

Data Structures & Algorithms in Dart
By Jonathan Sande

Copyright ©2022 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Data Structures & Algorithms in Dart Data Structures & Algorithms in Dart

raywenderlich.com 2

Table of Contents: Overview
Book License 15...

Before You Begin 16..

What You Need 17..

Book Source Code & Forums 18...

Acknowledgments 21..

Introduction 22..

Section I: Introduction 25..

Chapter 1: Why Learn Data Structures &
Algorithms? 26...

Chapter 2: Complexity 29..

Chapter 3: Basic Data Structures in Dart 40.........................

Section II: Elementary Data Structures 47......................

Chapter 4: Stacks 48..

Chapter 5: Linked Lists 54...

Chapter 6: Queues 73...

Section III: Trees 99...

Chapter 7: Trees 101...

Chapter 8: Binary Trees 112...

Chapter 9: Binary Search Trees 122..

Chapter 10: AVL Trees 139...

Chapter 11: Tries 154..

Data Structures & Algorithms in Dart

raywenderlich.com 3

Chapter 12: Binary Search 166...

Chapter 13: Heaps 173...

Chapter 14: Priority Queues 198...

Section IV: Sorting Algorithms 204....................................

Chapter 15: O(n²) Sorting Algorithms 206.............................

Chapter 16: Merge Sort 219..

Chapter 17: Radix Sort 227..

Chapter 18: Heapsort 244..

Chapter 19: Quicksort 254...

Section V: Graphs 274...

Chapter 20: Graphs 275...

Chapter 21: Breadth-First Search 300.....................................

Chapter 22: Depth-First Search 311..

Chapter 23: Dijkstra’s Algorithm 326.......................................

Conclusion 344..

Section VI: Challenge Solutions 346..................................

Chapter 4 Solutions 347..

Chapter 5 Solutions 349..

Chapter 6 Solutions 357..

Chapter 7 Solutions 366..

Chapter 8 Solutions 369..

Chapter 9 Solutions 374..

Chapter 10 Solutions 378..

Data Structures & Algorithms in Dart

raywenderlich.com 4

Chapter 11 Solutions 382..

Chapter 12 Solutions 385..

Chapter 13 Solutions 389..

Chapter 14 Solutions 392..

Chapter 15 Solutions 399..

Chapter 16 Solutions 404..

Chapter 17 Solutions 408..

Chapter 18 Solutions 411..

Chapter 19 Solutions 414..

Chapter 20 Solutions 416..

Chapter 21 Solutions 418..

Chapter 22 Solutions 421..

Chapter 23 Solutions 424..

Data Structures & Algorithms in Dart

raywenderlich.com 5

Table of Contents: Extended
Book License 15.

Before You Begin 16.

What You Need 17.

Book Source Code & Forums 18.
About the Authors 20.

About the Editors 20.

Acknowledgments 21.
Content Development 21.

Introduction 22.
How to Read This Book 22.

Section I: Introduction 25.

Chapter 1: Why Learn Data Structures & Algorithms? 26.
The Goal of This Book 28.

Chapter 2: Complexity 29.
Time Complexity 30.

Space Complexity 38.

Other Notations 39.

Key Points 39.

Chapter 3: Basic Data Structures in Dart 40.
List 40.

Map 44.

Set 45.

Key Points 46.

Where to Go From Here? 46.

Section II: Elementary Data Structures 47.

Data Structures & Algorithms in Dart

raywenderlich.com 6

Chapter 4: Stacks 48.
Stack Operations 49.

Implementation 49.

Challenges 53.

Key Points 53.

Chapter 5: Linked Lists 54.
Node 55.

LinkedList 57.

Adding Values to a List 58.

Removing Values From a List 62.

Making a List Iterable 67.

Challenges 71.

Key Points 72.

Chapter 6: Queues 73.
Common Operations 74.

Example of a Queue 75.

List-Based Implementation 76.

Doubly Linked List Implementation 80.

Ring Buffer Implementation 84.

Double-Stack Implementation 89.

Challenges 96.

Key Points 98.

Section III: Trees 99.

Chapter 7: Trees 101.
Terminology 102.

Implementation 104.

Traversal Algorithms 105.

Challenges 110.

Key Points 111.

Data Structures & Algorithms in Dart

raywenderlich.com 7

Chapter 8: Binary Trees 112.
Implementation 113.

Traversal Algorithms 115.

Challenges 120.

Key Points 121.

Chapter 9: Binary Search Trees 122.
List vs. BST 123.

Implementation 127.

Challenges 138.

Key Points 138.

Chapter 10: AVL Trees 139.
Understanding Balance 140.

Implementation 141.

Challenges 152.

Key Points 153.

Where to Go From Here? 153.

Chapter 11: Tries 154.
List vs. Trie 155.

Implementation 157.

Challenges 165.

Key Points 165.

Chapter 12: Binary Search 166.
Linear Search vs. Binary Search 167.

Implementation 168.

Challenges 171.

Key Points 172.

Chapter 13: Heaps 173.
What’s a Heap? 173.

The Heap Property 174.

The Shape Property 175.

Data Structures & Algorithms in Dart

raywenderlich.com 8

Heap Applications 175.

Fitting a Binary Tree Into a List 176.

Implementation 178.

Challenges 196.

Key Points 197.

Chapter 14: Priority Queues 198.
Applications 199.

Common Operations 199.

Implementation 200.

Challenges 203.

Key Points 203.

Section IV: Sorting Algorithms 204.

Chapter 15: O(n²) Sorting Algorithms 206.
Bubble Sort 207.

Selection Sort 211.

Insertion Sort 213.

Stability 216.

Challenges 217.

Key Points 218.

Chapter 16: Merge Sort 219.
Example 220.

Implementation 221.

Performance 225.

Challenges 226.

Key Points 226.

Chapter 17: Radix Sort 227.
Sorting by Least Significant Digit 228.

Sorting by Most Significant Digit 234.

Challenges 242.

Data Structures & Algorithms in Dart

raywenderlich.com 9

Key Points 243.

Chapter 18: Heapsort 244.
Example 245.

Implementation 248.

Performance 252.

Challenges 253.

Key Points 253.

Chapter 19: Quicksort 254.
Example 255.

Naïve Implementation 256.

Partitioning Strategies 258.

Challenges 273.

Key Points 273.

Where to Go From Here? 273.

Section V: Graphs 274.

Chapter 20: Graphs 275.
Types of Graphs 276.

Common Operations 278.

Adjacency List 282.

Adjacency Matrix 290.

Graph Analysis 297.

Challenges 299.

Key Points 299.

Chapter 21: Breadth-First Search 300.
How Breadth-First Search Works 301.

Implementation 305.

Performance 308.

Challenges 309.

Key Points 310.

Data Structures & Algorithms in Dart

raywenderlich.com 10

Chapter 22: Depth-First Search 311.
How Depth-First Search Works 312.

Implementation 318.

Performance 321.

Cycles 321.

Challenges 325.

Key Points 325.

Chapter 23: Dijkstra’s Algorithm 326.
How Dijkstra’s Algorithm Works 327.

Implementation 335.

Performance 342.

Challenges 343.

Key Points 343.

Conclusion 344.
Approaching a Difficult Problem 344.

Learning Tips 345.

Where to Go From Here? 345.

Section VI: Challenge Solutions 346.

Chapter 4 Solutions 347.
Solution to Challenge 1 347.

Chapter 5 Solutions 349.
Solution to Challenge 1 349.

Solution to Challenge 2 350.

Solution to Challenge 3 351.

Solution to Challenge 4 354.

Chapter 6 Solutions 357.
Solution to Challenge 1 357.

Solution to Challenge 2 358.

Solution to Challenge 3 362.

Data Structures & Algorithms in Dart

raywenderlich.com 11

Solution to Challenge 4 363.

Chapter 7 Solutions 366.
Solution to Challenge 1 366.

Solution to Challenge 2 368.

Chapter 8 Solutions 369.
Solution to Challenge 1 370.

Solution to Challenge 2 370.

Chapter 9 Solutions 374.
Solution to Challenge 1 374.

Solution to Challenge 2 376.

Solution to Challenge 3 377.

Chapter 10 Solutions 378.
Solution to Challenge 1 378.

Solution to Challenge 2 379.

Solution to Challenge 3 380.

Chapter 11 Solutions 382.
Solution to Challenge 1 382.

Solution to Challenge 2 383.

Chapter 12 Solutions 385.
Solution to Challenge 1 385.

Solution to Challenge 2 386.

Solution to Challenge 3 386.

Chapter 13 Solutions 389.
Solution to Challenge 1 389.

Solution to Challenge 2 390.

Solution to Challenge 3 390.

Solution to Challenge 4 391.

Chapter 14 Solutions 392.
Solution to Challenge 1 392.

Data Structures & Algorithms in Dart

raywenderlich.com 12

Solution to Challenge 2 394.

Chapter 15 Solutions 399.
Solution to Challenge 1 399.

Solution to Challenge 2 400.

Solution to Challenge 3 401.

Solution to Challenge 4 401.

Chapter 16 Solutions 404.
Solution to Challenge 1 404.

Solution to Challenge 2 405.

Chapter 17 Solutions 408.
Solution to Challenge 1 408.

Solution to Challenge 2 409.

Solution to Challenge 3 410.

Chapter 18 Solutions 411.
Solution to Challenge 1 411.

Solution to Challenge 2 412.

Chapter 19 Solutions 414.
Solution to Challenge 1 414.

Solution to Challenge 2 415.

Chapter 20 Solutions 416.
Solution to Challenge 1 416.

Chapter 21 Solutions 418.
Solution to Challenge 1 418.

Solution to Challenge 2 418.

Solution to Challenge 3 420.

Chapter 22 Solutions 421.
Solution to Challenge 1 421.

Solution to Challenge 2 421.

Data Structures & Algorithms in Dart

raywenderlich.com 13

Chapter 23 Solutions 424.
Solution to Challenge 1 424.

Solution to Challenge 2 425.

Data Structures & Algorithms in Dart

raywenderlich.com 14

LBook License

By purchasing Data Structures & Algorithms in Dart, you have the following license:

• You are allowed to use and/or modify the source code in Data Structures &
Algorithms in Dart in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Data Structures & Algorithms in Dart in as many apps as you want, but must
include this attribution line somewhere inside your app: “Artwork/images/designs:
from Data Structures & Algorithms in Dart, available at www.raywenderlich.com”.

• The source code included in Data Structures & Algorithms in Dart is for your
personal use only. You are NOT allowed to distribute or sell the source code in
Data Structures & Algorithms in Dart without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 15

Before You Begin

This section tells you a few things you need to know before you get started, such as
what you’ll need for hardware and software, where to find the project files for this
book, and more.

raywenderlich.com 16

iWhat You Need

To follow along with this book, you’ll need the following:

• Recommended: A computer with the Dart SDK and supporting IDE installed.
The code in this book was all tested using Visual Studio Code, but IntelliJ IDEA is
another good IDE. Read more at dart.dev.

• Alternative: Any web browser that supports JavaScript. It’s also possible to
run the code in this book online. Open a web browser and navigate to dartpad.dev.
If you’re using a phone, you’ll have an easier time if you choose the desktop view
in your browser page settings.

If you haven’t installed the latest version of Dart, be sure to do that before
continuing with the book. The code covered in this book depends on Dart 2.15 — you
may get lost if you try to work with an older version.

raywenderlich.com 17

iiBook Source Code &
Forums

Where to Download the Materials for This
Book
The materials for this book can be cloned or downloaded from the GitHub book
materials repository:

• https://github.com/raywenderlich/dsad-materials/tree/editions/1.0

Forums
We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/data-structures-and-algorithms-in-dart. This is
a great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 18

“Thank you to Dalai, OJ, Anand and Temuujin of Soyol-Erdem
University for helping me think through many of the data
structures and algorithms in this book. You came up with

novel solutions and asked questions that I didn’t always know
the answer to. This book is better because of your input.”

— Jonathan Sande

raywenderlich.com 19

About the Authors
Jonathan Sande is an author of this book, converting Data
Structures & Algorithms in Swift by Kelvin Lau and Vincent Ngo to
the current Dart book you have here. Jonathan is a Flutter and Dart
developer working mainly on text rendering and input for vertical
Mongolian script. Online he goes by Suragch, a Mongolian word
meaning “student”, a reminder to never stop learning. In his free
time, he enjoys learning about microbiology and the many data
structures and algorithms found in nature. You can find him on
Twitter: @suragch1 (https://twitter.com/suragch1)

About the Editors
Pablo Mateo is the final pass editor for this book. He is Delivery
Manager at one of the biggest banks in the world, and was also
founder and CTO of a technology development company in Madrid.
His expertise is focused on web and mobile app development,
although he first started as a Creative Art Director. He has been for
many years the Main Professor of the iOS and Android Mobile
Development Masters Degree at a well-known technology school
in Madrid (CICE). He has a masters degree in Artificial Intelligence
& Machine-Learning and is currently learning Quantum
Computing at MIT.

Data Structures & Algorithms in Dart About the Team

raywenderlich.com 20

viAcknowledgments

Content Development
We would like to thank Kelvin Lau and Vincent Ngo for their work on Data
Structures & Algorithms in Swift, the raywenderlich.com book that this book is based
on. While Data Structures & Algorithms in Dart has sought to improve the
explanations, illustrations and code wherever possible, this book is heavily indebted
to Kevin and Vincent’s prior work.

The credit doesn’t stop there. Data Structures & Algorithms in Swift itself was based
on content from the Swift Algorithm Club GitHub repo (https://github.com/
raywenderlich/swift-algorithm-club/). Because of that, we would also like to
acknowledge Matthijs Hollemans, the original creator of the Swift Algorithm Club,
as well as other contributors to that repo, including Donald Pinckney, Christian
Encarnacion, Kevin Randrup, Paulo Tanaka, Nicolas Ameghino, Mike Taghavi
and Chris Pilcher.

We would also like to thank the Dart Team at Google for considering the author’s
questions about the internal workings of Dart, and Lasse Nielsen in particular for
taking the time and effort to answer those questions.

raywenderlich.com 21

viiIntroduction

How to Read This Book
The chapters in this book build on each other, so most readers will want to progress
through the content in a linear manner.

Most chapters begin by introducing a data structure or algorithm with examples and
illustrations. This is to help you gain a high-level conceptual understanding before
diving into the code. Adventurous readers may wish to pause at this point and try to
implement the data structure or algorithm on their own before looking at how the
chapter does it. Even if you’re not successful, attempting to solve the problem will
almost certainly cause you to have a deeper understanding of the requirements. An
alternative strategy is to work through each chapter directly. Then, when finished,
delete all of the code you copied and try to reproduce the data structure or algorithm
based on your understanding.

You’ll find challenge problems at the end of many chapters. These will help to test
your understanding of what you learned. Try to solve the challenges yourself before
looking at the answers. When you need to look, you can find the solutions at the end
of the book or in the supplemental downloadable materials that accompany the
book.

raywenderlich.com 22

This book is split into five main content sections:

Section I: Introduction
The chapters in this short but essential section will provide the foundation and
motivation for the study of data structures and algorithms. You’ll also get a quick
rundown of the Dart core library, which you’ll use as a basis for creating your own
data structures and algorithms.

Section II: Elementary Data Structures
This section looks at a few important data structures that are not found in the
dart:core library but form the basis of more advanced algorithms covered in future
sections. All of them are collections optimized for and enforcing a particular access
pattern.

The dart:collection library, which comes with Dart, does contain LinkedList and
Queue classes. However, learning to build these data structures yourself is why you’re
reading this book, isn’t it?

Even with just these basics, you‘ll begin to start thinking “algorithmically” and
seeing the connection between data structures and algorithms.

Data Structures & Algorithms in Dart Introduction

raywenderlich.com 23

Section III: Trees
Trees are another way to organize information, introducing the concept of children
and parents. You’ll take a look at the most common tree types and see how they can
be used to solve specific computational problems. Trees are a handy way to organize
information when performance is critical. Having them in your tool belt will
undoubtedly prove to be useful throughout your career.

Section IV: Sorting Algorithms
Putting lists in order is a classical computational problem. Although you may never
need to write your own sorting algorithm, studying this topic has many benefits. This
section will teach you about stability, best- and worst-case times, and the all-
important technique of divide and conquer.

Studying sorting may seem a bit academic and disconnected from the “real world” of
app development, but understanding the tradeoffs for these simple cases will lead
you to a better understanding of how to analyze any algorithm.

Section V: Graphs
Graphs are an instrumental data structure that can model a wide range of things:
webpages on the internet, the migration patterns of birds, even protons in the
nucleus of an atom. This section gets you thinking deeply (and broadly) about using
graphs and graph algorithms to solve real-world problems.

Data Structures & Algorithms in Dart Introduction

raywenderlich.com 24

Section I: Introduction

The chapters in this short but essential section will provide the foundation and
motivation for the study of data structures and algorithms. You’ll also get a quick
rundown of the Dart core library, which you’ll use as a basis for creating your own
data structures and algorithms.

• Chapter 1: Why Learn Data Structures & Algorithms?: Data structures are a
well-studied area, and the concepts are language agnostic; a data structure from C
is functionally and conceptually identical to the same data structure in any other
language, such as Dart. At the same time, the high-level expressiveness of Dart
makes it an ideal choice for learning these core concepts without sacrificing too
much performance.

• Chapter 2: Complexity: Answering the question, “Does it scale?” is all about
understanding the complexity of an algorithm. Big-O notation is the primary tool
you use to think about algorithmic performance in the abstract, independent of
hardware or language. This chapter will prepare you to think in these terms.

• Chapter 3: Basic Data Structures in Dart: The dart:core library includes basic
data structures that are used widely in many applications. These include List, Map
and Set. Understanding how they function will give you a foundation to work from
as you proceed through the book and begin creating your own data structures from
scratch.

raywenderlich.com 25

1Chapter 1: Why Learn Data
Structures & Algorithms?
By Kelvin Lau & Jonathan Sande

The study of data structures is one of efficiency. Given a particular amount of data,
what is the best way to store it to achieve a particular goal?

As a programmer, you regularly use a variety of collection types, such as lists, maps
and sets. These are data structures that hold a collection of data, each structure
having its own performance characteristics.

For example, consider the difference between a list and a set. Both are meant to hold
a collection of elements, but searching for an element in a list takes far longer than
searching for an element in a set. On the other hand, you can order the elements of a
list but you can’t order the elements of a set.

Data structures are a well-studied discipline, and the concepts are language
agnostic; A data structure from C is functionally and conceptually identical to the
same data structure in any other language, such as Dart. At the same time, the high-
level expressiveness of Dart makes it an ideal choice for learning these core concepts
without sacrificing too much performance.

Algorithms, on the other hand, are a set of operations that complete a task. This can
be a sorting algorithm that moves data around to put it in order. Or it can be an
algorithm that compresses an 8K picture to a manageable size. Algorithms are
essential to software, and many have been created to act as building blocks for useful
programs.

So why should you learn data structures and algorithms?

raywenderlich.com 26

Interviews
An important reason to keep your algorithmic skills up to par is to prepare for
interviews. Most companies have at least one or two algorithmic questions to test
your abilities as an engineer. A strong foundation in data structures and algorithms
is the “bar” for many software engineering positions.

Work
Using an appropriate data structure is crucial when working with lots of data, and
using the right algorithm plays a significant role in the performance and scalability
of your software. Your mobile apps will be more responsive and have better battery
life. Your server apps will be able to handle more concurrent requests and use less
energy. Algorithms often include proofs of correctness that you can leverage to build
better software.

Using the correct data structure also helps to provide context to the reader. As an
example, you might come across a Set in your code base. Immediately, you can
deduce:

• Consumers of the Set don’t care about the order of the elements, since Set is an
unordered collection.

• Set also ensures that there are no duplicate values. You can assume consumers are
working with unique data.

• Set is great for checking for value membership, so it’s likely the engineer
introduced it for this purpose.

Being familiar with a data structures allows you to extract additional context from
the code. This is a powerful skill that will help you understand how a piece of
software works.

Data Structures & Algorithms in DartChapter 1: Why Learn Data Structures & Algorithms?

raywenderlich.com 27

Self-Improvement
Knowing the strategies used by algorithms to solve tricky problems gives you ideas
for improvements that you can make to your code. The Dart core library has a small
set of general-purpose collection types; they don’t cover every case. And, yet, as
you’ll see, these primitives can be used as a great starting point for building more
complex and special-purpose abstractions. Knowing more data structures than just
the common ones gives you a wider range of tools that you can use to build your
apps.

The Goal of This Book
This book is meant to be both a reference and an exercise book. If you’re familiar
with other books from raywenderlich.com, you’ll feel right at home. Most chapters
will include some challenges at the end. The solutions to these challenges appear in
the Challenge Solutions section at the end of the book.

Do yourself a favor and make a serious attempt at solving each challenge
before peeking at the solution.

There are five content sections in this book, each covering a specific theme:

1. Introduction

2. Elementary Data Structures

3. Trees

4. Sorting Algorithms

5. Graphs

It’s best to read this book in chronological order, but it also works well as a reference
if you have some prior knowledge.

If you’re new to the study of algorithms and data structures, you may find some of
the material challenging. But, if you stick with it to the end, you’ll be well on the way
to becoming a Dart data structures and algorithms expert. It’s time to get started!

Data Structures & Algorithms in DartChapter 1: Why Learn Data Structures & Algorithms?

raywenderlich.com 28

2Chapter 2: Complexity

By Kelvin Lau & Jonathan Sande

Will it scale?

This age-old question is always asked during the design phase of software
development and comes in several flavors. From an architectural standpoint,
scalability is how easy it is to make changes to your app. From a database
standpoint, scalability is about how long it takes to save or retrieve data in the
database.

For algorithms, scalability refers to how the algorithm performs in terms of
execution time and memory usage as the input size increases.

When you’re working with a small amount of data, an expensive algorithm may still
feel fast. However, as the amount of data increases, an expensive algorithm becomes
crippling. So how bad can it get? Understanding how to quantify this is an important
skill for you to know.

In this chapter, you’ll take a look at the Big O notation for the different levels of
scalability in two dimensions: execution time and memory usage.

raywenderlich.com 29

Time Complexity
For small amounts of data, even the most expensive algorithm can seem fast due to
the speed of modern hardware. However, as data increases, the cost of an expensive
algorithm becomes increasingly apparent. Time complexity is a measure of the time
required to run an algorithm as the input size increases. In this section, you’ll go
through the most common time complexities and learn how to identify them.

Constant Time
A constant-time algorithm has the same running time regardless of the size of the
input. Consider the following:

void checkFirst(List<String> names) {
 if (names.isNotEmpty) {
 print(names.first);
 } else {
 print('no names');
 }
}

The number of items in names has no effect on the running time of this function.
Whether the input has 10 items or 10 million items, this function only prints the first
element of the list. Here’s a visualization of this time complexity in a plot of time
versus data size:

Constant time

As input data increases, the amount of time the algorithm takes does not change.

For brevity, programmers use a way of writing known as Big O notation to represent
various magnitudes of time complexity. The Big O notation for constant time is O(1).

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 30

Linear Time
Consider the following snippet of code:

void printNames(List<String> names) {
 for (final name in names) {
 print(name);
 }
}

This function prints out all the names in a list. As the input list increases in size, the
number of iterations that the for loop makes increases by the same amount.

This behavior is known as linear time complexity:

Linear time

Linear time complexity is usually the easiest to understand. As the amount of data
increases, the running time increases by the same amount. That’s why you have the
straight linear graph illustrated above. The Big O notation for linear time is O(n).

Note: What about a function that has two loops over all the data and calls six
O(1) methods? Is it O(2n + 6)?

Time complexity only gives a high-level shape of the performance, so loops
that happen a fixed number of times are not part of the calculation. All
constants are dropped in the final Big O notation. In other words, O(2n + 6) is
equal to O(n).

Although not a central concern of this book, optimizing for absolute efficiency
can be important. Companies put millions of dollars of R&D into reducing the
slope of those constants that Big O notation ignores. For example, a GPU-
optimized version of an algorithm might run 100x faster than the naive CPU
version while remaining O(n). Although this book will largely ignore that kind
of optimization, speedups like this matter.

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 31

Quadratic Time
More commonly referred to as n squared, this time complexity refers to an
algorithm that takes time proportional to the square of the input size. Consider the
following code:

void printMoreNames(List<String> names) {
 for (final _ in names) {
 for (final name in names) {
 print(name);
 }
 }
}

This time, the function prints out all the names in the list for every name in the list.
If you have a list with ten pieces of data, it will print the full list of ten names ten
times. That’s 100 print statements.

If you increase the input size by one, it will print the full list of eleven names eleven
times, resulting in 121 print statements. Unlike the previous function, which
operates in linear time, the n squared algorithm can quickly run out of control as the
data size increases.

Here’s a graph illustrating this behavior:

Quadratic time

As the size of the input data increases, the amount of time it takes for the algorithm
to run increases drastically. Thus, n squared algorithms don’t perform well at scale.

The Big O notation for quadratic time is O(n²).

Note: No matter how inefficiently a linear time O(n) algorithm is written, for a
sufficiently large n, the linear time algorithm will execute faster than a super
optimized quadratic algorithm. Always. Every time.

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 32

Logarithmic Time
So far, you’ve learned about the linear and quadratic time complexities where each
element of the input is inspected at least once. However, there are scenarios in which
only a subset of the input needs to be inspected, leading to a faster runtime.

Algorithms that belong to this category of time complexity can leverage some
shortcuts by making some assumptions about the input data.

For instance, if you had a sorted list of integers, what’s the quickest way to find if a
particular value exists? A naive solution would be to inspect the list from start to
finish before reaching a conclusion. The following is an example of this:

const numbers = [1, 3, 56, 66, 68, 80, 99, 105, 450];

bool naiveContains(int value, List<int> list) {
 for (final element in list) {
 if (element == value) return true;
 }
 return false;
}

Since you’re inspecting each of the elements once, that would be an O(n) algorithm.

Note: You might be thinking, “Hey, if the value that I’m searching for is at the
beginning of the list, then the algorithm can exit early. Isn’t that O(1) or at
least better than O(n)?”

Big O notation always tells you the worst-case scenario. While it’s possible
that the algorithm above could finish immediately, it’s also possible that you
would have to check every element. While you might think that looking at the
worst case is a pessimistic way to view the world, it’s also very helpful because
you know it can’t get any worse than that. And once you know the worst case,
you can try to improve the algorithm.

Linear time is fairly good, but you can do better. Since the input list is sorted, there’s
an optimization you can make.

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 33

If you were checking whether the number 451 existed in the list, the naive algorithm
would have to iterate from beginning to end, making a total of nine inspections for
the nine values in the list. However, since the list is sorted, you can, right off the bat,
drop half of the comparisons necessary by checking the middle value:

bool betterNaiveContains(int value, List<int> list) {
 if (list.isEmpty) return false;
 final middleIndex = list.length ~/ 2;

 if (value > list[middleIndex]) {
 for (var i = middleIndex; i < list.length; i++) {
 if (list[i] == value) return true;
 }
 } else {
 for (var i = middleIndex; i >= 0; i--) {
 if (list[i] == value) return true;
 }
 }

 return false;
}

The algorithm first checks the middle value to see how it compares with the desired
value. If the middle value is bigger than the desired value, the algorithm won’t
bother looking at the values on the right half of the list; since the list is sorted,
values to the right of the middle value can only get bigger. In the other case, if the
middle value is smaller than the desired value, the algorithm won’t look at the left
side of the list. This optimization cuts the number of comparisons by half.

What if you could perform this optimization repeatedly throughout this function?
You’ll learn how to do that in Chapter 12, “Binary Search”.

An algorithm that can repeatedly drop half of the required comparisons will have
logarithmic time complexity. Here’s a graph depicting how a logarithmic time
algorithm behaves:

Logarithmic time

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 34

As input data increases, the time it takes to execute the algorithm increases at a slow
rate. If you look closely, you may notice that the graph seems to exhibit asymptotic
behavior. This can be explained by considering the impact of halving the number of
comparisons you need to do.

When you have an input size of 100, halving the comparisons means you save 50
comparisons. If input size is 100,000, halving the comparisons means you save
50,000 comparisons. The more data you have, the more the halving effect scales.
Thus, you can see that the graph appears to approach horizontal.

Algorithms in this category are few but extremely powerful in situations that allow
for it. The Big O notation for logarithmic time complexity is O(log n).

Note: Is it log base 2, log base 10, or the natural log?

In the above example, log base 2 applies. However, since Big O notation only
concerns itself with the shape of the performance, the actual base doesn’t
matter.

Quasilinear Time
Another common time complexity you’ll encounter is quasilinear time. Quasilinear
time algorithms perform worse than linear time but dramatically better than
quadratic time. You can think of quasi-linear as “kind of” like linear time for large
data sets. An example of a quasilinear time algorithm is Dart’s sort method.

Note: At the time of this writing, the List.sort algorithm in Dart internally
uses the quasilinear Dual-Pivot Quicksort algorithm for large lists. However,
for lists below a size threshold of 32, it uses an insertion sort.

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 35

The Big-O notation for quasilinear time complexity is O(n log n), which is a
multiplication of linear and logarithmic time. Here’s the graph:

Quasilinear time

Quasilinear time complexity nears a linear slope at higher values. This makes it more
resilient to large data sets.

Comparing Time Complexities
Take a look at how the time complexities compare to each other for large data sets:

Five major time complexities

Remembering how these curves relate to each other will help you compare the
efficiency of various algorithms.

Other Time Complexities
The five time complexities you’ve encountered so far are the ones you’ll deal with in
this book. Other time complexities do exist but are far less common and tackle more
complex problems that are not covered in this book. These time complexities
include:

• O(nᵏ): polynomial time.

• O(2ⁿ): exponential time.

• O(n!): factorial time.

And there are many more.

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 36

It’s important to note that time complexity is a high-level overview of performance,
and it doesn’t judge the speed of the algorithm beyond the general ranking scheme.
This means that two algorithms can have the same time complexity, but one may
still be much faster than the other. For small data sets, time complexity may not be
an accurate measure of actual speed.

For instance, quadratic algorithms such as insertion sort can be faster than
quasilinear algorithms such as mergesort if the data set is small. This is because
insertion sort doesn’t need to allocate extra memory to perform the algorithm, while
mergesort does. For small data sets, the memory allocation can be expensive relative
to the number of elements the algorithm needs to touch.

Improving Algorithm Performance
Suppose you wrote the following code that finds the sum of numbers from 1 to n.

int sumFromOneTo(int n) {
 var sum = 0;
 for (var i = 1; i <= n; i++) {
 sum += i;
 }
 return sum;
}

sumFromOneTo(10000);

The code loops 10000 times and returns 50005000. It’s O(n) and will take a moment
to run as it counts through the loop and prints results.

If you’re curious about how long it takes to run on your machine, you can measure it
like so:

final start = DateTime.now();
final sum = sumFromOneTo(10000);
final end = DateTime.now();
final time = end.difference(start);
print(sum);
print(time);

Try increasing the input value to see how that affects the computation time.

Now try the following implementation:

int betterSumFromOneTo(int n) {
 return n * (n + 1) ~/ 2;
}

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 37

This version of the function uses a trick that Fredrick Gauss noticed in elementary
school. Namely, you can compute the sum using simple arithmetic. This final version
of the algorithm is O(1) and tough to beat. A constant time algorithm is always
preferred. If you ran betterSumFromOneTo in a loop, you only end up with linear
time. The previous O(n) version was just one outer loop away from slow, quadratic
time.

Space Complexity
The time complexity of an algorithm can help predict scalability, but it isn’t the only
metric. Space complexity is a measure of the memory required for an algorithm to
run.

Consider the following code:

int multiply(int a, int b) {
 return a * b;
}

To perform this simple algorithm, Dart needs to allocate space for the two input
parameters, a and b, as well as space for the return value. The actual size that Dart
allocates internally depends on the implementation details and where the code is
running, but whatever the case it’s still a fixed amount of space. Even for very large
input values, the return value will just overflow; it won’t take more space. That
means the space complexity for this algorithm is constant, and so the Big O
notation is O(1).

However, now take a look at this example:

List<String> fillList(int length) {
 return List.filled(length, 'a');
}

This algorithm creates a list filled with the string 'a'. The larger length is, the
longer the list will be and thus the more space will be required to store the list in
memory. Since the space increases proportionally with the input value, the space
complexity of this algorithm is linear and the Big O notation is O(n).

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 38

With one small change you could make that algorithm have quadratic space
complexity:

List<String> stuffList(int length) {
 return List.filled(length, 'a' * length);
}

Not only do larger values for length make the list longer, they also increase the size
of the string in each element of the list. Specifying 5 for length would create a list of
length 5 whose elements are 'aaaaa'. As with quadratic time complexity, the Big O
notation for quadratic space complexity is O(n²).

Other Notations
So far, you’ve evaluated algorithms using Big O notation, which tells the worst case
runtime. This is by far the most common measurement that programmers evaluate
with. However, other notations exist as well:

• Big Omega notation is used to measure the best-case runtime for an algorithm.
This isn’t as useful as Big O because getting the best case is often untenable.

• Big Theta notation is used to measure the runtime for an algorithm that is
between the best- and worse-case scenarios.

Key Points
• Time complexity is a measure of the time required to run an algorithm as the

input size increases.

• You should know about constant time, logarithmic time, linear time, quadratic
time and quasilinear time and be able to order them by cost.

• Space complexity is a measure of the memory required for the algorithm to run.

• Big O notation is used to represent the general form of time and space
complexity.

• Time and space complexity are high-level measures of scalability; they do not
measure the actual speed of the algorithm itself.

• For small data sets, time complexity is usually irrelevant. A quasilinear algorithm
can be slower than a quadratic algorithm.

Data Structures & Algorithms in Dart Chapter 2: Complexity

raywenderlich.com 39

3Chapter 3: Basic Data
Structures in Dart
By Kelvin Lau & Jonathan Sande

The dart:core library contains the core components of the Dart language. Inside,
you’ll find a variety of tools and types to help create your Dart apps. Before you start
building your own custom data structures, it’s important to understand the primary
data structures that come with Dart.

This chapter will focus on the three main data structures that the dart:core library
provides right out of the box: List, Map, and Set.

List
A list is a general-purpose, generic container for storing an ordered collection of
elements, and it’s used commonly in all sorts of Dart programs. In many other
programming languages, this data type is called an array.

You can create a list by using a list literal, which is a comma-separated list of values
surrounded with square brackets. For example:

final people = ['Pablo', 'Manda', 'Megan'];

Dart defines List as an abstract class with methods for accessing and modifying the
elements of the collection by index. Since Dart is platform-independent, how List is
implemented under the hood depends on the underlying platform, whether that’s
the Dart VM, or Dart compiled to JavaScript for the web, or native code running
directly on your computer.

raywenderlich.com 40

List, like most other Dart collections, is an Iterable. This means that you can step
through the elements sequentially. All iterables have a length getter that returns
the number of elements in the collection. While this could take O(n) time for
iterables that need to count every element, List will efficiently return length in
O(1) time.

Dart lists can also be growable or fixed-length. When you specify a fixed length for
the list, Dart can be more efficient about the space it allocates. However, you won’t
be able to add or remove elements anymore as you could in a growable list.

As with any data structure, there are certain notable traits that you should be aware
of. The first of these is the notion of order.

Order
Elements in a list are explicitly ordered. Using the above people list as an example,
'Pablo' comes before 'Manda'.

All elements in a list have a corresponding zero-based integer index. For example,
people has three indices, one corresponding to each element. You can retrieve the
value of an element in the list by writing the following:

people[0] // 'Pablo'
people[1] // 'Manda'
people[2] // 'Megan'

Order is defined by the List data structure and should not be taken for granted.
Some data structures, such as Map, have a weaker concept of order.

Random-Access
Random-access is a trait that data structures can claim if they can handle element
retrieval in a constant amount of time. For example, getting 'Megan' from the
people list takes constant time. Again, this performance should not be taken for
granted. Other data structures such as linked lists and trees do not have constant
time access.

Data Structures & Algorithms in Dart Chapter 3: Basic Data Structures in Dart

raywenderlich.com 41

List Performance
Aside from being a random-access collection, other areas of performance will be of
interest to you as a developer. Particularly, how well or poorly does the data
structure fare when the amount of data it contains needs to grow? For lists, this
varies in two aspects.

Insertion Location

The first aspect is where you choose to insert the new element inside the list. The
most efficient scenario for adding an element to a list is to add it at the end of the
list:

people.add('Edith');
print(people); // [Pablo, Manda, Megan, Edith]

Inserting 'Edith' using the add method will place the string at the end of the list.
This is an amortized constant-time operation, meaning the time it takes to
perform this operation on average stays the same no matter how large the list
becomes. Since Dart lists are backed by a buffer, if you keep adding elements, the
buffer will fill up every so often. Then Dart will have to spend some extra time
allocating more space for the buffer. That doesn’t happen very often, though, so the
“amortized” part of amortized constant-time means that the occasional complexity
bump gets averaged out over time and so the operation is still considered constant-
time.

To help illustrate why the insertion location matters, consider the following analogy.
You’re standing in line for the theater. Someone new comes along to join the lineup.
What’s the easiest place to add people to the lineup? At the end, of course!

If the newcomer tried to insert themselves into the middle of the line, they would
have to convince half the lineup to shuffle back to make room.

And if they were terribly rude, they would try to insert themselves at the head of the
line. This is the worst-case scenario because every single person in the lineup would
need to shuffle back to make room for this new person in front!

Data Structures & Algorithms in Dart Chapter 3: Basic Data Structures in Dart

raywenderlich.com 42

This is exactly how the list works. Inserting new elements anywhere aside from the
end of the list will force elements to shuffle backwards to make room for the new
element:

people.insert(0, 'Ray');
// [Ray, Pablo, Manda, Megan, Edith]

If the number of elements in the list doubles, the time required for this insert
operation will also double.

If inserting elements in front of a collection is a common operation for your
program, you may want to consider a different data structure to hold your data.

Capacity

The second factor that determines the speed of insertion is the list’s capacity.
Underneath the hood, Dart lists are allocated with a predetermined amount of space
for its elements. If you try to add new elements to a list that is already at maximum
capacity, the list must restructure itself to make room for more elements. This is
done by copying all the current elements of the list to a new and bigger container in
memory. However, this comes at a cost. Each element of the list has to be visited and
copied.

This means that any insertion, even at the end, could take n steps to complete if a
copy is made. However, Dart employs a strategy that minimizes the times this
copying needs to occur. Each time it runs out of storage and needs to copy, it doubles
the capacity.

Note: The actual implementation details are determined by where your Dart
code is running. For example, in the Dart VM, saying the capacity “doubles” is
generally true, but the specific implementation in the internal VM file
growable_array.dart is (old_capacity * 2) | 3.

Data Structures & Algorithms in Dart Chapter 3: Basic Data Structures in Dart

raywenderlich.com 43

Map
A map is collection that holds key-value pairs. For example, here’s a map
containing users’ names and scores:

final scores = {'Eric': 9, 'Mark': 12, 'Wayne': 1};

The abstract Map class itself in Dart doesn’t have any guarantees of order, nor can
you insert at a specific index. The keys of a map can be of any type, but if you are
using your own custom type then that type needs to implement operator== and
hashCode.

Although Map itself doesn’t guarantee an order, the default Dart implementation of
Map is LinkedHashMap, which, unlike HashMap, promises to maintain the insertion
order.

You can add a new entry to the map with the following syntax:

scores['Andrew'] = 0;

Since this is a LinkedHashMap under the hood, the new key-value pair will appear at
the end of the map:

print(scores);
// {Eric: 9, Mark: 12, Wayne: 1, Andrew: 0}

That is not the case with HashMap, which you can observe if you import
dart:collection:

import 'dart:collection';

And then add the following code below what you wrote earlier:

final hashMap = HashMap.of(scores);
print(hashMap);
// {Andrew: 0, Eric: 9, Wayne: 1, Mark: 12}

Now the order has changed since HashMap makes no guarantees about order.

Data Structures & Algorithms in Dart Chapter 3: Basic Data Structures in Dart

raywenderlich.com 44

It’s possible to traverse through the key-value pairs of a map multiple times. This
order, even when undefined as it is with HashMap, will be the same every time it’s
traversed until the collection is mutated.

Note: The dart:collection library contains many additional data structures
beyond the basic ones found in dart:core. By the time you’re finished with
this book, you’ll understand how many of them work and what their
performance characteristics and advantages are.

The lack of explicit ordering comes with some redeeming traits, though. Unlike lists,
maps don’t need to worry about elements shifting around. Inserting into a map
always takes a constant amount of time.

Lookup operations are also constant-time. This is significantly faster than searching
for a particular element in a list, which requires a walk from the beginning of the list
to the insertion point.

Set
A set is a container that holds unique values. Imagine it being a bag that allows you
to add items to it but rejects items that have already been added:

var bag = {'Candy', 'Juice', 'Gummy'};
bag.add('Candy');
print(bag); // {Candy, Juice, Gummy}

Since sets enforce uniqueness, they lend themselves to a variety of interesting
applications, such as finding duplicate elements in a collection of values:

final myList = [1, 2, 2, 3, 4];
final mySet = <int>{};
for (final item in myList) {
 if (mySet.contains(item)) {
 // mySet already has it, so it's a duplicate
 }
 mySet.add(item);
}

Data Structures & Algorithms in Dart Chapter 3: Basic Data Structures in Dart

raywenderlich.com 45

Similar to maps, order is generally not an important aspect of sets. That said, Dart’s
default implementation of Set uses LinkedHashSet, which, unlike HashSet,
promises to maintain insertion order.

You won’t use sets nearly as often as lists and maps, but they’re still common enough
to be an important data structure to keep in your tool belt.

That wraps up this summary of the basic data collection structures that Dart
provides for you. In the following chapters, you’ll use lists, maps and sets to build
your own data structures.

Key Points
• Every data structure has advantages and disadvantages. Knowing them is key to

writing performant software.

• Functions such as List.insert have characteristics that can cripple performance
when used haphazardly. If you find yourself needing to use insert frequently with
indices near the beginning of the list, you may want to consider a different data
structure, such as a linked list.

• Map sacrifices the ability to access elements by ordered index but has fast insertion
and retrieval.

• Set guarantees uniqueness in a collection of values. It’s optimized for speed, and
like Map, abandons the ability to access elements by ordered index.

Where to Go From Here?
Need a more detailed explanation of lists, maps and sets? Check out the
“Collections” chapter in Dart Apprentice from raywenderlich.com.

Data Structures & Algorithms in Dart Chapter 3: Basic Data Structures in Dart

raywenderlich.com 46

Section II: Elementary Data
Structures

This section looks at a few important data structures that are not found in the
dart:core library but form the basis of more advanced algorithms covered in future
sections. All are collections optimized for and enforcing a particular access pattern.

The dart:collection library, which comes with Dart, does contain LinkedList and
Queue classes. However, learning to build these data structures yourself is why you’re
reading this book, isn’t it?

Even with just these basics, you‘ll begin to start thinking “algorithmically” and
seeing the connection between data structures and algorithms.

• Chapter 4: Stacks: The stack data structure is similar in concept to a physical
stack of objects. When you add an item to a stack, you place it on top of the stack.
When you remove an item from a stack, you always remove the top-most item.
Stacks are useful and also exceedingly simple. The main goal of building a stack is
to enforce how you access your data.

• Chapter 5: Linked Lists: A linked list is a collection of values arranged in a linear,
unidirectional sequence. It has some theoretical advantages over contiguous
storage options such as Dart’s List, including constant time insertion and
removal from the front of the list.

• Chapter 6: Queues: Lines are everywhere, whether you are lining up to buy
tickets to your favorite movie or waiting for a printer to print out your documents.
These real-life scenarios mimic the queue data structure. Queues use first-in-first-
out ordering, meaning the first enqueued element will be the first to get dequeued.
Queues are handy when you need to maintain the order of your elements to
process later.

raywenderlich.com 47

4Chapter 4: Stacks

By Kelvin Lau & Jonathan Sande

Stacks are everywhere. Here are some common examples of things you would stack:

• pancakes

• books

• paper

• cash

The stack data structure is identical in concept to a physical stack of objects. When
you add an item to a stack, you place it on top of the stack. When you remove an
item from a stack, you always remove the top-most item.

Good news: a stack of pancakes with butter on top. Bad news: you have to eat the butter
first.

raywenderlich.com 48

Stack Operations
Stacks are useful and also exceedingly simple. The main goal of building a stack is to
enforce how you access your data.

There are only two essential operations for a stack:

• push: Add an element to the top of the stack.

• pop: Remove the top element of the stack.

Limiting the interface to these two operations means that you can only add or
remove elements from one side of the data structure. In computer science, a stack is
known as a LIFO (last-in-first-out) data structure. Elements that are pushed in last
are the first ones to be popped out.

Stacks are used prominently in all disciplines of programming. To list a couple:

• Memory allocation uses stacks at the architectural level. Memory for local
variables is also managed using a stack.

• Programming languages that support recursion manage the function calls with a
stack. If you accidentally write an infinite recursion, you’ll get a stack overflow.
Perhaps you’ve heard of a website that goes by that name. :]

• Search and conquer algorithms, such as finding a path out of a maze, use stacks to
facilitate backtracking.

Implementation
Open up the starter project for this chapter. In the root of the project add a folder
named lib, and in that folder create a file named stack.dart.

Note: If you are using DartPad (https://dartpad.dev) rather than a full IDE,
then just create your Stack class outside of the main function.

Then add the following code to stack.dart:

class Stack<E> {
 Stack() : _storage = <E>[];
 final List<E> _storage;
}

Data Structures & Algorithms in Dart Chapter 4: Stacks

raywenderlich.com 49

Here, you’ve defined the backing storage of your Stack. Choosing the right storage
type is important. List is an obvious choice since it offers constant time insertions
and deletions at one end via add and removeLast. Usage of these two operations will
facilitate the LIFO nature of stacks.

For those unfamiliar with generics, the E in the code above represents any data type
that you might want to put in your stack, whether that be String, int, double or
your own custom type. While you don’t have to use the letter E, it’s customary to do
so when you’re representing the elements of a collection.

You’ll want to observe the contents of the stack later on, so also override toString
inside the class:

@override
String toString() {
 return '--- Top ---\n'
 '${_storage.reversed.join('\n')}'
 '\n-----------';
}

This will list all of the elements in _storage with the last one at the top.

Push and Pop Operations
Add the following two operations to your Stack:

void push(E element) => _storage.add(element);

E pop() => _storage.removeLast();

Calling push will add an element to the end of the list while pop will remove the last
element of the list and return it.

Open bin/starter.dart and import your new stack at the top of the file:

import 'package:starter/stack.dart';

If you’re using your own project, just change starter to whatever your project name
is.

Then test your stack in the main function of bin/starter.dart:

final stack = Stack<int>();
stack.push(1);
stack.push(2);
stack.push(3);

Data Structures & Algorithms in Dart Chapter 4: Stacks

raywenderlich.com 50

stack.push(4);
print(stack);

final element = stack.pop();
print('Popped: $element');

You should see the following output:

--- Top ---
4
3
2
1

Popped: 4

push and pop both have O(1) time complexity.

Non-Essential Operations
There are a couple of nice-to-have operations that make a stack easier to use.

Adding Getters

In lib/stack.dart, add the following to Stack:

E get peek => _storage.last;

bool get isEmpty => _storage.isEmpty;

bool get isNotEmpty => !isEmpty;

peek is an operation that is often attributed to the stack interface. The idea of peek
is to look at the top element of the stack without mutating its contents.

