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Preface

This book is intended as a text for undergraduate students of Civil or Structural Engineering 
about to embark on the adventure of learning how to analyse engineering structures. It 
provides a unique in-depth treatment of structural analysis where fundamental aspects and 
derivations of the analytical and numerical formulations are outlined and illustrated by 
numerous simple, yet informative, worked examples.

The book is divided into four parts. The first part comprises Chapters 1 to 4 and covers 
the analysis of statically determinate structures. Although it is assumed that the student has 
already completed courses in statics and mechanics of solids, some of the material revises 
concepts and procedures that have been covered previously. The second part of the book 
includes Chapters 5 to 9 and deals with the classical methods for the analysis of statically 
indeterminate structures. These methods are suitable for hand calculation, where the defor-
mation characteristics and the geometry of the structure, as well as considerations of equi-
librium, are used to establish the internal actions and structural deformations. Although 
practising structural engineers usually use computer software packages to analyse struc-
tures, these classical methods provide the background knowledge that is essential for the 
preparation of appropriate input for structural analysis software and the correct interpreta-
tion of the output. The third part (Chapters 10 to 12) covers the stiffness method of analysis 
that underpins most computer applications and commercially available structural analysis 
software, while the fourth part (Chapters 13 to 15) deals with more advanced topics, includ-
ing the finite element method, structural stability and problems involving material nonlin-
earity. Finally, three appendices are included that provide additional background material 
that is of use throughout the book.

Every topic is illustrated with numerous worked examples that lead the student step by 
step through the solution process. Sections entitled Reflection Activities invite students to 
reflect on the material covered by questioning some of the details of the procedures or 
extending their applicability to a broader range of problems. The detailed sequence of 
steps required by different methods of analysis are described in particular sections entitled 
Summary of Steps. At the end of most chapters, a wide range of tutorial problems are set to 
assist the student to practise the various analysis techniques and to build critical thinking.

The book is complemented by a comprehensive set of educational support material for 
both instructors and students as described below. We hope that the book will prove useful 
to both students and instructors.
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ADDITIONAL RESOURCES AVAILABLE FOR 
STUDENTS AND INSTRUCTORS 

Resources available for download at http://www.crcpress.com/product/isbn/9780415526449

• MATLAB scripts of the worked examples included in Chapters 10 to 13 and 15 are 
available and will enable students to gain a clear understanding of all steps involved 
in the structural analysis solution process when implemented in a computer program. 

Resources for instructors who adopt the book are available from CRC Press upon request. 
Please send an email to orders@crcpress.com or contact your sales representative.

• Solutions Manual presents detailed solutions for every tutorial problem included in 
the book.

• PowerPoint presentations files available for face-to-face lectures. 
• A PowerPoint presentation to introduce MATLAB to students with no prior knowl-

edge of it.
• Videos supported by a voice narration and are available to enable students to review 

selected material covered in the book at their own pace. These videos are viewable 
with computers and smart devices.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

FEEDBACK

As this is the first edition of the book, we would welcome your feedback. Please feel free to 
send us any comments, criticisms or suggestions regarding any aspect of the book. We will 
greatly appreciate your input. Please send your feedback to gianluca.ranzi@sydney.edu.au.
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Chapter 1

Introduction

1.1  STRUCTURAL ANALYSIS AND DESIGN

Structural engineering involves the analysis and design of structures and is one of the core 
sub-disciplines of civil engineering. Civil engineering structures take a variety of forms and 
include buildings, bridges, towers, marine structures, dams, tunnels, retaining walls and 
other infrastructure. The most common materials used for the construction of these struc-
tures are concrete, steel and timber, although a variety of other materials are used including 
stone, aluminium, polymers, carbon fibre, glass and many more.

Structural engineering underpins and sustains the built environment, where bridges, 
buildings and other structures must be safe, serviceable, durable, aesthetically pleasing and 
economical. It is concerned primarily in developing structural solutions to resist loads and 
other forces, and in devising ways to provide safe load paths for these forces. It is an applied 
science, founded on mathematical laws and physical concepts applied to engineering mate-
rials, both traditional and advanced, for the provision of infrastructure and technological 
innovation. The demands of new and existing structures imposed by society and by eco-
nomics and the use of new or advanced materials require solutions that challenge and unite 
creativity and scientific rigour.

Structural design involves the determination of the type of structure that is suitable for a 
particular purpose, the materials from which the structure is to be constructed, the loads 
and other actions that the structure must sustain and the arrangement, layout and dimen-
sions of the various components of the structure. This involves detailed calculations to 
ensure that the structure is stable and that every structural member, and every connection 
between members, has adequate strength to resist the design loads. It also involves determi-
nation of the deformation of each part of the structure to ensure that the structure remains 
serviceable throughout its design life and is able to perform its intended function. Structural 
design involves careful detailing of every part of the structure, including the preparation 
of detailed structural drawings that effectively communicate the engineering design to the 
contractors who are engaged to build the structure.

Structural analysis is an integral part of structural design. It involves the calculation of 
the response of the structure to the design loads and imposed deformations that it will be 
required to resist during its lifetime. This involves the determination of the internal forces 
within the various components of the structure and the deformation of these components. 
Calculation of the internal forces in a structure will allow the structural designer to select 
materials and member sizes that provide the structure with adequate strength and ensure 
that the chances of collapse are acceptably small. Calculation of the deformation of the 
structure will permit the assessment of serviceability. Whether or not a structure is accept-
able for a particular purpose depends on its deformation, as well as its strength.
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The mathematical algorithms used for structural analysis range from classical meth-
ods, suitable for manual calculation (often assuming linear elastic material behaviour), 
to more complex non-linear numerical analysis, using modern matrix methods and high-
performance computers. The choice depends on the type and complexity of the structure 
and the computational power available to the structural analyst. All methods involve the 
application of structural mechanics to an idealised structure, where approximations are 
made concerning the geometry of the structure and its support conditions, the applied loads 
and deformations, and the material modelling laws. The interpretation of the results of the 
analysis requires both experience and engineering judgment.

1.2  STRUCTURAL IDEALISATION

It is not possible to undertake an exact analysis of a structure. Real structures have complex 
geometries that are never known exactly at the time of the analysis. Even structural members 
that are supposed to be straight are never exactly straight; cross-sectional dimensions that 
are supposed to be uniform along a member are never exactly uniform; and the dimensions 
and rotational capacity of connections between structural members and structural supports 
are never known precisely. Real materials have properties that vary from point to point in a 
structure and the actual variation and distribution of material properties is never known with 
a great deal of precision. In addition, the magnitude and distribution of the loads imposed 
on a structure are rarely known accurately. Structural analysis is therefore undertaken on 
an idealised structure, where simplifying assumptions are made concerning the geometry 
of the structure and its supports, the material properties and the applied loads so that the 
conditions approximate those of the real structure. These simplifying approximations 
introduce errors, some small and some not so small. However, the aim of the idealisation is 
to simplify the analysis, so that the calculated loads, internal actions, reactions, stresses and 
deformations are not too different from those in the real structure and adequately describe 
the behaviour of the structure.

In this process, loads applied to any structure can take a variety of forms and may be 
idealised as either concentrated loads or distributed loads, including line loads and surface 
loads. The structure is idealised as a combination of various components and members, 
adequately connected to each other and capable of transferring the applied actions through 
the structure to the supporting foundations. The magnitudes and directions of the forces 
exerted on a structure by its supports depend on the types of support. These structural 
idealisations (members, loads and supports) are briefly discussed in the following sections.

1.3  STRUCTURAL MEMBERS AND ELEMENTS

Structures are composed of various components and members, that can be categorised 
according to their dimensions and the way they carry loads.

Many common structural members can be adequately described as one-dimensional ele-
ments. This is an appropriate classification for elements whose lengths are larger than their 
cross-sectional dimensions. This is illustrated in Figure 1.1 for a steel member and a rein-
forced concrete member, whose lengths L are greater than the size of their cross-sections 
depicted by B and D. For the purpose of structural idealisation, it is possible in these cases 
to replace the member by a one-dimensional line element.

Line elements are further classified according to the internal actions they resist. For 
example, a line element that carries only axial forces (either compression or tension) is 
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usually referred to as a bar or a truss element. Figure 1.2 illustrates a truss element before 
and after deformation. The element elongates when resisting a tensile force and shortens 
when resisting a compressive force. A bar carrying axial tensile loads applied at each end, 
with each cross-sections subjected only to axial tension, is called a tie (Figure 1.2a), while a 
bar carrying axial compression applied at each end, with each cross-sections subjected only 
to axial compression, is called a strut (Figure 1.2b).

Whether an axially loaded element in a structure is classified as a tie or a strut often 
depends on its position in the structure and the way the loads are transferred to it. Let us 
consider a bookshelf attached to a wall as shown in Figure 1.3a. The weight of the shelf is 
resisted by compressive forces induced in the diagonal members below the shelf, and the 
diagonal elements are classified as struts. Let us now consider the arrangement shown in 
Figure 1.3b. To resist the weight of the shelf, the diagonals above the shelf are in tension and 
are therefore classified as ties. Sometimes, flexible wires, chains or ropes are used to carry 
axial tension and are referred to as cables. Because of their flexibility, cables are unable to 
resist compressive loads.

A one-dimensional line element that carries transverse loads in bending and shear (with 
or without torsion) is called a beam or a girder and these are very common in structures. 
Their main features can be illustrated with the help of a simple ruler. If you hold the ruler 
at its ends and bend it, as depicted in Figure 1.4a, you will apply a couple at each end and a 
constant curvature will exist along the length of the ruler. The ruler is subjected to a constant 
bending moment along its length and there are no transverse loads applied to the ruler and 

Figure 1.1 One-dimensional (line) elements. (a) Structural steel. (b) Reinforced concrete.

Figure 1.2  One-dimensional (line) elements — ties and struts. (a) Bar in axial tension: a tie. (b) Bar in axial 
compression: a strut.
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consequently no shear forces. If you are unfamiliar with the concepts of bending moment and 
shear force, do not worry as they are introduced and explained in Chapters 2 and 3.

If you now hold the same ruler at one end only and apply a downward force with your 
fingertip at the other end, as shown in Figure 1.4b, each cross-sections of the ruler will be 
subjected to a constant shear force and the bending moment increases linearly with distance 
from the applied downward load. A beam can also be subjected to torsion or twisting about 

Figure 1.3  Example of struts and ties. (a) Struts supporting shelf from below. (b) Ties supporting shelf from 
above.

Figure 1.4  Example of line elements acting as beams or girders. (a) Constant moment. (b) Shear force and 
varying. (c) Constant torsion.
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its longitudinal axis. Torsion will be induced in the ruler, if you hold it at its ends and twist 
one side relative to the other, as illustrated in Figure 1.4c.

Columns are one-dimensional elements primarily loaded in axial compression but may 
also carry bending moments, shear forces and torsion.

Members with one dimension (thickness t) smaller than the other two (length L and width 
B) can be represented by two-dimensional elements, also referred to as planar elements. 
It is common to refer to two-dimensional flat elements as plates (Figure 1.5a) and curved 
elements as shells (Figure 1.5b). Plates can be subdivided into slabs and walls, where slabs 
are usually in a horizontal plane and withstand transverse loads by a combination of axial 
force, bending moments, torsion and shear at their cross-sections. Walls consist of planar 
elements, usually in a vertical plane, and resist both in-plane and transverse forces. Slabs are 
commonly found in the floor systems of buildings and form part of most bridge decks, while 
walls also form part of most buildings and are often used to retain soils and water. Shells 
usually have curved surfaces capable of resisting axial forces, bending, torsion and shear.

Membranes are two-dimensional elements that support applied loads by means of a 
biaxial tensile state. A simple example of this kind of structure is the jumping bed depicted 
in Figure 1.6, which is capable of supporting the transverse loads induced by the self-weight 
of a person by stretching its material as shown. The tension induced in the membrane mate-
rial of the jumping bed by virtue of its deformation is resisted by a compressive force in the 
ring strut.

Arches are curved structural members that transfer the applied loads by means of com-
pressive forces along the arch. Depending on the actual geometry of the arch and on the 
nature of the applied loads, the compressive axial force might be combined with different 

Figure 1.5 Two-dimensional (planar) elements. (a) Plate. (b) Shell.

Figure 1.6 A membrane structure.
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levels of moment and shear forces that need to be carefully evaluated. Arches are popular in 
bridge applications. A typical arch supporting a bridge deck is shown in Figure 1.7a. Arches 
are also commonly used around openings in masonry construction, as depicted in Figure 
1.7b.

1.4  STRUCTURAL SYSTEMS

Structural systems consist of combinations of structural members and are classified 
according to the type of elements and the way these elements are connected to each other. A 
real structure is usually represented by a combination of one-, two- and three-dimensional 
elements. Only some of the most common structural systems are considered in this section 
and these include trusses, frames, arch and cable structures and surface structures.

Trusses are two- or three-dimensional systems of struts and ties connected at their ends 
by simple pinned connections. This implies that the ends of the members connected together 
at a node can rotate relative to each other. It is common to assume that loads are mainly 
applied at the nodes and, under these conditions, the truss elements are subjected to either 
axial tensile or compressive forces. In reality, truss members may be loaded, between the 
nodes and must also resist their self-weight. Depending on the members’ dimensions, these 
member loads may need careful consideration for an accurate prediction of the structural 
response. The main components of a simple plane truss are shown in Figure 1.8. The 
horizontal top and bottom members are usually referred to as top and bottom chords, 
respectively. The distance between the top and bottom chord greatly affects the magnitude 
of the axial forces in the chords and the structural performance of the truss. Under the same 

Figure 1.7 Common arches. (a) Arch supporting a bridge deck. (b) Arch in a masonry wall.

Figure 1.8 Typical components of a plane (two-dimensional) truss.
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applied loading, a reduction in the truss depth (i.e. a reduction in the dimension D in Figure 
1.8) will lead to higher forces in the top and bottom chords, and the deflection of the truss 
will also increase. The diagonal members and vertical members are either struts or ties 
depending on the directions and magnitudes of the applied loads.

Frames are two- or three-dimensional systems formed by beams and columns connected 
by rigid, semi-rigid or pinned connections. In the case of rigid connections, no relative 
rotations can occur between the ends of the members framing into the connection. In these 
systems, the structural elements are usually subjected to a combination of axial force, bend-
ing moment and shear force. Low- to medium-height buildings often employ systems of 
frames, consisting of horizontal beams and slabs, and vertical columns and walls to resist 
both gravity and lateral loads. High-rise buildings often use frames to support gravity loads 
and include stiff shear walls to assist the frames to carry the lateral loads caused by wind or 
earthquakes. Skeletons of some simple two-dimensional frames are illustrated in Figure 1.9. 
In particular, Figure 1.9a shows a typical plane frame that may be adopted in a low-rise 
building, while frames shown in Figure 1.9b represent two possible layouts of portal frames 
commonly used for warehouses or factory buildings.

Cable structures are those in which at least one of the main load-carrying elements is a 
flexible cable. Flexible cables can resist only axial tension and are unable to resist bending 
moment, shear force or axial compression. A cable can resist lateral loads if the ends of the 
cable are securely attached to firm supports. It does this by taking up a particular shape 
depending on the loading such that the bending moment at every point along the cable is 
zero and only axial tension exists at every point along the cable. Many of the longest span 
bridges are cable structures, as are many sports stadium roofs. Some examples of cable 
structures are illustrated in Figure 1.10.

Surface structures, such as plates and shells, are three-dimensional structures formed by 
elements whose thickness is usually much smaller than its other dimensions. These can be 
arranged to produce a wide range of structures, such as flat floor slabs, bridge decks, tanks 
and silos, cooling towers, dam walls, tunnels, roofs and coverings in a variety of forms, 
including domes and hyperbolic paraboloids. The response of this type of structure is highly 
three-dimensional and needs careful attention at the analysis stage. Examples of a shell 
structure and a dome structure are shown in Figure 1.11.

Figure 1.9  Examples of plane frames. (a) Typical rigid frame for buildings. (b) Typical portal frames for 
warehouses.
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1.5  TYPES OF LOADS

The loads to be used in the design of a structure depend on the type of structure, its location 
and its purpose. They include dead loads, live loads, wind loads, earthquake loads, earth 
pressure, liquid pressure, rain and snow loads and prestress. Loads may also develop owing 
to restraint of deformation caused by a wide range of actions, including, for example, tem-
perature changes, support settlement or shrinkage of concrete or timber.

Dead loads, also referred to as permanent actions, are generally defined as those loads 
imposed by both the structural and non-structural components. Dead loads include the 

Figure 1.11 Surface structures. (a) Shell structure. (b) Dome.

Figure 1.10 Flexible cables. (a) Cable carrying point loads. (b) Suspension bridge. (c) Cable-stayed bridge.
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self-weight of the structure and the forces imposed by all walls, floors, roofs, ceilings, per-
manent partitions, service machinery and other permanent construction. Dead loads are 
usually permanent, are fixed in position and can be estimated with reasonable accuracy 
from the density of the relevant material or type of construction.

Live loads, also called imposed actions, are loads that are attributed to the intended use 
or purpose of the structure and are generally specified by regional or national codes and 
specifications. The specified live load depends on the expected use or occupancy of the 
structure and usually includes allowances for impact and inertia loads (where applicable) 
and for possible overload. Both uniformly distributed and concentrated live loads are usually 
specified. The magnitude and distribution of the actual live load are never known exactly 
at the design stage, and it is by no means certain that the specified live load will not be 
exceeded at some stage during the life of the structure. Live loads may or may not be present 
at any particular time; they are not constant and their position can vary. Although part of 
the live load is transient, some portion may be permanently applied to the structure and will 
have effects similar to dead loads. Live loads also arise during construction owing to stack-
ing of building materials, the use of equipment or the construction procedure (such as the 
loads induced by floor-to-floor propping in multi-storey construction).

Wind, earthquake, snow and temperature loads (or actions) depend on the geographi-
cal location. The magnitudes of the loads adopted for use in structural design also depend 
on the relative importance or design life of the structure (and are expressed as a function 
of the mean return period). Wind loads also depend on the surrounding terrain as well as 
the height and shape of the structure above the ground. Earthquake loads are also highly 
dependent on the soil conditions present below the foundation and by the type of foundation 
adopted in the design. These environmental loads are specified in national codes.

Loads on structures take a variety of forms and may be idealised as either concentrated 
loads or distributed loads, including line loads and surface loads. A concentrated load is 
a force that acts at a point on a structure. Of course, real loads act over finite areas, but it 
is not unreasonable to treat many loads as if they were located at a point. The wheel loads 
from a truck on a bridge deck, for example, are often treated as concentrated loads, as 
illustrated in Figure 1.12. A line load is a load distributed along a line in a structure. The 
transverse load arising from the weight of a partition wall on a floor slab is an example of 
a line load. Surface loads are distributed over an area of a structure. Examples of surface 
loads are the self-weight of a floor slab, the wind load on the sides of a building, the pressure 
exerted by water on the sides of a dam and the snow load on a roof.

The magnitude of the distributed load on a structural member at a particular location 
(per unit length or per unit area) is called the load (or force) intensity. If the load intensity is 

Figure 1.12  Example of wheel loads replaced by concentrated forces. (a) Wheel loads. (b) Concentrated 
forces replacing wheel loads.
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constant over a length of beam or an area of floor, the load is said to be uniformly distrib-
uted. Sometimes the force intensity and the nature of its variation are well defined, in which 
case the determination of the magnitude and position of the resultant presents no problem. 
In other cases, it may be necessary to introduce approximating assumptions. For example, 
it is usually assumed that the loads imposed on the floor by the occupants of a building 
structure are uniformly distributed, even though the imposed loads on different parts of a 
floor are likely to be quite different at any time. The structural designer must often arrange 
the design loads on a floor to produce the most adverse effect.

1.6  SUPPORTS FOR STRUCTURES

A structure is usually supported on a foundation or on another structure. The magnitude 
and direction of the forces exerted on the structure by its supports depend on the type of 
support. Common support conditions include fixed supports, pinned supports and roller 
supports, and these are briefly illustrated below considering some very common objects that 
we encounter in our day-to-day life.

For example, let us consider the sign shown in Figure 1.13a. It needs to be able to resist its 
own self-weight as well as environmental loads, such as wind, rain or snow. In order for such 
a structure to keep its stability, it needs to be fixed to the ground to prevent any movement 
or rotation at the support location; that is, both translation and rotation must be prevented. 
This particular support condition is referred to as a fixed support (or built-in support). A 
member fixed at one end and free at the other is called a cantilever. Examples include bal-
conies (Figure 1.13b), awnings and walls that are fixed at the base to a footing and free at 
the top as illustrated in Figure 1.13c. Figure 1.13d illustrates the symbol that we will use to 
describe a fixed support.

Figure 1.13  Examples of structures with fixed supports. (a) Sign post. (b) Cantilevered balcony. 
(c) Cantilevered retaining wall. (d) Symbol.
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Let us now consider a typical see-saw as depicted in Figure 1.14a. The support enables 
the board to rotate freely (as one person goes up and the other goes down) while prevent-
ing translations in any direction. This is an example of a pinned support. Any support that 
holds the structure in position but allows relatively free rotation is considered to be a pinned 
support. The supports illustrated in Figure 1.14b may all be considered as pinned supports, 
even though at real supports some restraint against rotation is inevitable. The validity of 
these assumptions depends on the detailing of the connection and relative rigidities of the 
connecting members. In this book, we will adopt the symbols shown in Figure 1.14c to 
indicate a pinned support.

A roller support is a support that allows both rotation and translation parallel to the 
surface on which the roller moves, but it does not permit translation perpendicular to the 
surface on which the roller is located. Roller supports are commonly used in bridges, as 
illustrated in Figure 1.15a, to enable the bridge to expand or contract freely by permitting 
movement at one end. This static configuration, with one end of the beam pinned and the 
other one on a roller support, is very common in practice and such a structure is known as 
a simply-supported beam. In this case, the beam is free to rotate at each end and also free 
to move horizontally at the right-hand support, as shown. It is not free to move vertically 
(upwards or downwards) at either end. The common symbols that we will use for a roller 
support are shown in Figure 1.15b.

Figure 1.14  Pinned supports. (a) Example of see-saw. (b) Steel brain supports assumed to be pinned. 
(c) Symbols.

Figure 1.15 Roller supports. (a) Simply-supported bridge beam. (b) Symbols.
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Chapter 2

Statics of structures
Equilibrium and support reactions

2.1  INTRODUCTION

This chapter provides a review of a number of fundamental concepts relevant to the stat-
ics of structures. After introducing the coordinate systems that we will use throughout the 
book, we revisit the concepts of forces and moments, and how these are specified in a two-
dimensional plane and a three-dimensional space. We then describe the typical supports 
used to restrain the movements of structures and present the use of free-body diagrams to 
identify all forces acting on a structure. On the basis of equilibrium considerations, we then 
show the procedures required to calculate the reactions. This chapter deals with structural 
systems whose reactions (and internal actions as outlined in the following chapters) are 
determined using only the principles of statics. This class of structures is referred to as stati-
cally determinate and the analysis of such structures is independent of the deformation of 
the structure and the properties of the materials from which the structure is made. This will 
become clearer in subsequent chapters when we will be dealing with structures that require 
consideration of the structural deformations and material properties, as well as statics, to 
evaluate the reactions.

2.2  COORDINATE SYSTEMS

Throughout the book, we will assume coordinate systems to be orthogonal and to satisfy 
the right-hand rule. The orthogonal condition implies that all axes are perpendicular to 
each other and, with the right-hand rule, the positive directions of the x-, y- and z-axes are 
oriented in the same way as axes located along the thumb, forefinger, and middle finger, 
respectively, of the right hand, as illustrated in Figure 2.1.

Figure 2.1 Use of the right-hand rule.
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A large number of structures can be idealised as two-dimensional and analysed in a two-
dimensional plane. In these cases, it is convenient to assign the x- and y-axes to the plane of 
interest and to have the positive direction of the z-axis pointing out of the plane. For exam-
ple, the x–y coordinate system of Figure 2.2a defines the coordinates in the plane of the 
page. Applying the right-hand rule to Figure 2.2a, the thumb of the right hand should point 
toward the positive direction of x and the forefinger in the positive direction of y (Figure 
2.2b). The positive direction of the z-axis should then point out of the page, as depicted by 
the middle finger in Figure 2.2b.

The positive orientation of rotations around the different axes can be evaluated by the 
right-hand rule as illustrated in Figure 2.3. This approach requires that you grasp the rel-
evant axis with your right hand, making sure that the thumb is pointing in the positive 
direction of the axis. The rotation produced by your fingers when closing the hand (curling) 
around the axis identifies positive rotation about the axis (see Figure 2.3).

Figure 2.2  Coordinate systems assigned on a plane. (a) Coordinate system in the plane of the page defined 
by the x- and y-axes. (b) Use of right-hand rule.

Figure 2.3 Positive rotations with respect to an axis.
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2.3  FORCE

A force is a vector quantity defined by its magnitude (expressing the intensity of the force), 
its line of action (depicting the direction of the force), and its point of application (where the 
force is applied).

Let us consider a force of magnitude F applied in the two-dimensional plane at a point 
O, as shown in Figure 2.4. Adopting an orthogonal reference system x–y, the components 
of the force parallel to the x- and y-axes are referred to as Fx and Fy, respectively. If θ is the 
angle formed between the force and the x-axis (Figure 2.4a), components Fx and Fy can be 
calculated from trigonometry as:

 Fx = F cos θ (2.1a)

 Fy = F sin θ (2.1b)

Alternatively, it is possible to express components Fx and Fy in terms of the angles between 
the force and the x- and y-axes, θx and θy, respectively, as shown in Figure 2.4b. That is:

 Fx = F cos θx = Fl  where  l = cos θx (2.2a)

 Fy = F cos θy = Fm  where  m = cos θy (2.2b)

where l and m are referred to as the direction cosines of the force, θx defines the angle 
between the force and the x-axis, and θy represents the angle between the force and the 
y-axis. In two-dimensional problems, the Fl and Fm notation has little advantage over the 
notation F cos θ and F sin θ, but in three-dimensional problems, there are often significant 
advantages, as we will see later.

From Figure 2.4, it can be observed that the magnitude and direction of F can be expressed 
in terms of its components Fx and Fy as:

 F F Fx y= +2 2

  
θ θ= =





x

y

x

F

F
arctan  (2.3a,b)

where the trigonometric function arctan(Fy/Fx) can also be written as tan–1(Fy/Fx) or atan(Fy/Fx). 

From Equation 2.3a, it can be readily shown that l2 + m2 = 1 (as F F F F l m Fx y= + = + = ×2 2 2 2 1).

Figure 2.4  Components of a force in a (two-dimensional) plane. (a) Components of a force F based on θ. 
(b) Components of a force F based on θx and θy.
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When considering a three-dimensional space, the components of a force of magnitude F 
can be described on the basis of the direction cosines that it forms with the x-, y- and z-axes, 
as depicted in Figure 2.5. The force components parallel to the x-, y- and z-axes are denoted 
as Fx, Fy and Fz, respectively, and are determined from:

 Fx = F cos θx = l F  where  l = cos θx (2.4a)

 Fy = F cos θy = m F  where  m = cos θy (2.4b)

 Fz = F cos θz = n F  where  n = cos θz (2.4c)

where l, m and n are the direction cosines of the force, while θx, θy and θz are the angles of 
the force with the x-, y- and z-axes, respectively, as shown in Figure 2.5. The magnitude of 
F can be calculated from its components as:

 F F F Fx y z= + +2 2 2  (2.5)

from which it can be observed that l2 + m2 + n2 = 1.

2.4  MOMENT OF A FORCE

The moment of a force about any point is the product of the force and the perpendicular 
distance of the point from the line of action of the force. For example, if we consider force 
F applied at point A in the x–y plane, as shown in Figure 2.6a, the moment of F about the 
point B is determined as:

 MB = F d (2.6)

where d is the perpendicular distance from point B to the line of action of F.
When dealing with two-dimensional problems, it is implicit that the moment of a force 

about a point in the x–y plane is actually the moment of the force about the axis coming 
out of the page at the point in the z direction. The sign convention adopted in Equation 2.6 
assumes anticlockwise moments to be positive (in accordance with the right-hand rule of 

Figure 2.5 Components of a force in a three-dimensional space.
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Figure 2.3 applied to rotations with respect to the z-axis) and the subscript of MB denotes 
that the moment is evaluated about point B.

The moment MB may be thought of as a measure of the tendency of the force F to cause 
rotation about the z-axis through point B. If an object is pivoted at B, the force F acting on 
the object, in the absence of any other forces, will cause rotation about B.

It is often convenient to determine the moment of a force as the sum of the moments of its 
components. Reconsidering the force F of Figure 2.6a, the moment previously calculated in 
Equation 2.6 can be rewritten in terms of the components Fx and Fy (Figure 2.6b):

 MB = Fya – Fxb (2.7)

where a and b are the perpendicular distances from point B to Fy and Fx, respectively. This 
calculation can also be expressed in terms of the coordinates of points A (xA,yA) and B 
(xB,yB). Noting that a = xA – xB and b = yA – yB, we have:

 MB = Fy(xA – xB) – Fx(yA – yB) (2.8)

When calculating the moment of a force applied in a three-dimensional space, it is usually 
convenient to sum the moments of the force components parallel to the coordinate axes. 
For example, referring to Figures 2.7a and b, the moment about the x-axis at B produced by 
force F is denoted Mx(B) and can be evaluated as:

 Mx(B) = Fzb – Fyc (2.9a)

This can be verified by considering the components of F in the y–z plane, as shown in 
Figure 2.7b. The subscript of Mx(B) depicts the fact that the moment is calculated at point B 
with respect to the x-axis.

Adopting a similar notation, the moments at B determined with respect to the y- and 
z-axes are denoted as My(B) and Mz(B), respectively, and can be determined as (Figures 2.7c 
and d)

 My(B) = Fxc – Fza  Mz(B) = Fya – Fxb (2.9b,c)

where a, b and c depict the perpendicular distances between point B and the lines of actions 
of the force components (Fx, Fy and Fz). Considering the coordinates of points A(xA,yA,zA) 

Figure 2.6  Moment of a force in a (two-dimensional) plane. (a) Moment calculated as MB = F d. (b) Moment 
calculated as MB = Fya – Fxb.
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and B(xB,yB,zB), the expressions for the moments of Equation 2.9 can be simplified by 
substituting a, b and c with a = xA – xB, b = yA – yB and c = zA – zB, to give:

 Mx(B) = Fz(yA – yB) – Fy(zA – zB) (2.10a)

 My(B) = Fx(zA – zB) – Fz(xA – xB) (2.10b)

 Mz(B) = Fy(xA – xB) – Fx(yA – yB) (2.10c)

which describes the moment calculated with respect to B for a force applied at point A.
The magnitude of the moment vector at B (based on Equations 2.9 or 2.10, and expressed 

in terms of Mx(B), My(B) and Mz(B)) and its direction cosines are given by:

 M M M Mx y z= + +(B) (B) (B)
2 2 2  (2.11a)

Figure 2.7  Moment of a force in a three-dimensional space. (a) Force F applied at point A. (b) Moment about 
the x-axis at B. (c) Moment about the y-axis at B. (d) Moment about the z-axis at B.
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 l
M

M
x= ( )B

  
m

M

M
y= (B)

  
n

M
M

z= (B)  (2.11b–d)

The representation of the moment in three dimensions is outlined in Figure 2.8, which 
shows the moment resultant and its components. Moment vectors are usually represented by 
a double arrow, to distinguish them from force vectors.

2.5  RESULTANT FORCE AND MOMENT

A group of forces applied to a rigid body can be replaced by a resultant force and moment 
applied at a particular point. It is usually convenient for the resultant force and moment to 
be calculated at the centre of gravity of the body. The two resultants produce an equivalent 
effect to that induced by the group of forces. Because a single large force may cause local 
damage that would not be produced by a large number of smaller forces, the resultants are 
often said to be statically equivalent to the group of forces, that is, equivalent only as far as 
statics is concerned. The component of the resultant force in any direction is the same as the 
sum of the components of all the forces in the group in that direction. In a similar manner, 
the resultant moment calculated with respect to any axis is equal to the sum of the moments 
caused by all the forces in the group about that axis.

For a two-dimensional group of forces acting in the x–y plane, the components of the 
resultant force Rx and Ry can be expressed as the sum of the components of each force in the 
group in the x and y directions, respectively:

 R Fx x= ∑  (2.12a)

 R Fy y= ∑  (2.12b)

and the moment that the resultant produces about the z-axis through any point O, here 
referred to as MR(O), is equal to the sum of the moments produced by the forces in the group 
about that point:

 M MR F( ) ( )O O= ∑  (2.12c)

Figure 2.8 Representation of a moment in a three-dimensional space.
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Let us consider the set of forces applied to the rigid square plate shown in Figure 2.9a and 
the calculation of the resultant force and moment at the centre of gravity of the plate located 
at its geometric centre G. From Equations 2.12a and b:

 R F F F Fx x x x x= = + + = + − =∑ 1 2 3 12 0 4 8 kN  (2.13a)

 R F F F Fy y y y y= = + + = − + + =∑ 1 2 3 16 18 3 5 kN  (2.13b)

The moment resultant is the sum of the moments MF(G) of each force about the point 
G(4,4) calculated using Equation 2.8 as:

 MF1(G) = Fy1(xA – xG) – Fx1(yA – yG) = (–16)(0–4) – 12 × (7–4) = 28 kNm (2.14a)

 MF2(G) = Fy2(xB – xG) – Fx2(yB – yG) = 18 × (3–4) – 0 × (8–4) = –18 kNm (2.14b)

 MF3(G) = Fy3(xC – xG) – Fx3(yC – yG) = 3 × (8–4) – (–4)(2–4) = 4 kNm (2.14c)

and, from Equation 2.12c, the moment resultant at G is:

 MR(G) = MF1(G) + MF2(G) + MF3(G) = 28 + (–18) + 4 = 14 kNm (2.14d)

The resultant force and moment are illustrated in Figure 2.9b.
The procedure required to calculate the resultants is revisited in Worked Example 2.1.
Let us now consider a set of parallel forces. Since the directions of all the forces are the 

same, the resultant is parallel to the forces and its magnitude may be found by algebraic 
addition.

Figure 2.9  Resultant force and moment produced by a group of forces in a two-dimensional plane (note: all 
node coordinates are in metres). (a) Group of forces. (b) Resultant force and moment.
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WORKED EXAMPLE 2.1

Five forces (F1, F2, F3, F4, F5) are applied in the x–y plane to the rigid rectangular plate at the points 
and in the directions shown in Figure 2.10. Determine the resultants, expressed in terms of a 
force and a moment located at (i) the centre of gravity G(8,5) and (ii) the point H(16,10).

The calculation of the components of the five forces is carried out using the direction cosines 
as specified in Equations 2.2. For clarity, all angles θx and θy related to each force are plotted 
in Figure 2.11 and tabulated below, together with the values obtained for the x and y compo-
nents (Fx and Fy), and the coordinates of the point of application. The angles θx and θy have been 
measured on the basis of the sign convention illustrated in Figure 2.4b (from the positive x- and 
y-axes to the force vector).

Figure 2.10 Rectangular plate for Worked Example 2.1.

Figure 2.11 Angles formed by the five forces with the x- and y-axes. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5.
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Force 
ID

Force 
(kN) θx θy Fx = F cosθx (kN) Fy = F cosθy (kN)

Point of Application of the Force

x (m) y (m)

F1 80 −160° −110° –75.18 –27.36 12 6.5
F2 60 −150° −120° –51.96 –30 10 10
F3 100 −45° 135° 70.71 –70.71 3 10
F4 40 0º 90° 40 0 4 4
F5 50 120° −30° –25 43.30 13 2

The resultant force is calculated in terms of Rx and Ry based on Equations 2.12a and b as:

 R F R Fx x y y= = − = = −∑ ∑41 43 84 77. .kN and kN

and therefore R = − + − =( . ) ( . ) .41 43 84 77 94 352 2 kN.
The inclination of the line of action of R is obtained from Equation 2.3b and considering the signs 
of the resultant components:

 θ = = °−tan .1 243 96
R

R
y

x

Clearly, with negative x and y components, R is located in the third quadrant. Unlike the resul-
tant force, the value of the resultant moment varies according to the point about which it is 
calculated. For this reason, the moments evaluated at points G and H are considered separately 
in the following. In the calculations, all lengths are in metres and forces are in kilonewtons.

(i) Resultant moment about point G(8,5):
The moment of each force about G is obtained from Equation 2.8:
For F1: MF1( )G  = Fy1(xA – xG) – Fx1(yA – yG) = (–27.36)(12 – 8) – (–75.17)(6.5 – 5) = 3.32 kNm
For F2: MF2( )G  = Fy2(xB – xG) – Fx2(yB – yG) = (–30)(10 – 8) – (–51.96)(10 – 5) = 199.80 kNm
For F3: MF3( )G  = Fy3(xC – xG) – Fx3(yC – yG) = (–70.71)(3 – 8) – (70.71)(10 – 5) = 0 kNm
For F4: MF4( )G  = Fy4(xD – xG) – Fx4(yD – yG) = (0)(4 – 8) – (40)(4 – 5) = 40 kNm
For F5: MF5( )G  = Fy5(xE – xG) – Fx5(yE – yG) = (43.30)(13 – 8) – (–25)(2 – 5) = 141.51 kNm
and from Equation 2.12c: M MR F( ) ( ) .G G kNm= =∑ 384 63 .

The resultants located at point G are shown in Figure 2.12a.

Figure 2.12  Resultants for Worked Example 2.1. (a) Resultants located at point G. (b) Resultants 
located at point H.
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In the case of two parallel forces of equal magnitude but opposite in direction (i.e. oppo-
site sign), such as the two horizontal forces in Figure 2.13a, the resultant force is zero (i.e. 
F − F), but the moment of the two forces about any point is clearly not zero and equals F ℓ. 
Such a pair of forces is called a couple and F ℓ is called the moment of the couple, repre-
sented by the moment resultant MR:

 M FR = ×   (2.15)

A couple tends to cause rotation without translation. It cannot be replaced by a single 
force, which must necessarily tend to cause translation as well as rotation. A system of forces 
is equivalent to a couple if the forces have a resultant force of zero magnitude but have a 
non-zero moment about any point. The couple is often represented by a single symbol (as 
shown in Figure 2.13b), showing its sense (clockwise or anticlockwise), with its magnitude 
specified. The couple has no component force in any direction and its moment is the same 
about all points.

For a three-dimensional space, the force and moment resultants are calculated following 
a procedure similar to the one adopted for two-dimensional planes. The components of R 
are given by:

 R Fx x= ∑   R Fy y= ∑   R Fz z= ∑  (2.16a–c)

and the moment components about any point O are:

 M MxR xF( ) ( )O O= ∑
  

M MyR yF( ) ( )O O= ∑
  

M MzR zF( ) ( )O O= ∑  (2.17a–c)

(ii) Resultant moment about point H(16,10):
MF1( )H = Fy1(xA – xH) – Fx1(yA – yH) = (–27.36)(12 – 16) – (–75.17)(6.5 – 10) = –153.67 kNm
MF2( )H = Fy2(xB – xH) – Fx2(yB – yH) = (–30)(10 – 16) – (–51.96)(10 – 10) = 180 kNm
MF3( )H = Fy3(xC – xH) – Fx3(yC – yH) = (–70.71)(3 – 16) – (70.71)(10 – 10) = 919.24 kNm

MF4( )H = Fy4(xD – xH) – Fx4(yD – yH) = (0)(4 – 16) – (40)(4 – 10) = 240 kNm
MF5( )H = Fy5(xE – xH) – Fx5(yE – yH) = (43.30)(13 – 16) – (–25)(2 – 10) = –329.90 kNm

The resultant moment is therefore (Equation 2.12c): M MR F( ) ( ) .H H kNm= =∑ 855 67 , as shown 
in Figure 2.12b.

Figure 2.13 Moment of a couple.
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WORKED EXAMPLE 2.2

Consider the rigid body shown in Figure 2.14, which is subjected to two forces (F1, F2) whose 
components are as follows:
– For F1 applied at A(20,8,0): F1x = 40 kN, F1y = 30 kN, F1z = 20 kN
– For F2 applied at B(0,0,12): F2x = 15 kN, F2y = 10 kN, F2z = 30 kN

Calculate the resultant force and moment applied at the centre of gravity G(10,4,6).

The components of the resultant force are calculated by summing the components of all forces 
in the same direction:

 R F R F R Fx x y y z z= = = = = =∑ ∑ ∑55 40 50kN kN kN; ;

and the resultant force is:

 R = + + =55 40 50 84 412 2 2 . kN

The inclination of the line of action of R is defined by the direction cosines, evaluated from R and 
its components using Equations 2.4:

 l
R
R

m
R

R
n

R
R

x y z= = = = = =0 652 0 474 0 592. ; . ; .

The moment calculated about each coordinate axis through G(10,4,6) is determined using 
Equations 2.10 for each of the applied forces:

 MxR(G) = Fz1(yA – yG) – Fy1(zA – zG) + Fz2(yB – yG) – Fy2(zB – zG)
 = 20(8 – 4) – 30(0 – 6) + 30(0 – 4) – 10(12 – 6) = 80 kNm

 MyR(G) = 40(0 – 6) – 20(20 – 10) + 15(12 – 6) – 30(0 – 10) = –50 kNm
 MzR(G) = 30(20 – 10) – 40(8 – 4) + 10(0 – 10) – 15(0 – 4) = 100 kNm

The resultant moment MR at point G is therefore:

 MR(G) ( ) .= + − + =80 50 100 137 52 2 2 kNm

Figure 2.14 Rigid body for Worked Example 2.2.
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2.6  REACTIONS

Loads applied to a structure are transmitted to the foundations or to other parts of the 
structure by means of supports. The supports prevent movement of the structure in differ-
ent directions, and when the structure is loaded, restraining forces (called reaction forces 
or simply reactions) develop at the supports. The specific reactions depend on the type of 
support.

Typical supports and their role in the behaviour of two-dimensional structures are dis-
cussed below and in subsequent sections. The two-dimensional representation (usually in 
the x–y plane) is very useful for practical applications as many structural systems, such 
as beams, columns, and frames, can often be conveniently idealised and analysed as two-
dimensional structures. In these cases, it is usually assumed that the depth (or thickness) 
of each member is small when compared to its length and, because of this, the member can 
be modelled as a line element and its depth can be ignored. The case of reactions in three-
dimensional structures is dealt with separately in Section 2.11.

A support provides a restraining action at a particular point in a structure and this can 
be represented by one or more reactions depending on the number of movements that are 
prevented. A number of common support conditions are illustrated in Table 2.1.

A roller support, for example, prevents movement in the direction perpendicular to the 
supporting plane. Such restraint is provided by means of a single reaction force applied at 
the support point in that direction.

A pinned support (or hinged support) allows rotation but does not permit translation in 
any direction. The reaction consists of a single force (R) whose line of action passes through 
the pinned support and whose magnitude and direction depend on the magnitude and direc-
tion of the applied loads. The reaction R can therefore act in any direction and, for conve-
nience, is often replaced by its vertical and horizontal components (V and H, respectively). 
The reaction at a pinned support cannot include a couple (as rotation is permitted to occur 
freely).

The pinned support and the roller support are often called simple supports, and a single 
span beam, with a pinned support at one end and a roller support at the other, is called a 
simply-supported beam.

A fixed support (or a built-in support) does not permit either translation or rotation, and 
the reaction at a fixed support consists of a force acting through the support (with vertical 
and horizontal components V and H, respectively) and a couple M.

2.7  FREE-BODY DIAGRAM

A free-body diagram (FBD) is a very useful sketch of the structure showing all forces 
(including couples) applied to it and having all supports replaced with their corresponding 
reactions.

Let us now go through the steps involved in drawing the free-body diagram of the struc-
ture shown in Figure 2.15a. We first need to identify all the supports of the structure. In 
this case, they consist of a pinned support at A and a roller support at B. We then need to 
replace each support with the possible reactions that can develop at that support, as shown 
in Figure 2.15b (refer to Table 2.1).

The free-body diagram is then obtained by redrawing the structure with all external loads 
and all reactions as illustrated in Figure 2.15c. The pinned support at A has been replaced by 
the horizontal and vertical components of the reaction force at A (HA and VA, respectively) 
and the roller support at B is replaced by the vertical reaction force at B (VB). The x-axis is 
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Table 2.1 Types of supports for two-dimensional structures
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taken as the longitudinal axis of the beam and, according to the right-hand rule (Figure 2.1), 
the y-axis is vertical (upwards) and the z-axis is at right angles to the x–y plane coming out 
of the page (Figure 2.2).

We can specify an arbitrary positive direction for the reactions when drawing them on 
the free-body diagram. For example, for the roller support isolated in Figure 2.16a, the 
vertical reaction force can be either positive upward (option 1) or downward (option 2). It 
does not matter which option is selected. If option 1 is selected and the reaction is taken 
to be upward, when the reaction is calculated, it will have a positive value if it is in fact 

Figure 2.15  Example of a free-body diagram. (a) Idealized structure. (b) Replacement of support with equiv-
alent reactions. (c) Free-body diagram.

Figure 2.16  Arbitrary positive directions for the support reactions. (a) Roller support. (b) Pinned 
support.
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acting in the assumed upward direction, and it will have a negative value if it is acting 
downward.

Similar considerations apply to the pinned support with the two reaction components 
shown in various options in Figure 2.16b. The pinned support can be replaced by any set 
of two reaction forces including the inclined ones (shown as option 3 in Figure 2.16b), as 
long as they are not parallel to each other. For example, all three options of Figure 2.16b 
are valid and the selection of a particular set of forces will only influence the terms included 
in the equilibrium equations used for the determination of the reactions, as outlined in the 
next section.

2.8  EQULIBRIUM EQUATIONS FOR PLANAR STRUCTURES

A structure is in equilibrium only if the forces acting upon it have zero resultant force and 
zero resultant moment. In two-dimensional or planar structures, for the resultants to be 
zero, the sum of the components of the forces in any two (non-coincident) directions in the 
plane of the structure must be zero:

 ∑ =Fx 0  (2.18a)

 ∑ =Fy 0  (2.18b)

In the analysis of a two-dimensional structure, it is usual to select the x and y directions 
at right angle to each other (as shown in Figure 2.2), with the x-axis running along the 
longitudinal axis of the member. When Equations 2.18a and b are satisfied, the system is 
either in equilibrium or it is acted on by a couple (Figure 2.13) and is therefore rotating. 
Rotational or moment equilibrium is satisfied (i.e. rotation will not occur) if the sum of the 
moments about any point is also zero. That is:

 ∑ =Mz 0  (2.18c)

These three equations (Equations 2.18a, b and c) are the conditions for equilibrium of 
two-dimensional structures and are used extensively in structural engineering.

In summary, a two-dimensional or planar structure is in equilibrium if the sum of the 
force components acting on the structure in each of two independent directions is equal 

SUMMARY OF STEPS 2.1: Drawing a free-body diagram

 1. Inspect the structure and, for each support, identify the corresponding set of reactions 
(see Table 2.1).

 2. Draw the free-body diagram of the structure specifying all external loads applied and 
replacing all supports with the corresponding set of reactions identified in step 1. 
(Remember: positive directions adopted for the reactions are arbitrary.)



Statics of structures 29

to zero and the sum of the moments of the forces acting on the structure about any axis 
perpendicular to the plane of the structure is also zero as specified in Equations 2.18.

Alternatively, a structure will be in equilibrium if two or three equations of rotational 
equilibrium are satisfied, such as:

 ∑ =Fx 0   
∑ =Mz(A) 0

  
∑ =Mz(B) 0  (2.19a–c)

or

 ∑ =Mz(A) 0
  

∑ =Mz(B) 0
  

∑ =Mz(C) 0  (2.20a–c)

where the points A, B and C are in the plane of the structure and are not co-linear. Equations 
2.19 can only be used to verify equilibrium if the line connecting the two points (A and B) 
is not perpendicular to the direction of the force equilibrium equation (i.e. Equation 2.19a).

2.9  EXTERNAL STATICAL DETERMINACY AND STABILITY

The equations of equilibrium may be employed to express relationships between all forces 
(including moments or couples) acting on a structure. For two-dimensional structures, the 
three equilibrium equations (as expressed in Equations 2.18, 2.19 and 2.20) may be used to 
evaluate three unknowns.

Before proceeding with further considerations related to the use of the equilibrium 
equations, it is useful to examine the stability of the structure. A structure is said to be 
internally stable if, when all its reactions are removed, it does not undergo any change of 
shape. For example, reconsider the beam of Figure 2.15a. It is clear that, if we remove the 
supports, the beam will not change its shape (i.e. it will still remain a straight beam) even 
though it is no longer in equilibrium and will be moving in the direction of the resultant 
of the applied loads on the beam. This is not the case, however, for the frame shown in 
Figure 2.17. After removing the two pinned supports, the two rigid parts of the structure 
ABC and CDE can move relative to each other by rotating with respect to point C (owing 
to the presence of the hinge at C). A structure that changes its shape after the removal of 
the supports is classified as internally unstable. On the basis of this definition, the structure 
of Figure 2.17 is internally unstable. This is not to say the structure is unstable as, with an 
appropriate arrangement of supports (such as the one shown in Figure 2.17), the previously 
observed changes in shape are prevented.

Figure 2.17 Pin-supported frames with internal hinge.
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The external statical determinacy and stability of structures will now be dealt with sepa-
rately considering first internally stable systems followed by internally unstable systems.

2.9.1  Internally stable structures

When dealing with internally stable structures, there are three equilibrium equations avail-
able from statics for the calculation of three unknown reactions. For example, the beam of 
Figure 2.18a is supported by a pinned support and a roller support that can be replaced by 
two reactions at A and one reaction at B. For this case, the number of unknown reactions 
nr is 3 and these can be determined with the three equilibrium equations. These types of 
structures are usually referred to as statically determinate externally, to highlight the fact 
that all reactions can be determined from statics alone. The term externally is included 
to clarify that the member is statically determinate with regard to the calculation of the 

Figure 2.18  Layouts and free-body diagrams of structures. (a) Statically determinate externally. (b) Statically 
indeterminate externally. (c) Statically unstable externally. (d) Geometrically unstable exter-
nally: parallel reactions. (e) Geometrically unstable externally: concurrent reactions.
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reactions. Some members that are statically determinate externally may not necessarily be 
statically determinate internally. That is, the internal actions in the member may not be able 
to be determined from statics alone. Such members will be discussed further in Section 3.4.

If the support at A was changed to a fixed support, as shown in Figure 2.18b, there are 
now four unknown reactions (nr = 4) and the three equilibrium equations are not sufficient 
to determine them. Such a structure is classified as statically indeterminate and is said to be 
n-fold indeterminate (where n = nr – 3). In the case of Figure 2.18b, the structure is 1-fold 
indeterminate (i.e. n = 1 since nr = 4). The analysis of statically indeterminate structures 
requires consideration of the stiffness (or deformability) of the structure and this depends 
on the size and material properties of the various parts of the structures in addition to equi-
librium. This will be considered in subsequent chapters.

If the beam is supported by the two roller supports outlined in Figure 2.18c, there are 
only two unknown reactions. When the number of reactions nr is less than 3 (i.e. number of 
equilibrium equations available from statics), the structure is said to be statically unstable.

There are cases where the structure is still unstable despite possessing a number of reac-
tions nr equal to or greater than 3. These situations can occur when the reactions are not 
arranged to provide geometric stability and are either parallel (see Figure 2.18d) or concur-
rent (see Figure 2.18e). Structures with these inadequate support arrangements are denoted 
as geometrically unstable externally.

The determination of the reactions using the equilibrium equations alone is only possible 
when dealing with structures that are statically determinate.

2.9.2  Internally unstable structures

A structure that is internally unstable requires an appropriate arrangement of the supports 
in order to make it stable. Although there are only three equations of equilibrium for a 
planar structure, it is possible to have a statically determinate structure with more than 
three reaction components. For example, reconsider the frame shown in Figure 2.17, with 
its four unknown reaction forces: two at A and two at E (shown in the free-body diagram 
of Figure 2.19a). In addition to the three equations of equilibrium applied to the entire 
structure, it is possible to write an equation to recognise that the bending moment at the 
internal hinge at C is known to be zero, i.e. MC = 0. This can be carried out by cutting 
the structure at C and enforcing moment equilibrium with respect to the hinge point on 
either the left or the right free-body diagram of the structure, illustrated in Figures 2.19b 
and c, respectively. This additional equation (i.e. additional to the three equilibrium equa-
tions available from statics) is called an equation of condition, because it expresses the 
condition imposed by the presence of the hinge. For a particular structure, each equation 
of condition increases by one the number of statically determinate reaction components 

Figure 2.19 Free-body diagrams of a frame with an internal hinge.
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that can be determined by statics. If nc is the number of available equations of condition, 
the minimum number of reaction components required for a planar structure to be stable 
is nc + 3.

If the actual number of reaction components for a structure is nr, for a structure to be 
externally statically determinate, then nr = nc + 3.

For example, the structure in Figure 2.20a possesses four unknown reactions that can 
be calculated from the three equations of equilibrium and the one equation of condition 
provided by the presence of the hinge at B. Such a structure is classified as statically 
determinate externally (as well as internally unstable), because nr = nc + 3 = 1 + 3 = 4.

If nr < nc + 3, the structure as a whole is always unstable, and is denoted statically unstable 
or a mechanism, in which case the structure can undergo a change of shape without any 
deformation of individual members. Examples of unstable structures or mechanisms are 
shown in Figure 2.21. Note that for the frame shown in Figure 2.21d, it is the substructure 
CEF (with a hinge at C and E and a roller support at F) that is unstable, even though the 
number of reaction components for the whole structure exceeds nc + 3.

If a structure has more reactions than can be determined by statics alone, it is said to be statically 
indeterminate and the deformational characteristics and material behaviour of the structural 
members, as well as the equations of equilibrium, are required to determine the reactions. A 
stable indeterminate structure is said to be n-fold indeterminate (with n = nr – nc – 3). Examples 
of idealised indeterminate beams are shown in Figure 2.22. The structure in Figure 2.22a is 
1-fold indeterminate, while the one in Figure 2.22b is 2-fold indeterminate. The analysis of 
statically indeterminate structures is covered in subsequent chapters.

Having the minimum number of nc + 3 reactions does not necessarily ensure stability. 
As we have seen for internally stable structures, the reactions must be so arranged that 
the structure is externally stable (i.e. systems of reactions must not form sets of parallel or 
concurrent forces).

Figure 2.21 Structures statically unstable externally.

Figure 2.20 Example of a structure statically determinate externally (and internally unstable).
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There are also other cases where, despite nr ≥ nc + 3, the structure is unstable. For example, 
this could occur when three or more hinges are placed on the same line, as shown in Figure 
2.23a, for which nr = 3 + 3 = 6. In this case, the structure is unstable because it is not able 
to carry any vertical load applied at B and the structure will undergo a change in shape as 
shown. This mechanism can be avoided by adding adequate restraints to the beam within 
the length defined by the three hinges (i.e. within the length ABC), as shown, for example, 
in Figure 2.23b where a roller support has been added between points B and C. In this case, 
the structure is now 1-fold statically indeterminate externally. A careful selection of the 
supports is needed when three or more hinges are placed on the same line. Another similar 
unstable case is illustrated in Figure 2.23c, which is shown to highlight the fact that this 
problem can also occur when an internal hinge is located between two adjacent pinned 
supports on the same line. The mechanism of Figure 2.23c is modified to a 1-fold externally 
statically indeterminate structure in Figure 2.23d by adding a roller support between the 
internal hinge and the right support.

SUMMARY OF STEPS 2.2: Evaluation of whether a structure is 
externally statically determinate, indeterminate, or unstable

 1. Draw a free-body diagram of the structure (see Summary of Steps 2.1).

 2. Verify that the system of reactions do not form a set of parallel or concurrent forces 
when considering either the entire structure or a part of it. Such a structure is classified 
as geometrically unstable externally. In the case where 3 or more hinges are placed on the 
same line, verify that the support arrangement provided is adequate and does not lead to 
a mechanism.

 3. Evaluate whether the structure is internally stable or unstable. A structure is internally stable 
if the structure does not change its shape after all supports are removed. It is internally 
unstable if the structure, or a part of it, can change its shape after the reactions are removed.

Figure 2.22 Structures statically indeterminate externally (and internally unstable).

Figure 2.23 Examples of structures with three hinges placed on the same line.
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WORKED EXAMPLE 2.3

Specify for each of the structures shown in Figure 2.24 whether they are statically determinate, 
indeterminate, or unstable externally.

The solution is provided below following the procedure detailed in Summary of Steps 2.2.

(1) The free-body diagrams of all structures are provided in Figure 2.25.

(2) The reactions of all structures do not form a system of concurrent or parallel forces.

 4. Count the number of unknown reactions nr and the number of equations of condition nc 
(if any) and classify the structure as follows:

 a. Statically determinate externally when nr = nc + 3.
 b. Statically indeterminate externally when nr > nc + 3. The structure is said to be n-fold 

indeterminate externally, where n = nr – (nc + 3).
 c. Statically unstable when nr < nc + 3 or when part of the structure possesses a mecha-

nism (as shown, for example, in Figure 2.21).

  The number of equations of condition nc corresponds to the number of internal hinges 
that cause internal instability.

Figure 2.24 Structures for Worked Example 2.3.
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(3) The internal stability of the structures varies from case to case as follows:
a.  Internally unstable because if the supports are removed, the structure can change its shape 

by rotating with respect to the hinge located at point C
b. Internally unstable
c. Internally stable because if the supports are removed, the structure does not change its shape
d. Internally stable
e. Internally unstable
f. Internally unstable

(4) The classification of external statical determinacy is provided below:
a.  The structure possesses four unknown reactions and there is one equation of condition 

available because of the presence of the hinge at C. Therefore, nr = 4 and nc = 1 from which 
n = 0 (= nr – (nc + 3) = 4 – (1 + 3) = 0). Based on this, the structure is classified as statically 
determinate.

b. nr = 4 and nc = 1: n = nr – (nc + 3) = 0. The structure is statically determinate.
c. nr = 9: n = nr – 3 = 6. The structure is 6-fold statically indeterminate.
d. nr = 4: n = nr – 3 = 1. The structure is 1-fold statically indeterminate.
e. nr = 6 and nc = 2: n = nr – (nc + 3) = 1. The structure is 1-fold statically indeterminate.
f. nr = 5 and nc = 2: n = nr – (nc + 3) = 0. The structure is statically determinate.

Figure 2.25 Free-body diagrams for Worked Example 2.3.
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2.10  DETERMINATION OF REACTIONS

The reaction forces of a statically determinate two-dimensional structure are calculated by 
applying the equilibrium equations (Equations 2.18, 2.19 and 2.20) to a free-body diagram 
of the entire structure or a free-body diagram of a part of the structure. For example, recon-
sidering the simply-supported beam of Figure 2.15, the three unknown reactions, HA, VA 
and VB, can be calculated by applying the three equilibrium equations to the free-body dia-
gram of the beam. Although not always possible, a careful choice of the sequence in which 
the equilibrium equations are considered may allow the reactions to be determined without 
the need to solve simultaneous equations. For the free-body of Figure 2.15c, applying the 

equation of horizontal force equilibrium ∑ =( )Fx 0  gives:

 + ∑ = − = ∴ =F H HH 0 20 45 0 14 14: .A Acos kN

By next applying the equation of moment equilibrium about the z-axis passing through 

the support at A ∑ =( )MA 0 , the vertical reaction at B is obtained:

 +∑ = − × × − × + × = ∴ =M V VA B Bsin kN0 5 4 2 20 45 6 8 0 15 61: .

The choice of applying rotational equilibrium about A is convenient because it limits the 
number of unknowns in the equation to one. This is because the components of the reac-
tions at A pass through A and therefore do not cause any moment about that point.

Likewise, the vertical component of the reaction at A can be found by applying the equa-
tion of moment equilibrium about the z-axis passing through the support at B:

 +∑ = − × + × × + × = ∴ =M V VB A Asin kN0 8 5 4 6 20 45 2 0 18 53: .

It is noted that the line of action of the horizontal component of the reaction at A passes 
through B and, therefore, does not cause any moment about B.

Moment equilibrium could have been taken about any two other points resulting in two 
equations in two unknowns (VA and VB), or we could have used horizontal and vertical force 
equilibrium equations together with one moment equilibrium equation. Despite the increase 
in complexity of the solution, the results would still be identical.

These results may be verified by checking that equilibrium is satisfied in the vertical direction:

 + ∑ = − × − + = − × − +F V VV 0 5 4 20 45 0 18 53 5 4 14 14 15 61: . . .A Bsin == ∴0 OK

It is good practice to routinely apply such a check to verify the accuracy of the calculations.
The main steps required for the determination of the reactions are outlined below fol-

lowed by two worked examples.

SUMMARY OF STEPS 2.3: Determination of the reactions

 1. Draw the free-body diagram of the structure (see Summary of Steps 2.1).

 2. Evaluate whether the structure is statically determinate externally, indeterminate exter-
nally, or unstable (see Summary of Steps 2.2).

 3. If the structure is statically determinate, apply the equations of equilibrium and, if required, 
the equations of conditions to determine the unknown reactions. The calculation of the 
reactions in statically indeterminate structures will be dealt with in coming chapters.
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WORKED EXAMPLE 2.4

The bent beam ABCD shown in Figure 2.26 is supported by a pin at A and a roller at D. 
Determine the reactions at A and D.

(1) Draw the free-body diagram
The free-body diagram of the whole structure is presented in Figure 2.27, with the x and y 
directions assigned as shown and the three reaction components, HA, VA and VD, included. For 
later calculations, it is convenient to replace the inclined forces with their horizontal and verti-
cal components. In the solution process, we have assumed that the depth (or thickness) of the 
beam is small compared to its length and can be ignored.

(2) Determine the statical determinacy
The bent beam is internally stable as it does not change its shape if the supports are removed. 
As there are three reaction components that do not form a system of concurrent or parallel 
forces and there are three equilibrium equations, the structure is statically determinate.

(3) Determine the reactions
When finding reactions by hand calculations, it is desirable to determine each reaction indepen-
dently as far as possible to minimise the complexity of the calculation. It is also recommended to 
check the reactions by an alternative calculation before proceeding with the analysis. To obtain 
an equation involving only VD, we take moments about A:

Figure 2.26 Structure for Worked Example 2.4.

Figure 2.27 Free-body diagram for Worked Example 2.4.
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+ ∑ = − × − × − × − × − ×MA 0 40 3 60 6 34 64 3 5 20 9 51 96: ( ) ( ) ( . . ) ( ) ( . 33 5 30 12

15 0 88 21

. ) ( )

( ) .

− ×

+ × = ∴ =V VD D kN

To obtain an equation involving only VA, we can take moments about point F (which is the point 
of intersection of the lines of actions of HA and VD, as shown in Figure 2.27):

 
+ ∑ = − × + × + × − × + ×M VF A0 15 40 12 60 9 34 64 3 5 20 6: ( ) ( ) ( ) ( . . ) ( )) ( . . )

( ) .

− ×

+ × = ∴ =

51 96 3 5

30 3 0 61 79VA kN

Summing the forces vertically confirms that the above values are correct (or have compensating 
errors which is unlikely):

 + ∑ = − − − − + = − − − − +F V Vy 0 40 60 20 30 61 79 40 60 20 30 88 21: . .A D == ∴0 OK

By equating the forces in the x direction to zero, we obtain an equilibrium equation with HA as 
the only unknown:

 + ∑ = + + = ∴ = −F H Hx 0 34 64 51 96 0 86 60: . . .A A kN

The reaction HA is therefore acting in the opposite direction to that shown in Figure 2.27.
The calculated reactions are summarised in Figure 2.28.

A further check by equating to zero the sum of the moments of all forces about another point 
(such as either C or D) will confirm that the calculated reactions are correct.

WORKED EXAMPLE 2.5

Calculate the reactions at the pinned supports at A and E of the frame ABCDE shown in Figure 
2.29a. There is a frictionless hinge at C, so that the single equation of condition is MC = 0. The 
free-body diagram of the entire frame is shown in Figure 2.29b and the free-body diagrams of 
the substructures CDE and ABC are shown in Figures 2.29c and d, respectively.

Figure 2.28 Summary of loads and reactions for Worked Example 2.4.
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With a total of four unknown reaction components (nr = 4), three equilibrium equations and 
one equation of condition (nc = 1), the number of equations equals the number of unknowns and 
the frame is statically determinate. The direction assumed for each of the reaction components 
is arbitrary, but cannot be changed once the solution process has started.
For the free-body diagram of the whole frame (Figure 2.29b), with three of the four reaction 
components passing through A, moment equilibrium about the hinge at A gives:

 +  VE × 16 – 6 × 16 × 8 – 20 × 6 = 0  ⇒  VE = 55.5 kN

Considering the free-body diagram CDE (Figure 2.29c), knowing that the moment at C is zero 
and with VE having been determined, moment equilibrium about C gives the horizontal reaction 
component at E:

 +  55.5 × 8 – HE × 6 – 6 × 8 × 4 = 0  ⇒  HE = 42.0 kN

Returning to the free-body diagram of the entire frame (Figure 2.29b), with HE now known, 
summing the horizontal forces gives:

 +  HA + 20 – 42.0 = 0  ⇒  HA = 22.0 kN

Summing the vertical forces on the frame allows the determination of the vertical reaction 
component at A:

 +  VA – 6 × 16 + 55.5 = 0  ⇒  VA = 40.5 kN

Figure 2.29  Structure and free-body diagrams for Worked Example 2.5. (a) Idealized frame. 
(b) Free-body diagram of whole frame. (c) Free-body diagram of CDE. (d) Free-body 
diagram of ABC.
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2.11  EQUILIBRIUM AND REACTIONS IN 
THREE- DIMENSIONAL STRUCTURES

The procedure to be used for the calculation of the reactions of three-dimensional struc-
tures is similar to that presented for plane structures, except that now there are six equi-
librium equations available from statics. The resultant force in each of the three mutually 
perpendicular directions (i.e. the sum of all force components in each direction) must be 
zero:

 ∑ =Fx 0   ∑ =Fy 0   ∑ =Fz 0  (2.21a–c)

and the resultant couple about each of three mutually perpendicular axes (i.e. the sum of the 
moments of all forces about each axis) must also be zero:

 ∑ =Mx 0   ∑ =My 0   ∑ =Mz 0  (2.21d–f)

The six equations (Equations 2.21a through f) are the general conditions of equilibrium 
of forces in space.

Different support conditions are available in three-dimensional structures that can 
combine different combinations of restraints to the displacements or rotations at the 
supports.

In this example, all four reaction components are positive, indicating that all reactions are acting 
in the directions selected in the free-body diagram (Figure 2.29b).
To check these results, consider the free-body diagram ABC shown in Figure 2.29d. Moment 
equilibrium about the hinge at C shows that the calculated reaction components at A are correct:

 +  HA × 6 + 6 × 8 × 4 – VA × 8 = 22.0 × 6 + 6 × 8 × 4 – 40.5 × 8 = 0 ∴ OK

Although the components of the force passing through the hinge at C (HC and VC) are readily 
determined by considering force equilibrium on either Figure 2.29c or d, they are not required 
to determine the reactions at supports A and E.
The calculated reactions are summarised in Figure 2.30.

Figure 2.30 Summary of loads and reactions for Worked Example 2.5.
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In some three-dimensional problems, when determining unknown forces by hand, a 
judicious choice of axes about which to take moments will often shorten the solution. For 
instance, any particular force is eliminated from the moment calculation if moments are 
taken about an axis intersecting this force or an axis parallel to it.

When determining the reactions of a three-dimensional beam or frame, it is often convenient 
to consider what motion will be permitted if a certain reaction is removed. This provides an 
indication of what particular equilibrium equation can be used to evaluate this reaction. For 
instance, if removal of a given reaction would leave the body free to rotate about the y-axis, 
then an equation of moments about the y-axis will enable that reaction to be calculated directly.

Similar to a two-dimensional structure, the determination of the reactions for a statically 
determinate three-dimensional structure can be carried out using only the equilibrium equa-
tions. The evaluation of the statical determinacy of a three-dimensional structure is now 
dealt with in Reflection Activity 2.1, which is then followed by Worked Example 2.6.

REFLECTION ACTIVITY 2.1

Reconsider the Summary of Steps 2.2 outlining the procedure to be performed to evaluate 
whether a structure is statically determinate, indeterminate, or externally unstable, and suggest 
how the steps should be modified to be applicable to three-dimensional structures.

The first three points (points 1–3) included in Summary of Steps 2.2 are applicable in their cur-
rent form to three-dimensional structures and, hence, do not need to be changed.
The conditions to be used for the determination of the statical determinacy need to be modified 
to account for the fact that the number of equilibrium equations available in three-dimensional 
is 6 (and not 3 as for plane structures).
Point 4 is therefore revised as follows:
(4)  count the number of unknown reactions nr and the number of equations of condition 

nc (if any) and classify the structure as follows:
a. Statically determinate externally when nr = nc + 6.
b.  Statically indeterminate externally when nr > nc + 6. The structure is said to be n-fold inde-

terminate externally, where n = nr – (nc + 6).
c. Statically unstable when nr < nc + 6 or when part of the structure possesses a mechanism.

WORKED EXAMPLE 2.6

The beam ABC shown in Figure 2.31 has a right angle bend at B and lies in the horizontal x–z 
plane. The segments AB and BC are both 6 m long. The support at C can exert a reaction in any 
direction (with components in the x, y and z directions shown as R4, R5 and R6, respectively). The 
support at B does not exert a reaction in the direction BC and so the reaction at B has compo-
nents in the y and z directions, R2 and R3, respectively. The support at A can exert a reaction in 
the vertical y direction only, R1.
Loads are applied at the midpoints of AB and BC, with the 8 kN and 12 kN loads both horizontal 
and normal to the beam, and the 20 kN load applied in the y direction.
Calculate the six unknown reaction components.
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(1–3) The FBD of the structure is depicted in Figure 2.31 from which it can be observed that:
a. The reactions do not form a system of concurrent or parallel forces.
b. The structure is internally stable.

(4) Reaction forces R2, R3, R5 and R6 and the 12 kN applied load all intersect the x-axis along 
BC. In addition, the 8 kN applied load and the reaction R4 are parallel to the x-axis. By taking 
moment about the x-axis through B and C, the reaction R1 is readily determined:

 ∑ =( ) :Mx BC 0  20 3 6 01× − × =R  ∴ = +R1 10 kN

Since all forces except R5 either intersect the z-axis along AB or are parallel to it, taking moment 
about the z-axis gives:

 ∑ =( ) :Mz AB 0  R5 6 0× =  ∴ =R5 0

Summing the forces in the y direction gives the remaining vertical reaction:

 ∑ =Fy 0 :  R R R1 2 5 20 0+ + − =  ∴ =R2 10 kN

Summing the forces in the x direction, we get:

 ∑ =Fx 0 :  8 04− =R  ∴ =R4 8 kN

Only three forces cause a moment about the y-axis through B, namely, the 8 kN and 12 kN 
applied loads and the reaction R6. Therefore:

 ∑ =( ) :My B 0  8 3 12 3 6 06× + × − × =R  ∴ = +R6 10 kN

Summing the forces in the z direction gives:

 ∑ =Fz 0 :  R R3 6 12 0+ − =  ∴ =R3 2 kN

As a check on the above calculations, take moment about the y axis through C:

 ∑ =( ) :My C 0  8 3 6 12 3 03× + × − × =R  ∴OK

The calculated reactions and applied loads are summarised in Figure 2.32.

Figure 2.31 Free-body diagram for Worked Example 2.6.
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PROBLEMS

 2.1 Determine the components Fx and Fy parallel to the x- and y-axes for the forces 
F shown.

 2.2 Calculate the magnitude and direction of the force F described by its components 
Fx and Fy illustrated below. Determine the direction cosines of F with respect to the 
x- and y-axes.

Figure 2.32 Summary of loads and reactions for Worked Example 2.6.
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 2.3 Consider the forces F shown and determine their components Fx, Fy and Fz parallel 
to the x-, y- and z-axes, respectively.

 2.4 Determine the magnitude of F and the direction cosines related to the x-, y- and 
z-axes for the forces associated with the components shown.

 2.5 Calculate the moments of the forces F with respect to points A and B shown 
(dimensions of coordinates are in metres).
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 2.6 Consider the forces described by the components Fx, Fy and Fz parallel to the x-, y- 
and z-axes provided in the figure below (dimensions of coordinates are in metres). 
Determine the magnitude and direction cosines of the moments they induce with 
respect to point A.

 2.7 Find the magnitude and direction of the force resultant of the system of concurrent 
forces shown.

 2.8 For the force systems shown, determine the magnitude of force F1 and the direction 
θ of force F2, if F2 is the resultant of the remaining forces.

 2.9 For the force systems considered in Problem 2.8, determine the magnitude of force 
F1 and the direction θ of force F2, if F1 is the resultant of the remaining forces.
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 2.10 If the angle between the lines of action of two concurrent forces F1 and F2 is θ, 
show that the magnitude of the resultant of the two forces is:

 R F F F F= + +1
2

2
2

1 22 cosθ

 and the angle α between the lines of action of the resultant and the force F1 is:

 α
θ

θ
=

+






−tan
sin

cos
1 2

1 2

F
F F

 2.11 The resultant of two concurrent forces F1 = 10 kN and F2 = 15 kN is R = 5 kN. Find 
the angle between F1 and F2.

 2.12 Find the resultants, expressed in terms of a force and a moment located at (i) point 
O(0,0) and (ii) point H(9,4), for the system of forces shown.

 2.13 The three forces shown act on the sides of a triangular plate ABC.
(i) Find the magnitude of the resultant force.

(ii)  Replace the three forces by a statically equivalent force system consisting of a 
single force and couple applied at A.

 2.14 The 2 m square plate shown is acted on by two forces, each of 80 kN, and a clock-
wise couple of 100 kNm as shown. Determine the resultants, expressed in terms of 
a force and a moment applied at points (i) G(1,1), (ii) B(2,2) and (iii) C(2,0).
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 2.15 Determine the magnitude of the resultants expressed in terms of a force and a 
moment applied at A, produced by the three forces acting on the bar ABCD.

 2.16 The cranked bar shown is in equilibrium. Calculate the forces R1, R2 and R3.

 2.17 Calculate the components of the resultant force and moment applied at (i) point O 
and (ii) point H for the system of forces shown.
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 2.18 Determine whether the beams are externally statically determinate, indeterminate 
or unstable.

 2.19 Consider the frames shown below and evaluate whether they are externally stati-
cally determinate, indeterminate or unstable.

 2.20 Draw the free-body diagram of the simply-supported beam shown below and cal-
culate the reactions at each support.

 2.21 Consider the simply-supported beam and sketch its free-body diagram. Determine 
the reactions at each support.
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 2.22 Sketch the free-body diagram for the simply-supported beam shown below and 
evaluate the reactions at the supports at A and C.

 2.23 Draw the free-body diagram for the simply-supported beam and determine the 
reactions at each support.

 2.24 Consider the frame illustrated below and sketch its free-body diagram. Calculate 
the reactions provided by the pinned support at A and by the roller support at D.

 2.25 For the beam outlined below, determine the reactions at the pinned and roller 
supports.

 2.26 The frame has a pinned support at A and a roller at C. Draw its free-body diagram 
and calculate the reactions at the two supports.
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 2.27 For the beam shown below, draw the free-body diagram and determine the reac-
tions at the pinned support at A and at the roller at E.

 2.28 The beam ABCDEF shown is pinned at A and supported on rollers at C, D and F, 
and has two internal hinges as shown. Calculate the reactions at each support.

 2.29 For the beams shown, calculate the reactions at A and D.

 2.30 Reconsider the frames of Problem 2.29 and evaluate the effect on the reactions in 
each case if the 40 kNm couple is moved from E to C.

 2.31 The horizontal beam shown is supported on rollers at A and E, with the roller 
planes at 60° and 30°, respectively, to the horizontal. The beam is also supported 
by a roller at C (on a horizontal roller plane). For the loading shown, find the reac-
tions at the three supports.

 2.32 The simply-supported beam is acted on by a linearly varying distributed load, as 
shown. Determine the reactions at A and B.
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 2.33 The beam is pinned at A and has a roller at D (with the reaction at D perpendicular 
to the beam). Determine the reactions at the two supports.

 2.34 The simply-supported beam shown is subjected to two couples applied at B and C. 
Find the reactions at A and D.

 2.35 The frame ABCD is fixed at B. For the loading shown, evaluate the reactions 
at A.

 2.36 The bent beam is pinned at F and supported by a vertical roller at A (i.e. the reac-
tion at A is horizontal). Calculate the reactions at the supports at A and F.
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 2.37 Consider the beam outlined below. Determine the reactions at the pinned support 
at A and at the roller at G.

 2.38 The structure shown has a pinned support at A and a roller at D. Calculate the 
reactions at A and D.

 2.39 The beam is subjected to a uniformly distributed load over the segment BC. 
Calculate the reactions at the pinned support at A and at the roller at B.

 2.40 For the structure shown, determine the reactions at A and D.

 2.41 For the portal frame ABCDE, determine the reactions at the pinned supports 
located at A and E.
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 2.42 For the structure shown, calculate the vertical and horizontal reaction components 
at the supports at A, B and C.

 2.43 Consider the portal frame ABCDE and determine the reactions at A and E.

 2.44 Reconsider the portal frame ABCDE of Problem 2.43 and assume the support at A 
is fixed and the one at E is pinned. Determine the effects of this change in support 
conditions on the reactions calculated in the previous problem.

 2.45 Consider the three pinned arch shown and calculate the reactions at the pinned 
supports at A and G.

 2.46 The cantilever beam ABCD is bent at right angles in the x–z plane at B and at right 
angles in the y–z plane at C. It is fixed in position in each direction at A so that six 
reaction components can develop at that support. The lengths of the three legs of 
the beam are as follows: AB = 6 m, BC = 5 m and CD = 4 m.

 For the loading shown, determine the six reactions at A.
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 2.47 The structure shown has three legs, AB in the z direction, BC in the x direction, 
and BD in the y direction. AB and BC are 6 m long and BD is 5 m long. It is sup-
ported at A, C and D. The support at A restrains movement in the z direction only 
(R1) and rotation about the y-axis only (R2). The support at C restrains movement 
in the y direction only (R3) and rotation about the x-axis only (R4). The support at 
D restrains movement in the x and y directions only (R5 and R6, respectively).
The 6 kN and 8 kN loads act at the midpoint of AB, while the 12 kN and 14 kN 
loads act at the midpoint of BC. The 6 kN load acts in the x direction, the 8 kN 
and 14 kN loads act in the y direction, and the 10 kN and 12 kN loads act in 
the z direction.
Find the six reactions.
Note: the double-headed arrows in the figure denote that the reactions R2 and R4 
are couples about an axis in the direction of the arrow.
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Chapter 3

Internal actions of beams and frames

3.1  INTRODUCTION

This chapter deals with the calculation of internal actions in statically determinate beams and 
frames. We have seen that statically determinate structures are those for which the reactions 
at the supports and the internal actions on any cross-section may be determined using 
only the equations of equilibrium. We will see subsequently that for statically determinate 
structures, a small deformation of one part of the structure does not induce reactions at 
the supports and does not cause a change in deformation of any other part of the structure.

Only two-dimensional beams and frames will be considered in this chapter, i.e. beams 
and frames that lie in a single plane (the x–y plane) with applied forces and reactions in the 
same plane and with moments about an axis perpendicular to that plane. In addition, we 
will be concerned here only with beams and frames whose deformations are small compared 
to the dimensions of the structure, so that the change in geometry of the structure when the 
loads are applied is small enough to be ignored.

3.2  INTERNAL ACTIONS AT A CROSS-SECTION

Most structures are built up of several components connected together. Such components 
exert forces upon one another at their connections, and it is necessary to evaluate these 
forces. Such forces are internal to the structure as a whole, and no information can be 
obtained about them by considering the equilibrium of the complete structure. According to 
Newton’s third law, the force exerted by component X upon component Y is equal and oppo-
site to the force exerted by Y upon X. So even if an attempt is made to include these forces in 
the equilibrium equations, they will cancel each other out. The only way information can be 
obtained about such forces is to consider the equilibrium of a part of the structure. The part 
is selected such that the internal force in question becomes external to that part.

In Section 2.7, the concept of the free-body diagram was introduced when considering 
the equilibrium of a complete structure, isolated from its supports and acted upon by the 
external applied loads, as well as the reactions exerted by the supports. The concept of the 
free-body diagram can be extended to apply to any part of a structure. The corresponding 
free-body diagram is a diagram showing the particular part or component of the structure 
together with all the forces that are external to that component. These forces consist of the 
external forces applied directly to the component, as well as those internal forces exerted by 
the removed part of the structure upon the part being considered. The free-body diagram 
of part of a structure was briefly introduced in Chapter 2 when considering the equations of 
condition for the calculation of the reactions of a structure.
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For example, a single beam may be arbitrarily divided into two parts and either part 
considered as a free-body diagram. By considering equilibrium of either of these free-body 
diagrams, the force transmitted at the interface between the two parts may be determined. 
The internal force in question may be treated as an external force acting on the partial free-
body diagram and may be readily calculated using the equations of statics. Let us consider 
the straight beam ABCD shown in Figure 3.1a. The beam reactions may be determined by 
enforcing equilibrium and are shown on the free-body diagram of Figure 3.1b. Suppose that 
we need to determine the force transmitted across the section C. For this purpose, we cut 
the beam at C and consider equilibrium of either segment AC or CD. Figure 3.1c shows the 
free-body diagram of the portion AC that is acted upon by the given forces at A and B and 
by an unknown force Q at C acting at the centroid of the cross-section and an unknown 
couple M acting about the centroidal axis (refer to Appendix A). Since the free-body AC is 
in equilibrium, the unknowns Q and M are the equilibrants of the other two forces acting 
on AC and may be determined by simple statics.

These equilibrants Q and M are the internal actions exerted on the length of beam AC 
by the length of beam CD. Equal and opposite actions Q′ and M′ must be exerted upon 
CD by AC, and these actions may be found if the equilibrium of free-body diagram CD 
is considered (Figure 3.1d). It is convenient in practice to resolve the force Q into its two 

Figure 3.1 Simply-supported beam and free-body diagrams.
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components, one parallel to the axis of the beam and one perpendicular to it (Figure 3.1e 
and f). Thus, the equilibrants are replaced by a statically equivalent system comprising two 
forces and a couple, all acting at the centroid of the cross-section C. The component force 
parallel to the axis of the member is called the axial force, denoted here by N. The component 
force perpendicular to the axis is called the shear force, denoted by S (or sometimes V). The 
couple is called the bending moment, denoted by M.

