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LBook License

By purchasing Data Structures & Algorithms in Dart, you have the following license:

• You are allowed to use and/or modify the source code in Data Structures & 
Algorithms in Dart in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included 
in Data Structures & Algorithms in Dart in as many apps as you want, but must 
include this attribution line somewhere inside your app: “Artwork/images/designs: 
from Data Structures & Algorithms in Dart, available at www.raywenderlich.com”.

• The source code included in Data Structures & Algorithms in Dart is for your 
personal use only. You are NOT allowed to distribute or sell the source code in 
Data Structures & Algorithms in Dart without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book 
without prior authorization, or distribute it to friends, coworkers or students; they 
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without 
warranty of any kind, express or implied, including but not limited to the warranties 
of merchantability, fitness for a particular purpose and noninfringement. In no event 
shall the authors or copyright holders be liable for any claim, damages or other 
liability, whether in an action of contract, tort or otherwise, arising from, out of or in 
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties 
of their respective owners.
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Before You Begin

This section tells you a few things you need to know before you get started, such as 
what you’ll need for hardware and software, where to find the project files for this 
book, and more.
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iWhat You Need

To follow along with this book, you’ll need the following:

• Recommended: A computer with the Dart SDK and supporting IDE installed. 
The code in this book was all tested using Visual Studio Code, but IntelliJ IDEA is 
another good IDE. Read more at dart.dev.

• Alternative: Any web browser that supports JavaScript. It’s also possible to 
run the code in this book online. Open a web browser and navigate to dartpad.dev. 
If you’re using a phone, you’ll have an easier time if you choose the desktop view 
in your browser page settings.

If you haven’t installed the latest version of Dart, be sure to do that before 
continuing with the book. The code covered in this book depends on Dart 2.15 — you 
may get lost if you try to work with an older version.
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iiBook Source Code & 
Forums

Where to Download the Materials for This 
Book
The materials for this book can be cloned or downloaded from the GitHub book 
materials repository:

• https://github.com/raywenderlich/dsad-materials/tree/editions/1.0

Forums
We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/data-structures-and-algorithms-in-dart. This is 
a great place to ask questions about the book or to submit any errors you may find.
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viiIntroduction

How to Read This Book
The chapters in this book build on each other, so most readers will want to progress 
through the content in a linear manner.

Most chapters begin by introducing a data structure or algorithm with examples and 
illustrations. This is to help you gain a high-level conceptual understanding before 
diving into the code. Adventurous readers may wish to pause at this point and try to 
implement the data structure or algorithm on their own before looking at how the 
chapter does it. Even if you’re not successful, attempting to solve the problem will 
almost certainly cause you to have a deeper understanding of the requirements. An 
alternative strategy is to work through each chapter directly. Then, when finished, 
delete all of the code you copied and try to reproduce the data structure or algorithm 
based on your understanding.

You’ll find challenge problems at the end of many chapters. These will help to test 
your understanding of what you learned. Try to solve the challenges yourself before 
looking at the answers. When you need to look, you can find the solutions at the end 
of the book or in the supplemental downloadable materials that accompany the 
book.
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This book is split into five main content sections:

Section I: Introduction
The chapters in this short but essential section will provide the foundation and 
motivation for the study of data structures and algorithms. You’ll also get a quick 
rundown of the Dart core library, which you’ll use as a basis for creating your own 
data structures and algorithms.

Section II: Elementary Data Structures
This section looks at a few important data structures that are not found in the 
dart:core library but form the basis of more advanced algorithms covered in future 
sections. All of them are collections optimized for and enforcing a particular access 
pattern.

The dart:collection library, which comes with Dart, does contain LinkedList and 
Queue classes. However, learning to build these data structures yourself is why you’re 
reading this book, isn’t it?

Even with just these basics, you‘ll begin to start thinking “algorithmically” and 
seeing the connection between data structures and algorithms.

Data Structures & Algorithms in Dart Introduction
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Section III: Trees
Trees are another way to organize information, introducing the concept of children 
and parents. You’ll take a look at the most common tree types and see how they can 
be used to solve specific computational problems. Trees are a handy way to organize 
information when performance is critical. Having them in your tool belt will 
undoubtedly prove to be useful throughout your career.

Section IV: Sorting Algorithms
Putting lists in order is a classical computational problem. Although you may never 
need to write your own sorting algorithm, studying this topic has many benefits. This 
section will teach you about stability, best- and worst-case times, and the all-
important technique of divide and conquer.

Studying sorting may seem a bit academic and disconnected from the “real world” of 
app development, but understanding the tradeoffs for these simple cases will lead 
you to a better understanding of how to analyze any algorithm.

Section V: Graphs
Graphs are an instrumental data structure that can model a wide range of things: 
webpages on the internet, the migration patterns of birds, even protons in the 
nucleus of an atom. This section gets you thinking deeply (and broadly) about using 
graphs and graph algorithms to solve real-world problems.

Data Structures & Algorithms in Dart Introduction

raywenderlich.com 24



Section I: Introduction

The chapters in this short but essential section will provide the foundation and 
motivation for the study of data structures and algorithms. You’ll also get a quick 
rundown of the Dart core library, which you’ll use as a basis for creating your own 
data structures and algorithms.

• Chapter 1: Why Learn Data Structures & Algorithms?: Data structures are a 
well-studied area, and the concepts are language agnostic; a data structure from C 
is functionally and conceptually identical to the same data structure in any other 
language, such as Dart. At the same time, the high-level expressiveness of Dart 
makes it an ideal choice for learning these core concepts without sacrificing too 
much performance.

• Chapter 2: Complexity: Answering the question, “Does it scale?” is all about 
understanding the complexity of an algorithm. Big-O notation is the primary tool 
you use to think about algorithmic performance in the abstract, independent of 
hardware or language. This chapter will prepare you to think in these terms.

• Chapter 3: Basic Data Structures in Dart: The dart:core library includes basic 
data structures that are used widely in many applications. These include List, Map 
and Set. Understanding how they function will give you a foundation to work from 
as you proceed through the book and begin creating your own data structures from 
scratch.
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1Chapter 1: Why Learn Data 
Structures & Algorithms?
By Kelvin Lau & Jonathan Sande

The study of data structures is one of efficiency. Given a particular amount of data, 
what is the best way to store it to achieve a particular goal?

As a programmer, you regularly use a variety of collection types, such as lists, maps 
and sets. These are data structures that hold a collection of data, each structure 
having its own performance characteristics.

For example, consider the difference between a list and a set. Both are meant to hold 
a collection of elements, but searching for an element in a list takes far longer than 
searching for an element in a set. On the other hand, you can order the elements of a 
list but you can’t order the elements of a set.

Data structures are a well-studied discipline, and the concepts are language 
agnostic; A data structure from C is functionally and conceptually identical to the 
same data structure in any other language, such as Dart. At the same time, the high-
level expressiveness of Dart makes it an ideal choice for learning these core concepts 
without sacrificing too much performance.

Algorithms, on the other hand, are a set of operations that complete a task. This can 
be a sorting algorithm that moves data around to put it in order. Or it can be an 
algorithm that compresses an 8K picture to a manageable size. Algorithms are 
essential to software, and many have been created to act as building blocks for useful 
programs.

So why should you learn data structures and algorithms?
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Interviews
An important reason to keep your algorithmic skills up to par is to prepare for 
interviews. Most companies have at least one or two algorithmic questions to test 
your abilities as an engineer. A strong foundation in data structures and algorithms 
is the “bar” for many software engineering positions.

Work
Using an appropriate data structure is crucial when working with lots of data, and 
using the right algorithm plays a significant role in the performance and scalability 
of your software. Your mobile apps will be more responsive and have better battery 
life. Your server apps will be able to handle more concurrent requests and use less 
energy. Algorithms often include proofs of correctness that you can leverage to build 
better software.

Using the correct data structure also helps to provide context to the reader. As an 
example, you might come across a Set in your code base. Immediately, you can 
deduce:

• Consumers of the Set don’t care about the order of the elements, since Set is an 
unordered collection.

• Set also ensures that there are no duplicate values. You can assume consumers are 
working with unique data.

• Set is great for checking for value membership, so it’s likely the engineer 
introduced it for this purpose.

Being familiar with a data structures allows you to extract additional context from 
the code. This is a powerful skill that will help you understand how a piece of 
software works.

Data Structures & Algorithms in DartChapter 1: Why Learn Data Structures & Algorithms?
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Self-Improvement
Knowing the strategies used by algorithms to solve tricky problems gives you ideas 
for improvements that you can make to your code. The Dart core library has a small 
set of general-purpose collection types; they don’t cover every case. And, yet, as 
you’ll see, these primitives can be used as a great starting point for building more 
complex and special-purpose abstractions. Knowing more data structures than just 
the common ones gives you a wider range of tools that you can use to build your 
apps.

The Goal of This Book
This book is meant to be both a reference and an exercise book. If you’re familiar 
with other books from raywenderlich.com, you’ll feel right at home. Most chapters 
will include some challenges at the end. The solutions to these challenges appear in 
the Challenge Solutions section at the end of the book.

Do yourself a favor and make a serious attempt at solving each challenge 
before peeking at the solution.

There are five content sections in this book, each covering a specific theme:

1. Introduction

2. Elementary Data Structures

3. Trees

4. Sorting Algorithms

5. Graphs

It’s best to read this book in chronological order, but it also works well as a reference 
if you have some prior knowledge.

If you’re new to the study of algorithms and data structures, you may find some of 
the material challenging. But, if you stick with it to the end, you’ll be well on the way 
to becoming a Dart data structures and algorithms expert. It’s time to get started!

Data Structures & Algorithms in DartChapter 1: Why Learn Data Structures & Algorithms?
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2Chapter 2: Complexity

By Kelvin Lau & Jonathan Sande

Will it scale?

This age-old question is always asked during the design phase of software 
development and comes in several flavors. From an architectural standpoint, 
scalability is how easy it is to make changes to your app. From a database 
standpoint, scalability is about how long it takes to save or retrieve data in the 
database.

For algorithms, scalability refers to how the algorithm performs in terms of 
execution time and memory usage as the input size increases.

When you’re working with a small amount of data, an expensive algorithm may still 
feel fast. However, as the amount of data increases, an expensive algorithm becomes 
crippling. So how bad can it get? Understanding how to quantify this is an important 
skill for you to know.

In this chapter, you’ll take a look at the Big O notation for the different levels of 
scalability in two dimensions: execution time and memory usage.
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Time Complexity
For small amounts of data, even the most expensive algorithm can seem fast due to 
the speed of modern hardware. However, as data increases, the cost of an expensive 
algorithm becomes increasingly apparent. Time complexity is a measure of the time 
required to run an algorithm as the input size increases. In this section, you’ll go 
through the most common time complexities and learn how to identify them.

Constant Time
A constant-time algorithm has the same running time regardless of the size of the 
input. Consider the following:

void checkFirst(List<String> names) { 
  if (names.isNotEmpty) { 
    print(names.first); 
  } else { 
    print('no names'); 
  } 
}

The number of items in names has no effect on the running time of this function. 
Whether the input has 10 items or 10 million items, this function only prints the first 
element of the list. Here’s a visualization of this time complexity in a plot of time 
versus data size:

Constant time

As input data increases, the amount of time the algorithm takes does not change.

For brevity, programmers use a way of writing known as Big O notation to represent 
various magnitudes of time complexity. The Big O notation for constant time is O(1).
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Linear Time
Consider the following snippet of code:

void printNames(List<String> names) { 
  for (final name in names) { 
    print(name); 
  } 
}

This function prints out all the names in a list. As the input list increases in size, the 
number of iterations that the for loop makes increases by the same amount.

This behavior is known as linear time complexity:

Linear time

Linear time complexity is usually the easiest to understand. As the amount of data 
increases, the running time increases by the same amount. That’s why you have the 
straight linear graph illustrated above. The Big O notation for linear time is O(n).

Note: What about a function that has two loops over all the data and calls six 
O(1) methods? Is it O(2n + 6)?

Time complexity only gives a high-level shape of the performance, so loops 
that happen a fixed number of times are not part of the calculation. All 
constants are dropped in the final Big O notation. In other words, O(2n + 6) is 
equal to O(n).

Although not a central concern of this book, optimizing for absolute efficiency 
can be important. Companies put millions of dollars of R&D into reducing the 
slope of those constants that Big O notation ignores. For example, a GPU-
optimized version of an algorithm might run 100x faster than the naive CPU 
version while remaining O(n). Although this book will largely ignore that kind 
of optimization, speedups like this matter.
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Quadratic Time
More commonly referred to as n squared, this time complexity refers to an 
algorithm that takes time proportional to the square of the input size. Consider the 
following code:

void printMoreNames(List<String> names) { 
  for (final _ in names) { 
    for (final name in names) { 
      print(name); 
    } 
  } 
}

This time, the function prints out all the names in the list for every name in the list. 
If you have a list with ten pieces of data, it will print the full list of ten names ten 
times. That’s 100 print statements.

If you increase the input size by one, it will print the full list of eleven names eleven 
times, resulting in 121 print statements. Unlike the previous function, which 
operates in linear time, the n squared algorithm can quickly run out of control as the 
data size increases.

Here’s a graph illustrating this behavior:

Quadratic time

As the size of the input data increases, the amount of time it takes for the algorithm 
to run increases drastically. Thus, n squared algorithms don’t perform well at scale.

The Big O notation for quadratic time is O(n²).

Note: No matter how inefficiently a linear time O(n) algorithm is written, for a 
sufficiently large n, the linear time algorithm will execute faster than a super 
optimized quadratic algorithm. Always. Every time.
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Logarithmic Time
So far, you’ve learned about the linear and quadratic time complexities where each 
element of the input is inspected at least once. However, there are scenarios in which 
only a subset of the input needs to be inspected, leading to a faster runtime.

Algorithms that belong to this category of time complexity can leverage some 
shortcuts by making some assumptions about the input data.

For instance, if you had a sorted list of integers, what’s the quickest way to find if a 
particular value exists? A naive solution would be to inspect the list from start to 
finish before reaching a conclusion. The following is an example of this:

const numbers = [1, 3, 56, 66, 68, 80, 99, 105, 450]; 
 

bool naiveContains(int value, List<int> list) { 
  for (final element in list) { 
    if (element == value) return true; 
  } 
  return false; 
}

Since you’re inspecting each of the elements once, that would be an O(n) algorithm.

Note: You might be thinking, “Hey, if the value that I’m searching for is at the 
beginning of the list, then the algorithm can exit early. Isn’t that O(1) or at 
least better than O(n)?”

Big O notation always tells you the worst-case scenario. While it’s possible 
that the algorithm above could finish immediately, it’s also possible that you 
would have to check every element. While you might think that looking at the 
worst case is a pessimistic way to view the world, it’s also very helpful because 
you know it can’t get any worse than that. And once you know the worst case, 
you can try to improve the algorithm.

Linear time is fairly good, but you can do better. Since the input list is sorted, there’s 
an optimization you can make.
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If you were checking whether the number 451 existed in the list, the naive algorithm 
would have to iterate from beginning to end, making a total of nine inspections for 
the nine values in the list. However, since the list is sorted, you can, right off the bat, 
drop half of the comparisons necessary by checking the middle value:

bool betterNaiveContains(int value, List<int> list) { 
  if (list.isEmpty) return false; 
  final middleIndex = list.length ~/ 2; 

 
  if (value > list[middleIndex]) { 
    for (var i = middleIndex; i < list.length; i++) { 
      if (list[i] == value) return true; 
    } 
  } else { 
    for (var i = middleIndex; i >= 0; i--) { 
      if (list[i] == value) return true; 
    } 
  } 

 
  return false; 
}

The algorithm first checks the middle value to see how it compares with the desired 
value. If the middle value is bigger than the desired value, the algorithm won’t 
bother looking at the values on the right half of the list; since the list is sorted, 
values to the right of the middle value can only get bigger. In the other case, if the 
middle value is smaller than the desired value, the algorithm won’t look at the left 
side of the list. This optimization cuts the number of comparisons by half.

What if you could perform this optimization repeatedly throughout this function? 
You’ll learn how to do that in Chapter 12, “Binary Search”.

An algorithm that can repeatedly drop half of the required comparisons will have 
logarithmic time complexity. Here’s a graph depicting how a logarithmic time 
algorithm behaves:

Logarithmic time
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As input data increases, the time it takes to execute the algorithm increases at a slow 
rate. If you look closely, you may notice that the graph seems to exhibit asymptotic 
behavior. This can be explained by considering the impact of halving the number of 
comparisons you need to do.

When you have an input size of 100, halving the comparisons means you save 50 
comparisons. If input size is 100,000, halving the comparisons means you save 
50,000 comparisons. The more data you have, the more the halving effect scales. 
Thus, you can see that the graph appears to approach horizontal.

Algorithms in this category are few but extremely powerful in situations that allow 
for it. The Big O notation for logarithmic time complexity is O(log n).

Note: Is it log base 2, log base 10, or the natural log?

In the above example, log base 2 applies. However, since Big O notation only 
concerns itself with the shape of the performance, the actual base doesn’t 
matter.

Quasilinear Time
Another common time complexity you’ll encounter is quasilinear time. Quasilinear 
time algorithms perform worse than linear time but dramatically better than 
quadratic time. You can think of quasi-linear as “kind of” like linear time for large 
data sets. An example of a quasilinear time algorithm is Dart’s sort method.

Note: At the time of this writing, the List.sort algorithm in Dart internally 
uses the quasilinear Dual-Pivot Quicksort algorithm for large lists. However, 
for lists below a size threshold of 32, it uses an insertion sort.
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The Big-O notation for quasilinear time complexity is O(n log n), which is a 
multiplication of linear and logarithmic time. Here’s the graph:

Quasilinear time

Quasilinear time complexity nears a linear slope at higher values. This makes it more 
resilient to large data sets.

Comparing Time Complexities
Take a look at how the time complexities compare to each other for large data sets:

Five major time complexities

Remembering how these curves relate to each other will help you compare the 
efficiency of various algorithms.

Other Time Complexities
The five time complexities you’ve encountered so far are the ones you’ll deal with in 
this book. Other time complexities do exist but are far less common and tackle more 
complex problems that are not covered in this book. These time complexities 
include:

• O(nᵏ): polynomial time.

• O(2ⁿ): exponential time.

• O(n!): factorial time.

And there are many more.
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It’s important to note that time complexity is a high-level overview of performance, 
and it doesn’t judge the speed of the algorithm beyond the general ranking scheme. 
This means that two algorithms can have the same time complexity, but one may 
still be much faster than the other. For small data sets, time complexity may not be 
an accurate measure of actual speed.

For instance, quadratic algorithms such as insertion sort can be faster than 
quasilinear algorithms such as mergesort if the data set is small. This is because 
insertion sort doesn’t need to allocate extra memory to perform the algorithm, while 
mergesort does. For small data sets, the memory allocation can be expensive relative 
to the number of elements the algorithm needs to touch.

Improving Algorithm Performance
Suppose you wrote the following code that finds the sum of numbers from 1 to n.

int sumFromOneTo(int n) { 
  var sum = 0; 
  for (var i = 1; i <= n; i++) { 
    sum += i; 
  } 
  return sum; 
} 

 
sumFromOneTo(10000);

The code loops 10000 times and returns 50005000. It’s O(n) and will take a moment 
to run as it counts through the loop and prints results.

If you’re curious about how long it takes to run on your machine, you can measure it 
like so:

final start = DateTime.now(); 
final sum = sumFromOneTo(10000); 
final end = DateTime.now(); 
final time = end.difference(start); 
print(sum); 
print(time);

Try increasing the input value to see how that affects the computation time.

Now try the following implementation:

int betterSumFromOneTo(int n) { 
  return n * (n + 1) ~/ 2; 
}
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This version of the function uses a trick that Fredrick Gauss noticed in elementary 
school. Namely, you can compute the sum using simple arithmetic. This final version 
of the algorithm is O(1) and tough to beat. A constant time algorithm is always 
preferred. If you ran betterSumFromOneTo in a loop, you only end up with linear 
time. The previous O(n) version was just one outer loop away from slow, quadratic 
time.

Space Complexity
The time complexity of an algorithm can help predict scalability, but it isn’t the only 
metric. Space complexity is a measure of the memory required for an algorithm to 
run.

Consider the following code:

int multiply(int a, int b) { 
  return a * b; 
}

To perform this simple algorithm, Dart needs to allocate space for the two input 
parameters, a and b, as well as space for the return value. The actual size that Dart 
allocates internally depends on the implementation details and where the code is 
running, but whatever the case it’s still a fixed amount of space. Even for very large 
input values, the return value will just overflow; it won’t take more space. That 
means the space complexity for this algorithm is constant, and so the Big O 
notation is O(1).

However, now take a look at this example:

List<String> fillList(int length) { 
  return List.filled(length, 'a'); 
}

This algorithm creates a list filled with the string 'a'. The larger length is, the 
longer the list will be and thus the more space will be required to store the list in 
memory. Since the space increases proportionally with the input value, the space 
complexity of this algorithm is linear and the Big O notation is O(n).
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With one small change you could make that algorithm have quadratic space 
complexity:

List<String> stuffList(int length) { 
  return List.filled(length, 'a' * length); 
}

Not only do larger values for length make the list longer, they also increase the size 
of the string in each element of the list. Specifying 5 for length would create a list of 
length 5 whose elements are 'aaaaa'. As with quadratic time complexity, the Big O 
notation for quadratic space complexity is O(n²).

Other Notations
So far, you’ve evaluated algorithms using Big O notation, which tells the worst case 
runtime. This is by far the most common measurement that programmers evaluate 
with. However, other notations exist as well:

• Big Omega notation is used to measure the best-case runtime for an algorithm. 
This isn’t as useful as Big O because getting the best case is often untenable.

• Big Theta notation is used to measure the runtime for an algorithm that is 
between the best- and worse-case scenarios.

Key Points
• Time complexity is a measure of the time required to run an algorithm as the 

input size increases.

• You should know about constant time, logarithmic time, linear time, quadratic 
time and quasilinear time and be able to order them by cost.

• Space complexity is a measure of the memory required for the algorithm to run.

• Big O notation is used to represent the general form of time and space 
complexity.

• Time and space complexity are high-level measures of scalability; they do not 
measure the actual speed of the algorithm itself.

• For small data sets, time complexity is usually irrelevant. A quasilinear algorithm 
can be slower than a quadratic algorithm.
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3Chapter 3: Basic Data 
Structures in Dart
By Kelvin Lau & Jonathan Sande

The dart:core library contains the core components of the Dart language. Inside, 
you’ll find a variety of tools and types to help create your Dart apps. Before you start 
building your own custom data structures, it’s important to understand the primary 
data structures that come with Dart.

This chapter will focus on the three main data structures that the dart:core library 
provides right out of the box: List, Map, and Set.

List
A list is a general-purpose, generic container for storing an ordered collection of 
elements, and it’s used commonly in all sorts of Dart programs. In many other 
programming languages, this data type is called an array.

You can create a list by using a list literal, which is a comma-separated list of values 
surrounded with square brackets. For example:

final people = ['Pablo', 'Manda', 'Megan'];

Dart defines List as an abstract class with methods for accessing and modifying the 
elements of the collection by index. Since Dart is platform-independent, how List is 
implemented under the hood depends on the underlying platform, whether that’s 
the Dart VM, or Dart compiled to JavaScript for the web, or native code running 
directly on your computer.
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List, like most other Dart collections, is an Iterable. This means that you can step 
through the elements sequentially. All iterables have a length getter that returns 
the number of elements in the collection. While this could take O(n) time for 
iterables that need to count every element, List will efficiently return length in 
O(1) time.

Dart lists can also be growable or fixed-length. When you specify a fixed length for 
the list, Dart can be more efficient about the space it allocates. However, you won’t 
be able to add or remove elements anymore as you could in a growable list.

As with any data structure, there are certain notable traits that you should be aware 
of. The first of these is the notion of order.

Order
Elements in a list are explicitly ordered. Using the above people list as an example, 
'Pablo' comes before 'Manda'.

All elements in a list have a corresponding zero-based integer index. For example, 
people has three indices, one corresponding to each element. You can retrieve the 
value of an element in the list by writing the following:

people[0] // 'Pablo' 
people[1] // 'Manda' 
people[2] // 'Megan'

Order is defined by the List data structure and should not be taken for granted. 
Some data structures, such as Map, have a weaker concept of order.

Random-Access
Random-access is a trait that data structures can claim if they can handle element 
retrieval in a constant amount of time. For example, getting 'Megan' from the 
people list takes constant time. Again, this performance should not be taken for 
granted. Other data structures such as linked lists and trees do not have constant 
time access.
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List Performance
Aside from being a random-access collection, other areas of performance will be of 
interest to you as a developer. Particularly, how well or poorly does the data 
structure fare when the amount of data it contains needs to grow? For lists, this 
varies in two aspects.

Insertion Location

The first aspect is where you choose to insert the new element inside the list. The 
most efficient scenario for adding an element to a list is to add it at the end of the 
list:

people.add('Edith'); 
print(people); // [Pablo, Manda, Megan, Edith]

Inserting 'Edith' using the add method will place the string at the end of the list. 
This is an amortized constant-time operation, meaning the time it takes to 
perform this operation on average stays the same no matter how large the list 
becomes. Since Dart lists are backed by a buffer, if you keep adding elements, the 
buffer will fill up every so often. Then Dart will have to spend some extra time 
allocating more space for the buffer. That doesn’t happen very often, though, so the 
“amortized” part of amortized constant-time means that the occasional complexity 
bump gets averaged out over time and so the operation is still considered constant-
time.

To help illustrate why the insertion location matters, consider the following analogy. 
You’re standing in line for the theater. Someone new comes along to join the lineup. 
What’s the easiest place to add people to the lineup? At the end, of course!

If the newcomer tried to insert themselves into the middle of the line, they would 
have to convince half the lineup to shuffle back to make room.

And if they were terribly rude, they would try to insert themselves at the head of the 
line. This is the worst-case scenario because every single person in the lineup would 
need to shuffle back to make room for this new person in front!
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This is exactly how the list works. Inserting new elements anywhere aside from the 
end of the list will force elements to shuffle backwards to make room for the new 
element:

people.insert(0, 'Ray'); 
// [Ray, Pablo, Manda, Megan, Edith]

If the number of elements in the list doubles, the time required for this insert 
operation will also double.

If inserting elements in front of a collection is a common operation for your 
program, you may want to consider a different data structure to hold your data.

Capacity

The second factor that determines the speed of insertion is the list’s capacity. 
Underneath the hood, Dart lists are allocated with a predetermined amount of space 
for its elements. If you try to add new elements to a list that is already at maximum 
capacity, the list must restructure itself to make room for more elements. This is 
done by copying all the current elements of the list to a new and bigger container in 
memory. However, this comes at a cost. Each element of the list has to be visited and 
copied.

This means that any insertion, even at the end, could take n steps to complete if a 
copy is made. However, Dart employs a strategy that minimizes the times this 
copying needs to occur. Each time it runs out of storage and needs to copy, it doubles 
the capacity.

Note: The actual implementation details are determined by where your Dart 
code is running. For example, in the Dart VM, saying the capacity “doubles” is 
generally true, but the specific implementation in the internal VM file 
growable_array.dart is (old_capacity * 2) | 3.
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Map
A map is   collection that holds key-value pairs. For example, here’s a map 
containing users’ names and scores:

final scores = {'Eric': 9, 'Mark': 12, 'Wayne': 1};

The abstract Map class itself in Dart doesn’t have any guarantees of order, nor can 
you insert at a specific index. The keys of a map can be of any type, but if you are 
using your own custom type then that type needs to implement operator== and 
hashCode.

Although Map itself doesn’t guarantee an order, the default Dart implementation of 
Map is LinkedHashMap, which, unlike HashMap, promises to maintain the insertion 
order.

You can add a new entry to the map with the following syntax:

scores['Andrew'] = 0;

Since this is a LinkedHashMap under the hood, the new key-value pair will appear at 
the end of the map:

print(scores); 
// {Eric: 9, Mark: 12, Wayne: 1, Andrew: 0}

That is not the case with HashMap, which you can observe if you import 
dart:collection:

import 'dart:collection';

And then add the following code below what you wrote earlier:

final hashMap = HashMap.of(scores); 
print(hashMap); 
// {Andrew: 0, Eric: 9, Wayne: 1, Mark: 12}

Now the order has changed since HashMap makes no guarantees about order.
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It’s possible to traverse through the key-value pairs of a map multiple times. This 
order, even when undefined as it is with HashMap, will be the same every time it’s 
traversed until the collection is mutated.

Note: The dart:collection library contains many additional data structures 
beyond the basic ones found in dart:core. By the time you’re finished with 
this book, you’ll understand how many of them work and what their 
performance characteristics and advantages are.

The lack of explicit ordering comes with some redeeming traits, though. Unlike lists, 
maps don’t need to worry about elements shifting around. Inserting into a map 
always takes a constant amount of time.

Lookup operations are also constant-time. This is significantly faster than searching 
for a particular element in a list, which requires a walk from the beginning of the list 
to the insertion point.

Set
A set is a container that holds unique values. Imagine it being a bag that allows you 
to add items to it but rejects items that have already been added:

var bag = {'Candy', 'Juice', 'Gummy'}; 
bag.add('Candy'); 
print(bag); // {Candy, Juice, Gummy}

Since sets enforce uniqueness, they lend themselves to a variety of interesting 
applications, such as finding duplicate elements in a collection of values:

final myList = [1, 2, 2, 3, 4]; 
final mySet = <int>{}; 
for (final item in myList) { 
  if (mySet.contains(item)) { 
    // mySet already has it, so it's a duplicate 
  } 
  mySet.add(item); 
}
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Similar to maps, order is generally not an important aspect of sets. That said, Dart’s 
default implementation of Set uses LinkedHashSet, which, unlike HashSet, 
promises to maintain insertion order.

You won’t use sets nearly as often as lists and maps, but they’re still common enough 
to be an important data structure to keep in your tool belt.

That wraps up this summary of the basic data collection structures that Dart 
provides for you. In the following chapters, you’ll use lists, maps and sets to build 
your own data structures.

Key Points
• Every data structure has advantages and disadvantages. Knowing them is key to 

writing performant software.

• Functions such as List.insert have characteristics that can cripple performance 
when used haphazardly. If you find yourself needing to use insert frequently with 
indices near the beginning of the list, you may want to consider a different data 
structure, such as a linked list.

• Map sacrifices the ability to access elements by ordered index but has fast insertion 
and retrieval.

• Set guarantees uniqueness in a collection of values. It’s optimized for speed, and 
like Map, abandons the ability to access elements by ordered index.

Where to Go From Here?
Need a more detailed explanation of lists, maps and sets? Check out the 
“Collections” chapter in Dart Apprentice from raywenderlich.com.
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Section II: Elementary Data 
Structures

This section looks at a few important data structures that are not found in the 
dart:core library but form the basis of more advanced algorithms covered in future 
sections. All are collections optimized for and enforcing a particular access pattern.

The dart:collection library, which comes with Dart, does contain LinkedList and 
Queue classes. However, learning to build these data structures yourself is why you’re 
reading this book, isn’t it?

Even with just these basics, you‘ll begin to start thinking “algorithmically” and 
seeing the connection between data structures and algorithms.

• Chapter 4: Stacks: The stack data structure is similar in concept to a physical 
stack of objects. When you add an item to a stack, you place it on top of the stack. 
When you remove an item from a stack, you always remove the top-most item. 
Stacks are useful and also exceedingly simple. The main goal of building a stack is 
to enforce how you access your data.

• Chapter 5: Linked Lists: A linked list is a collection of values arranged in a linear, 
unidirectional sequence. It has some theoretical advantages over contiguous 
storage options such as Dart’s List, including constant time insertion and 
removal from the front of the list.

• Chapter 6: Queues: Lines are everywhere, whether you are lining up to buy 
tickets to your favorite movie or waiting for a printer to print out your documents. 
These real-life scenarios mimic the queue data structure. Queues use first-in-first-
out ordering, meaning the first enqueued element will be the first to get dequeued. 
Queues are handy when you need to maintain the order of your elements to 
process later.
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4Chapter 4: Stacks

By Kelvin Lau & Jonathan Sande

Stacks are everywhere. Here are some common examples of things you would stack:

• pancakes

• books

• paper

• cash

The stack data structure is identical in concept to a physical stack of objects. When 
you add an item to a stack, you place it on top of the stack. When you remove an 
item from a stack, you always remove the top-most item.

Good news: a stack of pancakes with butter on top. Bad news: you have to eat the butter 
first.
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Stack Operations
Stacks are useful and also exceedingly simple. The main goal of building a stack is to 
enforce how you access your data.

There are only two essential operations for a stack:

• push: Add an element to the top of the stack.

• pop: Remove the top element of the stack.

Limiting the interface to these two operations means that you can only add or 
remove elements from one side of the data structure. In computer science, a stack is 
known as a LIFO (last-in-first-out) data structure. Elements that are pushed in last 
are the first ones to be popped out.

Stacks are used prominently in all disciplines of programming. To list a couple:

• Memory allocation uses stacks at the architectural level. Memory for local 
variables is also managed using a stack.

• Programming languages that support recursion manage the function calls with a 
stack. If you accidentally write an infinite recursion, you’ll get a stack overflow. 
Perhaps you’ve heard of a website that goes by that name. :]

• Search and conquer algorithms, such as finding a path out of a maze, use stacks to 
facilitate backtracking.

Implementation
Open up the starter project for this chapter. In the root of the project add a folder 
named lib, and in that folder create a file named stack.dart.

Note: If you are using DartPad (https://dartpad.dev) rather than a full IDE, 
then just create your Stack class outside of the main function.

Then add the following code to stack.dart:

class Stack<E> { 
  Stack() : _storage = <E>[]; 
  final List<E> _storage; 
}
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Here, you’ve defined the backing storage of your Stack. Choosing the right storage 
type is important. List is an obvious choice since it offers constant time insertions 
and deletions at one end via add and removeLast. Usage of these two operations will 
facilitate the LIFO nature of stacks.

For those unfamiliar with generics, the E in the code above represents any data type 
that you might want to put in your stack, whether that be String, int, double or 
your own custom type. While you don’t have to use the letter E, it’s customary to do 
so when you’re representing the elements of a collection.

You’ll want to observe the contents of the stack later on, so also override toString 
inside the class:

@override 
String toString() { 
  return '--- Top ---\n' 
      '${_storage.reversed.join('\n')}' 
      '\n-----------'; 
}

This will list all of the elements in _storage with the last one at the top.

Push and Pop Operations
Add the following two operations to your Stack:

void push(E element) => _storage.add(element); 
 

E pop() => _storage.removeLast();

Calling push will add an element to the end of the list while pop will remove the last 
element of the list and return it.

Open bin/starter.dart and import your new stack at the top of the file:

import 'package:starter/stack.dart';

If you’re using your own project, just change starter to whatever your project name 
is.

Then test your stack in the main function of bin/starter.dart:

final stack = Stack<int>(); 
stack.push(1); 
stack.push(2); 
stack.push(3);
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stack.push(4); 
print(stack); 

 
final element = stack.pop(); 
print('Popped: $element');

You should see the following output:

--- Top --- 
4 
3 
2 
1 
----------- 
Popped: 4

push and pop both have O(1) time complexity.

Non-Essential Operations
There are a couple of nice-to-have operations that make a stack easier to use.

Adding Getters

In lib/stack.dart, add the following to Stack:

E get peek => _storage.last; 
 

bool get isEmpty => _storage.isEmpty; 
 

bool get isNotEmpty => !isEmpty;

peek is an operation that is often attributed to the stack interface. The idea of peek 
is to look at the top element of the stack without mutating its contents.
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Creating a Stack From an Iterable

You might want to take an existing iterable collection and convert it to a stack so 
that the access order is guaranteed. Of course it would be possible to loop through 
the elements and push each one. However, you can add a named constructor that just 
sets the underlying private storage.

Add the following constructor to your stack implementation:

Stack.of(Iterable<E> elements) : _storage = 
List<E>.of(elements);

Now, run this example in main:

const list = ['S', 'M', 'O', 'K', 'E']; 
final smokeStack = Stack.of(list); 
print(smokeStack); 
smokeStack.pop();

This code creates a stack of strings and pops the top element “E”. The Dart compiler 
infers the element type from the list, so you can use Stack instead of the more 
verbose Stack<String>.

Less Is More
Since Stack is a collection of elements, you may have wondered about implementing 
the Iterable interface. After all, List and Set and even the keys and values of a Map 
are all iterable.

However, a stack’s purpose is to limit the number of ways to access your data, and 
adopting interfaces such as Iterable would go against this goal by exposing all the 
elements via the iterator. In this case, less is more!

Stacks are crucial to problems that search trees and graphs. Imagine finding your 
way through a maze. Each time you come to a decision point of left, right or straight, 
you can push all possible decisions onto your stack. When you hit a dead end, simply 
backtrack by popping from the stack and continuing until you escape or hit another 
dead end. You may want to try your hand at that sometime, but for now, work 
through the challenges in the following section.
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Challenges
A stack is a simple data structure with a surprisingly large number of applications. 
Try to solve the following challenges using stacks. You can find the answers at the 
end of the book and in the supplemental materials that accompany the book.

Challenge 1: Reverse a List
Create a function that prints the contents of a list in reverse order.

Challenge 2: Balance the Parentheses
Check for balanced parentheses. Given a string, check if there are ( and ) characters, 
and return true if the parentheses in the string are balanced. For example:

// 1 
h((e))llo(world)() // balanced parentheses 

 
// 2 
(hello world // unbalanced parentheses

Key Points
• A stack is a LIFO, last-in first-out, data structure.

• Despite being so simple, the stack is a key data structure for many problems.

• The only two essential operations for a stack are push for adding elements and 
pop for removing elements.

• push and pop are both constant-time operations.
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5Chapter 5: Linked Lists

By Kelvin Lau & Jonathan Sande

A linked list is a collection of values arranged in a linear, unidirectional sequence. It 
has several theoretical advantages over contiguous storage options such as the Dart 
List:

• Constant time insertion and removal from the front of the list.

• Reliable performance characteristics.

A linked list is a chain of nodes:

A linked list

Nodes have two responsibilities:

1. Hold a value.

2. Hold a reference to the next node. A null reference indicates the end of the list.

A node holding the value 12
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In this chapter, you’ll implement a linked list and learn about the common 
operations associated with it. You’ll also learn about the time complexity of each 
operation.

Open up the starter project for this chapter so you can dive into the code.

Node
Create a folder called lib in the root of your project. Then add a new file to this folder 
called linked_list.dart. At the top of that file add class called Node with the 
following code:

class Node<T> { 
  Node({required this.value, this.next}); 
  T value; 
  Node<T>? next; 
}

Since Node only knows about a single value, T is the standard letter people use to 
mean that the node can hold any type. Later when you create a linked list of nodes, 
you’ll use E to refer to the type since they are elements of the list.

Making Nodes Printable…Recursively
Override toString so that you can print Node later. Add this inside your newly 
created class:

@override 
String toString() { 
  if (next == null) return '$value'; 
  return '$value -> ${next.toString()}'; 
}
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This will recursively print all of the nodes after this one in the linked list.

Note: When a method calls itself, this is known as recursion. A recursive 
method must have a base case, which is its exit strategy so that the method 
doesn’t keep calling itself forever. In the example above, the base case is when 
the next node is null.

Recursion can have a tendency to make your brain dizzy, but it’s also very 
useful. You’ll see recursion a lot in this book and hopefully by the time you’re 
finished, you’ll feel more comfortable with it.

Creating a Linked List by Hand
Now it’s time to try out your shiny new Node! Open bin/starter.dart and add the file 
import:

import 'package:starter/linked_list.dart';

Change starter to whatever your project name is if you aren’t using the starter 
project.

Then add the following code to main :

final node1 = Node(value: 1); 
final node2 = Node(value: 2); 
final node3 = Node(value: 3); 

 
node1.next = node2; 
node2.next = node3; 

 
print(node1);
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You’ve just created three nodes and connected them:

A linked list containing values 1, 2, and 3

Run the code and you’ll see the following output in the console:

1 -> 2 -> 3

The current method of building lists leaves a lot to be desired. You can easily see that 
building long lists this way is impractical. A common way to alleviate this problem is 
to build a LinkedList that manages the Node objects. You’ll do just that!

LinkedList
A linked list has the concept of a head and tail, which refers to the first and last 
nodes of the list respectively:

The head and tail of the list

Implement these characteristics by adding the following class below Node in 
linked_list.dart:

class LinkedList<E> { 
  Node<E>? head; 
  Node<E>? tail; 

 
  bool get isEmpty => head == null; 

 
  @override 
  String toString() { 
    if (isEmpty) return 'Empty list'; 
    return head.toString(); 
  } 
}
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You know that the list is empty if the head is null. Also, since you already designed 
Node to recursively print any nodes that follow it, you can print the entire linked list 
just by calling head.toString.

Adding Values to a List
As mentioned before, you’re going to provide an interface to manage the Node 
objects. You’ll first take care of adding values. There are three ways to add values to a 
linked list, each having its own unique performance characteristics:

1. push: Adds a value at the front of the list.

2. append: Adds a value at the end of the list.

3. insertAfter: Adds a value after a particular node in the list.

You’ll implement each of these in the following sections and analyze their 
performance characteristics.

Pushing to the Front of a List
Adding a value at the front of the list is known as a push operation. This is also 
known as head-first insertion. The code for it is refreshingly simple.

Add the following method to LinkedList:

void push(E value) { 
  head = Node(value: value, next: head); 
  tail ??= head; 
}

You create a new node and point to the node that used to be head. Then you set this 
new node as head. In the case in which you’re pushing into an empty list, the new 
node is both the head and tail of the list.

Go back to bin/starter.dart and replace the contents of main with the following 
code, and then run the program:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print(list);
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Your console output should show this:

1 -> 2 -> 3

That was a lot easier than building the list by chaining nodes together by hand!

Appending to the End of a List
The next operation you’ll look at is append. This is meant to add a value at the end of 
the list, and it’s known as tail-end insertion.

In LinkedList, add the following code just below push:

void append(E value) { 
  // 1 
  if (isEmpty) { 
    push(value); 
    return; 
  } 

 
  // 2 
  tail!.next = Node(value: value); 

 
  // 3 
  tail = tail!.next; 
}

This code is relatively straightforward:

1. Like before, if the list is empty, you’ll need to update both head and tail to the 
new node. Since append on an empty list is functionally identical to push, you 
simply invoke push to do the work for you.

2. In all other cases, you create a new node after the tail node. tail is guaranteed to 
be non-null since you push in the isEmpty case.

3. Since this is tail-end insertion, your new node is also the new tail of the list.

Test it out by replacing the contents of main with the following:

final list = LinkedList<int>(); 
list.append(1); 
list.append(2); 
list.append(3); 

 
print(list);
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Run that and you should see the following output in the console:

1 -> 2 -> 3

Inserting in Middle of a List
The third and final operation for adding values is insertAfter. This operation 
inserts a value after a particular node in the list, and requires two steps:

1. Finding a particular node in the list.

2. Inserting the new node after it.

First, you’ll implement the code to find the node that you want to insert a value 
after.

In LinkedList, add the following code just below append:

Node<E>? nodeAt(int index) { 
  // 1 
  var currentNode = head; 
  var currentIndex = 0; 

 
  // 2 
  while (currentNode != null && currentIndex < index) { 
    currentNode = currentNode.next; 
    currentIndex += 1; 
  } 
  return currentNode; 
}

nodeAt will try to retrieve a node in the list based on the given index. Since you can 
only access the nodes of the list from the head node, you’ll have to make an iterative 
traversal. Here’s the play-by-play:

1. You create a new reference to head and set up a counter to keep track of where 
you are in the list.

2. Using a while loop, you move the reference down the list until you’ve reached 
the desired index. Empty lists or out-of-bounds indexes will result in a null 
return value.
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Now you need to insert the new node.

Add the following method just below nodeAt:

Node<E> insertAfter(Node<E> node, E value) { 
  // 1 
  if (tail == node) { 
    append(value); 
    return tail!; 
  } 

 
  // 2 
  node.next = Node(value: value, next: node.next); 
  return node.next!; 
}

Here’s what you’ve done:

1. In the case where this method is called with the tail node, you’ll call the 
functionally equivalent append method. This will take care of updating tail.

2. Otherwise, you simply link up the new node with the rest of the list and return 
the new node.

Test your insert method out by replacing the body of main with the following:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print('Before: $list'); 

 
var middleNode = list.nodeAt(1)!; 
list.insertAfter(middleNode, 42); 

 
print('After:  $list');

Run that and you should see the following output:

Before: 1 -> 2 -> 3 
After:  1 -> 2 -> 42 -> 3

You successfully inserted a node with a value of 42 after the middle node.
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You might think it’s a little strange to insert a value after the node at some index, 
since with normal lists you insert a value at some index. The reason it’s like this for 
the linked list data structure, though, is because as long as you have a reference to a 
node, it’s very fast, O(1) time complexity, to insert another node after the known 
one. However, there’s no way to insert before a given node (thus replacing its index 
position) without knowing the node before it. And this requires the much slower task 
of iterating through the list.

Performance
Whew! You’ve made good progress so far. To recap, you’ve implemented the three 
operations that add values to a linked list and a method to find a node at a particular 
index.

Next, you’ll focus on the opposite action: removal operations.

Removing Values From a List
There are three main operations for removing nodes:

1. pop: Removes the value at the front of the list.

2. removeLast: Removes the value at the end of the list.

3. removeAfter: Removes the value after a particular node in the list.

You’ll implement all three and analyze their performance characteristics.
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Popping From the Front of a List
Removing a value at the front of a linked list is often referred to as pop. This 
operation is almost as simple as push, so dive right in.

Add the following method to LinkedList:

E? pop() { 
  final value = head?.value; 
  head = head?.next; 
  if (isEmpty) { 
    tail = null; 
  } 
  return value; 
}

By moving the head down a node, you’ve effectively removed the first node of the 
list. In the event that the list becomes empty, you set tail to null. pop returns the 
value that was removed from the list. This value is nullable, since the list may be 
empty.

Test it out by replacing the contents of main with the following:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print('Before: $list'); 

 
final poppedValue = list.pop(); 

 
print('After:  $list'); 
print('Popped value: $poppedValue');

Run that and you’ll see the following result:

Before: 1 -> 2 -> 3 
After:  2 -> 3 
Popped value: 1

Removing From the End of a List
Removing the last node of the list is somewhat inconvenient. Although you have a 
reference to the tail node, you can’t chop it off without getting the reference to the 
node before it. Thus, you’ll have to do an arduous traversal.
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Add the following code just below pop:

E? removeLast() { 
  // 1 
  if (head?.next == null) return pop(); 

 
  // 2 
  var current = head; 
  while (current!.next != tail) { 
    current = current.next; 
  } 

 
  // 3 
  final value = tail?.value; 
  tail = current; 
  tail?.next = null; 
  return value; 
}

Note the following points about the numbered sections above:

1. If the list only consists of one node, removeLast is functionally equivalent to 
pop. Since pop will handle updating the head and tail references, you’ll just 
delegate this work. pop will also handle the case of an empty list.

2. You start at the beginning and keep searching the nodes until current.next is 
tail. This signifies that current is the node right before tail.