Data Structures & Algorithms in Dart Chapter 4: Stacks

raywenderlich.com 51

Creating a Stack From an Iterable

You might want to take an existing iterable collection and convert it to a stack so
that the access order is guaranteed. Of course it would be possible to loop through
the elements and push each one. However, you can add a named constructor that just
sets the underlying private storage.

Add the following constructor to your stack implementation:

Stack.of(Iterable<E> elements) : _storage =
List<E>.of(elements);

Now, run this example in main:

const list = ['S', 'M', 'O', 'K', 'E'];
final smokeStack = Stack.of(list);
print(smokeStack);
smokeStack.pop();

This code creates a stack of strings and pops the top element “E”. The Dart compiler
infers the element type from the list, so you can use Stack instead of the more
verbose Stack<String>.

Less Is More
Since Stack is a collection of elements, you may have wondered about implementing
the Iterable interface. After all, List and Set and even the keys and values of a Map
are all iterable.

However, a stack’s purpose is to limit the number of ways to access your data, and
adopting interfaces such as Iterable would go against this goal by exposing all the
elements via the iterator. In this case, less is more!

Stacks are crucial to problems that search trees and graphs. Imagine finding your
way through a maze. Each time you come to a decision point of left, right or straight,
you can push all possible decisions onto your stack. When you hit a dead end, simply
backtrack by popping from the stack and continuing until you escape or hit another
dead end. You may want to try your hand at that sometime, but for now, work
through the challenges in the following section.

Data Structures & Algorithms in Dart Chapter 4: Stacks

raywenderlich.com 52

Challenges
A stack is a simple data structure with a surprisingly large number of applications.
Try to solve the following challenges using stacks. You can find the answers at the
end of the book and in the supplemental materials that accompany the book.

Challenge 1: Reverse a List
Create a function that prints the contents of a list in reverse order.

Challenge 2: Balance the Parentheses
Check for balanced parentheses. Given a string, check if there are (and) characters,
and return true if the parentheses in the string are balanced. For example:

// 1
h((e))llo(world)() // balanced parentheses

// 2
(hello world // unbalanced parentheses

Key Points
• A stack is a LIFO, last-in first-out, data structure.

• Despite being so simple, the stack is a key data structure for many problems.

• The only two essential operations for a stack are push for adding elements and
pop for removing elements.

• push and pop are both constant-time operations.

Data Structures & Algorithms in Dart Chapter 4: Stacks

raywenderlich.com 53

5Chapter 5: Linked Lists

By Kelvin Lau & Jonathan Sande

A linked list is a collection of values arranged in a linear, unidirectional sequence. It
has several theoretical advantages over contiguous storage options such as the Dart
List:

• Constant time insertion and removal from the front of the list.

• Reliable performance characteristics.

A linked list is a chain of nodes:

A linked list

Nodes have two responsibilities:

1. Hold a value.

2. Hold a reference to the next node. A null reference indicates the end of the list.

A node holding the value 12

raywenderlich.com 54

In this chapter, you’ll implement a linked list and learn about the common
operations associated with it. You’ll also learn about the time complexity of each
operation.

Open up the starter project for this chapter so you can dive into the code.

Node
Create a folder called lib in the root of your project. Then add a new file to this folder
called linked_list.dart. At the top of that file add class called Node with the
following code:

class Node<T> {
 Node({required this.value, this.next});
 T value;
 Node<T>? next;
}

Since Node only knows about a single value, T is the standard letter people use to
mean that the node can hold any type. Later when you create a linked list of nodes,
you’ll use E to refer to the type since they are elements of the list.

Making Nodes Printable…Recursively
Override toString so that you can print Node later. Add this inside your newly
created class:

@override
String toString() {
 if (next == null) return '$value';
 return '$value -> ${next.toString()}';
}

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 55

This will recursively print all of the nodes after this one in the linked list.

Note: When a method calls itself, this is known as recursion. A recursive
method must have a base case, which is its exit strategy so that the method
doesn’t keep calling itself forever. In the example above, the base case is when
the next node is null.

Recursion can have a tendency to make your brain dizzy, but it’s also very
useful. You’ll see recursion a lot in this book and hopefully by the time you’re
finished, you’ll feel more comfortable with it.

Creating a Linked List by Hand
Now it’s time to try out your shiny new Node! Open bin/starter.dart and add the file
import:

import 'package:starter/linked_list.dart';

Change starter to whatever your project name is if you aren’t using the starter
project.

Then add the following code to main :

final node1 = Node(value: 1);
final node2 = Node(value: 2);
final node3 = Node(value: 3);

node1.next = node2;
node2.next = node3;

print(node1);

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 56

You’ve just created three nodes and connected them:

A linked list containing values 1, 2, and 3

Run the code and you’ll see the following output in the console:

1 -> 2 -> 3

The current method of building lists leaves a lot to be desired. You can easily see that
building long lists this way is impractical. A common way to alleviate this problem is
to build a LinkedList that manages the Node objects. You’ll do just that!

LinkedList
A linked list has the concept of a head and tail, which refers to the first and last
nodes of the list respectively:

The head and tail of the list

Implement these characteristics by adding the following class below Node in
linked_list.dart:

class LinkedList<E> {
 Node<E>? head;
 Node<E>? tail;

 bool get isEmpty => head == null;

 @override
 String toString() {
 if (isEmpty) return 'Empty list';
 return head.toString();
 }
}

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 57

You know that the list is empty if the head is null. Also, since you already designed
Node to recursively print any nodes that follow it, you can print the entire linked list
just by calling head.toString.

Adding Values to a List
As mentioned before, you’re going to provide an interface to manage the Node
objects. You’ll first take care of adding values. There are three ways to add values to a
linked list, each having its own unique performance characteristics:

1. push: Adds a value at the front of the list.

2. append: Adds a value at the end of the list.

3. insertAfter: Adds a value after a particular node in the list.

You’ll implement each of these in the following sections and analyze their
performance characteristics.

Pushing to the Front of a List
Adding a value at the front of the list is known as a push operation. This is also
known as head-first insertion. The code for it is refreshingly simple.

Add the following method to LinkedList:

void push(E value) {
 head = Node(value: value, next: head);
 tail ??= head;
}

You create a new node and point to the node that used to be head. Then you set this
new node as head. In the case in which you’re pushing into an empty list, the new
node is both the head and tail of the list.

Go back to bin/starter.dart and replace the contents of main with the following
code, and then run the program:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print(list);

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 58

Your console output should show this:

1 -> 2 -> 3

That was a lot easier than building the list by chaining nodes together by hand!

Appending to the End of a List
The next operation you’ll look at is append. This is meant to add a value at the end of
the list, and it’s known as tail-end insertion.

In LinkedList, add the following code just below push:

void append(E value) {
 // 1
 if (isEmpty) {
 push(value);
 return;
 }

 // 2
 tail!.next = Node(value: value);

 // 3
 tail = tail!.next;
}

This code is relatively straightforward:

1. Like before, if the list is empty, you’ll need to update both head and tail to the
new node. Since append on an empty list is functionally identical to push, you
simply invoke push to do the work for you.

2. In all other cases, you create a new node after the tail node. tail is guaranteed to
be non-null since you push in the isEmpty case.

3. Since this is tail-end insertion, your new node is also the new tail of the list.

Test it out by replacing the contents of main with the following:

final list = LinkedList<int>();
list.append(1);
list.append(2);
list.append(3);

print(list);

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 59

Run that and you should see the following output in the console:

1 -> 2 -> 3

Inserting in Middle of a List
The third and final operation for adding values is insertAfter. This operation
inserts a value after a particular node in the list, and requires two steps:

1. Finding a particular node in the list.

2. Inserting the new node after it.

First, you’ll implement the code to find the node that you want to insert a value
after.

In LinkedList, add the following code just below append:

Node<E>? nodeAt(int index) {
 // 1
 var currentNode = head;
 var currentIndex = 0;

 // 2
 while (currentNode != null && currentIndex < index) {
 currentNode = currentNode.next;
 currentIndex += 1;
 }
 return currentNode;
}

nodeAt will try to retrieve a node in the list based on the given index. Since you can
only access the nodes of the list from the head node, you’ll have to make an iterative
traversal. Here’s the play-by-play:

1. You create a new reference to head and set up a counter to keep track of where
you are in the list.

2. Using a while loop, you move the reference down the list until you’ve reached
the desired index. Empty lists or out-of-bounds indexes will result in a null
return value.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 60

Now you need to insert the new node.

Add the following method just below nodeAt:

Node<E> insertAfter(Node<E> node, E value) {
 // 1
 if (tail == node) {
 append(value);
 return tail!;
 }

 // 2
 node.next = Node(value: value, next: node.next);
 return node.next!;
}

Here’s what you’ve done:

1. In the case where this method is called with the tail node, you’ll call the
functionally equivalent append method. This will take care of updating tail.

2. Otherwise, you simply link up the new node with the rest of the list and return
the new node.

Test your insert method out by replacing the body of main with the following:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print('Before: $list');

var middleNode = list.nodeAt(1)!;
list.insertAfter(middleNode, 42);

print('After: $list');

Run that and you should see the following output:

Before: 1 -> 2 -> 3
After: 1 -> 2 -> 42 -> 3

You successfully inserted a node with a value of 42 after the middle node.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 61

You might think it’s a little strange to insert a value after the node at some index,
since with normal lists you insert a value at some index. The reason it’s like this for
the linked list data structure, though, is because as long as you have a reference to a
node, it’s very fast, O(1) time complexity, to insert another node after the known
one. However, there’s no way to insert before a given node (thus replacing its index
position) without knowing the node before it. And this requires the much slower task
of iterating through the list.

Performance
Whew! You’ve made good progress so far. To recap, you’ve implemented the three
operations that add values to a linked list and a method to find a node at a particular
index.

Next, you’ll focus on the opposite action: removal operations.

Removing Values From a List
There are three main operations for removing nodes:

1. pop: Removes the value at the front of the list.

2. removeLast: Removes the value at the end of the list.

3. removeAfter: Removes the value after a particular node in the list.

You’ll implement all three and analyze their performance characteristics.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 62

Popping From the Front of a List
Removing a value at the front of a linked list is often referred to as pop. This
operation is almost as simple as push, so dive right in.

Add the following method to LinkedList:

E? pop() {
 final value = head?.value;
 head = head?.next;
 if (isEmpty) {
 tail = null;
 }
 return value;
}

By moving the head down a node, you’ve effectively removed the first node of the
list. In the event that the list becomes empty, you set tail to null. pop returns the
value that was removed from the list. This value is nullable, since the list may be
empty.

Test it out by replacing the contents of main with the following:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print('Before: $list');

final poppedValue = list.pop();

print('After: $list');
print('Popped value: $poppedValue');

Run that and you’ll see the following result:

Before: 1 -> 2 -> 3
After: 2 -> 3
Popped value: 1

Removing From the End of a List
Removing the last node of the list is somewhat inconvenient. Although you have a
reference to the tail node, you can’t chop it off without getting the reference to the
node before it. Thus, you’ll have to do an arduous traversal.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 63

Add the following code just below pop:

E? removeLast() {
 // 1
 if (head?.next == null) return pop();

 // 2
 var current = head;
 while (current!.next != tail) {
 current = current.next;
 }

 // 3
 final value = tail?.value;
 tail = current;
 tail?.next = null;
 return value;
}

Note the following points about the numbered sections above:

1. If the list only consists of one node, removeLast is functionally equivalent to
pop. Since pop will handle updating the head and tail references, you’ll just
delegate this work. pop will also handle the case of an empty list.

2. You start at the beginning and keep searching the nodes until current.next is
tail. This signifies that current is the node right before tail.

3. You collect the return value from the tail and after that rewire the node before
the tail to be the new tail.

Test out your new functionality in main:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print('Before: $list');

final removedValue = list.removeLast();

print('After: $list');
print('Removed value: $removedValue');

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 64

Run that and you should see the following in the console:

Before: 1 -> 2 -> 3
After: 1 -> 2
Removed value: 3

removeLast requires you to traverse all the way down the list. This makes for an O(n)
operation, which is relatively expensive.

Removing a Value From the Middle of a List
The final remove operation is removing a node at a particular point in the list. This is
achieved much like insertAfter. You’ll first find the node immediately before the
node you wish to remove and then unlink it.

Removing the middle node

Add the following to your LinkedList:

E? removeAfter(Node<E> node) {
 final value = node.next?.value;
 if (node.next == tail) {
 tail = node;
 }
 node.next = node.next?.next;
 return value;
}

You drop the next node from the list by resetting the link of the given node to the
next-next node, in effect skipping the one that used to come after. Special care needs
to be taken if the removed node is the tail node since the tail reference will need to
be updated.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 65

Head back to main to try it out. You know the drill:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print('Before: $list');

final firstNode = list.nodeAt(0);
final removedValue = list.removeAfter(firstNode!);

print('After: $list');
print('Removed value: $removedValue');

You should see the following output in the console:

Before: 1 -> 2 -> 3
After: 1 -> 3
Removed value: 2

Try adding more elements and play around with the value of the node index. Similar
to insertAfter, the time complexity of this operation is O(1), but it requires you to
have a reference to a particular node beforehand.

Performance
You’ve hit another checkpoint! To recap, you’ve implemented the three operations
that remove values from a linked list:

At this point, you’ve defined an interface for a linked list that most programmers
around the world can relate to. However, there’s work to be done to adhere to Dart
semantics. In the next part of the chapter, you’ll focus on making the interface more
Dart-like.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 66

Making a List Iterable
With most Dart collections, you can iterate through them using a for loop. For
example, here is a basic implementation of looping through a standard list:

final numbers = [1, 2, 3];
for (final number in numbers) {
 print(number);
}

However, if you were to try to do that with your LinkedList implementation, you’d
get an error. You can try by running the following code in main:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

for (final element in list) {
 print(element);
}

The error reads:

The type 'LinkedList<int>' used in the 'for' loop must implement
Iterable.

The reason that you can loop through various collections in Dart is because they
implement the Iterable interface. You can do the same to make LinkedList
iterable.

Add extends Iterable<E> to LinkedList so that the first line of the class looks as
follows:

class LinkedList<E> extends Iterable<E> {

Iterable requires an iterator, so create the missing override:

@override
// TODO: implement iterator
Iterator<E> get iterator => throw UnimplementedError();

After you’ve finished making the iterator, you’ll come back and update this getter.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 67

Since Iterable also includes isEmpty, add the @override annotation above your
isEmpty getter. It should look like so now:

@override
bool get isEmpty => head == null;

Note: Rather than extending Iterable, you could have also implemented it.
However, the abstract Iterable class contains a lot of default logic that you
would have to rewrite yourself if you had used the implement keyword. By
using extends, you only need to implement iterator.

What’s an Iterator?
An iterator tells an iterable class how to move through its elements. To make an
iterator, you create a class that implements the Iterator interface. This abstract
class has the following simple form:

abstract class Iterator<E> {
 E get current;
 bool moveNext();
}

You don’t need to write that yourself. It’s already included in Dart. Here’s what the
parts mean:

• current refers to the current element in the collection as you are iterating
through it. According to Iterator semantics, current is undefined until you’ve
called moveNext at least once.

• moveNext updates the new value of current, so it’s your job here to point to
whatever item is next in the list. Returning false from this method means that
you’ve reached the end of the list. After that point, you should consider current
undefined again.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 68

Creating an Iterator
Now that you know what an iterator is, you can make one yourself. Create the
following incomplete class below LinkedList:

class _LinkedListIterator<E> implements Iterator<E> {
 _LinkedListIterator(LinkedList<E> list) : _list = list;
 final LinkedList<E> _list;
}

You pass in a reference to the linked list so that the iterator has something to work
with.

Since you implemented Iterator, you still need to add the required current getter
and moveNext method.

Implementing current

First add the following code for current:

Node<E>? _currentNode;

@override
E get current => _currentNode!.value;

Someone looping through your LinkedList probably doesn’t care about the concept
of nodes. They just want the values, so when you return current you extract the
value from the current node, which you are storing as a separate private variable
named _currentNode. Note that accessing current when _currentNode is null will
cause a crash. As long as you implement moveNext correctly and people follow
Iterator semantics, though, this will never happen.

Implementing moveNext

Add the missing moveNext method now:

bool _firstPass = true;

@override
bool moveNext() {
 // 1
 if (_list.isEmpty) return false;

 // 2
 if (_firstPass) {
 _currentNode = _list.head;

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 69

 _firstPass = false;
 } else {
 _currentNode = _currentNode?.next;
 }

 // 3
 return _currentNode != null;
}

Here’s what you did:

1. If the list is empty, then there’s no need to go any further. Let the iterable know
that there are no more items in this collection by returning false.

2. Since _currentNode is null to start with, you need to set it to head on the first
pass. After that just point it to the next node in the chain.

3. Returning true lets the iterable know that there are still more elements, but
when the current node is null, you know that you’ve reached the end of the list.

Looping Through a List
Now that your iterator is finished, you can use it in your LinkedList. Replace the
unimplemented iterator getter that you added earlier to LinkedList with the
following:

@override
Iterator<E> get iterator => _LinkedListIterator(this);

Now you’re ready to see if it works. Rerun the same code that you unsuccessfully
tried earlier:

final list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

for (final element in list) {
 print(element);
}

This time it works! It prints out the following values as expected:

1
2
3

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 70

The Iterable interface only allows iterating through the elements in one direction.
Dart also has a BidirectionalIterator interface for two-way movement. That’s
not possible with LinkedList, though, because this data structure also only allows
movement in one direction.

Looping through a collection is not the only benefit of implementing Iterable. You
now have access to all sorts of methods like where, map, contains, and elementAt.
Just keep in mind that these are O(n) operations, though. Even the innocuous-
looking length requires iterating through the whole list to calculate.

Note: The dart:collection library also contains a class named LinkedList.
It only accepts elements of type LinkedListEntry, though, so it isn’t as
flexible as yours was for making a list of arbitrary values. Additionally, the
Dart version is a doubly linked list (linking to previous as well as next
elements), whereas yours was a singly linked list. If you want to use a standard
Dart collection that allows adding and removing at the ends in constant or
amortized constant time, check out the Queue class.

Challenges
These challenges will serve to solidify your knowledge of data structures. You can
find the answers at the end of the book and in the supplemental materials.

Challenge 1: Print in Reverse
Create a function that prints the nodes of a linked list in reverse order. For example:

1 -> 2 -> 3 -> null

// should print out the following:
3
2
1

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 71

Challenge 2: Find the Middle Node
Create a function that finds the middle node of a linked list. For example:

1 -> 2 -> 3 -> 4 -> null
// middle is 3

1 -> 2 -> 3 -> null
// middle is 2

Challenge 3: Reverse a Linked List
Create a function that reverses a linked list. You do this by manipulating the nodes
so that they’re linked in the other direction. For example:

// before
1 -> 2 -> 3 -> null

// after
3 -> 2 -> 1 -> null

Challenge 4: Remove All Occurrences
Create a function that removes all occurrences of a specific element from a linked
list. The implementation is similar to the removeAfter method that you
implemented earlier. For example:

// original list
1 -> 3 -> 3 -> 3 -> 4

// list after removing all occurrences of 3
1 -> 4

Key Points
• Linked lists are linear and unidirectional. As soon as you move a reference from

one node to another, you can’t go back.

• Linked lists have O(1) time complexity for head first insertions, whereas standard
lists have O(n) time complexity for head-first insertions.

• Implementing the Dart Iterable interface allows you to loop through the
elements of a collection as well as offering a host of other helpful methods.

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 72

6Chapter 6: Queues

By Vincent Ngo & Jonathan Sande

Everyone is familiar with waiting in line. Whether you are in line to buy tickets to
your favorite movie or waiting for a printer to print a file, these real-life scenarios
mimic the queue data structure.

Queues use FIFO (first-in-first-out) ordering, meaning the first element that was
added will always be the first to be removed. Queues are handy when you need to
maintain the order of your elements to process later.

In this chapter, you’ll learn all the common operations of a queue, go over various
ways to implement a queue, and look at the time complexity of each approach.

raywenderlich.com 73

Common Operations
The following interface defines what a queue needs to do:

abstract class Queue<E> {
 bool enqueue(E element);
 E? dequeue();
 bool get isEmpty;
 E? get peek;
}

These are the meanings of the core operations:

• enqueue: Insert an element at the back of the queue. Return true if the operation
was successful.

• dequeue: Remove the element at the front of the queue and return it.

• isEmpty: Check if the queue is empty.

• peek: Return the element at the front of the queue without removing it.

Notice that the queue only cares about removal from the front and insertion at the
back. You don’t need to know what the contents are in between. If you did, you
would probably just use a list.

Go ahead and open the starter project. Add a file called queue.dart to the lib folder.
Then add the Queue abstract class from the beginning of this section to the top of
the file. You’ll use this interface later in the chapter when implementing a queue.

Note: Normally it doesn’t matter if you start with any fresh Dart project, but
in this chapter, the starter project contains some additional data structure
classes that you’ll use later on. So you’ll have an easier time if you actually do
use the starter project. If you’re using DartPad, you’ll need to copy those
classes to the bottom of the code window.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 74

Example of a Queue
The easiest way to understand how a queue works is to see an example. Imagine a
group of people waiting in line to buy a movie ticket.

The queue currently holds Ray, Brian, Sam and Mic. Once Ray has received his ticket,
he moves out of the line. By calling dequeue, Ray is removed from the front of the
queue.

Calling peek will return Brian since he is now at the front of the line.

Now comes Vicki, who just joined the line to buy a ticket. By calling
enqueue('Vicki'), Vicki gets added to the back of the queue.

In the following sections, you’ll learn to create a queue using four different internal
data structures:

• List

• Doubly linked list

• Ring buffer

• Two stacks

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 75

List-Based Implementation
The Dart core library comes with a set of highly optimized data structures that you
can use to build higher-level abstractions. One of them that you’re already familiar
with is List, the data structure that stores a contiguous, ordered collection of
elements. In this section, you’ll use a list to create a queue.

A simple Dart list can be used to model the queue.

In lib/queue.dart, add the following code below your Queue interface:

class QueueList<E> implements Queue<E> {
 final _list = <E>[];

 @override
 bool enqueue(E element) => throw UnimplementedError();

 @override
 E? dequeue() => throw UnimplementedError();

 @override
 bool get isEmpty => throw UnimplementedError();

 @override
 E? get peek => throw UnimplementedError();
}

This sets up a private list to hold the elements of the queue. You’ve also added the
methods required by the Queue interface that you defined earlier. Trying to access
them now would throw an UnimplementedError, but you’ll implement them in the
following sections.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 76

Leveraging Lists
Replace isEmpty and peek in your QueueList with the following:

@override
bool get isEmpty => _list.isEmpty;

@override
E? get peek => (isEmpty) ? null : _list.first;

Using the features of List, you get the following for free:

1. Check if the queue is empty.

2. Return the element at the front of the queue, or null if the queue is empty.

These operations are both O(1).

Enqueue
Enqueuing an element at the back of the queue is easy. Just add an element to the
list. Replace enqueue with the following:

@override
bool enqueue(E element) {
 _list.add(element);
 return true;
}

Enqueuing an element is, on average, an O(1) operation. This is because the list has
empty space at the back.

In the example above, notice that, once you add Mic, the list has two empty spaces.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 77

After adding multiple elements, the list will eventually be full. When you want to use
more than the allocated space, the list must resize to make additional room.

As a review of what you learned in an earlier chapter, appending to a list is an O(1)
operation even though sizing is an O(n) operation. Resizing, after all, requires the
list to allocate new memory and copy all existing data over to the new list. The key is
that this doesn’t happen very often. This is because the capacity doubles each time it
runs out of space. As a result, if you work out the amortized cost of the operation
(the average cost), enqueuing is only O(1). That said, the worst-case performance is
O(n) when the copy is performed.

Dequeue
Removing an item from the front requires a bit more work. Replace dequeue with the
following:

@override
E? dequeue() => (isEmpty) ? null : _list.removeAt(0);

If the queue is empty, dequeue simply returns null. If not, it removes the element
from the front of the list and returns it.

Removing an element from the beginning of a list is always a linear-time operation
because it requires all the remaining elements in the list to be shifted in memory.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 78

Testing the List-Based Implementation
Add a new method to override toString in QueueList so that you can see the
results of your operations:

@override
String toString() => _list.toString();

Then open bin/starter.dart and add the following code to main:

final queue = QueueList<String>();
queue.enqueue('Ray');
queue.enqueue('Brian');
queue.enqueue('Eric');
print(queue);

queue.dequeue();
print(queue);

queue.peek;
print(queue);

You’ll need to import your queue.dart file:

import 'package:starter/queue.dart';

Change starter to whatever your project name is if you’re using something else
besides the starter project that came with this book.

Run the code and you should see the following in the console:

[Ray, Brian, Eric]
[Brian, Eric]
[Brian, Eric]

This code puts Ray, Brian and Eric in the queue, then removes Ray and peeks at Brian
but doesn’t remove him.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 79

Performance
Here’s a summary of the algorithmic and storage complexity of the list-based queue
implementation:

You’ve seen how easy it is to implement a list-based queue by leveraging a Dart List.
Enqueue is on average very fast, thanks to the O(1) add operation. There are some
shortcomings to the implementation, though. Removing an item from the front of
the queue can be inefficient, as removal causes all elements to shift by one. This
makes a difference for very large queues. Once the list gets full, it has to resize and
may have unused space. This could increase your memory footprint over time.

Is it possible to address these shortcomings? Compare this one to the linked-list-
based implementation in the next section.

Doubly Linked List Implementation
Open the lib folder you’ll find a file called doubly_linked_list.dart that contains a
DoublyLinkedList class. You should already be familiar with linked lists from
Chapter 5, “Linked Lists”. A doubly linked list is simply a linked list in which nodes
also contain a reference to the previous node.

Note: Feel free to use the singly linked list you made in Chapter 5 if you
prefer. Just remember the performance characteristics, though. Since
removeLast is O(n), you should avoid using that method. However, you can
enqueue with append and dequeue with pop, both of which are O(1). For a
doubly linked list it doesn’t matter as much since removeLast is also O(1).

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 80

Start by adding a generic QueueLinkedList to queue.dart as shown below.

First, import doubly_linked_list.dart at the top of the file:

import 'doubly_linked_list.dart';

Then, add the following code after the QueueList class.

class QueueLinkedList<E> implements Queue<E> {
 final _list = DoublyLinkedList<E>();

 @override
 bool enqueue(E element) => throw UnimplementedError();

 @override
 E? dequeue() => throw UnimplementedError();

 @override
 bool get isEmpty => throw UnimplementedError();

 @override
 E? get peek => throw UnimplementedError();
}

This implementation is similar to QueueList, but instead of using List, the internal
data structure is DoublyLinkedList. Take a minute to browse the source code of
DoublyLinkedList and compare it to the LinkedList you made earlier.

Next, you’ll start implementing the methods of the Queue interface.

Enqueue
To add an element to the back of the queue, simply replace enqueue with the
following:

@override
bool enqueue(E element) {
 _list.append(element);
 return true;
}

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 81

Behind the scenes, the doubly linked list will update the tail node’s previous and
next references to the new node. This is an O(1) operation.

Dequeue
To remove an element from the queue, replace dequeue with the following:

@override
E? dequeue() => _list.pop();

pop does exactly what you want dequeue to do, so you can use it directly.

Removing from the front of a linked list is also an O(1) operation. Compared to the
List implementation, you don’t have to shift elements one by one. Instead, as
shown in the diagram below, you simply update the pointers for the first two nodes
of the linked list:

Checking the State of a Queue
Similar to the List implementation, you can implement peek and isEmpty using the
properties of DoublyLinkedList.

Replace isEmpty and peek with the following:

@override
bool get isEmpty => _list.isEmpty;

@override
E? get peek => _list.head?.value;

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 82

Testing the Linked-List-Based Implementation
Override toString in QueueLinkedList so that you can see the results of your
operations:

@override
String toString() => _list.toString();

Then replace the contents of main with the following code:

final queue = QueueLinkedList<String>();
queue.enqueue('Ray');
queue.enqueue('Brian');
queue.enqueue('Eric');
print(queue); // [Ray, Brian, Eric]

queue.dequeue();
print(queue); // [Brian, Eric]

queue.peek;
print(queue); // [Brian, Eric]

Run the code and you’ll see the same results as your QueueList implementation:

[Ray, Brian, Eric]
[Brian, Eric]
[Brian, Eric]

Performance
Here is a summary of the algorithmic and storage complexity of the doubly-linked-
list-based queue implementation.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 83

One of the main problems with QueueList was that dequeuing an item took linear
time. With the linked list implementation, you reduced it to a constant operation,
O(1). All you needed to do was update the node’s pointers.

The main weakness with QueueLinkedList is not apparent from the table. Despite
O(1) performance, it suffers from high overhead. Each element has to have extra
storage for the forward and back references. Moreover, every time you create a new
element, it requires a relatively expensive dynamic allocation of memory for the new
node. By contrast, QueueList does bulk allocation, which is faster.

Can you eliminate allocation overhead and maintain O(1) dequeues? If you don’t
have to worry about your queue ever growing beyond a maximum fixed size, then the
answer is yes! What you are looking for is a ring buffer. For example, you might
have a game of Monopoly with four players. You can use a ring-buffer-based queue
to keep track of whose turn is coming up next. You’ll take a look at the ring buffer
implementation next.

Ring Buffer Implementation
A ring buffer, also known as a circular buffer, is a fixed-size list. This data structure
strategically wraps around to the beginning when there are no more items to remove
at the end.

Example
What follows is a simple example of how a queue can be implemented using a ring
buffer:

You first create a ring buffer that has a fixed size of 4. The ring buffer has two
pointers that keep track of two things:

1. The read pointer keeps track of the front of the queue.

2. The write pointer keeps track of the next available slot so that you can
overwriteexisting elements that have already been read.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 84

The image below shows the read and write pointers after you enqueue an item:

Each time that you add an item to the queue, the write pointer increments by one.
Here is what it looks like after adding a few more elements:

Notice that the write pointer moved two more spots and is ahead of the read
pointer. This means that the queue is not empty.

Next, dequeue two items:

Dequeuing is the equivalent of reading a ring buffer. Notice how the read pointer
moved twice.

Now, enqueue one more item:

Since the write pointer reached the end, it simply wraps around to the starting index
again. This is why the data structure is known as a circular buffer.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 85

Finally, dequeue the two remaining items:

The read pointer wraps to the beginning, as well. Whenever the read and write
pointers are at the same index, that means the queue is empty.

Note: You might wonder what happens if you enqueue too many items and the
write pointer loops around and catches up with the read pointer. One option is
to throw an error. Alternatively, you could overwrite the unread data and push
the read pointer ahead of the write pointer. The ring buffer in the starter
project implements the first option, but you could modify it for the second
option if losing data at the front of the queue is acceptable in your application.

Implementation
Now that you have a better understanding of how ring buffers can be used to make a
queue, it’s time to implement one!

You’ll find a file called ring_buffer.dart in the lib folder of the starter project. This
file includes the RingBuffer implementation that you’ll use in the next section.

For the adventurous: If you’d like a little extra challenge before proceeding,
try to implement a ring buffer yourself based on the description above. Check
the source code in the starter project if you get stuck.

Add a generic QueueRingBuffer to queue.dart as shown below:

import 'ring_buffer.dart';

class QueueRingBuffer<E> implements Queue<E> {
 QueueRingBuffer(int length)
 : _ringBuffer = RingBuffer<E>(length);

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 86

 final RingBuffer<E> _ringBuffer;

 @override
 bool enqueue(E element) => throw UnimplementedError();

 @override
 E? dequeue() => throw UnimplementedError();

 @override
 bool get isEmpty => _ringBuffer.isEmpty;

 @override
 E? get peek => _ringBuffer.peek;
}

There are a couple of points to pay attention to:

• You must include a length parameter since the ring buffer has a fixed size.

• isEmpty and peek are already implemented. Both of these are O(1) operations.

You’ll implement enqueue and dequeue in the following sections.

Enqueue
Replace enqueue with the method below:

@override
bool enqueue(E element) {
 if (_ringBuffer.isFull) {
 return false;
 }
 _ringBuffer.write(element);
 return true;
}

To append an element to the queue, you simply call write on the _ringBuffer. This
increments the write pointer by one.

Since the queue has a fixed size, you must now return true or false to indicate
whether the element has been successfully added. enqueue is still an O(1) operation.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 87

Dequeue
Next replace dequeue with the following:

@override
E? dequeue() => _ringBuffer.read();

To remove an item from the front of the queue, you simply call read on the
_ringBuffer. Behind the scenes, it checks if the ring buffer is empty and, if so,
returns null. If not, it returns the item at the read index of the buffer and then
increments the index by one.

Testing the Ring-Buffer-Based Implementation
Override toString in QueueRingBuffer so that you can see the results of your
operations:

@override
String toString() => _ringBuffer.toString();

This creates a string representation of Queue by delegating to the underlying ring
buffer.

That’s all there is to it! Test your ring-buffer-based queue by running the following
code in main:

final queue = QueueRingBuffer<String>(10);
queue.enqueue("Ray");
queue.enqueue("Brian");
queue.enqueue("Eric");
print(queue); // [Ray, Brian, Eric]

queue.dequeue();
print(queue); // [Brian, Eric]

queue.peek;
print(queue); // [Brian, Eric]

This test code works just like the previous examples, dequeuing Ray and peeking at
Brian.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 88

Performance
How does the ring-buffer implementation compare? Have a look at a summary of the
algorithmic and storage complexity.

The ring-buffer-based queue has the same time complexity for enqueue and dequeue
as the linked-list implementation. The space complexity for a ring-buffer-based
queue, while still O(n), doesn’t require new memory allocation internally when
enqueuing new elements like the linked-list implementation does. However, the ring
buffer has a fixed size, which means that enqueue can fail.

So far, you’ve seen three implementations of a queue: a simple list, a doubly linked
list and a ring buffer. These were all useful in their own ways, but next you’ll make a
queue implemented with two stacks. Its spatial locality is superior to the linked list,
and it also doesn’t need a fixed size like a ring buffer.

Double-Stack Implementation
Add a generic QueueStack to queue.dart as shown below:

class QueueStack<E> implements Queue<E> {
 final _leftStack = <E>[];
 final _rightStack = <E>[];

 @override
 bool enqueue(E element) => throw UnimplementedError();

 @override
 E? dequeue() => throw UnimplementedError();

 @override
 bool get isEmpty => throw UnimplementedError();

 @override
 E? get peek => throw UnimplementedError();
}

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 89

You’re using lists rather than the Stack class that you made in Chapter 4, “Stacks”.
The reason for this is that you’re going to leverage a few functions of List that your
Stack doesn’t currently have: first, last and reverse.

The idea behind using two stacks is simple. Whenever you enqueue an element, it
goes in the right stack.

When you need to dequeue an element, you reverse the right stack, place it in the
left stack, and remove the top element.

This reversing operation is only required when the left stack is empty, making most
enqueue and dequeue operations constant-time.

Leveraging Lists
Implement the common features of a queue, starting with the following:

@override
bool get isEmpty => _leftStack.isEmpty && _rightStack.isEmpty;

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 90

To check if the queue is empty, simply check that both the left and right stacks are
empty. This means that there are no elements left to dequeue and no new elements
have been enqueued.

Next, replace peek with the following:

@override
E? get peek => _leftStack.isNotEmpty
 ? _leftStack.last
 : _rightStack.first;

You know that peeking looks at the top element. If the left stack is not empty, the
element on top of this stack is at the front of the queue. If the left stack is empty, the
right stack will be reversed and placed in the left stack. In this case, the element at
the bottom of the right stack is next in the queue.

Note that the two properties isEmpty and peek are still O(1) operations.

Enqueue
Next replace enqueue with the method below:

@override
bool enqueue(E element) {
 _rightStack.add(element);
 return true;
}

Recall that the right stack is used to enqueue elements.

You simply push to the stack by appending to the list. From implementing the
QueueList previously, you know that appending an element is an O(1) operation.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 91

Dequeue
Removing an item in a two-stack-based implementation of a queue is tricky. Add the
following method:

@override
E? dequeue() {
 if (_leftStack.isEmpty) {
 // 1
 _leftStack.addAll(_rightStack.reversed);
 // 2
 _rightStack.clear();
 }
 if (_leftStack.isEmpty) return null;
 // 3
 return _leftStack.removeLast();
}

The following explanations refer to the numbered comments in the code above:

1. If the left stack is empty, set it as the reverse of the right stack:

2. Invalidate your right stack. Since you have transferred everything to the left, just
clear the right:

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 92

3. Remove the last element from the left stack:

Remember, you only transfer the elements in the right stack when the left stack is
empty!

Note: Yes, reversing the contents of a list is an O(n) operation. However, the
overall dequeue cost is still amortized O(1). Imagine having a large number of
items in both the left and right stacks. The reverse copy is only required
infrequently when the left stack becomes empty.

Testing the Double-Stack-Based
Implementation
As usual, override toString in QueueStack so that you can print the results:

@override
String toString() {
 final combined = [
 ..._leftStack.reversed,
 ..._rightStack,
].join(', ');
 return '[$combined]';
}

Here, you simply combine the reverse of the left stack with the right stack using the
spread operator.

Try out the double-stack implementation:

final queue = QueueStack<String>();
queue.enqueue("Ray");
queue.enqueue("Brian");

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 93

queue.enqueue("Eric");
print(queue); // [Ray, Brian, Eric]

queue.dequeue();
print(queue); // [Brian, Eric]

queue.peek;
print(queue); // [Brian, Eric]

Just like all of the examples before, this code enqueues Ray, Brian and Eric, dequeues
Ray and then peeks at Brian.

Performance
Here is a summary of the algorithmic and storage complexity of your two-stack-
based implementation.

Compared to the list-based implementation, by leveraging two stacks, you were able
to transform dequeue into an amortized O(1) operation.

Moreover, your two-stack implementation is fully dynamic and doesn’t have the
fixed size restriction that your ring-buffer-based queue implementation has. Worst-
case performance is O(n) when the right queue needs to be reversed or runs out of
capacity. Running out of capacity doesn’t happen very often thanks to the fact that
Dart doubles the capacity every time.

Finally, it beats the linked list in terms of spatial locality. This is because list
elements are next to each other in memory blocks. So a large number of elements
will be loaded in a cache on first access. Even though a list requires O(n) for simple
copy operations, it’s a very fast O(n) happening close to memory bandwidth.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 94

Compare the two images below:

A list has its data stored contiguously in memory.

The data for a linked list, on the other hand, could be all over the place. This non-
locality could lead to more cache misses, which will increase access time.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 95

Challenges
Think you have a handle on queues? In this section, you’ll explore four different
problems related to queues. They’ll serve to solidify your fundamental knowledge of
data structures in general. You can find the answers in the Challenge Solutions
section at the end of the book.

Challenge 1: Stack vs. Queue
Explain the difference between a stack and a queue. Provide two real-life examples
for each data structure.

Challenge 2: Step-by-Step Diagrams
Given the following queue where the left is the front of the queue and the right is the
back:

Provide step-by-step diagrams showing how the following series of commands
affects the queue internally:

queue.enqueue('D');
queue.enqueue('A');
queue.dequeue();
queue.enqueue('R');
queue.dequeue();
queue.dequeue();
queue.enqueue('T');

Do this for each of the following queue implementations:

1. List

2. Linked list

3. Ring buffer

4. Double stack

Assume that the list and ring buffer have an initial size of 5.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 96

Challenge 3: Whose Turn Is It?
Imagine that you are playing a game of Monopoly with your friends. The problem is
that everyone always forgets whose turn it is! Create a Monopoly organizer that
always tells you whose turn it is. Below is an extension method that you can
implement:

extension BoardGameManager<E> on QueueRingBuffer {
 E? nextPlayer() {
 // TODO
 }
}

Challenge 4: Double-Ended Queue
A doubled-ended queue — a.k.a. deque — is, as its name suggests, a queue where
elements can be added or removed from the front or back.

• A queue (FIFO order) allows you to add elements to the back and remove from the
front.

• A stack (LIFO order) allows you to add elements to the back, and remove from the
back.

Deque can be considered both a queue and a stack at the same time.

Your challenge is to build a deque. Below is a simple Deque interface to help you
build your data structure. The enum Direction describes whether you are adding or
removing an element from the front or back of the deque. You can use any data
structure you prefer to construct a Deque.

enum Direction {
 front,
 back,
}

abstract class Deque<E> {
 bool get isEmpty;
 E? peek(Direction from);
 bool enqueue(E element, Direction to);
 E? dequeue(Direction from);
}

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 97

Key Points
• Queue takes a FIFO strategy: an element added first must also be removed first.

• Enqueue adds an element to the back of the queue.

• Dequeue removes the element at the front of the queue.

• Elements in a list are laid out in contiguous memory blocks, whereas elements in a
linked list are more scattered with the potential for cache misses.

• A ring-buffer-based implementation is good for queues with a fixed size.

• Compared to a single list-based implementation, leveraging two stacks improves
the dequeue time complexity to an amortized O(1) operation.

• The double-stack implementation beats out linked-list in terms of spatial locality.

Data Structures & Algorithms in Dart Chapter 6: Queues

raywenderlich.com 98

Section III: Trees

Trees are another way to organize information, introducing the concept of children
and parents. You’ll take a look at the most common tree types and see how they can
be used to solve specific computational problems. Trees are a handy way to organize
information when performance is critical. Having them in your tool belt will
undoubtedly prove to be useful throughout your career.

• Chapter 7: Trees: The tree is a data structure of profound importance. It’s used to
tackle many recurring challenges in software development, such as representing
hierarchical relationships, managing sorted data, and facilitating fast lookup
operations. There are many types of trees, and they come in various shapes and
sizes.

• Chapter 8: Binary Trees: In the previous chapter, you looked at a basic tree
where each node can have many children. A binary tree is a tree where each node
has at most two children, often referred to as the left and right children. Binary
trees serve as the basis for many tree structures and algorithms. In this chapter,
you’ll build a binary tree and learn about the three most important tree traversal
algorithms.

• Chapter 9: Binary Search Trees: A binary search tree facilitates fast lookup,
addition, and removal operations. Each operation has an average time complexity
of O(log n), which is considerably faster than linear data structures such as lists
and linked lists.

raywenderlich.com 99

• Chapter 10: AVL Trees: In the previous chapter, you learned about the O(log n)
performance characteristics of the binary search tree. However, you also learned
that unbalanced trees can deteriorate the performance of the tree, all the way
down to O(n). In 1962, Georgy Adelson-Velsky and Evgenii Landis came up with
the first self-balancing binary search tree: the AVL Tree.

• Chapter 11: Tries: The trie (pronounced as “try”) is a tree that specializes in
storing data that can be represented as a collection, such as English words. The
benefits of a trie are best illustrated by looking at it in the context of prefix
matching, which you’ll do in this chapter.

• Chapter 12: Binary Search: Binary search is one of the most efficient searching
algorithms with a time complexity of O(log n). You’ve already implemented a
binary search once using a binary search tree. In this chapter, you’ll reimplement
binary search on a sorted list.

• Chapter 13: Heaps: A heap is a complete binary tree that can be constructed
using a list. Heaps come in two flavors: max-heaps and min-heaps. In this chapter,
you’ll focus on creating and manipulating heaps. You’ll see how convenient heaps
make it to fetch the minimum or maximum element of a collection.

• Chapter 14: Priority Queues: Queues are simply lists that maintain the order of
elements using first-in-first-out (FIFO) ordering. A priority queue is another
version of a queue that dequeues elements in priority order instead of FIFO order.
A priority queue is especially useful when identifying the maximum or minimum
value given a list of elements.

Data Structures & Algorithms in Dart Section III: Trees

raywenderlich.com 100

7Chapter 7: Trees

By Kelvin Lau & Jonathan Sande

The tree is a data structure of profound importance. It’s used to tackle many
recurring challenges in software development, such as:

• Representing hierarchical relationships.

• Managing sorted data.

• Facilitating fast lookup operations.

A tree

There are many types of trees, and they come in various shapes and sizes. In this
chapter, you’ll learn the basics of using and implementing a tree.

raywenderlich.com 101

Terminology
Many terms are associated with trees, and here are some you should know right off
the bat.

Node

Like the linked list, trees are made up of nodes.

Each node can carry some data and keeps track of its children.

Parent and Child

Trees are viewed starting from the top and branching towards the bottom, just like a
real tree. Well, OK, exactly the opposite of a real tree. :]

Every node except for the topmost one is connected to exactly one node above it.
That node is called a parent node. The nodes connected directly below a parent are
called child nodes. In a tree, every child has exactly one parent. That’s what makes a
tree a tree.

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 102

Root

The topmost node in the tree is called the root of the tree. It is the only node that
has no parent:

Leaf

A node is a leaf if it has no children:

You will run into more terms later on, but these should be enough to get you started.

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 103

Implementation
Since a tree is made up of nodes, your first task is to make a TreeNode class.

Open up the starter project for this chapter. Create a new file called tree.dart in the
lib folder. Then add the following code to it:

class TreeNode<T> {
 TreeNode(this.value);
 T value;
 List<TreeNode<T>> children = [];
}

Like a linked-list node, each TreeNode stores a value. However, since tree nodes can
point to multiple other nodes, you use a list to hold references to all the children.

Next, add the following method inside TreeNode:

void add(TreeNode<T> child) {
 children.add(child);
}

This method adds a child node to a node.

Time to give it a whirl. Open bin/starter.dart and replace the file contents with the
following code::

import 'package:starter/tree.dart';

void main() {
 final beverages = TreeNode('Beverages');
 final hot = TreeNode('Hot');
 final cold = TreeNode('Cold');
 beverages.add(hot);
 beverages.add(cold);
}

Hierarchical structures are natural candidates for tree structures, so here you’ve
defined three different nodes and organized them into a logical hierarchy. This
arrangement corresponds to the following structure:

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 104

Traversal Algorithms
Iterating through linear collections such as lists or linked lists is straightforward.
Linear collections have a clear start and end:

Iterating through trees is a bit more complicated:

Should nodes on the left have precedence? How should the depth of a node relate to
its precedence? Your traversal strategy depends on the problem that you’re trying to
solve. There are multiple strategies for different trees and different problems. In the
next section, you’ll look at depth-first traversal, a technique that starts at the root
and visits nodes as deep as it can before backtracking.

Depth-First Traversal
Add the following method to TreeNode in lib/tree.dart:

void forEachDepthFirst(void Function(TreeNode<T> node)
performAction) {
 performAction(this);
 for (final child in children) {
 child.forEachDepthFirst(performAction);
 }
}

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 105

This deceptively simple code uses recursion to visit the next node. As you may recall
from the previous chapter, recursive code is where a method calls itself. It’s
particularly useful for visiting all of the members of a tree data structure.

This time you allow the caller to pass in an anonymous function named
performAction that will be called once for every node. Then you visit all of the
current node’s children and call their forEachDepthFirst methods. Eventually you
reach leaf nodes without any children and so the recursive function calls don’t go on
forever.

Note: It’s also possible to use a stack if you don’t want your implementation
to be recursive. Recursion uses a stack under the hood.