These definitions are applicable also to curved members, in which case the component 
forces of the internal action at any section are taken parallel and perpendicular to the tan-
gent to the curve at that section. Based on this, the definition of the internal actions at any 
cross-section can then be generalised to the following.
– The axial force is the component of the internal action in a direction parallel to the lon-

gitudinal axis of the member at the section.
– The shear force is the component of the internal action in a direction normal to the lon-

gitudinal axis of the member at the section.
– The bending moment is the moment of the internal action about the point where the 

longitudinal axis of the member intersects the given cross-section, i.e. about the centroid 
of the cross-section (or more precisely about an axis through the centroid of the cross-
section and perpendicular to the plane of the structure, i.e. centroidal axis).
Not only is it convenient to express the internal action at a cross-section of a structural 

member by the axial force, shear force and bending moment, but engineers find that this 
procedure facilitates the design of the member.

3.3  SIGN CONVENTION OF INTERNAL ACTIONS

It is important to discuss the sign convention of internal actions before engaging in their 
calculation. Figures 3.1e and f show the left- and right-hand free-body diagrams on either 
side of a particular cross-section (at C) of the simply-supported beam ABCD. The internal 
actions on the cross-section (N, S and M) are shown in the positive sense on each free-body 
diagram. In this illustration, if we determine the bending moment by considering free-body 
diagram AC (Figure 3.1e), we find that M is anticlockwise. On the other hand, if we con-
sider the equilibrium of CD (Figure 3.1f), we find that M is clockwise, being the opposite 
to the couple exerted on AC. Thus, if the terms clockwise and anticlockwise are adopted as 
criteria of positive and negative, the sign of the bending moment would differ according to 
whether AC or CD is considered. Besides being inconvenient, this does not reflect the physi-
cal behaviour of the term bending moment. Similar remarks apply to the axial force N and 
shear force S. A more satisfactory sign convention is obtained by considering the effect that 
these actions have on the deformation of a small portion of the beam.

Suppose that at the part of the beam under consideration two cuts C1 and C2 are made 
very close together, thus isolating a small element of the beam as indicated by the side eleva-
tion shown in Figure 3.2. At the cut C1, the three internal actions are shown acting on each 
cut surface. They are similarly shown at the cut C2. The actions at C1 and C2 are nearly 
identical, since C1 and C2 are close together.

The small element is thus subjected to three pairs of actions that tend to distort its shape. 
It is most important not to confuse these internal actions with applied forces and cou-
ples. An applied force would act in a particular direction. For a horizontal member (as in 
Figure 3.2), the axial force is represented by a pair of horizontal forces, one of which acts to 
the left and one to the right. Similarly, a shear force is depicted by a pair of vertical forces, 
one up and one down, and a bending moment by a pair of couples, one clockwise and one 
anti-clockwise.
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The small element in Figure 3.2 is subjected to a pair of forces N1 and N2 that in this 
instance tend to increase its length, that is, the element is in tension. The axial force N is 
said to be positive if it stretches the element and puts it into tension, and negative if it causes 
compression and shortens its length (see Figure 3.3a). The element is subjected to a pair of 
forces S1 and S2 that tend to cause a shearing type of deformation. If the forces S1 and S2 are 
in the directions shown in Figure 3.2, the shear force S is said to be positive (see Figure 3.3b). 
The element is subjected to a pair of couples M1 and M2 that tend to bend it. The bending 
moment M is said to be positive if the element bends concave upward (as shown in Figure 
3.3c) or concave towards a specified positive direction if the bar is not horizontal. These 
adopted sign conventions are summarized in Figure 3.3.

Figure 3.2 Free-body diagram of beam element of small length.

Figure 3.3  Sign convention for axial force, shear force and bending moment. (a) Axial force. (b) Shear force. 
(c) Bending moment.
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The illustrations of Figure 3.3 outline the physical significance of the above definition of 
the sign conventions. In many practical problems, the signs may be determined by imagining 
the nature of the deformation. For instance, a simply-supported beam carrying downward 
loads will bend so that it becomes concave on the top (Figure 3.4a), inducing a shortening in 
the top fibres of the member and an elongation in the bottom fibres. Such bending is denoted 
as positive bending, sometimes called sagging bending. The same simply-supported beam 
carrying upward loads will bend so that it becomes concave on the bottom (Figure 3.4b), 
and the bottom fibres of the member shorten while the top fibres elongate. This is negative 
bending, sometimes called hogging bending. These definitions of positive (sagging) and 
negative (hogging) moments are useful for beam arrangements, but they lose their meaning 
for vertical members, for which it is not possible to distinguish between the top and bottom 
fibres.

In more general problems, the physical determination of signs is less simple and analytical 
rules are more convenient. The x-axis is generally defined as running along the beam, as 
shown in Figure 3.5. If the beam is cut at a particular cross-section, the x-axis is directed 
outward on one cut face, that is, the left-hand face in Figure 3.5, and this is the face of posi-
tive incidence. If the forces N, S and M on this face agree with the direction of the x- and 
y-axes, then they are defined as positive. On the other cut face, the x-axis is directed inward 
as on the right-hand side of Figure 3.5. This face is called the face of negative incidence and, 
on this face, N, S and M are positive if they disagree with the x- and y-axes.

In Figure 3.1e and f, the left- and right-hand free-body diagrams were shown for the beam 
of Figure 3.1a cut at C. On each diagram, the internal actions were depicted acting in their 
positive sense as defined above. On the left-hand free-body diagram ABC, where the cut face 
at C is the face of positive incidence, positive N and S are shown in the directions of x and 
y, and positive M is anticlockwise. On the right-hand free-body diagram CD, the cut face 
at C is a face of negative incidence, and the positive directions of N and S are opposed to x 
and y, and positive M is clockwise. Applying the equations of equilibrium to either free-body 
diagram will give the values of N, S and M with the correct signs.

Figure 3.4  Example of positive and negative moments. (a) Positive (sagging) moment. (b) Negative (hogging) 
moment.

Figure 3.5 Faces of positive and negative incidence.
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3.4  DETERMINATION OF INTERNAL ACTIONS 
AND STATICAL DETERMINACY

For the evaluation of internal actions at a particular location, the member is first cut at that 
location and the internal actions N, S and M are then determined by applying the equations 
of equilibrium to one of the two free-body diagrams produced by the cut.

We will now determine the internal actions at the cross-section at C for the beam shown in 
Figure 3.1a (and reproduced in Figure 3.6a). The free-body diagram for the entire beam with 
the reactions determined from statics is shown in Figure 3.6b. The first step in the solution is 
to cut the structure at C to produce the two free-body diagrams ABC (Figure 3.6c) and CD 
(Figure 3.6d). On each free-body diagram, there are three unknown internal actions, that is, 
N, S and M, and these can be determined using the three equations available from statics. 
Applying the equilibrium equations (Equations 2.18) to the free-body ABC (Figure 3.6c) gives:

 ∑ = − + = ∴ = +F N Nx 0 20 30 0 17 32: .cos kNC C

 ∑ = + − + = ∴ = +F S Sy 0 6 20 30 0 4 0: .sin kNC C

and taking moments about C:

 ∑ = − × + × + = ∴ = +M M MC 0 6 4 5 20 30 1 5 0 12 0: . . .sin kNmC C

Similar results can be obtained by applying the equilibrium equations to the free-body 
diagram CD in Figure 3.6d:

 ∑ = − + = ∴ = +F N Nx 0 17 32 0 17 32: . .C C kN

Figure 3.6 Simply-supported beam and free-body diagrams.
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 ∑ = − + = ∴ = +F S Sy 0 4 0 4 0: .C C kN

and taking moments about C:

 ∑ = − + × = ∴ = +M M M( ) : .C 0 3 4 0 12 0C C kNm

When writing these equilibrium equations, the positive directions for the various forces 
Fx, Fy and the couples M are taken to the right, upwards and anticlockwise, respectively. 
This is arbitrary, as it makes no difference to the answers if the opposite directions are 
selected.

Let us now consider the simply-supported beam of Figure 3.7a with the aim to determine 
the internal actions at G. The free-body diagram of the whole structure is shown in 
Figure 3.7b. To determine NG, SG and MG, we must perform a cut through the structure 
at G, and the presence of the closed loop BCDE means that any cut through G will always 
intersect the structure at two locations, as highlighted in the cut shown in Figures 3.7c and d. 
We now have six unknown internal actions, that is, NG, SG and MG at G and NH, SH and MH 
at H. Clearly, the three equilibrium equations of statics are not sufficient to determine the 
unknown internal actions in this structure.

Structures for which the internal actions cannot be calculated from statics are denoted as 
internally statically indeterminate and one needs to also consider the geometry of the cross-
sections and the material properties of the structure in order to calculate the internal actions. 

Figure 3.7 Simply-supported beam with a closed loop and free-body diagrams.
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In general, when there is a closed loop in a beam or frame, its internal actions cannot be 
evaluated from statics alone.

The steps involved in the determination of the internal actions in a statically determinate 
structures are presented in Summary of Steps 3.1.

SUMMARY OF STEPS 3.1: Determination of internal actions

 1. Draw the free-body diagram of the entire structure (see Summary of Steps 2.1) highlight-
ing all reactions and applied loads.

 2. Identify locations along the beam or frame where the internal actions need to be calculated.

 3. Perform a cut through the structure at each location of interest and calculate the internal 
actions. This is carried out by applying the three equations of equilibrium to the free-body 
diagram containing the three unknown internal actions created by the cut. In the case of 
closed loops, the methods of analysis presented in subsequent chapters need to be used 
for the evaluation of the internal actions, as the number of unknowns is higher than the 
number of available equations of equilibrium (the structure is said to be statically inde-
terminate internally). As already observed for the calculation of the reactions in Section 
2.9, the presence of hinges in the closed loops might add equations of conditions in the 
calculation of the internal actions.

Note: The above steps assume that the three internal actions at the cut section are the only 
unknowns on the free-body diagram and that all the reactions at each of the supports have 
previously been calculated.

SUMMARY OF STEPS 3.2: Evaluation of whether a structure 
is statically determinate, indeterminate and unstable

For the case of plane structures, the procedure involved in the classification of external statical 
determinacy has been presented in Summary of Steps 2.2, while the aspects related to the pos-
sibility of calculating the internal actions from equilibrium considerations have been outlined in 
Summary of Steps 3.1.

A structure is defined as statically determinate only if the following two conditions are satisfied: 
(i) it is statically determinate externally and the reactions at each support can be determined 
from statics, and (ii) its internal actions along each member can be calculated from statics.

A structure is defined as statically indeterminate if at least one of the following two conditions is 
satisfied: (i) it is statically indeterminate externally and the reactions cannot be determined from 
statics alone, or (ii) its internal actions at any point cannot be calculated from statics.

For a statically indeterminate structure, the degree of statical indeterminacy depends on both 
the number of external redundants (i.e. redundant support reactions) and the number of redun-
dant internal actions nir. For example, in Figure 3.7c: nir = 3. If nr is the number of external 
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support reactions and nc is the number of equations of condition (as defined in Summary of 
Steps 2.2), the degree of statical indeterminacy n is calculated from:

 n = nr + nir – (nc + 3)

and the structure is said to be n-fold indeterminate.

A structure is unstable if n calculated above is negative or when part of the structure possesses 
a mechanism (as previously discussed in Summary of Steps 2.2).

A stable structure is statically determinate if n calculated above is equal to zero.

WORKED EXAMPLE 3.1

The reactions at the supports of the cranked beam shown in Figure 3.8 were calculated in 
Worked Example 2.4. Determine the axial force, shear force and bending moment at the cross-
section at E (at the mid-point of the length of beam BC).

First, we cut the structure at E, thereby dividing the structure into two parts, ABE and ECD. The 
free-body diagrams of ABE and ECD are shown in Figure 3.9a and b, respectively. The internal 
actions at E will be calculated by considering equilibrium of both free-body diagrams to demonstrate 
that they both lead to the same values. We start from the free-body diagram of ABE (Figure 3.9a), 
which includes the reaction forces at A. The inclination of the x-axis at E to the horizontal is:

 θ = tan−1(1.75/1.5) = 49.4°.

Equilibrium requires that the sum of the components of all forces in the x′-direction is zero. 
Therefore:

 +  : NE – 60 sin 49.4 – 40 sin 49.4 + 61.79 sin 49.4 – 86.6 cos 49.4 = 0 

 ∴ NE = +85.37 kN

Figure 3.8 Free-body diagram from Worked Example 2.4.
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3.5  AXIAL FORCE, SHEAR FORCE AND 
BENDING MOMENT DIAGRAMS

The internal actions vary from point to point along a beam or frame and it is often 
convenient to express this variation in algebraic terms. If the bending moment, for example, 
is computed for a typical point at a distance x from a chosen origin, an expression is 

Similarly, in the y′-direction:

 +  : SE – 60 cos 49.4 – 40 cos 49.4 + 61.79 cos 49.4 + 86.6 sin 49.4 = 0 

 ∴ SE = –40.88 kN

Taking moment about E gives:

 +  : ME + 60 × 1.5 + 40 × 4.5 – 61.79 × 7.5 – 86.6 × 1.75 = 0

 ∴ ME = +345.0 kNm.

Alternatively, the internal actions at E may be determined from the right-hand free-body 
diagram of ECD (shown in Figure 3.9b). Summing the forces in the x′-direction in Figure 3.9b 
gives:

 +  : –NE + 34.64 cos 49.4 + 51.96 cos 49.4 – 20 sin 49.4 – 30 sin 49.4 + 88.21 sin 49.4 = 0

 ∴ NE = +85.37 kN

Similarly in the y′-direction:

 +  : –SE – 34.64 sin 49.4 – 51.96 sin 49.4 – 20 cos 49.4 – 30 cos 49.4 + 88.21 cos 49.4 = 0

 ∴ SE = –40.88 kN

Taking moment about E gives:

 +  : –ME – 34.64 × 1.75 – 51.96 × 1.75 – 20 × 1.5 – 30 × 4.5 + 88.21 × 7.5 = 0

 ∴ ME = +345.0 kNm.

Figure 3.9 Free-body diagrams ABE and ECD for Worked Example 3.1.
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obtained for M in terms of x. Similar expressions may also be derived for the axial force 
N and shear force S. These expressions are usually valid only over a limited part of the 
structure. This is the case if the loading is discontinuous, i.e. if concentrated loads are 
applied to the structure or if the magnitude of a distributed load suddenly changes. It is 
also the case if the beam or frame suddenly changes direction or if the beam contains an 
interior support.

It is frequently convenient to illustrate the variation of axial force, shear force and bending 
moment by plotting their graphs against distance along the beam or frame. Such graphs are 
called axial force, shear force and bending moment diagrams and may be obtained either 
by plotting the algebraic functions mentioned above or by simply calculating N, S or M at a 
number of isolated points along the structure and plotting these values as ordinates on the 
member longitudinal axis, i.e. the x-axis.

Throughout the book, the bending moment diagrams will be drawn on the tension side 
of the beam or frame, meaning that the line showing the variation of the moment will be 
located on the side of the cross-section subjected to tensile deformations. For example, for the 
simply-supported beam of Figure 3.10a, tension occurs at the bottom and the bending moment 
diagram is therefore plotted as shown in Figure 3.10b.

SUMMARY OF STEPS 3.3: Drawing of axial force diagram (AFD), 
shear force diagram (SFD) and bending moment diagram (BMD)

 1. Identify segments of the structures along which the expressions for the external axial 
force, shear force and moment are continuous and locate the positions where disconti-
nuities of these expressions occur.

 2. Perform a cut in each of the segments identified at point 1 at some arbitrary location 
placed at a distance x along the structure and derive expressions for N, S and M (as a 
function of x) by applying the equations of equilibrium one at a time.

 3. Plot the expressions determined at step 2 on the member axis to produce the axial force 
diagram (AFD), shear force diagram (SFD) and bending moment diagram (BMD).

The sign convention adopted in this book for the plotting of the BMD is to plot the curve on 
the tension side of the members.

Figure 3.10  Sign convention for plotting of bending moment diagrams. (a) Simply-supported beam. 
(b) Bending moment diagram (plotted on tension side).
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WORKED EXAMPLE 3.2

The free-body diagram of a simply-supported beam ABCD is shown in Figure 3.11. Express the 
axial force, shear force and bending moment for each of the beam segments AB, BC and CD 
as functions of the distance x from end A and draw the axial force, shear force and bending 
moment diagrams for the whole beam.

(1) The segments along which the internal actions remain continuous are AB, BC and CD, 
because of the presence of the applied forces at B and C.

(2) We perform a cut at an arbitrary point within each segment and consider equilibrium of either 
the left- or the right-hand free-body diagrams to determine the expressions for N, S and M.

Segment AB: If we cut the beam at any cross-section X between points A and B (at x from end 
A, as shown in the left-hand free-body diagram in Figure 3.12a), the internal actions on the cut 
cross-section can be readily determined from the equations of equilibrium:

 ∑ = =M M xx kNm0 64:  (3.1a)

 ∑ = = −F Sy kN0 64:  (3.1b)

 ∑ = = −F Nx kN0 60:  (3.1c)

Figure 3.11 Free-body diagram of a simply-supported beam ABCD.

Figure 3.12  Free-body diagrams for Worked Example 3.2. (a) In segment AB. (b) In segment BC. (c) In 
segment CD.
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These expressions apply to every cross-section between A and B (i.e. from x = 0 to 2 m).

Segment BC: To determine the internal actions at any cross-section between B and C, consider 
the free-body diagram of Figure 3.12b. The beam has been cut at a cross-section x from A 
between points B and C. The equations of equilibrium give:

 ∑ = = − − = +M M x x xX kNm0 64 40 2 24 80: ( )  (3.2a)

 ∑ = = − + = −F Sy 0 64 40 24: kN  (3.2b)

 ∑ = = − + = −F Nx 0 60 20 40: kN  (3.2c)

These expressions apply to every cross-section between B and C (i.e. from x = 2 to 6 m).

Segment CD: We now consider cross-sections between C and D. It is easier to consider the 
free-body to the right of the cut section as shown in Figure 3.12c. In this case, the cut cross-
section is x from A or (10 − x) from D. The equations of equilibrium give:

 ∑ = = − = −M M x xX 0 56 10 560 56: ( ) kNm  (3.3a)

 ∑ = = +F Sy 0 56: kN  (3.3b)

 ∑ = =F Nx 0 0: kN  (3.3c)

These expressions apply to every cross-section between C and D (i.e. from x = 6 to 10 m).

(3) In Figure 3.13, the three expressions for bending moment, shear and axial force are plotted 
against x. It must be remembered that each expression is valid only for a particular range of x.

Figure 3.13  Internal action diagrams for Worked Example 3.2. (a) BMD (in kNm) (drawn on tension 
side). (b) SFD (in kN). (c) AFD (in kN).
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With regard to bending moments, each of Equations 3.1a, 3.2a and 3.3a are linear and the bend-
ing moment diagram is drawn as a series of straight lines in the regions between the points 
where the transverse concentrated loads are applied (i.e. A, B, C and D). It is also noted that 
between the points where the transverse loads are applied, the shear force is constant and, 
between the points where longitudinal loads are applied, the axial force is constant.

WORKED EXAMPLE 3.3

The statically determinate two-span beam shown in Figure 3.14a is pinned at A and supported 
on rollers at C and D. It contains a frictionless hinge at B. The free-body diagram of the beam is 
shown in Figure 3.14b. Determine the reactions at each support and the expressions for M and S 
in segments AB, BC and CD, and then sketch the bending moment and shear force diagrams for 
the beam. Note that because there are no longitudinal (horizontal) loads applied to this beam, 
the axial force is everywhere zero.

With a total of four unknown reaction components (nr = 4) and with three equilibrium equa-
tions and one equation of condition (nc + 3 = 4), the beam is statically determinate. The direc-
tion assumed for each of the reaction components is arbitrary. A positive answer will indicate 
the selected direction is correct. A negative result will indicate that the correct direction is 
opposite to that assumed.

Determine reactions

Consider the free-body in Figure 3.14b. Equating the sum of the forces in the x-direction to zero 

∑ =( )Fx 0  gives HA = 0 kN.

Next, consider the free-body diagram of segment AB (shown in Figure 3.15). Since we know that 
the moment at the hinge at B is zero, taking moments about B gives:

 +  –VA × 12 + 25 × 12 × 6 = 0 ⇒ VA = 150.0 kN

Figure 3.14 Beam and free-body diagram for Worked Example 3.3.



Internal actions of beams and frames 69

Returning to the free-body diagram of the whole beam (Figure 3.14b), with VA now known, 
taking moment about the support at C gives:

 +  –150 × 16 + 25 × 16 × 8 – 15 × 15 × 7.5 + VD × 15 = 0 ⇒ VD = 59.17 kN

Similarly, taking moments about D gives:

 +  –150 × 31 + 25 × 16 × 23 – VC × 15 + 15 × 15 × 7.5 = 0 ⇒ VC = 415.83 kN

The equation ∑ =Fy 0 can now be applied to check that the vertical reactions calculated above 
are correct:

 +  VA + VC + VD – 25 × 16 – 15 × 15 = 0

 150.0 + 415.83 + 59.17 – 25 × 16 – 15 × 15 = 0 ∴ OK

Determine internal actions

Segment AC: For any cross-section x m from A within the length of beam AC, expressions for 
M and S can be obtained from the free-body diagram of Figure 3.16a.
Taking moments about the cross-section x m from A gives:

 M = 150x − 25 × x × x/2 = 150x − 12.5x2 (kNm) (3.4a)

 S = −150 + 25x (kN) (3.4b)

These expressions apply to every cross-section between A and C (i.e. from x = 0 to 16 m).

Figure 3.15 Free-body diagram of segment AB.

Figure 3.16  Determination of the internal actions. (a) Free-body of segment AB (and BC). (b) Free-
body of segment CD.
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Segment CD: For any cross-section between C and D, consider the free-body to the right of the 
cut section as shown in Figure 3.16b. In this case, the cut cross-section is x m from A or (31 − x) 
m from D. The equations of equilibrium give:

 M = 59.17 × (31 − x) − 15 × (31 − x)(31 − x)/2

 = 405.83x − 7.5x2 − 5373.23 kNm 
(3.5a)

 S = 59.17 − 15 × (31 − x) = 15x − 405.83 kN (3.5b)

Equations 3.5 apply to every cross-section between C and D (i.e. from x = 16 to 31 m).
Equations 3.4 and 3.5 are plotted in Figure 3.17 to form the bending moment and shear force 
diagrams.
Alternatively, for the free-body in Figure 3.16b, if the length of the beam segment had been 
defined as x (so that x varied from 0 at D to 15 m at C), the equations for M and S would 
become:

 M = 59.17x − 7.5x2 (kNm) and S = 59.17 − 15x (kN).

These give the same numerical value for M and S at any point along the span CD.

Figure 3.17  Bending moment and shear force diagrams for Worked Example 3.3. (a) Bending moment 
diagram (kNm). (b) Shear force diagram.
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WORKED EXAMPLE 3.4

The free-body diagram of the frame of Figures 2.29 and 2.30 is shown in Figure 3.18 and includes 
the four reactions determined in Worked Example 2.5. Draw the axial force, shear force and 
bending moment diagrams for the frame.

(1) The axial force, shear force and bending moment at any point on the frame can be deter-
mined by considering the free-body diagram on either the left or right of the point considered. 
Appropriate free-body diagrams for each segment of the frame are shown in Figure 3.19, which 
also highlight the positive direction of the x-axis adopted along each member. The segments 
along which the internal actions remain continuous are AB, BD and DE.

(2) We now derive the expressions for the internal actions by performing cuts along segments 
AB, BD and DE.

Segment AB: In Figure 3.15a, x varies from 0 at A to 6 m at B:

 NAB = −40.5 kN; SAB = +22.0 kN; and MAB = −22.0x kNm

Figure 3.18 Free-body diagram of the frame for Worked Example 3.4.

Figure 3.19  Free-body diagrams for Worked Example 3.4. (a) Segment AB. (b) Segment BD. 
(c) Segment DE.
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At A where x = 0: NA = −40.5 kN; SA = +22.0 kN; and MA = 0.
At B where x = 6 m: NB = −40.5 kN; SB = +22.0 kN; and MB = −132 kNm.

Segment BD: In Figure 3.19b, x varies from 0 at B to 16 m at D (note that the presence of the 
hinge does not modify the expressions of the internal actions):

 NBD = −42.0 kN; SBD = 6x − 40.5 kN; and

 MBD = 40.5x − 22.0 × 6 − 6x2/2 = −3x2 + 40.5x − 132.0 kNm

At B where x = 0: NB = −42.0 kN; SB = −40.5 kN; and MB = −132.0 kNm.
At C where x = 8 m: NC = −42.0 kN; SC = +7.5 kN; and MC = 0.
At D where x = 16 m: ND = −42.0 kN; SD = +55.5 kN; and MD = −252.0 kNm.
The correctness of the expression obtained for the bending moment is verified by double-
checking that the moment present at the hinge at C is zero.

Segment DE: In Figure 3.19c, x varies from 6 m at D to 0 at E:

 NDE = −55.5 kN; SDE = −42.0 kN; and MDE = −42.0x kNm

At D where x = 6 m: ND = −55.5 kN; SD = −42.0 kN; and MD = −252.0 kNm.
At E where x = 0: NE = −55.5 kN; SB = −42.0 kN; and MB = 0.

(3) The expressions for the axial force, shear force and bending moment diagrams are plotted 
in Figure 3.20.

Figure 3.20  Internal actions for Worked Example 3.4. (a) Axial force diagram (kN). (b) Shear force 
diagram (kN). (c) Bending moment diagram (kNm).
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WORKED EXAMPLE 3.5

A simply-supported beam of span 12 m is subjected to a linearly varying load (varying from 
0 kN/m at the left support A to 15 kN/m at the right support B). A free-body diagram of the 
whole beam is shown in Figure 3.21a. Determine and plot expressions for M, S and N.

(1) The internal actions are continuous over the entire beam length.

(2) The free-body diagram of the portion of the beam to the left of a cross-section x from the 
support A is shown in Figure 3.21b. The load intensity wx at the cut cross-section is obtained 
from geometry as:

 
w
x

w xx
x= − ∴ = −15

12
5
4

( )kNm  (3.6)

where the negative sign in the expression of wx identifies that the distributed load is pointing in 
the opposite direction to the positive of the y-axis.

The resultant of the triangular distributed load acting on the free-body of Figure 3.21b is equal 

to 1
2

5
8

2w x xx = −  and it acts at a distance x/3 from the cut cross-section.

Summing the forces vertically on Figure 3.21b, we get:

 S x S x+ − = ∴ = −30
5
8

0
5
8

302 2 ( )kN  (3.7)

and taking moment about the cut section gives:

 M x x
x

M x x− + = ∴ = −30
5
8 3

0 30
5
24

2 3 ( )kNm  (3.8)

 From horizontal equilibrium: N = 0. (3.9)

(3) The diagrams for M, S and N are obtained by plotting Equations 3.7, 3.8 and 3.9 and are 
shown in Figure 3.22.
For the bending moment and shear force diagrams shown in Figures 3.17 and 3.22, it would appear 
that the point of maximum positive moment corresponds to that point on the span where the shear 
force is zero. In Chapter 5, we will demonstrate that this is in fact always the case.

Figure 3.21 Free-body diagrams for Worked Example 3.5.
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From Worked Examples 3.2 to 3.5, the observations below can be made with respect to beams 
and frames with straight segments.

SHEAR FORCE DIAGRAMS

(1) Where a concentrated load is applied normal (or transverse) to the axis of a member, a step 
occurs in the shear force diagram equal in magnitude to the concentrated load.
(2) Between points of load application, the shear force is constant.
(3) In regions of a beam or frame subjected to uniformly distributed transverse load, the shear 
force diagram is linear.
(4) In regions of a beam or frame subjected to a linearly varying transverse load, the shear force 
diagram is parabolic.
(5) The points on the shear force diagram where the shear force is zero correspond to the 
points where the bending moment is either a maximum or a minimum.

BENDING MOMENT DIAGRAMS

(1) Between points of transverse load application, the bending moment diagram is linear.
(2) In regions of a beam subjected to uniformly distributed load, the bending moment diagram 
is parabolic.
(3) In regions of a beam subjected to a linearly varying load, the bending moment diagram is cubic.
(4) At the points where concentrated transverse loads are applied to a beam, the bending 
moment diagram changes direction (kinks).
(5) A step occurs in the bending moment diagram at points where a couple is applied and the 
step is equal in magnitude to the applied couple.
(6) The bending moment diagram reaches a maximum or minimum at points where the shear 
force is zero.

Figure 3.22 Internal actions for Worked Example 3.5. (a) BMD (kNm). (b) SFD (kN). (c) AFD (kN).
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PROBLEMS

 3.1 Consider the beams shown below and specify whether they are statically determi-
nate, indeterminate, or unstable.

 3.2 For the frames illustrated below, specify whether they are statically determinate, 
indeterminate or unstable.
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 3.3 For the simply-supported beam shown below, determine the expressions for the 
internal actions (N, S and M) and plot the axial force, shear force and bending 
moment diagrams.

 3.4 Evaluate the expressions for the internal actions (N, S and M) for the simply-supported 
beam illustrated, and draw the axial force, shear force and bending moment diagrams.

 3.5 Plot the axial force, shear force and bending moment diagrams for the simply-
supported beam shown below.

 3.6 Consider the beam shown and draw the axial force, shear force and bending 
moment diagrams.

 3.7 Determine the expressions for the internal actions (N, S and M) and draw the 
axial force, shear force and bending moment diagrams for the structure shown 
below.
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 3.8 Consider the structure illustrated and plot the axial force, shear force and bending 
moment diagrams.

 3.9 For the frame shown, calculate N, S and M in each region of the beam and draw 
the axial force, shear force and bending moment diagrams.

 3.10 Determine the expressions for the internal actions N, S and M in each region of 
the beam shown below and plot the axial force, shear force and bending moment 
diagrams.

 3.11 For the beam ABCDEF shown below, calculate the expressions for the internal 
actions N, S and M, and plot their diagrams along the member length.

 3.12 Consider the two beams shown and plot the axial force, shear force and bending 
moment diagrams.
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 3.13 For the beam shown below, determine expressions for the internal actions (N, S 
and M) in each segment of the beam and plot the axial force, shear force and bend-
ing moment diagrams.

 3.14 Determine the expressions for the internal actions (N, S and M) for the beam illus-
trated and plot the axial force, shear force and bending moment diagrams.

 3.15 Evaluate the expressions for the internal actions (N, S and M) for the inclined beam 
and sketch the axial force, shear force and bending moment diagrams. In particu-
lar, calculate the axial force, shear force and bending moment at mid-span of the 
beam.

 3.16 For the beam shown, write expressions for the internal actions (N, S and M) and 
plot the axial force, shear force and bending moment diagrams.

 3.17 Draw the axial force, shear force and bending moment diagrams for the frame 
shown.
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 3.18 For the bent beam shown below, plot the axial force, shear force and bending 
moment diagrams, and calculate N, S and M at the mid-points of segments AB, 
BC, CD, ED and FE.

 3.19 Consider the beam shown below and draw the axial force, shear force and bending 
moment diagrams.

 3.20 For the structure shown, determine the expressions for the internal actions (N, S 
and M) and plot the axial force, shear force and bending moment diagrams.

 3.21 Consider the beam shown below and plot the axial force, shear force and bending 
moment diagrams.
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 3.22 For the structure shown, draw the axial force, shear force and bending moment 
diagrams.

 3.23 For the portal frame ABCDE shown, determine the expressions for the internal 
actions (N, S and M) and draw the axial force, shear force and bending moment 
diagrams.

 3.24 For the frame illustrated below, plot the axial force, shear force and bending 
moment diagrams.

 3.25 Consider the portal frame shown and determine the expressions for the inter-
nal actions (N, S and M). Plot the axial force, shear force and bending moment 
diagrams.
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 3.26 Evaluate the expressions for the internal actions (N, S and M) for the frame illus-
trated and plot the axial force, shear force and bending moment diagrams.

 3.27 The frame ABCDE shown is pinned at A and E, and has a roller support at D. 
For the loading shown, find the five reaction components given that the bending 
moments in the frame at B and at D are MB = −80 kNm and MD = −60 kNm (i.e. 
tension is on the outside of the frame at B and D).

 3.28 The frame shown has a pinned support at A, a roller support at G and an internal 
hinge at D. It is prevented from collapsing by the tie BF connected to the frame by 
means of end hinges as shown. Determine the tension force in the tie BF and draw 
its axial force diagram.



82 Structural analysis

 3.29 Consider the cantilever beams illustrated below and plot qualitative diagrams outlin-
ing the variations of the axial force, shear force and bending moment along the beam 
length. In these diagrams, specify the order of the polynomial describing the internal 
actions, for example, stating whether the curves are linear, parabolic or cubic.

 3.30 For the structures shown, draw qualitative diagrams of the axial force, shear 
force and bending moment. In these diagrams, specify the order of the polynomial 
describing the internal actions, for example, stating whether the curves are linear, 
parabolic or cubic.
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Chapter 4

Statically determinate trusses

4.1  INTRODUCTION

A truss is a structure consisting of a number of rigid bars fastened together at their ends 
and arranged in such a way that the bars form a series of stable triangular units (see Figure 
4.1). For the purpose of calculating the forces in the bars (called members of the truss), the 
connections at the ends of the members (called the nodes of the truss) are considered to be 
pinned. At a pinned connection, the end of each member is free to rotate independently of, 
and unrestrained by, the other members framing into the connection.

In reality, very few trusses are built with perfectly pinned connections. The connec-
tions in steel trusses, for example, are generally made by either welding or bolting, as 
shown in Figure 4.2. Some members may even be continuous through the connection. 
In practical trusses, therefore, the individual members framing into a connection are not 
generally free to rotate. However, the members of most trusses are relatively slender and 
any fixity within a connection has a minor effect upon the internal force system, provided 
the members of the truss are appropriately arranged. For trusses loaded at the nodes, the 
predominant internal action in each member is an axial force and there is little tendency 
for the ends of the members to rotate relative to each other. Assuming the connections are 
pinned not only simplifies the analysis but also results in a reasonably accurate assessment 
of the member forces.

From a qualitative viewpoint, trusses can be classified as simple, compound or com-
plex. The simplest stable truss consists of the triangular arrangement depicted in Figure 
4.1a. A truss is regarded as simple when it is built up by extending the basic triangle by 
adding two members and one node at a time (such as the trusses shown in Figure 4.1b 
through e). Two or more simple trusses can be appropriately combined to form a com-
pound truss. This can occur, for example, by connecting two simple trusses by means of 
one member and one node (as shown in Figure 4.3a) or by inserting three non-parallel 

Figure 4.1 Typical truss layouts.
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members between two simple trusses (as shown in Figure 4.3b). Trusses that do not fall 
into the categories of simple and compound trusses are defined as complex trusses, such 
as the one shown in Figure 4.3c.

In this chapter, we are primarily concerned with the determination of the axial forces in 
simple, statically determinate, pin-jointed trusses with loads applied only at the nodes. Two 
methods of analysis are presented, called the methods of joints and the method of sections, 
and each is illustrated by a number of worked examples. Procedures for the evaluation of 
the stability of particular truss layouts and for the determination of the degree of statical 
indeterminacy of a truss are also outlined. The methods of analysis are first presented for 
two-dimensional or plane trusses and are then extended to cover three-dimensional or space 
trusses.

4.2  ASSUMPTIONS FOR TRUSS ANALYSIS

The analysis of simple trusses relies on the assumptions listed below.

 1. The nodes in a truss are pinned, i.e. the connections are assumed to possess no rota-
tional rigidity and cannot transmit moments.

 2. All external actions and support reactions consist of forces applied at the truss nodes.
 3. All truss members are straight and the line connecting their end nodes coincides with 

the centroidal axis of the member.

Figure 4.2  Typical member connections in light steel trusses. (a) Welded connection. (b) Bolted connection.

Figure 4.3  Examples of compound and complex trusses. (a–b) Compound truss. (c) Complex truss.
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As a consequence of these first three assumptions, the members of the truss are subjected 
to axial loads only, either compressive or tensile, and therefore there are no shear forces and 
no moments in any member.

 4. All displacements are small in comparison with the lengths of the members of the 
truss.

If the deformation of each member of the truss is small, the undeformed geometry of the 
truss can be used to write the equilibrium equations without significant errors. For a truss 
with slender and flexible elements, this assumption may be unreasonable and the equilib-
rium equations may need to be rewritten in the displaced configuration.

A truss complying with the above assumptions is considered to be ideal. Of course, no 
real truss has perfectly pinned connections or is made up of perfectly straight members. 
In addition, the self-weight of truss members acts as a distributed load along the member 
and will produce both moments and shear forces. Often, uniformly distributed floor, roof 
or ceiling loads act on truss members. These distributed loads are generally included in 
the analysis by means of statically equivalent point loads applied at the node at each end 
of the member in an ideal truss. To avoid confusion when dealing with internal actions, 
member axial forces calculated under the ideal truss assumptions 1–4 are referred to here 
as primary forces. Other internal actions (i.e. axial forces, shear forces and moments) 
generated by other effects not complying with the above assumptions are referred to as 
secondary forces.

The analysis procedures presented in this chapter are useful for the calculation of the pri-
mary forces. In Section 4.9, we will consider trusses for which assumptions 2 and 3 are not 
satisfied and discuss simple ways of determining the resulting secondary forces. In situations 
where the secondary forces are likely to be significant and to lead to pronounced deforma-
tions, the general methods of analysis outlined in subsequent chapters are more appropriate.

4.3  SIGN CONVENTION AND NOTATION

Tensile axial forces are taken to be positive and compressive forces are negative (see Section 
3.3). When considering the members and nodes of a truss, individual members are num-
bered and nodes are assigned an alphabetic character (upper case). A member is referred to 
using either its member number or the letters associated with its end nodes. For example, in 
Figure 4.4, the member connecting nodes B and E is referred to as member 5 or simply BE.

Figure 4.4 Element numbering and node labelling.
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4.4  AN INTRODUCTION TO THE METHOD OF JOINTS

The analysis of a truss under a particular set of nodal loads generally involves the calcula-
tion of the reactions at each support using the equations of equilibrium, followed by the 
determination of the axial force in each member.

Consider the statically determinate truss shown in Figure 4.5a carrying a single hori-
zontal applied load P at node C. The corresponding free-body diagram is shown in Figure 
4.5b and includes the two unknown reaction components at the pinned support at A (i.e. 
HA and VA) and the vertical reaction at the roller support at B (i.e. VB) in addition to the 
applied load P.

The three unknown reactions are determined by enforcing the three equilibrium equations:

Horizontal equilibrium:

 + ∑ = + = ∴ = −F P H H PH A A0 0:  (4.1a)

Rotational equilibrium about the support at A:

 + ∑ = − + = ∴ =M hP LV V
h
L

PA B B0 0:  (4.1b)

Vertical equilibrium:

 ↑+ ∑ = + = ∴ = − = −F V V V V
h
L

PV A B A B0 0:  (4.1c)

Clearly, both HA and VA act in directions opposite to those shown in Figure 4.5b (assum-
ing P to be positive).

For convenience, rotational equilibrium has been calculated with respect to the support 
at A to limit the number of unknowns in the equation to one. In this simple example, 
rotational equilibrium about the support at B would have provided a similar advantage, as 
the lines of action of both HA and VB pass through node B. Other points could have been 

Figure 4.5 Statically determinate trusses. (a) Truss layout and loading. (b) Free-body diagram.
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selected to enforce rotational equilibrium, but would have produced an equation with more 
than one unknown. For example, calculating rotational equilibrium with respect to point D 
produces an equation containing two unknowns HA and VA:

 ∑ = − =M hH LVD A A0 0:  

Having obtained the reactions from Equations 4.1, we may now determine the axial force 
in each member. A suitable method for this task is the method of joints.

The free-body diagram of each member and each node of the truss is shown in Figure 
4.6. At each node or member end, tensile member forces act away from the node or member 
end, and initially all member forces are shown as tensile. For statically determinate simple 
trusses, it is possible to determine all the unknown member forces by satisfying the require-
ments of equilibrium at each node.

For the truss of Figure 4.6, node C is a convenient starting point as there are only two 
unknown forces acting on the node, i.e. NAC and NCD. By imposing equilibrium in the direc-
tion of the x-axis at node C (i.e. horizontal equilibrium), the axial force in member CD is 
readily determined:

 + ∑ = + = ∴ = −F P N N Px 0 0at node C: CD CD  (4.2)

The force in CD (NCD) is therefore compressive (assuming P to be positive).
Similarly, NAC can be calculated from equilibrium along the y-axis (i.e. vertical equilibrium) 

at node C:

 ↑+ ∑ = ∴ =F Ny 0 0at node C: AC  (4.3)

Figure 4.6 Free-body diagrams of each node and each member of the truss.
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We will now continue the analysis of the truss of Figure 4.6 and consider equilibrium in 
both the x and y directions at node D. The unknown member forces NAD and NBD can be 
obtained:

 + ∑ = − − = ∴ = − =F N N N
N P

x 0 0at node D: CD AD AD AD
CD

AD

cos
cos c

θ
θ oosθAD

 (4.4)

 ↑+ ∑ = − − =F N Ny 0 0at node D: BD AD ADsinθ
 

 ∴ = − = − = − = −N N P P P
h
LBD AD AD

AD

AD
ADsin

sin
cos

tanθ θ
θ

θ  (4.5)

and the last unknown NAB is calculated from equilibrium along the x-axis at node B:

 + ∑ = ∴ =F Nx 0 0at node B: AB  (4.6)

REFLECTION ACTIVITY 4.1

Is it possible to determine from visual inspection of the truss in Figure 4.7a that the axial forces 
in members AC and BE, i.e. NAC and NBE, are both zero?

Yes. Since NAC represents the only force acting in the y direction at node C and being the only 
term contained in the vertical equilibrium equation at C, it must be equal to zero. Similarly, the 
member BE in Figure 4.7 is unloaded. Writing the equilibrium equation at node E in the direction 
perpendicular to member DEF leads to NBE = 0. Of course, the axial force in BE will not be zero 
if a vertical (or horizontal) nodal load was applied to the truss at E.

Figure 4.7  Truss for Reflection Activity 4.1. (a) Truss layout and loading. (b) Free-body diagram of 
node E.
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For ease of solution, the order of nodes followed in the solution process using the method of 
joints should, where possible, be such that only two unknown forces act on the node being consid-
ered. Other node orders could be adopted, where three or more unknown forces may exist at a par-
ticular node, and although the solution process will be more tedious, it will lead to the same result.

For the statically determinate truss of Figure 4.8, there are more than two unknowns 
at every node. However, if we first calculate the reactions at A and C by applying the 
equilibrium equations to the entire truss, the number of unknowns at both node A and node 
C reduces to two and either node is a convenient starting point.

REFLECTION ACTIVITY 4.2

In the determination of the unknown axial forces in each of the five truss members of Figures 4.5 
and 4.6 (i.e. NAB, NBD, NCD, NAC and NAD), we have used only five equilibrium equations out of 
the eight available (noting that two equilibrium equations are available at each of the four nodes). 
The three unused equations could be adopted to define vertical equilibrium at B and both vertical 
and horizontal equilibrium at A. Why do we have these extra equations?

In reality, we don’t have three extra equilibrium equations. In fact, the total number of unknowns in this 
problem is eight, which includes the axial forces in each of the five members and the three reactions.
With NBD obtained from Equation 4.5, considering vertical equilibrium at node B allows the 
vertical reaction at B (VB) to be determined. In this example, the value of VB had previously been 
calculated by considering equilibrium of the entire structure. Similarly, with all the member 
forces known, the vertical equilibrium equation at node A may be used to determine VA and the 
horizontal equilibrium equation at A may be use to find HA.

SUMMARY OF STEPS 4.1: Method of joints — Steps in solution procedure

 1. Calculate the unknown reactions by enforcing equilibrium of the entire truss.

 2. Draw a free-body diagram for each node of the truss, initially assuming that all member 
forces are tensile, i.e. acting away from the node.

 3. By considering the number of unknown forces at each node, determine an appropriate 
nodal sequence.

 4. Apply the equilibrium equations at each node in two non-coincident directions (often 
the directions of the coordinate axes) and solve the resulting equations to determine the 
unknown member axial forces.

Figure 4.8 Truss and free-body diagrams of its nodes.
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WORKED EXAMPLE 4.1

Determine the unknown reactions and member axial forces for the truss of Figure 4.9a using the 
method of joints based on the solution procedure detailed in Summary of Steps 4.1.
The free-body diagram of each node is shown in Figure 4.9b.

The three unknown reactions, i.e. HA, VA and HD, can be readily calculated by applying the three 
equations of equilibrium to the entire structure. The horizontal reaction at D (HD) is obtained 
by considering rotational equilibrium about the support A ∑ =( )MA 0 . By setting the sum of all 
the horizontal forces to zero ∑ =( )Fx 0 , the reaction HA is obtained and setting the sum of the 
vertical forces to zero ∑ =( )Fy 0  will yield the remaining reaction VA. Alternatively, rotational 
equilibrium with respect to point E (Figure 4.9b), being the intersection of the lines of actions of 
VA and HD, could have been used as a starting point to determine HA.
Remember that when placing the reactions on the free-body diagram, their positive directions 
are arbitrary and their actual directions are defined by the calculated signs for each reaction. 
The three equilibrium equations are written as:

 +  ∑ = × − × + × = ∴ = −M H HA D D kN0 18 4 10 3 6 0 7:
 

 + ∑ = + − = ∴ = −F H H Hx 0 10 0 17: A D A kN
 

 ↑+ ∑ = + = ∴ = −F V Vy 0 18 0 18: A A kN  

Figure 4.9 Truss and free-body diagrams for Worked Example 4.1.
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By inspection, there are two unknown member forces at nodes A and D, while nodes B and C 
each have three unknowns. A suitable nodal sequence is:

(1) Node A (to obtain NAB and NAC)

(2) Node D (to obtain NBD and NCD)

(3) Node B (to get NBC)

(4) Node C (where we can use the two available equilibrium equations to check that the calcu-
lated member forces are correct)

From the geometry of the truss: cos θAC = cos θBD = 0.8 and sin θAC = sin θBD = 0.6.

(1) Node A:

 + ∑ = − + = ∴ =F N Nx 0 17
4
5

0 21 25: .AC AC kN
 

 ↑+ ∑ = − + + = ∴ =F N N Ny 0 18
3
5

0 5 25: .AC AB AB kN

(2) Node D:

 + ∑ = − + = ∴ =F N Nx 0
4
5

7 0 8 75: .BD BD kN
 

 ↑+ ∑ = − − = ∴ =F N N Ny 0 18
3
5

0 12 75: .BD CD CD kN  

(3) Node B:

 + ∑ = + = ∴ = −F N N Nx 0
4
5

0 7: BD BC BC kN  
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The method of joints is very useful for calculating the forces of a simple truss by hand. In 
addition, because of the well-structured set of steps, the method can be expressed in matrix 
form for easy implementation in computer software.

4.5  METHOD OF JOINTS IN MATRIX FORM

When using the method of joints, we have seen that at each node of a truss there are two 
equilibrium equations relating to the sum of forces in two non-coincident directions. In the 
following, we will refer to each direction at each node as a degree of freedom (dof) or simply 
a freedom. Let us now consider the truss of Figure 4.10a, with each freedom labeled with a 
different integer. For example, the directions along the positive x- and y-axes at node B are 
referred to as dof 3 and dof 4, respectively.

The equilibrium equations associated with each degree of freedom are written, including the 
components of all unknown member forces, applied loads and reactions acting in that direction 
at the node under consideration. This can be facilitated using the appropriate free-body 

(4) Node C:
With all bar forces now determined, we can check that the results are correct using the unused 
equilibrium equations at Node C:

 ↑+ ∑ = − = ∴ − × = ∴F N Ny 0
3
5

0 12 75 21 25 0 6 0: . . .CD AC OK
 

 + ∑ = − − = ∴ − × + = ∴F N Nx 0 10
4
5

0 10 21 25 0 8 7 0: . .AC BC OK  

Figure 4.10  Truss layout, degrees of freedom, location vectors and free-body diagrams. (a) Truss layout with 
freedoms and location vectors. (b) Free-body diagram of each node.
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diagram of the relevant node (as shown in Figure 4.10b). For example, the equilibrium 
equation along dof 1 (i.e. horizontal equilibrium along the x-axis at C) can be written as:

 dof F N N Px x x x1 0 0: :∑ = + + =CB CA
 (4.7)

where the additional subscript “x” identifies the force component parallel to the x-axis.
To simplify the calculation of the force projections, we introduce a positive direction along 

each member, which defines a starting node (also referred to as node 1 in the following) and 
an ending node (node 2). This direction is depicted by a location vector assigned to each 
truss member pointing from node 1 to node 2 as shown in Figure 4.10a. The choice of the 
positive direction of the location vector is arbitrary but, once assigned, must be maintained 
throughout the analysis. For example, on the basis of the location vector specified in Figure 
4.10a, nodes 1 and 2 for member CB are C and B, respectively.

For practical purposes, it is useful to express the projections of the member forces (i.e. 
the components in the x and y directions) in terms of their direction cosines calculated with 
respect to the coordinate axes or relevant freedoms. Direction cosines were introduced ear-
lier in Section 2.3. Considering the force vector N in Figure 4.11, the projections (or compo-
nents) parallel to the x- and y-axes are:

 Nx = N cos θx = lN where   l = cos θx (4.8a)

 Ny = N sin θx = N cos θy = mN where   m = cos θy (4.8b)

and θx and θy represent the angles formed between the force vector and the x- and y-axes, 
respectively, while l and m are their direction cosines. On the basis of the positive direction 
specified by the location vector, the direction cosines of a member in a truss are:

 l
x x

L
= −node node2 1

 
and

 
m

y y
L

= −node node2 1  (4.9a,b)

in which the coordinates of nodes 1 and 2 are depicted by (xnode1, ynode1) and (xnode2, ynode2), 
and L is the length of the member.

It is now possible to express the projections of the member forces included in the equi-
librium equations by means of the direction cosines and, consequently, as a function of 
the node coordinates (using Equations 4.9). Remember that the axial forces in a member 
of a truss applied to the free-body diagrams at each of its two end nodes have opposite 

Figure 4.11 Projections of a force vector.
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directions. For example, the force in member CB (NCB) acting at node C in Figure 4.10b is 
pointing in the opposite direction to the same force at node B.

Using the sign convention adopted earlier, a member force applied at its first node has the 
identical positive direction as the member location vector and, because of this, its direction 
cosines can be used to define the force projections. For example, the direction cosines of NCB 
applied at node C in Figure 4.10b are:

 lCB,1 = lCB and mCB,1 = mCB (4.10a,b)

where lCB and mCB are the direction cosines of the location vector adopted for CB (and 
determined using Equations 4.9), while lCB,1 and mCB,1 define the direction cosines for the 
axial force NCB applied at its first node C (where the additional subscript “1” denotes the 
first node).

Considering the second node of the member, the positive direction of NCB applied at B is 
opposite to the positive direction of the location vector. In this case, the direction cosines of 
NCB applied at the second node of CB are:

 lCB,2 = −lCB and mCB,2 = −mCB (4.11a,b)

where the additional subscript “2” depicts the second node specified by the location vector.
Equilibrium at node C in the direction of freedom 1, previously written as Equation 4.7, 

can now be re-written in terms of the direction cosines related to the axial and external 
forces applied at C as follows:

 lCB,1 NCB + lCA,1 NCA + lPP = 0 (4.12)

where lP represents the direction cosine l related to the applied load P at node C and, from 
Figure 4.10a, lP = 4/5 = 0.8, and the direction cosines of the members at node C are:

 l
x x

LCB,
B C

CB
1

4 0
5

0 8= − = − = .  (4.13a)

 l
x x

LCA,1
A C

CA

= − = − =0 0
3

0  (4.13b)

and the equilibrium equation at node C in the direction of freedom 1 (Equation 4.12) becomes:

 0.8NBC + 0.8P = 0 (4.14)

REFLECTION ACTIVITY 4.3

Write the equilibrium equations along freedoms 3 and 4 for the truss shown in Figure 4.10 using 
the direction cosines introduced in Equations 4.8 through 4.11 and comment on the possible 
advantages of their use.

All dimensions in the solutions are in metres.
Freedoms 3 and 4 correspond to the horizontal and vertical directions at node B.
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It is usually convenient to tabulate the information related to each member, i.e. its location 
vectors and its direction cosines, before writing the equilibrium equations. The relevant informa-
tion related to the members of the truss shown in Figure 4.10 is given in Table 4.1.

The equilibrium equations associated with each freedom of the truss of Figure 4.10 are 
as follows:

 dof 1: lCB,1NCB + lCA,1NCA + lPP = 0 (4.16a)

 dof 2: mCB,1NCB + mCA,1NCA + mPP = 0 (4.16b)

 dof l N l N l VV3 02: BA,1 BA CB, CB BB
+ + =  (4.16c)

 dof m N m N m VV4 0: BA,1 BA CB,2 CB BB
+ + =  (4.16d)

 dof l N l N l H l VH V5 02: BA BA CA,2 CA A AA A, + + + =  (4.16e)

 dof m N m N m H m VH V6 02: BA BA CA,2 CA A AA A, + + + =  (4.16f)

For member BA: (Node 1: B (xB, yB) = (4, 0); Node 2: A (xA, yA) = (0, 0); and LBA = 4)

 l
x x

L
m

y y
LBA

A B

BA
BA

A B

BA

= − = − = − = − = − =0 4
4

1
0 0

4
0;

 

For member CB: (Node 1: C (xC, yC) = (0, 3); Node 2: B (xB, yB) = (4, 0); and LCB = 5)

 l
x x

L
m

y y
LCB

B C

CB
CB

B C

BC

= − = − = = − = − = −4 0
5

0 8
0 3

5
0 6. ; .

 

The direction cosines for VB are lVB
= 0 and mVB

=1.
Equilibrium in the direction of freedom 3 at node B can be expressed as:

 l N l N l V N NVBA BA CB CB B BA CBB, , .1 2 0 8 0+ + = − − =  (4.15a)

where from Equations 4.10 and 4.11: lBA,1 = lBA = −1 and lBC,2 = −lBC = −0.8.
Similarly, enforcing equilibrium along freedom 4 leads to:

 m N m N m V N VVBA BA CB CB B CB BB, , .1 2 0 6 0+ + = + =  (4.15b)

where mBA,1 = mBA = 0 and mCB,2 = −mCB = 0.6.
While the use of direction cosines is tedious for hand calculations, it is preferred here for the 
matrix representation of the method of joints, which lends itself to computer programming.

Table 4.1 Example of location vectors and direction cosines for a truss

Member Node 1 Node 2 L (m) l m

BA B A 4 −1 0
CB C B 5 0.8 −0.6
CA C A 3 0 −1
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Equations 4.16 can be re-arranged in matrix form as:
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(4.17)

or, in more compact form, as:

 Ap + f = 0 (4.18)

where the direction cosines used to determine axial force projections are collected in A, the 
vector p includes the six unknowns (three member forces and three reactions) and the exter-
nal actions are grouped in vector f.

The unknown reactions and axial forces can be obtained solving the system of equations 
specified in Equation 4.18:

 p = −A−1f (4.19)

where A−1 depicts the inverse of matrix A. The solution of Equation 4.19 can be carried out 
using one of the solution methods outlined in Appendix C.

Matrix A is reproduced in Table 4.2 to highlight how its rows refer to the freedoms of the 
truss and how its columns refer to the unknown bar forces and reactions.

When the freedoms and unknowns are ordered in the rows and columns, respectively, the 
relevant direction cosines can be specified by inspection of the truss and the A matrix can be 
readily determined. For any freedom number (i.e. any row in the matrix), a direction cosine 
is assigned only to the columns associated with the unknown member forces and reactions 
acting at the node considered.

The overall procedure required by the method of joints when applied in matrix form is 
summarised below followed by a worked example.

Table 4.2 Example of the terms included in matrix A

Freedoms

Member

NBA NCB NCA HA VA VB

1 lCB,1 lCA,1

2 mCB,1 mCA,1

3 lBA,1 lCB,2 lVB

4 mBA,1 mCB,2 mVB

5 lBA,2 lCA,2 lHA
lVA

6 mBA,2 mCA,2 mHA
mVA
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WORKED EXAMPLE 4.2

Consider the truss in Figure 4.12 and calculate the unknown member axial forces and reactions using 
the matrix form of the method of joints following the procedure detailed in Summary of Steps 4.2.

(1–3) The reference system adopted in the solution is shown in Figure 4.13, together with the 
assigned freedom numbers and location vectors. The origin of the reference system is at sup-
port A. The x- and y-axes are directed in the horizontal and vertical directions, respectively, and 
the coordinates of each node are:

 (xA, yA) = (0,0); (xB, yB) = (1.5,0); (xC, yC) = (1.5,2)

SUMMARY OF STEPS 4.2: Method of joints in 
matrix form — Solution procedure

The following are the main steps required when applying the method of joints in matrix form:

 1. Specify a reference system to define the coordinates of each node.

 2. Introduce two freedoms at each node, preferably pointing in the same positive directions 
as the coordinate axes, and number the freedoms sequentially moving from node to node.

 3. Specify an arbitrary location vector for each member and tabulate node 1 and node 2, as well 
as the member length and direction cosines, of each member (as an example, see Table 4.1).

 4. Define the equilibrium matrix A (following the layout of Table 4.2) with rows correspond-
ing to the freedom numbers and columns corresponding to the vector p of member axial 
forces and reactions.

 5. Determine the vector f of external loads.

 6. Solve the equilibrium equations (as an example, see Equations 4.18 and 4.19) to determine 
the unknown member forces and reactions.

Figure 4.12  Truss and free-body diagrams for Worked Example 4.2. (a) Truss layout. (b) Free-body 
diagrams.
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(4–5) The direction cosines related to each member are determined using Equations 4.9:

 
l

x x
L

m
y y

L
lAB

B A

AB
AB

B A

AB

= − = − = = − = − =1 5 0
1 5

1
0 0
1 5

0
.

.
;

.
; AAC

C A

AC

= − = − =x x
L

1 5 0
2 5

0 6
.

.
.

 m
y y

L
l

x x
LAC

C A

AC
BC

C B

BC

= − = − = = − = − =2 0
2 5

0 8
1 5 1 5

2
0

.
. ;

. .
aand BC

C B

BC

m
y y

L
= − = − =2 0

2
1

These results can be summarised as follows:

Member Node 1 Node 2 L (m) l m

AB A B 1.5 1 0
AC A C 2.5 0.6 0.8
BC B C 2 0 1

From geometric considerations, the direction cosines related to the reactions are as follows:

 For and For andA AA A A A
H l m V l mH H V V: := = = =1 0 0 1

 For : andC C C
H l mH H= =1 0

Matrix A defining the orientation of the unknown axial forces and reactions can be obtained 
using the layout introduced in Table 4.2. Initially, it is useful to create an empty table with rows 
referring to the freedoms of the truss and columns to the unknown forces and reactions. This 
can then be populated considering one freedom after another. For example, the forces that 
might contribute to the equilibrium along freedom 1 are those acting at node A. These include 
the member forces NAB and NAC as well as the reactions HA and VA. Depending on their inclina-
tions, these might, or might not, influence equilibrium in the direction of freedom 1. Considering 
that A is node 1 for both members AB and AC, the direction cosines to be used for NAB and NAC 

Figure 4.13 Numbering of the freedoms.
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in this case are lAB,1 and lAC,1, respectively, while the appropriate projections of the reactions are 
obtained from lHA

 and lVA
. The first row of the table depicting matrix A can be filled as follows:

Freedoms NAB NAC NBC HA VA HC

1 lAB,1 lAC,1 lHA
lVA

Equilibrium along freedom 2 can be easily obtained from the terms identified for freedom 1 as 
its equation considers different projections of the same forces. Based on this, the second row 
of the table becomes:

Freedoms NAB NAC NBC HA VA HC

1 lAB,1 lAC,1 lHA
lVA

2 mAB,1 mAC,1 mHA
mVA

Similarly, the relevant coefficients defining equilibrium along the remaining freedoms can be 
obtained as follows:

Freedoms NAB NAC NBC HA VA HC

1 lAB,1 lAC,1 lHA
lVA

2 mAB,1 mAC,1 mHA
mVA

3 lAB,2 lBC,1

4 mAB,2 mBC,1

5 lAC,2 lBC,2 lHC

6 mAC,2 mBC,2 mHC

Substituting the appropriate numerical values on the basis of Equations 4.9 through 4.11, with 
l1 = l, m1 = m, l2 = −l and m2 = −m, the above table can be rewritten as:

Freedoms NAB NAC NBC HA VA HC

1 1 0.6 1 0
2 0 0.8 0 1
3 −1 0
4 0 1
5 −0.6 0 1
6 −0.8 −1 0

The matrix A and the vectors p and f, which are populated based on the order adopted in the 
table above, are:

 A = −

−
− −

1 0 6 0 1 0 0
0 0 8 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 6 0 0 0 1
0 0 8 1
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4.6  METHOD OF SECTIONS

In some cases, it is only necessary to calculate the axial forces of a limited number of truss 
members and the method of sections can be very useful in these instances. The idea on the 
basis of this approach is very simple: the truss is subdivided into two free-body diagrams 
making sure when producing these subdivisions to cut no more than three members with 
unknown axial forces.

For example, let us assume that we only need to calculate the axial forces in members 
BC, BG and FG of the cantilevered truss shown in Figure 4.14a. In order to use the method 
of sections, we need to perform a cut through these members that generates two free-body 
diagrams, one to the left of the cut and one to the right, as shown in Figure 4.14b. The num-
ber of unknown forces acting on the left free-body diagram of Figure 4.14b is six, including 
three unknown reactions HA, HE and VE and the three unknown member forces. For the 
right free-body diagram, the three unknown axial forces are the only unknowns.

Applying the three equilibrium equations to the right-hand free-body diagram, the 
unknown forces NBC, NBG and NFG can be calculated as follows:

Rotational equilibrium at G: +
 

∑ = × − × = ∴ =M N NG 0 3 3 5 0 5: kNBC BC

(6) The corresponding system of equation can be rewritten as (Equation 4.18):

 NAB + 0.6NAC + HA = 0

 0.8NAC + VA = 0

 −NAB = 0

 NBC + (−10) = 0

 −0.6NAC + HC = 0

 −0.8NAC − NBC = 0

which can be solved producing the following results (in kN):

 NAB = 0; NAC = −12.5; NBC = 10; HA = 7.5; VA = 10; HC = −7.5

These can be collected in vector p as:
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Vertical equilibrium: ↑+ ∑ = − = ∴ =F N Ny 0 0 6 12 0 20: kNBG BG.

Horizontal equilibrium: + ∑ = − − − =F N N Nx 0 5 0 8 0: BC BG FG.

 5 5 0 8 20 0 16− − × − = ∴ = −. N NFG FG kN  

For convenience, rotational equilibrium has been determined with respect to G to reduce 
the number of unknowns in the equation to one, since G is the intersection of the lines of 
action of the unknowns NBG and NFG. A similar advantage would have been given by taking 
moment about the point B as, at this point, the lines of action of NBC and NBG meet. Other 
points could have been selected but would have resulted in a larger number of unknowns in 
the equation.

The unknown forces NBC, NBG and NFG could also be calculated using the left free-body 
diagram shown in Figure 4.14b. In this case, the solution would be slightly longer, since 
the unknown reactions would first need to be calculated using the free-body of the whole 
truss.

The main steps required in the use of the method of sections are outlined below and then 
illustrated by another worked example.

Figure 4.14 Truss and free-body diagrams—method of sections.
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WORKED EXAMPLE 4.3

For the truss of Figure 4.15, calculate the axial forces of members CD and BD using the method 
of sections.

The possible cuts that can be performed through members CD and BD are outlined in Figure 
4.16 and referred to as cuts 1 and 2, respectively. Considering cut 1, the number of unknowns 
present in the top and bottom free-body diagrams are four and five, respectively. In the case of 
cut 2, the number of unknowns becomes six for the top left free-body diagram and three for 
the bottom right one.
For its lower number of unknowns, the bottom right free-body diagram of cut 2 (Figure 4.17) is 
used to determine NCD and NBD. By enforcing moment equilibrium at node B, NCD is determined 
and NBD is then calculated based on vertical equilibrium:

Rotational equilibrium at B: +
 

∑ = × − × = ∴ =M N NB CD CD: kN0 0 8 1 5 24 1 5 0 30. . .

SUMMARY OF STEPS 4.3: Method of sections — Solution procedure

The use of the method of sections is based on the steps outlined below.

 1. Consider possible cuts passing through the truss elements for which member forces are 
sought. Select a cut that produces no more than three unknown axial forces.

 2. Draw the two free-body diagrams of the truss after the cut is performed and count the 
number of unknowns on each (the difference is due to the presence of the unknown reac-
tions). Choose the free-body diagram with the lowest number of unknowns and, before 
proceeding to step 3, calculate the unknown reactions acting on the selected free-body 
diagram (by consideration of an appropriate free-body diagram of the structure).

 3. Apply the equilibrium equations to the selected free-body diagram to determine the 
unknown member forces.

Figure 4.15 Truss for Worked Example 4.3.
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Vertical equilibrium: ↑+
 ∑ = + − = ∴ =F N N Ny 0 0 8 24 0 0: kNBD CD BD.

Recalling Reflection Activity 4.1, NBD is clearly zero (from vertical equilibrium at node B).

REFLECTION ACTIVITY 4.4

Re-consider the free-body diagram of Figure 4.17 and revisit the calculation of the contribution 
of force NCD to the rotational equilibrium about node B.

There are two approaches to determine the moment about B caused by the member force NCD 
in the free-body diagram of Figure 4.17, referred to as Options 1 and 2 below.
Option 1: The moment is calculated as the product of NCD and the perpendicular distance from 
its line of action to node B, as shown in Figure 4.18a. This distance is referred to as LBE and 
LBE = LBC sin θ = 1.2 m, since sin θ = LBD/LCD = 0.8. In this case, the moment is equal to LBENCD = 
1.2NCD.

Figure 4.16 Cuts 1 and 2 for Worked Example 4.3.

Figure 4.17 Free-body diagram of cut 2 for Worked Example 4.3.
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Option 2: It is convenient at times to calculate the moment due to NCD as the sum of the 
moments produced by its horizontal and vertical components (or components in other direc-
tions), referred to as NCDx and NCDy, respectively, in Figure 4.18b. From the geometry of the 
truss, the force components become:

 NCDx = NCD cos θ = NCD × LBC/LCD = 0.6 NCD and NCDy = NCD sin θ = 0.8 NCD

As the line of action of NCDx passes through the node B, this component does not contribute to 
the moment about B. Therefore, the moment is calculated as NCDy LBC = 0.8NCD × 1.5 = 1.2NCD 
(which is identical to the solution obtained for Option 1, as expected).

REFLECTION ACTIVITY 4.5

Consider the truss shown in Figure 4.19a and comment whether the method of sections can be 
used for the determination of the axial forces resisted by members BF and BG.

Figure 4.18 Free-body diagrams for Reflection Activity 4.4. (a) Option 1. (b) Option 2.

Figure 4.19  Truss and possible cuts for Reflection Activity 4.5. (a) Truss layout. (b) Some cuts through 
BF and BG.



Statically determinate trusses 105

4.7  STATICAL INDETERMINACY AND STABILITY OF TRUSSES

Statical indeterminacy provides a useful means of classifying all types of structures, includ-
ing trusses. For a plane truss, with j nodes, b members and r reaction components, there are 
2j equilibrium equations available and a total of r + b unknown forces. Accordingly, plane 
trusses may be classified as follows:

 Statically determinate when: b + r = 2j (4.20a)

 Statically indeterminate when: b + r > 2j (4.20b)

 Unstable when: b + r < 2j (4.20c)

Statically indeterminate trusses are said to have a certain degree of indeterminacy D 
given by:

 D = b + r − 2j (4.21)

Trusses satisfying the conditions of Equations 4.20a and b can still be unstable when 
the reactions are parallel or concurrent as, for example, shown in Figure 4.20b, or when 
an inadequate arrangement of the members is specified as, for example, shown in Figure 
4.20c (see also Section 2.9). Recalling the categories of trusses introduced in Section 4.1, 
only compound and complex trusses can contain mechanisms. Simple trusses are always 
stable.

Comparing the trusses shown in Figure 4.20, the total number of unknowns and reactions 
are identical in all three trusses despite the fact that only the first truss is stable. These 
mechanisms need to be identified either by inspection (even if this is not always simple, 
especially when dealing with complex truss systems) or by calculating the rank of the matrix 
A (previously introduced for the writing of the equilibrium equations using the method of 

By inspection, there is no cut that can be applied to the truss that cuts members BF and BG, 
and that intersects just three members with unknown forces. In cases like this, the method of 
sections needs to be applied in more than one stage.
First, the unknown forces NBG and NBC can be determined by considering the right free-body 
diagram produced by cut 1. This requires the calculation of the reaction VG, which can be carried 
out by enforcing moment equilibrium of the entire truss about node A (being the intersection 
of the lines of actions of HA and VA).
NBF can then be obtained by considering the free-body diagram on the bottom right side of 
cut 2.
In some instances, it is more efficient to combine the use of both methods of joints and sections. 
In fact, applying Reflection Activity 4.1 to the horizontal and vertical directions at nodes C and 
E (applying the method of joints), it can be observed that members BC, CG, DE and EF are all 
unloaded. With this observation, the unknown forces NBG and NBF can be calculated by applying 
the method of sections to the bottom right side of cut 2.
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joints). The procedure for the calculation of the rank of a matrix is outlined in Appendix 
C. If the rank of A is smaller than the number of freedoms (nDOF), then the truss contains a 
mechanism.

SUMMARY OF STEPS 4.4: Statical determinacy and instability

The classification of a truss on the basis of its degree of statical indeterminacy D and its possible 
instability is carried out as detailed below.

 1. Count the number of members b, the number of reaction components r and the number 
of joints j in the truss.

 2. Calculate the degree of statical indeterminacy D where D = b + r – 2j.

 3. If D = 0 the truss is statically determinate.
 If D > 0 the truss is statically indeterminate.
 If D < 0 the truss is unstable.

Even if D ≥ 0, the truss might still be unstable. This is the case if the rank of A is smaller than the 
total number of freedoms nDOF, i.e. rank(A) < nDOF. See Appendix C for the procedure required 
for the calculation of the rank of a matrix.

Figure 4.20  Statically determinate and unstable trusses. (a) Statically determinite truss. (b) Unstable truss 
(concurrent reactions). (c) Unstable truss.
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WORKED EXAMPLE 4.4

Consider the trusses shown in Figure 4.21. Determine for each truss whether it is statically 
determinate, statically indeterminate or unstable following the procedure detailed in Summary 
of Steps 4.4.

The free-body diagram of each truss is presented in Figure 4.22, highlighting the coordinate 
system, freedom numbering and location vectors adopted for each member.

Truss A (Figure 4.22a):

 b = 5; r = 3; j = 4 from which D = b + r − 2j = 5 + 3 − 2 × 4 = 0

Figure 4.21 Trusses for Worked Example 4.4.

Figure 4.22  Free-body diagrams showing coordinate system, freedom numbering and location vec-
tors. (a) Truss A. (b) Truss B. (c) Truss C.
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The direction cosines related to the adopted location vectors are tabulated as:

Member Node 1 Node 2 L (m) l m

CD C D 3 1 0
BD D B 4 0 1
AB A B 3 1 0
AC C A 4 0 1
BC C B 5 0.6 0.8

From geometric considerations, the direction cosines related to the reactions are:

l m H l m H lH H H H VA A C C C
and for and for and aA C= = = = =1 0 1 0 0; ; nnd for

C Cm VV =1 .

Matrix A is then evaluated based on the layout previously proposed in Table 4.2:

Freedoms NCD NBD NAB NAC NBC HA HC VC

1 lCD,1 lAC,1 lBC,1 lHC
lVC

2 mCD,1 mAC,1 mBC,1 mHC
mVC

3 lCD,2 lBD,1

4 mCD,2 mBD,1

5 lAB,1 lAC,2 lHA

6 mAB,1 mAC,2 mHA

7 lBD,2 lAB,2 lBC,2

8 mBD,2 mAB,2 mBC,2

That is:

Freedoms NCD NBD NAB NAC NBC HA HC VC

1 1 0 0.6 1 0
2 0 1 0.8 0 1
3 −1 0
4 0 1
5 1 0 1
6 0 −1 0
7 0 −1 −0.6
8 −1 0 −0.8

and therefore:

 A =

−

1 0 0 0 0 6 0 1 0
0 0 0 1 0 8 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0

.

.

00 0 0 1 0 0 0 0
0 0 1 0 0 6 0 0 0
0 1 0 0 0 8 0 0 0

−
− −

− −


















.

. 
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The rank of A is 8 (see Appendix C). As the rank is identical to the total number of freedoms 
(nDOF = 8), there are no mechanisms in Truss A and it is classified as statically determinate 
because D = 0.

Truss B (Figure 4.22b):

 b = 6; r = 3; j = 4 ∴ D = b + r − 2j = 6 + 3 − 2 × 4 = 1

Following the same procedure as for Truss A:

Member Node 1 Node 2 L (m) l m

CD C D 3 1 0
BD D B 4 0 1
AB A B 3 1 0
AC C A 4 0 1
BC C B 5 0.6 0.8
AD A D 5 0.6 −0.8

Freedoms NCD NBD NAB NAC NBC NAD HA HC VC

1 1 0 0.6 1 0
2 0 1 0.8 0 1
3 −1 0 −0.6
4 0 1 0.8
5 1 0 0.6 1
6 0 −1 −0.8 0
7 0 −1 −0.6
8 −1 0 −0.8

The rank of A is 8 (= nDOF) (see Appendix C), which ensures that there are no mechanisms. It 
can then be concluded that Truss B is statically indeterminate with D = 1.

Truss C (Figure 4.22c):

 b = 4; r = 3; j = 4 ∴ D = b + r − 2j = 4 + 3 − 2 × 4 = −1

As D < 0, Truss C is classified as unstable.
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REFLECTION ACTIVITY 4.6

Reconsider the truss layout depicted in Figure 4.20c (reproduced for ease of reference in Figure 
4.23a). Evaluate whether the procedure detailed in Summary of Steps 4.4 is capable of depicting 
the mechanism shown in Figure 4.20c.

For the truss of Figure 4.23a: b = 9; r = 3; j = 6 and D = b + r − 2j = 9 + 3 − 2 × 6 = 0 and, on this 
basis only, the truss appears to be statically determinate.
The direction cosines related to the adopted location vectors are tabulated as:

Member Node 1 Node 2 L (m) l m

AB A B 3 1 0
BC B C 3 1 0
DE D E 3 1 0
EF E F 3 1 0
AD D A 4 0 1
BE E B 4 0 1
CF F C 4 0 1
AE E A 5 −0.6 0.8
BD D B 5 0.6 0.8

Figure 4.23  Truss and free-body diagram for Reflection Activity 4.6. (a) Truss layout. (b) Free-body 
diagram.
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4.8  DEFORMATION OF TRUSSES

Figure 4.24a shows a portion of a straight truss member of length L deforming under an 
external axial tensile load P. The line of action of the axial force passes through the centroid 
of the cross-section illustrated in Figure 4.24b (see Appendix A). Figure 4.24c shows a thin 
slice through the member bounded by cross-sections A and B at a distance dx apart, with the 
resultant internal axial force N (= P) acting along the x-axis of the member at the centroid 
of each cross-section. Cross-sections A and B are parallel before loading and remain parallel 
after the axial load is applied, but every fibre of the cross-section elongates by an amount 
de and the cross-section at B moves relative to cross-section A as shown in Figure 4.24c. 
Strain at any point on the cross-section ε is defined as the deformation per unit length. For 
the axially loaded bar, the strain at every point on cross-section B is the same and is equal to 
the deformation of the thin slice de (in Figure 4.24c) divided by the original length dx. The 

Matrix A is then evaluated based on the layout previously proposed in Table 4.2:

Freedoms NAB NBC NDE NEF NAD NBE NCF NAE NBD HD VD VF

1 1 0 0.6
2 0 −1 −0.8
3 −1 1 0 −0.6
4 0 0 −1 −0.8
5 −1 0
6 0 −1
7 1 0 0.6 1 0
8 0 1 0.8 0 1
9 −1 1 0 −0.6
10 0 0 1 0.8
11 −1 0 0
12 0 1 1

The rank of the A matrix is 11. This is smaller than nDOF = 12 and indicates the presence of the 
mechanism. Despite having D = 0, this truss is not stable.

Figure 4.24  Portion of a straight truss member subjected to tension. (a) Member in axial tension. (b) Cross-
section. (c) Slice elevation.
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normal stress σ on the cross-section is also uniform and is equal to the axial force N divided 
by the area of the cross-section A:

 ε = d
d

e
x

 and σ = N
A

 (4.22a,b)

Of course, the stress may vary along the member if the cross-sectional area changes. For 
a linear–elastic material, for which stresses and strains are related by the elastic modulus E 
(σ = Eε), the elongation of the thin slice in Figure 4.24c is:

 d d
d d

e x
x

E
N x
EA

= = =ε σ
 (4.23)

and the elongation of the member is obtained by integration:

 e x
N x
EA

L L

= =∫ ∫ε d
d

0 0

 (4.24)

Noting that the axial force N is constant along the bar and equal to P, if the cross-sectional 
area A of the straight bar is also constant (i.e. the bar is prismatic), the elongation becomes:

 e
PL
EA

=  (4.25)

Each bar of a truss is subject to either an axial tensile or an axial compressive force and, 
therefore, each loaded bar either extends or contracts when the truss is loaded. The axial 
deformation of the bars in a truss may be determined using Equation 4.25 provided the 
material behaviour is linear–elastic.

The relationship between the applied axial load P and the resulting axial deformation e 
can be alternatively expressed as either:

 e = fP where f
L

EA
=  (4.26)

or

 P = ke where k
EA
L

=  (4.27)

where f is the extension caused by a unit force and is called the axial flexibility coefficient, 
and k is the force required to produce a unit extension and is called the axial stiffness 
coefficient. Clearly, f = 1/k.

The deformation of the bars of the truss will cause movement of the truss nodes and there-
fore a change in the geometry of the truss. For most trusses, certainly for trusses that are 
serviceable, the displacements of the nodes are very small compared to the dimensions of the 
structure and it is reasonable to assume that the direction of each bar before deformation is 
the same after deformation. This greatly simplifies the calculation of the node displacements 
and usually results in negligible error.

The geometry of small displacements is best illustrated by a simple example. Let us con-
sider the truss shown in Figure 4.15 and analysed in Worked Example 4.3 (reproduced here 
as Figure 4.25 with the axial force in each bar shown in the figure).
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Suppose that the truss is fabricated from timber with E = 12,000 MPa and that the cross-
sectional area of the bars in compression is 15,000 mm2 (i.e. bars AB, BC and AD) and the 
cross-sectional area of the remaining bars is 5000 mm2. The flexibility coefficients for each 
bar are calculated as fAB = fBC = 8.33 × 10−6 mm/N, fAD = 13.89 × 10−6 mm/N, fBD = 33.33 × 
10−6 mm/N and fCD = 41.66 × 10−6 mm/N. The elongations of the bars are then obtained as the 
product of the flexibility coefficients and axial forces, and can be collected in vector form as:

 e =
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For simple trusses containing a small number of members, like the one of Figure 4.25, the 
displacement of the nodes can be readily determined by simple geometry. For larger trusses, 
other available methods are more convenient and will be dealt with in subsequent chapters. 
The displacements of a node of the truss in the directions parallel to the x- and y-axes are 
here given the symbols u and v, respectively.

In the truss of Figure 4.25, node A is pinned and does not move (i.e. uA = vA = 0). Node 
D is constrained by the roller support to only move vertically, and therefore uD = 0. Since 
AD shortens by eAD = −0.417 mm, by the geometry of small displacements, node D moves 
vertically (from D to D′) by an amount vD, as shown in Figure 4.26a, where:

 v
e

D
AD

cos
mm (i.e. downward)= = − = −

θ
0 417
0 8

0 521
.
.

.

The vertical displacement of node B is the sum of vD and eBD. Since member BD is unloaded 
and undeformed in this example (i.e. eBD = 0), we have:

 vB = vD + eBD = vD = −0.521 mm (i.e. downward)

Figure 4.25 Internal axial forces calculated in Worked Example 4.3.
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Member AB shortens by eAB = −0.15 mm, so node B moves to the left (from B to B′) by 
0.15 mm as shown in Figure 4.26b:

 uB = eAB = −0.15 mm (i.e. to the left)

With regard to node C (see Figure 4.26c), member BC shortens by eBC = −0.15 mm and so 
node C moves closer to node B by 0.15 mm. The horizontal displacement of node C is therefore:

 uC = uB + eBC = −0.15 − 0.15 = −0.3 mm (i.e. to the left)

The member CD extends by eCD = +1.25 mm and the vertical displacement of node C is shown 
in Figure 4.26c and is equal to the sum of the magnitudes of vD, (eCD/sinθ) and (eBC + uB)/tanθ:

 vC m= − − + + − −







 = −0 521

1 25
0 8

0 15 0 15
1 33

2 308.
.
.

. .
.

. mm (i.e. downward)

Because of the applied load, node C moves vertically downward by an amount of 2.308 
mm and horizontally to the left by 0.3 mm. The vector of nodal displacements d is given by:

 d =
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Figure 4.26 Nodal displacements. (a) Node D. (b) Node B. (c) Node C.
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4.9  TRUSSES WITH LOADED MEMBERS

If an external load is not applied directly to the nodes of a truss, but to a member AB of 
the truss, secondary forces in the form of moments and shear and axial forces occur in 
the loaded member in addition to the primary axial forces. The loaded member performs 
a dual function. First, it acts as a beam between the points A and B, and serves to transmit 
the load to these adjacent nodes. In this capacity, the member will be subjected to bending 
moments, shear forces and, in some cases, axial forces. Second, it acts as a member of the 
truss, carrying an axial force that is determined by the methods described earlier in this 
chapter.

If the loads acting on a particular member of a truss are replaced by a statically 
equivalent set of forces at the end nodes, the forces in all other members of the truss 
will be unaffected. Consider a member EF taken from a truss and loaded by a force P 
acting at some point along its length, as shown in Figure 4.27. The free-body diagram 
of the member is in equilibrium under the action of the load P and the bar forces N1, 
N2, N3, N4 and N5 exerted by other members of the truss connected to nodes E and 
F. If the force P is replaced by forces R1 and R2 acting at nodes E and F, respectively, 
whose resultant is P, then the forces N1, N2, N3, N4 and N5 remain unchanged. With 
R1 and R2 acting at nodes E and F, the truss is now loaded at the nodes only and may 
be analysed by either the method of joints or the method of sections. The axial force 
thus calculated in member EF, along with the bending moment, shear force and axial 
force determined by considering EF as a pin-ended beam carrying load P, is combined 
to determine the internal actions in the member EF (primary plus secondary forces). 
This procedure relies on the use of the principle of superposition where the sum of the 
effects of different loading conditions is equivalent to the effects of all loads applied 
at once. For the principle of superposition to be valid, the following conditions must 
be satisfied: (i) material behaviour is linear–elastic; (ii) displacements of the structure 
remain small enough, so that the equilibrium equations can be based on the geometry 
of the undisplaced structure; and (iii) there is no interaction between axial and the 
flexural actions caused by member loads. With regard to condition (iii), the member 
displacements must be small so that the axial force will not induce significant additional 
moments and deflections. Such additional actions and deformations could even lead to 
possible instability problems if not adequately accounted for (see Chapter 14).