3. You collect the return value from the tail and after that rewire the node before 
the tail to be the new tail.

Test out your new functionality in main:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print('Before: $list'); 

 
final removedValue = list.removeLast(); 

 
print('After:  $list'); 
print('Removed value: $removedValue');

Data Structures & Algorithms in Dart Chapter 5: Linked Lists

raywenderlich.com 64



Run that and you should see the following in the console:

Before: 1 -> 2 -> 3 
After:  1 -> 2 
Removed value: 3

removeLast requires you to traverse all the way down the list. This makes for an O(n) 
operation, which is relatively expensive.

Removing a Value From the Middle of a List
The final remove operation is removing a node at a particular point in the list. This is 
achieved much like insertAfter. You’ll first find the node immediately before the 
node you wish to remove and then unlink it.

Removing the middle node

Add the following to your LinkedList:

E? removeAfter(Node<E> node) { 
  final value = node.next?.value; 
  if (node.next == tail) { 
    tail = node; 
  } 
  node.next = node.next?.next; 
  return value; 
}

You drop the next node from the list by resetting the link of the given node to the 
next-next node, in effect skipping the one that used to come after. Special care needs 
to be taken if the removed node is the tail node since the tail reference will need to 
be updated.
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Head back to main to try it out. You know the drill:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print('Before: $list'); 

 
final firstNode = list.nodeAt(0); 
final removedValue = list.removeAfter(firstNode!); 

 
print('After:  $list'); 
print('Removed value: $removedValue');

You should see the following output in the console:

Before: 1 -> 2 -> 3 
After:  1 -> 3 
Removed value: 2

Try adding more elements and play around with the value of the node index. Similar 
to insertAfter, the time complexity of this operation is O(1), but it requires you to 
have a reference to a particular node beforehand.

Performance
You’ve hit another checkpoint! To recap, you’ve implemented the three operations 
that remove values from a linked list:

At this point, you’ve defined an interface for a linked list that most programmers 
around the world can relate to. However, there’s work to be done to adhere to Dart 
semantics. In the next part of the chapter, you’ll focus on making the interface more 
Dart-like.
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Making a List Iterable
With most Dart collections, you can iterate through them using a for loop. For 
example, here is a basic implementation of looping through a standard list:

final numbers = [1, 2, 3]; 
for (final number in numbers) { 
  print(number); 
}

However, if you were to try to do that with your LinkedList implementation, you’d 
get an error. You can try by running the following code in main:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
for (final element in list) { 
  print(element); 
}

The error reads:

The type 'LinkedList<int>' used in the 'for' loop must implement 
Iterable.

The reason that you can loop through various collections in Dart is because they 
implement the Iterable interface. You can do the same to make LinkedList 
iterable.

Add extends Iterable<E> to LinkedList so that the first line of the class looks as 
follows:

class LinkedList<E> extends Iterable<E> {

Iterable requires an iterator, so create the missing override:

@override 
// TODO: implement iterator 
Iterator<E> get iterator => throw UnimplementedError();

After you’ve finished making the iterator, you’ll come back and update this getter.
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Since Iterable also includes isEmpty, add the @override annotation above your 
isEmpty getter. It should look like so now:

@override 
bool get isEmpty => head == null;

Note: Rather than extending Iterable, you could have also implemented it. 
However, the abstract Iterable class contains a lot of default logic that you 
would have to rewrite yourself if you had used the implement keyword. By 
using extends, you only need to implement iterator.

What’s an Iterator?
An iterator tells an iterable class how to move through its elements. To make an 
iterator, you create a class that implements the Iterator interface. This abstract 
class has the following simple form:

abstract class Iterator<E> { 
  E get current; 
  bool moveNext(); 
}

You don’t need to write that yourself. It’s already included in Dart. Here’s what the 
parts mean:

• current refers to the current element in the collection as you are iterating 
through it. According to Iterator semantics, current is undefined until you’ve 
called moveNext at least once.

• moveNext updates the new value of current, so it’s your job here to point to 
whatever item is next in the list. Returning false from this method means that 
you’ve reached the end of the list. After that point, you should consider current 
undefined again.
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Creating an Iterator
Now that you know what an iterator is, you can make one yourself. Create the 
following incomplete class below LinkedList:

class _LinkedListIterator<E> implements Iterator<E> { 
  _LinkedListIterator(LinkedList<E> list) : _list = list; 
  final LinkedList<E> _list; 
}

You pass in a reference to the linked list so that the iterator has something to work 
with.

Since you implemented Iterator, you still need to add the required current getter 
and moveNext method.

Implementing current

First add the following code for current:

Node<E>? _currentNode; 
 

@override 
E get current => _currentNode!.value;

Someone looping through your LinkedList probably doesn’t care about the concept 
of nodes. They just want the values, so when you return current you extract the 
value from the current node, which you are storing as a separate private variable 
named _currentNode. Note that accessing current when _currentNode is null will 
cause a crash. As long as you implement moveNext correctly and people follow 
Iterator semantics, though, this will never happen.

Implementing moveNext

Add the missing moveNext method now:

bool _firstPass = true; 
 

@override 
bool moveNext() { 
  // 1 
  if (_list.isEmpty) return false; 

 
  // 2 
  if (_firstPass) { 
    _currentNode = _list.head;
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    _firstPass = false; 
  } else { 
    _currentNode = _currentNode?.next; 
  } 

 
  // 3 
  return _currentNode != null; 
}

Here’s what you did:

1. If the list is empty, then there’s no need to go any further. Let the iterable know 
that there are no more items in this collection by returning false.

2. Since _currentNode is null to start with, you need to set it to head on the first 
pass. After that just point it to the next node in the chain.

3. Returning true lets the iterable know that there are still more elements, but 
when the current node is null, you know that you’ve reached the end of the list.

Looping Through a List
Now that your iterator is finished, you can use it in your LinkedList. Replace the 
unimplemented iterator getter that you added earlier to LinkedList with the 
following:

@override 
Iterator<E> get iterator => _LinkedListIterator(this);

Now you’re ready to see if it works. Rerun the same code that you unsuccessfully 
tried earlier:

final list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
for (final element in list) { 
  print(element); 
}

This time it works! It prints out the following values as expected:

1 
2 
3
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The Iterable interface only allows iterating through the elements in one direction. 
Dart also has a BidirectionalIterator interface for two-way movement. That’s 
not possible with LinkedList, though, because this data structure also only allows 
movement in one direction.

Looping through a collection is not the only benefit of implementing Iterable. You 
now have access to all sorts of methods like where, map, contains, and elementAt. 
Just keep in mind that these are O(n) operations, though. Even the innocuous-
looking length requires iterating through the whole list to calculate.

Note: The dart:collection library also contains a class named LinkedList. 
It only accepts elements of type LinkedListEntry, though, so it isn’t as 
flexible as yours was for making a list of arbitrary values. Additionally, the 
Dart version is a doubly linked list (linking to previous as well as next 
elements), whereas yours was a singly linked list. If you want to use a standard 
Dart collection that allows adding and removing at the ends in constant or 
amortized constant time, check out the Queue class.

Challenges
These challenges will serve to solidify your knowledge of data structures. You can 
find the answers at the end of the book and in the supplemental materials.

Challenge 1: Print in Reverse
Create a function that prints the nodes of a linked list in reverse order. For example:

1 -> 2 -> 3 -> null 
 

// should print out the following: 
3 
2 
1
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Challenge 2: Find the Middle Node
Create a function that finds the middle node of a linked list. For example:

1 -> 2 -> 3 -> 4 -> null 
// middle is 3 

 
1 -> 2 -> 3 -> null 
// middle is 2

Challenge 3: Reverse a Linked List
Create a function that reverses a linked list. You do this by manipulating the nodes 
so that they’re linked in the other direction. For example:

// before 
1 -> 2 -> 3 -> null 

 
// after 
3 -> 2 -> 1 -> null

Challenge 4: Remove All Occurrences
Create a function that removes all occurrences of a specific element from a linked 
list. The implementation is similar to the removeAfter method that you 
implemented earlier. For example:

// original list 
1 -> 3 -> 3 -> 3 -> 4 

 
// list after removing all occurrences of 3 
1 -> 4

Key Points
• Linked lists are linear and unidirectional. As soon as you move a reference from 

one node to another, you can’t go back.

• Linked lists have O(1) time complexity for head first insertions, whereas standard 
lists have O(n) time complexity for head-first insertions.

• Implementing the Dart Iterable interface allows you to loop through the 
elements of a collection as well as offering a host of other helpful methods.
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6Chapter 6: Queues

By Vincent Ngo & Jonathan Sande

Everyone is familiar with waiting in line. Whether you are in line to buy tickets to 
your favorite movie or waiting for a printer to print a file, these real-life scenarios 
mimic the queue data structure.

Queues use FIFO (first-in-first-out) ordering, meaning the first element that was 
added will always be the first to be removed. Queues are handy when you need to 
maintain the order of your elements to process later.

In this chapter, you’ll learn all the common operations of a queue, go over various 
ways to implement a queue, and look at the time complexity of each approach.
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Common Operations
The following interface defines what a queue needs to do:

abstract class Queue<E> { 
  bool enqueue(E element); 
  E? dequeue(); 
  bool get isEmpty; 
  E? get peek; 
}

These are the meanings of the core operations:

• enqueue: Insert an element at the back of the queue. Return true if the operation 
was successful.

• dequeue: Remove the element at the front of the queue and return it.

• isEmpty: Check if the queue is empty.

• peek: Return the element at the front of the queue without removing it.

Notice that the queue only cares about removal from the front and insertion at the 
back. You don’t need to know what the contents are in between. If you did, you 
would probably just use a list.

Go ahead and open the starter project. Add a file called queue.dart to the lib folder. 
Then add the Queue abstract class from the beginning of this section to the top of 
the file. You’ll use this interface later in the chapter when implementing a queue.

Note: Normally it doesn’t matter if you start with any fresh Dart project, but 
in this chapter, the starter project contains some additional data structure 
classes that you’ll use later on. So you’ll have an easier time if you actually do 
use the starter project. If you’re using DartPad, you’ll need to copy those 
classes to the bottom of the code window.
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Example of a Queue
The easiest way to understand how a queue works is to see an example. Imagine a 
group of people waiting in line to buy a movie ticket.

The queue currently holds Ray, Brian, Sam and Mic. Once Ray has received his ticket, 
he moves out of the line. By calling dequeue, Ray is removed from the front of the 
queue.

Calling peek will return Brian since he is now at the front of the line.

Now comes Vicki, who just joined the line to buy a ticket. By calling 
enqueue('Vicki'), Vicki gets added to the back of the queue.

In the following sections, you’ll learn to create a queue using four different internal 
data structures:

• List

• Doubly linked list

• Ring buffer

• Two stacks
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List-Based Implementation
The Dart core library comes with a set of highly optimized data structures that you 
can use to build higher-level abstractions. One of them that you’re already familiar 
with is List, the data structure that stores a contiguous, ordered collection of 
elements. In this section, you’ll use a list to create a queue.

A simple Dart list can be used to model the queue.

In lib/queue.dart, add the following code below your Queue interface:

class QueueList<E> implements Queue<E> { 
  final _list = <E>[]; 

 
  @override 
  bool enqueue(E element) => throw UnimplementedError(); 

 
  @override 
  E? dequeue() => throw UnimplementedError(); 

 
  @override 
  bool get isEmpty => throw UnimplementedError(); 

 
  @override 
  E? get peek => throw UnimplementedError(); 
}

This sets up a private list to hold the elements of the queue. You’ve also added the 
methods required by the Queue interface that you defined earlier. Trying to access 
them now would throw an UnimplementedError, but you’ll implement them in the 
following sections.
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Leveraging Lists
Replace isEmpty and peek in your QueueList with the following:

@override 
bool get isEmpty => _list.isEmpty; 

 
@override 
E? get peek => (isEmpty) ? null : _list.first;

Using the features of List, you get the following for free:

1. Check if the queue is empty.

2. Return the element at the front of the queue, or null if the queue is empty.

These operations are both O(1).

Enqueue
Enqueuing an element at the back of the queue is easy. Just add an element to the 
list. Replace enqueue with the following:

@override 
bool enqueue(E element) { 
  _list.add(element); 
  return true; 
}

Enqueuing an element is, on average, an O(1) operation. This is because the list has 
empty space at the back.

In the example above, notice that, once you add Mic, the list has two empty spaces.
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After adding multiple elements, the list will eventually be full. When you want to use 
more than the allocated space, the list must resize to make additional room.

As a review of what you learned in an earlier chapter, appending to a list is an O(1) 
operation even though sizing is an O(n) operation. Resizing, after all, requires the 
list to allocate new memory and copy all existing data over to the new list. The key is 
that this doesn’t happen very often. This is because the capacity doubles each time it 
runs out of space. As a result, if you work out the amortized cost of the operation 
(the average cost), enqueuing is only O(1). That said, the worst-case performance is 
O(n) when the copy is performed.

Dequeue
Removing an item from the front requires a bit more work. Replace dequeue with the 
following:

@override 
E? dequeue() => (isEmpty) ? null : _list.removeAt(0);

If the queue is empty, dequeue simply returns null. If not, it removes the element 
from the front of the list and returns it.

Removing an element from the beginning of a list is always a linear-time operation 
because it requires all the remaining elements in the list to be shifted in memory.
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Testing the List-Based Implementation
Add a new method to override toString in QueueList so that you can see the 
results of your operations:

@override 
String toString() => _list.toString();

Then open bin/starter.dart and add the following code to main:

final queue = QueueList<String>(); 
queue.enqueue('Ray'); 
queue.enqueue('Brian'); 
queue.enqueue('Eric'); 
print(queue); 

 
queue.dequeue(); 
print(queue); 

 
queue.peek; 
print(queue);

You’ll need to import your queue.dart file:

import 'package:starter/queue.dart';

Change starter to whatever your project name is if you’re using something else 
besides the starter project that came with this book.

Run the code and you should see the following in the console:

[Ray, Brian, Eric] 
[Brian, Eric] 
[Brian, Eric]

This code puts Ray, Brian and Eric in the queue, then removes Ray and peeks at Brian 
but doesn’t remove him.
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Performance
Here’s a summary of the algorithmic and storage complexity of the list-based queue 
implementation:

You’ve seen how easy it is to implement a list-based queue by leveraging a Dart List. 
Enqueue is on average very fast, thanks to the O(1) add operation. There are some 
shortcomings to the implementation, though. Removing an item from the front of 
the queue can be inefficient, as removal causes all elements to shift by one. This 
makes a difference for very large queues. Once the list gets full, it has to resize and 
may have unused space. This could increase your memory footprint over time.

Is it possible to address these shortcomings? Compare this one to the linked-list-
based implementation in the next section.

Doubly Linked List Implementation
Open the lib folder you’ll find a file called doubly_linked_list.dart that contains a 
DoublyLinkedList class. You should already be familiar with linked lists from 
Chapter 5, “Linked Lists”. A doubly linked list is simply a linked list in which nodes 
also contain a reference to the previous node.

Note: Feel free to use the singly linked list you made in Chapter 5 if you 
prefer. Just remember the performance characteristics, though. Since 
removeLast is O(n), you should avoid using that method. However, you can 
enqueue with append and dequeue with pop, both of which are O(1). For a 
doubly linked list it doesn’t matter as much since removeLast is also O(1).
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Start by adding a generic QueueLinkedList to queue.dart as shown below.

First, import doubly_linked_list.dart at the top of the file:

import 'doubly_linked_list.dart';

Then, add the following code after the QueueList class.

class QueueLinkedList<E> implements Queue<E> { 
  final _list = DoublyLinkedList<E>(); 

 
  @override 
  bool enqueue(E element) => throw UnimplementedError(); 

 
  @override 
  E? dequeue() => throw UnimplementedError(); 

 
  @override 
  bool get isEmpty => throw UnimplementedError(); 

 
  @override 
  E? get peek => throw UnimplementedError(); 
}

This implementation is similar to QueueList, but instead of using List, the internal 
data structure is DoublyLinkedList. Take a minute to browse the source code of 
DoublyLinkedList and compare it to the LinkedList you made earlier.

Next, you’ll start implementing the methods of the Queue interface.

Enqueue
To add an element to the back of the queue, simply replace enqueue with the 
following:

@override 
bool enqueue(E element) { 
  _list.append(element); 
  return true; 
}
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Behind the scenes, the doubly linked list will update the tail node’s previous and 
next references to the new node. This is an O(1) operation.

Dequeue
To remove an element from the queue, replace dequeue with the following:

@override 
E? dequeue() => _list.pop();

pop does exactly what you want dequeue to do, so you can use it directly.

Removing from the front of a linked list is also an O(1) operation. Compared to the 
List implementation, you don’t have to shift elements one by one. Instead, as 
shown in the diagram below, you simply update the pointers for the first two nodes 
of the linked list:

Checking the State of a Queue
Similar to the List implementation, you can implement peek and isEmpty using the 
properties of DoublyLinkedList.

Replace isEmpty and peek with the following:

@override 
bool get isEmpty => _list.isEmpty; 

 
@override 
E? get peek => _list.head?.value;
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Testing the Linked-List-Based Implementation
Override toString in QueueLinkedList so that you can see the results of your 
operations:

@override 
String toString() => _list.toString();

Then replace the contents of main with the following code:

final queue = QueueLinkedList<String>(); 
queue.enqueue('Ray'); 
queue.enqueue('Brian'); 
queue.enqueue('Eric'); 
print(queue); // [Ray, Brian, Eric] 

 
queue.dequeue(); 
print(queue); // [Brian, Eric] 

 
queue.peek; 
print(queue); // [Brian, Eric]

Run the code and you’ll see the same results as your QueueList implementation:

[Ray, Brian, Eric] 
[Brian, Eric] 
[Brian, Eric]

Performance
Here is a summary of the algorithmic and storage complexity of the doubly-linked-
list-based queue implementation.
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One of the main problems with QueueList was that dequeuing an item took linear 
time. With the linked list implementation, you reduced it to a constant operation, 
O(1). All you needed to do was update the node’s pointers.

The main weakness with QueueLinkedList is not apparent from the table. Despite 
O(1) performance, it suffers from high overhead. Each element has to have extra 
storage for the forward and back references. Moreover, every time you create a new 
element, it requires a relatively expensive dynamic allocation of memory for the new 
node. By contrast, QueueList does bulk allocation, which is faster.

Can you eliminate allocation overhead and maintain O(1) dequeues? If you don’t 
have to worry about your queue ever growing beyond a maximum fixed size, then the 
answer is yes! What you are looking for is a ring buffer. For example, you might 
have a game of Monopoly with four players. You can use a ring-buffer-based queue 
to keep track of whose turn is coming up next. You’ll take a look at the ring buffer 
implementation next.

Ring Buffer Implementation
A ring buffer, also known as a circular buffer, is a fixed-size list. This data structure 
strategically wraps around to the beginning when there are no more items to remove 
at the end.

Example
What follows is a simple example of how a queue can be implemented using a ring 
buffer:

You first create a ring buffer that has a fixed size of 4. The ring buffer has two 
pointers that keep track of two things:

1. The read pointer keeps track of the front of the queue.

2. The write pointer keeps track of the next available slot so that you can 
overwriteexisting elements that have already been read.
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The image below shows the read and write pointers after you enqueue an item:

Each time that you add an item to the queue, the write pointer increments by one. 
Here is what it looks like after adding a few more elements:

Notice that the write pointer moved two more spots and is ahead of the read 
pointer. This means that the queue is not empty.

Next, dequeue two items:

Dequeuing is the equivalent of reading a ring buffer. Notice how the read pointer 
moved twice.

Now, enqueue one more item:

Since the write pointer reached the end, it simply wraps around to the starting index 
again. This is why the data structure is known as a circular buffer.
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Finally, dequeue the two remaining items:

The read pointer wraps to the beginning, as well. Whenever the read and write 
pointers are at the same index, that means the queue is empty.

Note: You might wonder what happens if you enqueue too many items and the 
write pointer loops around and catches up with the read pointer. One option is 
to throw an error. Alternatively, you could overwrite the unread data and push 
the read pointer ahead of the write pointer. The ring buffer in the starter 
project implements the first option, but you could modify it for the second 
option if losing data at the front of the queue is acceptable in your application.

Implementation
Now that you have a better understanding of how ring buffers can be used to make a 
queue, it’s time to implement one!

You’ll find a file called ring_buffer.dart in the lib folder of the starter project. This 
file includes the RingBuffer implementation that you’ll use in the next section.

For the adventurous: If you’d like a little extra challenge before proceeding, 
try to implement a ring buffer yourself based on the description above. Check 
the source code in the starter project if you get stuck.

Add a generic QueueRingBuffer to queue.dart as shown below:

import 'ring_buffer.dart'; 
 

class QueueRingBuffer<E> implements Queue<E> { 
  QueueRingBuffer(int length) 
    : _ringBuffer = RingBuffer<E>(length); 
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  final RingBuffer<E> _ringBuffer; 
 

  @override 
  bool enqueue(E element) => throw UnimplementedError(); 

 
  @override 
  E? dequeue() => throw UnimplementedError(); 

 
  @override 
  bool get isEmpty => _ringBuffer.isEmpty; 

 
  @override 
  E? get peek => _ringBuffer.peek; 
}

There are a couple of points to pay attention to:

• You must include a length parameter since the ring buffer has a fixed size.

• isEmpty and peek are already implemented. Both of these are O(1) operations.

You’ll implement enqueue and dequeue in the following sections.

Enqueue
Replace enqueue with the method below:

@override 
bool enqueue(E element) { 
  if (_ringBuffer.isFull) { 
    return false; 
  } 
  _ringBuffer.write(element); 
  return true; 
}

To append an element to the queue, you simply call write on the _ringBuffer. This 
increments the write pointer by one.

Since the queue has a fixed size, you must now return true or false to indicate 
whether the element has been successfully added. enqueue is still an O(1) operation.
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Dequeue
Next replace dequeue with the following:

@override 
E? dequeue() => _ringBuffer.read();

To remove an item from the front of the queue, you simply call read on the 
_ringBuffer. Behind the scenes, it checks if the ring buffer is empty and, if so, 
returns null. If not, it returns the item at the read index of the buffer and then 
increments the index by one.

Testing the Ring-Buffer-Based Implementation
Override toString in QueueRingBuffer so that you can see the results of your 
operations:

@override 
String toString() => _ringBuffer.toString();

This creates a string representation of Queue by delegating to the underlying ring 
buffer.

That’s all there is to it! Test your ring-buffer-based queue by running the following 
code in main:

final queue = QueueRingBuffer<String>(10); 
queue.enqueue("Ray"); 
queue.enqueue("Brian"); 
queue.enqueue("Eric"); 
print(queue); // [Ray, Brian, Eric] 

 
queue.dequeue(); 
print(queue); // [Brian, Eric] 

 
queue.peek; 
print(queue); // [Brian, Eric]

This test code works just like the previous examples, dequeuing Ray and peeking at 
Brian.
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Performance
How does the ring-buffer implementation compare? Have a look at a summary of the 
algorithmic and storage complexity.

The ring-buffer-based queue has the same time complexity for enqueue and dequeue 
as the linked-list implementation. The space complexity for a ring-buffer-based 
queue, while still O(n), doesn’t require new memory allocation internally when 
enqueuing new elements like the linked-list implementation does. However, the ring 
buffer has a fixed size, which means that enqueue can fail.

So far, you’ve seen three implementations of a queue: a simple list, a doubly linked 
list and a ring buffer. These were all useful in their own ways, but next you’ll make a 
queue implemented with two stacks. Its spatial locality is superior to the linked list, 
and it also doesn’t need a fixed size like a ring buffer.

Double-Stack Implementation
Add a generic QueueStack to queue.dart as shown below:

class QueueStack<E> implements Queue<E> { 
  final _leftStack = <E>[]; 
  final _rightStack = <E>[]; 

 
  @override 
  bool enqueue(E element) => throw UnimplementedError(); 

 
  @override 
  E? dequeue() => throw UnimplementedError(); 

 
  @override 
  bool get isEmpty => throw UnimplementedError(); 

 
  @override 
  E? get peek => throw UnimplementedError(); 
}
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You’re using lists rather than the Stack class that you made in Chapter 4, “Stacks”. 
The reason for this is that you’re going to leverage a few functions of List that your 
Stack doesn’t currently have: first, last and reverse.

The idea behind using two stacks is simple. Whenever you enqueue an element, it 
goes in the right stack.

When you need to dequeue an element, you reverse the right stack, place it in the 
left stack, and remove the top element.

This reversing operation is only required when the left stack is empty, making most 
enqueue and dequeue operations constant-time.

Leveraging Lists
Implement the common features of a queue, starting with the following:

@override 
bool get isEmpty => _leftStack.isEmpty && _rightStack.isEmpty;
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To check if the queue is empty, simply check that both the left and right stacks are 
empty. This means that there are no elements left to dequeue and no new elements 
have been enqueued.

Next, replace peek with the following:

@override 
E? get peek => _leftStack.isNotEmpty 
    ? _leftStack.last 
    : _rightStack.first;

You know that peeking looks at the top element. If the left stack is not empty, the 
element on top of this stack is at the front of the queue. If the left stack is empty, the 
right stack will be reversed and placed in the left stack. In this case, the element at 
the bottom of the right stack is next in the queue.

Note that the two properties isEmpty and peek are still O(1) operations.

Enqueue
Next replace enqueue with the method below:

@override 
bool enqueue(E element) { 
  _rightStack.add(element); 
  return true; 
}

Recall that the right stack is used to enqueue elements.

You simply push to the stack by appending to the list. From implementing the 
QueueList previously, you know that appending an element is an O(1) operation.
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Dequeue
Removing an item in a two-stack-based implementation of a queue is tricky. Add the 
following method:

@override 
E? dequeue() { 
  if (_leftStack.isEmpty) { 
    // 1 
    _leftStack.addAll(_rightStack.reversed); 
    // 2 
    _rightStack.clear(); 
  } 
  if (_leftStack.isEmpty) return null; 
  // 3 
  return _leftStack.removeLast(); 
}

The following explanations refer to the numbered comments in the code above:

1. If the left stack is empty, set it as the reverse of the right stack:

2. Invalidate your right stack. Since you have transferred everything to the left, just 
clear the right:
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3. Remove the last element from the left stack:

Remember, you only transfer the elements in the right stack when the left stack is 
empty!

Note: Yes, reversing the contents of a list is an O(n) operation. However, the 
overall dequeue cost is still amortized O(1). Imagine having a large number of 
items in both the left and right stacks. The reverse copy is only required 
infrequently when the left stack becomes empty.

Testing the Double-Stack-Based 
Implementation
As usual, override toString in QueueStack so that you can print the results:

@override 
String toString() { 
  final combined = [ 
    ..._leftStack.reversed, 
    ..._rightStack, 
  ].join(', '); 
  return '[$combined]'; 
}

Here, you simply combine the reverse of the left stack with the right stack using the 
spread operator.

Try out the double-stack implementation:

final queue = QueueStack<String>(); 
queue.enqueue("Ray"); 
queue.enqueue("Brian");
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queue.enqueue("Eric"); 
print(queue); // [Ray, Brian, Eric] 

 
queue.dequeue(); 
print(queue); // [Brian, Eric] 

 
queue.peek; 
print(queue); // [Brian, Eric]

Just like all of the examples before, this code enqueues Ray, Brian and Eric, dequeues 
Ray and then peeks at Brian.

Performance
Here is a summary of the algorithmic and storage complexity of your two-stack-
based implementation.

Compared to the list-based implementation, by leveraging two stacks, you were able 
to transform dequeue into an amortized O(1) operation.

Moreover, your two-stack implementation is fully dynamic and doesn’t have the 
fixed size restriction that your ring-buffer-based queue implementation has. Worst-
case performance is O(n) when the right queue needs to be reversed or runs out of 
capacity. Running out of capacity doesn’t happen very often thanks to the fact that 
Dart doubles the capacity every time.

Finally, it beats the linked list in terms of spatial locality. This is because list 
elements are next to each other in memory blocks. So a large number of elements 
will be loaded in a cache on first access. Even though a list requires O(n) for simple 
copy operations, it’s a very fast O(n) happening close to memory bandwidth.
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Compare the two images below:

A list has its data stored contiguously in memory.

The data for a linked list, on the other hand, could be all over the place. This non-
locality could lead to more cache misses, which will increase access time.
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Challenges
Think you have a handle on queues? In this section, you’ll explore four different 
problems related to queues. They’ll serve to solidify your fundamental knowledge of 
data structures in general. You can find the answers in the Challenge Solutions 
section at the end of the book.

Challenge 1: Stack vs. Queue
Explain the difference between a stack and a queue. Provide two real-life examples 
for each data structure.

Challenge 2: Step-by-Step Diagrams
Given the following queue where the left is the front of the queue and the right is the 
back:

Provide step-by-step diagrams showing how the following series of commands 
affects the queue internally:

queue.enqueue('D'); 
queue.enqueue('A'); 
queue.dequeue(); 
queue.enqueue('R'); 
queue.dequeue(); 
queue.dequeue(); 
queue.enqueue('T');

Do this for each of the following queue implementations:

1. List

2. Linked list

3. Ring buffer

4. Double stack

Assume that the list and ring buffer have an initial size of 5.
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Challenge 3: Whose Turn Is It?
Imagine that you are playing a game of Monopoly with your friends. The problem is 
that everyone always forgets whose turn it is! Create a Monopoly organizer that 
always tells you whose turn it is. Below is an extension method that you can 
implement:

extension BoardGameManager<E> on QueueRingBuffer { 
  E? nextPlayer() { 
    // TODO 
  } 
}

Challenge 4: Double-Ended Queue
A doubled-ended queue — a.k.a. deque — is, as its name suggests, a queue where 
elements can be added or removed from the front or back.

• A queue (FIFO order) allows you to add elements to the back and remove from the 
front.

• A stack (LIFO order) allows you to add elements to the back, and remove from the 
back.

Deque can be considered both a queue and a stack at the same time.

Your challenge is to build a deque. Below is a simple Deque interface to help you 
build your data structure. The enum Direction describes whether you are adding or 
removing an element from the front or back of the deque. You can use any data 
structure you prefer to construct a Deque.

enum Direction { 
  front, 
  back, 
} 

 
abstract class Deque<E> { 
  bool get isEmpty; 
  E? peek(Direction from); 
  bool enqueue(E element, Direction to); 
  E? dequeue(Direction from); 
}
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Key Points
• Queue takes a FIFO strategy: an element added first must also be removed first.

• Enqueue adds an element to the back of the queue.

• Dequeue removes the element at the front of the queue.

• Elements in a list are laid out in contiguous memory blocks, whereas elements in a 
linked list are more scattered with the potential for cache misses.

• A ring-buffer-based implementation is good for queues with a fixed size.

• Compared to a single list-based implementation, leveraging two stacks improves 
the dequeue time complexity to an amortized O(1) operation.

• The double-stack implementation beats out linked-list in terms of spatial locality.
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Section III: Trees

Trees are another way to organize information, introducing the concept of children 
and parents. You’ll take a look at the most common tree types and see how they can 
be used to solve specific computational problems. Trees are a handy way to organize 
information when performance is critical. Having them in your tool belt will 
undoubtedly prove to be useful throughout your career.

• Chapter 7: Trees: The tree is a data structure of profound importance. It’s used to 
tackle many recurring challenges in software development, such as representing 
hierarchical relationships, managing sorted data, and facilitating fast lookup 
operations. There are many types of trees, and they come in various shapes and 
sizes.

• Chapter 8: Binary Trees: In the previous chapter, you looked at a basic tree 
where each node can have many children. A binary tree is a tree where each node 
has at most two children, often referred to as the left and right children. Binary 
trees serve as the basis for many tree structures and algorithms. In this chapter, 
you’ll build a binary tree and learn about the three most important tree traversal 
algorithms.

• Chapter 9: Binary Search Trees: A binary search tree facilitates fast lookup, 
addition, and removal operations. Each operation has an average time complexity 
of O(log n), which is considerably faster than linear data structures such as lists 
and linked lists.
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• Chapter 10: AVL Trees: In the previous chapter, you learned about the O(log n) 
performance characteristics of the binary search tree. However, you also learned 
that unbalanced trees can deteriorate the performance of the tree, all the way 
down to O(n). In 1962, Georgy Adelson-Velsky and Evgenii Landis came up with 
the first self-balancing binary search tree: the AVL Tree.

• Chapter 11: Tries: The trie (pronounced as “try”) is a tree that specializes in 
storing data that can be represented as a collection, such as English words. The 
benefits of a trie are best illustrated by looking at it in the context of prefix 
matching, which you’ll do in this chapter.

• Chapter 12: Binary Search: Binary search is one of the most efficient searching 
algorithms with a time complexity of O(log n). You’ve already implemented a 
binary search once using a binary search tree. In this chapter, you’ll reimplement 
binary search on a sorted list.

• Chapter 13: Heaps: A heap is a complete binary tree that can be constructed 
using a list. Heaps come in two flavors: max-heaps and min-heaps. In this chapter, 
you’ll focus on creating and manipulating heaps. You’ll see how convenient heaps 
make it to fetch the minimum or maximum element of a collection.

• Chapter 14: Priority Queues: Queues are simply lists that maintain the order of 
elements using first-in-first-out (FIFO) ordering. A priority queue is another 
version of a queue that dequeues elements in priority order instead of FIFO order. 
A priority queue is especially useful when identifying the maximum or minimum 
value given a list of elements.

Data Structures & Algorithms in Dart Section III: Trees

raywenderlich.com 100



7Chapter 7: Trees

By Kelvin Lau & Jonathan Sande

The tree is a data structure of profound importance. It’s used to tackle many 
recurring challenges in software development, such as:

• Representing hierarchical relationships.

• Managing sorted data.

• Facilitating fast lookup operations.

A tree

There are many types of trees, and they come in various shapes and sizes. In this 
chapter, you’ll learn the basics of using and implementing a tree.
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Terminology
Many terms are associated with trees, and here are some you should know right off 
the bat.

Node

Like the linked list, trees are made up of nodes.

Each node can carry some data and keeps track of its children.

Parent and Child

Trees are viewed starting from the top and branching towards the bottom, just like a 
real tree. Well, OK, exactly the opposite of a real tree. :]

Every node except for the topmost one is connected to exactly one node above it. 
That node is called a parent node. The nodes connected directly below a parent are 
called child nodes. In a tree, every child has exactly one parent. That’s what makes a 
tree a tree.
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Root

The topmost node in the tree is called the root of the tree. It is the only node that 
has no parent:

Leaf

A node is a leaf if it has no children:

You will run into more terms later on, but these should be enough to get you started.
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Implementation
Since a tree is made up of nodes, your first task is to make a TreeNode class.

Open up the starter project for this chapter. Create a new file called tree.dart in the 
lib folder. Then add the following code to it:

class TreeNode<T> { 
  TreeNode(this.value); 
  T value; 
  List<TreeNode<T>> children = []; 
}

Like a linked-list node, each TreeNode stores a value. However, since tree nodes can 
point to multiple other nodes, you use a list to hold references to all the children.

Next, add the following method inside TreeNode:

void add(TreeNode<T> child) { 
  children.add(child); 
}

This method adds a child node to a node.

Time to give it a whirl. Open bin/starter.dart and replace the file contents with the 
following code::

import 'package:starter/tree.dart'; 
 

void main() { 
  final beverages = TreeNode('Beverages'); 
  final hot = TreeNode('Hot'); 
  final cold = TreeNode('Cold'); 
  beverages.add(hot); 
  beverages.add(cold); 
}

Hierarchical structures are natural candidates for tree structures, so here you’ve 
defined three different nodes and organized them into a logical hierarchy. This 
arrangement corresponds to the following structure:
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Traversal Algorithms
Iterating through linear collections such as lists or linked lists is straightforward. 
Linear collections have a clear start and end:

Iterating through trees is a bit more complicated:

Should nodes on the left have precedence? How should the depth of a node relate to 
its precedence? Your traversal strategy depends on the problem that you’re trying to 
solve. There are multiple strategies for different trees and different problems. In the 
next section, you’ll look at depth-first traversal, a technique that starts at the root 
and visits nodes as deep as it can before backtracking.

Depth-First Traversal
Add the following method to TreeNode in lib/tree.dart:

void forEachDepthFirst(void Function(TreeNode<T> node) 
performAction) { 
  performAction(this); 
  for (final child in children) { 
    child.forEachDepthFirst(performAction); 
  } 
}
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This deceptively simple code uses recursion to visit the next node. As you may recall 
from the previous chapter, recursive code is where a method calls itself. It’s 
particularly useful for visiting all of the members of a tree data structure.

This time you allow the caller to pass in an anonymous function named 
performAction that will be called once for every node. Then you visit all of the 
current node’s children and call their forEachDepthFirst methods. Eventually you 
reach leaf nodes without any children and so the recursive function calls don’t go on 
forever.

Note: It’s also possible to use a stack if you don’t want your implementation 
to be recursive. Recursion uses a stack under the hood.

Time to test it out. Add the following top-level function below main in bin/
starter.dart:

TreeNode<String> makeBeverageTree() { 
  final tree = TreeNode('beverages'); 
  final hot = TreeNode('hot'); 
  final cold = TreeNode('cold'); 
  final tea = TreeNode('tea'); 
  final coffee = TreeNode('coffee'); 
  final chocolate = TreeNode('cocoa'); 
  final blackTea = TreeNode('black'); 
  final greenTea = TreeNode('green'); 
  final chaiTea = TreeNode('chai'); 
  final soda = TreeNode('soda'); 
  final milk = TreeNode('milk'); 
  final gingerAle = TreeNode('ginger ale'); 
  final bitterLemon = TreeNode('bitter lemon'); 

 
  tree.add(hot); 
  tree.add(cold); 

 
  hot.add(tea); 
  hot.add(coffee); 
  hot.add(chocolate); 

 
  cold.add(soda); 
  cold.add(milk); 

 
  tea.add(blackTea); 
  tea.add(greenTea); 
  tea.add(chaiTea); 

 
  soda.add(gingerAle); 
  soda.add(bitterLemon);
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  return tree; 
}

This function creates the following tree:

Replace the contents of main with the following:

final tree = makeBeverageTree(); 
tree.forEachDepthFirst((node) => print(node.value));

Running that produces the following depth-first output:

beverages 
hot 
tea 
black 
green 
chai 
coffee 
cocoa 
cold 
soda 
ginger ale 
bitter lemon 
milk

In the next section, you’ll look at level-order traversal, a technique that visits each 
node of the tree based on the depth of the nodes.
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Level-Order Traversal
A tree can be divided into levels based on the distance of the nodes from the root. 
The root itself is level 0, nodes that are direct children of the root are level 1, the 
children of these children are level 2, and on it goes. Here’s what that looks like in 
image form:

A level-order traversal means that you visit all of the nodes at an upper level before 
visiting any of the nodes at the next level down.

You can accomplish this by using a queue. The double-stack queue you made in 
Chapter 6 already exists in the lib folder of the starter project, so import it at the top 
of lib/tree.dart:

import 'queue.dart';

Then add the following method to TreeNode:

void forEachLevelOrder(void Function(TreeNode<T> node) 
performAction) { 
  final queue = QueueStack<TreeNode<T>>(); 
  performAction(this); 
  children.forEach(queue.enqueue); 
  var node = queue.dequeue(); 
  while (node != null) { 
    performAction(node); 
    node.children.forEach(queue.enqueue); 
    node = queue.dequeue(); 
  } 
}

Note the following points:

• The queue ensures that the nodes are visited in the right level-order. A simple 
recursion, which implicitly uses a stack, would not have worked!

• QueueStack is one of the queue implementations you made in the last chapter. 
You could also use Queue from the dart:collection library, but you would need 
to adjust the code somewhat since the Dart Queue uses different method names.
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• You first enqueue the root node (level 0) and then add the children (level 1). The 
while loop subsequently enqueues all of the children on the next level down. 
Since a queue is first-in-first-out, this will result in each level dequeuing in order 
from top to bottom.

Head back to main and replace its content with the following:

final tree = makeBeverageTree(); 
tree.forEachLevelOrder((node) => print(node.value));

Run that and you should see the output below:

beverages 
hot 
cold 
tea 
coffee 
cocoa 
soda 
milk 
black 
green 
chai 
ginger ale 
bitter lemon

Search
You already have two methods that iterate through all the nodes, so building a 
search algorithm shouldn’t take long. Write the following at the bottom of TreeNode:

TreeNode? search(T value) { 
  TreeNode? result; 
  forEachLevelOrder((node) { 
    if (node.value == value) { 
      result = node; 
    } 
  }); 
  return result; 
}

You iterate through each node and check if its value is the same as what you’re 
searching for. If so, you return it as the result, but return null if not.

Head back to main to test the code. Replace the function body with the following:

final tree = makeBeverageTree();
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final searchResult1 = tree.search('ginger ale'); 
print(searchResult1?.value); // ginger ale 

 
final searchResult2 = tree.search('water'); 
print(searchResult2?.value); // null

Run that and you’ll see the first search founds a match while the second doesn’t.

Here, you used your level-order traversal algorithm. Since it visits all of the nodes, if 
there are multiple matches, the last match will win. This means you’ll get different 
objects back depending on what traversal method you use.

This chapter was a general introduction to trees and tree traversal algorithms. In the 
next few chapters you’ll learn about more specialized types of trees.

Challenges
The following challenges will help to strengthen your understanding of the tree data 
structure. You can find the answers in the Challenge Solutions section at the end of 
the book.

Challenge 1: Print a Tree in Level Order
Print all the values in a tree in order based on their level. Nodes in the same level 
should be printed on the same line. For example, consider the following tree:
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Your algorithm should print the following:

15 
1 17 20 
1 5 0 2 5 7

Challenge 2: Widget Tree
Flutter calls the nodes in its user-facing UI tree widgets. You can make a mini-
version of the same thing.

Create three separate nodes with the following names and types:

• Column: a tree node that takes multiple children.

• Padding: a tree node that takes a single child.

• Text: a tree leaf node.

Use your widget nodes to build a simple widget tree.

Key Points
• Trees share some similarities to linked lists, but, whereas linked-list nodes may 

only link to one successor node, a tree node can link to many child nodes.

• Every tree node, except for the root node, has exactly one parent node.

• A root node has no parent nodes.

• Leaf nodes have no child nodes.

• Traversals, such as depth-first and level-order traversals, work on multiple types 
of trees. However, the implementation will be slightly different based on how the 
tree is structured.
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8Chapter 8: Binary Trees

By Kelvin Lau & Jonathan Sande

In the previous chapter, you looked at a basic tree where each node can have many 
children. A binary tree is a tree where each node has at most two children, often 
referred to as the left and right children:

Binary trees serve as the basis for many tree structures and algorithms. In this 
chapter, you’ll build a binary tree and learn about the three most important tree 
traversal algorithms.
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Implementation
Create a folder called lib in the root of your starter project and in that folder create a 
file named binary_node.dart. Then add the following code:

class BinaryNode<T> { 
  BinaryNode(this.value); 
  T value; 
  BinaryNode<T>? leftChild; 
  BinaryNode<T>? rightChild; 
}

Rather than maintaining a list of child nodes as you did with TreeNode in the 
previous chapter, you can directly reference leftChild and rightChild. They’re 
nullable since not every node will have children.

Now open bin/starter.dart and import your new class:

import 'package:starter/binary_node.dart';

Add the following top-level function below main:

BinaryNode<int> createBinaryTree() { 
  final zero = BinaryNode(0); 
  final one = BinaryNode(1); 
  final five = BinaryNode(5); 
  final seven = BinaryNode(7); 
  final eight = BinaryNode(8); 
  final nine = BinaryNode(9); 

 
  seven.leftChild = one; 
  one.leftChild = zero; 
  one.rightChild = five; 
  seven.rightChild = nine; 
  nine.leftChild = eight; 

 
  return seven; 
}
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This defines the following tree:

Building a Diagram
Building a mental model of a data structure can be quite helpful in learning how it 
works. To that end, you’ll implement a reusable algorithm that helps visualize a 
binary tree in the console.

Open lib/binary_node.dart and add the following two methods to the bottom of 
BinaryNode:

@override 
String toString() { 
  return _diagram(this); 
} 

 
String _diagram( 
  BinaryNode<T>? node, [ 
  String top = '', 
  String root = '', 
  String bottom = '', 
]) { 
  if (node == null) { 
    return '$root null\n'; 
  } 
  if (node.leftChild == null && node.rightChild == null) { 
    return '$root ${node.value}\n'; 
  } 
  final a = _diagram( 
    node.rightChild, 
    '$top ', 
    '$top┌──', 
    '$top│ ', 
  ); 
  final b = '$root${node.value}\n';
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  final c = _diagram( 
    node.leftChild, 
    '$bottom│ ', 
    '$bottom└──', 
    '$bottom ', 
  ); 
  return '$a$b$c'; 
}

This will recursively create a string representing the binary tree.

Note: This algorithm is based on an implementation by Károly Lőrentey in his 
book Optimizing Collections, available from https://www.objc.io/books/
optimizing-collections/.

Try it out by opening bin/starter.dart and running the following in main:

final tree = createBinaryTree(); 
print(tree);

You should see the following console output:

 ┌── null 
┌──9 
│ └── 8 
7 
│ ┌── 5 
└──1 
 └── 0

You’ll use this method of diagraming for other binary trees in this book.

Traversal Algorithms
Previously, you looked at a level-order traversal of a tree. With a few tweaks, you 
could make that algorithm work for binary trees as well. However, instead of re-
implementing level-order traversal, you’ll look at three traversal algorithms for 
binary trees: in-order, pre-order and post-order traversals.
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In-Order Traversal
An in-order traversal visits the nodes of a binary tree in the following order, starting 
from the root node:

1. If the current node has a left child, recursively visit this child first.

2. Then visit the node itself.

3. If the current node has a right child, recursively visit this child.

Here’s what an in-order traversal looks like for your example tree:

0, 1, 5, 7, 8, 9

You may have noticed that this prints the example tree in ascending order. If the tree 
nodes are structured in a certain way, in-order traversal visits them in ascending 
order! Binary search trees take advantage of this, and you’ll learn more about them 
in the next chapter.

Add the following code to BinaryNode in lib/binary_node.dart:

void traverseInOrder(void Function(T value) action) { 
  leftChild?.traverseInOrder(action); 
  action(value); 
  rightChild?.traverseInOrder(action); 
}

Following the rules laid out above, you first traverse to the left-most node before 
visiting the value. You then traverse to the right-most node.
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Head back to main and replace its content to test this out:

final tree = createBinaryTree(); 
tree.traverseInOrder(print);

Run that and you should see the following in the console:

0 
1 
5 
7 
8 
9

Pre-Order Traversal
Pre-order traversal always visits the current node first, then recursively visits the left 
and right child:

7, 1, 0, 5, 9, 8

Write the following to BinaryNode just below your in-order traversal method:

void traversePreOrder(void Function(T value) action) { 
  action(value); 
  leftChild?.traversePreOrder(action); 
  rightChild?.traversePreOrder(action); 
}

You call action before recursively traversing the children, hence the “pre” of pre-
order traversal.