Time to test it out. Add the following top-level function below main in bin/
starter.dart:

TreeNode<String> makeBeverageTree() {
 final tree = TreeNode('beverages');
 final hot = TreeNode('hot');
 final cold = TreeNode('cold');
 final tea = TreeNode('tea');
 final coffee = TreeNode('coffee');
 final chocolate = TreeNode('cocoa');
 final blackTea = TreeNode('black');
 final greenTea = TreeNode('green');
 final chaiTea = TreeNode('chai');
 final soda = TreeNode('soda');
 final milk = TreeNode('milk');
 final gingerAle = TreeNode('ginger ale');
 final bitterLemon = TreeNode('bitter lemon');

 tree.add(hot);
 tree.add(cold);

 hot.add(tea);
 hot.add(coffee);
 hot.add(chocolate);

 cold.add(soda);
 cold.add(milk);

 tea.add(blackTea);
 tea.add(greenTea);
 tea.add(chaiTea);

 soda.add(gingerAle);
 soda.add(bitterLemon);

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 106

 return tree;
}

This function creates the following tree:

Replace the contents of main with the following:

final tree = makeBeverageTree();
tree.forEachDepthFirst((node) => print(node.value));

Running that produces the following depth-first output:

beverages
hot
tea
black
green
chai
coffee
cocoa
cold
soda
ginger ale
bitter lemon
milk

In the next section, you’ll look at level-order traversal, a technique that visits each
node of the tree based on the depth of the nodes.

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 107

Level-Order Traversal
A tree can be divided into levels based on the distance of the nodes from the root.
The root itself is level 0, nodes that are direct children of the root are level 1, the
children of these children are level 2, and on it goes. Here’s what that looks like in
image form:

A level-order traversal means that you visit all of the nodes at an upper level before
visiting any of the nodes at the next level down.

You can accomplish this by using a queue. The double-stack queue you made in
Chapter 6 already exists in the lib folder of the starter project, so import it at the top
of lib/tree.dart:

import 'queue.dart';

Then add the following method to TreeNode:

void forEachLevelOrder(void Function(TreeNode<T> node)
performAction) {
 final queue = QueueStack<TreeNode<T>>();
 performAction(this);
 children.forEach(queue.enqueue);
 var node = queue.dequeue();
 while (node != null) {
 performAction(node);
 node.children.forEach(queue.enqueue);
 node = queue.dequeue();
 }
}

Note the following points:

• The queue ensures that the nodes are visited in the right level-order. A simple
recursion, which implicitly uses a stack, would not have worked!

• QueueStack is one of the queue implementations you made in the last chapter.
You could also use Queue from the dart:collection library, but you would need
to adjust the code somewhat since the Dart Queue uses different method names.

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 108

• You first enqueue the root node (level 0) and then add the children (level 1). The
while loop subsequently enqueues all of the children on the next level down.
Since a queue is first-in-first-out, this will result in each level dequeuing in order
from top to bottom.

Head back to main and replace its content with the following:

final tree = makeBeverageTree();
tree.forEachLevelOrder((node) => print(node.value));

Run that and you should see the output below:

beverages
hot
cold
tea
coffee
cocoa
soda
milk
black
green
chai
ginger ale
bitter lemon

Search
You already have two methods that iterate through all the nodes, so building a
search algorithm shouldn’t take long. Write the following at the bottom of TreeNode:

TreeNode? search(T value) {
 TreeNode? result;
 forEachLevelOrder((node) {
 if (node.value == value) {
 result = node;
 }
 });
 return result;
}

You iterate through each node and check if its value is the same as what you’re
searching for. If so, you return it as the result, but return null if not.

Head back to main to test the code. Replace the function body with the following:

final tree = makeBeverageTree();

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 109

final searchResult1 = tree.search('ginger ale');
print(searchResult1?.value); // ginger ale

final searchResult2 = tree.search('water');
print(searchResult2?.value); // null

Run that and you’ll see the first search founds a match while the second doesn’t.

Here, you used your level-order traversal algorithm. Since it visits all of the nodes, if
there are multiple matches, the last match will win. This means you’ll get different
objects back depending on what traversal method you use.

This chapter was a general introduction to trees and tree traversal algorithms. In the
next few chapters you’ll learn about more specialized types of trees.

Challenges
The following challenges will help to strengthen your understanding of the tree data
structure. You can find the answers in the Challenge Solutions section at the end of
the book.

Challenge 1: Print a Tree in Level Order
Print all the values in a tree in order based on their level. Nodes in the same level
should be printed on the same line. For example, consider the following tree:

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 110

Your algorithm should print the following:

15
1 17 20
1 5 0 2 5 7

Challenge 2: Widget Tree
Flutter calls the nodes in its user-facing UI tree widgets. You can make a mini-
version of the same thing.

Create three separate nodes with the following names and types:

• Column: a tree node that takes multiple children.

• Padding: a tree node that takes a single child.

• Text: a tree leaf node.

Use your widget nodes to build a simple widget tree.

Key Points
• Trees share some similarities to linked lists, but, whereas linked-list nodes may

only link to one successor node, a tree node can link to many child nodes.

• Every tree node, except for the root node, has exactly one parent node.

• A root node has no parent nodes.

• Leaf nodes have no child nodes.

• Traversals, such as depth-first and level-order traversals, work on multiple types
of trees. However, the implementation will be slightly different based on how the
tree is structured.

Data Structures & Algorithms in Dart Chapter 7: Trees

raywenderlich.com 111

8Chapter 8: Binary Trees

By Kelvin Lau & Jonathan Sande

In the previous chapter, you looked at a basic tree where each node can have many
children. A binary tree is a tree where each node has at most two children, often
referred to as the left and right children:

Binary trees serve as the basis for many tree structures and algorithms. In this
chapter, you’ll build a binary tree and learn about the three most important tree
traversal algorithms.

raywenderlich.com 112

Implementation
Create a folder called lib in the root of your starter project and in that folder create a
file named binary_node.dart. Then add the following code:

class BinaryNode<T> {
 BinaryNode(this.value);
 T value;
 BinaryNode<T>? leftChild;
 BinaryNode<T>? rightChild;
}

Rather than maintaining a list of child nodes as you did with TreeNode in the
previous chapter, you can directly reference leftChild and rightChild. They’re
nullable since not every node will have children.

Now open bin/starter.dart and import your new class:

import 'package:starter/binary_node.dart';

Add the following top-level function below main:

BinaryNode<int> createBinaryTree() {
 final zero = BinaryNode(0);
 final one = BinaryNode(1);
 final five = BinaryNode(5);
 final seven = BinaryNode(7);
 final eight = BinaryNode(8);
 final nine = BinaryNode(9);

 seven.leftChild = one;
 one.leftChild = zero;
 one.rightChild = five;
 seven.rightChild = nine;
 nine.leftChild = eight;

 return seven;
}

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 113

This defines the following tree:

Building a Diagram
Building a mental model of a data structure can be quite helpful in learning how it
works. To that end, you’ll implement a reusable algorithm that helps visualize a
binary tree in the console.

Open lib/binary_node.dart and add the following two methods to the bottom of
BinaryNode:

@override
String toString() {
 return _diagram(this);
}

String _diagram(
 BinaryNode<T>? node, [
 String top = '',
 String root = '',
 String bottom = '',
]) {
 if (node == null) {
 return '$root null\n';
 }
 if (node.leftChild == null && node.rightChild == null) {
 return '$root ${node.value}\n';
 }
 final a = _diagram(
 node.rightChild,
 '$top ',
 '$top┌──',
 '$top│ ',
);
 final b = '$root${node.value}\n';

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 114

 final c = _diagram(
 node.leftChild,
 '$bottom│ ',
 '$bottom└──',
 '$bottom ',
);
 return 'ab$c';
}

This will recursively create a string representing the binary tree.

Note: This algorithm is based on an implementation by Károly Lőrentey in his
book Optimizing Collections, available from https://www.objc.io/books/
optimizing-collections/.

Try it out by opening bin/starter.dart and running the following in main:

final tree = createBinaryTree();
print(tree);

You should see the following console output:

 ┌── null
┌──9
│ └── 8
7
│ ┌── 5
└──1
 └── 0

You’ll use this method of diagraming for other binary trees in this book.

Traversal Algorithms
Previously, you looked at a level-order traversal of a tree. With a few tweaks, you
could make that algorithm work for binary trees as well. However, instead of re-
implementing level-order traversal, you’ll look at three traversal algorithms for
binary trees: in-order, pre-order and post-order traversals.

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 115

In-Order Traversal
An in-order traversal visits the nodes of a binary tree in the following order, starting
from the root node:

1. If the current node has a left child, recursively visit this child first.

2. Then visit the node itself.

3. If the current node has a right child, recursively visit this child.

Here’s what an in-order traversal looks like for your example tree:

0, 1, 5, 7, 8, 9

You may have noticed that this prints the example tree in ascending order. If the tree
nodes are structured in a certain way, in-order traversal visits them in ascending
order! Binary search trees take advantage of this, and you’ll learn more about them
in the next chapter.

Add the following code to BinaryNode in lib/binary_node.dart:

void traverseInOrder(void Function(T value) action) {
 leftChild?.traverseInOrder(action);
 action(value);
 rightChild?.traverseInOrder(action);
}

Following the rules laid out above, you first traverse to the left-most node before
visiting the value. You then traverse to the right-most node.

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 116

Head back to main and replace its content to test this out:

final tree = createBinaryTree();
tree.traverseInOrder(print);

Run that and you should see the following in the console:

0
1
5
7
8
9

Pre-Order Traversal
Pre-order traversal always visits the current node first, then recursively visits the left
and right child:

7, 1, 0, 5, 9, 8

Write the following to BinaryNode just below your in-order traversal method:

void traversePreOrder(void Function(T value) action) {
 action(value);
 leftChild?.traversePreOrder(action);
 rightChild?.traversePreOrder(action);
}

You call action before recursively traversing the children, hence the “pre” of pre-
order traversal.

Test it out back in main with the following code:

final tree = createBinaryTree();
tree.traversePreOrder(print);

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 117

You should see the following output in the console:

7
1
0
5
9
8

Post-Order Traversal
Post-order traversal only visits the current node after the left and right child have
been visited recursively.

0, 5, 1, 8, 9, 7

In other words, given any node, you’ll visit its children before visiting itself. An
interesting consequence of this is that the root node is always visited last.

Back inside BinaryNode, write the following below traversePreOrder:

void traversePostOrder(void Function(T value) action) {
 leftChild?.traversePostOrder(action);
 rightChild?.traversePostOrder(action);
 action(value);
}

Note that you perform action after the recursive traversal calls.

Go back to main to try it out:

final tree = createBinaryTree();
tree.traversePostOrder(print);

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 118

You should see the following in the console:

0
5
1
8
9
7

Comparison
Take a moment to review the differences between those three traversal algorithms:

void traverseInOrder(void Function(T value) action) {
 leftChild?.traverseInOrder(action);
 action(value);
 rightChild?.traverseInOrder(action);
}

void traversePreOrder(void Function(T value) action) {
 action(value);
 leftChild?.traversePreOrder(action);
 rightChild?.traversePreOrder(action);
}

void traversePostOrder(void Function(T value) action) {
 leftChild?.traversePostOrder(action);
 rightChild?.traversePostOrder(action);
 action(value);
}

The methods all contained the same lines of code but executed them in varying
order. The list below summarizes that order:

• traverseInOrder: left → action → right

• traversePreOrder: action → left → right

• traversePostOrder: left → right → action

The difference is only in where the action takes place.

Each one of these traversal algorithms has a time and space complexity of O(n).

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 119

You saw that in-order traversal can be used to visit the nodes in ascending order.
Binary trees can enforce this behavior by adhering to certain rules during insertion.
In the next chapter, you’ll look at a binary tree with stricter semantics: the binary
search tree.

Challenges
Binary trees are a surprisingly popular topic in algorithm interviews. Questions on
the binary tree not only require a good foundation of how traversals work, but can
also test your understanding of recursive backtracking, so it’s good to test what
you’ve learned in this chapter.

Challenge 1: Height of a Tree
Given a binary tree, find the height of the tree. The height of the binary tree is
determined by the distance between the root and the furthest leaf. The height of a
binary tree with a single node is zero since the single node is both the root and the
furthest leaf.

Challenge 2: Serialization
A common task in software development is representing a complex object using
another data type. This process is known as serialization and allows custom types to
be used in systems that only support a closed set of data types. An example of
serialization is JSON.

Your task is to devise a way to serialize a binary tree into a list, and a way to
deserialize the list back into the same binary tree.

To clarify this problem, consider the following binary tree:

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 120

A particular algorithm may output the serialization as follows:

[15, 10, 5, null, null, 12, null, null, 25, 17, null, null,
null]

The deserialization process should transform the list back into the same binary tree.
Note that there are many ways to perform serialization. You may choose any way you
wish.

Key Points
• A binary tree is a tree where each node has at most two children, often referred to

as the left and right children.

• Tree traversal algorithms visit each node in the tree once.

• In-order traversal recursively visits the left child first, then the current parent
node, and finally the right child.

• Pre-order traversal visits the parent node first, followed by the child nodes.

• Post-order traversal visits the child nodes before the parent nodes.

Data Structures & Algorithms in Dart Chapter 8: Binary Trees

raywenderlich.com 121

9Chapter 9: Binary Search
Trees
By Kevin Lau & Jonathan Sande

A binary search tree, or BST, is a data structure that facilitates fast lookup, insert
and removal operations. Consider the following decision tree where picking a side
forfeits all the possibilities of the other side, cutting the problem in half:

raywenderlich.com 122

Once you make a decision and choose a branch, there is no looking back. You keep
going until you make a final decision at a leaf node. Binary trees let you do the same
thing. Specifically, a binary search tree imposes two rules on the binary tree you saw
in the previous chapter:

• The value of a left child must be less than the value of its parent.

• Consequently, the value of a right child must be greater than or equal to the value
of its parent.

Binary search trees use these properties to save you from performing unnecessary
checking. As a result, lookup, insert and removal have an average time complexity of
O(log n), which is considerably faster than linear data structures such as lists and
linked lists.

In this chapter, you’ll learn about the benefits of BST relative to a list and, as usual,
implement the data structure from scratch.

List vs. BST
To illustrate the power of using BST, you’ll look at some common operations and
compare the performance of lists against the binary search tree.

Consider the following two collections:

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 123

Lookup
There’s only one way to do element lookups for an unsorted list. You need to check
every element in the list from the start:

Searching for 105

That’s why list.contains is an O(n) operation.

This is not the case for binary search trees:

Searching for 105

Every time the search algorithm visits a node in the BST, it can safely make these two
assumptions:

• If the search value is less than the current value, it must be in the left subtree.

• If the search value is greater than the current value, it must be in the right
subtree.

By leveraging the rules of the BST, you can avoid unnecessary checks and cut the
search space in half every time you make a decision. That’s why element lookup in
BST is an O(log n) operation.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 124

Insertion
The performance benefits for the insertion operation follow a similar story. Assume
you want to insert 0 into a collection. Inserting at the front of the list causes all
other elements to shift backward by one position. It’s like butting in line. Everyone
in the line behind your chosen spot needs to make space for you by shuffling back:

Inserting 0 in sorted order

Inserting into a list has a time complexity of O(n).

Insertion into a binary search tree is much more comforting. By leveraging the rules
of BST, you only need to make three traversals in the example below to find the
location for the insertion, and you don’t have to shuffle all the elements around!

Inserting elements in BST is an O(log n) operation.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 125

Removal
Similar to insertion, removing an element in a list also triggers a shuffling of
elements:

Removing 25 from the list

This behavior also goes along with the lineup analogy. If you leave the middle of the
line, everyone behind you needs to shuffle forward to take up the empty space.

Here’s what removing a value from a binary search tree looks like:

Nice and easy! There are complications to manage when the node you’re removing
has children, but you’ll look into that later. Even with those complications, removing
an element from a BST is still an O(log n) operation.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 126

Binary search trees drastically reduce the number of steps for add, remove and
lookup operations. Now that you understand the benefits of using a binary search
tree, you can move on to the actual implementation.

Implementation
Open up the starter project for this chapter. In the lib folder you’ll find
binary_node.dart with the BinaryNode type that you created in the previous
chapter. Create a new file named binary_search_tree.dart in the same folder and
add the following code to it:

import 'binary_node.dart';

class BinarySearchTree<E extends Comparable<dynamic>> {
 BinaryNode<E>? root;

 @override
 String toString() => root.toString();
}

Here are a few things to note:

• By definition, binary search trees can only hold values that are Comparable.

• If you prefer you could use Comparable<E> instead of Comparable<dynamic>.
However, int doesn’t directly implement Comparable; its superclass num does.
That makes it so that users of your class would have to use num when they really
want int. Using Comparable<dynamic>, on the other hand, allows them to use int
directly.

Next, you’ll look at the insert method.

Inserting Elements
In accordance with BST rules, nodes of the left child must contain values less than
the current node. Nodes of the right child must contain values greater than or equal
to the current node. You’ll implement the insert method while respecting these
rules.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 127

Adding an Insert Method

Add the following to BinarySearchTree:

void insert(E value) {
 root = _insertAt(root, value);
}

BinaryNode<E> _insertAt(BinaryNode<E>? node, E value) {
 // 1
 if (node == null) {
 return BinaryNode(value);
 }
 // 2
 if (value.compareTo(node.value) < 0) {
 node.leftChild = _insertAt(node.leftChild, value);
 } else {
 node.rightChild = _insertAt(node.rightChild, value);
 }
 // 3
 return node;
}

The insert method is exposed to users, while _insertAt will be used as a private
helper method:

1. This is a recursive method, so it requires a base case for terminating recursion. If
the current node is null, you’ve found the insertion point and you return the
new BinaryNode.

2. Because element types are comparable, you can perform a comparison. This if
statement controls which way the next _insertAt call should traverse. If the
new value is less than the current value, that is, if compareTo returns a negative
number, you’ll look for an insertion point on the left child. If the new value is
greater than or equal to the current value, you’ll turn to the right child.

3. Return the current node. This makes assignments of the form node =
_insertAt(node, value) possible as _insertAt will either create node, if it
was null, or return node, if it was not null.

Testing it Out

Open bin/starter.dart and replace the contents with the following:

import 'package:starter/binary_search_tree.dart';

void main() {
 final tree = BinarySearchTree<int>();

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 128

 for (var i = 0; i < 5; i++) {
 tree.insert(i);
 }
 print(tree);
}

Run the code above and you should see the following output:

 ┌── 4
 ┌──3
 │ └── null
 ┌──2
 │ └── null
┌──1
│ └── null
0
└── null

Balanced vs. Unbalanced Trees

The previous tree looks a bit unbalanced, but it does follow the rules. However, this
tree layout has undesirable consequences. When working with trees, you always
want to achieve a balanced format:

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 129

An unbalanced tree affects performance. If you insert 5 into the unbalanced tree
you’ve created, it becomes an O(n) operation:

You can create structures known as self-balancing trees that use clever techniques
to maintain a balanced structure, but you’ll have to wait for those details until
Chapter 10, “AVL Trees”. For now, you’ll build a sample tree with a bit of care to keep
it from becoming unbalanced.

Building a Balanced Tree

Add the following function below main:

BinarySearchTree<int> buildExampleTree() {
 var tree = BinarySearchTree<int>();
 tree.insert(3);
 tree.insert(1);
 tree.insert(4);
 tree.insert(0);
 tree.insert(2);
 tree.insert(5);
 return tree;
}

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 130

Replace the contents of main with the following:

final tree = buildExampleTree();
print(tree);

Run the code. You should see the following in the console:

 ┌── 5
┌──4
│ └── null
3
│ ┌── 2
└──1
 └── 0

Much nicer!

Finding Elements
Finding an element in a binary search tree requires you to traverse through its nodes.
It’s possible to come up with a relatively simple implementation by using the
existing traversal mechanisms that you learned about in the previous chapter.

Add the following method to BinarySearchTree:

bool contains(E value) {
 if (root == null) return false;
 var found = false;
 root!.traverseInOrder((other) {
 if (value == other) {
 found = true;
 }
 });
 return found;
}

Next, head back to main to test this out:

final tree = buildExampleTree();
if (tree.contains(5)) {
 print("Found 5!");
} else {
 print("Couldn’t find 5");
}

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 131

You should see the following in the console:

Found 5!

In-order traversal has a time complexity of O(n). Thus, this implementation of
contains has the same time complexity as an exhaustive search through an
unsorted list.

You can do better.

Optimizing contains

Relying on the properties of BST can help you avoid needless comparisons. Back in
BinarySearchTree, replace contains with the following:

bool contains(E value) {
 // 1
 var current = root;
 // 2
 while (current != null) {
 // 3
 if (current.value == value) {
 return true;
 }
 // 4
 if (value.compareTo(current.value) < 0) {
 current = current.leftChild;
 } else {
 current = current.rightChild;
 }
 }
 return false;
}

1. Start by setting current to the root node.

2. As long as current isn’t null, you’ll keep branching through the tree.

3. If the current node’s value is equal to what you’re trying to find, return true.

4. Otherwise, decide whether you’re going to check the left or the right child.

This implementation of contains is an O(log n) operation in a balanced binary
search tree.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 132

Removing Elements
Removing elements is a little more tricky because you need to handle a few different
scenarios.

Removing a Leaf Node

Removing a leaf node is straightforward. Simply detach the leaf node:

removing 2

For non-leaf nodes, however, there are extra steps you must take.

Removing Nodes With One Child

When removing nodes with one child, you’ll need to reconnect that child with the
rest of the tree:

removing 4, which has one child

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 133

Removing Nodes With Two Children

Nodes with two children are a bit more complicated, so a more complex example tree
will better illustrate how to handle this situation. Assume that you have the
following tree and that you want to remove the value 25:

Simply deleting the node presents a dilemma. You have two child nodes (12 and 37)
to reconnect, but the parent node only has space for one child:

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 134

To solve this problem, you’ll implement a clever workaround by performing a swap.
When removing a node with two children, replace the node you removed with the
smallest node in its right subtree. Based on the principles of BST, this is the leftmost
node of the right subtree:

It’s important to note that this produces a valid binary search tree. Because the new
node was the smallest in the right subtree, all nodes in the right subtree will still be
greater than or equal to the new node. And because the new node came from the
right subtree, all nodes in the left subtree will be less than the new node.

After performing the swap, you can simply remove the value you copied, just a leaf
node.

This will take care of removing nodes with two children.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 135

Finding the Minimum Node in a Subtree

Open up binary_search_tree.dart. You’ll implement the remove method in just a
minute, but first add the following helper extension at the bottom of the file:

extension _MinFinder<E> on BinaryNode<E> {
 BinaryNode<E> get min => leftChild?.min ?? this;
}

This recursive min property on BinaryNode will help you find the minimum node in
a subtree.

Implementing remove

Now add these two methods to BinarySearchTree:

void remove(E value) {
 root = _remove(root, value);
}

BinaryNode<E>? _remove(BinaryNode<E>? node, E value) {
 if (node == null) return null;

 if (value == node.value) {
 // more to come
 } else if (value.compareTo(node.value) < 0) {
 node.leftChild = _remove(node.leftChild, value);
 } else {
 node.rightChild = _remove(node.rightChild, value);
 }
 return node;
}

This should look familiar to you. You’re using the same recursive setup with a private
helper method as you did for insert. The method isn’t quite finished yet, though.
Once you’ve found the node that you want to remove, you still need to separately
handle the removal cases for (1) a leaf node, (2) a node with one child, and (3) a node
with two children.

Handling the Removal Cases

Replace the // more to come comment above with the following code:

// 1
if (node.leftChild == null && node.rightChild == null) {
 return null;
}
// 2

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 136

if (node.leftChild == null) {
 return node.rightChild;
}
if (node.rightChild == null) {
 return node.leftChild;
}
// 3
node.value = node.rightChild!.min.value;
node.rightChild = _remove(node.rightChild, node.value);

1. If the node is a leaf node, you simply return null, thereby removing the current
node.

2. If the node has no left child, you return node.rightChild to reconnect the right
subtree. If the node has no right child, you return node.leftChild to reconnect
the left subtree.

3. This is the case in which the node to be removed has both a left and right child.
You replace the node’s value with the smallest value from the right subtree. You
then call remove on the right child to remove this swapped value.

Testing it Out

Head back to main and test remove by writing the following:

final tree = buildExampleTree();
print('Tree before removal:');
print(tree);
tree.remove(3);
print('Tree after removing root:');
print(tree);

You should see the output below in the console:

Tree before removal:
 ┌── 5
┌──4
│ └── null
3
│ ┌── 2
└──1
 └── 0

Tree after removing root:
┌── 5
4
│ ┌── 2
└──1
 └── 0

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 137

Successfully implemented!

In the next chapter you’ll learn how to create a self-balancing binary search tree
called an AVL tree.

Challenges
Think you’ve gotten the hang of binary search trees? Try out these three challenges
to lock the concepts down. As usual, you can find the answers in the Challenge
Solutions section at the end of the book.

Challenge 1: Binary Tree or Binary Search Tree?
Write a function that checks if a binary tree is a binary search tree.

Challenge 2: Equality
Given two binary trees, how would you test if they are equal or not?

Challenge 3: Is it a Subtree?
Create a method that checks if the current tree contains all the elements of another
tree.

Key Points
• The binary search tree (BST) is a powerful data structure for holding sorted data.

• Elements of the binary search tree must be comparable. You can achieve this using
a generic constraint or by supplying a closure to perform the comparison.

• The time complexity for insert, remove and contains methods in a BST is O(log
n).

• Performance will degrade to O(n) as the tree becomes unbalanced. This is
undesirable, but self-balancing trees such as the AVL tree can overcome the
problem.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 138

10Chapter 10: AVL Trees

By Kelvin Lau & Jonathan Sande

In the previous chapter, you learned about the O(log n) performance characteristics
of the binary search tree. However, you also learned that unbalanced trees can
deteriorate the performance of the tree, all the way down to O(n). In 1962, Georgy
Adelson-Velsky and Evgenii Landis came up with the first self-balancing binary
search tree: The AVL Tree. In this chapter, you’ll dig deeper into how the balance of
a binary search tree can impact performance and implement the AVL tree from
scratch!

raywenderlich.com 139

Understanding Balance
A balanced tree is the key to optimizing the performance of the binary search tree. In
this section, you’ll learn about the three main states of balance: perfectly balanced,
balanced and unbalanced.

Perfect Balance
The ideal form of a binary search tree is the perfectly balanced state. In technical
terms, this means every level of the tree is filled with nodes, from top to bottom.

Perfectly balanced tree

Not only is the tree perfectly symmetrical, the nodes at the bottom level are
completely filled. This is the requirement for being perfectly balanced.

“Good-enough” Balance
Although achieving perfect balance is ideal, it’s rarely possible. A perfectly balanced
tree must contain the exact number of nodes to fill every level to the bottom, so it
can only be perfect with a particular number of elements.

For example, a tree with 1, 3 or 7 nodes can be perfectly balanced, but a tree with 2,
4, 5 or 6 cannot be perfectly balanced since the last level of the tree will not be filled.

Balanced tree

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 140

The definition of a balanced tree is that every level of the tree must be filled, except
for the bottom level. For most binary trees, this is the best you can do.

Unbalanced
Finally, there’s the unbalanced state. Binary search trees in this state suffer from
various levels of performance loss, depending on the degree of imbalance.

Unbalanced trees

Keeping the tree balanced gives the find, insert and remove operations an O(log n)
time complexity. AVL trees maintain balance by adjusting the structure of the tree
when the tree becomes unbalanced. You’ll learn how this works as you progress
through the chapter.

Implementation
Inside the starter project for this chapter is an implementation of the binary search
tree as created in the previous chapter. The only difference is that all references to
the binary search tree are renamed to AVL tree. Similarly, the binary node is renamed
to AVL node.

Binary search trees and AVL trees share much of the same implementation; in fact,
all that you’ll add is the balancing component. Open the starter project to begin.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 141

Measuring Balance
To keep a binary tree balanced, you’ll need a way to measure the balance of the tree.
The AVL tree achieves this with a height property in each node. In tree-speak, the
height of a node is the longest distance from the current node to a leaf node:

Nodes marked with heights

Open the lib folder and add the following property to AvlNode in avl_node.dart:

int height = 0;

You’ll use the relative heights of a node’s children to determine whether a particular
node is balanced. The height of the left and right children of each node must differ at
most by 1. This number is known as the balance factor.

Write the following just below the height property of AvlNode:

int get balanceFactor => leftHeight - rightHeight;

int get leftHeight => leftChild?.height ?? -1;

int get rightHeight => rightChild?.height ?? -1;

The balanceFactor computes the height difference of the left and right child. If a
particular child is null, its height is considered to be -1.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 142

Here’s an example of an AVL tree. The diagram shows a balanced tree — all levels
except the bottom one are filled. The numbers to the right of the node represent the
height of each node, while the numbers to the left represent the balanceFactor.

AVL tree with balance factors and heights

Here’s an updated diagram with 40 inserted. Inserting 40 into the tree turns it into
an unbalanced tree. Notice how the balanceFactor changes:

Unbalanced tree

A balanceFactor of 2 or -2 or something more extreme indicates an unbalanced
tree. By checking after each insertion or deletion, though, you can guarantee that it’s
never more extreme than a magnitude of two.

Although more than one node may have a bad balancing factor, you only need to
perform the balancing procedure on the bottom-most node containing the invalid
balance factor. For example, in the figure above both 50 and 25 have a balance factor
with a magnitude of 2. However, you only need to perform the balancing procedure
on the lower node, that is, the one containing 25.

This is where rotations come in.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 143

Rotations
The procedures used to balance a binary search tree are known as rotations. There
are four rotations in total, one for each of the four different ways that a tree can be
unbalanced. These are known as left rotation, left-right rotation, right rotation and
right-left rotation.

Left Rotation

The imbalance caused by inserting 40 into the tree can be solved by a left rotation.
A generic left rotation of node X looks like this:

Left rotation applied on node X

Before going into specifics, there are two takeaways from this before-and-after
comparison:

• In-order traversal for these nodes remains the same.

• The depth of the tree is reduced by one level after the rotation.

Open lib/avl_tree.dart and add the dart:math library to the top of the file:

import 'dart:math' as math;

Then add the following method to AvlTree below the _insertAt method:

AvlNode<E> leftRotate(AvlNode<E> node) {
 // 1
 final pivot = node.rightChild!;
 // 2
 node.rightChild = pivot.leftChild;
 // 3
 pivot.leftChild = node;
 // 4

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 144

 node.height = 1 +
 math.max(
 node.leftHeight,
 node.rightHeight,
);
 pivot.height = 1 +
 math.max(
 pivot.leftHeight,
 pivot.rightHeight,
);
 // 5
 return pivot;
}

Here are the steps needed to perform a left rotation:

1. The right child is chosen as the pivot point. This node will replace the rotated
node as the root of the subtree. That means it’ll move up a level.

2. The node to be rotated will become the left child of the pivot. It moves down a
level. This means that the current left child of the pivot must be moved
elsewhere. In the generic example shown in the earlier image, this is node B.
Because B is smaller than Y but greater than X, it can replace Y as the right child
of X. So you update the rotated node’s rightChild to the pivot’s leftChild.

3. The pivot’s leftChild can now be set to the rotated node.

4. You update the heights of the rotated node and the pivot.

5. Finally, you return the pivot so that it can replace the rotated node in the tree.

Here are the before-and-after effects of the left rotation of 25 from the previous
example:

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 145

Right Rotation

Right rotation is the symmetrical opposite of left rotation. When a series of left
children is causing an imbalance, it’s time for a right rotation.

A generic right rotation of node X looks like this:

Right rotation applied on node X

To implement this, add the following code just after leftRotate:

AvlNode<E> rightRotate(AvlNode<E> node) {
 final pivot = node.leftChild!;
 node.leftChild = pivot.rightChild;
 pivot.rightChild = node;
 node.height = 1 +
 math.max(
 node.leftHeight,
 node.rightHeight,
);
 pivot.height = 1 +
 math.max(
 pivot.leftHeight,
 pivot.rightHeight,
);
 return pivot;
}

This algorithm is nearly identical to the implementation of leftRotate, except the
references to the left and right children are swapped.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 146

Right-Left Rotation

You may have noticed that the left and right rotations balance nodes that are all left
children or all right children. Consider the case in which 36 is inserted into the
original example tree.

The tree now requires a right-left rotation:

Inserted 36 as left child of 37

Doing a left rotation, in this case, won’t result in a balanced tree. The way to handle
cases like this is to perform a right rotation on the right child before doing the left
rotation. Here’s what the procedure looks like:

Right-left rotation

1. You apply a right rotation to 37.

2. Now that nodes 25, 36 and 37 are all right children, you can apply a left rotation
to balance the tree.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 147

Add the following code just after rightRotate:

AvlNode<E> rightLeftRotate(AvlNode<E> node) {
 if (node.rightChild == null) {
 return node;
 }
 node.rightChild = rightRotate(node.rightChild!);
 return leftRotate(node);
}

Don’t worry just yet about when to call this. You’ll get to that in a second. You first
need to handle the last case, left-right rotation.

Left-Right Rotation

Left-right rotation is the symmetrical opposite of the right-left rotation. Here’s an
example:

Left-right rotation

1. You apply a left rotation to node 10.

2. Now that nodes 25, 15 and 10 are all left children; you can apply a right rotation
to balance the tree.

Add the following code just after rightLeftRotate:

AvlNode<E> leftRightRotate(AvlNode<E> node) {
 if (node.leftChild == null) {
 return node;
 }
 node.leftChild = leftRotate(node.leftChild!);
 return rightRotate(node);
}

That’s it for rotations. Now you just need to apply them at the correct time.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 148

Balance
The next task is to design a method that uses balanceFactor to decide whether a
node requires balancing or not. Write the following method below
leftRightRotate:

AvlNode<E> balanced(AvlNode<E> node) {
 switch (node.balanceFactor) {
 case 2:
 // ...
 case -2:
 // ...
 default:
 return node;
 }
}

There are three cases to consider.

1. A balanceFactor of 2 suggests that the left child is “heavier” (contains more
nodes) than the right child. This means that you want to use either right or left-
right rotations.

2. A balanceFactor of -2 suggests that the right child is heavier than the left child.
This means that you want to use either left or right-left rotations.

3. The default case suggests that the particular node is balanced. There’s nothing to
do here except to return the node.

The sign of the child’s balanceFactor can be used to determine if a single or double
rotation is required:

Right rotate, or left-right rotate?

Replace balanced with the following:

AvlNode<E> balanced(AvlNode<E> node) {
 switch (node.balanceFactor) {

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 149

 case 2:
 final left = node.leftChild;
 if (left != null && left.balanceFactor == -1) {
 return leftRightRotate(node);
 } else {
 return rightRotate(node);
 }
 case -2:
 final right = node.rightChild;
 if (right != null && right.balanceFactor == 1) {
 return rightLeftRotate(node);
 } else {
 return leftRotate(node);
 }
 default:
 return node;
 }
}

balanced inspects the balanceFactor to determine the proper course of action. All
that’s left is to call balanced at the proper time.

Revisiting Insertion
You’ve already done the majority of the work. The remainder is fairly
straightforward. Replace _insertAt with the following:

AvlNode<E> _insertAt(AvlNode<E>? node, E value) {
 if (node == null) {
 return AvlNode(value);
 }
 if (value.compareTo(node.value) < 0) {
 node.leftChild = _insertAt(node.leftChild, value);
 } else {
 node.rightChild = _insertAt(node.rightChild, value);
 }
 final balancedNode = balanced(node);
 balancedNode.height = 1 +
 math.max(
 balancedNode.leftHeight,
 balancedNode.rightHeight,
);
 return balancedNode;
}

Instead of returning the node directly after inserting, you pass it into balanced.
Passing it ensures every node in the call stack is checked for balancing issues. You
also update the node’s height.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 150

That’s all there is to it! Open bin/starter.dart and replace the contents of the file
with the following:

import 'package:starter/avl_tree.dart';

void main() {
 final tree = AvlTree<int>();
 for (var i = 0; i < 15; i++) {
 tree.insert(i);
 }
 print(tree);
}

Run that and you should see the following output in the console:

 ┌── 14
 ┌──13
 │ └── 12
┌──11
│ │ ┌── 10
│ └──9
│ └── 8
7
│ ┌── 6
│ ┌──5
│ │ └── 4
└──3
 │ ┌── 2
 └──1
 └── 0

Take a moment to appreciate the uniform spread of the nodes. If the rotations
weren’t applied, this would have become a long, unbalanced link of right children.

Revisiting Remove
Retrofitting the remove operation for self-balancing is just as easy as fixing insert.
In AvlTree, find _remove and replace the final return node; statement with the
following:

final balancedNode = balanced(node);
balancedNode.height = 1 +
 math.max(
 balancedNode.leftHeight,
 balancedNode.rightHeight,
);
return balancedNode;

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 151

Head back to starter.dart and replace the body of main with the following code:

final tree = AvlTree<int>();
tree.insert(15);
tree.insert(10);
tree.insert(16);
tree.insert(18);
print(tree);
tree.remove(10);
print(tree);

Run that and you should see the following console output:

 ┌── 18
┌──16
│ └── null
15
└── 10

┌── 18
16
└── 15

Removing 10 caused a left rotation on 15. Feel free to try out a few more test cases of
your own.

Whew! The AVL tree is the culmination of your search for the ultimate binary search
tree. The self-balancing property guarantees that the insert and remove operations
function at optimal performance with an O(log n) time complexity.

Challenges
Here are three challenges that revolve around AVL trees. Solve these to make sure
you have the concepts down. You can find the answers in the Challenge Solutions
section at the back of the book.

Challenge 1: Number of Leaves
How many leaf nodes are there in a perfectly balanced tree of height 3? What about
a perfectly balanced tree of height h?

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 152

Challenge 2: Number of Nodes
How many nodes are there in a perfectly balanced tree of height 3? What about a
perfectly balanced tree of height h?

Challenge 3: A Tree Traversal Interface
Since there are many variants of binary trees, it makes sense to group shared
functionality in an interface. The traversal methods are a good candidate for this.

Create a TraversableBinaryNode abstract class that provides a default
implementation of the traversal methods so that conforming types get these
methods for free. Have AvlNode extend this.

Key Points
• A self-balancing tree avoids performance degradation by performing a balancing

procedure whenever you add or remove elements in the tree.

• AVL trees preserve balance by readjusting parts of the tree when the tree is no
longer balanced.

• Balance is achieved by four types of tree rotations on node insertion and removal:
right rotation, left rotation, right-left rotation and left-right rotation.

Where to Go From Here?
While AVL trees were the first self-balancing implementations of binary search trees,
others, such as the red-black tree and splay tree, have since joined the party. If
you’re interested, look them up. You might even try porting a version from another
language into Dart.

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 153

11Chapter 11: Tries

By Kelvin Lau & Jonathan Sande

The trie, pronounced “try”, is a tree that specializes in storing data that can be
represented as a collection, such as English words:

A trie containing the words CAT, CUT, CUTE, TO and A

Each string character maps to a node where the last node is terminating. These are
marked in the diagram above with a dot. The benefits of a trie are best illustrated by
looking at it in the context of prefix matching.

In this chapter, you’ll first compare the performance of a trie to a list. Then you’ll
implement the trie from scratch!

raywenderlich.com 154

List vs. Trie
You’re given a collection of strings. How would you build a component that handles
prefix matching? Here’s one way:

class EnglishDictionary {
 final List<String> words = [];

 List<String> lookup(String prefix) {
 return words.where((word) {
 return word.startsWith(prefix);
 }).toList();
 }
}

lookup will go through the collection of strings and return those that match the
prefix.

This algorithm is reasonable if the number of elements in the words list is small. But
if you’re dealing with more than a few thousand words, the time it takes to go
through the words list will be unacceptable. The time complexity of lookup is O(k ×
n), where k is the longest string in the collection, and n is the number of words you
need to check.

Imagine the number of words Google needs to parse

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 155

The trie data structure has excellent performance characteristics for this problem.
Since it’s a tree with nodes that support multiple children, each node can represent a
single character.

You form a word by tracing the collection of characters from the root to a node with
a special indicator — a terminator — represented by a black dot. An interesting
characteristic of the trie is that multiple words can share the same characters.

To illustrate the performance benefits of the trie, consider the following example in
which you need to find the words with the prefix CU. First, you travel to the node
containing C. That quickly excludes other branches of the trie from the search
operation:

Next, you need to find the words that have the next letter, U. You traverse to the U
node:

Since that’s the end of your prefix, the trie would return all collections formed by the
chain of nodes from the U node. In this case, the words CUT and CUTE would be
returned.

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 156

Imagine if this trie contained hundreds of thousands of words. The number of
comparisons you can avoid by employing a trie is substantial.

Implementation
As always, open up the starter project for this chapter.

TrieNode
You’ll begin by creating the node for the trie. Create a lib folder in the root of your
project and add a file to it named trie_node.dart. Add the following to the file:

class TrieNode<T> {
 TrieNode({this.key, this.parent});

 // 1
 T? key;

 // 2
 TrieNode<T>? parent;

 // 3
 Map<T, TrieNode<T>?> children = {};

 // 4
 bool isTerminating = false;
}

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 157

This interface is slightly different compared to the other nodes you’ve encountered:

1. key holds the data for the node. This is nullable because the root node of the trie
has no key. The reason it’s called a key is because you use it in a map of key-value
pairs to store children nodes.

2. TrieNode holds a reference to its parent. This reference simplifies the remove
method later on.

3. In binary search trees, nodes have a left and right child. In a trie, a node needs to
hold multiple different elements. The children map accomplishes that.

4. isTerminating acts as a marker for the end of a collection.

Note: A parent TrieNode holds a reference to its children and the children
hold a reference to the parent. You might wonder if this creates a circular
reference problem where the memory is never released. Languages like Swift
that use reference counting for memory management need to be especially
careful about this. Dart, on the other hand, frees up the memory from old
unused objects with a garbage collector, which is able to handle the parent-
children circular references in the code above. Garbage collection works not
by counting references to individual objects but by checking if objects are
reachable from certain root objects.

Trie
Next, you’ll create the trie itself, which will manage the nodes. Since strings are one
of the most common uses for tries, this chapter will walk you through building a
String-based trie. In Challenge 2 at the end of the chapter, you’ll create a generic
trie that can handle any iterable collection.

In the lib folder, create a new file named string_trie.dart. Add the following to the
file:

import 'trie_node.dart';

class StringTrie {
 TrieNode<int> root = TrieNode(key: null, parent: null);
}

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 158

Here are a couple of points to note:

• In Dart a String is a collection of UTF-16 code units, so that’s why the type for
TrieNode is int rather than String.

• The key and parent of a trie’s root node are always null.

Next, you’ll implement four operations for the trie: insert, contains, remove and
matchPrefix.

Insert
Tries work on collections internally, so you’ll need to take whatever string is inserted
and convert its code units into TrieNode keys.

Add the following method to StringTrie:

void insert(String text) {
 // 1
 var current = root;

 // 2
 for (var codeUnit in text.codeUnits) {
 current.children[codeUnit] ??= TrieNode(
 key: codeUnit,
 parent: current,
);
 current = current.children[codeUnit]!;
 }

 // 3
 current.isTerminating = true;
}

Here’s what’s going on:

1. current keeps track of your traversal progress, which starts with the root node.

2. The trie stores each code unit in a separate node. You first check if the node
exists in the children map. If it doesn’t, you create a new node. During each
loop, you move current to the next node.

3. After the for loop completes, current is referencing the node at the end of the
collection, that is, the last code unit in the string. You mark that node as the
terminating node.

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 159

The time complexity for this algorithm is O(k), where k is the number of code units
you’re trying to insert. This cost is because you need to traverse through or create a
new node for each code unit.

Contains
contains is very similar to insert. Add the following method to StringTrie:

bool contains(String text) {
 var current = root;
 for (var codeUnit in text.codeUnits) {
 final child = current.children[codeUnit];
 if (child == null) {
 return false;
 }
 current = child;
 }
 return current.isTerminating;
}

You check every code unit to see if it’s in the tree. When you reach the last one, it
must be terminating. If not, the collection wasn’t added, and what you’ve found is a
subset of a larger collection.

Like insert, the time complexity of contains is O(k), where k is the length of the
string that you’re using for the search. This time complexity comes from traversing
through k nodes to determine whether the code unit collection is in the trie.

To test out insert and contains, head over to bin/starter.dart and replace the
contents of the file with the following code:

import 'package:starter/string_trie.dart';

void main() {
 final trie = StringTrie();
 trie.insert("cute");
 if (trie.contains("cute")) {
 print("cute is in the trie");
 }
}

Run that and you should see the following console output:

cute is in the trie

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 160

Remove
Removing a node from the trie is a bit more tricky. You need to be particularly careful
since multiple collections can share nodes.

Go back to lib/string_trie.dart and write the following method just below contains:

void remove(String text) {
 // 1
 var current = root;
 for (final codeUnit in text.codeUnits) {
 final child = current.children[codeUnit];
 if (child == null) {
 return;
 }
 current = child;
 }
 if (!current.isTerminating) {
 return;
 }
 // 2
 current.isTerminating = false;
 // 3
 while (current.parent != null &&
 current.children.isEmpty &&
 !current.isTerminating) {

 current.parent!.children[current.key!] = null;
 current = current.parent!;
 }
}

Taking it comment-by-comment:

1. You check if the code unit collection that you want to remove is part of the trie
and point current to the last node of the collection. If you don’t find your search
string or the final node isn’t marked as terminating, that means the collection
isn’t in the trie and you can abort.

2. You set isTerminating to false so the current node can be removed by the loop
in the next step.

3. This is the tricky part. Since nodes can be shared, you don’t want to remove code
units that belong to another collection. If there are no other children in the
current node, it means that other collections don’t depend on the current node.
You also check to see if the current node is terminating. If it is, then it belongs to
another collection. As long as current satisfies these conditions, you continually
backtrack through the parent property and remove the nodes.

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 161

The time complexity of this algorithm is O(k), where k represents the number of code
units in the string that you’re trying to remove.

Head back to bin/starter.dart and replace the contents of main with the following:

final trie = StringTrie();
trie.insert('cut');
trie.insert('cute');

assert(trie.contains('cut'));
print('"cut" is in the trie');
assert(trie.contains('cute'));
print('"cute" is in the trie');

print('\n--- Removing "cut" ---');
trie.remove('cut');
assert(!trie.contains('cut'));
assert(trie.contains('cute'));
print('"cute" is still in the trie');

Run that and you should see the following output added to the console:

"cut" is in the trie
"cute" is in the trie

--- Removing "cut" ---
"cute" is still in the trie

Prefix Matching
The most iconic algorithm for a trie is the prefix-matching algorithm. Write the
following at the bottom of StringTrie:

List<String> matchPrefix(String prefix) {
 // 1
 var current = root;
 for (final codeUnit in prefix.codeUnits) {
 final child = current.children[codeUnit];
 if (child == null) {
 return [];
 }
 current = child;
 }

 // 2 (to be implemented shortly)
 return _moreMatches(prefix, current);
}

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 162

1. You start by verifying that the trie contains the prefix. If not, you return an empty
list.

2. After you’ve found the node that marks the end of the prefix, you call a recursive
helper method named _moreMatches to find all the sequences after the current
node.

Next, add the code for the helper method after the matchPrefix method:

List<String> _moreMatches(String prefix, TrieNode<int> node) {
 // 1
 List<String> results = [];
 if (node.isTerminating) {
 results.add(prefix);
 }
 // 2
 for (final child in node.children.values) {
 final codeUnit = child!.key!;
 results.addAll(
 _moreMatches(
 '$prefix${String.fromCharCode(codeUnit)}',
 child,
),
);
 }
 return results;
}

1. You create a list to hold the results. If the current node is a terminating one, you
add what you’ve got to the results.

2. Next, you need to check the current node’s children. For every child node, you
recursively call _moreMatches to seek out other terminating nodes.

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 163

matchPrefix has a time complexity of O(k × m), where k represents the longest
collection matching the prefix and m represents the number of collections that
match the prefix. Recall that lists have a time complexity of O(k × n), where n is the
number of elements in the entire collection. For large sets of data in which each
collection is uniformly distributed, tries have far better performance than using lists
for prefix matching.