Figure 4.27 Free-body diagram of element EF.
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WORKED EXAMPLE 4.5

For the truss shown in Figure 4.28, determine the maximum axial force, shear force and bending 
moment in the top chord member HI with the 80 kN load at its mid-point.

(1) Find the reactions:
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.
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∑ = =

OK

: AF Hx
 

(2) Replace the 80 kN force with the statically equivalent forces at H and I (in this case, a vertical 
40 kN downward force at each node) as shown below:

(3) Find the member force in HI:
Using the method of sections, Figure 4.29a shows a free-body diagram to the right of a cut made 
through members HI, GI and GJ.

Figure 4.28 Truss for Worked Example 4.5.
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This approach is also applicable for all types of member loads, including the self-weight of 
the truss members. The effects produced by these member loads are superimposed following 
the procedure outlined in Figure 4.27 for the point load. Obviously, this approach is valid 
as long as the member loads do not excessively deform the truss element, in which case the 
axial force applied at the nodes would be resisted by both the axial and flexural rigidities of 
the truss members, therefore affecting the analysis of the entire truss. The effects produced 
by axial forces in out-of-straight members are discussed in Chapter 14.

Occasionally, it may be necessary to analyse a truss having a member that is either curved 
or kinked, such as AB in Figure 4.30. If the out-of-straightness is sufficiently small, its effects 
could be accounted for by applying equilibrium to the free-body diagram of the member 

Taking moments about G:

 +  NHI × 3 + 66.67 × 12 − 40 × 4 = 0 ∴ NHI = −213.35 kN

(4) Find the forces acting at H and I:
These forces are shown in Figure 4.29b. Although two of the forces acting at H (and three of the 
forces acting at I) have not been calculated, we know that they must equilibrate the two known 
forces at each node and hence must be equivalent to the two components shown at each end 
of the free-body diagram of member HI, shown in Figure 4.29c.

(5) Find the maximum internal actions Nmax, Smax and Mmax along member HI:
By inspection of the free-body in Figure 4.29c:

 Nmax = −213.35 kN, Smax = 40 kN, and Mmax = 40 × 2 = 80 kNm

Figure 4.29 Free-body diagrams for Worked Example 4.5.

Figure 4.30 Member with small out-of-straightness (deformations exaggerated in the figure for clarity).
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when subjected to the end actions calculated from the truss analysis. In this manner, the 
moment and shear in the member are evaluated from statics and added to the axial force 
obtained from the truss analysis. This procedure is applicable when the out-of-straightness 
of the member is small, in which case it is acceptable to use the axial rigidity of the ideal 
straight member in the truss analysis. For cases with significant out-of-straightness, it might 
be necessary in the analysis of the truss to account for the effects of the internal axial force 
on the deflected shape and on the internal moment in the member. Significant inaccuracies 
may result by simply using superposition in the post-processing of the results and ignoring 
these effects. The coupling of the axial force, bending moment and deformed shape is dis-
cussed in more detail in Chapter 14 when dealing with instability problems.

4.10  SPACE TRUSSES

The analysis of three-dimensional space trusses can be carried out following the same pro-
cedures as for plane trusses, but introducing additional considerations for the additional 
third dimension. The simplest space truss with a stable structural solution is formed by six 
members located on the edges of a tetrahedron, as shown in Figure 4.31. From this basic 
module, it is possible to extend the truss by adding three bars and one node at a time. 
Trusses built following this procedure are referred to as simple space trusses.

Different types of support conditions can be provided, ranging from pinned supports, in 
which a node is held in position in three orthogonal directions, to conditions where the node 
is free to move in one or more directions. In Figure 4.32 (and in subsequent figures), the pres-
ence of a support is depicted by the restraining reactions shown as thick arrows.

Figure 4.31 Simplest stable space truss.

Figure 4.32 Free-body diagram of a space truss.
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For example, at node E in Figure 4.32, the displacements along the x and y directions 
are prevented and restraining forces (reactions) XE and YE, respectively, will develop. This 
way of visualising support conditions is commonly used in analysis software as it quickly 
provides a clear understanding of the restrained directions.

The use of the method of joints for the analysis of space trusses follows the same steps 
detailed in Summaries of Steps 4.1 and 4.2 with the only difference that now there are three 
equilibrium equations available at each node (instead of the two for plane trusses). The sum 
of the force components in the directions of each of the three coordinate axes is zero.

Similar considerations apply to the method of sections, which can rely on the steps already 
detailed in Summary of Steps 4.3 while making use of the six equilibrium equations avail-
able in three-dimensional structures (i.e. three force equilibrium equations in the direction 
of the three coordinate axes and three moment equilibrium equations with respect to rota-
tion about each of the three axes). Because of this, each cut in the method of sections should 
not include more than six unknown axial forces.

WORKED EXAMPLE 4.6

Determine the reactions and member forces for the truss shown in Figure 4.32 using the method 
of joints as detailed in Summary of Steps 4.1.

There are six unknown reactions in the free-body diagram of Figure 4.32 that need to be deter-
mined before the evaluation of the nine unknown member forces. This is carried out by enforc-
ing the six equilibrium equations.
The order of the equilibrium equations used for the calculation of the reactions is chosen to 
minimise the number of unknowns in each equation. For example, only one unknown reaction 
(XE) features in the moment equilibrium equation about the y-axis through node D:

 
∑ = + × = ∴ = −M X Xy( )D E E: kN0 3 3 100 0 100

Continuing to the remaining equilibrium equations:
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By inspection, there are four unknown member forces at nodes A, C and E, while nodes B and D 
each have three unknowns. Recalling that we have three equilibrium equations available at each 
node, a suitable nodal sequence is:

(1) Node D (to obtain NAD, NCD and NDE)
(2) Node A (NAE, NAC and NAB)
(3) Node C (NCE and NBC)
(4) Node B (NBE)
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The unused equations at nodes C and B may be used to verify that the calculated truss forces 
are correct.
From geometry: LAB = 4 m, LAC = 5 m, LAD = 3 m, LAE = 4.243 m, LBC = 3 m, LBE = 5.831 m, LCD = 
4 m, LCE = 5 m and LDE = 3 m.

Node D:

 ∑ = =F Nx 0 0: AD  

 ∑ = =F Ny 0 0: CD  

 ∑ = + = ∴ =F Z N Nz 0 0 0: kND DE DE
 

Node A:

 ∑ = × = ∴ =F N L Nz 0 3 0 0: kNAE AE AE( / )  

 ∑ = − − − × − × = ∴ =F X N N L N L Nx 0 3 3 0 166: A AD AE AE AC AC AC( / ) ( / ) ..7 kN  

 ∑ = + × + = ∴ = −F N N L Y Ny 0 4 0 133 3: kNAB AC AC A AB( / ) .
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Node C:

 ∑ = − − × − × = ∴ = −F N N L N L Ny 0 4 4 0 166 7: ( / ) ( / ) .CD AC AC CE CE CE kkN
 

 ∑ = + × = ∴ = −F N N L Nx 0 3 0 100: kNBC AC AC BC( / )  

Node B:

 ∑ = − + × = ∴ =F N L Nz 0 100 3 0 194 4: kNBE BE BE( / ) .  

The remaining unused equilibrium equations may be used for checking purposes:
Node C:

 ∑ = + × = ∴ + −( ) × = ∴F Z N Lz 0 3 0 100 166 67 3 5 0: OKC CE CE( / ) . ( / )  

Node B:

 ∑ = − × − = ∴− × − −(F N L Nx 0 3 0 194 4 3 5 831 100: BE BE BC( / ) . ( / . ) )) = ∴0 OK  

 ∑ = − × − = ∴− − − =F N L Ny 0 4 0 194 4
4

5 831
133 3: BE BE AB( / ) .

.
( . ) 00 ∴OK  
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Node E:

 ∑ = + × + × = ∴− + +F X N L N Lx 0 3 3 0 100 0 194 4: E AE AE BE BE( / ) ( / ) . ×× = ∴( . )3 5 831 0/ OK

 
∑ = + × + × = ∴ − ×F Y N L N Ly 0 4 4 0 0 166 7 4 5: /E CE CE BE BE( / ) ( / ) . ( )) . ( . )+ × = ∴194 4 4 5 831 0/ OK

 

∑ = − − × − × − × =F N N L N L N Lz 0 3 3 3: DE AE AE CE CE BE BE( / ) ( / ) ( / ) 00

0 0 166 7 3 5 194 4 3 5 831 0∴ − − − − × = ∴( . )( ) . ( . )/ / OK

REFLECTION ACTIVITY 4.7

The method of joints in matrix form, previously presented in Section 4.5 for the analysis of plane 
trusses (Summary of Steps 4.2), is to be extended for space trusses. The space truss shown in 
Figure 4.32 is to be used as an example, and the unknown reactions and member forces are to 
be recalculated.

The steps specified in Summary of Steps 4.2 for plane trusses are also valid for the analysis of 
space trusses except that equilibrium is enforced along the directions of the three coordinate 
axes (instead of the two directions necessary for plane trusses).
The projections of the forces acting at each node along the different axes are determined by 
recalling the definition of the direction cosines. For example, the components of force N shown 
in Figure 4.33 along the x-, y- and z-axes are calculated as follows:

 Nx = N cos θx = lN, where l = cos θx (4.28a)

 Ny = N cos θy = mN, where m = cos θy (4.28b)

 Nz = N cos θz = nN, where n = cos θz (4.28c)

where θx, θy and θz represent the angles formed between the force vector and the x-, y- and 
z-axes, respectively, and l, m and n are the direction cosines.
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On the basis of the positive direction specified by the location vector, direction cosines of a 
member are calculated as:

 l
x x

L
= −node2 node1 ; m

y y
L

= −node2 node1 ;
 

n
z z

L
= −node2 node1  (4.29a–c)

where (xnode1, ynode1, znode1) and (xnode2, ynode2, znode2) are the coordinates of nodes 1 and 2, respec-
tively, and L is the length of the member.
As for the case of a plane truss, the direction cosines to be used to evaluate the projections of 
the member force at node 1 of a member correspond to the actual values for l, m and n deter-
mined from the adopted location vector, as defined in Equations 4.29. When the projection is 
sought at node 2, the negative values of the direction cosines defined for the location vector 
need to be used. For example, reconsidering the truss of Figure 4.32 and specifying the arbitrary 
location vector shown in Figure 4.34a, the direction cosines to be applied for NBE at node B 
(node 1 of BE) are:

 lBE,1 = lBE; mBE,1 = mBE; nBE,1 = nBE (4.30a–c)

where lBE, mBE and nBE define the direction cosines of the location vector adopted for BE, and 
lBE,1, mBE,1 and nBE,1 represent the direction cosines for the axial force NBE applied at its first node 
B. When considering the same member at node E (node 2 of BE), the required direction cosines 
to be used in the equilibrium equations at node E are:

 lBE,2 = −lBE; mBE,2 = −mBE; nBE,2 = −nBE (4.31a–c)

For example, equilibrium at node B along the x-axis can be expressed in terms of the direction 
cosines related to the member axial forces and the external forces as follows:

 lBC,1NBC + lAB,2NAB + lBE,1NBE + lPP = 0 (4.32)

where lP represents the direction cosine of the applied load P at node B with respect to the 
x-axis (in this case, P = 100 kN and lP = 0), and the direction cosines of the members at node B 
are:
 

l
x x
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l

x x
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C B
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Figure 4.33 Projections of a force vector.
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and the equilibrium equation at node B in the x direction can be written as:

 −1NBC − 0.514NBE = 0 (4.33)

which is identical to the equilibrium equation already obtained in Worked Example 4.6 when 
checking the correctness of the solution.
The method of joints in matrix form can then be applied by expressing the equilibrium equations 
along the three coordinate axes at each node. Before deriving the coefficients included in the 
matrix A and vectors p and f, the direction cosines related to each truss member and to the 
reactions are calculated as:

Member Node 1 Node 2 L (m) l m n

AB A B 4 0 1 0
BC B C 3 −1 0 0
CD C D 4 0 −1 0
DE D E 3 0 0 1
AC A C 5 −0.6 0.8 0
AD A D 3 −1 0 0
AE A E 4.243 −0.707 0 0.707
BE B E 5.831 −0.514 −0.686 0.514
CE C E 5 0 −0.8 0.6

Reaction l m n

XA 1 0 0
YA 0 1 0
ZC 0 0 1
ZD 0 0 1
XE 1 0 0
YE 0 1 0

Figure 4.34  Free-body diagram and freedoms for Reflection Activity 4.7. (a) Free-body diagram with 
location on vectors. (b) Numbering of the freedoms.
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Matrix A specifying the orientation of the unknown axial forces and reactions can then be 
determined on the basis of the layout already introduced in Table 4.2 and previously used for 
the analysis of plane trusses. For clarity, the coefficients related to the member forces and reac-
tions are listed separately.

Freedoms NAB NBC NCD NDE NAC NAD NAE NBE NCE

1 lAB,1 lAC,1 lAD,1 lAE,1

2 mAB,1 mAC,1 mAD,1 mAE,1

3 nAB,1 nAC,1 nAD,1 nAE,1

4 lAB,2 lBC,1 lBE,1

5 mAB,2 mBC,1 mBE,1

6 nAB,2 nBC,1 nBE,1

7 lBC,2 lCD,1 lAC,2 lCE,1

8 mBC,2 mCD,1 mAC,2 mCE,1

9 nBC,2 nCD,1 nAC,2 nCE,1

10 lCD,2 lDE,1 lAD,2

11 mCD,2 mDE,1 mAD,2

12 nCD,2 nDE,1 nAD,2

13 lDE,2 lAE,2 lBE,2 lCE,2

14 mDE,2 mAE,2 mBE,2 mCE,2

15 nDE,2 nAE,2 nBE,2 nCE,2

Freedoms XA YA ZC ZD XE YE

1 lXA
lYA

2 mXA
mYA

3 nXA
nYA

4
5
6
7 lZC

8 mZC

9 nZC

10 lZD

11 mZD

12 nZD

13 lXE
lYE

14 mXE
mYE

15 nXE
nYE

The corresponding vector of unknown axial forces and reactions is:

 p = [NAB NBC NCD NDE NAC NAD NAE NBE NCE XA YA ZC ZD XE YE]T

and the external load vector f is

 f = [0 0 0 0 0 −100 0 0 0 0 0 0 0 0 0]T
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The unknowns of the problem are then calculated by solving the following system of equations:

 −0.6NAC − NAD − 0.707NAE − XA = 0 (1)

 NAB + 0.8NAC + YA = 0 (2)

 0.707NAE = 0 (3)

 −NBC −0.514NBE = 0 (4)

 −NAB −0.686NBE = 0 (5)

 0.514NBE − 100 = 0 (6)

 NBC + 0.6NAC = 0 (7)

 −NCD −0.8NAC − 0.8NCE = 0 (8)

 0.6NCE + ZC = 0 (9)

 NAD = 0 (10)

 NCD = 0 (11)

 NDE + ZD = 0 (12)

 0.707NAE + 0.5145NBE + XE = 0 (13)

 0.686NBE + 0.8NCE + YE = 0 (14)

 −NDE −0.707NAE −0.5145NBE −0.6NCE = 0 (15)

and this gives the following results (with all forces expressed in kilonewtons):

 p = [−133.3 −100 0 0 166.7 0 0 194.4 −166.7 −100 0 100 0 −100 0]T

REFLECTION ACTIVITY 4.8

Reconsider the procedure outlined in Summary of Steps 4.4 and modify it for the classification 
of the statical indeterminacy of three-dimensional trusses.

The steps described in Summary of Steps 4.4 are also applicable for the classification of space 
trusses with the only difference that three equilibrium equations are now available at each node, 
i.e. 3j equations instead of the 2j equations used for plane trusses.
Based on this, the degree of statical indeterminacy D is calculated from D = b + r − 3j.

If D = 0 the truss is statically determinate.
If D > 0 the truss is statically indeterminate.
If D < 0 the truss is unstable.

Even if D ≥ 0, the truss might still be unstable and this possibility can be verified by calculating 
the rank of matrix A (just as for plane trusses). If the rank of A is smaller than the total number 
of freedoms nDOF, the truss is classified as unstable.



Statically determinate trusses 127

PROBLEMS

 4.1 Calculate the reactions and member axial forces for the truss shown below using 
the method of joints. State if the members are in tension or compression.

 4.2 For the truss shown, determine the reactions and member axial forces using the 
method of joints. Clarify whether the members are in tension or compression.

 4.3 Evaluate the reactions and member axial forces for the truss shown using the 
method of joints.

 4.4 Calculate the reactions and member axial forces for the truss shown below using 
the method of joints. State if the members are in tension or compression.
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 4.5 Evaluate reactions and member axial forces for the truss shown below using the 
method of joints. State if the members are in tension or compression.

 4.6 Determine reactions and member axial forces for the truss shown below using the 
method of joints. State if the members are in tension or compression.

 4.7 Find the axial forces in the members of the truss shown below if the three applied 
loads are at right angles to the top chord ABDG. Use the method of joints.

 4.8 Find the axial forces in the members of the truss shown using the method of joints. 
All applied loads are vertical.
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 4.9 Find the member axial forces in the truss shown using the method of joints.

 4.10 For the truss shown below:
 a. calculate the reactions and member forces using the method of joints; and
 b. recalculate the reactions and member forces using the method of joints in 

matrix form.

 4.11 Reconsider the truss of Problem 4.1, and recalculate the reactions and member 
forces using the method of joints in matrix form.

 4.12 Reconsider the truss of Problem 4.5, and recalculate the reactions and member 
forces using the method of joints in matrix form.

 4.13 Determine the axial forces in members EG, DG and DF of the truss shown using 
the method of sections. Also determine the axial forces in members CE, CD and 
BD. State if the members are in tension or compression.
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 4.14 By first considering equilibrium at Node C, determine the member forces in BC and 
CD in the truss shown. Next, calculate the forces in BD and BE using the method 
of sections.

 4.15 Reconsider the truss of Problem 4.6 and determine the axial forces in members 
BI, CJ and DJ using the method of sections. State if the members are in tension or 
compression.

 4.16 Find the unknown forces F1, F2 and F3 if the free-body diagram shown below is in 
equilibrium.

 4.17 Find the unknown forces F1, F2 and F3 if the free-body diagram shown below is in 
equilibrium.

 4.18 Find the unknown forces F1, F2, F3 and F4 if the free-body diagram shown is in 
equilibrium.
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 4.19 For the truss shown below, find:
 a. the reactions at A and J as well as the resultant force passing through the pin at F;
 b. the axial forces in members BD, BE and CE using the method of sections; and
 c. the axial forces in members FH, FI and IG using the method of sections.

 4.20 Reconsider the truss of Problem 4.7 and determine the axial forces in members 
DG, DF and EF using the method of sections. State if the members are in tension 
or compression.

 4.21 For the truss shown below, the top chord members AB = BC = CD = DE = EF = FG = 
GH = HI = 7 m and the bottom chord members IJ = JK = KL = LE = EM = MN = 
NO = OA = 6.25 m. For the loading shown, determine:

 a. the reactions at A and I, as well as the resultant force passing through the pin 
at E; and

 b. the axial force in each member of the truss.

 4.22 For the truss shown, the node B is mid-way between the nodes A and D and the 
node F is mid-way between the nodes D and G. If the top chords ABD and DFG 
are inclined at 16° to the horizontal, determine the forces in each of the truss 
members.
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 4.23 For the parallel chord truss shown below, the nodes on the top chord are 3 m 
apart and the nodes on the bottom chord are 1.5 m apart. All inclined members 
are at 45° to the horizontal. If P1 = 20 kN and P2 = 10 kN, determine the maxi-
mum force:

 i. in any top chord member;
 ii. in any bottom chord member;
 iii. in any inclined member; and
 iv. in any vertical member.

 4.24 Find the axial forces in the bars of the truss shown.

 4.25 Determine whether the trusses shown are statically determinate, indeterminate, or 
unstable.
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 4.26 Determine the six reactions R1 to R6 and the member axial forces for the truss 
shown using the method of joints.

 4.27 Determine the six reactions R1 to R6 and the member axial forces for the truss 
shown below using the method of joints. State if the members are in tension or 
compression.

 The 100 kN load lies in the x–y plane and acts in the direction shown. The nodes 
C, D, E and F also lie in the x–y plane.

 4.28 Reconsider the truss of Problem 4.26, and recalculate reactions and member forces 
using the method of joints in matrix form.

 4.29 For the truss shown below, a 20 kN vertical load is applied at the midpoint of bar 
DE. Find the maximum axial force, shear force and bending moment in bar DE.
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 4.30 For the truss shown, each top chord member is loaded at the nodes and mid-way 
between the nodes. Find the primary axial forces in each member of the truss and 
the additional secondary forces in each top chord member.
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Chapter 5

Euler–Bernoulli beam model

5.1  INTRODUCTION

This chapter presents the derivation of the system of differential equations governing the 
behaviour of beams. The mathematical model is known as the Euler–Bernoulli beam 
model and is suitable for the analysis of statically determinate and indeterminate beams. 
The derivation of the governing differential equations is performed combining three sets of 
equations, namely, the equilibrium, constitutive and kinematic equations. The equilibrium 
equations have already been discussed in previous chapters and state the relationship 
between internal and external actions. The constitutive equations depend on the properties 
of the materials from which the beam is constructed and describe the relationship between 
uniaxial stress and strain. The kinematic equations provide a representation of how the 
deformations undergone by parts of the structure relate to the displacements of the whole 
structure. These are derived under the assumptions of what is known as the Euler–Bernoulli 
beam theory (see Chapter 13 for more details), in which plane sections perpendicular to 
the member axis remain plane and perpendicular to the member axis after deformation. 
Individual cross-section are therefore assumed not to deform in their plane. We will also 
assume that the displacements of the structure are small in comparison with the dimensions 
of the structure.

5.2  EQUILIBRIUM OF A SMALL LENGTH OF BEAM

For a straight beam loaded normal to its longitudinal x-axis, simple relationships exist 
between the axial force N, the shear force S, the bending moment M and the applied loads. 
These relationships can be developed by considering equilibrium of a small length of the 
beam. Let us consider a segment of a beam carrying longitudinal and transverse distributed 
loads that vary from point to point along the beam, as shown in Figure 5.1. The intensity of 
the distributed loads, denoted by w(x) for the loading perpendicular to the member length 
and n(x) for the longitudinal load (both defined as a load per unit length), is expressed as a 
function of the distance x along the beam. The distributed loads are also referred to as w 
and n for ease of notation. For the sign convention, the x and y directions shown in Figure 
5.1 are taken as positive for all quantities, including the applied loads.

Figure 5.2 shows a beam element of infinitesimal length dx (also shown in Figure 5.1) 
isolated by two cuts dx apart. The total external loads applied on the small length dx are 
wdx (perpendicular to the beam length) and ndx (longitudinal to the member axis). On the 
left-hand cut surface, the internal actions are N, S and M, as shown, and on the right-hand 
cut surface, the internal actions have changed by small amounts dN, dS and dM, respec-
tively, as shown.
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Enforcing vertical equilibrium of the element of width dx enables us to write an expression 
that relates the variation of the shear force S to the transverse (vertical) distributed load w:

 +↑ (S + dS) + wdx – S = 0 (5.1)

Rearranging gives:

 d
d

S
x

w+ = 0  or S′ + w = 0
 (5.2a,b)

where the prime denotes differentiation with respect to x.
Taking moments with respect to point O (i.e. about the centre of the right face of element 

dx), we obtain an equation establishing the dependency between the moment M, the shear 
force S and the transverse (vertical) distributed load w:

 + ( )M M S x w x
x

M+ + − − =d d d
d
2

0  (5.3)

Neglecting the product of the two infinitesimally small quantities dx, Equation 5.3 becomes:

 d
d
M
x

S+ = 0  or M′ + S = 0
 (5.4a,b)

Figure 5.1 Beam segment carrying longitudinal and transverse distributed loads.

Figure 5.2 Free-body diagram of a small segment cut from the beam length.
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A relationship between the axial force N and the tangential distributed force n is defined 
by enforcing equilibrium in the longitudinal (horizontal) direction:

 + N + dN + ndx – N = 0 (5.5)

or

 d
d
N
x

n+ = 0  or N′ + n = 0
 (5.6a,b)

The above equations assume that the distributed external loads w and n (which depend 
on x and vary along the member length) are constant over the infinitesimal segment dx, 
because we neglect products of two infinitesimally small quantities (i.e. products between 
infinitesimal length dx and infinitesimal variations of the applied loads).

It is possible to integrate Equations 5.2, 5.4 and 5.6 to obtain the expressions for S, M 
and N as:

 S w x CS= − +∫ d
  

M S x CM= − +∫ d
  

N n x CN= − +∫ d  (5.7a,b,c)

where CS, CM and CN are constants of integration, determined from the boundary con-
ditions of the problem considered. The relevant steps will be illustrated subsequently in 
Worked Example 5.1.

5.3  KINEMATIC (OR STRAIN–DISPLACEMENT) EQUATIONS

The relationship between the deformations undergone by a member at a particular cross-
section and its corresponding displacements is defined by the kinematic equations, some-
times referred to as strain–displacement equations.

For beams and frames, there are two types of deformations that usually govern their 
response, the axial deformations and the bending deformations. For clarity, these are intro-
duced separately below, and their effects are combined in Section 5.3.3. Other deforma-
tions, such as the shear deformations, are dealt with later in the book (see Chapter 13). The 
Euler–Bernoulli model may therefore not be able to accurately predict the response of beams 
that exhibit significant shearing deformations, such as beams that are very short in length, 
and other beam models or approaches should be used in these circumstances.

5.3.1  Axial deformations and displacements

Figure 5.3a shows a portion of a straight structural member of length L deforming under an 
external axial tensile load P, with its line of action passing through the centroid of the cross-
section, as illustrated in Figure 5.3b. It is assumed that the longitudinal x-axis also passes 
through the centroid of the cross-section.

A function u(x), also referred to as u, is introduced to describe the axial displacements 
undergone by points lying on the x-axis. In this manner, the axial displacement of a point B 
(located at xB) can be easily calculated substituting x = xB into the expression for u (Figure 
5.3c). Obviously, the expression for u depends on the beam layout, including loading and 
support conditions. It is not known a priori and needs to be evaluated from the analysis.
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Figure 5.3d shows an infinitesimal slice through the member (of length dx). In a straight 
beam, the two end cross-section of segment dx are parallel before loading and remain parallel 
after the axial load is applied, with every fibre of the cross-section elongating by an infinitesimal 
amount du. All points on the cross-section are deformed by the same amount with the strain at 
each point equal to the deformation du divided by the original length dx. This is illustrated in 
the strain diagram in Figure 5.3e, where the strain at the level of the reference axis is denoted as 
εr. Based on this, the strain at an arbitrary point on the cross-section ε is calculated as:

 ε = εr or ε = = ′d
d
u
x

u  (5.8a,b)

and the variations for εr (and u′) along the member depends on the geometry, loading, and 
support conditions of the problem being analysed. The subscript r included in εr refers to 
the reference axis. There is no need to add a subscript to u′ because the function u has been 
introduced to describe displacements only at the level of the reference axis.

From Equation 5.8a, it is possible to determine the expression for u:

 u x Cu= +∫ εr d  (5.9)

in which the constant of integration Cu is evaluated from the end or support conditions of 
the member being analysed.

The elongation of the member eAB between two points A and B (with coordinates xA and 
xB) is obtained from:

 eAB = u(xB) − u(xA) (5.10)

or eAB could also be obtained integrating the strain at the level of the reference axis:

 e x
x

x

AB

A

B

= ∫ εr d  (5.11)

Figure 5.3  Deformations of a member owing to axial loading. (a) Layout of axial loading. (b) Cross-sectional 
layout. (c) Deformed shape. (d) Infinitesimal length of the deformed element. (e) Strain diagram.
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5.3.2  Bending (flexural) deformations and displacements

We will consider an initially straight beam that is subjected to a constant moment as 
illustrated in Figure 5.4a. It is assumed that the cross-section is symmetric about the vertical 
y-axis and that the positive bending moment M acts about the horizontal z-axis passing 
through the centroid of the cross-section (Figure 5.4b). The displaced shape of the beam 
after bending is depicted in Figure 5.4c. Let us now consider the infinitesimal segment of 
beam of length dx shown in Figures 5.4c and d. The sides of the segment dx, initially 
parallel before bending, rotate with respect to each other by an angle dθ after bending. This 
rotation produces strains that vary linearly with y over the depth of the cross-section. The 
corresponding strain diagram is shown in Figure 5.4e, and the slope of the strain diagram 
is the curvature κ.

The deflection of a beam at a point along its length depends on the support conditions 
and the curvature at each point along the beam. Referring to the slice of beam deformed 
in bending in Figure 5.4d, the curvature κ is the angular change of the beam axis per unit 
length and is given by:

 κ θ θ= = ′ =d
dx r

1
 (5.12)

where r is the radius of curvature illustrated in Figure 5.4d and dx is the undeformed width 
of the infinitesimal slice at the level of the centroid of the cross-section, which is related to 
the rotation by means of the radius of curvature as dx = r dθ.

Figure 5.4  Deformations of a member produced by an applied moment. (a) Applied moment. (b) Cross-
sectional layout. (c) Deformed shape. (d) Infinitesimal length of the deformed element. (e) Strain 
diagram.
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The rotation undergone along the beam length can be calculated as the first derivative of 
the deflection v:

 θ = = ′d
d

v
x

v  (5.13)

which enforces plane sections to remain perpendicular to the member axis after deforma-
tion (see Chapter 13).

Substituting Equation 5.13 into Equation 5.12 gives the relationship between the deflec-
tion and the curvature:

 κ = θ′ = v″ (5.14)

It is usually convenient to derive the expression for the rotation θ and deflection v along 
the member by integrating the function describing the variation of the curvature κ:

 θ κ= +∫ dx Cv1  (5.15)

 v x x C x C x Cv v v= + + = +∫ ∫∫ κ θd d d1 2 2 (5.16)

The constants of integration Cv1 and Cv2 can be evaluated from the end and support con-
ditions of the member.

Consider a loaded beam divided into many small slices. Each slice subjected to bending 
will deform similarly to the deformed slice shown earlier in Figure 5.4d. If all the deformed 
slices are put back together, they will form a bent beam and an initially straight beam will 
deflect. The final deflection depends not only on the deformation of each small slice but 
on the support conditions as well. Figure 5.5 illustrates two beams with the same bending 
moment diagram (i.e. constant over the length) but with different support conditions. The 
deflected shape of each is quite different even though the deformation of any small slice 
taken from either beam is identical.

From geometry, the strain at any point on a particular cross-section at a distance y from 
the member axis can be calculated as (refer to Figure 5.4d and e):

 ε θ
κ= − = −y

x
y

d
d

 (5.17)

Figure 5.5 Examples of flexural actions and deformations.
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in which the minus sign accounts for the fact that, in sagging moment regions (i.e. regions 
of positive moment), the curvature κ is assumed to be positive and, because of this, the top 
fibres of the cross-section with positive y are compressed and the strain must be negative 
(i.e. compressive based on our sign convention). In a similar manner, the bottom fibres of the 
section are stretched and the strain must be positive (i.e. tensile).

5.3.3  Combining axial and flexural deformations

In the previous sections, we derived the relationships between the displacements and strains 
for a beam segment subjected to either axial or flexural deformations. In reality, beams and 
frames are often subjected to both types of deformations. Combining Equations 5.8 and 
5.17 gives:

 ε = εr − yκ = u′ − yv″ (5.18)

The strain distribution on the cross-section shown in Figure 5.6a caused by an axial force 
and a bending moment is shown in Figure 5.6b. The stress diagram is shown in Figure 5.6c, 
where the stress and strain at any point are assumed to be related linearly. The stress–strain 
relationship is discussed in the following section. The level on the cross-section where the 
stresses are zero is usually referred to as the neutral axis.

5.4  CONSTITUTIVE EQUATIONS

The relationship between the deformations and stresses induced in a structure at a particu-
lar point is described by the constitutive equations, also referred to as stress–strain relation-
ships. In most of this book, we will deal with linear–elastic materials that follow Hooke’s 
law. That is:

 σ = Eε (5.19)

where σ and ε are the stress and strain at a particular point, respectively, and E is the elastic 
modulus of the material.

When dealing with beams and frames, it is sometimes more convenient to express the 
constitutive equations of a material (i.e. stress–strain relationship) in terms of the cross-
sectional resultants (axial force N and moment M) and cross-sectional deformations (axial 

Figure 5.6 Typical stress and strain diagrams. (a) Cross-section. (b) Strain diagram. (c) Stress diagram.
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strain at the level of the reference axis εr and curvature κ). These relationships are applicable 
for members satisfying the assumptions of the Euler–Bernoulli beam theory, which have 
been used in the previous sections to derive the relevant strain–displacement equations.

Substituting Equation 5.18 into the Equation 5.19 leads to an expression relating internal 
stresses to the two variables describing the cross-sectional strain distribution, i.e. the 
curvature κ and the strain measured at the level of the reference axis εr (Figure 5.6b):

 σ = E(εr − yκ) (5.20)

The geometric properties of the cross-section of Figure 5.6a are denoted by A, B and I, 
which depict the area and the first and second moments of area of the cross-section about 
the z-axis, respectively (see Appendix A).

The internal axial force and moment about the reference axis resisted by the cross-section 
are denoted N and M, respectively. The axial force N is obtained as the integral of the 
stresses resisted by the cross-section and is given by:

 N A E y A EA EB
A A

= = − = −∫ ∫σ ε κ ε κd dr r( )  (5.21)

in which the product of the area A and the elastic modulus E represents the axial rigidity 
(EA) of the cross-section. The product BE is the rigidity related to the first moment of area 
of the cross-section about the z-axis.

Similarly, the equation for the internal moment M may be expressed as:

 M y A Ey y A EB EI
A A

= − = − − = − +∫ ∫σ ε κ ε κd dr r( )  (5.22)

where the product EI is known as the flexural rigidity of the cross-section and provides a 
measure of the flexibility (or stiffness) of the member in bending, while the negative sign is 
required to ensure that a stress distribution, with stresses varying from compressive (nega-
tive) at the top of the section to tensile (positive) at the bottom, produces a positive moment 
M in accordance with the adopted sign convention.

Considering a centroidal reference system (i.e. the origin of the adopted coordinate system 
coincides with the centroid of the cross-section), Equations 5.21 and 5.22 can be simplified 
to:

 N = EAεr or εr =
N
EA

 (5.23a,b)

and

 M = EIκ or κ = M
EI

 (5.24a,b)

in which the terms including the first moment of area B have disappeared because B is zero 
when calculated about the centroidal reference axis (see Appendix A).

ef
fa

tu
ni

ve
rs

ity
|3

04
93

8|
14

35
41

42
46



Euler–Bernoulli beam model 143

The stress distribution produced by the presence of N and M can be calculated after the internal 
actions are determined by substituting Equations 5.23b and 5.24b into Equation 5.20 as follows:

 σ ε κ= − = −E y
N
A

My
I

( )r  (5.25)

When only an axial force is resisted by the cross-section (i.e. M = 0), Equation 5.25 sim-
plifies to:

 σ = N
A

 (5.26a)

When the member is subjected to bending moment only (i.e. N = 0), Equation 5.25 becomes:

 σ = − My
I

 (5.26b)

The use of the equilibrium, constitutive and kinematic equations is illustrated in Worked 
Example 5.1 and the calculation of the stress distribution over a cross-section is demon-
strated in Worked Example 5.2.

WORKED EXAMPLE 5.1

Consider the two beams in Figure 5.7 that carry a linearly varying distributed load, ranging from 
0 kN/m at A to −18 kN/m at B (negative because it is pointing in the negative direction of y). 
Beam 1 is a cantilever beam, fixed at end B and free at end A. Beam 2 is a propped cantilever, 
fixed at B and with a roller support at A. For both cases, using the equilibrium, constitutive and 
kinematic equations, determine the expressions for:
(i) the internal actions N and M
(ii) strain at the level of the reference axis εr and curvature κ
(iii) rotation, deflection, and axial displacement along the member length

Plot the variation for the internal actions (N and M) and displacements (u, v and θ). The cross-
sections of the beams are uniform throughout their length with area A and second moment of 
area I. Assume the material is linear–elastic with elastic modulus E.

Figure 5.7 Beams and free-body diagrams for Worked Example 5.1. (a) Beam 1. (b) Beam 2.
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Beam 1

(1) Equilibrium Equations
Equations 5.7 are applied for the calculation of the internal actions along the cantilever beam 
of Figure 5.7a. On the basis of the support and loadings conditions, the shear force, axial force 
and bending moment are all zero at node A, as can be seen by enforcing vertical, horizontal 
and rotational equilibrium at node A (i.e. at x = 0 m in Figure 5.8a). It is not possible to enforce 
boundary conditions related to the internal actions at node B because they are all related to the 
as yet undetermined reactions, as depicted in Figure 5.7a.

The expression for the linearly varying distributed load in terms of x is established from the load 
intensity at A and B, i.e. wA = 0 and wB = −18 kN/m, respectively:

 w w
w w

L
x x x= + − = + − − = −A

B A

AB

0
18 0

3
6  (5.27)

where the negative sign for load indicates that the load is applied downward (i.e. in the negative 
direction of y).
The variation of the shear force is obtained from Equation 5.7a:

 S w x C x x C x CS S S= − + = − − + = +∫ ∫d d6 3 2  

Since S = 0 kN at x = 0, the constant of integration CS is zero; therefore:

 S = 3x2 (5.28)

The moment is next obtained from Equation 5.7b:

 M S x C x x C x CM M M= − + = − + = − +∫ ∫d d3 2 3  

Since M = 0 kN at x = 0, the constant of integration CM is zero and:

 M = −x3 (5.29)

We know that at x = 0 the axial force N = 0, and therefore CN in Equation 5.7c is zero. There 
are no distributed axial loads on this beam (i.e. n = 0 throughout) and therefore Equation 5.7c 
reduces to:

 N = 0 (5.30)

Figure 5.8 Free-body diagram at point A (i.e. at x = 0 m). (a) Beam 1. (b) Beam 2.
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(2) Constitutive Equations
The strain at the level of the reference (centroidal) axis εr and curvature κ is determined by 
substituting Equations 5.29 and 5.30 into Equations 5.23b and 5.24b:

 κ = = −M
EI

x
EI

3

;
 
εr = =N

EA
0  (5.31a,b)

(3) Kinematic (Strain–Displacement) Equations
The expressions for the deflection and rotation can be determined from Equations 5.15 
and 5.16:

 θ κ= + = − + = − +∫ ∫d dx C
x

EI
x C

x
EI

Cv v v1

3

1

4

14  

 v
x
EI

C x C
x
EI

C x Cv v v v= − +




 + = − + +∫

4

1 2

5

1 24 20
d  

We know that at the fixed end of the cantilever (end B), both the slope and the deflection are 
zero, i.e. at x = 3 m we have θB = 0 and vB = 0. On the basis of these boundary conditions, the 
constants of integration are:

 θ( )x
EI

C C
EIv v= = − + = ∴ =3

81
4

0
81
41 1

 

 v x
EI

C C C
EIv v v( )= = − + × + = ∴ = −3

243
20

3 0
243
51 2 2

 

and the expressions for the rotation and deflection can be rewritten as:

 θ = − + = − + −x
EI EI

v
x
EI EI

x
EI

4 5

4
81
4 20

81
4

243
5

 

The variation of the axial displacement u is determined by substituting Equation 5.31b into 
Equations 5.9 as:

 u x C x C Cu u u= + = + =∫ ∫εr d d0  

As u = 0 at x = 3 m, we see that Cu = 0 and therefore u = 0 at all points along the beam. As 
expected, there is no shortening or elongation at the level of the centroidal axis (as the axial 
force is everywhere zero).
All results are summarised in Figure 5.9.

 Beam 2

The solution for beam 2 follows the same steps adopted for beam 1. The only difference between 
the two beams is that beam 2 has a roller support at A (not present for beam 1).
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(1) Equilibrium Equations
As for beam 1:
 

w x= −6
 

In the evaluation of the boundary conditions to be used to determine the constants of integra-
tion related to the internal actions, it is convenient to use the condition of zero axial force and 
zero moment at node A, as depicted by the free-body diagram of node A in Figure 5.8b. For 
the boundary condition to be used for the shear force at node A, we need to account for the 
presence of the unknown reaction VA. This is a consequence of the fact that the structure being 
analysed is statically indeterminate (with four unknown reactions), whereas beam 1 was stati-
cally determinate (with only three unknown reactions).
The evaluation of the expressions for the internal actions is then carried out as for beam 1. The 
expression for shear force is obtained from Equation 5.7a:

 S w x C x x C x CS S S= − + = − − + = +∫ ∫d d6 3 2

 

with CS = −VA, since S = −VA at x = 0. Therefore:

 S = 3x2 − VA (5.32)

From Equation 5.7b:

 M S x C x V x C x V x CM M M= − + = − −( ) + = − + +∫ ∫d d3 2 3
A A

and CM = 0 since M = 0 at x = 0. Therefore:

 M = −x3 + VAx (5.33)

As for beam 1, the axial force is everywhere zero:

 N = 0 (5.34)

Figure 5.9  Response of beam 1 — internal actions and deformations. (a) N (kN). (b) M (kNm) (drawn 
on tension side). (c) S (kN). (d) u. (e) v. (f) v′ (or θ).
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(2) Constitutive Equations
From Equations 5.23b and 5.24b:

 κ = = − +M
EI

x V x
EI

3
A ; εr = =N

EA
0  (5.35a,b)

(3) Kinematic (Strain–Displacement) Equations
From Equations 5.15 and 5.16, the rotation and deflection are:

 θ κ= + = − + + = − + +∫ ∫d dx C
x V x

EI
x C

x
EI

V x
EI

Cv v v1

3

1

4 2

14 2
A A

 

 v
x
EI

V x
EI

C x C
x
EI

V x
Ev v= − + +





 + = − +

4 2

1 2

5 3

4 2 20 6
A Ad

II
C x Cv v+ +∫ 1 2  

Applying the boundary conditions at the roller support at A (vA = 0) and at the fixed support 
at B (vB = 0 and θB = 0), we get:

 At x = 0: v = 0 ∴ Cv2 = 0

 At :x
EI

V
EI

Cv= = − + + =3
81
4

9
2

01θ A

 At :x v
EI

V
EI

C C C
EIv v v= = − + + + = ∴ = −3

243
20

9
2

3 0
81

201 2 1
A , VVA kN= 5 4.

which leads to the following expressions for the rotation and deflection:

 
θ = − + − = − + −x

EI
x
EI EI

v
x
EI

x
EI

4 2 5 3

4
27
10

81
20 20

27
30

81
20EEI

x

This illustrates that the calculation of the reactions for a statically indeterminate beam 
cannot be performed on the basis of equilibrium considerations alone, but also requires 
knowledge of the material properties (constitutive equations) and of the relationship 
between the displacements and the strains (kinematic equations). In fact, the reaction VA 
was evaluated on the basis of a boundary condition related to the vertical displacement 
of the support at A.
The expression for axial displacement u is identical to that calculated for beam 1, i.e. u = 0.
The internal actions can now be rewritten by substituting the calculated value for VA into 
Equations 5.32, 5.33 and 5.34:

 S = 3x2 − 5.4; M = −x3 + 5.4x; N = 0

The calculated results are plotted in Figure 5.10.
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WORKED EXAMPLE 5.2

If the beam analysed in Worked Example 5.1 and illustrated in Figure 5.7a is fabricated from steel 
with the I-shaped cross-section shown in Figure 5.11, calculate the maximum compressive and 
maximum tensile stresses in the steel at the cross-section at B. The cross-section is symmetrical 
about the vertical y-axis, with the second moment of area I = 32.51 × 106 mm4 (calculated with 
respect to the centroidal axis located at 84.5 mm from the bottom of the section).

Figure 5.11 Cross-section for Worked Example 5.2.

Figure 5.10  Response of beam 2 — internal actions and deformations. (a) N (kN). (b) M (kNm) (drawn 
on tension side). (c) S (kN). (d) u. (e) v. (f) v′ (or θ).
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5.5  METHOD OF DOUBLE INTEGRATION

On the basis of the kinematic equations derived in the previous section, the deflection along 
a member can be calculated by integrating the curvature twice with respect to x, because 
κ =  v″ (Equations 5.14 through 5.16). Combining these equations with the constitutive 
equation related to the flexural response (Equations 5.24), the relationship between the 
moment and the deflection is established. This forms the basis for the procedure usually 
referred to as the method of double integration. Under the assumption of linear–elastic 
material properties, we can write:

 κ = M
EI

 (5.36)

 θ κ= + = +∫ ∫d dx C
M
EI

x Cv v1 1  (5.37)

 v x x C x C
M
EI

x x C x Cv v v v= + + = + +∫ ∫∫∫ κ d d d d1 2 1 2  (5.38)

These equations are very useful, in particular, when dealing with statically determinate 
beams, where the expression of the internal moment can be determined from equilibrium 
considerations. In these cases, the expression for the curvature is simply the expression for 
the bending moment divided by the flexural rigidity EI. It is possible to apply the method of 
double integration to statically indeterminate structures, but unknown terms are included 
in the expressions for the moment. For these cases, other methods such as the governing 
differential equations presented in the next section might be more useful and efficient in 
achieving the solution.

The steps involved in the method of double integration are summarised below and then 
illustrated in Worked Example 5.3.

In Worked Example 5.1, the bending moment at B was evaluated from Equation 5.29 as equal to 
−27 kNm (see Figure 5.9b). Because the bending moment is negative, the top flange of the beam 
is in tension and the bottom flange is in compression.
The maximum tensile stress occurs at the top fibre of the cross-section at the support B, where 
y = 198 − 84.2 = 113.8 mm. Using Equation 5.26b:

 σ top MPa= − − × ×
×

=( ) .
.

.
27 10 113 8

32 51 10
94 5

6

6  

The maximum compressive stress occurs at the bottom fibre, where y = −84.2 mm. Using 
Equation 5.26b:

 σ bottom MPa= − − × × −
×

= −( ) ( . )
.

.
27 10 84 2

32 51 10
69 9

6

6  



150 Structural analysis

SUMMARY OF STEPS 5.1: Method of double 
integration — Steps in solution procedure

 1. Determine the expression for the internal moment over the member length.

 2. Insert the expression for the moment in Equation 5.36 and integrate it once to get the 
expression for the rotation (Equation 5.37) and twice for the deflection (Equation 5.38).

 3. Determine the constants of integration by applying the boundary conditions relevant to 
the support conditions of the particular problem under consideration.

WORKED EXAMPLE 5.3

For the beam of Figure 5.12, calculate the expressions for the rotation and deflection along its 
length. Assume that the cross-sectional area A and second moment of area I remain constant 
throughout the member and that the material behaviour is linear–elastic with elastic modulus E.

(1) Determine the expression for bending moment
The expression for the linearly varying upward distributed load is:

 w w
w w

L
x x x= + − = + − = −A

B A

AB

10
0 10

6
10

5
3

A cut is performed between A and B, subdividing the structure into two free-body diagrams, 
referred to as 1 and 2 in Figure 5.13b and c, respectively.
Before the expression for M can be evaluated using free-body diagram 1, it is necessary to cal-
culate the three unknown reactions (or at least VA and MA). With the use of free-body diagram 
2, it is possible to determine M without the calculation of the reactions. For completeness, the 
evaluation of M is carried out using both free-body diagrams.

Free-body diagram 1:
The unknown reactions are calculated from statics (Figure 5.13a):

 V V HA A A+ + = ∴ = − =10 0
2

6 0 30 0kN; kN

 M MA A− + = ∴ =10 0
2

6
1
3

6 0 60 kNm

Figure 5.12 Beam for Worked Example 5.3.
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The expression for M is then evaluated from rotational equilibrium of free-body diagram 1 (in 
Figure 5.13b):

 M M V x
x

x x x x
x− − −

− −




 − −





 =A A

10 10
5
3

2
2
3

10
5
3 2

0

 ∴ = − + −M x x x60 30 5
5

18
2 3  

Free-body diagram 2:
Applying rotational equilibrium to free-body diagram 2 of Figure 5.13c gives:

 M
x

x
x

M x x x−
−





 − − = ∴ = − + −

10
5
3

2
6

6
3

0 60 30 5
5

18
2 3( )

( )
 

which, as expected, yields the same expression obtained with free-body diagram 1.

(2) Integrate twice the expression for curvature
Substituting the expression for M into Equation 5.36, we get:

 κ = =
− + −M

EI

x x x

EI

60 30 5
5

18
2 3

 

and this can be integrated to produce the rotation and deflection:

 

θ κ= + = − + −




 +

=

∫ ∫d dx C
EI

x x x x C

EI

v v1
2 3

1
1

60 30 5
5

18

1
660 15

5
3

5
72

2 3 4
1x x x x Cv− + −





 +

 

Figure 5.13  Free-body diagrams for Worked Example 5.3. (a) Free-body diagram of the entire struc-
ture. (b) Free-body diagram 1. (c) Free-body diagram 2.
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5.6  GOVERNING DIFFERENTIAL EQUATIONS 
(AS A FUNCTION OF DISPLACEMENTS)

The three sets of equations presented in the previous sections, i.e. equilibrium, kinematic 
and constitutive equations, form the basis for the analysis of any type of structure. On the 
basis of the assumptions already introduced, these can be combined into a system of two 
governing differential equations expressed in terms of the vertical and axial displacements 
(u and v).

Substituting the constitutive equations (Equations 5.23 and 5.24) into the kinematic equa-
tions (Equations 5.8 and 5.14) gives:

 N = EAu′ (5.39a)

 M = EIv″ (5.39b)

which relate the internal actions N and M to the displacements u and v, respectively. 
Equation 5.39b was utilised in the previous section for the derivation of the method of 
double integration.

Differentiating Equation 5.39b with respect to x (M′ = EIv‴) and substituting it into Equation 
5.4b (M′ + S = 0) leads to an expression relating shear force and vertical deflection v:

 S = −M′ = −EIv‴ (5.39c)

Differentiating Equation 5.4b with respect to x (M″ + S′ = 0) and substituting it into 
Equation 5.2b (S′ + w = 0) produces the following relationship between the moment and the 
applied transverse load w:

 M″ − w = 0 (5.40)

 v x C
EI

x x x x Cv v= + = − + −





+







∫θ d 2

2 3 4
1

1
60 15

5
3

5
72 

 +∫ d x Cv 2

 

 = − + −




 + +1

30 5
5

12
1
72

2 3 4 5
1 2EI

x x x x C x Cv v  

(3) Calculate the constants of integration
The two constants of integration Cv1 and Cv2 can be calculated from the conditions of zero 
deflection and zero rotation at the fixed support at A (x = 0), i.e. vA = 0 and θA = 0:

 At x = 0: θ = 0 ∴ Cv1 = 0

 At x = 0: v = 0 ∴ Cv2 = 0

The expressions for θ and v can be rewritten as:

 θ = − + −




 = − +1

60 15
5
3

5
72

1
30 5

5
12

2 3 4 2 3

EI
x x x x v

EI
x x xx x4 51

72
−
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After differentiating Equation 5.39b twice with respect to x (M″ = EIvIV), it can be substituted 
into Equation 5.40 to establish a relationship between the displacement v and the load w as:

 EIvIV − w = 0 (5.41a)

We can differentiate Equation 5.39a once with respect to x (N′ = EAu″) and substitute it 
into Equation 5.6b. This leads to:

 EAu″ + n = 0 (5.41b)

Equations 5.41 form the governing differential equations defined in terms of displacements 
describing the behaviour of a beam or frame member.

Expressions for u and v can be obtained by integrating Equations 5.41 with respect to x. 
In particular, v is evaluated by integrating Equation 5.41a four times:

 v
w
EI

IV =  (5.42a)

 ′′′ = +∫v
w
EI

x Cvd 1  (5.42b)

 ′′ = + +∫∫v
w
EI

x x C x Cv vd d 1 2  (5.42c)

 ′ = + + +∫∫∫v
w
EI

x x x C
x

C x Cv v vd d d 1

2

2 32
 (5.42d)

 v
w
EI

x x x x C
x

C
x

C x Cv v v v= + + + +∫∫∫∫ d d d d 1

3

2

2

3 46 2
 (5.42e)

and u can be determined by integrating Equation 5.41b twice:

 ′′ = −u
n

EA
 (5.43a)

 ′ = − +∫u
n

EA
x Cud 1  (5.43b)

 u
n

EA
x x C x Cu u= − + +∫∫ d d 1 2  (5.43c)

The constants of integration Cu1, Cu2 for the axial displacement and Cv1, Cv2, Cv3, Cv4 for 
the deflection can be determined from six boundary conditions for the problem. These are 
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outlined in the following sub-sections, with the cases of axial displacement and deflection 
considered separately.

5.6.1  Boundary conditions for the axial displacement

When dealing with the axial displacements, two possible boundary conditions can 
be encountered at supports. The first is when the axial displacement is restrained (i.e. 
u = 0). The second is when the axial displacement is unrestrained and the structure is 
free to move axially (and the boundary condition is governed by Equation 5.39a: N = 
EAu′).

The boundary conditions related to the axial displacement that are applied for the differ-
ent support conditions are outlined in the following:

• fixed or pinned support (Figure 5.14a): u = 0
• roller support or free edge without external axial load (Figure 5.14b): u′ = 0
• roller support or free edge with external axial load applied P (Figure 5.14c): u′ = 

±(P/EA), where the sign depends on whether P is consistent with the sign convention 
adopted for the internal axial force N (because this boundary condition is based on 
N = EAu′)

The reaction corresponding to the restrained axial displacement may be calculated, once 
u is determined, by applying axial equilibrium to the free-body diagram at the support. This 
is illustrated in Worked Examples 5.4 through 5.6.

5.6.2  Boundary conditions for the vertical displacement

The boundary conditions at supports related to the vertical displacements involve both 
deflection (v) and rotation (v′ or θ), and can be applied as follows:

• fixed support (Figure 5.15a): v = 0 and v′ = 0
• pinned and roller supports without external moment (Figure 5.15b): v = 0 and 

v″ = 0
• pinned support and roller supports with external moment Me applied (Figure 5.15c): 

v = 0 and v″ = ± Me/EI (where the sign depends on whether Me is positive in the same 
direction of the internal bending moment M, because this boundary condition is based 
on M = EIv″)

• free edge without external loads (Figure 5.15d): v″ = 0 and v‴ = 0 (derived from the 
condition of zero internal bending moment M = EIv″ = 0 and zero internal shear force 
at the free edge S = −M′ = −EIv‴ = 0)

• free edge with external moment Me and vertical load applied P (Figure 5.15e): v″ = 
± Me/EI and v‴ = ± P/EI (obtained from M = EIv″ and S = −EIv‴)

Figure 5.14  Boundary conditions for the axial displacement. (a) Fixed or pinned support. (b) Roller support 
or free edge. (c) Roller support or free edge with external axial force.
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When the expression for v has been determined, the calculation of the reactions at each 
support may be carried out on the basis of equilibrium consideration applied to the free-
body diagram of the support. This is illustrated in Worked Examples 5.4 through 5.6.

The use of the differential equations (Equations 5.41) and corresponding boundary condi-
tions are now outlined with worked examples.

WORKED EXAMPLE 5.4

The propped cantilever beam shown in Figure 5.16 is loaded with an inclined uniformly dis-
tributed load of 10 kN/m (in the direction shown), as well as with a couple and a horizontal 
load applied at support B. Use the differential equations expressed in terms of displacements 
(Equations 5.41) to determine the expressions for u and v, and calculate the reactions at the 
supports. Assume constant cross-sectional properties, with area A and second moment of area 
I, and linear–elastic material behaviour, with elastic modulus E.

(1) Identify boundary conditions
The boundary conditions to be used for the evaluation of the expressions of the axial displace-
ment are as follows:
– u = 0 at x = 0, i.e. the axial displacement is restrained by the fixed support.
– u′ = 10/EA at x = 10 m, i.e. point B is unrestrained axially and subjected to 10 kN. The bound-
ary condition is applied with a positive value because the internal axial force at B is N = 10 kN 
(see the free-body diagram of point B in Figure 5.17b).

Figure 5.15  Boundary conditions for the vertical displacement. (a) Fixed support. (b) Pinned or roller 
support. (c) Pinned or roller support with an external applied moment. (d) Free edge. (e) Free 
edge with external applied moment and force.

Figure 5.16 Beam for Worked Example 5.4.
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The boundary conditions to be used for the determination of the deflection and rotation are 
as follows:
– v = 0 at x = 0, i.e. the vertical displacement is restrained at the fixed support.
– v′ = 0 at x = 0, i.e. the rotation is restrained at the fixed support.
– v = 0 at x = 10 m, i.e. the vertical displacement is restrained at the roller support.
– v″ = −20/EI at x = 10 m, i.e. rotation is unrestrained at the roller support and node B is sub-
jected to an external moment. A negative value is introduced for the moment as the internal 
moment at B is M = −20 kNm (see Figure 5.17b).

(2) Determine the constants of integration and the expressions for deflection, rota-
tion and axial displacement
The uniformly distributed load can be replaced by its vertical and horizontal components (on 
the basis of the inclination specified in Figure 5.16) with intensity:

 w = 8 kN/m and n = −6 kN/m

The expressions related to both deflection and axial displacement present in the two differen-
tial equations (Equations 5.41a and b) are integrated considering the applied loads (which are 
constant over the member length) and can be written as (Equations 5.42a through e and 5.43a 
through c):

 v
EI

v
EI

x C v
EI

x C x CIV
v v v= ′′′ = + ′′ = + +8 8 4
1

2
1 2; ;
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x C
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22 3 4+ +C x Cv v

 

 ′′ = ′ = + = + +u
EA

u
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x C u
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x C x Cu u u
6 6 3

1
2

1 2; ;  

We first apply the boundary conditions for the vertical displacement v:

 v x
EI

C C C C Cv v v v v( )= = + + + × + = ∴ =0
1

3
0

0
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0
2

0 0 04
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2
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 ′ = = + + × + = ∴ =v x
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4

3
0

0
2

0 0 03
1

2

2 3 3
 

Figure 5.17  Free-body diagrams of beam support nodes. (a) Free-body diagram of support A. (b) Free-
body diagram of support B.
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 v x
EI

C C C Cv v v v( )= = + + + × + =10
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and with Cv3 = Cv4 = 0, solving these last two equations simultaneously gives:

 C
EI

C
EIv v1 2

53 110= − =and  

The deflection v can now be written as: v
EI

x
EI

x
EI

x= − +1
3

53
6

554 3 2.

The constants of integration related to u can be obtained as follows:

 u x
EA

C C Cu u u( )= = + × + = ∴ =0
3

0 0 0 02
1 2 2

 

 ′ = = + = ∴ = −u x
EA

C
EA

C
EAu u( )10

6
10

10 50
1 1  

The expression for u becomes: u
EA

x
EA

x= −3 502 .

(3) Calculate reactions
Free-body diagrams of the support points A and B are shown in Figure 5.17. The reactions are 
calculated by ensuring these free-body diagrams are in equilibrium.
By considering equilibrium at support A (Figures 5.14, 5.15 and 5.17a), it is possible to determine 
HA, VA and MA:

 H N x EAu x EA
EAA ( ) ( )= − = = − ′ = = − −





 =0 0

50
50 kN

 

 V S x EIv x EI
EIA ( ) ( )= − = = ′′′ = = −





 = −0 0

53
53 kN

 

 M M x EIv x EI
EIA ( ) ( )= = = ′′ = = =0 0

110
110 kNm  

Likewise, the reaction at B (i.e. VB) is obtained from equilibrium considerations applied at node 
B (in Figures 5.15e and 5.17b):

 V S x EIv x EI
EI EIB ( ) ( )= = = − ′′′ = = − −





 = −10 10

8
10

53
277 kN  
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WORKED EXAMPLE 5.5

Consider the fixed-ended beam shown in Figure 5.18 subjected to a uniformly distributed verti-
cal load w. Determine the expressions for the deflection and axial displacement. Assume that 
the cross-sectional area A and second moment of area I remain constant throughout the mem-
ber and the material is linear–elastic with elastic modulus E.

(1) Identify boundary conditions
As both ends of the beam are fixed, all displacements at each support are restrained:

 u(x = 0) = u(x = L) = 0; v(x = 0) = v(x = L) = 0; v′(x = 0) = v′(x = L) = 0

(2) Determine constants of integration and expressions for deflection, rotation, 
and axial displacement
Equations 5.41 are integrated on the basis of the applied load of the problem:

 v
w
EI

v
w
EI

x C v
w
EI

x C x CIV
v v v= ′′′ = + ′′ = + +; ;1

2
1 22
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v v v v v6 2 24 6
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2 3
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2;
22

3 42
+ +C x Cv v ; 

 u″ = 0; u′ = Cu1; u = Cu1x + Cu2

Applying the boundary conditions identified at point 1:

 v(x = 0) = 0 ∴ Cv4 = 0

 v′(x = 0) = 0 ∴ Cv3 = 0

 v x L
w
EI

L C
L

C
L

v v( )= = + + =
24 6 2

04
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2

2

 

 ′ = = + + =v x L
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L C
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C Lv v( )
6 2
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2

2
 

and solving these two simultaneous equations gives C
wL
EIv1 2

= −  and C
wL

EIv 2

2

12
= .

Figure 5.18 Beam for Worked Example 5.5.
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 u(x = 0) = 0 ∴ Cu2 = 0

 u(x = L) = Cu1L + Cu2 = 0 ∴ Cu1 = 0

The expressions for u and v are therefore:

 u v
w
EI

x
wL
EI

x wL
EI

x= = − +0
24 2 6 12 2

4
3 2 2

and  

(3) Calculate reactions
The free-body diagrams of the two end nodes (supports) of the beam are shown in Figure 5.19. 
We recall that the positive direction of each reaction, unlike the case for the internal actions, is 
arbitrary as the actual sign of the calculated value determines the direction.

Invoking the equilibrium equations for the free-body diagrams of Figure 5.19, we get:

 HA = −N(x = 0) = −EAu′(x = 0) = −EA × 0 = 0

 V S x EIv x EI
wL
EI

wL
A ( ) ( )= − = = ′′′ = = −





 = −0 0

2 2  

 M M x EIv x EI
wL

IE
wL

A ( ) ( )= = = ′′ = = =0 0
12 12

2 2

 

 HB = N(x = L) = EAu′(x = L) = EA × 0 = 0 

 V S x L EIv x L EI
wL
EI

wL
B ( ) ( )= = = − ′′′ = = − = −

2 2  

 R M x L EIv x EI
wL

EI
wL

B ( ) ( )= = = ′′ = = =0
12 12

2 2

 

The calculated reactions are plotted in Figure 5.20.

Figure 5.19 Free-body diagrams of beam support nodes. (a) Support A. (b) Support B.
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WORKED EXAMPLE 5.6

Consider the unloaded fixed-ended beam shown in Figure 5.21. Determine the expressions for 
deflection and axial displacement for the following three cases:
(i) unit displacement of A in the positive direction of x
(ii) unit displacement of A in the positive direction of y
(iii) unit anti-clockwise rotation at A

For each case, calculate the support reactions induced by the enforced displacement. Assume 
constant cross-sectional and material properties with area A, second moment of area I, and 
elastic modulus E.

The three induced displacements are considered separately in the following.

(i) Unit displacement at A in the positive direction of x
(1) Boundary conditions:

 u(x = 0) = 1 u(x = L) = 0

 v(x = 0) = v(x = L) = 0

 v′(x = 0) = v′(x = L) = 0

(2) Determine constants of integration and expressions for displacements:

 vIV = 0; v‴ = Cv1; v″ = Cv1x + Cv2

 ′ = + + = + + +v C
x

C x C v C
x

C
x

C x Cv v v v v v v1

2

2 3 1

3

2

2

3 42 6 2
;

 u″ = 0; u′ = Cu1; u = Cu1x + Cu2

Figure 5.20 Free-body diagram for Worked Example 5.5.

Figure 5.21 Unloaded fixed-ended beam for Worked Example 5.6.
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Applying relevant boundary conditions:

 v(x = 0) = 0 ∴ Cv4 = 0

 v′(x = 0) = 0 ∴ Cv3 = 0

 v x L C
L

C
L

v v( )= = + =1

3

2

2

6 2
0

 ′ = = + = ∴ = =v x L C
L

C L C Cv v v v( ) ,1

2

2 1 22
0 0 0

 u(x = 0) = 1 ∴ Cu2 = 1

 u x L C L C C
Lu u u( )= = + = ∴ = −1 2 10
1

The expressions for u and v become: u
L

x= − +1
1 and v = 0.

(3) The reactions are calculated from equilibrium at the two end nodes (Figure 5.22a and b) 
and are summarised in Figure 5.22c (remember that the direction of the reaction vector is 
arbitrary).

 

H N x EAu x
EA
L

V S x EIv xA A;= − =( ) = − ′ =( ) = = − =( ) = ′′′ =(0 0 0 0)) =

= − =( ) = − ′′ =( ) = = =( ) = ′ =(

0

0 0 0M M x EIv x H N x L EAu x LA B; )) = −

= =( ) = − ′′′ =( ) = = =( ) = ′′

EA
L

V S x L EIv x L M M x L EIvB B;0 xx =( ) =0 0

(ii) Unit displacement at A in the positive direction of y
(1) Boundary conditions:

 u(x = 0) = 0 u(x = L) = 0

 v(x = 0) = 1 v(x = L) = 0

 v′(x = 0) = 0 v′(x = L) = 0

Figure 5.22 Free-body diagrams for case i.



162 Structural analysis

(2) Determine constants of integration and expressions for displacements:

 v(x = 0) = 1 ∴ Cv4 = 1

 v′(x = 0) = 0 ∴ Cv3 = 0

 v x L C
L

C
L

v v( )= = + =1
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6 2
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 u(x = 0) = 0 ∴ Cu2 = 0

 u(x = L) = Cu1L + Cu2 = 0 ∴ Cu1 = 0

The expressions for u and v become: u = 0 and v
L

x
L

x= − +2 3
1

3
3

2
2 .

(3) The reactions are calculated from equilibrium considerations (see Figure 5.22a and b) and 
are summarised in Figure 5.23a.

 H N x EAu x V S x EIv xA A( ) ( ) ; ( ) ( )= − = = − ′ = = = − = = ′′′ = =0 0 0 0 0
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L
M M x L EIvB B( ) ( ) ; ( ) (= = = − ′′′ = = − = = = ′′12

3
xx

EI
L

= =0
6

2
)

(iii) Unit anti-clockwise rotation at A
(1) Boundary conditions:

 u(x = 0) = 0; u(x = L) = 0

 v(x = 0) = 0; v(x = L) = 0

 v′(x = 0) = 1; v′(x = L) = 0

Figure 5.23 Free-body diagrams. (a) Case ii. (b) Case iii.
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5.7  RELATIONSHIP BETWEEN BENDING MOMENT, 
SHEAR FORCE AND MEMBER LOADING

In Chapter 3, we saw that shear force and bending moment diagrams could be readily 
determined for any segment of a beam or frame by cutting the segment and considering 
equilibrium of the free-body diagram on either side of the cut. At the end of Chapter 3, we 
made a number of observations regarding the shape of the shear force and bending moment 
diagrams and the relationship between them for different load configurations. We will now 
revisit the dependency between the member load w, the shear force S and the moment M 
relying on a number of equations derived in this chapter and reproduced here for ease of 
reference:

 S′ = −w (5.2b)

 M″ = w (5.40)

 S = −M′ (5.39c)

The main aspects relating w, S and M will be highlighted in the following by means of 
simple examples to keep the complexity of the analysis to a minimum. For this purpose, the 
shear force and bending moment diagrams associated with a number of loading conditions 
applied to a cantilever beam are shown in Figures 5.24 and 5.25.

(2) Determine constants of integration and expressions for displacements:

 v(x = 0) ∴ Cv4 = 0; v′(x = 0) = 1 ∴ Cv3 = 1
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The expressions for u and v become: u = 0 and v
L

x
L
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2

3 2 .

(3) The reactions are calculated from equilibrium considerations (see Figure 5.22a and b) and 
are summarised in Figure 5.23b.
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In the case of a cantilever with a transverse load P applied at its tip, the shear force 
diagram is constant and the bending moment diagram is linear, as illustrated in Figure 
5.24a and b. These results reflect the fact that, when the beam is not subjected to a member 
load w (i.e. w = 0), the shear force needs to be constant because its slope is zero (according 
to Equation 5.2b where S′ = −w = 0). In a similar manner, the distribution of the moment is 
linear as its first derivative equals the constant −S (from Equation 5.39c). This case is shown 
for both an upward load (Figure 5.24a) and a downward load (Figure 5.24b) to highlight 
how the load direction affects the signs of the shear force and moment for the support and 
loading conditions considered. The bending moment diagrams are plotted on the tension 
side of the member.

In Figure 5.24c, a similar beam subjected to three transverse loads applied along the mem-
ber length is considered. This example is useful to show that, where a concentrated load is 
applied transverse to the axis of the beam, a step occurs in the shear force diagram equal 
in magnitude to the concentrated load. Between points of load application, the shear force 
is constant and the bending moment diagram is linear, with its slope varying according to 
the intensity of the shear force. In fact, at the points where concentrated transverse loads 
are applied to a beam, the bending moment diagram will change direction and the diagram 
will kink at these points.

The case of a uniformly distributed load is considered in Figures 5.25a and b, with the 
member load being positive in Figure 5.25a and negative in Figure 5.25b. For a uniformly 
distributed loading (i.e. w = constant), the shear force diagram is linear (Equation 5.2b) and 
the bending moment diagram is parabolic (Equations 5.39c and 5.40).

Figure 5.24 Shear force and bending moment diagrams due to point loads.
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A linearly varying transverse load leads to a parabolic distribution of the shear force and 
to a cubic variation for the bending moment diagram, as shown in Figures 5.25c and d. It 
is noted that the change in shear from one point to another along the beam is numerically 
equal to the total load between the two points (as also pointed out in Equation 5.7a).

When the external couples are applied to the beam, a step occurs in the bending moment 
diagram at their point of application, with the step being equal in magnitude to the applied 
couple (as shown in Figure 5.25e).

Recalling that the maximum or the minimum of a function occurs when its first derivative 
is equal to zero, the points on the shear force diagram where the shear force is zero 
correspond to the points where the bending moment is either a maximum or a minimum 
(based on Equation 5.39c). At these locations, the slope of the bending moment diagram is 
zero. This can be easily observed in Figure 5.26 for the simply-supported beam subjected 

Figure 5.25 Shear force and bending moment diagrams due to distributed loads and applied moments.
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to a uniformly distributed load, with the maximum moment at mid-span where the shear 
force is zero.

The relationships between load, shear force, bending moment, rotation and deflection can 
be written sequentially in terms of the operations of integration or differentiation. These 
have been summarised for ease of reference in Table 5.1.

Figure 5.26  Shear force and bending moment diagrams for a simply-supported beam subjected to a uni-
formly distributed load.

Table 5.1  Relationship between member load w, shear force S, bending moment M, rotation θ and 
deflection v

Variable
By integration (constants of integration 

omitted for clarity) By differentiation
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EI
v

x
=







d
d
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2 2

2 2
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Rotation θ θ = ∫ M
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WORKED EXAMPLE 5.7

Reconsider the beams of Worked Example 5.1 and verify that the expressions specified in Equations 
5.2b, 5.39c and 5.40 relating the member load w, shear force S and bending moment M are satisfied. 
Both Beams 1 and 2 in Worked Example 5.1 are subjected to a linearly varying distributed load 
of w = −6x. The expressions for S and M previously obtained for the two beams are as follows:

 Beam 1: S = 3x2 and M = −x3 Beam 2: S = 3x2 − 5.4 and M = −x3 + 5.4x

Beam 1

The first derivative of the shear force is S′ = 6x. Considering that the applied load is w = −6x, 
Equation 5.2b (S′ = −w) is satisfied.
The first derivative of the moment is M′ = −3x2, which is equal and opposite to the shear S as 
specified by Equation 5.39c (S = −M′).
Differentiating the equation for M twice with respect to x leads to M″ = −6x, which is identical 
to the load w as required by Equation 5.40.

Beam 2

Similar conclusions are obtained for the results of Beam 2:
 S′ = 6x which satisfies Equation 5.2b (S′ = −w).
 M′ = −3x2 + 5.4 is equal and opposite to S (= 3x2 – 5.4) as required by Equation 5.39c.
 M″ = −6x equals w as specified in Equation 5.40.

REFLECTION ACTIVITY 5.1

For the beams in Figure 5.27, determine the locations where the shear force, bending moment, 
and axial force have a maximum or a minimum.

Figure 5.27  Beams for Reflection Activity 5.1. (a) Simply-supported beam. (b) Cantilever beam. 
(c) Beam 2 from Worked Example 5.1. (d) Beam from Worked Example 5.4.
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(a) Simply-supported beam: For the simply-supported beam of Figure 5.27a, the expres-
sions for S, M and N are obtained from statics (see Chapter 3):

 S x
L

M x
L

x Np
p p p= − = − + =
2 2 2

02; ;  

The uniformly distributed load is defined by w = –p, as w is assumed to be positive in the posi-
tive direction of y.
The locations of maximum or minimum values for a function are found at the positions where the 
first derivative of the function is zero. Based on this, the location of the minimum or maximum 
shear force is found where S′ = 0. In this case: S′ = p, which means that the slope of the shear force 
diagram is constant throughout the length of the beam. This should have been expected as the 
function for S is linear and, because of this, it does not possess a minimum or maximum. In these 
situations, the maximum and minimum are at the boundary of our domain of interest, i.e. at x = 0 
and x = L. In particular, S(x = 0) = −pL/2 and S(x = L) = pL/2 represent the minimum and maximum 
for the shear force in our problem (assuming p to be positive).
The maximum or minimum for M is found by solving M′ = –px + pL/2 = 0, which is satisfied 
when x = L/2, i.e. at mid-span. Substituting this back into the expression for M, we obtain: 
M(x = L/2) = pL2/8. Because the value for M(x = L/2) is positive, the identified point represents 
a maximum point. At the two supports: M(x = 0) = M(x = L) = 0. Based on these results, M has 
a minimum at the supports, i.e. at x = 0 and x = L, and a maximum at x = L/2.
The axial force N is zero everywhere and, therefore, has no minimum or maximum values.

(b) Cantilever beam: The functions for S, M and N of the beam shown in Figure 5.27b are as 

follows: S = px − pL; M x Lx
L

N
p

p
p= − + − =

2 2
02

2

; .

As in the previous case, the diagram of S is represented by a straight line and the maximum and 
minimum occur at the boundaries of our domain: S(x = 0) = −pL and S(x = L) = 0.
The first derivative of the moment is zero (M′ = −px + pL = 0) for x = L. At this location, the value 
of the moment is zero, i.e. M(x = L) = 0. We know that the moment at the fixed support is −pL2/2, 
which is certainly the moment with the largest magnitude along the beam length and the value that an 
engineer would use to size the member. This location was not detected by equating the first deriva-
tive of M to zero because M′ considers all values for x (from –infinity to +infinity). In this case, the 
expression for M represents a parabola, as shown in Figure 5.28, which has zero slope at x = L. The 

Figure 5.28 Bending moment diagram for a uniformly loaded cantilever beam.
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use of the derivative is suitable to detect the presence of a maximum or minimum within a specified 
interval (say between x = 0 and x = L, i.e. 0 < x < L), but it does not provide information related to its 
boundaries. The possibility of evaluating whether a minimum or maximum is located at the boundar-
ies must be checked separately by simply calculating the values of M at these two locations and com-
paring these values with the values at the locations where the first derivative becomes zero (if any).
For the particular case under consideration, no maximum or minimum were found within the 
internal span (i.e. in the interval 0 < x < L, M′ did not equal zero). The actual points of maximum 
or minimum for the moment M occurred at the two member ends (assuming p positive):
– minimum value of −pL2/2 at x = 0
– maximum value of 0 at x = L
The axial force N is zero everywhere and, as such, has no maximum or minimum.

(c) Beam 2 from Worked Example 5.1: The expressions for S, M and N for the beam 
depicted in Figure 5.27c are S = 3x2 − 5.4; M = −x3 + 5.4x; and N = 0.
The location at which S′(= 6x) = 0 is x = 0. Considering that the first derivative did not identify a 
minimum or maximum along the beam (i.e. within the interval between x = 0 and x = L), we now 
calculate S at these locations: S(x = 0) = −5.4 kN and S(x = 3) = 21.6 kN. Based on this, S has a 
minimum at x = 0 and a maximum at x = 3.
The first derivative for M (i.e. M′ = −3x2 + 5.4) is zero at x = ±1 34. m. The solution x = −1.34 m 
is disregarded because it is outside the interval of interest. The value for M at x = 1.34 m is 4.83 
kNm. We still need to check values for M at x = 0 and x = L, which are M(x = 0) = 0 and M(x = 3) = 
−10.8 kNm. Based on this, M has a minimum at x = 3 m (equal to −10.8 kNm) and a maximum 
point at x = 1.34 m (equal to 4.83 kNm).
The axial force N is zero everywhere and, as such, has no minimum or maximum values.

(d) Beam from Worked Example 5.4: The functions for S, M and N are obtained for the 
beam shown in Figure 5.27d from the expressions derived in Worked Example 5.4 for the axial 
displacement and deflection. Substituting these into Equation 5.39a (N = AEu′), Equation 5.39b 
(M = EIv″) and Equation 5.39c (S = −IEv‴) produces:

 S EI
EI

x
EI

x= − −




 = − +8 53

8 53
 

 M EI
EI

x
EI

x
EI

x x= − +




 = − +4 53 110

4 53 1102 2

 

 N EA
EA

x
EA

x= −




 = −6 50

6 50 

There is no minimum or maximum for S, as S is linear. Because of this, its maximum and mini-
mum occur at the supports: S(x = 0) = 53 kN and S(x = 10) = –27 kN.
With regard to the moment, M′ = −S = 8x − 53 = 0 at x = 6.625 m. The values for M calculated 
at x = 0, 6.625 and 10 m are M(x = 0) = +110 kNm, M(x = 6.625) = –65.56 kNm and M(x = 10) = 
–20 kNm. We can conclude that M has a minimum at x = 6.625 m (equal to –65.56 kNm) and a 
maximum at x = 0 m (equal to 110 kNm).
As the expression for N is linear, the maximum and minimum values occur at the supports: 
N(x = 0) = –50 kN and N(x = 10) = 10 kN.
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REFLECTION ACTIVITY 5.2

Consider a simply-supported beam with a cross-section of height h and symmetric with respect 
to the y-axis, as shown in Figure 5.29a. This cross-section is subjected to a change in tempera-
ture described by the linearly varying distribution of Figure 5.29b. This is defined in terms of 
temperature changes taking place at the top and bottom fibres of the cross-section, referred to 
as ΔT1 and ΔT2, respectively. The thermal expansion induced by a change in temperature ΔT is 
represented by a thermal strain εT calculated as εT = αΔT, where α is the coefficient of thermal 
expansion of the material. On the basis of this relationship, the linearly varying temperature 
distribution of Figure 5.29b produces the linearly varying thermal strain distribution shown in 
Figure 5.29c. This distribution is defined by the two variables εT,r and κT, where εT,r is the ther-
mal strain at the level of the reference axis and κT is the slope of the thermal strain diagram, 
respectively.
The linear temperature variation causes deformation of every cross-section of the beam and, 
if the beam is unrestrained (i.e. free to elongate and free to deflect and rotate at its supports), 
the deformation of the beam will change but there will be no change in the internal actions. If 
this is the case, the total strain at any point on a cross-section ε will equal the stress-dependent 
strain (caused by the internal actions) plus the thermal strain. If the material behaviour is linear–
elastic, with elastic modulus E, the total strain is therefore given by ε = σ/E + εT and the stress 
σ is σ = E(ε − εT).
If the thermal change is constant along the length of the beam, explain how you would account 
for these thermal effects using (i) the method of double integration and (ii) the governing system 
of equations expressed in terms of the displacements.

A simply-supported beam is free to elongate and free to rotate at its supports, so the deforma-
tion caused by the uniform temperature change will not be restrained and the internal actions 
on each cross-section will not change. In this case, the thermal effects influence only the con-
stitutive equations (Equations 5.21 through 5.24), while the equilibrium (Equations 5.2, 5.4 and 
5.6) and kinematic equations (Equations 5.8 and 5.14) remain unchanged. The case of varying 
temperature distributions over the beam length could also be dealt with using the following 
procedure with minor modifications.

Figure 5.29  Temperature distribution and strain through a cross-section. (a) Cross-section. (b) Tem-
perature variation. (c) Thermal strain εT.
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The thermal strain (i.e. strain that would occur in the material if free to deform) is given by:

 εT = αΔT (5.44)

where ΔT depicts the temperature change at a particular level of the cross-section. For ease 
of reference, Equation 5.44 can be expressed in terms of εT,r and κT, as shown in Figure 5.29c:

 εT = εT,r − yκT (5.45)

in which:

 εT
tT T T

y
h, ( )r = + −





1 2 1
  

κ αT
T T

h
= −2 1  (5.46a,b)

Based on this, the stress–strain relationship of the linear–elastic material accounting for ther-
mal effects can be written as:

 σ = Eε − EεT = E(εr − yκ) − E(εT,r − yκT) (5.47)

Substituting Equation 5.47 into the integrals defining the internal axial force N (Equation 5.21) 
and moment M (Equation 5.22) leads to:

 
N A E y E y A

EA EB

A

T T

A

= = − − −  =

= − −

∫ ∫σ ε κ ε κ

ε κ

d ( ) ( ) d,r r

r EEA EBT Tε κ,r +

 (5.48a)

 
M y A y E y E y A

EB

A

T T

A

= − = − − − −  =

= −

∫ ∫σ ε κ ε κ

ε

d ( ) ( ) d,r r

r ++ + −EI EB EIT Tκ ε κ,r

 (5.48b)

where A is the area of the cross-section, and B and I are the first and second moments of the 
cross-sectional area about the reference axis. That is:

 B y A I y A
A A

= =∫ ∫d dand 2  

If we adopt a centroidal reference system (i.e. with origin in the centroid of the cross-section), 
the term B is zero, and the revised relationships between the cross-sectional resultants (N and 
M) and cross-sectional deformations (εr and κ) are:

 N EA EA T= −ε εr r,  or ε εr r= +N
EA T ,  (5.49a,b)

 M EI EI T= −κ κ
 

or
 
κ κ= +M

EI T  (5.50a,b)



172 Structural analysis

The inclusion of these thermal effects in the method of double integration and the system of 
differential equations in terms of displacements is now considered.