Test it out back in main with the following code:

final tree = createBinaryTree(); 
tree.traversePreOrder(print);
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You should see the following output in the console:

7 
1 
0 
5 
9 
8

Post-Order Traversal
Post-order traversal only visits the current node after the left and right child have 
been visited recursively.

0, 5, 1, 8, 9, 7

In other words, given any node, you’ll visit its children before visiting itself. An 
interesting consequence of this is that the root node is always visited last.

Back inside BinaryNode, write the following below traversePreOrder:

void traversePostOrder(void Function(T value) action) { 
  leftChild?.traversePostOrder(action); 
  rightChild?.traversePostOrder(action); 
  action(value); 
}

Note that you perform action after the recursive traversal calls.

Go back to main to try it out:

final tree = createBinaryTree(); 
tree.traversePostOrder(print);
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You should see the following in the console:

0 
5 
1 
8 
9 
7

Comparison
Take a moment to review the differences between those three traversal algorithms:

void traverseInOrder(void Function(T value) action) { 
  leftChild?.traverseInOrder(action); 
  action(value); 
  rightChild?.traverseInOrder(action); 
} 

 
void traversePreOrder(void Function(T value) action) { 
  action(value); 
  leftChild?.traversePreOrder(action); 
  rightChild?.traversePreOrder(action); 
} 

 
void traversePostOrder(void Function(T value) action) { 
  leftChild?.traversePostOrder(action); 
  rightChild?.traversePostOrder(action); 
  action(value); 
}

The methods all contained the same lines of code but executed them in varying 
order. The list below summarizes that order:

• traverseInOrder: left → action → right

• traversePreOrder: action → left → right

• traversePostOrder: left → right → action

The difference is only in where the action takes place.

Each one of these traversal algorithms has a time and space complexity of O(n).
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You saw that in-order traversal can be used to visit the nodes in ascending order. 
Binary trees can enforce this behavior by adhering to certain rules during insertion. 
In the next chapter, you’ll look at a binary tree with stricter semantics: the binary 
search tree.

Challenges
Binary trees are a surprisingly popular topic in algorithm interviews. Questions on 
the binary tree not only require a good foundation of how traversals work, but can 
also test your understanding of recursive backtracking, so it’s good to test what 
you’ve learned in this chapter.

Challenge 1: Height of a Tree
Given a binary tree, find the height of the tree. The height of the binary tree is 
determined by the distance between the root and the furthest leaf. The height of a 
binary tree with a single node is zero since the single node is both the root and the 
furthest leaf.

Challenge 2: Serialization
A common task in software development is representing a complex object using 
another data type. This process is known as serialization and allows custom types to 
be used in systems that only support a closed set of data types. An example of 
serialization is JSON.

Your task is to devise a way to serialize a binary tree into a list, and a way to 
deserialize the list back into the same binary tree.

To clarify this problem, consider the following binary tree:
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A particular algorithm may output the serialization as follows:

[15, 10, 5, null, null, 12, null, null, 25, 17, null, null, 
null]

The deserialization process should transform the list back into the same binary tree. 
Note that there are many ways to perform serialization. You may choose any way you 
wish.

Key Points
• A binary tree is a tree where each node has at most two children, often referred to 

as the left and right children.

• Tree traversal algorithms visit each node in the tree once.

• In-order traversal recursively visits the left child first, then the current parent 
node, and finally the right child.

• Pre-order traversal visits the parent node first, followed by the child nodes.

• Post-order traversal visits the child nodes before the parent nodes.
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9Chapter 9: Binary Search 
Trees
By Kevin Lau & Jonathan Sande

A binary search tree, or BST, is a data structure that facilitates fast lookup, insert 
and removal operations. Consider the following decision tree where picking a side 
forfeits all the possibilities of the other side, cutting the problem in half:
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Once you make a decision and choose a branch, there is no looking back. You keep 
going until you make a final decision at a leaf node. Binary trees let you do the same 
thing. Specifically, a binary search tree imposes two rules on the binary tree you saw 
in the previous chapter:

• The value of a left child must be less than the value of its parent.

• Consequently, the value of a right child must be greater than or equal to the value 
of its parent.

Binary search trees use these properties to save you from performing unnecessary 
checking. As a result, lookup, insert and removal have an average time complexity of 
O(log n), which is considerably faster than linear data structures such as lists and 
linked lists.

In this chapter, you’ll learn about the benefits of BST relative to a list and, as usual, 
implement the data structure from scratch.

List vs. BST
To illustrate the power of using BST, you’ll look at some common operations and 
compare the performance of lists against the binary search tree.

Consider the following two collections:
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Lookup
There’s only one way to do element lookups for an unsorted list. You need to check 
every element in the list from the start:

Searching for 105

That’s why list.contains is an O(n) operation.

This is not the case for binary search trees:

Searching for 105

Every time the search algorithm visits a node in the BST, it can safely make these two 
assumptions:

• If the search value is less than the current value, it must be in the left subtree.

• If the search value is greater than the current value, it must be in the right 
subtree.

By leveraging the rules of the BST, you can avoid unnecessary checks and cut the 
search space in half every time you make a decision. That’s why element lookup in 
BST is an O(log n) operation.
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Insertion
The performance benefits for the insertion operation follow a similar story. Assume 
you want to insert 0 into a collection. Inserting at the front of the list causes all 
other elements to shift backward by one position. It’s like butting in line. Everyone 
in the line behind your chosen spot needs to make space for you by shuffling back:

Inserting 0 in sorted order

Inserting into a list has a time complexity of O(n).

Insertion into a binary search tree is much more comforting. By leveraging the rules 
of BST, you only need to make three traversals in the example below to find the 
location for the insertion, and you don’t have to shuffle all the elements around!

Inserting elements in BST is an O(log n) operation.
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Removal
Similar to insertion, removing an element in a list also triggers a shuffling of 
elements:

Removing 25 from the list

This behavior also goes along with the lineup analogy. If you leave the middle of the 
line, everyone behind you needs to shuffle forward to take up the empty space.

Here’s what removing a value from a binary search tree looks like:

Nice and easy! There are complications to manage when the node you’re removing 
has children, but you’ll look into that later. Even with those complications, removing 
an element from a BST is still an O(log n) operation.
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Binary search trees drastically reduce the number of steps for add, remove and 
lookup operations. Now that you understand the benefits of using a binary search 
tree, you can move on to the actual implementation.

Implementation
Open up the starter project for this chapter. In the lib folder you’ll find 
binary_node.dart with the BinaryNode type that you created in the previous 
chapter. Create a new file named binary_search_tree.dart in the same folder and 
add the following code to it:

import 'binary_node.dart'; 
 

class BinarySearchTree<E extends Comparable<dynamic>> { 
  BinaryNode<E>? root; 

 
  @override 
  String toString() => root.toString(); 
}

Here are a few things to note:

• By definition, binary search trees can only hold values that are Comparable.

• If you prefer you could use Comparable<E> instead of Comparable<dynamic>. 
However, int doesn’t directly implement Comparable; its superclass num does. 
That makes it so that users of your class would have to use num when they really 
want int. Using Comparable<dynamic>, on the other hand, allows them to use int 
directly.

Next, you’ll look at the insert method.

Inserting Elements
In accordance with BST rules, nodes of the left child must contain values less than 
the current node. Nodes of the right child must contain values greater than or equal 
to the current node. You’ll implement the insert method while respecting these 
rules.
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Adding an Insert Method

Add the following to BinarySearchTree:

void insert(E value) { 
  root = _insertAt(root, value); 
} 

 
BinaryNode<E> _insertAt(BinaryNode<E>? node, E value) { 
  // 1 
  if (node == null) { 
    return BinaryNode(value); 
  } 
  // 2 
  if (value.compareTo(node.value) < 0) { 
    node.leftChild = _insertAt(node.leftChild, value); 
  } else { 
    node.rightChild = _insertAt(node.rightChild, value); 
  } 
  // 3 
  return node; 
}

The insert method is exposed to users, while _insertAt will be used as a private 
helper method:

1. This is a recursive method, so it requires a base case for terminating recursion. If 
the current node is null, you’ve found the insertion point and you return the 
new BinaryNode.

2. Because element types are comparable, you can perform a comparison. This if 
statement controls which way the next _insertAt call should traverse. If the 
new value is less than the current value, that is, if compareTo returns a negative 
number, you’ll look for an insertion point on the left child. If the new value is 
greater than or equal to the current value, you’ll turn to the right child.

3. Return the current node. This makes assignments of the form node = 
_insertAt(node, value) possible as _insertAt will either create node, if it 
was null, or return node, if it was not null.

Testing it Out

Open bin/starter.dart and replace the contents with the following:

import 'package:starter/binary_search_tree.dart'; 
 

void main() { 
  final tree = BinarySearchTree<int>();
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  for (var i = 0; i < 5; i++) { 
    tree.insert(i); 
  } 
  print(tree); 
}

Run the code above and you should see the following output:

   ┌── 4 
  ┌──3 
  │ └── null 
 ┌──2 
 │ └── null 
┌──1 
│ └── null 
0 
└── null

Balanced vs. Unbalanced Trees

The previous tree looks a bit unbalanced, but it does follow the rules. However, this 
tree layout has undesirable consequences. When working with trees, you always 
want to achieve a balanced format:
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An unbalanced tree affects performance. If you insert 5 into the unbalanced tree 
you’ve created, it becomes an O(n) operation:

You can create structures known as self-balancing trees that use clever techniques 
to maintain a balanced structure, but you’ll have to wait for those details until 
Chapter 10, “AVL Trees”. For now, you’ll build a sample tree with a bit of care to keep 
it from becoming unbalanced.

Building a Balanced Tree

Add the following function below main:

BinarySearchTree<int> buildExampleTree() { 
  var tree = BinarySearchTree<int>(); 
  tree.insert(3); 
  tree.insert(1); 
  tree.insert(4); 
  tree.insert(0); 
  tree.insert(2); 
  tree.insert(5); 
  return tree; 
}
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Replace the contents of main with the following:

final tree = buildExampleTree(); 
print(tree);

Run the code. You should see the following in the console:

 ┌── 5 
┌──4 
│ └── null 
3 
│ ┌── 2 
└──1 
 └── 0

Much nicer!

Finding Elements
Finding an element in a binary search tree requires you to traverse through its nodes. 
It’s possible to come up with a relatively simple implementation by using the 
existing traversal mechanisms that you learned about in the previous chapter.

Add the following method to BinarySearchTree:

bool contains(E value) { 
  if (root == null) return false; 
  var found = false; 
  root!.traverseInOrder((other) { 
    if (value == other) { 
      found = true; 
    } 
  }); 
  return found; 
}

Next, head back to main to test this out:

final tree = buildExampleTree(); 
if (tree.contains(5)) { 
  print("Found 5!"); 
} else { 
  print("Couldn’t find 5"); 
}
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You should see the following in the console:

Found 5!

In-order traversal has a time complexity of O(n). Thus, this implementation of 
contains has the same time complexity as an exhaustive search through an 
unsorted list.

You can do better.

Optimizing contains

Relying on the properties of BST can help you avoid needless comparisons. Back in 
BinarySearchTree, replace contains with the following:

bool contains(E value) { 
  // 1 
  var current = root; 
  // 2 
  while (current != null) { 
    // 3 
    if (current.value == value) { 
      return true; 
    } 
    // 4 
    if (value.compareTo(current.value) < 0) { 
      current = current.leftChild; 
    } else { 
      current = current.rightChild; 
    } 
  } 
  return false; 
}

1. Start by setting current to the root node.

2. As long as current isn’t null, you’ll keep branching through the tree.

3. If the current node’s value is equal to what you’re trying to find, return true.

4. Otherwise, decide whether you’re going to check the left or the right child.

This implementation of contains is an O(log n) operation in a balanced binary 
search tree.
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Removing Elements
Removing elements is a little more tricky because you need to handle a few different 
scenarios.

Removing a Leaf Node

Removing a leaf node is straightforward. Simply detach the leaf node:

removing 2

For non-leaf nodes, however, there are extra steps you must take.

Removing Nodes With One Child

When removing nodes with one child, you’ll need to reconnect that child with the 
rest of the tree:

removing 4, which has one child
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Removing Nodes With Two Children

Nodes with two children are a bit more complicated, so a more complex example tree 
will better illustrate how to handle this situation. Assume that you have the 
following tree and that you want to remove the value 25:

Simply deleting the node presents a dilemma. You have two child nodes (12 and 37) 
to reconnect, but the parent node only has space for one child:
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To solve this problem, you’ll implement a clever workaround by performing a swap. 
When removing a node with two children, replace the node you removed with the 
smallest node in its right subtree. Based on the principles of BST, this is the leftmost 
node of the right subtree:

It’s important to note that this produces a valid binary search tree. Because the new 
node was the smallest in the right subtree, all nodes in the right subtree will still be 
greater than or equal to the new node. And because the new node came from the 
right subtree, all nodes in the left subtree will be less than the new node.

After performing the swap, you can simply remove the value you copied, just a leaf 
node.

This will take care of removing nodes with two children.

Data Structures & Algorithms in Dart Chapter 9: Binary Search Trees

raywenderlich.com 135



Finding the Minimum Node in a Subtree

Open up binary_search_tree.dart. You’ll implement the remove method in just a 
minute, but first add the following helper extension at the bottom of the file:

extension _MinFinder<E> on BinaryNode<E> { 
  BinaryNode<E> get min => leftChild?.min ?? this; 
}

This recursive min property on BinaryNode will help you find the minimum node in 
a subtree.

Implementing remove

Now add these two methods to BinarySearchTree:

void remove(E value) { 
  root = _remove(root, value); 
} 

 
BinaryNode<E>? _remove(BinaryNode<E>? node, E value) { 
  if (node == null) return null; 

 
  if (value == node.value) { 
    // more to come 
  } else if (value.compareTo(node.value) < 0) { 
    node.leftChild = _remove(node.leftChild, value); 
  } else { 
    node.rightChild = _remove(node.rightChild, value); 
  } 
  return node; 
}

This should look familiar to you. You’re using the same recursive setup with a private 
helper method as you did for insert. The method isn’t quite finished yet, though. 
Once you’ve found the node that you want to remove, you still need to separately 
handle the removal cases for (1) a leaf node, (2) a node with one child, and (3) a node 
with two children.

Handling the Removal Cases

Replace the // more to come comment above with the following code:

// 1 
if (node.leftChild == null && node.rightChild == null) { 
  return null; 
} 
// 2
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if (node.leftChild == null) { 
  return node.rightChild; 
} 
if (node.rightChild == null) { 
  return node.leftChild; 
} 
// 3 
node.value = node.rightChild!.min.value; 
node.rightChild = _remove(node.rightChild, node.value);

1. If the node is a leaf node, you simply return null, thereby removing the current 
node.

2. If the node has no left child, you return node.rightChild to reconnect the right 
subtree. If the node has no right child, you return node.leftChild to reconnect 
the left subtree.

3. This is the case in which the node to be removed has both a left and right child. 
You replace the node’s value with the smallest value from the right subtree. You 
then call remove on the right child to remove this swapped value.

Testing it Out

Head back to main and test remove by writing the following:

final tree = buildExampleTree(); 
print('Tree before removal:'); 
print(tree); 
tree.remove(3); 
print('Tree after removing root:'); 
print(tree);

You should see the output below in the console:

Tree before removal: 
 ┌── 5 
┌──4 
│ └── null 
3 
│ ┌── 2 
└──1 
 └── 0 

 
Tree after removing root: 
┌── 5 
4 
│ ┌── 2 
└──1 
 └── 0
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Successfully implemented!

In the next chapter you’ll learn how to create a self-balancing binary search tree 
called an AVL tree.

Challenges
Think you’ve gotten the hang of binary search trees? Try out these three challenges 
to lock the concepts down. As usual, you can find the answers in the Challenge 
Solutions section at the end of the book.

Challenge 1: Binary Tree or Binary Search Tree?
Write a function that checks if a binary tree is a binary search tree.

Challenge 2: Equality
Given two binary trees, how would you test if they are equal or not?

Challenge 3: Is it a Subtree?
Create a method that checks if the current tree contains all the elements of another 
tree.

Key Points
• The binary search tree (BST) is a powerful data structure for holding sorted data.

• Elements of the binary search tree must be comparable. You can achieve this using 
a generic constraint or by supplying a closure to perform the comparison.

• The time complexity for insert, remove and contains methods in a BST is O(log 
n).

• Performance will degrade to O(n) as the tree becomes unbalanced. This is 
undesirable, but self-balancing trees such as the AVL tree can overcome the 
problem.
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10Chapter 10: AVL Trees

By Kelvin Lau & Jonathan Sande

In the previous chapter, you learned about the O(log n) performance characteristics 
of the binary search tree. However, you also learned that unbalanced trees can 
deteriorate the performance of the tree, all the way down to O(n). In 1962, Georgy 
Adelson-Velsky and Evgenii Landis came up with the first self-balancing binary 
search tree: The AVL Tree. In this chapter, you’ll dig deeper into how the balance of 
a binary search tree can impact performance and implement the AVL tree from 
scratch!
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Understanding Balance
A balanced tree is the key to optimizing the performance of the binary search tree. In 
this section, you’ll learn about the three main states of balance: perfectly balanced, 
balanced and unbalanced.

Perfect Balance
The ideal form of a binary search tree is the perfectly balanced state. In technical 
terms, this means every level of the tree is filled with nodes, from top to bottom.

Perfectly balanced tree

Not only is the tree perfectly symmetrical, the nodes at the bottom level are 
completely filled. This is the requirement for being perfectly balanced.

“Good-enough” Balance
Although achieving perfect balance is ideal, it’s rarely possible. A perfectly balanced 
tree must contain the exact number of nodes to fill every level to the bottom, so it 
can only be perfect with a particular number of elements.

For example, a tree with 1, 3 or 7 nodes can be perfectly balanced, but a tree with 2, 
4, 5 or 6 cannot be perfectly balanced since the last level of the tree will not be filled.

Balanced tree

Data Structures & Algorithms in Dart Chapter 10: AVL Trees

raywenderlich.com 140



The definition of a balanced tree is that every level of the tree must be filled, except 
for the bottom level. For most binary trees, this is the best you can do.

Unbalanced
Finally, there’s the unbalanced state. Binary search trees in this state suffer from 
various levels of performance loss, depending on the degree of imbalance.

Unbalanced trees

Keeping the tree balanced gives the find, insert and remove operations an O(log n) 
time complexity. AVL trees maintain balance by adjusting the structure of the tree 
when the tree becomes unbalanced. You’ll learn how this works as you progress 
through the chapter.

Implementation
Inside the starter project for this chapter is an implementation of the binary search 
tree as created in the previous chapter. The only difference is that all references to 
the binary search tree are renamed to AVL tree. Similarly, the binary node is renamed 
to AVL node.

Binary search trees and AVL trees share much of the same implementation; in fact, 
all that you’ll add is the balancing component. Open the starter project to begin.
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Measuring Balance
To keep a binary tree balanced, you’ll need a way to measure the balance of the tree. 
The AVL tree achieves this with a height property in each node. In tree-speak, the 
height of a node is the longest distance from the current node to a leaf node:

Nodes marked with heights

Open the lib folder and add the following property to AvlNode in avl_node.dart:

int height = 0;

You’ll use the relative heights of a node’s children to determine whether a particular 
node is balanced. The height of the left and right children of each node must differ at 
most by 1. This number is known as the balance factor.

Write the following just below the height property of AvlNode:

int get balanceFactor => leftHeight - rightHeight; 
 

int get leftHeight => leftChild?.height ?? -1; 
 

int get rightHeight => rightChild?.height ?? -1;

The balanceFactor computes the height difference of the left and right child. If a 
particular child is null, its height is considered to be -1.
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Here’s an example of an AVL tree. The diagram shows a balanced tree — all levels 
except the bottom one are filled. The numbers to the right of the node represent the 
height of each node, while the numbers to the left represent the balanceFactor.

AVL tree with balance factors and heights

Here’s an updated diagram with 40 inserted. Inserting 40 into the tree turns it into 
an unbalanced tree. Notice how the balanceFactor changes:

Unbalanced tree

A balanceFactor of 2 or -2 or something more extreme indicates an unbalanced 
tree. By checking after each insertion or deletion, though, you can guarantee that it’s 
never more extreme than a magnitude of two.

Although more than one node may have a bad balancing factor, you only need to 
perform the balancing procedure on the bottom-most node containing the invalid 
balance factor. For example, in the figure above both 50 and 25 have a balance factor 
with a magnitude of 2. However, you only need to perform the balancing procedure 
on the lower node, that is, the one containing 25.

This is where rotations come in.
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Rotations
The procedures used to balance a binary search tree are known as rotations. There 
are four rotations in total, one for each of the four different ways that a tree can be 
unbalanced. These are known as left rotation, left-right rotation, right rotation and 
right-left rotation.

Left Rotation

The imbalance caused by inserting 40 into the tree can be solved by a left rotation. 
A generic left rotation of node X looks like this:

Left rotation applied on node X

Before going into specifics, there are two takeaways from this before-and-after 
comparison:

• In-order traversal for these nodes remains the same.

• The depth of the tree is reduced by one level after the rotation.

Open lib/avl_tree.dart and add the dart:math library to the top of the file:

import 'dart:math' as math;

Then add the following method to AvlTree below the _insertAt method:

AvlNode<E> leftRotate(AvlNode<E> node) { 
  // 1 
  final pivot = node.rightChild!; 
  // 2 
  node.rightChild = pivot.leftChild; 
  // 3 
  pivot.leftChild = node; 
  // 4
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  node.height = 1 + 
      math.max( 
        node.leftHeight, 
        node.rightHeight, 
      ); 
  pivot.height = 1 + 
      math.max( 
        pivot.leftHeight, 
        pivot.rightHeight, 
      ); 
  // 5 
  return pivot; 
}

Here are the steps needed to perform a left rotation:

1. The right child is chosen as the pivot point. This node will replace the rotated 
node as the root of the subtree. That means it’ll move up a level.

2. The node to be rotated will become the left child of the pivot. It moves down a 
level. This means that the current left child of the pivot must be moved 
elsewhere. In the generic example shown in the earlier image, this is node B. 
Because B is smaller than Y but greater than X, it can replace Y as the right child 
of X. So you update the rotated node’s rightChild to the pivot’s leftChild.

3. The pivot’s leftChild can now be set to the rotated node.

4. You update the heights of the rotated node and the pivot.

5. Finally, you return the pivot so that it can replace the rotated node in the tree.

Here are the before-and-after effects of the left rotation of 25 from the previous 
example:
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Right Rotation

Right rotation is the symmetrical opposite of left rotation. When a series of left 
children is causing an imbalance, it’s time for a right rotation.

A generic right rotation of node X looks like this:

Right rotation applied on node X

To implement this, add the following code just after leftRotate:

AvlNode<E> rightRotate(AvlNode<E> node) { 
  final pivot = node.leftChild!; 
  node.leftChild = pivot.rightChild; 
  pivot.rightChild = node; 
  node.height = 1 + 
      math.max( 
        node.leftHeight, 
        node.rightHeight, 
      ); 
  pivot.height = 1 + 
      math.max( 
        pivot.leftHeight, 
        pivot.rightHeight, 
      ); 
  return pivot; 
}

This algorithm is nearly identical to the implementation of leftRotate, except the 
references to the left and right children are swapped.
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Right-Left Rotation

You may have noticed that the left and right rotations balance nodes that are all left 
children or all right children. Consider the case in which 36 is inserted into the 
original example tree.

The tree now requires a right-left rotation:

Inserted 36 as left child of 37

Doing a left rotation, in this case, won’t result in a balanced tree. The way to handle 
cases like this is to perform a right rotation on the right child before doing the left 
rotation. Here’s what the procedure looks like:

Right-left rotation

1. You apply a right rotation to 37.

2. Now that nodes 25, 36 and 37 are all right children, you can apply a left rotation 
to balance the tree.
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Add the following code just after rightRotate:

AvlNode<E> rightLeftRotate(AvlNode<E> node) { 
  if (node.rightChild == null) { 
    return node; 
  } 
  node.rightChild = rightRotate(node.rightChild!); 
  return leftRotate(node); 
}

Don’t worry just yet about when to call this. You’ll get to that in a second. You first 
need to handle the last case, left-right rotation.

Left-Right Rotation

Left-right rotation is the symmetrical opposite of the right-left rotation. Here’s an 
example:

Left-right rotation

1. You apply a left rotation to node 10.

2. Now that nodes 25, 15 and 10 are all left children; you can apply a right rotation 
to balance the tree.

Add the following code just after rightLeftRotate:

AvlNode<E> leftRightRotate(AvlNode<E> node) { 
  if (node.leftChild == null) { 
    return node; 
  } 
  node.leftChild = leftRotate(node.leftChild!); 
  return rightRotate(node); 
}

That’s it for rotations. Now you just need to apply them at the correct time.
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Balance
The next task is to design a method that uses balanceFactor to decide whether a 
node requires balancing or not. Write the following method below 
leftRightRotate:

AvlNode<E> balanced(AvlNode<E> node) { 
  switch (node.balanceFactor) { 
    case 2: 
    // ... 
    case -2: 
    // ... 
    default: 
      return node; 
  } 
}

There are three cases to consider.

1. A balanceFactor of 2 suggests that the left child is “heavier” (contains more 
nodes) than the right child. This means that you want to use either right or left-
right rotations.

2. A balanceFactor of -2 suggests that the right child is heavier than the left child. 
This means that you want to use either left or right-left rotations.

3. The default case suggests that the particular node is balanced. There’s nothing to 
do here except to return the node.

The sign of the child’s balanceFactor can be used to determine if a single or double 
rotation is required:

Right rotate, or left-right rotate?

Replace balanced with the following:

AvlNode<E> balanced(AvlNode<E> node) { 
  switch (node.balanceFactor) {
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    case 2: 
      final left = node.leftChild; 
      if (left != null && left.balanceFactor == -1) { 
        return leftRightRotate(node); 
      } else { 
        return rightRotate(node); 
      } 
    case -2: 
      final right = node.rightChild; 
      if (right != null && right.balanceFactor == 1) { 
        return rightLeftRotate(node); 
      } else { 
        return leftRotate(node); 
      } 
    default: 
      return node; 
  } 
}

balanced inspects the balanceFactor to determine the proper course of action. All 
that’s left is to call balanced at the proper time.

Revisiting Insertion
You’ve already done the majority of the work. The remainder is fairly 
straightforward. Replace _insertAt with the following:

AvlNode<E> _insertAt(AvlNode<E>? node, E value) { 
  if (node == null) { 
    return AvlNode(value); 
  } 
  if (value.compareTo(node.value) < 0) { 
    node.leftChild = _insertAt(node.leftChild, value); 
  } else { 
    node.rightChild = _insertAt(node.rightChild, value); 
  } 
  final balancedNode = balanced(node); 
  balancedNode.height = 1 + 
      math.max( 
        balancedNode.leftHeight, 
        balancedNode.rightHeight, 
      ); 
  return balancedNode; 
}

Instead of returning the node directly after inserting, you pass it into balanced. 
Passing it ensures every node in the call stack is checked for balancing issues. You 
also update the node’s height.
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That’s all there is to it! Open bin/starter.dart and replace the contents of the file 
with the following:

import 'package:starter/avl_tree.dart'; 
 

void main() { 
  final tree = AvlTree<int>(); 
  for (var i = 0; i < 15; i++) { 
    tree.insert(i); 
  } 
  print(tree); 
}

Run that and you should see the following output in the console:

  ┌── 14 
 ┌──13 
 │ └── 12 
┌──11 
│ │ ┌── 10 
│ └──9 
│  └── 8 
7 
│  ┌── 6 
│ ┌──5 
│ │ └── 4 
└──3 
 │ ┌── 2 
 └──1 
  └── 0

Take a moment to appreciate the uniform spread of the nodes. If the rotations 
weren’t applied, this would have become a long, unbalanced link of right children.

Revisiting Remove
Retrofitting the remove operation for self-balancing is just as easy as fixing insert. 
In AvlTree, find _remove and replace the final return node; statement with the 
following:

final balancedNode = balanced(node); 
balancedNode.height = 1 + 
    math.max( 
      balancedNode.leftHeight, 
      balancedNode.rightHeight, 
    ); 
return balancedNode;
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Head back to starter.dart and replace the body of main with the following code:

final tree = AvlTree<int>(); 
tree.insert(15); 
tree.insert(10); 
tree.insert(16); 
tree.insert(18); 
print(tree); 
tree.remove(10); 
print(tree);

Run that and you should see the following console output:

 ┌── 18 
┌──16 
│ └── null 
15 
└── 10 

 
┌── 18 
16 
└── 15

Removing 10 caused a left rotation on 15. Feel free to try out a few more test cases of 
your own.

Whew! The AVL tree is the culmination of your search for the ultimate binary search 
tree. The self-balancing property guarantees that the insert and remove operations 
function at optimal performance with an O(log n) time complexity.

Challenges
Here are three challenges that revolve around AVL trees. Solve these to make sure 
you have the concepts down. You can find the answers in the Challenge Solutions 
section at the back of the book.

Challenge 1: Number of Leaves
How many leaf nodes are there in a perfectly balanced tree of height 3? What about 
a perfectly balanced tree of height h?
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Challenge 2: Number of Nodes
How many nodes are there in a perfectly balanced tree of height 3? What about a 
perfectly balanced tree of height h?

Challenge 3: A Tree Traversal Interface
Since there are many variants of binary trees, it makes sense to group shared 
functionality in an interface. The traversal methods are a good candidate for this.

Create a TraversableBinaryNode abstract class that provides a default 
implementation of the traversal methods so that conforming types get these 
methods for free. Have AvlNode extend this.

Key Points
• A self-balancing tree avoids performance degradation by performing a balancing 

procedure whenever you add or remove elements in the tree.

• AVL trees preserve balance by readjusting parts of the tree when the tree is no 
longer balanced.

• Balance is achieved by four types of tree rotations on node insertion and removal: 
right rotation, left rotation, right-left rotation and left-right rotation.

Where to Go From Here?
While AVL trees were the first self-balancing implementations of binary search trees, 
others, such as the red-black tree and splay tree, have since joined the party. If 
you’re interested, look them up. You might even try porting a version from another 
language into Dart.
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11Chapter 11: Tries

By Kelvin Lau & Jonathan Sande

The trie, pronounced “try”, is a tree that specializes in storing data that can be 
represented as a collection, such as English words:

A trie containing the words CAT, CUT, CUTE, TO and A

Each string character maps to a node where the last node is terminating. These are 
marked in the diagram above with a dot. The benefits of a trie are best illustrated by 
looking at it in the context of prefix matching.

In this chapter, you’ll first compare the performance of a trie to a list. Then you’ll 
implement the trie from scratch!
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List vs. Trie
You’re given a collection of strings. How would you build a component that handles 
prefix matching? Here’s one way:

class EnglishDictionary { 
  final List<String> words = []; 

 
  List<String> lookup(String prefix) { 
    return words.where((word) { 
      return word.startsWith(prefix); 
    }).toList(); 
  } 
}

lookup will go through the collection of strings and return those that match the 
prefix.

This algorithm is reasonable if the number of elements in the words list is small. But 
if you’re dealing with more than a few thousand words, the time it takes to go 
through the words list will be unacceptable. The time complexity of lookup is O(k × 
n), where k is the longest string in the collection, and n is the number of words you 
need to check.

Imagine the number of words Google needs to parse
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The trie data structure has excellent performance characteristics for this problem. 
Since it’s a tree with nodes that support multiple children, each node can represent a 
single character.

You form a word by tracing the collection of characters from the root to a node with 
a special indicator — a terminator — represented by a black dot. An interesting 
characteristic of the trie is that multiple words can share the same characters.

To illustrate the performance benefits of the trie, consider the following example in 
which you need to find the words with the prefix CU. First, you travel to the node 
containing C. That quickly excludes other branches of the trie from the search 
operation:

Next, you need to find the words that have the next letter, U. You traverse to the U 
node:

Since that’s the end of your prefix, the trie would return all collections formed by the 
chain of nodes from the U node. In this case, the words CUT and CUTE would be 
returned.
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Imagine if this trie contained hundreds of thousands of words. The number of 
comparisons you can avoid by employing a trie is substantial.

Implementation
As always, open up the starter project for this chapter.

TrieNode
You’ll begin by creating the node for the trie. Create a lib folder in the root of your 
project and add a file to it named trie_node.dart. Add the following to the file:

class TrieNode<T> { 
  TrieNode({this.key, this.parent}); 

 
  // 1 
  T? key; 

 
  // 2 
  TrieNode<T>? parent; 

 
  // 3 
  Map<T, TrieNode<T>?> children = {}; 

 
  // 4 
  bool isTerminating = false; 
}
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This interface is slightly different compared to the other nodes you’ve encountered:

1. key holds the data for the node. This is nullable because the root node of the trie 
has no key. The reason it’s called a key is because you use it in a map of key-value 
pairs to store children nodes.

2. TrieNode holds a reference to its parent. This reference simplifies the remove 
method later on.

3. In binary search trees, nodes have a left and right child. In a trie, a node needs to 
hold multiple different elements. The children map accomplishes that.

4. isTerminating acts as a marker for the end of a collection.

Note: A parent TrieNode holds a reference to its children and the children 
hold a reference to the parent. You might wonder if this creates a circular 
reference problem where the memory is never released. Languages like Swift 
that use reference counting for memory management need to be especially 
careful about this. Dart, on the other hand, frees up the memory from old 
unused objects with a garbage collector, which is able to handle the parent-
children circular references in the code above. Garbage collection works not 
by counting references to individual objects but by checking if objects are 
reachable from certain root objects.

Trie
Next, you’ll create the trie itself, which will manage the nodes. Since strings are one 
of the most common uses for tries, this chapter will walk you through building a 
String-based trie. In Challenge 2 at the end of the chapter, you’ll create a generic 
trie that can handle any iterable collection.

In the lib folder, create a new file named string_trie.dart. Add the following to the 
file:

import 'trie_node.dart'; 
 

class StringTrie { 
  TrieNode<int> root = TrieNode(key: null, parent: null); 
}
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Here are a couple of points to note:

• In Dart a String is a collection of UTF-16 code units, so that’s why the type for 
TrieNode is int rather than String.

• The key and parent of a trie’s root node are always null.

Next, you’ll implement four operations for the trie: insert, contains, remove and 
matchPrefix.

Insert
Tries work on collections internally, so you’ll need to take whatever string is inserted 
and convert its code units into TrieNode keys.

Add the following method to StringTrie:

void insert(String text) { 
  // 1 
  var current = root; 

 
  // 2 
  for (var codeUnit in text.codeUnits) { 
    current.children[codeUnit] ??= TrieNode( 
      key: codeUnit, 
      parent: current, 
    ); 
    current = current.children[codeUnit]!; 
  } 

 
  // 3 
  current.isTerminating = true; 
}

Here’s what’s going on:

1. current keeps track of your traversal progress, which starts with the root node.

2. The trie stores each code unit in a separate node. You first check if the node 
exists in the children map. If it doesn’t, you create a new node. During each 
loop, you move current to the next node.

3. After the for loop completes, current is referencing the node at the end of the 
collection, that is, the last code unit in the string. You mark that node as the 
terminating node.
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The time complexity for this algorithm is O(k), where k is the number of code units 
you’re trying to insert. This cost is because you need to traverse through or create a 
new node for each code unit.

Contains
contains is very similar to insert. Add the following method to StringTrie:

bool contains(String text) { 
  var current = root; 
  for (var codeUnit in text.codeUnits) { 
    final child = current.children[codeUnit]; 
    if (child == null) { 
      return false; 
    } 
    current = child; 
  } 
  return current.isTerminating; 
}

You check every code unit to see if it’s in the tree. When you reach the last one, it 
must be terminating. If not, the collection wasn’t added, and what you’ve found is a 
subset of a larger collection.

Like insert, the time complexity of contains is O(k), where k is the length of the 
string that you’re using for the search. This time complexity comes from traversing 
through k nodes to determine whether the code unit collection is in the trie.

To test out insert and contains, head over to bin/starter.dart and replace the 
contents of the file with the following code:

import 'package:starter/string_trie.dart'; 
 

void main() { 
  final trie = StringTrie(); 
  trie.insert("cute"); 
  if (trie.contains("cute")) { 
    print("cute is in the trie"); 
  } 
}

Run that and you should see the following console output:

cute is in the trie
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Remove
Removing a node from the trie is a bit more tricky. You need to be particularly careful 
since multiple collections can share nodes.

Go back to lib/string_trie.dart and write the following method just below contains:

void remove(String text) { 
  // 1 
  var current = root; 
  for (final codeUnit in text.codeUnits) { 
    final child = current.children[codeUnit]; 
    if (child == null) { 
      return; 
    } 
    current = child; 
  } 
  if (!current.isTerminating) { 
    return; 
  } 
  // 2 
  current.isTerminating = false; 
  // 3 
  while (current.parent != null && 
        current.children.isEmpty && 
        !current.isTerminating) { 

 
    current.parent!.children[current.key!] = null; 
    current = current.parent!; 
  } 
}

Taking it comment-by-comment:

1. You check if the code unit collection that you want to remove is part of the trie 
and point current to the last node of the collection. If you don’t find your search 
string or the final node isn’t marked as terminating, that means the collection 
isn’t in the trie and you can abort.

2. You set isTerminating to false so the current node can be removed by the loop 
in the next step.

3. This is the tricky part. Since nodes can be shared, you don’t want to remove code 
units that belong to another collection. If there are no other children in the 
current node, it means that other collections don’t depend on the current node. 
You also check to see if the current node is terminating. If it is, then it belongs to 
another collection. As long as current satisfies these conditions, you continually 
backtrack through the parent property and remove the nodes.
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The time complexity of this algorithm is O(k), where k represents the number of code 
units in the string that you’re trying to remove.

Head back to bin/starter.dart and replace the contents of main with the following:

final trie = StringTrie(); 
trie.insert('cut'); 
trie.insert('cute'); 

 
assert(trie.contains('cut')); 
print('"cut" is in the trie'); 
assert(trie.contains('cute')); 
print('"cute" is in the trie'); 

 
print('\n--- Removing "cut" ---'); 
trie.remove('cut'); 
assert(!trie.contains('cut')); 
assert(trie.contains('cute')); 
print('"cute" is still in the trie');

Run that and you should see the following output added to the console:

"cut" is in the trie 
"cute" is in the trie 

 
--- Removing "cut" --- 
"cute" is still in the trie

Prefix Matching
The most iconic algorithm for a trie is the prefix-matching algorithm. Write the 
following at the bottom of StringTrie:

List<String> matchPrefix(String prefix) { 
  // 1 
  var current = root; 
  for (final codeUnit in prefix.codeUnits) { 
    final child = current.children[codeUnit]; 
    if (child == null) { 
      return []; 
    } 
    current = child; 
  } 

 
  // 2 (to be implemented shortly) 
  return _moreMatches(prefix, current); 
}
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1. You start by verifying that the trie contains the prefix. If not, you return an empty 
list.

2. After you’ve found the node that marks the end of the prefix, you call a recursive 
helper method named _moreMatches to find all the sequences after the current 
node.

Next, add the code for the helper method after the matchPrefix method:

List<String> _moreMatches(String prefix, TrieNode<int> node) { 
  // 1 
  List<String> results = []; 
  if (node.isTerminating) { 
    results.add(prefix); 
  } 
  // 2 
  for (final child in node.children.values) { 
    final codeUnit = child!.key!; 
    results.addAll( 
      _moreMatches( 
        '$prefix${String.fromCharCode(codeUnit)}', 
        child, 
      ), 
    ); 
  } 
  return results; 
}

1. You create a list to hold the results. If the current node is a terminating one, you 
add what you’ve got to the results.

2. Next, you need to check the current node’s children. For every child node, you 
recursively call _moreMatches to seek out other terminating nodes.
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matchPrefix has a time complexity of O(k × m), where k represents the longest 
collection matching the prefix and m represents the number of collections that 
match the prefix. Recall that lists have a time complexity of O(k × n), where n is the 
number of elements in the entire collection. For large sets of data in which each 
collection is uniformly distributed, tries have far better performance than using lists 
for prefix matching.

Time to take the method for a spin. Navigate back to main and run the following:

final trie = StringTrie(); 
trie.insert('car'); 
trie.insert('card'); 
trie.insert('care'); 
trie.insert('cared'); 
trie.insert('cars'); 
trie.insert('carbs'); 
trie.insert('carapace'); 
trie.insert('cargo'); 

 
print('Collections starting with "car"'); 
final prefixedWithCar = trie.matchPrefix('car'); 
print(prefixedWithCar); 

 
print('\nCollections starting with "care"'); 
final prefixedWithCare = trie.matchPrefix('care'); 
print(prefixedWithCare);

You should see the output below in the console:

Collections starting with "car" 
[car, card, care, cared, cars, carbs, carapace, cargo] 

 
Collections starting with "care" 
[care, cared]
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Challenges
How was this chapter for you? Are you ready to take it a bit further? The following 
challenges will ask you to add functionality to and generalize what you’ve already 
accomplished. Check out the Challenge Solutions section or the supplemental 
materials that come with the book if you need any help.

Challenge 1: Additional Properties
The current implementation of StringTrie is missing some notable operations. 
Your task for this challenge is to augment the current implementation of the trie by 
adding the following:

1. An allStrings property that returns all the collections in the trie.

2. A count property that tells you how many strings are currently in the trie.

3. An isEmpty property that returns true if the trie is empty, false otherwise.

Challenge 2: Generic Trie
The trie data structure can be used beyond strings. Make a new class named Trie 
that handles any iterable collection. Implement the insert, contains and remove 
methods.

Key Points
• Tries provide great performance metrics for prefix matching.

• Tries are relatively memory efficient since individual nodes can be shared between 
many different values. For example, “car,” “carbs,” and “care” can share the first 
three letters of the word.
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12Chapter 12: Binary Search

By Kelvin Lau & Jonathan Sande

Binary search is one of the most efficient searching algorithms with a time 
complexity of O(log n). You’ve already implemented a binary search once using a 
binary search tree. In this chapter you’ll reimplement binary search on a sorted list.

Two conditions need to be met for the type of binary search that this chapter 
describes:

• The collection must be sorted.

• The underlying collection must be able to perform random index lookup in 
constant time.

As long as the elements are sorted, a Dart List meets both of these requirements.
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Linear Search vs. Binary Search
The benefits of binary search are best illustrated by comparing it with linear search. 
Dart’s List type uses a linear search to implement its indexOf method. It traverses 
through the whole collection until it finds the first element:

Linear search for the value 31

Binary search handles things differently by taking advantage of the fact that the 
collection is already sorted. Here’s an example of applying binary search to find the 
value 31:

Binary search for the value 31

Instead of eight steps to find 31, it only takes three. Here’s how it works:

Step 1: Find the Middle Index
The first step is to find the middle index of the collection.

Step 2: Check the Element at the Middle Index
The next step is to check the element stored at the middle index. If it matches the 
value you’re looking for, return the index. Otherwise, continue to Step 3.
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Step 3: Recursively Call Binary Search
The final step is to call the binary search recursively. However, this time, you’ll only 
consider the elements exclusively to the left or to the right of the middle index, 
depending on the value you’re searching for. If the value you’re searching for is less 
than the middle value, you search the left subsequence. If it is greater than the 
middle value, you search the right subsequence.

Each step effectively removes half of the comparisons you would otherwise need to 
perform.

In the example where you’re looking for the value 31 (which is greater than the 
middle element 22), you apply binary search on the right subsequence:

You continue these three steps until you can no longer split up the collection into 
left and right halves or until you find the value inside the collection.

Binary search achieves an O(log n) time complexity this way.

Implementation
Open the starter project for this chapter. Create a new lib folder in the root of your 
project. Then add a new file to it called binary_search.dart.

Adding an Extension on List
Add the following List extension to binary_search.dart:

extension SortedList<E extends Comparable<dynamic>> on List<E> { 
  int? binarySearch(E value, [int? start, int? end]) { 
    // more to come 
  } 
}
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Things are relatively simple so far:

• You use List since it allows random access to any element by index.

• Since you need to be able to compare elements, the value type must be 
Comparable. As mentioned in an earlier chapter, you can use Comparable<E>, but 
if you do your users will need to specify List<num> for integers rather than 
List<int> since only num directly implements Comparable.

• binarySearch is recursive, so you need to pass in a range to search. The 
parameters start and end are optional, so you can start the search without 
specifying a range, in which case the entire collection will be searched.

• As is common for range indices, start is inclusive and end is exclusive. That is, 
the end index is one greater than the index it refers to. This makes it play well with 
length since the length of a zero-based list is always one greater than the last 
index.

Writing the Algorithm
Next, fill in the logic for binarySearch by replacing // more to come in the code 
above with the following:

// 1 
final startIndex = start ?? 0; 
final endIndex = end ?? length; 
// 2 
if (startIndex >= endIndex) { 
  return null; 
} 
// 3 
final size = endIndex - startIndex; 
final middle = startIndex + size ~/ 2; 
// 4 
if (this[middle] == value) { 
  return middle; 
// 5 
} else if (value.compareTo(this[middle]) < 0) { 
  return binarySearch(value, startIndex, middle); 
} else { 
  return binarySearch(value, middle + 1, endIndex); 
}
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Here are the steps:

1. First, you check if start and end are null. If so, you create a range that covers 
the entire collection.

2. Then, you check if the range contains at least one element. If it doesn’t, the 
search has failed, and you return null.

3. Now that you’re sure you have elements in the range, you find the middle index 
of the range.

4. You then compare the value at this index with the value that you’re searching for. 
If the values match, you return the middle index.

5. If not, you recursively search either the left or right half of the collection.

Testing it Out
That wraps up the implementation of binary search! Open bin/starter.dart to test it 
out. Replace the contents of the file with the following:

import 'package:starter/binary_search.dart'; 
 

void main() { 
  final list = [1, 5, 15, 17, 19, 22, 24, 31, 105, 150]; 

 
  final search31 = list.indexOf(31); 
  final binarySearch31 = list.binarySearch(31); 

 
  print('indexOf: $search31'); 
  print('binarySearch: $binarySearch31'); 
}

Run that and you should see the following output in the console:

indexOf: 7 
binarySearch: 7

7 is the index of the value 31 that you were looking for. Both search methods 
returned the same result.
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Binary search is a powerful algorithm to learn and comes up often in programming 
interviews. Whenever you read something along the lines of “Given a sorted list…”, 
consider using the binary search algorithm. Also, if you’re given a problem that looks 
like it’s going to be O(n²) to search, consider doing some up-front sorting so you can 
use a binary search to reduce it down to the cost of the sort at O(n log n).

Note: You’ll learn more about sorting and the time complexity of sorting 
algorithms in future chapters.

Challenges
Try out the challenges below to further strengthen your understanding of binary 
searches. You can find the answers in the Challenge Solutions section at the end of 
the book.

Challenge 1: Binary Search as a Free Function
In this chapter, you implemented binary search as an extension of List. Since binary 
search only works on sorted lists, exposing binarySearch for every list (including 
unsorted ones) opens it up to being misused.

Your challenge is to implement binary search as a free function.

Challenge 2: Non-Recursive Search
Does recursion make your brain hurt? No worries, you can always perform the same 
task in a non-recursive way. Re-implement binarySearch using a while loop.
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Challenge 3: Searching for a Range
Write a function that searches a sorted list and finds the range of indices for a 
particular element. You can start by creating a class named Range that holds the 
start and end indices.