Time to take the method for a spin. Navigate back to main and run the following:

final trie = StringTrie();
trie.insert('car');
trie.insert('card');
trie.insert('care');
trie.insert('cared');
trie.insert('cars');
trie.insert('carbs');
trie.insert('carapace');
trie.insert('cargo');

print('Collections starting with "car"');
final prefixedWithCar = trie.matchPrefix('car');
print(prefixedWithCar);

print('\nCollections starting with "care"');
final prefixedWithCare = trie.matchPrefix('care');
print(prefixedWithCare);

You should see the output below in the console:

Collections starting with "car"
[car, card, care, cared, cars, carbs, carapace, cargo]

Collections starting with "care"
[care, cared]

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 164

Challenges
How was this chapter for you? Are you ready to take it a bit further? The following
challenges will ask you to add functionality to and generalize what you’ve already
accomplished. Check out the Challenge Solutions section or the supplemental
materials that come with the book if you need any help.

Challenge 1: Additional Properties
The current implementation of StringTrie is missing some notable operations.
Your task for this challenge is to augment the current implementation of the trie by
adding the following:

1. An allStrings property that returns all the collections in the trie.

2. A count property that tells you how many strings are currently in the trie.

3. An isEmpty property that returns true if the trie is empty, false otherwise.

Challenge 2: Generic Trie
The trie data structure can be used beyond strings. Make a new class named Trie
that handles any iterable collection. Implement the insert, contains and remove
methods.

Key Points
• Tries provide great performance metrics for prefix matching.

• Tries are relatively memory efficient since individual nodes can be shared between
many different values. For example, “car,” “carbs,” and “care” can share the first
three letters of the word.

Data Structures & Algorithms in Dart Chapter 11: Tries

raywenderlich.com 165

12Chapter 12: Binary Search

By Kelvin Lau & Jonathan Sande

Binary search is one of the most efficient searching algorithms with a time
complexity of O(log n). You’ve already implemented a binary search once using a
binary search tree. In this chapter you’ll reimplement binary search on a sorted list.

Two conditions need to be met for the type of binary search that this chapter
describes:

• The collection must be sorted.

• The underlying collection must be able to perform random index lookup in
constant time.

As long as the elements are sorted, a Dart List meets both of these requirements.

raywenderlich.com 166

Linear Search vs. Binary Search
The benefits of binary search are best illustrated by comparing it with linear search.
Dart’s List type uses a linear search to implement its indexOf method. It traverses
through the whole collection until it finds the first element:

Linear search for the value 31

Binary search handles things differently by taking advantage of the fact that the
collection is already sorted. Here’s an example of applying binary search to find the
value 31:

Binary search for the value 31

Instead of eight steps to find 31, it only takes three. Here’s how it works:

Step 1: Find the Middle Index
The first step is to find the middle index of the collection.

Step 2: Check the Element at the Middle Index
The next step is to check the element stored at the middle index. If it matches the
value you’re looking for, return the index. Otherwise, continue to Step 3.

Data Structures & Algorithms in Dart Chapter 12: Binary Search

raywenderlich.com 167

Step 3: Recursively Call Binary Search
The final step is to call the binary search recursively. However, this time, you’ll only
consider the elements exclusively to the left or to the right of the middle index,
depending on the value you’re searching for. If the value you’re searching for is less
than the middle value, you search the left subsequence. If it is greater than the
middle value, you search the right subsequence.

Each step effectively removes half of the comparisons you would otherwise need to
perform.

In the example where you’re looking for the value 31 (which is greater than the
middle element 22), you apply binary search on the right subsequence:

You continue these three steps until you can no longer split up the collection into
left and right halves or until you find the value inside the collection.

Binary search achieves an O(log n) time complexity this way.

Implementation
Open the starter project for this chapter. Create a new lib folder in the root of your
project. Then add a new file to it called binary_search.dart.

Adding an Extension on List
Add the following List extension to binary_search.dart:

extension SortedList<E extends Comparable<dynamic>> on List<E> {
 int? binarySearch(E value, [int? start, int? end]) {
 // more to come
 }
}

Data Structures & Algorithms in Dart Chapter 12: Binary Search

raywenderlich.com 168

Things are relatively simple so far:

• You use List since it allows random access to any element by index.

• Since you need to be able to compare elements, the value type must be
Comparable. As mentioned in an earlier chapter, you can use Comparable<E>, but
if you do your users will need to specify List<num> for integers rather than
List<int> since only num directly implements Comparable.

• binarySearch is recursive, so you need to pass in a range to search. The
parameters start and end are optional, so you can start the search without
specifying a range, in which case the entire collection will be searched.

• As is common for range indices, start is inclusive and end is exclusive. That is,
the end index is one greater than the index it refers to. This makes it play well with
length since the length of a zero-based list is always one greater than the last
index.

Writing the Algorithm
Next, fill in the logic for binarySearch by replacing // more to come in the code
above with the following:

// 1
final startIndex = start ?? 0;
final endIndex = end ?? length;
// 2
if (startIndex >= endIndex) {
 return null;
}
// 3
final size = endIndex - startIndex;
final middle = startIndex + size ~/ 2;
// 4
if (this[middle] == value) {
 return middle;
// 5
} else if (value.compareTo(this[middle]) < 0) {
 return binarySearch(value, startIndex, middle);
} else {
 return binarySearch(value, middle + 1, endIndex);
}

Data Structures & Algorithms in Dart Chapter 12: Binary Search

raywenderlich.com 169

Here are the steps:

1. First, you check if start and end are null. If so, you create a range that covers
the entire collection.

2. Then, you check if the range contains at least one element. If it doesn’t, the
search has failed, and you return null.

3. Now that you’re sure you have elements in the range, you find the middle index
of the range.

4. You then compare the value at this index with the value that you’re searching for.
If the values match, you return the middle index.

5. If not, you recursively search either the left or right half of the collection.

Testing it Out
That wraps up the implementation of binary search! Open bin/starter.dart to test it
out. Replace the contents of the file with the following:

import 'package:starter/binary_search.dart';

void main() {
 final list = [1, 5, 15, 17, 19, 22, 24, 31, 105, 150];

 final search31 = list.indexOf(31);
 final binarySearch31 = list.binarySearch(31);

 print('indexOf: $search31');
 print('binarySearch: $binarySearch31');
}

Run that and you should see the following output in the console:

indexOf: 7
binarySearch: 7

7 is the index of the value 31 that you were looking for. Both search methods
returned the same result.

Data Structures & Algorithms in Dart Chapter 12: Binary Search

raywenderlich.com 170

Binary search is a powerful algorithm to learn and comes up often in programming
interviews. Whenever you read something along the lines of “Given a sorted list…”,
consider using the binary search algorithm. Also, if you’re given a problem that looks
like it’s going to be O(n²) to search, consider doing some up-front sorting so you can
use a binary search to reduce it down to the cost of the sort at O(n log n).

Note: You’ll learn more about sorting and the time complexity of sorting
algorithms in future chapters.

Challenges
Try out the challenges below to further strengthen your understanding of binary
searches. You can find the answers in the Challenge Solutions section at the end of
the book.

Challenge 1: Binary Search as a Free Function
In this chapter, you implemented binary search as an extension of List. Since binary
search only works on sorted lists, exposing binarySearch for every list (including
unsorted ones) opens it up to being misused.

Your challenge is to implement binary search as a free function.

Challenge 2: Non-Recursive Search
Does recursion make your brain hurt? No worries, you can always perform the same
task in a non-recursive way. Re-implement binarySearch using a while loop.

Data Structures & Algorithms in Dart Chapter 12: Binary Search

raywenderlich.com 171

Challenge 3: Searching for a Range
Write a function that searches a sorted list and finds the range of indices for a
particular element. You can start by creating a class named Range that holds the
start and end indices.

For example:

final list = [1, 2, 3, 3, 3, 4, 5, 5];
final range = findRange(list, value: 3);

findRange should return Range(2, 5) since those are the start and end indices for
the value 3.

Key Points
• Binary search is only a valid algorithm on sorted collections.

• Sometimes it may be beneficial to sort a collection to leverage the binary search
capability for looking up elements.

• The indexOf method on List uses a linear search with O(n) time complexity.
Binary search has O(log n) time complexity, which scales much better for large
data sets if you are doing repeated lookups.

Data Structures & Algorithms in Dart Chapter 12: Binary Search

raywenderlich.com 172

13Chapter 13: Heaps

By Vincent Ngo & Jonathan Sande

Heaps are another classical tree-based data structure with special properties to
quickly fetch the largest or smallest element.

In this chapter, you’ll focus on creating and manipulating heaps. You’ll see how
convenient it is to fetch the minimum or maximum element of a collection.

What’s a Heap?
A heap is a complete binary tree, also known as a binary heap, that can be
constructed using a list.

Note: Don’t confuse these heaps with memory heaps. The term heap is
sometimes confusingly used in computer science to refer to a pool of memory.
Memory heaps are a different concept and not what you’re studying here.

Heaps come in two flavors:

1. Max-heap, in which elements with a higher value have a higher priority.

2. Min-heap, in which elements with a lower value have a higher priority.

raywenderlich.com 173

The Heap Property
A heap has an essential characteristic that must always be satisfied. This
characteristic is known as the heap property:

• In a max-heap, parent nodes must always contain a value that is greater than or
equal to the value in its children. The root node will always contain the highest
value.

• In a min-heap, parent nodes must always contain a value that is less than or equal
to the value in its children. The root node will always contain the lowest value.

The image below on the left is a max-heap with 10 as the maximum value. Every
node in the heap has values greater than the nodes below it. The image on the right
is a min-heap. Since 1 is the minimum value, it’s on the top of the heap. Every node
in this heap has values less than the nodes below it.

Note that unlike a binary search tree, it’s not a requirement of the heap property that
the left or right child needs to be greater. For that reason, a heap is only a partially
sorted tree.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 174

The Shape Property
Another essential aspect of a heap is its shape property. A heap must be a complete
binary tree. This means that every level must be filled except for the last level.
Additionally, when adding elements to the last level, you must add them from left to
right.

In the diagram below, you can see that the first two levels are filled. The last level,
Level 3, isn’t full yet, but the nodes that are there are located on the left.

Heap Applications
Some practical applications of a heap include:

• Calculating the minimum or maximum element of a collection.

• Implementing the heapsort algorithm.

• Constructing a priority queue.

• Building graph algorithms that use a priority queue, like Dijkstra’s algorithm.

Note: You’ll learn about priority queues in Chapter 14, heapsort in Chapter 18,
and Dijkstra’s algorithm in Chapter 23.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 175

Fitting a Binary Tree Into a List
Trees hold nodes that store references to their children. In the case of a binary tree,
these are references to a left and right child. Heaps are binary trees, but they are
implemented with a simple list.

Using a list might seem like an unusual way to build a tree, but one of the benefits of
this heap implementation is efficient time and space complexity since the elements
in a heap are all stored together in memory. You’ll see later on that swapping
elements will play a big part in heap operations. This manipulation is easier to do
with a list than it is with an ordinary binary tree.

Take a look at the following image to see how you can represent a heap using a list.
The numbers inside the circular nodes represent the values in the list, while the
numbers outside the nodes represent the indices of the list. Note how index 0 is at
the top of the heap, indices 1 and 2 are for the left and right children in Level 2,
indices 3 to 6 form Level 3, and finally index 7 is in the partially filled Level 4.

To represent the heap above as a list, you iterate through each element level-by-
level from left to right. Your traversal looks something like this:

Every level gets twice as many indices allocated to it as the level before.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 176

Accessing Nodes
It’s now easy to access any node in the heap. Instead of traversing down the left or
right branch, you access a node in your list using simple formulas.

Given a node at a zero-based index i:

• The left child of this node is at index 2i + 1.

• The right child of this node is at index 2i + 2.

If you want to obtain the index of a parent node, you can use either of the formulas
above and solve for i.

Given a node at index i:

• The parent of this node is at index (i - 1) ~/ 2.

That works for both left and right children since the ~/ integer division operator
drops any fractional value.

Accessing a particular node in an actual binary tree requires traversing the tree from
the root, which is an O(log n) operation. That same operation is just O(1) in a
random-access data structure such as a list.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 177

Implementation
Open the starter project for this chapter and add a lib folder to the root of the
project. Inside that folder create a file named heap.dart.

Adding a Constructor
Since there are both max-heaps and min-heaps, start by adding the following enum
to heap.dart:

enum Priority { max, min }

You’ll provide Priority as a constructor parameter to specify the priority type when
you create a heap.

Below Priority create a class named Heap with the following basic implementation:

class Heap<E extends Comparable<dynamic>> {
 Heap({List<E>? elements, this.priority = Priority.max}) {
 this.elements = (elements == null) ? [] : elements;
 }

 late final List<E> elements;
 final Priority priority;
}

This setup offers a few features:

• The default is a max-heap, but users can also choose to create a min-heap.

• You can optionally specify a list of elements to initialize your heap with. Later in
the chapter, you’ll add a method to sort them.

• Since elements of a heap need to be sortable, the element type extends
Comparable. As mentioned in previous chapters, the reason for using
Comparable<dynamic> here rather than Comparable<E> is because this makes int
collections easier to create.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 178

Providing Basic Properties
Add the following properties to Heap:

bool get isEmpty => elements.isEmpty;

int get size => elements.length;

E? get peek => (isEmpty) ? null : elements.first;

Calling peek will give you the maximum value in the collection for a max-heap, or
the minimum value in the collection for a min-heap. This is an O(1) operation.

Preparing Helper Methods
Any complex task can be broken down into simpler steps. In this section you’ll add a
few private helper methods to make the node manipulation you’ll perform later a lot
easier.

Accessing Parent and Child Indices

You’ve already learned the formulas for how to access the indices of the children or
parent of a given node. Add the Dart implementation of those formulas to Heap:

int _leftChildIndex(int parentIndex) {
 return 2 * parentIndex + 1;
}

int _rightChildIndex(int parentIndex) {
 return 2 * parentIndex + 2;
}

int _parentIndex(int childIndex) {
 return (childIndex - 1) ~/ 2;
}

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 179

Selecting a Priority

When you made the Heap constructor, you allowed the user to pass in a max or min
priority. Add the following two helper methods that will make use of that property:

bool _firstHasHigherPriority(E valueA, E valueB) {
 if (priority == Priority.max) {
 return valueA.compareTo(valueB) > 0;
 }
 return valueA.compareTo(valueB) < 0;
}

int _higherPriority(int indexA, int indexB) {
 if (indexA >= elements.length) return indexB;
 final valueA = elements[indexA];
 final valueB = elements[indexB];
 final isFirst = _firstHasHigherPriority(valueA, valueB);
 return (isFirst) ? indexA : indexB;
}

Both methods compare two inputs and return a value to indicate the one with the
greater priority. However, the first method compares any two values while the
second method compares the values at two specific indices in the list.

Again, in a max-heap, the higher value has a greater priority, while in a min-heap, the
lower value has a greater priority. Centralizing that decision here means that none of
the code in the rest of the class knows whether it’s in a min-heap or max-heap. It
just asks for the results of the priority comparison and goes on with its business.

Swapping Values

You’ll add insert and remove methods to the class in just a bit. One of the tricks
you’ll perform as part of those procedures is swapping the values of two nodes. Add a
helper method to Heap for that:

void _swapValues(int indexA, int indexB) {
 final temp = elements[indexA];
 elements[indexA] = elements[indexB];
 elements[indexB] = temp;
}

Now that you’ve got your helpers, you’re ready to start the real magic!

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 180

Inserting Into a Heap
Say you start with the max-heap shown in the image below:

If you want to insert the value 7, you start by adding it to the end of the heap.
Internally, that means you’re appending it to the end of the list:

The problem, though, is that this is a max-heap, and the 7 is violating the rules of a
max-heap. It needs to be on a higher priority level.

The procedure for moving a node to a higher level is called sifting up. What you do
is compare the node in question to its parent. If the node is larger, then you swap the
value with that of its parent. You continue swapping with the next parent up until
the value is no longer larger than its parent. At that point, the sifting is finished and
order has returned to the universe…or at least to your heap anyway.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 181

Take a look at this in action in the following image. First you compare 7 with its
parent 4. Since this is a max-heap and 7 is larger than 4, you need to swap the
values:

The next parent up is 6. Since 7 is also larger than 6, swap those two values:

The final parent is 8, but since 8 is larger than 7, you leave the 7 where it is. The
sifting is finished.

Your heap now satisfies the max-heap property.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 182

Implementing insert

Now that you’ve got the theory, it’s time to implement it in code. Add the following
two methods to Heap:

void insert(E value) {
 // 1
 elements.add(value);
 // 2
 _siftUp(elements.length - 1);
}

void _siftUp(int index) {
 var child = index;
 var parent = _parentIndex(child);
 // 3
 while (child > 0 && child == _higherPriority(child, parent)) {
 _swapValues(child, parent);
 child = parent;
 parent = _parentIndex(child);
 }
}

The implementation is pretty straightforward:

1. First you add the value that you want to insert to the end of the elements list.

2. Then you start the sifting procedure using the index of the value you just added.

3. As long as that value has a higher priority than its parent, then you keep
swapping it with the next parent value. Since you’re only concerned about
priority, this will sift larger values up in a max-heap and smaller values up in a
min-heap.

The overall complexity of insert is O(log n). Adding an element to a list takes only
O(1) while sifting elements up in a heap takes O(log n).

That’s all there is to inserting an element in a heap.

Making the Heap Printable

It’s time to try out your handiwork, but before you do, override the toString method
of Heap so that it’s a little easier to observe what’s happening:

@override
String toString() => elements.toString();

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 183

That will show the raw list, which is good enough for now, but feel free to implement
something that looks more like a binary tree.

Testing Insertion Out

Replace the contents of bin/starter.dart with the following code:

import 'package:starter/heap.dart';

void main() {
 final heap = Heap<int>();
 heap.insert(8);
 heap.insert(6);
 heap.insert(5);
 heap.insert(4);
 heap.insert(3);
 heap.insert(2);
 heap.insert(1);
 print(heap);
}

These inserts don’t require sifting since you inserted them in max-heap order.

Run that and you should see the output below in the console:

[8, 6, 5, 4, 3, 2, 1]

This list corresponds to the image you saw earlier:

Now add the following two lines at the bottom of main and run the code again:

heap.insert(7);
print(heap);

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 184

This time adding the 7 does require the internal sifting. Run the code again and the
final line in the console output will be the following:

[8, 7, 5, 6, 3, 2, 1, 4]

Your code moved 7 to its appropriate location. The list above corresponds with the
following heap:

Success!

Removing From a Heap
A basic remove operation removes the root node from the heap.

Take the following max-heap as an example. The root node that you want to remove
has a value of 10.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 185

In order to perform the remove operation, you must first swap the root node with
the last element in the heap. In this case, since the last node has a value of 3, you
swap the 10 and the 3.

Once you’ve swapped the two elements, you can remove the last one:

Now, you must check the max-heap’s integrity. Ask yourself, “Is it still a max-heap?”
Remember, the rule for a max-heap is that the value of every parent node must be
larger than or equal to the values of its children. If not, you must sift down.

To sift down, you start from the current value and check its left and right child. If one
of the children has a value that’s greater than the current value, you swap it with the
parent. If both children have a greater value, you swap the parent with the larger of
the two children. You continue to sift down until the node’s value is no longer larger
than the values of its children.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 186

In this case, both 8 and 5 are greater than 3, so you choose the larger left child 8 and
swap it with the 3:

Now compare the 3 with its two new children, 4 and 6. Since 6 is the largest, swap
the 3 with that one.

Once you reach the end, you’re done, and the max-heap property has been restored!

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 187

Implementing a Down Sift

Go back to lib/heap.dart and add a method to Heap to handle sifting down:

void _siftDown(int index) {
 // 1
 var parent = index;
 while (true) {
 // 2
 final left = _leftChildIndex(parent);
 final right = _rightChildIndex(parent);
 // 3
 var chosen = _higherPriority(left, parent);
 // 4
 chosen = _higherPriority(right, chosen);
 // 5
 if (chosen == parent) return;
 // 6
 _swapValues(parent, chosen);
 parent = chosen;
 }
}

_siftDown accepts an arbitrary index. The node in this index will always be treated
as the parent node. Here’s how the method works:

1. Store the parent index to keep track of where you are in the traversal.

2. Find the indices of the parent’s left and right children.

3. The chosen variable is used to keep track of which index to swap with the parent.
If there’s a left child, and it has a higher priority than its parent, make it the
chosen one.

4. If there’s a right child, and it has an even greater priority, it will become the
chosen one instead.

5. If chosen is still parent, then no more sifting is required.

6. Otherwise, swap chosen with parent, set it as the new parent, and continue
sifting.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 188

Implementing remove

Now that you have a way to sift down, add the remove method to Heap:

E? remove() {
 if (isEmpty) return null;
 // 1
 _swapValues(0, elements.length - 1);
 // 2
 final value = elements.removeLast();
 // 3
 _siftDown(0);
 return value;
}

Here’s how this method works:

1. Swap the root with the last element in the heap.

2. Before removing it from the list, save a copy so that you can return the value at
the end of the method.

3. The heap may not be a max- or min-heap anymore, so you must perform a down
sift to make sure it conforms to the rules.

The overall complexity of remove is O(log n). Swapping elements in a list is only O(1)
while sifting elements down in a heap takes O(log n) time.

Testing remove

Go back to bin/starter.dart and replace the body of main with the following:

final heap = Heap<int>();
heap.insert(10);
heap.insert(8);
heap.insert(5);
heap.insert(4);
heap.insert(6);
heap.insert(2);
heap.insert(1);
heap.insert(3);

final root = heap.remove();
print(root);
print(heap);

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 189

Run that to see the results below:

10
[8, 6, 5, 4, 3, 2, 1]

This removes 10 from the top of the heap and then performs a down sift that results
in 8 being the new root.

You’re now able to remove the root element, but what if you want to delete any
arbitrary element from the heap? You’ll handle that next.

Removing From an Arbitrary Index

Add the following method to Heap:

E? removeAt(int index) {
 final lastIndex = elements.length - 1;
 // 1
 if (index < 0 || index > lastIndex) {
 return null;
 }
 // 2
 if (index == lastIndex) {
 return elements.removeLast();
 }
 // 3
 _swapValues(index, lastIndex);
 final value = elements.removeLast();
 // 4
 _siftDown(index);
 _siftUp(index);
 return value;
}

To remove an arbitrary element from the heap, you need an index. Given that, here’s
what happens next:

1. Check to see if the index is within the bounds of the list. If not, return null.

2. If you’re removing the last element in the heap, you don’t need to do anything
special. Simply remove it and return the value.

3. If you’re not removing the last element, first swap the element with the last
element. Then, remove the last element, saving its value to return at the end.

4. Perform a down sift and an up sift to adjust the heap.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 190

But — why do you have to perform both a down sift and an up sift?

Assume you’re trying to remove 5 from the max-heap below. You swap 5 with the
last element, which is 8. You now need to perform an up sift to satisfy the max-heap
property:

Shifting up case

Now, assume you are trying to remove 7 from the heap below. You swap 7 with the
last element, 1. In this case, you need to perform a down sift to satisfy the max-heap
property.

Shifting down case

Calling _siftDown and _siftUp ensures that both of these situations are handled.

Testing removeAt

The code that follows demonstrates the example from the previous image:

final heap = Heap<int>();
heap.insert(10);
heap.insert(7); // remove this
heap.insert(2);
heap.insert(5);
heap.insert(1);

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 191

final index = 1;
heap.removeAt(index);
print(heap);

Internally, the value 7 is at index 1. Run that in main to see that removeAt
successfully sifts the necessary nodes to give the following heap:

[10, 5, 2, 1]

Removing an arbitrary element from a heap is an O(log n) operation. However, it also
requires knowing the index of the element you want to delete. How do you find that
index?

Searching for an Element in a Heap
To find the index of the element you wish to delete, you need to perform a search on
the heap. Unfortunately, heaps are not designed for fast searches. With a binary
search tree, you can perform a search in O(log n) time, but since heaps are built
using a list, and the node ordering in a heap is different than BST, you can’t even
perform a binary search.

Searching for an element in a heap is, in the worst-case, an O(n) operation since you
may have to check every element in the list. However, you can optimize the search by
taking advantage of the heap’s max or min priority.

Add the following recursive function to Heap:

int indexOf(E value, {int index = 0}) {
 // 1
 if (index >= elements.length) {
 return -1;
 }
 // 2
 if (_firstHasHigherPriority(value, elements[index])) {
 return -1;
 }
 // 3
 if (value == elements[index]) {
 return index;
 }
 // 4
 final left = indexOf(value, index: _leftChildIndex(index));
 if (left != -1) return left;
 return indexOf(value, index: _rightChildIndex(index));
}

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 192

Here’s what’s happening:

1. If the index is too big, the search failed. Return -1. Alternatively, you could
rewrite the method to return null, but -1 is what List uses in its indexOf
method.

2. This step is the optimization part. Check to see if the value you’re looking for has
a higher priority than the current node at your recursive traversal of the tree. If it
does, the value you’re looking for cannot possibly be lower in the heap. For
example, if you’re looking for 10 in a max-heap, but the current node has a value
of 9, there’s no use checking all the nodes below 9 because they’re just going to
be even lower.

3. If the value you’re looking for is equal to the value at index, you found it. Return
index.

4. Recursively search for the value starting from the left child and then on to the
right child. If both searches fail, the whole search fails. Return -1.

Testing it Out

Go back to bin/starter.dart and replace the body of main with the following:

final heap = Heap<int>();
heap.insert(10);
heap.insert(7);
heap.insert(2);
heap.insert(5);
heap.insert(1);
print(heap);

final index = heap.indexOf(7);
print(index);

This code attempts to find the index of the value 7.

Run the code and you should see the output below:

[10, 7, 2, 5, 1]
1

The index was correctly recognized as 1.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 193

Accepting a List in the Constructor
You may recall that when you made the Heap constructor, it took a list of elements as
an optional parameter. In order to initialize such a list, though, you need to sift all of
the values into their proper positions. Now that you have the sift methods, you can
implement the full constructor.

Replace the current Heap constructor with the following one:

Heap({List<E>? elements, this.priority = Priority.max}) {
 this.elements = (elements == null) ? [] : elements;
 _buildHeap();
}

void _buildHeap() {
 if (isEmpty) return;
 final start = elements.length ~/ 2 - 1;
 for (var i = start; i >= 0; i--) {
 _siftDown(i);
 }
}

If a non-empty list is provided, you use that as the initial elements for the heap. You
loop through the list backwards, starting from the first non-leaf node, and sift all
parent nodes down. You loop through only half of the elements because there’s no
point in sifting leaf nodes down, only parent nodes.

Note: You might wonder whether you could start at the front of the list and
call _siftUp on every element. Well, you’d be right. You could do that.
However, it wouldn’t be as efficient. Since the top of the heap has only one
node, you’d have to do more work to sift every other node toward this position.
And when sifting is required, the nodes are more likely to have to travel
further. The bottom of the heap, on the other hand, holds half of the nodes
already, and it doesn’t take so much work to sift the relatively fewer number of
nodes above them down.

In Big O notation, although a single up or down sift is O(log n), building a heap
using the up-sift algorithm has a time complexity of O(n log n), while building
it with the down-sift algorithm has a time complexity of only O(n). Read
stackoverflow.com/a/18742428 for a more in-depth explanation.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 194

Testing it Out

Time to try your new constructor out. Add the following to main:

var heap = Heap(elements: [1, 12, 3, 4, 1, 6, 8, 7]);
print(heap);

while (!heap.isEmpty) {
 print(heap.remove());
}

The constructor creates a max-heap from the elements of the list. Then the while
loop repeatedly removes the largest element until none are left. Run that and you
should see the following output:

[12, 7, 8, 4, 1, 6, 3, 1]
12
8
7
6
4
3
1
1

Try it again but this time make it a min-heap. Replace the first line in the code block
above with the following:

var heap = Heap(
 elements: [1, 12, 3, 4, 1, 6, 8, 7],
 priority: Priority.min,
);

This time you should see the opposite result:

[1, 1, 3, 4, 12, 6, 8, 7]
1
1
3
4
6
7
8
12

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 195

Challenges
Think you have a handle on heaps? Try out the following challenges. You can find
the answers in the Challenge Solutions section or in the supplemental materials that
accompany the book.

Challenge 1: Find the Nth Smallest Integer
Write a function to find the nth smallest integer in an unsorted list. For example,
given the following list:

final integers = [3, 10, 18, 5, 21, 100];

If n = 3, the result should be 10.

Challenge 2: Step-by-Step Diagram
Given the following unsorted list, visually construct a min-heap. Provide a step-by-
step diagram of how the min-heap is formed.

[21, 10, 18, 5, 3, 100, 1]

Challenge 3: Combining Two Heaps
Write a method that combines two heaps.

Challenge 4: Is it a Min-Heap?
Write a function to check if a given list is a min-heap.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 196

Key Points
• The heap data structure is good for maintaining the highest- or lowest-priority

element.

• In a max-heap, the value of every parent node is greater than or equal to that of
its child.

• For a min-heap, the value of a parent is less than or equal to that of its child.

• Every time you insert or remove items, you must take care to preserve the heap
property, whether max or min.

• There can’t be any holes in a heap. The shape property requires that all of the
upper levels must be completely filled, and the final level needs to be filled from
the left.

• Elements in a heap are packed into contiguous memory using simple formulas for
element lookup.

• Here is a summary of the algorithmic complexity of the heap operations you
implemented in this chapter:

Heap operation time complexity

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 197

14Chapter 14: Priority
Queues
By Vincent Ngo & Jonathan Sande

Queues are simply lists that maintain the order of elements using first-in-first-out
(FIFO) ordering. A priority queue is another version of a queue in which elements are
dequeued in priority order instead of FIFO order.

A priority queue can be either of these two:

1. Max-priority, in which the element at the front is always the largest.

2. Min-priority, in which the element at the front is always the smallest.

You’ll notice the similarity here to the heap data structure that you made in the last
chapter. In fact, in this chapter you’ll implement a priority queue using a heap. A
priority queue creates a layer of abstraction by focusing on the key operations of a
queue and leaving out the additional functionality provided by a heap. This makes
the priority queue’s intent clear and concise. Its only job is to enqueue and dequeue
elements, nothing else. Simplicity for the win!

raywenderlich.com 198

Applications
Some practical applications of a priority queue include:

• Dijkstra’s algorithm, which uses a priority queue to calculate the minimum cost.

• A* pathfinding algorithm, which uses a priority queue to track the unexplored
routes that will produce the path with the shortest length.

• Heapsort, which can be implemented using a priority queue.

• Huffman coding that builds a compression tree. A min-priority queue is used to
repeatedly find two nodes with the smallest frequency that do not yet have a
parent node.

These are just some of the use cases, but priority queues have many more
applications as well.

Common Operations
In Chapter 6, “Queues”, you established the following interface for queues:

abstract class Queue<E> {
 bool enqueue(E element);
 E? dequeue();
 bool get isEmpty;
 E? get peek;
}

A priority queue has the same operations as a regular queue, so only the
implementation will differ:

• enqueue: Inserts an element into the queue, and returns true if the operation was
successful.

• dequeue: Removes the element with the highest priority and returns it. Returns
null if the queue was empty.

• isEmpty: Checks if the queue is empty.

• peek: Returns the element with the highest priority without removing it. Returns
null if the queue was empty.

Data Structures & Algorithms in Dart Chapter 14: Priority Queues

raywenderlich.com 199

Implementation
You can create a priority queue in the following ways:

1. Sorted list: This is useful to obtain the maximum or minimum value of an
element in O(1) time. However, insertion is slow and will require O(n) time since
you have to first search for the insertion location and then shift every element
after that location.

2. Balanced binary search tree: This is useful in creating a double-ended priority
queue, which features getting both the minimum and maximum value in O(log n)
time. Insertion is better than a sorted list, also O(log n).

3. Heap: This is a natural choice for a priority queue. A heap is more efficient than
a sorted list because a heap only needs to be partially sorted. Inserting and
removing from a heap are O(log n) while simply querying the highest priority
value is O(1).

You’ll implement a priority queue in this chapter using a heap. However, also check
out Challenge 2 in which you’ll reimplement a priority queue using a list.

Getting Started
Here’s how to use a heap to create a priority queue.

Open up the starter project. In the lib folder, you’ll find the following files:

1. heap.dart: Contains the heap data structure from the previous chapter.

2. queue.dart: Contains the interface that defines a queue.

Create a new file in the lib folder called priority_queue.dart and add the following
code to it:

import 'heap.dart';
import 'queue.dart';

// 1
export 'heap.dart' show Priority;

// 2
class PriorityQueue<E extends Comparable<dynamic>>
 implements Queue<E> {

 PriorityQueue({
 List<E>? elements,

Data Structures & Algorithms in Dart Chapter 14: Priority Queues

raywenderlich.com 200

 Priority priority = Priority.max,
 }) {
 // 3
 _heap = Heap<E>(elements: elements, priority: priority);
 }

 late Heap<E> _heap;

 // more to come
}

Here are some notes corresponding to the commented numbers:

1. When you use your priority queue in the future to implement Dijkstra’s
algorithm, exporting Priority here will save you from having to import
heap.dart separately.

2. PriorityQueue will conform to the Queue protocol. The generic type E must
extend Comparable since you need to sort the elements.

3. You’ll use this heap to implement the priority queue. By passing an appropriate
Priority type into the constructor, PriorityQueue can be used to create either
min- or max-priority queues.

Implementing the Queue Interface
To implement the Queue interface, add the following to PriorityQueue:

@override
bool get isEmpty => _heap.isEmpty;

@override
E? get peek => _heap.peek;

// 1
@override
bool enqueue(E element) {
 _heap.insert(element);
 return true;
}

// 2
@override
E? dequeue() => _heap.remove();

Data Structures & Algorithms in Dart Chapter 14: Priority Queues

raywenderlich.com 201

The heap data structure makes it easy to implement a priority queue.

1. You implement enqueue by calling insert on the heap. From the previous
chapter, you should recall that when you insert, the heap will sift up to validate
itself. The overall complexity of enqueue is O(log n).

2. By calling dequeue, you remove the root element from the heap by replacing it
with the last heap element and then sifting down to validate the heap. The
overall complexity of dequeue is also O(log n).

Testing it Out
Go to bin/starter.dart and replace the contents of the file with the following code:

import 'package:starter/priority_queue.dart';

void main() {
 var priorityQueue = PriorityQueue(
 elements: [1, 12, 3, 4, 1, 6, 8, 7],
);
 while (!priorityQueue.isEmpty) {
 print(priorityQueue.dequeue()!);
 }
}

Your priority queue has the same interface as a regular queue. Since you didn’t
change the default priority, the code above creates a max-priority queue.

Run the code and you’ll see the following numbers are printed to the console in
descending order:

12
8
7
6
4
3
1
1

That’s all there is to making a priority queue with a heap! Ready to try some
challenges?

Data Structures & Algorithms in Dart Chapter 14: Priority Queues

raywenderlich.com 202

Challenges
The first challenge below will test your ability to apply the data structure to a
practical problem, while the second challenge will give you some more practice
implementing a priority queue. As always, you can find the answers in the Challenge
Solutions section at the end of the book.

Challenge 1: Prioritize a Waitlist
Your favorite concert was sold out. Fortunately, there’s a waitlist for people who still
want to go! However, ticket sales will first prioritize someone with a military
background, followed by seniority.

Use a priority queue to prioritize the order of people on the waitlist. Start by making
a Person class that you can instantiate like so:

final person = Person(name: 'Josh', age: 21, isMilitary: true);

Challenge 2: List-Based Priority Queue
You’ve learned how to construct a priority queue by implementing the Queue
interface with an internal heap data structure. Now your challenge is to do it again,
but this time with a List.

Key Points
• A priority queue is often used to retrieve elements in priority order.

• A max-priority queue prioritizes the largest elements, while a min-priority queue
the smallest.

• Wrapping a heap with a queue interface allows you to focus on the key operations
of a queue while ignoring unneeded heap operations.

Data Structures & Algorithms in Dart Chapter 14: Priority Queues

raywenderlich.com 203

Section IV: Sorting Algorithms

Putting lists in order is a classical computational problem. Although you may never
need to write your own sorting algorithm, studying this topic has many benefits. This
section will teach you about stability, best- and worst-case times, and the all-
important technique of divide and conquer.

Studying sorting may seem a bit academic and disconnected from the “real world” of
app development, but understanding the tradeoffs for these simple cases will lead
you to a better understanding of how to analyze any algorithm.

• Chapter 15: O(n²) Sorting Algorithms: O(n²) time complexity isn’t great
performance, but the sorting algorithms in this category are easy to understand
and useful in some scenarios. These algorithms are space-efficient and only
require constant O(1) memory space. In this chapter, you’ll look at the bubble sort,
selection sort and insertion sort algorithms.

• Chapter 16: Merge Sort: Merge sort, with a time complexity of O(n log n), is one
of the fastest of the general-purpose sorting algorithms. The idea behind merge
sort is to divide and conquer: to break up a big problem into several smaller, easier
to solve problems and then combine those solutions into a final result. The merge
sort mantra is to split first and merge later.

raywenderlich.com 204

• Chapter 17: Radix Sort: In this chapter, you’ll look at a completely different
model of sorting. So far, you’ve been relying on comparisons to determine the
sorting order. Radix sort is a non-comparative algorithm for sorting integers.

• Chapter 18: Heapsort: Heapsort is a comparison-based algorithm that sorts a list
in ascending order using a heap. This chapter builds on the heap concepts
presented in Chapter 13, “Heaps”. Heapsort takes advantage of a heap being, by
definition, a partially sorted binary tree.

• Chapter 19: Quicksort: Quicksort is another comparison-based sorting
algorithm. Much like merge sort, it uses the same strategy of divide and conquer.
In this chapter, you’ll implement quicksort and look at various partitioning
strategies to get the most out of this sorting algorithm.

Data Structures & Algorithms in Dart Section IV: Sorting Algorithms

raywenderlich.com 205

15Chapter 15: O(n²) Sorting
Algorithms
By Kelvin Lau & Jonathan Sande

O(n²) time complexity isn’t great performance, but the sorting algorithms in this
category are easy to understand and useful in some scenarios. One advantage of
these algorithms is that they have constant O(1) space complexity, making them
attractive for certain applications where memory is limited. For small data sets,
these sorting algorithms compare very favorably against more complex sorts.

In this chapter, you’ll learn about the following sorting algorithms:

• Bubble sort

• Selection sort

• Insertion sort

All of these are comparison-based sorting methods since they rely on comparisons
to order the elements. You can measure a sorting technique’s general performance by
counting the number of times the sorting algorithm compares elements.

raywenderlich.com 206

Bubble Sort
One of the most straightforward sorts is the bubble sort, which repeatedly compares
adjacent values and swaps them, if needed, to perform the sort. Therefore, the larger
values in the set will “bubble up” to the end of the collection.

Example
Consider the following hand of cards. The order is [9, 4, 10, 3]:

In the first pass of the bubble-sort algorithm, you start at the beginning of the
collection. Compare the first two elements: 9 and 4. Since 9 is larger than 4, these
values need to be swapped. The collection then becomes [4, 9, 10, 3]:

Move to the next index in the collection to compare 9 and 10. These are already in
order, so move to the next index in the collection to compare 10 and 3. Since 10 is
larger, these values need to be swapped. The collection then becomes [4, 9, 3,
10]:

This completes the first pass. However, a single pass of the algorithm will seldom
result in a complete ordering. It certainly didn’t for this example. It will, however,
cause the largest value — 10 in this case — to bubble up to the end of the collection.
Subsequent passes through the collection will do the same with the next highest
numbers.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 207

For the second pass, go back to the beginning of the collection and compare 4 and 9.
These are already in order so there’s no need to swap anything. Go on to the next
index and compare 9 and 3. Since 9 is larger, swap them. Now the collection becomes
[4, 3, 9, 10]:

There’s no need to compare 9 and 10 since the first pass already guaranteed that 10
is the largest value. Likewise, the second pass guaranteed that 9 is the second-largest
value.

Time for the third pass. Go back to the beginning of the collection and compare 4
and 3. Since 4 is larger, swap them. This gives you [3, 4, 9, 10]:

Now the list is completely sorted. No need to keep comparing the 4 with any other
cards since those were already sorted in the earlier passes.

Here’s a summary:

• Since there were four elements in the collection, you performed three passes. To
generalize that, for a collection of length n, you need to do at most n - 1 passes.
This is the worst case. If any single pass doesn’t require a swap, that means the list
is sorted and bubble sort can terminate early.

• The number of comparisons in each pass is one less than the pass before. In the
example above you made three comparisons in the first pass, two comparisons in
the second pass and one comparison in the last pass. This is because each pass
moves the largest value to the end, and so it isn’t necessary to compare those
sorted values again.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 208

Implementation
Open up the starter project for this chapter and create a lib folder in the root of the
project.

Adding a Swap Extension to List

All of the sorting algorithms in this chapter will require swapping values between
two indices in a list. To make that more convenient, you can add an extension to
List itself.

Create a new file called swap.dart in the lib folder. Then add the following
extension:

extension SwappableList<E> on List<E> {
 void swap(int indexA, int indexB) {
 final temp = this[indexA];
 this[indexA] = this[indexB];
 this[indexB] = temp;
 }
}

Implementing Bubble Swap

Now create a new file in lib named bubble_sort.dart. Write the following inside the
file:

import 'swap.dart';

void bubbleSort<E extends Comparable<dynamic>>(List<E> list) {
 // 1
 for (var end = list.length - 1; end > 0; end--) {
 var swapped = false;
 // 2
 for (var current = 0; current < end; current++) {
 if (list[current].compareTo(list[current + 1]) > 0) {
 list.swap(current, current + 1);
 swapped = true;
 }
 }
 // 3
 if (!swapped) return;
 }
}

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 209

Here’s the play-by-play:

1. The outer for loop counts the passes. A single pass bubbles the largest value to
the end of the collection. Every pass needs to compare one less value than in the
previous pass, so you shorten the list by one with each pass.

2. The inner for loop handles the work of a single pass. It moves through the
indices, comparing adjacent values and swapping them if the first value is larger
than the second.

3. If no values were swapped during a pass, the collection must be sorted and you
can exit early.

Testing it Out

Head back to bin/starter.dart and replace the contents of the file with the following:

import 'package:starter/bubble_sort.dart';

void main() {
 final list = [9, 4, 10, 3];
 print('Original: $list');
 bubbleSort(list);
 print('Bubble sorted: $list');
}

Run that and you should see the output below:

Original: [9, 4, 10, 3]
Bubble sorted: [3, 4, 9, 10]

Bubble sort has a best time complexity of O(n) if it’s already sorted, and a worst and
average time complexity of O(n²), making it one of the least appealing sorts in the
known universe.

Note: Bubble sort may be slow, but there are slower ones still. How about if
you keep randomly shuffling the elements of the list until you finally get a list
that just happens to be sorted? This “algorithm” is known as bogosort. It has
an average time complexity of O(n × n!), and factorial time complexities are
much worse than quadratic ones.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 210

Selection Sort
Selection sort follows the basic idea of bubble sort but improves this algorithm by
reducing the number of swap operations. Selection sort will only swap at the end of
each pass. You’ll see how that works in the following example.

Example
During each pass, selection sort will find the lowest unsorted value and swap it into
place.

Assume you have the following hand of cards represented by the list [9, 4, 10,
3]:

In the first pass, selection sort starts at the beginning of the collection and sees the
9. So far that’s the lowest value. The index moves to 4. This is lower than 9 so 4
becomes the new lowest value. Then index moves on to 10. That’s not lower than 4,
so the index moves on to 3. Three is lower than 4, so 3 is the new lowest value.

Since you’ve reached the end of the list, you swap the lowest value 3 with the first
card in the pass, which was 9. Now you have [3, 4, 10, 9]:

Time for the second pass. You can skip card 3 since it’s already sorted. Start with 4.
Compare 4 to 10 and then to 9, but 4 remains the lowest value in this pass. Since it’s
already in the right location, you don’t need to swap anything.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 211

For the third pass, start with 10. Ten starts as the lowest value, but after you compare
it to 9, you find that 9 is lower. There isn’t anything else to compare, so swap the
lowest value 9 with the first value 10. That finishes up pass three with [3, 4, 9,
10], and the list is sorted:

Implementation
Now that you know on a mental level how selection sort works, have a go at
implementing it in Dart.

Create a new file named selection_sort.dart in the lib folder. Then add the following
code inside the file:

import 'swap.dart';

void selectionSort<E extends Comparable<dynamic>>(List<E> list)
{
 // 1
 for (var start = 0; start < list.length - 1; start++) {
 var lowest = start;
 // 2
 for (var next = start + 1; next < list.length; next++) {
 if (list[next].compareTo(list[lowest]) < 0) {
 lowest = next;
 }
 }
 // 3
 if (lowest != start) {
 list.swap(lowest, start);
 }
 }
}

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 212

Here’s what’s going on:

1. The outer for loop represents the passes, where start is the index the current
pass should begin at. Since the lowest value is moved to start at the end of every
pass, start increments by one each time.

2. In every pass, you go through the remainder of the collection to find the element
with the lowest value.

3. If a lower value was found, then swap it with the value at the start index.

Testing it Out

Back in bin/starter.dart, replace the contents of the file with the following code:

import 'package:starter/selection_sort.dart';

void main() {
 final list = [9, 4, 10, 3];
 print('Original: $list');
 selectionSort(list);
 print('Selection sorted: $list');
}

Run that and you should see the following output in your console:

Original: [9, 4, 10, 3]
Selection sorted: [3, 4, 9, 10]

Selection sort has a best, worst and average time complexity of O(n²), which is fairly
dismal. It’s a simple one to understand, though, and it does perform better than
bubble sort!

Insertion Sort
Insertion sort is a more useful algorithm. Like bubble sort and selection sort,
insertion sort has an average time complexity of O(n²), but the performance of
insertion sort can vary. The more the data is already sorted, the less work it needs to
do. Insertion sort has a best time complexity of O(n) if the data is already sorted.

Dart itself uses the insertion sort. For lists with 32 or fewer elements, the sort
method defaults to an insertion sort. Only for larger collections does Dart make use
of a different sorting algorithm.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 213

Example
The idea of insertion sort is similar to how many people sort a hand of cards. You
start with the card at one end and then go through the unsorted cards one at a time,
taking each one as you come to it and inserting it in the correct location among your
previously sorted cards.

Consider the following hand of [9, 4, 10, 3]:

Insertion sort will start at the left where the 9 is. The next card is 4, which is smaller
than 9, so you swap the 4 and the 9, giving you [4, 9, 10, 3]. This is the first pass.
The first two cards are now sorted:

For the second pass, you take the third card, 10. You need to insert it in the right
location, so you begin by comparing 10 with the previous card, 9. Well, what do you
know? Ten is bigger so it’s already in the right location. You can skip the rest of the
comparisons in this pass. This shows how insertion sort can save time when some
elements are already sorted.

For the third pass, you need to insert the fourth card, 3, in its proper location. Begin
by comparing 3 with the previous card, which is 10. Since 10 is larger, swap them.
Now, you’ve got [4, 9, 3, 10]:

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 214

Keep going. Compare the 3 to the next card to the left, 9. Since 9 is larger, swap 9 and
3, leaving you [4, 3, 9, 10]:

You’re not done yet. The 3 needs to keep shifting left until it’s in its correct sort
order. So compare 3 with the next card to the left, which is 4. Four is also larger, so
swap them to give you [3, 4, 9, 10]:

The third pass is now finished, and you’ve got a sorted hand.