(i) Method of double integration
The expression for the curvature is obtained by substituting Equation 5.50b (κ = M/EI + κT) into 
Equation 5.14 (κ = v″):

 v″κ κ= +M
EI T  (5.51a)

which can be integrated once and twice to obtain the functions describing the rotation and 
deflection, respectively, as:

 θ κ κ= + = +




 +∫ ∫d dx C

M
EI

x Cv T v1 1  (5.51b)

 v x x C x C
M
EI

x x C x Cv v T v v= + + = +




 + +∫∫ ∫∫κ κd d d d1 2 1 2  (5.51c)

(ii) System of differential equations written in terms of displacements
The system of differential equations remains unchanged from that outlined in Section 5.6 and 
specified in Equations 5.41. The only difference is related to the boundary conditions associ-
ated with the axial displacement and deflection to be used in the solution process and these 
are illustrated in Figures 5.30 and 5.31, respectively. The relevant boundary conditions shown 
in each figure are obtained from the following relationships between displacements and cross-
sectional resultants:

 N = EAu′ − EAεT,r or ′ = +u
N
EA Tε ,r  (5.52a,b)

 M = EIv″ − EIκT or ′′ = +v
M
EI Tκ  (5.53a,b)

Figure 5.30  Boundary conditions for the axial displacement. (a) Roller support or free edge. (b) Roller 
support or free edge with external axial force.
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WORKED EXAMPLE 5.8

If the beam shown in Figure 5.32 is subjected to the temperature change described in Figures 5.29b 
and c and in Equations 5.45 and 5.46 over its entire length, calculate the deflected shape using:
(i) the method of double integration
(ii) the system of differential equations in terms of displacements

Use the expressions derived in Reflection Activity 5.2 in your solution. Assume the beam is 
uniform throughout, with area A, second moment of area I, elastic modulus E and coefficient of 
thermal expansion α.

(i) Method of double integration
The expression for the internal moment is M = 0 as no external loads are applied to the cantilever 
beam. Based on Equation 5.50b, the curvature along the length of the beam can be written as:

 κ κ κ= + =0
EI T T  (5.54a)

Figure 5.31  Boundary conditions for the vertical displacement. (a) Pinned or roller support. (b) Pinned 
or roller support with an external applied moment. (c) Free edge. (d) Free edge with 
external applied moment and force.

Figure 5.32 Beam for Worked Example 5.8.
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from which the expressions for the rotation and deflection become

 θ κ κ= + = +∫ T v T vx C x Cd 1 1  (5.54b)

 v x x C x C x C x Cv v
T

v v= + + = + +∫∫ κ κ
d d 1 2

2
1 22

 (5.54c)

Constants of integration Cv1 and Cv2 are obtained by applying the following boundary 
conditions: v(x = 0) = 0 and v′(x = 0) = 0, which lead to Cv1 = 0 and Cv2 = 0. Based on these, the 
expression for deflection becomes:

 v xT= κ
2

2  (5.55)

(ii) System of differential equations expressed in terms of displacements
The six constants of integration included in the system of differential equation (Equations 5.41) 
are determined applying the following boundary conditions at the ends of the beam (using 
Equations 5.42 and 5.43) and recalling that the member is unloaded, i.e. w = n = 0 (see Figures 
5.30 and 5.31):

 u(x = 0) = Cu2 = 0; u′(x = L) = Cu1 = εT,r

 v(x = 0) = Cv4 = 0; v′(x = 0) = Cv3 = 0

 v‴(x = L) = Cv1L = 0; v″(x = L) = Cv1L + Cv2 = κT

from which Cv1 = Cv3 = Cv4 = Cu2 = 0, Cu1 = εT,r and Cv2 = κT and the expressions for u and v become:

 u = εT,rx  v xT= κ
2

2  (5.56a,b)

As expected, the results obtained for v from the two methods are identical, as observed by 
comparing Equations 5.55 and 5.56b.

WORKED EXAMPLE 5.9

Consider the fixed-ended beam illustrated in Figure 5.21 of Worked Example 5.6 and calculate 
the support reactions induced by temperature changes such as those described in Figure 5.29b 
and in Equations 5.45 and 5.46. Assume the beam is of uniform cross-section with area A, sec-
ond moment of area I, elastic modulus E and coefficient of thermal expansion α.
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The reactions are calculated by solving the system of differential equations (Equations 5.41) and 
enforcing equilibrium of the free-body diagrams of the two member end nodes.

(1) Boundary conditions: u(x = 0) = u(x = L) = 0

 v(x = 0) = v(x = L) = 0 v′(x = 0) = v′(x = L) = 0 

(2) Determine constants of integration and expressions for displacements:

 vIV = 0; v‴ = Cv1; v″ = Cv1x + Cv2

 ′ = + + = + + +v C
x

C x C v C
x

C
x

C x Cv v v v v v v1

2

2 3 1

3

2

2

3 42 6 2
;

 

 u″ = 0; u′ = Cu1; u = Cu1x + Cu2

After applying the relevant boundary conditions:

 v(x = 0) = Cv4 = 0 ∴ Cv4 = 0 v′(x = 0) = Cv3 = 0 ∴ Cv3 = 0

 v x L C
L

C
L

C v x L C
L

C Lv v v v v( ) ( )= = + = ∴ = ′ = = +1

3

2

2

1 1

2

26 2
0 0

2
== ∴ =0 02Cv

 

 u(x = 0) = Cu2 = 0 ∴ Cu2 = 0 u(x = L) = Cu1L + Cu2 = 0 ∴ Cu1 = 0

we get the following expressions for u and v: u = 0 and v = 0.
Based on these, the variations of N and M become (Equations 5.52a and 5.53a)

 N = −EAεT,r; M = −EIκT (5.57a,b)

(3) The reactions are calculated from equilibrium at the two end nodes (Figures 5.33a and b) and 
are summarised in Figure 5.33c.

 HA = −N(x = 0) = −(−EAεT,r) = EAεT,r VA = −S(x = 0) = EIv‴(x = 0) = 0

 MA = −M(x = 0) = −(−EIκT) = EIκT HB = N(x = L) = −EAεT,r

 VB = S(x = L) = −EIv‴(x = L) = 0 MB = M (x = L) = −EIκT

Figure 5.33  Free-body diagrams for Worked Example 5.8.
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PROBLEMS

 5.1 For the beam illustrated below, determine using the equilibrium, constitutive and kine-
matic equations, the expressions for (i) the internal actions, (ii) the strain variables, 
including the strain at the level of the reference axis and the curvature, and (iii) rota-
tion, deflection and axial displacement. Plot all expressions along the member axis. The 
cross-section remains constant throughout the beam and is defined by area A and sec-
ond moment of area I. Assume linear–elastic material properties with elastic modulus E.

 5.2 Derive the expressions for the internal actions and for the displacements (axial displace-
ment and deflection) for the beam shown by means of the equilibrium, constitutive and 
kinematic equations. Plot all expressions along the member axis. The cross-section 
remains constant over the entire beam (with area A and second moment of area I). 
Assume linear–elastic material properties with elastic modulus E.

 5.3 Consider the beam shown and determine the expressions for the internal actions, 
for the deformations (strain at the level of the reference axis and curvature) and for 
the displacements (axial displacement and deflection). Plot all expressions along the 
member axis. In your solution, use the equilibrium, constitutive and kinematic equa-
tions. Assume A, I and E are constant throughout.

 5.4 Use the equilibrium, constitutive and kinematic equations to obtain and plot the 
expressions for the internal actions, for the deformations (strain at the level of the ref-
erence axis and curvature) and for the displacements (axial displacement and deflec-
tion) for the beam illustrated below. Assume A, I and E are constant throughout.
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 5.5 Calculate the stress distribution induced by a bending moment and axial force of 120 
kNm and 90 kN, respectively. Assume the section to be I-shaped and doubly-symmetric 
with A = 10,500 mm2, I = 372 × 106 mm4 and E = 200,000 MPa. Adopt a centroidal 
coordinate system with origin at mid-height of the section (of depth 460 mm).

 5.6 For a cross-section with A = 2820 mm2, I = 15.3 × 106 mm4 and E = 200,000 MPa, 
determine the magnitude of the moment to produce a stress of +180 MPa in the top 
fibre of the section. Consider a doubly-symmetric I-shaped section with depth of 
180 mm. Adopt a centroidal coordinate system.

 5.7 Reconsider the section of Problem 5.6 and recalculate the moment assuming the 
presence of an axial force equal to 160 kN.

 5.8 For the beam illustrated below, calculate the expressions for the rotation and deflec-
tion along its length using the method of double integration. Assume its area A and 
second moment of area I to remain constant throughout the member. Assume the 
material to have elastic modulus E.

 5.9 Determine the expressions for the rotation and deflection for the beam shown using 
the method of double integration. Assume A, I and E are constant throughout.

 5.10 Consider the beam shown and evaluate the expressions for the rotation and deflec-
tion along the member length using the method of double integration. Adopt linear–
elastic material properties for the member with elastic modulus E. The beam is 
prismatic with area A and second moment of area I.

 5.11 Evaluate the expressions for the rotation and deflection for the beam shown, assuming 
linear–elastic material properties (elastic modulus E) and constant cross-sectional 
properties (area A and second moment of area I). Use the method of double integra-
tion in your solution.
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 5.12 Derive the expressions describing the variations for the rotation and deflection for the 
beam shown using the method of double integration. The cross-sectional properties of 
the beam are defined by area A and second moment of area I, which are taken as con-
stant throughout its length. The material is linear–elastic with elastic modulus E.

 5.13 For the beam shown, calculate the expressions for the rotation and deflection along 
its length using the method of double integration. Assume its area A and second 
moment of area I to remain constant throughout the member. Assume the material 
to have elastic modulus E.

 5.14 Determine the expressions for the rotation and deflection for the beam shown 
using the method of double integration. Assume constant A and I over the entire 
beam length and linear–elastic material properties with elastic modulus E.

 5.15 Consider the beam shown and calculate the expressions for the axial displacement 
and deflection solving the governing differential equations (in terms of displace-
ments). Determine also the reactions at the supports. Assume A, I and E are con-
stant throughout.
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 5.16 Evaluate the expressions for the axial displacement and deflection solving the 
governing differential equations (in terms of displacements) for the beam shown. 
Calculate the support reactions and assume linear–elastic material properties (elas-
tic modulus E). Adopt constant cross- sectional properties for the beam with area A 
and second moment of area I.

 5.17 Determine the expressions describing the variations for the axial displacement 
and deflection for the beam shown using the differential equations expressed in 
terms of displacements. Calculate the support reactions. The cross-sectional prop-
erties of the beam are defined by area A and second moment of area I, which are 
taken as constant throughout its length. The material is linear–elastic with elastic 
modulus E.

 5.18 Determine the expressions for the deflection and axial displacement for the fol-
lowing three cases: (i) unit displacement of B in the positive direction of x, (ii) unit 
displacement of B in the positive direction of y and (iii) unit anti-clockwise rotation 
at B. For each case, calculate the support reactions induced by the enforced dis-
placement. Assume A, I and E are constant throughout.

 5.19 Use the differential equations expressed in terms of displacements to determine the 
expressions for u and v, and calculate the reactions at the supports for the beam 
depicted below. Assume A, I and E are constant throughout.
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 5.20 Calculate the expressions for the axial displacement and deflection solving the 
governing differential equations (in terms of displacements) for the beam shown 
below. Calculate the support reactions and assume linear–elastic material proper-
ties (elastic modulus E). Adopt constant cross- sectional properties for the beam 
with area A and second moment of area I.

 5.21 Consider the beam illustrated below and evaluate the expressions for the axial 
displacement and deflection solving the governing differential equations (in terms 
of displacements). Determine the support reactions. Adopt linear–elastic material 
properties (elastic modulus E) and constant cross-sectional properties for the beam 
with area A and second moment of area I.

 5.22 Solve the governing differential equations (in terms of displacements) for the beam 
shown and subjected to a parabolic distributed load (with values of 0 kN/m at the 
supports and 10 kN/m at mid-span). Determine the expressions for the axial dis-
placement and deflection and the support reactions. Assume A, I and E are constant 
throughout.

 5.23 Determine the expressions for the deflection and axial displacement for the fol-
lowing three cases: (i) unit displacement of B in the positive direction of x, (ii) unit 
displacement of B in the positive direction of y and (iii) unit anti-clockwise rotation 
at B. For each case, calculate the support reactions induced by the enforced dis-
placement. Assume A, I and E are constant throughout.
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 5.24 Reconsider Problem 5.3 and evaluate maximum or minimum values for the distri-
butions of the shear force, moment and axial force, and locations along the member 
length where they occur.

 5.25 Determine maximum or minimum values of the shear force, moment and axial 
force for the beam of Problem 5.16 as well as the locations where these values occur.

 5.26 Calculate maximum or minimum values for the distributions of the shear force, 
moment and axial force. Determine locations of these values along the member 
length for the beam of Problem 5.17.

 5.27 For the beam of Problem 5.21, evaluate maximum or minimum values for the dis-
tributions of the shear force, moment and axial force as well as the locations where 
these values occur.

 5.28 Determine maximum or minimum values for the distributions of the shear force, 
moment and axial force for the beam of Problem 5.22 as well as the locations where 
these values occur.

 5.29 By considering a small segment of a beam, derive the equilibrium equations assum-
ing that the shear force is positive when it points downward on the right-hand side 
of the segment and upwards on the opposite left side (i.e. the opposite sign con-
vention to what has been assumed elsewhere in the book). Comment on how this 
affects the relationships between member load, shear force and moment.

 5.30 Derive the equilibrium, kinematic and constitutive equations if the y-axis is assumed 
to be positive downwards. Comment on how this influences the variables related to 
the internal actions, strain diagram and displacements.

 5.31 Reconsider the beam of Problem 5.23 and determine the displacements and sup-
port reactions when subjected to a temperature distribution varying over the cross-
section and constant along the member length. Assume the cross-section to have 
constant properties described by area A, second moment of area I, elastic modulus 
E and thermal expansion coefficient α.
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Chapter 6

Slope-deflection methods

6.1  INTRODUCTION

In Chapter 5, we saw that when the material behaviour is linear–elastic, the stress at any point 
on a cross-section subjected to bending about the z-axis given by:

 σ ε θ= = − = −E yE
x

My
I

d
d

 (6.1)

and the curvature is calculated as:

 κ θ
( )

( ) ( )
x

x
v x

x

M x
EI

= = =d
d

d
d

2

2  (6.2)

In addition, we saw that when the curvature can be expressed as a continuous function 
of x (i.e. the distance along the beam), the deflection of the beam can be obtained by twice 
integrating Equation 6.2:

 v x x x x
M x
EI

x x( ) ( )
( )= =∫∫ ∫∫κ d d d d  (6.3)

where, for each integration, a constant of integration must be introduced and evaluated 
from the support conditions or boundary conditions of the problem. For nonlinear material 
behaviour, the deflection can still be obtained by double integration of the curvature pro-
vided the variation of curvature can be expressed as a function of x. This will be illustrated 
in Chapter 15.

For all but the simplest of problems, the calculation of deflection by double integration of 
the curvature is time consuming and tedious. A number of methods, based on the same con-
siderations of geometry, have been developed that simplify the mathematics and are useful 
for hand calculation. Several of these methods are presented in this chapter. Although these 
methods are not implemented in modern structural analysis software, they are still useful 
because they provide valuable insight into the behaviour of structures and form convenient 
tools for a quick determination of the slope and deflection of a beam or frame.
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6.2  METHOD OF DOUBLE INTEGRATION WITH STEP FUNCTIONS

When the loading on a beam is not continuous or when the cross-section dimensions change 
abruptly, the curvature diagram is discontinuous and the expressions for curvature are dif-
ferent in different regions of the beam. By introducing so-called Macaulay terms or step 
functions, a single expression for the curvature at every point along a beam can be devel-
oped. A step function <x − x1> that is set to zero when the value of the expression is negative 
(or nil) and set to the expression itself when its value is positive:

 < − > =
−

x x
x x

x x x x
1

1

1 1

0 for

for

<
≥






 (6.4)

By cutting the beam shown in Figure 6.1 at any point x from the support at A and consid-
ering the left-hand free-body diagram, the expression for the bending moment at any point 
along the beam can be written as

 M x= − < − > − < − > + < − >24 24
8
2

482x x x2 4 8  (6.5)

In Segment AB, x varies from 0 to 2 m, with <x − 2> = <x − 4> = <x − 8> = 0. In Segment 
BC, x varies from 2 to 4 m, with <x − 2> = x − 2 and <x − 4> = <x − 8> = 0. In Segment CD, 
x varies from 4 to 8 m, with <x − 2> = x − 2, <x − 4> = x − 4 and <x − 8> = 0. In Segment 
DE, x varies from 8 to 10 m, with <x − 2> = x − 2, <x − 4> = x − 4 and <x − 8> = x − 8.

To determine the deflection at any point in segment AB using the method of double integration 
(already introduced in Section 5.5 for beams with continuous expressions for the curvature and 
moment), we consider Equation 6.2 applied to segment AB and perform the double integration:

 M EI
v

x
xAB

d
d

= =
2

2 24  (6.6a)

 EI
v
x

x C
d
d

= +12 2
1  (6.6b)

 EIv = 4x3 + C1x + C2 (6.6c)

We know that v = 0 at x = 0 and, therefore, from Equation 6.6c: C2 = 0. The value of C1 
will be determined later.

Figure 6.1  Beam layout and free-body diagram.
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We next consider segment BC:

 M EI
v

x
x xBC

d
d

= = − < − >
2

2 24 24 2  (6.7a)

 EI
v
x

x x C
d
d

= − < − > +12 12 22 2
3  (6.7b)

 EIv = 4x3 − 4<x − 2>3 + C3x + C4 (6.7c)

At point B, where x = 2 m, the slope from the expression for segment AB and the slope 
from the expression for segment BC are the same, i.e. ((dv/dx)B)AB = ((dv/dx)B)BC, and there-
fore: C1 = C3. Similarly, the deflection at B (at x = 2 m) obtained from each of the above 
expressions is the same, i.e. (vB)AB = (vB)BC, and therefore: C4 = C2 = 0. It follows that the 
integration constants for each segment are identical. Therefore, when we get to segment 
CD, knowing that the deflection at the support D is zero, we can determine the unknown 
integration constant C1. This procedure is illustrated in Worked Example 6.1.

WORKED EXAMPLE 6.1

For the beam shown in Figure 6.1, determine the deflection at points C and E using the method 
of double integration with step functions. Assume the beam has a uniform cross-section with 
I = 50 × 106 mm4 and take E = 2 × 105 MPa.

Using step functions, the expression for the moment at any point along the beam in Figure 6.1 
is given by Equation 6.5 (reproduced here for convenience):

 M EI
v

x
x x x x= = − − − − + −d

d

2

2
224 24 2

8
2

4 48 8< > < > < >

Integrating twice gives:

 EI
v
x

x x x x C
d
d

= − − − − + − +12 12 2
4
3

4 24 82 2 3 2
1< > < > < >

 EIv x x x x C x C= − − − − + − + +4 4 2
1
3

4 8 83 3 4 3
1 2< > < > < >  (1)

Enforcing the boundary condition that v = 0 at x = 0 and with <x – 2> = <x – 4> = <x – 8> = 0, 
C2 is calculated using Equation 1 as C2 = 0.
At x = 8, we have v = 0, <x − 2> = x − 2, <x − 4> = x − 4 and <x − 8> = 0, and from Equation 
1: C1 137 3= − . .
At Point C, where x = 4 m, <x − 2> = x − 2, <x − 4> = 0 and <x − 8> = 0, and with EI = 10 × 103 
kNm2, the deflection is obtained from Equation 1:

 vC m 32.=
×

× − × − − × = − = −1
10 10

4 4 4 4 2 137 3 4 0 0325
3

3 3( ( ) . ) . 55 mm

which represents a downward deflection (on the basis of our sign convention).
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6.3  MOMENT-AREA METHOD

The moment-area method is based on two theorems that relate the deflected shape of the 
beam to its curvature. They rely on the fact that the first integral of a function is the area 
under the graph of the function and the second integral of the function is the moment of 
that area about a particular reference line. In particular, the function to be integrated is the 
curvature whose first integral gives us information on the slope of the deflected shape. The 
second integral of the curvature gives us the deflection. We will consider the case where 
the flexural rigidity is constant throughout, i.e. where the cross-section is uniform and 
the material behaviour is linear–elastic. For this case, the curvature diagram has the same 
shape as the bending moment diagram, i.e. κ = M/EI. The method is also applicable to cases 
where there is a variation in the flexural rigidity of the member.

Moment-Area Theorem 1
The change in slope between any two points on a beam is equal to the area under the 
 curvature diagram between those two points.

If the slope at any point on a beam is known, such as at a fixed support, then the slope 
at any other point on the beam can be readily determined using Moment-Area Theorem 
1 provided the curvature diagram is known. For example, consider the cantilever beam of 
Figure 6.2a, which is subjected to an anti-clockwise moment Me at its tip. The correspond-
ing curvature is positive and constant throughout its length, as illustrated in Figure 6.2b, 
and the deflected shape is shown in Figure 6.2c. In this particular case, the use of Moment-
Area Theorem 1 would be useful for the evaluation of the rotation at B, which is calculated 
as:

 θ θ κB AB

A

B

e

A

B

ed d= = = =∫ ∫x
M
IE

x
M
IE

L  (6.8)

where θAB is the change in slope from A to B (= θB – θA). For the cantilever of Figure 6.2a, 
θA = 0 and, therefore, θAB = θB. On the basis of the adopted sign convention, a positive rota-
tion corresponds to an anti-clockwise rotation. It is not always necessary to calculate the 
integral of Equation 6.8 to evaluate the area under the curvature diagram, which can be 
determined based on considerations of geometry (see Figure A.4 for the analytical expres-
sions for the areas of common shapes). Reconsidering the cantilever of Figure 6.2 and per-
forming the integral from B to A, we would get a negative angle, which is consistent with 
our sign convention. In fact, the angle formed moving from the tangent to the deflected 
shape at B to the tangent at A is clockwise and is, therefore, negative.

At Point E, where x = 10 m, <x − 2> = x − 2, <x − 4> = x − 4, <x − 8> = x − 8 and with EI = 10 × 
103 kNm2, the deflection is calculated from Equation 1 as:

vE = ×
× − × − − × − + × − −1

10 10
4 10 4 10 2

1
3

10 4 8 10 8
3

3 3 4 3( ) ( ) ( ) 1137 3 10

0 0211 21 1

.

. .

×






= + = +m mm (i.e. upward))
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We will now consider the more complex problem of the beam shown in Figure 6.3. The 
curvature diagram and deflected shape for the beam are also shown in the figure. Moment-
Area Theorem 1 implies that the slope of the tangent to the deflection curve at point F 
relative to the tangent to the curve at point B (i.e. θBF = θF – θB) is equal to the shaded area 
under the curvature diagram between points B and F. In this case, the change in slope from 
B to F, i.e. θBF = θF – θB, is shown as positive (because an anti-clockwise rotation is required 
to move from the slope at B to the slope at F).

Figure 6.2  Beam layout and free-body diagram. (a) Cantilever beam. (b) Curvature diagram. (c) Deflected 
shape.

Figure 6.3  Curvature diagram and deflected shape for a beam subjected to transverse loads.
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Moment-Area Theorem 2
The intercept y made on a vertical reference line by the tangents to the beam axis at two 
points B and F is equal to the first moment of the area under the curvature diagram between 
B and F about that reference line.

Referring to the curvature diagram and deflected shape shown in Figure 6.4 (reproduced 
from Figure 6.3), this theorem states that the intercept yBF on the vertical y-axis made by 
the tangents to the deflected shape at B and F is equal to the first moment of the shaded area 
under the curvature diagram between B and F about the y-axis. Consider the small area dA 
under the curvature diagram in Figure 6.4. The first moment of the area dA about the y-axis 
is calculated as x dA. It follows that:

 y xBF

B

F

d= ∫ κ x  (6.9)

Clearly, yBF is not necessarily the deflection at any point along the beam. However, 
Theorem 2 can be used to determine deflection at a point, if a judicious choice of the posi-
tion of the reference line is made. In order to highlight this, let us consider the case of the 
cantilever beam of Figure 6.5 subjected to a point load P at its tip. From statics:

 M Px
M
EI

Px
EI

= = =κ

We will now use Moment-Area Theorem 2 to calculate the deflection vA at point A. The ver-
tical reference line (i.e. the y-axis) is taken to pass through A. The intercept yAB is obtained as:

Figure 6.4  Curvature diagram and deflected shape.
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which equals vA because the slope at B is zero. A positive value for yAB describes the fact that 
we need to move upwards (i.e. in the positive direction of y) to go from A to A′, as shown in 
Figure 6.5c. A negative value for yAB would represent a downward movement.

Considering the complexity of the curvature diagrams in common structures, it is usually 
more practical to perform the integral of Equation 6.9 on the basis of geometric considerations:

 y x x x ABF B

B

F

= =∫ κ d F BF  (6.10)

where ABF is the area under the curvature curve between B and F (the shaded area in Figure 
6.4) and xBF is the distance between the centroid of this area and the vertical reference line 
(in this case, the y-axis). It is noted that ABF is in fact dimensionless.

It is common to encounter cases where we want to calculate the intercept y with respect 
to any vertical axis, not necessarily the y-axis, for example, if we want to calculate the 
deflection at point C along the cantilever of Figure 6.5d using Moment-Area Theorem 2. In 
this instance, the intercept yCB is determined from:

 y x x x x ACB C CB CB

C

B

( )= − =∫ κ d  (6.11)

where xC is the x coordinate of C and defines the location of the vertical reference line, ACB 
is the area under the curvature diagram between C and B, and xCB is the distance from the 
centroid of ACB to the vertical axis through C. A positive value for yCB implies an upward 
movement from C to C′ (see Figure 6.5d).

Figure 6.5  Deformation of a cantilever beam subjected to an end point load. (a) Cantilever beam. (b) Curva-
ture diagram. (c) Deflected shape. (d) Deflected shape.
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The main features of this approach are outlined in Summary of Steps 6.1 and its applica-
tion is illustrated in Worked Examples 6.2 through 6.4.

WORKED EXAMPLE 6.2

For the uniformly loaded, simply-supported beam shown in Figure 6.6a, use the moment-area 
theorems to determine the deflection at mid-span vC and the slope of the beam θA at support 
A. Assume the flexural rigidity EI is constant throughout.

The bending moment at any distance x from the support A is:

 M(x) = 0.5w1 Lx − 0.5w1 x2

and the corresponding curvature is:

 κ ( )
( )

( )x
M x

EI EI
w Lx w x= = −1

2 1 1
2

SUMMARY OF STEPS 6.1: DETERMINATION OF SLOPE AND 
DEFLECTION OF A BEAM USING THE MOMENT-AREA METHOD

The following steps outline the application of the moment-area method.

 1. Determine the bending moment diagram and, hence, the curvature diagram. If EI is  constant, 
the curvature diagram has the same shape as the bending moment diagram (M/EI). In many 
cases, the curvature diagram will be a straight line (in unloaded regions of the beam), a parab-
ola (under uniformly distributed loads), a cubic equation under linearly varying loads and so on. 
In these cases, the determination of the areas under the curvature diagram and the position 
of their centroids is simple (see Appendix A for geometric properties of common shapes).

 2. Recalling that the deflection at each support is zero and that the slope at any fixed sup-
port is also zero, sketch the deflected shape of the beam. Sketch to an exaggerated scale, 
remembering that in regions of positive moment, the curvature is positive (sagging) and, in 
regions of negative moment, the curvature is negative (hogging). The points where either 
the slope or deflection of the beam is to be calculated should be identified.

 3. Select the location of the vertical reference line, such that the moment-area theorems 
can be readily applied to determine the required information. The choice of the two 
points and the position of the reference axis are important when applying this approach. 
Since we already may know information about the slope or deflection at the supports, 
one of the two points is usually the point where the slope or deflection is required and 
the other is one of the supports.

 4. Use Moment-Area Theorem 1 to determine the difference in slope between two points 
on the curve and Moment-Area Theorem 2 to find the vertical distance at a particular 
location between a point on the deflected shape to the extended tangent projected from 
a different point.
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Realising that the slope of the tangent to the deflection curve at mid-span is zero (owing to the 
symmetry of the support and loading conditions) and using Moment-Area Theorem 1, the slope 
at A is calculated as the area under the curvature diagram between A and C:

 θAC d= − = −
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For the loading shown (where w1 is positive downward), the angle θAC is positive, i.e. there is 
a positive (anti-clockwise) rotation of the beam between A and C. As the slope at C is zero, it 
follows that θA = −θAC.
Because the slope at C is zero, the projection of the tangents at A and C onto a vertical refer-
ence line through support A is equal in magnitude to the vertical deflection at C, as shown in 
Figure 6.6b. Using Moment-Area Theorem 2:
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This implies that a positive upward movement yAC  is required to move from C to A and hence 
the deflection at C relative to A is downwards (because deflecting in the negative direction of 
the y-axis):

 v y
w L
EIC AC= − = − 5

384
1

4

Figure 6.6  Beam for Worked Example 6.2.
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WORKED EXAMPLE 6.3

For the beam analysed in Worked Example 6.1 and shown in Figure 6.1, use the moment-area 
theorems to determine the deflection at point C and at point E.

The curvature diagram for the beam (M/EI) is shown in Figure 6.7, where the end A is taken as 
the origin. To facilitate the calculations, the area under the curvature diagrams has been divided 
into five regions (A1 to A5). In particular, the geometric properties of the areas under the curve 
are as follows:
– the triangular area between A and B: A1 = +4.8 × 10−3 with centroid at x1 1 333= . m
– rectangular area between B and C: A2 = +9.6 × 10−3 with centroid at x2 3 0= . m
– area between C and D is subdivided into A3 and A4, with:

– the parabolic area A3
317 06 10= + × −.  with centroid at x3 5 5= . m

– the rectangular area A4 = −6.4 × 10−3 with centroid at x4 6 0= . m
– the parabolic area between D and E: A5

31 066 10= × −− .  with centroid at x5 8 5= . m

These geometric properties have been obtained on the basis of the information provided in 
Appendix A.

Using Moment-Area Theorem 2, the projection of the tangent to the deflection curve at point 
C on a vertical reference line through A is shown in Figure 6.7 and is given by:

 y x x x A x A xAC d= = × + × = × × + ×− −κ ( ) . . .1 1 2 2
3 34 8 10 1 333 9 6 10 ×× =∫ 3 0 0 0352. . m

A

C

Figure 6.7  Curvature and deflected shape of beam for vC in Worked Example 6.3.
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The projection of the tangent to the deflection curve at point C on a vertical reference line 
through D is shown in Figure 6.7 and is calculated as:

 
y A x A xDC = × − + × −

= × × − − ×−
3 3 4 4

3

8 8

17 06 10 8 5 5 6 4

( ) ( )

. ( . ) . 110 8 6 0 0 02983− × − =( . ) . m

From the sketch of the deflected shape in Figure 6.7b, the deflection at point C, mid-way 
between A and D, is:

 v
y y

C
AC DC

2
m 32.5 mm= − + = − + = − = −0 0352 0 0298

2
0 0325

. .
.

and, as shown in Figure 6.7, the deflection is downwards.
To determine the deflection at point E, we first determine the dimension yE2 shown in Figure 6.8b, 
where yE2 is the displacement to the point where the tangent to the deflection curve at C inter-
sects the vertical reference line through E. From simple geometry:

 
y y

L
y y
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AC E2
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− = − − = −

.
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8
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0 02852∴ = .

The dimension yEC in Figure 6.8b is obtained as the distance between the points where the 
tangents to the deflection curve at C and E intersect a vertical line through E and this can be 
obtained using Moment-Area Theorem 2. With yEC  so determined, the deflection at E can be 
obtained from geometry: v y yE EC E2= − . Applying Moment-Area Theorem 2 to the area under 
the curvature diagram between C and E:

 

y v y A x A x A xEC E E2= + = × − + × − + × −
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−
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Figure 6.8  Curvature and deflected shape of beam for vE in Worked Example 6.3.
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From geometry (Figure 6.8b):

 v y yE EC E2 m mm= − = − = =0 0496 0 0285 0 0211 21 1. . . .

Confirming the deflected shape of Figure 6.8, the deflection at E is clearly upwards.

WORKED EXAMPLE 6.4

If the flexural rigidity EI is constant along the fixed-ended beam of Figure 6.9a, use the moment-
area theorems to determine the reactions and the deflection at mid-span.

With horizontal displacement at support B permitted and no horizontal components of the applied 
loads, the horizontal reactions at A and B are both zero. The four unknown reactions for the stati-
cally indeterminate beam are shown in the free-body diagram of Figure 6.9d. This free-body diagram 
is statically equivalent to the free-body diagrams of a simply-supported beam carrying a uniformly 
distributed load (Figure 6.9b) superimposed on the free-body diagram of a simple beam subjected to 
end couples MA and MB (Figure 6.9c).

Figure 6.9  Beam for Worked Example 6.4. (a) Fixed-ended beam under UDL. (b) Free-body diagram 
of a simply-supported beam subjected to a uniformly distributed load. (c) Free-body dia-
gram of a simply-supported beam subjected to end moments. (d) Free-body diagram of 
the fixed-ended beam. (e) Deflected shape.
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6.4  CONJUGATE BEAM METHOD

The conjugate beam method converts the problem of geometry into one of simple statics. In 
Chapter 5, we saw that the mathematical relationships between load, shear force and bend-
ing moment are of the same form as the relationships between curvature, slope and deflec-
tion (as summarised in Table 5.1). It follows then that the slope and deflection of a beam 
should be able to be calculated from the curvature in exactly the same way as the shear force 
and bending moments are calculated from the applied load.

If the curvature diagram is treated as a distributed load applied to a conjugate beam, the 
slope and deflection of the real beam at a particular point are the same as the shear force 
and bending moment, respectively, at that point in the conjugate beam. The relationships are 
summarised in Table 6.1 (see also Section 5.7).

For the simple span in Figure 6.9b, moment equilibrium about support A gives RB = w1L/2, and then 
summing the vertical forces gives RA = w1L/2. The bending moment diagram of the simple beam in 
Figure 6.9b is sometimes called the free-span bending moment diagram and the maximum moment 
at mid-span is called the total static moment M0. For this uniformly loaded beam: M0 = w1L2/8.
Symmetry dictates that the moments MA and MB are equal and moment equilibrium of the free-
body diagram in Figure 6.9c tells us that the vertical reactions caused by MA and MB are both 
zero. It follows that the vertical reactions of the statically indeterminate beam are the same as 
those for the simple span of Figure 6.9b. In this case, MA and MB are reactions and, as such, their 
positive direction is arbitrary.
Noting that the slope of the beam at the fixed end A is zero and the slope of the beam at the point 
of maximum deflection (at the mid-span C) is also zero, Moment-Area Theorem 1 tells us that the 
area under the curvature diagram between A and C must be zero. Therefore, the sum of the area 
under the positive parabolic curvature diagram between A and C for the simple span of Figure 6.9b 
and the corresponding area under the negative curvature diagram caused by the end couples MA 
and MB must be zero. On the basis of the geometric properties provided in Appendix A, we have:
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and from symmetry: MB = MA. Both moment-area theorems are required to determine the 
reactions of a fixed-ended beam when the applied loading is not symmetrical.
To determine the deflection at the mid-span C, we use Moment-Area Theorem 2. Taking first 
moments of the area under the curvature diagram between A and C about the support at A 
gives the vertical distance yAC, which is equal in magnitude to the vertical deflection of the beam 
at C. Moving upwards from C to A by yAC  (as shown in Figure 6.9e) corresponds to a downward 
deflection of C relative to A, i.e., v yC = − AC.
Using the area and dimensions given for a parabolic shape in Appendix A, we get:
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For the loading shown with a positive value of w1, vC is negative (downwards), as shown in Figure 6.9e.
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The supports of the conjugate beam must be chosen so that slope and deflection conditions 
of the real beam are accurately represented. For example, a fixed support in a real beam is 
such that the slope and deflection are both zero: θ = 0 and v = 0. In the conjugate beam, both 
Sc and Mc must therefore be zero at this point, which can only occur at a free, unsupported 
end. A superscript ‘c’ is used for the variables related to the conjugate beam to distinguish 
these from the variables describing the behaviour of the real beam. Similarly, at a free end 
of a real beam, both θ and v are non-zero, and so in the conjugate beam, this end must be 
fixed so that both Sc and Mc are also non-zero.

At an exterior pinned or roller support in a real beam, v = 0 but θ is non-zero. In the con-
jugate beam, we require Mc = 0 (because v is conjugated to Mc, as shown in Table 6.1) but 
Sc must be non-zero (because θ is conjugated to Sc). These are the conditions provided by a 
pinned or roller support in the conjugate beam.

At an internal support (pin or roller) in a real beam, v = 0 but θ is non-zero. It follows that 
in the conjugate beam at this point, we must have Mc = 0 but Sc must be non-zero. These are 
the conditions for an internal hinge. Likewise at an internal hinge in a real beam, v and θ 
are both non-zero and therefore Mc and Sc must both be non-zero. These are the conditions 
of an internal support (pin or roller).

The support conditions to be used for the conjugate beam are summarised in Figure 6.10 
where these are related to the support conditions of the real beam.

Let us use the conjugate beam method for the analysis of a simple beam, such as the 
cantilever shown in Figure 6.11a. The external moment Me applied to its tip produces a 
constant positive moment throughout the member length, which corresponds to a constant 
positive curvature (Figure 6.11b). The uplift movement generated by the positive (anti-clockwise) 
Me is described by a positive rotation (Figure 6.11c) and positive deflection (Figure 6.11d). 
In the case of the conjugate beam, the support conditions are outlined in Figure 6.11e, 
together with the uniform curvature applied as a uniformly distributed load. The load 
is upwards when the curvature is positive (and downwards if the curvature is negative). 
The consequent  internal shear force Sc and bending moment Mc in the conjugate beam 
are obtained from statics and are plotted in Figures 6.11f and g. On the basis of the sign 
convention adopted for the internal actions, the rotation in the real beam and the shear force 
in the conjugate beam are equal in absolute value but opposite in sign because of the minus 
sign included in the integral for Sc, i.e. S w xc c= −∫ d , but not present in the integral for θ, 

i.e. θ κ= ∫ dx (see Table 6.1). The deflection of the real beam is equal (also in sign) to the 

bending moment determined from the conjugate beam.

Table 6.1 Relationship between real and conjugate beams
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Figure 6.10  Relationship between support conditions of real and conjugate beams.

Figure 6.11  Cantilever beam subjected to an end moment: real and conjugate beams. (a) Real beam. 
(b)  Curvature. (c) Rotation. (d) Deflection. (e) Conjugate beam. (f) Shear force diagram. (g)  Bending 
moment diagram (drawn on tension side).
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SUMMARY OF STEPS 6.2: Determination of slope and 
deflection of a beam using the conjugate beam method

The following steps outline the application of the conjugate beam method.

 1. Determine the bending moment diagram and, hence, the curvature diagram. If EI is con-
stant, the curvature diagram has the same shape as the bending moment diagram (M/EI).

 2. Sketch the conjugate beam being careful to specify all appropriate support conditions as 
outlined in Figure 6.10.

 3. Load the conjugate beam with the curvature diagram from the real beam, treating the curva-
ture as a distributed load. Where the curvature is positive, the load on the conjugate beam is 
upwards and, where the curvature is negative, the load on the conjugate beam is downwards.

 4. Determine the reactions at the supports of the conjugate beam using the equations of 
equilibrium.

 5. Cut the conjugate beam at the point where the slope or deflection is required and, con-
sidering either the free-body diagram to the left or to the right of the cut, calculate the 
internal actions. The calculated shear force in the conjugate beam is equal in magnitude 
and opposite in sign to the slope of the real beam at that point, while the calculated 
moment is equal to the deflection of the real beam at that point.

WORKED EXAMPLE 6.5

For the uniformly loaded, simply-supported beam shown in Figure 6.12a (previously analysed in 
Worked Example 6.2), use the conjugate beam method to determine the deflection at mid-span 
and the slope at the supports. The flexural rigidity EI is constant throughout.

As calculated in Worked Example 6.2, the bending moment at any distance x from support A in Figure 
6.12a is M(x) = 0.5w1Lx − 0.5w1x2 and the corresponding curvature diagram is shown in Figure 6.12b. 
For this simply-supported beam, the support conditions for the conjugate beam are the same as for 
the real beam. The conjugate beam, loaded with the curvature diagram, is shown in Figure 6.12c.
The reactions at each support of the symmetrically loaded conjugate beam are both equal to 
half the total load, which is calculated as:

 R R
w L

EI
L

w L
EIA

c
B
c= = =1

2
2
3 8 24

1
2

1
3

The shear force at support A of the conjugate beam is equal to RA
c , i.e. S RA

c
A
c= , which is equal 

to the opposite of the slope of the real beam at A. Based on this, the rotation at A can then be 
determined as:

 θA A
c= − = −S

w L
EI

1
3

24

where the negative sign for θA implies that for a positive value for w1 (causing positive bending 
and curvature), the rotation at A is clockwise (i.e. negative).
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WORKED EXAMPLE 6.6

For the beam analysed in Worked Example 6.1, use the conjugate beam method to determine 
the deflections at points C and E.

The real beam and the conjugate beam are shown in Figure 6.13. The free end at E of the real 
beam is replaced by a fixed support at E in the conjugate beam. The internal support at D is 
replaced by an internal hinge in the conjugate beam, while the pinned support at A in the real 

Cutting the conjugate beam at mid-span (Figure 6.12d), the calculated moment at mid-span is:

 M
w L

EI
L w L

EI
L L

C
c = − +










 = −1

3
1

2

24 2
2
3 8 2

3
8 2

5
3884

1
4w L

EI

which corresponds to the mid-span deflection at C:

 v
w L
EIC = − 5

384
1

4

The negative sign implies that for a positive value for w1, the deflection is in the negative y direc-
tion, i.e. a download displacement.

Figure 6.12  Beam for Worked Example 6.5. (a) Real beam. (b) Curvature. (c) Conjugate beam. (d) Free-
body of conjugate beam.
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beam remains a pinned support in the conjugate beam. The curvature distribution calculated in 
Worked Example 6.1 is:

 κ = − − − − + −






1
24 24 2

8
2

4 48 82

EI
x x x x< > < > < >

and is shown in Figure 6.13b.
We start by calculating the reactions of the conjugate beam (Figure 6.13c) assuming it to be 
loaded with a distributed load defined by the curvature (in units of m–1).
Consider a free-body diagram of the conjugate beam from A to D shown in Figure 6.13d. Taking 
moments about the internal hinge at D, we get the vertical reaction at A of the conjugate beam:

 

M R A A A A

R
D
c

A
c

A
c

= + × + × + × + × + ×

= × + ×

8 6 667 5 2 5 2

8 4 8
1 2 3 4. .

. 110 6 667 9 6 10 5 17 06 2 5 6 4 10 2 03 3 3− − −× + × × + × − × × =
∴

. . . . .

RAA
c (i.e. downward)= − × − −13 73 10 3 1. m

where all areas were already calculated in Worked Example 6.3.

Figure 6.13  Beam for Worked Example 6.6. (a) Real beam. (b) Curvature κ = M/EI (m–1). (c) Conjugate 
beam. (d) Free-body diagram AD from conjugate beam. (e) Free-body diagram AC from 
conjugate beam. (f) Free-body diagram of conjugate beam.
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WORKED EXAMPLE 6.7

If the flexural rigidity EI is constant throughout the fixed-ended beam of Figure 6.14a, use the 
conjugate beam method to determine the reactions and the deflection at mid-span.

The real beam and the conjugate beam are shown in Figure 6.14. Based on Figure 6.10, the fixed 
supports at A and B in the real beam are replaced with free ends in the conjugate beam. The 
slope and deflection of the real beam at each support are both zero and so the shear force 
and bending moment in the conjugate beam at each end must both be zero. This means 
the conjugate beam is without supports, and so the loads on the conjugate beam must be self-
equilibrating. That is, the resultant upward load on the conjugate beam (the area under the 
positive curvature diagram) must be equal in magnitude to the downward load on the conjugate 
beam (the area under the negative curvature diagram). The moment about any point on the 
conjugate beam must also be zero.
From symmetry in the real beam, MA = MB (and these support reactions are shown in Figure 
6.14b). Considering the conjugate beam shown in Figure 6.14d, the area under the parabolic 
positive curvature diagram over the length L of the conjugate beam is:

 2/3 × (w1L2/8EI) × L = w1L3/12EI

and the area under the rectangular negative curvature diagram is −MAL/EI.

We are now in a position to calculate the deflection at C and E of the real beam, because we can 
evaluate the moments at these locations in the conjugate beam. Cutting the conjugate beam at 
C and taking moment about C on the free-body diagram AC (Figure 6.13e) gives:

 MC
c = − × × + × × + × × = −− − −13 73 10 4 4 8 10 2 667 9 6 10 1 03 3 3. . . . .00325 m

which equals the deflection at C:

 v MC C
c m mm (i.e. downward)= = − = −0 0325 32 5. .

Considering the entire conjugate beam (Figure 6.13f), taking moments about E will give the moment 
at the fixed support and this of course is equal to the deflection at E (vE) in the real beam:

 

ME
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Enforcing the condition that the sum of the loads applied to the conjugate beam must be zero 
(i.e. vertical equilibrium of loads):

 w L
EI

M L
EI

1
3

12
0− =A  from which: M

w L
A = 1

2

12

Cutting the conjugate beam at mid-span (Figure 6.14e), the calculated internal moment at mid-
span is equal to the deflection of the real beam at mid-span. Therefore:

 v M
w L

EI
L L w L

EI
L L w L

EIC C
c= = − = −2

3 8 2
3
8 2 12 2 4

1
384

1
2

1
2

1
4

Figure 6.14  Real and conjugate beams for Worked Example 6.7. (a) Elevation. (b) Free-body diagram. 
(c) Curvature diagram. (d) Elevation. (e) Free-body AC.
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WORKED EXAMPLE 6.8

For the beam shown in Figure 6.15a, determine the position and magnitude of the maximum 
deflection using the conjugate beam method. The flexural rigidity EI is constant throughout, 
with E = 200,000 MPa and I = 40 × 106 mm4.

The conjugate beam is shown in Figure 6.15b, where the distributed load corresponds to the 
curvature diagram of the real beam. The reactions at each end of the conjugate beam have been 
determined from statics and the resultant distributed loads on the conjugate beam (i.e. the 
areas under the curvature diagram) are shown in Figure 6.15c. The position of maximum deflec-
tion in the real beam corresponds to the point of maximum moment in the conjugate beam, i.e. 
the point of zero shear. From the free-body diagram of Figure 6.15c, this clearly occurs in the 
middle third of the span. The free-body diagram of the conjugate beam to the left of the point 
of maximum deflection is shown in Figure 6.15d and the location of the maximum moment is 
obtained by determining the value of x at which the shear force is zero.
By equating the expression for shear force Sc in Figure 6.15d to zero, we find the value of x cor-
responding to the point of maximum deflection in the real beam:

 − − − − − + =36 24 3 3 78
0

2

EI
x
EI

x
EI EI

( ) ( )

from which x2 + 18x − 105 = 0.
Solving this quadratic equation gives x = 4.638 m.

Figure 6.15  Real and conjugate beams for Worked Example 6.8. (a) Real beam. (b) Conjugate beam. 
(c) Free-body diagram of conjugate beam with resultant loads and reactions. (d) Free-
body diagram of conjugate beam to left of point of maximum deflection.
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6.5  THE SLOPE-DEFLECTION EQUATIONS

6.5.1  Sign convention for support moments and rotations

The slope-deflection equations relate the deformation of a structural member, expressed 
in terms of its end slopes and displacements, to the loads and actions applied to the 
member. Consider the internal span of a continuous beam subjected to an arbitrary load 
distribution shown in Figure 6.16a. The free-body diagram of the span is shown in Figure 
6.16b and the deflected shape of the span is shown in Figure 6.16c. The rotation of the 
beam at the supports A and B, θA and θB, respectively, are caused by the loads applied 
along the span of the beam and the moments applied at each end of the span (shown on 
the free-body diagram of Figure 6.16b as MA and MB). The slope-deflection equations 
are developed relating the internal moments (MA and MB) and the applied loads to the 
rotations at each support (θA and θB).

We will assume that external load components are positive when they occur in the posi-
tive x and y directions (where the x-axis is the longitudinal member axis). We will also 
assume that the external moments and rotations are positive when they act in an anti-
clockwise sense.

For the internal span shown in Figure 6.17a, the right-hand support moves by a positive 
(upwards) amount Δ. Additional moments (and shears) are induced in the beam (as shown on 
the free-body of Figure 6.17b) and additional rotation occurs at each end of the span (Figure 
6.17c). The relationship between Δ and the end moments of the span can be  determined 

With EI = 8 × 1012 Nmm2 = 8 × 103 kNm2, the maximum deflection is found by considering the 
moment equilibrium of the free-body diagram of Figure 6.12d at x = 4.638 m:
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mv 11mm (i.e. downward)

Figure 6.16  Displacements of an interior span caused by transverse load. (a) Interior span. (b) Free-body 
diagram. (c) Deflected shape.
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conveniently using the conjugate beam method. For the deformation shown in Figure 6.17a, 
as the line AB rotates in an anti-clockwise direction, the rotation Δ/L is positive.

We will now derive expressions that relate the end moments MA and MB to the beam defor-
mations (θA, θB, and Δ) and the applied member loads using the conjugate beam method. 
These will then be used for the analysis of statically indeterminate beams.

6.5.2  Rotation at support A, θA

The beam shown in Figure 6.18a is pinned at support A and fixed at support B. It is subjected 
to an applied moment MA at support A sufficient to cause a rotation at that support of θA, 
as shown. According to our sign convention, MA and θA are both positive in Figure 6.18a 
(i.e. both are anti-clockwise). A free-body diagram of the beam showing the reactions (MB, 
VB and VA) caused by the applied moment MA is shown in Figure 6.18b and the resulting 
curvature diagram is shown in Figure 6.18c. The relationship between MA and θA can be 
found by analysing the conjugate beam shown in Figure 6.18d.

The vertical reaction at end A of the conjugate beam is equal to the rotation θA of the 
real beam at A, i.e. VA

c
A A

c( S )= = −θ . The deflection of the beam at both supports is zero and 

Figure 6.17  Displacements and actions caused by relative support settlement. (a) Interior span. (b) Free-
body diagram. (c) Deflected shape.

Figure 6.18  Real and conjugate beams for a propped cantilever with an applied moment at the pinned end. 
(a) Beam. (b) Free-body diagram. (c) Curvature diagram. (d) Conjugate beam.
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therefore the moments about A and B in the conjugate beam must also be zero. Assuming 
anti-clockwise moments are positive, we get:

 ∑ = − × × ×




 + × × ×


M

M
EI

L L
M
EI

L LA
c A B: / /0 0 5 3 0 5 2 3. .


 = 0  (6.12)

which simplifies to:

 MA = 2MB (1)

 ∑ = + × × ×




 − × × ×


M

M
EI

L L
M
EI

L LB
c A B: / /0 0 5 2 3 0 5 3. .


 − =θAL 0  (2)

Substituting Equation 1 into Equation 2 gives the relationships between the end moments 
MA, MB and θA:

 M
EI
LA A= 4 θ

  
M

EI
LB A= 2 θ  (6.13a,b)

6.5.3  Rotation at support B, θB

Similarly, if end B of the beam rotates by θB under the application of an applied moment 
MB with end A fixed, the relationship between MB and θB and the relationship between the 
reaction MA and θB can be written as:

 M
EI
LB B= 4 θ   M

EI
LA B= 2 θ  (6.14a,b)

6.5.4  Fixed-end moments caused by applied loads

Most often, the rotation at supports is not caused by couples applied at the supports but by 
loads applied along the span. If we can find the reaction moments at the supports caused by 
any loads applied on the span, we can use Equations 6.13 and 6.14 to find the rotations at 
the supports. Let us consider the fixed-ended beam shown in Figure 6.19a subjected to a point 

Figure 6.19  Real and conjugate beams for a fixed-ended beam subjected to applied loads. (a) Beam. (b) Conju-
gate beam.
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load P. The load will produce fixed-end moments at A and B, referred to as MFE.A and MFE.B 
in Figure 6.19a (and both drawn as positive, i.e. anti-clockwise). To determine the fixed-
end moments, we will analyse the conjugate beam shown in Figure 6.19b. Note that if the 
reaction moment MFE.A is in the direction shown, the internal bending moment in the beam 
at end A is −MFE.A and the curvature is −MFE.A/EI.

As the real beam has zero slope and zero deflection at each end, the moment and shear at 
each end of the conjugate beam are also zero. Equating the sum of the vertical loads on the 
conjugate beam to zero, we get:

 ∑ = × −




 ×







 + × ×


F

M
EI

L
M

EI
Ly

c FE.A FE.B:0
1
2

1
2



 − ×





 =

1
2

0
Pab
EIL

L

 −MFE.AL + MFE.BL − Pab = 0 (1)

Summing the moments about end A of the conjugate beam gives:
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L

b aFE.A FE.B2 2 0( )  (2)

Solving Equations 1 and 2 gives:

 
M

Pab

L
FE.A = −

2

2
 and M

Pa b

L
FE.B = +

2

2

 (6.15a,b)

The fixed-end moments for other loadings are given in Appendix B for a span fixed at both 
ends and for a span fixed at the left support at A and pinned at the right support at B.

6.5.5  Support settlement Δ
Consider the fixed-ended beam shown in Figure 6.20a, where the right-hand support 
is displaced by an amount Δ with respect to the left support as shown. Following the 
sign convention adopted here, since the line AB rotates in an anti-clockwise sense, Δ is 
taken to be positive. A moment and a shear reaction develop at each support. From 
the deflected shape of the beam, it is clear that the internal bending moment at A is 
positive (sagging) and that at B is negative (hogging). The resulting curvature diagram is 
shown in Figure 6.20b and the conjugate beam is shown in Figure 6.20c. The moment 
at end B in the conjugate beam must equal the upward (positive) displacement of the 
real beam, i.e. +Δ as shown. Summing the forces on the conjugate beam in the vertical 
direction gives:
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 ∑ = + × − ×




 − × − ×





F

M
EI

L
M
EI

Ly
c :0 0 5 0 5. .. .FE A FE B

 = ∴ =0 M MFE A FE B. .  (1)

and summing the moments about B, we get:

 ∑ = − × − × ×




 + × − ×M

M
EI

L
L M

EI
LB

c FE.A FE.B:0 0 5
2
3

0 5. . ××




 + =L

3
0∆  (2)

Substituting Equation 1 into Equation 2 gives:

 
M

EI
LFE.A = − 6

2 ∆ and M
EI
LFE.B = − 6

2 ∆  (6.16a,b)

6.5.6  Slope-deflection equations

Span continuous at both ends: If we sum the moments at each end of a fixed-ended beam 
caused by each of the imposed displacements θA, θB and Δ (Equations 6.13, 6.14 and 
6.16) and the fixed-end moments caused by the imposed loads, we get the slope-deflection 
equations for an interior span:

 M
EI
L L

MA A B FE.A= + −




 +4 2

6θ θ ∆
  M

EI
L L

MB A B FE.B= + −




 +2 4

6θ θ ∆
 (6.17a,b)

Span pinned at end B and continuous at end A: If we apply Equations 6.17 to an end span 
of a continuous beam where end A is continuous and end B is pinned, the moment at end B 
is zero and Equations 6.17 can be rearranged as:

 
M

EI
L L

M MA A B FE.A FE.B= + −




 + −4 2

6 1
2

θ θ ∆
  MB = 0

 
(6.18a,b)

where MFE.A and MFE.B are still the end moments of a fixed-ended beam previously intro-
duced in Section 6.5.4.

Figure 6.20  Real and conjugate beams for a fixed-end beam subjected to settlement of one support. (a) Beam. 
(b) Curvature diagram. (c) Conjugate beam.
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It is more convenient when using the slope-deflection methods in spans pinned at one end 
and fixed at the other to rewrite Equation 6.18a in terms of the end moment of a propped 
cantilever as:

 M
EI
L L

MA A FE .A= −




 +3

3θ ∆
*  (6.19)

in which:

 M M MFE .A FE.A FE.B* = − 1
2

 (6.20)

where MFE*.A is the support moment of a propped cantilever whose values are tabulated in 
Appendix B (see right column of table in Appendix B).

WORKED EXAMPLE 6.9

For the continuous beam shown in Figure 6.21, the flexural rigidity EI is constant throughout. 
Calculate the reactions at each support using the slope-deflection equations and plot the shear 
force and bending moment diagrams.

Span AB: From Appendix B, the fixed-end moments at A and B produced by a uniformly dis-
tributed load are:

 
M

wL
FE.A kNm= − = − − × =

2 2

12
8 10
12

66 67.  and M
wL

FE.B kNm= = − × = −
2 2

12
8 10
12

66 67.

Since end A is fixed, θA is zero, and as there is no support settlement, Δ is zero. The slope-
deflection equations (Equations 6.17) can then be written as:

 ( ) ( ) .M
EI
L L

M
EI

A AB A B FE.A B= + −




 + = +4 2

6
10

2 66θ θ θ∆
667 0 2 66 67= +. .EIθB  (1)

Figure 6.21  Beam for Worked Example 6.9.
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 ( ) ( ) .M
EI
L L

M
EI

B AB A B FE.B B= + −




 + = −2 4

6
10

4 66θ θ θ∆
667 0 4 66 67= −. .EIθB  (2)

Span BC: From Appendix B, the fixed-end moments at B and C of this end span are:

 M
PL

FE .B kNm*
( )= − = − × − × =3

16
3 50 8

16
75  and MFE*.C = 0

With end B the continuous end, Equation 6.19 becomes:

 ( ) ( ) ..M
EI
L L

M
EI

B BC B FE B B= −




 + = + =∗3

3
8

3 75 0 37θ θ∆
55 75EIθB +  (3)

Equilibrium at support B: For moment equilibrium at support B:

 (MB)AB + (MB)BC = 0

and therefore:

 0.4EIθB − 66.67 + 0.375EIθB + 75 = 0

 θB = −10 75.
EI

which represents a negative (clockwise) rotation at B.
Substituting into Equations 1, 2 and 3 gives:

 (MA)AB = +64.5 kNm; (MB)AB = −71.0 kNm; (MB)BC = +71.0 kNm

Equilibrium: The unknown vertical reactions, required for the definition of the shear force 
diagram, are determined from equilibrium considerations. The moment reaction at A is a posi-
tive (anti-clockwise) couple (MA)AB of magnitude 64.5 kNm, as shown on the free-body diagram 
in Figure 6.22a. For the free-body of the span BC in Figure 6.22b, the moment at end B is a 
positive (anti-clockwise) couple (MB)BC of magnitude 71.0 kNm.

Figure 6.22  Free-body diagrams for Worked Example 6.9. (a) Free-body diagram of whole beam. 
(b) Free-body of span BC.
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Summing the moments about B in Figure 6.22b:

 −(VC × 8) + (50 × 4) − 71.0 = 0 ∴ VC = 16.1 kN

Summing the moments about A in Figure 6.22a:

 −(VB × 10) − (16.1 × 18) + (50 × 14) + (8 × 10 × 5) − 64.5 = 0 ∴ VB = 74.5 kN

Summing the vertical forces:

 VA + 74.5 + 16.1 − 50 − (8 × 10) = 0 ∴ VA = 39.4 kN

These reactions can be readily checked by taking moments about any other point (e.g. support 
C in Figure 6.22a). The bending moment and shear force diagrams are readily determined from 
statics and are shown in Figure 6.23.

WORKED EXAMPLE 6.10

For the beam of Worked Example 6.9 (in Figure 6.21), calculate the support reactions caused by 
a (downwards) support settlement of 60 mm at support B and draw the bending moment and 
shear force diagrams. Assume EI = 12 × 103 kNm2 throughout.

Since both spans are unloaded except for the support settlement, the fixed-end moments are 
zero. The support settlement at B is 0.06 m downward and, as in Worked Example 6.9, θA is 

Figure 6.23  Reactions, shear force and bending moment diagrams for Worked Example 6.9.
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zero. The line through AB rotates in a clockwise direction, so Δ/L is negative. The slope-deflection  
equations for span AB are (Equations 6.17):

 ( )
( . )

M
EI
L L

EI
A AB B B= −





 = − × −




2
6

10
2

6 0 06
10

θ θ∆

= +EI( . . )0 2 0 0036θB  (1)
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EI
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EI
B AB B B= −





 = −

× −( )
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6
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4
6 0 06

10
θ θ

∆

 = +EI( . . )0 4 0 0036θB  (2)

With CD rotating in an anti-clockwise sense (i.e. so Δ/L is positive), the slope-deflection equa-
tion for the end span BC is:

 ( )
.

(M
EI
L L

EI
EIB BC B B3

3
8

3
3 0 06

8
θ θ−





 = − ×



 =

∆
00 375 0 0028. . )θB −  (3)

Equilibrium at support B: For moment equilibrium at support B:

 (MB)AB + (MB)BC = 0

and therefore:

 EI(0.4θB + 0.0036) + EI(0.375θB − 0.0028) = 0

 θB = −1.032 × 10−3 rad

Substituting into Equations 1, 2 and 3 gives:

 (MA)AB = EI(0.2θB + 0.0036) = 12 × 103[0.2 × (−0.001032) + 0.0036] = +40.72 kNm

 (MB)AB = EI(0.4θB + 0.0036) = 12 × 103[0.4 × (−0.001032) + 0.0036] = +38.25 kNm

 (MB)BC = EI(0.375θB − 0.0028) = 12 × 103[0.375 × (−0.001032) − 0.0028] = −38.25 kNm

Equilibrium: The vertical reactions are calculated from equilibrium considerations. The moment 
reaction at A is an anti-clockwise couple (MA)AB of magnitude 40.7 kNm, as shown on the free-
body diagram in Figure 6.24a. For the free-body of the span BC in Figure 6.24b, the moment at 
end B is a clockwise couple (MB)BC of magnitude 38.25 kNm.

Summing the moments about B in Figure 6.24b:

 −(VC × 8) + 38.25 = 0   ∴ VC = 4.78 kN

Figure 6.24  Free-body diagrams for Worked Example 6.10. (a) Free-body diagram of whole beam. 
(b) Free-body diagram of span BC.
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6.5.7  Frames without sidesway

The approach included in the previous section for the analysis of continuous beams 
can be applied to frames that do not exhibit sidesway movements. A frame that is non- 
symmetrical or one that is loaded non-symmetrically will sway to the side, unless it is physi-
cally pre vented from doing so, as is the case for the example in Figure 6.26a owing to the 

Summing the moments about A in Figure 6.24a:

 −(VB × 10) − (4.78 × 18) − 40.72 = 0   ∴ VB = −12.68 kN

Summing the vertical forces:

 VA − 12.68 + 4.78 = 0   ∴ VA = 7.90 kN

The bending moment and shear force diagrams are readily determined from statics and are 
shown in Figure 6.25.

Figure 6.25  Reactions, shear force and bending moment diagrams for Worked Example 6.10.

Figure 6.26  Frames without sidesway.
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presence  of the roller support at C. Any frame with loads and boundary conditions that are 
symmetrical, such as the frame in Figure 6.26b, will also not sway. This assumes that all 
members are inextensible; otherwise, the shortening or elongation of members could induce 
a small degree of sway. This assumption is usually acceptable as, in common structures, the 
flexural deformations are those governing the displaced shape, as the axial deformations are 
much smaller and have only a marginal effect on the calculated displacements.

WORKED EXAMPLE 6.11

For the frame shown in Figure 6.27, calculate the support reactions caused by the applied loads 
and draw the axial force, shear force and bending moment diagrams. Assume EI is constant 
throughout.

The analysis of the frame is carried out assuming that no sidesway can occur because of the 
restraining action provided by the roller support.

Member AB: As the member is not subjected to external loads, the fixed-end moments are 
zero. With θA = 0, the slope-deflection equations for member AB are (Equations 6.17):

 ( ) ( ) ( . )M
EI
L L

EI
EIA AB A B B B= + −





 = =4 2

6
5

2 0 4θ θ θ θ∆
 (1)

 ( ) ( ) ( . )M
EI
L L

EI
EIB AB A B B B= + −





 = =2 4

6
5

4 0 8θ θ θ θ
∆

 (2)

Member BC: From Appendix B, the fixed-end moments are:

 MFE.B kNm= − − × × − − × × = +100 3 6
9

60 6 3
9

173 3
2

2

2

2
.

 MFE.C kNm= − × × + − × × = −100 3 6
9

60 6 3
9

146 6
2

2

2

2
.

Figure 6.27  Frame for Worked Example 6.11.
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and the slope-deflection equations are:

 
( ) ( )M

EI
L L

M
EI

B BC B C FE.B B C= + −




 + = + +4 2

6
9

4 2θ θ θ θ∆
1173 3

0 444 0 222 173 3

.

( . . ) .= + +EI θ θB C

 (3)

 
( ) ( )M

EI
L L

M
EI

C BC B C FE.C B C= + −




 + = + −2 4

6
9

2 4θ θ θ θ∆
1146 6

0 222 0 444 146 6

.

( . . ) .= + −EI θ θB C

 (4)

Member CD: The slope-deflection equation for this member pinned at D is:

 ( ) ( ) .*M
EI
L L

M
EI

EIC CD C FE .C C C= −




 + = =3

3
5

3 0 6θ θ θ∆
 (5)

Equilibrium at corner C: For moment equilibrium at corner C:

 (MC)BC + (MC)CD = 0 and therefore:

 EI EI( . . ) . ( . )0 222 0 444 146 6 0 6 0θ θ θB C C+ − + =

 EI( . . ) .0 222 1 044 146 6 0θ θB C+ − =  (6)

Equilibrium at corner B: For moment equilibrium at corner B:

 (MB)AB + (MB)BC = 0 and therefore:

 EI EI( . ) ( . . ) .0 8 0 444 0 222 173 3 0θ θ θB B C+ + + =

 EI( . . ) .1 244 0 222 173 3 0θ θB C+ + =  (7)

Solving Equations 6 and 7 simultaneously, we get:

 
θB = −170 8.

EI
 and θC = 176 8.

EI

which substituted into Equations 1 through 5 gives:

 (MA)AB = EI(0.4θB) = −68.3 kNm

 (MB)AB = EI(0.8θB) = −136.7 kNm
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 ( ) ( . . ) . .M EIB BC B C kNm= + + = +0 444 0 222 173 3 136 7θ θ

 ( ) ( . . ) . .M EIC BC B C kNm= + − = −0 222 0 444 146 6 106 1θ θ

 (MC)CD = 0.6EIθC = +106.1 kNm

Equilibrium: The moment reaction at A is a negative (clockwise) couple (MA)AB of magnitude 
68.3 kNm, as shown on the free-body diagram in Figure 6.28a, together with the other five 
force reactions, HA, VA, HC, HD and VD. Free-body diagrams of AB, BCD and CD are shown in 
Figure 6.28b, c and d, respectively, and are used to calculate the unknown reactions.

Summing the moments about C in Figure 6.28d:

 (HD × 5) − 106.1 = 0 ∴ HD = +21.21 kN (i.e. ←)

Summing the moments about B in Figure 6.28b:

 68.3 + 136.6 − (HA × 5) = 0 ∴ HA = 41.00 kN (i.e. →)

Summing the horizontal forces on Figure 6.28a:

 41.00 − 21.21 − HC = 0 ∴ HC = 19.79 kN (i.e. ←)

Figure 6.28  Free-body diagrams for Worked Example 6.11.
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6.5.8  Frames with sidesway

We saw in the previous section that an unbraced frame will sway to the side (see Figure 
6.30) unless it is symmetrical, in terms of its geometry, support conditions and loading. 
Consider the displaced shape of the frame shown in Figure 6.30. In the analysis of such 

Summing the moments about B in Figure 6.28c:

 100 × 3 + 60 × 6 + (21.21 × 5) − 136.7 − (VD × 9) = 0 ∴ VD = +69.93 kN (i.e. ↑)

Summing the vertical forces on Figure 6.28a:

 VA + 69.93 − 100 − 60 = 0 ∴ VA = 90.07 kN (i.e. ↑)

The above calculations can now be verified by checking moment equilibrium about the support 
at D in Figure 6.28a:

 
68 3 90 07 9 100 6 60 3 19 79 5

68 3 81

. ( . ) ( ) ( ) ( . )

.

+ × − × − × − ×
= + 00 6 600 180 98 9 0. .− − − = ∴OK

The axial force, shear force and bending moment diagrams are readily determined from statics 
and are shown in Figure 6.29.

Figure 6.29  Distributions of internal actions for Worked Example 6.11. (a) Axial force diagram (kNm). 
(b) Shear force diagram (kNm). (c) Bending moment diagram (kNm).

Figure 6.30  Frames with sidesway. (a) Non-symmetrical frame with sidesway. (b) Sidesway caused by non-
symmetrical loading.
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frames, the slope-deflection equations for the columns must include the sidesway Δ, as 
demonstrated in the following worked example. For such frames, the corners of the frame 
at B and C are assumed to remain at right angles after deformation, i.e. (θB)AB = (θB)BC 
and (θC)BC = (θC)CD.

WORKED EXAMPLE 6.12

For the frame shown in Figure 6.31, calculate the support reactions caused by the applied loads 
and draw the axial force, shear force and bending moment diagrams.

The deflected shape of the frame is shown in Figure 6.32, with sidesway occurring because the 
applied loading is non-symmetric. Both columns AB and CD suffer the same transverse displace-
ment Δ at the top, as shown, and with the axis of both columns rotating in a clockwise sense, 
Δ/L is negative for both columns.

Figure 6.31  Frame for Worked Example 6.12.

Figure 6.32  Sidesway of the frame for Worked Example 6.12.
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Member AB: As this member is not subjected to external loads, the fixed-end moments are 
zero. With θA = 0, the slope-deflection equations for member AB are (Equations 6.17):

 ( ) ( .M
EI
L L

EI
EIA AB B B= −





 = −





 =2

6
5

2
6
5

0 4θ θ∆ ∆ θθB − 0 24. )∆  (1)

 ( ) ( .M
EI
L L

EI
EIB AB B B= −





 = −





 =4

6
5

4
6
5

0 8θ θ∆ ∆ θθB − 0 24. )∆  (2)

Member BC: From Appendix B, the fixed-end moments are:

 MFE.B kNm= − − × × − − × × = +100 3 6
9

60 6 3
9

173 3
2

2

2

2
.

 MFE.C kNm= + − × × + − × × = −100 3 6
9

60 6 3
9

146 6
2

2

2

2
.

and, for member BC, Δ = 0. The slope-deflection equations are:

 
( ) ( )M

EI
L L

M
EI

B BC B C FE.B B C= + −




 + = + +4 2

6
9

4 2θ θ θ θ∆
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0 444 0 222 173 3
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0 222 0 444 146 6
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 (4)

Member CD: As the member is not subjected to external loads, the fixed-end moments are 
zero. With θD = 0, the slope-deflection equations for member CD are:

 ( ) ( .M
EI
L L

EI
EIC CD C C= −





 = −





 =4

6
5

4
6
5

0 8θ θ
∆ ∆ θθC − 0 24. )∆  (5)

 ( ) ( .M
EI
L L

EI
EID CD C C= −





 = −





 =2

6
5

2
6
5

0 4θ θ∆ ∆ θθC − 0 24. )∆  (6)

Equations 1 through 6 contain nine unknowns. We get two more equations by considering 
moment equilibrium of corners B and C:

 (MB)AB + (MB)BC = 0 (7)

 (MC)BC + (MC)CD = 0 (8)
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and the ninth equation can be obtained by considering horizontal equilibrium of the frame. 
Figure 6.33a shows free-body diagrams of column AB. By considering moment equilibrium 
about B, we can express the reaction HA in terms of the end moments (MA)AB and (MB)AB:

 ( ) ( ) ( )
( ) ( )

H M M H
M M

A A AB B AB A
A AB B AB

5
× + + = ∴ = − +

5 0

Similarly, moment equilibrium about C on a free-body of CD gives (Figure 6.33b):

 − × + + = ∴ = +
( ) ( ) ( )

( ) ( )
H M M H

M M
D D CD C CD D

D CD C CD

5
5 0

The horizontal force equilibrium equation for the frame is:

 50 0 50 0+ − = ∴ − + − + =H H
M M M M

A D
A AB B AB D DC C DC

5 5
( ) ( ) ( ) ( )

 (9)

By substituting Equations 2 and 3 into Equation 7, we get:

 1 244 0 222 0 24 173 3. . . .θ θB C /+ − = −∆ EI  (10)

and substituting Equations 4 and 5 into Equation 8, we get:

 0 222 1 244 0 24 146 6. . . .θ θB C /+ − = +∆ EI  (11)

Finally, substituting Equations 1, 2, 5 and 6 into Equation 9 gives:

 −0.24θB − 0.24θC + 0.192Δ = −50/EI (12)

Equations 10, 11 and 12 represent three simultaneous equations in three unknowns (θB, θC and Δ). 
Solving, we get:

 θB = −244.0/EI; θC = +69.0/EI; and Δ = −479.2/EI

Figure 6.33  Free-body diagrams of segments AB and CD.
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and with these values, Equations 1 through 6 give:

 (MA)AB = +17.39 kNm; (MB)AB = −80.20 kNm; (MB)BC = +80.23 kNm;

 (MC)BC = −170.2 kNm; (MC)CD = +170.2 kNm; (MD)CD = +142.6 kNm

Equilibrium: The free-body diagram in Figure 6.34a shows the moment reactions at A and D 
((MA)AB and (MD)DC, respectively), together with the other four force reactions, HA, VA, HD and 
VD. Free-body diagrams of columns AB and CD are shown in Figures 6.34b and c, respectively.

Summing the moments about C in Figure 6.34c:

 (HD × 5) − 170.2 − 142.6 = 0 ∴ HD = +62.56 kN (i.e. ←)

Summing the moments about B in Figure 6.34b:

 80.2 − 17.39 − (HA × 5) = 0 ∴ HA = 12.56 kN (i.e. →)

Summing the moments about D in Figure 6.34a:

 (VA × 9) − 17.39 − 142.6 + (50 × 5) − (100 × 6) − (60 × 3) = 0     ∴ VA = 76.67 kN (i.e. ↑)

Summing the moments about A in Figure 6.34a:

 −(VD × 9) − 17.39 − 142.6 + (50 × 5) + (100 × 3) + (60 × 6) = 0   ∴ VD = 83.33 kN (i.e. ↑)

The axial force, shear force and bending moment diagrams are readily determined from statics 
and are shown in Figure 6.35.

Figure 6.34  Free-body diagrams for Worked Example 6.12.
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PROBLEMS

 6.1 If the flexural rigidity EI of each of the propped cantilevers shown is constant, use 
the moment-area method to determine (i) the reactions at A and B, (ii) the deflection 
at the mid-span and (iii) the rotation at support A of each beam in terms of the load 
(w or F), the span L and the flexural rigidity EI.

Figure 6.35  Distributions of internal actions for Worked Example 6.12. (a) Axial force diagram 
(kN). (b) Shear force diagram (kN). (c) Bending moment diagram (kNm).
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 6.2 If the flexural rigidity EI of each of the fixed-ended beams shown is constant, use 
the moment-area method to determine (i) the reactions at A and B and (ii) the deflec-
tion at the mid-span of each beam in terms of the load (w or F), the span L and the 
flexural rigidity EI.

 6.3 If EI is constant throughout the beam illustrated below, determine (i) the reactions 
at A and B induced by the couple MA applied at the support A and (ii) the rotation θA 
at support A. Use the moment-area method.

 6.4 For the beams of Problem 6.1, determine the deflection at mid-span using double 
integration. Assume EI is constant throughout.

 6.5 For each of the beams shown in Problem 6.1, determine the reactions at supports A 
and B, the deflection at mid-span and the rotation at the roller support at A using the 
conjugate beam method. Assume EI is constant throughout.

 6.6 For each of the fixed-ended beams shown in Problem 6.2, determine the reactions at 
supports A and B, and the deflection at mid-span using the conjugate beam method. 
Assume EI is constant throughout.

 6.7 Solve Problem 6.3 using the conjugate beam method.

 6.8 For the beams shown below, determine the support reactions and plot the shear 
forces and bending moment diagrams. Assume EI = 25,000 kNm2 throughout and 
use the slope-deflection equations.
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 6.9 The beam shown below is identical to that analysed in Problem 6.8, except that the 
loads on both spans are applied at the same time as the support at B settles by 80 mm. 
Determine the support reactions and plot the shear force and bending moment dia-
grams. As in the previous problem, assume EI = 25,000 kNm2 throughout and use 
the slope-deflection equations. Verify that the results obtained here could have been 
obtained from Problem 6.8 by superposition.

 6.10 For the beam shown, determine the reactions at A, B and C using the slope-deflection 
equations. Assume EI is constant.

 6.11 For the beam shown, determine the reactions at A, B and C using the conjugate 
beam method and draw the shear force and bending moment diagrams. Assume EI 
is constant.

 6.12 For the beam of Problem 6.11, determine the reactions at A, B and C using the slope-
deflection equations. Assume EI is constant.

 6.13 For the beam shown, calculate the reactions at supports A and B using the moment-area 
method. Also determine the vertical deflection at C. Assume EI = 15,000 kNm2.

 6.14 For the beam of Problem 6.13, recalculate the reactions at supports A and B using 
the slope-deflection equations.

 6.15 For the beam of Problem 6.13, calculate the change in reactions at A and B, if the 
support at B settles by 80 mm (downwards). Assume EI = 15,000 kNm2.
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 6.16 For the beam shown, calculate the reactions at supports A and B using the slope-
deflection equations. Assume EI is constant throughout.

 6.17 For the beam of Problem 6.16, calculate the change in reactions at each support, if 
the support at C settles by 50 mm (downwards). Use the slope-deflection equations. 
Assume EI = 30,000 kNm2 throughout.

 6.18 The wall of a water tank is fixed at the base and supported as shown below. Determine 
the reactions at the supports per 1 m width of the wall under the linearly varying 
water pressure. Use the slope-deflection equations. Assume EI is constant.

 6.19 For the frame shown, determine the reactions at each support and the bending 
moment at B using the slope-deflection equations. Assume EI is constant.

 6.20 If the supports at A and D of the frame of Problem 6.19 are fixed (instead of pinned), 
determine the reactions at each support using the slope-deflection equations. Assume 
EI is constant.
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 6.21 If EI is constant throughout the frame illustrated below, determine the reactions at A 
and D using the slope-deflection equations and draw the bending moment diagram.

 6.22 For the frame shown, the 60 kN force is applied at the mid-point of BC. Find the 
reactions and draw the bending moment diagram. Use the slope-deflection equa-
tions. Assume EI is constant.

 6.23 For the frame of Problem 6.22, if the 60 kN force on member BC is moved 2 m to the 
left of the position shown (i.e. 2 m from B), find the reactions and draw the bending 
moment diagram. Use the slope-deflection equations. Assume EI is constant.

 6.24 For the frame shown, a 50 kN horizontal force is applied at B and a 60 kN vertical 
force is applied at the mid-point of BC. Find the reactions and draw the bending 
moment diagram. Use the slope-deflection equations. Assume EI is constant.
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 6.25 Reanalyse the frame of Problem 6.24, if the supports at A and D are pinned rather 
than fixed. Use the slope-deflection equations.

 6.26 For the frame shown, find the reactions and draw the bending moment diagram. 
Assume EI is constant. Use the slope-deflection equations.

 6.27 If the frame of Problem 6.26 has pinned supports (instead of fixed), find the reac-
tions and draw the bending moment diagram. Assume EI is constant. Use the slope-
deflection equations.

 6.28 If EI is constant throughout the frame illustrated below, determine the reactions at 
A and D and draw the bending moment diagram. Use the slope-deflection equations.

 6.29 If the frame of Problem 6.28 has fixed supports (instead of pinned), find the reac-
tions and draw the bending moment diagram. Assume EI is constant. Use the slope-
deflection equations.
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Chapter 7

Work–energy methods

7.1  STRAIN ENERGY

When a structural member is loaded, it deforms and, as it deforms, work is done. Figure 7.1a 
shows the load-deformation response of a bar of length L in axial tension. The shape of the 
curve depends on the size of the bar and the material from which it is made. The work done 
as an axial load PB is gradually applied to the bar is the area under the curve from P = 0 to 
P = PB shown as the shaded area OABC in Figure 7.1a. If the bar is subsequently unloaded, 
some of the energy associated with this work may be recovered. The unloading curve is 
represented by the dashed line from B to D. For the materials commonly used in structures, 
the unloading path BD is a straight line approximately parallel to the tangent to the curve at 
the origin (i.e. parallel to the line OA in Figure 7.1a). The area of the triangular region CBD 
represents the energy recovered during unloading and is called elastic strain energy Ue. The 
energy that is not recoverable during unloading has been used to cause inelastic deformation 
of the material (inelastic strain energy).

For many common structural materials, as the bar is loaded and the tensile force P 
increases, the curve in Figure 7.1a is initially linear (from O to A). We have seen that in this 
linear range, the elongation of the bar e is equal to PL/EA, where L is the bar length, A is 
the cross-sectional area of the bar and E is the elastic modulus of the bar material. If the bar 
is loaded within the linear range and then unloaded, for most materials, the elongation will 
be recovered (i.e. the unloading path follows the loading path and after unloading e = 0). 
This behaviour is said to be elastic.