For example:

final list = [1, 2, 3, 3, 3, 4, 5, 5]; 
final range = findRange(list, value: 3);

findRange should return Range(2, 5) since those are the start and end indices for 
the value 3.

Key Points
• Binary search is only a valid algorithm on sorted collections.

• Sometimes it may be beneficial to sort a collection to leverage the binary search 
capability for looking up elements.

• The indexOf method on List uses a linear search with O(n) time complexity. 
Binary search has O(log n) time complexity, which scales much better for large 
data sets if you are doing repeated lookups.
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13Chapter 13: Heaps

By Vincent Ngo & Jonathan Sande

Heaps are another classical tree-based data structure with special properties to 
quickly fetch the largest or smallest element.

In this chapter, you’ll focus on creating and manipulating heaps. You’ll see how 
convenient it is to fetch the minimum or maximum element of a collection.

What’s a Heap?
A heap is a complete binary tree, also known as a binary heap, that can be 
constructed using a list.

Note: Don’t confuse these heaps with memory heaps. The term heap is 
sometimes confusingly used in computer science to refer to a pool of memory. 
Memory heaps are a different concept and not what you’re studying here.

Heaps come in two flavors:

1. Max-heap, in which elements with a higher value have a higher priority.

2. Min-heap, in which elements with a lower value have a higher priority.
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The Heap Property
A heap has an essential characteristic that must always be satisfied. This 
characteristic is known as the heap property:

• In a max-heap, parent nodes must always contain a value that is greater than or 
equal to the value in its children. The root node will always contain the highest 
value.

• In a min-heap, parent nodes must always contain a value that is less than or equal 
to the value in its children. The root node will always contain the lowest value.

The image below on the left is a max-heap with 10 as the maximum value. Every 
node in the heap has values greater than the nodes below it. The image on the right 
is a min-heap. Since 1 is the minimum value, it’s on the top of the heap. Every node 
in this heap has values less than the nodes below it.

Note that unlike a binary search tree, it’s not a requirement of the heap property that 
the left or right child needs to be greater. For that reason, a heap is only a partially 
sorted tree.
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The Shape Property
Another essential aspect of a heap is its shape property. A heap must be a complete 
binary tree. This means that every level must be filled except for the last level. 
Additionally, when adding elements to the last level, you must add them from left to 
right.

In the diagram below, you can see that the first two levels are filled. The last level, 
Level 3, isn’t full yet, but the nodes that are there are located on the left.

Heap Applications
Some practical applications of a heap include:

• Calculating the minimum or maximum element of a collection.

• Implementing the heapsort algorithm.

• Constructing a priority queue.

• Building graph algorithms that use a priority queue, like Dijkstra’s algorithm.

Note: You’ll learn about priority queues in Chapter 14, heapsort in Chapter 18, 
and Dijkstra’s algorithm in Chapter 23.
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Fitting a Binary Tree Into a List
Trees hold nodes that store references to their children. In the case of a binary tree, 
these are references to a left and right child. Heaps are binary trees, but they are 
implemented with a simple list.

Using a list might seem like an unusual way to build a tree, but one of the benefits of 
this heap implementation is efficient time and space complexity since the elements 
in a heap are all stored together in memory. You’ll see later on that swapping 
elements will play a big part in heap operations. This manipulation is easier to do 
with a list than it is with an ordinary binary tree.

Take a look at the following image to see how you can represent a heap using a list. 
The numbers inside the circular nodes represent the values in the list, while the 
numbers outside the nodes represent the indices of the list. Note how index 0 is at 
the top of the heap, indices 1 and 2 are for the left and right children in Level 2, 
indices 3 to 6 form Level 3, and finally index 7 is in the partially filled Level 4.

To represent the heap above as a list, you iterate through each element level-by-
level from left to right. Your traversal looks something like this:

Every level gets twice as many indices allocated to it as the level before.
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Accessing Nodes
It’s now easy to access any node in the heap. Instead of traversing down the left or 
right branch, you access a node in your list using simple formulas.

Given a node at a zero-based index i:

• The left child of this node is at index 2i + 1.

• The right child of this node is at index 2i + 2.

If you want to obtain the index of a parent node, you can use either of the formulas 
above and solve for i.

Given a node at index i:

• The parent of this node is at index (i - 1) ~/ 2.

That works for both left and right children since the ~/ integer division operator 
drops any fractional value.

Accessing a particular node in an actual binary tree requires traversing the tree from 
the root, which is an O(log n) operation. That same operation is just O(1) in a 
random-access data structure such as a list.
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Implementation
Open the starter project for this chapter and add a lib folder to the root of the 
project. Inside that folder create a file named heap.dart.

Adding a Constructor
Since there are both max-heaps and min-heaps, start by adding the following enum 
to heap.dart:

enum Priority { max, min }

You’ll provide Priority as a constructor parameter to specify the priority type when 
you create a heap.

Below Priority create a class named Heap with the following basic implementation:

class Heap<E extends Comparable<dynamic>> { 
  Heap({List<E>? elements, this.priority = Priority.max}) { 
    this.elements = (elements == null) ? [] : elements; 
  } 

 
  late final List<E> elements; 
  final Priority priority; 
}

This setup offers a few features:

• The default is a max-heap, but users can also choose to create a min-heap.

• You can optionally specify a list of elements to initialize your heap with. Later in 
the chapter, you’ll add a method to sort them.

• Since elements of a heap need to be sortable, the element type extends 
Comparable. As mentioned in previous chapters, the reason for using 
Comparable<dynamic> here rather than Comparable<E> is because this makes int 
collections easier to create.
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Providing Basic Properties
Add the following properties to Heap:

bool get isEmpty => elements.isEmpty; 
 

int get size => elements.length; 
 

E? get peek => (isEmpty) ? null : elements.first;

Calling peek will give you the maximum value in the collection for a max-heap, or 
the minimum value in the collection for a min-heap. This is an O(1) operation.

Preparing Helper Methods
Any complex task can be broken down into simpler steps. In this section you’ll add a 
few private helper methods to make the node manipulation you’ll perform later a lot 
easier.

Accessing Parent and Child Indices

You’ve already learned the formulas for how to access the indices of the children or 
parent of a given node. Add the Dart implementation of those formulas to Heap:

int _leftChildIndex(int parentIndex) { 
  return 2 * parentIndex + 1; 
} 

 
int _rightChildIndex(int parentIndex) { 
  return 2 * parentIndex + 2; 
} 

 
int _parentIndex(int childIndex) { 
  return (childIndex - 1) ~/ 2; 
}
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Selecting a Priority

When you made the Heap constructor, you allowed the user to pass in a max or min 
priority. Add the following two helper methods that will make use of that property:

bool _firstHasHigherPriority(E valueA, E valueB) { 
  if (priority == Priority.max) { 
    return valueA.compareTo(valueB) > 0; 
  } 
  return valueA.compareTo(valueB) < 0; 
} 

 
int _higherPriority(int indexA, int indexB) { 
  if (indexA >= elements.length) return indexB; 
  final valueA = elements[indexA]; 
  final valueB = elements[indexB]; 
  final isFirst = _firstHasHigherPriority(valueA, valueB); 
  return (isFirst) ? indexA : indexB; 
}

Both methods compare two inputs and return a value to indicate the one with the 
greater priority. However, the first method compares any two values while the 
second method compares the values at two specific indices in the list.

Again, in a max-heap, the higher value has a greater priority, while in a min-heap, the 
lower value has a greater priority. Centralizing that decision here means that none of 
the code in the rest of the class knows whether it’s in a min-heap or max-heap. It 
just asks for the results of the priority comparison and goes on with its business.

Swapping Values

You’ll add insert and remove methods to the class in just a bit. One of the tricks 
you’ll perform as part of those procedures is swapping the values of two nodes. Add a 
helper method to Heap for that:

void _swapValues(int indexA, int indexB) { 
  final temp = elements[indexA]; 
  elements[indexA] = elements[indexB]; 
  elements[indexB] = temp; 
}

Now that you’ve got your helpers, you’re ready to start the real magic!
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Inserting Into a Heap
Say you start with the max-heap shown in the image below:

If you want to insert the value 7, you start by adding it to the end of the heap. 
Internally, that means you’re appending it to the end of the list:

The problem, though, is that this is a max-heap, and the 7 is violating the rules of a 
max-heap. It needs to be on a higher priority level.

The procedure for moving a node to a higher level is called sifting up. What you do 
is compare the node in question to its parent. If the node is larger, then you swap the 
value with that of its parent. You continue swapping with the next parent up until 
the value is no longer larger than its parent. At that point, the sifting is finished and 
order has returned to the universe…or at least to your heap anyway.
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Take a look at this in action in the following image. First you compare 7 with its 
parent 4. Since this is a max-heap and 7 is larger than 4, you need to swap the 
values:

The next parent up is 6. Since 7 is also larger than 6, swap those two values:

The final parent is 8, but since 8 is larger than 7, you leave the 7 where it is. The 
sifting is finished.

Your heap now satisfies the max-heap property.
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Implementing insert

Now that you’ve got the theory, it’s time to implement it in code. Add the following 
two methods to Heap:

void insert(E value) { 
  // 1 
  elements.add(value); 
  // 2 
  _siftUp(elements.length - 1); 
} 

 
void _siftUp(int index) { 
  var child = index; 
  var parent = _parentIndex(child); 
  // 3 
  while (child > 0 && child == _higherPriority(child, parent)) { 
    _swapValues(child, parent); 
    child = parent; 
    parent = _parentIndex(child); 
  } 
}

The implementation is pretty straightforward:

1. First you add the value that you want to insert to the end of the elements list.

2. Then you start the sifting procedure using the index of the value you just added.

3. As long as that value has a higher priority than its parent, then you keep 
swapping it with the next parent value. Since you’re only concerned about 
priority, this will sift larger values up in a max-heap and smaller values up in a 
min-heap.

The overall complexity of insert is O(log n). Adding an element to a list takes only 
O(1) while sifting elements up in a heap takes O(log n).

That’s all there is to inserting an element in a heap.

Making the Heap Printable

It’s time to try out your handiwork, but before you do, override the toString method 
of Heap so that it’s a little easier to observe what’s happening:

@override 
String toString() => elements.toString();
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That will show the raw list, which is good enough for now, but feel free to implement 
something that looks more like a binary tree.

Testing Insertion Out

Replace the contents of bin/starter.dart with the following code:

import 'package:starter/heap.dart'; 
 

void main() { 
  final heap = Heap<int>(); 
  heap.insert(8); 
  heap.insert(6); 
  heap.insert(5); 
  heap.insert(4); 
  heap.insert(3); 
  heap.insert(2); 
  heap.insert(1); 
  print(heap); 
}

These inserts don’t require sifting since you inserted them in max-heap order.

Run that and you should see the output below in the console:

[8, 6, 5, 4, 3, 2, 1]

This list corresponds to the image you saw earlier:

Now add the following two lines at the bottom of main and run the code again:

heap.insert(7); 
print(heap);
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This time adding the 7 does require the internal sifting. Run the code again and the 
final line in the console output will be the following:

[8, 7, 5, 6, 3, 2, 1, 4]

Your code moved 7 to its appropriate location. The list above corresponds with the 
following heap:

Success!

Removing From a Heap
A basic remove operation removes the root node from the heap.

Take the following max-heap as an example. The root node that you want to remove 
has a value of 10.
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In order to perform the remove operation, you must first swap the root node with 
the last element in the heap. In this case, since the last node has a value of 3, you 
swap the 10 and the 3.

Once you’ve swapped the two elements, you can remove the last one:

Now, you must check the max-heap’s integrity. Ask yourself, “Is it still a max-heap?” 
Remember, the rule for a max-heap is that the value of every parent node must be 
larger than or equal to the values of its children. If not, you must sift down.

To sift down, you start from the current value and check its left and right child. If one 
of the children has a value that’s greater than the current value, you swap it with the 
parent. If both children have a greater value, you swap the parent with the larger of 
the two children. You continue to sift down until the node’s value is no longer larger 
than the values of its children.

Data Structures & Algorithms in Dart Chapter 13: Heaps

raywenderlich.com 186



In this case, both 8 and 5 are greater than 3, so you choose the larger left child 8 and 
swap it with the 3:

Now compare the 3 with its two new children, 4 and 6. Since 6 is the largest, swap 
the 3 with that one.

Once you reach the end, you’re done, and the max-heap property has been restored!
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Implementing a Down Sift

Go back to lib/heap.dart and add a method to Heap to handle sifting down:

void _siftDown(int index) { 
  // 1 
  var parent = index; 
  while (true) { 
    // 2 
    final left = _leftChildIndex(parent); 
    final right = _rightChildIndex(parent); 
    // 3 
    var chosen = _higherPriority(left, parent); 
    // 4 
    chosen = _higherPriority(right, chosen); 
    // 5 
    if (chosen == parent) return; 
    // 6 
    _swapValues(parent, chosen); 
    parent = chosen; 
  } 
}

_siftDown accepts an arbitrary index. The node in this index will always be treated 
as the parent node. Here’s how the method works:

1. Store the parent index to keep track of where you are in the traversal.

2. Find the indices of the parent’s left and right children.

3. The chosen variable is used to keep track of which index to swap with the parent. 
If there’s a left child, and it has a higher priority than its parent, make it the 
chosen one.

4. If there’s a right child, and it has an even greater priority, it will become the 
chosen one instead.

5. If chosen is still parent, then no more sifting is required.

6. Otherwise, swap chosen with parent, set it as the new parent, and continue 
sifting.
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Implementing remove

Now that you have a way to sift down, add the remove method to Heap:

E? remove() { 
  if (isEmpty) return null; 
  // 1 
  _swapValues(0, elements.length - 1); 
  // 2 
  final value = elements.removeLast(); 
  // 3 
  _siftDown(0); 
  return value; 
}

Here’s how this method works:

1. Swap the root with the last element in the heap.

2. Before removing it from the list, save a copy so that you can return the value at 
the end of the method.

3. The heap may not be a max- or min-heap anymore, so you must perform a down 
sift to make sure it conforms to the rules.

The overall complexity of remove is O(log n). Swapping elements in a list is only O(1) 
while sifting elements down in a heap takes O(log n) time.

Testing remove

Go back to bin/starter.dart and replace the body of main with the following:

final heap = Heap<int>(); 
heap.insert(10); 
heap.insert(8); 
heap.insert(5); 
heap.insert(4); 
heap.insert(6); 
heap.insert(2); 
heap.insert(1); 
heap.insert(3); 

 
final root = heap.remove(); 
print(root); 
print(heap);
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Run that to see the results below:

10 
[8, 6, 5, 4, 3, 2, 1]

This removes 10 from the top of the heap and then performs a down sift that results 
in 8 being the new root.

You’re now able to remove the root element, but what if you want to delete any 
arbitrary element from the heap? You’ll handle that next.

Removing From an Arbitrary Index

Add the following method to Heap:

E? removeAt(int index) { 
  final lastIndex = elements.length - 1; 
  // 1 
  if (index < 0 || index > lastIndex) { 
    return null; 
  } 
  // 2 
  if (index == lastIndex) { 
    return elements.removeLast(); 
  } 
  // 3 
  _swapValues(index, lastIndex); 
  final value = elements.removeLast(); 
  // 4 
  _siftDown(index); 
  _siftUp(index); 
  return value; 
}

To remove an arbitrary element from the heap, you need an index. Given that, here’s 
what happens next:

1. Check to see if the index is within the bounds of the list. If not, return null.

2. If you’re removing the last element in the heap, you don’t need to do anything 
special. Simply remove it and return the value.

3. If you’re not removing the last element, first swap the element with the last 
element. Then, remove the last element, saving its value to return at the end.

4. Perform a down sift and an up sift to adjust the heap.
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But — why do you have to perform both a down sift and an up sift?

Assume you’re trying to remove 5 from the max-heap below. You swap 5 with the 
last element, which is 8. You now need to perform an up sift to satisfy the max-heap 
property:

Shifting up case

Now, assume you are trying to remove 7 from the heap below. You swap 7 with the 
last element, 1. In this case, you need to perform a down sift to satisfy the max-heap 
property.

Shifting down case

Calling _siftDown and _siftUp ensures that both of these situations are handled.

Testing removeAt

The code that follows demonstrates the example from the previous image:

final heap = Heap<int>(); 
heap.insert(10); 
heap.insert(7); // remove this 
heap.insert(2); 
heap.insert(5); 
heap.insert(1);
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final index = 1; 
heap.removeAt(index); 
print(heap);

Internally, the value 7 is at index 1. Run that in main to see that removeAt 
successfully sifts the necessary nodes to give the following heap:

[10, 5, 2, 1]

Removing an arbitrary element from a heap is an O(log n) operation. However, it also 
requires knowing the index of the element you want to delete. How do you find that 
index?

Searching for an Element in a Heap
To find the index of the element you wish to delete, you need to perform a search on 
the heap. Unfortunately, heaps are not designed for fast searches. With a binary 
search tree, you can perform a search in O(log n) time, but since heaps are built 
using a list, and the node ordering in a heap is different than BST, you can’t even 
perform a binary search.

Searching for an element in a heap is, in the worst-case, an O(n) operation since you 
may have to check every element in the list. However, you can optimize the search by 
taking advantage of the heap’s max or min priority.

Add the following recursive function to Heap:

int indexOf(E value, {int index = 0}) { 
  // 1 
  if (index >= elements.length) { 
    return -1; 
  } 
  // 2 
  if (_firstHasHigherPriority(value, elements[index])) { 
    return -1; 
  } 
  // 3 
  if (value == elements[index]) { 
    return index; 
  } 
  // 4 
  final left = indexOf(value, index: _leftChildIndex(index)); 
  if (left != -1) return left; 
  return indexOf(value, index: _rightChildIndex(index)); 
}
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Here’s what’s happening:

1. If the index is too big, the search failed. Return -1. Alternatively, you could 
rewrite the method to return null, but -1 is what List uses in its indexOf 
method.

2. This step is the optimization part. Check to see if the value you’re looking for has 
a higher priority than the current node at your recursive traversal of the tree. If it 
does, the value you’re looking for cannot possibly be lower in the heap. For 
example, if you’re looking for 10 in a max-heap, but the current node has a value 
of 9, there’s no use checking all the nodes below 9 because they’re just going to 
be even lower.

3. If the value you’re looking for is equal to the value at index, you found it. Return 
index.

4. Recursively search for the value starting from the left child and then on to the 
right child. If both searches fail, the whole search fails. Return -1.

Testing it Out

Go back to bin/starter.dart and replace the body of main with the following:

final heap = Heap<int>(); 
heap.insert(10); 
heap.insert(7); 
heap.insert(2); 
heap.insert(5); 
heap.insert(1); 
print(heap); 

 
final index = heap.indexOf(7); 
print(index);

This code attempts to find the index of the value 7.

Run the code and you should see the output below:

[10, 7, 2, 5, 1] 
1

The index was correctly recognized as 1.
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Accepting a List in the Constructor
You may recall that when you made the Heap constructor, it took a list of elements as 
an optional parameter. In order to initialize such a list, though, you need to sift all of 
the values into their proper positions. Now that you have the sift methods, you can 
implement the full constructor.

Replace the current Heap constructor with the following one:

Heap({List<E>? elements, this.priority = Priority.max}) { 
  this.elements = (elements == null) ? [] : elements; 
  _buildHeap(); 
} 

 
void _buildHeap() { 
  if (isEmpty) return; 
  final start = elements.length ~/ 2 - 1; 
  for (var i = start; i >= 0; i--) { 
    _siftDown(i); 
  } 
}

If a non-empty list is provided, you use that as the initial elements for the heap. You 
loop through the list backwards, starting from the first non-leaf node, and sift all 
parent nodes down. You loop through only half of the elements because there’s no 
point in sifting leaf nodes down, only parent nodes.

Note: You might wonder whether you could start at the front of the list and 
call _siftUp on every element. Well, you’d be right. You could do that. 
However, it wouldn’t be as efficient. Since the top of the heap has only one 
node, you’d have to do more work to sift every other node toward this position. 
And when sifting is required, the nodes are more likely to have to travel 
further. The bottom of the heap, on the other hand, holds half of the nodes 
already, and it doesn’t take so much work to sift the relatively fewer number of 
nodes above them down.

In Big O notation, although a single up or down sift is O(log n), building a heap 
using the up-sift algorithm has a time complexity of O(n log n), while building 
it with the down-sift algorithm has a time complexity of only O(n). Read 
stackoverflow.com/a/18742428 for a more in-depth explanation.
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Testing it Out

Time to try your new constructor out. Add the following to main:

var heap = Heap(elements: [1, 12, 3, 4, 1, 6, 8, 7]); 
print(heap); 

 
while (!heap.isEmpty) { 
  print(heap.remove()); 
}

The constructor creates a max-heap from the elements of the list. Then the while 
loop repeatedly removes the largest element until none are left. Run that and you 
should see the following output:

[12, 7, 8, 4, 1, 6, 3, 1] 
12 
8 
7 
6 
4 
3 
1 
1

Try it again but this time make it a min-heap. Replace the first line in the code block 
above with the following:

var heap = Heap( 
  elements: [1, 12, 3, 4, 1, 6, 8, 7], 
  priority: Priority.min, 
);

This time you should see the opposite result:

[1, 1, 3, 4, 12, 6, 8, 7] 
1 
1 
3 
4 
6 
7 
8 
12
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Challenges
Think you have a handle on heaps? Try out the following challenges. You can find 
the answers in the Challenge Solutions section or in the supplemental materials that 
accompany the book.

Challenge 1: Find the Nth Smallest Integer
Write a function to find the nth smallest integer in an unsorted list. For example, 
given the following list:

final integers = [3, 10, 18, 5, 21, 100];

If n = 3, the result should be 10.

Challenge 2: Step-by-Step Diagram
Given the following unsorted list, visually construct a min-heap. Provide a step-by-
step diagram of how the min-heap is formed.

[21, 10, 18, 5, 3, 100, 1]

Challenge 3: Combining Two Heaps
Write a method that combines two heaps.

Challenge 4: Is it a Min-Heap?
Write a function to check if a given list is a min-heap.
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Key Points
• The heap data structure is good for maintaining the highest- or lowest-priority 

element.

• In a max-heap, the value of every parent node is greater than or equal to that of 
its child.

• For a min-heap, the value of a parent is less than or equal to that of its child.

• Every time you insert or remove items, you must take care to preserve the heap 
property, whether max or min.

• There can’t be any holes in a heap. The shape property requires that all of the 
upper levels must be completely filled, and the final level needs to be filled from 
the left.

• Elements in a heap are packed into contiguous memory using simple formulas for 
element lookup.

• Here is a summary of the algorithmic complexity of the heap operations you 
implemented in this chapter:

Heap operation time complexity
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14Chapter 14: Priority 
Queues
By Vincent Ngo & Jonathan Sande

Queues are simply lists that maintain the order of elements using first-in-first-out 
(FIFO) ordering. A priority queue is another version of a queue in which elements are 
dequeued in priority order instead of FIFO order.

A priority queue can be either of these two:

1. Max-priority, in which the element at the front is always the largest.

2. Min-priority, in which the element at the front is always the smallest.

You’ll notice the similarity here to the heap data structure that you made in the last 
chapter. In fact, in this chapter you’ll implement a priority queue using a heap. A 
priority queue creates a layer of abstraction by focusing on the key operations of a 
queue and leaving out the additional functionality provided by a heap. This makes 
the priority queue’s intent clear and concise. Its only job is to enqueue and dequeue 
elements, nothing else. Simplicity for the win!
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Applications
Some practical applications of a priority queue include:

• Dijkstra’s algorithm, which uses a priority queue to calculate the minimum cost.

• A* pathfinding algorithm, which uses a priority queue to track the unexplored 
routes that will produce the path with the shortest length.

• Heapsort, which can be implemented using a priority queue.

• Huffman coding that builds a compression tree. A min-priority queue is used to 
repeatedly find two nodes with the smallest frequency that do not yet have a 
parent node.

These are just some of the use cases, but priority queues have many more 
applications as well.

Common Operations
In Chapter 6, “Queues”, you established the following interface for queues:

abstract class Queue<E> { 
  bool enqueue(E element); 
  E? dequeue(); 
  bool get isEmpty; 
  E? get peek; 
}

A priority queue has the same operations as a regular queue, so only the 
implementation will differ:

• enqueue: Inserts an element into the queue, and returns true if the operation was 
successful.

• dequeue: Removes the element with the highest priority and returns it. Returns 
null if the queue was empty.

• isEmpty: Checks if the queue is empty.

• peek: Returns the element with the highest priority without removing it. Returns 
null if the queue was empty.
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Implementation
You can create a priority queue in the following ways:

1. Sorted list: This is useful to obtain the maximum or minimum value of an 
element in O(1) time. However, insertion is slow and will require O(n) time since 
you have to first search for the insertion location and then shift every element 
after that location.

2. Balanced binary search tree: This is useful in creating a double-ended priority 
queue, which features getting both the minimum and maximum value in O(log n) 
time. Insertion is better than a sorted list, also O(log n).

3. Heap: This is a natural choice for a priority queue. A heap is more efficient than 
a sorted list because a heap only needs to be partially sorted. Inserting and 
removing from a heap are O(log n) while simply querying the highest priority 
value is O(1).

You’ll implement a priority queue in this chapter using a heap. However, also check 
out Challenge 2 in which you’ll reimplement a priority queue using a list.

Getting Started
Here’s how to use a heap to create a priority queue.

Open up the starter project. In the lib folder, you’ll find the following files:

1. heap.dart: Contains the heap data structure from the previous chapter.

2. queue.dart: Contains the interface that defines a queue.

Create a new file in the lib folder called priority_queue.dart and add the following 
code to it:

import 'heap.dart'; 
import 'queue.dart'; 

 
// 1 
export 'heap.dart' show Priority; 

 
// 2 
class PriorityQueue<E extends Comparable<dynamic>>  
  implements Queue<E> { 

 
  PriorityQueue({ 
    List<E>? elements,
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    Priority priority = Priority.max, 
  }) { 
    // 3 
    _heap = Heap<E>(elements: elements, priority: priority); 
  } 

 
  late Heap<E> _heap; 

 
  // more to come 
}

Here are some notes corresponding to the commented numbers:

1. When you use your priority queue in the future to implement Dijkstra’s 
algorithm, exporting Priority here will save you from having to import 
heap.dart separately.

2. PriorityQueue will conform to the Queue protocol. The generic type E must 
extend Comparable since you need to sort the elements.

3. You’ll use this heap to implement the priority queue. By passing an appropriate 
Priority type into the constructor, PriorityQueue can be used to create either 
min- or max-priority queues.

Implementing the Queue Interface
To implement the Queue interface, add the following to PriorityQueue:

@override 
bool get isEmpty => _heap.isEmpty; 

 
@override 
E? get peek => _heap.peek; 

 
// 1 
@override 
bool enqueue(E element) { 
  _heap.insert(element); 
  return true; 
} 

 
// 2 
@override 
E? dequeue() => _heap.remove();
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The heap data structure makes it easy to implement a priority queue.

1. You implement enqueue by calling insert on the heap. From the previous 
chapter, you should recall that when you insert, the heap will sift up to validate 
itself. The overall complexity of enqueue is O(log n).

2. By calling dequeue, you remove the root element from the heap by replacing it 
with the last heap element and then sifting down to validate the heap. The 
overall complexity of dequeue is also O(log n).

Testing it Out
Go to bin/starter.dart and replace the contents of the file with the following code:

import 'package:starter/priority_queue.dart'; 
 

void main() { 
  var priorityQueue = PriorityQueue( 
    elements: [1, 12, 3, 4, 1, 6, 8, 7], 
  ); 
  while (!priorityQueue.isEmpty) { 
    print(priorityQueue.dequeue()!); 
  } 
}

Your priority queue has the same interface as a regular queue. Since you didn’t 
change the default priority, the code above creates a max-priority queue.

Run the code and you’ll see the following numbers are printed to the console in 
descending order:

12 
8 
7 
6 
4 
3 
1 
1

That’s all there is to making a priority queue with a heap! Ready to try some 
challenges?
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Challenges
The first challenge below will test your ability to apply the data structure to a 
practical problem, while the second challenge will give you some more practice 
implementing a priority queue. As always, you can find the answers in the Challenge 
Solutions section at the end of the book.

Challenge 1: Prioritize a Waitlist
Your favorite concert was sold out. Fortunately, there’s a waitlist for people who still 
want to go! However, ticket sales will first prioritize someone with a military 
background, followed by seniority.

Use a priority queue to prioritize the order of people on the waitlist. Start by making 
a Person class that you can instantiate like so:

final person = Person(name: 'Josh', age: 21, isMilitary: true);

Challenge 2: List-Based Priority Queue
You’ve learned how to construct a priority queue by implementing the Queue 
interface with an internal heap data structure. Now your challenge is to do it again, 
but this time with a List.

Key Points
• A priority queue is often used to retrieve elements in priority order.

• A max-priority queue prioritizes the largest elements, while a min-priority queue 
the smallest.

• Wrapping a heap with a queue interface allows you to focus on the key operations 
of a queue while ignoring unneeded heap operations.
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Section IV: Sorting Algorithms

Putting lists in order is a classical computational problem. Although you may never 
need to write your own sorting algorithm, studying this topic has many benefits. This 
section will teach you about stability, best- and worst-case times, and the all-
important technique of divide and conquer.

Studying sorting may seem a bit academic and disconnected from the “real world” of 
app development, but understanding the tradeoffs for these simple cases will lead 
you to a better understanding of how to analyze any algorithm.

• Chapter 15: O(n²) Sorting Algorithms: O(n²) time complexity isn’t great 
performance, but the sorting algorithms in this category are easy to understand 
and useful in some scenarios. These algorithms are space-efficient and only 
require constant O(1) memory space. In this chapter, you’ll look at the bubble sort, 
selection sort and insertion sort algorithms.

• Chapter 16: Merge Sort: Merge sort, with a time complexity of O(n log n), is one 
of the fastest of the general-purpose sorting algorithms. The idea behind merge 
sort is to divide and conquer: to break up a big problem into several smaller, easier 
to solve problems and then combine those solutions into a final result. The merge 
sort mantra is to split first and merge later.
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• Chapter 17: Radix Sort: In this chapter, you’ll look at a completely different 
model of sorting. So far, you’ve been relying on comparisons to determine the 
sorting order. Radix sort is a non-comparative algorithm for sorting integers.

• Chapter 18: Heapsort: Heapsort is a comparison-based algorithm that sorts a list 
in ascending order using a heap. This chapter builds on the heap concepts 
presented in Chapter 13, “Heaps”. Heapsort takes advantage of a heap being, by 
definition, a partially sorted binary tree.

• Chapter 19: Quicksort: Quicksort is another comparison-based sorting 
algorithm. Much like merge sort, it uses the same strategy of divide and conquer. 
In this chapter, you’ll implement quicksort and look at various partitioning 
strategies to get the most out of this sorting algorithm.
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15Chapter 15: O(n²) Sorting 
Algorithms
By Kelvin Lau & Jonathan Sande

O(n²) time complexity isn’t great performance, but the sorting algorithms in this 
category are easy to understand and useful in some scenarios. One advantage of 
these algorithms is that they have constant O(1) space complexity, making them 
attractive for certain applications where memory is limited. For small data sets, 
these sorting algorithms compare very favorably against more complex sorts.

In this chapter, you’ll learn about the following sorting algorithms:

• Bubble sort

• Selection sort

• Insertion sort

All of these are comparison-based sorting methods since they rely on comparisons 
to order the elements. You can measure a sorting technique’s general performance by 
counting the number of times the sorting algorithm compares elements.
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Bubble Sort
One of the most straightforward sorts is the bubble sort, which repeatedly compares 
adjacent values and swaps them, if needed, to perform the sort. Therefore, the larger 
values in the set will “bubble up” to the end of the collection.

Example
Consider the following hand of cards. The order is [9, 4, 10, 3]:

In the first pass of the bubble-sort algorithm, you start at the beginning of the 
collection. Compare the first two elements: 9 and 4. Since 9 is larger than 4, these 
values need to be swapped. The collection then becomes [4, 9, 10, 3]:

Move to the next index in the collection to compare 9 and 10. These are already in 
order, so move to the next index in the collection to compare 10 and 3. Since 10 is 
larger, these values need to be swapped. The collection then becomes [4, 9, 3, 
10]:

This completes the first pass. However, a single pass of the algorithm will seldom 
result in a complete ordering. It certainly didn’t for this example. It will, however, 
cause the largest value — 10 in this case — to bubble up to the end of the collection. 
Subsequent passes through the collection will do the same with the next highest 
numbers.
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For the second pass, go back to the beginning of the collection and compare 4 and 9. 
These are already in order so there’s no need to swap anything. Go on to the next 
index and compare 9 and 3. Since 9 is larger, swap them. Now the collection becomes 
[4, 3, 9, 10]:

There’s no need to compare 9 and 10 since the first pass already guaranteed that 10 
is the largest value. Likewise, the second pass guaranteed that 9 is the second-largest 
value.

Time for the third pass. Go back to the beginning of the collection and compare 4 
and 3. Since 4 is larger, swap them. This gives you [3, 4, 9, 10]:

Now the list is completely sorted. No need to keep comparing the 4 with any other 
cards since those were already sorted in the earlier passes.

Here’s a summary:

• Since there were four elements in the collection, you performed three passes. To 
generalize that, for a collection of length n, you need to do at most n - 1 passes. 
This is the worst case. If any single pass doesn’t require a swap, that means the list 
is sorted and bubble sort can terminate early.

• The number of comparisons in each pass is one less than the pass before. In the 
example above you made three comparisons in the first pass, two comparisons in 
the second pass and one comparison in the last pass. This is because each pass 
moves the largest value to the end, and so it isn’t necessary to compare those 
sorted values again.
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Implementation
Open up the starter project for this chapter and create a lib folder in the root of the 
project.

Adding a Swap Extension to List

All of the sorting algorithms in this chapter will require swapping values between 
two indices in a list. To make that more convenient, you can add an extension to 
List itself.

Create a new file called swap.dart in the lib folder. Then add the following 
extension:

extension SwappableList<E> on List<E> { 
  void swap(int indexA, int indexB) { 
    final temp = this[indexA]; 
    this[indexA] = this[indexB]; 
    this[indexB] = temp; 
  } 
}

Implementing Bubble Swap

Now create a new file in lib named bubble_sort.dart. Write the following inside the 
file:

import 'swap.dart'; 
 

void bubbleSort<E extends Comparable<dynamic>>(List<E> list) { 
  // 1 
  for (var end = list.length - 1; end > 0; end--) { 
    var swapped = false; 
    // 2 
    for (var current = 0; current < end; current++) { 
      if (list[current].compareTo(list[current + 1]) > 0) { 
        list.swap(current, current + 1); 
        swapped = true; 
      } 
    } 
    // 3 
    if (!swapped) return; 
  } 
}
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Here’s the play-by-play:

1. The outer for loop counts the passes. A single pass bubbles the largest value to 
the end of the collection. Every pass needs to compare one less value than in the 
previous pass, so you shorten the list by one with each pass.

2. The inner for loop handles the work of a single pass. It moves through the 
indices, comparing adjacent values and swapping them if the first value is larger 
than the second.

3. If no values were swapped during a pass, the collection must be sorted and you 
can exit early.

Testing it Out

Head back to bin/starter.dart and replace the contents of the file with the following:

import 'package:starter/bubble_sort.dart'; 
 

void main() { 
  final list = [9, 4, 10, 3]; 
  print('Original: $list'); 
  bubbleSort(list); 
  print('Bubble sorted: $list'); 
}

Run that and you should see the output below:

Original: [9, 4, 10, 3] 
Bubble sorted: [3, 4, 9, 10]

Bubble sort has a best time complexity of O(n) if it’s already sorted, and a worst and 
average time complexity of O(n²), making it one of the least appealing sorts in the 
known universe.

Note: Bubble sort may be slow, but there are slower ones still. How about if 
you keep randomly shuffling the elements of the list until you finally get a list 
that just happens to be sorted? This “algorithm” is known as bogosort. It has 
an average time complexity of O(n × n!), and factorial time complexities are 
much worse than quadratic ones.

Data Structures & Algorithms in Dart Chapter 15: O(n²) Sorting Algorithms

raywenderlich.com 210



Selection Sort
Selection sort follows the basic idea of bubble sort but improves this algorithm by 
reducing the number of swap operations. Selection sort will only swap at the end of 
each pass. You’ll see how that works in the following example.

Example
During each pass, selection sort will find the lowest unsorted value and swap it into 
place.

Assume you have the following hand of cards represented by the list [9, 4, 10, 
3]:

In the first pass, selection sort starts at the beginning of the collection and sees the 
9. So far that’s the lowest value. The index moves to 4. This is lower than 9 so 4 
becomes the new lowest value. Then index moves on to 10. That’s not lower than 4, 
so the index moves on to 3. Three is lower than 4, so 3 is the new lowest value.

Since you’ve reached the end of the list, you swap the lowest value 3 with the first 
card in the pass, which was 9. Now you have [3, 4, 10, 9]:

Time for the second pass. You can skip card 3 since it’s already sorted. Start with 4. 
Compare 4 to 10 and then to 9, but 4 remains the lowest value in this pass. Since it’s 
already in the right location, you don’t need to swap anything.
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For the third pass, start with 10. Ten starts as the lowest value, but after you compare 
it to 9, you find that 9 is lower. There isn’t anything else to compare, so swap the 
lowest value 9 with the first value 10. That finishes up pass three with [3, 4, 9, 
10], and the list is sorted:

Implementation
Now that you know on a mental level how selection sort works, have a go at 
implementing it in Dart.

Create a new file named selection_sort.dart in the lib folder. Then add the following 
code inside the file:

import 'swap.dart'; 
 

void selectionSort<E extends Comparable<dynamic>>(List<E> list) 
{ 
  // 1 
  for (var start = 0; start < list.length - 1; start++) { 
    var lowest = start; 
    // 2 
    for (var next = start + 1; next < list.length; next++) { 
      if (list[next].compareTo(list[lowest]) < 0) { 
        lowest = next; 
      } 
    } 
    // 3 
    if (lowest != start) { 
      list.swap(lowest, start); 
    } 
  } 
}
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Here’s what’s going on:

1. The outer for loop represents the passes, where start is the index the current 
pass should begin at. Since the lowest value is moved to start at the end of every 
pass, start increments by one each time.

2. In every pass, you go through the remainder of the collection to find the element 
with the lowest value.

3. If a lower value was found, then swap it with the value at the start index.

Testing it Out

Back in bin/starter.dart, replace the contents of the file with the following code:

import 'package:starter/selection_sort.dart'; 
 

void main() { 
  final list = [9, 4, 10, 3]; 
  print('Original: $list'); 
  selectionSort(list); 
  print('Selection sorted: $list'); 
}

Run that and you should see the following output in your console:

Original: [9, 4, 10, 3] 
Selection sorted: [3, 4, 9, 10]

Selection sort has a best, worst and average time complexity of O(n²), which is fairly 
dismal. It’s a simple one to understand, though, and it does perform better than 
bubble sort!

Insertion Sort
Insertion sort is a more useful algorithm. Like bubble sort and selection sort, 
insertion sort has an average time complexity of O(n²), but the performance of 
insertion sort can vary. The more the data is already sorted, the less work it needs to 
do. Insertion sort has a best time complexity of O(n) if the data is already sorted.

Dart itself uses the insertion sort. For lists with 32 or fewer elements, the sort 
method defaults to an insertion sort. Only for larger collections does Dart make use 
of a different sorting algorithm.
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Example
The idea of insertion sort is similar to how many people sort a hand of cards. You 
start with the card at one end and then go through the unsorted cards one at a time, 
taking each one as you come to it and inserting it in the correct location among your 
previously sorted cards.

Consider the following hand of [9, 4, 10, 3]:

Insertion sort will start at the left where the 9 is. The next card is 4, which is smaller 
than 9, so you swap the 4 and the 9, giving you [4, 9, 10, 3]. This is the first pass. 
The first two cards are now sorted:

For the second pass, you take the third card, 10. You need to insert it in the right 
location, so you begin by comparing 10 with the previous card, 9. Well, what do you 
know? Ten is bigger so it’s already in the right location. You can skip the rest of the 
comparisons in this pass. This shows how insertion sort can save time when some 
elements are already sorted.

For the third pass, you need to insert the fourth card, 3, in its proper location. Begin 
by comparing 3 with the previous card, which is 10. Since 10 is larger, swap them. 
Now, you’ve got [4, 9, 3, 10]:
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Keep going. Compare the 3 to the next card to the left, 9. Since 9 is larger, swap 9 and 
3, leaving you  [4, 3, 9, 10]:

You’re not done yet. The 3 needs to keep shifting left until it’s in its correct sort 
order. So compare 3 with the next card to the left, which is 4. Four is also larger, so 
swap them to give you [3, 4, 9, 10]:

The third pass is now finished, and you’ve got a sorted hand.

It’s worth pointing out that the best-case scenario for insertion sort occurs when the 
sequence of values is already in sorted order and no left shifting is necessary.

Implementation
Create a new file named insertion_sort.dart in the lib folder. Add the following code 
inside the file:

import 'swap.dart'; 
 

void insertionSort<E extends Comparable<dynamic>>(List<E> list) 
{ 
  // 1 
  for (var current = 1; current < list.length; current++) { 
    // 2 
    for (var shifting = current; shifting > 0; shifting--) { 
      // 3 
      if (list[shifting].compareTo(list[shifting - 1]) < 0) { 
        list.swap(shifting, shifting - 1); 
      } else { 
        break; 
      } 
    } 
  } 
}
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Here’s what you have:

1. Insertion sort requires you to iterate from left to right once, which is the job of 
this outer for loop. At the beginning of the loop, current is the index of the 
element you want to sort in this pass.

2. Here, you run backward from the current index so you can shift left as needed.

3. Keep shifting the element left as long as necessary. As soon as the element is in 
position, break the inner loop and start with the next element.

Testing it Out

Head back to bin/starter.dart and replace the code there with the following:

import 'package:starter/insertion_sort.dart'; 
 

void main() { 
  var list = [9, 4, 10, 3]; 
  print('Original: $list'); 
  insertionSort(list); 
  print('Insertion sorted: $list'); 
}

Run that and you should see the following console output:

Original: [9, 4, 10, 3] 
Insertion sorted: [3, 4, 9, 10]

Insertion sort is one of the fastest sorting algorithms if the data is already sorted. 
That might sound obvious, but it isn’t true for all sorting algorithms. In practice, 
many data collections will already be largely — if not entirely — sorted, and insertion 
sort will perform exceptionally well in those scenarios.

Stability
A sorting algorithm is called stable if the elements of the same type retain their 
order after being sorted. For example, say you had an unsorted deck of cards in which 
the 5 of clubs comes before the 5 of diamonds. If you then sort the cards by number 
only, the 5 of clubs would still come before the 5 of diamonds in a stable sort. That 
would not necessarily be true for an unstable sorting algorithm.
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Of the three sorting algorithms in this chapter, bubble sort and insertion sort are 
both stable. Selection sort, on the other hand, is not stable because the swapping 
used in the algorithm can change the relative position of the cards. Take a few cards 
and see for yourself!

Most of the time it doesn’t matter if a sort is stable or not. However, there are 
situations when it does matter. For example, say you sort a list of cities from around 
the world into alphabetical order. If you then sort that same list again by country, the 
cities within each country will still be in alphabetical order as long as the sort was 
stable. Using an unstable sort, on the other hand, would result in the cities 
potentially losing their sort order.

In the following chapters, you’ll take a look at sorting algorithms that perform better 
than O(n²). Next is a stable sorting algorithm that uses an approach known as divide 
and conquer — merge sort!

Challenges
To really get a grasp on how sorting algorithms work, it helps to think through step 
by step what’s happening. The challenges in this chapter will allow you to do that.

Grab a deck of cards or some paper and a pencil to help yourself out. Sprinkling a few 
print statements in the code might also help.

You can find the answers in the Challenge Solutions section as well as in the 
supplemental materials that come with the book.

Challenge 1: Bubble Up
Here’s a list of randomly distributed elements:

[4, 2, 5, 1, 3]

Work out by hand the steps that a bubble sort would perform on this list.
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Challenge 2: Select the Right One
Given the same list as above:

[4, 2, 5, 1, 3]

Work out by hand the steps that a selection sort would perform on this list.

Challenge 3: Insert Here
Again, using the same initial list as in the previous challenges:

[4, 2, 5, 1, 3]

Work out by hand the steps that an insertion sort would take to sort this list.

Challenge 4: Already Sorted
When you have a list that’s already sorted like the following:

[1, 2, 3, 4, 5]

Are bubble sort, selection sort and insertion sort still O(n²)? How do the algorithms 
take shortcuts to finish more quickly?

Key Points
• O(n²) algorithms often have a terrible reputation. Still, some of these algorithms 

have some redeeming qualities. Insertion sort can sort in O(n) time if the 
collection is already in sorted order and gradually scales down to O(n²) the more 
unsorted the collection is.

• Insertion sort is one of the best sorts in situations where you know ahead of time 
that your data is already mostly sorted.
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16Chapter 16: Merge Sort

By Kelvin Lau & Jonathan Sande

With a time complexity of O(n log n), merge sort is one of the fastest of the general-
purpose sorting algorithms. The idea behind merge sort is to divide and conquer — 
to break up a big problem into several smaller, easier-to-solve problems and then 
combine the solutions into a final result. The merge sort mantra is to split first and 
merge later.

In this chapter, you’ll implement merge sort from scratch. The example below will 
help you gain an intuitive understanding of how the algorithm works before you 
write the code.
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Example
Assume that you’re given a pile of unsorted playing cards:

The merge sort algorithm works as follows. First, split the pile in half. You now have 
two unsorted piles:

Split those piles again:

You keep splitting until you can’t split anymore. In the end, you’ll have one (sorted!) 
card in each pile:
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Finally, merge the piles in the reverse order in which you split them. During each 
merge, you put the contents in sorted order. This process is easy because each pile is 
already sorted:

Do you understand the general idea of how merge sort works now? You’ll build the 
algorithm with code next.

Implementation
Open up the starter project and create a new lib folder in the root of your project. 
Then create a new file in lib named merge_sort.dart.

Merging Lists
You’ll start by creating a helper function named _merge. The sole responsibility of 
this function is to take in two sorted lists and combine them while retaining the sort 
order. Add the following to merge_sort.dart:

List<E> _merge<E extends Comparable<dynamic>>( 
  List<E> listA, 
  List<E> listB, 
) { 

 
  var indexA = 0;
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  var indexB = 0; 
  final result = <E>[]; 

 
  // more to come 
}

indexA and indexB track your progress as you parse through the two lists. The 
result list will house the merged list that you’re about to make.