It’s worth pointing out that the best-case scenario for insertion sort occurs when the
sequence of values is already in sorted order and no left shifting is necessary.

Implementation
Create a new file named insertion_sort.dart in the lib folder. Add the following code
inside the file:

import 'swap.dart';

void insertionSort<E extends Comparable<dynamic>>(List<E> list)
{
 // 1
 for (var current = 1; current < list.length; current++) {
 // 2
 for (var shifting = current; shifting > 0; shifting--) {
 // 3
 if (list[shifting].compareTo(list[shifting - 1]) < 0) {
 list.swap(shifting, shifting - 1);
 } else {
 break;
 }
 }
 }
}

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 215

Here’s what you have:

1. Insertion sort requires you to iterate from left to right once, which is the job of
this outer for loop. At the beginning of the loop, current is the index of the
element you want to sort in this pass.

2. Here, you run backward from the current index so you can shift left as needed.

3. Keep shifting the element left as long as necessary. As soon as the element is in
position, break the inner loop and start with the next element.

Testing it Out

Head back to bin/starter.dart and replace the code there with the following:

import 'package:starter/insertion_sort.dart';

void main() {
 var list = [9, 4, 10, 3];
 print('Original: $list');
 insertionSort(list);
 print('Insertion sorted: $list');
}

Run that and you should see the following console output:

Original: [9, 4, 10, 3]
Insertion sorted: [3, 4, 9, 10]

Insertion sort is one of the fastest sorting algorithms if the data is already sorted.
That might sound obvious, but it isn’t true for all sorting algorithms. In practice,
many data collections will already be largely — if not entirely — sorted, and insertion
sort will perform exceptionally well in those scenarios.

Stability
A sorting algorithm is called stable if the elements of the same type retain their
order after being sorted. For example, say you had an unsorted deck of cards in which
the 5 of clubs comes before the 5 of diamonds. If you then sort the cards by number
only, the 5 of clubs would still come before the 5 of diamonds in a stable sort. That
would not necessarily be true for an unstable sorting algorithm.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 216

Of the three sorting algorithms in this chapter, bubble sort and insertion sort are
both stable. Selection sort, on the other hand, is not stable because the swapping
used in the algorithm can change the relative position of the cards. Take a few cards
and see for yourself!

Most of the time it doesn’t matter if a sort is stable or not. However, there are
situations when it does matter. For example, say you sort a list of cities from around
the world into alphabetical order. If you then sort that same list again by country, the
cities within each country will still be in alphabetical order as long as the sort was
stable. Using an unstable sort, on the other hand, would result in the cities
potentially losing their sort order.

In the following chapters, you’ll take a look at sorting algorithms that perform better
than O(n²). Next is a stable sorting algorithm that uses an approach known as divide
and conquer — merge sort!

Challenges
To really get a grasp on how sorting algorithms work, it helps to think through step
by step what’s happening. The challenges in this chapter will allow you to do that.

Grab a deck of cards or some paper and a pencil to help yourself out. Sprinkling a few
print statements in the code might also help.

You can find the answers in the Challenge Solutions section as well as in the
supplemental materials that come with the book.

Challenge 1: Bubble Up
Here’s a list of randomly distributed elements:

[4, 2, 5, 1, 3]

Work out by hand the steps that a bubble sort would perform on this list.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 217

Challenge 2: Select the Right One
Given the same list as above:

[4, 2, 5, 1, 3]

Work out by hand the steps that a selection sort would perform on this list.

Challenge 3: Insert Here
Again, using the same initial list as in the previous challenges:

[4, 2, 5, 1, 3]

Work out by hand the steps that an insertion sort would take to sort this list.

Challenge 4: Already Sorted
When you have a list that’s already sorted like the following:

[1, 2, 3, 4, 5]

Are bubble sort, selection sort and insertion sort still O(n²)? How do the algorithms
take shortcuts to finish more quickly?

Key Points
• O(n²) algorithms often have a terrible reputation. Still, some of these algorithms

have some redeeming qualities. Insertion sort can sort in O(n) time if the
collection is already in sorted order and gradually scales down to O(n²) the more
unsorted the collection is.

• Insertion sort is one of the best sorts in situations where you know ahead of time
that your data is already mostly sorted.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 218

16Chapter 16: Merge Sort

By Kelvin Lau & Jonathan Sande

With a time complexity of O(n log n), merge sort is one of the fastest of the general-
purpose sorting algorithms. The idea behind merge sort is to divide and conquer —
to break up a big problem into several smaller, easier-to-solve problems and then
combine the solutions into a final result. The merge sort mantra is to split first and
merge later.

In this chapter, you’ll implement merge sort from scratch. The example below will
help you gain an intuitive understanding of how the algorithm works before you
write the code.

raywenderlich.com 219

Example
Assume that you’re given a pile of unsorted playing cards:

The merge sort algorithm works as follows. First, split the pile in half. You now have
two unsorted piles:

Split those piles again:

You keep splitting until you can’t split anymore. In the end, you’ll have one (sorted!)
card in each pile:

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 220

Finally, merge the piles in the reverse order in which you split them. During each
merge, you put the contents in sorted order. This process is easy because each pile is
already sorted:

Do you understand the general idea of how merge sort works now? You’ll build the
algorithm with code next.

Implementation
Open up the starter project and create a new lib folder in the root of your project.
Then create a new file in lib named merge_sort.dart.

Merging Lists
You’ll start by creating a helper function named _merge. The sole responsibility of
this function is to take in two sorted lists and combine them while retaining the sort
order. Add the following to merge_sort.dart:

List<E> _merge<E extends Comparable<dynamic>>(
 List<E> listA,
 List<E> listB,
) {

 var indexA = 0;

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 221

 var indexB = 0;
 final result = <E>[];

 // more to come
}

indexA and indexB track your progress as you parse through the two lists. The
result list will house the merged list that you’re about to make.

Next add the following while loop at the bottom of _merge:

// 1
while (indexA < listA.length && indexB < listB.length) {
 final valueA = listA[indexA];
 final valueB = listB[indexB];
 // 2
 if (valueA.compareTo(valueB) < 0) {
 result.add(valueA);
 indexA += 1;
 } else if (valueA.compareTo(valueB) > 0) {
 result.add(valueB);
 indexB += 1;
 } else {
 // 3
 result.add(valueA);
 result.add(valueB);
 indexA += 1;
 indexB += 1;
 }
}

// more to come

Here’s what’s happening:

1. Starting from the beginning of listA and listB, you sequentially compare the
values. If you’ve reached the end of either list, there’s nothing else to compare.

2. The smaller of the two values go into the result list.

3. If the values are equal, they can both be added.

Finally, add the following code to the bottom of _merge:

if (indexA < listA.length) {
 result.addAll(listA.getRange(indexA, listA.length));
}

if (indexB < listB.length) {
 result.addAll(listB.getRange(indexB, listB.length));

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 222

}

return result;

The while loop above guaranteed that either left or right is already empty. Since
both lists are sorted, this ensures that any leftover elements are greater than or
equal to the ones currently in result. In this scenario, you can directly add the rest
of the elements without comparison.

Note: getRange is similar to substring except that it doesn’t return a new
list. It just returns an iterable pointing to the elements of the current list. No
need to spend time creating unnecessary objects.

Splitting
Now it’s time to create the main mergeSort function. Write the following at the top
of merge_sort.dart, above the _merge function:

List<E> mergeSort<E extends Comparable<dynamic>>(List<E> list) {
 final middle = list.length ~/ 2;
 final left = list.sublist(0, middle);
 final right = list.sublist(middle);

 // more to come
}

Here, you split the list into halves. Splitting once isn’t enough, though. You need to
keep splitting recursively until you can’t split anymore, which is when each
subdivision contains just one element.

To do this, replace mergeSort with the following:

List<E> mergeSort<E extends Comparable<dynamic>>(List<E> list) {
 // 1
 if (list.length < 2) return list;
 // 2
 final middle = list.length ~/ 2;
 final left = mergeSort(list.sublist(0, middle));
 final right = mergeSort(list.sublist(middle));
 // 3
 return _merge(left, right);
}

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 223

You’ve made a few changes here:

1. Recursion needs a base case, which you can also think of as an “exit condition.”
Here, the base case is when the list only has one element.

2. You’re now recursively calling mergeSort on the left and right halves of the
original list. As soon as you’ve split the list in half, you try to split it again.

3. Complete the mergeSort function by calling _merge. This will combine the left
and right lists that you split above.

You’re finished with the implementation. Time to see it in action.

Testing it Out
Head back to bin/starter.dart to test your merge sort:

import 'package:starter/merge_sort.dart';

void main() {
 final list = [7, 2, 6, 3, 9];
 final sorted = mergeSort(list);
 print('Original: $list');
 print('Merge sorted: $sorted');
}

This outputs:

Original: [7, 2, 6, 3, 9]
Merge sorted: [2, 3, 3, 6, 7]

Nice! It works.

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 224

Performance
The best, worst and average time complexity of merge sort is quasilinear, or O(n log
n), which isn’t too bad.

If you’re struggling to understand where n log n comes from, think about how the
recursion works:

• As you recurse, you split a single list into two smaller lists. This means a list of size
two will need one recursion level, a list of size four will need two levels, a list of
size eight will need three levels, and so on. If you had a list of 1,024 elements, it
would take ten levels of recursively splitting in two to get down to 1,024 single
element lists. In general, if you have a list of size n, the number of recursion levels
is log₂(n).

• The cost of a single recursion is O(n). A single recursion level will merge n
elements. It doesn’t matter if there are many small merges or one large one. The
number of elements merged will still be n at each level.

This brings the total cost to O(log n) × O(n) = O(n log n).

Bubble sort, selection sort and insertion sort were in-place algorithms since they
used swap to move elements around in an existing list. Merge sort, by contrast,
allocates additional memory to do its work. How much? There are log₂(n) levels of
recursion, and at each level, n elements are used. That makes the total O(n log n) in
space complexity. If you’re clever with your bookkeeping, though, you can reduce the
memory required to O(n) by discarding the memory that’s not actively being used.

Merge sort is also stable. Elements of the same type retain their relative order after
being sorted. This will also be true for radix sort in the next chapter, but not for
heapsort and quicksort that you’ll learn about later.

Merge sort is one of the classic sorting algorithms. It’s relatively simple to
understand and serves as a great introduction to how divide-and-conquer
algorithms work.

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 225

Challenges

Challenge 1: Mind Merge
Given the following list:

[4, 2, 5, 1, 3]

Work through the steps merge sort would take. Go slowly enough for your brain to
understand what’s happening. You’ll have the easiest time if you use breakpoints in
your IDE or add print statements to your code.

Challenge 2: Merge Two Sequences
In this chapter you created a _merge function that merges two sorted lists. The
challenge here is to generalize _merge so that it takes two iterables as inputs rather
than lists. Here’s the function signature to start off:

List<E> _merge<E extends Comparable<dynamic>>(
 Iterable<E> first,
 Iterable<E> second,
)

Key Points
• Merge sort is in the category of divide-and-conquer algorithms.

• Merge sort works by splitting the original list into many individual lists of length
one. It then merges pairs of lists into larger and larger sorted lists until the entire
collection is sorted.

• There are many implementations of merge sort, and you can have different
performance characteristics depending on the implementation.

• Merge sort has a time complexity of O(n log n). It does not sort in place, so the
space complexity is also O(n log n), but can be O(log n) if optimized.

• Merge sort is a stable sorting algorithm.

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 226

17Chapter 17: Radix Sort

By Kelvin Lau & Jonathan Sande

In this chapter, you’ll look at a completely different model of sorting. So far, you’ve
been relying on comparisons to determine the sorting order. Radix sort is a non-
comparative algorithm for sorting integers. The word radix means base, as in the
base of a number system. For example, decimal is base 10 and binary is base 2. You
can use any base with a radix sort, but to keep things simple, this chapter will focus
on sorting base-10 integers.

Radix sort relies on the position of digits within a number. For example, there are
four digits in the number 1772. The least significant digit is 2 since this is in the ones
place. The most significant digit is 1 since this is the thousands-place value, greater
than any other place value in this particular number. The following diagram shows
the place values of a four-digit number:

There are multiple implementations of radix sort that focus on different problems.
One type sorts by the least significant digit (LSD) and another by the most
significant digit (MSD).

You’ll learn about both LSD- and MSD-radix sorting in this chapter.

raywenderlich.com 227

Sorting by Least Significant Digit
Before you implement a radix sort in code, go through the following example to get
an intuitive idea of how the sort works.

Example
An LSD-radix sort starts by looking at the least significant digits in a list of
numbers. For example, the image below shows the numbers 88, 410, 1772 and 20
vertically aligned with a box drawn around the ones place:

You’ve got one 8 from the final digit of 88, a 0 from the end of 410, a 2 from the last
digit of 1772 and another 0 from the least significant digit of 20. A radix sort goes
through multiple rounds of sorting, but these final digits are what you’ll use to sort
the numbers in the first round.

Round One

You start by making ten buckets to sort the numbers into. You can think of this like
sorting fruit. You put the apples in the apple bucket, the oranges in the oranges
bucket, and the pears in the pear bucket.

Note: You use ten buckets because you’re working with decimal numbers. If
you were using binary numbers, then you would use two buckets. Or if you
were using hexadecimal numbers, then 16 buckets.

With an LSD-radix sort, you put the numbers that end in 0 in the zero bucket, the
numbers that end in 1 in the ones bucket, the numbers that end in 2 in the twos
bucket, and so on up to the nines bucket. This is known as a bucket sort.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 228

In this case, since 88 ends in 8, you put it in the eights bucket. Likewise, 410 goes in
the zeros bucket since it ends with 0, and 1772 goes in the twos bucket. Since 20 also
ends in 0, it goes in the zeros bucket along with 410. The buckets maintain insertion
order so 20 is after 410 in the zeros bucket.

Note: The radix sort algorithm described here is stable since the order within
the buckets is maintained. Even though 410 and 20 are different numbers, the
0 digit used for this round of the sort is the same.

If you extract all of the numbers out of the buckets in order now, you have the list
410, 20, 1772, 88:

This finishes round one.

Round Two

For round two, you look at the next significant digit, the tens-place value:

Again, you make ten buckets for the ten digits of base ten:

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 229

Sort the numbers starting at the beginning of the list. That means 410 is first. Since
the second digit of 410 is 1, it goes in the ones bucket. Likewise, 20 goes in the twos
bucket, 1772 goes in the sevens bucket, and 88 goes in the eights bucket:

This time it turns out they are all in different buckets. All that sorting you did in
round one was for nothing, but you didn’t know that at the time.

Combining the numbers in order, you still have 410, 20, 1772, 88. The order didn’t
change.

Time for round three now.

Round Three

This time look at the hundreds place. Since 20 and 88 are less than 100, you can use
0s for the hundreds place:

Again, make ten buckets and add the numbers in order according to their hundreds-
place digit. Although 20 and 88 are both in the zeros bucket (020 and 088), 20 was
first in the list, so it also maintains the first position in the bucket.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 230

Combine the numbers in order from the buckets and you have the new order of 20,
88, 410, 1772:

The list is already sorted in this case, but radix sort doesn’t know that yet. There’s
still one more round to go.

Round Four

In this algorithm of radix sort, there’s one round for every significant digit. Since
1722 has four digits, this fourth round will ensure that the thousands-place value is
also sorted. Pad any numbers less than one thousand with zeros in front:

Make your ten buckets again. 20, 88 and 410 all go in the zeros bucket since they’re
less than 1000. However, within the bucket, they maintain their previous order:

Finally, you can combine the numbers from the buckets in order, and they’re indeed
sorted as 20, 88, 410, and 1772:

The entire list was sorted without any comparisons!

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 231

Implementation
To implement LSD-radix sort, you’ll use a while loop for each round as you step
through the place values. Your ten buckets will be ten integer lists.

Open up the starter project for this chapter. Create a folder named lib in the root of
the project. Then create a new file named radix_sort.dart in lib.

Add the following to the file:

extension RadixSort on List<int> {
 void radixSort() {
 const base = 10;
 var done = false;
 // 1
 var place = 1;
 while (!done) {
 done = true;
 // 2
 final buckets = List.generate(base, (_) => <int>[]);
 forEach((number) {
 // 3
 final remainingPart = number ~/ place;
 final digit = remainingPart % base;
 // 4
 buckets[digit].add(number);
 if (remainingPart ~/ base > 0) {
 done = false;
 }
 });
 // 5
 place *= base;
 clear();
 addAll(buckets.expand((element) => element));
 }
 }
}

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 232

Here are the main points:

1. Loop through each place value, where place is first 1, then 10, then 100, and so
on through the largest place value in the list.

2. Create your ten buckets. The type for buckets is List<List<int>>.

3. Find the significant digit of the current number.

4. Put number in the appropriate bucket.

5. Take the numbers from the buckets in their new order and put them back in the
original list. Since buckets is a list of lists, expand helps you flatten them back
into a single-dimensional list.

Testing it Out
With that, you’ve implemented your first non-comparative sorting algorithm. Head
back to bin/start.dart and replace the contents of the file with the following code:

import 'package:starter/radix_sort.dart';

void main() {
 final list = [88, 410, 1772, 20];
 print("Original list: $list");
 list.radixSort();
 print("Radix sorted: $list");
}

Run that and you should see the following console output:

Original: [88, 410, 1772, 20]
Radix sorted: [20, 88, 410, 1772]

Radix sort is one of the fastest sorting algorithms. The average time complexity of
this LSD-radix sort is O(k × n), where k is the number of significant digits in the
largest number, and n is the number of integers in the list.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 233

Sorting by Most Significant Digit
The MSD-radix sort uses the most significant digit to sort a list. You might think
that’s a little strange when you look at a list of numbers sorted in this way:

What, 459 comes after 1345? Yes, it does. The reason is that the most significant
digit of 459 is 4, which comes after 1, the most significant digit of 1345.

Although MSD sorting might look strange for numbers, it makes a lot more sense
when you’re sorting words:

You don’t want the short words sorted before the long words. You want them sorted
in alphabetical order, or if you use the more technical term, lexicographical order.

Note: Some implementations of lexicographical ordering do sort shorter
elements before longer ones, regardless of the elements’ initial values. This
chapter will not.

A key point about words, at least English words, is that they’re a sequence of letters.
And when you have a sequence of letters, you can treat them like a sequence of
digits. That means you can use the MSD-radix sort for lexicographical ordering of a
list of words. For the sake of simplicity, though, the following example will use
numbers to show you how MSD-radix sort works.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 234

Example
Start with the following unsorted list:

[46, 500, 459, 1345, 13, 999]

Beginning the Sort

As with LSD-radix sort, you first create ten buckets. However, this time you add the
numbers to the buckets according to their most significant digit, that is, the first digit
on their left:

If the values all had the same number of digits, you could proceed as you did with the
LSD-radix sort, looping round after round. However, the values don’t have the same
number of digits. Imagine a list with mostly small numbers but a few really large
numbers. It would be inefficient to keep looping over all of the short numbers. That
kind of thing can easily happen with lists of strings, for example.

So, instead of doing a full bucket sort for every digit, you’ll do a recursive bucket sort.
That means if any buckets in a particular round have more than one number, you’ll
recursively perform another bucket sort on that bucket.

Recursively Sorting 1345 and 13

In the previous image, the ones bucket and the fours bucket both have more than
one element. Start with the ones bucket, which contains 1345 and 13. Take those
numbers and perform another bucket sort, this time on the second most significant
digit:

1345 and 13 are still together because the second digit for both of them is 3.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 235

Perform another bucket sort on the next digit. Since the next digit of 1345 is 4, it
goes in the fours bucket. The number 13 doesn’t have a third digit, so there is no
place to put it. You can’t put it in the zeros bucket because then how would you
distinguish 13 and 130? Instead, you’ll put it in a special priority bucket. It gets
sorted before any of the other buckets.

There’s nothing more to sort in this recursive branch, so pop back out a few levels,
returning the sorted list [13, 1345].

Recursively Sorting 46 and 459

Now you need to do the same thing with 46 and 459. Perform a bucket sort on the
second digit. That gives the following:

Since none of the buckets have more than one item, you can stop this branch of the
recursion here and return the sorted sublist [459, 46].

Combining All the Buckets

There were no other buckets with more than one number from the original round, so
you’re finished. Combine all of the buckets and sorted sublists into the final sorted
result of [13, 1345, 459, 46, 500, 999]:

Hopefully you have a better intuitive grasp of how MSD-radix sort works now. You’ll
implement this algorithm in the next section.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 236

Implementation
To start off, you’ll write a few helper methods.

Getting the Number of Digits

Open lib/radix_sort.dart again and add the following int extension to the file:

extension Digits on int {
 static const _base = 10;

 int digits() {
 var count = 0;
 var number = this;
 while (number != 0) {
 count += 1;
 number ~/= _base;
 }
 return count;
 }
}

This helper method tells you how many digits are in a particular integer. Since there
isn’t a length property on the int type, you count how many times you have to
divide by 10 before you get 0.

Go back to bin/starter.dart and run the following in main to try out a few examples:

print(13.digits()); // 2
print(999.digits()); // 3
print(1345.digits()); // 4

Finding the Digit at Some Position

Add the following import to lib/radix_sort.dart:

import 'dart:math';

Then add the following additional method to the Digits extension on int:

int? digitAt(int position) {
 if (position >= digits()) {
 return null;
 }
 var number = this;
 while (number ~/ pow(_base, position + 1) != 0) {
 number ~/= _base;
 }

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 237

 return number % _base;
}

digitAt returns the digit at a given position. Like with lists, the leftmost position is
zero. Thus, the digit for position zero of the value 1345 is 1. The digit for position
three is 5. Since there are only four digits, the digit for position five will return null.

The implementation of digitAt works by repeatedly chopping a digit off the end of
the number until the requested digit is at the end. It’s then extracted using the
remainder operator.

Test your new int extension out in bin/starter.dart with the following code:

print(1345.digitAt(0)); // 1
print(1345.digitAt(1)); // 3
print(1345.digitAt(2)); // 4
print(1345.digitAt(3)); // 5
print(1345.digitAt(4)); // null
print(1345.digitAt(5)); // null

Finding the Max Digits in the List

Go back to lib/radix_sort.dart and add a new List extension with the following
method:

extension MsdRadixSort on List<int> {
 int maxDigits() {
 if (isEmpty) return 0;
 return reduce(max).digits();
 }

 // more to come
}

Given some list of numbers, maxDigits will tell you the number of digits in the
largest number.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 238

Test in out in main like so:

final list = [46, 500, 459, 1345, 13, 999];
print(list.maxDigits()); // 4

The result is 4 since the largest number, 1345, has four digits.

Now you’re ready to write the actual sort implementation.

Adding the Recursive Sort Methods

Go back to the MsdRadixSort extension on List in lib/radix_sort.dart. You’re going
to add two more methods to this extension. One will be public and the other a
private recursive helper method.

First, add the public lexicographicalSort extension method to MsdRadixSort:

void lexicographicalSort() {
 final sorted = _msdRadixSorted(this, 0);
 clear();
 addAll(sorted);
}

// more to come

This method wraps a currently unimplemented recursive helper method that does
the real work of sorting the list.

Next add that helper method after lexicographicalSort:

// 1
List<int> _msdRadixSorted(List<int> list, int position) {
 // 2
 if (list.length < 2 || position >= list.maxDigits()) {
 return list;
 }
 // 3
 final buckets = List.generate(10, (_) => <int>[]);
 // 4
 var priorityBucket = <int>[];

 // more to come
}

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 239

Here’s where the real work starts happening:

1. The list that you pass to this recursive method will be the full list on the first
round (when position is 0), but after that, it’ll be the smaller bucket lists. If
writing private MSD recursive methods was on your bucket list, you can cross it
off now.

2. As with all recursive operations, you need to set a terminating condition that
stops the recursion. Recursion should halt if there’s only one element in the list
or if you’ve exceeded the max number of digits.

3. Similar to the LSD-radix sort, you instantiate a two-dimensional list for the
buckets.

4. The priorityBucket is a special bucket that stores values with fewer digits than
the current position. Values that go in priorityBucket will be ordered first.

Continue by adding the following for loop at the bottom of _msdRadixSorted:

for (var number in list) {
 final digit = number.digitAt(position);
 if (digit == null) {
 priorityBucket.add(number);
 continue;
 }
 buckets[digit].add(number);
}

// more to come

For every number in the list, you find the digit at the current position and use it to
place the number in the appropriate bucket.

Finally, finish off _msdRadixSorted by adding the following code at the bottom of
the method:

// 1
final bucketOrder = buckets.reduce((result, bucket) {
 if (bucket.isEmpty) return result;
 // 2
 final sorted = _msdRadixSorted(bucket, position + 1);
 return result..addAll(sorted);
});
// 3
return priorityBucket..addAll(bucketOrder);

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 240

This bit of code is perhaps the hardest to understand because it includes both an
anonymous function and a recursive method. It’s not so terrible when you grasp the
parts, though:

1. The higher-order function reduce takes a collection and reduces it to a single
value. Since your collection here is a list of lists, reduce will give you a single list.
The values in that list will be numbers in the order that they came from the
buckets. reduce works by keeping a running result list which you can add to
based on the current bucket that you’re iterating to. If reduce and its
anonymous function are too confusing, you could rewrite them as a for loop.

2. For every non-empty bucket that you come to, recursively sort that bucket at the
next digit position.

3. Everything in the priority bucket goes first, but then add any other values that
were in the other buckets to the end of the list.

That was a bit more involved than LSD-radix sort, wasn’t it? You’re done now,
though, so it’s time to try it out!

Testing it Out
Open bin/starter.dart again and run the following code in main:

final list = [46, 500, 459, 1345, 13, 999];
list.lexicographicalSort();
print(list);

You should see the output below in the console:

[13, 1345, 459, 46, 500, 999]

And that’s what you want if you’re asking for the lexicographical order!

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 241

Challenges
The challenges below will help strengthen your understanding of radix sorts. You can
find the answers in the Challenge Solutions section or in the supplementary
materials that accompany this book.

Challenge 1: What Are in the Buckets?
Add a print statement to your radixSort implementation so that it’ll tell you
what’s in the buckets after each round of sorting.

Do the same for each recursion of lexicographicalSort.

Use the following list for both sorts:

var list = [46, 500, 459, 1345, 13, 999];

Challenge 2: Unique Characters
Write a function that returns the total number of unique characters used in a list of
words.

You can use the following list:

final words = ['done', 'ad', 'eel', 'zoo', 'adept', 'do'];

If you had a bucket for each unique character, how many buckets would you need?

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 242

Challenge 3: Optimization
Given the following list:

[88, 410, 1772, 20, 123456789876543210]

Your current implementation of radixSort would take 18 rounds, 14 of which are
completely unnecessary. How could you optimize radix sort for cases where a single
number is much larger than the others.

Key Points
• Unlike the other sorting algorithms you’ve implemented in previous chapters,

radix sort doesn’t rely on comparing two values. It leverages bucket sort, which is a
way to sort numbers by their digits.

• The word radix means base, as in base-10 or base-2 numbering systems. The
internal bucket sort will use one bucket for each base.

• Radix sort can be one of the fastest sorting algorithms for sorting values with
positional notation.

• A least-significant-digit (LSD) radix sort begins sorting with the right-most digit.

• Another way to implement radix sort is the most-significant-digit (MSD) form.
This form sorts by prioritizing the left-most digits over the lesser ones to the right.
It’s best illustrated by the sorting behavior of the String type.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 243

18Chapter 18: Heapsort

By Vincent Ngo & Jonathan Sande

Heapsort is a comparison-based algorithm that sorts a list in ascending order using a
heap. This chapter builds on the heap concepts presented in Chapter 13, “Heaps”.

Heapsort takes advantage of a heap being, by definition, a partially sorted binary tree
with the following qualities:

1. In a max-heap, all parent nodes are larger than or equal to their children.

2. In a min-heap, all parent nodes are smaller than or equal to their children.

The diagram below shows a max- and min-heap with parent node values highlighted:

Once you have a heap, the sorting algorithm works by repeatedly removing the
highest priority value from the top of the heap.

raywenderlich.com 244

Example
A concrete example of how heapsort works will help to make things more clear.

Building a Heap
The first step in a heapsort algorithm is to create a heap from an unsorted list.

Here’s the unsorted list that this example will begin with:

To sort from lowest to highest, the heapsort algorithm that this example will use
needs a max-heap. This conversion is done by sifting all the parent nodes down so
they end up in the right spot. If you need a review of how creating a heap works, look
back at Chapter 13, “Heaps”. The resulting max-heap is shown below:

This corresponds with the following list:

Because the time complexity of a single down-sift operation is O(log n), the total
time complexity of building a heap is O(n log n).

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 245

Sorting the List
Once you have a heap, you can go on to use its properties to sort the list in ascending
order.

Because the largest element in a max-heap is always at the root, you start by
swapping the first element at index 0 with the last element at index n - 1. After the
swap, the last element of the list is in the correct spot but invalidates the heap.

Thus, the next step is to sift the new root node 5 down until it lands in its correct
position. You need to exclude the last element of the list from your heap since you
no longer consider it part of the heap but of the sorted list. As a result of sifting 5
down, the second largest element 21 becomes the new root.

You can now repeat the previous steps. Swap 21 with the last element 6, and move
the end of the heap up by one:

Then sift 6 down, and 18 will rise to the top:

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 246

Are you starting to see a pattern? As you swap the first and last elements, the larger
elements make their way to the back of the list in the correct order. You repeat the
swapping and sifting steps until you reach a heap of size 1. The list is then fully
sorted.

After swapping 18 and 2, move the end of the heap up. Then sift the 2 down:

Swap the 12 and 5. Move the end of the heap up. Sift the 5 down:

Swap the 9 and 5. Move the end of the heap up. Sift the 5 down:

Swap the 8 and 2. Move the end of the heap up. Sift the 2 down:

Swap the 6 and 2. Move the end of the heap up. Sift the 2 down:

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 247

Swap the 5 and 2. Move the end of the heap up. No need to sift the 2:

Move the end of the heap up and you’re finished:

This sorting process is very similar to selection sort from Chapter 15, “O(n²) Sorting
Algorithms”.

Implementation
You’re going to implement two versions of heapsort. The first one will use the Heap
class you created in Chapter 13, “Heaps”. It’s quite easy to implement. However, it
won’t follow the exact algorithm described in the example above. For your second
implementation, though, you will follow this algorithm. Although the second
implementation will take a little more work, space efficiency will be better.

Using Your Heap Class
Open the starter project for this chapter. In lib/heap.dart, you’ll find the Heap class
that you created in Chapter 13.

Now create a new file in lib called heapsort.dart. Then add the following code:

import 'heap.dart';

List<E> heapsort<E extends Comparable<dynamic>>(List<E> list) {
 // 1
 final heap = Heap<E>(
 elements: list.toList(),
 priority: Priority.min,
);
 // 2
 final sorted = <E>[];
 // 3
 while (!heap.isEmpty) {

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 248

 final value = heap.remove();
 sorted.add(value!);
 }
 return sorted;
}

That’s it for the entire implementation of heapsort! Nice, huh? The simplicity is
because the heavy lifting is done by the Heap class. Here’s what’s going on:

1. You first add a copy of the input list to a heap. Heap sorts this into a min-heap.

2. Create an empty list to add the sorted values to.

3. Keep removing the minimum value from the heap until it’s empty. Since you’re
adding to the end of the list, sorted will be sorted.

Time to test it out. Open bin/starter.dart and replace the contents of the file with
the following code:

import 'package:starter/heapsort.dart';

void main() {
 final sorted = heapsort([6, 12, 2, 26, 8, 18, 21, 9, 5]);
 print(sorted);
}

Run the code and it should print the ordered list you see below:

[2, 5, 6, 8, 9, 12, 18, 21, 26]

Although you have a properly sorted list, this algorithm didn’t behave like the
description in the example section. The diagrams there showed an in-place sort
within a single list. However, the heapsort function you made just now used two
additional lists, one inside the heap and another to store the sorted results. It also
used a min-heap rather than a max-heap.

Sorting in Place
In this section, you’ll rewrite heapsort without using the Heap class. The sort will
take an input list and mutate that list in place in the manner described in the
example section.

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 249

Creating an Extension

Since you want to mutate the list itself, you can create an extension method on List.
Add the following code at the bottom of lib/heapsort.dart:

extension Heapsort<E extends Comparable<dynamic>> on List<E> {

 // more to come
}

Preparing Private Helper Methods

Before implementing the main sort method, you need to add a few other helper
methods. They’re just a copy-and-paste of what you wrote earlier when you made
the Heap class. Add the following methods to the Heapsort extension body:

int _leftChildIndex(int parentIndex) {
 return 2 * parentIndex + 1;
}

int _rightChildIndex(int parentIndex) {
 return 2 * parentIndex + 2;
}

void _swapValues(int indexA, int indexB) {
 final temp = this[indexA];
 this[indexA] = this[indexB];
 this[indexB] = temp;
}

These will allow you to find the heap node’s left or right child index and also swap
values between nodes. If you’re unfamiliar with how any of these work, go back and
review Chapter 13, “Heaps”.

Modifying the Sift Method

You also need a method to help you sift the root index down. This one is a little
different than the one in Heap. Add the following code to Heapsort extension:

// 1
void _siftDown({required int start, required int end}) {
 var parent = start;
 while (true) {
 final left = _leftChildIndex(parent);
 final right = _rightChildIndex(parent);
 var chosen = parent;
 // 2
 if (left < end &&

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 250

 this[left].compareTo(this[chosen]) > 0) {
 chosen = left;
 }
 // 3
 if (right < end &&
 this[right].compareTo(this[chosen]) > 0) {
 chosen = right;
 }
 if (chosen == parent) return;
 _swapValues(parent, chosen);
 parent = chosen;
 }
}

Like before, _siftDown swaps a parent value with its left or right child if one of them
is larger, and continues to do so until the parent finds its correct place in the heap.
However, this time there are a few minor differences:

1. start is the index of the node that you want to sift down within the heap. end
marks the end of the heap. This will allow you to resize your heap while
maintaining the size of the list.

2. Check if the left child is within the bounds of the heap and is larger than the
parent. This implementation assumes a max-heap.

3. Do the same for the right child.

Adding the Main Extension Method

Now you’re finally ready to perform the actual in-place heapsort. Add the following
method to the Heapsort extension:

void heapsortInPlace() {
 if (isEmpty) return;
 // 1
 final start = length ~/ 2 - 1;
 for (var i = start; i >= 0; i--) {
 _siftDown(start: i, end: length);
 }
 // 2
 for (var end = length - 1; end > 0; end--) {
 _swapValues(0, end);
 _siftDown(start: 0, end: end);
 }
}

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 251

These are the two main tasks of heapsort:

1. Turn the list into a max-heap. Some people call this task heapify.

2. Sort the list in ascending order. You do that by swapping the max value, which is
at the front of the list, with a smaller value at the end of the heap. Sift that
smaller value down to its proper location and then repeat, each time moving the
heap’s end index up by one to preserve the sorted values at the end of the list.

Testing it Out

To check that your in-place heapsort works, head back to bin/starter.dart and
replace the contents of main with the following code:

final list = [6, 12, 2, 26, 8, 18, 21, 9, 5];
print(list);
list.heapsortInPlace();
print(list);

Run that and you should see the following output:

[6, 12, 2, 26, 8, 18, 21, 9, 5]
[2, 5, 6, 8, 9, 12, 18, 21, 26]

It works!

Performance
The performance of heapsort is O(n log n) for its best, worst and average cases. This
uniformity in performance is because you have to traverse the whole list once, and
every time you swap elements, you must perform a down-sift, which is an O(log n)
operation.

The space complexity of your first implementation, heapsort, was linear since you
needed the extra list copies. However, your second implementation,
heapsortInPlace, had a constant O(1) space complexity.

Heapsort isn’t a stable sort because it depends on how the elements are put into the
heap. If you were heapsorting a deck of cards by their rank, for example, you might
see their suite change order compared to the original deck.

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 252

Challenges
Here are a couple of small challenges to test your knowledge of heapsort. You can
find the answers in the Challenge Solutions section as well as in the supplementary
materials that accompany the book.

Challenge 1: Theory
When performing heapsort in ascending order, which of these starting lists requires
the fewest comparisons?

• [1, 2, 3, 4, 5]

• [5, 4, 3, 2, 1]

You can assume that the implementation uses a max-heap.

Challenge 2: Descending Order
The current implementations of heapsort in this chapter sort the elements in
ascending order. How would you sort in descending order?

Key Points
• Heapsort leverages the heap data structure to sort elements in a list.

• The algorithm works by moving the values from the top of the heap to an ordered
list. This can be performed in place if you use an index to separate the end of the
heap from the sorted list elements.

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 253

19Chapter 19: Quicksort

By Vincent Ngo & Jonathan Sande

Quicksort is another comparison-based sorting algorithm. Much like merge sort, it
uses the same strategy of divide and conquer. One important feature of quicksort is
choosing a pivot value. The pivot divides the list into three partitions: values less
than the pivot, values equal to the pivot, and values greater than the pivot. In the
example below, the pivot is 8, while the partition on the left has values less than 8
and the partition on the right has values greater than 8:

Quicksort continues to recursively divide each partition until there’s only a single
element in each one. At this point, the list is sorted.

The quicksort algorithm isn’t stable. That is, two elements of the same value may
have different final locations depending on their initial positions. For example, if
you’re only sorting by numerical value, a nine of clubs might come before a nine of
hearts one time, but after it another time.

In this chapter, you’ll implement quicksort and look at various partitioning
strategies to get the most out of this sorting algorithm.

raywenderlich.com 254

Example
Before implementing quicksort, here’s a step-by-step example of how the quicksort
algorithm works.

Start with the following unsorted list:

The first step is to choose a pivot value. It can be any value from the list. In this case,
just take the first value, which is 8:

Once you have a pivot value, you can partition the elements of the list into three
sublists. Put the values smaller than 8 in the left sublist and the values larger than 8
in the right sublist. The value 8 itself is in its own sublist:

Notice that the three partitions aren’t completely sorted yet. Quicksort will
recursively divide these partitions into even smaller ones. The recursion will only
halt when all partitions have either zero or one element.

In the left sublist from above, choose 2 for the pivot value, and partition the sublist:

The values 0 and -1 are still in a sublist with more than one element, so they need to
be partitioned, too. Choose 0 for the pivot:

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 255

Everything on the left is partitioned now, so go back to the sublist on the right.
Choose 10 for the pivot value, and partition the sublist:

You need to keep going until every sublist has less than two elements, so that
includes the two 9s in the left sublist above. Partition them:

And the list is now sorted:

In the next sections, you’ll look at a few different ways to implement quicksort, but
they’ll generally follow the pattern you observed above.

Naïve Implementation
Open up the starter project. In the project root, create a lib folder. Then create a
new file there named quicksort.dart. Finally, add the following code to the file:

List<E> quicksortNaive<E extends Comparable<dynamic>>(
 List<E> list,
) {
 // 1
 if (list.length < 2) return list;
 // 2
 final pivot = list[0];
 // 3
 final less = list.where(
 (value) => value.compareTo(pivot) < 0,
);
 final equal = list.where(
 (value) => value.compareTo(pivot) == 0,
);
 final greater = list.where(
 (value) => value.compareTo(pivot) > 0,
);
 // 4
 return [

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 256

 ...quicksortNaive(less.toList()),
 ...equal,
 ...quicksortNaive(greater.toList()),
];
}

The implementation above recursively filters the list into three sublists:

1. There must be more than one element in the list. If not, you can consider the list
sorted.

2. Pick the first element in the list as your pivot value.

3. Using the pivot, split the original list into three partitions. Elements less than,
equal to, or greater than the pivot go into different sublists.

4. Recursively sort the partitions and then combine them.

To try it out, open bin/starter.dart and replace the contents of the file with the code
below:

import 'package:starter/quicksort.dart';

void main() {
 final list = [8, 2, 10, 0, 9, 18, 9, -1, 5];
 final sorted = quicksortNaive(list);
 print(sorted);
}

Run that and you should see the following sorted list printed in the console:

[-1, 0, 2, 5, 8, 9, 9, 10, 18]

While this naïve implementation is relatively easy to understand, it raises some
issues and questions:

• Calling where three times on the same list isn’t time-efficient.

• Creating a new list for every partition isn’t space-efficient. Could you possibly sort
in place?

• Is picking the first element the best pivot strategy? What pivot strategy should you
adopt?

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 257

Partitioning Strategies
In this section, you’ll look at partitioning strategies to make this quicksort
implementation more efficient.

All of these strategies will sort in place by swapping values, so you’ll need a swap
helper method. Add the following extension to lib/quicksort.dart:

extension Swappable<E> on List<E> {
 void swap(int indexA, int indexB) {
 if (indexA == indexB) return;
 final temp = this[indexA];
 this[indexA] = this[indexB];
 this[indexB] = temp;
 }
}

This will allow you to use list.swap to exchange the values at two different indices.

Lomuto’s Algorithm
Lomuto’s partitioning algorithm always chooses the last element as the pivot value.
The algorithm then partially sorts the list by putting lower values before the pivot
and higher values after it. Finally, Lomuto returns the index of the pivot location
within the list.

Example

In the following list, the pivot value is 5 since this is the last value in the list. You
then set a pivot index pointing to the beginning of the list. This index is where the
pivot will go after the partitioning is over. You also use the index i to iterate through
the list.

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 258

Keep increasing i until it reaches a value less than or equal to the pivot value 5. That
would be 2:

Then swap the values at i and the pivot index, that is, 2 and 8:

Move the pivot index up by one. Then keep iterating i until you get to another value
less than or equal to 5. That happens at 0:

Swap the 8 and 0:

Advance the pivot index by one, and advance i until the next value less than or equal
to 5. That would be -1:

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 259

Swap 10 and -1:

i is finished with its work. Advance the pivot index:

The last step is to swap the pivot with the value at the pivot index:

The list is now partitioned. Smaller values are to the left of 5 and larger values are to
the right.

Implementation

Add the Lomuto partitioning function to lib/quicksort.dart:

// 1
int _partitionLomuto<T extends Comparable<dynamic>>(
 List<T> list,
 int low,
 int high,
) {
 // 2
 final pivot = list[high];
 // 3
 var pivotIndex = low;
 for (int i = low; i < high; i++) {
 if (list[i].compareTo(pivot) <= 0) {
 list.swap(pivotIndex, i);
 pivotIndex += 1;
 }
 }
 // 4

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 260

 list.swap(pivotIndex, high);
 return pivotIndex;
}

Here are the highlights:

1. low and high are the index values of the range that you want to partition within
the list. This range will get smaller and smaller with every recursion.

2. Lomuto always chooses the last element as the pivot.

3. pivotIndex will keep track of where the pivot value needs to go later. As you
loop through the elements, you swap any value less than or equal to the pivot
with the value at the pivotIndex. Then advance pivotIndex.

4. Once done with the loop, swap the value at pivotIndex with the pivot. The pivot
always sits between the less and greater partitions.

That function only partitioned a single sublist. You still need to use recursion to
implement the final sort. Add the following function to quicksort.dart:

void quicksortLomuto<E extends Comparable<dynamic>>(
 List<E> list,
 int low,
 int high,
) {
 if (low >= high) return;
 final pivotIndex = _partitionLomuto(list, low, high);
 quicksortLomuto(list, low, pivotIndex - 1);
 quicksortLomuto(list, pivotIndex + 1, high);
}

Here, you apply Lomuto’s algorithm to partition the list into two regions. Then, you
recursively sort these regions. The recursion ends once a region has less than two
elements.

Testing it Out

You can try out Lomuto’s quicksort by returning to bin/start.dart and replacing the
contents of main with the following code:

final list = [8, 2, 10, 0, 9, 18, 9, -1, 5];
quicksortLomuto(list, 0, list.length - 1);
print(list);

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 261

Run this to see the same result as before:

[-1, 0, 2, 5, 8, 9, 9, 10, 18]

In the naïve implementation of quicksort, you created three new lists and filtered the
unsorted list three times. Lomuto’s algorithm performs the partitioning in place.
That’s much more efficient!

Hoare’s Partitioning
Hoare’s partitioning algorithm always chooses the first element as the pivot value.
Then it uses two pointers moving toward the middle from both ends. When the
pointers reach values that are on the wrong side of the pivot, the values are swapped
to the correct side.

Example

As before, start with the following unsorted list:

Since Hoare’s algorithm chooses the first element, 8 is the pivot value. The left
pointer also starts here. The right pointer starts at the right:

5 is less than the pivot 8, so it should be on the left. Swap 5 and 8:

You can move the left pointer to the right until it gets to a value larger than 8. That
would be 10. Likewise, move the right pointer to the left until it gets to a value
smaller than 8. That would be -1:

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 262

Swap 10 and -1 to put them in their correct partitions:

Keep moving the pointers inward. The left pointer will move until it hits 9, and the
right pointer will move until it hits 0.

The pointers have crossed each other now, so the partitioning is finished. Note that
the pivot value 8 isn’t in the middle. That means Hoare partitioning really only
creates two partitions rather than three.

There are far fewer swaps with Hoare’s algorithm compared to Lomuto’s algorithm.
Isn’t that nice?

Implementation

Add the Hoare partitioning function to quicksort.dart:

int _partitionHoare<T extends Comparable<dynamic>>(
 List<T> list,
 int low,
 int high,
) {
 // 1
 final pivot = list[low];
 var left = low - 1;
 var right = high + 1;
 while (true) {
 // 2
 do {
 left += 1;
 } while (list[left].compareTo(pivot) < 0);
 // 3
 do {
 right -= 1;
 } while (list[right].compareTo(pivot) > 0);
 // 4
 if (left < right) {
 list.swap(left, right);
 } else {
 return right;
 }

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 263

 }
}

Here are the steps:

1. Select the first element as the pivot value.

2. Keep increasing the left index until it comes to a value greater than or equal to
the pivot.

3. Keep decreasing the right index until it reaches a value that’s less than or equal
to the pivot.

4. Swap the values at left and right if they haven’t crossed yet. Otherwise, return
right as the new dividing index between the two partitions. It will be the high
end of the left sublist on the next recursion.

You can now implement the quicksortHoare function. Add the following code to
quicksort.dart:

void quicksortHoare<E extends Comparable<dynamic>>(
 List<E> list,
 int low,
 int high,
) {
 if (low >= high) return;
 final leftHigh = _partitionHoare(list, low, high);
 quicksortHoare(list, low, leftHigh);
 quicksortHoare(list, leftHigh + 1, high);
}

The value passed back from _partitionHoare is the high value of the left partition.
So to get the low value of the right partition just add one. You keep recursively
passing these range indices back into quicksortHoare until the partitions all have a
length of zero or one. At that point, the list is sorted.

Testing it Out

Try Hoare’s quicksort out by running the following in main:

final list = [8, 2, 10, 0, 9, 18, 9, -1, 5];
quicksortHoare(list, 0, list.length - 1);
print(list);

As before, you should see the sorted results:

[-1, 0, 2, 5, 8, 9, 9, 10, 18]

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 264

Effects of a bad pivot choice
The most crucial part of implementing quicksort is choosing the right partitioning
strategy.

You’ve looked at two different partitioning strategies so far:

1. Choosing the last element as a pivot.

2. Choosing the first element as a pivot.

What are the implications of choosing a bad pivot?

Take the following list as an example:

[8, 7, 6, 5, 4, 3, 2, 1]

If you use Lomuto’s algorithm, the pivot will be the last element, 1. This results in
the following partitions:

• less: []

• equal: [1]

• greater: [8, 7, 6, 5, 4, 3, 2]

An ideal pivot would split the elements evenly between the less and greater
partitions. Choosing the first or last element of an already sorted list as a pivot
makes quicksort perform much like insertion sort, which results in a worst-case
performance of O(n²).