In structural analysis, it is common to assume that the response of a structural 
member is linear–elastic, i.e. the load on the member is proportional to the deformation 
caused by it. This assumption is valid if the maximum applied load is less than the load 
corresponding to the proportional limit (PA in Figure 7.1a). In this proportional load 
range, all the work associated with loading from P = 0 to P = P1 (<PA) as the member 
deforms from e = 0 to e = e1 is stored as elastic strain energy and is given by:

 U
Pe

e = 1 1

2
 (7.1)

The elastic strain energy is shown as the shaded area in Figure 7.1b, which is the load-
deformation response of a linear–elastic member. Further considerations on materials not 
behaving in a linear–elastic manner are provided in Chapter 15, but in this chapter, we will 
only be concerned with linear–elastic material behaviour.
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7.1.1  Axially loaded members

In Equations 4.26 and 4.27, the flexibility coefficient, f = L/EA, and the stiffness coefficient, 
k = EA/L, relating axial force P and elongation e of an axially loaded bar of length L were 
introduced. If a tension member is loaded with an axial force P1 and it suffers an extension 
of e1 (as shown in Figure 7.1b): e1 = fP1 and P1 = ke1. The elastic strain energy (Equation 7.1) 
can therefore be expressed as:

 U
Pe fP ke

e = = =1 1 1
2

1
2

2 2 2
 (7.2)

The incremental elastic strain energy dUe in an infinitesimal length of bar dx subjected to 
an axial force N is given by:

 d
d

eU
N x

EA
=

2

2
 (7.3)

and, if the internal axial force N varies along the bar, the elastic strain energy stored in the 
bar is calculated as:

 U
N x

EA

L

e
d= ∫

2

0
2

 (7.4)

7.1.2  Beams in bending

In Section 5.3.2, we examined the deformation of a segment of a straight beam in bending 
(see Figure 5.4) and this is revisited here. Consider the length of beam shown in Figure 7.2a. 
The cross-section shown in Figure 7.2b is symmetric about the vertical y-axis and is sub-
jected to a positive bending moment M acting about the horizontal z-axis that passes through 
its centroid. The small length of beam shown in Figure 7.2c is bounded by cross-sections A 
and B at a distance dx apart. In a straight beam, cross-sections A and B are initially parallel 

Figure 7.1 Load versus deformation.
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before bending, but after bending, the cross-section at B rotates with respect to the cross-
section at A by an angle dθ, as shown.

A positive bending moment M produces stresses that are compressive above the z-axis and 
tensile below it. Rotation of cross-section B with respect to A by dθ produces strains that 
vary linearly with y (as indicated in Equation 5.17 and reproduced here as Equation 7.5).

 ε θ κ= − = −y
x

y
d
d

 (7.5)

In the linear–elastic range, the moment M is proportional to the deformation (rotation) 
dθ and the elastic strain energy done by the moment is the area under the moment versus 
rotation graph. In this case, the incremental elastic strain energy dUe can be calculated as:

 d
d

eU
M= θ

2
 (7.6)

In Equation 5.24a, we saw that for a linear–elastic member, the moment M and curvature 
(dθ/dx) are related by the flexural rigidity EI as follows:

 M EI EI
x

= =κ θd
d

where I is the second moment of area about the centroidal axis of bending. The increment of 
elastic strain energy stored in the thin slice of beam of length dx can therefore be expressed 
as the area under the linear moment–curvature graph up to a moment M:

 d d
d

deU
M

x
M x

EI
EI

x= = =κ κ
2 2 2

2
2  (7.7)

Recalling that the curvature may be expressed as the second derivative of the deflection v, 
i.e. κ = θ′ = v″, Equation 7.7 can be rewritten as (Equation 5.14):

 d
d

d
deU

EI v

x
x=





2

2

2

2

Figure 7.2  Typical deformations caused by bending. (a) Beam length in bending. (b) Cross-section. (c) Slice 
elevation.
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The elastic strain energy caused by bending in a member of length L can be calculated 
using:

 U
M
EI

x
L

e d= ∫
2

0
2

 or U
EI v

x
x

L

e
d

d
d=






∫ 2

2

2

2

0

 (7.8a,b)

The principle of conservation of energy requires that the energy produced by the internal 
actions is equal to the energy associated with the external actions as the member deforms. 
By equating the internal and external energy, we can write a relationship that can be used to 
calculate, for example, the unknown displacement at a location of interest. This procedure 
is outlined in Worked Example 7.1.

WORKED EXAMPLE 7.1

Calculate the elastic strain energy caused by bending in the beam shown in Figure 7.3 and derive 
the expression for mid-span deflection caused by the central point load. Ignore the self-weight 
of the beam and assume the flexural rigidity EI is constant throughout.

The bending moment diagram is discontinuous at C, but symmetrical about C, so that the elastic 
strain energy in segment AC is the same as that in segment CB. The moment in AC at any dis-
tance x from A is M = Px/2 and, from Equation 7.8a, the elastic strain energy in the whole beam is:

 ( ) ( ) ( )
/ /

U U U
M
EI

x
P x

E

L L

e AB e AC e CB d= + = ∫ = ∫2
2

2
80

2 2

0

2 2 2

II
x

P L
EI

d =
2 3

96

The external work done by the applied load P as the beam displaces by uC in the direction of P 
is 1/2 PuC and equating the external work done with the elastic strain energy gives:

 uC = PL
EI

3

48

Figure 7.3 Beam for Worked Example 7.1.
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7.2  THE WORK THEOREM

From basic physics, we know that when a force P is applied to an object and the object 
moves by a distance δ, the work done is Pδ. However, in structural engineering, when a force 
causes a displacement in the direction of the force, the force is rarely constant during that 
displacement. In Figure 7.1, to cause the displacement e1, the force P was increased from 0 to 
P1 and, for the internal stresses to remain in equilibrium with the external load, the strains, 
and hence elongation of the bar, must also increase at the same rate as P. In this case, each 
infinitesimal increment of force is associated with a different level of elongation and the full 
force P1 undergoes an average displacement e1/2.

Consider a structure being acted on by a load P. If we define work as the product of 
a force and its displacement (sometimes called the work product), the external work (or 
the external work product) associated with the structure is the product of the load and 
its displacement: Wext = Pδ. The internal work Wint is the work done in deforming the 
structure. In the case of a pin-jointed truss, the internal work is the sum of the product 
of axial force N and elongation e for each of the n members of the truss and can be 
written as:

 W N e
i

n

i iint = ∑
=1

 (7.9)

In the case of a beam, the internal work caused by bending is the sum of the product of 
moment and curvature on each infinitesimal length dx of the beam. That is:

 W M x x M
v

x
x M x

L L L

int ( / )= =






=∫ ∫ ∫d d d
d
d

d d
2

θ κ
0

2

0 0

 (7.10)

The work theorem states:
If a structure is in equilibrium (i.e. the external forces acting on the structure are in 
equilibrium with the internal actions), then for any geometrically consistent displace-
ment field, the external work is equal to the internal work.

A geometrically consistent displacement field is one where the displacements of the nodes 
and the supports are consistent with the deformations and the geometry of the individual 
members in the structure. The work theorem applies even when the geometrically consistent 
displacement field is not produced by the forces applied to the structure.

Consider the simple truss shown in Figure 7.4a. The free-body diagram in Figure 7.4b shows 
the applied load, the reactions and the axial force in each bar and represents the equilibrium 
condition. Figures 7.4c through e show three different consistent displacement fields (none of 
which are likely to be the displacements caused by the applied load). For each displacement field, 
the extensions of each bar may be calculated from geometry and are given in the figure. Because 
the displacements are very small compared to the truss dimensions, the bar deformations may 
be calculated by assuming the geometry of small displacements, i.e. the direction of each bar is 
the same before and after the displacement.
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For displacement field 1 (Figure 7.4c), only the 30 kN applied force contributes to the 
external work, as the displacement of each reaction component is zero. The external work 
is therefore:

 Wext = 30 × 2 = 60 kNmm

and the internal work is obtained from Equation 7.9 as:

 W N e
i

i iint ( . )= ∑ = − × − + × + × =
=1

3

50 1 2 40 0 30 0 60 kNmm

For displacement field 2 (Figure 7.4d), once again only the 30 kN applied force contributes 
to the external work. The external work and the internal work are therefore:

 Wext = 30 × 2 = 60 kNmm and W N e
i

i iint = ∑ = − × + × + × =
=1

3

50 0 40 0 30 2 60 kNmm

For displacement field 3 (Figure 7.4e), both the 30 kN applied force and the vertical reac-
tion at A contribute to the external work. The external work and the internal work are 
therefore:

 Wext = 30 × 2 − 40 × 2 = −20 kNmm and

Figure 7.4 Examples of consistent displacement fields.
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 W N e
i

i iint .= ∑ = − × + × + × = −
=1

3

50 0 4 40 0 30 0 20 kNmm

For each consistent displacement field the work theorem is satisfied.

WORKED EXAMPLE 7.2

The cantilever beam, analysed as beam 1 in Worked Example 5.1 and shown in Figure 5.7a, is 
re-examined here to demonstrate the validity of the work theorem. The beam carries a linearly 
varying distributed load, as shown in Figure 7.5, and has a uniform cross-section with EI = 10,000 
kNm2. Show that the work theorem is satisfied by considering the equilibrium force field and 
the displacement field produced by it.

As determined in Worked Example 5.1, at any cross-section x (in m) from A, the load intensity 
and the bending moment are given by (Equations 5.27 and 5.29, respectively)

 w(x) = −6x and M(x) = −x3

The curvature and slope were determined in Worked Example 5.1 as:

 κ(x) = M(x)/EI = −10–4 x3 and θ = − + = − × +−x
EI EI

x
4

4 4

4
81
4

0 25 10 0 002025. .

and the deflection was determined as:

 v
x
EI EI

x
EI

x x= − + − = − × + −−
5

4 5

20
81
4

243
5

0 05 10 0 002025. . 00 00486.

The external work is the product of the load and deflection given by:
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3
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Figure 7.5 Beam for Worked Example 7.2.
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7.3  VIRTUAL WORK

In the preceding section, we saw that the work theorem is valid even when the force field 
and the consistent displacement field are unrelated, i.e. even if one is not caused by the other. 
This fact is fundamental to the concept of virtual work, which is one of the most powerful 
tools available in structural analysis. Virtual work means imaginary work and the concept 
has two different forms:

 i. Virtual forces – where the real displacement field is combined with a virtual (or 
imaginary) force field

 ii. Virtual displacements – where the force field is real and the displacements are virtual

In the former, the virtual forces are introduced so that information can be gathered about 
the real displacements, while in the latter, virtual displacements are selected in order to 
obtain information about the real forces. In both approaches, the virtual external work 
( )Wext  equals the virtual internal work ( )intW

 W Wext = int (7.11)

The bar over the symbols in Equation 7.11 indicates that the external and internal work 
are virtual.

7.4  VIRTUAL WORK APPLIED TO TRUSSES

7.4.1  Principle of virtual forces

Virtual forces are commonly used to determine the joint displacements resulting from 
known member deformations. In Section 4.8, we calculated the displacements of the nodes 
of a simple truss relying only on geometry and the known member deformations. While this 
approach is suitable for simple trusses, its use for the analysis of large trusses with many 
members and joints is tedious. By introducing an appropriate virtual force field and applying 
the principle of virtual forces, the tedious problem of geometry is transformed into a much 
more tractable problem of statics. The process is illustrated in Worked Example 7.3, where 
the simple truss previously analysed in Section 4.8 is reconsidered.

The internal work is obtained from Equation 7.10:

 
W M x x x x x
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= . kNm

As expected, the internal work Wint equals the external work Wext and the work theorem is 
satisfied.
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WORKED EXAMPLE 7.3

Calculate the vertical and horizontal displacements at node C of the truss shown in Figure 7.6. 
The bar forces, previously shown in Figure 4.25, are also given in Figure 7.6, along with the 
resulting bar extensions (previously calculated in Section 4.8) and the reactions.

In the method of virtual forces, only one joint displacement can be determined for each virtual 
force field.

(i) Determine the vertical displacement vC at C
A vertical virtual force of unit magnitude is introduced at node C. The corresponding 
virtual bar forces Ni  and reactions are shown in Figure 7.7a. The internal virtual work is 
the sum of the virtual work in each bar (i.e. the virtual force times the real extension in 
each bar):

Figure 7.6 Truss for Worked Example 7.3.

Figure 7.7 Virtual forces N (kN).
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W N e N e N e N e N eint

. (

= + + + +
= × −

AD AD AB AB BD BD BC BC CD CD

1 25 00 417 0 75 0 15 0 0 0 75 0 15 1 25 1 25. ) . ( . ) . ( . ) . .+ × − + × + × − − ×
== −2 31. kNmm

and the external work is the product of the unit virtual force and the real vertical displacement:

 W vext C= ×1

Equating the internal and external virtual work gives vC = −2.31 mm (i.e. downwards).

(ii) Determine horizontal displacement uC at C
A horizontal virtual force of unit magnitude is introduced at node C. The corresponding virtual 
bar forces Ni  and reactions are shown in Figure 7.7b. The internal virtual work is

 
W N e N e N e N e N eint

( .

= + + + +
= × −

AD AD AB AB BD BD BC BC CD CD

0 0 4117 1 0 0 15 0 0 1 0 0 15 0 1 25 0 3) . ( . ) . ( . ) . .+ × − + × + × − − × = − kNmmm

and the external work is:

 W uext C= ×1

Equating the internal and external virtual work gives uC = −0.3 mm (i.e. to the left).
As expected, the joint displacements uC and vC calculated here are the same as those deter-
mined from geometry in Section 4.8.

WORKED EXAMPLE 7.4

The members AB, BC, CD and DE of the truss shown in Figure 7.8 suffer a temperature rise, 
while members AF and FE are cooled down. If the temperature-induced changes in length of 
each member are as shown, calculate the horizontal displacement at support A.

Figure 7.8 Truss for Worked Example 7.4.
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WORKED EXAMPLE 7.5

The steel truss shown in Figure 7.10a is fabricated from members all with a cross- sectional 
area of A = 4000 mm2. Assuming all members are stressed in the linear–elastic range, calculate 
the relative movement of C and E, caused by the applied loads at B, C, D, E and F. The elastic 
modulus for steel is E = 200,000 MPa. The reactions and member forces caused by the applied 
loads are shown in Figure 7.10b.

As each member is stressed in the linear–elastic range, the member extensions are determined 
from Equation 4.25 (i.e. e = NL/EA) and are given in Table 7.1.
To determine the relative horizontal displacement between joints C and E, introduce a pair of 
unit virtual forces, as shown in Figure 7.11. The virtual reactions and member forces caused by 
the pair of virtual loads are also shown in Figure 7.11. The internal virtual work is the sum of 
the virtual force in each bar multiplied by the extension of the bar caused by the applied loads:

Wint ( . . ) ( . . ) [ . ( . )]= × + × + − × − +1 333 0 6 1 333 0 8 1 886 0 225 (( . ) [ . ( . )]

( . . ) ( .

0 0 6 1 667 1 25

1 667 0 625 0 0

× − + − × −
+ − × + × 33 1 886 3 375 1 333 0 4 1 333 0) [ . ( . )] [ . ( . )] [ . (+ − × − + × − + × − .. )]

.

3

8 76= + kNmm

A horizontal virtual force of unit magnitude is introduced at node A, as shown in Figure 7.9a, 
and the corresponding virtual bar forces Ni  and reactions are shown in Figure 7.9b. The internal 
virtual work is given by:

W N e N e N e N e N e N eint = + + + + + +AB AB BC BC CD CD DE DE EF EF AF AF NN e N e N eDF DF CF CF BF BF+ +
= × + × +( . . ) ( . . ) ( .0 625 1 5 0 5 1 2 0 3375 0 9 0 375 0 9 1 25 1 0 1 5 0× + × + − × − + − × −. ) ( . . ) [ . ( . )] [ . ( .88

0 0 0 625 0 0 375 0

4 66

)]

. .

.

+ × − × − ×
= + kNmm

and the external work is the product of the unit virtual force and the real displacement at A: 
W uext A= ×1 .
Equating the internal and external virtual work gives uA = +4.66 mm (i.e. to the right).

Figure 7.9 Virtual forces N (kN).
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7.4.2  Principle of virtual displacements

The virtual displacement method is illustrated in Worked Example 7.6. It can be used to 
solve problems in statics. The method is useful for solving more advanced problems in struc-
tural analysis, but for simple problems, other methods are usually more convenient.

and the external work is the product of the unit virtual force times the relative horizontal dis-
placement between C and E: W uext CE= ×1 .
Equating the internal and external virtual work gives:

 uCE = +8.76 mm

(i.e. C and E move closer together, in the positive direction of the unit forces, by 8.76 mm).

Figure 7.11 Virtual forces N (kN).

Figure 7.10  Truss for Worked Example 7.5. (a) Truss layout with applied loads. (b) Applied loads, reac-
tion and member forces (kN).

Table 7.1 Bar extensions caused by applied loads

Member AB BC AD BD CD DE DF DG EF FG

Length 6000 8000 8485 6000 10,000 10,000 6000 8485 8000 6000
N (kN) +80 +80 –21.21 –80 –100 +50 +40 –318.2 –40 –40
e (mm) +0.6 +0.8 –0.225 –0.6 –1.25 +0.625 +0.3 –3.375 –0.4 –0.3
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7.4.3  Transfer coefficients

From the previous considerations on the principle of virtual work, there is clearly a close 
relationship between the geometry of the displacement field and the equilibrium of the cor-
responding force field. A convenient way to express this relationship is in terms of transfer 
coefficients. Consider the truss shown in Figure 7.13. Each joint is associated with two 
numbered displacement directions, also referred to as freedoms in Chapter 4.

If we apply a unit force to the truss at any joint in one of the numbered directions, that 
force will induce forces in each member of the truss. For example, let us consider the case 
where a unit force is applied at node F in direction 12. We will refer to the consequent axial 

WORKED EXAMPLE 7.6

For the truss shown in Figure 7.12a (and previously analysed in Worked Examples 7.3), deter-
mine the horizontal reaction at the support D using the method of virtual displacements.

To determine the unknown reaction at D, we must introduce a virtual displacement for the 
truss that will cause only that reaction to do work and no other.
If we rotate the truss about the support at A through an angle θ, as shown in Figure 7.12b, the 
virtual vertical displacement at C (in the direction of the applied load) is 3θ (upwards) and the 
virtual horizontal displacement at B (in the direction of the unknown reaction HD) is 2θ (to 
the left). Since no truss members undergo any change in length, the internal work is zero. The 
external work, therefore, must also be zero and is given by:

 W Hext D 0= − × + × =24 3 2θ θ

which can be solved to give HD = +36 kN (i.e. acting to the left in the direction of the virtual 
displacement at D).
Of course, the same result is readily obtained by taking moments about the support at A.

Figure 7.12 Virtual forces (kN).
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force induced in member HG, for example, as CHG,12. The axial force produced along bar 
HG caused by an applied load P12 at F in direction 12 is:

 NHG = CHG,12P12 (7.12)

where the coefficient CHG,12 is called a transfer coefficient because it transfers the force 
applied at a node in a particular direction into a particular member of the truss.

There is a corresponding relationship between the deformation of that same member 
and the resulting displacement at the joint in question. Consider again the truss shown 
in Figure 7.13 loaded with a single vertical force at joint F of magnitude P12. If member 
HG now suffers an elongation eHG (perhaps owing to a temperature rise of that member) 
with all other members remaining undeformed, the elongation eHG will result in a vertical 
displacement at joint F of u12. The resulting external work is Wext = P12u12 and the internal 
work is Wint = NHGeHG. By applying the principle of work and including Equation 7.12, 
we get:

 P12u12 = NHGeHG = CHG,12P12eHG

from which:

 u12 = CHG,12eHG (7.13)

Evidently, in addition to transferring forces from node direction 12 to the member HG, 
the transfer coefficient CHG,12 also transfers displacement from the member HG to the dis-
placement of node F in direction 12.

In summary, a unit force at node F in direction 12 causes a force in member HG of CHG,12 
and a unit deformation of member HG causes a displacement at node F in direction 12 of 
CHG,12.

7.5  VIRTUAL WORK APPLIED TO BEAMS AND FRAMES

For the purposes of calculating the internal work in the previous section, a truss was sub-
divided into its various members and the internal work in each member was summed to 
obtain the internal work in the truss. In the case of beams and frames, it is usual to deter-
mine the internal work in small elements of length dx and obtain the internal work in a 
member by integration. The internal work caused by bending in a beam or frame of length 
L is the integral of the product of moment and rotation as expressed in Equation 7.10.

Figure 7.13 Numbering of truss freedoms.
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7.5.1  Principle of virtual forces

Virtual forces are commonly used to determine the deformation at any point along a beam 
or frame resulting from a known distribution of curvatures. If the displacement of a beam 
or frame caused by bending is to be determined at a particular point A, it is convenient 
to apply a unit virtual force to the structure at the point A in the direction of the desired 
displacement. The external virtual work is the product of the unit virtual force and the 
actual displacement at A, while the internal work is the integral over the length of the beam 
of the virtual moment M x( ) and the actual curvature κ(x) and calculated as:

 W M x x x M x x M
v

x

L L

int ( ) ( ) ( / )= = =
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xx
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WORKED EXAMPLE 7.7

Using the method of virtual forces, determine the displacement uC at the mid-span of the uni-
formly loaded, simply-supported beam shown in Figure 7.14. The flexural rigidity EI is constant 
throughout and the total load on the beam is w1L. Determine also the rotation at support B (θB).

The bending moment M at any point x from support A is

 M = 0.5w1Lx − 0.5w1x2

and the curvature caused by the uniformly distributed load w1 (per unit length) is κ = M/EI.

(i) Calculate uC

If a unit virtual force is applied at the mid-span C as shown in Figure 7.15a, the virtual bending 
moment diagram is shown in Figure 7.15b and the virtual bending moment at x from A (when 
x ≤ L/2) is M x= 0 5. . Because of the discontinuity in the virtual bending moment a mid-span, the 
internal virtual work is calculated in each half span separately.

Figure 7.14 Beam for Worked Example 7.7.

Figure 7.15  Unit virtual force at C — reactions and virtual bending moments. (a) Unit virtual force at 
C and reactions. (b) Virtual bending moment diagram.
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In this case, both the virtual moment diagram and the actual curvature diagram are symmetrical 
about the mid-span and, therefore, the internal virtual work for the entire beam is twice the 
internal virtual work in the length of beam from A to C:
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The external virtual work is W uext C= ×1  and the work theorem gives:
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(ii) Calculate θB

To determine the rotation at support B, a unit virtual couple is applied at support B. The couple 
and the corresponding reactions are shown in Figure 7.16a and the virtual bending moment dia-
gram is shown in Figure 7.16b. The virtual bending moment at any point along the span at x from 
A is M x x L( ) /= . The internal virtual work for the span AB is:
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The external work is the product of the virtual couple at B and the rotation at B (θB). That is, 

Wext B= ×1 θ , and the work theorem gives:

 θB = w L
EI

1
3

24

Figure 7.16  Unit virtual couple at B — reactions and virtual bending moment. (a) Unit virtual couple 
at B and reactions. (b) Virtual bending moment diagram.
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The definite integral of Equation 7.14 involves the product of two functions of x (namely, 
the virtual moment M x( ) and the actual curvature κ(x)). In many practical problems, these 
two functions are usually quite simple (M x( ) is usually linearly varying, while κ(x) is often 
constant, linearly varying or parabolic) and the evaluation of the internal virtual work Wint  
is straightforward.

The integral M x x x( ) ( )κ d∫  over a length ℓ of a beam or frame can be visualised as the 

volume of an object of length ℓ, with a rectangular  varying cross-section. The plan view of 
the object is κ(x), while the elevation is M x( ). Figure 7.17 shows the object for the half-span 
AC of Worked Example 7.7, with the virtual moment varying linearly from A to C and the 
actual curvature varying parabolically from A to C. The volume of this object is the internal 
virtual work in the half-span (in this case, ℓ = L/2). In fact, over any length ℓ of a beam 
or frame, whenever the curvature diagram is constant, linear or parabolic, and when the 
virtual moment varies linearly, the internal virtual work can be calculated as follows:

 W M x x x M M Mint / /( ) ( ) ( )= = + +∫ κ κ κ κd
0

0 0 2 26
4



   



 (7.15)

where the subscripts 0, ℓ/2 and ℓ indicate the values of virtual moment and actual curvature 
at x = 0, x = ℓ/2 and x = ℓ, respectively.

WORKED EXAMPLE 7.8

The frame in Figure 7.18a was analysed in Worked Example 3.4 and the bending moment dia-
gram is reproduced in Figure 7.18b. Assuming the flexural rigidity is uniform with EI = 60 × 
1012 Nmm2, the curvature diagram is shown in Figure 7.18c. Using the method of virtual forces, 
determine the horizontal displacement at point D caused by bending.

The reactions caused by a horizontal unit virtual force acting to the right at D and the corre-
sponding virtual bending moment diagram are shown in Figures 7.19a and b, respectively.

Figure 7.17 Volume integral for half-span AC in Worked Example 7.7.
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The internal virtual work in each segment of the frame is calculated using Equation 7.15 as 
follows:

Segment AB: L = 6000 mm; M0 0= ; ML / .2 1 5= + kNm; ML = +3 kNm; κ0 = 0; κL/2 = −1.1 × 10−6 
mm–1; and κL = −2.2 × 10−6 mm−1. Therefore:

 
( ) . ( . ) (intW AB = × + × × × − × + × ×−6000

6
0 0 4 1 5 10 1 1 10 3 106 6 6 −− × 

= −

−2 2 10

13 200

6. )

, Nmm

Figure 7.19  Virtual actions for Worked Example 7.8. (a) Virtual force and virtual reactions. (b) Virtual 
bending moment diagram (kNm).

Figure 7.18  Frame for Worked Example 7.8. (a) Frame dimensions and loadings. (b) Bending moment 
diagram (kNm). (c) Curvature diagram, κ (mm−1).
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7.5.2  Principle of virtual displacements

When using the principle of virtual displacements, a virtual displacement field is com-
bined with a real force field to determine information about the force field. For example, 
unknown internal actions may be determined if the external loads are known. Alternatively, 
if the internal actions are known, the loads on a structure can be determined. For simple 
structures, it is often far simpler to obtain information about the force field using the 
principles of statics, but for more advanced analysis, the method of virtual displacements 
becomes useful.

In Worked Example 7.10, we made use of our knowledge of the bending moment 
diagram to identify the loading pattern on the beam and the magnitudes of the loads. If 
we did not identify the loading pattern in this way, or if the bending moment diagram 
was of a more general shape, the method of virtual displacements could still be used 
to identify the loads on the beam. By dividing the beam into n small segments, and 
postulating n virtual displacement fields such that only one small element underwent a 

Segment BD: L = 16,000 mm; M0 3= + kNm; ML/2 0= ; ML = −3 kNm; κ0 = −2.2 × 10−6 mm–1; 
κL/2 = 0; and κL = –4.2 × 10–6 mm–1. Therefore:

 
( )

,
( . )intW BD

6( 3 10= × × − × + × × × − ×−16 000
6

3 10 2 2 10 4 0 06 6 )) ( 4.2 10 )

Nmm

× − × 

= +

−6

16 000,

Segment DE: L = 6000 mm; M0 3= − kNm; ML / .2 1 5= − kNm; ML = 0 ; κ0 = −4.2 × 10−6 mm–1; 
κL/2 = −2.1 × 10−6 mm–1; and κL = 0. Therefore:

 
( ) ( ) ( . ) ( . )intW DE = − × × − × + × − ×−6000
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25 200
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Nmm

The total internal virtual work is therefore:

 W W W Wint int int int( ) ( ) ( ) ,= + + = +AB BD DE Nmm28 000

The external virtual work is the product of the 1 kN (1000 N) virtual force and the lateral 
deflection uD:

 W uext D= ×1000

and, from the work theorem W Wext = int, we can calculate uD to be:

 ∴ uD = +28.0 mm

(in the same direction as the virtual load).
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WORKED EXAMPLE 7.9

Using the method of virtual displacements, determine the bending moment at the point D mid-
way between the supports of the beam shown in Figure 7.20.

The virtual displacement should be such as to cause internal deformation only at the point 
under consideration (i.e. at point D). Introduce the virtual displacement shown in Figure 7.21, 
where the member is kinked at point D and the length of beam DC is rotated through an angle 
θ with respect to AD, as shown. As lengths DC and AD remain straight and undeformed, inter-
nal virtual work only occurs at point D and is equal to W Mint = + Dθ .

The 8 kNm uniformly distributed load on 8 m length of DC undergoes external vir tual work, 
with the resultant downward load on DC (acting 4 m from D) moving through an upward virtual 
displacement of 4θ . The upward reaction at B also causes external virtual work moving through 
an upward virtual displacement of 5θ . The total external work is therefore:

 Wext = × − × × =67 6 5 8 8 4 82. θ θ θ

Equating internal and external work gives:

 MD = 82 kNm

Figure 7.21 Virtual displacement for Worked Example 7.9.

Figure 7.20 Beam for Worked Example 7.9.
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WORKED EXAMPLE 7.10

The bending moment diagram for a straight beam ABCD is shown in Figure 7.22. Using the 
method of virtual displacements, determine the loads on the beam, including the reactions.

We saw in Section 3.5 that the bending moment diagram in a straight beam is linear between 
points of load application and the bending moment diagram changes direction (kinks) at points 
where concentrated transverse loads are applied to the beam. If we make use of these observa-
tions, it is clear that the beam is loaded with concentrated loads at A, B, C and D, as shown in 
Figure 7.23a. To determine the four unknown loads PA, PB, PC and PD, the four virtual displace-
ment fields shown in Figures 7.23b through e are employed. For each displacement field, only 
one of the external loads produces external virtual work.

Figure 7.22 Bending moment diagram for the beam of Worked Example 7.10.

Figure 7.23  Virtual displacements for Worked Example 7.10. (a) Loads on beam ABCD. (b) Virtual 
displacement field 1. (c) Virtual displacement field 2. (d) Virtual displacement field 3. 
(e) Virtual  displace ment field 4.
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virtual displacement in each displacement field, the load on each small element could 
then be determined.

7.6  CASTIGLIANO’S THEOREM

If a structure behaves in a linear–elastic manner, the deflection or slope at any point resulting 
from applied loads may be determined using a technique known as Castigliano’s theorem 
(also called the method of least work). To calculate a displacement, a force P is applied to 
the structure at the point in question and in the direction of the required displacement. The 

(i) Displacement Field 1:

 W Mint = + =Bθ θ42   W Pext A= + 3θ
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(iii) Displacement Field 3:
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(iv) Displacement Field 4:

 W Mint = + =Cθ θ54   W Pext D= + 3θ
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54

3
18

θ
θ



Work–energy methods 251

magnitude of the displacement u is equal to the first partial derivative of the strain energy in 
the structure with respect to P. That is:

 u
U
P

= ∂
∂

e  (7.16)

Similarly, to calculate a slope, a moment M is applied to the structure at the point in ques-
tion and in the direction of rotation. The magnitude of the slope is equal to the first partial 
derivative of the strain energy in the structure with respect to M.

7.6.1  Application to trusses

For a truss member of uniform cross-section, length L and carrying an axial force N, the 
elastic strain is obtained from Equation 7.4 as:

 U
N L

EAe =
2

2

Substituting this into Equation 7.16 and summing over all members of the truss gives:

 u
P

N L
EA

= ∂
∂

∑
2

2

For most problems, it is more convenient to differentiate the strain energy in each bar 
before the summation. When the elastic modulus E and the cross-sectional area A of a mem-
ber are constant, the displacement may be determined from:

 u
N
P

NL
EA

N
P

e= ∑ ∂
∂

= ∑ ∂
∂

 (7.17)

where u is the joint displacement in the truss in the direction of the applied load P, N is 
the axial load in a member caused by both the external loads on the truss and the load 
P, and e is the elongation of the member caused by the external loads, i.e. when P is 
infinitesimally small. This equation is similar to that developed in the method of virtual 
forces 1u Ne N NL EA= ∑ = ∑( )/ , with the partial derivative ∂N/∂P replacing the virtual 
force in each bar N, and is simply a different way of looking at the same thing, with both 
terms representing the change in the internal member force caused by a unit load P.

WORKED EXAMPLE 7.11

Using Castigliano’s theorem, calculate the vertical and horizontal displacements at node C of 
the truss shown in Figure 7.6 (previously analysed using virtual work in Worked Example 7.3). 
The reactions and bar forces caused by the applied load are also shown in Figure 7.6, together 
with the resulting bar extensions (determined earlier in Section 4.8). As before, the truss is fab-
ricated from timber with E = 12,000 MPa and the cross-sectional areas of the bars are 15,000 
mm2 for bars AB, BC and AD and 5000 mm2 for bars BD and CD.



252 Structural analysis 

(i) Determine the vertical displacement vC at C
A vertical upward force P is applied to node C (in addition to the 24 kN applied load) as shown 
in Figure 7.24a. The resulting reactions are shown in Figure 7.24b.

Using the method of joints, the forces in each member of the truss in Figure 7.24b are calculated 
in terms of the applied loads and P. The partial differential ∂N/∂P is determined, as are the elon-
gations of the member caused by the applied loads (with P = 0), and the summation of Equation 
7.17 is performed.

Member L (mm) A (mm2) N (kN)
∂
∂
N
P

N (kN) 
(P = 0)

e = NL/EA 
(mm)

∂
∂
N
P

e (mm)

AB 1500 15,000 –18 + 0.75P +0.75 –18 –0.15 –0.113
AD 2500 15,000 –30 + 1.25P +1.25 –30 –0.417 –0.521
BC 1500 15,000 –18 + 0.75P +0.75 –18 –0.15 –0.113
BD 2000 5000 0 0 0 0 0
CD 2500 5000 +30 – 1.25P –1.25 +30 +1.25 –1.563

Σ –2.31

From Equation 7.17, the vertical displacement at C in the direction of P is:

 vC = −2.31 mm (downwards)

which is the same as obtained using the virtual work in Worked Example 7.3.

(ii) Determine the horizontal displacement uC at C
A horizontal force P (acting to the right) is applied to node C (in addition to the 24 kN applied 
load) as shown in Figure 7.25a. The resulting reactions are shown in Figure 7.25b.

Figure 7.24 Truss and free-body diagram for Worked Example 7.11 — part i.
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Member L (mm) A (mm2) N (kN)
∂
∂
N
P

N (kN) 
(P = 0)

e = NL/EA 
(mm)

∂
∂
N
P

e (mm)

AB 1500 15,000 –18 + P +1 –18 –0.15 –0.15
AD 2500 15,000 –30 0 –30 –0.417 0
BC 1500 15,000 –18 + P +1 –18 –0.15 –0.15
BD 2000 5000 0 0 0 0 0
CD 2500 5000 +30 0 +30 +1.25 0

Σ –0.3

From Equation 7.17, the horizontal displacement at C in the direction of P is:

 uC = −0.3 mm

and this is the same as that obtained using the principle of virtual work in Worked Example 7.3.

WORKED EXAMPLE 7.12

For the steel truss shown in Figure 7.10 and previously analysed in Worked Example 7.5, calcu-
late the relative movement of C and E, caused by the applied loads, using Castigliano’s theorem. 
All data are as specified in Worked Example 7.5.

As calculated previously, the member extensions caused by the applied loads are as follows:

Member AB BC AD BD CD DE DF DG EF FG

e (mm) +0.6 +08 −0.225 −0.6 −1.25 +0.625 +0.3 −3.375 −0.4 −0.3

Figure 7.25 Truss and free-body diagram for Worked Example 7.11 — part ii.
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To determine the relative horizontal displacement between joints C and E, a pair of forces of 
magnitude P is introduced at C and E, as shown in Figure 7.26b, together with the resulting mem-
ber forces. The internal actions caused by the applied loads, previously calculated in Worked 
Example 7.5, are shown in Figure 7.26a.

The terms included in the right-hand side of Equation 7.17 are evaluated in the table below.

Member
e = NL/EA 

(mm) N (kN)
∂
∂
N
P

∂
∂
N
P

e (mm)

AB +0.6 80 + 1.333P +1.333 +0.800
BC +0.8 80 + 1.333P +1.333 +1.066
AD −0.225 –21.21 – 1.886P –1.886 +0.424
BD −0.6 −80 0 0
CD −1.25 –100 – 1.667P –1.667 +2.083
DE +0.625 +50 – 1.667P –1.667 –1.042
DF +0.3 +40 0 0
DG −3.375 −318.2 – 1.886P –1.886 +6.365
EF −0.4 −40 + 1.333P +1.333 –0.533
FG −0.3 −40 + 1.333P +1.333 +0.400

Points C and E move toward each other, i.e. in the direction of the applied loads P, by an amount 
uCE = +8.76 mm, which is the same as the displacement obtained using virtual work in Worked 
Example 7.5.

Figure 7.26  Truss for Worked Example 7.12. (a) Applied loads, reactions and member forces (kN). 
(b) Internal forces caused by loads P.
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7.6.2  Application to beams and frames

For a beam or frame, the elastic strain caused by bending is given by Equation 7.8a, i.e. 

U M EI xe

L

= ∫ ( / )2

0
2 d . Substituting this into Equation 7.16 leads to:

 u
P

M EI x
L

= ∂
∂ ∫ [ /( ) ]2

0

2 d

Differentiating before the integration and assuming EI remains constant throughout, we get:

 u
M
P

M
EI

x
M
P

x
L L

= ∂
∂







= ∂
∂





∫ ∫d d

0 0

κ  (7.18a)

where u is the displacement caused by the real loads in the direction of and at the point of 
application of the external force P; M is the bending moment in the beam or frame caused 
by both the external loads and the force P, expressed as a function of the distance x along 
the axis of the member; and κ = (M/EI) is the curvature caused by the external loads, i.e. 
when P is infinitesimally small.

This equation is similar to that developed in the method of virtual forces, namely, 

1
0

u M x M EI x
L

= ∫ ( )( / )d , except that the partial derivative ∂M/∂P has replaced the virtual 

moment M x( ).
If the slope θ is required at a particular point, a couple M* is applied at the point of inter-

est and Equation 7.18a becomes:

 θ κ= ∂
∂







= ∂
∂





∫ ∫M

M
M
EI

x
M
M

x
L L

* *
d d

0 0

 (7.18b)

It is noted that these equations account only for deformation caused by bending strain 
energy, which is usually responsible for the majority of deformations in most beams and 
frames. Deformations resulting from the strain energies caused by shear, axial force 
and torsion are not included here, but may be determined from expressions similar to 
Equations 7.18a and b.

WORKED EXAMPLE 7.13

Using Castigliano’s theorem, determine the deflection vC at the mid-span and the rotation at 
the support B (θB) of the uniformly loaded, simply-supported beam shown in Figure 7.14 and 
analysed previously in Worked Example 7.7.

(i) Calculate vC

Applying a downward load P at mid-span, the bending moment M caused by the actual uniformly 
distributed load w1 and the load P at any point x from support A is:

 M = 0.5w1Lx + (Px/2) − 0.5w1x2 for x ≤ L/2

 M = 0.5w1Lx − P(x − L)/2 − 0.5w1x2 for x > L/2
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The partial derivative ∂M/∂P is therefore:

 ∂M/∂P = x/2 for x ≤ L/2

 ∂M/∂P = −(x − L)/2 for x > L/2

The vertical deflection at mid-span caused by the applied load is obtained from Equation 7.18a:

 

u
M
P

x
EI

w Lx w x x
E

L L

C d d= ∂
∂







= − +∫ ∫κ
0

1
2

1
3

0

2
1

4
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4
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II
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w L
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L
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/

− + + −
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∫ 1
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4
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4w L
EI
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EI

=

(ii) Calculate θB

Applying a counterclockwise couple M* at B, the bending moment caused by the uniformly 
distributed load w1 and the couple M* at any point x from A is:

 M = 0.5w1Lx + xM*/L − 0.5w1x2 for 0 ≤ x ≤ L

The partial derivative ∂M/∂M* is therefore x/L and the rotation at support B caused by the 
applied load can be obtained using Equation 7.18b as:

 θ κB d d= ∂
∂







= −




 =∫ ∫M

M
x
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 =

The expressions for the deflection and the rotation determined here are identical to those 
derived using virtual work in Worked Example 7.7.

WORKED EXAMPLE 7.14

Using Castigliano’s theorem, determine the horizontal displacement at point D caused by bend-
ing for the frame in Figure 7.18a (previously analysed in Worked Example 7.8). The flexural rigid-
ity EI = 60 × 1012 Nmm2 (= 60 × 103 kNm2) is constant throughout.

A horizontal load P is applied at D (acting to the right). The bending moment diagrams caused by 
the applied loads and by the force P are shown in Figure 7.27. These are combined and expressed 
algebraically, together with the partial derivative ∂M/∂P, for each segment of the frame, as out-
lined below.

Segment AB: With x measured vertically from the support at A, the bending moment caused by 
both the applied loads and P and its derivative are:

 MAB = −22x + 0.5Px and ∂MAB/∂P = 0.5x (for x = 0 to 6 m)

Segment BD: With x measured horizontally from the frame corner at B, the bending moment 
caused by applied loads and P and its derivative are:

MBD = (40.5 − 0.375P)x − (132 − 3P) − 3x2 and ∂MBD/∂P = 3 − 0.375x (for x = 0 to 16 m)
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Segment ED: With x measured vertically from the support at E, the bending moment caused by 
applied loads and P and its derivative are:

 MED = −42x – 0.5Px and ∂MED/∂P = −0.5x (for x = 0 to 6 m)

The horizontal deflection at D uD: is calculated applying Equation 7.18a to each segment:
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which is identical to the displacement calculated in Worked Example 7.8.

Figure 7.27  Frame for Worked Example 7.14. (a) Frame dimensions and loading. (b) Bending diagram due 
to  applied loads (kNm). (c) Force P and resulting reactions. (d) Bending moment due to P.
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PROBLEMS

 7.1 Determine expressions for the deflection and the slope at the free end of the 
cantilevers shown. Assume EI is constant. Use the principle of virtual work.

 7.2 Solve Problem 7.1 using Castigliano’s theorem.

 7.3 If the flexural rigidity EI of each of the propped cantilevers shown is constant, 
determine the expression for the deflection at the mid-span of each beam in terms of 
the load, the span L and flexural rigidity using the principle of virtual work.

 7.4 Solve Problem 7.3 using Castigliano’s theorem.

 7.5 For the truss shown, calculate the vertical displacement of the joint E using the prin-
ciple of virtual work. Take EA = 60 × 106 N for each member of the truss.
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 7.6 For the truss shown, determine the vertical displacement of joint D and the hori-
zontal displacement of the roller support at A using the principle of virtual work. 
Take EA = 100 × 106 N for each member of the truss.

 7.7 Solve Problem 7.6 using Castigliano’s theorem.

 7.8 Using the principle of virtual work, determine the vertical displacement at joint C of 
the truss shown. Take EA = 50 × 106 N for each member of the truss.

 7.9 Solve Problem 7.8 using Castigliano’s theorem.

 7.10 For the beam shown, if M1 = 50 kNm and M2 = 70 kNm (in the directions shown), 
determine the vertical deflection at C using the principle of virtual work. Take 
EI = 10 × 103 kNm2 throughout.

 7.11 Solve Problem 7.10 using Castigliano’s theorem.

 7.12 Determine the vertical displacement of joint J of the truss shown using the principle of 
virtual work. Take EA = 5 × 108 N for each member of the truss.
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 7.13 Solve Problem 7.12 using Castigliano’s theorem.

 7.14 Determine the vertical displacement of joint E and the horizontal displacement of 
the roller support at A for the truss shown using the principle of virtual work. Take 
EA = 50 × 106 N for each member of the truss. The point loads are perpendicular 
to segment ABDG.

 7.15 Solve Problem 7.14 using Castigliano’s theorem.

 7.16 Using virtual forces, calculate the horizontal and vertical displacements of joint F 
in the timber truss shown. Take E = 12,000 MPa and A = 10,000 mm2 for each 
member.

 7.17 The beam shown below is supported by a pin at A and a roller at D. Using virtual 
work, determine the vertical deflection at B and the horizontal movement at E 
caused by the applied loads. Take EI = 5 × 103 kNm2 throughout.
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 7.18 The truss members shown have cross-sectional area A = 15,000 mm2 and elastic 
modulus E = 12,000 MPa. Calculate the horizontal and vertical displacements uC 
and vC of node C using the principle of virtual work.

 7.19 The beam ABCDEF shown is pinned at A, supported on rollers at C, D and F, and has 
internal hinges at B and E as shown. Determine the deflection at the internal hinge at 
E. Assume EI = 3000 × 103 kNm2 throughout. Use the principle of virtual work.

 7.20 Calculate the vertical deflection at joint D of the truss shown below using the prin-
ciple of virtual work. Take E = 10,000 MPa and A = 4000 mm2 for each member.

 7.21 Solve Problem 7.20 using Castigliano’s theorem.

 7.22 If all the horizontal and vertical members of the truss shown have L = 2 m, deter-
mine the vertical displacement of joint F using the principle of virtual work. Take 
E = 10,000 MPa and A = 6000 mm2 for each truss member.
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 7.23 The cantilevered frame ABCD shown is part of the support structure for a grand-
stand. For the loading shown, determine the vertical and horizontal deflection at D 
using the principle of virtual work. Take EI = 2000 × 103 kNm2 throughout.

 7.24 For the portal frame ABCDE, determine the vertical deflection at C using the principle 
of virtual work. Take EI = 2000 × 103 kNm2 throughout.

 7.25 For the portal frame ABCDE, determine the vertical deflection at C using the prin-
ciple of virtual work. Take EI = 2000 × 103 kNm2 throughout.

 7.26 For the truss shown, A = 6000 mm2 and E = 20,000 MPa for each truss member. 
Using the principle of virtual forces, determine:

 i. the displacement of joint A in the z direction; and
 ii. the displacement of joint D in the y direction.
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Chapter 8

The force method

8.1  INTRODUCTION

We have seen that for statically determinate structures, deformations of individual cross-
sections can take place without restraints being introduced at the supports, and reactions 
and internal actions can be determined using only the principles of statics. For any set of 
loads on a statically determinate structure, there is one set of reactions and internal actions 
that satisfies equilibrium, i.e. there is a single load path.

In Sections 2.9, 3.4 and 4.7, we also saw that a statically indeterminate structure is one 
where the number of unknown reactions is greater than the number of equilibrium equa-
tions available for the analysis. For any set of applied loads, there are an infinite number of 
sets of reactions and internal actions that satisfy equilibrium, but only one set that also satis-
fies geometric compatibility and the stress–strain relationships for the constituent materials 
at each point in the structure.

We have seen in Chapter 6 that the reactions and internal actions in a statically indeter-
minate structure depend on the relative stiffness of the individual parts of the structure. The 
stiffness of any cross-section may change as the load level increases and may also change 
with time and, consequently, so too will the reactions and internal actions. Imposed defor-
mations, such as may occur owing to a temperature change or a support settlement, will 
cause changes in the reactions and internal actions in an indeterminate structure. If the 
indeterminate structure is made of reinforced concrete, for example, cracking of the con-
crete in one region causes a sudden change in stiffness and results in a change in the reac-
tions and internal actions.

In this chapter, we turn our attention to the analysis of statically indeterminate structures. 
There are two broad approaches:
 i. the force method (also called the flexibility method)
 ii. the displacement method (also called the stiffness method)

For one- or two-fold indeterminate structures, the force method is a convenient approach. 
It involves satisfying equations that enforce geometric compatibility of the structure, i.e. 
equations that ensure that the individual parts of the structure fit together after deformation 
without discontinuities, and then solving these equations to determine the redundant forces. 
With the redundant forces determined, the remaining unknown forces can be calculated 
from statics. The force method applied to statically indeterminate trusses, beams and frames 
is discussed in this chapter.

For indeterminate structures with more than one or two redundant reactions, the dis-
placement method is usually more convenient. Various forms of the displacement method 
are discussed subsequently in Chapters 9 through 13. The force–displacement relationships 
are developed for the members of the structure and the unknown displacements are obtained 
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by satisfying the requirements of equilibrium. With the displacements so determined, the 
forces are readily calculated from the appropriate stress–strain relationships.

Most structures are in fact statically indeterminate. Building frames, for instance, usu-
ally have many more reactions than available equilibrium equations. The columns and 
beams in reinforced concrete buildings are usually poured on-site as continuous members, 
and rotations and movements at the supports and connections are usually at least partially 
restrained. Reinforced concrete structures are rarely statically determinate.

Although indeterminate structures require more effort for the analysis, they have many 
advantages over statically determinate members. The magnitudes of the internal actions 
and deformations are often much smaller. For a beam made continuous over several spans, 
the maximum bending moments and mid-span deflections are significantly smaller than 
those that would occur in simply-supported beams over the same spans. For example, the 
magnitude of the maximum moment in a uniformly loaded fixed-ended beam is two-thirds 
of that in a similarly loaded simply-supported beam of the same span, while the magnitude 
of the maximum deflection is only one-fifth. The reduced demand for strength and the 
increased stiffness permit shallower member cross-sections, often providing both significant 
savings in material and construction costs and a more slender aesthetically pleasing struc-
ture. Continuity also provides increased resistance to transient loads and to progressive col-
lapse that could result, for example, from earthquake, blast or impact loading.

In statically indeterminate structures, failure of one member or cross-section does not 
necessarily jeopardise the entire structure, as a redistribution of internal actions may occur 
provided the structure is sufficiently ductile and an alternative load path is available.

Notwithstanding the advantages, statically indeterminate structures may have certain 
disadvantages over determinate structures. For some types of construction, additional costs 
associated with providing continuity at the connections and supports may outweigh the 
material savings associated with the more slender members. Differential displacement of the 
supports of indeterminate structures will introduce internal actions into the structure and, if 
sufficiently large, these could compromise the strength or the serviceability of the structure.

8.2  THE FORCE METHOD APPLIED TO TRUSSES

8.2.1  Determination of member forces in 
an n-fold indeterminate truss

In Section 4.7, we saw that for a plane truss, with j nodes, b members and r reaction com-
ponents, there are 2j equilibrium equations available and a total of r + b unknown forces. 
Accordingly, plane trusses are classified as statically indeterminate if the number of unknown 
forces exceeds the number of equilibrium equations.

A truss is said to be n-fold indeterminate if (r + b) − 2j = n (see Section 4.7). To analyse such 
a truss using the force method, n of the members of the truss (or redundant reactions) are 
selected and then removed or disconnected from the truss to create a statically determinate 
truss known as the primary truss. The selection of the redundant forces is arbitrary, except 
that the primary truss and its reactions must be stable. Not only must the primary truss 
carry the external loads, it must also carry the unknown force in each redundant truss 
member and the unknown redundant reactions. For each redundant truss member, a pair of 
unknown member forces is applied to the primary truss, one force applied in the direction 
of the member at each of the disconnected nodes.

Consider the statically indeterminate truss of Figure 8.1a. There are 6 nodes (j = 6), 10 
members (b = 10) and 4 reactions (r = 4). Therefore, (r + b) − 2j = 2 and the truss is 2-fold 
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indeterminate. For the purposes of this illustrative example, let us assume that the truss is 
fabricated from steel with E = 200 kN/mm2, the dimension ℓ = 2000 mm, the cross-sectional 
area of members AD, BC and CF is 600 mm2 and, for all other truss members, A = 2000 
mm2. The axial flexibility for each bar (f = L/EA) is shown in column 3 of Table 8.1.

The member AD in the truss of Figure 8.1a is selected as a redundant member (redundant 1) 
and the horizontal reaction at A is selected as a redundant reaction (redundant 2). With 
member AD disconnected at D and reaction HA removed, the stable primary truss is shown 
in Figure 8.1b through d. The reactions and member forces N0 in the primary truss caused 
by the external applied loads are shown in Figure 8.1b. It is convenient to analyse the pri-
mary truss for unit values R1  and R2  of each of the unknown redundant forces R1 = NAD 
and R2 = HA. The reactions and member forces in the primary truss caused by the unit force 
R1  in member AD are shown in Figure 8.1c, while the reactions and member forces in the 
primary truss caused by a unit horizontal force R2  at A are shown in Figure 8.1d. The bar 
forces N0 caused by the external loads and the bar forces NR1

 and NR2
 caused by R1  and 

R2, respectively, are given in columns 4, 5 and 6 of Table 8.1.
We know that in the statically indeterminate truss, D and D′ are at the same point 

both before and after deformation, and therefore the gap between D and D′ is zero, i.e. 
u uDD′ = =1 0. The subscript “1” highlights the fact that the displacement u is in the direction 
of the redundant force R1. Similarly, in the statically indeterminate truss, the displacement 

Figure 8.1  Twofold indeterminate truss. (a) Statistically in determine truss. (b) Forces in primary truss (N0) 
carrying external loads. (c) Forces in primary truss NR1( ) due to unit force in redundant member 
AD R1( ). (d) Forces in primary truss NR2( ) due to a unit horizontal force at A R2( ).
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of Node A in the direction of HA is also zero, i.e. uA = u2 = 0 (where the subscript “2” 
refers to the direction of redundant R2). However, in the primary truss, the deformation in 
each member caused by each set of member forces may result in non-zero values of these 
displacements.

The displacement caused by the external loads at the release at D (release 1) is u10 and 
represents the sum of the gaps between D and D′ in the primary truss caused by the extension 
e0 (= N0L/EA) in each member. This gap between D and D′ caused by the extensions e0 of 
each member of the truss may be determined by the work equation Wext = Wint (see Sections 
7.2 through 7.4), where Wext = 1 × u10 and W N ei

n
R iint ( )= ∑ =1 01 . For clarity, the product ( )N eR i1 0  

has been included for each bar in column 7 of Table 8.1. The corresponding displacement 
u10 is obtained by solving the following equation derived with the principle of virtual work:

 
1

1
01× = ∑

=
u N e

i

n

R i10
( )  (8.1)

from which:

 u
N e

i

n

R i

10 =
∑
=1

01

1

( )
 (8.2)

where the unit force has been maintained in the denominator of Equation 8.2 to clarify the 
dimensions of all terms: u10 is a displacement (i.e. a length), NR1

 is a force and e0 represents 
an elongation (i.e. a length). Performing the summation of all terms ( )N eR i1 0 , as specified 
in Equation 8.2, we can get u10, which is given at the bottom of column 7 in Table 8.1. 
Similarly, the horizontal displacement u20 of the primary truss at A (release 2) caused by the 
external loads can be determined from 1 20 1 02

× = ∑ =u N ei
n

R i( )  and is given at the bottom of 
column 8 in Table 8.1. The displacements of the primary truss at releases 1 and 2 caused 
by a unit force applied in member AD between D and D′ (u11 and u21, respectively) are 
given in columns 9 and 10. The corresponding displacements caused by a unit horizontal 
force at A (u12 and u22) are calculated in columns 11 and 12 in Table 8.1.

The actual values of the redundant forces NAD and HA are determined by enforcing the 
requirement that the displacement at each release is zero. Equation 8.3a states that the sum 
of the gaps between D and D′ owing to the external loads and the two unknown redundant 
forces is zero (i.e. u1 = 0), while Equation 8.3b enforces the requirement that the horizontal 
displacement at A must also be zero (i.e. u2 = 0):

 u10 + f11R1 + f12R2 = 0.2375 + 0.0572NAD + 0.00354HA = 0 (8.3a)

 u20 + f21R1 + f22R2 = 0.0 + 0.00354NAD + 0.01HA = 0 (8.3b)

where fij are the flexibility coefficients of the structure that specify the displacement at 
release i produced by a unit action Rj  applied along release j. We have already calculated 
these values in Table 8.1. For example, f11 describes the displacement at release 1, i.e. 
relative movement between D and D′, produced by a unit force applied along release 
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1 (Figure 8.1c), and is equal to u11. Despite this, these two terms are dimensionally 
different, as u11 is a displacement (i.e. a length) and f11 represents a displacement caused 
by a unit load (i.e. length/force). In a similar manner, f21 is the displacement along 
release 2, i.e. horizontal displacement at A, caused by a unit force applied along freedom 
1 (Figure 8.1d) and is equal (in direction and magnitude) to u21 previously calculated in 
Table 8.1.

Solving these two simultaneous equations (Equations 8.3a and b) gives the two unknown 
redundant forces:

 R1 = NAD = −4.247 kN and R2 = HA = +1.502 kN

We can now determine the force in each bar N by adding the forces in the bar caused by 
each of the three loadings on the primary truss (i.e. the external loads, the redundant force 
NAD and the redundant reaction HA). For any truss member:

 N N C N C HR R= + +0 1 2AD A (8.4)

where CR1
 and CR2

 are the transfer coefficients (see Section 7.4.3) determined from:

 C
N

RR
R

1

1

1 1
=

=( )
 C

N

RR
R

2

2

2 1
=

=( )
 (8.5a,b)

where the values for NR1
 and NR2

 were specified in columns 5 and 6 of Table 8.1.
The forces in each of the members of the indeterminate truss calculated using Equation 

8.4 are shown in Figure 8.2 and are also provided in Table 8.2.
It can be deduced from this example that a truss member that is released (such as member 

AD in this example) remains unloaded after the application of any loads other than its own 
redundant force.

It is also true that the displacement at the release of one redundant force (force 1) caused 
by a second redundant force (force 2) is the same as the displacement at the release of force 
2 caused by force 1. For example, f21 = f12 in Table 8.1 or, in general, fij = fji.

Figure 8.2 Loads, reactions and member forces (kN).
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SUMMARY OF STEPS 8.1: Calculation of member forces 
in an indeterminate truss using the force method

 1. Determine the degree of indeterminacy n, where n = r + b – 2j (see Chapter 4).

 2. Reduce the truss to a stable, statically determinate primary truss by making n appropriate 
releases.

 3. Calculate the forces in each member of the primary truss caused by the external loads 
(N0) and caused by n unit loads applied at each of the n releases (i.e. R1  to Rn ).

 4. Determine the deformation of each truss member caused by each of the load systems 
considered in step 3. The deformation of each member caused by the external loads is 
e0 = fN0 (with f being the axial flexibility: f = L/EA), while the deformation caused by the 
ith unit load is e fNR Ri i

= .

 5. Calculate the displacement or discontinuity at each release caused by the external loads 
and by each of the n unit loads. The displacement at release i caused by the external 
loads is:

 u
N

ei
Ri

0 01
= ∑  (8.6a)

 and the displacement at release i caused by the k-th unit load is:

 u
N

eik
R

R
i

k
= ∑

1
(m or mm)  (8.6b)

 6. By enforcing compatibility and equating the sum of the displacements at each release to 
zero, write the n simultaneous equations in terms of the n unknown redundant forces, R1 
to Rn. For example, at the i-th release:

 ui0 + f i1R1 + f i2R2 + … + f inRn = 0 (8.7)

Table 8.2 Determination of member forces

Member N0 (kN) C NR1 AD (kN) C HR2 A (kN) N (kN)

AB −5.0 3.003 0.0 −1.997
AC 0.0 3.003 −1.502 1.502
AD 0.0 −4.247 0.0 −4.247
BC +7.071 −4.247 0.0 2.824
BD −5.0 3.003 0.0 −1.997
CD −10.0 3.003 0.0 −6.997
CE 0.0 0.0 −1.502 −1.502
CF +7.071 0.0 0.0 7.071
DF −5.0 0.0 0.0 −5.0
EF −5.0 0.0 0.0 −5.0
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  where the flexibility coefficients f ij represent the displacement produced at release i by a 
unit action applied at release j. The flexibility coefficient f ij is equal in magnitude and direc-
tion to uij (because it is produced by a unit action), as calculated at step 5, but different in 
dimension and given by:

 f ik = uik/1 (length/force) (8.8)

 7. Solve the n simultaneous equations of Equation 8.7 to determine the n unknown redun-
dant forces, R1 to Rn.

 8. Calculate the force in each member of the truss as the sum of the forces in each member 
caused by the external loads and the n redundant forces. For example, the force in the i-th 
bar is:

 N N C R C R C Ri R i R i R i nn
= + + + +0 1 21 2

( ) ( ) ( )  (8.9)

  where ( )CR ij
 are the transfer coefficients calculated from:

 ( )
( )

( )
C

N

RR i
R i

j
j

j=
=1

 (8.10)

WORKED EXAMPLE 8.1

Determine the forces in each member of the truss shown in Figure 8.3. The cross- sectional area 
of members AD, BC, CF and DE is 1000 mm2, and for all other truss members, A = 3000 mm2. 
Take E = 200 kN/mm2.

(1) There are 6 nodes ( j = 6), 11 members (b = 11) and 3 reactions (r = 3).
Therefore, (r + b) − 2j = 2 and the truss is 2-fold redundant.

(2) Two members must be released to form a stable primary truss. In this example, the diagonal 
members AD and DE are released at D as shown in Figure 8.4.

Figure 8.3 Truss for Worked Example 8.1.
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(3) The forces in each member of the primary truss (N0) caused by the external loads, the forces 
in each member associated with unit loads R1 applied at the release in AD and R2 applied at the 
release in DE are shown in Figure 8.4a, b and c, respectively, and are also provided in columns 
2, 3 and 4 of Table 8.3.

(4 and 5) The axial flexibility coefficients for the diagonal members are:

 f f f f
L

EAAD BC CF DE mm/kN= = = = =
×

=3000 2
200 1000

0 0212.

and for the horizontal and vertical members:

 f f f f f f f
L

EAAB AC BD CD CE DF EF= = = = = = = =
×

=3000
200 3000

0.0005 mm/kN

The deformations of each truss member caused by the load systems shown in Figure 8.4a, b and 
c are now used to find the discontinuity at each member release. The displacements at release 
1 (DD′ in member AD) caused by the external loads and by the unit loads in the two redundant 
members are determined in columns 5, 7 and 9 of Table 8.3 and are respectively:

 f10 = 0.256 f11 = 0.0524 f12 = 0.0025

while the corresponding displacements at release 2 (DD″ in member DE) are shown in columns 
6, 8 and 10 of Table 8.3 as

 f20 = 0.6266 f21 = 0.0025 f22 = 0.0524

Figure 8.4  Forces and transfer coefficients in members of primary truss. (a) Forces in primary truss car-
rying external loads (F0 in kN). (b) Member forces associated with unit force R1( ) in member 
AD (release 1). (c) Member forces associated with unit force R2( ) in member DE (release 2).
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(6) From Equation 8.7, the two simultaneous compatibility equations enforcing the requirement 
that the displacement at each release is zero are:

 0.256 + 0.0524R1 + 0.0025R2 = 0 (1)

 0.6266 + 0.0025R1 + 0.0524R2 = 0 (2)

(7) Solving for the unknown redundant forces gives:

 R1 = −4.325 kN and R2 = −11.752 kN

(8) The force in each member of the indeterminate truss is obtained from Equation 8.9, where 
the transfer coefficient CRi

 is equal in magnitude to NRi
 (given in columns 3 and 4 of Table 8.3). 

For example, in member AB:

 NAB = −5.0 + [−0.707 × (−4.325)] + [0.0 × (−11.752)] = −1.942 kN

The calculation of each bar force is given in Table 8.4 and the forces are shown in Figure 8.5.

Figure 8.5 Loads, reactions and member forces (kN).

Table 8.4 Determination of member forces

Member N0 (kN) C RR1 1 (kN) C RR2 2 (kN) N (kN)

AB −5.0 3.058 0.0 −1.942
AC 10.0 3.058 0.0 13.058
AD 0.0 −4.325 0.0 −4.325
BC +7.07 −4.325 0.0 2.745
BD −15.0 3.058 0.0 −11.942
CD −20.0 3.058 8.308 −8.634
CE 0.0 0.0 8.308 8.308
CF +21.21 0.0 −11.752 9.458
DF −15.0 0.0 8.308 −6.692
DE 0.0 0.0 −11.752 −11.752
EF −15.0 0.0 8.308 −6.692
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WORKED EXAMPLE 8.2

For the truss shown in Figure 8.3, calculate the forces in each member caused by a temperature rise 
of ΔT = 30°C in the top chord members BD and DF. As in the previous example, the cross-sectional 
area of all truss members is A = 3000 mm2, except for members AD, BC, CF and DE, where A = 
1000 mm2. Take E = 200 kN/mm2 and the coefficient of thermal expansion is α = 10 × 10−6/°C.

(1 and 2) As in Worked Example 8.1, the diagonal members AD and DE are released at D to 
form the statically determinate primary truss.

(3) In this example, there are no external loads to consider (so F0 = 0). However, members BD 
and DF in the primary truss undergo a thermal strain of:

 εT = ΔT + = +30 × 10 × 10−6 = +300 × 10−6

and a resultant elongation of:

 (eT)BD = (eT)DF = εTL = 300 × 10−6 × 3000 = +0.9 mm

These member elongations caused by the rise in temperature are treated in exactly the same 
way as the member deformations caused by the external loads (N0) in the previous examples. 
The member forces NR1

 and NR2
 associated with unit loads applied at the release in AD and the 

release in DE, respectively, are as shown in Figure 8.4b and c.

(4 and 5) As in Worked Example 8.1, the axial flexibility for each of the diagonal members is f = 
0.0212 mm/kN and that for the horizontal and vertical members is f = 0.005 mm/kN.
The deformation of each truss member caused by the temperature change and the unit load sys-
tems shown in Figure 8.4b and c is now used to find the discontinuity at each member release. 
The displacements at release 1 (DD′ in member AD) caused by the temperature change in BD 
and DF and by the unit loads in the two redundant members are determined in columns 5, 7 and 
9 of Table 8.5 and are respectively:

 f10 = −0.6363 f11 = 0.0524 f12 = 0.0025

while the corresponding displacements at release 2 (DD″ in member DE) are shown in columns 
6, 8 and 10 of Table 8.5:

 f20 = −0.6363 f21 = 0.0025 f22 = 0.0524

(6) From Equation 8.7, the two simultaneous compatibility equations enforcing the requirement 
that the displacement at each release is zero are:

 −0.6363 + 0.0524R1 + 0.0025R2 = 0 (1)

 −0.6363 + 0.0025R1 + 0.0524R2 = 0 (2)

(7) Solving for the unknown redundant forces gives:

 R1 = +11.592 kN and R2 = +11.592 kN
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8.2.2  Determination of joint displacements

When all the member forces have been determined, the elongation of each truss member 
can be readily determined. For example, the elongation of members BD and CD in Worked 
Example 8.2 is:

 eBD = fNBD + (eT)BD = 0.005 × (−8.196) + 0.9 = 0.859 mm

 eCD = fNCD = 0.005 × (−16.392) = −0.082 mm

(8) The force in each member of the indeterminate truss is obtained from Equation 8.9, except 
that in this example, N0 is zero for all members. The transfer coefficient CRi

 is equal in magnitude 
to NRi

 (given in columns 3 and 4 of Table 8.5). For example, in member AB:

 NAB = (−0.707 × 11.592) + (0.0 × 11.592) = −8.196 kN

The calculation of each member force is given in Table 8.6 and the forces are shown in Figure 8.6.

Figure 8.6 Member forces (kN) due to a 30°C temperature rise in BD and DF.

Table 8.6 Determination of member forces caused by a temperature rise in BD and DF

Member N0 (kN) C RR1 1 (kN) C RR2 2 (kN) N (kN)

AB 0 −8.196 0 −8.196
AC 0 −8.196 0 −8.196
AD 0 11.592 0 11.592
BC 0 11.592 0 11.592
BD 0 −8.196 0 −8.196
CD 0 −8.196 −8.196 −16.392
CE 0 0 −8.196 −8.196
CF 0 0 11.592 11.592
DF 0 0 −8.196 −8.196
DE 0 0 11.592 11.592
EF 0 0 −8.196 −8.196
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The method of virtual forces was discussed in Section 7.4.1 and was used to calculate joint 
displacements in the statically determinate trusses of Worked Examples 7.3, 7.4 and 7.5. The 
method can be applied equally well to statically indeterminate trusses. A unit virtual force 
is applied to the truss at the joint and in the direction of the required joint displacement. 
The internal virtual work associated with any internal force field that is in equilibrium with 
the external unit virtual force is required. In a statically indeterminate truss, there are an 
infinite number of such force fields. By selecting an appropriate number of member releases 
(or reaction releases), we can analyse any stable primary truss to determine an appropriate 
internal force field.

WORKED EXAMPLE 8.3

Determine the vertical displacement at joint C of the truss shown in Figure 8.3 caused by the 
loadings shown.

The forces in each member of the truss caused by applied loads were calculated in Worked 
Example 8.1, together with the axial flexibility for each bar and are provided here in col-
umns 2 and 3 of Table 8.7, and the corresponding extensions of each bar e are shown in 
column 4.
In Worked Example 8.1, a stable primary truss was established by releasing the diagonal 
members AD and DE. In Figure 8.7, the numbered displacement directions at each node 
of the truss are shown, together with the virtual member forces N6 in this primary truss, 
caused by a vertical unit virtual force applied at C in direction 6 (the numbering of two 
directions at nodes in plane trusses was introduced in Section 4.5). These virtual member 
forces are shown in column 5 of Table 8.7. The external virtual work caused by the unit 
vertical load at C is W vext C= ×1  and the internal virtual work is W N eint = ∑ 6  as calculated in 
column 6 of Table 8.7.

Table 8.7 Determination of the vertical displacement at C in Worked Example 8.3

(1)
Member

(2)
f (mm/kN)

(3)
N (kN)

(4)
e = fN (mm)

(5)
N6 (kN)

(6)
N e6 (kNmm)

AB 0.005 −1.942 −0.0097 0.5 −0.0049
AC 0.005 13.058 0.0653 0.0 0.0
AD 0.0212 −4.325 −0.0917 0.0 0.0
BC 0.0212 2.745 0.0582 −0.7071 −0.0412
BD 0.005 −11.942 −0.0597 0.5 −0.0299
CD 0.005 −8.634 −0.0432 0.0 0.0
CE 0.005 8.308 0.0415 0.0 0.0
CF 0.0212 9.458 0.2006 −0.707 −0.1418
DF 0.005 −6.692 −0.0335 0.5 −0.0168
DE 0.0212 −11.752 −0.2493 0.0 0.0
EF 0.005 −6.692 −0.0335 0.5 −0.0168

Sum −0.2514
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Equating the external virtual work to the internal virtual work gives the vertical displacement 
at C:

 vC = −0.251 mm (i.e. downwards)

WORKED EXAMPLE 8.4

Consider the truss analysed in Worked Example 8.2 and determine the vertical displacement at 
joint C caused by a temperature rise of 30°C in members BD and DF.

The forces in each member of the truss caused by a 30°C temperature rise in BD and DF were cal-
culated in Worked Example 8.2 and are provided here in column 3 of Table 8.8. The corresponding 
extensions of each bar e (= f N + eT) are shown in column 4 of Table 8.8.

Table 8.8 Determination of the vertical displacement at C in Worked Example 8.4

(1)
Member

(2)
f (mm/kN)

(3)
N (kN)

(4)
e = f N + 
eT (mm)

(5)
N6 (kN)

(6)
N e6 (kNmm)

AB 0.005 −8.196 −0.041 0.5 −0.0205
AC 0.005 −8.196 −0.041 0.0 0.0
AD 0.0212 11.592 0.2459 0.0 0.0
BC 0.0212 11.592 0.2459 −0.7071 −0.1739
BD 0.005 −8.196 0.859 0.5 0.4295
CD 0.005 −16.392 −0.082 0.0 0.0
CE 0.005 −8.196 −0.041 0.0 0.0
CF 0.0212 11.592 0.2459 −0.7071 −0.1739
DF 0.005 −8.196 0.859 0.5 0.4295
DE 0.0212 11.592 0.2459 0.0 0.0
EF 0.005 −8.196 −0.041 0.5 −0.0205

Sum 0.4702

Figure 8.7 Truss for Worked Example 8.3.
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8.3  THE FORCE METHOD APPLIED TO BEAMS AND FRAMES

8.3.1  Determination of internal actions

The force method can also be used to find the redundant reactions in a statically indeterminate 
beam or frame. If the beam or frame is n-fold indeterminate, n reactions or internal actions 
at particular locations are selected as redundants and releases are made so that a statically 
determinate primary structure is established. Consider the 1-fold indeterminate frame shown 
in Figure 8.8a. If the horizontal reaction at D is selected as the redundant reaction, the 
appropriate release is to convert the pin joint at D to a roller, thereby permitting horizontal 
displacement. The resulting primary frame is shown in Figure 8.8b. Alternatively, we could 
select the bending moment at a particular point to be zero and the appropriate release 
involves the introduction of an internal hinge at that point. If we introduce an internal 
hinge at B, the primary frame is shown in Figure 8.8c and can now be analysed using only 
the principles of statics. With this release, the moment at B becomes the redundant internal 
action. The hinge could in fact be introduced at any location provided the resulting primary 
frame is stable.

The analysis of the stable primary truss obtained by releasing the diagonal members AD and DE 
is again used, with the virtual internal forces N6 associated with the unit vertical virtual force at 
C as shown in Figure 8.7 and repeated here in column 5 of Table 8.8.
Equating the external virtual work to the internal virtual work gives the vertical displacement at 
C (rounded to 3 significant figures):

 vC = +0.470 mm (i.e. upwards)

Figure 8.8  Example of primary frames for a onefold indeterminate frame. (a) Indeterminate frame. 
(b) Primary frame 1. (c) Primary frame 2.
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For a 1-fold indeterminate beam or frame, when the redundant reaction or internal action 
is selected, the primary structure is analysed under the action of:
i. the external loads (and any environmental actions such as temperature changes), and
ii. the unknown redundant R

The sum of the displacements at the realease caused by i and ii is equated to zero (since 
this displacement is zero in the indeterminate structure) and the resulting equation is solved 
for the unknown R.

WORKED EXAMPLE 8.5

For the two-span beam shown in Figure 8.9, determine the reactions at the three supports using 
the force method. Consider only the flexural deformation of the beam and assume linear–elastic 
material behaviour. Take EI = 200 × 103 kNm2.

(1) The beam is 1-fold indeterminate and the reaction at B is selected as the redundant. The 
corresponding release is the removal of the roller support at B. A free-body diagram of the 
resulting primary beam under the action of the external loads is shown in Figure 8.10a, together 
with the corresponding bending moment diagram. A free-body diagram of the primary beam 
under the action of a unit vertical force at B (in the direction of the redundant reaction at B) and 
the corresponding bending moment diagram are shown in Figure 8.10b.

Figure 8.9 Beam for Worked Example 8.5.

Figure 8.10  Free-body diagrams and bending moment diagrams of the primary beam. (a) Subjected 
to external loads. (b) Subjected to a unit vertical load at B.
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(2) The principle of virtual forces is first used to determine the displacement of the primary 
beam at B caused by the uniformly distributed external load (uB0 in Figure 8.10a). The unit load 
shown in Figure 8.10b is treated as the virtual force.
The internal work is determined from Equation 7.14, with the curvature diagram expressed as 
κ = M/EI = (160x – 10x2)/(200 × 103) and the virtual moment is M x= −0 5.  in AB. Both the virtual 
moment diagram and the actual curvature diagram are symmetrical about the mid-span and, 
therefore, the internal virtual work for the entire beam is twice the internal virtual work in the 
length of beam from A to B:
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The external work is W uext B0= ×1  and the principle of virtual work gives uB0 = −0.0853 m.

(3) The principle of virtual forces is then used to determine the displacement of the primary 
beam at B caused by a unit load at B (uB1 in Figure 8.10b). The curvature diagram in the half-span 
from A to B owing to the unit load is expressed as κ = M/EI = (−0.5x)/(200 × 103) and the virtual 
moment M x= −0 5. . The internal work is:
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The external work is W uext B1= ×1  and the work theorem gives uB1 = 0.427 × 10−3 m.
Following the same notation as used for trusses, the flexibility coefficient associated with mem-
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(4) Enforcing compatibility at point B, we have:

 uB0 + RBfB1 = −0.0853 + 0.427 × 10−3 RB = 0 and therefore RB = 200 kN

(5) With the redundant reaction at B determined, the other vertical reactions at A and C can 
now be obtained from statics. Taking moments about A in the free-body diagram of Figure 8.11 
gives:

 RC × 16 + 200 × 8 − 20 × 16 × 8 = 0 ∴ RC = 60 kN

and taking moments about C, or simply summing the vertical forces, gives RA = 60 kN.
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WORKED EXAMPLE 8.6

The portal frame shown in Figure 8.12a is fixed at support A and pinned at support D. 
Considering only the flexural deformation of the frame and assuming linear–elastic material 
behaviour, determine the five reactions shown in the free-body diagram of Figure 8.12b using 
the force method.
Take E = 200 kN/mm2 and I = 250 × 106 mm4. Therefore, EI = 50 × 103 kNm2.

(1) The frame is 2-fold indeterminate and the two reactions at D are selected as the two 
redundants: R1 (= VD) and R2 (= HD). The corresponding release is the removal of the pin 
support at D. A free-body diagram of the resulting primary frame under the action of the 
external loads is shown in Figure 8.13a, together with the corresponding bending moment 
diagram.
Free-body diagrams of the primary frame under the action of a unit vertical force R1  at D (in 
the direction of the redundant vertical reaction at D) and a unit horizontal force R2  at D (in the 
direction of the redundant horizontal reaction at D), together with the corresponding bending 
moment diagrams, are shown in Figure 8.13b and c, respectively.

(2) Displacements at release 1: The vertical displacement (u10) at D (release 1) caused by the 
external load is calculated using the principle of virtual work. The unit vertical load shown in 
Figure 8.13b is treated as the virtual force. Clearly, with no bending in BC and CD, internal work 
due to the external load occurs only in the vertical leg AB, where the bending moment may be 

Figure 8.11 Free-body diagram for Worked Example 8.5.

Figure 8.12 Frame for Worked Example 8.6. (a) 2-fold indeterminate frame. (b) Free-body diagram.
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expressed as M = –400 + 100x kNm, where x is measured upwards from A. The virtual moment 
in AB is uniform at M = 8 kNm. The internal work is determined from Equation 7.14:
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The external work is W uext 10= ×1  and the principle of virtual work gives u10 = −0.128 m.
The vertical displacement (u11) of the primary frame at D (release 1) caused by the unit verti-
cal load at D is next calculated. In AB, κ = M/EI = (+8)/(50 × 103) m−1 and the virtual moment 
M = +8 kNm. In BC, κ = M/EI = (+8 − x)/(50 × 103) m−1 and the virtual moment M x= + −8 kNm, 
where x is measured from B. In CD, the curvature is everywhere zero. The internal work is:
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The external work is W uext 11= ×1  and the principle of virtual work gives u11 = 8.53 × 10−3 m, 
from which f11 = u11/1 = 8.53 × 10−3 m/kN.

Figure 8.13  Free-body diagrams and bending moment diagrams of the primary frame. (a) Due 
to external load. (b) Due to unit value of redundant 1 R1( ). (c) Due to unit value of 
redundant 2  R2( ).
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The vertical displacement (u12) of the primary frame at D (release 1) caused by the unit horizon-
tal load at D is then calculated. In AB, κ = M/EI = (+x)/(50 × 103) and the virtual moment M = +8. 
In BC, κ = M/EI = +4/(50 × 103) and the virtual moment M x= + −8 , where x is measured from 
B. In CD, the virtual moment is everywhere zero. The internal work is:
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The external work is W uext 12= ×1  and the work theorem gives u12 = 3.84 × 10−3 m, based on which 
f12 = u12/1 = 3.84 × 10−3 m/kN.

(3) Displacements at release 2: The horizontal displacement (u20) at D (release 2) caused by the 
external load is calculated using the unit horizontal load shown in Figure 8.13c as the virtual 
force. With no bending in BC and CD, internal work due to the external load occurs only in the 
vertical leg AB, where the moment may be expressed as M = –400 + 100x and virtual moment 
is M x= kNm. The internal work is determined from Equation 7.14:
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The external work is W uext 20= ×1  and with the principle of virtual work: u20 = −0.0213 m.
The horizontal displacement (u21) of the primary frame at D (release 2) caused by the unit verti-
cal load at D is next calculated. In AB, κ = M/EI = (+8)/(50 × 103) and the virtual moment M x= + . 
In BC, κ = M/EI = (+8 − x)/(50 × 103) and the virtual moment M = 4. In CD, the curvature is 
everywhere zero. The internal work is:
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The external work is W uext 21= ×1  and with the principle of virtual work: u21 = 3.84 × 10−3 m, from 
which f21 = u21/1 = 3.84 × 10−3 m/kN.
The horizontal displacement (u22) of the primary frame at D (release 2) caused by the unit 
horizontal load at D is now calculated. In AB, κ = M/EI = (+x)/(50 × 103) and the virtual moment 
M x= + . In BC, κ = M/EI = +4/(50 × 103) and the virtual moment M = +4. In CD, κ = M/EI = +x/
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(50 × 103) and the virtual moment M x= + , where x is measured upward from D. The internal 
work is:
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The external work is W uext 22= ×1  and from the principle of virtual work: u22 = 3.41 × 10−3 m, 
from which f22 = u22/1 = 3.41 × 10−3 m/kN.

(4) Solving for redundant reactions: By enforcing compatibility at releases 1 and 2, we get two 
simultaneous equations in terms of the two unknown redundant reactions R1 = VD and R2 = HD:

 u10 + R1f11 + R2f12 = −0.128 + 0.00853R1 + 0.00384R2 = 0

 u20 + R1f21 + R2f22 = −0.0213 + 0.00384R1 + 0.00341R2 = 0

Solving gives R1 = VD = 24.59 kN and R2 = HD = −21.36 kN.

(5) Find remaining reactions using statics: With the two reactions at D now known, the three 
reactions at A can be determined by enforcing the three equations of statics. Referring to the 
free-body diagram in Figure 8.12b:
Vertical equilibrium: VA + VD = 0 ∴ VA = −24.59 kN
Horizontal equilibrium: 100 + HA + HD = 0 ∴ HA = −78.64 kN
Moment equilibrium about A: MA + 100 × 4 − VD × 8 = 0 ∴ MA = −203.3 kNm

WORKED EXAMPLE 8.7

For the two-span beam shown in Figure 8.9, determine the change in the vertical reactions at 
A, B and C if, during a hot day, exposure to the sun results in a uniform temperature- induced 
curvature of −0.5 × 10−6 mm−1 along the beam. Take EI = 200 × 103 kNm2.

(1) As in Worked Example 8.5, for this 1-fold indeterminate beam, the reaction at B is selected as 
the redundant (release 1). For the statically determinate primary beam, the uniform temperature-
induced curvature causes deformation but no reactions or internal actions as shown in Figure 8.14a. 
The free-body diagram of the primary beam and the corresponding bending moment diagram under 
the action of a unit vertical force at B was shown in Figure 8.10b and is repeated here in Figure 8.14b.

(2) The principle of virtual forces is first used to determine the displacement of the primary 
beam at B caused by the uniform temperature-induced curvature (u10 in Figure 8.14a). Treating 
the unit load shown in Figure 8.14b as the virtual force, the internal work is determined from 
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8.3.2  Flexibility coefficients and transfer functions

We have seen that the deflection (or rotation) at any point in a beam or frame caused by 
flexural deformation can be determined by applying a unit force (or couple) at that point and 

then equating external and internal virtual work using an equation of the form 1u M x= ∫κ d . 
Dividing both sides by the unit virtual force, we get:

 u M x m x= =∫ ∫κ κ( )/ d d1  (8.11)

Equation 7.14. The change in curvature owing to the temperature rise is uniform at ΔκT = –0.5 × 
10−3 m−1 and the virtual moment M x= −0 5.  for the span AB. As in Worked Example 8.3, the 
virtual moment diagram and the actual curvature diagram are symmetrical about point B:
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The external work is W uext 10= ×1  and the principle of virtual work gives u10 = 0.016 m.

(3) As calculated in Worked Example 8.3, the displacement of the primary beam at B (release 
1) caused by a unit load at B (u11 in Figure 8.14b) is u11 = 0.427 × 10−3 m and f11 = 0.427 × 10−3 m/ 
kN.