Next add the following while loop at the bottom of _merge:

// 1 
while (indexA < listA.length && indexB < listB.length) { 
  final valueA = listA[indexA]; 
  final valueB = listB[indexB]; 
  // 2 
  if (valueA.compareTo(valueB) < 0) { 
    result.add(valueA); 
    indexA += 1; 
  } else if (valueA.compareTo(valueB) > 0) { 
    result.add(valueB); 
    indexB += 1; 
  } else { 
    // 3 
    result.add(valueA); 
    result.add(valueB); 
    indexA += 1; 
    indexB += 1; 
  } 
} 

 
// more to come

Here’s what’s happening:

1. Starting from the beginning of listA and listB, you sequentially compare the 
values. If you’ve reached the end of either list, there’s nothing else to compare.

2. The smaller of the two values go into the result list.

3. If the values are equal, they can both be added.

Finally, add the following code to the bottom of _merge:

if (indexA < listA.length) { 
  result.addAll(listA.getRange(indexA, listA.length)); 
} 

 
if (indexB < listB.length) { 
  result.addAll(listB.getRange(indexB, listB.length));

Data Structures & Algorithms in Dart Chapter 16: Merge Sort

raywenderlich.com 222



} 
 

return result;

The while loop above guaranteed that either left or right is already empty. Since 
both lists are sorted, this ensures that any leftover elements are greater than or 
equal to the ones currently in result. In this scenario, you can directly add the rest 
of the elements without comparison.

Note: getRange is similar to substring except that it doesn’t return a new 
list. It just returns an iterable pointing to the elements of the current list. No 
need to spend time creating unnecessary objects.

Splitting
Now it’s time to create the main mergeSort function. Write the following at the top 
of merge_sort.dart, above the _merge function:

List<E> mergeSort<E extends Comparable<dynamic>>(List<E> list) { 
  final middle = list.length ~/ 2; 
  final left = list.sublist(0, middle); 
  final right = list.sublist(middle); 

 
  // more to come 
}

Here, you split the list into halves. Splitting once isn’t enough, though. You need to 
keep splitting recursively until you can’t split anymore, which is when each 
subdivision contains just one element.

To do this, replace mergeSort with the following:

List<E> mergeSort<E extends Comparable<dynamic>>(List<E> list) { 
  // 1 
  if (list.length < 2) return list; 
  // 2 
  final middle = list.length ~/ 2; 
  final left = mergeSort(list.sublist(0, middle)); 
  final right = mergeSort(list.sublist(middle)); 
  // 3 
  return _merge(left, right); 
}
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You’ve made a few changes here:

1. Recursion needs a base case, which you can also think of as an “exit condition.” 
Here, the base case is when the list only has one element.

2. You’re now recursively calling mergeSort on the left and right halves of the 
original list. As soon as you’ve split the list in half, you try to split it again.

3. Complete the mergeSort function by calling _merge. This will combine the left 
and right lists that you split above.

You’re finished with the implementation. Time to see it in action.

Testing it Out
Head back to bin/starter.dart to test your merge sort:

import 'package:starter/merge_sort.dart'; 
 

void main() { 
  final list = [7, 2, 6, 3, 9]; 
  final sorted = mergeSort(list); 
  print('Original: $list'); 
  print('Merge sorted: $sorted'); 
}

This outputs:

Original: [7, 2, 6, 3, 9] 
Merge sorted: [2, 3, 3, 6, 7]

Nice! It works.
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Performance
The best, worst and average time complexity of merge sort is quasilinear, or O(n log 
n), which isn’t too bad.

If you’re struggling to understand where n log n comes from, think about how the 
recursion works:

• As you recurse, you split a single list into two smaller lists. This means a list of size 
two will need one recursion level, a list of size four will need two levels, a list of 
size eight will need three levels, and so on. If you had a list of 1,024 elements, it 
would take ten levels of recursively splitting in two to get down to 1,024 single 
element lists. In general, if you have a list of size n, the number of recursion levels 
is log₂(n).

• The cost of a single recursion is O(n). A single recursion level will merge n 
elements. It doesn’t matter if there are many small merges or one large one. The 
number of elements merged will still be n at each level.

This brings the total cost to O(log n) × O(n) = O(n log n).

Bubble sort, selection sort and insertion sort were in-place algorithms since they 
used swap to move elements around in an existing list. Merge sort, by contrast, 
allocates additional memory to do its work. How much? There are log₂(n) levels of 
recursion, and at each level, n elements are used. That makes the total O(n log n) in 
space complexity. If you’re clever with your bookkeeping, though, you can reduce the 
memory required to O(n) by discarding the memory that’s not actively being used.

Merge sort is also stable. Elements of the same type retain their relative order after 
being sorted. This will also be true for radix sort in the next chapter, but not for 
heapsort and quicksort that you’ll learn about later.

Merge sort is one of the classic sorting algorithms. It’s relatively simple to 
understand and serves as a great introduction to how divide-and-conquer 
algorithms work.
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Challenges

Challenge 1: Mind Merge
Given the following list:

[4, 2, 5, 1, 3]

Work through the steps merge sort would take. Go slowly enough for your brain to 
understand what’s happening. You’ll have the easiest time if you use breakpoints in 
your IDE or add print statements to your code.

Challenge 2: Merge Two Sequences
In this chapter you created a _merge function that merges two sorted lists. The 
challenge here is to generalize _merge so that it takes two iterables as inputs rather 
than lists. Here’s the function signature to start off:

List<E> _merge<E extends Comparable<dynamic>>( 
  Iterable<E> first, 
  Iterable<E> second, 
)

Key Points
• Merge sort is in the category of divide-and-conquer algorithms.

• Merge sort works by splitting the original list into many individual lists of length 
one. It then merges pairs of lists into larger and larger sorted lists until the entire 
collection is sorted.

• There are many implementations of merge sort, and you can have different 
performance characteristics depending on the implementation.

• Merge sort has a time complexity of O(n log n). It does not sort in place, so the 
space complexity is also O(n log n), but can be O(log n) if optimized.

• Merge sort is a stable sorting algorithm.
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17Chapter 17: Radix Sort

By Kelvin Lau & Jonathan Sande

In this chapter, you’ll look at a completely different model of sorting. So far, you’ve 
been relying on comparisons to determine the sorting order. Radix sort is a non-
comparative algorithm for sorting integers. The word radix means base, as in the 
base of a number system. For example, decimal is base 10 and binary is base 2. You 
can use any base with a radix sort, but to keep things simple, this chapter will focus 
on sorting base-10 integers.

Radix sort relies on the position of digits within a number. For example, there are 
four digits in the number 1772. The least significant digit is 2 since this is in the ones 
place. The most significant digit is 1 since this is the thousands-place value, greater 
than any other place value in this particular number. The following diagram shows 
the place values of a four-digit number:

There are multiple implementations of radix sort that focus on different problems. 
One type sorts by the least significant digit (LSD) and another by the most 
significant digit (MSD).

You’ll learn about both LSD- and MSD-radix sorting in this chapter.
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Sorting by Least Significant Digit
Before you implement a radix sort in code, go through the following example to get 
an intuitive idea of how the sort works.

Example
An LSD-radix sort starts by looking at the least significant digits in a list of 
numbers. For example, the image below shows the numbers 88, 410, 1772 and 20 
vertically aligned with a box drawn around the ones place:

You’ve got one 8 from the final digit of 88, a 0 from the end of 410, a 2 from the last 
digit of 1772 and another 0 from the least significant digit of 20. A radix sort goes 
through multiple rounds of sorting, but these final digits are what you’ll use to sort 
the numbers in the first round.

Round One

You start by making ten buckets to sort the numbers into. You can think of this like 
sorting fruit. You put the apples in the apple bucket, the oranges in the oranges 
bucket, and the pears in the pear bucket.

Note: You use ten buckets because you’re working with decimal numbers. If 
you were using binary numbers, then you would use two buckets. Or if you 
were using hexadecimal numbers, then 16 buckets.

With an LSD-radix sort, you put the numbers that end in 0 in the zero bucket, the 
numbers that end in 1 in the ones bucket, the numbers that end in 2 in the twos 
bucket, and so on up to the nines bucket. This is known as a bucket sort.
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In this case, since 88 ends in 8, you put it in the eights bucket. Likewise, 410 goes in 
the zeros bucket since it ends with 0, and 1772 goes in the twos bucket. Since 20 also 
ends in 0, it goes in the zeros bucket along with 410. The buckets maintain insertion 
order so 20 is after 410 in the zeros bucket.

Note: The radix sort algorithm described here is stable since the order within 
the buckets is maintained. Even though 410 and 20 are different numbers, the 
0 digit used for this round of the sort is the same.

If you extract all of the numbers out of the buckets in order now, you have the list 
410, 20, 1772, 88:

This finishes round one.

Round Two

For round two, you look at the next significant digit, the tens-place value:

Again, you make ten buckets for the ten digits of base ten:
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Sort the numbers starting at the beginning of the list. That means 410 is first. Since 
the second digit of 410 is 1, it goes in the ones bucket. Likewise, 20 goes in the twos 
bucket, 1772 goes in the sevens bucket, and 88 goes in the eights bucket:

This time it turns out they are all in different buckets. All that sorting you did in 
round one was for nothing, but you didn’t know that at the time.

Combining the numbers in order, you still have 410, 20, 1772, 88. The order didn’t 
change.

Time for round three now.

Round Three

This time look at the hundreds place. Since 20 and 88 are less than 100, you can use 
0s for the hundreds place:

Again, make ten buckets and add the numbers in order according to their hundreds-
place digit. Although 20 and 88 are both in the zeros bucket (020 and 088), 20 was 
first in the list, so it also maintains the first position in the bucket.
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Combine the numbers in order from the buckets and you have the new order of 20, 
88, 410, 1772:

The list is already sorted in this case, but radix sort doesn’t know that yet. There’s 
still one more round to go.

Round Four

In this algorithm of radix sort, there’s one round for every significant digit. Since 
1722 has four digits, this fourth round will ensure that the thousands-place value is 
also sorted. Pad any numbers less than one thousand with zeros in front:

Make your ten buckets again. 20, 88 and 410 all go in the zeros bucket since they’re 
less than 1000. However, within the bucket, they maintain their previous order:

Finally, you can combine the numbers from the buckets in order, and they’re indeed 
sorted as 20, 88, 410, and 1772:

The entire list was sorted without any comparisons!
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Implementation
To implement LSD-radix sort, you’ll use a while loop for each round as you step 
through the place values. Your ten buckets will be ten integer lists.

Open up the starter project for this chapter. Create a folder named lib in the root of 
the project. Then create a new file named radix_sort.dart in lib.

Add the following to the file:

extension RadixSort on List<int> { 
  void radixSort() { 
    const base = 10; 
    var done = false; 
    // 1 
    var place = 1; 
    while (!done) { 
      done = true; 
      // 2 
      final buckets = List.generate(base, (_) => <int>[]); 
      forEach((number) { 
        // 3 
        final remainingPart = number ~/ place; 
        final digit = remainingPart % base; 
        // 4 
        buckets[digit].add(number); 
        if (remainingPart ~/ base > 0) { 
          done = false; 
        } 
      }); 
      // 5 
      place *= base; 
      clear(); 
      addAll(buckets.expand((element) => element)); 
    } 
  } 
}
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Here are the main points:

1. Loop through each place value, where place is first 1, then 10, then 100, and so 
on through the largest place value in the list.

2. Create your ten buckets. The type for buckets is List<List<int>>.

3. Find the significant digit of the current number.

4. Put number in the appropriate bucket.

5. Take the numbers from the buckets in their new order and put them back in the 
original list. Since buckets is a list of lists, expand helps you flatten them back 
into a single-dimensional list.

Testing it Out
With that, you’ve implemented your first non-comparative sorting algorithm. Head 
back to bin/start.dart and replace the contents of the file with the following code:

import 'package:starter/radix_sort.dart'; 
 

void main() { 
  final list = [88, 410, 1772, 20]; 
  print("Original list: $list"); 
  list.radixSort(); 
  print("Radix sorted: $list"); 
}

Run that and you should see the following console output:

Original: [88, 410, 1772, 20] 
Radix sorted: [20, 88, 410, 1772]

Radix sort is one of the fastest sorting algorithms. The average time complexity of 
this LSD-radix sort is O(k × n), where k is the number of significant digits in the 
largest number, and n is the number of integers in the list.
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Sorting by Most Significant Digit
The MSD-radix sort uses the most significant digit to sort a list. You might think 
that’s a little strange when you look at a list of numbers sorted in this way:

What, 459 comes after 1345? Yes, it does. The reason is that the most significant 
digit of 459 is 4, which comes after 1, the most significant digit of 1345.

Although MSD sorting might look strange for numbers, it makes a lot more sense 
when you’re sorting words:

You don’t want the short words sorted before the long words. You want them sorted 
in alphabetical order, or if you use the more technical term, lexicographical order.

Note: Some implementations of lexicographical ordering do sort shorter 
elements before longer ones, regardless of the elements’ initial values. This 
chapter will not.

A key point about words, at least English words, is that they’re a sequence of letters. 
And when you have a sequence of letters, you can treat them like a sequence of 
digits. That means you can use the MSD-radix sort for lexicographical ordering of a 
list of words. For the sake of simplicity, though, the following example will use 
numbers to show you how MSD-radix sort works.
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Example
Start with the following unsorted list:

[46, 500, 459, 1345, 13, 999]

Beginning the Sort

As with LSD-radix sort, you first create ten buckets. However, this time you add the 
numbers to the buckets according to their most significant digit, that is, the first digit 
on their left:

If the values all had the same number of digits, you could proceed as you did with the 
LSD-radix sort, looping round after round. However, the values don’t have the same 
number of digits. Imagine a list with mostly small numbers but a few really large 
numbers. It would be inefficient to keep looping over all of the short numbers. That 
kind of thing can easily happen with lists of strings, for example.

So, instead of doing a full bucket sort for every digit, you’ll do a recursive bucket sort. 
That means if any buckets in a particular round have more than one number, you’ll 
recursively perform another bucket sort on that bucket.

Recursively Sorting 1345 and 13

In the previous image, the ones bucket and the fours bucket both have more than 
one element. Start with the ones bucket, which contains 1345 and 13. Take those 
numbers and perform another bucket sort, this time on the second most significant 
digit:

1345 and 13 are still together because the second digit for both of them is 3.
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Perform another bucket sort on the next digit. Since the next digit of 1345 is 4, it 
goes in the fours bucket. The number 13 doesn’t have a third digit, so there is no 
place to put it. You can’t put it in the zeros bucket because then how would you 
distinguish 13 and 130? Instead, you’ll put it in a special priority bucket. It gets 
sorted before any of the other buckets.

There’s nothing more to sort in this recursive branch, so pop back out a few levels, 
returning the sorted list [13, 1345].

Recursively Sorting 46 and 459

Now you need to do the same thing with 46 and 459. Perform a bucket sort on the 
second digit. That gives the following:

Since none of the buckets have more than one item, you can stop this branch of the 
recursion here and return the sorted sublist [459, 46].

Combining All the Buckets

There were no other buckets with more than one number from the original round, so 
you’re finished. Combine all of the buckets and sorted sublists into the final sorted 
result of [13, 1345, 459, 46, 500, 999]:

Hopefully you have a better intuitive grasp of how MSD-radix sort works now. You’ll 
implement this algorithm in the next section.
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Implementation
To start off, you’ll write a few helper methods.

Getting the Number of Digits

Open lib/radix_sort.dart again and add the following int extension to the file:

extension Digits on int { 
  static const _base = 10; 

 
  int digits() { 
    var count = 0; 
    var number = this; 
    while (number != 0) { 
      count += 1; 
      number ~/= _base; 
    } 
    return count; 
  } 
}

This helper method tells you how many digits are in a particular integer. Since there 
isn’t a length property on the int type, you count how many times you have to 
divide by 10 before you get 0.

Go back to bin/starter.dart and run the following in main to try out a few examples:

print(13.digits());    // 2 
print(999.digits());   // 3 
print(1345.digits());  // 4

Finding the Digit at Some Position

Add the following import to lib/radix_sort.dart:

import 'dart:math';

Then add the following additional method to the Digits extension on int:

int? digitAt(int position) { 
  if (position >= digits()) { 
    return null; 
  } 
  var number = this; 
  while (number ~/ pow(_base, position + 1) != 0) { 
    number ~/= _base; 
  }
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  return number % _base; 
}

digitAt returns the digit at a given position. Like with lists, the leftmost position is 
zero. Thus, the digit for position zero of the value 1345 is 1. The digit for position 
three is 5. Since there are only four digits, the digit for position five will return null.

The implementation of digitAt works by repeatedly chopping a digit off the end of 
the number until the requested digit is at the end. It’s then extracted using the 
remainder operator.

Test your new int extension out in bin/starter.dart with the following code:

print(1345.digitAt(0)); // 1 
print(1345.digitAt(1)); // 3 
print(1345.digitAt(2)); // 4 
print(1345.digitAt(3)); // 5 
print(1345.digitAt(4)); // null 
print(1345.digitAt(5)); // null

Finding the Max Digits in the List

Go back to lib/radix_sort.dart and add a new List extension with the following 
method:

extension MsdRadixSort on List<int> { 
  int maxDigits() { 
    if (isEmpty) return 0; 
    return reduce(max).digits(); 
  } 

 
  // more to come 
}

Given some list of numbers, maxDigits will tell you the number of digits in the 
largest number.

Data Structures & Algorithms in Dart Chapter 17: Radix Sort

raywenderlich.com 238



Test in out in main like so:

final list = [46, 500, 459, 1345, 13, 999]; 
print(list.maxDigits()); // 4

The result is 4 since the largest number, 1345, has four digits.

Now you’re ready to write the actual sort implementation.

Adding the Recursive Sort Methods

Go back to the MsdRadixSort extension on List in lib/radix_sort.dart. You’re going 
to add two more methods to this extension. One will be public and the other a 
private recursive helper method.

First, add the public lexicographicalSort extension method to MsdRadixSort:

void lexicographicalSort() { 
  final sorted = _msdRadixSorted(this, 0); 
  clear(); 
  addAll(sorted); 
} 

 
// more to come

This method wraps a currently unimplemented recursive helper method that does 
the real work of sorting the list.

Next add that helper method after lexicographicalSort:

// 1 
List<int> _msdRadixSorted(List<int> list, int position) { 
  // 2 
  if (list.length < 2 || position >= list.maxDigits()) { 
    return list; 
  } 
  // 3 
  final buckets = List.generate(10, (_) => <int>[]); 
  // 4 
  var priorityBucket = <int>[]; 

 
  // more to come 
}
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Here’s where the real work starts happening:

1. The list that you pass to this recursive method will be the full list on the first 
round (when position is 0), but after that, it’ll be the smaller bucket lists. If 
writing private MSD recursive methods was on your bucket list, you can cross it 
off now.

2. As with all recursive operations, you need to set a terminating condition that 
stops the recursion. Recursion should halt if there’s only one element in the list 
or if you’ve exceeded the max number of digits.

3. Similar to the LSD-radix sort, you instantiate a two-dimensional list for the 
buckets.

4. The priorityBucket is a special bucket that stores values with fewer digits than 
the current position. Values that go in priorityBucket will be ordered first.

Continue by adding the following for loop at the bottom of _msdRadixSorted:

for (var number in list) { 
  final digit = number.digitAt(position); 
  if (digit == null) { 
    priorityBucket.add(number); 
    continue; 
  } 
  buckets[digit].add(number); 
} 

 
// more to come

For every number in the list, you find the digit at the current position and use it to 
place the number in the appropriate bucket.

Finally, finish off _msdRadixSorted by adding the following code at the bottom of 
the method:

// 1 
final bucketOrder = buckets.reduce((result, bucket) { 
  if (bucket.isEmpty) return result; 
  // 2 
  final sorted = _msdRadixSorted(bucket, position + 1); 
  return result..addAll(sorted); 
}); 
// 3 
return priorityBucket..addAll(bucketOrder);
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This bit of code is perhaps the hardest to understand because it includes both an 
anonymous function and a recursive method. It’s not so terrible when you grasp the 
parts, though:

1. The higher-order function reduce takes a collection and reduces it to a single 
value. Since your collection here is a list of lists, reduce will give you a single list. 
The values in that list will be numbers in the order that they came from the 
buckets. reduce works by keeping a running result list which you can add to 
based on the current bucket that you’re iterating to. If reduce and its 
anonymous function are too confusing, you could rewrite them as a for loop.

2. For every non-empty bucket that you come to, recursively sort that bucket at the 
next digit position.

3. Everything in the priority bucket goes first, but then add any other values that 
were in the other buckets to the end of the list.

That was a bit more involved than LSD-radix sort, wasn’t it? You’re done now, 
though, so it’s time to try it out!

Testing it Out
Open bin/starter.dart again and run the following code in main:

final list = [46, 500, 459, 1345, 13, 999]; 
list.lexicographicalSort(); 
print(list);

You should see the output below in the console:

[13, 1345, 459, 46, 500, 999]

And that’s what you want if you’re asking for the lexicographical order!
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Challenges
The challenges below will help strengthen your understanding of radix sorts. You can 
find the answers in the Challenge Solutions section or in the supplementary 
materials that accompany this book.

Challenge 1: What Are in the Buckets?
Add a print statement to your radixSort implementation so that it’ll tell you 
what’s in the buckets after each round of sorting.

Do the same for each recursion of lexicographicalSort.

Use the following list for both sorts:

var list = [46, 500, 459, 1345, 13, 999];

Challenge 2: Unique Characters
Write a function that returns the total number of unique characters used in a list of 
words.

You can use the following list:

final words = ['done', 'ad', 'eel', 'zoo', 'adept', 'do'];

If you had a bucket for each unique character, how many buckets would you need?
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Challenge 3: Optimization
Given the following list:

[88, 410, 1772, 20, 123456789876543210]

Your current implementation of radixSort would take 18 rounds, 14 of which are 
completely unnecessary. How could you optimize radix sort for cases where a single 
number is much larger than the others.

Key Points
• Unlike the other sorting algorithms you’ve implemented in previous chapters, 

radix sort doesn’t rely on comparing two values. It leverages bucket sort, which is a 
way to sort numbers by their digits.

• The word radix means base, as in base-10 or base-2 numbering systems. The 
internal bucket sort will use one bucket for each base.

• Radix sort can be one of the fastest sorting algorithms for sorting values with 
positional notation.

• A least-significant-digit (LSD) radix sort begins sorting with the right-most digit.

• Another way to implement radix sort is the most-significant-digit (MSD) form. 
This form sorts by prioritizing the left-most digits over the lesser ones to the right. 
It’s best illustrated by the sorting behavior of the String type.
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18Chapter 18: Heapsort

By Vincent Ngo & Jonathan Sande

Heapsort is a comparison-based algorithm that sorts a list in ascending order using a 
heap. This chapter builds on the heap concepts presented in Chapter 13, “Heaps”.

Heapsort takes advantage of a heap being, by definition, a partially sorted binary tree 
with the following qualities:

1. In a max-heap, all parent nodes are larger than or equal to their children.

2. In a min-heap, all parent nodes are smaller than or equal to their children.

The diagram below shows a max- and min-heap with parent node values highlighted:

Once you have a heap, the sorting algorithm works by repeatedly removing the 
highest priority value from the top of the heap.
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Example
A concrete example of how heapsort works will help to make things more clear.

Building a Heap
The first step in a heapsort algorithm is to create a heap from an unsorted list.

Here’s the unsorted list that this example will begin with:

To sort from lowest to highest, the heapsort algorithm that this example will use 
needs a max-heap. This conversion is done by sifting all the parent nodes down so 
they end up in the right spot. If you need a review of how creating a heap works, look 
back at Chapter 13, “Heaps”. The resulting max-heap is shown below:

This corresponds with the following list:

Because the time complexity of a single down-sift operation is O(log n), the total 
time complexity of building a heap is O(n log n).
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Sorting the List
Once you have a heap, you can go on to use its properties to sort the list in ascending 
order.

Because the largest element in a max-heap is always at the root, you start by 
swapping the first element at index 0 with the last element at index n - 1. After the 
swap, the last element of the list is in the correct spot but invalidates the heap.

Thus, the next step is to sift the new root node 5 down until it lands in its correct 
position. You need to exclude the last element of the list from your heap since you 
no longer consider it part of the heap but of the sorted list. As a result of sifting 5 
down, the second largest element 21 becomes the new root.

You can now repeat the previous steps. Swap 21 with the last element 6, and move 
the end of the heap up by one:

Then sift 6 down, and 18 will rise to the top:
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Are you starting to see a pattern? As you swap the first and last elements, the larger 
elements make their way to the back of the list in the correct order. You repeat the 
swapping and sifting steps until you reach a heap of size 1. The list is then fully 
sorted.

After swapping 18 and 2, move the end of the heap up. Then sift the 2 down:

Swap the 12 and 5. Move the end of the heap up. Sift the 5 down:

Swap the 9 and 5. Move the end of the heap up. Sift the 5 down:

Swap the 8 and 2. Move the end of the heap up. Sift the 2 down:

Swap the 6 and 2. Move the end of the heap up. Sift the 2 down:

Data Structures & Algorithms in Dart Chapter 18: Heapsort

raywenderlich.com 247



Swap the 5 and 2. Move the end of the heap up. No need to sift the 2:

Move the end of the heap up and you’re finished:

This sorting process is very similar to selection sort from Chapter 15, “O(n²) Sorting 
Algorithms”.

Implementation
You’re going to implement two versions of heapsort. The first one will use the Heap 
class you created in Chapter 13, “Heaps”. It’s quite easy to implement. However, it 
won’t follow the exact algorithm described in the example above. For your second 
implementation, though, you will follow this algorithm. Although the second 
implementation will take a little more work, space efficiency will be better.

Using Your Heap Class
Open the starter project for this chapter. In lib/heap.dart, you’ll find the Heap class 
that you created in Chapter 13.

Now create a new file in lib called heapsort.dart. Then add the following code:

import 'heap.dart'; 
 

List<E> heapsort<E extends Comparable<dynamic>>(List<E> list) { 
  // 1 
  final heap = Heap<E>( 
    elements: list.toList(), 
    priority: Priority.min, 
  ); 
  // 2 
  final sorted = <E>[]; 
  // 3 
  while (!heap.isEmpty) {
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    final value = heap.remove(); 
    sorted.add(value!); 
  } 
  return sorted; 
}

That’s it for the entire implementation of heapsort! Nice, huh? The simplicity is 
because the heavy lifting is done by the Heap class. Here’s what’s going on:

1. You first add a copy of the input list to a heap. Heap sorts this into a min-heap.

2. Create an empty list to add the sorted values to.

3. Keep removing the minimum value from the heap until it’s empty. Since you’re 
adding to the end of the list, sorted will be sorted.

Time to test it out. Open bin/starter.dart and replace the contents of the file with 
the following code:

import 'package:starter/heapsort.dart'; 
 

void main() { 
  final sorted = heapsort([6, 12, 2, 26, 8, 18, 21, 9, 5]); 
  print(sorted); 
}

Run the code and it should print the ordered list you see below:

[2, 5, 6, 8, 9, 12, 18, 21, 26]

Although you have a properly sorted list, this algorithm didn’t behave like the 
description in the example section. The diagrams there showed an in-place sort 
within a single list. However, the heapsort function you made just now used two 
additional lists, one inside the heap and another to store the sorted results. It also 
used a min-heap rather than a max-heap.

Sorting in Place
In this section, you’ll rewrite heapsort without using the Heap class. The sort will 
take an input list and mutate that list in place in the manner described in the 
example section.
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Creating an Extension

Since you want to mutate the list itself, you can create an extension method on List. 
Add the following code at the bottom of lib/heapsort.dart:

extension Heapsort<E extends Comparable<dynamic>> on List<E> { 
 

  // more to come 
}

Preparing Private Helper Methods

Before implementing the main sort method, you need to add a few other helper 
methods. They’re just a copy-and-paste of what you wrote earlier when you made 
the Heap class. Add the following methods to the Heapsort extension body:

int _leftChildIndex(int parentIndex) { 
  return 2 * parentIndex + 1; 
} 

 
int _rightChildIndex(int parentIndex) { 
  return 2 * parentIndex + 2; 
} 

 
void _swapValues(int indexA, int indexB) { 
  final temp = this[indexA]; 
  this[indexA] = this[indexB]; 
  this[indexB] = temp; 
}

These will allow you to find the heap node’s left or right child index and also swap 
values between nodes. If you’re unfamiliar with how any of these work, go back and 
review Chapter 13, “Heaps”.

Modifying the Sift Method

You also need a method to help you sift the root index down. This one is a little 
different than the one in Heap. Add the following code to Heapsort extension:

// 1 
void _siftDown({required int start, required int end}) { 
  var parent = start; 
  while (true) { 
    final left = _leftChildIndex(parent); 
    final right = _rightChildIndex(parent); 
    var chosen = parent; 
    // 2 
    if (left < end && 
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        this[left].compareTo(this[chosen]) > 0) { 
      chosen = left; 
    } 
    // 3 
    if (right < end &&  
        this[right].compareTo(this[chosen]) > 0) { 
      chosen = right; 
    } 
    if (chosen == parent) return; 
    _swapValues(parent, chosen); 
    parent = chosen; 
  } 
}

Like before, _siftDown swaps a parent value with its left or right child if one of them 
is larger, and continues to do so until the parent finds its correct place in the heap. 
However, this time there are a few minor differences:

1. start is the index of the node that you want to sift down within the heap. end 
marks the end of the heap. This will allow you to resize your heap while 
maintaining the size of the list.

2. Check if the left child is within the bounds of the heap and is larger than the 
parent. This implementation assumes a max-heap.

3. Do the same for the right child.

Adding the Main Extension Method

Now you’re finally ready to perform the actual in-place heapsort. Add the following 
method to the Heapsort extension:

void heapsortInPlace() { 
  if (isEmpty) return; 
  // 1 
  final start = length ~/ 2 - 1; 
  for (var i = start; i >= 0; i--) { 
    _siftDown(start: i, end: length); 
  } 
  // 2 
  for (var end = length - 1; end > 0; end--) { 
    _swapValues(0, end); 
    _siftDown(start: 0, end: end); 
  } 
}
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These are the two main tasks of heapsort:

1. Turn the list into a max-heap. Some people call this task heapify.

2. Sort the list in ascending order. You do that by swapping the max value, which is 
at the front of the list, with a smaller value at the end of the heap. Sift that 
smaller value down to its proper location and then repeat, each time moving the 
heap’s end index up by one to preserve the sorted values at the end of the list.

Testing it Out

To check that your in-place heapsort works, head back to bin/starter.dart and 
replace the contents of main with the following code:

final list = [6, 12, 2, 26, 8, 18, 21, 9, 5]; 
print(list); 
list.heapsortInPlace(); 
print(list);

Run that and you should see the following output:

[6, 12, 2, 26, 8, 18, 21, 9, 5] 
[2, 5, 6, 8, 9, 12, 18, 21, 26]

It works!

Performance
The performance of heapsort is O(n log n) for its best, worst and average cases. This 
uniformity in performance is because you have to traverse the whole list once, and 
every time you swap elements, you must perform a down-sift, which is an O(log n) 
operation.

The space complexity of your first implementation, heapsort, was linear since you 
needed the extra list copies. However, your second implementation, 
heapsortInPlace, had a constant O(1) space complexity.

Heapsort isn’t a stable sort because it depends on how the elements are put into the 
heap. If you were heapsorting a deck of cards by their rank, for example, you might 
see their suite change order compared to the original deck.
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Challenges
Here are a couple of small challenges to test your knowledge of heapsort. You can 
find the answers in the Challenge Solutions section as well as in the supplementary 
materials that accompany the book.

Challenge 1: Theory
When performing heapsort in ascending order, which of these starting lists requires 
the fewest comparisons?

• [1, 2, 3, 4, 5]

• [5, 4, 3, 2, 1]

You can assume that the implementation uses a max-heap.

Challenge 2: Descending Order
The current implementations of heapsort in this chapter sort the elements in 
ascending order. How would you sort in descending order?

Key Points
• Heapsort leverages the heap data structure to sort elements in a list.

• The algorithm works by moving the values from the top of the heap to an ordered 
list. This can be performed in place if you use an index to separate the end of the 
heap from the sorted list elements.
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19Chapter 19: Quicksort

By Vincent Ngo & Jonathan Sande

Quicksort is another comparison-based sorting algorithm. Much like merge sort, it 
uses the same strategy of divide and conquer. One important feature of quicksort is 
choosing a pivot value. The pivot divides the list into three partitions: values less 
than the pivot, values equal to the pivot, and values greater than the pivot. In the 
example below, the pivot is 8, while the partition on the left has values less than 8 
and the partition on the right has values greater than 8:

Quicksort continues to recursively divide each partition until there’s only a single 
element in each one. At this point, the list is sorted.

The quicksort algorithm isn’t stable. That is, two elements of the same value may 
have different final locations depending on their initial positions. For example, if 
you’re only sorting by numerical value, a nine of clubs might come before a nine of 
hearts one time, but after it another time.

In this chapter, you’ll implement quicksort and look at various partitioning 
strategies to get the most out of this sorting algorithm.
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Example
Before implementing quicksort, here’s a step-by-step example of how the quicksort 
algorithm works.

Start with the following unsorted list:

The first step is to choose a pivot value. It can be any value from the list. In this case, 
just take the first value, which is 8:

Once you have a pivot value, you can partition the elements of the list into three 
sublists. Put the values smaller than 8 in the left sublist and the values larger than 8 
in the right sublist. The value 8 itself is in its own sublist:

Notice that the three partitions aren’t completely sorted yet. Quicksort will 
recursively divide these partitions into even smaller ones. The recursion will only 
halt when all partitions have either zero or one element.

In the left sublist from above, choose 2 for the pivot value, and partition the sublist:

The values 0 and -1 are still in a sublist with more than one element, so they need to 
be partitioned, too. Choose 0 for the pivot:
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Everything on the left is partitioned now, so go back to the sublist on the right. 
Choose 10 for the pivot value, and partition the sublist:

You need to keep going until every sublist has less than two elements, so that 
includes the two 9s in the left sublist above. Partition them:

And the list is now sorted:

In the next sections, you’ll look at a few different ways to implement quicksort, but 
they’ll generally follow the pattern you observed above.

Naïve Implementation
Open up the starter project. In the project root, create a lib folder. Then create a 
new file there named quicksort.dart. Finally, add the following code to the file:

List<E> quicksortNaive<E extends Comparable<dynamic>>( 
  List<E> list, 
) { 
  // 1 
  if (list.length < 2) return list; 
  // 2 
  final pivot = list[0]; 
  // 3 
  final less = list.where( 
    (value) => value.compareTo(pivot) < 0, 
  ); 
  final equal = list.where( 
    (value) => value.compareTo(pivot) == 0, 
  ); 
  final greater = list.where( 
    (value) => value.compareTo(pivot) > 0, 
  ); 
  // 4 
  return [
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    ...quicksortNaive(less.toList()), 
    ...equal, 
    ...quicksortNaive(greater.toList()), 
  ]; 
}

The implementation above recursively filters the list into three sublists:

1. There must be more than one element in the list. If not, you can consider the list 
sorted.

2. Pick the first element in the list as your pivot value.

3. Using the pivot, split the original list into three partitions. Elements less than, 
equal to, or greater than the pivot go into different sublists.

4. Recursively sort the partitions and then combine them.

To try it out, open bin/starter.dart and replace the contents of the file with the code 
below:

import 'package:starter/quicksort.dart'; 
 

void main() { 
  final list = [8, 2, 10, 0, 9, 18, 9, -1, 5]; 
  final sorted = quicksortNaive(list); 
  print(sorted); 
}

Run that and you should see the following sorted list printed in the console:

[-1, 0, 2, 5, 8, 9, 9, 10, 18]

While this naïve implementation is relatively easy to understand, it raises some 
issues and questions:

• Calling where three times on the same list isn’t time-efficient.

• Creating a new list for every partition isn’t space-efficient. Could you possibly sort 
in place?

• Is picking the first element the best pivot strategy? What pivot strategy should you 
adopt?
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Partitioning Strategies
In this section, you’ll look at partitioning strategies to make this quicksort 
implementation more efficient.

All of these strategies will sort in place by swapping values, so you’ll need a swap 
helper method. Add the following extension to lib/quicksort.dart:

extension Swappable<E> on List<E> { 
  void swap(int indexA, int indexB) { 
    if (indexA == indexB) return; 
    final temp = this[indexA]; 
    this[indexA] = this[indexB]; 
    this[indexB] = temp; 
  } 
}

This will allow you to use list.swap to exchange the values at two different indices.

Lomuto’s Algorithm
Lomuto’s partitioning algorithm always chooses the last element as the pivot value. 
The algorithm then partially sorts the list by putting lower values before the pivot 
and higher values after it. Finally, Lomuto returns the index of the pivot location 
within the list.

Example

In the following list, the pivot value is 5 since this is the last value in the list. You 
then set a pivot index pointing to the beginning of the list. This index is where the 
pivot will go after the partitioning is over. You also use the index i to iterate through 
the list.
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Keep increasing i until it reaches a value less than or equal to the pivot value 5. That 
would be 2:

Then swap the values at i and the pivot index, that is, 2 and 8:

Move the pivot index up by one. Then keep iterating i until you get to another value 
less than or equal to 5. That happens at 0:

Swap the 8 and 0:

Advance the pivot index by one, and advance i until the next value less than or equal 
to 5. That would be -1:
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Swap 10 and -1:

i is finished with its work. Advance the pivot index:

The last step is to swap the pivot with the value at the pivot index:

The list is now partitioned. Smaller values are to the left of 5 and larger values are to 
the right.

Implementation

Add the Lomuto partitioning function to lib/quicksort.dart:

// 1 
int _partitionLomuto<T extends Comparable<dynamic>>( 
  List<T> list, 
  int low, 
  int high, 
) { 
  // 2 
  final pivot = list[high]; 
  // 3 
  var pivotIndex = low; 
  for (int i = low; i < high; i++) { 
    if (list[i].compareTo(pivot) <= 0) { 
      list.swap(pivotIndex, i); 
      pivotIndex += 1; 
    } 
  } 
  // 4
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  list.swap(pivotIndex, high); 
  return pivotIndex; 
}

Here are the highlights:

1. low and high are the index values of the range that you want to partition within 
the list. This range will get smaller and smaller with every recursion.

2. Lomuto always chooses the last element as the pivot.

3. pivotIndex will keep track of where the pivot value needs to go later. As you 
loop through the elements, you swap any value less than or equal to the pivot 
with the value at the pivotIndex. Then advance pivotIndex.

4. Once done with the loop, swap the value at pivotIndex with the pivot. The pivot 
always sits between the less and greater partitions.

That function only partitioned a single sublist. You still need to use recursion to 
implement the final sort. Add the following function to quicksort.dart:

void quicksortLomuto<E extends Comparable<dynamic>>( 
  List<E> list, 
  int low, 
  int high, 
) { 
  if (low >= high) return; 
  final pivotIndex = _partitionLomuto(list, low, high); 
  quicksortLomuto(list, low, pivotIndex - 1); 
  quicksortLomuto(list, pivotIndex + 1, high); 
}

Here, you apply Lomuto’s algorithm to partition the list into two regions. Then, you 
recursively sort these regions. The recursion ends once a region has less than two 
elements.

Testing it Out

You can try out Lomuto’s quicksort by returning to bin/start.dart and replacing the 
contents of main with the following code:

final list = [8, 2, 10, 0, 9, 18, 9, -1, 5]; 
quicksortLomuto(list, 0, list.length - 1); 
print(list);
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Run this to see the same result as before:

[-1, 0, 2, 5, 8, 9, 9, 10, 18]

In the naïve implementation of quicksort, you created three new lists and filtered the 
unsorted list three times. Lomuto’s algorithm performs the partitioning in place. 
That’s much more efficient!

Hoare’s Partitioning
Hoare’s partitioning algorithm always chooses the first element as the pivot value. 
Then it uses two pointers moving toward the middle from both ends. When the 
pointers reach values that are on the wrong side of the pivot, the values are swapped 
to the correct side.

Example

As before, start with the following unsorted list:

Since Hoare’s algorithm chooses the first element, 8 is the pivot value. The left 
pointer also starts here. The right pointer starts at the right:

5 is less than the pivot 8, so it should be on the left. Swap 5 and 8:

You can move the left pointer to the right until it gets to a value larger than 8. That 
would be 10. Likewise, move the right pointer to the left until it gets to a value 
smaller than 8. That would be -1:
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Swap 10 and -1 to put them in their correct partitions:

Keep moving the pointers inward. The left pointer will move until it hits 9, and the 
right pointer will move until it hits 0.

The pointers have crossed each other now, so the partitioning is finished. Note that 
the pivot value 8 isn’t in the middle. That means Hoare partitioning really only 
creates two partitions rather than three.

There are far fewer swaps with Hoare’s algorithm compared to Lomuto’s algorithm. 
Isn’t that nice?

Implementation

Add the Hoare partitioning function to quicksort.dart:

int _partitionHoare<T extends Comparable<dynamic>>( 
  List<T> list, 
  int low, 
  int high, 
) { 
  // 1 
  final pivot = list[low]; 
  var left = low - 1; 
  var right = high + 1; 
  while (true) { 
    // 2 
    do { 
      left += 1; 
    } while (list[left].compareTo(pivot) < 0); 
    // 3 
    do { 
      right -= 1; 
    } while (list[right].compareTo(pivot) > 0); 
    // 4 
    if (left < right) { 
      list.swap(left, right); 
    } else { 
      return right; 
    }
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  } 
}

Here are the steps:

1. Select the first element as the pivot value.

2. Keep increasing the left index until it comes to a value greater than or equal to 
the pivot.

3. Keep decreasing the right index until it reaches a value that’s less than or equal 
to the pivot.

4. Swap the values at left and right if they haven’t crossed yet. Otherwise, return 
right as the new dividing index between the two partitions. It will be the high 
end of the left sublist on the next recursion.

You can now implement the quicksortHoare function. Add the following code to 
quicksort.dart:

void quicksortHoare<E extends Comparable<dynamic>>( 
  List<E> list, 
  int low, 
  int high, 
) { 
  if (low >= high) return; 
  final leftHigh = _partitionHoare(list, low, high); 
  quicksortHoare(list, low, leftHigh); 
  quicksortHoare(list, leftHigh + 1, high); 
}

The value passed back from _partitionHoare is the high value of the left partition. 
So to get the low value of the right partition just add one. You keep recursively 
passing these range indices back into quicksortHoare until the partitions all have a 
length of zero or one. At that point, the list is sorted.

Testing it Out

Try Hoare’s quicksort out by running the following in main:

final list = [8, 2, 10, 0, 9, 18, 9, -1, 5]; 
quicksortHoare(list, 0, list.length - 1); 
print(list);

As before, you should see the sorted results:

[-1, 0, 2, 5, 8, 9, 9, 10, 18]
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Effects of a bad pivot choice
The most crucial part of implementing quicksort is choosing the right partitioning 
strategy.

You’ve looked at two different partitioning strategies so far:

1. Choosing the last element as a pivot.

2. Choosing the first element as a pivot.

What are the implications of choosing a bad pivot?

Take the following list as an example:

[8, 7, 6, 5, 4, 3, 2, 1]

If you use Lomuto’s algorithm, the pivot will be the last element, 1. This results in 
the following partitions:

• less: [ ]

• equal: [1]

• greater: [8, 7, 6, 5, 4, 3, 2]

An ideal pivot would split the elements evenly between the less and greater 
partitions. Choosing the first or last element of an already sorted list as a pivot 
makes quicksort perform much like insertion sort, which results in a worst-case 
performance of O(n²).

Median-of-three strategy
One way to address this problem is by using the median-of-three pivot selection 
strategy. Here, you find the median of the first, middle and last element in the list 
and use that as a pivot. This selection strategy prevents you from picking the highest 
or lowest element in the list.

Data Structures & Algorithms in Dart Chapter 19: Quicksort

raywenderlich.com 265



Implementation

Add the following function to quicksort.dart:

int _medianOfThree<T extends Comparable<dynamic>>( 
  List<T> list, 
  int low, 
  int high, 
) { 
  final center = (low + high) ~/ 2; 
  if (list[low].compareTo(list[center]) > 0) { 
    list.swap(low, center); 
  } 
  if (list[low].compareTo(list[high]) > 0) { 
    list.swap(low, high); 
  } 
  if (list[center].compareTo(list[high]) > 0) { 
    list.swap(center, high); 
  } 
  return center; 
}

Here, you find the median of list[low], list[center] and list[high] by sorting 
them. The median will end up at index center, which is what the function returns.

Next, implement a variant of quicksort using this median of three:

void quicksortMedian<E extends Comparable<dynamic>>( 
  List<E> list, 
  int low, 
  int high, 
) { 
  if (low >= high) return; 
  var pivotIndex = _medianOfThree(list, low, high); 
  list.swap(pivotIndex, high); 
  pivotIndex = _partitionLomuto(list, low, high); 
  quicksortLomuto(list, low, pivotIndex - 1); 
  quicksortLomuto(list, pivotIndex + 1, high); 
}

This code is simply a variation on quicksortLomuto that chooses the median of the 
three elements as a first step.
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Testing it Out

Try this out back in bin/starter.dart by replacing the contents of main with the 
following code:

final list = [8, 7, 6, 5, 4, 3, 2, 1]; 
quicksortMedian(list, 0, list.length - 1); 
print(list);

Run that and you’ll see the following sorted list:

[1, 2, 3, 4, 5, 6, 7, 8]

This strategy is an improvement, but there are still issues in some situations.

Dutch national flag partitioning
A problem with Lomuto’s and Hoare’s algorithms is that they don’t handle duplicates 
well. With Lomuto’s algorithm, duplicates end up in the less partition and aren’t 
grouped together. With Hoare’s algorithm, the situation is even worse as duplicates 
can be all over the place.

A solution to handle duplicate elements is Dutch national flag partitioning. This 
technique is named after the Dutch flag, which has three horizontal colored bands of 
red, white and blue. These three bands are analogous to the three partitions used in 
the sorting algorithm: values less than the pivot, equal to the pivot, and greater than 
the pivot. The key here is that when you have multiple values equal to the pivot, they 
all go in the middle partition. Dutch national flag partitioning is an excellent 
technique to use if you have a lot of duplicate elements.

Example

As before, walking through an example first will make this more clear. Start with the 
following unsorted list, noting all the duplicates:
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You’ll use three pointers named smaller, equal and larger. The smaller and 
equal pointers start at the low end, and the larger pointer starts at the high end:

You could choose anything for the pivot, but for this example, choose the last value. 
That would be 8. Then compare the value at equal to the pivot. They’re the same, so 
move equal up. You now have one value in the “pivot” partition:

The value at equal is 2 now, which is smaller than the pivot 8, so swap the values at 
equal and smaller. Then advance both pointers. You now have one value in the 
“smaller” partition as well:

The value at equal is again 2. Since this is smaller than 8, swap equal and smaller. 
Then advance both pointers:

Now the value at equal is 8. That’s the same as the pivot, so advance the equal 
pointer:
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The value at equal is 9, which is larger than 8, so swap the values at equal and 
larger. Then move the larger pointer down. There’s now a value in the “larger” 
partition:

The equal pointer is pointing at another 8 so advance equal. There are three values 
in the middle partition now, that is, the pivot partition:

equal is pointing at 5, which is smaller than 8, so swap the values at smaller and 
equal. Then advance both of these pointers:

Now equal is pointing at 9. This is larger than the pivot 8, so swap the values at 
equal and larger. Then move larger down:

There’s one more step. equal is pointing at 2. Since this is smaller than 8, swap the 
values at smaller and equal. Then advance both pointers:

Now equal has passed larger. This means the partitioning is finished.
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The ranges before smaller and after larger will be recursively partitioned using the 
same algorithm. However, the range from smaller to larger is the pivot partition 
and it’s finished. It doesn’t need to be further partitioned.