Median-of-three strategy
One way to address this problem is by using the median-of-three pivot selection
strategy. Here, you find the median of the first, middle and last element in the list
and use that as a pivot. This selection strategy prevents you from picking the highest
or lowest element in the list.

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 265

Implementation

Add the following function to quicksort.dart:

int _medianOfThree<T extends Comparable<dynamic>>(
 List<T> list,
 int low,
 int high,
) {
 final center = (low + high) ~/ 2;
 if (list[low].compareTo(list[center]) > 0) {
 list.swap(low, center);
 }
 if (list[low].compareTo(list[high]) > 0) {
 list.swap(low, high);
 }
 if (list[center].compareTo(list[high]) > 0) {
 list.swap(center, high);
 }
 return center;
}

Here, you find the median of list[low], list[center] and list[high] by sorting
them. The median will end up at index center, which is what the function returns.

Next, implement a variant of quicksort using this median of three:

void quicksortMedian<E extends Comparable<dynamic>>(
 List<E> list,
 int low,
 int high,
) {
 if (low >= high) return;
 var pivotIndex = _medianOfThree(list, low, high);
 list.swap(pivotIndex, high);
 pivotIndex = _partitionLomuto(list, low, high);
 quicksortLomuto(list, low, pivotIndex - 1);
 quicksortLomuto(list, pivotIndex + 1, high);
}

This code is simply a variation on quicksortLomuto that chooses the median of the
three elements as a first step.

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 266

Testing it Out

Try this out back in bin/starter.dart by replacing the contents of main with the
following code:

final list = [8, 7, 6, 5, 4, 3, 2, 1];
quicksortMedian(list, 0, list.length - 1);
print(list);

Run that and you’ll see the following sorted list:

[1, 2, 3, 4, 5, 6, 7, 8]

This strategy is an improvement, but there are still issues in some situations.

Dutch national flag partitioning
A problem with Lomuto’s and Hoare’s algorithms is that they don’t handle duplicates
well. With Lomuto’s algorithm, duplicates end up in the less partition and aren’t
grouped together. With Hoare’s algorithm, the situation is even worse as duplicates
can be all over the place.

A solution to handle duplicate elements is Dutch national flag partitioning. This
technique is named after the Dutch flag, which has three horizontal colored bands of
red, white and blue. These three bands are analogous to the three partitions used in
the sorting algorithm: values less than the pivot, equal to the pivot, and greater than
the pivot. The key here is that when you have multiple values equal to the pivot, they
all go in the middle partition. Dutch national flag partitioning is an excellent
technique to use if you have a lot of duplicate elements.

Example

As before, walking through an example first will make this more clear. Start with the
following unsorted list, noting all the duplicates:

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 267

You’ll use three pointers named smaller, equal and larger. The smaller and
equal pointers start at the low end, and the larger pointer starts at the high end:

You could choose anything for the pivot, but for this example, choose the last value.
That would be 8. Then compare the value at equal to the pivot. They’re the same, so
move equal up. You now have one value in the “pivot” partition:

The value at equal is 2 now, which is smaller than the pivot 8, so swap the values at
equal and smaller. Then advance both pointers. You now have one value in the
“smaller” partition as well:

The value at equal is again 2. Since this is smaller than 8, swap equal and smaller.
Then advance both pointers:

Now the value at equal is 8. That’s the same as the pivot, so advance the equal
pointer:

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 268

The value at equal is 9, which is larger than 8, so swap the values at equal and
larger. Then move the larger pointer down. There’s now a value in the “larger”
partition:

The equal pointer is pointing at another 8 so advance equal. There are three values
in the middle partition now, that is, the pivot partition:

equal is pointing at 5, which is smaller than 8, so swap the values at smaller and
equal. Then advance both of these pointers:

Now equal is pointing at 9. This is larger than the pivot 8, so swap the values at
equal and larger. Then move larger down:

There’s one more step. equal is pointing at 2. Since this is smaller than 8, swap the
values at smaller and equal. Then advance both pointers:

Now equal has passed larger. This means the partitioning is finished.

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 269

The ranges before smaller and after larger will be recursively partitioned using the
same algorithm. However, the range from smaller to larger is the pivot partition
and it’s finished. It doesn’t need to be further partitioned.

Implementation

Open lib/quicksort.dart. You need to keep track of the entire range of the pivot
partition instead of just a single pivot index, so add a class for that:

class Range {
 const Range(this.low, this.high);
 final int low;
 final int high;
}

The parameters low and high are both inclusive. Range uses these names instead of
start and end to avoid confusion since many APIs define end as an exclusive index.

Now add the partitioning function to quicksort.dart as well:

Range _partitionDutchFlag<T extends Comparable<dynamic>>(
 List<T> list,
 int low,
 int high,
) {
 // 1
 final pivot = list[high];
 // 2
 var smaller = low;
 var equal = low;
 var larger = high;
 while (equal <= larger) {
 // 3
 if (list[equal].compareTo(pivot) < 0) {
 list.swap(smaller, equal);
 smaller += 1;
 equal += 1;
 } else if (list[equal] == pivot) {
 equal += 1;
 } else {
 list.swap(equal, larger);
 larger -= 1;
 }
 }
 // 4
 return Range(smaller, larger);
}

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 270

The code above is a direct implementation of the algorithm you observed in the
step-by-step description:

1. Choose the last value as the pivot. This choice is somewhat arbitrary. You could
also use the median-of-three strategy.

2. Initialize smaller and equal at the beginning of the list and larger at the end of
the list.

3. Compare the value at equal with the pivot value. Swap it into the correct
partition if needed and advance the appropriate pointers.

4. The algorithm returns indices smaller and larger. These point to the first and
last elements of the middle partition.

You’re now ready to implement a new version of quicksort using Dutch national flag
partitioning. Add the following method to quicksort.dart:

void quicksortDutchFlag<E extends Comparable<dynamic>>(
 List<E> list,
 int low,
 int high,
) {
 if (low >= high) return;
 final middle = _partitionDutchFlag(list, low, high);
 quicksortDutchFlag(list, low, middle.low - 1);
 quicksortDutchFlag(list, middle.high + 1, high);
}

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 271

Notice how the function uses the middle.low and middle.high indices to
determine the partitions that need to be sorted recursively. Because the elements
equal to the pivot are grouped together, they can be excluded from the recursion.

Testing it Out

Try out your new quicksort by returning to bin/starter.dart and replacing the
contents of main with the following:

final list = [8, 2, 2, 8, 9, 5, 9, 2, 8];
quicksortDutchFlag(list, 0, list.length - 1);
print(list);

Run that and you should see the sorted list below:

[2, 2, 2, 5, 8, 8, 8, 9, 9]

Nice, an efficient way to sort lists with lots of duplicates!

If any of the descriptions or code samples in this chapter were confusing, consider
using the debugger in your IDE to step through each line one at a time. Explanations
can be misleading, but code doesn’t lie.

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 272

Challenges
Here are a couple of quicksort challenges to make sure you have the topic down. Try
them out yourself before looking at the solutions, which you can find in the
Challenge Solutions section at the end of the book.

Challenge 1: Iterative Quicksort
In this chapter, you learned how to implement quicksort recursively. Your challenge
here is to implement it iteratively. Choose any partition strategy.

Challenge 2: Merge Sort or Quicksort
Explain when and why you would use merge sort over quicksort.

Key Points
• Lomuto’s partitioning chooses the last element as the pivot.

• Hoare’s partitioning chooses the first element as its pivot.

• An ideal pivot would split the elements evenly between partitions.

• Choosing a bad pivot can cause quicksort to perform in O(n²) time.

• Median of three finds the pivot by taking the median of the first, middle and last
elements.

• Dutch national flag partitioning handles duplicate elements more efficiently.

Where to Go From Here?
The Dart sort method on List uses a quicksort when the list size is greater than 32.
The quicksort implementations you made in this chapter used a single pivot value,
but the Dart version uses a dual-pivot quicksort. To explore how it works, check out
the source code:

• https://github.com/dart-lang/sdk/blob/2.15.0/sdk/lib/internal/sort.dart

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 273

Section V: Graphs

Graphs are an instrumental data structure that can model a wide range of things:
webpages on the internet, the migration patterns of birds, even protons in the
nucleus of an atom. This section gets you thinking deeply (and broadly) about using
graphs and graph algorithms to solve real-world problems.

• Chapter 20: Graphs: What do social networks have in common with booking
cheap flights around the world? You can represent both of these real-world models
as graphs. A graph is a data structure that captures relationships between objects.
It’s made up of vertices connected by edges. In a weighted graph, every edge has a
weight associated with it that represents the cost of using this edge. These weights
let you choose the cheapest or shortest path between two vertices.

• Chapter 21: Breadth-First Search: In the previous chapter, you explored using
graphs to capture relationships between objects. Several algorithms exist to
traverse or search through a graph’s vertices. One such algorithm is the breadth-
first search algorithm, which visits the closest vertices around the starting point
before moving on to further vertices.

• Chapter 22: Depth-First Search: In contrast to the breadth-first search, which
explores close neighboring vertices before far ones, the depth-first search
attempts to explore one branch as far as possible before backtracking and visiting
another branch.

• Chapter 23: Dijkstra’s Algorithm: Dijkstra’s algorithm finds the shortest paths
between vertices in weighted graphs. This algorithm will bring together a number
of data structures that you’ve learned throughout the book, including graphs,
trees, priority queues, heaps, maps, sets and lists.

raywenderlich.com 274

20Chapter 20: Graphs

By Vincent Ngo & Jonathan Sande

What do social networks have in common with booking cheap flights around the
world? You can represent both of these real-world models as graphs.

A graph is a data structure that captures relationships between objects. It’s made up
of vertices connected by edges.

Circles in the graph below represent the vertices, and the edges are the lines that
connect them.

A graph

raywenderlich.com 275

Types of Graphs
Graphs come in a few different flavors. The following sections will describe their
characteristics.

Weighted Graphs
In a weighted graph, every edge has a weight associated with it that represents the
cost of using this edge. These weights let you choose the cheapest or shortest path
between two vertices.

Take the airline industry as an example. Here’s a network with varying flight paths:

A weighted graph

In this example, the vertices represent cities, while the edges represent a route from
one city to another. The weight associated with each edge represents the airfare
between the two cities. Using this network, you can determine the cheapest flights
from San Francisco to Singapore for all those budget-minded digital nomads out
there!

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 276

Directed Graphs
As well as assigning a weight to an edge, your graphs can also have direction.
Directed graphs are more restrictive to traverse because an edge may only permit
traversal in one direction. The diagram below represents a directed graph.

A directed graph

You can tell a lot from this diagram:

• There’s a flight from Hong Kong to Tokyo.

• There’s no direct flight from San Francisco to Tokyo.

• You can buy a roundtrip ticket between Singapore and Tokyo.

• There is no way to get from Tokyo to San Francisco.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 277

Undirected Graphs
You can think of an undirected graph as a directed graph where all edges are bi-
directional.

In an undirected graph:

• Two connected vertices have edges going back and forth.

• The weight of an edge applies to both directions.

An undirected graph

Common Operations
There are a number of common operations that any graph needs to implement.
Before you get to those, though, you need the basic building blocks, that is, the
vertices and edges.

Open up the starter project for this chapter. Create a new lib folder in the root of the
project, and create a file in there named graph.dart.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 278

Defining a Vertex
The image below shows a collection of vertices. They’re not yet a graph:

Unconnected vertices

To represent those vertices, add the following class inside graph.dart:

class Vertex<T> {
 const Vertex({
 required this.index,
 required this.data,
 });

 final int index;
 final T data;

 @override
 String toString() => data.toString();
}

Here, you’ve defined a generic Vertex class. A vertex has a unique index within its
graph and holds a piece of data.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 279

Defining an Edge
To connect two vertices, there must be an edge between them. These are the lines in
the image below:

Edges added to the collection of vertices

Add an Edge class to graph.dart:

class Edge<T> {
 const Edge(
 this.source,
 this.destination, [
 this.weight,
]);

 final Vertex<T> source;
 final Vertex<T> destination;
 final double? weight;
}

Edge connects two vertices and has an optional weight. Not too complicated, is it?

Defining a Graph Interface
Now it’s time to define the common operations that the various flavors of graphs all
share.

Start by creating an EdgeType enum and adding it to graph.dart:

enum EdgeType { directed, undirected }

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 280

This will allow you to specify whether the particular graph you’re constructing has
directed or undirected edges.

Now add the following Graph interface below EdgeType:

abstract class Graph<E> {
 Iterable<Vertex<E>> get vertices;

 Vertex<E> createVertex(E data);

 void addEdge(
 Vertex<E> source,
 Vertex<E> destination, {
 EdgeType edgeType,
 double? weight,
 });

 List<Edge<E>> edges(Vertex<E> source);

 double? weight(
 Vertex<E> source,
 Vertex<E> destination,
);
}

This interface describes the common operations for a graph:

• vertices: Returns all of the vertices in the graph.

• createVertex: Creates a vertex and adds it to the graph.

• addEdge: Connects two vertices in the graph with either a directed or undirected
edge. The weight is optional.

• edges: Returns a list of outgoing edges from a specific vertex.

• weight: Returns the weight of the edge between two vertices.

In the following sections, you’ll implement this interface in two ways, first using
what’s called an adjacency list, and second an adjacency matrix. Keep reading to find
out what these terms mean.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 281

Adjacency List
The first graph implementation that you’ll learn uses an adjacency list. For every
vertex in the graph, the graph stores a list of outgoing edges.

Take the flight network you saw earlier as an example:

You can describe the relationship between the cities in this graph by listing out the
adjacent cities for each location:

An adjacency list

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 282

There’s a lot you can learn from this adjacency list:

1. Singapore’s vertex has two outgoing edges, one to Tokyo and another to Hong
Kong.

2. Detroit has the smallest number of outgoing flights.

3. Tokyo is the busiest airport, with the most outgoing flights.

In the next section, you’ll create an adjacency list by storing a map of lists. Each key
in the map is a vertex, and the value is the corresponding list of edges.

Implementation
An adjacency list is a graph, so you need to implement the Graph interface that you
created earlier. Add the following code to graph.dart:

class AdjacencyList<E> implements Graph<E> {

 final Map<Vertex<E>, List<Edge<E>>> _connections = {};
 var _nextIndex = 0;

 @override
 Iterable<Vertex<E>> get vertices => _connections.keys;

 // more to come ...
}

You’ve defined an AdjacencyList class that uses a map to store the outgoing edges
for each vertex. You’ll use _nextIndex to assign a unique index to each new vertex.
If you need the vertices, you can obtain them from the vertices getter.

You still need to implement the various other methods of the Graph interface. You’ll
do that in the following sections.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 283

Creating a Vertex

Add the missing createVertex method to AdjacencyList:

@override
Vertex<E> createVertex(E data) {
 // 1
 final vertex = Vertex(
 index: _nextIndex,
 data: data,
);
 _nextIndex++;
 // 2
 _connections[vertex] = [];
 return vertex;
}

Here’s what’s happening:

1. You first create a new vertex with a unique index.

2. Then you add the vertex as a key in the _connections map. You haven’t
connected it to any other vertices in the graph yet, so the list of outgoing edges is
empty.

Adding an Edge

To connect two vertices, you need to add an edge. Recall that there are directed and
undirected edges:

Every edge in an undirected graph can be traversed in both directions. So if it’s an
undirected graph, you need to add two edges, one from the source to the destination
and another from the destination to the source.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 284

Add the following method to AdjacencyList:

@override
void addEdge(
 Vertex<E> source,
 Vertex<E> destination, {
 EdgeType edgeType = EdgeType.undirected,
 double? weight,
}) {
 // 1
 _connections[source]?.add(
 Edge(source, destination, weight),
);
 // 2
 if (edgeType == EdgeType.undirected) {
 _connections[destination]?.add(
 Edge(destination, source, weight),
);
 }
}

Here’s what’s happening in the method body:

1. Since source is a vertex, check if it exists in the _connections map. If it does,
create a new directed edge from the source to the destination. Then add it to
the vertex’s list of edges.

2. If this is an undirected graph, then also add an edge going the other direction.

Retrieving the Outgoing Edges From a Vertex

Continue your work on implementing Graph by adding the edges method to
AdjacencyList:

@override
List<Edge<E>> edges(Vertex<E> source) {
 return _connections[source] ?? [];
}

This gets the stored outgoing edges for the provided vertex. If source is unknown,
the method returns an empty list.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 285

Retrieving the Weight of an Edge

Recall that the weight is the cost of going from one vertex to another. For example, if
the cost of a ticket between Singapore and Tokyo is $500, the weight of this
bidirectional edge is 500:

Implement the missing weight method in AdjacencyList by adding the following
code to the class:

@override
double? weight(
 Vertex<E> source,
 Vertex<E> destination,
) {
 final match = edges(source).where((edge) {
 return edge.destination == destination;
 });
 if (match.isEmpty) return null;
 return match.first.weight;
}

Here, you search for an edge from source to destination. If it exists, you return its
weight.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 286

Making Adjacency List Printable

The required methods for AdjacencyList are complete now, but it would also be
nice to be able to print a description of your graph. To do that, override toString
like so:

@override
String toString() {
 final result = StringBuffer();
 // 1
 _connections.forEach((vertex, edges) {
 // 2
 final destinations = edges.map((edge) {
 return edge.destination;
 }).join(', ');
 // 3
 result.writeln('$vertex --> $destinations');
 });
 return result.toString();
}

Here’s what’s going on in the code above:

1. You loop through every key-value pair in _connections.

2. For every vertex, find all of the destinations and join them into a single, comma-
separated string.

3. Put each vertex and its destinations on a new line.

This will produce output with lines in the following format:

Singapore --> Hong Kong, Tokyo

You’ve finally completed your first graph! Try it out by building a network in the next
section.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 287

Building a Network
For this example, you’ll go back to the diagram you saw earlier and construct a
network of flights with the prices as weights:

Open bin/starter.dart and replace the contents of the file with the following code:

import 'package:starter/graph.dart';

void main() {
 final graph = AdjacencyList<String>();

 final singapore = graph.createVertex('Singapore');
 final tokyo = graph.createVertex('Tokyo');
 final hongKong = graph.createVertex('Hong Kong');
 final detroit = graph.createVertex('Detroit');
 final sanFrancisco = graph.createVertex('San Francisco');
 final washingtonDC = graph.createVertex('Washington DC');
 final austinTexas = graph.createVertex('Austin Texas');
 final seattle = graph.createVertex('Seattle');

 graph.addEdge(singapore, hongKong, weight: 300);
 graph.addEdge(singapore, tokyo, weight: 500);
 graph.addEdge(hongKong, tokyo, weight: 250);
 graph.addEdge(tokyo, detroit, weight: 450);
 graph.addEdge(tokyo, washingtonDC, weight: 300);
 graph.addEdge(hongKong, sanFrancisco, weight: 600);
 graph.addEdge(detroit, austinTexas, weight: 50);
 graph.addEdge(austinTexas, washingtonDC, weight: 292);
 graph.addEdge(sanFrancisco, washingtonDC, weight: 337);
 graph.addEdge(washingtonDC, seattle, weight: 277);
 graph.addEdge(sanFrancisco, seattle, weight: 218);
 graph.addEdge(austinTexas, sanFrancisco, weight: 297);

 print(graph);
}

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 288

Run that and you should get the following output:

Singapore --> Hong Kong, Tokyo
Tokyo --> Singapore, Hong Kong, Detroit, Washington DC
Hong Kong --> Singapore, Tokyo, San Francisco
Detroit --> Tokyo, Austin Texas
San Francisco --> Hong Kong, Washington DC, Seattle, Austin
Texas
Washington DC --> Tokyo, Austin Texas, San Francisco, Seattle
Austin Texas --> Detroit, Washington DC, San Francisco
Seattle --> Washington DC, San Francisco

This output shows a visual description of an adjacency list graph. You can see all the
outbound flights from any city. Pretty nice, huh?

Finding the Weight

You can also obtain other helpful information such as the cost of a flight from
Singapore to Tokyo. This is the weight of the edge between those two vertices.

Add the following code at the bottom of the main function:

final cost = graph.weight(singapore, tokyo)?.toInt();
print('It costs \$$cost to fly from Singapore to Tokyo.');
// It costs $500 to fly from Singapore to Tokyo.

Getting the Edges

Do you need to know what all the outgoing flights from San Francisco are? For that,
you just call edges.

Add the code below at the bottom of main:

print('San Francisco Outgoing Flights: ');
print('-------------------------------- ');
for (final edge in graph.edges(sanFrancisco)) {
 print('${edge.source} to ${edge.destination}');
}

Running than will display the flights:

San Francisco Outgoing Flights:

San Francisco to Hong Kong
San Francisco to Washington DC
San Francisco to Seattle
San Francisco to Austin Texas

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 289

You’ve just created an adjacency list graph, which uses a map to store the outgoing
edges for every vertex. In the next section you’ll learn a different approach to store
vertices and edges.

Adjacency Matrix
An adjacency matrix uses a two-dimensional grid or table to implement the graph
data structure. Each vertex has its own row and column in the table. The cells where
rows and columns intersect hold the edge weights. If any particular cell is empty,
that is, if the weight is null, then that means there is no edge between the row vertex
and the column vertex.

Below is an example of a directed graph that depicts a flight network. As before, the
weight represents the cost of the airfare:

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 290

You can represent that network in matrix form by giving each of the five cities a row
and a column in a table. Edges that don’t exist between two cities are shown with a
weight of 0 in the cells where the rows and columns intersect:

Notes:

• As you recall, every vertex in a graph has its own index. These indices are used to
label the rows and columns in the table.

• Read the row number as the source vertex and the column number as the
destination vertex.

• There’s a red line going down the middle of the matrix. When the row and column
are equal, this represents an edge between a vertex and itself, which isn’t allowed.
You can’t fly from Singapore to Singapore, right?

Here are a few examples of data points that you can read from the table above:

• [0][1] is 300, so there is a flight from Singapore to Hong Kong for $300.

• [2][1] is 0, so there’s no flight from Tokyo to Hong Kong.

• [1][2] is 250, so there is a flight from Hong Kong to Tokyo for $250.

• [2][2] is 0 because there’s no flight from Tokyo to Tokyo!

You’ll implement an adjacency matrix graph next.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 291

Implementation
Add a new class to graph.dart called AdjacencyMatrix:

class AdjacencyMatrix<E> implements Graph<E> {

 final List<Vertex<E>> _vertices = [];
 final List<List<double?>?> _weights = [];
 var _nextIndex = 0;

 @override
 Iterable<Vertex<E>> get vertices => _vertices;

 // more to come ...
}

In AdjacencyList you used a map to store the vertices and edges. Here, though, you
store the vertices in a list. You don’t use Edge to store edges but rather a two-
dimensional list of weights.

You’ve declared that you’re implementing Graph, and so far you’ve only finished
vertices. The following sections will help you add the other missing methods.

Creating a Vertex

For every new vertex that you create, you have to add an additional column and row
to the matrix.

The first step is to create a new column by adding an additional empty destination at
the end of every row. The destination is empty because no other vertices have
created an edge to the new vertex yet. In the following diagram you can see a new
column 5 filled with empty weights:

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 292

The next step is to add an additional row representing a new source vertex. The
weights for this, too, are empty since you haven’t yet added any edges. Row 5 in the
image below shows the newly added source row:

To implement the description above, add the createVertex method to
AdjacencyMatrix:

@override
Vertex<E> createVertex(E data) {
 // 1
 final vertex = Vertex(
 index: _nextIndex,
 data: data,
);
 _nextIndex++;
 _vertices.add(vertex);
 // 2
 for (var i = 0; i < _weights.length; i++) {
 _weights[i]?.add(null);
 }
 // 3
 final row = List<double?>.filled(
 _vertices.length,
 null,
 growable: true,
);
 _weights.add(row);
 return vertex;
}

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 293

To create a vertex in an adjacency matrix, you perform the following tasks:

1. Add a new vertex to the list.

2. Append a null value at the end of every row. This in effect creates a new
destination column in the matrix.

3. Add a new row to the matrix, again filled with null weight values.

Adding Edges

Creating edges is as simple as adding weights to the matrix. There’s no Edge class to
worry about.

Add the missing addEdge method to AdjacencyMatrix:

@override
void addEdge(
 Vertex<E> source,
 Vertex<E> destination, {
 EdgeType edgeType = EdgeType.undirected,
 double? weight,
}) {
 // 1
 _weights[source.index]?[destination.index] = weight;
 // 2
 if (edgeType == EdgeType.undirected) {
 _weights[destination.index]?[source.index] = weight;
 }
}

The logic here is similar to how you implemented addEdge in AdjacencyList
previously:

1. Always add a directed edge.

2. If the edge type for the graph is undirected, then also add another edge going
from the destination to the source.

Retrieving the Outgoing Edges From a Vertex

Add the edges method to AdjacencyMatrix:

@override
List<Edge<E>> edges(Vertex<E> source) {
 List<Edge<E>> edges = [];
 // 1
 for (var column = 0; column < _weights.length; column++) {
 final weight = _weights[source.index]?[column];

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 294

 // 2
 if (weight == null) continue;
 // 3
 final destination = _vertices[column];
 edges.add(Edge(source, destination, weight));
 }
 return edges;
}

Remember that the columns represent destinations and that a source is a row:

1. To find all the edges for some source, you loop through all the values in a row.

2. Check for weights that aren’t null. Every non-null weight implies an outgoing
edge.

3. Use the column to look up the destination vertex.

Retrieving the Weight of an Edge

It’s easy to get the weight of an edge. Simply look up the value in the adjacency
matrix.

Implement weight like so:

@override
double? weight(Vertex<E> source, Vertex<E> destination) {
 return _weights[source.index]?[destination.index];
}

Making an Adjacency Matrix Printable

Finally, override toString so you can print out a readable description of your graph:

@override
String toString() {
 final output = StringBuffer();
 // 1
 for (final vertex in _vertices) {
 output.writeln('${vertex.index}: ${vertex.data}');
 }
 // 2
 for (int i = 0; i < _weights.length; i++) {
 for (int j = 0; j < _weights.length; j++) {
 final value = (_weights[i]?[j] ?? '.').toString();
 output.write(value.padRight(6));
 }
 output.writeln();
 }

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 295

 return output.toString();
}

Here are the steps:

1. You first create a list of the vertices.

2. Then you build up a grid of weights, row by row.

Building a Network
You will reuse the same example from AdjacencyList:

Go back to the main method in bin/starter.dart and replace this:

final graph = AdjacencyList<String>();

with the following:

final graph = AdjacencyMatrix<String>();

AdjacencyMatrix and AdjacencyList conform to the same Graph interface, so the
rest of the code stays the same.

Run the code. The print(graph) portion of the code should give the following
output:

0: Singapore
1: Tokyo
2: Hong Kong

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 296

3: Detroit
4: San Francisco
5: Washington DC
6: Austin Texas
7: Seattle
. 500.0 300.0
500.0 . 250.0 450.0 . 300.0 . .
300.0 250.0 . . 600.0 . . .
. 450.0 50.0 .
. . 600.0 . . 337.0 297.0 218.0
. 300.0 . . 337.0 . 292.0 277.0
. . . 50.0 297.0 292.0 . .
. . . . 218.0 277.0 . .

Graph Analysis
This chart compares the cost of different graph operations for adjacency lists and
adjacency matrices. V represents the number of vertices, and E represents the
number of edges.

An adjacency list takes less storage space than an adjacency matrix. An adjacency list
simply stores the number of vertices and edges needed. As for an adjacency matrix,
recall that the number of rows and columns equals the number of vertices. This
explains the quadratic space complexity of O(V²).

Adding a vertex is efficient in an adjacency list: Simply create a vertex and set its
key-value pair in the map. It’s amortized as O(1). When adding a vertex to an
adjacency matrix, you must add a column to every row and create a new row for the
new vertex. This is at least O(V), and if you choose to represent your matrix with a
contiguous block of memory, it can be O(V²).

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 297

Adding an edge is efficient in both data structures since they are both constant time.
The adjacency list appends to the list of outgoing edges. The adjacency matrix
simply sets a value in the two-dimensional list.

Adjacency list loses out when trying to find a particular edge or weight. To find an
edge in an adjacency list, you have to obtain the list of outgoing edges and loop
through every edge to find a matching destination. This happens in O(V) time. With
an adjacency matrix, finding an edge or weight is a constant-time lookup in the two-
dimensional list.

So which data structure should you choose to construct your graph?

If there are few edges in your graph, it’s considered a sparse graph, and an
adjacency list would be a good fit. An adjacency matrix would be a bad choice for a
sparse graph because a lot of memory would be wasted since there aren’t many
edges.

If your graph has lots of edges, it’s considered a dense graph, and an adjacency
matrix would be a better fit since you’d be able to access your weights and edges far
more quickly.

Note: A dense graph in which every vertex has an edge to every other vertex is
called a complete graph.

In the next few chapters you’ll learn different algorithms for visiting the nodes of a
graph.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 298

Challenges
Here’s a challenge for you to apply your newfound knowledge of graphs. You can find
the answer in the Challenge Solutions section as well as in the supplemental
materials that accompany this book.

Challenge 1: Graph Your Friends
Megan has three friends: Sandra, Pablo and Edith. Pablo has friends as well: Ray,
Luke, and a mutual friend of Megan’s. Edith is friends with Manda and Vicki. Manda
is friends with Pablo and Megan. Create an adjacency list that represents this
friendship graph. Which mutual friend do Pablo and Megan share?

Key Points
• You can represent real-world relationships through vertices and edges.

• Think of vertices as objects and edges as the relationships between the objects.

• Weighted graphs associate a number with every edge.

• Directed graphs have edges that traverse in one direction.

• Undirected graphs have edges that point both ways.

• An adjacency list is a graph that stores a list of outgoing edges for every vertex.

• An adjacency matrix uses a two-dimensional list to represent a graph.

• An adjacency list is generally good for sparse graphs, which have a low number of
edges.

• An adjacency matrix is generally suitable for dense graphs, which have lots of
edges.

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 299

21Chapter 21: Breadth-First
Search
By Vincent Ngo & Jonathan Sande

In the previous chapter, you explored using graphs to capture relationships between
objects. Remember that objects are just vertices, and edges represent the
relationships between them.

Several algorithms exist to traverse or search through a graph’s vertices. One such
algorithm is the breadth-first search (BFS) algorithm. The BFS algorithm visits the
closest vertices from the starting vertex before moving on to further vertices.

BFS can be used to solve a wide variety of problems:

1. Generating a minimum-spanning tree.

2. Finding potential paths between vertices.

3. Finding the shortest path between two vertices.

raywenderlich.com 300

How Breadth-First Search Works
A breadth-first search starts by selecting any vertex in a graph. The algorithm then
explores all neighbors of this vertex before traversing the neighbors’ neighbors and
so forth.

You’ll use the following undirected graph as an example to explore how BFS works:

A queue will help you keep track of which vertices to visit next. The first-in-first-
out approach of the queue guarantees that all of a vertex’s neighbors are visited
before you traverse one level deeper.

To begin, you pick a source vertex to start from, in this case, A. Then add it to the
queue. Highlighted vertices will represent vertices that you’ve already visited:

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 301

Next, you dequeue the A and add all of its neighboring vertices [B, D, C] to the
queue:

It’s important to note that you only add a vertex to the queue when it has not yet
been visited and is not already in the queue.

The queue isn’t empty, so you dequeue and visit the next vertex, B. You then add B’s
neighbor E to the queue. A has already been visited, so it doesn’t get added. The
queue now has [D, C, E]:

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 302

The next vertex to be dequeued is D. D doesn’t have any neighbors that haven’t been
visited. The queue now has [C, E]:

Next, you dequeue C and add its neighbors [F, G] to the queue. The queue now has
[E, F, G]:

You’ve visited all of A’s neighbors! BFS now moves on to the second level of
neighbors. You dequeue E and add H to the queue. The queue now has [F, G, H].
You don’t add B or F to the queue because B has already been visited and F is already
in the queue:

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 303

You dequeue F, and since all its neighbors are already in the queue or visited, you
don’t add anything to the queue:

Like the previous step, you dequeue G and don’t add anything to the queue:

Finally, you dequeue H. The breadth-first search is complete since the queue is now
empty!

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 304

When exploring the vertices, you can construct a tree-like structure, showing the
vertices at each level: first the vertex you started from, then its neighbors, then its
neighbors’ neighbors and so on.

Implementation
Open up the starter project for this chapter. The lib folder contains the graph
implementation you built in the previous chapter. It also includes the stack-based
queue implementation that you made in Chapter 6, “Queues”. You’ll use both of
these files to create your breadth-first search.

Extension on Graph
Rather than directly modifying Graph, you’ll add an extension to it. Create a new file
in lib named breadth_first_search.dart. Then add the following code to that file:

import 'queue.dart';
import 'graph.dart';

extension BreadthFirstSearch<E> on Graph<E> {
 List<Vertex<E>> breadthFirstSearch(Vertex<E> source) {
 final queue = QueueStack<Vertex<E>>();
 Set<Vertex<E>> enqueued = {};
 List<Vertex<E>> visited = [];

 // more to come

 return visited;
 }
}

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 305

You’ve defined an extension method on Graph called breadthFirstSearch, which
takes in a starting vertex. The method uses three data structures:

1. queue keeps track of the neighboring vertices to visit next.

2. enqueued remembers which vertices have been enqueued before, so you don’t
enqueue the same vertex twice. You use Set so that lookup is cheap and only
takes O(1) time. A list would require O(n) time.

3. visited is a list that stores the order in which the vertices were explored.

Next, complete the method by replacing the // more to come comment with the
following:

// 1
queue.enqueue(source);
enqueued.add(source);

while (true) {
 // 2
 final vertex = queue.dequeue();
 if (vertex == null) break;
 // 3
 visited.add(vertex);
 // 4
 final neighborEdges = edges(vertex);
 for (final edge in neighborEdges) {
 // 5
 if (!enqueued.contains(edge.destination)) {
 queue.enqueue(edge.destination);
 enqueued.add(edge.destination);
 }
 }
}

Here’s what’s going on:

1. You initialize the BFS algorithm by first enqueuing the source vertex.

2. You continue to dequeue a vertex from the queue until the queue is empty.

3. Every time you dequeue a vertex from the queue, you add it to the list of visited
vertices.

4. Then, you find all edges that start from the current vertex and iterate over them.

5. For each edge, you check to see if its destination vertex has been enqueued
before, and, if not, you add it to the queue.

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 306

Testing it Out
That’s all there is to implementing BFS! Give this algorithm a spin. Open bin/
starter.dart and replace the contents of the file with the following code:

import 'package:starter/breadth_first_search.dart';
import 'package:starter/graph.dart';

void main() {
 final graph = AdjacencyList<String>();

 final a = graph.createVertex('A');
 final b = graph.createVertex('B');
 final c = graph.createVertex('C');
 final d = graph.createVertex('D');
 final e = graph.createVertex('E');
 final f = graph.createVertex('F');
 final g = graph.createVertex('G');
 final h = graph.createVertex('H');

 graph.addEdge(a, b, weight: 1);
 graph.addEdge(a, c, weight: 1);
 graph.addEdge(a, d, weight: 1);
 graph.addEdge(b, e, weight: 1);
 graph.addEdge(c, f, weight: 1);
 graph.addEdge(c, g, weight: 1);
 graph.addEdge(e, h, weight: 1);
 graph.addEdge(e, f, weight: 1);
 graph.addEdge(f, g, weight: 1);

 // more to come
}

This creates the same graph you saw earlier:

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 307

Now add the following code at the bottom of main:

final vertices = graph.breadthFirstSearch(a);
vertices.forEach(print);

Run that and note the order that BFS explored the vertices in:

A
B
C
D
E
F
G
H

One thing to keep in mind with neighboring vertices is that the order in which you
visit them is determined by how you construct your graph. You could have added an
edge between A and C before adding one between A and B. In that case, the output
would list C before B.

Performance
When traversing a graph using BFS, each vertex is enqueued once. This process has a
time complexity of O(V). During this traversal, you also visit all the edges. The time
it takes to visit all edges is O(E). Adding the two together means that the overall time
complexity for breadth-first search is O(V + E).

The space complexity of BFS is O(V) since you have to store the vertices in three
separate structures: queue, enqueued and visited.

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 308

Challenges
Ready to try a few challenges? If you get stuck, the answers are in the Challenge
Solutions section and also in the supplemental materials that accompany this book.

Challenge 1: Maximum Queue Size
For the following undirected graph, list the maximum number of items ever in the
queue. Assume that the starting vertex is A.

Challenge 2: Iterative BFS
In this chapter, you create an iterative implementation of breadth-first search. Now
write a recursive solution.

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 309

Challenge 3: Disconnected Graph
Add a method to Graph to detect if a graph is disconnected. An example of a
disconnected graph is shown below:

Key Points
• Breadth-first search (BFS) is an algorithm for traversing or searching a graph.

• BFS explores all the current vertex’s neighbors before traversing the next level of
vertices.

• It’s generally good to use this algorithm when your graph structure has many
neighboring vertices or when you need to find out every possible outcome.

• The queue data structure is used to prioritize traversing a vertex’s edges before
diving down to a level deeper.

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 310

22Chapter 22: Depth-First
Search
By Vincent Ngo & Jonathan Sande

In the previous chapter, you looked at breadth-first search (BFS), in which you had to
explore every neighbor of a vertex before going to the next level. In this chapter,
you’ll look at depth-first search (DFS), another algorithm for traversing or
searching a graph.

There are a lot of applications for DFS:

• Topological sorting.

• Detecting a cycle.

• Pathfinding, such as in maze puzzles.

• Finding connected components in a sparse graph.

To perform a DFS, you start with a given source vertex and attempt to explore a
branch as far as possible until you reach the end. At this point, you backtrack and
explore the next available branch until you find what you’re looking for or until
you’ve visited all the vertices.

raywenderlich.com 311

How Depth-First Search Works
The following example will take you through a depth-first search. The graph below is
the same as the one in the previous chapter so you can see the difference between
BFS and DFS.

BFS used a queue to visit neighboring vertices first. However, DFS will use a stack to
keep track of the levels you move through. The stack’s last-in-first-out approach
helps with backtracking. Every push on the stack means that you move one level
deeper. You can pop to return to a previous level if you reach a dead end.

As in the previous chapter, you choose A as a starting vertex and add it to the stack:

As long as the stack isn’t empty, you visit the top vertex on the stack and push the
first neighboring vertex that has yet to be visited. In this case, you visit A and push B:

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 312

Remember that the order in which the edges were added influences the result of a
search. In this case, the first edge added to A was to B, so B is pushed first.

You visit B and push E because A is already visited:

Every time you push onto the stack, you advance farther down a branch. Instead of
visiting every adjacent vertex, you continue down a path until you reach the end.
After that you backtrack.

Next, visit E and push F.

Again, the only reason you chose F instead of H is that F happened to be added first
when the graph was created for this particular example. You can’t see that from the
diagram, but when you get to the code later on, you’ll be able to observe the edge
addition order.

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 313

Now visit F and push G:

Then visit G and push C:

The next vertex to visit is C. It has neighbors [A, F, G], but all of these have already
been visited. You’ve reached a dead end, so it’s time to backtrack by popping C off the
stack:

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 314

This brings you back to G. It has neighbors [F, C], but both of these have been
visited. Another dead end, so pop G:

F also has no unvisited neighbors remaining, so pop F:

Now you’re back at E. Its neighbor H is still unvisited, so you push H on the stack:

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 315

Visiting H results in another dead end, so pop H:

E doesn’t have any available neighbors either, so pop it:

The same is true for B, so pop B:

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 316

This brings you all the way back to A, whose neighbor D still needs to be visited, so
you push D on the stack:

Visiting D results in another dead end, so pop D:

You’re back at A, but this time, there are no available neighbors to push, so you pop
A. The stack is now empty and DFS is complete!

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 317

When exploring the vertices, you can construct a tree-like structure, showing the
branches you’ve visited. You can see how deep DFS went compared to BFS:

Implementation
Open up the starter project for this chapter. The lib folder contains an
implementation of a graph as well as a stack, both of which you’ll use to implement
DFS.

Creating an Extension
Create a new file in lib called depth_first_search.dart. Add the following:

import 'stack.dart';
import 'graph.dart';

extension DepthFirstSearch<E> on Graph<E> {
 List<Vertex<E>> depthFirstSearch(Vertex<E> source) {
 final stack = Stack<Vertex<E>>();
 final pushed = <Vertex<E>>{};
 final visited = <Vertex<E>>[];

 stack.push(source);
 pushed.add(source);
 visited.add(source);

 // more to come

 return visited;
 }
}

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 318

Here, you’ve defined an extension method depthFirstSearch, which takes in a
starting vertex and returns a list of vertices in the order they were visited. It uses
three data structures:

1. stack is used to store your path through the graph.

2. pushed is a set that remembers which vertices have been pushed before so that
you don’t visit the same vertex twice. Using Set ensures fast O(1) lookup.

3. visited is a list that stores the order in which the vertices were visited.

To initialize the algorithm, you add the source vertex to all three.

Traversing Vertices
Next, complete the method by replacing the // more to come comment with the
following:

// 1
outerLoop:
while (stack.isNotEmpty) {
 final vertex = stack.peek;
 // 2
 final neighbors = edges(vertex);
 // 3
 for (final edge in neighbors) {
 if (!pushed.contains(edge.destination)) {
 stack.push(edge.destination);
 pushed.add(edge.destination);
 visited.add(edge.destination);
 // 4
 continue outerLoop;
 }
 }
 // 5
 stack.pop();
}

Here’s what’s going on:

1. You continue to check the top of the stack for a vertex until the stack is empty.
You’ve labeled this loop outerLoop so that you have a way to continue to the
next vertex, even from within a nested for loop.

2. You find all the neighboring edges for the current vertex.

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 319

3. Here, you loop through every edge connected to the current vertex and check if
the neighboring vertex has been seen. If not, you push it onto the stack and add it
to the visited list. It may seem a bit premature to mark this vertex as visited
since you haven’t peeked at it yet. However, vertices are visited in the order in
which they’re added to the stack, so it results in the correct order.

4. Now that you’ve found a neighbor to visit, you continue to outerLoop and peek
at the newly pushed neighbor.

5. If the current vertex didn’t have any unvisited neighbors, you know you’ve
reached a dead end and can pop it off the stack.

Once the stack is empty, the DFS algorithm is complete! All you have to do is return
the visited vertices in the order you visited them.

Testing it Out
To try out your code, open bin/starter.dart and replace the contents of the file with
the following code:

import 'package:starter/graph.dart';
import 'package:starter/depth_first_search.dart';

void main() {
 final graph = AdjacencyList<String>();

 final a = graph.createVertex('A');
 final b = graph.createVertex('B');
 final c = graph.createVertex('C');
 final d = graph.createVertex('D');
 final e = graph.createVertex('E');
 final f = graph.createVertex('F');
 final g = graph.createVertex('G');
 final h = graph.createVertex('H');

 graph.addEdge(a, b, weight: 1);
 graph.addEdge(a, c, weight: 1);
 graph.addEdge(a, d, weight: 1);
 graph.addEdge(b, e, weight: 1);
 graph.addEdge(c, g, weight: 1);
 graph.addEdge(e, f, weight: 1);
 graph.addEdge(e, h, weight: 1);
 graph.addEdge(f, g, weight: 1);
 graph.addEdge(f, c, weight: 1);
}

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 320

This creates a graph with the edges added in an order that results in the DFS path
that you saw in the diagrams above.

Perform the depth-first search by adding the following two lines at the bottom of
main:

final vertices = graph.depthFirstSearch(a);
vertices.forEach(print);

Run that and observe the order in which DFS visited the indices:

A
B
E
F
G
C
H
D

Performance
DFS will visit every single vertex at least once. This process has a time complexity of
O(V).

When traversing a graph in DFS, you have to check all neighboring vertices to find
one available to visit. The time complexity of this is O(E) because you have to visit
every edge in the graph in the worst case.

Overall, the time complexity for depth-first search is O(V + E).

The space complexity of depth-first search is O(V) since you have to store all the
vertices in three separate data structures: stack, pushed and visited.

Cycles
A depth-first search is also useful for finding whether a graph contains cycles. A
graph is said to have a cycle when a path of edges and vertices leads back to the
same source.

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 321

For example, in the directed graph below, if you start at A, you can go to B, then to C,
and then back to A again. Since it’s possible to arrive back at the starting vertex, this
is a cyclic graph:

If you removed the C-to-A edge, this graph would become acyclic. That is, there
would be no cycles. It would be impossible to start at any vertex and arrive back at
the same vertex.

Note: In this directed graph, there’s also a cycle from A to C since the edges are
pointing in both directions. In an undirected graph, though, two vertices
wouldn’t count as a cycle. Undirected graphs need at least three vertices to
make a cycle.

Checking for Cycles
Next, you’ll write an algorithm to check whether a directed graph contains a cycle.

Return to depth_first_search.dart and create another extension on Graph:

extension CyclicGraph<E> on Graph<E> {

}

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 322

Add the following recursive helper method to CyclicGraph:

bool _hasCycle(Vertex<E> source, Set<Vertex<E>> pushed) {
 // 1
 pushed.add(source);
 // 2
 final neighbors = edges(source);
 for (final edge in neighbors) {
 // 3
 if (!pushed.contains(edge.destination)) {
 if (_hasCycle(edge.destination, pushed)) {
 return true;
 }
 // 4
 } else {
 return true;
 }
 }
 // 5
 pushed.remove(source);
 // 6
 return false;
}

Here’s how it works:

1. Initialize the algorithm by adding the source vertex.

2. Visit every neighboring edge.

3. If the adjacent vertex has not been visited before, recursively dive deeper down a
branch to check for a cycle.

4. If the adjacent vertex has been visited before, you’ve found a cycle.

5. Remove the source vertex so you can continue to find other paths with a
potential cycle.

6. If you’ve reached this far, then no cycle was found.

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 323

To complete the code, add the public hasCycle method to CyclicGraph:

bool hasCycle(Vertex<E> source) {
 Set<Vertex<E>> pushed = {};
 return _hasCycle(source, pushed);
}

You’re essentially performing a depth-first graph traversal by recursively diving
down one path until you find a cycle and back-tracking by popping off the stack to
find another path. The time complexity is O(V + E).

Testing it Out
To create a graph that matches the image above, open bin/starter.dart and replace
the content of main with the following:

final graph = AdjacencyList<String>();

final a = graph.createVertex('A');
final b = graph.createVertex('B');
final c = graph.createVertex('C');
final d = graph.createVertex('D');

graph.addEdge(a, b, edgeType: EdgeType.directed);
graph.addEdge(a, c, edgeType: EdgeType.directed);
graph.addEdge(c, a, edgeType: EdgeType.directed);
graph.addEdge(b, c, edgeType: EdgeType.directed);
graph.addEdge(c, d, edgeType: EdgeType.directed);

print(graph);
print(graph.hasCycle(a));

Run that and you’ll see the output below:

A --> B, C
B --> C
C --> A, D
D -->

true

If you comment out the c-to-a edge, the method will return false.

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 324

Challenges
Try out the following challenges to test your understanding of depth-first searches.
You can find the answers in the back of the book or in the supplemental materials
that accompany the book.

Challenge 1: BFS or DFS
For each of the following two examples, which traversal, depth-first or breadth-first,
is better for discovering if a path exists between the two nodes? Explain why.

• Path from A to F.