(4) By enforcing compatibility at point B, the change in the reaction at B is:

 u10 + ΔR1f11 = 0.016 + 0.427 × 10−3ΔR1 = 0

and therefore:

 ΔR1 = ΔRB = −37.5 kN (i.e. downwards)

(5) With the change in the reaction at B determined, the changes in the other vertical reactions 
at A and C can be obtained from statics. By inspection:

 ΔRA = ΔRC = +18.75 kN (i.e. upwards)

Figure 8.14  Free-body diagrams and bending moment diagrams of the primary beam. (a) Due to tem-
perature gradient. (b) Subjected to a unit vertical load at B.
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When the deformation is caused by bending and material behaviour is linear–elastic, κ = 
M/EI. The term m  is known as the transfer function, so called because it transfers a unit 
force or couple applied at a release to a bending moment at a particular section. At any 
point in the beam or frame, the transfer function m  is numerically equal to the bending 
moment at that point caused by the unit load or couple. If a unit force is performing the 
external work, m  has the dimension of length and it is dimensionless if a unit couple has 
been applied to the beam or frame.

When determining the deformation of a beam or frame, deformations caused by axial 
force and shear force are usually very small compared to deformation caused by bend-
ing and are usually ignored. However, if deformation caused by axial force needed to be 

considered, an equation of the form u N x n x= =∫ ∫ε ε( )/ d d1  may be used, where n  is the 

transfer function that transfers a unit force or couple applied at a release to an axial force 
at a particular section.

The transfer functions may be used to calculate the flexibility coefficients associated with 
each redundant reaction or internal action. For example, reconsidering Worked Example 
8.6, the two compatibility equations for the 2-fold indeterminate frame were:

 u10 + R1f11 + R2f12 = 0 and u20 + R1f21 + R2f22 = 0 (8.12a,b)

The displacement at release 1 caused by external loads (or by environmental actions, such 
as temperature changes) is given by (Equation 8.11):

 u
M
EI

m x10 d= ∫ 0
1  (8.13)

The term R1u11 is the displacement at release 1 caused by the redundant reaction R1 and 
may be expressed as:

 R u
M

EI
m xR

1 1
1

11 d= ∫  (8.14)

where MR1
 is the moment caused by the redundant reaction R1 applied to the primary beam 

or frame, and m1  is the transfer function associated with a unit redundant action applied 
along release 1. With this notation, we assume that u11 represents the deflection along release 
1 produced by a unit action of R1.

Dividing both sides of Equation 8.14 by R1 gives:

 u
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EIR
m x

m m
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1
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1 1  (8.15a)

where m1 and m1 are identical, with the only conceptual difference that m1 and m1 transfer a 
real and a virtual force or couple, respectively.

In a similar manner, we can calculate the deflection at a release i caused by a unit action 
applied at release j as follows:

 u
M

EIR
m x

m m
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xij
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j
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j ij= =∫ ∫d d  (8.15b)
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and this can be used to determine the flexibility coefficients fij required in Equations 8.12. In 
fact, fij is equal to the displacement produced by a unit action and is equal in magnitude to 
uij, but different in dimension. fij is defined as a length per unit action, while uij has dimen-
sion of length. On the basis of this notation, the unknown redundant actions can be calcu-
lated from Equations 8.12a and b, which are summarised in matrix form as:
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When determining the moment at any point in the redundant frame of Worked Example 
8.6, we can simply add the moments caused by the external loads on the primary structure 
to those caused by the two redundants (R1 and R2) using the transfer functions:

 M M m R m R= + +0 1 1 2 2  (8.17)

WORKED EXAMPLE 8.8

Re-solve Worked Example 8.6 using transfer functions and flexibility coefficients.

As in Worked Example 8.6, the two reactions at D are selected as the two redundants, R1 (= VD) 
and R2 (= HD), and the frame is reduced to a primary frame by removing the pin support at D. 
The bending moment diagrams for the primary frame caused by the external loads (Mo), by a 
unit vertical force at D (m1) and unit horizontal forces at D (m2) are shown in Figures 8.15 a, b 
and c, respectively.
In AB, m1 8= +  and m x2 = + , where x is measured upward from A. In BC, m x1 8= + −  and 
m2 4= + , where x is measured from B. In CD, m1 0=  and m x2 = + , where x is measured upward 
from D.

Figure 8.15 Bending moment diagrams. (a) M0. (b) m1. (c) m2.
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Because of the external loads, in AB, M0 = –400 + 100x and, in BC and CD, M0 is everywhere 
zero. The vertical displacement u10 at D (release 1) and the horizontal displacement u20 at 
D (release 2) caused by the external load are calculated from:

 
u

M
EI

m x x x10 d d= =
×

− + =
×∫ ∫0

0

4

1 3

0

4
1

50 10
400 100 8

1
50 10

( )
33

2
0
43200 400

0 128

[ ]

.

− +

= −

x x

m

and

 
u

M
EI

m x x x x20 d d= =
×

− + =
×∫ ∫0

0

4

2 3

0

4
1

50 10
400 100

1
50 10

( )
33

2 3
0
4200 100 3

0 0213

[ ]

.

− +

= −

x x /

m

The flexibility coefficients are:
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and

 

f
m m

E I
x

m m
E I

x
m m

E I22

AB BC

d d=








 +









 +∫ ∫ ∫2 2 2 2 2 2 dd

d d d

CD

x

x x x x x











=
×

+ +









∫∫ ∫1
50 10

16
3

2

0

8

0

4

2

0

4






=
×

+ + 

= ×

1
50 10

3 16 3

3 41

3
3

0
4

0
8 3

0
4[ ] [ ] [ ]

.

x x x/ /

110 3− m/kN

For compatibility at release 1 and 2, we have:

 u10 + R1f11 + R2f12 = −0.128 + 0.00853R1 + 0.00384R2 = 0

 u20 + R1f21 + R2f22 = −0.0213 + 0.00384R1 + 0.00341R2 = 0

and solving these two equations gives:

 R1 = 24.59 kN and R2 − 21.36 kN

As in Worked Example 8.6, the other three reactions are obtained using the equations of stat-
ics, giving:

 VA = 24.59 kN (↓), HA = 78.64 kN (←), MA = 203.3 kNm (↶)

 VD = 24.59 kN (↑) and HD = 21.36 kN (←)

We can now calculate the moments at A, B, C and D using Equation 8.17:

 M M m R m RA 0A 1A 1 A= + + = − + × + × − = −2 2 400 8 24 59 0 21 36 202. ( . ) ..6 kNm

 M M m R m RB 0B 1B 1 B= + + = + × + × − = +2 2 0 8 24 59 4 21 36 111 4. ( . ) . kkNm

 M M m R m RC 0C 1C 1 C k= + + = + × + × − = −2 2 0 0 24 59 4 21 36 86 1. ( . ) . NNm

and the final reactions and bending moment diagram for the indeterminate frame are shown in 
Figure 8.16. 

Figure 8.16 Reactions and bending moment diagram (drawn on tension side).
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For a n-fold indeterminate beam or frame, after n redundant reactions (or internal actions) 
are selected and the corresponding n releases are made to form a stable primary structure, 
the n compatibility equations may be expressed as:
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= 0  (8.18)

When axial deformations are significant, these need to be included in the determina-
tion of the release displacements caused by external loads and in the determination of the 
flexibility coefficients. This can be done using the more general forms of Equations 8.13 
and 8.15:

 u
M
EI

m x
N
EA

n xi i i0
0 0= +∫ ∫d d  (8.19)

 f
m m

EI
x

n n

EA
xij

j i j i= +∫ ∫d d  (8.20)

8.3.3  Deformations of statically indeterminate beams and frames

After the reactions have been determined and then used to calculate the internal actions in a 
beam or frame (M, N, etc.), the displacement at any point may be readily determined using 
a unit virtual force applied at that point and then applying the principle of virtual work. The 
curvature and axial strain on every cross-section represent the real displacement field, while 
any distribution of bending moments and axial forces that is in equilibrium with the unit 
virtual force may be adopted as the virtual force field. Any stable primary beam or frame 
can be selected to establish the virtual force field.

WORKED EXAMPLE 8.9

For the frame analysed in Worked Examples 8.6 and 8.8, determine the horizontal displacement 
of the frame at point B caused by bending deformation. As before, EI = 50 × 103 kNm2.

For the virtual force method, the frame may be reduced to a statically determinate primary 
frame by removing the pin support at D. We will call this primary frame 1. Another possibility 
is to create the primary frame by setting MA and HA to zero (i.e. by replacing the fixed support 
at A with a roller support) — primary frame 2. Figure 8.17 shows the reactions and bending 
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moment diagrams caused by a unit horizontal virtual force applied at B for each of these two 
primary frames.

Flexural deformations: The bending moment diagram and reactions caused by the external 
load on the frame are shown in Figure 8.16. In Member AB, (M0)AB = −203.3 + 78.64x, where x 
is measured upward from A. In BC, (M0)BC = +111.3 − 24.59x, where x is measured from B. In 
CD, (M0)CD = −21.36x, where x is measured upward from D.
Considering the virtual force field for primary frame 1, internal work only occurs in mem-
ber AB, the virtual moment caused by the unit virtual force at B is ( )m xAB = − +4 . Therefore, 
W uext B= 1  and:
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and the horizontal displacement at B caused by bending is uB = 0.0157 m.

Figure 8.17  Reactions and bending moment diagrams in primary frames. (a) Primary frame 1. 
(b) Primary frame 2.
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PROBLEMS

 8.1 Determine the forces in each member of the truss shown using the force method. 
Assume EA is the same for all members.

 8.2 Determine the horizontal displacement at B for the truss of Problem 8.1.

 8.3 Determine the forces in each member of the truss shown using the force method. 
Assume all members have the same EA.

 8.4 Determine (i) the vertical displacement at A and (ii) the horizontal displacement at 
D for the truss of Problem 8.3.

The same results are obtained by considering the virtual force field for primary frame 2. In this 
case, internal work only occurs in members BC and CD, with ( ) .m xBC = −0 5  and ( )m xCD = − . 
With W uext B= 1  and:
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The horizontal displacement at B caused by bending is uB = 0.0157 m (as previously calculated 
using primary frame 1).
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 8.5 For the truss of Problem 8.3, determine the change in member forces caused by a tem-
perature rise of 30°C in the top chord ABD. Take EA = 200 × 103 kN and the coeffi-
cient of thermal expansion is αT = 10 × 10–6/°C for all members. Use the force method.

 8.6 Determine the forces in each member of the truss shown using the force method, if 
AAB = AAC = ABD = ACE = ADF = AEG = AFH = AGH = 10,000 mm2, AAD = ACD = ACF = 
ADE = AEF = AEH = 3000 mm2 and E = 20 kN/mm2.

 8.7 Determine (i) the vertical displacement at E and (i) the horizontal displacement at 
A for the truss of Problem 8.6.

 8.8 Determine the forces in each member of the truss shown using the force method. 
Assume all members have the same elastic modulus and cross-sectional area.

 8.9 Determine the vertical displacement at D for the truss of Problem 8.8.

 8.10 For the truss of Problem 8.8, determine the change in member forces caused by a 
temperature rise of 30°C in members AB, BC, CE, EG and GH. Take EA = 150 × 103 
kN and the coefficient of thermal expansion is αT = 10 × 10−6°C for all members.

 8.11 For the truss shown, the top chord members AB = BD = DF = FG = 5.5 m. For the 
loading shown, determine the reactions and the forces in each member using the force 
method. Assume all members have the same elastic modulus and cross-sectional area.
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 8.12 If the members CD and EG are selected as the redundants in the truss shown, the 
resulting primary truss is the same as that of Problem 4.7. The three applied loads 
are at right angles to the top chord ABDG. If all members have the same EA, deter-
mine the forces in each member of the truss using the force method.

 8.13 Determine the forces in each member of the truss shown using the force method. 
Also calculate the vertical deflections at C. Assume EA = 100 × 103 kN for all 
members.

 8.14 If the flexural rigidity EI of each of the propped cantilevers shown is constant, 
using the force method determine (i) the reactions at A and B, and (ii) the deflection 
at the mid-span of each beam in terms of the load (w or F), the span L and flexural 
rigidity EI.

 8.15 For the three propped cantilever beams of Problem 8.14, determine the rotation at 
the roller support at A using the force method.
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 8.16 If the flexural rigidity EI of each of the fixed-ended beams shown below is con-
stant, determine (i) the reactions at A and B, and (ii) the deflection at the mid-span 
of each beam in terms of the load (w or F), the span L and flexural rigidity EI. Use 
the force method.

 8.17 If EI is constant throughout the beam shown, determine (i) the reactions at A and B 
induced by the couple MA applied at the support A, and (ii) the rotation at support 
A. Use the force method.

 8.18 For the beam shown, determine the reactions at A and B using the force method and 
draw the bending moment diagram. Assume EI is constant along the beam.

 8.19 If EI = 40 × 103 kNm2, determine (i) the vertical deflection at C and (ii) the slope of 
the beam at C for the beam of Problem 8.18.

 8.20 The beam of Problem 8.18 has a uniform temperature of 20°C at 6:00 a.m. During 
the morning, the top surface of the beam is exposed to the sun, and at midday, the 
temperature varies from 40°C at the top surface of the beam to 20°C on the bottom 
surface. Calculate the change in reactions at A and B using the force method. Take 
EI = 40 × 103 kNm2 and the coefficient of thermal expansion is αT = 10 × 10–6/°C. 
The height of the cross-section is h = 400 mm.
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 8.21 For the beam shown, determine the reactions at A, B and C using the force method 
and draw the bending moment diagram. Assume EI is constant along the beam.

 8.22 For the beam of Problem 8.21, if EI = 50 × 103 kNm2, determine the vertical deflec-
tion at the midpoint of span AB and the slope of the beam at A.

 8.23 If EI is constant throughout the frame shown below, determine the reactions at A 
and C using the force method, and draw the bending moment diagram for the frame.

 8.24 If EI is constant throughout the frame shown, determine the reactions at A and D 
using the force method, and draw the bending moment diagram for the frame.

 8.25 If EI = 40 × 103 kNm2, determine the vertical deflection at C and the horizontal 
displacement at D for the frame of Problem 8.24.

 8.26 If EI is constant throughout the frame shown, determine the reactions at A and D 
using the force method, and draw the bending moment diagram for the frame.
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 8.27 If EI = 20 × 103 kNm2 throughout the frame of Problem 8.26, determine the hori-
zontal displacement at B and the vertical deflection at E.

 8.28 If EI is constant throughout the frame shown, determine the reactions at A and D 
using the force method, and draw the bending moment diagram for the frame.

 8.29 Determine the deflection at the mid-span of member BC in the frame of Problem 
8.28, if EI = 40 × 103 kNm2 throughout.

 8.30 If EI is constant throughout the frame shown below, determine the reactions at A, 
C and D using the force method, and draw the bending moment diagram for the 
frame.

 8.31 Determine the deflection at the mid-span of member BC in the frame of Problem 
8.30, if EI = 40 × 103 kNm2 throughout. Also determine the horizontal displace-
ment at D.

 8.32 The frame shown has a pinned support at A and a roller support at F. A pin-ended 
tie restrains the frame at B and E. If the flexural rigidity of members AC, CD and DF 
is EI = 20 × 103 kNm2 and the axial rigidity of the tie BE is EA = 1.2 × 106 kN, deter-
mine the frame reactions and the axial force in member BE using the force method.

 8.33 For the frame analysed in Problem 8.32, calculate the horizontal displacements at 
points D and F.
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Chapter 9

Moment distribution

9.1  INTRODUCTION

In Chapter 6, we discussed the slope-deflection equations that prove useful for the analysis 
of relatively simple statically indeterminate beams and frames. In Chapter 8, we discussed 
the force method (or flexibility method) and demonstrated that it too proved to be a con-
venient approach for the analysis of simple indeterminate members with one or two redun-
dancies. In this chapter, we will consider a method of analysis that falls under the category 
of the displacement (or stiffness) method. The particularity of the displacement method is 
that the problem is formulated in terms of unknown displacements that, once determined, 
enable the entire structural model to be established. Displacement methods are usually the 
most convenient approaches for the analysis of indeterminate structures with more than one 
or two redundant reactions.

In this chapter, a form of the displacement method known as moment distribution is 
presented. Moment distribution is suitable for the analysis of statically determinate beams 
and frames by manual calculation and is a useful introduction to the more general stiffness 
methods of analysis discussed subsequently in Chapters 10 through 13.

Moment distribution was developed by Hardy Cross in the early 1930s. At that time, it 
represented a very significant advancement in structural analysis and, in the days before 
computers, it was widely and routinely used for the analysis of continuous beams and 
frames. The method begins by assuming that all members in a continuous beam are fixed 
at the internal supports or that all members in a frame are fixed at the joints. The fixed-
end moments (see Appendix B) for each member are then determined and the unbalanced 
moment at each joint is calculated as the sum of the fixed-end moments of all the members 
entering the joint. Each joint is then released one at a time, by applying a balancing moment 
to the joint, equal and opposite to the unbalanced moment at that joint. This balancing 
moment is then distributed to the members framing into the joint according to their rela-
tive rotational stiffness. When a balancing moment Mbal is applied at the end of a member 
that is fixed at the far end, a carry-over moment of magnitude Mbal/2 is induced at the far 
end, as observed in the derivation of the equations used in the slope-deflection method 
(see Equations 6.17a and b). This results in new unbalanced moments at adjacent joints. 
The joint is then re-locked and an adjacent joint is unlocked and balanced. This process of 
moment distribution continues until the unbalanced moment at each joint is small enough 
to ignore and the final end moments and end rotations of each member are determined. It 
is an iterative process that approaches the final solution by successive approximation. As 
we will see, the method is relatively simple, repetitive and suitable for manual calculation.
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9.2  BASIC CONCEPTS

Sign Convention for External Moment and Rotation: The sign convention adopted for fixed-
end moments and joint rotations in Section 6.5 is adopted here. Namely, external moments 
and rotations are positive when they act in an anti-clockwise sense. With this sign conven-
tion, the direction of positive moment is not affected by the orientation of the members 
(horizontal, vertical or inclined) and the unbalanced moment at any joint is simply the alge-
braic sum of the end moments of the members framing into the joint. After the end moments 
of each member are determined, the signs of the internal actions (bending moments, shear 
forces and axial forces) are determined using the statics sign convention adopted throughout 
the book (refer Section 3.3).

Fixed-End Moments:  In Section 6.5, we saw how to determine the moment reactions at 
each end of a fixed-ended beam (i.e. the fixed-end moments). For some common loading 
conditions, the fixed-end moments are given in Appendix B. For other loading conditions, 
the fixed-end moments can be readily calculated using the moment-area method, the 
conjugate beam methods or other suitable approaches outlined in previous chapters.

Rotational Stiffness:  We saw in Section 6.5 (in particular Equations 6.12 through 6.14) 
that when a moment MA is applied to the pin end A of a beam AB that is fixed at its far end, 
such as that shown in Figure 9.1, the moment reaction at B is MA/2 and the rotation at A is 
given by:

 θA A= L
EI

M
4

 (9.1)

The rotational stiffness (kAB) of a span AB, pinned at A and fixed at B, such as that shown 
in Figure 9.1, is defined here as the moment that must be applied at end A to cause a unit 
rotation at end A. From Equation 9.1:

 k
EI
LAB = 4

 (9.2)

Joint Stiffness and Distribution Factors:  When n members are connected at a joint, the 
joint stiffness KJ is the sum of the rotational stiffness of each member at the joint and is 
calculated as:

 K
E I
Li

n
i i

i
J = ∑

=1

4  (9.3)

Figure 9.1 Propped cantilever subjected to an end moment.
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The joint stiffness KJ is equal to the moment required to rotate the joint through an angle 
of 1 radian. For example, the stiffness of joint C in the frame shown in Figure 9.2 (KJ.C) is 
obtained as:

 KJ.C = kAC + kBC + kCD + kCF =  120 + 130 + 150 + 100 = 500 kNm

The fraction of a balancing moment at a joint that is distributed to a particular member is 
called the distribution factor (DF) for that member and is the ratio of the rotational stiffness 
of the member to the joint stiffness. For a joint with n members framing into it, the DF for 
the i-th member is:
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 (9.4)

For example, the distribution factors for the four members framing into joint C of the 
frame in Figure 9.2 are:

 DFAC
AC

J.C

= = =k
K

120
500

0 24.  DFBC = =130
500

0 26.

 DFCD = =150
500

0 30.  DFCF = =100
500

0 20.

and the sum of all the distribution factors at the joint is 1.0.
When all members of a beam or frame are made from the same material, i.e. E is the same 

for each member, the distribution factor of Equation 9.4 reduces to:

 
DF

/

/J
i

i i i

i

n

i i

k
K

I L

I L
= =

∑
=

( )

( )
1

 (9.5)

and the term Ii/Li is known as the relative stiffness factor for the i-th member.

Figure 9.2 Rotational stiffness (4EI/L) of frame members (kNm).
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Carry-over Factor:  When a balancing moment Mbal.A is applied to member AB at joint A, 
a carry-over moment is induced at the far end of the member B. We have seen that if end B 
is fixed, this carry-over moment is Mbal.A/2. The carry-over factor (COF) is the ratio of the 
carry-over moment at B to the balancing moment at A and is therefore:

 COF = 0.5 (9.6)

9.3  CONTINUOUS BEAMS

9.3.1  Basic approach

We will demonstrate the application of moment distribution by analysing the two-span 
beam ABC shown in Figure 9.3. Let us assume that EI is constant throughout.

Step 1 — Fixed-End Moments: Assuming all members are fixed-ended, the fixed-end 
moments for each span are determined. From Appendix B:

For span AB:

 ( )M
wL

FE.A AB kNm= − = − − × =
2 2

12
24 20

12
800

 ( )M
wL

FE.B AB kNm= = − × = −
2 2

12
24 20

12
800

For span CB:
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Figure 9.3 Example of continuous beam.
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Step 2 — Relative Stiffness: Determine the relative stiffness of each member.
For span AB: (I/L)AB = I/20
For span BC: (I/L)BC = I/15

Step 3 — Distribution Factors: Determine the distribution factors at each joint.
At A: Since the rotation at the fixed support at A is zero, its stiffness is infinite. From 

Equation 9.5, the distribution factor for member AB at A is:

 
DF

/

/

/
/AB =

∑
=
∞ +

=

=

( )

( )

( )
( )

I

I L

I
I

i

n

i i

20 20
20

0

1

At B: From Equation 9.5, the distribution factors for span AB and span BC at B are:
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At C: Since the support at C is a roller with zero rotational stiffness, the distribution fac-
tor for member BC at C is:
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Step 4 — Moment Distribution: Carry out the moment distribution by releasing one joint 
at a time, distributing the balancing moments to the relevant spans and applying the carry-
over moments. Figure 9.4 shows a free-body diagram of the beam and a suitable sequence 
of calculations.

In the first step of Figure 9.4, joint B is unlocked. The unbalanced moment is the sum 
of the fixed-end moments at B from member BA and members BC, i.e. −800 + 500 = −300 
kNm. A balancing moment of +300 kNm is applied to the joint and distributed to members 
BA and BC in accordance with the distribution factors:

 0.429 × 300 = +128.7 kNm is applied to member BA at joint B

 0.571 × 300 = +171.3 kNm is applied to member BC at joint B

With these moments applied at the unlocked end B of each member, carry-over 
moments are induced at the far (fixed) end of each member. The carry-over moment 
induced at joint A is 0.5 × 128.7 = +64.3 kNm and that at joint C is 0.5 × 171.3 = 
+85.7 kNm.

The next step is to lock joint B and unlock joint C (step 2 in Figure 9.4). The unbalanced 
moment at C is the sum of the fixed-end moment at C and the carry-over moment calculated 
above, i.e. −500 + 85.7 = −414.3 kNm. A balancing moment of +414.3 kNm is applied to 
support C and, as the distribution factor for member CB is 1.0, the entire balancing moment 
is applied to member CB, thereby inducing a carry-over moment at B of 0.5 × 414.3  = 
+207.2 kNm.
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Now we lock C and release B (step 3 in Figure 9.4). The unbalanced moment at B is 
now the carry-over moment of +207.2 kNm determined in the previous step. A balancing 
moment of −207.2 kNm must be applied at B distributed to BA and BC in accordance with 
their distribution factors as done previously.

We continue releasing and relocking joints B and C in turn, balancing the joint and car-
rying over moments until the unbalanced moments become small enough to ignore. In this 
example, support A is fixed, the distribution factor is therefore zero and the carry-over 
moments from joint B simply accumulate at the fixed support.

Figure 9.4 Summary of calculations — consecutive balancing.
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When the moments being balanced and the carry-over moments are suitably small, the 
end moments on each span are established by summing the fixed-end moments and all the 
balancing and carry-over moments associated with each member at each end. These are 
shown in the bottom row of Figure 9.4.

It is noted that because the support at A is fixed with a distribution factor of 0, there is no 
need to unlock A and the carry-over moments from B simply accumulate at A. Although for 
this simple example, there is limited choice in the order in which the supports are released, 
it can be easily demonstrated that the final solution does not depend on the sequence 
selected.

In Figure 9.4, we applied the carry-over moments after each unlocked support was bal-
anced and before relocking the support. As an alternative to this consecutive balancing 
approach, we can balance all supports at the same step and only carry-over moments after 
all the supports have been unlocked and relocked. In Figure 9.5, the beam is re-analysed 
using such a simultaneous balancing approach.

In both Figures 9.4 and 9.5, further iterations would refine the answers to any desired 
degree of accuracy, but for most practical purposes, the approximations arrived at here are 
sufficiently accurate.

Step 5 — Reactions and Internal Actions: With the end moments for each span deter-
mined, the vertical reactions and internal actions can be determined using the principles of 
statics. The free-body diagrams for each span of the beam of Figure 9.3 are shown in Figure 
9.6, with the end moments and reactions shown in their actual directions. The reaction VB 
has been subdivided into VBA and VBC, which represent the reaction components from mem-
bers AB and BC, respectively.

Figure 9.5 Summary of calculations — simultaneous balancing.
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Moment equilibrium about support B in Figure 9.6a gives: VA = 241.9 kN (↑)
Moment equilibrium about support A in Figure 9.6a gives: VBA = 238.1 kN (↑)
Moment equilibrium about support B in Figure 9.6b gives: VC = 98.3 kN (↑)
Moment equilibrium about support C in Figure 9.6b gives: VBC = 201.7 kN (↑)
The vertical reaction at the support at B is: VB = VBA + VBC = 439.8 kN (↑)

A quick check of vertical equilibrium of the whole structure indicates that the above reac-
tions are correct.

With the reactions for each span determined, the bending moment and shear force dia-
grams can be determined using the principles outlined in Chapter 3 and are shown in 
Figure 9.7.

Figure 9.6  Free-body diagrams of each span. (a) Free-body diagram of span AB. (b) Free-body diagram of 
each span BC.

Figure 9.7 Shear force and bending moment diagrams.
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9.3.2  Modification for an end span with a pinned support

The convergence of the moment distribution process can be speeded up if a pinned end 
(such as support C in Figure 9.3) is treated as a pin, instead of being locked with a fixed-end 
moment and a distribution factor of 1.0.

First, the fixed-end moment at the pinned end is zero and the fixed-end moment at the 
continuous end may be obtained for common loading cases from the expressions given for 
propped cantilevers in the right column of Appendix B.1. The relationship between the 
fixed-end moments of a beam fixed at both ends to an identical beam with one end pinned 
is shown in Figure 9.8. The fixed-end moment at A in the beam pinned at B, MFE*.A can be 
obtained from the fixed-end moments of the beam fixed at both ends using MFE*.A = MFE.A − 
0.5MFE.B, as derived in Equation 6.20 when deriving the expressions for the slope-deflection 
method. The term –0.5MFE.B is the carry-over moment induced at A when B is unlocked and 
changed to a pin.

In this case, the rotational stiffness of the end span must also be adjusted. It can be readily 
shown from Equation 6.19 that, if a beam is pinned at end B (instead of fixed) and continu-
ous at end A, the rotation at A causes a moment MA of:

 M
EI
LA A= 3 θ  (9.7)

and the rotational stiffness (kAB) can be calculated as:

 
k

EI
LAB = 3

 (9.8)

which corresponds to 3/4 of the rotational rigidity of an internal span (Equation 9.2). 
Because of this, the relative stiffness factor used in the calculation of the joint stiffness and 
distribution factor, when all members are made from the same material, is 0.75I/L.

We will now re-analyse the beam of Figure 9.3 making these adjustments for the end span 
BC. From Appendix B, the fixed-end moments for span BC are now MFE*.B = +750 kNm and 
MFE*.C = 0.

The relative stiffness of the each span is now:

 Span AB: (I/L)AB = I/20 Span BC: 0.75(I/L)BC = I/20

Figure 9.8 End moments for fixed-ended and propped cantilever beams subjected to member loads.
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and the distribution factors at support B become:

 
DF

/
/ /AB =

+
=( )

( ) ( )
.

I
I I

20
20 20

0 5 and DF
/

/ /BC =
+

=( )
( ) ( )

.
I

I I
20

20 20
0 5

In Figure 9.9, the moment distribution carried out in Figure 9.4 is repeated with a much 
more rapid convergence.

WORKED EXAMPLE 9.1

For the beam in Figure 9.10, calculate the reactions at the supports, and draw the bending 
moment and shear force diagrams. Assume EI is constant throughout.

Fixed-end moments

Span AB:

 (MFE*.A)AB = 0 and ( )M
wL

FE*.B AB kNm= = − × = −
2 2

8
20 10

8
250

Figure 9.10 Beam for Worked Example 9.1.

Figure 9.9 Summary of calculations — modification for end span BC.



Moment distribution 309

Span BC:

 
( )M

wL
FE.B BC kNm= − = − − × =

2 2

12
20 12

12
240  and ( )M

wL
FE.C BC kNm= + = −

2

12
240

Span CD:

 
( ) .M

wL
FE.C CD kNm= − = − − × = +

2 2

12
20 14

12
326 7  and ( ) .M

wL
FE.D CD kNm= = −

2

12
326 7

Span DE: DE is a cantilever with the value of moment at D calculated from statics:

 ( ) ( )M
wL

PLFE.D DE kNm= − − = − − × − − × = +
2 2

2
20 3

2
100 3 390

Relative stiffness

Span AB: (0.75I/LAB) = 0.075I
Span BC: (I/LBC) = 0.0833I
Span CD: (I/LCD) = 0.0714I
and since DE is a cantilever free to rotate at D, and with no restraint at all at E, it is assigned 
zero rotational stiffness.

Distribution factors

At support A: DFAB = 1.0

At support B:

 DFAB =
+

=( . )
( . ) ( . )

.
0 075

0 075 0 0833
0 474

I
I I

 DFBC =
+

=( . )
( . ) ( . )

.
0 0833

0 075 0 0833
0 526

I
I I

At support C:

 
DFBC =

+
=( . )

( . ) ( . )
.

0 0833
0 0833 0 0714

0 539
I

I I

 DFCD =
+

=( . )
( . ) ( . )

.
0 0714

0 0833 0 0714
0 461

I
I I

At support D:

 DFCD =
+

=( . )
( . )

.
0 0714

0 0714 0
1 0

I
I

We can now proceed with the moment distribution.
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Moment distribution

Reactions and internal actions

Taking moments about B in the free-body diagram of span AB, shown in Figure 9.11a, gives:

 VA × 10 + 236 – 20 × 10 × 5 = 0 ∴ VA = 76.4 kN

Taking moments about C in the free-body diagram of ABC, shown in Figure 9.11b:

 76.4 × 22 + VB × 12 + 270 – 20 × 22 × 11 = 0 ∴ VB = 240.8 kN

Taking moments about C in the free-body diagram of CDE, shown in Figure 9.11c:

 −VD × 14 − 270 + 20 × 17 × 8.5 + 100 × 17 = 0 ∴ VD = 308.6 kN

Summing the forces vertically, we get:

 76.4 + 240.8 + VC + 308.6 kN − 20 × 39 − 100 = 0 ∴ VC = 254.2 kN

Figure 9.11 Free-body diagrams for Worked Example 9.1.
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These reactions can be checked by taking moments about any point on a free-body of the entire 
beam.
Using the procedures discussed in Chapter 3, the shear force and bending moment diagrams 
are shown in Figure 9.12.

WORKED EXAMPLE 9.2

For the beam in Figure 9.10, calculate the change in reactions at the support and draw the bend-
ing moment and shear force diagrams induced by a (downwards) settlement of support C by 
80 mm. Assume EI = 50 × 103 kNm2 throughout.

Fixed-end moments

Because of the settlement ΔC = −80 mm, the fixed-end moments in spans BC and CD are as 
follows:

Span BC: ( ) ( )
( . )

M M
EI
LFE.B BC FE.C BC

C= = − = − × × × −6 6 50 10 0 08
12

3∆
22

166 7
2

= . kNm

Span CD: ( ) ( )
( . )

M M
EI
LFE.C CD FE.D CD

C= = = × × × −6 6 50 10 0 08
142

3

2

∆ == −122 4. kNm

Figure 9.12 Shear force and bending moment diagrams for Worked Example 9.1.
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Relative stiffness and distribution factors

The relative stiffness and distribution factors are the same as calculated in Worked Example 9.1.

Moment distribution

Reactions and internal actions

The reactions, shear forces and bending moments are shown in Figure 9.13.

Figure 9.13 Shear force and bending moment diagrams for Worked Example 9.2.
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9.4  FRAMES WITHOUT SIDESWAY

Frames in which joint translation is prevented may be analysed using moment distribution 
in the same way as described for continuous beams. The same is true for frames that are 
symmetrical and are symmetrically loaded since such frames will not sway. We are of course 
assuming that displacements are small compared to the frame geometry and the effect of 
axial forces on the bending in frame members is negligible. Similar considerations were 
provided in Section 6.5.7 when analysing frames without sidesway with the slope-deflection 
method.

WORKED EXAMPLE 9.3

The frame shown in Figure 9.14 was analysed previously in Worked Example 6.11 and is pre-
vented from lateral movement by the roller support at C. The joints of the frame are therefore 
prevented from translation. Analyse the frame using moment distribution and calculate the sup-
port reactions caused by the applied loads.

Fixed-end moments

Member AB: (MFE.A)AB = (MFE.B)AB = 0

Member BC: From Appendix B, we get:

 ( ) .MFE.B BC kNm= − − × × − − × × = +100 6 3
9

60 3 6
9

173 3
2

2

2

2

 ( ) .MFE.C BC kNm= − × × + − × × = −100 3 6
9

60 6 3
9

146 6
2

2

2

2

Member CD: (MFE.C)CD = (MFE.D)CD = 0

Figure 9.14 Frame for Worked Example 9.3.
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Relative stiffness

 Member AB: (I/LAB) = 0.2I
 Member BC: (I/LBC) = 0.111I
 Member CD: (0.75I/LCD) = 0.15I

Distribution factors

At support A: DFAB = 0

At joint B:

 DFAB =
+

=( . )
( . ) ( . )

.
0 2

0 2 0 111
0 643

I
I I

 DFBC =
+

=( . )
( . ) ( . )

.
0 111

0 2 0 111
0 357

I
I I

At joint C:

 
DFBC =

+
=( . )

( . ) ( . )
.

0 111
0 111 0 15

0 426
I

I I

 DFCD =
+

=( . )
( . ) ( . )

.
0 15

0 111 0 15
0 574

I
I I

At support D:

 DFCD =
+

=( . )
( . )

.
0 15

0 15 0
1 0

I
I

Moment distribution

As expected, these end moments are exactly the same as those determined in Worked Example 
6.11. The support reactions are determined from statics as done previously in Worked Example 
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9.5  FRAMES WITH SIDESWAY

In a frame where joint translation is not prevented by lateral restraints, sidesway will 
occur if the frame is not symmetric, if the vertical loading is not symmetric or if lateral 
loads are applied to the frame. In reality, construction inaccuracies, dimensional toler-
ances and variations in material properties will ensure that all frames without lateral 
restraints will sway.

Let us consider the single bay frame shown in Figure 9.16a. If we ignore the axial 
deformation of the members, it is clear that the lateral displacement (sway) of B and C will 
be the same and the only possible joint translation is shown in Figure 9.16b. This frame has 
one degree of freedom with respect to joint translation. The magnitude of this translation, 
referred to as Δ, depends on the stiffness of the frame members and it will affect the final 
distribution of moments in the frame.

A superposition approach may be used to include the effects of joint translation whereby 
sway is initially ignored by introducing a fictitious lateral support and the moment 
distribution Mo caused by the applied loads is determined. The reaction that develops 

6.11 and shown on the free-body diagram of the frame in Figure 9.15. The axial force, shear 
force, and bending moment diagrams for the frame were plotted in Figure 6.29.

Figure 9.15 Free-body diagram for Worked Example 9.3.

Figure 9.16 Single bay frame with sidesway.
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at the fictitious support Ro is calculated. Next, the frame with the fictitious support is 
subjected to an arbitrary sway (support settlement) and the moments caused by this sway 
MΔ are determined. The reaction at the fictitious support RΔ caused by the arbitrary sway 
is determined from statics. In the real frame, the reaction at the fictitious support must be 
zero, and so:

 Ro + fΔRΔ = 0 (9.9)

where fΔ is the ratio of the actual sway to the arbitrary sway. The magnitude of the sway 
required to satisfy Equation 9.9 is determined and the corresponding sway moments fΔMΔ 
are established. The moment at any point in the sway frame M is obtained by adding the 
moment calculated at that point without sway to the moment calculated due to sway:

 M = Mo + fΔMΔ (9.10)

WORKED EXAMPLE 9.4

Analyse the frame shown in Figure 9.17 using moment distribution and calculate the support 
reactions. Assume EI = 50 × 103 kNm2 throughout.

Introduce fictitious support at C

In Worked Example 9.3, the moments in this frame with a lateral support at C were determined 
and the horizontal reaction at C was calculated as HC = 19.8 kN (←) = Ro.
The reactions and the bending moment diagram assuming lateral restraint at C are shown in 
Figure 9.18.

Introduce arbitrary sway Δ
We now calculate the moments in the frame caused by an arbitrary sway Δ (see Figure 9.19).

Figure 9.17 Frame for Worked Example 9.4.
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Fixed-end moments

We will now induce an arbitrary sway of say Δ = −0.01 m (moving BC to the right).
In Member AB:

 ( ) ( )
, ( . )

M M
EI
LFE.A AB FE.B AB= = − = − × × −6 6 50 000 0 01

52 2

∆ ==120 kNm

In Member DC:

 ( )
, ( . )

M
EI
LFE*.C DC kNm= − = − × × − =3 3 50 000 0 01

5
60

2 2

 (MFE*D)DC = 0

Figure 9.18  Frame with fictitious support at C. (a) Frame with restraint at C. (b) Free-body with reac-
tions, (Ro). (c) Bending moment diagram, Mo (kNm).

Figure 9.19 Frame with arbitrary sway.
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Moment distribution

The relative stiffness of each member and the distribution coefficients are as determined in 
Worked Example 9.3.

The support reactions caused by the arbitrary sway of −0.01 m are determined from statics and 
shown on the free-body diagram of the frame in Figure 9.20a. The bending moment diagram 
caused by the arbitrary sway is shown in Figure 9.20b.
The reaction at the fictitious support at C is RΔ = 33.9 kN (→). From Equation 9.9, and taking 
forces acting to the right (→) as positive, we get:

 Ro + fΔRΔ = −19.8 + fΔ × 33.9 = 0 ∴ fΔ = 0.584

The actual sway is fΔ multiplied by the arbitrarily selected sway of −0.01 m, i.e. −0.00584 m, and 
the end moments caused by sway are the end moments calculated in the moment distribution 
above multiplied by fΔ.
The final reactions for the frame are shown in the free-body in Figure 9.21a and are the sum of 
reactions shown in Figure 9.18b (Ro) and those shown in Figure 9.20a multiplied by fΔ (i.e. fΔRΔ). 

Figure 9.20  Reactions and bending moments caused by Δ = −0.01 m. (a) Reactions. (b) Bending 
moment diagram, MΔ (kNm).
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If a frame has n degrees of freedom with respect to joint translation, a fictitious support may 
be introduced to prevent each possible displacement and the frame is first analysed under the 
applied loads. There will be a reaction caused by the loads at each of the n fictitious supports 
(Roi where i = 1 to n). An arbitrary displacement (sway) is then introduced at each fictitious 
support (one support at a time) and the frame analysed, i.e. n arbitrary displacements and 
n separate analyses. For each analysis, the moment distribution is performed, and from the 
end moments MΔi, the n fictitious reactions are determined. The requirement that, in the 
real structure, the reaction at each fictitious support must be zero (Equation 9.9) results in 
n simultaneous equations:

 

R f R f R f R

R f R
n no

o2

1 1 1 2 2

1 1

1 1 1 0+ + + + =
+

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆

( ) ( ) ( )

(22 2 2 02 2

1 1 2

) ( ) ( )

( )

+ + + =
⋅
⋅
⋅
⋅

+ +

f R f R

R f R n f

n n

n

∆ ∆ ∆ ∆

∆ ∆ ∆o RR n f R nn n∆ ∆ ∆2 0( ) ( )+ + =

 (9.11)

where RΔj(i) is the reaction at the i-th fictitious support owing to the j-th arbitrary 
displacement. Solving these equations gives the n correction factors (ratios of actual to 
arbitrary sway) fΔ1 to fΔn. The actual moment in the frame at any point is then given by:

 M = Mo + fΔ1MΔ1 + fΔ2MΔ2 + + fΔnMΔn (9.12)

The final bending moments diagram for the frame is shown in Figure 9.21b and is obtained from 
Equation 9.10 as the sum of the bending moments in Figure 9.18c (Mo) and those shown in Figure 
9.20b multiplied by fΔ (i.e. fΔMΔ).

Figure 9.21  Frame for Worked Example 9.4. (a) Free-body. (b) Bending moment diagram, Mo + MΔ 
(kNm).
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WORKED EXAMPLE 9.5

Analyse the frame shown in Figure 9.22 using moment distribution and calculate the support 
reactions. Assume EI = 50 × 103 kNm2 throughout.

The frame has two degrees of freedom with regard to joint translation as indicated in Figure 9.23, 
where fictitious supports are introduced at D and E.

Figure 9.22 Fictitious restraints and arbitrary displacements.

Figure 9.23  Fictitious supports and reactions at D and E. (a) Due to applied loads. (b) Due to arbitrary 
displacement Δ1. (c) Due to arbitrary displacement Δ2.
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(1) Analysis with Zero Sidesway (with fictitious supports at D and E)
Fixed-end moments: From Appendix B, we get:
Member AB:

 ( ) . ( )M MFE.A AB FE.B ABkNm= − − × = + = − × = −60 5
8

37 5
60 5

8
337 5. kNm

Member BC:

 ( ) ( )M MFE.B BC FE.C BCkNm= − − × = + = − × = −80 5
8

50
80 5

8
50 kkNm

Member CD:

 ( ) .M FE.C CD kNm= − − × × − − × × = +100 8 4
12

60 4 8
12

231 1
2

2

2

2

 ( ) .M FE.D CD kNm= − × × + − × × = −100 4 8
12

60 8 4
12

195 5
2

2

2

2

Members BE, DE and EF:

 (MFE.B)BE = (MFE.E)BE = 0 (MFE.D)DE = (MFE.E)DE = 0 (MFE.F)EF = (MFE.F)EF = 0

Relative stiffness:
Members AB, BC, DE and EF: (I/L) = 0.2I
Members BE and CD: (I/L) = 0.0833I

Distribution factors:
At supports A and F:

 DFAB = 0 and DFFE = 0

At joint B:

 DF DFBA BC= =
+ +

=( . )
( . ) ( . ) ( . )

.
0 2

0 2 0 2 0 0833
0 414

I
I I I

 DFBE = + +
=( . )

( . ) ( . ) ( . )
.

0 0833
0 2 0 2 0 0833

0 172
I

I I I

Similarly at joint E: 

 DFEB = 0.172 and DFED = DFEF = 0.414
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At joint C:

 DFCB =
+

=( . )
( . ) ( . )

.
0 2

0 2 0 0833
0 706

I
I I

 DFCD =
+

=( . )
( . ) ( . )

.
0 0833

0 2 0 0833
0 294

I
I I

Similarly at joint D:

 DFDC = 0.294 and DFDE = 0.706

Moment distribution:

With the end moments now determined, the reactions of the frame with the two fictitious sup-
ports are determined from statics and are shown in Figure 9.24.

(2) Analysis with arbitrary sidesway Δ1

Fixed-end moments: From Appendix B, let us assume that Δ1 is such that:

 ( ) ( ) ( ) ( )M M M M
EI
LFE.B BC FE.C BC FE.E ED FE.D ED= = = = − 6 1∆

22
100= + kNm

This is equivalent to assuming Δ1 = –1/120 m.

All other fixed-end moments are zero.
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Moment distribution:

With the end moments now determined, the reactions of the frame with the two fictitious supports 
due to the arbitrary displacement Δ1 are determined from statics and are shown in Figure 9.25a.

(3) Analysis with Arbitrary Sidesway Δ2

Fixed-end moments: From Appendix B, let us assume that Δ2 is such that:

 ( ) ( ) ( ) ( )M M M M
EI
LFE.A AB FE.B AB FE.F EF FE.E EF= = = = − 6 2∆

22
100= + kNm

This is equivalent to assuming Δ2 = –1/120 m.

Figure 9.24 Reactions caused by applied load with fictitious restraints 1 and 2.
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All other fixed-end moments are zero.

Moment distribution:

With the end moments now determined, the reactions of the frame with the two fictitious 
supports due to the arbitrary displacement Δ2 are determined from statics and are shown in 
Figure 9.25b.
Setting Fictitious Reactions at D and E to zero by using Equations 9.11, the reactions at D and E 
from the above three analyses are combined to give:

 Ro1 + fΔ1RΔ1(1) + fΔ2RΔ2(1) = 0 ∴ −38.77 + 31.44 fΔ1 – 16.8 fΔ2 = 0

 Ro2 + fΔ1RΔ1(2) +fΔ2RΔ2(2) = 0 ∴ −73.30 – 48.24 fΔ1 + 72.52 fΔ2 = 0

Figure 9.25 Reactions caused by arbitrary displacements Δ1 and Δ2. (a) Due to Δ1. (b) Due to Δ2.
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For sway frames with more than two degrees of freedom, moment distribution by manual 
calculation becomes tedious and other methods of analysis might be preferred, such as the 
stiffness method presented in Chapter 12. Techniques are available to extend the moment 
distribution approach to cover the analysis of frames with inclined members or split level 
frames. Even frames containing non-prismatic members can be analysed using moment dis-
tribution. However, the complications associated with such problems are handled much 
more conveniently using the stiffness method and, with computer software readily available 
to practicing engineers, such problems are rarely solved using moment distribution today 
and we will not take the method any further here.

and, solving these two simultaneous equations, we get:

 fΔ1 = 2.751  and  fΔ2 = 2.841

Final end moments, reactions and bending moment diagram:
The final end moments are obtained from Equation 9.12 (i.e. M = Mo + fΔ1MΔ1 + fΔ2MΔ2) as 
follows:

With these end moments, the final reactions are calculated from statics and are shown in Figure 
9.26a. The bending moment diagram for the frame is shown in Figure 9.26b.

Figure 9.26  Reactions and bending moment diagram. (a) Loads and reactions. (b) Bending moment 
diagram (kNm).
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PROBLEMS

 9.1 For the beam shown, determine the reactions at A, B and C using moment dis-
tribution and draw the shear force and bending moment diagrams. Assume EI is 
constant along the beam.

 9.2 For the beam shown, determine the reactions at A and B using moment distribution 
and draw the shear force and bending moment diagrams. Assume EI is constant 
along the beam.

 9.3 For the beam shown, determine the reactions at A, B and C using moment dis-
tribution and draw the shear force and bending moment diagrams. Assume EI is 
constant along the beam.

 9.4 For the beam of Problem 9.1, if EI = 50 × 103 kNm2, determine the change in reac-
tions if support B settles (downwards) by 60 mm.

 9.5 For the beam of Problem 9.1, if EI = 50 × 103 kNm2, determine the change in reac-
tions if support C settles (downwards) by 60 mm.

 9.6 For the beam of Problem 9.3, if EI = 50 × 103 kNm2, determine the change in reac-
tions if support B settles (downwards) by 60 mm.

 9.7 For the beam shown, the 200 kN concentrated load is at the mid-span of BC. 
Determine the reactions at A, B, C and D using moment distribution, and draw the 
shear force and bending moment diagrams. Assume EI is constant along the beam.
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 9.8 For the beam shown, calculate the reactions at supports A, B, C and D using 
moment distribution, and draw the shear force and bending moment diagrams. 
Assume EI is constant throughout.

 9.9 Re-analyse the beam of Problem 9.8 with the load on the span BC removed, while 
keeping all other spans loaded with a uniform load of 12 kN/m. Use moment dis-
tribution for the analysis. Comment on the effect of this change in loading on the 
magnitude and position of the maximum positive and negative moments in the 
beam.

 9.10 Re-analyse the beam of Problem 9.8 with the load on the spans AB and CD 
removed, while keeping span BC loaded with a uniform load of 12 kN/m. Use 
moment distribution for the analysis. Comment on the effect on the magnitude and 
position of the maximum positive and negative moments in the beam.

 9.11 Consider the wall of a water tank fixed at the base and supported as shown. 
Determine the reactions at the supports per 1 m width of wall under the lin-
early varying water pressure. Use moment distribution and assume EI is constant 
throughout.

 9.12 For the frame shown, determine the reactions at supports A and D using moment 
distribution and plot the axial force, shear force and bending moment diagrams.
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 9.13 If EI is constant throughout the frame illustrated below, determine the reactions at 
A and C using moment distribution, and draw the shear force and bending moment 
diagrams for the frame.

 9.14 Determine the reactions at A and D for the frame shown using moment distribu-
tion. Assume EI = 50 × 103 kNm2 constant throughout, and draw the shear force 
and bending moment diagrams for the frame.

 9.15 If the supports at A and D of Problem 9.14 are both pinned (rather than fixed), re-
analyse the frame under the loading shown and plot the bending moment diagram. 

 9.16 Determine the reactions at A and D for the frame illustrated below using moment 
distribution. Assume EI = 60 × 103 kNm2 constant throughout, and draw the shear 
force and bending moment diagrams for the frame.
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 9.17 If EI is constant throughout the frame illustrated below, determine the reactions at 
A and F using moment distribution, and draw the shear force and bending moment 
diagrams for the frame.

 9.18 Determine the reactions at A and F for the frame shown using moment distribu-
tion. Assume EI = 70 × 103 kNm2 constant throughout, and draw the shear force 
and bending moment diagrams for the frame.
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Chapter 10

Truss analysis using the stiffness method

10.1  OVERVIEW OF THE STIFFNESS METHOD

The stiffness method is a powerful approach for the analysis of statically determinate and 
indeterminate structures. Its popularity is mainly attributed to its ability to be easily pro-
grammed for computer calculations thanks to its well-defined solution procedure.

The first step to be carried out when using the stiffness method is to subdivide the structure 
into its constituent members, referred to as stiffness elements (or elements), and the joints con-
necting these members are called nodes. A stiffness relationship is written for each element, 
which relates the displacements at its nodes to the actions at its nodes and, because of this, 
it is referred to as the load–displacement relationship. These expressions are then combined 
to obtain the governing system of equations by enforcing equilibrium at each node expressed 
in terms of the unknown nodal displacements. Once these displacements are determined, the 
other variables describing the structural response, for example, internal actions and reactions, 
are calculated in the post-processing of the results. This approach is also known as the displace-
ment method to emphasise the role played by the displacements in the solution process.

In this chapter, the simplest of the available stiffness elements, referred to as the truss ele-
ment, is introduced. This element is assumed to be able to resist only axial forces and it is 
to be used in the framework of small displacements. In the first part of the chapter, we deal 
with the stiffness analysis of plane trusses using truss elements and this is followed by the 
stiffness analysis of three-dimensional space trusses.

10.2  SIGN CONVENTION, NOTATION, COORDINATE 
SYSTEMS AND DEGREES OF FREEDOM

10.2.1  Sign convention and notation

The sign convention and notation for trusses introduced in Chapter 4 are used here. Tensile 
(compressive) forces are assumed to be positive (negative). Nodes are identified with either 
alphabetic (uppercase) characters or numbers as shown in Figure 10.1, while members are 
denoted using the alphabetic identifications of their end nodes or simply with numbers 
(e.g. member DC or member 5 in Figure 10.1).

10.2.2  Local and global coordinate systems

The stiffness method requires the definition of two coordinate systems, one related to each 
individual stiffness element, denoted as the local (or member) coordinate system, and one 
applicable to the entire truss, referred to as the global (or structure) coordinate system.
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We will assume these coordinate systems to be orthogonal (i.e. all axes are perpendicular 
to each other) and to satisfy the right-hand rule (see Section 2.2).

For each element in a two-dimensional truss, we assign a member coordinate system in 
which the x-axis is parallel to the member axis and the y-axis is perpendicular to it in the 
plane of the truss. The positive z-axis comes out of the page. A location vector is introduced 
to specify the positive direction of x as shown, for example, in Figure 10.2 for member 3 
from the truss in Figure 10.1. Location vectors were introduced earlier in Section 4.5. The 
positive direction of a location vector is arbitrary, but once assigned, it cannot be changed 
during the solution process. The origin of the local x-axis identifies the first node of the ele-
ment (e.g. node 1 for element 3 in Figure 10.2) with the other node referred to as the second 
element node (node 4 for element 3 in Figure 10.2).

As the elements of a truss do not all possess the same inclination, we cannot specify one 
single set of local coordinates for all of them. For this purpose, we need to establish a global 
(or structures) reference system applicable to the entire truss.

Lowercase and uppercase characters are here used to distinguish between the local coor-
dinate system (x,y,z) and the global coordinate system (X,Y,Z). For example, Figure 10.3 
illustrates one possible set of local and global coordinate axes for the analysis of the truss of 
Figure 10.1. Figure 10.3a shows the selected global coordinate axes X and Y for the whole 
truss, while the member (or local) coordinates assigned on the basis of the assumed location 
vectors are illustrated for each element in Figure 10.3b.

Figure 10.1 Subdivision of a structure in stiffness elements and nodes.

Figure 10.2 Local coordinate system and location vector for member 3 (in Figure 10.1c).



Truss analysis using the stiffness method 333

10.2.3  Degrees of freedom of the structure

The movement of each node is defined by two independent displacements, which are usu-
ally (and conveniently) assumed to be parallel to the global axes. Similarly, equilibrium is 
enforced at each node along two independent directions, usually taken as the global coor-
dinate directions. These independent directions (along which equilibrium is enforced and 
along which node displacements are described) are referred to as degrees of freedom (dof), 
or simply freedoms, which are represented graphically by arrows defining their positive 
directions and are labelled with numbers. Degrees of freedom were introduced earlier in 
Section 4.5 for the method of joints in matrix form.

It is convenient for hand calculations (as outlined later) to first number the freedoms along 
which displacements are not restrained, followed by the remaining (restrained) freedoms. 
For example, let us consider the truss of Figure 10.4a. After introducing a global coordinate 
system, we can assign to each node two freedoms, depicted by arrows parallel to the global 
axes (Figure 10.4b). By inspection, we can see that dofs at nodes 3, 4 and 5, together with 
the horizontal freedom at node 2, are unrestrained (i.e. free to move) and are numbered first 
from 1 to 7 (Figure 10.4c). Remaining dofs related to restrained freedoms are then consid-
ered and numbered from 8 to 10 (Figure 10.4d).

10.3  DERIVATION OF THE STIFFNESS MATRIX 
IN LOCAL COORDINATES

The basis of the stiffness method relies on the load–displacement relationship applied along 
the member axis (i.e. along the local x-axis) at its two end nodes, which, for ease of reference, 
are denoted nodes 1 and 2 (Figure 10.5). For a truss element, let us denote the nodal displace-
ments in the direction of the element as d1 and d2 and the nodal forces as q1 and q2, as shown in 
Figure 10.5. The nodal displacements and nodal forces are related by the following relationship:

 
q

q

k k

k k

d

d
1

2

11 12

21 22

1

2












=






















  (10.1)

Figure 10.3  Example of global and local coordinate systems. (a) Global coordinate system. (b) Local coor-
dinate systems.
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where nodal actions and displacements are assumed to be positive in the positive direc-
tion of the location vector or x-axis (Figure 10.5). The matrix terms kij (with i,j = 1,2) are 
referred to as the member stiffness influence coefficients and kij represents the reaction 
induced at node i in the direction of the element axis by a unit displacement in the direction 
of the element axis at node j. The physical representation of these coefficients is described 
graphically in Figure 10.6.

The member stiffness influence coefficients can be determined recalling that the behaviour 
of a truss element is similar to the one of a common spring for which we know that its elon-
gation e is related to the internal force N by means of the spring stiffness k as (Figure 10.7)

 N = ke (10.2a)

The elongation of a linear–elastic truss element (of length L, cross-sectional area A and 
elastic modulus E) caused by an axial force N is (see Section 4.8):

Figure 10.5  Isolated stiffness element in local coordinates. (a) Local nodal displacements. (b) Local nodal 
actions.

Figure 10.4  Numbering the degrees of freedom of the structure. (a) Layout of the truss. (b) Global free-
doms. (c) Numbering of understrained freedoms. (d) Numbering of restrained freedoms.
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 e L
E

L
N
EA

L= = =ε σ
 (10.2b)

and substituting into Equation 10.2a gives:

 k = EA/L (10.2c)

Referring back to the spring in Figure 10.7, a tensile force in the spring (positive N) pro-
duces an elongation (positive e) and, vice-versa, a compression force (negative N) produces 
a shortening of the spring (negative e).

Let us now make use of Equations 10.2 to define the load–displacement relationship. 
Enforcing equilibrium at the two end nodes (Figure 10.7b) gives:

 q1 = −N q2 = N (10.3a,b)

From a kinematic viewpoint, the contribution of the nodal displacements d1 and d2 to the 
elongation e of the spring is outlined in Figure 10.8. In particular, an elongation of the spring 
(positive e) is produced by a positive displacement of d2 (Figure 10.8a) and a contraction 
of the spring (negative e) is produced by a positive displacement of d1. On the basis of the 
principle of superposition, the total elongation that can originate from the displacements d1 
and d2 is therefore:

Figure 10.6  Physical representation of the member stiffness influence coefficients. (a) Unit displacement 
along local freedom 1. (b) Unit displacement along local freedom 2.

Figure 10.7  Nodal actions and internal force of a spring. (a) Nodal actions of the spring. (b) Free-body dia-
grams of the end spring nodes.
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 e = d2 − d1 (10.4a)

from which the internal axial force N can be calculated (recalling Equation 10.2a) as:

 N = ke = k(d2 − d1) (10.4b)

Substituting Equations 10.4 into Equations 10.3 enables the calculation of the end nodal 
forces of the spring in terms of its nodal end displacements:

 q1 = −N = −k(d2 − d1) q2 = N = k(d2 − d1) (10.5a,b)

These can be re-written in more compact form as:
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which represents the load–displacement relationship of a spring (or, in our context, the 
load–displacement relationship of a truss element) expressed in local coordinates.

REFLECTION ACTIVITY 10.1

On the basis of the stiffness relationship obtained in Equation 10.6, determine the correspond-
ing expression for a truss element knowing that the element is equivalent to a spring having 
rigidity EA/L (Equation 10.2c), with A and L being the cross-sectional area and length of the truss 
member, and E being the elastic modulus of its material.

The response of a truss element is identical to the one of a spring. Substituting k = EA/L into 
Equation 10.6 gives:
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Figure 10.8  Relationship between end displacements and truss extensions.
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This expression is usually written in more compact form as:

 q = kd (10.8)

where k is the stiffness matrix of the truss in local coordinates, q is the vector of nodal forces and 
d is the vector of nodal displacements (Figure 10.5). That is:
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REFLECTION ACTIVITY 10.2

In the writing of the load–displacement relationship of the spring, we have only considered 
local nodal freedoms (and corresponding displacements and forces) parallel to the member axis 
(Figure 10.5). When a member is part of a truss, its nodal displacements can move in directions 
also perpendicular to the element (i.e. parallel to the y-axis). Determine whether we should 
include the influence of nodal displacements perpendicular to the member axis in the load– 
displacement relationship of Equation 10.8 and, if so, in what manner.

To address the question, we apply transverse displacements at the two end nodes of the truss 
element, one at a time, and see whether they induce any change in length, and any correspond-
ing change in the axial force in the member.
In Figure 10.9a, the only non-zero displacement is the transverse displacement at node 1 
denoted as d1y, with subscripts ‘1’ and ‘y’ identifying the first node of the element and the move-
ment taking place in the direction of the y-axis. From trigonometry, the elongation induced in 
the truss element is:

 e = Lf − L = Lf − Lf cos θ ≈ Lf − Lf × 1 = 0

where L and Lf denote the original and displaced lengths, respectively, while cos θ is approxi-
mated by 1 because we are working under the assumptions of small displacements (and rota-
tions are assumed to remain small). Because e is nil, the transverse displacement d1y does not 

Figure 10.9  Transverse displacements at the end nodes of the truss element. (a) Transverse displace-
ment at node 1. (b) Transverse displacement at node 2.
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10.4  TRANSFORMATION BETWEEN LOCAL AND 
GLOBAL COORDINATE SYSTEMS

10.4.1  Transformation matrix for vectors

Considering that the variables we are dealing with consist of vectors (in our case, displace-
ment and force vectors), we need to establish a procedure to relate vector components in 
local and global coordinates.

Let us consider the coordinate systems shown in Figure 10.10a, one representing the local 
coordinates (x,y) and one the global ones (X,Y). Any vector V possesses different compo-
nents when defined in these two systems. In global coordinates, these are expressed as RX 
and RY (as shown in Figure 10.10b), while in the local system, these are denoted with rx and 
ry (as shown in Figure 10.10c).

We will now assume that a relationship between the local (rx,ry) and global (RX,RY) com-
ponents of the same vector can be expressed in terms of a 2 × 2 matrix H as:
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induce any axial force in the truss element. It follows that the effects of nodal displacements 
transverse to a truss element can be ignored in the calculation of the load–displacement 
relationship for the element, because its axial rigidity does not contribute to resisting this 
deformation.
Similarly, we can also show that the transverse displacement at node 2 does not induce any elon-
gation and, as such, does not need to be included in the calculation of the load– displacement 
relationship of a truss member. In particular, the nil elongation at node 2 owing to d2y is calcu-
lated as (Figure 10.9b):

 e = Lf − L = Lf − Lf cos θ ≈ Lf − Lf × 1 = 0

Figure 10.10  Example of a vector defined in global and local coordinates. (a) Global and local coordinates. 
(b) Vector and global coordinates. (c) Vector and local coordinates.
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which could be used to determine (rx,ry) for known values of (RX,RY). We will now evaluate 
the coefficients of H based on trigonometry considering two particular vectors: (RX,RY) = 
(1,0) and (RX,RY) = (0,1).

We start by substituting (RX,RY) = (1,0) in Equation 10.10:
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 (10.11)

from which rx = H11 and ry = H21. It is possible to determine the values H11 and H21 from 
trigonometric considerations. It can be seen in Figure 10.11a that for the vector (RX,RY) = 
(1,0), the components in the member axes are rx = 1 cos α and ry = −1 cos β, i.e.:

 rx = l and ry = −m (10.12a,b)

where l and m are the direction cosines of the local x axis:

 l = cos α and m = cos β (10.13a,b)

Substituting Equations 10.12 into Equation 10.11, the coefficients of the first column of 
H, i.e. H11 and H21, are:

 H11 = l and H21 = −m (10.14a,b)

In a similar manner, the coefficients included in the second column of H can be obtained 
from the local components of vector (RX,RY) = (0,1):
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The corresponding values for rx and ry can be evaluated based on Figure 10.11b as:

 rx = m and ry = l (10.16a,b)

Figure 10.11  Unit vectors expressed in the global coordinate system. (a) Vector with (RX,RY) = (1,0). 
(b) Vector with (RX,RY) = (0,1).
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which, based on Equation 10.15, equal coefficients H12 and H22:

 H12 = m and H22 = l (10.17a,b)

The matrix H is therefore defined as:

 H =
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Considering its role in Equation 10.10, H is referred to as the transformation matrix to 
convert vector components from global to local coordinates.

REFLECTION ACTIVITY 10.3

Determine the transformation matrix H  required to convert the components of a vector from 
local to global coordinates following the procedure previously adopted to derive the coef-
ficients for H (which is the transformation matrix to convert vector components from global to local 
coordinates).

The global and local components of a vector are (RX,RY) and (rx,ry), respectively. With the use 
of H, we can calculate the global coordinates (RX,RY) corresponding to a vector defined in the 
local system with (rx,ry) as:
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The coefficients of H  are obtained by considering two particular vectors: (rx,ry) = (1,0) and 
(rx,ry) = (0,1). The terms in its first column, i.e. H11  and H21, are determined considering that 
their values equal those of the global components corresponding to the vector (rx,ry) = (1,0):
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From Figure 10.12a, we can see that RX = 1 cos α = l and RY = 1 cos β = m and, substituting into 
Equation 10.20, we get:

  H l H m11 21= =and  

With a similar approach, the second column of H  can be obtained considering the global com-
ponents of (rx,ry) = (0,1):
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Referring to Figure 10.12b, we can see that RX = −m and RY = l and therefore H m12 = −  and 
H l22 = .
In summary, the transformation matrix H  to convert vector components from local to global coordi-
nates is:
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It should be noted that the two matrices H and H  are the transpose of each other:

 H H=  T
 or H H= T (10.23a,b)

WORKED EXAMPLE 10.1

Consider the local and global coordinate systems shown in Figure 10.13 with α = 30° and β = 
60°. Determine (i) the local components of vector R = (RX,RY) = (10,5), where R is defined in 
global coordinates; (ii) the global components of vector r = (rx,ry) = (8,6), where r is specified 
in the local system.

Figure 10.12  Unit vectors expressed in the local coordinate system. (a) Vector with (rx,ry) = (1,0). 
(b) Vector with (rx,ry) = (0,1).

Figure 10.13  Vector components for Worked Example 10.1. (a) Global and local coordinates. 
(b) Vector and global coordinates. (c) Vector and local coordinates.
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10.4.2  Transformation matrix for the truss element

The load–displacement expression introduced in Equation 10.8 relates the nodal dis-
placements d to the nodal forces q. Consider the truss member shown in Figure 10.14.

For clarity, we will use local freedoms 1 and 1y at node 1, and 2 and 2y at node 2 (see 
Figure 10.14a), while the global freedoms are assumed to be 1 and 2 at node 1, and 3 and 4 
at node 2 (see Figure 10.14b). The freedom numbering is based on the direction of the loca-
tion vector (which defines the first node as the origin of the local coordinate system).

We will now consider the two displacement vectors at nodes 1 and 2 (d1 and d2), illus-
trated in Figure 10.15, and see how their components can be transformed into global coor-
dinates. For each vector, we can apply Equations 10.10 and 10.18 as follows:
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where l and m represent the direction cosines related to α and β, respectively, which are the 
angles between the local and global coordinates at node 1 (as illustrated in Figure 10.14c). 
De1 and De2 are the components of the displacement vector at node 1 in global coordinates in 
the direction of global freedoms 1 and 2, respectively, and De3 and De4 are the components 
of the displacement vector at node 2 in global coordinates in the direction of global freedoms 
3 and 4, respectively.

(i) Local components of R are calculated using Equation 10.10, determining matrix H from 
Equation 10.18. The direction cosines l and m are calculated from angles α and β as l = cos α = 
cos 30° = 0.866 and m = cos β = cos 60° = 0.5. Therefore:
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and the local components of vector R are (Equation 10.10):

 
r

r
x

y












=

−

















 =

0 866 0 5
0 5 0 866

10
5

1. .
. .

11 16
0 67
.
.−











(ii) The global components of r are calculated from Equations 10.19 and 10.22:
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Considering that the local displacements perpendicular to the truss element are not relevant 
to its structural response (see Reflection Activity 10.2), Equations 10.24 can be simplified to:
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These expressions can be combined in compact form as:
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where:
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 (10.27a–c)

Figure 10.14  Local and global degrees of freedom. (a) Local freedoms. (b) Global freedoms. (c) Angles for 
the direction cosines.

Figure 10.15  Nodal displacements in local and global coordinates. (a) Nodal displacements in local coordi-
nates. (b) Nodal displacements in global coordinates.
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and T is referred to as the transformation matrix for the truss element from global to 
local coordinates. This can be also used to relate global and local components of the 
nodal forces:
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where the nodal forces expressed in local and global coordinates are depicted in Figure 
10.16 and are collected in vectors q and Qe as:
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REFLECTION ACTIVITY 10.4

Determine the transformation matrix to be used to convert the local components of the nodal 
displacements of a truss element into its corresponding global ones.

The global components of the nodal displacements can be calculated from the local coordinates 
using Equations 10.19, 10.22 and 10.23:
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Figure 10.16  Nodal forces in local and global coordinates. (a) Nodal forces in local coordinates. (b) Nodal 
forces in global coordinates.



Truss analysis using the stiffness method 345

10.5  TRUSS ELEMENT IN GLOBAL COORDINATES

The load–displacement relationship previously derived in local coordinates for a truss 
element is reproduced below for ease of reference:

 q = kd (10.8)

with:
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 (10.9a–c)

This expression is now transformed into global coordinates based on the following steps:

 i. Substitute d = TDe (Equation 10.26b) into Equation 10.8:

 q = kTDe (10.32a)

 ii. Pre-multiply both sides of Equation 10.32a by the transpose of T:

 T Tq = T TkTDe (10.32b)

 iii. Recalling Equation 10.31b, the left-hand side of Equation 10.32b represents the nodal 
forces expressed in global coordinates Qe (= T Tq). Therefore:

 Qe = T TkTDe (10.32c)

and, neglecting the local displacements perpendicular to the truss element (see Reflection 
Activity 10.2), the above expressions can be simplified to:
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Combining these in compact form leads to:

 

D

D

D

D

l
m

l
m

e

e

e

e

1

2

3

4

0
0

0
0





















=



















dd

d
l m

l m

d

d
1

2

1

2

0 0
0 0












=






















T

 or De = T Td (10.30a,b)

where T T is referred to as the transformation matrix for the truss element from local to global 
coordinates. It could also be used to transform components of the nodal forces:
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 iv. Equation 10.32c can be re-arranged to highlight the stiffness matrix of an isolated 
truss element:

 Qe = KeDe (10.33)

 where Qe and De are vectors that collect the nodal forces and displacements, respec-
tively, expressed in global coordinates (Equations 10.29b and 10.27c), and Ke repre-
sents the element stiffness matrix:

 Ke = T TkT (10.34)

The stiffness relationship of an isolated truss element relates its nodal displacements 
De to its nodal forces Qe specified along the global freedoms numbered from 1 to 4 
(Figures 10.14b, 10.15b and 10.16b). In particular, the i-th components of vectors Qe 
and De represent the nodal force and nodal displacement, respectively, assigned along 
freedom number i. Similarly, the rows and columns of Ke are associated with the global 
freedoms as follows:
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This numbering will be useful for the assembling procedure described in the next section.

WORKED EXAMPLE 10.2

Calculate all coefficients of the stiffness matrix in global coordinates for an isolated truss ele-
ment Ke based on Equation 10.34.

The terms of Ke are evaluated recalling the definitions of T (Equation 10.27b) and k (Equation 
10.9b) as:
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10.6  ASSEMBLING

The stiffness relationship of a truss relates nodal displacements D and nodal forces Q along 
all of its global freedoms. In particular, the size of both D and Q is equal to the number of 
global freedoms Ndof, and these are related by the Ndof × Ndof stiffness matrix K as:

 Q = KD (10.37)

where K represents the stiffness matrix of the entire truss.
The assembling process combines the stiffness matrix of each element considered in isola-

tion Ke(n) (where the additional subscript ‘n’ identifies the element number) into the stiffness 
matrix of the entire truss K, being careful to relate correctly the freedom numbers of each 
element to the appropriate global freedoms (or structure freedoms).

Let us reconsider the truss of Figure 10.4 (reproduced for ease of reference in Figure 
10.17a) to outline the main aspects involved in the assembling procedure. The truss pos-
sesses 10 freedoms (i.e. Ndof = 10) and, because of this, K is a 10 × 10 matrix. At the begin-
ning of the assembling, K is a nil matrix and it is populated by adding, one at a time, the 
stiffness coefficients of each truss member Ke(n) based on the truss global freedoms. For 
example, element 2 has freedoms 1, 2, 3 and 4 when considered in isolation (Figure 10.17b), 
but these correspond to structure dof 7, 8, 5 and 6 based on the assembled truss numbering 
(Figure 10.17c).

This implies that rows and columns 1, 2, 3 and 4 of the isolated element stiffness matrix 
Ke(2), as described in Equation 10.36 and Figure 10.18a, need to be mapped to rows and 
columns 7, 8, 5 and 6 of the structure stiffness matrix K (Figure 10.18b). We can then 
include each coefficient from the element stiffness matrix into the structure stiffness matrix 
making sure to match row and column numbering. An example illustrating the assembly 

Figure 10.17  Relationship between isolated and assembled dof for member 2. (a) Truss of Figure 10.4. 
(b) Dof of isolated truss element 2. (c) Dof of truss element 2 in the assembled structure.
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of coefficients Ke(2)(3,3) and Ke(2)(4,2) (of the isolated element) into K(5,5) and K(6,8) of the 
structure matrix K is shown in Figure 10.18c.

The same procedure must be followed for each of the remaining elements of the truss. For 
example, for element 3, the dofs of the isolated truss 1 to 4 correspond to global structure 
freedoms 9, 10, 1 and 2 (Figure 10.19). The assembling procedure is illustrated for a simple 
truss in Worked Example 10.3.

Figure 10.18  Assembling of two coefficients from Ke2 into K. (a) Dof of Ke2 considered in isolation. (b) Dof 
of Ke2 based on the dof numbering of the entire truss. (c) Dof of K.

Figure 10.19  Relationship between isolated and assembled dof for member 3. (a) Dof of isolated truss ele-
ment 3. (b) Dof of truss element 3 in the assembled structure.
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WORKED EXAMPLE 10.3

Determine the structure stiffness matrix K for the truss shown in Figure 10.20 considering 
the location vectors assigned to each member. Assume EA to be the same for each truss 
element.

In the first part of the solution, we introduce a global coordinate system and assign two global 
freedoms at each node (ensuring to use low numbers for unrestrained freedoms, followed by 
the restrained ones) as shown in Figure 10.21.
Because there are six dofs (i.e. Ndof = 6), K is a 6 × 6 matrix, and before assembling the element 
stiffness coefficients, all matrix terms are set to zero. That is:

 K =













0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0













Figure 10.20 Truss for Worked Example 10.3. 

Figure 10.21 Global coordinate system, global freedoms, and location vectors.
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ELEMENT 1

Direction cosines for element 1:

 l
x x

L
m

y y
L1 1

3 1

1
1 1

3 1

1

0 4
4

1= = − = − = − = = −
cos cos( ) ( )α βand == − =0 0

4
0

Ke(1) can then be calculated substituting l1 = −1, m1 = 0 and L = 4 m into Equation 10.36 as:

 Ke EA( )

. .

. .
1

0 25 0 0 25 0
0 0 0 0

0 25 0 0 25 0
0 0 0 0

=

−

−



















The freedoms 1 to 4 of the isolated element correspond to structure freedoms 1, 2, 5 and 6 of 
the truss and the member coefficients of element 1 are mapped into the nil K matrix as follows:

ELEMENT 2

Direction cosines for element 2 are:

 l
x x

L
m

y y
L2 2

1 2

2
2 2

1 24 0
5

0 8= = − = − = = = −
cos . cos( ) ( )α βand

22

0 3
5

0 6= − = − .

and with L = 5 m, Ke(2) can be calculated as:

 Ke EA( )

. . . .

. . .
2

0 128 0 96 0 128 0 096
0 096 0 072 0 096 0=

− −
− − ..

. . . .

. . . .

072
0 128 0 096 0 128 0 096
0 096 0 072 0 096 0 0

− −
− − 772



















The element freedoms 1 to 4 are mapped to the global freedoms 3, 4, 1 and 2. This is carried 
out below adding the coefficients of element 2 to K (already populated with the contribution 
of element 1):
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10.7  SOLUTION PROCEDURE

The analysis of a truss using the stiffness method is performed by solving the system of 
Ndof equilibrium equations expressed in Equation 10.37. The displacement vector D collects 
both known and unknown displacements and, for clarity, it is partitioned to differentiate 
between them:

 D
D

D
=












u

k

 (10.38)

where Du and Dk depict unknown and known displacements, respectively. This partition 
reflects the dof numbering previously introduced, in which unrestrained freedoms are con-
sidered first (with unknown displacements listed in Du) followed by the restrained freedoms 
(with known, usually zero, displacements included in Dk).

Forces applied along each freedom are collected in Q. Those associated with an unre-
strained freedom, i.e. external loads, are included in the vector of known forces Qk and 
the remaining ones in the vector of unknown forces Qu (which correspond to the reactions 
required to provide the specified restraints):

 Q
Q

Q
=












k

u

 (10.39)

With the contribution of both elements 1 and 2, K becomes:

 K =

− − −
−

EA

0 378 0 096 0 128 0 096 0 25 0
0 096 0 0
. . . . .
. . 772 0 096 0 072 0 0

0 128 0 096 0 128 0 096 0 0
. .

. . . .
−

− −
0 096 0 072 0 096 0 072 0 0
0 25 0 0 0 0 25 0

0 0

. . . .

. .
− −

−
00 0 0 0
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Based on Equations 10.38 and 10.39, Equation 10.37 can be re-expressed as follows:

 
Q

Q

K K

K K

D

D
k

u

u

k












=
























11 12

21 22
 (10.40a)

or

 Qk = K11Du + K12Dk (10.40b)

 Qu = K21Du + K22Dk (10.40c)

where Kij represents partitions of K. Introducing Ndof.u and Ndof.k to depict the number of 
unrestrained and restrained freedoms, respectively, the partition of K have the following 
sizes: K11 is a Ndof.u × Ndof.u matrix, K12 is a Ndof.u × Ndof.k matrix, K21 is a Ndof.k × Ndof.u matrix 
and K22 is a Ndof.k × Ndof.k matrix. Similarly, vectors Du and Qk have a length of Ndof.u, while 
Dk and Qu have a length of Ndof.k.

The unknown displacements Du can be obtained by applying one of the solution proce-
dures presented in Appendix C. For example, Equation 10.40b can be rearranged as:

 D K Q K Du k= −−
11

1
12( )k  (10.41)

and this can be substituted into Equation 10.40c to determine the unknown forces Qu.

10.8  CALCULATION OF INTERNAL ACTIONS

The internal forces resisted by the truss elements can be calculated, once the unknown 
displacements are determined, recalling Equation 10.32a (reproduced here for ease of 
reference)

 q = kTDe (10.42)

where De corresponds to the nodal displacements of the element considered. The axial force 
can then be evaluated from equilibrium considerations at the nodes of the truss as (Figure 
10.22):

 N = −q1 and N = q2 (10.43a,b)

The overall procedure required for the analysis of a truss based on the stiffness method is 
summarised below followed by a number of worked examples.

Figure 10.22  Nodal actions and internal force of a truss element. (a) Nodal actions. (b) Free-body diagrams  
of the end nodes.
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SUMMARY OF STEPS 10.1: Stiffness method — Solution procedure

The main steps required for the analysis of a truss with the stiffness method are as follows:

 1. Specify a global reference system, and number the nodes and elements.

 2. Assign an arbitrary location vector to each element.

 3. Introduce two global freedoms at each node, preferably pointing in the same positive 
directions as the global coordinate axes and number them. Make sure to number unre-
strained freedoms first, followed by the restrained ones.

 4. For each element, determine its direction cosines and calculate its stiffness matrix based 
on Equation 10.36.

 5. Assemble the contribution of each element to the structure stiffness matrix K, making sure 
to relate correctly freedoms of the isolated element to those adopted for the entire truss.

 6. Write vectors of known displacements Dk and external forces Qk.

 7. Partition the stiffness matrix K into K11, K12, K21 and K22, as carried out in Equations 
10.40.

 8. Determine the unknown displacements Du with Equation 10.41.

 9. Calculate the unknown reactions Qu (Equation 10.40c) and axial forces for each member 
of the truss q (Equation 10.42).

WORKED EXAMPLE 10.4

Reconsider the truss of Worked Example 10.3 and determine its unknown displacements if a 
50 kN horizontal force is applied at node 1. Calculate also the unknown reactions and the axial 
forces in each member. Assume EA is constant throughout.

The solution is carried out following the steps detailed in Summary of Steps 10.1. Units used for 
lengths and forces are m and kN, respectively.

(1–5) Steps 1 to 5 have already been covered in Worked Example 10.3 and the results are repro-
duced for ease of reference in Figure 10.23.
From Worked Example 10.3, the structure stiffness matrix is:

 K =

− − −
−

EA

0 378 0 096 0 128 0 096 0 25 0
0 096 0 0
. . . . .
. . 772 0 096 0 072 0 0

0 128 0 096 0 128 0 096 0 0
. .

. . . .
−

− −
0 096 0 072 0 096 0 072 0 0
0 25 0 0 0 0 25 0
0 0 0 0

. . . .

. .
− −

−
00 0

























(6) Based on the boundary conditions, unrestrained freedoms are 1 and 2 with the remain-
ing freedoms from 3 to 6 restrained. Considering that no displacements are permitted along 
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freedoms 3 to 6 and that the only external load is a 50 kN force applied along freedom 1, the 
vectors of known displacements and forces can be written as:

 D Qk k=



















=










0
0
0
0

50
0

where the positive sign of the force reflects the fact that it is acting in the positive direction of 
freedom 1.

(7) The structure stiffness matrix K is partitioned as follows based on the fact that freedoms 1 
and 2 are unrestrained and freedoms 3 to 6 are restrained:

1 2 3 4 5 6

0 378 0 096 0 128 0 096 0

K =

− − −

EA

. . . . .225 0
0 096 0 072 0 096 0 072 0 0
0 128 0 096

− −
−

. . . .

. . 00 128 0 096 0 0
0 096 0 072 0 096 0 072 0 0
0 25

. .
. . . .
.

−
− −

−

or

0 0 0 0 25 0
0 0 0 0 0 0

1
2
3
4
5
6

.

























=K
KK K

K K
11 12

21 22













with individual partitions being:

 K K11 12
0 378 0 096
0 096 0 072

0 128 0= −
−









 = −EA EA. .

. .
. .. .
. .

096 0 25 0
0 096 0 072 0 0

−
−











 K21

0 128 0 096
0 096 0 072
0 25 0
0 0

=

−
−

−


















EA

. .
. .
.



