynamic response, 432–434
Transient effects. See Time-dependent

heat transfer
Translation, 297
Transpose, 447–448
Trial functions, 131, 138, 140
Triangular axisymmetric element, 203
Triangular elements

area coordinates, 179–181
constant strain triangle (CST), 179
integration in area 

coordinates, 182–183
interpolation functions, 176–183
six-node triangular element, 181–182

Truss element, 19
Truss structures, 51–90

boundary conditions, constraint
forces, 67–68

comprehensive example, 72–78
defined, 51
direct assembly of global stiffness

matrix, 61–67
direction cosines, 61
element strain and stress, 68–72
element transformation, 58–61
nodal equilibrium equations, 53–58
3-D trusses, 79–83

Twenty-node tetrahedral element, 188
Two degree-of-freedom system, 395
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Two-dimensional beam (flexure
element), 94–98

Two-dimensional conduction with
convection, 235–261

boundary conditions, 240–253
conductance matrix, 240–242
element resultants, 254–259
finite element formulation, 236–240
internal heat generation, 259–261
reaction equations, 241, 254
symmetry conditions, 253–254

Two-dimensional quadrilateral 
element, 195

Two-point recurrence relation, 280

U
Unconditionally stable, 434
Underdamped, 426, 427

Unit impulse, 260
Upper triangular form, 466
Upper triangular matrix, 467

V
Variational principles, 417
Velocity potential function, 304–314
Viscosity, 293–295
Viscous flow with inertia, 321–323
Volume coordinates, 188–189
Von Mises stress, 370

W
Water, 294
Wave front solution, 470
Work equivalence (distributed 

loads), 106–114

X
xy plane flexure stiffness matrix, 121
xz plane bending stiffness matrix, 121

Y
Young’s modulus, 458

Z
Zero matrix, 448
Zones, 468