Implementation

Open lib/quicksort.dart. You need to keep track of the entire range of the pivot 
partition instead of just a single pivot index, so add a class for that:

class Range { 
  const Range(this.low, this.high); 
  final int low; 
  final int high; 
}

The parameters low and high are both inclusive. Range uses these names instead of 
start and end to avoid confusion since many APIs define end as an exclusive index.

Now add the partitioning function to quicksort.dart as well:

Range _partitionDutchFlag<T extends Comparable<dynamic>>( 
  List<T> list, 
  int low, 
  int high, 
) { 
  // 1 
  final pivot = list[high]; 
  // 2 
  var smaller = low; 
  var equal = low; 
  var larger = high; 
  while (equal <= larger) { 
    // 3 
    if (list[equal].compareTo(pivot) < 0) { 
      list.swap(smaller, equal); 
      smaller += 1; 
      equal += 1; 
    } else if (list[equal] == pivot) { 
      equal += 1; 
    } else { 
      list.swap(equal, larger); 
      larger -= 1; 
    } 
  } 
  // 4 
  return Range(smaller, larger); 
}
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The code above is a direct implementation of the algorithm you observed in the 
step-by-step description:

1. Choose the last value as the pivot. This choice is somewhat arbitrary. You could 
also use the median-of-three strategy.

2. Initialize smaller and equal at the beginning of the list and larger at the end of 
the list.

3. Compare the value at equal with the pivot value. Swap it into the correct 
partition if needed and advance the appropriate pointers.

4. The algorithm returns indices smaller and larger. These point to the first and 
last elements of the middle partition.

You’re now ready to implement a new version of quicksort using Dutch national flag 
partitioning. Add the following method to quicksort.dart:

void quicksortDutchFlag<E extends Comparable<dynamic>>( 
  List<E> list, 
  int low, 
  int high, 
) { 
  if (low >= high) return; 
  final middle = _partitionDutchFlag(list, low, high); 
  quicksortDutchFlag(list, low, middle.low - 1); 
  quicksortDutchFlag(list, middle.high + 1, high); 
}
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Notice how the function uses the middle.low and middle.high indices to 
determine the partitions that need to be sorted recursively. Because the elements 
equal to the pivot are grouped together, they can be excluded from the recursion.

Testing it Out

Try out your new quicksort by returning to bin/starter.dart and replacing the 
contents of main with the following:

final list = [8, 2, 2, 8, 9, 5, 9, 2, 8]; 
quicksortDutchFlag(list, 0, list.length - 1); 
print(list);

Run that and you should see the sorted list below:

[2, 2, 2, 5, 8, 8, 8, 9, 9]

Nice, an efficient way to sort lists with lots of duplicates!

If any of the descriptions or code samples in this chapter were confusing, consider 
using the debugger in your IDE to step through each line one at a time. Explanations 
can be misleading, but code doesn’t lie.
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Challenges
Here are a couple of quicksort challenges to make sure you have the topic down. Try 
them out yourself before looking at the solutions, which you can find in the 
Challenge Solutions section at the end of the book.

Challenge 1: Iterative Quicksort
In this chapter, you learned how to implement quicksort recursively. Your challenge 
here is to implement it iteratively. Choose any partition strategy.

Challenge 2: Merge Sort or Quicksort
Explain when and why you would use merge sort over quicksort.

Key Points
• Lomuto’s partitioning chooses the last element as the pivot.

• Hoare’s partitioning chooses the first element as its pivot.

• An ideal pivot would split the elements evenly between partitions.

• Choosing a bad pivot can cause quicksort to perform in O(n²) time.

• Median of three finds the pivot by taking the median of the first, middle and last 
elements.

• Dutch national flag partitioning handles duplicate elements more efficiently.

Where to Go From Here?
The Dart sort method on List uses a quicksort when the list size is greater than 32. 
The quicksort implementations you made in this chapter used a single pivot value, 
but the Dart version uses a dual-pivot quicksort. To explore how it works, check out 
the source code:

• https://github.com/dart-lang/sdk/blob/2.15.0/sdk/lib/internal/sort.dart
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Section V: Graphs

Graphs are an instrumental data structure that can model a wide range of things: 
webpages on the internet, the migration patterns of birds, even protons in the 
nucleus of an atom. This section gets you thinking deeply (and broadly) about using 
graphs and graph algorithms to solve real-world problems.

• Chapter 20: Graphs: What do social networks have in common with booking 
cheap flights around the world? You can represent both of these real-world models 
as graphs. A graph is a data structure that captures relationships between objects. 
It’s made up of vertices connected by edges. In a weighted graph, every edge has a 
weight associated with it that represents the cost of using this edge. These weights 
let you choose the cheapest or shortest path between two vertices.

• Chapter 21: Breadth-First Search: In the previous chapter, you explored using 
graphs to capture relationships between objects. Several algorithms exist to 
traverse or search through a graph’s vertices. One such algorithm is the breadth-
first search algorithm, which visits the closest vertices around the starting point 
before moving on to further vertices.

• Chapter 22: Depth-First Search: In contrast to the breadth-first search, which 
explores close neighboring vertices before far ones, the depth-first search 
attempts to explore one branch as far as possible before backtracking and visiting 
another branch.

• Chapter 23: Dijkstra’s Algorithm: Dijkstra’s algorithm finds the shortest paths 
between vertices in weighted graphs. This algorithm will bring together a number 
of data structures that you’ve learned throughout the book, including graphs, 
trees, priority queues, heaps, maps, sets and lists.
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20Chapter 20: Graphs

By Vincent Ngo & Jonathan Sande

What do social networks have in common with booking cheap flights around the 
world? You can represent both of these real-world models as graphs.

A graph is a data structure that captures relationships between objects. It’s made up 
of vertices connected by edges.

Circles in the graph below represent the vertices, and the edges are the lines that 
connect them.

A graph
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Types of Graphs
Graphs come in a few different flavors. The following sections will describe their 
characteristics.

Weighted Graphs
In a weighted graph, every edge has a weight associated with it that represents the 
cost of using this edge. These weights let you choose the cheapest or shortest path 
between two vertices.

Take the airline industry as an example. Here’s a network with varying flight paths:

A weighted graph

In this example, the vertices represent cities, while the edges represent a route from 
one city to another. The weight associated with each edge represents the airfare 
between the two cities. Using this network, you can determine the cheapest flights 
from San Francisco to Singapore for all those budget-minded digital nomads out 
there!
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Directed Graphs
As well as assigning a weight to an edge, your graphs can also have direction. 
Directed graphs are more restrictive to traverse because an edge may only permit 
traversal in one direction. The diagram below represents a directed graph.

A directed graph

You can tell a lot from this diagram:

• There’s a flight from Hong Kong to Tokyo.

• There’s no direct flight from San Francisco to Tokyo.

• You can buy a roundtrip ticket between Singapore and Tokyo.

• There is no way to get from Tokyo to San Francisco.
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Undirected Graphs
You can think of an undirected graph as a directed graph where all edges are bi-
directional.

In an undirected graph:

• Two connected vertices have edges going back and forth.

• The weight of an edge applies to both directions.

An undirected graph

Common Operations
There are a number of common operations that any graph needs to implement. 
Before you get to those, though, you need the basic building blocks, that is, the 
vertices and edges.

Open up the starter project for this chapter. Create a new lib folder in the root of the 
project, and create a file in there named graph.dart.
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Defining a Vertex
The image below shows a collection of vertices. They’re not yet a graph:

Unconnected vertices

To represent those vertices, add the following class inside graph.dart:

class Vertex<T> { 
  const Vertex({ 
    required this.index, 
    required this.data, 
  }); 

 
  final int index; 
  final T data; 

 
  @override 
  String toString() => data.toString(); 
}

Here, you’ve defined a generic Vertex class. A vertex has a unique index within its 
graph and holds a piece of data.
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Defining an Edge
To connect two vertices, there must be an edge between them. These are the lines in 
the image below:

Edges added to the collection of vertices

Add an Edge class to graph.dart:

class Edge<T> { 
  const Edge( 
    this.source, 
    this.destination, [ 
    this.weight, 
  ]); 

 
  final Vertex<T> source; 
  final Vertex<T> destination; 
  final double? weight; 
}

Edge connects two vertices and has an optional weight. Not too complicated, is it?

Defining a Graph Interface
Now it’s time to define the common operations that the various flavors of graphs all 
share.

Start by creating an EdgeType enum and adding it to graph.dart:

enum EdgeType { directed, undirected }
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This will allow you to specify whether the particular graph you’re constructing has 
directed or undirected edges.

Now add the following Graph interface below EdgeType:

abstract class Graph<E> { 
  Iterable<Vertex<E>> get vertices; 

 
  Vertex<E> createVertex(E data); 

 
  void addEdge( 
    Vertex<E> source, 
    Vertex<E> destination, { 
    EdgeType edgeType, 
    double? weight, 
  }); 

 
  List<Edge<E>> edges(Vertex<E> source); 

 
  double? weight( 
    Vertex<E> source, 
    Vertex<E> destination, 
  ); 
}

This interface describes the common operations for a graph:

• vertices: Returns all of the vertices in the graph.

• createVertex: Creates a vertex and adds it to the graph.

• addEdge: Connects two vertices in the graph with either a directed or undirected 
edge. The weight is optional.

• edges: Returns a list of outgoing edges from a specific vertex.

• weight: Returns the weight of the edge between two vertices.

In the following sections, you’ll implement this interface in two ways, first using 
what’s called an adjacency list, and second an adjacency matrix. Keep reading to find 
out what these terms mean.
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Adjacency List
The first graph implementation that you’ll learn uses an adjacency list. For every 
vertex in the graph, the graph stores a list of outgoing edges.

Take the flight network you saw earlier as an example:

You can describe the relationship between the cities in this graph by listing out the 
adjacent cities for each location:

An adjacency list
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There’s a lot you can learn from this adjacency list:

1. Singapore’s vertex has two outgoing edges, one to Tokyo and another to Hong 
Kong.

2. Detroit has the smallest number of outgoing flights.

3. Tokyo is the busiest airport, with the most outgoing flights.

In the next section, you’ll create an adjacency list by storing a map of lists. Each key 
in the map is a vertex, and the value is the corresponding list of edges.

Implementation
An adjacency list is a graph, so you need to implement the Graph interface that you 
created earlier. Add the following code to graph.dart:

class AdjacencyList<E> implements Graph<E> { 
 

  final Map<Vertex<E>, List<Edge<E>>> _connections = {}; 
  var _nextIndex = 0; 

 
  @override 
  Iterable<Vertex<E>> get vertices => _connections.keys; 

 
  // more to come ... 
}

You’ve defined an AdjacencyList class that uses a map to store the outgoing edges 
for each vertex. You’ll use _nextIndex to assign a unique index to each new vertex. 
If you need the vertices, you can obtain them from the vertices getter.

You still need to implement the various other methods of the Graph interface. You’ll 
do that in the following sections.
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Creating a Vertex

Add the missing createVertex method to AdjacencyList:

@override 
Vertex<E> createVertex(E data) { 
  // 1 
  final vertex = Vertex( 
    index: _nextIndex, 
    data: data, 
  ); 
  _nextIndex++; 
  // 2 
  _connections[vertex] = []; 
  return vertex; 
}

Here’s what’s happening:

1. You first create a new vertex with a unique index.

2. Then you add the vertex as a key in the _connections map. You haven’t 
connected it to any other vertices in the graph yet, so the list of outgoing edges is 
empty.

Adding an Edge

To connect two vertices, you need to add an edge. Recall that there are directed and 
undirected edges:

Every edge in an undirected graph can be traversed in both directions. So if it’s an 
undirected graph, you need to add two edges, one from the source to the destination 
and another from the destination to the source.
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Add the following method to AdjacencyList:

@override 
void addEdge( 
  Vertex<E> source, 
  Vertex<E> destination, { 
  EdgeType edgeType = EdgeType.undirected, 
  double? weight, 
}) { 
  // 1 
  _connections[source]?.add( 
    Edge(source, destination, weight), 
  ); 
  // 2 
  if (edgeType == EdgeType.undirected) { 
    _connections[destination]?.add( 
      Edge(destination, source, weight), 
    ); 
  } 
}

Here’s what’s happening in the method body:

1. Since source is a vertex, check if it exists in the _connections map. If it does, 
create a new directed edge from the source to the destination. Then add it to 
the vertex’s list of edges.

2. If this is an undirected graph, then also add an edge going the other direction.

Retrieving the Outgoing Edges From a Vertex

Continue your work on implementing Graph by adding the edges method to 
AdjacencyList:

@override 
List<Edge<E>> edges(Vertex<E> source) { 
  return _connections[source] ?? []; 
}

This gets the stored outgoing edges for the provided vertex. If source is unknown, 
the method returns an empty list.
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Retrieving the Weight of an Edge

Recall that the weight is the cost of going from one vertex to another. For example, if 
the cost of a ticket between Singapore and Tokyo is $500, the weight of this 
bidirectional edge is 500:

Implement the missing weight method in AdjacencyList by adding the following 
code to the class:

@override 
double? weight( 
  Vertex<E> source, 
  Vertex<E> destination, 
) { 
  final match = edges(source).where((edge) { 
    return edge.destination == destination; 
  }); 
  if (match.isEmpty) return null; 
  return match.first.weight; 
}

Here, you search for an edge from source to destination. If it exists, you return its 
weight.
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Making Adjacency List Printable

The required methods for AdjacencyList are complete now, but it would also be 
nice to be able to print a description of your graph. To do that, override toString 
like so:

@override 
String toString() { 
  final result = StringBuffer(); 
  // 1 
  _connections.forEach((vertex, edges) { 
    // 2 
    final destinations = edges.map((edge) { 
      return edge.destination; 
    }).join(', '); 
    // 3 
    result.writeln('$vertex --> $destinations'); 
  }); 
  return result.toString(); 
}

Here’s what’s going on in the code above:

1. You loop through every key-value pair in _connections.

2. For every vertex, find all of the destinations and join them into a single, comma-
separated string.

3. Put each vertex and its destinations on a new line.

This will produce output with lines in the following format:

Singapore --> Hong Kong, Tokyo

You’ve finally completed your first graph! Try it out by building a network in the next 
section.
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Building a Network
For this example, you’ll go back to the diagram you saw earlier and construct a 
network of flights with the prices as weights:

Open bin/starter.dart and replace the contents of the file with the following code:

import 'package:starter/graph.dart'; 
 

void main() { 
  final graph = AdjacencyList<String>(); 

 
  final singapore = graph.createVertex('Singapore'); 
  final tokyo = graph.createVertex('Tokyo'); 
  final hongKong = graph.createVertex('Hong Kong'); 
  final detroit = graph.createVertex('Detroit'); 
  final sanFrancisco = graph.createVertex('San Francisco'); 
  final washingtonDC = graph.createVertex('Washington DC'); 
  final austinTexas = graph.createVertex('Austin Texas'); 
  final seattle = graph.createVertex('Seattle'); 

 
  graph.addEdge(singapore, hongKong, weight: 300); 
  graph.addEdge(singapore, tokyo, weight: 500); 
  graph.addEdge(hongKong, tokyo, weight: 250); 
  graph.addEdge(tokyo, detroit, weight: 450); 
  graph.addEdge(tokyo, washingtonDC, weight: 300); 
  graph.addEdge(hongKong, sanFrancisco, weight: 600); 
  graph.addEdge(detroit, austinTexas, weight: 50); 
  graph.addEdge(austinTexas, washingtonDC, weight: 292); 
  graph.addEdge(sanFrancisco, washingtonDC, weight: 337); 
  graph.addEdge(washingtonDC, seattle, weight: 277); 
  graph.addEdge(sanFrancisco, seattle, weight: 218); 
  graph.addEdge(austinTexas, sanFrancisco, weight: 297); 

 
  print(graph); 
}
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Run that and you should get the following output:

Singapore --> Hong Kong, Tokyo 
Tokyo --> Singapore, Hong Kong, Detroit, Washington DC 
Hong Kong --> Singapore, Tokyo, San Francisco 
Detroit --> Tokyo, Austin Texas 
San Francisco --> Hong Kong, Washington DC, Seattle, Austin 
Texas 
Washington DC --> Tokyo, Austin Texas, San Francisco, Seattle 
Austin Texas --> Detroit, Washington DC, San Francisco 
Seattle --> Washington DC, San Francisco

This output shows a visual description of an adjacency list graph. You can see all the 
outbound flights from any city. Pretty nice, huh?

Finding the Weight

You can also obtain other helpful information such as the cost of a flight from 
Singapore to Tokyo. This is the weight of the edge between those two vertices.

Add the following code at the bottom of the main function:

final cost = graph.weight(singapore, tokyo)?.toInt(); 
print('It costs \$$cost to fly from Singapore to Tokyo.'); 
// It costs $500 to fly from Singapore to Tokyo.

Getting the Edges

Do you need to know what all the outgoing flights from San Francisco are? For that, 
you just call edges.

Add the code below at the bottom of main:

print('San Francisco Outgoing Flights: '); 
print('-------------------------------- '); 
for (final edge in graph.edges(sanFrancisco)) { 
  print('${edge.source} to ${edge.destination}'); 
}

Running than will display the flights:

San Francisco Outgoing Flights: 
-------------------------------- 
San Francisco to Hong Kong 
San Francisco to Washington DC 
San Francisco to Seattle 
San Francisco to Austin Texas
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You’ve just created an adjacency list graph, which uses a map to store the outgoing 
edges for every vertex. In the next section you’ll learn a different approach to store 
vertices and edges.

Adjacency Matrix
An adjacency matrix uses a two-dimensional grid or table to implement the graph 
data structure. Each vertex has its own row and column in the table. The cells where 
rows and columns intersect hold the edge weights. If any particular cell is empty, 
that is, if the weight is null, then that means there is no edge between the row vertex 
and the column vertex.

Below is an example of a directed graph that depicts a flight network. As before, the 
weight represents the cost of the airfare:
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You can represent that network in matrix form by giving each of the five cities a row 
and a column in a table. Edges that don’t exist between two cities are shown with a 
weight of 0 in the cells where the rows and columns intersect:

Notes:

• As you recall, every vertex in a graph has its own index. These indices are used to 
label the rows and columns in the table.

• Read the row number as the source vertex and the column number as the 
destination vertex.

• There’s a red line going down the middle of the matrix. When the row and column 
are equal, this represents an edge between a vertex and itself, which isn’t allowed. 
You can’t fly from Singapore to Singapore, right?

Here are a few examples of data points that you can read from the table above:

• [0][1] is 300, so there is a flight from Singapore to Hong Kong for $300.

• [2][1] is 0, so there’s no flight from Tokyo to Hong Kong.

• [1][2] is 250, so there is a flight from Hong Kong to Tokyo for $250.

• [2][2] is 0 because there’s no flight from Tokyo to Tokyo!

You’ll implement an adjacency matrix graph next.
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Implementation
Add a new class to graph.dart called AdjacencyMatrix:

class AdjacencyMatrix<E> implements Graph<E> { 
 

  final List<Vertex<E>> _vertices = []; 
  final List<List<double?>?> _weights = []; 
  var _nextIndex = 0; 

 
  @override 
  Iterable<Vertex<E>> get vertices => _vertices; 

 
  // more to come ... 
}

In AdjacencyList you used a map to store the vertices and edges. Here, though, you 
store the vertices in a list. You don’t use Edge to store edges but rather a two-
dimensional list of weights.

You’ve declared that you’re implementing Graph, and so far you’ve only finished 
vertices. The following sections will help you add the other missing methods.

Creating a Vertex

For every new vertex that you create, you have to add an additional column and row 
to the matrix.

The first step is to create a new column by adding an additional empty destination at 
the end of every row. The destination is empty because no other vertices have 
created an edge to the new vertex yet. In the following diagram you can see a new 
column 5 filled with empty weights:
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The next step is to add an additional row representing a new source vertex. The 
weights for this, too, are empty since you haven’t yet added any edges. Row 5 in the 
image below shows the newly added source row:

To implement the description above, add the createVertex method to 
AdjacencyMatrix:

@override 
Vertex<E> createVertex(E data) { 
  // 1 
  final vertex = Vertex( 
    index: _nextIndex, 
    data: data, 
  ); 
  _nextIndex++; 
  _vertices.add(vertex); 
  // 2 
  for (var i = 0; i < _weights.length; i++) { 
    _weights[i]?.add(null); 
  } 
  // 3 
  final row = List<double?>.filled( 
    _vertices.length, 
    null, 
    growable: true, 
  ); 
  _weights.add(row); 
  return vertex; 
}

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 293



To create a vertex in an adjacency matrix, you perform the following tasks:

1. Add a new vertex to the list.

2. Append a null value at the end of every row. This in effect creates a new 
destination column in the matrix.

3. Add a new row to the matrix, again filled with null weight values.

Adding Edges

Creating edges is as simple as adding weights to the matrix. There’s no Edge class to 
worry about.

Add the missing addEdge method to AdjacencyMatrix:

@override 
void addEdge( 
  Vertex<E> source, 
  Vertex<E> destination, { 
  EdgeType edgeType = EdgeType.undirected, 
  double? weight, 
}) { 
  // 1 
  _weights[source.index]?[destination.index] = weight; 
  // 2 
  if (edgeType == EdgeType.undirected) { 
    _weights[destination.index]?[source.index] = weight; 
  } 
}

The logic here is similar to how you implemented addEdge in AdjacencyList 
previously:

1. Always add a directed edge.

2. If the edge type for the graph is undirected, then also add another edge going 
from the destination to the source.

Retrieving the Outgoing Edges From a Vertex

Add the edges method to AdjacencyMatrix:

@override 
List<Edge<E>> edges(Vertex<E> source) { 
  List<Edge<E>> edges = []; 
  // 1 
  for (var column = 0; column < _weights.length; column++) { 
    final weight = _weights[source.index]?[column];
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    // 2 
    if (weight == null) continue; 
    // 3 
    final destination = _vertices[column]; 
    edges.add(Edge(source, destination, weight)); 
  } 
  return edges; 
}

Remember that the columns represent destinations and that a source is a row:

1. To find all the edges for some source, you loop through all the values in a row.

2. Check for weights that aren’t null. Every non-null weight implies an outgoing 
edge.

3. Use the column to look up the destination vertex.

Retrieving the Weight of an Edge

It’s easy to get the weight of an edge. Simply look up the value in the adjacency 
matrix.

Implement weight like so:

@override 
double? weight(Vertex<E> source, Vertex<E> destination) { 
  return _weights[source.index]?[destination.index]; 
}

Making an Adjacency Matrix Printable

Finally, override toString so you can print out a readable description of your graph:

@override 
String toString() { 
  final output = StringBuffer(); 
  // 1 
  for (final vertex in _vertices) { 
    output.writeln('${vertex.index}: ${vertex.data}'); 
  } 
  // 2 
  for (int i = 0; i < _weights.length; i++) { 
    for (int j = 0; j < _weights.length; j++) { 
      final value = (_weights[i]?[j] ?? '.').toString(); 
      output.write(value.padRight(6)); 
    } 
    output.writeln(); 
  }
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  return output.toString(); 
}

Here are the steps:

1. You first create a list of the vertices.

2. Then you build up a grid of weights, row by row.

Building a Network
You will reuse the same example from AdjacencyList:

Go back to the main method in bin/starter.dart and replace this:

final graph = AdjacencyList<String>();

with the following:

final graph = AdjacencyMatrix<String>();

AdjacencyMatrix and AdjacencyList conform to the same Graph interface, so the 
rest of the code stays the same.

Run the code. The print(graph) portion of the code should give the following 
output:

0: Singapore 
1: Tokyo 
2: Hong Kong

Data Structures & Algorithms in Dart Chapter 20: Graphs

raywenderlich.com 296



3: Detroit 
4: San Francisco 
5: Washington DC 
6: Austin Texas 
7: Seattle 
.     500.0 300.0 .     .     .     .     .      
500.0 .     250.0 450.0 .     300.0 .     .      
300.0 250.0 .     .     600.0 .     .     .      
.     450.0 .     .     .     .     50.0  .      
.     .     600.0 .     .     337.0 297.0 218.0 
.     300.0 .     .     337.0 .     292.0 277.0 
.     .     .     50.0  297.0 292.0 .     .      
.     .     .     .     218.0 277.0 .     .     

Graph Analysis
This chart compares the cost of different graph operations for adjacency lists and 
adjacency matrices. V represents the number of vertices, and E represents the 
number of edges.

An adjacency list takes less storage space than an adjacency matrix. An adjacency list 
simply stores the number of vertices and edges needed. As for an adjacency matrix, 
recall that the number of rows and columns equals the number of vertices. This 
explains the quadratic space complexity of O(V²).

Adding a vertex is efficient in an adjacency list: Simply create a vertex and set its 
key-value pair in the map. It’s amortized as O(1). When adding a vertex to an 
adjacency matrix, you must add a column to every row and create a new row for the 
new vertex. This is at least O(V), and if you choose to represent your matrix with a 
contiguous block of memory, it can be O(V²).
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Adding an edge is efficient in both data structures since they are both constant time. 
The adjacency list appends to the list of outgoing edges. The adjacency matrix 
simply sets a value in the two-dimensional list.

Adjacency list loses out when trying to find a particular edge or weight. To find an 
edge in an adjacency list, you have to obtain the list of outgoing edges and loop 
through every edge to find a matching destination. This happens in O(V) time. With 
an adjacency matrix, finding an edge or weight is a constant-time lookup in the two-
dimensional list.

So which data structure should you choose to construct your graph?

If there are few edges in your graph, it’s considered a sparse graph, and an 
adjacency list would be a good fit. An adjacency matrix would be a bad choice for a 
sparse graph because a lot of memory would be wasted since there aren’t many 
edges.

If your graph has lots of edges, it’s considered a dense graph, and an adjacency 
matrix would be a better fit since you’d be able to access your weights and edges far 
more quickly.

Note: A dense graph in which every vertex has an edge to every other vertex is 
called a complete graph.

In the next few chapters you’ll learn different algorithms for visiting the nodes of a 
graph.
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Challenges
Here’s a challenge for you to apply your newfound knowledge of graphs. You can find 
the answer in the Challenge Solutions section as well as in the supplemental 
materials that accompany this book.

Challenge 1: Graph Your Friends
Megan has three friends: Sandra, Pablo and Edith. Pablo has friends as well: Ray, 
Luke, and a mutual friend of Megan’s. Edith is friends with Manda and Vicki. Manda 
is friends with Pablo and Megan. Create an adjacency list that represents this 
friendship graph. Which mutual friend do Pablo and Megan share?

Key Points
• You can represent real-world relationships through vertices and edges.

• Think of vertices as objects and edges as the relationships between the objects.

• Weighted graphs associate a number with every edge.

• Directed graphs have edges that traverse in one direction.

• Undirected graphs have edges that point both ways.

• An adjacency list is a graph that stores a list of outgoing edges for every vertex.

• An adjacency matrix uses a two-dimensional list to represent a graph.

• An adjacency list is generally good for sparse graphs, which have a low number of 
edges.

• An adjacency matrix is generally suitable for dense graphs, which have lots of 
edges.
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21Chapter 21: Breadth-First 
Search
By Vincent Ngo & Jonathan Sande

In the previous chapter, you explored using graphs to capture relationships between 
objects. Remember that objects are just vertices, and edges represent the 
relationships between them.

Several algorithms exist to traverse or search through a graph’s vertices. One such 
algorithm is the breadth-first search (BFS) algorithm. The BFS algorithm visits the 
closest vertices from the starting vertex before moving on to further vertices.

BFS can be used to solve a wide variety of problems:

1. Generating a minimum-spanning tree.

2. Finding potential paths between vertices.

3. Finding the shortest path between two vertices.
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How Breadth-First Search Works
A breadth-first search starts by selecting any vertex in a graph. The algorithm then 
explores all neighbors of this vertex before traversing the neighbors’ neighbors and 
so forth.

You’ll use the following undirected graph as an example to explore how BFS works:

A queue will help you keep track of which vertices to visit next. The first-in-first-
out approach of the queue guarantees that all of a vertex’s neighbors are visited 
before you traverse one level deeper.

To begin, you pick a source vertex to start from, in this case, A. Then add it to the 
queue. Highlighted vertices will represent vertices that you’ve already visited:
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Next, you dequeue the A and add all of its neighboring vertices [B, D, C] to the 
queue:

It’s important to note that you only add a vertex to the queue when it has not yet 
been visited and is not already in the queue.

The queue isn’t empty, so you dequeue and visit the next vertex, B. You then add B’s 
neighbor E to the queue. A has already been visited, so it doesn’t get added. The 
queue now has [D, C, E]:
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The next vertex to be dequeued is D. D doesn’t have any neighbors that haven’t been 
visited. The queue now has [C, E]:

Next, you dequeue C and add its neighbors [F, G] to the queue. The queue now has 
[E, F, G]:

You’ve visited all of A’s neighbors! BFS now moves on to the second level of 
neighbors. You dequeue E and add H to the queue. The queue now has [F, G, H]. 
You don’t add B or F to the queue because B has already been visited and F is already 
in the queue:
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You dequeue F, and since all its neighbors are already in the queue or visited, you 
don’t add anything to the queue:

Like the previous step, you dequeue G and don’t add anything to the queue:

Finally, you dequeue H. The breadth-first search is complete since the queue is now 
empty!
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When exploring the vertices, you can construct a tree-like structure, showing the 
vertices at each level: first the vertex you started from, then its neighbors, then its 
neighbors’ neighbors and so on.

Implementation
Open up the starter project for this chapter. The lib folder contains the graph 
implementation you built in the previous chapter. It also includes the stack-based 
queue implementation that you made in Chapter 6, “Queues”. You’ll use both of 
these files to create your breadth-first search.

Extension on Graph
Rather than directly modifying Graph, you’ll add an extension to it. Create a new file 
in lib named breadth_first_search.dart. Then add the following code to that file:

import 'queue.dart'; 
import 'graph.dart'; 

 
extension BreadthFirstSearch<E> on Graph<E> { 
  List<Vertex<E>> breadthFirstSearch(Vertex<E> source) { 
    final queue = QueueStack<Vertex<E>>(); 
    Set<Vertex<E>> enqueued = {}; 
    List<Vertex<E>> visited = []; 

 
    // more to come 

 
    return visited; 
  } 
}

Data Structures & Algorithms in Dart Chapter 21: Breadth-First Search

raywenderlich.com 305



You’ve defined an extension method on Graph called breadthFirstSearch, which 
takes in a starting vertex. The method uses three data structures:

1. queue keeps track of the neighboring vertices to visit next.

2. enqueued remembers which vertices have been enqueued before, so you don’t 
enqueue the same vertex twice. You use Set so that lookup is cheap and only 
takes O(1) time. A list would require O(n) time.

3. visited is a list that stores the order in which the vertices were explored.

Next, complete the method by replacing the // more to come comment with the 
following:

// 1 
queue.enqueue(source); 
enqueued.add(source); 

 
while (true) { 
  // 2 
  final vertex = queue.dequeue(); 
  if (vertex == null) break; 
  // 3 
  visited.add(vertex); 
  // 4 
  final neighborEdges = edges(vertex); 
  for (final edge in neighborEdges) { 
    // 5 
    if (!enqueued.contains(edge.destination)) { 
      queue.enqueue(edge.destination); 
      enqueued.add(edge.destination); 
    } 
  } 
}

Here’s what’s going on:

1. You initialize the BFS algorithm by first enqueuing the source vertex.

2. You continue to dequeue a vertex from the queue until the queue is empty.

3. Every time you dequeue a vertex from the queue, you add it to the list of visited 
vertices.

4. Then, you find all edges that start from the current vertex and iterate over them.

5. For each edge, you check to see if its destination vertex has been enqueued 
before, and, if not, you add it to the queue.
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Testing it Out
That’s all there is to implementing BFS! Give this algorithm a spin. Open bin/
starter.dart and replace the contents of the file with the following code:

import 'package:starter/breadth_first_search.dart'; 
import 'package:starter/graph.dart'; 

 
void main() { 
  final graph = AdjacencyList<String>(); 

 
  final a = graph.createVertex('A'); 
  final b = graph.createVertex('B'); 
  final c = graph.createVertex('C'); 
  final d = graph.createVertex('D'); 
  final e = graph.createVertex('E'); 
  final f = graph.createVertex('F'); 
  final g = graph.createVertex('G'); 
  final h = graph.createVertex('H'); 

 
  graph.addEdge(a, b, weight: 1); 
  graph.addEdge(a, c, weight: 1); 
  graph.addEdge(a, d, weight: 1); 
  graph.addEdge(b, e, weight: 1); 
  graph.addEdge(c, f, weight: 1); 
  graph.addEdge(c, g, weight: 1); 
  graph.addEdge(e, h, weight: 1); 
  graph.addEdge(e, f, weight: 1); 
  graph.addEdge(f, g, weight: 1); 

 
  // more to come 
}

This creates the same graph you saw earlier:
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Now add the following code at the bottom of main:

final vertices = graph.breadthFirstSearch(a); 
vertices.forEach(print);

Run that and note the order that BFS explored the vertices in:

A 
B 
C 
D 
E 
F 
G 
H

One thing to keep in mind with neighboring vertices is that the order in which you 
visit them is determined by how you construct your graph. You could have added an 
edge between A and C before adding one between A and B. In that case, the output 
would list C before B.

Performance
When traversing a graph using BFS, each vertex is enqueued once. This process has a 
time complexity of O(V). During this traversal, you also visit all the edges. The time 
it takes to visit all edges is O(E). Adding the two together means that the overall time 
complexity for breadth-first search is O(V + E).

The space complexity of BFS is O(V) since you have to store the vertices in three 
separate structures: queue, enqueued and visited.
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Challenges
Ready to try a few challenges? If you get stuck, the answers are in the Challenge 
Solutions section and also in the supplemental materials that accompany this book.

Challenge 1: Maximum Queue Size
For the following undirected graph, list the maximum number of items ever in the 
queue. Assume that the starting vertex is A.

Challenge 2: Iterative BFS
In this chapter, you create an iterative implementation of breadth-first search. Now 
write a recursive solution.
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Challenge 3: Disconnected Graph
Add a method to Graph to detect if a graph is disconnected. An example of a 
disconnected graph is shown below:

Key Points
• Breadth-first search (BFS) is an algorithm for traversing or searching a graph.

• BFS explores all the current vertex’s neighbors before traversing the next level of 
vertices.

• It’s generally good to use this algorithm when your graph structure has many 
neighboring vertices or when you need to find out every possible outcome.

• The queue data structure is used to prioritize traversing a vertex’s edges before 
diving down to a level deeper.
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22Chapter 22: Depth-First 
Search
By Vincent Ngo & Jonathan Sande

In the previous chapter, you looked at breadth-first search (BFS), in which you had to 
explore every neighbor of a vertex before going to the next level. In this chapter, 
you’ll look at depth-first search (DFS), another algorithm for traversing or 
searching a graph.

There are a lot of applications for DFS:

• Topological sorting.

• Detecting a cycle.

• Pathfinding, such as in maze puzzles.

• Finding connected components in a sparse graph.

To perform a DFS, you start with a given source vertex and attempt to explore a 
branch as far as possible until you reach the end. At this point, you backtrack and 
explore the next available branch until you find what you’re looking for or until 
you’ve visited all the vertices.
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How Depth-First Search Works
The following example will take you through a depth-first search. The graph below is 
the same as the one in the previous chapter so you can see the difference between 
BFS and DFS.

BFS used a queue to visit neighboring vertices first. However, DFS will use a stack to 
keep track of the levels you move through. The stack’s last-in-first-out approach 
helps with backtracking. Every push on the stack means that you move one level 
deeper. You can pop to return to a previous level if you reach a dead end.

As in the previous chapter, you choose A as a starting vertex and add it to the stack:

As long as the stack isn’t empty, you visit the top vertex on the stack and push the 
first neighboring vertex that has yet to be visited. In this case, you visit A and push B:
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Remember that the order in which the edges were added influences the result of a 
search. In this case, the first edge added to A was to B, so B is pushed first.

You visit B and push E because A is already visited:

Every time you push onto the stack, you advance farther down a branch. Instead of 
visiting every adjacent vertex, you continue down a path until you reach the end. 
After that you backtrack.

Next, visit E and push F.

Again, the only reason you chose F instead of H is that F happened to be added first 
when the graph was created for this particular example. You can’t see that from the 
diagram, but when you get to the code later on, you’ll be able to observe the edge 
addition order.
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Now visit F and push G:

Then visit G and push C:

The next vertex to visit is C. It has neighbors [A, F, G], but all of these have already 
been visited. You’ve reached a dead end, so it’s time to backtrack by popping C off the 
stack:
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This brings you back to G. It has neighbors [F, C], but both of these have been 
visited. Another dead end, so pop G:

F also has no unvisited neighbors remaining, so pop F:

Now you’re back at E. Its neighbor H is still unvisited, so you push H on the stack:
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Visiting H results in another dead end, so pop H:

E doesn’t have any available neighbors either, so pop it:

The same is true for B, so pop B:
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This brings you all the way back to A, whose neighbor D still needs to be visited, so 
you push D on the stack:

Visiting D results in another dead end, so pop D:

You’re back at A, but this time, there are no available neighbors to push, so you pop 
A. The stack is now empty and DFS is complete!
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When exploring the vertices, you can construct a tree-like structure, showing the 
branches you’ve visited. You can see how deep DFS went compared to BFS:

Implementation
Open up the starter project for this chapter. The lib folder contains an 
implementation of a graph as well as a stack, both of which you’ll use to implement 
DFS.

Creating an Extension
Create a new file in lib called depth_first_search.dart. Add the following:

import 'stack.dart'; 
import 'graph.dart'; 

 
extension DepthFirstSearch<E> on Graph<E> { 
  List<Vertex<E>> depthFirstSearch(Vertex<E> source) { 
    final stack = Stack<Vertex<E>>(); 
    final pushed = <Vertex<E>>{}; 
    final visited = <Vertex<E>>[]; 

 
    stack.push(source); 
    pushed.add(source); 
    visited.add(source); 

 
    // more to come 

 
    return visited; 
  } 
}

Data Structures & Algorithms in Dart Chapter 22: Depth-First Search

raywenderlich.com 318



Here, you’ve defined an extension method depthFirstSearch, which takes in a 
starting vertex and returns a list of vertices in the order they were visited. It uses 
three data structures:

1. stack is used to store your path through the graph.

2. pushed is a set that remembers which vertices have been pushed before so that 
you don’t visit the same vertex twice. Using Set ensures fast O(1) lookup.

3. visited is a list that stores the order in which the vertices were visited.

To initialize the algorithm, you add the source vertex to all three.

Traversing Vertices
Next, complete the method by replacing the // more to come comment with the 
following:

// 1 
outerLoop: 
while (stack.isNotEmpty) { 
  final vertex = stack.peek; 
  // 2 
  final neighbors = edges(vertex); 
  // 3 
  for (final edge in neighbors) { 
    if (!pushed.contains(edge.destination)) { 
      stack.push(edge.destination); 
      pushed.add(edge.destination); 
      visited.add(edge.destination); 
      // 4 
      continue outerLoop; 
    } 
  } 
  // 5 
  stack.pop(); 
}

Here’s what’s going on:

1. You continue to check the top of the stack for a vertex until the stack is empty. 
You’ve labeled this loop outerLoop so that you have a way to continue to the 
next vertex, even from within a nested for loop.

2. You find all the neighboring edges for the current vertex.
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3. Here, you loop through every edge connected to the current vertex and check if 
the neighboring vertex has been seen. If not, you push it onto the stack and add it 
to the visited list. It may seem a bit premature to mark this vertex as visited 
since you haven’t peeked at it yet. However, vertices are visited in the order in 
which they’re added to the stack, so it results in the correct order.

4. Now that you’ve found a neighbor to visit, you continue to outerLoop and peek 
at the newly pushed neighbor.

5. If the current vertex didn’t have any unvisited neighbors, you know you’ve 
reached a dead end and can pop it off the stack.

Once the stack is empty, the DFS algorithm is complete! All you have to do is return 
the visited vertices in the order you visited them.

Testing it Out
To try out your code, open bin/starter.dart and replace the contents of the file with 
the following code:

import 'package:starter/graph.dart'; 
import 'package:starter/depth_first_search.dart'; 

 
void main() { 
  final graph = AdjacencyList<String>(); 

 
  final a = graph.createVertex('A'); 
  final b = graph.createVertex('B'); 
  final c = graph.createVertex('C'); 
  final d = graph.createVertex('D'); 
  final e = graph.createVertex('E'); 
  final f = graph.createVertex('F'); 
  final g = graph.createVertex('G'); 
  final h = graph.createVertex('H'); 

 
  graph.addEdge(a, b, weight: 1); 
  graph.addEdge(a, c, weight: 1); 
  graph.addEdge(a, d, weight: 1); 
  graph.addEdge(b, e, weight: 1); 
  graph.addEdge(c, g, weight: 1); 
  graph.addEdge(e, f, weight: 1); 
  graph.addEdge(e, h, weight: 1); 
  graph.addEdge(f, g, weight: 1); 
  graph.addEdge(f, c, weight: 1); 
}
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This creates a graph with the edges added in an order that results in the DFS path 
that you saw in the diagrams above.

Perform the depth-first search by adding the following two lines at the bottom of 
main:

final vertices = graph.depthFirstSearch(a); 
vertices.forEach(print);

Run that and observe the order in which DFS visited the indices:

A 
B 
E 
F 
G 
C 
H 
D

Performance
DFS will visit every single vertex at least once. This process has a time complexity of 
O(V).

When traversing a graph in DFS, you have to check all neighboring vertices to find 
one available to visit. The time complexity of this is O(E) because you have to visit 
every edge in the graph in the worst case.

Overall, the time complexity for depth-first search is O(V + E).

The space complexity of depth-first search is O(V) since you have to store all the 
vertices in three separate data structures: stack, pushed and visited.

Cycles
A depth-first search is also useful for finding whether a graph contains cycles. A 
graph is said to have a cycle when a path of edges and vertices leads back to the 
same source.
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For example, in the directed graph below, if you start at A, you can go to B, then to C, 
and then back to A again. Since it’s possible to arrive back at the starting vertex, this 
is a cyclic graph:

If you removed the C-to-A edge, this graph would become acyclic. That is, there 
would be no cycles. It would be impossible to start at any vertex and arrive back at 
the same vertex.

Note: In this directed graph, there’s also a cycle from A to C since the edges are 
pointing in both directions. In an undirected graph, though, two vertices 
wouldn’t count as a cycle. Undirected graphs need at least three vertices to 
make a cycle.

Checking for Cycles
Next, you’ll write an algorithm to check whether a directed graph contains a cycle.

Return to depth_first_search.dart and create another extension on Graph:

extension CyclicGraph<E> on Graph<E> { 
 

}
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Add the following recursive helper method to CyclicGraph:

bool _hasCycle(Vertex<E> source, Set<Vertex<E>> pushed) { 
  // 1 
  pushed.add(source); 
  // 2 
  final neighbors = edges(source); 
  for (final edge in neighbors) { 
    // 3 
    if (!pushed.contains(edge.destination)) { 
      if (_hasCycle(edge.destination, pushed)) { 
        return true; 
      } 
    // 4 
    } else { 
      return true; 
    } 
  } 
  // 5 
  pushed.remove(source); 
  // 6 
  return false; 
}

Here’s how it works:

1. Initialize the algorithm by adding the source vertex.

2. Visit every neighboring edge.

3. If the adjacent vertex has not been visited before, recursively dive deeper down a 
branch to check for a cycle.

4. If the adjacent vertex has been visited before, you’ve found a cycle.

5. Remove the source vertex so you can continue to find other paths with a 
potential cycle.

6. If you’ve reached this far, then no cycle was found.
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To complete the code, add the public hasCycle method to CyclicGraph:

bool hasCycle(Vertex<E> source) { 
  Set<Vertex<E>> pushed = {}; 
  return _hasCycle(source, pushed); 
}

You’re essentially performing a depth-first graph traversal by recursively diving 
down one path until you find a cycle and back-tracking by popping off the stack to 
find another path. The time complexity is O(V + E).

Testing it Out
To create a graph that matches the image above, open bin/starter.dart and replace 
the content of main with the following:

final graph = AdjacencyList<String>(); 
 

final a = graph.createVertex('A'); 
final b = graph.createVertex('B'); 
final c = graph.createVertex('C'); 
final d = graph.createVertex('D'); 

 
graph.addEdge(a, b, edgeType: EdgeType.directed); 
graph.addEdge(a, c, edgeType: EdgeType.directed); 
graph.addEdge(c, a, edgeType: EdgeType.directed); 
graph.addEdge(b, c, edgeType: EdgeType.directed); 
graph.addEdge(c, d, edgeType: EdgeType.directed); 

 
print(graph); 
print(graph.hasCycle(a));

Run that and you’ll see the output below:

A --> B, C 
B --> C 
C --> A, D 
D --> 

 
true

If you comment out the c-to-a edge, the method will return false.
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Challenges
Try out the following challenges to test your understanding of depth-first searches. 
You can find the answers in the back of the book or in the supplemental materials 
that accompany the book.

Challenge 1: BFS or DFS
For each of the following two examples, which traversal, depth-first or breadth-first, 
is better for discovering if a path exists between the two nodes? Explain why.

• Path from A to F.

• Path from A to G.

Challenge 2: Recursive DFS
In this chapter, you learned an iterative implementation of depth-first search. Now 
write a recursive implementation.

Key Points
• Depth-first search (DFS) is another algorithm to traverse or search a graph.

• DFS explores a branch as far as possible before backtracking to the next branch.

• The stack data structure allows you to backtrack.

• A graph is said to have a cycle when a path of edges and vertices leads back to the 
source vertex.
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23Chapter 23: Dijkstra’s 
Algorithm
By Vincent Ngo & Jonathan Sande

Have you ever used a maps app to find the shortest distance or fastest time from one 
place to another? Dijkstra’s algorithm is particularly useful in GPS networks to 
help find the shortest path between two locations. The algorithm works with 
weighted graphs, both directed and undirected, to calculate the optimal routes from 
one vertex to all others in the graph.

Dijkstra’s algorithm is known as a greedy algorithm. That means it picks the most 
optimal path at every step along the way. It ignores solutions where some steps 
might have a higher intermediate cost but result in a lower overall cost for the entire 
path. Nevertheless, Dijkstra’s algorithm usually arrives at a pretty good solution very 
quickly.

Some applications of Dijkstra’s algorithm include:

1. Communicable disease transmission: Discovering where biological diseases are 
spreading the fastest.

2. Telephone networks: Routing calls to the highest-bandwidth paths available in 
the network.

3. Mapping: Finding the shortest and fastest paths for travelers.

Note: On the off chance you’ve never seen the letters “jkstr” in combination 
and have no idea how you’d say that, “Dijkstra’s” is pronounced ˈdaɪkstrəz. 
And if you aren’t familiar with phonetic symbols, just combine the 
pronunciation of the words “dike” and “extras”.
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How Dijkstra’s Algorithm Works
Imagine the directed graph below represents a road map. The vertices represent 
physical locations, and the edges represent one-way routes of a given cost between 
locations.