=

−
−





K22

0 128 0 096 0 0
0 096 0 072 0 0

0 0 0 25 0
0 0 0 0

EA

. .
. .

.















Figure 10.23  Global coordinate system and global freedoms. (a) Global freedoms and location vec-
tors. (b) Free-body diagram of the truss.
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(8) Unknown displacements Du are determined using Equation 10.41.

 

D K Q K Du k k= − =
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266 6EA .

where the units of the displacements are in metres and the inverse of K11 is obtained from 
Appendix C as:

 K11
1 1 4 5 33

5 33 21
− =









EA

.
.

 

(9) With the unknown displacements established, the unknown reactions and member forces can be 
readily calculated. In particular, the reactions (in kN) are obtained using Equation 10.40c:

Q K D K Du u k= + =
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Recalling that the member freedoms from 1 to 4 of isolated element 1 are mapped against 
structure freedoms 1, 2, 5 and 6, the nodal displacements of element 1 collected in De(1) include 
global displacements D1, D2, D5 and D6:

 De

e

e

e

e
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The member forces of element 1 are determined substituting De(1) into Equation 10.42:

 q kTD( ) ( )1 1 4
1 1
1 1

1 0 0 0
0 0 1 0

200

= = −
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EA
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EA266 6
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from which N1 = 50 kN.
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10.9  NODAL COORDINATES

It is always convenient, in the analysis of a truss, to assume all global freedoms to be parallel 
to the global X- and Y-axes. There are situations, such as those involving inclined restraints, 
where this freedom arrangement might not be suitable, in which case we need to introduce 
nodal coordinates and freedoms. Let us consider the truss shown in Figure 10.24a that pos-
sesses an inclined roller support at node 3. The unrestrained and restrained directions of the 
roller are not parallel to the global axes and, because of this, it is convenient to adopt nodal 
coordinates at this node as shown in Figure 10.24b where axes X1 and Y1 are introduced, 

Similarly, freedoms from 1 to 4 of isolated element 2 correspond to structure freedoms 3, 4, 1 
and 2, and nodal displacements and member forces for element 2 are:

 De

e

e

e

e
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D

D
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0

200
266 6

0
0/

. /
EA
EA

from which N2 = 0 kN.

The correctness of the solution can be checked applying the method of joints to node 1. From 
equilibrium along freedom 2, the axial force in element 2 is nil as it is the only force included in 
the equilibrium equation (see Reflection Activity 4.1). The force in element 1 can then be calcu-
lated to be 50 kN based on equilibrium along freedom 1.

Figure 10.24 Use of nodal coordinates. (a) Truss layout. (b) Nodal coordinates. (c) Global freedoms.
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with X1 parallel to the unrestrained freedom and Y1 placed along the restrained dof. The 
term nodal coordinates simply highlights that these axes are assigned to a particular node. 
Obviously, in this particular case, it would have been possible to specify global axes as 
depicted in Figure 10.24c, even if such an arrangement is not convenient for the calcula-
tion of the various nodal coordinates. Where we have two or more inclined roller supports 
not parallel to each other, it is necessary to introduce the nodal coordinates at one or more 
nodes.

With the stiffness method, the use of the nodal coordinates only affects the terms included 
in the transformation matrices T of the elements connected to the nodes with an inclined 
support. Let us consider the truss element of Figure 10.25, in which the local freedoms 1 
and 2 are related to two sets of global freedoms parallel to global axes (X1,Y1) at node 1 and 
axes (X2,Y2) at node 2.

Local vector components can be related to the nodal components (as illustrated in 
Figure 10.26) following the same procedure previously adopted for the description of the 
transformation matrices (Equations 10.25 to 10.27) as:

 [ ] [ ]d l m
D

D
e

e
1 1 1

1

2

=












 [ ] [ ]d l m
D

D
e

e
2 2 2

3

4

=











 (10.44a,b)

where l1 and m1 represent the direction cosines related to angles θ1x and θ1y, respectively, 
and θ1x and θ1y are the angles between the global axes X1 and Y1, at node 1 and the local 

Figure 10.25  Local and nodal degrees of freedom. (a) Local freedoms. (b) Nodal freedoms. (c) Angles for 
the direction cosines.

Figure 10.26  Nodal displacements in local and nodal coordinates. (a) Local and global coordinates. (b) Nodal 
displacements in local coordinates. (c) Nodal displacements in nodal coordinates.
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x-axis, as shown in Figure 10.25c. Similarly, l2 and m2 are the direction cosines of θ2x and 
θ2y at node 2 (with θ2x and θ2y defined in Figure 10.25c). Equations 10.44 reflect the fact that 
the local displacements perpendicular to the truss element are not relevant to its structural 
response (see Reflection Activity 10.2).

The relationships of Equations 10.44 can be simplified to:
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 or d = TDe (10.45a,b)

in which case T is defined as:

 T =












l m

l m
1 1

2 2

0 0

0 0  (10.46)

The same matrix can be used to relate nodal and local components of the forces applied 
at the member end nodes.

Obviously, when the direction cosines at the two end nodes of an element coincide (i.e. 
the angles between local and global coordinates are the same at the two end nodes of an 
element), T simplifies to the expression already provided in Equation 10.27b, which can be 
obtained by substituting l1 = l2 = l and m1 = m2 = m in Equation 10.46.

The stiffness matrix of an element with a different set of nodal coordinates at each end 
can be determined by recalling Equation 10.34:
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The use of this matrix in the assembling and solution procedure is the same as previously 
described, except that the global displacements and forces related to inclined supports are 
now specified along the nodal freedoms. The stiffness relationship of an isolated truss ele-
ment can be expressed by considering the use of nodal coordinates as:
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 (10.48)

where the definition of node 1 or 2 for each element is defined by the positive direction of 
the location vector, as illustrated in Figure 10.27.

WORKED EXAMPLE 10.5

Determine the unknown displacement, reactions, and member forces for the truss depicted in 
Figure 10.28. Assume EA is constant throughout.

Figure 10.27 Freedom numbering related to nodal coordinates.

Figure 10.28 Truss for Worked Example 10.6.
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The solution is outlined below following Summary of Steps 10.1.

(1–3) Elements and nodes are numbered as outlined in Figure 10.29a, and a global coordinate 
system is adopted with origin at node 1. In this system, the coordinates for each node are: node 
1 (0,0), node 2 (8,0) and node 3 (4,3).
Arbitrary location vectors are introduced for each element, as outlined in Figure 10.29b. Two 
global freedoms are specified for each node parallel to the global coordinates (X,Y), except at 
the location of the inclined roller support, in which case these are parallel to the nodal coordi-
nates placed at node 2 (X2,Y2) as depicted in Figure 10.29c.

(4) The lengths of the truss elements are as follows: L1 = 8 m, L2 = L3 = 5 m.
The direction cosines for the three elements are calculated below, placing attention to differen-
tiate between values for l and m calculated at the two end nodes of the elements connected to 
nodes with nodal coordinates (node 2 of the structure in our case).

Member 1: The location vector specifies that node 1 is the first node and node 2 is the second 
node: l1 = (8 – 0)/8 = 1; m1 = (0 – 0)/8 = 0; l2 = cos θx2 = cos 60 = 0.5; m2 = cos θy2 = cos 30 = 
0.866 (Figure 10.29d).

Figure 10.29  Global and nodal freedoms for Worked Example 10.6. (a) Global coordinates and num-
bering of nodes and elements. (b) Location vectors. (c) Global and nodal freedoms. 
(d) Element 1. (e) Element 2. (f) Element 3.
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Member 2: l = (4 – 0)/5 = 0.8; m = (3 – 0)/5 = 0.6.

Member 3: The location vector specifies that node 3 is the first node and node 2 is the second 
node: l1 = (8 – 4)/5 = 0.8; m1 = (0 – 3)/5 = –0.6; l2 = cos θx2 = cos 23.1 = 0.92; m2 = cos θy2 = cos 
66.9 = 0.392 (Figure 10.29f).

The stiffness matrices are then calculated by applying Equation 10.48:

 Ke EA( )

. . .

. .
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0 0 0 0

0 0625 0 0 0312 0
=

− −

− ..
. . .
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− −
− −00 072

0 128 0 096 0 128 0 096
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(5) The contribution of each element is included in the structural matrix K, noting that freedoms 
1 to 4 of each isolated element are mapped to structure freedoms 5, 6, 3 and 4 for element 1, 
and to structure freedoms 5, 6, 1 and 2 and structure freedoms 1, 2, 3 and 4 for elements 2 and 
3, respectively. Based on this, K becomes:

 K =

− − − −

EA
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(6) Considering that the structure freedoms from 4 to 6 are restrained, the vector of known 
displacements is Dk = [0 0 0]T. The external force applied at node 3 is included in the loading 
vector Qk with a negative sign, because it is pointing in the negative direction of freedom 1:

 Qk = [−100 0 0]T

(7) The partitioning of K into K11, K12, K21 and K22 is carried out based on Equations 10.40:
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10.10  SPACE TRUSS

The procedure required for the analysis of a space truss using the stiffness method is similar 
to that already described for plane trusses. The main difference being that each node can now 
have displacement components in three orthogonal directions. Because of this, three freedoms 
(instead of the two used for plane trusses) must be assigned at each node.

All the steps involved in the solution process are identical to those already detailed in 
Summary of Steps 10.1 for plane trusses, except that at point 3, three nodal freedoms need 
to be specified at each node and that the transformation matrix T needs to account for this 
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(8) Unknown displacements (in m) are determined with Equation 10.41:
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(9) Equations 10.40c and 10.42 are used to evaluate the unknown reactions Qu and member 
forces for each element, i.e. q(1) q(2) and q(3) (in kN):
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Therefore, N3 = 62.5 kN.
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change. Unknown displacements, reactions and member forces are determined following 
the steps specified in Equations 10.41, 10.40c and 10.42, respectively.

The transformation matrix T to be used with space trusses is evaluated in Reflection 
Activity 10.5, followed by the derivation of the corresponding stiffness matrix for the three-
dimensional element.

REFLECTION ACTIVITY 10.5

Determine the transformation matrix T required to convert vector components of nodal dis-
placements from global to local coordinates considering the freedoms of the isolated space 
truss element shown in Figure 10.30. Comment on how T needs to be modified to account for 
the possible presence of an inclined roller support at one of the element ends.

The procedure adopted to determine T follows the steps previously used to derive the trans-
formation matrix for a plane truss, as outlined in Section 10.4.2.
Before considering the truss displacements, we determine how the global and local components 
of a vector relate to each other. Recalling that, for a truss element, the only relevant deforma-
tions are those parallel to the local x-axis (Reflection Activity 10.2), we only need to establish 
a relationship between a vector acting along the local x-axis and its global components. This 
significantly simplifies the calculation. Consider the vector r = [rx 0 0]T in three-dimensional 
(X,Y,Z) space. The vector is pointing in the direction of the local x-axis (see Figure 10.31).

Figure 10.31 Global components of vector r acting along the local x-axis.

Figure 10.30  Nodal displacements in local and global coordinates for an isolated member of a space 
truss. (a) Displacements in local coordinates. (b) Displacements in global coordinates.
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On the basis of the expression of T defined in Equation 10.53 (or Equation 10.54 when 
dealing with nodal coordinates), the stiffness matrix of an isolated element expressed in 
global coordinates is derived using Equation 10.34 as follows:

 K T kTe

l
m
n

l
m
n

EA
L

= =

























−
−

T

0
0
0

0
0
0

1 1
1 1




















l m n
l m n
0 0 0

0 0 0

The relationship between the vector and its components in the X, Y and Z directions is:
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in which:

 l = cos α m = cos β n = cos γ (10.50a–c)

The transformation matrix for the nodal displacements of a truss at its two end nodes can be 
evaluated by applying Equation 10.49 to the two displacement vectors:
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and combining these two relationships, we get:
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The transformation matrix T is therefore:

 T =










l m n
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 (10.53)

The possibility of dealing with inclined roller supports can be easily accommodated by introducing 
nodal coordinates and differentiating between the direction cosines adopted for the two end nodes:
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The contribution of the stiffness of an isolated element of a space truss to the structure 
stiffness matrix can be assembled when the global freedoms are assigned and when a loca-
tion vector defining the positive direction of the x-axis is selected. For the element shown in 
Figure 10.32, the six nodal loads Qe and six nodal displacements De are related as follows:

 Qe = KeDe
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PROBLEMS

 10.1 Calculate the structural stiffness matrix of the truss shown.

Figure 10.32 Freedom numbering of an isolated truss element in global coordinates.
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 10.2 Reconsider the truss of Problem 10.1, and determine the unknown displacements 
and reactions using the stiffness method.

 10.3 For the truss of Problem 10.1, evaluate the member forces of each element using the 
stiffness method and specify whether these are in compression or tension.

 10.4 Determine the stiffness matrix for the truss shown.

 10.5 Calculate the unknown displacements and reactions for the truss of Problem 10.4 using 
the stiffness method.

 10.6 Reconsider the truss of Problem 10.4 and determine, for each truss element, its member 
forces using the stiffness method. Clarify whether these are in compression or tension.

 10.7 Calculate the stiffness matrix for the truss shown.

 10.8 Evaluate the unknown nodal displacements and reactions for the truss of Problem 
10.7 using the stiffness method.

 10.9 For the truss of Problem 10.7, determine using the stiffness method the force in 
each truss element. Clarify whether these are in compression or tension.

 10.10 Calculate the stiffness matrix for the truss shown.

 10.11 Reconsider the truss of Problem 10.10, and determine the unknown nodal dis-
placements and reactions using the stiffness method.
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 10.12 Using the stiffness method, calculate member forces for elements 2, 3 and 4 for the 
truss of Problem 10.10 and specify whether these are compressive or tensile ones.

 10.13 Calculate the stiffness matrix for the truss shown below.

 10.14 Reconsider the truss of Problem 10.13, and evaluate the unknown nodal displace-
ments and reactions using the stiffness method.

 10.15 Determine member forces for all elements of the truss of Problem 10.13 using the 
stiffness method. Specify whether they are compressive or tensile forces.

 10.16 Calculate the stiffness matrix for the truss shown.

 10.17 For the truss of Problem 10.16, determine the unknown nodal displacements and 
reactions using the stiffness method.

 10.18 Calculate member forces for elements 3, 4, 5 and 7 for the truss of Problem 10.16.

 10.19 Calculate the stiffness matrix of the truss shown and evaluate the unknown nodal 
displacements using the stiffness method.
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 10.20 Using the stiffness method, determine member forces for elements 3, 4 and 6 for 
the truss of Problem 10.19.

 10.21 Reconsider the truss of Problem 10.19 rotating the roller support as shown below. 
Determine the unknown displacements and unknown reactions using the stiffness 
method.

 10.22 Using the stiffness method, calculate member forces for elements 3, 4 and 6 for the 
truss of Problem 10.21.

 10.23 Determine the unknown nodal displacements for the space truss shown using the 
stiffness method.

 10.24 Using the stiffness method, calculate the unknown reactions for the truss of 
Problem 10.23.

 10.25 Using the stiffness method, determine the member forces for the truss elements of 
Problem 10.23.

 10.26 Calculate the unknown reactions for the truss shown using the stiffness method.

 10.27 For the truss of Problem 10.26, evaluate reactions and member axial forces using 
the stiffness method.
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Chapter 11

Beam analysis using the stiffness method

11.1  THE BEAM ELEMENT

We have seen that a beam is a structural member that resists loads transverse to its longitu-
dinal axis (x-axis) and is supported at different locations along its length. In this chapter, we 
will present a particular stiffness element, called a beam element, that has been developed 
for the stiffness analysis of beams. The distinguishing feature of the beam element is its abil-
ity to resist moment and shear force. The member is assumed to possess a plane of symmetry 
and to resist forces applied within this plane of symmetry. It may also resist couples applied 
about an axis perpendicular to the plane of symmetry. Even if these conditions might appear 
to be restrictive, they are applicable to a large number of structural members commonly 
used in real structures.

The displacements at its nodal freedoms consist of transverse deflections and rotations, 
with nodal actions corresponding to transverse forces and moments. These are illustrated in 
Figure 11.1. For the purpose of this book, the use of the beam element is limited to the cases 
in which local and global coordinates coincide (Figure 11.1). This condition on the coordi-
nate systems is enforced by assuming that the location vector of each beam element (which 
defines the positive direction of the local x-axis) points in the positive direction of the global 
X-axes. This simplifies the solution process because it avoids the need for a transformation 
matrix to relate global and local freedoms.

Stiffness analysis using the beam element is a very useful approach to the analysis of both 
statically determinate and indeterminate beams. For members resisting axial forces, shear 
forces and moments, the frame element presented in the next chapter should be used.

The solution procedure required for the analysis of beams is similar to that already pre-
sented in Chapter 10 for trusses, where the problem was expressed in terms of unknown 
nodal displacements. In the case of the beam element, the unknown variables consist of the 
transverse displacements and rotations. Once these are determined, all other variables, such 
as the support reactions and the internal actions, are calculated in the post-processing stage.

The discretisation of the beam requires nodes to be placed at supports and at free ends 
of the beam. When point loads are applied within a beam span, it is usually convenient to 
introduce a node at these locations, even though point loads can also be included in the 
analysis using the procedures outlined for member loads in Section 11.5. For the continuous 
beam illustrated in Figure 11.2a we introduce nodes at the left pinned support (node 1), at the 
two roller supports (nodes 3 and 4) and at the end of the beam (node 5). For convenience, we 
also specify a node at the location of the applied load P1 (node 2), as shown in Figure 11.2b. 
There is no need to introduce a separate node for load P2 as its point of application coincides 
with node 5. In this manner, the continuous beam is discretised into four beam elements.

We are now in a position to assign the nodal freedoms at each of the nodes of the struc-
ture, as illustrated in Figure 11.2c. Considering that for the beam element we adopt identical 
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Figure 11.1  Nodal displacements and actions of the beam element. (a) Nodal displacements in local coor-
dinates. (b) Nodal displacements in global coordinates. (c) Nodal actions in local coordinates. 
(d) Nodal actions in global coordinates.

Figure 11.2  Beam discretisation and numbering of the local (global) freedoms. (a) Layout of the beam. 
(b) Beam discretisation (5 nodes, 4 elements). (c) Local (global) freedoms. (d) Numbering of 
unrestrained freedoms. (e) Numbering of restrained freedoms.
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local and global coordinate systems, the location vectors of all elements are assumed to be 
pointing toward the right along the positive direction of the x-axis.

The numbering of the nodal freedoms follows the same approach used in the analysis of 
trusses in Chapter 10, in which unrestrained freedoms are numbered first (freedoms 1–7 in 
Figure 11.2d), followed by the restrained ones (freedoms 8–10 in Figure 11.2e). Although this 
separation between restrained and unrestrained freedoms is convenient when solutions are car-
ried out by hand, it is not necessary when implementing the analysis in a computer program.

11.2  DERIVATION OF THE STIFFNESS MATRIX

The load–displacement relationship for the beam element relates the nodal displacements 
(d1, d2, d3, d4) and nodal actions (q1, q2, q3, q4), illustrated in Figure 11.1, with the following 
relationship:
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 (11.1a)

or in compact matrix form as:

 q = kd (11.1b)

where nodal actions and displacements are assumed to be positive in the positive direction 
of the nodal freedoms. Each member stiffness influence coefficient kij (with i,j = 1,…,4) can 
be interpreted as the reaction produced along freedom i by a unit displacement enforced 
along freedom j. This definition is illustrated graphically in Figure 11.3 specifying a unit 
displacement along each freedom considered separately.

Figure 11.3  Physical representation of the member stiffness influence coefficients. (a) d1 = 1 (with d2 = d3 = 
d4 = 0). (b) d2 = (with d1 = d3 = d4 = 0). (c) d3 = 1 (with d1 = d2 = d4 = 0). (d) d4 = 1 (with d1 = d2 = d3 = 0).
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REFLECTION ACTIVITY 11.1

Suggest one possible procedure to derive the member stiffness influence coefficients kij (with 
i,j  =  1,…,4) included in Equation 11.1a, relying on their physical interpretation provided in 
Figure 11.3.

The representation of the member stiffness influence coefficients in Figure 11.3 reflects the 
fact that the j-th column of the element stiffness matrix k (Equation 11.1a) contains the actions 
required to be applied to the ends of the beam element to produce a unit displacement along 
freedom j, while maintaining all other freedoms restrained. For example, the set of end displace-
ments representing a unit displacement applied along freedom 1, while restraining all other 
freedoms, is:
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Substituting Equation 11.2 into Equation 11.1a enables the calculation of the corresponding end 
actions q to be applied at the supports to maintain the enforced displaced shape:
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Equation 11.3 shows how the set of end actions q related to the end displacements d = [1 0 0 0]T 
equals the coefficients included in the first column of the element stiffness matrix k.
The expression provided in Equation 11.3 is useful only if we are able to determine the end 
actions corresponding to the different sets of induced displacements so that we have numeri-
cal values for each influence coefficient (kij). Fortunately, we have already derived the expres-
sions for these end actions in Worked Example 5.6, where we considered a fixed-ended beam 
with particular support displacements, such as those considered here. In particular, in Worked 
Example 5.6 part ii, we considered a unit transverse displacement at one support (equivalent 
to the displacements illustrated in Figures 11.3a and c), and in Worked Example 5.6 part iii, we 
considered a unit rotation at one support (equivalent to the displacements illustrated in Figures 
11.3b and d). For ease of reference, the set of displacements and set of nodal reactions obtained 
in Worked Example 5.6 (and those included in the solution of Problem 5.18) are tabulated below 
for each of the four cases considered here.
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The stiffness matrix of the beam can then be obtained by combining these reaction vectors 
(which correspond to the end nodal actions of the free-body diagram of the beam element) as 
follows:
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11.3  BEAM ELEMENT IN GLOBAL COORDINATES

We have assumed that, for beam elements only, global and local coordinate systems coincide 
(Figure 11.1) and, as a consequence, there is no need to transform global and local displace-
ments, forces and stiffness coefficients.

 k =

k k k k

k k k k

k k k k

k k k

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 kk

EI
L

EI
L

EI
L

EI
L

EI
L

44

3 2 3 2

2

12 6 12 6

6




















=

−

44 6 2

12 6 12 6

6 2

2

3 2 3 2

2

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

E

−

− − −

II
L

EI
L

EI
L

−































6 4
2

 (11.4) 

which is the element stiffness matrix included in Equation 11.1a for the beam element, I is the 
second moment of area of the cross-section, E is the elastic modulus of the material and L is the 
length of the beam element.
The method described for deriving the stiffness matrix by assigning one unit displacement at a 
time to each of the available freedoms is usually referred to as the direct stiffness method.

REFLECTION ACTIVITY 11.2

Under the assumptions that local and global coordinate systems coincide for beam elements, 
what would the transformation matrix T look like and how would T affect the relationships 
between local and global components of the displacements d = TDe, end actions Qe = T Tq and 
stiffness matrix Ke = T TkT for an element unloaded along its length?

Because the local and global coordinate systems coincide, the transformation matrix T of the 
beam element is simply represented by an identity matrix:

 T =



















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (11.5)

Therefore, the local and global representations of both displacements and end actions coincide:

 d = TDe = De  Qe = T Tq = q (11.6a,b)
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11.4  ASSEMBLING OF THE STIFFNESS ELEMENTS

The assembling procedure follows the same steps already presented for truss elements in the 
previous chapter. The stiffness relationship for an isolated beam element can be expressed 
in global coordinates (which here coincide with the local coordinates) as:

 Qe = KeDe (11.9)

where Qe and De collect the nodal forces and displacements (Equations 11.6), and Ke repre-
sents the element stiffness matrix (Equation 11.8).

The stiffness relationship for the entire beam relates the nodal displacements D to the 
nodal actions Q defined along the global freedoms as:

 Q = KD (11.10)

where K is the stiffness matrix of the entire beam (called the structure stiffness matrix). 
Denoting with Ndof the number of global freedoms of the beam, the length of vectors D and 
Q is Ndof, while the size of K is Ndof × Ndof. For example, the beam of Figure 11.2 possesses 
10 freedoms and so Ndof = 10.

The structure stiffness matrix K is determined by combining the contribution of the stiff-
ness matrix of each beam element considered in isolation Ke(n) (where ‘n’ identifies the ele-
ment number). In this process, it is important to carefully relate the freedom numbers of the 
isolated element to the appropriate global freedoms.

11.5  MEMBER LOADS

The loading vector included in the governing system of equations for determining the 
unknown displacements (Equation 11.10) does not allow member loads to be specified 
directly. For this purpose, consideration of member loads is carried out in two stages, mak-
ing use of the principle of superposition and introducing the concept of equivalent nodal 
loads. For example, consider the two-span beam shown in Figure 11.4a, where one of the 
spans is subjected to a uniformly distributed load w.

with:
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In a similar manner, the local stiffness matrix and the global stiffness matrix are identical:

 Ke = T TkT = k (11.8)

Note that global and local displacements, actions and stiffness matrices coincide, as stated in 
Equations 11.6 and 11.8, only under the assumption that local and global coordinates coincide.
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Relying on the principle of superposition, the behaviour of the beam shown in Figure 
11.4a, referred to as beam A, is equivalent to the sum of the responses obtained for the 
beams in Figures 11.4b and c, denoted as beams B and C, respectively. This is the case 
because the sum of the external loads applied to beams B and C produces the same loading 
condition as beam A (because the applied vertical forces and moments applied at nodes 2 
and 3 in beams B and C cancel each other out when added together). The set of nodal actions 
introduced at nodes 2 and 3 are the actions corresponding to the reactions of a fixed-ended 
beam with the same length as the loaded beam element, as highlighted in Figures 11.5 (and 
calculated in Worked Example 5.5).

If for the three beams and loading conditions shown in Figures 11.4a, b, and c, w = 
8 kN/m, L = 10 m and EI is constant over the length of each beam, the vertical displace-
ments, rotations and reactions calculated at the three nodes of beams A, B and C are reported 
in Table 11.1. These values can be readily confirmed using one or more of the analysis tech-
niques already discussed in Chapters 7, 8 and 9.

Figure 11.4 Equivalent nodal loads for a uniformly distributed load. (a) Beam A. (b) Beam B. (c) Beam C.

Figure 11.5  Reactions of a fixed-ended beam subjected to a uniformly distributed load. (a) Support and load-
ing conditions. (b) Free-body diagram.
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Based on these results, we can observe that the displacements and rotations undergone by 
beam A (which is the beam that we want to analyse) are identical to those determined with 
beam B, while zero nodal displacements or reactions are found for beam C. This is due to 
the fact that the equivalent nodal loads specified for Beam B produce an equivalent effect to 
that induced by the member loading, enabling the correct calculation of the nodal displace-
ments and support reactions. The results for beam C reflect the fact that, specifying the 
actual reactions of the fixed-ended beam as nodal loads produces the zero nodal displace-
ments expected in the fixed-ended configuration. The zero reactions for Beam C indicate 
that all actions are in equilibrium, as expected because they belong to the free-body diagram 
of the fixed-ended beam shown in Figure 11.5b.

The shear force and bending moment diagrams obtained from the analyses of beams A, 
B and C are plotted in Figure 11.6. These highlight the need to superimpose the solution of 
beams B and C to obtain the values describing the behaviour of beam A.

Table 11.1  Rotations and support reactions for two-span beams A, B and C of 
Figure 11.4 (with w = 8 kN/m, L = 10 m and constant EI)

Beam Rotations at nodes 1, 2 and 3 (rad) Support reactions at nodes 1, 2 and 3 (kN)

A D(rotation at node 1) = –83.33/IE
D(rotation at node 2) = 166.67/IE
D(rotation at node 3) = –250/IE

Q(reaction at node 1) = 5
Q(reaction at node 2) = –50
Q(reaction at node 3) = –35

B D(rotation at node 1) = –83.33/IE
D(rotation at node 2) = 166.67/IE
D(rotation at node 3) = –250/IE

Q(reaction at node 1) = 5
Q(reaction at node 2) = –50
Q(reaction at node 3) = –35

C D(rotation at node 1) = 0
D(rotation at node 2) = 0
D(rotation at node 3) = 0

Q(reaction at node 1) = 0
Q(reaction at node 2) = 0
Q(reaction at node 3) = 0

Figure 11.6  Distribution of internal actions along the lengths of beams A, B and C. (a) Shear force diagrams 
(kN). (b) Bending moment diagrams (kNm).
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Based on the above considerations, the effects of a member load may be included by 
performing one analysis where the equivalent nodal loads, referred to as qM in the follow-
ing, are applied to the entire structure. The vector qM is equal and opposite in sign to the 
support reactions of a fixed-ended beam subjected to the same member load, denoted as 
qF. This analysis enables the calculation of the global displacements and reactions of the 
structure (similar to the case of beam B in Figure 11.4b). A second step is required for 
the evaluation of the internal actions (similar to the case of beam C in Figure 11.4c) and 
this will be addressed in the next section when dealing with the post-processing of the 
solution.

As we saw earlier in Chapter 9 when discussing the moment distribution method, the use 
of the equivalent nodal loads is a very effective (and convenient) way of including member 
loads when using the stiffness method. Of course, we need to know the reactions induced by 
the member load on a fixed-ended beam of equivalent length. These can be readily remem-
bered for common distributions of member loading, but for other sets of member loads (see 
Appendix B), they can be calculated based on the differential equations and boundary con-
ditions presented in Chapter 5 (and discussed further in Chapter 12).

11.6  SOLUTION PROCEDURE AND POST-PROCESSING

The response of the beam can be evaluated by solving Equation 11.10 for the unknown nodal 
displacements and reactions. For clarity, displacements included in vector D are subdivided 
into known displacements Dk and unknown displacements Du. In a similar manner, nodal 
actions can be grouped into known nodal actions Qk (the external loads) and unknown 
nodal actions Qu (consisting of the support reactions). With this notation, we can rewrite 
Equation 11.10 highlighting known and unknown terms as follows:

 
Q

Q

K K

K K

D

D
k

u

u

k












=
























11 12

21 22
 (11.11a)

or

 Qk = K11Du + K12Dk (11.11b)

 Qu = K21Du + K22Dk (11.11c)

where the beam stiffness matrix K is partitioned into Kij (with i,j = 1,2), with D and Q being 
defined as:

 D
D

D
=












u

k

  Q
Q

Q
=












k

u  
 (11.12a,b)

The unknown displacements Du can be obtained by solving Equation 11.11b (see Appendix 
C for possible solution procedures of a system of simultaneous equations). For example:

 D K Q K Du k k= −−
11

1
12( )  (11.13)
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When Du is determined, the unknown reactions Qu can be evaluated from Equation 11.11c.
The partitioning introduced in Equations 11.11 highlights that, when performing the 

solution by hand, it is convenient to number the unrestrained freedom first (i.e. those related 
to the unknown displacements Du), followed by the numbering of the restrained freedoms 
(i.e. those related to the unknown reactions Qu).

The internal actions resisted at the ends of each member can be calculated by post- 
processing the solution for Du. This is carried out by determining the nodal actions q applied 
to the free-body diagram of the element as follows:

 q = kd + qF = kDe + qF (11.14)

where De is the vector of the nodal displacements for the particular element considered 
and qF is the vector of the reactions of the element subjected to the member load and 
fixed at both its ends (see Section 11.5). The distribution of the internal actions along 
the beam length can then be evaluated from statics by performing a cut at the locations 
of interest, as shown, for example, in Figure 11.7b at point C, located at a distance xC 
from node 1. Another simple way to calculate the internal actions is to include a node at 
the location where internal actions are sought, so that these can be determined directly 
from the values of q without having to apply statics to a cut along the length of an 
element.

The steps required in the analysis of beams using the stiffness method are detailed below 
and are followed by the presentation of worked examples.

SUMMARY OF STEPS 11.1: Stiffness method — Solution procedure

The main steps to be followed when analysing a beam with the stiffness method are detailed 
below.

 1. Specify a global reference system and then number the nodes and beam elements.

 2. Assign two freedoms at each node, i.e. one transverse to the beam axis and one for the 
rotation taken positive when anti-clockwise. In the presence of end releases, such as 
hinges, additional freedoms need to be specified to account for the relative movements 
between adjacent elements. Ensure the local axes of each member have the same positive 
directions as the global axes. In the numbering of the freedoms, number the unrestrained 
freedoms first, followed by the restrained freedoms.

Figure 11.7  Evaluation of internal actions along the length of a beam element. (a) Free-body diagram of a 
beam element subjected to member loading. (b) Cut along the element length to calculate the 
internal shear force S and bending moment M.
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 3. Calculate the stiffness matrix for each beam element based on Equation 11.4. When an 
element is subjected to member loads, determine the corresponding equivalent nodal 
loads qM (= –qF). The vector qF collects, for each loaded element, the support reactions 
of a fixed-ended beam with identical geometry and properties to those of the element 
and subjected to the same member loads.

 4. Assemble the stiffness matrix for the entire beam K.

 5. Determine vectors of known displacements Dk and external loads Qk. Partition the stiff-
ness matrix K into K11, K12, K21 and K22 (Equations 11.11), as well as vectors D and Q into 
[Du Dk]T and [Qk Qu]T, respectively. Define the stiffness relationship Q = KD (Equation 
11.10 and Equation 11.11a) based on these partitions. For elements subjected to member 
loads, the contribution of their equivalent nodal actions qM (= –qF) needs to be mapped 
in the corresponding locations of the loading vector Q.

 6. Determine the unknown displacements Du with Equation 11.13.

 7. Evaluate the unknown reactions Qu (Equation 11.11c) and calculate the end nodal actions 
q for each beam element (Equation 11.14).

WORKED EXAMPLE 11.1

Determine the nodal displacements and reactions for the beam shown in Figure 11.8. Assume 
EI is constant along the beam length.

The solution follows the steps outlined in Summary of Steps 11.1. Units used for length, rotation 
and force are m, rad and kN, respectively.

(1) We introduce a global coordinate system, and select two nodes and one element, numbered 
as shown.

Figure 11.8 Beam for Worked Example 11.1.
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(2) At each node, we insert two freedoms, i.e. a transverse displacement and a rotation. The 
location vector is assigned to have local x-axis and global X-axis positive in the same direction. 
The unrestrained freedoms are numbered first. In this case, the only unrestrained freedom is 
the rotation at node 2 (numbered as freedom 1). Next, the restrained freedoms are numbered 
(freedoms 2 to 4 in the figure below).

(3) The stiffness matrix for element 1 is calculated using Equation 11.4:
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where the stiffness coefficients are calculated as:
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Because local and global coordinates coincide, we have Ke(1) = k(1).

(4) In the assembling process, it is important to relate the freedom numbering adopted for 
the isolated beam element to the one of the entire structure. In this case, the entire beam is 
described by one element only, whose isolated dofs 1, 2, 3 and 4 correspond to global freedoms 
3, 4, 2 and 1 adopted for the beam being analysed.
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(5) The only unrestrained freedom in this problem is 1 and, based on this, the vector of known 
actions is Qk = [−10] to account for the clockwise couple applied at node 2. Its sign is negative 
because it acts in the opposite direction to freedom 1. The vector of known displacements Dk = 
[0 0 0]T contains the zero displacements related to the restrained freedoms 2, 3 and 4.
The stiffness relationship is next partitioned in accordance with Equation 11.11a and the system 
of four equations in four unknowns is expressed as:

 

1 2 3 4

10 0 4 0 06 0 06 0 2
02

3

4

−



















=

−
−Q

Q

Q

EI

. . . .

.. . . .
. . . .
. .

06 0 012 0 012 0 06
0 06 0 012 0 012 0 06
0 2 0 06

− −
−
− 00 06 0 4

0
0
0

1
2
3
4

1

. .





































D

 (11.15)

 or 
Q

Q

K K

K K

D

D
k

u

u

k












=
























11 12

21 22

with individual partitioned terms being:

Qk = [−10]  Qu =



















Q

Q

Q

2

3

4

  Du = [D1]  Dk =
















0
0
0

K11 = 0.4EI  K12 0 06 0 06 0 2= − EI . . .

K21

0 06
0 06
0 2

=
−















EI
.
.
.

  K22

0 012 0 012 0 06
0 012 0 012 0 06
0 06 0 06 0

=
− −

−
−

EI
. . .
. . .
. . ..4

















(6) The unknown displacement Du(=[D1]) can be obtained solving the first equation expressed 
by the system of Equation 11.15 as follows:

 −10 = 0.4EI D1 from which: D
EI EI1

10
0 4

25= − = −
.

(7) Once the unknown displacements are determined, it is possible to calculate the unknown 
reactions (Equation 11.11c):
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and these reactions are illustrated on the free-body diagram of the beam in Figure 11.9.



Beam analysis using the stiffness method 383

WORKED EXAMPLE 11.2

Calculate nodal displacements and reactions for the beam shown in Figure 11.10 and evaluate 
the internal actions for each element specified. Assume EI is constant along the beam.

(1) We start by specifying a global coordinate system and by numbering nodes and mem-
bers. In this case, we select three nodes (one at each support) and two elements, as shown 
below.

(2) Two freedoms (one transverse freedom and one rotational freedom) are assigned to each 
node and numbered starting from the unrestrained freedoms, followed by the restrained free-
doms. In this case, unrestrained freedoms correspond to the rotations at nodes 2 and 3 and 
are labelled as freedoms 1 and 2. As all remaining freedoms are restrained, these are then num-
bered from 3 to 6 as shown. Location vectors are specified for each member so that the local 
x-axis and global X-axis are positive in the same direction.

Figure 11.9 Reactions calculated for Worked Example 11.1.

Figure 11.10 Beam for Worked Example 11.2.
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(3) With L(1) = 10 m and L(2) = 20 m, the stiffness matrices for elements 1 and 2 are determined 
with Equation 11.4 as:
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Since the local and global coordinates coincide: Ke(1) = k(1) and Ke(2) = k(2).

(4) The stiffness matrices of the two beams are assembled into the structure stiffness matrix K. 
This is carried out mapping the freedoms 1 to 4 of isolated element 1 to the global freedoms 5, 
6, 3 and 1 and freedoms 1 to 4 of isolated element 2 to the global freedoms 3, 1, 4 and 2. This 
produces the following matrix K:
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(5) The vector of known actions is Qk = [40 −30]T. The 40 kNm anti-clockwise moment applied 
at node 2 has been included with a positive sign because it is pointing in the same direction of 
freedom 1, while the clockwise moment of 30 kNm at node 3 is negative because it is applied 
in the opposite direction to freedom 2. The zero displacements related to the restrained free-
doms are Dk = [0 0 0 0]T.
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The stiffness relationship for the entire structure (Equation 11.11a) can then be expressed as 
follows:
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 (11.16)

(6) The unknown displacements Du are obtained by solving the first two of these equations, 
which can be rewritten as:

 40 = EI(0.6D1 + 0.1D2) (11.17a)

 −30 = EI(0.1D1 + 0.2D2) (11.17b)

Solving gives:

 D
IE1

100= rad  and D
IE2

200= − rad

(7) The unknown reactions Qu are calculated by solving the last four equations included in 
Equation 11.16:

 Q3 = EI(−0.045D1 + 0.015D2) = −7.5 kN

 Q4 = EI(−0.015D1 − 0.015D2) = 1.5 kN

 Q5 = EI 0.6D1 = 6 kN

 Q6 = EI 0.2D2 = 20 kNm

Values of Qu are illustrated in the free-body diagram of the beam shown in Figure 11.11.

Figure 11.11 Free-body diagram for the two-span beam.
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The nodal actions of elements 1 and 2 are calculated with Equation 11.14. For this purpose, the 
nodal displacements of member 1 are:
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because member freedoms 1 to 4 of the isolated element 1 are mapped to the structure free-
doms 5, 6, 3 and 1. The element actions are therefore:
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which are illustrated in the free-body diagram shown in Figure 11.12a.

A similar procedure is applied for element 2:
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and the results are shown in Figure 11.12b.

Figure 11.12 Free-body diagrams of the two elements. (a) Element 1. (b) Element 2.
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WORKED EXAMPLE 11.3

Determine nodal displacements and reactions for the beam shown in Figure 11.13 and calculate 
the internal end actions for each element. Assume EI is constant along the beam.

(1) The global coordinate system and the node and member numbering are shown below.

(2) Two freedoms are assigned at each node and numbered. The two unrestrained freedoms are 
numbered 1 and 2, and the restrained freedoms are numbered 3 to 6 as shown. The location 
vectors for each of the two elements are specified so that the local x-axis and the global X-axis 
coincide and are in the same direction.

(3) Element 1: With L(1) = 40 m:
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Figure 11.13 Beam for Worked Example 11.3.



388 Structural analysis 

Element 2: With L(2) = 20 m:
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Because the local and global coordinates coincide: Ke(1) = k(1) and Ke(2) = k(2).

The equivalent nodal loads qM resulting from the uniformly distributed load applied to element 
2 are calculated based on Figure 11.5. These correspond to the opposite of the reactions of the 
fixed-ended beam qF with identical geometry, properties, and member loads as the element 
considered (as shown in Figure 11.14) and are collected in vector qF(2):

 qF(2) = [ 150 500 150 –500 ]T

The equivalent nodal loads for element 2, qM(2), to be applied to the structure are therefore:

 qM(2) = –qF(2) = [ –150 –500 –150 500 ]T

(4) The structure stiffness matrix K is assembled by mapping the freedoms 1, 2, 3 and 4 of 
isolated element 1 to the global freedoms 3, 1, 4 and 2, and freedoms 1, 2, 3 and 4 of isolated 
element 2 to the global freedoms 4, 2, 5 and 6.
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Figure 11.14 Reactions due to the member loads under fixed-end conditions.
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(5) The loading vector Q includes the contribution of the anti-clockwise moment applied at 
node 1 and the equivalent nodal loads qM(2), and is defined as:
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Each row of vector Q includes all actions related to the corresponding freedom, as shown in 
Figure 11.15. For example, row 1 includes the anti-clockwise moment of 12 kNm, taken as posi-
tive because it is pointing in the same direction of freedom 1, and at freedom 4 at node 2, we 
have the vertical reaction Q4 and the download nodal load of 150 kN included in row 4 of Q. The 
zero displacements related to the restrained freedoms are depicted in Dk = [0 0 0 0]T.
The stiffness relationship for the entire structure is:
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  (11.18)

(6) The first two equations of Equation 11.18 are shown below and used to calculate D1 and D2.

 12 = EI0.1D1 + EI0.05D2 (11.19a)

 −500 = EI0.05D1 + EI0.3D2 (11.19b)

and solving gives:

 D
EI1

1040= rad  and D
EI2

1840= − rad

Figure 11.15 Freedoms and nodal loads.
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(7) The unknown reactions are determined by solving the last four relationships in Equation 11.18:

 Q3 = EI(3.75 × 10−3 D1 + 3.75 × 10−3 D2) = −3 kN

 Q4 = EI(−3.75 × 10−3 D1 + 0.01125 D2) + 150= 125.4 kN

 Q5 = EI(−0.015 D2) + 150 = 177.6 kN

 Q6 = EI0.1 D2 − 500 = −684 kNm

These reactions are shown in the free-body diagram of Figure 11.16.

The nodal actions of elements 1 and 2 are calculated with Equation 11.14 (or by considering 
equilibrium of the free-body diagram of each element taken from Figure 11.16). Recalling that, 
for element 1, the isolated freedoms 1 to 4 are mapped against the global freedoms 3, 1, 4 and 2:
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which are shown in the free-body diagram of Figure 11.17.

Considering that element 2 is subjected to a member load, the calculation of q(2) needs to account 
for the equivalent nodal actions equal and opposite to the actions included in qF(2). For element 2, the 
isolated member freedoms 1 to 4 are mapped to the global freedoms 4, 2, 5 and 6.
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Figure 11.16 Free-body diagram for the two-span beam.

Figure 11.17 Free-body diagram for element 1.
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These results are shown in Figure 11.18a. The contributions provided by the vector kde(2) are 
shown in Figure 11.18b and those coming from the equivalent uniformly loaded fixed-end ele-
ment are shown in Figure 11.18c.

REFLECTION ACTIVITY 11.3

Explain how you would account for the presence of the hinge at node 3 of the beam shown in 
Figure 11.19 when analysing the structure with the stiffness method.

The presence of the hinge enables the ends of elements 2 and 3 to rotate relative to each other. 
This can be easily handled with the stiffness method by introducing two different rotational free-
doms at node 3, one for the right end rotation of element 2 and one for the left end rotation of 
element 3. This numbering is outlined in Figure 11.20, in which freedoms 1 to 5 are unrestrained 
and freedoms 6 to 9 are restrained.
In this manner, the isolated freedoms 1, 2, 3 and 4 of element 1 are mapped to the structure 
freedoms 8, 9, 6 and 1. Those of element 2 are mapped to the structure freedoms 6, 1, 2 and 3 
and those of element 3 are mapped to freedoms 2, 4, 7 and 5.
The vectors of unknown and known displacements are then written as:

 Du = [D1 D2 D3 D4 D5]T  Dk = [0 0 0 0]T

Figure 11.18 Free-body diagrams for element 2. (a) q(2). (b) kde(2). (c) qF(2).

Figure 11.19 Beam for Reflection Activity 11.3.
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PROBLEMS

 11.1 Evaluate the stiffness matrix of the structure shown. Assume EI = 60 × 103 kNm2.

 11.2 Reconsider the beam of Problem 11.1 and calculate nodal displacements and sup-
port reactions using the stiffness method. Adopt EI = 60 × 103 kNm2.

 11.3 Calculate the support reactions for the structure shown using the stiffness method. 
Assume EI = 70 × 103 kNm2.

 11.4 Reconsider the beam of Problem 11.3 and draw the free-body diagram of the stiff-
ness element showing all actions applied to it. Adopt EI = 70 × 103 kNm2.

 11.5 Consider the beam shown. Calculate the nodal displacements and support reac-
tions using the stiffness method, and sketch the free-body diagram of element 2. 
Assume EI = 50 × 103 kNm2.

 11.6 Evaluate the stiffness matrix of the structure shown. Assume EI to be constant.

Figure 11.20 Freedom arrangements for Reflection Activity 11.3.
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 11.7 For the beam of Problem 11.6, calculate nodal displacements and support reactions 
using the stiffness method. Adopt EI = 30 × 103 kNm2.

 11.8 Determine the support reactions for the structure shown using the stiffness method. 
Assume EI = 40 × 103 kNm2.

 11.9 Reconsider the beam of Problem 11.8 and draw the free-body diagrams of the two 
elements showing all actions applied to them. Adopt EI = 40 × 103 kNm2.

 11.10 For the beam shown, calculate the nodal displacements and support reactions 
using the stiffness method, and draw the free-body diagrams of elements 1 and 2. 
Assume EI = 50 × 103 kNm2.

 11.11 Consider the beam shown. Using the stiffness method, calculate the nodal displace-
ments and reactions assuming node 2 settles (i.e. moves downwards) by 15 mm. 
Assume EI = 48 × 103 kNm2.

 11.12 Sketch the free-body diagram of element 2 showing all actions applied to it for the 
beam analysed in Problem 11.11. Adopt EI = 48 × 103 kNm2.

 11.13 The internal support of the beam shown settles (i.e. moves downward) by 10 mm. 
Calculate the nodal displacements and the reactions at the supports using the stiff-
ness method. Assume EI = 48 × 103 kNm2.

 11.14 Draw the free-body diagrams of element 2 showing all actions applied to it for the 
beam of Problem 11.13. Adopt EI = 48 × 103 kNm2.
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 11.15 For the beam shown, determine the reactions at the supports and draw the free-
body diagram of element 1. Use the stiffness method. Assume EI = 60 × 103 kNm2.

 11.16 For the beam shown, calculate the nodal displacements and reactions at the sup-
ports using the stiffness method. Assume EI = 72 × 103 kNm2.

 11.17 Sketch the free-body diagrams of elements 1 and 2 showing all actions applied to it 
for the beam of Problem 11.16.

 11.18 Calculate the nodal displacements and support reactions for the structure shown 
using the stiffness method. Assume EI = 60 × 103 kNm2.

 11.19 Plot the free-body diagram of element 1 highlighting all actions applied to it for the 
beam of Problem 11.18.

 11.20 Determine the nodal displacements and support reactions for the structure illus-
trated below. Use the stiffness method and assume EI = 70 × 103 kNm2.

 11.21 Reconsider the beam of Problem 11.20 and draw the free-body diagram of element 
1 showing all actions applied to it.

 11.22 For the beam shown, evaluate using the stiffness method the nodal displacements 
and support reactions, and sketch the free-body diagram of element 1. Assume 
EI = 30 × 103 kNm2.
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 11.23 Consider the beam shown. Calculate the nodal displacements assuming node 3 
settles (i.e. moves downwards) by 20 mm. Use the stiffness method and assume EI = 
80 × 103 kNm2.

 11.24 Reconsider the beam of Problem 11.23 and draw the free-body diagram of element 
2 showing all actions applied to it. Adopt EI = 80 × 103 kNm2.

 11.25 Using the stiffness method, calculate the nodal displacements and sketch the free-
body diagram of element 2 illustrated below. Assume EI = 50 × 103 kNm2.

 11.26 For the beam shown, determine the nodal displacements and reactions using the 
stiffness method, and plot the free-body diagrams of elements 1 and 2 showing all 
actions applied to them. Adopt EI = 100 × 103 kNm2.

 11.27 Calculate the nodal displacements and reactions for the beam illustrated below, 
with a hinge at node 3. Use the stiffness method and assume EI = 60 × 103 kNm2.

 11.28 Evaluate the nodal displacements and reactions for the beam shown, with hinges at 
nodes 2 and 3. Use the stiffness method and assume EI = 60 × 103 kNm2.

 11.29 For the beam of Problem 11.28, draw the free-body diagram of element 2 showing 
all actions applied to it.
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 11.30 Determine the reactions at the supports for the beam illustrated below and draw 
the free-body diagram of element 2. Use the stiffness method and assume EI = 60 × 
103 kNm2.

 11.31 For the beam shown, determine reactions and sketch the free-body diagram of ele-
ment 1. Use the stiffness method and assume EI = 50 × 103 kNm2.
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Chapter 12

Frame analysis using the 
stiffness method

12.1  THE FRAME ELEMENT

This chapter presents the frame element that is often used for the analysis of two-dimensional 
structures with the stiffness method. This element combines the characteristics of the truss 
and beam elements presented in previous chapters and is capable of resisting applied actions 
that induce axial force, shear force and bending moment. The development of the frame 
element is based on the assumptions of beam theory introduced in Chapter 5. The element is 
located in the x–y plane with the local x-axis in the direction of the member axis and with 
a cross-section that has an axis of symmetry in the direction of the local y-axis. Forces are 
applied in the x–y plane and couples are applied about an axis perpendicular to this plane 
(i.e. in the direction of the z-axis). Despite these limiting assumptions, the frame element is 
widely used in the analysis of many real structures.

The nodal freedoms of the element are illustrated in Figure 12.1, with displacements 
consisting of an axial displacement (in the direction of the x-axis), a transverse displacement 
(in the direction of the y-axis) and a rotation (about the z-axis) at the two ends of the ele-
ment (i.e. six freedoms per element). These are shown in Figures 12.1a and b expressed in 
both the local coordinates (x,y,z) and the global coordinates (X,Y,Z). The corresponding 
nodal actions, which include the axial force, shear force and moment at the two nodes, are 
illustrated in Figures 12.1c and d considering both local and global coordinates.

When using the frame element, the discretisation of the structure needs to be carried out 
by inserting nodes at support locations and at free member ends. As for the beam element in 
Chapter 11, it is also preferable, even if not strictly necessary, to specify nodes where point 
loads are applied.

A stiffness relationship is written for each isolated frame element, based on the free-
doms of Figure 12.1. In the analysis of a structure, the contribution of its members to the 
structural stiffness is combined together in the assembling procedure. The solution is then 
obtained in terms of displacements, from which all other variables describing the structural 
response are determined in the post-processing stage.

12.2  DERIVATION OF THE ELEMENT STIFFNESS MATRIX

The relationship between nodal actions and nodal displacements for the frame element of 
Figure 12.1 in local coordinates is as follows:
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 (12.1a)

or in compact matrix form as:

 q = kd (12.1b)

Figure 12.1  Nodal displacements and actions of the frame element. (a) Nodal displacements in local coor-
dinates. (b) Nodal displacements in global coordinates. (c) Nodal actions in local coordinates. 
(d) Nodal actions in global coordinates.
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where:
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 (12.2a–c)

Nodal actions and displacements are assumed to be positive in the positive direction of 
the nodal freedoms. It can be seen that the 6 × 6 element stiffness matrix for a frame element 
(Equation 12.2b) can be obtained by appropriately combining the 2 × 2 stiffness matrix 
of the truss element (Equation 10.9b) and the 4 × 4 stiffness matrix of the beam element 
(Equation 11.4).

The derivation of the member stiffness influence coefficient kij (with i,j = 1,…,6) in the 
stiffness matrix k can be carried out by recalling that each kij can be interpreted, considering 
a free-body diagram of the frame element, to represent the reaction produced along freedom 
i by a unit displacement enforced along freedom j, as shown in Figure 12.2. This concept is 
at the basis of the direct stiffness method (introduced in Chapter 11), where the coefficients 
kij related to the j-th column of k are determined as the nodal actions required to enforce 

Figure 12.2  Physical representation of the member stiffness influence coefficients. (a) d1 = 1 (with d2 = d3 = 
d4 = d5 = d6 = 0). (b) d2 = 1 (with d1 = d3 = d4 = d5 = d6 = 0). (c) d3 = 1 (with d1 = d2 = d4 = d5 = d6 = 0). 
(d) d4 = 1 (with d1 = d2 = d3 = d5 = d6 = 0). (e) d5 = 1 (with d1 = d2 = d3 = d4 = d6 = 0). (f) d6 = 1 (with 
d1 = d2 = d3 = d4 = d5 = 0).
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a unit displacement along freedom j while maintaining all other freedoms restrained. This 
relationship is useful and could be applied to the evaluation of the member stiffness influ-
ence coefficients, as long as we are able to calculate these nodal actions. We have already 
determined these actions in Worked Example 5.6, where we calculated the nodal actions (or 
reactions of the restrained member) related to a number of displaced configurations.

For example, the first column of k can be evaluated by assuming all freedoms to be 
restrained and enforcing a unit displacement along freedom 1, i.e. d = [1 0 0 0 0 0]T. The 
required terms ki1 (with i = 1,...,6) are then equal to the nodal actions q required to keep this 
displaced shape, which is q = [AE/L 0 0 – AE/L 0 0]T (see results of Worked Example 5.6). 
The terms included in the remaining columns of k can be obtained in a similar manner (see 
Reflection Activity 11.1 for more details).

12.3  TRANSFORMATION BETWEEN LOCAL AND 
GLOBAL COORDINATE SYSTEMS

12.3.1  Transformation matrix for vectors

The frame element possesses three freedoms at each node (two displacements and one rota-
tion). Let us consider a vector with components in the local and global coordinate systems 
given by r = [r1 r2 r3]T and R = [R1 R2 R3]T, respectively. The origins of the local and global 
reference systems are assumed to coincide. Under these assumptions, the expressions relat-
ing the local and global vector components are:

 

r

r

r

l m
m l

R

R

R

1

2

3

1

2

3

0
0

0 0 1



















= −
































   

R

R

R

l m
m l

r

r

r

1

2

3

1

2

3

0
0

0 0 1



















=
−

































 (12.3a,b)

or in more compact form as:

 r = HR  R = HTr (12.4a,b)

where:
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 (12.5a–c)

where l and m are the direction cosines related to α and β, respectively, representing the 
relative angles between the local and global coordinate systems, as shown in Figure 12.3, 
and are calculated using:

 l = cos α  m = cos β = sin α (12.6a,b)

The relationships between local and global components specified in Equations 12.3 and 
12.4 are obtained in terms of H following the procedure adopted in Chapter 10 for the 
derivation of the local and global representations of the truss element (see Section 10.4 and 
Reflection Activity 10.3 for more details). The only difference from the case of the truss 
element is that the vector now contains a rotation component, expressed by r3 and R3 in 
local and global coordinates, respectively. On the basis of the fact that the local and global 
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coordinate systems share the same origin, these rotations always coincide, i.e. r3 = R3, so 
that their representation does not change by varying the orientation of the reference system.

12.3.2  Transformation matrix for the frame element

In this section, we will develop a relationship between local and global components of the nodal 
displacements for the frame element. The vector of nodal displacements at node 1 expressed in 
local coordinates (Figure 12.1a) is d1 (= [d1 d2 d3]T), and the vector related to node 2 is d2 (= [d4 
d5 d6]T). The corresponding global components of the displacements taking place at nodes 1 
and 2 are De1 = [De1 De2 De3]T and De2 = [De4 De5 De6]T, respectively (Figure 12.1b).

Applying the relationships of Equations 12.3a and 12.4a to the sets of local and global 
components of the displacements for nodes 1 and 2, we obtain the following relationships:
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 (12.7a,b)

 or  d1 = HDe1  d2 = HDe2 (12.8a,b)

These relationships are now combined in one expression as follows:
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 or d = TDe (12.9a,b)

where:
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 (12.10a–c)

Figure 12.3 Angles relating local and global coordinate axes.
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Equations 12.9 allow us to determine the local components of d once De is known. For 
this reason, T is referred to as the transformation matrix for the frame element from global 
to local coordinates.

The transformation required to convert the local components of the displacements d to 
the global components De is performed by applying Equations 12.3b and 12.4b:
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 or De = T Td (12.11a,b)

where TT is referred to as the transformation matrix for the frame element from local to 
global coordinates.

Relationships similar to Equations 12.9 and 12.11 are also applicable to relate the local 
and global components of the nodal actions. That is:
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where the nodal actions expressed in local and global coordinates are shown in Figure 12.1 
and given by:
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12.4  FRAME ELEMENT IN GLOBAL COORDINATES

The load–displacement relationship q = kd, introduced in Equation 12.1b to describe the 
response of the frame element in local coordinates, is now rewritten in terms of the global 
components of the nodal displacements and actions. This is carried out by substituting d = 
TDe (Equation 12.9b) and Qe = T Tq (Equation 12.13b) into Equation 12.1b, which produces 
the global load–displacement relationship defined as:

 Qe = KeDe (12.14)

and Ke is the element stiffness matrix calculated as follows:
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  (12.15)

This stiffness relationship is applicable to an isolated frame element whose local and 
global freedoms are numbered as shown in Figure 12.1. In particular, the i-th component of 
Qe and De relates to the nodal actions and nodal displacements assigned along freedom i, 
respectively. Similarly, rows and columns of Ke are associated with the global freedoms of 
the isolated element as specified in Equation 12.15.

12.5  MEMBER LOADS

Member loads are included in the analysis using equivalent nodal loads, consisting of nodal 
actions capable of inducing an equivalent structural response to the one being analysed. The 
selection of the set of actions to be used was outlined in Section 11.5, where it was shown 
that the member loads are equivalent to a set of equivalent nodal loads equal and opposite 
to the reactions of a fixed-ended beam subjected to the same member loading and with the 
same geometry and properties as the loaded element. That is, the equivalent nodal loads qM 
(where the subscript ‘M’ stands for member load) are:

 qM = −qF (12.16)

where qF represents the support reactions of a fixed-ended beam (see Section 11.5 for 
more details). For a member carrying a uniformly distributed load w as shown in Figure 
12.4:
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assuming w to be positive when pointing upward in accordance with the sign convention 
adopted throughout the book.

In the assembling process, it is necessary to convert the local actions included in qF into 
global actions QeF. This can be carried out either by treating each nodal action as an indi-
vidual external action and, from trigonometry, evaluating its global components or by cal-
culating the global components using the transformation matrix (Equations 12.13) with the 
direction cosines l and m determined based on the inclination of the loaded element.

REFLECTION ACTIVITY 12.1

Determine the expressions for the equivalent nodal loads to be used in the analysis of a frame 
to account for the situation where an element is subjected to a temperature gradient linearly 
varying over its cross-section and constant along its length (see Reflection Activity 5.2). The 
element is of uniform cross-section, with area A and second moment of area I, and with constant 
elastic modulus E and coefficient of thermal expansion α.

The equivalent nodal loads to be used in the stiffness method correspond to the support reac-
tions of a fixed-ended beam subjected to the same temperature gradient. These can be calcu-
lated based on the differential equations and boundary conditions introduced in Chapter 5. For 
the thermal loading considered here (illustrated in Figure 12.5a), the reactions for a fixed-ended 

Figure 12.4  Support reactions for a uniformly loaded fixed-ended beam. (a) Support conditions of a fixed-
ended member. (b) Free-body diagram.

Figure 12.5  Fixed-ended beam reactions caused by temperature variations. (a) Cross-section and 
tempereature variation. (b) qF collecting the support reactions of a fixed-ended team.
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12.6  ASSEMBLING, SOLUTION AND POST-PROCESSING

The contribution of each frame element to the stiffness matrix of the structure Ke (from 
Equation 12.15) is combined in the assembling stage to form the stiffness relationship for 
the entire structure, written as:

 Q = KD (12.19)

where Q and D are actions and displacements specified along the structure freedoms, and 
K is the structure stiffness matrix. In this process, it is important to carefully relate the 
freedom numbers of the isolated element to those of the global freedoms of the structure.

Equation 12.19 can be rewritten to highlight the partitioning applied to Q, K and D to 
separate freedoms related to the unrestrained and restrained freedoms, as:

 
Q

Q

K K

K K
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D
k

u

u

k












=
























11 12

21 22
 (12.20a)

or

 Qk = K11Du + K12Dk (12.20b)

 Qu = K21Du + K22Dk (12.20c)

in which Du and Dk represent unknown and known displacements, respectively, Qk and Qu 
describe the known (external) loads and unknown loads (support reactions), while matrix K 
is partitioned into Kij (with i,j = 1,2).

beam have already been evaluated in Worked Example 5.9 and are shown in Figure 12.5b. The 
vector of reactions of the fixed-ended beam is:

 qF = [EAεT,r 0 EIκT – EAεT,r 0 – EIκT]T (12.18a)

and (from Equations 5.45 and 5.46 reproduced here for ease of reference):

 εT = εT,r − yκT (5.45)

 ε αT r T T T
y
h, ( )= + −





1 2 1

t  κ αT
T T

h
= −2 1  (5.46a,b)

where εT,r and κT represent the thermal strain at the level of the reference axis and the thermal 
gradient, respectively, while ΔT1 and ΔT2 are the temperature changes at the top and bot-
tom fibres of the cross-section, yt depicts the distance from the centroid of the cross-section 
(because we are using a centroidal reference system) to the top fibre of the cross-section and h 
is the thickness of the cross-section.
Based on the above expressions and using Equation 12.16, the equivalent nodal loads qM can be 
calculated as:

 qM = –qF = [–EAεT,r 0 –EIκT EAεT,r 0 EIκT ]T (12.18b)
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The unknown displacements Du can be obtained by solving the set of Equations 12.20b 
(see Appendix C for possible solution procedures for the system of equations). In matrix form:

 D K Q K Du k k= −−
11

1
12( ) (12.21)

All other variables describing the structural response can be determined based on Du in 
the post-processing phase. For example, Qu is evaluated with Equation 12.20c and the nodal 
actions q applied to the free-body diagram of the element are calculated with:

 q = kd + qF = kTDe + qF (12.22)

where De depicts the nodal displacements of the particular element considered, and qF rep-
resents the reactions of the element subjected to the member load and fixed at both its ends 
with the same properties and length of the actual element.

The distribution of the internal actions can be determined based on the nodal actions q. 
This is carried out by performing a cut at the locations of interest and applying the equilib-
rium equations to the resulting free-body diagram to obtain the expressions for N, S and M 
along each element length. An example is provided in Figure 12.6, which shows the post-
processing of the internal actions for a frame element subjected to a uniformly distributed 
load w with a cut specified at a point C located at a distance xC from node 1.

The internal actions at a particular location can also be evaluated directly from the vec-
tor q by inserting a node at the location of interest at the beginning of the solution process.

The main steps involved in the solution process are now summarised and illustrated by 
worked examples.

SUMMARY OF STEPS 12.1: Stiffness method — Solution procedure

The solution procedure for the analysis of a structure using the frame element with the stiffness 
method is based on the following steps:

 1. Assign a global reference system. Select the number and locations of all nodes and mem-
bers, and number them.

 2. Specify three freedoms at each node, i.e. two displacements and one rotation (taken 
positive when anti-clockwise). In the presence of end releases specified at the element 
ends, such as hinges, additional freedoms need to be included to accommodate the dif-
ferent rotations of adjacent members. In the numbering of the freedoms, number the 
unrestrained freedoms first, followed by the restrained freedoms.

 3. Determine the stiffness matrix k for each element (Equation 12.2b) and, if necessary, the set 
of equivalent nodal loads qM (= –qF) for each member of the structure (Equation 12.17).

Figure 12.6  Evaluation of internal actions along the length of a frame element. (a) Free-body diagram of a 
frame element subjected to member loading. (b) Cut along the element length to calculate the 
internal axial force N, shear force S and bending moment M.
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 4. Assemble the stiffness matrix for the entire structure K.

 5. Define, based on the boundary conditions of the problem, vectors of known displace-
ments Dk and external loads Qk. Partition the stiffness matrix K into K11, K12, K21 and K22 
(Equations 12.20). Also partition the vectors D and Q into [Du Dk]T and [Qk Qu]T, respec-
tively. Write the governing system of equations Q = KD (Equations 12.19 and 12.20a). For 
elements subjected to member loads, the contribution of their equivalent nodal actions 
qM (= –qF) needs to be mapped in the corresponding locations of the loading vector Q.

 6. Calculate the unknown displacements Du with Equation 12.21.

 7. Determine the unknown reactions Qu (Equation 12.20c) and the end nodal actions q for 
each frame element forming the structure (Equation 12.22).

WORKED EXAMPLE 12.1

Calculate the nodal displacements and support reactions for the frame illustrated in Figure 12.7. 
Assume A = 5000 mm2, I = 240 × 106 mm4 and E = 200 GPa for all members of the frame.

The steps of the solution follow Summary of Steps 12.1.

(1) We adopt a global coordinate system and specify numbering for the nodes and members as 
shown below.

Figure 12.7 Frame for Worked Example 12.1.
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(2) Three freedoms are assigned at each node. These are numbered starting from the unre-
strained ones (1 to 4), followed by the restrained ones (5 to 9). Location vectors are specified 
for each element to define the positive direction of the local x-axis, as shown.

(3) The calculation of the stiffness matrices Ke(1) and Ke(2) requires the evaluation of the inclina-
tions of the elements expressed in terms of the direction cosines l and m, evaluated based on 
the angles α and β.

Element 1

The determination of the direction cosines for element 1 is shown in Figure 12.8a, where 
l = cos α = cos 90° = 0; m = sin α = sin 90° = 1 (or m = cos β = cos 0° = 1). These could also be 
calculated from the coordinates of the nodes as:

 l
x x

L
= − = − =2 1

1

0 0
4

0
( )

  m
y y

L
= − = − =2 1

1

4 0
4

1
( )

where x1 and y1 represent the coordinates of the first node, while x2 and y2 are the coordinates 
of the second node (as defined by the location vector).

With L(1) = 4 m, the relevant terms and stiffness coefficients for inclusion in Ke(1) are:

 EA
L( )1

3250 10= × kN/m  
12

9 10
1

3
3EI

L( )

= × kN/m   
6

18 10
1

2
3EI

L( )

= × kN

 

4
48 10

1

3EI
L( )

= × kNm 
2

24 10
1

3EI
L( )

= × kNm

Figure 12.8 Loading vectors and orientations for elements 1 and 2. (a) Element 1. (b) Element 2.
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Substituting these values into Equation 12.15 (and highlighting how freedoms of the structure 
relate to those of the isolated element Ke(1)):

 

7 8 9 5 6 4

9 10 0 18 10 9 10 0 18 10
0 250 10

1

3 3 3 3

3

Ke( ) =

× − × − × − ×
× 00 0 250 10 0

18 10 0 48 10 18 10 0 24 10
9 10 0 1

3

3 3 3 3

3

− ×
− × × × ×
− × 88 10 9 10 0 18 10
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18 10 0 24

3 3 3

3 3

3

× × ×
− × ×

− × ×× × ×

























10 18 10 0 48 10

7
8

9

5
6

43 3 3

Element 2

The direction cosines, length and stiffness coefficients for element 2 are l = cos α = cos 0° = 1; 
m = sin α = sin 0° = 0 (or m = cos β = cos 90° = 0) as shown in Figure 12.8b. These could also 
be calculated from the coordinates of the nodes:

 l
x x

L
= − = − =2 1

2

5 0
5

1  m
y y
L

= − = − =2 1

2

0 0
5

0
( )

With L(2) = 5  m, 
EA
L( )2

3200 10= × kN/m, 
12

4608
2

3

EI

L( )

= kN/m, 
6

11 520
2

2

EI
L( )

,= kN, 
4

38 4 10
2

3EI
L( )

.= × kNm, 

and 
2

19 2 10
2

3EI
L( )

.= × kN/m the element stiffness matrix Ke(2) is (Equation 12.15):

5 6 4 1 2 3

200 10 0 0 200 10 0 0
0 4608 11 520 0 460

2
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Ke( )

,

=

× − ×
− 88 11 520

0 11 520 38 4 10 0 11 520 19 2 10
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, . , .× − ×
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3×
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1
2

3 3× − ×

























, . 33

(4) The structure stiffness matrix K is obtained by assembling the contribution of the two elements 
Ke(1) and Ke(2). For element 1, the freedoms of the isolated elements 1 to 6 are mapped against the 
structural freedoms 7, 8, 9, 5, 6 and 4, while the isolated freedoms 1 to 6 of element 2 are mapped 
against structural freedoms 5, 6, 4, 1, 2 and 3.
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(5) Considering the restrained freedoms, the vector of known displacements Dk is defined as 
Dk = [0 0 0 0 0]T. The known term in the loading vector Qk is the vertical load at node 1 (along 
freedom 1), i.e. Qk = [0 –10 0 0]T. The unknown displacements and nodal actions (reactions) are 
collected in vectors Du and Qu: Du = [D1 D2 D3 D4]T and Qu = [Q5 Q6 Q7 Q8 Q9]T.
After assembling, the stiffness relationship for the structure becomes:
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  (12.23)

(6) The unknown displacements Du are determined from the first four equations in this set of 
simultaneous equations (Equations 12.23):

 0 = 200 × 103D1 (12.24a)

 −10 = 4608D2 − 11,520D3 − 11,520D4 (12.24b)

 0 = −11,520D2 + 38,400D3 + 19,200D4 (12.24c)

 0 = −11,520D2 + 19,200D3 + 86,400D4 (12.24d)

and solving gives:

 D1 = 0 m, D2 = –13.89 × 10−3 m, D3 =  –3.645 × 10–3 rad, D4 = –1.042 × 10–3 rad.

(7) Once the unknown displacements are determined, it is possible to calculate the unknown 
reactions from the bottom five equations of Equation 12.23:

 Q5 = –200 × 103 D1 + 18 × 103 D4 = –18.75 kN

 Q6 = –4608 D2 + 11,520 D3 + 11,520 D4 = 10 kN

 Q7 = –18 × 103 D4 = 18.75 kN

 Q8 = 0 kN

 Q9 = 24 × 103 D4 = –25 kNm

and these reactions are shown on the free-body diagram of the frame in Figure 12.9.
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WORKED EXAMPLE 12.2

Determine the support reactions and the internal actions of the frame shown in Figure 12.10. 
Assume all members to have the following properties along their lengths: A = 4000 mm2, 
I = 160 × 106 mm4 and E = 200 GPa.

(1 and 2) The global coordinate system and the numbering of nodes and members are shown 
below, together with the location vectors. The unrestrained freedoms (1 and 2) are numbered 
first, followed by the restrained ones (3–9).

Figure 12.9 Free-body diagram with calculated reactions.

Figure 12.10 Frame for Worked Example 12.2.
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(3) Stiffness matrices for elements 1 and 2 (Equation 12.15):

 Ke( )1

3 3100 10 0 0 100 10 0 0
0 750 3000 0 750 3000
0 3000=

× − ×
−

116 000 0 3000 8000

100 10 0 0 100 10 0 0
0 750 3000 0

3 3

, −
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− − 7750 3000
0 3000 8000 0 3000 16 000

−
−
























,





where L(1) = 8 m; l(1) = 1, m(1) = 0 (α = 0° and β = 90°); EA/L(1) = 100 × 103 kN/m; 12 7501
3EI L/ kN/m( ) = ; 

6 30001
2EI L/ kN( ) = ; 4EI/L(1) = 16,000 kNm; 2EI/L(1) = 8000 kNm; and
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,

where L(2) = 10 m; l(2) = 0.8; m(2) = –0.6; EA/L(2) 80 × 103 kN/m; 12 3842
3EI L/ kN/m( ) = ; 

6 19202
2EI L/ kN( ) = ; 4EI/L(2) = 12,800 kNm; and 2EI/L(2) = 6400 kNm.

The equivalent nodal loads qM(2) (= −qF(2)) in local coordinates related to the uniformly distrib-
uted load applied to element 2 are (Equation 12.17):

 qM( )2

2 2

0
2 12

0
2 12

0 240 400 0 2= −












= − − −wL wL wL wL
T

440 400 
T

 (12.25)

Figure 12.11a highlights how the equivalent nodal loads qM(2) are applied to the structure. The load-
ing vector QeM(2) expressing the components of qM(2) in global coordinates can be calculated from 
trigonometry based on the inclination of the equivalent nodal loads illustrated in Figure 12.11b:

 QeM
T

( ) [ ]2 144 192 400 144 192 400= − − − − − +

Figure 12.11 Structure subjected to equivalent nodal loads qM(2).
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The same loading vector could have been obtained by recalling that, based on Equations 12.13:

 Q T qeM
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 (12.26)

where qM(2) is defined in Equation 12.25 and T(2) represents the transformation matrix for ele-
ment 2 calculated (with direction cosines of element 2: l = 0.8 and m = –0.6).

(4) Isolated freedoms (1–6) of elements 1 and 2 are mapped to the structure freedoms 7, 8, 9, 
1, 3 and 2 and structure freedoms 1, 3, 2, 4, 5 and 6, respectively.

(5) The vectors of known actions and displacements are:

 Qk = [–144 –400]T Dk = [0 0 0 0 0 0 0]T

The stiffness relationship for the structure can now be expressed as:
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(12.27)

(6) The unknown displacements Du are calculated from the first two rows of Equations 12.27 as:

 D1 = –0.846 × 10−3 m and D2 = −13.85 × 10−3 rad

(7) The unknown reactions are then evaluated by substituting the values of D1 and D2 into the 
last seven rows of Equations 12.27, giving:

 Q3 = 244.6 kN  Q4 = 203.4 kN  Q5 = 180.9 kN  Q6 = –489.6 kNm

 Q7 = 84.60 kN  Q8 = –41.5 kN  Q9 = –110.8 kNm

These are plotted on the free-body diagram of the structure in Figure 12.12.
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The nodal actions q(2) related to element 2 are calculated with Equation 12.22:
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The terms collected in q(2), including vectors kde(2) and qF(2), are shown on the free-body  diagram 
of element 2 in Figure 12.13.

Figure 12.12 Free-body diagram with calculated reactions.

Figure 12.13 Free-body diagrams with internal actions for element 2.
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WORKED EXAMPLE 12.3

Reconsider the frame of Worked Example 12.1 and determine the nodal displacements, support 
reactions and the internal actions of the frame elements induced by the following temperature 
changes (without the presence of external applied forces):
(i) vertical element subjected to a constant temperature change of 10°C
(ii) horizontal element subjected to a linear temperature change with top and bottom tempera-
ture changes of 20°C and 10°C, respectively.

The temperature changes are constant over the length of each element. Assume the cross-
section to be doubly-symmetric with its depth equal to 0.3 m and adopt a coefficient of thermal 
expansion α of 11 × 10−6/°C.

(1 and 2) From Worked Example 12.1:

(3) The stiffness matrices for elements 1 and 2 have already been calculated in Worked Example 
12.1 and these results are not repeated here.
The equivalent nodal loads related to the temperature changes in elements 1 and 2 are calcu-
lated using Equations 12.18:

 qF = [EAεT,r 0 EIκT –EAεT,r 0 –EIκT]T

 qM = –qF = [–EAεT,r 0 –EIκT EAεT,r 0 EIκT ]T

where (see Reflection Activity 12.1):

 εT = εT,r – yκT

 ε αT r
tT T T

y
h, ( )= + −







∆ ∆ ∆1 2 1   κ αT
T T

h
= −∆ ∆2 1

The equivalent nodal loads to account for the temperature changes are now calculated sepa-
rately for elements 1 and 2 in the following.
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Element 1

From ΔT1(1) = 10°C, ΔT2(1) = 10°C, h = 0.3 m, yt = h/2 = 0.3/2 = 0.15 m (because section is doubly-
symmetric) and α = 11 × 10−6/°C (units in kN and m):
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Element 2

From ΔT1(2) = 20°C, ΔT2(2) = 10°C, h = 0.3 m, yt = 0.15 m and α = 11 × 10−6/°C (units in kN and m):
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(4 and 5) The stiffness relationship for the structure is obtained by assembling the stiffness coef-
ficients of elements 1 and 2 and considering the contributions of the member loads describing 
the temperature changes:
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(6) Du is determined with the first four rows of Equations 12.28 as:

 D1 = 0.825 × 10–3 m  D2 = –4.583 × 10–3 m  D3 = –1.833 × 10–3 rad  D4 = 0 rad

(7) The unknown reactions are calculated from the last five rows of Equations 12.28:

 Q5 = 0 kN Q6 = –110 kN  Q7 = 0 kN

 Q8 = 110 kN  Q9 = 0 kNm

The support reactions are illustrated in Figure 12.14.
The nodal actions of elements 1 and 2 are calculated with Equation 12.22 and are plotted in the 
free-body diagrams in Figures 12.15 and 12.16, respectively.

Figure 12.14 Free-body diagram with calculated reactions.
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Figure 12.15 Element 1.
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Element 2
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PROBLEMS

 12.1 Determine the reactions for the frame illustrated below using the stiffness method. 
Assume I = 300 × 106 mm4, A = 10 × 103 mm2 and E = 200 GPa.

 12.2 Consider the frame of Problem 12.1 and sketch the free-body diagram of element 1 
highlighting all actions applied to it.

 12.3 Evaluate the nodal displacements and reactions for the frame shown using the stiff-
ness method. Adopt I = 300 × 106 mm4, A = 10 × 103 mm2 and E = 200 GPa.

 12.4 Consider the frame of Problem 12.3 and sketch the free-body diagram of element 1 
highlighting all actions applied to it.

 12.5 For the beam illustrated below, calculate the nodal displacements using the stiff-
ness method and assuming I = 240 × 106 mm4, A = 8 × 103 mm2 and E = 200 GPa.

 12.6 Draw the free-body diagram of element 2 of the beam of Problem 12.5 highlighting 
all actions applied to it.

 12.7 Determine the nodal displacements for the structure illustrated below adopting I = 
240 × 106 mm4, A = 8 × 103 mm2 and E = 200 GPa. Use the stiffness method.
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 12.8 Sketch the free-body diagram of element 1 for the structure analysed in Problem 
12.7 highlighting all actions applied to it.

 12.9 Using the stiffness method, calculate the nodal displacements for the frame illus-
trated below with I = 300 × 106 mm4, A = 10 × 103 mm2 and E = 200 GPa.

 12.10 For the frame of Problem 12.9, draw the free-body diagram of element 2 highlight-
ing all actions applied to it.

 12.11 Consider the frame shown and calculate the reactions using the stiffness method, 
assuming I = 300 × 106 mm4, A = 10 × 103 mm2 and E = 200 GPa.

 12.12 Plot the free-body diagram of element 1 of the frame analysed in Problem 12.11 
highlighting all actions applied to it.

 12.13 Evaluate the reactions for the frame illustrated below using the stiffness method. 
Assume I = 320 × 106 mm4, A = 12 × 103 mm2 and E = 200 GPa.

 12.14 Consider the frame of Problem 12.13 and plot the free-body diagrams of elements 
1 and 2 highlighting all actions applied to them.

 12.15 Using the stiffness method, calculate the nodal displacements and reactions for the 
frame illustrated below. Assume I = 240 × 106 mm4, A = 6 × 103 mm2 and E = 200 GPa.
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 12.16 Sketch the free-body diagram of element 1 of the frame analysed in Problem 12.15 
highlighting all actions applied to it.

 12.17 Evaluate the reactions for the frame shown below using the stiffness method. Adopt 
I = 240 × 106 mm4, A = 6 × 103 mm2 and E = 200 GPa.

 12.18 Consider the frame of Problem 12.17 and sketch the free-body diagrams of ele-
ments 1 and 2 highlighting all actions applied to them.

 12.19 Consider the frame shown below and determine the support reactions using the 
stiffness method with I = 300 × 106 mm4, A = 10 × 103 mm2 and E = 200 GPa.

 12.20 For the frame of Problem 12.19, draw the free-body diagram of element 1 high-
lighting all actions applied to it.

 12.21 For the frame illustrated below, evaluate the support reactions using the stiffness 
method with I = 320 × 106 mm4, A = 12 × 103 mm2 and E = 200 GPa.

 12.22 Draw the free-body diagram of element 2 of the frame analysed in Problem 12.11 
highlighting all actions applied to it.
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 12.23 Using the stiffness method, determine the reactions for the frame illustrated below 
considering I = 320 × 106 mm4, A = 12 × 103 mm2 and E = 200 GPa.

 12.24 Consider the frame of Problem 12.23 and sketch the free-body diagram of element 
2 highlighting all actions applied to it.

 12.25 Using the stiffness method, evaluate the reactions induced by a temperature change 
for the frame illustrated below. Both elements 1 and 2 are assumed to be subjected 
to a linear temperature change over the cross-section with top and bottom varia-
tions equal to ΔTa = 20°C and ΔTb = 10°C. The temperature changes are constant 
over the length of each element. The cross-section is doubly-symmetric and its 
depth is equal to 0.4 m. Assume I = 300 × 106 mm4, A = 10 × 103 mm2, E = 200 
GPa and α = 11 × 10−6/°C.

 12.26 For the frame of Problem 12.25, draw the free-body diagram of element 2 high-
lighting all actions applied to it.

 12.27 Using the stiffness method, determine the nodal displacements and reactions 
induced by a temperature change for the frame shown. A linear temperature change 
is assumed to be applied over the doubly-symmetric cross-sections of both elements 
1 and 2 (with depth equal to 0.4 m), with top and bottom variations equal to ΔTa = 
20°C and ΔTb = 10°C. The temperature changes are constant over the length of 
each element. Assume I = 300 × 106 mm4, A = 10 × 103 mm2, E = 200 GPa and α = 
11 × 10−6/°C.
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 12.28 Sketch the free-body diagram of element 2 for the frame analysed in Problem 12.27 
highlighting all actions applied to it.