• Path from A to G.

Challenge 2: Recursive DFS
In this chapter, you learned an iterative implementation of depth-first search. Now
write a recursive implementation.

Key Points
• Depth-first search (DFS) is another algorithm to traverse or search a graph.

• DFS explores a branch as far as possible before backtracking to the next branch.

• The stack data structure allows you to backtrack.

• A graph is said to have a cycle when a path of edges and vertices leads back to the
source vertex.

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 325

23Chapter 23: Dijkstra’s
Algorithm
By Vincent Ngo & Jonathan Sande

Have you ever used a maps app to find the shortest distance or fastest time from one
place to another? Dijkstra’s algorithm is particularly useful in GPS networks to
help find the shortest path between two locations. The algorithm works with
weighted graphs, both directed and undirected, to calculate the optimal routes from
one vertex to all others in the graph.

Dijkstra’s algorithm is known as a greedy algorithm. That means it picks the most
optimal path at every step along the way. It ignores solutions where some steps
might have a higher intermediate cost but result in a lower overall cost for the entire
path. Nevertheless, Dijkstra’s algorithm usually arrives at a pretty good solution very
quickly.

Some applications of Dijkstra’s algorithm include:

1. Communicable disease transmission: Discovering where biological diseases are
spreading the fastest.

2. Telephone networks: Routing calls to the highest-bandwidth paths available in
the network.

3. Mapping: Finding the shortest and fastest paths for travelers.

Note: On the off chance you’ve never seen the letters “jkstr” in combination
and have no idea how you’d say that, “Dijkstra’s” is pronounced ˈdaɪkstrəz.
And if you aren’t familiar with phonetic symbols, just combine the
pronunciation of the words “dike” and “extras”.

raywenderlich.com 326

How Dijkstra’s Algorithm Works
Imagine the directed graph below represents a road map. The vertices represent
physical locations, and the edges represent one-way routes of a given cost between
locations.

While edge weight can refer to the actual cost, it’s also commonly referred to as
distance, which fits with the paradigm of finding the shortest route. However, if you
like the word cost, you can think of route finding algorithms as looking for the
cheapest route.

Initialization
In Dijkstra’s algorithm, you first choose a starting vertex since the algorithm needs
a starting point to find a path to the rest of the nodes in the graph. Assume the
starting vertex you pick is vertex A.

You’ll use a table to keep track of the shortest routes from A to the other vertices. In
the beginning, you don’t know anything, so fill in the table with null values:

As you work through this example, you’ll use each cell of the table to save two pieces
of information:

1. The shortest known distance from A to this vertex.

2. The previous vertex in the path.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 327

First Pass
From vertex A, look at all of the outgoing edges. In this case, there are three:

• A to B has a distance of 8.

• A to F has a distance of 9.

• A to G has a distance of 1.

Since you know the distance of traveling from A to these three vertices, write the
values in the table:

You can see in the first cell that the distance from A to column B is 8. Below the 8
you also write A. This means that the previous vertex on the path to B is A. You’ll
update both the distance and the previous vertex if you find a better path to B in the
future. Columns F and G follow the same pattern. The other vertices are still null
since there’s no known path to them from A yet.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 328

Second Pass
In every round, Dijkstra’s algorithm always takes the shortest path. Of the distances
8, 9 and 1, the shortest is 1. That means column G with the 1 is the direction that
Dijkstra will go:

So the next step is to visit G:

Now, look for G’s outgoing edges. It only has one, which goes to C, and the distance
is 3. That means the total distance of the A to C path is 1 + 3 = 4. So write 4 and G in
the C column. Again, the reason you write G is that G is the previous vertex on this
path before reaching C:

The filled-in vertices, both in the table and in the graph, are the ones you’ve visited.
You already know the shortest route’s to these vertices, so you don’t need to check
them anymore.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 329

Third Pass
In the next pass, you look at the next-lowest distance. The distance to B is 8, the
distance to C is 4, and the distance to F is 9. That means C is the winner:

So now you visit C:

Look at all of C’s outgoing edges and add up the total cost it would take to get there
from A:

• C to E has a total cost of 4 + 1 = 5.

• C to B has a total cost of 4 + 3 = 7.

It’s actually cheaper to take this route to B than it was to go directly from A to B.
Because of that, update the B column with a new value of 7 by way of vertex C. Also
fill in the E column since you know a route there now:

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 330

Fourth Pass
Of the unvisited vertices, which path has the lowest distance now? According to the
table, E does, with a total distance of 5:

Visit E and check its outgoing vertices. You’ve already visited C so you can ignore
that one. However, B and D are still unvisited:

These are the distances:

• E to D has a total distance of 5 + 2 = 7.

• E to B has a total distance of 5 + 1 = 6.

You didn’t know about D before, so you can fill in that column in the table. Also,
when going to B, the path through E is even better than it was through C, so you can
update the B column as well:

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 331

Fifth Pass
Next, you continue the search from B since it has the next-lowest distance:

Visit B and observe its edges:

Of B‘s neighbors, the only one you haven’t visited yet is F. This has a total cost of 6 +
3 = 9. From the table, you can tell that the current path to F from A also costs 9. So,
you can disregard this path since it isn’t any shorter:

Sixth Pass
Of the remaining unvisited vertices, D is closest to A with a distance of 7:

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 332

In this pass, continue the traversal from D:

However, D has no outgoing edges, so it’s a dead end. You can just move on.

Seventh Pass
F is up next. It’s the only unvisited vertex that you have any information about:

So visit F and observe its outgoing edges:

F has one outgoing edge to A, but you can disregard this edge since A is the starting
vertex. You’ve already visited it.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 333

Eighth Pass
You’ve covered every vertex except for H. H has one outgoing edge to G and one to F.
However, there’s no path from A to H:

Because there’s no path, the column for H is null:

This step completes Dijkstra’s algorithm since all the vertices that can be visited
have been visited!

You can now check the table for the shortest paths and their distances. For example,
the output tells you the distance you have to travel to get to D is 7. To find the path,
you backtrack. Each column in the table records the previous vertex that the current
vertex is connected to. For example, to find the path to D, you start at D and
backtrack. D points to E, which points to C, which points to G, which points to A, the
starting vertex. So the path is A-G-C-E-D:

Backtrack from D to A

It’s time to express these ideas in code now.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 334

Implementation
The implementation of Dijkstra’s algorithm brings together a lot of the previous
concepts that you’ve learned in this book. Besides the basic data structures of lists,
maps and sets, you’ll also use a priority queue, which itself is made from a min-heap,
which is a partially sorted binary tree.

Open up the starter project for this chapter. The lib folder comes with an adjacency
list graph and a priority queue.

You’ll use the priority queue to store the vertices that haven’t been visited. The
queue uses a min-priority heap, which will allow you to dequeue the shortest known
path in every pass.

Creating Distance-Vertex Pairs
In the example diagrams above, you saw that the tables contained a distance-vertex
pair for every destination vertex. You’ll implement a class for this now to make it
easier to pass these values around.

Create a new file in lib named dijkstra.dart and add the following code to it:

import 'graph.dart';

class Pair<T> extends Comparable<Pair<T>> {
 Pair(this.distance, [this.vertex]);

 double distance;
 Vertex<T>? vertex;

 @override
 int compareTo(Pair<T> other) {
 if (distance == other.distance) return 0;
 if (distance > other.distance) return 1;
 return -1;
 }

 @override
 String toString() => '($distance, $vertex)';
}

Pair extends Comparable because Dijkstra’s algorithm hands the distance-vertex
pairs to a priority queue. The internal heap requires comparable elements so that it
can sort them. The comparison here is performed solely on the distance. Dijkstra will
be on the lookout for the shortest distances.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 335

Setting Up a Class for Dijkstra’s Algorithm
Add the following class to dijkstra.dart:

class Dijkstra<E> {
 Dijkstra(this.graph);

 final Graph<E> graph;
}

Dijkstra allows you to pass in any graph that implements the Graph interface.

Generating the Shortest Paths
Now you’re ready to start building the actual algorithm.

Initializing Dijkstra’s Algorithm

First import the file with your priority queue data structure at the top of
dijkstra.dart:

import 'priority_queue.dart';

Then add the following method to Dijkstra:

Map<Vertex<E>, Pair<E>?> shortestPaths(Vertex<E> source) {
 // 1
 final queue = PriorityQueue<Pair<E>>(priority: Priority.min);
 final visited = <Vertex<E>>{};
 final paths = <Vertex<E>, Pair<E>?>{};
 // 2
 for (final vertex in graph.vertices) {
 paths[vertex] = null;
 }
 // 3
 queue.enqueue(Pair(0, source));
 paths[source] = Pair(0);
 visited.add(source);

 // more to come

 return paths;
}

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 336

This method takes in a source vertex and returns a map of all the paths. You begin
the algorithm with the following content:

1. There are three data structures to help you out. The priority queue queue will
allow you to visit the shortest route next in each pass. The set visited isn’t
strictly necessary, but using it will prevent you from unnecessarily checking
vertices that you’ve already visited before. Finally, you’ll use the map paths to
store the distance and previous vertex information for every vertex in the graph.
Building paths is what this method is all about.

2. Initialize every vertex in the graph with a null distance-vertex pair.

3. Initialize the algorithm with the source vertex. This is where the search will start
from, so the distance to this vertex is zero. queue holds the current vertex, while
paths stores a reference to the previous vertex. Since the source vertex doesn’t
have a previous vertex, using Pair(0) causes the previous vertex to default to
null.

Visiting a New Vertex

Continue your implementation of shortestPaths by replacing the // more to
come comment with the following while loop. Each loop handles visiting a new
vertex:

// 1
while (!queue.isEmpty) {
 final current = queue.dequeue()!;
 // 2
 final savedDistance = paths[current.vertex]!.distance;
 if (current.distance > savedDistance) continue;
 // 3
 visited.add(current.vertex!);

 // more to come
}

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 337

This is how Dijkstra’s algorithm works here:

1. The queue holds the vertices that are known but haven’t been visited yet. As long
as the queue isn’t empty, you’re not done exploring!

2. Later on, you’ll decrease the distances of certain paths as you find shorter routes.
However, if you update the distance in paths, you should really update the same
distance in queue. The problem is, your priority queue doesn’t have a way to do
that. Don’t forget that the internal heap needs to maintain its min-heap
property. Instead of implementing any new features in the priority queue,
though, you’ll just add the same vertex again with a new distance. When the old,
obsolete distance-vertex pair comes through, the code at // 2 will ignore it.

3. Add the current vertex to the visited set so that you can skip over it later. You
already know the shortest route to this vertex.

Looping Over Outgoing Edges

You’re almost done. Now replace the // more to come comment inside the while
loop with the following code. This for loop iterates over the outgoing edges of the
current vertex:

for (final edge in graph.edges(current.vertex!)) {
 final neighbor = edge.destination;
 // 1
 if (visited.contains(neighbor)) continue;
 // 2
 final weight = edge.weight ?? double.infinity;
 final totalDistance = current.distance + weight;
 // 3
 final knownDistance = paths[neighbor]?.distance
 ?? double.infinity;
 // 4
 if (totalDistance < knownDistance) {
 paths[neighbor] = Pair(totalDistance, current.vertex);
 queue.enqueue(Pair(totalDistance, neighbor));
 }
}

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 338

Here’s what’s happening:

1. If you’ve previously visited the destination vertex, then ignore it and go on.

2. Find the total distance from the source to the neighboring vertex.

3. Compare the known distance to that vertex with the new total that you just
calculated. Newly discovered vertices will get a default distance of infinity.

4. If you’ve found a shorter route this time around, then update paths and enqueue
this vertex for visiting later. No worries if the same vertex is already enqueued.
You’ll discard the obsolete one when it shows up.

Once all the discoverable vertices have been visited and the priority queue is empty,
you return the map of the shortest paths. Dijkstra’s algorithm is complete.

Trying it Out

Navigate to bin/starter.dart and replace the contents of the file with the following
code:

import 'package:starter/dijkstra.dart';
import 'package:starter/graph.dart';

void main() {
 final graph = AdjacencyList<String>();

 final a = graph.createVertex('A');
 final b = graph.createVertex('B');
 final c = graph.createVertex('C');
 final d = graph.createVertex('D');
 final e = graph.createVertex('E');
 final f = graph.createVertex('F');
 final g = graph.createVertex('G');
 final h = graph.createVertex('H');

 graph.addEdge(a, b, weight: 8, edgeType: EdgeType.directed);
 graph.addEdge(a, f, weight: 9, edgeType: EdgeType.directed);
 graph.addEdge(a, g, weight: 1, edgeType: EdgeType.directed);
 graph.addEdge(g, c, weight: 3, edgeType: EdgeType.directed);
 graph.addEdge(c, b, weight: 3, edgeType: EdgeType.directed);
 graph.addEdge(c, e, weight: 1, edgeType: EdgeType.directed);
 graph.addEdge(e, b, weight: 1, edgeType: EdgeType.directed);
 graph.addEdge(e, d, weight: 2, edgeType: EdgeType.directed);
 graph.addEdge(b, e, weight: 1, edgeType: EdgeType.directed);
 graph.addEdge(b, f, weight: 3, edgeType: EdgeType.directed);
 graph.addEdge(f, a, weight: 2, edgeType: EdgeType.directed);
 graph.addEdge(h, g, weight: 5, edgeType: EdgeType.directed);
 graph.addEdge(h, f, weight: 2, edgeType: EdgeType.directed);
}

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 339

This recreates the graph that you saw in the example at the beginning of the chapter:

Now add the following code at the end of main:

final dijkstra = Dijkstra(graph);
final allPaths = dijkstra.shortestPaths(a);
print(allPaths);

Run that and you should see the following output:

{A: (0.0, null), B: (6.0, E), C: (4.0, G), D: (7.0, E), E: (5.0,
C), F: (9.0, A), G: (1.0, A), H: null}

This matches the results that the example described earlier.

Finding a Specific Path
The shortestPaths method found the shortest route to all of the other reachable
vertices. Often you just want the shortest path to a single destination, though. You’ll
add one more method to accomplish that.

Return to lib/dijkstra.dart and add the following method to Dijkstra:

List<Vertex<E>> shortestPath(
 Vertex<E> source,
 Vertex<E> destination, {
 Map<Vertex<E>, Pair<E>?>? paths,
}) {
 // 1
 final allPaths = paths ?? shortestPaths(source);
 // 2
 if (!allPaths.containsKey(destination)) return [];
 var current = destination;
 final path = <Vertex<E>>[current];
 // 3
 while (current != source) {

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 340

 final previous = allPaths[current]?.vertex;
 if (previous == null) return [];
 path.add(previous);
 current = previous;
 }
 // 4
 return path.reversed.toList();
}

After providing the source and destinations vertices to this method, here’s what
happens:

1. You find all of the paths. Providing paths as an argument is an optimization if
you need to call shortestPath multiple times on the same graph. No need to
recalculate Dijkstra’s algorithm over and over.

2. Ensure that a path actually exists.

3. Build the path by working backward from the destination.

4. Since you built the list by starting from the back, you need to reverse the list
before returning it.

Trying it Out
Open bin/starter.dart and add the following two lines at the end of main:

final path = dijkstra.shortestPath(a, d);
print(path);

Run your code again and you should see the ordered list of vertices showing the
shortest path from A to D:

[A, G, C, E, D]

Just like in the example!

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 341

Performance
When performing Dijkstra’s algorithm, you need to visit every edge. That means the
time complexity is at least O(E). After visiting an edge, you add the destination
vertex to a priority queue if the distance for this edge is shorter. However, in a worst
case scenario where every edge is shorter that the previous ones, you’d still have to
enqueue a vertex for every edge. Since enqueuing and dequeuing with your heap-
based priority queue has a logarithmic time complexity, this operation would be
O(log E). Repeating that for every edge would thus be O(E log E).

What about when you visited all of the vertices at the beginning of the algorithm to
set the paths to null? That operation was O(V), so you could say the overall time
complexity is O(V + E log E). However, you can assume that for a connected graph, V
will be less than or approximately equal to E. That means you can replace O(V + E log
E) with O(E + E log E). You can rearrange that as O(E × (1 + log E)). Then drop the 1 to
again leave you with O(E log E). Remember that Big O notation is just a generalized
way to talk about the complexity of an algorithm as the number of components
increases. Constant values can be ignored.

Note: Special thanks to bradfieldcs.com for inspiration on the algorithm used
in this chapter and to Google Engineer David Eisenstat on Stack Overflow for
help analyzing the complexity. See the following links for details:

https://bradfieldcs.com/algos/graphs/dijkstras-algorithm

https://stackoverflow.com/a/70436868

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 342

Challenges
Here are a few challenges to help you practice your new knowledge about Dijkstra’s
algorithm. As always, you can find the answers in the Challenge Solutions section at
the back of the book as well as in the downloadable supplemental materials.

Challenge 1: Dijkstra Step-by-Step
Given the following graph, step through Dijkstra’s algorithm yourself to produce the
shortest path to every other vertex starting from vertex A.

Challenge 2: Find All the Shortest Paths
Add an extension on Dijkstra that returns all the shortest paths in list form from a
given starting vertex. Here’s the method signature to get you started:

Map<Vertex<E>, List<Vertex<E>>> shortestPathsLists(
 Vertex<E> source,
)

Key Points
• Dijkstra’s algorithm finds the shortest path from a starting vertex to the rest of the

vertices in a graph.

• The algorithm is greedy, meaning it chooses the shortest path at each step.

• The priority queue data structure helps to efficiently return the vertex with the
shortest path.

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 343

24Conclusion

Congratulations! You’ve made it to the end of the book. You have a solid foundation
now in data structures and algorithms. Even so, there’s still a lot more to learn. Don’t
let that scare you, though. Each new data structure and algorithm will be its own
adventure.

Approaching a Difficult Problem
At times, you may not even know what data structure or algorithm you should use to
solve a particular problem. Here are a few ideas to help with that:

• Draw a diagram to model the issue.

• Talk through the problem with another developer.

• Just get started by writing some code that “works”, even if it’s horribly slow and
inefficient.

• Analyze what the time and space complexity are of your current implementation.
How could they be improved?

• Step through your current implementation line by line in a debugger. This often
shows you useless tasks that your algorithm is performing.

• Keep reading and watching videos about data structures and algorithms that
you’re unfamiliar with. The more you know, the more naturally a solution will pop
into your head when you come up against a hard problem.

raywenderlich.com 344

Learning Tips
Whenever you hear about a new data structure or algorithm that you’d like to learn,
here are some steps you can take to maximize your learning experience:

1. Try to get an intuitive grasp of how the data is structured or how the algorithm
works. Find illustrations or videos that describe it well. Draw yourself pictures or
manipulate objects such as playing cards.

2. After you understand the data structure or algorithm on a conceptual level, try to
implement it in code by yourself. Don’t look at other people’s implementations
just yet. Imagine that you’re a computer scientist in the 1950s!

3. Finally, check out the implementations in other languages like C or Java or
Python. Then convert them to Dart.

Where to Go From Here?
Don’t know what to study next? Here are some suggestions:

• Try out the A* pathfinding algorithm. Dijkstra’s algorithm is good for finding all
the shortest paths in a graph, but it does a lot of unnecessary work if you only need
the single shortest path between two vertices.

• Visit codeforces.com and work on some problems in their problem set. Start with
the easier problems and work up to the more challenging ones. Their code
submission form doesn’t currently support Dart, but every problem includes
example input and output that you can use to check your own solutions.

If you have any questions or comments as you work through this book, please stop by
our forums at https://forums.raywenderlich.com and look for the particular forum
category for this book.

Thank you again for purchasing this book. Your continued support is what makes the
books, tutorials, videos and other things we do at raywenderlich.com possible. We
truly appreciate it!

– The Data Structures & Algorithms in Dart team

Data Structures & Algorithms in Dart Conclusion

raywenderlich.com 345

Section VI: Challenge
Solutions

This section contains all of the solutions to the challenges throughout the book.
They’re printed here for your convenience and to aid your understanding, but you’ll
receive the most benefit if you attempt to solve the challenges yourself before
looking at the answers.

The code for all of the solutions is also available for download in the supplemental
materials that accompany this book.

raywenderlich.com 346

4Chapter 4 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
One of the prime use cases for stacks is to facilitate backtracking. If you push a
sequence of values into the stack, sequentially popping the stack will give you the
values in reverse order.

void printInReverse<E>(List<E> list) {
 var stack = Stack<E>();

 for (E value in list) {
 stack.push(value);
 }

 while (stack.isNotEmpty) {
 print(stack.pop());
 }
}

If you try it with ['d', 'r', 'a', 'w', 'e', 'r'] you’ll get a reward. :]

The time complexity of pushing all of the list elements into the stack is O(n). The
time complexity of popping the stack to print the values is also O(n). Overall, the
time complexity of this algorithm is O(n).

raywenderlich.com 347

Since you’re allocating a container (the stack) inside the function, you also incur an
O(n) space complexity cost.

Note: The way you should reverse a list in production code is to call the
reversed method that List provides. This method is O(1) in time and space.
This is because as an iterable it’s lazy and only creates a reversed view into the
original collection. If you traverse the items and print out all of the elements,
it predictably makes the operation O(n) in time while remaining O(1) in space.

Solution to Challenge 2
To check if there are balanced parentheses in the string, you need to go through each
character of the string. When you encounter an opening parenthesis, you’ll push that
onto a stack. Conversely, if you encounter a closing parenthesis, you should pop the
stack.

Here’s what the code looks like:

bool checkParentheses(String text) {
 var stack = Stack<int>();

 final open = '('.codeUnitAt(0);
 final close = ')'.codeUnitAt(0);

 for (int codeUnit in text.codeUnits) {
 if (codeUnit == open) {
 stack.push(codeUnit);
 } else if (codeUnit == close) {
 if (stack.isEmpty) {
 return false;
 } else {
 stack.pop();
 }
 }
 }
 return stack.isEmpty;
}

The time complexity of this algorithm is O(n), where n is the number of code units in
the string. This algorithm also incurs an O(n) space complexity cost due to the usage
of the Stack data structure.

Data Structures & Algorithms in Dart Chapter 4 Solutions

raywenderlich.com 348

5Chapter 5 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A straightforward way to solve this problem is to use recursion. Since recursion
allows you to build a call stack, you just need to call the print statements as the call
stack unwinds.

Add the following helper function to your project:

void printNodesRecursively<T>(Node<T>? node) {
 // 1
 if (node == null) return;

 // 2
 printNodesRecursively(node.next);

 // 3
 print(node.value);
}

1. You start off with the base case: the condition for terminating the recursion. If
node is null, then it means you’ve reached the end of the list.

2. This is your recursive call, calling the same function with the next node.

3. Where you add the print statement will determine whether you print the list in
reverse order or not. Any code that comes after the recursive call is called only
after the base case triggers, that is, after the recursive function hits the end of the
list. As the recursive statements unravel, the node data gets printed out.

raywenderlich.com 349

Finally, you need to call the helper method from a printInReverse function:

void printListInReverse<E>(LinkedList<E> list) {
 printNodesRecursively(list.head);
}

To test it out, write the following in your main function:

var list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print('Original list: $list');
print("Printing in reverse:");
printListInReverse(list);

You should see the following output:

Original list: 1 -> 2 -> 3
Printing in reverse:
3
2
1

The time complexity of this algorithm is O(n) since you have to traverse each node of
the list. The space complexity is likewise O(n) since you implicitly use the function
call stack to process each element.

Solution to Challenge 2
One solution is to have two references traverse down the nodes of the list, where one
is twice as fast as the other. Once the faster reference reaches the end, the slower
reference will be in the middle. Update the function to the following:

Node<E>? getMiddle<E>(LinkedList<E> list) {
 var slow = list.head;
 var fast = list.head;

 while (fast?.next != null) {
 fast = fast?.next?.next;
 slow = slow?.next;
 }

 return slow;
}

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 350

In the while loop, fast checks the next two nodes while slow only gets one. This is
known as the runner’s technique.

Write the following in your main function:

var list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);
print(list);

final middleNode = getMiddle(list);
print('Middle: ${middleNode?.value}');

You should see the following output:

1 -> 2 -> 3
Middle: 2

The time complexity of this algorithm is O(n) since you traversed the list in a single
pass. The runner’s technique helps solve a variety of problems associated with a
linked list.

Solution to Challenge 3
To reverse a linked list, you must visit each node and update the next reference to
point in the other direction. This can be a tricky task since you’ll need to manage
multiple references to multiple nodes.

The Easy Way
You can trivially reverse a list by using the push method along with a new temporary
list. Either add a reverse method to LinkedList or create an extension like so:

extension ReversibleLinkedList<E> on LinkedList<E> {
 void reverse() {
 final tempList = LinkedList<E>();
 for (final value in this) {
 tempList.push(value);
 }
 head = tempList.head;
 }
}

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 351

You first start by pushing the current values in your list to a new temporary list. This
will create a list in reverse order. After that point the head of the list to the reversed
nodes.

O(n) time complexity, short and sweet!

But Wait…
Although O(n) is the optimal time complexity for reversing a list, there’s a
significant resource cost in the previous solution. As it is now, reverse will have to
allocate new nodes for each push method on the temporary list. You can avoid using
the temporary list entirely and reverse the list by manipulating the next pointers of
each node. The code ends up being more complicated, but you reap considerable
benefits in terms of performance.

Replace the reverse method with the following:

void reverse() {
 tail = head;
 var previous = head;
 var current = head?.next;
 previous?.next = null;

 // more to come...
}

You begin by assigning head to tail. Next, you create two references — previous
and current — to keep track of traversal. The strategy is fairly straightforward: each
node points to the next node down the list. You’ll traverse the list and make each
node point to the previous node instead:

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 352

As you can see from the diagram, it gets a little tricky. By pointing current to
previous, you’ve lost the link to the rest of the list. Therefore, you’ll need to manage
a third pointer. Add the following at the bottom of the reverse method:

while (current != null) {
 final next = current.next;
 current.next = previous;
 previous = current;
 current = next;
}

Each time you perform the reversal, you create a new reference to the next node.
After every reversal procedure, you move the two pointers to the next two nodes.

Once you’ve finished reversing all the pointers, you’ll set the head to the last node of
this list. Add the following at the end of the reverse method:

head = previous;

Try it Out!
Test the reverse method by writing the following in main:

var list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(1);

print('Original list: $list');
list.reverse();
print('Reversed list: $list');

You should see the following output:

Original list: 1 -> 2 -> 3
Reversed list: 3 -> 2 -> 1

The time complexity of your new reverse method is still O(n), the same as the
trivial implementation discussed earlier. However, you didn’t need to use a
temporary list or allocate any new Node objects, which significantly improves the
performance of this algorithm.

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 353

Solution to Challenge 4
This solution traverses down the list, removing all nodes that match the element you
want to remove. Each time you perform a removal, you need to reconnect the
predecessor node with the successor node. While this can get complicated, it’s well
worth it to practice this technique. Many data structures and algorithms will rely on
clever uses of pointer arithmetic.

There are a few cases you need to consider. The first case to consider is when the
head of the list contains the value that you want to remove.

Trimming the Head
Suppose you want to remove 1 from the following list:

You’d want your new head to point to 2.

Create an extension on LinkedList and add a removeAll method to it:

extension RemovableLinkedList<E> on LinkedList {
 void removeAll(E value) {

 }
}

Then add the following while loop to removeAll:

while (head != null && head!.value == value) {
 head = head!.next;
}

Since it’s possible to have a sequence of nodes with the same value, the while loop
ensures that you remove them all. The loop will finish if you get to the end of the list
or when the value is different.

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 354

Unlinking the Nodes
Like many of the algorithms associated with linked lists, you’ll leverage your pointer
arithmetic skills to unlink the nodes. Write the following at the bottom of
removeAll:

var previous = head;
var current = head?.next;
while (current != null) {
 if (current.value == value) {
 previous?.next = current.next;
 current = previous?.next;
 continue;
 }
 // more to come
}

You need to traverse the list using two pointers: previous and next. The if block
will trigger if it’s necessary to remove a node.

You modify the list so that you bypass the node you don’t want:

Keep Traveling…
Can you tell what’s missing? As it is right now, the while loop may never terminate.
You need to move the previous and current pointers along. Write the following at
the bottom of the while loop, replacing the // more to come comment:

previous = current;
current = current.next;

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 355

Finally, you’ll update the tail of the linked list. This is necessary when the original
tail is a node containing the value you wanted to remove. Add the following to the
end of removeAll:

tail = previous;

And that’s it for the implementation!

Try it Out!
Write the following in main:

var list = LinkedList<int>();
list.push(3);
list.push(2);
list.push(2);
list.push(1);
list.push(1);

list.removeAll(3);
print(list);

You should see the following output:

1 -> 1 -> 2 -> 2

This algorithm has a time complexity of O(n) since you need to go through all the
elements.

Data Structures & Algorithms in Dart Chapter 5 Solutions

raywenderlich.com 356

6Chapter 6 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
Queues have a behavior of first-in-first-out. What comes in first must come out first.
Items in the queue are inserted from the rear and removed from the front.

Queue Examples:

1. Line in a movie theatre: You would hate for people to cut the line at the movie
theatre when buying tickets!

2. Printer: Multiple people could print documents from a printer in a similar first-
come-first-serve manner.

Stacks have a behavior of last-in-first-out. Items on the stack are inserted at the top
and removed from the top.

Stack Examples:

1. Stack of plates: You stack plates on top of each other and remove the top plate
every time you use one. Isn’t this easier than grabbing the one at the bottom?

2. Undo functionality: Imagine typing words on a keyboard. Clicking Ctrl-Z will
undo the most recent text you typed.

raywenderlich.com 357

Solution to Challenge 2

List
Keep in mind that whenever the list is full and you try to add a new element, a new
list will be created with twice the capacity and existing elements being copied over.

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 358

Linked List

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 359

Ring Buffer

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 360

Double Stack

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 361

Solution to Challenge 3
Creating a board game manager is straightforward. All you care about is whose turn
it is. A queue data structure is the perfect choice for that!

extension BoardGameManager<E> on QueueRingBuffer<E> {
 E? nextPlayer() {
 final person = dequeue();
 if (person != null) {
 enqueue(person);
 }
 return person;
 }
}

Dequeuing a player tells you who is next. Enqueuing them again puts them at the
back of the queue.

For the small number of players you’re dealing with in a Monopoly game, you aren’t
going to have any noticeable performance difference no matter what queue type you
choose. However, a ring-buffer-based queue is great for Monopoly since there are a
set number of players and you don’t need to worry about overfilling the buffer.

Test it out:

final monopolyTurn = QueueRingBuffer<String>(4);
monopolyTurn.enqueue('Ray');
monopolyTurn.enqueue('Vicki');
monopolyTurn.enqueue('Luke');
monopolyTurn.enqueue('Pablo');

String? player;
for (var i = 1; i <= 20; i++) {
 player = monopolyTurn.nextPlayer();
 print(player);
}
print('$player wins!');

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 362

Solution to Challenge 4
Deque is made up of common operations from the Queue and Stack data structures.
There are many ways to implement a Deque. You could build one using a circular
buffer, two stacks, a list, or a doubly linked list. The solution below makes use of a
doubly linked list to construct a Deque.

First setup the doubly-linked-list deque as shown below:

class DequeDoublyLinkedList<E> implements Deque<E> {
 final _list = DoublyLinkedList<E>();

}

Now you have to conform to the Deque interface. First, implement isEmpty by
checking if the linked list is empty. This is an O(1) operation.

@override
bool get isEmpty => _list.isEmpty;

Next, you need a way to look at the value from the front or back of the Deque.

@override
E? peek(Direction from) {
 switch (from) {
 case Direction.front:
 return _list.head?.value;
 case Direction.back:
 return _list.tail?.value;
 }
}

To peek at the element from the front or back, check the list’s head and tail values.
This is an O(1) operation.

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 363

Now you need a way to add elements to the front or back of Deque.

@override
bool enqueue(E value, Direction to) {
 switch (to) {
 case Direction.front:
 _list.push(value);
 break;
 case Direction.back:
 _list.append(value);
 break;
 }
 return true;
}

Adding an element to the front or back of Deque:

1. Front: push an element to the front of the list. Internally the linked list will
update the new node as the head of the linked list.

2. Back: append an element to the back of the list. Similarly, the linked list will
update the new node as the tail of the linked list.

These are both O(1) operations since all you have to do is update the internal
pointers for a couple nodes.

Now that you have a way to add elements, how about a way to remove elements?

@override
E? dequeue(Direction from) {
 switch (from) {
 case Direction.front:
 return _list.pop();
 case Direction.back:
 return _list.removeLast();
 }
}

Removing an element from the front or back of a Deque is simple.

1. Front: Call pop to remove the head node in the list.

2. Back: Similarly, call removeLast to remove the tail.

Similar to enqueue, these are O(1) operations for a doubly linked list.

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 364

Lastly, override toString so you can test your Deque.

@override
String toString() => _list.toString();

That’s all there is to building a Deque! Add the following code below to test your
implementation:

final deque = DequeDoublyLinkedList<int>();
deque.enqueue(1, Direction.back);
deque.enqueue(2, Direction.back);
deque.enqueue(3, Direction.back);
deque.enqueue(4, Direction.back);

print(deque);

deque.enqueue(5, Direction.front);

print(deque);

deque.dequeue(Direction.back);
deque.dequeue(Direction.back);
deque.dequeue(Direction.back);
deque.dequeue(Direction.front);
deque.dequeue(Direction.front);
deque.dequeue(Direction.front);

print(deque);

Run that and you’ll see the following in the console:

[1, 2, 3, 4]
[5, 1, 2, 3, 4]
[]

Data Structures & Algorithms in Dart Chapter 6 Solutions

raywenderlich.com 365

7Chapter 7 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A straightforward way to print the nodes in level-order is to leverage the level-order
traversal using a Queue data structure. The tricky bit is determining when a newline
should occur. For that it would be useful to know the number of elements in the
queue. The queues you made in the last chapter don’t have a length property, but
you can add one now.

Open your QueueStack implementation and add the following line:

int get length => _leftStack.length + _rightStack.length;

You implemented the double-stack queue using two lists, so finding the length is
still an O(1) operation. This would not be true if you used the linked-list
implementation.

raywenderlich.com 366

Now you’re ready to deal with the challenge:

void printEachLevel<T>(TreeNode<T> tree) {
 final result = StringBuffer();
 // 1
 var queue = QueueStack<TreeNode<T>>();
 var nodesLeftInCurrentLevel = 0;
 queue.enqueue(tree);
 // 2
 while (!queue.isEmpty) {
 // 3
 nodesLeftInCurrentLevel = queue.length;
 // 4
 while (nodesLeftInCurrentLevel > 0) {
 final node = queue.dequeue();
 if (node == null) break;
 result.write('${node.value} ');
 for (var element in node.children) {
 queue.enqueue(element);
 }
 nodesLeftInCurrentLevel -= 1;
 }
 // 5
 result.write('\n');
 }
 print(result);
}

1. You begin by initializing a Queue data structure to facilitate the level-order
traversal. You also create nodesLeftInCurrentLevel to keep track of the
number of nodes you’ll need to work on before you print a new line.

2. Your level-order traversal continues until your queue is empty.

3. Inside the first while loop, you begin by setting nodesLeftInCurrentLevel to
the number of current elements in the queue.

4. Using another while loop, you dequeue the first nodesLeftInCurrentLevel
number of elements from the queue. Every element you dequeue is added to
result without establishing a new line. You also enqueue all the children of the
node.

5. At this point, you append a newline to result. In the next iteration,
nodesLeftInCurrentLevel will be updated with the count of the queue,
representing the number of children from the previous iteration.

This algorithm has a time complexity of O(n). Since you initialize the Queue data
structure as an intermediary container, this algorithm also uses O(n) space.

Data Structures & Algorithms in Dart Chapter 7 Solutions

raywenderlich.com 367

Solution to Challenge 2
When building a UI widget tree it’s easier if you can pass the children in as
parameters in the constructor. Here is one version of what the nodes could look like:

class Widget {}

class Column extends Widget {
 Column({this.children});
 List<Widget>? children;
}

class Padding extends Widget {
 Padding({this.value = 0.0, this.child});
 double value;
 Widget? child;
}

class Text extends Widget {
 Text([this.value = '']);
 String value;
}

Now you can easily build a Flutter-like widget tree:

final tree = Column(
 children: [
 Padding(
 value: 8.0,
 child: Text('This'),
),
 Padding(
 value: 8.0,
 child: Text('is'),
),
 Column(
 children: [
 Text('my'),
 Text('widget'),
 Text('tree!'),
],
),
],
);

Data Structures & Algorithms in Dart Chapter 7 Solutions

raywenderlich.com 368

8Chapter 8 Solutions

By Kelvin Lau & Jonathan Sande

You can use the following code to create a demo tree for both challenges:

// ┌──25
// │ └──17
// 15
// │ ┌──12
// └──10
// └──5
BinaryNode<int> createBinaryTree() {
 final n15 = BinaryNode(15);
 final n10 = BinaryNode(10);
 final n5 = BinaryNode(5);
 final n12 = BinaryNode(12);
 final n25 = BinaryNode(25);
 final n17 = BinaryNode(17);

 n15.leftChild = n10;
 n10.leftChild = n5;
 n10.rightChild = n12;
 n15.rightChild = n25;
 n25.leftChild = n17;

 return n15;
}

raywenderlich.com 369

Solution to Challenge 1
A recursive approach for finding the height of a binary tree doesn’t take much code:

import 'dart:math';

int height(BinaryNode? node) {
 // 1
 if (node == null) return -1;

 // 2
 return 1 +
 max(
 height(node.leftChild),
 height(node.rightChild),
);
}

1. This is the base case for the recursive solution. If the node is null, you’ll return
-1.

2. Here, you recursively call the height function. For every node you visit, you add
one to the height of the highest child.

This algorithm has a time complexity of O(n) since you need to traverse through all
the nodes. This algorithm incurs a space cost of O(n) since you need to make the
same n recursive calls to the call stack.

Solution to Challenge 2
There are many ways to serialize and deserialize a binary tree. Your first task when
encountering this question is to decide on the traversal strategy.

This solution will use the pre-order traversal strategy.

Traversal
Define the following extension in your project:

extension Serializable<T> on BinaryNode<T> {
 void traversePreOrderWithNull(void Function(T? value) action)
{
 action(value);
 if (leftChild == null) {
 action(null);

Data Structures & Algorithms in Dart Chapter 8 Solutions

raywenderlich.com 370

 } else {
 leftChild!.traversePreOrderWithNull(action);
 }
 if (rightChild == null) {
 action(null);
 } else {
 rightChild!.traversePreOrderWithNull(action);
 }
 }
}

This function implements pre-order traversal. However, it differs from the
traversePreOrder function that you wrote when going through the chapter because
this one performs action even when the children are null. It’s essential to record
those for serialization and deserialization.

As with all traversal functions, this algorithm goes through every node in the tree
once, so it has a time complexity of O(n).

Serialization
For serialization, you simply traverse the tree and store the values into a list. The
elements of the list have type T? since you need to keep track of the null nodes.
Write the following function to perform the serialization:

List<T?> serialize<T>(BinaryNode<T> node) {
 final list = <T?>[];
 node.traversePreOrderWithNull((value) => list.add(value));
 return list;
}

serialize will return a new list containing the values of the tree in pre-order.

The time complexity of the serialization step is O(n). Since you’re creating a new list,
this also incurs an O(n) space cost.

Deserialization
In the serialization process, you performed a pre-order traversal and assembled the
values into a list. The deserialization process is to take each value of the list and
reassemble it back into a tree.

Data Structures & Algorithms in Dart Chapter 8 Solutions

raywenderlich.com 371

Your goal is to iterate through the list and reassemble the tree in pre-order format.
Add the following function to your project:

// 1
BinaryNode<T>? deserialize<T>(List<T?> list) {
 // 2
 if (list.isEmpty) return null;
 final value = list.removeAt(0);
 if (value == null) return null;
 // 3
 final node = BinaryNode<T>(value);
 node.leftChild = deserialize(list);
 node.rightChild = deserialize(list);
 return node;
}

Here’s how the code works:

1. deserialize takes a mutable list of values. This is important because you’ll be
able to make mutations to the list in each recursive step and allow future
recursive calls to see the changes.

2. This is the base case. If the list is empty you’ll end recursion here. You also won’t
bother making any nodes for null values in the list.

3. You reassemble the tree by creating a node from the current value and
recursively calling deserialize to assign nodes to the left and right children.
Notice this is very similar to the pre-order traversal, except you build nodes
rather than extract their values.

Your algorithm is now ready for testing! Write the following in main:

final tree = createBinaryTree();
final list = serialize(tree);
final newTree = deserialize(list);
print(newTree);

You should see the result below in your console:

 ┌── null
┌──25
│ └── 17
15
│ ┌── 12
└──10
 └── 5

Data Structures & Algorithms in Dart Chapter 8 Solutions

raywenderlich.com 372

Your deserialized tree mirrors the original one. This is the behavior you want.

However, the time complexity of this function isn’t desirable. Since you’re calling
removeAt(0) as many times as elements in the list, this algorithm has an O(n²) time
complexity. Fortunately, there’s an easy way to remedy that.

Write the following function just after deserialize:

BinaryNode<T>? deserializeHelper<T>(List<T?> list) {
 return deserialize(list.reversed.toList());
}

This is a helper function that first reverses the list before calling the main
deserialize function. In deserialize, find the removeAt(0) function call and
change it to the following:

final value = list.removeLast();

This tiny change has a big effect on performance. removeAt(0) is an O(n) operation
because, after every removal, every element after the removed element must shift
left to take up the missing space. In contrast, removeLast is an O(1) operation.

Finally, find and update the call site of deserialize to use the new helper function
that reverses the list:

final tree = createBinaryTree();
final list = serialize(tree);
final newTree = deserializeHelper(list);

You should see the same tree before and after the deserialization process. The time
complexity, though, for this solution has now improved to O(n). Because you’ve
created a new reversed list and chosen a recursive solution, this algorithm has a
space complexity of O(n).

Data Structures & Algorithms in Dart Chapter 8 Solutions

raywenderlich.com 373

9Chapter 9 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A binary search tree is a tree where every left child is less than its parent, and every
right child is greater than or equal to its parent.

An algorithm that verifies whether a tree is a binary search tree involves going
through all the nodes and checking for this property.

raywenderlich.com 374

Write the following in your project. You’ll need access to the BinaryNode class that
you created in Chapter 8.

import 'binary_node.dart';

extension Checker<E extends Comparable<dynamic>> on
BinaryNode<E> {
 bool isBinarySearchTree() {
 return _isBST(this, min: null, max: null);
 }

 bool _isBST(BinaryNode<E>? tree, {E? min, E? max}) {
 // 1
 if (tree == null) return true;

 // 2
 if (min != null && tree.value.compareTo(min) < 0) {
 return false;
 } else if (max != null && tree.value.compareTo(max) >= 0) {
 return false;
 }

 // 3
 return _isBST(tree.leftChild, min: min, max: tree.value) &&
 _isBST(tree.rightChild, min: tree.value, max: max);
 }
}

isBinarySearchTree is the method that you’ll expose for external use. Meanwhile,
the magic happens in _isBST, which is responsible for recursively traversing through
the tree and checking that the BST rules are followed. It needs to keep track of
progress via a reference to a BinaryNode, and also keep track of the min and max
values to verify the BST rules. Here are the details:

1. This is the base case. If tree is null, then there are no nodes to inspect. A null
node is a binary search tree, so you’ll return true in that case.

2. This is essentially a bounds check. If the current value exceeds the bounds of min
and max, the current node violates binary search tree rules.

3. This statement contains the recursive calls. When traversing through the left
children, the current value is passed in as the max value. This is because any
nodes on the left side cannot be greater than the parent. Conversely, when
traversing to the right, the min value is updated to the current value. Any nodes
on the right side must be greater than or equal to the parent. If any of the
recursive calls evaluate false, the false value will propagate back to the top.

Data Structures & Algorithms in Dart Chapter 9 Solutions

raywenderlich.com 375

The time complexity of this solution is O(n) since you need to traverse through the
entire tree once. There is also an O(n) space cost since you’re making n recursive
calls.

Solution to Challenge 2
Testing equality is relatively straightforward. For two binary trees to be equal, both
trees must have the same elements in the same order. Here’s what the solution looks
like:

bool treesEqual(BinarySearchTree first, BinarySearchTree second)
{
 return _isEqual(first.root, second.root);
}

// 1
bool _isEqual(BinaryNode? first, BinaryNode? second) {
 // 2
 if (first == null || second == null) {
 return first == null && second == null;
 }
 // 3
 return first.value == second.value &&
 _isEqual(first.leftChild, second.leftChild) &&
 _isEqual(first.rightChild, second.rightChild);
}

The commented numbers refer to the following notes:

1. _isEqual will recursively check two nodes and their descendants for equality.

2. This is the base case. If one or more of the nodes are null, then there’s no need
to continue checking. If both nodes are null, they’re equal. Otherwise, one is
null and one isn’t null, so they must not be equal.

3. Here, you check the value of the first and second nodes for equality. You also
recursively check the left children and right children for equality.

The time complexity of this function is O(n). The space complexity of this function is
also O(n).

Note: Trees are mutable and testing for equality on mutably data structures is
an inherently tricky business. That’s why this solution didn’t have you
override the == operator and hashCode method on BinarySearchTree.

Data Structures & Algorithms in Dart Chapter 9 Solutions

raywenderlich.com 376

Solution to Challenge 3
Your goal is to create a method that checks if the current tree contains all the
elements of another tree. In other words, the values in the current tree must be a
superset of the values of the other tree. Here’s what the solution looks like:

extension Subtree<E> on BinarySearchTree {
 bool containsSubtree(BinarySearchTree subtree) {
 // 1
 Set set = <E>{};
 root?.traverseInOrder((value) {
 set.add(value);
 });

 // 2
 var isEqual = true;

 // 3
 subtree.root?.traverseInOrder((value) {
 isEqual = isEqual && set.contains(value);
 });
 return isEqual;
 }
}

1. You begin by inserting all the elements of the current tree into a set.

2. isEqual is there to store the end result. You need this because traverseInOrder
takes a closure, and you can’t directly return from inside the closure.

3. For every element in the subtree, you check if the set contains the value. If at any
point set.contains(value) evaluates as false, you’ll make sure isEqual stays
false even if subsequent elements evaluate as true.

The time and space complexity for this algorithm is O(n).

Data Structures & Algorithms in Dart Chapter 9 Solutions

raywenderlich.com 377

10Chapter 10 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A perfectly balanced tree is a tree where all the leaves are in the same level, and that
level is completely filled:

Recall that a tree with just a root node has a height of zero. Thus, the tree in the
example above has a height of two. You can extrapolate that a tree with a height of
three would have eight leaf nodes.

raywenderlich.com 378

Since each node has two children, the number of leaf nodes doubles as the height
increases. You can calculate the number of leaf nodes with a simple equation:

int leafNodes(int height) {
 return math.pow(2, height).toInt();
}

Solution to Challenge 2
Since the tree is perfectly balanced, the number of nodes in a perfectly balanced tree
of height 3 can be expressed by the following:

int nodes(int height) {
 int nodes = 0;
 for (int h = 0; h <= height; h++) {
 nodes += math.pow(2, h).toInt();
 }
 return nodes;
}

Although this certainly gives you the correct answer of 15, there’s a faster way. If you
examine the results of a sequence of height inputs, you’ll realize that the total
number of nodes is one less than the number of leaf nodes of the next level.