While edge weight can refer to the actual cost, it’s also commonly referred to as 
distance, which fits with the paradigm of finding the shortest route. However, if you 
like the word cost, you can think of route finding algorithms as looking for the 
cheapest route.

Initialization
In Dijkstra’s algorithm, you first choose a starting vertex since the algorithm needs 
a starting point to find a path to the rest of the nodes in the graph. Assume the 
starting vertex you pick is vertex A.

You’ll use a table to keep track of the shortest routes from A to the other vertices. In 
the beginning, you don’t know anything, so fill in the table with null values:

As you work through this example, you’ll use each cell of the table to save two pieces 
of information:

1. The shortest known distance from A to this vertex.

2. The previous vertex in the path.
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First Pass
From vertex A, look at all of the outgoing edges. In this case, there are three:

• A to B has a distance of 8.

• A to F has a distance of 9.

• A to G has a distance of 1.

Since you know the distance of traveling from A to these three vertices, write the 
values in the table:

You can see in the first cell that the distance from A to column B is 8. Below the 8 
you also write A. This means that the previous vertex on the path to B is A. You’ll 
update both the distance and the previous vertex if you find a better path to B in the 
future. Columns F and G follow the same pattern. The other vertices are still null 
since there’s no known path to them from A yet.
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Second Pass
In every round, Dijkstra’s algorithm always takes the shortest path. Of the distances 
8, 9 and 1, the shortest is 1. That means column G with the 1 is the direction that 
Dijkstra will go:

So the next step is to visit G:

Now, look for G’s outgoing edges. It only has one, which goes to C, and the distance 
is 3. That means the total distance of the A to C path is 1 + 3 = 4. So write 4 and G in 
the C column. Again, the reason you write G is that G is the previous vertex on this 
path before reaching C:

The filled-in vertices, both in the table and in the graph, are the ones you’ve visited. 
You already know the shortest route’s to these vertices, so you don’t need to check 
them anymore.
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Third Pass
In the next pass, you look at the next-lowest distance. The distance to B is 8, the 
distance to C is 4, and the distance to F is 9. That means C is the winner:

So now you visit C:

Look at all of C’s outgoing edges and add up the total cost it would take to get there 
from A:

• C to E has a total cost of 4 + 1 = 5.

• C to B has a total cost of 4 + 3 = 7.

It’s actually cheaper to take this route to B than it was to go directly from A to B. 
Because of that, update the B column with a new value of 7 by way of vertex C. Also 
fill in the E column since you know a route there now:
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Fourth Pass
Of the unvisited vertices, which path has the lowest distance now? According to the 
table, E does, with a total distance of 5:

Visit E and check its outgoing vertices. You’ve already visited C so you can ignore 
that one. However, B and D are still unvisited:

These are the distances:

• E to D has a total distance of 5 + 2 = 7.

• E to B has a total distance of 5 + 1 = 6.

You didn’t know about D before, so you can fill in that column in the table. Also, 
when going to B, the path through E is even better than it was through C, so you can 
update the B column as well:
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Fifth Pass
Next, you continue the search from B since it has the next-lowest distance:

Visit B and observe its edges:

Of B‘s neighbors, the only one you haven’t visited yet is F. This has a total cost of 6 + 
3 = 9. From the table, you can tell that the current path to F from A also costs 9. So, 
you can disregard this path since it isn’t any shorter:

Sixth Pass
Of the remaining unvisited vertices, D is closest to A with a distance of 7:
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In this pass, continue the traversal from D:

However, D has no outgoing edges, so it’s a dead end. You can just move on.

Seventh Pass
F is up next. It’s the only unvisited vertex that you have any information about:

So visit F and observe its outgoing edges:

F has one outgoing edge to A, but you can disregard this edge since A is the starting 
vertex. You’ve already visited it.
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Eighth Pass
You’ve covered every vertex except for H. H has one outgoing edge to G and one to F. 
However, there’s no path from A to H:

Because there’s no path, the column for H is null:

This step completes Dijkstra’s algorithm since all the vertices that can be visited 
have been visited!

You can now check the table for the shortest paths and their distances. For example, 
the output tells you the distance you have to travel to get to D is 7. To find the path, 
you backtrack. Each column in the table records the previous vertex that the current 
vertex is connected to. For example, to find the path to D, you start at D and 
backtrack. D points to E, which points to C, which points to G, which points to A, the 
starting vertex. So the path is A-G-C-E-D:

Backtrack from D to A

It’s time to express these ideas in code now.
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Implementation
The implementation of Dijkstra’s algorithm brings together a lot of the previous 
concepts that you’ve learned in this book. Besides the basic data structures of lists, 
maps and sets, you’ll also use a priority queue, which itself is made from a min-heap, 
which is a partially sorted binary tree.

Open up the starter project for this chapter. The lib folder comes with an adjacency 
list graph and a priority queue.

You’ll use the priority queue to store the vertices that haven’t been visited. The 
queue uses a min-priority heap, which will allow you to dequeue the shortest known 
path in every pass.

Creating Distance-Vertex Pairs
In the example diagrams above, you saw that the tables contained a distance-vertex 
pair for every destination vertex. You’ll implement a class for this now to make it 
easier to pass these values around.

Create a new file in lib named dijkstra.dart and add the following code to it:

import 'graph.dart'; 
 

class Pair<T> extends Comparable<Pair<T>> { 
  Pair(this.distance, [this.vertex]); 

 
  double distance; 
  Vertex<T>? vertex; 

 
  @override 
  int compareTo(Pair<T> other) { 
    if (distance == other.distance) return 0; 
    if (distance > other.distance) return 1; 
    return -1; 
  } 

 
  @override 
  String toString() => '($distance, $vertex)'; 
}

Pair extends Comparable because Dijkstra’s algorithm hands the distance-vertex 
pairs to a priority queue. The internal heap requires comparable elements so that it 
can sort them. The comparison here is performed solely on the distance. Dijkstra will 
be on the lookout for the shortest distances.
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Setting Up a Class for Dijkstra’s Algorithm
Add the following class to dijkstra.dart:

class Dijkstra<E> { 
  Dijkstra(this.graph); 

 
  final Graph<E> graph; 
}

Dijkstra allows you to pass in any graph that implements the Graph interface.

Generating the Shortest Paths
Now you’re ready to start building the actual algorithm.

Initializing Dijkstra’s Algorithm

First import the file with your priority queue data structure at the top of 
dijkstra.dart:

import 'priority_queue.dart';

Then add the following method to Dijkstra:

Map<Vertex<E>, Pair<E>?> shortestPaths(Vertex<E> source) { 
  // 1 
  final queue = PriorityQueue<Pair<E>>(priority: Priority.min); 
  final visited = <Vertex<E>>{}; 
  final paths = <Vertex<E>, Pair<E>?>{}; 
  // 2 
  for (final vertex in graph.vertices) { 
    paths[vertex] = null; 
  } 
  // 3 
  queue.enqueue(Pair(0, source)); 
  paths[source] = Pair(0); 
  visited.add(source); 

 
  // more to come 

 
  return paths; 
}
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This method takes in a source vertex and returns a map of all the paths. You begin 
the algorithm with the following content:

1. There are three data structures to help you out. The priority queue queue will 
allow you to visit the shortest route next in each pass. The set visited isn’t 
strictly necessary, but using it will prevent you from unnecessarily checking 
vertices that you’ve already visited before. Finally, you’ll use the map paths to 
store the distance and previous vertex information for every vertex in the graph. 
Building paths is what this method is all about.

2. Initialize every vertex in the graph with a null distance-vertex pair.

3. Initialize the algorithm with the source vertex. This is where the search will start 
from, so the distance to this vertex is zero. queue holds the current vertex, while 
paths stores a reference to the previous vertex. Since the source vertex doesn’t 
have a previous vertex, using Pair(0) causes the previous vertex to default to 
null.

Visiting a New Vertex

Continue your implementation of shortestPaths by replacing the // more to 
come comment with the following while loop. Each loop handles visiting a new 
vertex:

// 1 
while (!queue.isEmpty) { 
  final current = queue.dequeue()!; 
  // 2 
  final savedDistance = paths[current.vertex]!.distance; 
  if (current.distance > savedDistance) continue; 
  // 3 
  visited.add(current.vertex!); 

 
  // more to come 
}

Data Structures & Algorithms in Dart Chapter 23: Dijkstra’s Algorithm

raywenderlich.com 337



This is how Dijkstra’s algorithm works here:

1. The queue holds the vertices that are known but haven’t been visited yet. As long 
as the queue isn’t empty, you’re not done exploring!

2. Later on, you’ll decrease the distances of certain paths as you find shorter routes. 
However, if you update the distance in paths, you should really update the same 
distance in queue. The problem is, your priority queue doesn’t have a way to do 
that. Don’t forget that the internal heap needs to maintain its min-heap 
property. Instead of implementing any new features in the priority queue, 
though, you’ll just add the same vertex again with a new distance. When the old, 
obsolete distance-vertex pair comes through, the code at // 2 will ignore it.

3. Add the current vertex to the visited set so that you can skip over it later. You 
already know the shortest route to this vertex.

Looping Over Outgoing Edges

You’re almost done. Now replace the // more to come comment inside the while 
loop with the following code. This for loop iterates over the outgoing edges of the 
current vertex:

for (final edge in graph.edges(current.vertex!)) { 
  final neighbor = edge.destination; 
  // 1 
  if (visited.contains(neighbor)) continue; 
  // 2 
  final weight = edge.weight ?? double.infinity; 
  final totalDistance = current.distance + weight; 
  // 3 
  final knownDistance = paths[neighbor]?.distance  
    ?? double.infinity; 
  // 4 
  if (totalDistance < knownDistance) { 
    paths[neighbor] = Pair(totalDistance, current.vertex); 
    queue.enqueue(Pair(totalDistance, neighbor)); 
  } 
}
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Here’s what’s happening:

1. If you’ve previously visited the destination vertex, then ignore it and go on.

2. Find the total distance from the source to the neighboring vertex.

3. Compare the known distance to that vertex with the new total that you just 
calculated. Newly discovered vertices will get a default distance of infinity.

4. If you’ve found a shorter route this time around, then update paths and enqueue 
this vertex for visiting later. No worries if the same vertex is already enqueued. 
You’ll discard the obsolete one when it shows up.

Once all the discoverable vertices have been visited and the priority queue is empty, 
you return the map of the shortest paths. Dijkstra’s algorithm is complete.

Trying it Out

Navigate to bin/starter.dart and replace the contents of the file with the following 
code:

import 'package:starter/dijkstra.dart'; 
import 'package:starter/graph.dart'; 

 
void main() { 
  final graph = AdjacencyList<String>(); 

 
  final a = graph.createVertex('A'); 
  final b = graph.createVertex('B'); 
  final c = graph.createVertex('C'); 
  final d = graph.createVertex('D'); 
  final e = graph.createVertex('E'); 
  final f = graph.createVertex('F'); 
  final g = graph.createVertex('G'); 
  final h = graph.createVertex('H'); 

 
  graph.addEdge(a, b, weight: 8, edgeType: EdgeType.directed); 
  graph.addEdge(a, f, weight: 9, edgeType: EdgeType.directed); 
  graph.addEdge(a, g, weight: 1, edgeType: EdgeType.directed); 
  graph.addEdge(g, c, weight: 3, edgeType: EdgeType.directed); 
  graph.addEdge(c, b, weight: 3, edgeType: EdgeType.directed); 
  graph.addEdge(c, e, weight: 1, edgeType: EdgeType.directed); 
  graph.addEdge(e, b, weight: 1, edgeType: EdgeType.directed); 
  graph.addEdge(e, d, weight: 2, edgeType: EdgeType.directed); 
  graph.addEdge(b, e, weight: 1, edgeType: EdgeType.directed); 
  graph.addEdge(b, f, weight: 3, edgeType: EdgeType.directed); 
  graph.addEdge(f, a, weight: 2, edgeType: EdgeType.directed); 
  graph.addEdge(h, g, weight: 5, edgeType: EdgeType.directed); 
  graph.addEdge(h, f, weight: 2, edgeType: EdgeType.directed); 
}
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This recreates the graph that you saw in the example at the beginning of the chapter:

Now add the following code at the end of main:

final dijkstra = Dijkstra(graph); 
final allPaths = dijkstra.shortestPaths(a); 
print(allPaths);

Run that and you should see the following output:

{A: (0.0, null), B: (6.0, E), C: (4.0, G), D: (7.0, E), E: (5.0, 
C), F: (9.0, A), G: (1.0, A), H: null}

This matches the results that the example described earlier.

Finding a Specific Path
The shortestPaths method found the shortest route to all of the other reachable 
vertices. Often you just want the shortest path to a single destination, though. You’ll 
add one more method to accomplish that.

Return to lib/dijkstra.dart and add the following method to Dijkstra:

List<Vertex<E>> shortestPath( 
  Vertex<E> source, 
  Vertex<E> destination, { 
  Map<Vertex<E>, Pair<E>?>? paths, 
}) { 
  // 1 
  final allPaths = paths ?? shortestPaths(source); 
  // 2 
  if (!allPaths.containsKey(destination)) return []; 
  var current = destination; 
  final path = <Vertex<E>>[current]; 
  // 3 
  while (current != source) {
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    final previous = allPaths[current]?.vertex; 
    if (previous == null) return []; 
    path.add(previous); 
    current = previous; 
  } 
  // 4 
  return path.reversed.toList(); 
}

After providing the source and destinations vertices to this method, here’s what 
happens:

1. You find all of the paths. Providing paths as an argument is an optimization if 
you need to call shortestPath multiple times on the same graph. No need to 
recalculate Dijkstra’s algorithm over and over.

2. Ensure that a path actually exists.

3. Build the path by working backward from the destination.

4. Since you built the list by starting from the back, you need to reverse the list 
before returning it.

Trying it Out
Open bin/starter.dart and add the following two lines at the end of main:

final path = dijkstra.shortestPath(a, d); 
print(path);

Run your code again and you should see the ordered list of vertices showing the 
shortest path from A to D:

[A, G, C, E, D]

Just like in the example!
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Performance
When performing Dijkstra’s algorithm, you need to visit every edge. That means the 
time complexity is at least O(E). After visiting an edge, you add the destination 
vertex to a priority queue if the distance for this edge is shorter. However, in a worst 
case scenario where every edge is shorter that the previous ones, you’d still have to 
enqueue a vertex for every edge. Since enqueuing and dequeuing with your heap-
based priority queue has a logarithmic time complexity, this operation would be 
O(log E). Repeating that for every edge would thus be O(E log E).

What about when you visited all of the vertices at the beginning of the algorithm to 
set the paths to null? That operation was O(V), so you could say the overall time 
complexity is O(V + E log E). However, you can assume that for a connected graph, V 
will be less than or approximately equal to E. That means you can replace O(V + E log 
E) with O(E + E log E). You can rearrange that as O(E × (1 + log E)). Then drop the 1 to 
again leave you with O(E log E). Remember that Big O notation is just a generalized 
way to talk about the complexity of an algorithm as the number of components 
increases. Constant values can be ignored.

Note: Special thanks to bradfieldcs.com for inspiration on the algorithm used 
in this chapter and to Google Engineer David Eisenstat on Stack Overflow for 
help analyzing the complexity. See the following links for details:

https://bradfieldcs.com/algos/graphs/dijkstras-algorithm

https://stackoverflow.com/a/70436868
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Challenges
Here are a few challenges to help you practice your new knowledge about Dijkstra’s 
algorithm. As always, you can find the answers in the Challenge Solutions section at 
the back of the book as well as in the downloadable supplemental materials.

Challenge 1: Dijkstra Step-by-Step
Given the following graph, step through Dijkstra’s algorithm yourself to produce the 
shortest path to every other vertex starting from vertex A.

Challenge 2: Find All the Shortest Paths
Add an extension on Dijkstra that returns all the shortest paths in list form from a 
given starting vertex. Here’s the method signature to get you started:

Map<Vertex<E>, List<Vertex<E>>> shortestPathsLists( 
  Vertex<E> source, 
)

Key Points
• Dijkstra’s algorithm finds the shortest path from a starting vertex to the rest of the 

vertices in a graph.

• The algorithm is greedy, meaning it chooses the shortest path at each step.

• The priority queue data structure helps to efficiently return the vertex with the 
shortest path.
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24Conclusion

Congratulations! You’ve made it to the end of the book. You have a solid foundation 
now in data structures and algorithms. Even so, there’s still a lot more to learn. Don’t 
let that scare you, though. Each new data structure and algorithm will be its own 
adventure.

Approaching a Difficult Problem
At times, you may not even know what data structure or algorithm you should use to 
solve a particular problem. Here are a few ideas to help with that:

• Draw a diagram to model the issue.

• Talk through the problem with another developer.

• Just get started by writing some code that “works”, even if it’s horribly slow and 
inefficient.

• Analyze what the time and space complexity are of your current implementation. 
How could they be improved?

• Step through your current implementation line by line in a debugger. This often 
shows you useless tasks that your algorithm is performing.

• Keep reading and watching videos about data structures and algorithms that 
you’re unfamiliar with. The more you know, the more naturally a solution will pop 
into your head when you come up against a hard problem.
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Learning Tips
Whenever you hear about a new data structure or algorithm that you’d like to learn, 
here are some steps you can take to maximize your learning experience:

1. Try to get an intuitive grasp of how the data is structured or how the algorithm 
works. Find illustrations or videos that describe it well. Draw yourself pictures or 
manipulate objects such as playing cards.

2. After you understand the data structure or algorithm on a conceptual level, try to 
implement it in code by yourself. Don’t look at other people’s implementations 
just yet. Imagine that you’re a computer scientist in the 1950s!

3. Finally, check out the implementations in other languages like C or Java or 
Python. Then convert them to Dart.

Where to Go From Here?
Don’t know what to study next? Here are some suggestions:

• Try out the A* pathfinding algorithm. Dijkstra’s algorithm is good for finding all 
the shortest paths in a graph, but it does a lot of unnecessary work if you only need 
the single shortest path between two vertices.

• Visit codeforces.com and work on some problems in their problem set. Start with 
the easier problems and work up to the more challenging ones. Their code 
submission form doesn’t currently support Dart, but every problem includes 
example input and output that you can use to check your own solutions.

If you have any questions or comments as you work through this book, please stop by 
our forums at https://forums.raywenderlich.com and look for the particular forum 
category for this book.

Thank you again for purchasing this book. Your continued support is what makes the 
books, tutorials, videos and other things we do at raywenderlich.com possible. We 
truly appreciate it!

– The Data Structures & Algorithms in Dart team
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Section VI: Challenge 
Solutions

This section contains all of the solutions to the challenges throughout the book. 
They’re printed here for your convenience and to aid your understanding, but you’ll 
receive the most benefit if you attempt to solve the challenges yourself before 
looking at the answers.

The code for all of the solutions is also available for download in the supplemental 
materials that accompany this book.
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4Chapter 4 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
One of the prime use cases for stacks is to facilitate backtracking. If you push a 
sequence of values into the stack, sequentially popping the stack will give you the 
values in reverse order.

void printInReverse<E>(List<E> list) { 
  var stack = Stack<E>(); 

 
  for (E value in list) { 
    stack.push(value); 
  } 

 
  while (stack.isNotEmpty) { 
    print(stack.pop()); 
  } 
}

If you try it with ['d', 'r', 'a', 'w', 'e', 'r'] you’ll get a reward. :]

The time complexity of pushing all of the list elements into the stack is  O(n). The 
time complexity of popping the stack to print the values is also O(n). Overall, the 
time complexity of this algorithm is O(n).
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Since you’re allocating a container (the stack) inside the function, you also incur an 
O(n) space complexity cost.

Note: The way you should reverse a list in production code is to call the 
reversed method that List provides. This method is O(1) in time and space.  
This is because as an iterable it’s lazy and only creates a reversed view into the 
original collection. If you traverse the items and print out all of the elements, 
it predictably makes the operation  O(n) in time while remaining O(1) in space.

Solution to Challenge 2
To check if there are balanced parentheses in the string, you need to go through each 
character of the string. When you encounter an opening parenthesis, you’ll push that 
onto a stack. Conversely, if you encounter a closing parenthesis, you should pop the 
stack.

Here’s what the code looks like:

bool checkParentheses(String text) { 
  var stack = Stack<int>(); 

 
  final open = '('.codeUnitAt(0); 
  final close = ')'.codeUnitAt(0); 

 
  for (int codeUnit in text.codeUnits) { 
    if (codeUnit == open) { 
      stack.push(codeUnit); 
    } else if (codeUnit == close) { 
      if (stack.isEmpty) { 
        return false; 
      } else { 
        stack.pop(); 
      } 
    } 
  } 
  return stack.isEmpty; 
}

The time complexity of this algorithm is O(n), where n is the number of code units in 
the string. This algorithm also incurs an O(n) space complexity cost due to the usage 
of the Stack data structure.
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5Chapter 5 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A straightforward way to solve this problem is to use recursion. Since recursion 
allows you to build a call stack, you just need to call the print statements as the call 
stack unwinds.

Add the following helper function to your project:

void printNodesRecursively<T>(Node<T>? node) { 
  // 1 
  if (node == null) return; 

 
  // 2 
  printNodesRecursively(node.next); 

 
  // 3 
  print(node.value); 
}

1. You start off with the base case: the condition for terminating the recursion. If 
node is null, then it means you’ve reached the end of the list.

2. This is your recursive call, calling the same function with the next node.

3. Where you add the print statement will determine whether you print the list in 
reverse order or not. Any code that comes after the recursive call is called only 
after the base case triggers, that is, after the recursive function hits the end of the 
list. As the recursive statements unravel, the node data gets printed out.
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Finally, you need to call the helper method from a printInReverse function:

void printListInReverse<E>(LinkedList<E> list) { 
  printNodesRecursively(list.head); 
}

To test it out, write the following in your main function:

var list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print('Original list: $list'); 
print("Printing in reverse:"); 
printListInReverse(list);

You should see the following output:

Original list: 1 -> 2 -> 3 
Printing in reverse: 
3 
2 
1

The time complexity of this algorithm is O(n) since you have to traverse each node of 
the list. The space complexity is likewise O(n) since you implicitly use the function 
call stack to process each element.

Solution to Challenge 2
One solution is to have two references traverse down the nodes of the list, where one 
is twice as fast as the other. Once the faster reference reaches the end, the slower 
reference will be in the middle. Update the function to the following:

Node<E>? getMiddle<E>(LinkedList<E> list) { 
  var slow = list.head; 
  var fast = list.head; 

 
  while (fast?.next != null) { 
    fast = fast?.next?.next; 
    slow = slow?.next; 
  } 

 
  return slow; 
}
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In the while loop, fast checks the next two nodes while slow only gets one. This is 
known as the runner’s technique.

Write the following in your main function:

var list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 
print(list); 

 
final middleNode = getMiddle(list); 
print('Middle: ${middleNode?.value}');

You should see the following output:

1 -> 2 -> 3 
Middle: 2

The time complexity of this algorithm is O(n) since you traversed the list in a single 
pass. The runner’s technique helps solve a variety of problems associated with a 
linked list.

Solution to Challenge 3
To reverse a linked list, you must visit each node and update the next reference to 
point in the other direction. This can be a tricky task since you’ll need to manage 
multiple references to multiple nodes.

The Easy Way
You can trivially reverse a list by using the push method along with a new temporary 
list. Either add a reverse method to LinkedList or create an extension like so:

extension ReversibleLinkedList<E> on LinkedList<E> { 
  void reverse() { 
    final tempList = LinkedList<E>(); 
    for (final value in this) { 
      tempList.push(value); 
    } 
    head = tempList.head; 
  } 
}
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You first start by pushing the current values in your list to a new temporary list. This 
will create a list in reverse order. After that point the head of the list to the reversed 
nodes.

O(n) time complexity, short and sweet!

But Wait…
Although O(n) is the optimal time complexity for reversing a list, there’s a 
significant resource cost in the previous solution. As it is now, reverse will have to 
allocate new nodes for each push method on the temporary list. You can avoid using 
the temporary list entirely and reverse the list by manipulating the next pointers of 
each node. The code ends up being more complicated, but you reap considerable 
benefits in terms of performance.

Replace the reverse method with the following:

void reverse() { 
  tail = head; 
  var previous = head; 
  var current = head?.next; 
  previous?.next = null; 

 
  // more to come... 
}

You begin by assigning head to tail. Next, you create two references — previous 
and current — to keep track of traversal. The strategy is fairly straightforward: each 
node points to the next node down the list. You’ll traverse the list and make each 
node point to the previous node instead:
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As you can see from the diagram, it gets a little tricky. By pointing current to 
previous, you’ve lost the link to the rest of the list. Therefore, you’ll need to manage 
a third pointer. Add the following at the bottom of the reverse method:

while (current != null) { 
  final next = current.next; 
  current.next = previous; 
  previous = current; 
  current = next; 
}

Each time you perform the reversal, you create a new reference to the next node. 
After every reversal procedure, you move the two pointers to the next two nodes.

Once you’ve finished reversing all the pointers, you’ll set the head to the last node of 
this list. Add the following at the end of the reverse method:

head = previous;

Try it Out!
Test the reverse method by writing the following in main:

var list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(1); 

 
print('Original list: $list'); 
list.reverse(); 
print('Reversed list: $list');

You should see the following output:

Original list: 1 -> 2 -> 3 
Reversed list: 3 -> 2 -> 1

The time complexity of your new reverse method is still O(n), the same as the 
trivial implementation discussed earlier. However, you didn’t need to use a 
temporary list or allocate any new Node objects, which significantly improves the 
performance of this algorithm.
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Solution to Challenge 4
This solution traverses down the list, removing all nodes that match the element you 
want to remove. Each time you perform a removal, you need to reconnect the 
predecessor node with the successor node. While this can get complicated, it’s well 
worth it to practice this technique. Many data structures and algorithms will rely on 
clever uses of pointer arithmetic.

There are a few cases you need to consider. The first case to consider is when the 
head of the list contains the value that you want to remove.

Trimming the Head
Suppose you want to remove 1 from the following list:

You’d want your new head to point to 2.

Create an extension on LinkedList and add a removeAll method to it:

extension RemovableLinkedList<E> on LinkedList { 
  void removeAll(E value) { 

 
  } 
}

Then add the following while loop to removeAll:

while (head != null && head!.value == value) { 
  head = head!.next; 
}

Since it’s possible to have a sequence of nodes with the same value, the while loop 
ensures that you remove them all. The loop will finish if you get to the end of the list 
or when the value is different.
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Unlinking the Nodes
Like many of the algorithms associated with linked lists, you’ll leverage your pointer 
arithmetic skills to unlink the nodes. Write the following at the bottom of 
removeAll:

var previous = head; 
var current = head?.next; 
while (current != null) { 
  if (current.value == value) { 
    previous?.next = current.next; 
    current = previous?.next; 
    continue; 
  } 
  // more to come 
}

You need to traverse the list using two pointers: previous and next. The if block 
will trigger if it’s necessary to remove a node.

You modify the list so that you bypass the node you don’t want:

Keep Traveling…
Can you tell what’s missing? As it is right now, the while loop may never terminate. 
You need to move the previous and current pointers along. Write the following at 
the bottom of the while loop, replacing the // more to come comment:

previous = current; 
current = current.next;
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Finally, you’ll update the tail of the linked list. This is necessary when the original 
tail is a node containing the value you wanted to remove. Add the following to the 
end of removeAll:

tail = previous;

And that’s it for the implementation!

Try it Out!
Write the following in main:

var list = LinkedList<int>(); 
list.push(3); 
list.push(2); 
list.push(2); 
list.push(1); 
list.push(1); 

 
list.removeAll(3); 
print(list);

You should see the following output:

1 -> 1 -> 2 -> 2

This algorithm has a time complexity of O(n) since you need to go through all the 
elements.
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6Chapter 6 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
Queues have a behavior of first-in-first-out. What comes in first must come out first. 
Items in the queue are inserted from the rear and removed from the front.

Queue Examples:

1. Line in a movie theatre: You would hate for people to cut the line at the movie 
theatre when buying tickets!

2. Printer: Multiple people could print documents from a printer in a similar first-
come-first-serve manner.

Stacks have a behavior of last-in-first-out. Items on the stack are inserted at the top 
and removed from the top.

Stack Examples:

1. Stack of plates: You stack plates on top of each other and remove the top plate 
every time you use one. Isn’t this easier than grabbing the one at the bottom?

2. Undo functionality: Imagine typing words on a keyboard. Clicking Ctrl-Z will 
undo the most recent text you typed.
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Solution to Challenge 2

List
Keep in mind that whenever the list is full and you try to add a new element, a new 
list will be created with twice the capacity and existing elements being copied over.
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Linked List
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Ring Buffer
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Double Stack
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Solution to Challenge 3
Creating a board game manager is straightforward. All you care about is whose turn 
it is. A queue data structure is the perfect choice for that!

extension BoardGameManager<E> on QueueRingBuffer<E> { 
  E? nextPlayer() { 
    final person = dequeue(); 
    if (person != null) { 
      enqueue(person); 
    } 
    return person; 
  } 
}

Dequeuing a player tells you who is next. Enqueuing them again puts them at the 
back of the queue.

For the small number of players you’re dealing with in a Monopoly game, you aren’t 
going to have any noticeable performance difference no matter what queue type you 
choose. However, a ring-buffer-based queue is great for Monopoly since there are a 
set number of players and you don’t need to worry about overfilling the buffer.

Test it out:

final monopolyTurn = QueueRingBuffer<String>(4); 
monopolyTurn.enqueue('Ray'); 
monopolyTurn.enqueue('Vicki'); 
monopolyTurn.enqueue('Luke'); 
monopolyTurn.enqueue('Pablo'); 

 
String? player; 
for (var i = 1; i <= 20; i++) { 
  player = monopolyTurn.nextPlayer(); 
  print(player); 
} 
print('$player wins!');
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Solution to Challenge 4
Deque is made up of common operations from the Queue and Stack data structures. 
There are many ways to implement a Deque. You could build one using a circular 
buffer, two stacks, a list, or a doubly linked list. The solution below makes use of a 
doubly linked list to construct a Deque.

First setup the doubly-linked-list deque as shown below:

class DequeDoublyLinkedList<E> implements Deque<E> { 
  final _list = DoublyLinkedList<E>(); 

 
}

Now you have to conform to the Deque interface. First, implement isEmpty by 
checking if the linked list is empty. This is an O(1) operation.

@override 
bool get isEmpty => _list.isEmpty;

Next, you need a way to look at the value from the front or back of the Deque.

@override 
E? peek(Direction from) { 
  switch (from) { 
    case Direction.front: 
      return _list.head?.value; 
    case Direction.back: 
      return _list.tail?.value; 
  } 
}

To peek at the element from the front or back, check the list’s head and tail values. 
This is an O(1) operation.
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Now you need a way to add elements to the front or back of Deque.

@override 
bool enqueue(E value, Direction to) { 
  switch (to) { 
    case Direction.front: 
      _list.push(value); 
      break; 
    case Direction.back: 
      _list.append(value); 
      break; 
  } 
  return true; 
}

Adding an element to the front or back of Deque:

1. Front: push an element to the front of the list. Internally the linked list will 
update the new node as the head of the linked list.

2. Back: append an element to the back of the list. Similarly, the linked list will 
update the new node as the tail of the linked list.

These are both O(1) operations since all you have to do is update the internal 
pointers for a couple nodes.

Now that you have a way to add elements, how about a way to remove elements?

@override 
E? dequeue(Direction from) { 
  switch (from) { 
    case Direction.front: 
      return _list.pop(); 
    case Direction.back: 
      return _list.removeLast(); 
  } 
}

Removing an element from the front or back of a Deque is simple.

1. Front: Call pop to remove the head node in the list.

2. Back: Similarly, call removeLast to remove the tail.

Similar to enqueue, these are O(1) operations for a doubly linked list.
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Lastly, override toString so you can test your Deque.

@override 
String toString() => _list.toString();

That’s all there is to building a Deque! Add the following code below to test your 
implementation:

final deque = DequeDoublyLinkedList<int>(); 
deque.enqueue(1, Direction.back); 
deque.enqueue(2, Direction.back); 
deque.enqueue(3, Direction.back); 
deque.enqueue(4, Direction.back); 

 
print(deque); 

 
deque.enqueue(5, Direction.front); 

 
print(deque); 

 
deque.dequeue(Direction.back); 
deque.dequeue(Direction.back); 
deque.dequeue(Direction.back); 
deque.dequeue(Direction.front); 
deque.dequeue(Direction.front); 
deque.dequeue(Direction.front); 

 
print(deque);

Run that and you’ll see the following in the console:

[1, 2, 3, 4] 
[5, 1, 2, 3, 4] 
[]
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7Chapter 7 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A straightforward way to print the nodes in level-order is to leverage the level-order 
traversal using a Queue data structure. The tricky bit is determining when a newline 
should occur. For that it would be useful to know the number of elements in the 
queue. The queues you made in the last chapter don’t have a length property, but 
you can add one now.

Open your QueueStack implementation and add the following line:

int get length => _leftStack.length + _rightStack.length;

You implemented the double-stack queue using two lists, so finding the length is 
still an O(1) operation. This would not be true if you used the linked-list 
implementation.
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Now you’re ready to deal with the challenge:

void printEachLevel<T>(TreeNode<T> tree) { 
  final result = StringBuffer(); 
  // 1 
  var queue = QueueStack<TreeNode<T>>(); 
  var nodesLeftInCurrentLevel = 0; 
  queue.enqueue(tree); 
  // 2 
  while (!queue.isEmpty) { 
    // 3 
    nodesLeftInCurrentLevel = queue.length; 
    // 4 
    while (nodesLeftInCurrentLevel > 0) { 
      final node = queue.dequeue(); 
      if (node == null) break; 
      result.write('${node.value} '); 
      for (var element in node.children) { 
        queue.enqueue(element); 
      } 
      nodesLeftInCurrentLevel -= 1; 
    } 
    // 5 
    result.write('\n'); 
  } 
  print(result); 
}

1. You begin by initializing a Queue data structure to facilitate the level-order 
traversal. You also create nodesLeftInCurrentLevel to keep track of the 
number of nodes you’ll need to work on before you print a new line.

2. Your level-order traversal continues until your queue is empty.

3. Inside the first while loop, you begin by setting nodesLeftInCurrentLevel to 
the number of current elements in the queue.

4. Using another while loop, you dequeue the first nodesLeftInCurrentLevel 
number of elements from the queue. Every element you dequeue is added to 
result without establishing a new line. You also enqueue all the children of the 
node.

5. At this point, you append a newline to result. In the next iteration, 
nodesLeftInCurrentLevel will be updated with the count of the queue, 
representing the number of children from the previous iteration.

This algorithm has a time complexity of O(n). Since you initialize the Queue data 
structure as an intermediary container, this algorithm also uses O(n) space.
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Solution to Challenge 2
When building a UI widget tree it’s easier if you can pass the children in as 
parameters in the constructor. Here is one version of what the nodes could look like:

class Widget {} 
 

class Column extends Widget { 
  Column({this.children}); 
  List<Widget>? children; 
} 

 
class Padding extends Widget { 
  Padding({this.value = 0.0, this.child}); 
  double value; 
  Widget? child; 
} 

 
class Text extends Widget { 
  Text([this.value = '']); 
  String value; 
}

Now you can easily build a Flutter-like widget tree:

final tree = Column( 
  children: [ 
    Padding( 
      value: 8.0, 
      child: Text('This'), 
    ), 
    Padding( 
      value: 8.0, 
      child: Text('is'), 
    ), 
    Column( 
      children: [ 
        Text('my'), 
        Text('widget'), 
        Text('tree!'), 
      ], 
    ), 
  ], 
);
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8Chapter 8 Solutions

By Kelvin Lau & Jonathan Sande

You can use the following code to create a demo tree for both challenges:

//  ┌──25 
//  │ └──17 
// 15 
//  │ ┌──12 
//  └──10 
//    └──5 
BinaryNode<int> createBinaryTree() { 
  final n15 = BinaryNode(15); 
  final n10 = BinaryNode(10); 
  final n5 = BinaryNode(5); 
  final n12 = BinaryNode(12); 
  final n25 = BinaryNode(25); 
  final n17 = BinaryNode(17); 

 
  n15.leftChild = n10; 
  n10.leftChild = n5; 
  n10.rightChild = n12; 
  n15.rightChild = n25; 
  n25.leftChild = n17; 

 
  return n15; 
}
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Solution to  Challenge 1
A recursive approach for finding the height of a binary tree doesn’t take much code:

import 'dart:math'; 
 

int height(BinaryNode? node) { 
  // 1 
  if (node == null) return -1; 

 
  // 2 
  return 1 + 
      max( 
        height(node.leftChild), 
        height(node.rightChild), 
      ); 
}

1. This is the base case for the recursive solution. If the node is null, you’ll return 
-1.

2. Here, you recursively call the height function. For every node you visit, you add 
one to the height of the highest child.

This algorithm has a time complexity of O(n) since you need to traverse through all 
the nodes. This algorithm incurs a space cost of O(n) since you need to make the 
same n recursive calls to the call stack.

Solution to Challenge 2
There are many ways to serialize and deserialize a binary tree. Your first task when 
encountering this question is to decide on the traversal strategy.

This solution will use the pre-order traversal strategy.

Traversal
Define the following extension in your project:

extension Serializable<T> on BinaryNode<T> { 
  void traversePreOrderWithNull(void Function(T? value) action) 
{ 
    action(value); 
    if (leftChild == null) { 
      action(null);
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    } else { 
      leftChild!.traversePreOrderWithNull(action); 
    } 
    if (rightChild == null) { 
      action(null); 
    } else { 
      rightChild!.traversePreOrderWithNull(action); 
    } 
  } 
}

This function implements pre-order traversal. However, it differs from the 
traversePreOrder function that you wrote when going through the chapter because 
this one performs action even when the children are null. It’s essential to record 
those for serialization and deserialization.

As with all traversal functions, this algorithm goes through every node in the tree 
once, so it has a time complexity of O(n).

Serialization
For serialization, you simply traverse the tree and store the values into a list. The 
elements of the list have type T? since you need to keep track of the null nodes. 
Write the following function to perform the serialization:

List<T?> serialize<T>(BinaryNode<T> node) { 
  final list = <T?>[]; 
  node.traversePreOrderWithNull((value) => list.add(value)); 
  return list; 
}

serialize will return a new list containing the values of the tree in pre-order.

The time complexity of the serialization step is O(n). Since you’re creating a new list, 
this also incurs an O(n) space cost.

Deserialization
In the serialization process, you performed a pre-order traversal and assembled the 
values into a list. The deserialization process is to take each value of the list and 
reassemble it back into a tree.
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Your goal is to iterate through the list and reassemble the tree in pre-order format. 
Add the following function to your project:

// 1 
BinaryNode<T>? deserialize<T>(List<T?> list) { 
  // 2 
  if (list.isEmpty) return null; 
  final value = list.removeAt(0); 
  if (value == null) return null; 
  // 3 
  final node = BinaryNode<T>(value); 
  node.leftChild = deserialize(list); 
  node.rightChild = deserialize(list); 
  return node; 
}

Here’s how the code works:

1. deserialize takes a mutable list of values. This is important because you’ll be 
able to make mutations to the list in each recursive step and allow future 
recursive calls to see the changes.

2. This is the base case. If the list is empty you’ll end recursion here. You also won’t 
bother making any nodes for null values in the list.

3. You reassemble the tree by creating a node from the current value and 
recursively calling deserialize to assign nodes to the left and right children. 
Notice this is very similar to the pre-order traversal, except you build nodes 
rather than extract their values.

Your algorithm is now ready for testing! Write the following in main:

final tree = createBinaryTree(); 
final list = serialize(tree); 
final newTree = deserialize(list); 
print(newTree);

You should see the result below in your console:

 ┌── null 
┌──25 
│ └── 17 
15 
│ ┌── 12 
└──10 
 └── 5
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Your deserialized tree mirrors the original one. This is the behavior you want.

However, the time complexity of this function isn’t desirable. Since you’re calling 
removeAt(0) as many times as elements in the list, this algorithm has an O(n²) time 
complexity. Fortunately, there’s an easy way to remedy that.

Write the following function just after deserialize:

BinaryNode<T>? deserializeHelper<T>(List<T?> list) { 
  return deserialize(list.reversed.toList()); 
}

This is a helper function that first reverses the list before calling the main 
deserialize function. In deserialize, find the removeAt(0) function call and 
change it to the following:

final value = list.removeLast();

This tiny change has a big effect on performance. removeAt(0) is an O(n) operation 
because, after every removal, every element after the removed element must shift 
left to take up the missing space. In contrast, removeLast is an O(1) operation.

Finally, find and update the call site of deserialize to use the new helper function 
that reverses the list:

final tree = createBinaryTree(); 
final list = serialize(tree); 
final newTree = deserializeHelper(list);

You should see the same tree before and after the deserialization process. The time 
complexity, though, for this solution has now improved to O(n). Because you’ve 
created a new reversed list and chosen a recursive solution, this algorithm has a 
space complexity of O(n).

Data Structures & Algorithms in Dart Chapter 8 Solutions

raywenderlich.com 373



9Chapter 9 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A binary search tree is a tree where every left child is less than its parent, and every 
right child is greater than or equal to its parent.

An algorithm that verifies whether a tree is a binary search tree involves going 
through all the nodes and checking for this property.
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Write the following in your project. You’ll need access to the BinaryNode class that 
you created in Chapter 8.

import 'binary_node.dart'; 
 

extension Checker<E extends Comparable<dynamic>> on 
BinaryNode<E> { 
  bool isBinarySearchTree() { 
    return _isBST(this, min: null, max: null); 
  } 

 
  bool _isBST(BinaryNode<E>? tree, {E? min, E? max}) { 
    // 1 
    if (tree == null) return true; 

 
    // 2 
    if (min != null && tree.value.compareTo(min) < 0) { 
      return false; 
    } else if (max != null && tree.value.compareTo(max) >= 0) { 
      return false; 
    } 

 
    // 3 
    return _isBST(tree.leftChild, min: min, max: tree.value) && 
        _isBST(tree.rightChild, min: tree.value, max: max); 
  } 
}

isBinarySearchTree is the method that you’ll expose for external use. Meanwhile, 
the magic happens in _isBST, which is responsible for recursively traversing through 
the tree and checking that the BST rules are followed. It needs to keep track of 
progress via a reference to a BinaryNode, and also keep track of the min and max 
values to verify the BST rules. Here are the details:

1. This is the base case. If tree is null, then there are no nodes to inspect. A null 
node is a binary search tree, so you’ll return true in that case.

2. This is essentially a bounds check. If the current value exceeds the bounds of min 
and max, the current node violates binary search tree rules.

3. This statement contains the recursive calls. When traversing through the left 
children, the current value is passed in as the max value. This is because any 
nodes on the left side cannot be greater than the parent. Conversely, when 
traversing to the right, the min value is updated to the current value. Any nodes 
on the right side must be greater than or equal to the parent. If any of the 
recursive calls evaluate false, the false value will propagate back to the top.
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The time complexity of this solution is O(n) since you need to traverse through the 
entire tree once. There is also an O(n) space cost since you’re making n recursive 
calls.

Solution to Challenge 2
Testing equality is relatively straightforward. For two binary trees to be equal, both 
trees must have the same elements in the same order. Here’s what the solution looks 
like:

bool treesEqual(BinarySearchTree first, BinarySearchTree second) 
{ 
  return _isEqual(first.root, second.root); 
} 

 
// 1 
bool _isEqual(BinaryNode? first, BinaryNode? second) { 
  // 2 
  if (first == null || second == null) { 
    return first == null && second == null; 
  } 
  // 3 
  return first.value == second.value && 
      _isEqual(first.leftChild, second.leftChild) && 
      _isEqual(first.rightChild, second.rightChild); 
}

The commented numbers refer to the following notes:

1. _isEqual will recursively check two nodes and their descendants for equality.

2. This is the base case. If one or more of the nodes are null, then there’s no need 
to continue checking. If both nodes are null, they’re equal. Otherwise, one is 
null and one isn’t null, so they must not be equal.

3. Here, you check the value of the first and second nodes for equality. You also 
recursively check the left children and right children for equality.

The time complexity of this function is O(n). The space complexity of this function is 
also O(n).

Note: Trees are mutable and testing for equality on mutably data structures is 
an inherently tricky business. That’s why this solution didn’t have you 
override the == operator and hashCode method on BinarySearchTree.
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Solution to Challenge 3
Your goal is to create a method that checks if the current tree contains all the 
elements of another tree. In other words, the values in the current tree must be a 
superset of the values of the other tree. Here’s what the solution looks like:

extension Subtree<E> on BinarySearchTree { 
  bool containsSubtree(BinarySearchTree subtree) { 
    // 1 
    Set set = <E>{}; 
    root?.traverseInOrder((value) { 
      set.add(value); 
    }); 

 
    // 2 
    var isEqual = true; 

 
    // 3 
    subtree.root?.traverseInOrder((value) { 
      isEqual = isEqual && set.contains(value); 
    }); 
    return isEqual; 
  } 
}

1. You begin by inserting all the elements of the current tree into a set.

2. isEqual is there to store the end result. You need this because traverseInOrder 
takes a closure, and you can’t directly return from inside the closure.

3. For every element in the subtree, you check if the set contains the value. If at any 
point set.contains(value) evaluates as false, you’ll make sure isEqual stays 
false even if subsequent elements evaluate as  true.

The time and space complexity for this algorithm is O(n).

Data Structures & Algorithms in Dart Chapter 9 Solutions

raywenderlich.com 377



10Chapter 10 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
A perfectly balanced tree is a tree where all the leaves are in the same level, and that 
level is completely filled:

Recall that a tree with just a root node has a height of zero. Thus, the tree in the 
example above has a height of two. You can extrapolate that a tree with a height of 
three would have eight leaf nodes.
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Since each node has two children, the number of leaf nodes doubles as the height 
increases. You can calculate the number of leaf nodes with a simple equation:

int leafNodes(int height) { 
  return math.pow(2, height).toInt(); 
}

Solution to Challenge 2
Since the tree is perfectly balanced, the number of nodes in a perfectly balanced tree 
of height 3 can be expressed by the following:

int nodes(int height) { 
  int nodes = 0; 
  for (int h = 0; h <= height; h++) { 
    nodes += math.pow(2, h).toInt(); 
  } 
  return nodes; 
}

Although this certainly gives you the correct answer of 15, there’s a faster way. If you 
examine the results of a sequence of height inputs, you’ll realize that the total 
number of nodes is one less than the number of leaf nodes of the next level.

Thus, a faster version of this is the following:

int nodes(int height) { 
  return math.pow(2, height + 1).toInt() - 1; 
}
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Solution to Challenge 3
First, open avl_node.dart and add the following interface to the top of the file:

abstract class TraversableBinaryNode<T> { 
  T get value; 
  TraversableBinaryNode<T>? get leftChild; 
  TraversableBinaryNode<T>? get rightChild; 

 
  void traverseInOrder(void Function(T value) action) { 
    leftChild?.traverseInOrder(action); 
    action(value); 
    rightChild?.traverseInOrder(action); 
  } 

 
  void traversePreOrder(void Function(T value) action) { 
    action(value); 
    leftChild?.traversePreOrder(action); 
    rightChild?.traversePreOrder(action); 
  } 

 
  void traversePostOrder(void Function(T value) action) { 
    leftChild?.traversePostOrder(action); 
    rightChild?.traversePostOrder(action); 
    action(value); 
  } 
}

Next, replace first few lines of AvlNode to include TraversableBinaryNode and the 
@override annotations:

class AvlNode<T> extends TraversableBinaryNode<T> { 
  AvlNode(this.value); 

 
  @override 
  T value; 

 
  @override 
  AvlNode<T>? leftChild; 

 
  @override 
  AvlNode<T>? rightChild; 

 
  // ...
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You can also delete the traversal methods in AvlNode since they are already included 
in TraversableBinaryNode.

Finally, run the following to test it out:

import 'avl_tree.dart'; 
 

void main() { 
  final tree = AvlTree<int>(); 
  for (var i = 0; i < 15; i++) { 
    tree.insert(i); 
  } 
  tree.root?.traverseInOrder(print); 
}

Verify that you’re getting the following results in the console:

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14
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11Chapter 11 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
You’ll implement allStrings as a stored property. Inside StringTrie, add the 
following new property:

final Set<String> _allStrings = {}; 
Set<String> get allStrings => _allStrings;

This property is a Set that will separately store all the strings represented by the 
code unit collections in the trie. Making allStrings a getter prevents the property 
from being tampered with from the outside.

Next, in the insert method, find the line current.isTerminating = true and add 
the following below it:

_allStrings.add(text);
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In the remove function, find the line current.isTerminating = false and add the 
following just below that line:

_allStrings.remove(text);

This ensures that your string set will stay in sync with the trie.

Adding the count and isEmpty properties is straightforward now that you’re keeping 
track of all the strings:

int get length => _allStrings.length; 
 

bool get isEmpty => _allStrings.isEmpty;

That’s it!

Note: Just because you can do something doesn’t mean you should. Now that 
you’re storing all of the strings in your trie separately as a set, you’ve lost the 
space complexity benefits that trie gave you.

Solution to Challenge 2
In StringTrie you only dealt with code unit collections. Now you have to generalize 
the task to handle any collection. Since you need to be able to loop through the 
elements of whatever collection you’re inserting, searching for, or removing, a 
generic trie should require any input to be iterable.

Create a new file called trie.dart and add the following class to it:

import 'trie_node.dart'; 
 

class Trie<E, T extends Iterable<E>> { 
  TrieNode<E> root = TrieNode(key: null, parent: null); 
}

T represents the iterable collections that you’ll add to the trie while E represents the 
type for the TrieNode key. For example, given a list of code units, E is int for the 
code unit while T is List<int> for the collection.

Data Structures & Algorithms in Dart Chapter 11 Solutions

raywenderlich.com 383



Now that you have the generic types set up, you can implement the insert method 
like so:

void insert(T collection) { 
  var current = root; 
  for (E element in collection) { 
    current.children[element] ??= TrieNode( 
      key: element, 
      parent: current, 
    ); 
    current = current.children[element]!; 
  } 
  current.isTerminating = true; 
}

This is almost identical to your StringTrie implementation except that now you 
iterate through the more generic elements of type E in a collection of type T.

The process to update contains and remove are similar:

• Parameter inputs are T collection.

• Use for (E element in collection) to loop through the elements.

Try out your generic Trie by running the following in main:

import 'trie.dart'; 
 

void main() { 
  final trie = Trie<int, List<int>>(); 
  trie.insert('cut'.codeUnits); 
  trie.insert('cute'.codeUnits); 
  if (trie.contains('cute'.codeUnits)) { 
    print('cute is in the trie'); 
  } 
  trie.remove('cut'.codeUnits); 
  assert(!trie.contains('cut'.codeUnits)); 
}

Run that and you’ll see the following results:

cute is in the trie 
cut has been removed

From the user’s perspective, the code above isn’t quite as concise as your 
StringTrie was. However, the advantage is that your new Trie can handle any 
iterable collection, not just the code units of strings.
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12Chapter 12 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
In this challenge you implement binary search as a free function. Here’s what it looks 
like:

int? binarySearch<E extends Comparable<dynamic>>( 
  List<E> list, 
  E value, [ 
  int? start, 
  int? end, 
]) { 
  final startIndex = start ?? 0; 
  final endIndex = end ?? list.length; 
  if (startIndex >= endIndex) { 
    return null; 
  } 
  final size = endIndex - startIndex; 
  final middle = startIndex + size ~/ 2; 
  if (list[middle] == value) { 
    return middle; 
  } else if (value.compareTo(list[middle]) < 0) { 
    return binarySearch(list, value, startIndex, middle); 
  } else { 
    return binarySearch(list, value, middle + 1, endIndex); 
  } 
}

The only major difference from the extension that you made earlier is that now you 
also need to pass the list in as a parameter.
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Solution to Challenge 2
Here is how you would implement binarySearch as a non-recursive function:

int? binarySearch<E extends Comparable<dynamic>>( 
  List<E> list, 
  E value, 
) { 
  var start = 0; 
  var end = list.length; 
  while (start < end) { 
    final middle = start + (end - start) ~/ 2; 
    if (value == list[middle]) { 
      return middle; 
    } else if (value.compareTo(list[middle]) < 0) { 
      end = middle; 
    } else { 
      start = middle + 1; 
    } 
  } 
  return null; 
}

On each loop you move start and end closer and closer to each other until you 
finally get the value…or find nothing.

Good old loops can be a lot easier to wrap your brain around, can’t they? Don’t let 
anyone tell you that recursion is the only answer!

Solution to Challenge 3
First create a class to hold the start and end indices:

class Range { 
  Range(this.start, this.end); 
  final int start; 
  final int end; 

 
  @override 
  String toString() => 'Range($start, $end)'; 
}
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start is inclusive and end is exclusive.

An unoptimized but elegant solution to find a range of indices that match a value is 
quite simple:

Range? findRange(List<int> list, int value) { 
  final start = list.indexOf(value); 
  if (start == -1) return null; 
  final end = list.lastIndexOf(value) + 1; 
  return Range(start, end); 
}

The time complexity of this solution is O(n), which isn’t terrible. However, the 
solution can be optimized to O(log n).

Whenever you hear that a collection is sorted, your mind should jump to binary 
search. The binary search you implemented in this chapter, though, isn’t powerful 
enough to tell you whether the index is a start or end index. You’ll modify the binary 
search to accommodate for this new rule.

First write a helper method to find the start index:

int? _startIndex(List<int> list, int value) { 
  if (list[0] == value) return 0; 
  var start = 1; 
  var end = list.length; 
  while (start < end) { 
    var middle = start + (end - start) ~/ 2; 
    if (list[middle] == value && list[middle - 1] != value) { 
      return middle; 
    } else if (list[middle] < value) { 
      start = middle + 1; 
    } else { 
      end = middle; 
    } 
  } 
  return null; 
}
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This method not only checks that the value is correct but also that it’s the first one if 
there are multiple elements of the same value.

Add another method to find the end index:

int? _endIndex(List<int> list, int value) { 
  if (list[list.length - 1] == value) return list.length; 
  var start = 0; 
  var end = list.length - 1; 
  while (start < end) { 
    var middle = start + (end - start) ~/ 2; 
    if (list[middle] == value && list[middle + 1] != value) { 
      return middle + 1; 
    } else if (list[middle] > value) { 
      end = middle; 
    } else { 
      start = middle + 1; 
    } 
  } 
  return null; 
}

The logic is the same except for a new adjustments to make sure you’ve found the 
very last element of a series.

Once you can find the start and end indices, obtaining the range is straightforward:

Range? findRange(List<int> list, int value) { 
  if (list.isEmpty) return null; 
  final start = _startIndex(list, value); 
  final end = _endIndex(list, value); 
  if (start == null || end == null) return null; 
  return Range(start, end); 
}

Test out your solution by running the following in main:

final list = [1, 2, 3, 3, 3, 4, 5, 5]; 
final range = findRange(list, 3); 
print(range);

You should see the output below in the console:

Range(2, 5)

This function improves the time complexity from O(n) to O(log n).
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13Chapter 13 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
There are many ways to solve for the nth smallest integer in an unsorted list. This 
chapter is about heaps, so the solution here will use a min-heap.

int? getNthSmallestElement(int n, List<int> elements) { 
  var heap = Heap( 
    elements: elements, 
    priority: Priority.min, 
  ); 
  int? value; 
  for (int i = 0; i < n; i++) { 
    value = heap.remove(); 
  } 
  return value; 
}

Since heap.remove always returns the smallest element, you just loop through n 
times to get the nth smallest integer.
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Solution to Challenge 2
Given the following unsorted list:

[21, 10, 18, 5, 3, 100, 1]

The diagrams below show the steps it would take to convert that list into a min-
heap. First sift the 18, then the 10, and finally the 21:

Solution to Challenge 3
To combine two heaps, add the following method to Heap:

void merge(List<E> list) { 
  elements.addAll(list); 
  _buildHeap(); 
}

You first combine both lists, which is O(m), where m is the size of the heap you’re 
merging. Building the heap takes O(n), where n is the new total number of elements. 
Overall the algorithm runs in O(n) time.
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Solution to Challenge 4
To satisfy the min-heap requirement, every parent node must be less than or equal 
to its left and right child node.

Here’s how you can determine if a list is a min-heap:

bool isMinHeap<E extends Comparable<dynamic>>(List<E> elements) 
{ 
  // 1 
  if (elements.isEmpty) return true; 
  // 2 
  final start = elements.length ~/ 2 - 1; 
  for (var i = start; i >= 0; i--) { 
    // 3 
    final left = 2 * i + 1; 
    final right = 2 * i + 2; 
    // 4 
    if (elements[left].compareTo(elements[i]) < 0) { 
      return false; 
    } 
    // 5 
    if (right < elements.length && 
        elements[right].compareTo(elements[i]) < 0) { 
      return false; 
    } 
  } 
  // 6 
  return true; 
}

1. If the list is empty, it’s a min-heap!

2. Loop through all parent nodes in the list in reverse order.

3. Get the left and right child index.

4. Check to see if the left element is less than the parent.

5. Check to see if the right index is within the list’s bounds, and then check if the 
right element is less than the parent.

6. If every parent-child relationship satisfies the min-heap property, return true.

The time complexity of this solution is O(n). This is because you still have to check 
the value of every element in the list.
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14Chapter 14 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
Start with the following Person type:

class Person extends Comparable<Person> { 
  Person({ 
    required this.name, 
    required this.age, 
    required this.isMilitary, 
  }); 

 
  final String name; 
  final int age; 
  final bool isMilitary; 

 
  @override 
  int compareTo(other) => throw UnimplementedError(); 
}

Since a priority queue needs to compare elements, Person also needs to be 
Comparable.
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Given a list of people on the waitlist, you would like to prioritize the people in the 
following order:

1. Military background

2. Seniority, by age

The key to solving this problem is to finish implementing the compareTo method in 
Person so that you can use a priority queue to tell you the order of people on the 
waitlist. Replace compareTo with the following code:

@override 
int compareTo(other) { 
  if (isMilitary == other.isMilitary) { 
    return age.compareTo(other.age); 
  } 
  return isMilitary ? 1 : -1; 
}

If two people have the same military background, then age is used to see who has the 
highest priority. But if the military background is different, then the one having a 
military background is prioritized.

Before you test your implementation out, override toString so that Person is 
printable:

@override 
String toString() { 
  final military = (isMilitary) ? ', (military)' : ''; 
  return '$name, age $age$military'; 
}

Import the PriorityQueue that you made earlier in the chapter if you haven’t 
already. Then run the following example in main:

final p1 = Person(name: 'Josh', age: 21, isMilitary: true); 
final p2 = Person(name: 'Jake', age: 22, isMilitary: true); 
final p3 = Person(name: 'Clay', age: 28, isMilitary: false); 
final p4 = Person(name: 'Cindy', age: 28, isMilitary: false); 
final p5 = Person(name: 'Sabrina', age: 30, isMilitary: false); 

 
final waitlist = [p1, p2, p3, p4, p5]; 

 
var priorityQueue = PriorityQueue(elements: waitlist); 
while (!priorityQueue.isEmpty) { 
  print(priorityQueue.dequeue()); 
}
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You should see the output below:

Jake, age 22, (military) 
Josh, age 21, (military) 
Sabrina, age 30 
Clay, age 28 
Cindy, age 28

Solution to Challenge 2
To make a list-based priority queue, all you have to do is implement the Queue 
interface. Instead of using a heap, though, you use a list data structure.

Here’s the Queue interface that you’ve used previously:

abstract class Queue<E> { 
  bool enqueue(E element); 
  E? dequeue(); 
  bool get isEmpty; 
  E? get peek; 
}

Getting Started
First, add the following code to a project that contains the Queue interface:

enum Priority { max, min } 
 

class PriorityQueueList<E extends Comparable<dynamic>> 
implements Queue<E> { 
  PriorityQueueList({List<E>? elements, Priority priority = 
Priority.max}) { 
    _priority = priority; 
    _elements = elements ?? []; 
  } 

 
  late List<E> _elements; 
  late Priority _priority; 

 
  // more to come 
}

So far this is nearly the same as your heap implementation. This time, though, you 
have a list.
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Which Is the High Priority End?
At this point you need to make a decision. You can either put the high priority 
elements at the start of the list or at the end of the list.

It might seem logical to put the high priority elements at the start of the list since 
that’s how you implemented heap. However, think about the properties of a list and 
what you need to accomplish in a queue. Inserting and removing from the beginning 
of a list is slow. If you make the start of the list the high priority end, then every 
single dequeue will be slow. On the other hand, if you put the high priority elements 
at the end of the list, then dequeuing will be a lightning-fast removeLast operation. 
Enqueuing will be slow no matter what you choose, but you might as well make 
dequeuing fast!

The code in the rest of this answer will assume that the end of the list is the high 
priority side.

Sorting an Initial List
Replace the PriorityQueueList constructor with the following code:

PriorityQueueList({List<E>? elements, Priority priority = 
Priority.max}) { 
  _priority = priority; 
  _elements = elements ?? []; 
  _elements.sort((a, b) => _compareByPriority(a, b)); 
} 

 
int _compareByPriority(E a, E b) { 
  if (_priority == Priority.max) { 
    return a.compareTo(b); 
  } 
  return b.compareTo(a); 
}

_compareByPriority returns an int following the requirements of the list’s sort 
function. Just like you’ve seen before with Comparable values, a comparison result of 
1 means the first value is larger, -1 means the second is larger, and 0 means they’re 
equal. The sort algorithm in Dart has a time complexity of O(n log n) for large lists.
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Implementing isEmpty and peek
Add the following methods to begin implementing the Queue interface:

@override 
bool get isEmpty => _elements.isEmpty; 

 
@override 
E? get peek => (isEmpty) ? null : _elements.last;

Since the high priority side is the end of the list, peeking returns the last element.

Implementing enqueue
Next, add the enqueue method:

@override 
bool enqueue(E element) { 
  // 1 
  for (int i = 0; i < _elements.length; i++) { 
    // 2 
    if (_compareByPriority(element, _elements[i]) < 0) { 
      // 3 
      _elements.insert(i, element); 
      return true; 
    } 
  } 
  // 4 
  _elements.add(element); 
  return true; 
}

To enqueue an element in a list-based priority queue, perform the following tasks:

1. Start at the low priority end of the list and loop through every element.

2. Check to see if the element you’re adding has an even lower priority than the 
current element.

3. If it does, insert the new element at the current index.

4. If you get to the end of the list, that means every other element was lower 
priority. Add the new element to the end of the list as the new highest priority 
element.
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This method has an overall time complexity of O(n) since you have to go through 
every element to check the priority against the new element you’re adding. Also, if 
you’re inserting in between elements in the list, you have to shift all of the 
remaining elements to the right by one.

Note: Since you’re working with a sorted list, you could improve the efficiency 
of this algorithm by using the binary search that you learned about in Chapter 
12. Insertion would still be O(n) in the worst case, but at least the search part 
would be O(log n).

Implementing dequeue
Next add the dequeue method:

@override 
E? dequeue() => isEmpty ? null : _elements.removeLast();

Here is where the benefit of putting the high priority elements at the end of the list 
comes in. removeLast is O(1) since you don’t have to shift anything, so that makes 
dequeue also O(1). That’s even better than the heap implementation!

Making the Queue Printable
Finally, override toString so that you can print your priority queue in a friendly 
format:

@override 
String toString() => _elements.toString();

Alternatively, if you wanted to hide the fact that the high-priority items are at the 
end, then you could reverse the list with _elements.reversed.

There you have it! A list-based priority queue.
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Testing it Out
To test out the priority queue, run the following in main:

final priorityQueue = PriorityQueueList( 
  elements: [1, 12, 3, 4, 1, 6, 8, 7], 
); 
print(priorityQueue); 
priorityQueue.enqueue(5); 
priorityQueue.enqueue(0); 
priorityQueue.enqueue(10); 
print(priorityQueue); 
while (!priorityQueue.isEmpty) { 
  print(priorityQueue.dequeue()); 
}

You should see the output below:

[1, 1, 3, 4, 6, 7, 8, 12] 
[0, 1, 1, 3, 4, 5, 6, 7, 8, 10, 12] 
12 
10 
8 
7 
6 
5 
4 
3 
1 
1 
0

This challenge was an exercise in implementing an interface from scratch. However, 
because of the slowness of enqueuing elements, you probably wouldn’t want to use 
your PriorityQueueList in a real project. The heap implementation performs 
better overall. On the other hand, if you have an application where you need 
dequeuing to be O(1) and you don’t care about enqueuing time, the list-based 
implementation might be the better choice.
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15Chapter 15 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
If you start with the following list:

[4, 2, 5, 1, 3]

Here are the steps a bubble sort would take:

[2, 4, 5, 1, 3] // 4-2 swapped 
[2, 4, 5, 1, 3] // 4-5 not swapped 
[2, 4, 1, 5, 3] // 5-1 swapped 
[2, 4, 1, 3, 5] // 5-3 swapped 

 
[2, 4, 1, 3, 5] // 2-4 not swapped 
[2, 1, 4, 3, 5] // 4-1 swapped 
[2, 1, 3, 4, 5] // 4-3 swapped 

 
[1, 2, 3, 4, 5] // 2-1 swapped 
[1, 2, 3, 4, 5] // 2-3 not swapped 

 
[1, 2, 3, 4, 5] // 1-2 not swapped

Bubble sort needed the full O(n²) traversal to finish the sort. It made ten 
comparisons and six swaps.
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Solution to Challenge 2
Given the following list:

[4, 2, 5, 1, 3]

These are the steps a selection sort would take:

[4, 2, 5, 1, 3] // start, lowest: 4 
 

[4, 2, 5, 1, 3] // compare 2-4, lowest: 2 
[4, 2, 5, 1, 3] // compare 5-2, lowest: 2 
[4, 2, 5, 1, 3] // compare 1-2, lowest: 1 
[4, 2, 5, 1, 3] // compare 3-1, lowest: 1 

 
// swap 4-1, reset lowest: 2 

 
[1, 2, 5, 4, 3] // compare 5-2, lowest: 2 
[1, 2, 5, 4, 3] // compare 4-2, lowest: 2 
[1, 2, 5, 4, 3] // compare 3-2, lowest: 2 

 
// no swap needed, reset lowest: 5 

 
[1, 2, 5, 4, 3] // compare 4-5, lowest: 4 
[1, 2, 5, 4, 3] // compare 3-4, lowest: 3 

 
// swap 5-3, reset lowest: 4 

 
[1, 2, 3, 4, 5] // compare 5-4, lowest: 4 

 
// no swap needed

This solution also needed the full O(n²) traversal with its ten comparisons. However, 
selection sort completed the task with only two swaps.
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Solution to Challenge 3
Using the following list:

[4, 2, 5, 1, 3]

An insertion sort would perform the steps below:

[2, 4, 5, 1, 3] // 4-2 swapped 
 

[2, 4, 5, 1, 3] // 4-5 not swapped 
 

[2, 4, 1, 5, 3] // 5-1 swapped 
[2, 1, 4, 5, 3] // 4-1 swapped 
[1, 2, 4, 5, 3] // 2-1 swapped 

 
[1, 2, 4, 3, 5] // 5-3 swapped 
[1, 2, 3, 4, 5] // 4-3 swapped 
[1, 2, 3, 4, 5] // 2-3 not swapped

Insertion sort was able to do a little better than O(n²) since on the second and fourth 
passes it found some presorted elements. Those steps are marked with “not 
swapped” in the comments above. Overall this solution required eight comparisons 
and six swaps.

Solution to Challenge 4
Each of the sort algorithms below is working on the following sorted collection:

[1, 2, 3, 4, 5]
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Bubble Sort
Here are the steps bubble sort would take:

[1, 2, 3, 4, 5] // 1-2 not swapped 
[1, 2, 3, 4, 5] // 2-3 not swapped 
[1, 2, 3, 4, 5] // 3-4 not swapped 
[1, 2, 3, 4, 5] // 4-5 not swapped

Since bubble sort completed an entire pass without needing to swap any elements, it 
could exit early after only one pass. This is O(n) time complexity. However, if you 
simply moved the 1 to the end of the list, bubble sort would suddenly become O(n²) 
again.

Selection Sort
These are the steps selection sort would take:

[1, 2, 3, 4, 5] // compare 2-1, lowest: 1 
[1, 2, 3, 4, 5] // compare 3-1, lowest: 1 
[1, 2, 3, 4, 5] // compare 4-1, lowest: 1 
[1, 2, 3, 4, 5] // compare 5-1, lowest: 1 

 
// no swap needed, reset lowest: 2 

 
[1, 2, 3, 4, 5] // compare 3-2, lowest: 2 
[1, 2, 3, 4, 5] // compare 4-2, lowest: 2 
[1, 2, 3, 4, 5] // compare 5-2, lowest: 2 

 
// no swap needed, reset lowest: 3 

 
[1, 2, 3, 4, 5] // compare 4-3, lowest: 3 
[1, 2, 3, 4, 5] // compare 5-3, lowest: 3 

 
// no swap needed, reset lowest: 4 

 
[1, 2, 3, 4, 5] // compare 5-4, lowest: 4 

 
// no swap needed

Even with a fully sorted list, selection sort is still O(n²).
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Insertion Sort
And these are the steps insertion sort would take:

[1, 2, 3, 4, 5] // 1-2 not swapped 
[1, 2, 3, 4, 5] // 2-3 not swapped 
[1, 2, 3, 4, 5] // 3-4 not swapped 
[1, 2, 3, 4, 5] // 4-5 not swapped

Like bubble sort, insertion sort is able to determine that the list is sorted with a 
single pass, giving it a time complexity of O(n). However, unlike bubble sort, moving 
1 to the end of the list wouldn’t cause insertion sort to jump all the way back up to 
O(n²).
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16Chapter 16 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
Stepping through the code of mergeSort one line at a time is probably the easiest 
way to understand what’s happening.

A few strategically placed print statements can also help:

List<E> mergeSort<E extends Comparable<dynamic>>(List<E> list) { 
  if (list.length < 2) { 
    print('recursion ending:  $list'); 
    return list; 
  } else { 
    print('recursion list in: $list'); 
  } 

 
  final middle = list.length ~/ 2; 
  final left = mergeSort(list.sublist(0, middle)); 
  final right = mergeSort(list.sublist(middle)); 

 
  final merged = _merge(left, right); 
  print('recursion ending:  merging $left and $right -> 
$merged'); 
  return merged; 
}
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Here’s the output for sorting the list [[4, 2, 5, 1, 3]:

recursion list in: [4, 2, 5, 1, 3] 
recursion list in: [4, 2] 
recursion ending:  [4] 
recursion ending:  [2] 
recursion ending:  merging [4] and [2] -> [2, 4] 
recursion list in: [5, 1, 3] 
recursion ending:  [5] 
recursion list in: [1, 3] 
recursion ending:  [1] 
recursion ending:  [3] 
recursion ending:  merging [1] and [3] -> [1, 3] 
recursion ending:  merging [5] and [1, 3] -> [1, 3, 5] 
recursion ending:  merging [2, 4] and [1, 3, 5] -> [1, 2, 3, 4, 
5] 

 
[1, 2, 3, 4, 5]

Solution to Challenge 2
The tricky part of this challenge is the limited capabilities of Iterable. Traditional 
implementations of merge sort rely on using the indices of a list. Since Iterable 
types have no notion of indices, though, you’ll make use of their iterator.

Recreate _merge in this way:

List<E> _merge<E extends Comparable<dynamic>>( 
  Iterable<E> first, 
  Iterable<E> second, 
) { 
  // 1 
  var result = <E>[]; 

 
  // 2 
  var firstIterator = first.iterator; 
  var secondIterator = second.iterator; 

 
  // 3 
  var firstHasValue = firstIterator.moveNext(); 
  var secondHasValue = secondIterator.moveNext(); 

 
  // more to come 
}
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Setting up the algorithm involves the following steps:

1. Create a new list to store the merged iterables.

2. Grab the iterators. Iterators are objects that know how to get the next value in 
the iterable.

3. Create two variables to keep track of when the iterators have reached the end of 
their content. moveNext returns true if the iterator found a next element, or 
false if the end of the collection was reached.

Using the iterators, you’ll decide which element should be appended into the result 
list by comparing the values. Write the following at the end of the _merge function:

while (firstHasValue && secondHasValue) { 
  // 1 
  final firstValue = firstIterator.current; 
  final secondValue = secondIterator.current; 

 
  // 2 
  if (firstValue.compareTo(secondValue) < 0) { 
    result.add(firstValue); 
    firstHasValue = firstIterator.moveNext(); 

 
  // 3 
  } else if (firstValue.compareTo(secondValue) > 0) { 
    result.add(secondValue); 
    secondHasValue = secondIterator.moveNext(); 

 
  // 4 
  } else { 
    result.add(firstValue); 
    result.add(secondValue); 
    firstHasValue = firstIterator.moveNext(); 
    secondHasValue = secondIterator.moveNext(); 
  } 
} 

 
// more to come

Here are some notes on the numbered comments above:

1. Grab the values using the current property of your iterators.

2. If the first value is less than the second one, you’ll add the first value to result, 
and then move the iterator to the next value.

3. If the first value is greater than the second, you’ll do the opposite.

4. If both values are equal, you’ll add them both and move the iterators on.
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This process will continue until one of the iterators runs out of values to dispense. In 
that scenario, if the other iterator still has any values left, they’ll be equal to or 
greater than the ones in result.

To add the rest of those values, write the following at the end of the _merge 
function:

if (firstHasValue) { 
  do { 
    result.add(firstIterator.current); 
  } while (firstIterator.moveNext()); 
} 

 
if (secondHasValue) { 
  do { 
    result.add(secondIterator.current); 
  } while (secondIterator.moveNext()); 
} 

 
return result;

That completes your new implementation of _merge.

Confirm that mergeSort still works by running the following in main:

final list = [7, 2, 6, 3, 9]; 
final sorted = mergeSort(list); 
print(sorted);

You should see the console output below:

[2, 3, 6, 7, 9]
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17Chapter 17 Solutions

By Kelvin Lau & Jonathan Sande

Solution to Challenge 1
You’re starting with the following list:

var list = [46, 500, 459, 1345, 13, 999];

LSD-Radix Sort
Modify your radixSort extension by adding the following print statement at the 
bottom of the while loop:

print(buckets);

Then when you call list.radixSort(), you’ll see the following output:

[[500], [], [], [13], [], [1345], [46], [], [], [459, 999]] 
[[500], [13], [], [], [1345, 46], [459], [], [], [], [999]] 
[[13, 46], [], [], [1345], [459], [500], [], [], [], [999]] 
[[13, 46, 459, 500, 999], [1345], [], [], [], [], [], [], [], 
[]]

This shows the values in the buckets at the end of all four rounds.
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MSD-Radix Sort
To see the items in your buckets on each recursion, add the following line to 
_msdRadixSorted right above where you set bucketOrder:

print(buckets); 
// final bucketOrder = ...

Now when you call list.lexicographicalSort(), you should see the following 
output:

[[], [1345, 13], [], [], [46, 459], [500], [], [], [], [999]] 
[[], [], [], [1345, 13], [], [], [], [], [], []] 
[[], [], [], [], [1345], [], [], [], [], []] 
[[], [], [], [], [], [459], [46], [], [], []]

The 13 is missing from the third set of buckets since it’s in the priority bucket.

Solution to Challenge 2
You can find the number of unique UTF-16 code units in a list of words by adding 
each code unit to a set:

int uniqueCharacters(List<String> words) { 
  final uniqueChars = <int>{}; 
  for (final word in words) { 
    for (final codeUnit in word.codeUnits) { 
      uniqueChars.add(codeUnit); 
    } 
  } 
  return uniqueChars.length; 
}

Here’s the example list:

final words = ['done', 'ad', 'eel', 'zoo', 'adept', 'do']; 
print(uniqueCharacters(words)); // 9

In this case, there are nine different letters used to write the words in the list. If you 
were implementing a bucket sort, you would need nine buckets.

Data Structures & Algorithms in Dart Chapter 17 Solutions

raywenderlich.com 409



Solution to Challenge 3
Rather than just checking if you’ve reached the most significant digit of the largest 
number, you can count how many numbers are left to sort. If there’s only one, then 
you’re finished.

extension RadixSort on List<int> { 
  void radixSort() { 
    const base = 10; 
    var place = 1; 
    // 1 
    var unsorted = length; 
    // 2 
    while (unsorted > 1) { 
      // 3 
      unsorted = 0; 
      final buckets = List.generate(base, (_) => <int>[]); 
      forEach((number) { 
        final remainingPart = number ~/ place; 
        final digit = remainingPart % base; 
        buckets[digit].add(number); 
        // 4 
        if (remainingPart ~/ base > 0) { 
          unsorted++; 
        } 
      }); 
      place *= base; 
      clear(); 
      addAll(buckets.expand((element) => element)); 
    } 
  } 
}

The numbered comments show the parts that have changed:

1. Initialize the unsorted count with however many numbers are in the list.

2. Proceed with another round of sorting as long as there is more than one number 
left to sort.

3. Start the counting over at the beginning of each round.

4. If the current number has more significant digits left, then increment the 
unsorted count.

In this way, the algorithm will stop as soon as it’s sorted all of the digits in all of the 
numbers except the remaining ones of the last big number. They don’t need to be 
sorted since this number will always be last.

Data Structures & Algorithms in Dart Chapter 17 Solutions

raywenderlich.com 410



18Chapter 18 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
Heapsort requires two steps:

1. Converting a list to a heap.

2. Repeatedly moving the root of the heap to an ordered list.

Step one is where you’ll find the difference in the number of comparisons needed.

5, 4, 3, 2, 1
[5, 4, 3, 2, 1] will yield the fewest number of comparisons since it’s already a 
max-heap and no swaps take place.

When building a max-heap, you only look at the parent nodes because these are the 
nodes that might need to sift down. In this case, there are two parent nodes, each 
with two comparisons. You compare 4 with 2 and 1. Then you compare 5 with 4 and 
3. Since none of these comparisons require a swap, no further comparisons are 
necessary.
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1, 2, 3, 4, 5
[1, 2, 3, 4, 5] will yield the most number of comparisons. You first compare 2 
with 4 and 4 with 5. Since 2 is smaller, you swap it with 5. Then you compare 1 with 
5 and 5 with 3. Since 1 is smaller, you sift it down, swapping it with the 5. The down-
sift now requires comparing 1 with 4 and 4 with 2, which will lead to swapping 1 
with 4.

The sorting itself will take additional comparisons, but these are equivalent since 
both lists have already been converted to heaps.

Solution to Challenge 2
There are multiple ways to sort in descending order.

Using reversed
The easiest solution is to simply use the reversed method on List:

final list = [6, 12, 2, 26, 8, 18, 21, 9, 5]; 
final ascending = heapsort(list); 
final descending = ascending.reversed;

This gives you an iterable, but you can convert it to a list with toList if needed.
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Reimplementing Heapsort
If you’re using the heapsort function that you implemented earlier in the chapter, 
then replace Priority.min with Priority.max.

List<E> descendingHeapsort<E extends 
Comparable<dynamic>>(List<E> list) { 
  final heap = Heap<E>( 
    elements: list.toList(), 
    priority: Priority.max, // changed 
  ); 
  final sorted = <E>[]; 
  while (!heap.isEmpty) { 
    final value = heap.remove(); 
    sorted.add(value!); 
  } 
  return sorted; 
}

This will fill the list by pulling the max values off of the heap, resulting in a list of 
descending values.

Reimplementing heapsortInPlace
It’s also easy to reimplement your heapsortInPlace extension to sort in ascending 
order. Again, all you have to do is change the heap priority.

Go to _siftDown and look for the two comparisons:

this[left].compareTo(this[chosen]) > 0 
// and 
this[right].compareTo(this[chosen]) > 0

Then switch > 0 to < 0:

this[left].compareTo(this[chosen]) < 0 
// and 
this[right].compareTo(this[chosen]) < 0

This will create an internal min-heap so that during the sorting step the lowest 
values will be pulled off the heap and placed at the end of the list.
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19Chapter 19 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
In this chapter, you implemented quicksort recursively. Here’s how you might do it 
iteratively.

This solution uses Lomuto’s partitioning strategy. You’ll leverage a stack to store 
pairs of high and low indices for sublist partitions.

void quicksortIterativeLomuto<E extends Comparable<dynamic>>( 
  List<E> list, 
) { 
  // 1 
  var stack = Stack<int>(); 
  // 2 
  stack.push(0); 
  stack.push(list.length - 1); 
  // 3 
  while (stack.isNotEmpty) { 
    // 4 
    final high = stack.pop(); 
    final low = stack.pop(); 
    // 5 
    final pivot = _partitionLomuto(list, low, high); 
    // 6 
    if (pivot - 1 > low) { 
      stack.push(low); 
      stack.push(pivot - 1); 
    } 
    // 7 
    if (pivot + 1 < high) { 
      stack.push(pivot + 1); 
      stack.push(high);
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    } 
  } 
}

Here’s how the solution works:

1. Create a stack that stores indices.

2. Push the starting low and high boundaries on the stack as initial values.

3. When the stack is empty, quicksort is complete.

4. Get the pair of high and low indices from the stack.

5. Perform Lomuto’s partitioning with the current indices. Recall that Lomuto picks 
the last element as the pivot and splits the partitions into three parts: elements 
that are less than the pivot, the pivot, and finally, elements that are greater than 
the pivot.

6. Once the partitioning is complete, add the lower bound’s low and high indices to 
partition the lower half later.

7. Similarly, add the upper bound’s low and high indices to partition the upper half 
later.

The results are the same as with the recursive version:

final list = [8, 2, 10, 0, 9, 18, 9, -1, 5]; 
quicksortIterativeLomuto(list); 
print(list); 
// [-1, 0, 2, 5, 8, 9, 9, 10, 18]

Solution to Challenge 2
Merge sort is preferable over quicksort when you need stability. Merge sort is stable 
and guarantees O(n log n). These characteristics are not the case with quicksort, 
which isn’t stable and can perform as badly as O(n²).

Merge sort works better for larger data structures or data structures where elements 
are scattered throughout memory. Quicksort works best when elements are stored in 
a contiguous block.
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20Chapter 20 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
This solution uses the AdjacencyList API you built in this chapter. You can use any 
non-null weight, but a good default is 1.

final graph = AdjacencyList<String>(); 
 

final megan = graph.createVertex('Megan'); 
final sandra = graph.createVertex('Sandra'); 
final pablo = graph.createVertex('Pablo'); 
final edith = graph.createVertex('Edith'); 
final ray = graph.createVertex('Ray'); 
final luke = graph.createVertex('Luke'); 
final manda = graph.createVertex('Manda'); 
final vicki = graph.createVertex('Vicki'); 

 
graph.addEdge(megan, sandra, weight: 1); 
graph.addEdge(megan, pablo, weight: 1); 
graph.addEdge(megan, edith, weight: 1); 
graph.addEdge(pablo, ray, weight: 1); 
graph.addEdge(pablo, luke, weight: 1); 
graph.addEdge(edith, manda, weight: 1); 
graph.addEdge(edith, vicki, weight: 1); 
graph.addEdge(manda, pablo, weight: 1); 
graph.addEdge(manda, megan, weight: 1); 

 
print(graph);
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You can simply look at the graph to find the common friend:

Megan --> Sandra, Pablo, Edith, Manda 
Sandra --> Megan 
Pablo --> Megan, Ray, Luke, Manda 
Edith --> Megan, Manda, Vicki 
Ray --> Pablo 
Luke --> Pablo 
Manda --> Edith, Pablo, Megan 
Vicki --> Edith

Turns out to be Manda, which was stated pretty directly in the question. :]

If you want to solve it programmatically, you can find the intersection of the set of 
Megan’s friends with the set of Pablo’s friends.

final megansFriends = Set.of( 
  graph.edges(megan).map((edge) { 
    return edge.destination.data; 
  }), 
); 

 
final pablosFriends = Set.of( 
  graph.edges(pablo).map((edge) { 
    return edge.destination.data; 
  }), 
); 

 
final mutualFriends = megansFriends.intersection(pablosFriends);
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21Chapter 21 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
The maximum number of items ever in the queue is 3. You can observe this by 
adding print statements after every enqueue and dequeue in breadthFirstSearch.

Solution to Challenge 2
You already know how to implement the breadth-first search algorithm iteratively. 
Here’s how you would implement it recursively.

Create an extension on Graph:

extension RecursiveBfs<E> on Graph<E> { 
 

}
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Then add a recursive helper method to it:

void _bfs( 
  QueueStack<Vertex<E>> queue, 
  Set<Vertex<E>> enqueued, 
  List<Vertex<E>> visited, 
) { 
  final vertex = queue.dequeue(); 
  // 1 
  if (vertex == null) return; 
  // 2 
  visited.add(vertex); 
  final neighborEdges = edges(vertex); 
  // 3 
  for (final edge in neighborEdges) { 
    if (!enqueued.contains(edge.destination)) { 
      queue.enqueue(edge.destination); 
      enqueued.add(edge.destination); 
    } 
  } 
  // 4 
  _bfs(queue, enqueued, visited); 
}

You’ll use this method soon. Here’s what it does:

1. This is the base case. The recursion stops when the queue is empty.

2. Mark the vertex as visited.

3. For every edge of the current vertex, check to see if the adjacent vertices have 
been visited before inserting them into the queue.

4. Recursively call this function until the queue is empty.

Now add the public bfs method above _bfs:

List<Vertex<E>> bfs(Vertex<E> source) { 
  final queue = QueueStack<Vertex<E>>(); 
  final Set<Vertex<E>> enqueued = {}; 
  List<Vertex<E>> visited = []; 

 
  queue.enqueue(source); 
  enqueued.add(source); 

 
  _bfs(queue, enqueued, visited); 
  return visited; 
}
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This method is much the same as the implementation you wrote earlier in the 
chapter. The difference now is that you call the recursive helper function rather than 
using a while loop.

Test it out using the same graph as the one in the chapter text:

final vertices = graph.bfs(a); 
vertices.forEach(print);

Run than and you should again see A to H printed line by line.

The overall time complexity for this breadth-first search implementation is also O(V 
+ E).

Solution to Challenge 3
A graph is said to be disconnected if no path exists between two nodes.

Create an extension on Graph like so:

extension Connected<E> on Graph<E> { 
  bool isConnected() { 
    // 1 
    if (vertices.isEmpty) return true; 
    // 2 
    final visited = breadthFirstSearch(vertices.first); 
    // 3 
    for (final vertex in vertices) { 
      if (!visited.contains(vertex)) { 
        return false; 
      } 
    } 
    return true; 
  } 
}

The commented numbers refer to the following points:

1. If there are no vertices, treat the graph as connected.

2. Perform a breadth-first search starting from the first vertex. This process will 
return all the visited nodes.

3. Go through every vertex in the graph and check if it has been visited before.

The graph is disconnected if a vertex is missing in the visited set.
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22Chapter 22 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
• Path from A to F: Use depth-first because the path you’re looking for is deeper in 

the graph.

• Path from A to G: Use breadth-first because the path you’re looking for is near the 
root.

Solution to Challenge 2
In this chapter, you learned how to implement a depth-first search iteratively. Here’s 
how you would implement it recursively.

Create an extension on Graph:

extension RecursiveDfs<E> on Graph<E> { 
 

}
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Then add a recursive helper method to it:

void _dfs( 
  Vertex<E> source, 
  List<Vertex<E>> visited, 
  Set<Vertex<E>> pushed, 
) { 
  // 1 
  pushed.add(source); 
  visited.add(source); 
  // 2 
  final neighbors = edges(source); 
  for (final edge in neighbors) { 
    // 3 
    if (!pushed.contains(edge.destination)) { 
      _dfs(edge.destination, visited, pushed); 
    } 
  } 
}

You’ll use this method soon. Here’s what it does:

1. Mark the source vertex as visited.

2. Visit every neighboring edge.

3. As long as the adjacent vertex has not been visited yet, continue to dive deeper 
down the branch recursively.

Now add the public dfs method above _dfs:

List<Vertex<E>> dfs(Vertex<E> start) { 
  List<Vertex<E>> visited = []; 
  Set<Vertex<E>> pushed = {}; 
  _dfs(start, visited, pushed); 
  return visited; 
}
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This method initializes visited and pushed and then starts the recursion process. 
Unlike the iterative solution you wrote earlier, there’s no stack here. That’s because 
recursion itself implicitly uses a stack.

Grab the same graph as the one you used in the chapter text. Then add the following:

final vertices = graph.dfs(a); 
vertices.forEach(print);

Run that and you should see the same result as the iterative solution:

A 
B 
E 
F 
G 
C 
H 
D
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23Chapter 23 Solutions

By Vincent Ngo & Jonathan Sande

Solution to Challenge 1
These are the shortest paths from A to the following vertices:

• Path to B: A - (1) - B

• Path to C: A - (1) - B - (8) - C

• Path to D: A - (1) - B - (9) - D

• Path to E: A - (1) - B - (8) - C - (2) - E
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Solution to Challenge 2
To get the shortest paths from the source vertex to every other vertex in the graph, 
use the following extension on Dijkstra:

extension ShortestPaths<E> on Dijkstra<E> { 
  Map<Vertex<E>, List<Vertex<E>>> shortestPathsLists( 
    Vertex<E> source, 
  ) { 
    // 1 
    final allPathsLists = <Vertex<E>, List<Vertex<E>>>{}; 
    // 2 
    final allPaths = shortestPaths(source); 
    // 3 
    for (final vertex in graph.vertices) { 
      final path = shortestPath( 
        source, 
        vertex, 
        paths: allPaths, 
      ); 
      allPathsLists[vertex] = path; 
    } 
    return allPathsLists; 
  } 
}

This is how it works:

1. The map stores the path to every vertex from the source vertex.

2. Perform Dijkstra’s algorithm to find all the paths from the source vertex.

3. For every vertex in the graph, generate the list of vertices that makes up the path.

Data Structures & Algorithms in Dart Chapter 23 Solutions

raywenderlich.com 425


	Book License
	What You Need
	Book Source Code & Forums
	About the Authors
	About the Editors

	Acknowledgments
	Content Development

	Introduction
	How to Read This Book

	Chapter 1: Why Learn Data Structures & Algorithms?
	The Goal of This Book

	Chapter 2: Complexity
	Time Complexity
	Space Complexity
	Other Notations
	Key Points

	Chapter 3: Basic Data Structures in Dart
	List
	Map
	Set
	Key Points
	Where to Go From Here?

	Chapter 4: Stacks
	Stack Operations
	Implementation
	Challenges
	Key Points

	Chapter 5: Linked Lists
	Node
	LinkedList
	Adding Values to a List
	Removing Values From a List
	Making a List Iterable
	Challenges
	Key Points

	Chapter 6: Queues
	Common Operations
	Example of a Queue
	List-Based Implementation
	Doubly Linked List Implementation
	Ring Buffer Implementation
	Double-Stack Implementation
	Challenges
	Key Points

	Chapter 7: Trees
	Terminology
	Implementation
	Traversal Algorithms
	Challenges
	Key Points

	Chapter 8: Binary Trees
	Implementation
	Traversal Algorithms
	Challenges
	Key Points

	Chapter 9: Binary Search Trees
	List vs. BST
	Implementation
	Challenges
	Key Points

	Chapter 10: AVL Trees
	Understanding Balance
	Implementation
	Challenges
	Key Points
	Where to Go From Here?

	Chapter 11: Tries
	List vs. Trie
	Implementation
	Challenges
	Key Points

	Chapter 12: Binary Search
	Linear Search vs. Binary Search
	Implementation
	Challenges
	Key Points

	Chapter 13: Heaps
	What’s a Heap?
	The Heap Property
	The Shape Property
	Heap Applications
	Fitting a Binary Tree Into a List
	Implementation
	Challenges
	Key Points

	Chapter 14: Priority Queues
	Applications
	Common Operations
	Implementation
	Challenges
	Key Points

	Chapter 15: O(n²) Sorting Algorithms
	Bubble Sort
	Selection Sort
	Insertion Sort
	Stability
	Challenges
	Key Points

	Chapter 16: Merge Sort
	Example
	Implementation
	Performance
	Challenges
	Key Points

	Chapter 17: Radix Sort
	Sorting by Least Significant Digit
	Sorting by Most Significant Digit
	Challenges
	Key Points

	Chapter 18: Heapsort
	Example
	Implementation
	Performance
	Challenges
	Key Points

	Chapter 19: Quicksort
	Example
	Naïve Implementation
	Partitioning Strategies
	Challenges
	Key Points
	Where to Go From Here?

	Chapter 20: Graphs
	Types of Graphs
	Common Operations
	Adjacency List
	Adjacency Matrix
	Graph Analysis
	Challenges
	Key Points

	Chapter 21: Breadth-First Search
	How Breadth-First Search Works
	Implementation
	Performance
	Challenges
	Key Points

	Chapter 22: Depth-First Search
	How Depth-First Search Works
	Implementation
	Performance
	Cycles
	Challenges
	Key Points

	Chapter 23: Dijkstra’s Algorithm
	How Dijkstra’s Algorithm Works
	Implementation
	Performance
	Challenges
	Key Points

	Conclusion
	Approaching a Difficult Problem
	Learning Tips
	Where to Go From Here?

	Chapter 4 Solutions
	Solution to Challenge 1

	Chapter 5 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 6 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 7 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 8 Solutions
	Solution to  Challenge 1
	Solution to Challenge 2

	Chapter 9 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 10 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 11 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 12 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 13 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 14 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 15 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3
	Solution to Challenge 4

	Chapter 16 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 17 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 18 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 19 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 20 Solutions
	Solution to Challenge 1

	Chapter 21 Solutions
	Solution to Challenge 1
	Solution to Challenge 2
	Solution to Challenge 3

	Chapter 22 Solutions
	Solution to Challenge 1
	Solution to Challenge 2

	Chapter 23 Solutions
	Solution to Challenge 1
	Solution to Challenge 2