Thus, a faster version of this is the following:

int nodes(int height) {
 return math.pow(2, height + 1).toInt() - 1;
}

Data Structures & Algorithms in Dart Chapter 10 Solutions

raywenderlich.com 379

Solution to Challenge 3
First, open avl_node.dart and add the following interface to the top of the file:

abstract class TraversableBinaryNode<T> {
 T get value;
 TraversableBinaryNode<T>? get leftChild;
 TraversableBinaryNode<T>? get rightChild;

 void traverseInOrder(void Function(T value) action) {
 leftChild?.traverseInOrder(action);
 action(value);
 rightChild?.traverseInOrder(action);
 }

 void traversePreOrder(void Function(T value) action) {
 action(value);
 leftChild?.traversePreOrder(action);
 rightChild?.traversePreOrder(action);
 }

 void traversePostOrder(void Function(T value) action) {
 leftChild?.traversePostOrder(action);
 rightChild?.traversePostOrder(action);
 action(value);
 }
}

Next, replace first few lines of AvlNode to include TraversableBinaryNode and the
@override annotations:

class AvlNode<T> extends TraversableBinaryNode<T> {
 AvlNode(this.value);

 @override
 T value;

 @override
 AvlNode<T>? leftChild;

 @override
 AvlNode<T>? rightChild;

 // ...

Data Structures & Algorithms in Dart Chapter 10 Solutions

raywenderlich.com 380

You can also delete the traversal methods in AvlNode since they are already included
in TraversableBinaryNode.

Finally, run the following to test it out:

import 'avl_tree.dart';

void main() {
 final tree = AvlTree<int>();
 for (var i = 0; i < 15; i++) {
 tree.insert(i);
 }
 tree.root?.traverseInOrder(print);
}

Verify that you’re getting the following results in the console:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Data Structures & Algorithms in Dart Chapter 10 Solutions

raywenderlich.com 381

11Chapter 11 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
You’ll implement allStrings as a stored property. Inside StringTrie, add the
following new property:

final Set<String> _allStrings = {};
Set<String> get allStrings => _allStrings;

This property is a Set that will separately store all the strings represented by the
code unit collections in the trie. Making allStrings a getter prevents the property
from being tampered with from the outside.

Next, in the insert method, find the line current.isTerminating = true and add
the following below it:

_allStrings.add(text);

raywenderlich.com 382

In the remove function, find the line current.isTerminating = false and add the
following just below that line:

_allStrings.remove(text);

This ensures that your string set will stay in sync with the trie.

Adding the count and isEmpty properties is straightforward now that you’re keeping
track of all the strings:

int get length => _allStrings.length;

bool get isEmpty => _allStrings.isEmpty;

That’s it!

Note: Just because you can do something doesn’t mean you should. Now that
you’re storing all of the strings in your trie separately as a set, you’ve lost the
space complexity benefits that trie gave you.

Solution to Challenge 2
In StringTrie you only dealt with code unit collections. Now you have to generalize
the task to handle any collection. Since you need to be able to loop through the
elements of whatever collection you’re inserting, searching for, or removing, a
generic trie should require any input to be iterable.

Create a new file called trie.dart and add the following class to it:

import 'trie_node.dart';

class Trie<E, T extends Iterable<E>> {
 TrieNode<E> root = TrieNode(key: null, parent: null);
}

T represents the iterable collections that you’ll add to the trie while E represents the
type for the TrieNode key. For example, given a list of code units, E is int for the
code unit while T is List<int> for the collection.

Data Structures & Algorithms in Dart Chapter 11 Solutions

raywenderlich.com 383

Now that you have the generic types set up, you can implement the insert method
like so:

void insert(T collection) {
 var current = root;
 for (E element in collection) {
 current.children[element] ??= TrieNode(
 key: element,
 parent: current,
);
 current = current.children[element]!;
 }
 current.isTerminating = true;
}

This is almost identical to your StringTrie implementation except that now you
iterate through the more generic elements of type E in a collection of type T.

The process to update contains and remove are similar:

• Parameter inputs are T collection.

• Use for (E element in collection) to loop through the elements.

Try out your generic Trie by running the following in main:

import 'trie.dart';

void main() {
 final trie = Trie<int, List<int>>();
 trie.insert('cut'.codeUnits);
 trie.insert('cute'.codeUnits);
 if (trie.contains('cute'.codeUnits)) {
 print('cute is in the trie');
 }
 trie.remove('cut'.codeUnits);
 assert(!trie.contains('cut'.codeUnits));
}

Run that and you’ll see the following results:

cute is in the trie
cut has been removed

From the user’s perspective, the code above isn’t quite as concise as your
StringTrie was. However, the advantage is that your new Trie can handle any
iterable collection, not just the code units of strings.

Data Structures & Algorithms in Dart Chapter 11 Solutions

raywenderlich.com 384

12Chapter 12 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
In this challenge you implement binary search as a free function. Here’s what it looks
like:

int? binarySearch<E extends Comparable<dynamic>>(
 List<E> list,
 E value, [
 int? start,
 int? end,
]) {
 final startIndex = start ?? 0;
 final endIndex = end ?? list.length;
 if (startIndex >= endIndex) {
 return null;
 }
 final size = endIndex - startIndex;
 final middle = startIndex + size ~/ 2;
 if (list[middle] == value) {
 return middle;
 } else if (value.compareTo(list[middle]) < 0) {
 return binarySearch(list, value, startIndex, middle);
 } else {
 return binarySearch(list, value, middle + 1, endIndex);
 }
}

The only major difference from the extension that you made earlier is that now you
also need to pass the list in as a parameter.

raywenderlich.com 385

Solution to Challenge 2
Here is how you would implement binarySearch as a non-recursive function:

int? binarySearch<E extends Comparable<dynamic>>(
 List<E> list,
 E value,
) {
 var start = 0;
 var end = list.length;
 while (start < end) {
 final middle = start + (end - start) ~/ 2;
 if (value == list[middle]) {
 return middle;
 } else if (value.compareTo(list[middle]) < 0) {
 end = middle;
 } else {
 start = middle + 1;
 }
 }
 return null;
}

On each loop you move start and end closer and closer to each other until you
finally get the value…or find nothing.

Good old loops can be a lot easier to wrap your brain around, can’t they? Don’t let
anyone tell you that recursion is the only answer!

Solution to Challenge 3
First create a class to hold the start and end indices:

class Range {
 Range(this.start, this.end);
 final int start;
 final int end;

 @override
 String toString() => 'Range($start, $end)';
}

Data Structures & Algorithms in Dart Chapter 12 Solutions

raywenderlich.com 386

start is inclusive and end is exclusive.

An unoptimized but elegant solution to find a range of indices that match a value is
quite simple:

Range? findRange(List<int> list, int value) {
 final start = list.indexOf(value);
 if (start == -1) return null;
 final end = list.lastIndexOf(value) + 1;
 return Range(start, end);
}

The time complexity of this solution is O(n), which isn’t terrible. However, the
solution can be optimized to O(log n).

Whenever you hear that a collection is sorted, your mind should jump to binary
search. The binary search you implemented in this chapter, though, isn’t powerful
enough to tell you whether the index is a start or end index. You’ll modify the binary
search to accommodate for this new rule.

First write a helper method to find the start index:

int? _startIndex(List<int> list, int value) {
 if (list[0] == value) return 0;
 var start = 1;
 var end = list.length;
 while (start < end) {
 var middle = start + (end - start) ~/ 2;
 if (list[middle] == value && list[middle - 1] != value) {
 return middle;
 } else if (list[middle] < value) {
 start = middle + 1;
 } else {
 end = middle;
 }
 }
 return null;
}

Data Structures & Algorithms in Dart Chapter 12 Solutions

raywenderlich.com 387

This method not only checks that the value is correct but also that it’s the first one if
there are multiple elements of the same value.

Add another method to find the end index:

int? _endIndex(List<int> list, int value) {
 if (list[list.length - 1] == value) return list.length;
 var start = 0;
 var end = list.length - 1;
 while (start < end) {
 var middle = start + (end - start) ~/ 2;
 if (list[middle] == value && list[middle + 1] != value) {
 return middle + 1;
 } else if (list[middle] > value) {
 end = middle;
 } else {
 start = middle + 1;
 }
 }
 return null;
}

The logic is the same except for a new adjustments to make sure you’ve found the
very last element of a series.

Once you can find the start and end indices, obtaining the range is straightforward:

Range? findRange(List<int> list, int value) {
 if (list.isEmpty) return null;
 final start = _startIndex(list, value);
 final end = _endIndex(list, value);
 if (start == null || end == null) return null;
 return Range(start, end);
}

Test out your solution by running the following in main:

final list = [1, 2, 3, 3, 3, 4, 5, 5];
final range = findRange(list, 3);
print(range);

You should see the output below in the console:

Range(2, 5)

This function improves the time complexity from O(n) to O(log n).

Data Structures & Algorithms in Dart Chapter 12 Solutions

raywenderlich.com 388

13Chapter 13 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
There are many ways to solve for the nth smallest integer in an unsorted list. This
chapter is about heaps, so the solution here will use a min-heap.

int? getNthSmallestElement(int n, List<int> elements) {
 var heap = Heap(
 elements: elements,
 priority: Priority.min,
);
 int? value;
 for (int i = 0; i < n; i++) {
 value = heap.remove();
 }
 return value;
}

Since heap.remove always returns the smallest element, you just loop through n
times to get the nth smallest integer.

raywenderlich.com 389

Solution to Challenge 2
Given the following unsorted list:

[21, 10, 18, 5, 3, 100, 1]

The diagrams below show the steps it would take to convert that list into a min-
heap. First sift the 18, then the 10, and finally the 21:

Solution to Challenge 3
To combine two heaps, add the following method to Heap:

void merge(List<E> list) {
 elements.addAll(list);
 _buildHeap();
}

You first combine both lists, which is O(m), where m is the size of the heap you’re
merging. Building the heap takes O(n), where n is the new total number of elements.
Overall the algorithm runs in O(n) time.

Data Structures & Algorithms in Dart Chapter 13 Solutions

raywenderlich.com 390

Solution to Challenge 4
To satisfy the min-heap requirement, every parent node must be less than or equal
to its left and right child node.

Here’s how you can determine if a list is a min-heap:

bool isMinHeap<E extends Comparable<dynamic>>(List<E> elements)
{
 // 1
 if (elements.isEmpty) return true;
 // 2
 final start = elements.length ~/ 2 - 1;
 for (var i = start; i >= 0; i--) {
 // 3
 final left = 2 * i + 1;
 final right = 2 * i + 2;
 // 4
 if (elements[left].compareTo(elements[i]) < 0) {
 return false;
 }
 // 5
 if (right < elements.length &&
 elements[right].compareTo(elements[i]) < 0) {
 return false;
 }
 }
 // 6
 return true;
}

1. If the list is empty, it’s a min-heap!

2. Loop through all parent nodes in the list in reverse order.

3. Get the left and right child index.

4. Check to see if the left element is less than the parent.

5. Check to see if the right index is within the list’s bounds, and then check if the
right element is less than the parent.

6. If every parent-child relationship satisfies the min-heap property, return true.

The time complexity of this solution is O(n). This is because you still have to check
the value of every element in the list.

Data Structures & Algorithms in Dart Chapter 13 Solutions

raywenderlich.com 391

14Chapter 14 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
Start with the following Person type:

class Person extends Comparable<Person> {
 Person({
 required this.name,
 required this.age,
 required this.isMilitary,
 });

 final String name;
 final int age;
 final bool isMilitary;

 @override
 int compareTo(other) => throw UnimplementedError();
}

Since a priority queue needs to compare elements, Person also needs to be
Comparable.

raywenderlich.com 392

Given a list of people on the waitlist, you would like to prioritize the people in the
following order:

1. Military background

2. Seniority, by age

The key to solving this problem is to finish implementing the compareTo method in
Person so that you can use a priority queue to tell you the order of people on the
waitlist. Replace compareTo with the following code:

@override
int compareTo(other) {
 if (isMilitary == other.isMilitary) {
 return age.compareTo(other.age);
 }
 return isMilitary ? 1 : -1;
}

If two people have the same military background, then age is used to see who has the
highest priority. But if the military background is different, then the one having a
military background is prioritized.

Before you test your implementation out, override toString so that Person is
printable:

@override
String toString() {
 final military = (isMilitary) ? ', (military)' : '';
 return '$name, age agemilitary';
}

Import the PriorityQueue that you made earlier in the chapter if you haven’t
already. Then run the following example in main:

final p1 = Person(name: 'Josh', age: 21, isMilitary: true);
final p2 = Person(name: 'Jake', age: 22, isMilitary: true);
final p3 = Person(name: 'Clay', age: 28, isMilitary: false);
final p4 = Person(name: 'Cindy', age: 28, isMilitary: false);
final p5 = Person(name: 'Sabrina', age: 30, isMilitary: false);

final waitlist = [p1, p2, p3, p4, p5];

var priorityQueue = PriorityQueue(elements: waitlist);
while (!priorityQueue.isEmpty) {
 print(priorityQueue.dequeue());
}

Data Structures & Algorithms in Dart Chapter 14 Solutions

raywenderlich.com 393

You should see the output below:

Jake, age 22, (military)
Josh, age 21, (military)
Sabrina, age 30
Clay, age 28
Cindy, age 28

Solution to Challenge 2
To make a list-based priority queue, all you have to do is implement the Queue
interface. Instead of using a heap, though, you use a list data structure.

Here’s the Queue interface that you’ve used previously:

abstract class Queue<E> {
 bool enqueue(E element);
 E? dequeue();
 bool get isEmpty;
 E? get peek;
}

Getting Started
First, add the following code to a project that contains the Queue interface:

enum Priority { max, min }

class PriorityQueueList<E extends Comparable<dynamic>>
implements Queue<E> {
 PriorityQueueList({List<E>? elements, Priority priority =
Priority.max}) {
 _priority = priority;
 _elements = elements ?? [];
 }

 late List<E> _elements;
 late Priority _priority;

 // more to come
}

So far this is nearly the same as your heap implementation. This time, though, you
have a list.

Data Structures & Algorithms in Dart Chapter 14 Solutions

raywenderlich.com 394

Which Is the High Priority End?
At this point you need to make a decision. You can either put the high priority
elements at the start of the list or at the end of the list.

It might seem logical to put the high priority elements at the start of the list since
that’s how you implemented heap. However, think about the properties of a list and
what you need to accomplish in a queue. Inserting and removing from the beginning
of a list is slow. If you make the start of the list the high priority end, then every
single dequeue will be slow. On the other hand, if you put the high priority elements
at the end of the list, then dequeuing will be a lightning-fast removeLast operation.
Enqueuing will be slow no matter what you choose, but you might as well make
dequeuing fast!

The code in the rest of this answer will assume that the end of the list is the high
priority side.

Sorting an Initial List
Replace the PriorityQueueList constructor with the following code:

PriorityQueueList({List<E>? elements, Priority priority =
Priority.max}) {
 _priority = priority;
 _elements = elements ?? [];
 _elements.sort((a, b) => _compareByPriority(a, b));
}

int _compareByPriority(E a, E b) {
 if (_priority == Priority.max) {
 return a.compareTo(b);
 }
 return b.compareTo(a);
}

_compareByPriority returns an int following the requirements of the list’s sort
function. Just like you’ve seen before with Comparable values, a comparison result of
1 means the first value is larger, -1 means the second is larger, and 0 means they’re
equal. The sort algorithm in Dart has a time complexity of O(n log n) for large lists.

Data Structures & Algorithms in Dart Chapter 14 Solutions

raywenderlich.com 395

Implementing isEmpty and peek
Add the following methods to begin implementing the Queue interface:

@override
bool get isEmpty => _elements.isEmpty;

@override
E? get peek => (isEmpty) ? null : _elements.last;

Since the high priority side is the end of the list, peeking returns the last element.

Implementing enqueue
Next, add the enqueue method:

@override
bool enqueue(E element) {
 // 1
 for (int i = 0; i < _elements.length; i++) {
 // 2
 if (_compareByPriority(element, _elements[i]) < 0) {
 // 3
 _elements.insert(i, element);
 return true;
 }
 }
 // 4
 _elements.add(element);
 return true;
}

To enqueue an element in a list-based priority queue, perform the following tasks:

1. Start at the low priority end of the list and loop through every element.

2. Check to see if the element you’re adding has an even lower priority than the
current element.

3. If it does, insert the new element at the current index.

4. If you get to the end of the list, that means every other element was lower
priority. Add the new element to the end of the list as the new highest priority
element.

Data Structures & Algorithms in Dart Chapter 14 Solutions

raywenderlich.com 396

This method has an overall time complexity of O(n) since you have to go through
every element to check the priority against the new element you’re adding. Also, if
you’re inserting in between elements in the list, you have to shift all of the
remaining elements to the right by one.

Note: Since you’re working with a sorted list, you could improve the efficiency
of this algorithm by using the binary search that you learned about in Chapter
12. Insertion would still be O(n) in the worst case, but at least the search part
would be O(log n).

Implementing dequeue
Next add the dequeue method:

@override
E? dequeue() => isEmpty ? null : _elements.removeLast();

Here is where the benefit of putting the high priority elements at the end of the list
comes in. removeLast is O(1) since you don’t have to shift anything, so that makes
dequeue also O(1). That’s even better than the heap implementation!

Making the Queue Printable
Finally, override toString so that you can print your priority queue in a friendly
format:

@override
String toString() => _elements.toString();

Alternatively, if you wanted to hide the fact that the high-priority items are at the
end, then you could reverse the list with _elements.reversed.

There you have it! A list-based priority queue.

Data Structures & Algorithms in Dart Chapter 14 Solutions

raywenderlich.com 397

Testing it Out
To test out the priority queue, run the following in main:

final priorityQueue = PriorityQueueList(
 elements: [1, 12, 3, 4, 1, 6, 8, 7],
);
print(priorityQueue);
priorityQueue.enqueue(5);
priorityQueue.enqueue(0);
priorityQueue.enqueue(10);
print(priorityQueue);
while (!priorityQueue.isEmpty) {
 print(priorityQueue.dequeue());
}

You should see the output below:

[1, 1, 3, 4, 6, 7, 8, 12]
[0, 1, 1, 3, 4, 5, 6, 7, 8, 10, 12]
12
10
8
7
6
5
4
3
1
1
0

This challenge was an exercise in implementing an interface from scratch. However,
because of the slowness of enqueuing elements, you probably wouldn’t want to use
your PriorityQueueList in a real project. The heap implementation performs
better overall. On the other hand, if you have an application where you need
dequeuing to be O(1) and you don’t care about enqueuing time, the list-based
implementation might be the better choice.

Data Structures & Algorithms in Dart Chapter 14 Solutions

raywenderlich.com 398

15Chapter 15 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
If you start with the following list:

[4, 2, 5, 1, 3]

Here are the steps a bubble sort would take:

[2, 4, 5, 1, 3] // 4-2 swapped
[2, 4, 5, 1, 3] // 4-5 not swapped
[2, 4, 1, 5, 3] // 5-1 swapped
[2, 4, 1, 3, 5] // 5-3 swapped

[2, 4, 1, 3, 5] // 2-4 not swapped
[2, 1, 4, 3, 5] // 4-1 swapped
[2, 1, 3, 4, 5] // 4-3 swapped

[1, 2, 3, 4, 5] // 2-1 swapped
[1, 2, 3, 4, 5] // 2-3 not swapped

[1, 2, 3, 4, 5] // 1-2 not swapped

Bubble sort needed the full O(n²) traversal to finish the sort. It made ten
comparisons and six swaps.

raywenderlich.com 399

Solution to Challenge 2
Given the following list:

[4, 2, 5, 1, 3]

These are the steps a selection sort would take:

[4, 2, 5, 1, 3] // start, lowest: 4

[4, 2, 5, 1, 3] // compare 2-4, lowest: 2
[4, 2, 5, 1, 3] // compare 5-2, lowest: 2
[4, 2, 5, 1, 3] // compare 1-2, lowest: 1
[4, 2, 5, 1, 3] // compare 3-1, lowest: 1

// swap 4-1, reset lowest: 2

[1, 2, 5, 4, 3] // compare 5-2, lowest: 2
[1, 2, 5, 4, 3] // compare 4-2, lowest: 2
[1, 2, 5, 4, 3] // compare 3-2, lowest: 2

// no swap needed, reset lowest: 5

[1, 2, 5, 4, 3] // compare 4-5, lowest: 4
[1, 2, 5, 4, 3] // compare 3-4, lowest: 3

// swap 5-3, reset lowest: 4

[1, 2, 3, 4, 5] // compare 5-4, lowest: 4

// no swap needed

This solution also needed the full O(n²) traversal with its ten comparisons. However,
selection sort completed the task with only two swaps.

Data Structures & Algorithms in Dart Chapter 15 Solutions

raywenderlich.com 400

Solution to Challenge 3
Using the following list:

[4, 2, 5, 1, 3]

An insertion sort would perform the steps below:

[2, 4, 5, 1, 3] // 4-2 swapped

[2, 4, 5, 1, 3] // 4-5 not swapped

[2, 4, 1, 5, 3] // 5-1 swapped
[2, 1, 4, 5, 3] // 4-1 swapped
[1, 2, 4, 5, 3] // 2-1 swapped

[1, 2, 4, 3, 5] // 5-3 swapped
[1, 2, 3, 4, 5] // 4-3 swapped
[1, 2, 3, 4, 5] // 2-3 not swapped

Insertion sort was able to do a little better than O(n²) since on the second and fourth
passes it found some presorted elements. Those steps are marked with “not
swapped” in the comments above. Overall this solution required eight comparisons
and six swaps.

Solution to Challenge 4
Each of the sort algorithms below is working on the following sorted collection:

[1, 2, 3, 4, 5]

Data Structures & Algorithms in Dart Chapter 15 Solutions

raywenderlich.com 401

Bubble Sort
Here are the steps bubble sort would take:

[1, 2, 3, 4, 5] // 1-2 not swapped
[1, 2, 3, 4, 5] // 2-3 not swapped
[1, 2, 3, 4, 5] // 3-4 not swapped
[1, 2, 3, 4, 5] // 4-5 not swapped

Since bubble sort completed an entire pass without needing to swap any elements, it
could exit early after only one pass. This is O(n) time complexity. However, if you
simply moved the 1 to the end of the list, bubble sort would suddenly become O(n²)
again.

Selection Sort
These are the steps selection sort would take:

[1, 2, 3, 4, 5] // compare 2-1, lowest: 1
[1, 2, 3, 4, 5] // compare 3-1, lowest: 1
[1, 2, 3, 4, 5] // compare 4-1, lowest: 1
[1, 2, 3, 4, 5] // compare 5-1, lowest: 1

// no swap needed, reset lowest: 2

[1, 2, 3, 4, 5] // compare 3-2, lowest: 2
[1, 2, 3, 4, 5] // compare 4-2, lowest: 2
[1, 2, 3, 4, 5] // compare 5-2, lowest: 2

// no swap needed, reset lowest: 3

[1, 2, 3, 4, 5] // compare 4-3, lowest: 3
[1, 2, 3, 4, 5] // compare 5-3, lowest: 3

// no swap needed, reset lowest: 4

[1, 2, 3, 4, 5] // compare 5-4, lowest: 4

// no swap needed

Even with a fully sorted list, selection sort is still O(n²).

Data Structures & Algorithms in Dart Chapter 15 Solutions

raywenderlich.com 402

Insertion Sort
And these are the steps insertion sort would take:

[1, 2, 3, 4, 5] // 1-2 not swapped
[1, 2, 3, 4, 5] // 2-3 not swapped
[1, 2, 3, 4, 5] // 3-4 not swapped
[1, 2, 3, 4, 5] // 4-5 not swapped

Like bubble sort, insertion sort is able to determine that the list is sorted with a
single pass, giving it a time complexity of O(n). However, unlike bubble sort, moving
1 to the end of the list wouldn’t cause insertion sort to jump all the way back up to
O(n²).

Data Structures & Algorithms in Dart Chapter 15 Solutions

raywenderlich.com 403

16Chapter 16 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
Stepping through the code of mergeSort one line at a time is probably the easiest
way to understand what’s happening.

A few strategically placed print statements can also help:

List<E> mergeSort<E extends Comparable<dynamic>>(List<E> list) {
 if (list.length < 2) {
 print('recursion ending: $list');
 return list;
 } else {
 print('recursion list in: $list');
 }

 final middle = list.length ~/ 2;
 final left = mergeSort(list.sublist(0, middle));
 final right = mergeSort(list.sublist(middle));

 final merged = _merge(left, right);
 print('recursion ending: merging $left and $right ->
$merged');
 return merged;
}

raywenderlich.com 404

Here’s the output for sorting the list [[4, 2, 5, 1, 3]:

recursion list in: [4, 2, 5, 1, 3]
recursion list in: [4, 2]
recursion ending: [4]
recursion ending: [2]
recursion ending: merging [4] and [2] -> [2, 4]
recursion list in: [5, 1, 3]
recursion ending: [5]
recursion list in: [1, 3]
recursion ending: [1]
recursion ending: [3]
recursion ending: merging [1] and [3] -> [1, 3]
recursion ending: merging [5] and [1, 3] -> [1, 3, 5]
recursion ending: merging [2, 4] and [1, 3, 5] -> [1, 2, 3, 4,
5]

[1, 2, 3, 4, 5]

Solution to Challenge 2
The tricky part of this challenge is the limited capabilities of Iterable. Traditional
implementations of merge sort rely on using the indices of a list. Since Iterable
types have no notion of indices, though, you’ll make use of their iterator.

Recreate _merge in this way:

List<E> _merge<E extends Comparable<dynamic>>(
 Iterable<E> first,
 Iterable<E> second,
) {
 // 1
 var result = <E>[];

 // 2
 var firstIterator = first.iterator;
 var secondIterator = second.iterator;

 // 3
 var firstHasValue = firstIterator.moveNext();
 var secondHasValue = secondIterator.moveNext();

 // more to come
}

Data Structures & Algorithms in Dart Chapter 16 Solutions

raywenderlich.com 405

Setting up the algorithm involves the following steps:

1. Create a new list to store the merged iterables.

2. Grab the iterators. Iterators are objects that know how to get the next value in
the iterable.

3. Create two variables to keep track of when the iterators have reached the end of
their content. moveNext returns true if the iterator found a next element, or
false if the end of the collection was reached.

Using the iterators, you’ll decide which element should be appended into the result
list by comparing the values. Write the following at the end of the _merge function:

while (firstHasValue && secondHasValue) {
 // 1
 final firstValue = firstIterator.current;
 final secondValue = secondIterator.current;

 // 2
 if (firstValue.compareTo(secondValue) < 0) {
 result.add(firstValue);
 firstHasValue = firstIterator.moveNext();

 // 3
 } else if (firstValue.compareTo(secondValue) > 0) {
 result.add(secondValue);
 secondHasValue = secondIterator.moveNext();

 // 4
 } else {
 result.add(firstValue);
 result.add(secondValue);
 firstHasValue = firstIterator.moveNext();
 secondHasValue = secondIterator.moveNext();
 }
}

// more to come

Here are some notes on the numbered comments above:

1. Grab the values using the current property of your iterators.

2. If the first value is less than the second one, you’ll add the first value to result,
and then move the iterator to the next value.

3. If the first value is greater than the second, you’ll do the opposite.

4. If both values are equal, you’ll add them both and move the iterators on.

Data Structures & Algorithms in Dart Chapter 16 Solutions

raywenderlich.com 406

This process will continue until one of the iterators runs out of values to dispense. In
that scenario, if the other iterator still has any values left, they’ll be equal to or
greater than the ones in result.

To add the rest of those values, write the following at the end of the _merge
function:

if (firstHasValue) {
 do {
 result.add(firstIterator.current);
 } while (firstIterator.moveNext());
}

if (secondHasValue) {
 do {
 result.add(secondIterator.current);
 } while (secondIterator.moveNext());
}

return result;

That completes your new implementation of _merge.

Confirm that mergeSort still works by running the following in main:

final list = [7, 2, 6, 3, 9];
final sorted = mergeSort(list);
print(sorted);

You should see the console output below:

[2, 3, 6, 7, 9]

Data Structures & Algorithms in Dart Chapter 16 Solutions

raywenderlich.com 407

17Chapter 17 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
You’re starting with the following list:

var list = [46, 500, 459, 1345, 13, 999];

LSD-Radix Sort
Modify your radixSort extension by adding the following print statement at the
bottom of the while loop:

print(buckets);

Then when you call list.radixSort(), you’ll see the following output:

[[500], [], [], [13], [], [1345], [46], [], [], [459, 999]]
[[500], [13], [], [], [1345, 46], [459], [], [], [], [999]]
[[13, 46], [], [], [1345], [459], [500], [], [], [], [999]]
[[13, 46, 459, 500, 999], [1345], [], [], [], [], [], [], [],
[]]

This shows the values in the buckets at the end of all four rounds.

raywenderlich.com 408

MSD-Radix Sort
To see the items in your buckets on each recursion, add the following line to
_msdRadixSorted right above where you set bucketOrder:

print(buckets);
// final bucketOrder = ...

Now when you call list.lexicographicalSort(), you should see the following
output:

[[], [1345, 13], [], [], [46, 459], [500], [], [], [], [999]]
[[], [], [], [1345, 13], [], [], [], [], [], []]
[[], [], [], [], [1345], [], [], [], [], []]
[[], [], [], [], [], [459], [46], [], [], []]

The 13 is missing from the third set of buckets since it’s in the priority bucket.

Solution to Challenge 2
You can find the number of unique UTF-16 code units in a list of words by adding
each code unit to a set:

int uniqueCharacters(List<String> words) {
 final uniqueChars = <int>{};
 for (final word in words) {
 for (final codeUnit in word.codeUnits) {
 uniqueChars.add(codeUnit);
 }
 }
 return uniqueChars.length;
}

Here’s the example list:

final words = ['done', 'ad', 'eel', 'zoo', 'adept', 'do'];
print(uniqueCharacters(words)); // 9

In this case, there are nine different letters used to write the words in the list. If you
were implementing a bucket sort, you would need nine buckets.

Data Structures & Algorithms in Dart Chapter 17 Solutions

raywenderlich.com 409

Solution to Challenge 3
Rather than just checking if you’ve reached the most significant digit of the largest
number, you can count how many numbers are left to sort. If there’s only one, then
you’re finished.

extension RadixSort on List<int> {
 void radixSort() {
 const base = 10;
 var place = 1;
 // 1
 var unsorted = length;
 // 2
 while (unsorted > 1) {
 // 3
 unsorted = 0;
 final buckets = List.generate(base, (_) => <int>[]);
 forEach((number) {
 final remainingPart = number ~/ place;
 final digit = remainingPart % base;
 buckets[digit].add(number);
 // 4
 if (remainingPart ~/ base > 0) {
 unsorted++;
 }
 });
 place *= base;
 clear();
 addAll(buckets.expand((element) => element));
 }
 }
}

The numbered comments show the parts that have changed:

1. Initialize the unsorted count with however many numbers are in the list.

2. Proceed with another round of sorting as long as there is more than one number
left to sort.

3. Start the counting over at the beginning of each round.

4. If the current number has more significant digits left, then increment the
unsorted count.

In this way, the algorithm will stop as soon as it’s sorted all of the digits in all of the
numbers except the remaining ones of the last big number. They don’t need to be
sorted since this number will always be last.

Data Structures & Algorithms in Dart Chapter 17 Solutions

raywenderlich.com 410

18Chapter 18 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
Heapsort requires two steps:

1. Converting a list to a heap.

2. Repeatedly moving the root of the heap to an ordered list.

Step one is where you’ll find the difference in the number of comparisons needed.

5, 4, 3, 2, 1
[5, 4, 3, 2, 1] will yield the fewest number of comparisons since it’s already a
max-heap and no swaps take place.

When building a max-heap, you only look at the parent nodes because these are the
nodes that might need to sift down. In this case, there are two parent nodes, each
with two comparisons. You compare 4 with 2 and 1. Then you compare 5 with 4 and
3. Since none of these comparisons require a swap, no further comparisons are
necessary.

raywenderlich.com 411

1, 2, 3, 4, 5
[1, 2, 3, 4, 5] will yield the most number of comparisons. You first compare 2
with 4 and 4 with 5. Since 2 is smaller, you swap it with 5. Then you compare 1 with
5 and 5 with 3. Since 1 is smaller, you sift it down, swapping it with the 5. The down-
sift now requires comparing 1 with 4 and 4 with 2, which will lead to swapping 1
with 4.

The sorting itself will take additional comparisons, but these are equivalent since
both lists have already been converted to heaps.

Solution to Challenge 2
There are multiple ways to sort in descending order.

Using reversed
The easiest solution is to simply use the reversed method on List:

final list = [6, 12, 2, 26, 8, 18, 21, 9, 5];
final ascending = heapsort(list);
final descending = ascending.reversed;

This gives you an iterable, but you can convert it to a list with toList if needed.

Data Structures & Algorithms in Dart Chapter 18 Solutions

raywenderlich.com 412

Reimplementing Heapsort
If you’re using the heapsort function that you implemented earlier in the chapter,
then replace Priority.min with Priority.max.

List<E> descendingHeapsort<E extends
Comparable<dynamic>>(List<E> list) {
 final heap = Heap<E>(
 elements: list.toList(),
 priority: Priority.max, // changed
);
 final sorted = <E>[];
 while (!heap.isEmpty) {
 final value = heap.remove();
 sorted.add(value!);
 }
 return sorted;
}

This will fill the list by pulling the max values off of the heap, resulting in a list of
descending values.

Reimplementing heapsortInPlace
It’s also easy to reimplement your heapsortInPlace extension to sort in ascending
order. Again, all you have to do is change the heap priority.

Go to _siftDown and look for the two comparisons:

this[left].compareTo(this[chosen]) > 0
// and
this[right].compareTo(this[chosen]) > 0

Then switch > 0 to < 0:

this[left].compareTo(this[chosen]) < 0
// and
this[right].compareTo(this[chosen]) < 0

This will create an internal min-heap so that during the sorting step the lowest
values will be pulled off the heap and placed at the end of the list.

Data Structures & Algorithms in Dart Chapter 18 Solutions

raywenderlich.com 413

19Chapter 19 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
In this chapter, you implemented quicksort recursively. Here’s how you might do it
iteratively.

This solution uses Lomuto’s partitioning strategy. You’ll leverage a stack to store
pairs of high and low indices for sublist partitions.

void quicksortIterativeLomuto<E extends Comparable<dynamic>>(
 List<E> list,
) {
 // 1
 var stack = Stack<int>();
 // 2
 stack.push(0);
 stack.push(list.length - 1);
 // 3
 while (stack.isNotEmpty) {
 // 4
 final high = stack.pop();
 final low = stack.pop();
 // 5
 final pivot = _partitionLomuto(list, low, high);
 // 6
 if (pivot - 1 > low) {
 stack.push(low);
 stack.push(pivot - 1);
 }
 // 7
 if (pivot + 1 < high) {
 stack.push(pivot + 1);
 stack.push(high);

raywenderlich.com 414

 }
 }
}

Here’s how the solution works:

1. Create a stack that stores indices.

2. Push the starting low and high boundaries on the stack as initial values.

3. When the stack is empty, quicksort is complete.

4. Get the pair of high and low indices from the stack.

5. Perform Lomuto’s partitioning with the current indices. Recall that Lomuto picks
the last element as the pivot and splits the partitions into three parts: elements
that are less than the pivot, the pivot, and finally, elements that are greater than
the pivot.

6. Once the partitioning is complete, add the lower bound’s low and high indices to
partition the lower half later.

7. Similarly, add the upper bound’s low and high indices to partition the upper half
later.

The results are the same as with the recursive version:

final list = [8, 2, 10, 0, 9, 18, 9, -1, 5];
quicksortIterativeLomuto(list);
print(list);
// [-1, 0, 2, 5, 8, 9, 9, 10, 18]

Solution to Challenge 2
Merge sort is preferable over quicksort when you need stability. Merge sort is stable
and guarantees O(n log n). These characteristics are not the case with quicksort,
which isn’t stable and can perform as badly as O(n²).

Merge sort works better for larger data structures or data structures where elements
are scattered throughout memory. Quicksort works best when elements are stored in
a contiguous block.

Data Structures & Algorithms in Dart Chapter 19 Solutions

raywenderlich.com 415

20Chapter 20 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
This solution uses the AdjacencyList API you built in this chapter. You can use any
non-null weight, but a good default is 1.

final graph = AdjacencyList<String>();

final megan = graph.createVertex('Megan');
final sandra = graph.createVertex('Sandra');
final pablo = graph.createVertex('Pablo');
final edith = graph.createVertex('Edith');
final ray = graph.createVertex('Ray');
final luke = graph.createVertex('Luke');
final manda = graph.createVertex('Manda');
final vicki = graph.createVertex('Vicki');

graph.addEdge(megan, sandra, weight: 1);
graph.addEdge(megan, pablo, weight: 1);
graph.addEdge(megan, edith, weight: 1);
graph.addEdge(pablo, ray, weight: 1);
graph.addEdge(pablo, luke, weight: 1);
graph.addEdge(edith, manda, weight: 1);
graph.addEdge(edith, vicki, weight: 1);
graph.addEdge(manda, pablo, weight: 1);
graph.addEdge(manda, megan, weight: 1);

print(graph);

raywenderlich.com 416

You can simply look at the graph to find the common friend:

Megan --> Sandra, Pablo, Edith, Manda
Sandra --> Megan
Pablo --> Megan, Ray, Luke, Manda
Edith --> Megan, Manda, Vicki
Ray --> Pablo
Luke --> Pablo
Manda --> Edith, Pablo, Megan
Vicki --> Edith

Turns out to be Manda, which was stated pretty directly in the question. :]

If you want to solve it programmatically, you can find the intersection of the set of
Megan’s friends with the set of Pablo’s friends.

final megansFriends = Set.of(
 graph.edges(megan).map((edge) {
 return edge.destination.data;
 }),
);

final pablosFriends = Set.of(
 graph.edges(pablo).map((edge) {
 return edge.destination.data;
 }),
);

final mutualFriends = megansFriends.intersection(pablosFriends);

Data Structures & Algorithms in Dart Chapter 20 Solutions

raywenderlich.com 417

21Chapter 21 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
The maximum number of items ever in the queue is 3. You can observe this by
adding print statements after every enqueue and dequeue in breadthFirstSearch.

Solution to Challenge 2
You already know how to implement the breadth-first search algorithm iteratively.
Here’s how you would implement it recursively.

Create an extension on Graph:

extension RecursiveBfs<E> on Graph<E> {

}

raywenderlich.com 418

Then add a recursive helper method to it:

void _bfs(
 QueueStack<Vertex<E>> queue,
 Set<Vertex<E>> enqueued,
 List<Vertex<E>> visited,
) {
 final vertex = queue.dequeue();
 // 1
 if (vertex == null) return;
 // 2
 visited.add(vertex);
 final neighborEdges = edges(vertex);
 // 3
 for (final edge in neighborEdges) {
 if (!enqueued.contains(edge.destination)) {
 queue.enqueue(edge.destination);
 enqueued.add(edge.destination);
 }
 }
 // 4
 _bfs(queue, enqueued, visited);
}

You’ll use this method soon. Here’s what it does:

1. This is the base case. The recursion stops when the queue is empty.

2. Mark the vertex as visited.

3. For every edge of the current vertex, check to see if the adjacent vertices have
been visited before inserting them into the queue.

4. Recursively call this function until the queue is empty.

Now add the public bfs method above _bfs:

List<Vertex<E>> bfs(Vertex<E> source) {
 final queue = QueueStack<Vertex<E>>();
 final Set<Vertex<E>> enqueued = {};
 List<Vertex<E>> visited = [];

 queue.enqueue(source);
 enqueued.add(source);

 _bfs(queue, enqueued, visited);
 return visited;
}

Data Structures & Algorithms in Dart Chapter 21 Solutions

raywenderlich.com 419

This method is much the same as the implementation you wrote earlier in the
chapter. The difference now is that you call the recursive helper function rather than
using a while loop.

Test it out using the same graph as the one in the chapter text:

final vertices = graph.bfs(a);
vertices.forEach(print);

Run than and you should again see A to H printed line by line.

The overall time complexity for this breadth-first search implementation is also O(V
+ E).

Solution to Challenge 3
A graph is said to be disconnected if no path exists between two nodes.

Create an extension on Graph like so:

extension Connected<E> on Graph<E> {
 bool isConnected() {
 // 1
 if (vertices.isEmpty) return true;
 // 2
 final visited = breadthFirstSearch(vertices.first);
 // 3
 for (final vertex in vertices) {
 if (!visited.contains(vertex)) {
 return false;
 }
 }
 return true;
 }
}

The commented numbers refer to the following points:

1. If there are no vertices, treat the graph as connected.

2. Perform a breadth-first search starting from the first vertex. This process will
return all the visited nodes.

3. Go through every vertex in the graph and check if it has been visited before.

The graph is disconnected if a vertex is missing in the visited set.

Data Structures & Algorithms in Dart Chapter 21 Solutions

raywenderlich.com 420

22Chapter 22 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
• Path from A to F: Use depth-first because the path you’re looking for is deeper in

the graph.

• Path from A to G: Use breadth-first because the path you’re looking for is near the
root.

Solution to Challenge 2
In this chapter, you learned how to implement a depth-first search iteratively. Here’s
how you would implement it recursively.

Create an extension on Graph:

extension RecursiveDfs<E> on Graph<E> {

}

raywenderlich.com 421

Then add a recursive helper method to it:

void _dfs(
 Vertex<E> source,
 List<Vertex<E>> visited,
 Set<Vertex<E>> pushed,
) {
 // 1
 pushed.add(source);
 visited.add(source);
 // 2
 final neighbors = edges(source);
 for (final edge in neighbors) {
 // 3
 if (!pushed.contains(edge.destination)) {
 _dfs(edge.destination, visited, pushed);
 }
 }
}

You’ll use this method soon. Here’s what it does:

1. Mark the source vertex as visited.

2. Visit every neighboring edge.

3. As long as the adjacent vertex has not been visited yet, continue to dive deeper
down the branch recursively.

Now add the public dfs method above _dfs:

List<Vertex<E>> dfs(Vertex<E> start) {
 List<Vertex<E>> visited = [];
 Set<Vertex<E>> pushed = {};
 _dfs(start, visited, pushed);
 return visited;
}

Data Structures & Algorithms in Dart Chapter 22 Solutions

raywenderlich.com 422

This method initializes visited and pushed and then starts the recursion process.
Unlike the iterative solution you wrote earlier, there’s no stack here. That’s because
recursion itself implicitly uses a stack.

Grab the same graph as the one you used in the chapter text. Then add the following:

final vertices = graph.dfs(a);
vertices.forEach(print);

Run that and you should see the same result as the iterative solution:

A
B
E
F
G
C
H
D

Data Structures & Algorithms in Dart Chapter 22 Solutions

raywenderlich.com 423

23Chapter 23 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
These are the shortest paths from A to the following vertices:

• Path to B: A - (1) - B

• Path to C: A - (1) - B - (8) - C

• Path to D: A - (1) - B - (9) - D

• Path to E: A - (1) - B - (8) - C - (2) - E

raywenderlich.com 424

Solution to Challenge 2
To get the shortest paths from the source vertex to every other vertex in the graph,
use the following extension on Dijkstra:

extension ShortestPaths<E> on Dijkstra<E> {
 Map<Vertex<E>, List<Vertex<E>>> shortestPathsLists(
 Vertex<E> source,
) {
 // 1
 final allPathsLists = <Vertex<E>, List<Vertex<E>>>{};
 // 2
 final allPaths = shortestPaths(source);
 // 3
 for (final vertex in graph.vertices) {
 final path = shortestPath(
 source,
 vertex,
 paths: allPaths,
);
 allPathsLists[vertex] = path;
 }
 return allPathsLists;
 }
}

This is how it works:

1. The map stores the path to every vertex from the source vertex.

2. Perform Dijkstra’s algorithm to find all the paths from the source vertex.

3. For every vertex in the graph, generate the list of vertices that makes up the path.

Data Structures & Algorithms in Dart Chapter 23 Solutions

raywenderlich.com 425

	Book License
	What You Need
	Book Source Code & Forums
	About the Authors
	About the Editors

	Acknowledgments
	Content Development

	Introduction
	How to Read This Book

	Chapter 1: Why Learn Data Structures & Algorithms?
	The Goal of This Book

	Chapter 2: Complexity
	Time Complexity
	Space Complexity
	Other Notations
	Key Points

	Chapter 3: Basic Data Structures in Dart
	List
	Map
	Set
	Key Points
	Where to Go From Here?

	Chapter 4: Stacks
	Stack Operations
	Implementation
	Challenges
	Key Points

	Chapter 5: Linked Lists
	Node
	LinkedList
	Adding Values to a List
	Removing Values From a List
	Making a List Iterable
	Challenges
	Key Points

	Chapter 6: Queues
	Common Operations
	Example of a Queue
	List-Based Implementation
	Doubly Linked List Implementation
	Ring Buffer Implementation
	Double-Stack Implementation
	Challenges
	Key Points

	Chapter 7: Trees
	Terminology
	Implementation
	Traversal Algorithms
	Challenges
	Key Points

	Chapter 8: Binary Trees
	Implementation
	Traversal Algorithms
	Challenges
	Key Points

	Chapter 9: Binary Search Trees
	List vs. BST
	Implementation
	Challenges
	Key Points

	Chapter 10: AVL Trees
	Understanding Balance
	Implementation
	Challenges
	Key Points
	Where to Go From Here?

	Chapter 11: Tries
	List vs. Trie
	Implementation
	Challenges
	Key Points

	Chapter 12: Binary Search
	Linear Search vs. Binary Search
	Implementation
	Challenges
	Key Points

	Chapter 13: Heaps
	What’s a Heap?
	The Heap Property
	The Shape Property
	Heap Applications
	Fitting a Binary Tree Into a List
	Implementation
	Challenges
	Key Points

	Chapter 14: Priority Queues
	Applications
	Common Operations
	Implementation
	Challenges
	Key Points

	Chapter 15: O(n²) Sorting Algorithms
	Bubble Sort
	Selection Sort
	Insertion Sort
	Stability
	Challenges
	Key Points

	Chapter 16: Merge Sort
	Example
	Implementation
	Performance
	Challenges
	Key Points

	Chapter 17: Radix Sort
	Sorting by Least Significant Digit
	Sorting by Most Significant Digit
	Challenges
	Key Points

	Chapter 18: Heapsort
	Example
	Implementation
	Performance
	Challenges
	Key Points

	Chapter 19: Quicksort
	Example
	Naïve Implementation
	Partitioning Strategies
	Challenges
	Key Points
	Where to Go From Here?

	Chapter 20: Graphs
	Types of Graphs
	Common Operations
	Adjacency List
	Adjacency Matrix
	Graph Analysis
	Challenges
	Key Points

	Chapter 21: Breadth-First Search
	How Breadth-First Search Works
	Implementation
	Performance
	Challenges
	Key Points

	Chapter 22: Depth-First Search
	How Depth-First Search Works
	Implementation
	Performance
	Cycles
	Challenges
	Key Points

	Chapter 23: Dijkstra’s Algorithm
	How Dijkstra’s Algorithm Works
	Implementation
	Performance
	Challenges
	Key Points

	Conclusion
	Approaching a Difficult Problem
	Learning Tips
	Where to Go From Here?

	Chapter 4 Solutions
	Solution to Challenge 1

	Chapter 5 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 6 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 7 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 8 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 9 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 10 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 11 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 12 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 13 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 14 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 15 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 16 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 17 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 18 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 19 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 20 Solutions
	Solution to Challenge 1

	Chapter 21 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 22 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 23 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