 12.29 Reconsider the frame of Problem 12.27 and draw the free-body diagrams of ele-
ments 1 and 2, highlighting all actions applied to them, assuming a hinge to be 
placed at node 2 as illustrated below.

 12.30 Using the stiffness method, evaluate the reactions for the structure illustrated 
below, which is subjected to a linear temperature change over the cross-sections 
defined by top and bottom variations of: ΔT1 = 20°C and ΔT2 = 10°C (as shown). 
The temperature changes are constant over the length of each element. The cross-
section is doubly-symmetric and is 0.3 m deep. Adopt I = 240 × 106 mm4, A = 8 × 
103 mm2, E = 200 GPa and α = 11 × 10−6/°C.

 12.31 Reconsider the structure of Problem 12.30 and replace the end rollers with pinned 
supports as illustrated below. Calculate the reactions of the structure.
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Chapter 13

Introduction to the finite 
element method

13.1  INTRODUCTION

The finite element method is a well-established method of analysis extensively used in all 
disciplines of engineering. This chapter provides an introduction to the method for the anal-
ysis of structures. The derivations presented deal with simple finite elements consisting of 
line elements describing two common beam models, namely the Euler–Bernoulli beam and 
the Timoshenko beam, readily available in some of the most common finite element analysis 
software. In this manner, we will cover some of the key aspects involved in a finite element 
derivation and analysis, while minimising the complexity of the numerical model. For the 
derivation of more refined and advanced elements, reference should be made to textbooks 
dedicated to the finite element method.

In Chapter 5, we derived the system of differential equations describing the behaviour of 
the Euler–Bernoulli beam model. It is common to refer to such set of governing differential 
equations, and its corresponding boundary conditions, as the strong form of the problem. 
The term strong intends to highlight the fact that the set of equations needs to be satisfied 
at any section of the beam and to distinguish it from its weak form, which represents an 
integral form of these equations. The weak form is very useful as it provides the basis for 
the derivation of finite elements. There are different approaches available in the literature 
to obtain the weak form of a problem. In this chapter, we will consider a simple approach 
for the finite element derivation of both Euler–Bernoulli and Timoshenko beam models. 
After the presentation of the kinematic model, which defines the possible displacements and 
deformations of the beam, the weak form is obtained by applying the principle of virtual 
work. The numerical solution is then derived based on the finite element method approxi-
mating the beam displacements with polynomial functions. Numerical results are provided 
to better outline some aspects related to finite element modelling.

13.2  EULER–BERNOULLI BEAM MODEL

The Euler–Bernoulli beam model was presented in Chapter 5 and is widely used for the 
analysis of structures. Structural designers use it routinely for the prediction of deforma-
tions and internal actions in beams and frames using commercial structural analysis soft-
ware. Various closed-form solutions are also commonly used, such as figures and tables of 
elastic deflection coefficients and internal actions in standard beams and frames for common 
loading cases. The analytical formulation at the basis of the Euler–Bernoulli beam model is 
described in the following sections for a generic member, such as that shown in Figure 13.1.



426 Structural analysis 

13.2.1  Kinematic model

In the undeformed state, the beam is assumed to be prismatic as shown in Figure 13.1. Plane 
sections are assumed to remain plane and perpendicular to the beam axis before and after 
deformations.

The formulation is derived for a beam segment of length L and the cross-section is assumed 
to be symmetric about the y-axis. Under these assumptions, no torsional and out-of-plane 
effects are considered. For generality, the level of the reference x-axis is taken as arbitrary.

The kinematic behaviour is illustrated in Figures 13.2a and b for a generic point P on the 
x-axis, highlighting both its axial displacement at the level of the reference axis u(xP) and its 
deflection v(xP), where xP defines the position of P in the undeformed beam.

The final displacement of a point Q, not on the member axis, can be expressed in terms 
of u(xQ) and v(xQ) as well as the rotation θ(xQ). In particular, the horizontal and vertical 
displacements, referred to as dx(xQ, yQ) and dy(xQ, yQ), are expressed as:

 dx(xQ, yQ) = u(xQ) − yQ sin θ(xQ) (13.1a)

 dy(xQ, yQ) = v(xQ) − yQ + yQ cos θ(xQ) (13.1b)

and, for clarity, the kinematic response of point Q is illustrated in Figure 13.2c, where xQ 
and yQ represent the coordinates of point Q in the undeformed beam.

The expressions of Equations 13.1 describe all possible displacements that the points 
of the beam can undergo and, because of this, this set of displacements is usually referred 
to as the displacement field of the model. For structural engineering applications, it is 
usually sufficient and convenient to remain within the framework of small displacements. 
In this way, the cosine and sine of the angle θ(x) in Equations 13.1 can be approximated by 
cos θ(x) ≈ 1 and sin θ(x) ≈ θ(x). For ease of notation, u(x), v(x) and θ(x) will be referred to as 
u, v and θ, respectively, in the following.

The condition that plane sections remain plane and perpendicular to the beam axis before 
and after deformations is enforced by:

 θ = v′ (13.2)

where the prime represents differentiation with respect to x.
Based on these simplifications, the displacement field of Equations 13.1 is re-written as:

 dx(x, y) = u − yθ = u − yv′ (13.3a)

Figure 13.1 Typical structural member and cross-sections.
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 dy(x, y) = v (13.3b)

 dz(x, y) = 0 (13.3c)

Equations 13.3 show how the kinematic response of a point in the beam can be deter-
mined once the displacements u and v are known. These independent variables (u and v) 
describing the displacement field are usually denoted as generalised displacements.

The corresponding strain field is calculated based on linear elasticity as:

 εx
xd

x
u yv= ∂

∂
= ′ − ′′     εy

yd

y
=
∂
∂

= 0      εz
zd

z
= ∂

∂
= 0 (13.4a–c)
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= ∂

∂
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∂
∂
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+ ∂
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x zd
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= ∂
∂

+
∂
∂

= 0  (13.4d–f)

where strain normal to the cross-section in the x direction εx is the only non-zero strain. The 
expression for the curvature κ (= v″) can be obtained by differentiating the deflection v twice 

Figure 13.2 Displacement field for the Euler–Bernoulli beam model.
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with respect to the coordinate x, and a positive value of v″ indicates a positive curvature 
in sagging moment regions (i.e. where compressive and tensile strains occur in the top and 
bottom fibres of the section, respectively, in a horizontal beam in accordance with the sign 
convention adopted throughout this book).

13.2.2  Weak form

The weak form of the Euler–Bernoulli beam model is obtained using the principle of virtual 
work considering a beam segment of length L with the free-body diagram shown in Figure 
13.3. The loads w(x) and n(x) represent the vertical and horizontal distributed member loads 
and, for ease of notation, will be referred to subsequently as w and n. The nodal actions 
at each end of the member represent external loads, internal actions or support reactions 
depending on the boundary conditions of the beam segment and have been referred to as N, 
S and M with the subscripts ‘L’ and ‘R’ specifying whether they relate to the left end (at x = 
0) or the right end (at x = L), respectively, as shown in Figure 13.3.

We start the derivation by equating the work of internal stresses to the work of external 
actions for each virtual admissible variation of the displacements and corresponding strains 
(which, by definition, represent all variations of possible displacements satisfying the kine-
matic boundary conditions of the problem):

 

σ ε θx x

AL L

A x wv nu x S v N u M Sˆ ˆ ˆ ˆ ˆ ˆd d d L L L L L L∫∫ ∫= +( ) + + + + RR R R R R Rˆ ˆ ˆv N u M+ + θ  (13.5)

where the variables with the hat ‘^’ represent the virtual variations of displacements or 
strains. By substituting the expression for the axial strain εx of Equation 13.4a into Equation 
13.5, the problem can be re-written as:

σ x

AL L

u yv A x wv nu x S v N u′ − ′′( ) = +( ) + +∫∫ ∫ˆ ˆ ˆ ˆ ˆ ˆd d d L L L L ++ + + +M S v N u ML L R R R R R R
ˆ ˆ ˆ ˆθ θ   

  (13.6)

Recalling the definitions of internal axial force N and moment M about the z-axis (see 
Section 5.4):

 N Ax

A

= ∫σ d  and M y Ax

A

= −∫ σ d  (13.7a,b)

Figure 13.3 Member loads and nodal actions.
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the integral at the cross-section (i.e. in dA) on the left-hand side of Equation 13.6 can be 
replaced by the internal actions N and M as:

 Nu Mv x wv nu x S v N u M
L L

′ + ′′( ) = +( ) + + +∫ ∫ˆ ˆ ˆ ˆ ˆ ˆ ˆd d L L L L LθLL R R R R R R+ + +S v N u Mˆ ˆ θ̂  (13.8)

This relationship can be further rearranged to isolate the terms related to N and M as follows:
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(13.9)

It is possible to assume a nil variation of the virtual displacements at the ends of the beam 
segment, where x = 0 and x = L, without affecting the derivation of the stiffness matrix for 
the finite element and its loading vector accounting for n and w. In such a case, it is then 
possible to include the nodal actions in the finite element analysis during the assembly of the 
load vector. Based on these considerations, Equation 13.9 can be simplified to:
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d dxx
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∫  (13.10)

In this form, the constitutive models for the materials are not explicitly specified as they 
are included in the definitions of the internal actions N and M.

Under the assumptions of linear–elastic material properties (where the material follows 
Hooke’s law σ = Eε), the internal actions N and M can be expressed as follows:

 N A E y A R Rx

A

r

A

A r B= = − = −∫ ∫σ ε κ ε κd d( )  (13.11a)

 M y A Ey y A R Rx

A

r

A

B r I= − = − − = − +∫ ∫σ ε κ ε κd d( )  (13.11b)

where εr and κ are the strain at the level of the reference axis and the curvature, respectively, 
while RA, RB and RI represent the axial rigidity, the stiffness related to the first moment of 
area and the flexural rigidity of the cross-section, respectively, and are calculated as:

 RA = EA RB = EB RI = EI (13.12a–c)

Equations 13.11 can be re-written in more compact form as:

 r = Dε (13.13)

and the terms included in the matrix and vectors are:
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where r is the vector of internal actions N and M, D specifies the geometric and material 
properties of the cross-section and ε includes the strain calculated at the level of the reference 
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axis εr and the curvature κ. These terms can be expressed in terms of the horizontal and 
vertical displacements (i.e. u and v) as detailed below:
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where A is a differential operator and the symbol ∂ defines the derivative with respect to the 
member coordinate x, and the generalised displacements u and v are collected in vector e as:

 e =










u
v

 (13.17)

At this point, it is useful to re-write Equation 13.10 in terms of vectors r and ε (= Ae):

 r e e⋅ = ⋅∫ ∫A ˆ ˆd p dx x
L L

 (13.18)

where the member loads n and w have been collected in p:

 p =










n
w

 (13.19)

Substituting the constitutive properties defined in Equation 13.13 into Equation 13.18 
produces the general expression for the weak formulation of the problem:

 D e p eεε ⋅ = ⋅∫ ∫A ˆ ˆd dx x
L L

 (13.20)

13.2.3  Finite element formulation

The formulation described here is applicable to displacement-based finite elements, which 
are derived by approximating the generalised displacements of the model by means of 
polynomials or other selected functions. If necessary, the approach can be modified for the 
derivation of other elements, for example, force-based elements (where the approximation is 
applied to stress variables, such as the internal actions in the case of beams) or mixed elements 
(in which case, a combination of displacements, strains, and stresses is approximated).

The basis of the proposed displacement-based finite element formulation relies on the 
approximation of the generalised displacements u and v, previously collected in the vector e 
(Equation 13.17) by means of polynomial functions.
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For example, if we approximate the axial displacement by means of a parabolic function 
and the deflection with a cubic polynomial, we have:

 u = a0 + a1x + a2x2 (13.21a)

 v = b0 + b1x + b2x2 + b3x3 (13.21b)

where ai and bj (with i = 0,1,2 and j = 0,1,2,3) are unknown coefficients that need to be 
evaluated from the analysis. Equations 13.21 are used to approximate the displacements 
of each element. In this current form, these expressions are not easy to use as they do not 
enable a direct connection (assembling) among adjacent elements. For this purpose, we will 
try to replace these coefficients with more useful terms.

Let us start by considering the axial displacement (Equation 13.21a) and replace the three 
coefficients ai with another three terms that describe, for example, the axial displacements 
at the left node uL, in the middle of the element uM, and at the right node uR, as shown in 
Figure 13.4. In this manner, we could connect the axial displacements of adjacent elements 
at the element ends. This is carried out by enforcing the polynomial of Equation 13.21a to 
match the values for the selected nodal displacements where these are specified, and the 
equations describing these conditions are:

 u(x = 0) = a0 + a1 × 0 + a2 × 02 = uL (13.22a)

 u(x = L/2) = a0 + a1 × L/2 + a2 × (L/2)2 = uM (13.22b)

 u(x = L) = a0 + a1 × L + a2 × L2 = uR (13.22c)

based on which the coefficients ai can be written in terms of uL, uM and uR as:

 a0 = uL a
u u u

L1
3 4= − − +L M R  a

u u u

L
2 2

2 2= − +( )L M R  (13.23a–c)

Substituting Equations 13.23 into Equations 13.21a produces:

 u u
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L
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2
2( )

 (13.24)

and collecting the nodal displacements, we get:
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Figure 13.4  The 7-dof finite element (Euler–Bernoulli beam). (a) Nodal displacements. (b) Freedom number-
ing for the isolated finite element.
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Equation 13.25 can be re-written in more compact form as:

 u = Nu1uL + Nu2uM + Nu3uR (13.26)

where:
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 (13.27a–c)

The expressions for Nu1, Nu2 and Nu3 are commonly referred to as shape functions 
because they describe the shapes associated with each nodal displacement, whose variations 
along the element axis are plotted in Figure 13.5. These shape functions are equal to unity 
only at the location (along the element axis) associated with their corresponding nodal free-
dom. For example, Nu1 equals 1 at x = 0 (because it is associated with uL) and is nil at the 
locations of the other nodes. Nu2 and Nu3 are equal to 1 at x = L/2 and x = L, respectively, 
and zero at other nodes.

In a similar manner, the coefficients bj introduced in Equation 13.21b to describe the 
vertical displacement can be replaced by nodal displacements related to the deflections 
(vL  and vR) and rotation (θL and θR), as shown in Figure 13.4a. Recalling that in the 
Euler–Bernoulli beam model θ = v′ (Equation 13.2):

 θ = dv/dx = b1 + 2b2x + 3b3x2 (13.28)

the coefficients bj are calculated from the following conditions:

 v(x = 0) = b0 + b1 × 0 + b2 × 02 + b3 × 03 = vL (13.29a)

 v(x = L) = b0 + b1 × L + b2 × L2 + b3 × L3 = vR (13.29b)

 θ(x = 0) = b1 + 2b2 × 0 + 3b3 × 02 = θL (13.29c)

 θ(x = L) = b1 + 2b2 × L + 3b3 × L2 = θR (13.29d)

based on which:

 b0 = vL b1 = θL (13.30a,b)

 b
v L v L

L
2 2

3 2 3= − + − +L L R Rθ θ  b
L v v L

L
3 3

2 2= + − +θ θL L R R  (13.30c,d)

Figure 13.5 Shape functions used for the parabolic approximation of u.
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The expression for v can then be re-arranged by collecting the nodal displacements as:
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and, in compact form, as:

 v = Nv1vL + Nv2θL + Nv3vR + Nv4θR (13.32)

where:
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The variations of the shape functions Nv1, Nv2, Nv3 and Nv4 are plotted in Figure 13.6.
It is usually convenient to represent Equations 13.26 and 13.32 with the matrix of shape 

functions Ne and a vector of nodal displacements de:
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Obviously, other polynomials could be used in the derivation and the associated element 
freedoms would need to be modified accordingly. In fact, the number of available freedoms 
is defined by the number of coefficients introduced in the approximating polynomials. For 
example, we introduced three and four coefficients for u and v, respectively, in Equations 

Figure 13.6 Shape functions used for the cubic approximation of v.
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13.21. These have been replaced by three freedoms for u (uL, uM, uR) and four freedoms for 
v (vL, vR, θL, θR), respectively, as shown in Figure 13.4.

The key step in the derivation of a displacement-based finite element is the approximation 
of the generalised displacements for the model considered by means of polynomial (or other) 
functions. On the basis of the notation introduced, this can be expressed as:

 e ≈ Nede (13.35)

from which the variables describing the strain distribution can be calculated by making use 
of Equation 13.16:

 ε = ANede = Bde (13.36)

with:

 B = ANe (13.37)

By substituting the approximation of Equations 13.35 and 13.36 into Equation 13.20, the 
so-called weak form of the problem expressed in terms of nodal displacements is produced:

 D Bd Bd p N de e e e( ) ˆ ˆ⋅ = ⋅∫ ∫d dx x
L L

 (13.38)

This relationship can be re-arranged to isolate the virtual nodal displacements d̂e on one 
side of the dot product. This is achieved recalling that Aa∙Bb = BTAa∙b:

 B D Bd d N p de e e
T Td d( ) ˆ ˆx x

L

e

L

⋅ = ⋅∫ ∫  (13.39)

from which the stiffness relationship of the finite element can be obtained:

 kede = qe (13.40)

where ke is the finite element stiffness matrix and qe represents the loading vector related to 
the member loads w and n. These are defined as:

 k B DBe

L

x= ∫ T d  (13.41a)

 q N pe e

L

x= ∫ T d  (13.41b)

The derivation of the element stiffness matrix and the loading vector for the 7-dof element 
depicted in Figure 13.4 is presented below.
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The stiffness matrix of the 7-dof finite element is calculated based on Equation 13.41a. 
This requires the calculation of matrix B and, recalling its definition in Equation 13.37, is 
obtained as:
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(13.42)

Substituting the expression obtained for B into Equation 13.41a and carrying out the 
integration along the member length produces the element stiffness matrix:
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where RA, RB and RI are the rigidities defined in Equations 13.12. The inclusion of the first 
moments of area becomes essential when the stiffness coefficients vary during the analysis, 
for example, to account for material nonlinearities.

The loading vector required to account for member loads n and w is calculated based on 
Equations 13.41b:

 q N pe e

L

x L
n

L
w

L
w

L
n

L
n

L
w

L
w= = −











∫ T d

6 2 12
2
3 6 2 12
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TT

 (13.44)

For illustrative purposes and to better outline all the steps involved in the solution pro-
cess, the integrals in the expressions for ke (Equation 13.41a) and qe (Equation 13.41b) have 
been solved analytically in Equations 13.43 and 13.44. However, numerical integration 
could be easily implemented if preferred (see Chapter 15). Other procedures can be used to 
deal with internal freedoms, such as static condensation where the internal freedoms are 
expressed in terms of the other (boundary) freedoms and removed from the system of equa-
tions used in the solution process. Results related to the internal freedoms are then obtained 
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in the post-processing phase of the analysis once the variables at the boundary freedoms are 
determined. These procedures will not be covered here.

13.2.4  Solution procedure

In a real structure, different members may have different orientations (with different local 
coordinate systems). It is therefore convenient to introduce a global coordinate system to 
be used for the whole structure, as already introduced in Chapter 12 for the frame analy-
sis using the stiffness method. The load and displacement vectors for a particular element 
(defined in local coordinates in Equations 13.44 and 13.34, respectively) can be expressed 
in global coordinates by carrying out the following transformations:

 de = TDe  Qe = T Tq (13.45a,b)

where Qe represents the load vector in global coordinates, De is the vector of nodal dis-
placements in global coordinates and the transformation matrix T is given by (see Section 
12.3):

 T =

−

−

l m
m l

l m
m l

0 0 0 0 0
0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 00 0 0 0 0 1



























 (13.46)

where l and m are respectively the cosine and the sine of the angle between the global and 
local coordinate systems (see Equations 12.6).

Substituting Equations 13.45 into Equation 13.40 gives the stiffness relationship of a par-
ticular element expressed in global coordinates:

 Qe = KeDe (13.47)

where Ke is the stiffness matrix of the element in global coordinates given by:

 Ke = T TkeT (13.48) 

The stiffness relationship for the whole structure is then obtained by assembling the 
contribution of each element, similarly to the procedure already outlined for the stiffness 
method in Chapter 12 (see Section 12.6) and can be expressed as:

 Q = KD (13.49)

where K is the structure stiffness matrix, while Q and D are, respectively, the vectors of 
nodal actions and displacements for the whole structure expressed in the global coordinate 
system.
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Equation 13.49 is readily solved for the unknown displacements and reactions. In this 
process, it is convenient to partition Equation 13.49 to distinguish between known and 
unknown displacements (Dk and Du) and known and unknown actions (Qk and Qu) as follows:
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The determination of the unknown displacements Du can be performed using one of 
the solution procedures presented in Appendix C. For example, these could be evaluated, 
together with the unknown actions, as:

 D K Q K Du k k= −−
11

1
12( )  and Qu = K21Du + K22Dk (13.51a,b)

13.2.5  Post-processing

When the analysis is completed, the solution is post-processed and, for each element, the 
different variables describing its structural response are determined on the basis of the cal-
culated nodal displacements. For example, the variables defining the strain diagram are 
obtained from Equations 13.36 and 13.42:
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In a similar manner, the expressions for the internal axial force N and internal moment M 
can be calculated by substituting Equations 13.52 into Equations 13.13. The variation for the 
shear force along the member length needs to be evaluated from equilibrium considerations.

13.2.6  Remarks on the consistency 
requirements for finite elements

The proposed 7-dof finite element represents the simplest element that fulfils the consistency 
requirements by approximating the displacements by means of polynomials and thereby 
avoids potential locking problems that may arise when the member local x-axis does not 
pass through the centroid of the member cross-section. The ability to select a reference 
system with the origin not necessarily coincident with the centroid of the section is funda-
mental when dealing with material nonlinearities as the location of the actual centroid of 
a cross-section with nonlinear material behaviour varies depending on the level of applied 
loading or deformation.

From a practical viewpoint, the consistency requirement is satisfied when the independent 
displacements (or their derivatives) present in the expressions of the strains of the model pos-
sess the same order (i.e. u′ and v″ have the same order). Adopting a cubic function for the 
deflection v leads to a linear contribution to the strain (i.e. due to v″, included in Equation 
13.4a). Similarly, in order to produce the same (linear) contribution to the strain provided by 
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u′ (specified in Equation 13.4a), it is necessary to have a parabolic function approximating 
the axial displacement u. A linear function for u, for example, would not be able to achieve 
this as its first derivative (i.e. u′) is constant.

To better illustrate this behaviour, the results obtained using the 7-dof finite element 
(Figure 13.4) are compared to those calculated using a 6-dof element (Figure 13.7). The 
6-dof element approximates u and v by means of linear and cubic polynomials, respectively. 
As previously discussed, this latter element does not satisfy the consistency requirements 
owing to the orders of its polynomials.

On the basis of the adopted approximated polynomials, the stiffness matrix of the 6-dof 
finite element is obtained based on Equation 13.41a as:
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The calculated matrix is equivalent to the stiffness matrix of the frame element presented 
in the previous chapter (Equation 12.1a), which was calculated assuming a centroidal refer-
ence system, i.e. a reference system for which RB = 0.

For the case of a simply-supported beam with a prismatic rectangular section and sub-
jected to a point load applied at mid-span, the mid-span deflections calculated using the 
6-dof and 7-dof finite elements are shown in Figure 13.8. These results have been obtained 
by discretising the member with four elements to clearly emphasise the implications of the 
different sets of polynomials. The instantaneous mid-span deflection has been plotted for 
different positions of the reference axis (denoted by dref and measured from the top of the 
section) expressed as a function of the cross-section depth d. With this notation, the refer-
ence axis is located at the level of the centroid when dref/d = 0.5, in which case both elements 
produce the same mid-span deflection shown in Figure 13.8 where the ratio between the 
deflections calculated with the 6-dof and the 7-dof elements equals 1.

Figure 13.7  The 6-dof finite element (Euler–Bernoulli beam). (a) Nodal displacements. (b) Freedom num-
bering for the isolated finite element.
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Based on Figure 13.8, it is apparent that, when using the 6-dof element with the origin of 
the reference system not coinciding with the cross-sectional centroid, a stiffer response than 
expected is obtained.

REFLECTION ACTIVITY 13.1

Consider the nodal displacements specified for the 6-dof finite element in Figure 13.7 and derive 
the stiffness matrix ke and the loading vector qe to account for constant member loads n and w 
applied over the member length.

The 6-dof finite element approximates displacements u and v by means of linear and cubic poly-
nomials which can be expressed as:

 u = a0 + a1x (13.54a)

 v = b0 + b1x + b2x2 + b3x3 (13.54b)

 θ = dv/dx = b1 + 2b2x + 3b3x2 (13.54c)

Following the procedure previously presented in Equations 13.21 through 13.34 for the 7-dof finite 
element, the coefficients ai and bj (with i = 0,1 and j = 0,1,2,3) can be re-written in terms of the 
nodal displacements (depicted in Figure 13.7) applying the following conditions to Equations 13.54:

 u(x = 0) = uL  u(x = L) = uR  v(x = 0) = vL 

 v(x = L) = vR  θ(x = 0) = θL  θ(x = L) = θR 

from which the expressions for ai and bj can be written as:
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a
u u
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Figure 13.8 Comparisons between mid-span deflections calculated with 6-dof and 7-dof finite elements.
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Based on these, the functions describing the approximated generalised displacements become:
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which can be re-arranged by collecting the nodal displacements as:

 u = Nu1uL + Nu2uR (13.56a)

 v = Nv1vL + Nv2θL + Nv3vR + Nv4θR (13.56b)

with the shape functions given by:
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Equations 13.56 can be re-written in more compact form as:
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The stiffness matrix is then determined with Equation 13.41a:
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with matrix D defined in Equation 13.15b, and B is evaluated using Equation 13.37 as follows:
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The loading vector qe required to account for constant member loads n and w is evaluated with 
Equation 13.41b as:

 q N pe
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x nL wL wL nL wL wL= = −
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SUMMARY OF STEPS 13.1: Finite element analysis — Solution procedure

The main steps to be carried out for structural analysis using finite element line elements are 
detailed below.

 1. Assign a global reference system.

 2. Select the type of element to be used for the analysis and select the level of mesh refine-
ment (i.e. number of elements to be used to discretise the structure). Usually, the selection 
of the number of nodes and elements requires an iterative process where the accuracy of 
the results is assessed for different discretisations. Assign location vectors for each element 
(this is usually carried out by specifying locations of start and end nodes for each element).

 3. Assign freedoms at the nodes to accommodate nodal freedoms of the finite elements. 
Make sure to include additional freedoms, if necessary, to account for possible internal 
freedoms of the finite elements and possible end releases, such as hinges, which enable 
relative movements between adjacent elements. When performing the calculations by 
hand, number unrestrained freedoms first followed by restrained ones. In reality, because 
of the relatively large number of freedoms usually involved in the finite element modelling, 
calculations are performed with a computer where the managing of the unrestrained and 
restrained freedoms is independent from their numbering, and it is carried out by record-
ing freedoms associated with the two unrestrained and restrained conditions separately.

 4. Calculate stiffness matrices and loading vectors for each of the elements specified in the 
discretised structure.

 5. Assemble all contributions from the individual finite elements to produce the structure 
stiffness matrix and vectors collecting loads and displacements.

 6. Solve for the unknown nodal displacements.

 7. Post-process the solution to evaluate all variables required to describe the structural 
response.
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WORKED EXAMPLE 13.1

Consider the simply-supported beams shown in Figure 13.9. Beam 1 is subjected to a point load 
applied at mid-span and beam 2 carries a uniformly distributed load. Calculate and compare 
the mid-span deflections obtained using different levels of meshing (i.e. different number of 
elements). Use the 7-dof finite element of Figure 13.4, and assume the member to be prismatic 
and rectangular with the following cross-sectional and material properties: b (width) = 100 mm, 
d (depth) = 400 mm and E = 20 GPa.
Adopt a centroidal reference system (i.e. with RB = 0).

The two beams are analysed separately following the Summary of Steps 13.1.

Beam 1

(1) Global coordinate system:

(2) The analyses are carried out using the 7-dof finite element of Figure 13.4.
The number of elements used in the analysis is varied from 2 (one on each side of the point 
load) to 100. Obviously, these simulations require the use of appropriate computer software 
to solve the system of equations for the unknown displacements following one of the solution 
procedures presented in Appendix C. To clarify the steps involved in the solution, the calcula-
tions when the beam is discretised into just two elements are shown here. The location vectors 
adopted in the analysis are shown below.

Figure 13.9 Beams for Worked Example 13.1. (a) Beam 1. (b) Beam 2.
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(3) The 7-dof element possesses three freedoms at end nodes and one internal freedom. These 
are illustrated below, where unrestrained freedoms have been numbered from 1 to 8, and 
restrained freedoms, from 9 to 11.

(4) The stiffness matrix of each element is calculated with Equation 13.43.

Element 1
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where:

 L(1) = 5 m RA = 0.4 × 0.1 × 20 × 106 = 800 × 103 kN RB = 0

 RI = (0.1 × 0.43/12) × 20 × 106 = 10.66 × 103 kNm2

Because of the element orientation, the transformation matrix T (Equation 13.46) is an identity 
matrix, with l = 1 and m = 0, and the local and global coordinates coincide. It is then possible 
to write the stiffness matrix Ke(1) of the isolated 7-dof element in global coordinates as follows:

 K T k T ke e e( ) ( ) ( ) ( ) ( )1 1 1 1 1= =T

Element 2

Taking advantage of the fact that elements 1 and 2 are identical:

 ke(2) = ke(1) and Ke(2) = Ke(1)

There is no need to calculate loading vectors as no member loads are applied.

(5) The stiffness matrix of the structure K is assembled by accounting for the contribution of 
both elements and making sure to correctly map their stiffness coefficients from the freedoms 
of the isolated finite elements to the structure freedoms. Freedoms 1 to 7 of the isolated ele-
ments 1 and 2 are mapped to the structure freedoms 9, 10, 1, 2, 3, 4 and 5 and to structure 
freedoms 3, 4, 5, 6, 7, 11 and 8, respectively.
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Vectors related to known and unknown displacements and actions are:

 Dk = [0 0 0]T Du = [D1 D2 D3 D4 D5 D6 D7 D8]T

 Qk = [0 0 0 −10 0 0 0 0]T Qu = [Q9 Q10 Q11]T

(6) The unknown displacements are determined applying one of the solution procedures pre-
sented in Appendix C:

 Du = 10−3 × [−5.859 0 0 −19.53 0 0 0 5.859]T

(7) Based on Dk and Du, the nodal displacements of each element become:

 de(1) = 10−3 × [0 0 −5.859 0 0 −19.53 0]T

 de(2) = 10−3 × [0 −19.53 0 0 0 0 5.859]T

The mid-span deflection corresponds to the displacement at global freedom number 4:

 v(x = 5 m) = −19.53 × 10−3 m

Increasing the number of elements used for the discretisation of the beam does not change 
the results. This is due to the fact that the solutions of the differential equations describing the 
deflections of the beam are expressed in terms of a cubic function, when the beam is subjected 
to a point load (see Section 5.7). This polynomial is part of the approximations used for the 
generalised displacements and, for this reason, the solution is said to be exact on the basis of the 
assumptions of the adopted model.

Beam 2

The solution implemented for beam 2 is similar to the one already presented for beam 1 and its 
details are not repeated here.
The results for the mid-span deflections, calculated for different numbers of elements (i.e. dif-
ferent finite element meshes), are plotted in Figure 13.10. In this case, the mid-span deflections 
converge to the exact value at a very coarse discretisation, i.e. with just two elements (Figure 
13.10). Despite this, finer meshes are required for an accurate evaluation of the mid-span cur-
vature as illustrated in Figure 13.10.
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13.3  TIMOSHENKO BEAM MODEL

The Euler–Bernoulli beam is a very useful model for the representation of the behaviour 
of structural members. In particular, it works very well for beams whose length-to-depth 
ratio is greater than about 10. For shorter beams, also sometimes referred to as deep beams, 
the shearing deformations (not included in the Euler–Bernoulli beam formulation) need to 
be accounted for, as they may significantly affect the structural response. The Timoshenko 
beam represents the simplest analytical formulation capable of describing this behaviour.

In the following, the weak formulation describing the Timoshenko beam model is pre-
sented following the same procedure, based on the principle of virtual work, previously 
adopted for the Euler–Bernoulli beam. For this reason, the description for the Timoshenko 
beam will refer, where possible, to the previous section to avoid unnecessary repetitions. 
This formulation is then applied for the derivation of two finite elements. The possible 
occurrence of a problem known as shear locking in the analysis is discussed and simple 
recommendations to avoid this problem are provided.

13.3.1  Kinematic model

The analytical formulation of the Timoshenko Beam Model is also presented considering a 
prismatic member (Figure 13.1). Like the Euler–Bernoulli Model, the displacement field of 
the beam is described with Equations 13.1, reproduced here for ease of reference:

 dx(x, y) = u(x) − y sin θ(x) (13.1a)

 dy(x, y) = v(x) − y + y cos θ(x) (13.1b)

The graphical description of the displacement field is provided for a point P lying on the 
member axis in Figure 13.11a and for a point Q located away from the axis x in Figure 
13.11b. From this representation, we can see that plane sections are assumed to remain 

For this beam loaded with a uniformly distributed load, the solution is dependent on the speci-
fied discretisation because the polynomial adopted in the finite element formulation (i.e. cubic 
functions for the deflection) is one order smaller than the polynomial describing the actual 
deflection curve for the member that requires a poly nomial of order 4 (see Section 5.7).

Figure 13.10 Calculated deflection of Beam 2 with different numbers of elements.
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plane (as for the Euler–Bernoulli beam), but they may not remain orthogonal to the member 
axis after deformation (different to the Euler–Bernoulli beam). The main consequence of 
this latter condition is that the rotation of the beam is not always equal to v′ because of the 
influence of shearing deformations.

Under these conditions, the kinematic behaviour of the Timoshenko beam is described 
by three variables: the axial displacement at the level of the reference axis u(x), the vertical 
deflection v(x) and the rotation θ(x). In the following, u(x), v(x) and θ(x) will be referred to 
as u, v and θ for ease of notation. These variables represent the generalised displacements 
and are collected in the vector e as:

 e = [u v θ]T (13.61)

The expressions for the curvature κ (= θ′) along the beam can then be obtained by differ-
entiating the rotation θ with respect to the coordinate x along the beam length.

In the framework of small displacements (i.e. cos θ ≈ 1 and sin θ ≈ θ), the admissible 
displacement of a point in the beam is defined by the following expressions (Figure 13.11):

 dx(x, y) = u − yθ (13.62a)

 dy(x, y) = v (13.62b)

The relevant strain field can then be obtained from the displacement field as:

 ε θx
xd

x
u y= ∂

∂
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where εx and γxy are the non-zero strains for the Timoshenko beam model.

Figure 13.11 Displacement field for the Timoshenko beam model.
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The expression for γxy highlights how its value remains constant at a cross-section (i.e. it 
does not vary over the thickness of the member). This representation leads to some inac-
curacies that are discussed and addressed in the following sections when considering the 
calculation of the internal shear force.

13.3.2  Finite element formulation

The weak form of the problem is obtained using the principle of virtual work. For gener-
ality, the member is assumed to be subjected to n and w, which represent the vertical and 
horizontal distributed member loads, respectively, as shown in Figure 13.3. On the basis of 
the adopted strain field, the principle of virtual work can then be expressed as:
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where the variables with the hat ‘^’ again represent virtual variations of displacements or 
strains. In Equation 13.64, σx and τxy represent those longitudinal and shearing stresses that 
produce internal work, and the terms on the right-hand side represent the work done by the 
member forces along the beam length and by the nodal actions at the beam ends.

Equation 13.64 can be re-written ignoring the nodal actions included on its right-hand 
side, because the use of zero virtual displacements at the segment ends does not influence 
the calculation of the stiffness matrix and the vector accounting for the member loads n and 
w. This is carried out by highlighting the terms related to the internal actions (N, M and S) 
and those describing the strain field (u′, v′, θ and θ′) as follows:
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or in compact form as:

 r e p e⋅ = ⋅∫ ∫A ˆ ˆd dx x
L L

 (13.65b)

where r collects the internal actions (r = [N M S]T) and p specifies the member loads (p = 
[n w 0]T).

Assuming linear–elastic properties, i.e. σx = Eεx and τxy = Gγxy, the internal actions can 
be expressed as a function of the generalised displacements on the basis of the strain field 
described in Equations 13.63:

 N A E y A R Rx

A

r

A

A r B= = − = −∫ ∫σ ε κ ε κd d( )  (13.66a)

 M y A Ey y A R Rx

A

r

A

B r I= − = − − = − +∫ ∫σ ε κ ε κd d( )  (13.66b)
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 S A G A Rxy

A

xy

A

S xy= = =∫ ∫τ γ γd d  (13.66c)

where the expressions for N and M are identical to those previously obtained for the Euler–
Bernoulli beam model in Equations 13.11, and RS represents the shear stiffness, i.e. the 
rigidity associated with the shear deformation, which is given by:

 RS = AG (13.67)

where G is the shear modulus of the material.
The use of a constant shear strain γxy does not satisfy equilibrium at the top and bottom 

fibres of the cross-section (which are stress free). This is a consequence of the fact that the 
shear stress requires the use of a higher-order polynomial to describe its actual variation. To 
address this aspect, a shear correction factor is commonly used with the Timoshenko beam 
model to modify the cross-sectional shear rigidity to:

 RS = kSAG (13.68)

where the value for kS depends on the geometric and material properties, as well as the load-
ing and boundary conditions of the member analysed. It is beyond the scope of this book to 
provide more details on its calculation. For example, for a rectangular cross-section of area 
A (= b × d) and with an applied shear force parallel to d: kS = 5/6. The inclusion of kS might 
become unnecessary if the order of the functions describing the out-of-plane displacements 
of the cross-section (i.e. warping) is increased and, because of this, these formulations are 
usually referred to as higher-order beam models.

On the basis of the adopted material properties, Equations 13.66 can be rewritten in more 
compact form as:

 r = Dε (13.69)

where:
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and ∂ ≡ d/dx.
The finite element formulation can then be derived by approximating the generalised dis-

placements (e ≌ Nede) and substituting these in Equation 13.65b to rewrite the weak form 
of the problem in terms of nodal displacements de. These steps have already been performed 
when presenting the Euler–Bernoulli beam model and, because of this, are not reproduced 
here. Reference for these should be made to Equations 13.21 through 13.41. In particular, 
the stiffness matrix ke and the loading vector qe associated with the member loads n and w 
are obtained based on Equations 13.41.

The derivation of the finite element describing the behaviour of a Timoshenko beam is 
outlined below considering the 7-dof element depicted in Figure 13.12, where the generalised 
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displacements u and θ are approximated by linear functions, while v is described by a para-
bolic polynomial. Based on these, the expressions for u, v and θ can be re-written as:

 u = a0 + a1x (13.71a)

 v = b0 + b1x + b2x2 (13.71b)

 θ = c0 + c1x (13.71c)

and re-arranging, the coefficients ai, bj and ci (with i = 1,2 and j = 1,2,3) may be obtained in 
terms of the nodal displacements:

 a0 = uL a
u u

L1 = − −L R  (13.72a,b)
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v v v
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3 4= − − +L M R  b
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2 2

2 2= − +( )L M R  (13.72c–e)

 c0 = θL c
L1 = − −θ θL R  (13.72f,g)

Based on the adopted approximations, u, v and θ can be expressed as functions of the 
nodal displacements:
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where the shape functions are given by:

 N
x
Lu1 1= −  N

x
Lu2 =  (13.74a,b)

Figure 13.12  The 7-dof finite element (Timoshenko beam). (a) Nodal displacements. (b) Freedom numbering 
for isolated finite element.
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The variables describing the strain deformations, collected in vector ε, can be defined in 
terms of nodal displacements as (Equation 13.70c):
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The stiffness matrix ke and the loading vector qe related to the member loads n and w are 
calculated with Equations 13.41 as:

k B DBe

L

A B A B

S S S

x

R
L

R
L

R
L

R
L

R
L

R R
L

R

= =

− −

−

∫ T d

0 0 0

0
7
3

5
6

8
3

0 SS S

B S S I S B S S I

L
R

R
L

R LR R
L

R R
L

R LR R
L

R

3 6
5
6 3

2
3 6 6

0
8

− + − − −

− SS S S S S

A B A B

S

L
R R

L
R
L

R

R
L

R
L

R
L

R
L

R

3
2

3
16
3

0
8
3

2
3

0 0 0

0
3

− −

− −

LL
R R

L
R
L

R

R
L

R LR R
L

R R
L

S S S S

B S S I S B

− − −

− − −

6
8
3

0
7
3

5
6

6 6
2

3
5RR LR R

L
S S I

6 3
+

























�

�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�  

(13.79)

 q N pe e

L

x nL wL wL nL wL= =










∫ T

T

d
2 6

0
2

3 2 6
0  (13.80)



Introduction to the finite element method 451

REFLECTION ACTIVITY 13.2

Derive the stiffness matrix ke and the loading vector qe for the 6-dof finite element, illustrated 
in Figure 13.13, describing the behaviour of the Timoshenko beam model.

The generalised displacements of the 6-dof finite element are approximated based on the 
following linear polynomials:

 u = a0 + a1x  v = b0 + b1x  θ = c0 + c1x

Enforcing the following conditions, the coefficients ai, bi and ci (with i = 0,1) can be expressed in 
terms of the nodal displacements shown in Figure 13.13:

 u(x = 0) = uL u(x = L) = uR v(x = 0) = vL v(x = L) = vR θ(x = 0) = θL θ(x = L) = θR

In particular, the expressions for ai, bi and ci become:
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from which the approximations of the generalised displacements can be re-written as:
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L
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L
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These generalised displacements can be re-arranged in a more compact form as:

 u = Nu1uL + Nu2uR  v = Nv1vL + Nv2vR  θ = Nθ1θL + Nθ2θR (13.82a–c)

Figure 13.13  The 6-dof finite element (Timoshenko beam). (a) Nodal displacements. (b) Freedom 
numbering for the isolated finite element.
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where:
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The stiffness matrix can be determined using Equation 13.41a as:
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where, in the calculation process, the matrix B has been evaluated as follows:
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The loading vector qe required to account for constant member loads n and w is evaluated using 
Equation 13.41b as:
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The two finite elements derived for the Timoshenko beam model are applied below for the 
analysis of a simply-supported beam subjected to a mid-span point load. While the results are 
very similar for very short spans, their differences tend to increase for longer lengths, with the 
6-dof element exhibiting a stiffer response. These differences are shown in Figure 13.14 for a 
beam with an exaggerated span-to-depth ratio of 100, to illustrate a limit case where the shear 
deformations are negligible when compared to the flexural deformations. The stiffer behaviour 
of the 6-dof element is attributed to the fact that the polynomials used for the approximations 
of the generalised displacements are not consistent. This is the case because their contribution 
to the strain variables is not of the same order. In particular, the shear strain γxy (= v′ − θ) is 
obtained as the sum of the constant term v′ (as v is described by a linear polynomial) and the 
linear term θ. This difference results in the stiffer response produced by the 6-dof element and 
this is usually referred to as shear locking. This is discussed further in Reflection Activity 13.3.

Other approaches could be used to address the locking problem, such as the reduced inte-
gration approach, which ‘reduces’ the order of the numerical integration carried out in the 
calculation of the stiffness coefficients. The idea at the basis of this approach is that the error 
introduced in the reduced numerical integration counterbalances the higher stiffness exhib-
ited because of locking. This procedure should be tested very carefully when implemented 
in a finite element analysis to ensure reliable results.

REFLECTION ACTIVITY 13.3

Consider the results presented in Figure 13.14 for the 6-dof and 7-dof finite elements derived 
for the Timoshenko beam model. The stiffer response of the 6-dof element is due to shear 
locking. Demonstrate the occurrence of shear locking for this finite element considering the 
polynomials adopted to approximate their generalised displacements.

The stiffening effect observed in the results of the 6-dof finite element in Figure 13.14 becomes 
significant for increasing values of span-to-depth ratios for the beam analysed. In these cases, 
the shearing deformations have a negligible influence on the structural response and, increas-
ing the slenderness of the member, the solution is well predicted by the Euler–Bernoulli beam 

Figure 13.14 Deflection profiles calculated with 6-dof and 7-dof finite elements.
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model, for which γxy is negligible. Because of this, we will now try to see what happens to the 
polynomials used to approximate the generalised displacement for the 6-dof finite element 
(Equations 13.82 and 13.83) when we consider the case of a very long beam, i.e. when the shear 
strain γxy becomes negligible and in the limit when γxy approaches zero:

γ θ θ θ θ θ θ θ
xy v

v v
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where L is the length of the finite element under consideration.
For Equation 13.87 to approach zero for any value of x, it requires that both its terms equal 
zero independently of x. This condition is achieved by enforcing both of these terms to equal 
zero as follows:

 v v
L

R L
L

− − =θ 0 (13.88a)

 θ θR L− =
L

0  (13.88b)

Recalling the approximated displacements introduced earlier (see Equations 13.82 and 13.83):

 u = a0 + a1x  v = b0 + b1x  θ = c0 + c1x (13.89a–c)

and:

 a0 = uL a
u u

L1 = − −L R  (13.90a,b)

 b0 = vL b
v v

L1 = − −L R  (13.90c,d)

 c0 = θL c
L1 = − −θ θL R  (13.90e,f)

At the limit condition, Equation 13.88b forces the coefficient c1 of Equation 13.90f to equal zero. 
The main implication of this is that the order of the polynomial describing the rotation reduces 
to a constant value and, because of this, the first derivative of the rotation θ is now zero. The 
curvature κ (= θ′) is then forced to remain equal to zero. This behaviour limits (locks) the pos-
sible deformations of the element and produces the stiffened behaviour observed in Figure 
13.14, hence the name ‘shear locking.’ Because of its effects, Equation 13.90f can be regarded as 
a fictitious kinematic restraint imposed on the rotation θ.
One way to avoid this problem is to ensure that the polynomials adopted to describe the gen-
eralised displacements contribute with the same order to all non-zero strains appearing in the 
strain field of the model. In this case, the non-zero variables are εx and γxy. In particular, the con-
tribution of u′ and θ included in the expression for εx (Equation 13.63a) are both constant and, 
therefore, of the same order. In the case of γxy (Equation 13.63d), the contributions of v′ and θ 
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have different orders, v′ being constant and θ being linear. In order to ensure compatible contri-
butions from v′ and θ to γxy, we need to increase the order of the polynomial used to describe 
v by one, so that v is approximated by a parabolic function. In such a way, both v′ and θ are then 
linear functions. Such an element corresponds to the 7-dof element presented in Figure 13.12.
Other procedures are available to avoid the occurrence of locking problems, such as the use of 
reduced integration when calculating the stiffness coefficients of the element numerically.

REFLECTION ACTIVITY 13.4

Consider the two beams shown in Figure 13.15 and discuss the differences in the struc-
tural response, in terms of mid-span deflection, calculated based on the Euler–Bernoulli and 
Timoshenko beam models. Use the 7-dof elements previously derived with the two beam for-
mulations. The beams of Figure 13.15 are prismatic, with a rectangular cross-section of width 
b = 100 mm and depth d = 400 mm. Take E = 20 GPa.

The steps involved in the numerical calculations have been covered in previous sections of this 
chapter and are not repeated here. In the following, we will only highlight some of the main dif-
ferences related to the responses observed using the two beam models.
In order to ensure an adequate discretisation for the analysis, a convergence study is carried  out 
on the simply-supported beam (beam 1) using different number of elements with the Timoshenko 
beam model. These results are summarised in Figure 13.16 and show the expected conver-
gence, even if at a lower rate than the one observed for 7-dof element of the Euler–Bernoulli 

Figure 13.15 Beams for Reflection Activity 13.4.

Figure 13.16 Mid-span deflections for different levels of mesh discretisation.
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beam in Worked Example 13.1. Because of this, a very fine mesh is specified in the following 
calculations.
Figure 13.17a presents the differences observed for the mid-span deflections determined using 
the two beam models, which are particularly significant up to span-to-depth ratios of about 10 
or 20 for the simply-supported and fixed-ended beam, respectively. These differences are more 
pronounced for the fixed-ended beam, as highlighted in Figure 13.17b. The ratio between the 
mid-span deflections calculated for a fixed-ended and a simply-supported beam for the Euler–
Bernoulli beam model remains constant and is equal to 0.25 (Figure 3.17b). Obviously, this ratio 
could have also been calculated algebraically using the closed-form solutions to the problem 
presented in earlier chapters. When using the Timoshenko beam model, these differences are 
more pronounced for low span-to-depth ratios and tend to 0.25 as the beams become more 
slender, when shear deformations are negligible. For these long-span beams, the deflection pre-
dicted by the Timoshenko beam model approaches the value observed for the Euler–Bernoulli 
beam. In particular, the ratio of 0.25 obtained for the Euler–Bernoulli beam model highlights 
how the change in support conditions is capable of reducing the deflections induced by flexural 
deformations. This is the case because the fixity provided by the supports changes the distribu-
tion of the bending moment along the beam length.
On the other hand, the shearing deformations, calculated as the difference between the 
Timoshenko beam deflection results and the Euler–Bernoulli beam deflections, remain equal 
despite the change in support conditions, as shown in Figure 13.17c. This is a consequence of 
the fact that the fixity of the supports does not change the shear distribution along the beam 
length.

Figure 13.17 Differences between Euler–Bernoulli and Timoshenko beam models.
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PROBLEMS

 13.1 Consider the finite elements shown which are derived based on the assumptions of the 
Euler–Bernoulli beam model. For each element, specify the order of the correspond-
ing polynomials required for the approximations of the generalised displacements.

 13.2 Under the assumptions of the Euler–Bernoulli beam model, derive the shape func-
tions required to describe the variations along the coordinate x of the generalised 
displacements for the finite element shown.

 13.3 Derive the stiffness matrix and the loading vector for a uniformly distributed load 
for the finite element illustrated below. Assume the element to follow the assump-
tions of the Euler–Bernoulli beam model.

 13.4 For the finite elements of Problem 13.1, clarify whether their polynomials satisfy 
the consistency requirements for finite elements under the assumptions of the Euler–
Bernoulli beam model.
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 13.5 Consider the 7-dof finite element derived in the chapter for the Euler–Bernoulli beam 
model (Figure 13.4) and derive the loading vector associated with a (i) triangular and 
(ii) trapezoidal distributed load applied along the element length as illustrated below.

 13.6 Reconsider the finite elements of Problem 13.1 and evaluate the order of the poly-
nomials required for the approximations of the generalised displacements assuming 
these line elements to follow the Timoshenko beam model.

 13.7 For the finite elements of Problem 13.1, clarify whether their polynomials sat-
isfy the consistency requirements for finite elements under the assumptions of the 
Timoshenko beam model.

 13.8 Derive the loading vector associated with the trapezoidal distributed load shown 
below and applied along the element length of the 7-dof finite element derived in the 
chapter for the Timoshenko beam model (Figure 13.12).
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Chapter 14

Introduction to the structural 
stability of columns

14.1  INTRODUCTION

A structural engineer must ensure that the design of a structure is safe and serviceable, so 
that the chance of it failing during its design lifetime is sufficiently small. This is achieved 
by satisfying a number of limit states. This chapter deals with the limit state associated with 
the possible occurrence of instability and presents some fundamental concepts related to 
basic stability theory.

From an intuitive viewpoint, instability describes those situations in which a small 
change in applied forces or deformations produces a large and uncontrolled change in 
the associated displacements. Instability can occur at different levels in a structure in the 
form of (i) local instability when it affects the response of a local part of a structural ele-
ment (such as a flange or a web plate), (ii) member instability when it is associated with 
the behaviour of a single member and (iii) structure (or system) instability when it relates 
to the entire structure. Depending on the layout and arrangement of a structure, the 
occurrence of local and member instabilities can lead to unstable conditions of the entire 
structure.

This chapter provides an introduction to the structural stability of columns when sub-
jected to compressive forces. Particular attention is devoted to the identification of the level 
of load at which the column moves from a stable to an unstable configuration. This load is 
usually referred to as the critical load (or buckling load) and it depends on the geometry, 
support conditions and material properties of the column. The influence of different support 
conditions on the buckling load is outlined. Concepts, such as effective length and slender-
ness, are then presented and discussed with numerical examples. The chapter closes with 
considerations of column imperfections and how these affect the equilibrium conditions and 
the buckling load.

14.2  ASSUMPTIONS

In previous chapters, we analysed structures based on small displacement theory where the 
following assumptions are made:
 1. displacements and deformations are small — in this case, it is acceptable to approximate 

the cosine and sine of the rotation θ with cos θ ≈ 1 and sin θ = θ and, for small 
curvatures, to use κ = v″ (Equation 5.14);

 2. equilibrium within the structure is not influenced by its displacements — it follows 
that equilibrium can be enforced using the geometry of the undeformed structure.

We will now revisit the validity of these assumptions by considering the perfectly straight 
and infinitely rigid member shown in Figure 14.1a, which is subjected to a transverse load P 
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at one end and pinned at the other, and can only deform in the plane of the page. An elastic 
rotational spring is specified at the support, which is activated once the column rotates and 
its behaviour is described by:

 Ms = ksθ (14.1)

where ks is the rotational stiffness of the spring and Ms represents the restoring moment 
induced by the spring when deformed by a rotation θ.

The structural response can be described by relating the transverse load P and the rotation 
of the member θ. This is performed by applying moment equilibrium at the support on the 
basis of a free-body diagram of the undeformed shape as shown in Figure 14.1b:

 Ms – PL = 0 (14.2)

This expression can be re-written in terms of the rotation θ substituting Equation 14.1 
into Equation 14.2 as:

 
PL
ks

= θ  (14.3)

The response of the structure defined in Equation 14.3 is plotted in Figure 14.2a.

Figure 14.1  Member subjected to a transverse load. (a) Structural layout. (b) Undeformed configuration. 
(c) Deformed configuration.

Figure 14.2  Rotations calculated under different loading conditions. (a) Transverse load. (b) Transverse and 
axial loads.
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The previous calculations are now repeated writing the moment equilibrium at the sup-
port by considering the free-body diagram of the displaced shape of the structure shown in 
Figure 14.1c:

 Ms − PL cos θ = 0 (14.4)

which can be re-arranged as:

 
PL
ks

= θ
θcos

 (14.5)

In this case, we can see that the relationship between the load P and the rotation θ is 
nonlinear. Despite this, its overall trend is very similar to the response predicted with 
Equation 14.3 at least for relatively small angles, as illustrated in Figure 14.2a. Adopting the 
assumptions of small displacement theory (i.e. cos θ = 1), Equation 14.5 becomes identical 
to Equation 14.3.

These results confirm the adequacy of using small displacement theory in predicting the 
response of a structure when subjected to transverse loads, at least for the range of angles 
where the curves represented by Equations 14.3 and 14.5 are close together, i.e. for small 
displacements.

A similar comparison is now performed for the column of Figure 14.3a, which is loaded 
by an axial force aP that is proportional, through a coefficient a, to the applied transverse 
force P. Moment equilibrium applied to the free-body diagram of the undeformed 
structure (Figure 14.3b) produces the same relationship between applied transverse load 
P and rotation θ as defined in Equation 14.3 and shown in Figure 14.2b. This is because 
the applied axial force induces no moment with respect to point A in the undeformed 
structure.

We will now consider the free-body diagram of the deformed shape shown in Figure 
14.3c. Moment equilibrium about the node A gives:

 MA − aPL sin θ − PL cos θ = 0 (14.6)

Figure 14.3  Column subjected to axial and transverse loads. (a) Structural layout. (b) Undeformed configu-
ration. (c) Deformed configuration.
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which can be re-arranged by isolating the term PL/ks and including the spring response of 
Equation 14.1 as:

 
PL
k as

=
+
θ
θ θsin cos

 (14.7)

Equation 14.7 is now modified based on small displacement theory (with cos θ ≈ 1 and 
sin θ ≈ θ) as:

 
PL
k as

=
+
θ
θ 1

 (14.8)

which is referred to as the linearised solution because it is valid only for small rotations. 
Unlike the previous case of a column subjected only to a transverse load, this simplifica-
tion leads to an expression different from the one obtained with the undeformed shape 
(expressed in Equation 14.3).

Equations 14.7 and 14.8 are plotted in Figure 14.2b for a = 1 and a = 4, and are compared 
with the response of the structure in the undeformed shape (as given by Equation 14.3). 
It can be seen that, for an adequate prediction of the structural response of the column of 
Figure 14.3, it is necessary to consider the deformed shape of the structure, while it is still 
acceptable to rely on small displacement theory, at least for relatively small values of θ.

14.3  CRITICAL LOAD FROM EQUILIBRIUM

We will now consider a column subjected to a vertical force P as shown in Figure 14.4 
and investigate its buckling and post-buckling response. By enforcing moment equilib-
rium of the column in its deformed configuration (Figure 14.4b), the following expression 
is obtained:

 PL sin θ – ksθ = 0 (14.9)

Under the assumptions of small displacements (with sin θ ≈ θ), Equation 14.9 can be 
simplified to:

 (PL – ks) θ = 0 (14.10)

which is satisfied when θ = 0 or (PL – ks) = 0. Let us now consider these two cases in more 
detail. When θ = 0, the column remains vertical for any level of load P, while the condition 
(PL – ks) = 0 leads to the solution:

 P
k
Lcr

s=  (14.11)

where Pcr represents the critical buckling load.
These results are plotted in Figure 14.4c from which it can be observed that for an applied 

force P < Pcr, the column remains vertical (with θ = 0) until the load reaches Pcr (shown as 
P/Pcr = 1 in Figure 14.4c). At this point, equilibrium (defined by Equations 14.10 and 14.11) 
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is satisfied if the column remains vertical (with θ = 0) or for arbitrary values for θ (with 
P = Pcr). Because of these different equilibrium paths, this point is also referred to as the 
bifurcation point. This solution (Equation 14.10) is said to be linearised, because on the 
basis of the approximation sin θ ≈ θ, it is only valid for small values of θ.

The prediction of the column response for larger values of θ requires the use of Equation 
14.9, which accounts for large displacements. This expression can be re-written as a function 
of the buckling load Pcr (Equation 14.11) as:

 
P
Pcr

= θ
θsin

 (14.12)

and is also illustrated in Figure 14.4c. The plots of Equation 14.11 (linearised solution in 
small displacement theory) and Equation 14.12 (with large displacements) are equivalent for 
small values of θ. This justifies the evaluation of the critical load with small displacement 
theory based on the deformed shape of the structure.

Once the structure has reached the buckling load, it is necessary to use the nonlinear 
solution (Equation 14.12) to predict its post-buckling response as highlighted by the 
growing differences between the values of Equations 14.11 and 14.12 for increasing values 
of θ. A limit condition is reached when θ approaches π in which case the column is pointing 
downwards with the applied load P inducing tension along its length. At this value of θ, the 
load can increase to infinity (or until material fracture occurs in a real column) as shown in 
Figure 14.4d because the column cannot buckle when subjected to tension.

Figure 14.4  Response of a column subjected to a vertical force. (a) Structural layout. (b) Deformed configu-
ration. (c) Structural response (for –1 ≤ θ ≤ 1). (d) Structural response (for –π ≤ θ ≤ π).
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REFLECTION ACTIVITY 14.1

Determine and comment on the buckling and post-buckling response of the column shown in 
Figure 14.5a. An elastic spring, with rigidity ks, is connected to node B, which tends to restrain its 
horizontal displacement. Answer this question by enforcing moment equilibrium of the deformed 
shape of the structure (shown in Figure 14.5b), relying on both small and large displacements.

On the basis of the free-body diagram of Figure 14.5b, the moment equilibrium enforced under 
the assumptions of large displacements can be expressed as:

 PsL cos θ − PL sin θ = 0

Considering that ks is the elastic rigidity of the spring and with Ps = ksL sin θ, we get:

 (ksL sin θ) L cos θ − PL sin θ = 0 (14.13)

Therefore:

 
P

k Ls

= cosθ  (14.14)

The buckling load Pcr can be determined by simplifying the expression of Equation 14.14 under 
the conditions of small displacement theory (linearised solution) as:

 
P

k Ls

=1
 

from which:

 Pcr = ksL (14.15)

The curves representing Equations 14.14 and 14.15 are plotted in Figure 14.6 and show that, 
for values of P/Pcr smaller than 1 (before P first reaches Pcr), the column remains in its vertical 

Figure 14.5 Column arrangement for Reflection Activity 14.1.
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14.4  CRITICAL LOAD FROM POTENTIAL ENERGY

In the previous section, we have considered simple examples to illustrate the assumptions 
required in the analysis to evaluate the critical load based on considerations of equilibrium. 
In this section, we will present an approach based on the principle of minimum total poten-
tial energy of the structure to determine the critical load and to distinguish between differ-
ent types of stability conditions.

We now consider a conservative elastic system in which energy is not dissipated. For this case, 
the potential energy V is determined as the sum of the elastic strain energy, referred to as Ue 
(already introduced in Chapter 7), and the potential due to the external actions, denoted as W:

 V = Ue + W (14.16)

In particular, the elastic strain energy Ue equals the work of the internal actions and the poten-
tial of the external actions W quantifies the capacity of these actions to produce external work.

Reconsidering the column of Figure 14.4a, the elastic strain energy Ue is defined as the 
work done by the spring:

 U ke =
1
2

2
sθ  (14.17)

while the potential of the external actions W can be written as:

 W = −PL(1 − cos θ) (14.18)

where the minus sign represents the fact that when the force produces external work, it 
reduces the potential energy of the system.

equilibrium with θ = 0. Once the critical load Pcr is reached (i.e. P/Pcr = 1), equilibrium can be 
satisfied for either θ = 0 or P/Pcr = cos θ in large displacements (P/Pcr = 1 in small displacements). 
Because of these different equilibrium paths, the point where P/Pcr = 1 is also referred to as the 
bifurcation point. The post-buckling behaviour is described by Equation 14.14, which shows how 
the column is able to carry decreasing loads for increasing values of θ. The load becomes zero 
for θ = ±π/2 because, at this condition, the column buckles under the load induced by the spring.

Figure 14.6 Response of the column for Reflection Activity 14.1.
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Substituting Equations 14.17 and 14.18 into Equation 14.16 leads to the following expression:

 V U W k PL= + = − −e ( cos )
1
2

12
sθ θ  (14.19)

The principle of minimum total potential energy requires V to be stationary when equi-
librium is satisfied and this is evaluated as follows:

 
d
d

sin
V

k PL
θ

θ θ= − =s 0  (14.20)

which is equivalent, as expected, to the equilibrium conditions obtained in Equation 14.12 
with large displacements. In a similar manner, the buckling loads calculated with the 
equilibrium and the potential energy methods coincide, as shown by simplifying Equation 
14.20 within the framework of small displacements (with sin θ = θ), which then equals 
Equation 14.11.

The second derivative of V provides information on the type of equilibrium exhibited by 
the structure. In the case of a positive second derivative, the structure is said to be in stable 
equilibrium because, even if subjected to a small perturbation, the system returns to its 
original configuration. This is illustrated in Figure 14.7a with an example of a ball placed 
on a surface with a profile that is concave upwards. If we try to move the ball sideways by 
a small amount, it always returns to its original position after a few oscillations. In the case 
where the second derivative is negative, the equilibrium is said to be unstable. This can be 
represented by a ball placed on a concave downward surface (Figure 14.7b), where a small 
sideways movement (small perturbation) given to the ball changes the configuration of the 
system and the ball continues to move. When the second derivative is nil, the system is 
in neutral equilibrium. In this case, a small perturbation changes the system equilibrium 
from one configuration to another. Considering the example of the ball, a small movement 
applied to the ball changes its original position to a new arbitrary one, as there are an infi-
nite number of equilibrium positions for the ball (Figure 14.7c).

We will now evaluate the type of equilibrium exhibited by the column of Figure 14.4a for 
different combinations of P and θ. In this case, the second derivative of V can be obtained 
by twice differentiating Equation 14.19 as:

 
d
d

cos
2

2

V
k PL

θ
θ= −s  (14.21)

Figure 14.7  Possible equilibrium configurations. (a) Stable equilibrium. (b) Unstable equilibrium. (c) Neutral 
equilibrium.
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Three conditions of equilibrium can now be identified:

 
d
d

cos
2

2
0

V
k PL

θ
θ= − >s stable equilibrium  (14.22a)

 
d
d

cos
2

2
0

V
k PL

θ
θ= − =s neutral equilibrium  (14.22b)

 
d
d

cos
2

2
0

V
k PL

θ
θ= − <s unstable equilibrium  (14.22c)

These can be re-written by substituting the expression for Pcr (= ks/L from Equation 14.11):

 
P
Pcr

stable equilibrium< 1
cosθ

 (14.23a)

 
P
Pcr

neutral equilibrium= 1
cosθ

 (14.23b)

 
P
Pcr

unstable equilibrium> 1
cosθ

 (14.23c)

These conditions of equilibrium are illustrated in Figure 14.8 as a function of θ and 
P/Pcr, on the basis of the classification provided in Equations 14.23. In particular, during 
the initial loading, the column is in a stable equilibrium until the applied axial force reaches 
Pcr. At this point, the column reaches a bifurcation point at which it can either continue on 
the curve described by Equation 14.23a in a stable equilibrium or remain undeformed in an 
unstable equilibrium.

Figure 14.8 Summary of equilibrium conditions.
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REFLECTION ACTIVITY 14.2

Consider the column in Figure 14.5 and evaluate the buckling and post-buckling behaviour using 
the potential energy method. Clarify the type of stability, i.e. stable, neutral or unstable equilib-
rium, for the different combinations of applied load P and rotation θ.

The potential energy V for this problem is determined as the sum of the elastic strain energy of 
the spring (with ks being the spring stiffness):

 U k Le ( sin )= 1
2

2
s θ  (14.24)

and the potential W of the external force P:

 W = –PL(1 − cos θ) (14.25)

Combining the contributions of Equations 14.24 and 14.25, the expression for V can be written 
as:

 V k L PL= − −1
2

12
s( sin ) ( cos )θ θ  (14.26)

The equilibrium conditions are determined by enforcing the total potential to be stationary, i.e. 
dV/dθ = 0, as:

 
d
d

sin cos sin
V

k L PL
θ

θ θ θ= − =s
2 0 (14.27a)

which is satisfied when:

 P = ksL cos θ (14.27b)

as also obtained with the equilibrium approach in Equation 14.14.
Based on the assumption of small displacement theory (with cos θ ≈ 1), the buckling load Pcr can 
then be evaluated as:

 Pcr = ksL (14.28)

As expected, this is identical to Equation 14.15.
The type of equilibrium exhibited by the column is determined based on the values of the sec-
ond derivative of the potential energy, which is:

 
d
d

sin cos cos
2

2
2 2 2 2V

k L k L PL
θ

θ θ θ= − + −s s

and simplifying:

 
d
d

cos cos
2

2
22

V
LP P L PL

θ
θ θ= − −cr cr  (14.29)
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14.5  BUCKLING OF AN ELASTIC COLUMN

The evaluations of the buckling loads of the columns in Sections 14.2 through 14.4 were 
based on the assumption that the columns were infinitely rigid. In this section, we extend 
the analysis to the case of elastic and perfectly straight columns. For this purpose, the rela-
tionship between the internal moment and the curvature along the column is determined 
with the method of double integration (see Section 5.5). This method is particularly useful 
for structures that are statically determinate, i.e. for which the internal moment M can be 
determined from equilibrium considerations.

Let us consider the simply-supported column subjected to an axial force P as illustrated in 
Figure 14.10a. We have seen in previous sections that the buckling load can be determined 
with small displacement theory, by considering the deformed shape of the column when 
evaluating the internal moment distribution. The method of double integration is based on 
Equation 5.36 reproduced here for ease of reference:

 EIκ = EIv″ = M (14.33)

The support reactions are calculated from statics as HA = P, VA = 0 and VB = 0. The 
expression for the internal moment M is obtained by making a cut along the member length 
in the deformed shape as shown in Figure 14.10c as:

 M = −HAv = −Pv (14.34)

Depending on the sign of Equation 14.29, the equilibrium is said to be stable, neutral or unstable 
as specified below:

 2 1 0
2 12

2

cos cos
cos
cos

θ θ θ
θ

− − > < −P
P

P
Pcr cr

or stable equilibrium  (14.30a,b)

 2 1 0
2 12

2

cos cos
cos
cos

θ θ θ
θ

− − = = −P
P

P
Pcr cr

or neutrall equilibrium  (14.31a,b)

 2 1 0
2 12

2

cos cos
cos
cos

θ θ θ
θ

− − < > −P
P

P
Pcr cr

or unstablle equilibrium  (14.32a,b)

These results are plotted in Figure 14.9.

Figure 14.9  Summary of equilibrium conditions for Reflection Activity 14.2.
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Substituting Equation 14.34 into Equation 14.33 leads to the governing differential equa-
tion of the problem defined by:

 EIv″ + Pv = 0 (14.35)

Before solving Equation 14.35 for the displacement v, it is convenient to collect the known 
coefficients and to rewrite Equation 14.35 as:

 v″ + α2v = 0 (14.36)

where:

 α 2 = P
EI

 (14.37)

The parameter α2 has been introduced to highlight that its sign is always positive (or equal 
to zero for the trivial case of P = 0), on the basis of which the general solution of the problem 
(defined in Equation 14.36) can be written as:

 v = C1 cos αx + C2 sin αx (14.38)

where the constants of integration C1 and C2 are determined from the boundary conditions 
v(x = 0) = 0 and v(x = L) = 0:

 v(x = 0) = C1 cos(α × 0) + C2 sin(α × 0)= C1 = 0 (14.39a)

 v(x = L) = C1 cos αL + C2 sin αL = 0 (14.39b)

This system of equation has the trivial solution of:

 C1 = 0  C2 = 0 (14.40a,b)

which describes the case in which the column remains undeformed with v = 0 throughout 
its length. Other solutions can be obtained from Equation 14.39b (instead of C2 = 0) when:

 sin αL = 0 (14.41)

which is satisfied when αL = nπ (with n = 1,2,...), while the case of n = 0 is ignored because it is 
related to an unloaded member (i.e. for which P = 0). There are an infinite number of solutions 

Figure 14.10  Simply-supported column subjected to an axial load. (a) Structural layout. (b) Deformed con-
figuration. (c) Cut along the column length in the deformed configuration.
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for Equation 14.41, which are valid for any value of C2. Substituting these results into the 
general solution of Equation 14.38 produces the following expression for the deflection:

 v = C2 sin αx (14.42)

with:

 α π= n
L

 (14.43)

Recalling Equation 14.37, Equation 14.43 can be re-written in terms of the applied load P as:

 P n
EI

L
= 2 2

2
π  (14.44)

We will now evaluate the solution associated with n = 1 because it is the lowest value of 
Equation 14.44 for which the column can buckle. For this particular case, α = π/L (Equation 
14.43) and the corresponding load is (Equation 14.44):

 P
EI

L
E = π 2

2  (14.45)

where PE is the critical load, usually known as the Euler buckling load (or the elastic buck-
ling load).

The deflected shape at this load level is shown in Figure 14.11 and is determined from 
Equation 14.42 by assigning an arbitrary value for C2 (say for example, C2 = 1):

 v C
x

L1 2= sin
π

 (14.46)

Figure 14.11 First buckling modes for a simply-supported column subjected to an axial load.
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In a similar way, the loads and the deflected shapes associated with the solutions calculated 
using n = 2 (with α = 2π/L) and n = 3 (with α = 3π/L) are:

 P
EI

L
2

2
2

4= π   v C
x

L2 2
2= sin
π  (14.47a,b)

 P
EI
L3

2
29= π   v C

x
L3 2

3= sin
π  (14.48a,b)

The deflected shapes plotted in Figure 14.11 are also referred to as buckling modes, 
because they describe the deformed shape in which buckling can occur in a column. The 
subscripts adopted for P and v in Equations 14.46 to 14.48 indicate the numbering of the 
buckling modes, with the first mode being the one related to the lowest buckling load.

When the applied load reaches one of the critical values (calculated from Equation 14.44), 
it is possible to satisfy equilibrium either in the undeformed shape or in the deformed con-
figuration (as shown in Figure 14.11). Because of these different equilibrium paths, these 
branching points are usually referred to as bifurcation points. In real structures, a column 
would always become unstable at the lowest of the critical loads, as it will be shown when 
discussing the influence produced by initial imperfections (always present in real members) 
on the structural response.

WORKED EXAMPLE 14.1

Consider the cantilever of Figure 14.12, which is subjected to an axial force P at its tip. Calculate 
the loads and deformed shapes related to its first three buckling modes.

The first step in the solution is to determine the expression for the internal moment. This is 
carried out by performing a cut along the member length in its deformed state (Figure 14.13a) 
and considering the free-body diagram shown in Figure 14.13b.

Figure 14.12 Column for Worked Example 14.1.

Figure 14.13  Free-body diagrams for Worked Example 14.1. (a) Deformed configuration. (b) Cut 
along the column length in the deformed configuration.
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The expression for M is (Figure 14.13b):

 M = P (vL – v) (14.49)

where vL defines the deflection at x = L. The value of vL is unknown at the beginning of this deri-
vation and will be determined from the boundary conditions of the problem.
Equation 14.49 is now substituted into Equation 14.33 to give:

 EIv″ = PvL − Pv (14.50)

and introducing α (defined in Equation 14.37):

 ′′ + =v v vα α2 2
L

 (14.51)

The solution of the differential equation (Equation 14.51) is:

 v = C1 cos αx + C2 sin αx + vL (14.52)

The constants of integration C1 and C2, as well as the value for vL, are evaluated by enforcing the 
following boundary conditions:

 v(0) = 0  v′(0) = 0  v(L) = vL (14.53a–c)

where the latter condition is consistent with the expression for M in Equation 14.49. Performing 
the calculations:

 v(0) = C1 + vL = 0 (14.54a)

 v′(0) = C2α = 0 (14.54b)

 v(L) = C1 cos αL + C2 sin αL + vL = vL (14.54c)

and simplifying:

 vL = −C1 (14.55a)

 C2 = 0 (14.55b)

 C1 cos αL = 0 (14.55c)

The system of Equations 14.55 enables the trivial solution of C1 = C2 = vL = 0, which is not 
relevant for the evaluation of the buckling response because it considers the entire beam to 
remain undeformed, i.e. v = 0 throughout the beam length. Other solutions can be obtained by 
reconsidering Equation 14.55c and seeking values for αL that satisfy:

 cos αL = 0 (14.56a)
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The solutions occur when:

 α π πL n= +
2  

or
 

α π= +( )1 2
2

n
L

 (14.56b,c)

with n = 0,1,2... and so on.
We will now calculate the load and deformed shape associated with the first buckling mode 
(represented by n = 0). Based on Equation 14.56c, the corresponding value for α is:

 α π=
2L

 (14.57)

The buckling load P1 (where the subscript indicates the first buckling mode corresponding to 
n = 0) is obtained by substituting Equation 14.57 into Equation 14.37 as:

 α π2 1
2

24
= =P

EI L
 (14.58)

from which:

 P
EI

L
1

2
24

= π  (14.59)

The deformed shape related to n = 0 is described by substituting Equations 14.55 and 14.57 into 
Equation 14.52:

 v v
L

xL1 1
2

= −














cos

π
 (14.60)

The load and deformed shapes associated with the buckling modes corresponding to n = 1 
(second buckling mode) and n = 2 (third buckling mode) are obtained following the procedures 
illustrated for n = 0 and are described by:

 

n
L

P
EI

L
v v

L
xL= = = = −
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3
22

2

2 2α π π π
cos

nn
L

P
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5
2

25
4

1
5
23

2

2 3α π π π
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These results are summarised in Figure 14.14 showing the deformed shapes associated with the 
different buckling modes, plotted for an arbitrary value for vL. In a real structure, the column 
would buckle once its applied load reaches P1 (Equation 14.59) with the relevant shape shown 
in Figure 14.14.
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WORKED EXAMPLE 14.2

The propped cantilever beam shown in Figure 14.15 is subjected to an axial force P applied at 
node B. Determine the loads and deformed shapes related to its first three buckling modes.

The propped cantilever is a statically indeterminate structure, because there are four unknown 
reactions (Figure 14.16a). For this reason, the three equilibrium equations available from statics 
are used to express three unknown reactions (HA, VA and VB) in terms of the fourth one (MA). 

Figure 14.14 First buckling modes for Worked Example 14.1.

Figure 14.15 Column for Worked Example 14.2.

Figure 14.16  Free-body diagrams for Worked Example 14.2. (a) Deformed configuration. (b) Cut 
along the column length in the deformed configuration.
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From horizontal equilibrium, it is possible to determine that HA = P, while moment equilibrium 
about A leads to VB = MA/L. Finally, from vertical equilibrium, VA = –VB = –MA/L. The expression 
for the internal moment M is then obtained by applying moment equilibrium at the cut of the 
free-body diagram shown in Figure 14.16b.
The variation for M can be written as:

 M Pv M
M
L

x= − + + −




A

A  (14.61)

and the unknown moment reaction at A will be determined when applying the boundary condi-
tions of the problem. Based on the method of double integration (Equation 14.33):

 EIv Pv M
x
L

′′ + = −




A 1  (14.62)

or rewriting in terms of α (Equation 14.37):

 ′′ + = −






v v
M
EI

x
L

α 2 1A
 (14.63)

The solution of the differential equation (Equation 14.63) is:

 v C x C x
M

EI

x
L

= + + −




1 2 2

1cos sin Aα α
α  (14.64)

The constants of integration C1 and C2 and the unknown reaction MA are calculated by applying 
the following boundary conditions:

 v(0) = 0  v′(0) = 0  v(L) = 0 (14.65a–c)

which are expressed as:

 v C
M

EI
( ) A0 01 2

= + =
α

 (14.66a)

 ′ = − =v C
M

EI L
( ) A0 02 2

α
α

 (14.66b)

 v(L) = C1 cos αL + C2 sin αL = 0 (14.66c)

and simplifying gives:

 C
M

EI
1 2
= − A

α
 (14.67a)

 C
M

EIL
2 3
= A

α
 (14.67b)

 
M

EI

L
L

LA sin
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α
α

α
α

2
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=  (14.67c)
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The trivial solution C1 = C2 = MA = 0 does not identify the occurrence of buckling because it 
describes the column in its undeformed configuration. Possible non-trivial solutions of the sys-
tem of Equations 14.66 are obtained by seeking values for αL that satisfy Equation 14.67c and in 
particular:
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= 0  or tan αL = αL (14.68a,b)

Solutions of Equation 14.68b cannot be obtained in closed form and need to be determined 
numerically. The lowest three values of αL that satisfy it (excluding the trivial solution αL = 0 
corresponding to no applied load) are αL = 1.430π, αL = 2.459π, and αL = 3.471π.
The load and deformed shapes associated with these values for αL represent the first three 
buckling modes and are given by:
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The deformed shapes associated with the different buckling modes are plotted in Figure 14.17.
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The non-trivial solutions obtained to date have been based on a careful evaluation of the 
boundary conditions provided by the supports of the column. Similar results could have 
been obtained by seeking values of αL for which the determinant of the system of equation 
defining the boundary conditions equals zero. The calculations related to the three column 
cases considered are now briefly outlined to clarify the procedure involved.

The boundary conditions of the simply-supported column were specified in Equations 
14.39 and are written in matrix form as:

 
1 0 0
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2cos sinα αL L
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  (14.69)

The non-trivial solutions for the simply-supported column can then be obtained by solving 
the following determinant for αL:

 det
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 = =  (14.70)

which is identical to Equation 14.41, previously used in the solution.
In the case of the cantilever beam of Worked Example 14.1, the boundary conditions can 

be expressed in matrix form as:
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Figure 14.17 First buckling modes for Worked Example 14.2.
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Setting the determinant of the matrix of coefficients to be zero leads to an expression 
equivalent to Equation 14.56a:

 det
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cos
1 0 1
0 0
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α α
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L L
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= − =  (14.72)

For the propped cantilever (Worked Example 14.2), the boundary conditions are expressed 
by the following system of equations:
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 (14.73)

and the non-trivial solutions are obtained from its corresponding determinant as:
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which is identical to Equations 14.68.

14.6  EFFECTIVE BUCKLING LENGTH

In the previous section, we have derived the expressions for the buckling loads exhibited by 
an elastic column for different boundary conditions, expressed in the form of:

 P
EI

L
E =ψπ 2

2  (14.75)

where the values for ψ varies depending on the support conditions of the column and have 
been summarised in Table 14.1 for the three cases considered.

Table 14.1 Summary of effective length factors

Structural static configuration ψ ke /=1 ψ
B A P 

1 1

B A P 0.25 2

B A P 
2.046 0.7
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From a design viewpoint, it is convenient to introduce the concept of the effective length of 
the column Le to account for the different boundary conditions, where Le is calculated from:

 L
L

k Le e= =
ψ

 (14.76)

Equation 14.75 can now be re-written as:

 P
EI

L
E = π 2

2
e

 (14.77)

In this manner, the buckling load of a column with arbitrary support conditions is related 
to an equivalent simply-supported column with the length replaced by Le. This can be 
observed by considering that Equation 14.77 is similar to Equation 14.45 (i.e. Euler buck-
ling load for the simply-supported column subjected to an axial force) with the only differ-
ence being that the effective length rather than the actual length is used.

Values for ke describing the buckling response under different support conditions are also 
provided in Table 14.1 and are calculated from Equation 14.76 as:

 ke =
1

ψ
 (14.78)

14.7  BUCKLING STRESSES

It is often convenient to express the buckling load in terms of stresses:

 σ πE
EP

A
EI

AL
= = 2

2
e

 (14.79)

where σE is the buckling stress and A is the cross-sectional area of the column.
Equation 14.79 can be re-arranged to highlight the key parameters influencing the 

buckling behaviour, which are the elastic modulus E and the slenderness λ of the column:

 σ π
λE
E= 2

2  (14.80)

where λ is given by:

 λ = =k L
A
I

L
re
e  (14.81)

where r is the radius of gyration of the column cross-section equal to I A/ . Equation 14.80 
is usually known as Euler’s formula.

The slenderness value λ is a useful parameter for predicting the likelihood of a column 
buckling. It accounts for the geometric and material properties of the column, as well as its 
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support conditions. For example, a column with a low value for λ is less likely to buckle than 
a column with a large value of λ, because its buckling stress σE is higher (Equation 14.80).

Let us consider a typical doubly symmetric I-section shown in Figure 14.18. Such a sec-
tion is commonly used in steel structures. Let us assign the z- and y-axes to be the strong 
and weak axes of the cross-section, respectively. This implies that the second moment of 
area about the z-axis, Iz, is greater than that calculated about the y-axis, Iy. We will now 
consider the slenderness values with respect to the z- and y-axes to evaluate the possibility 
of the column buckling in the xy or xz planes, respectively. In reality, a column will always 
buckle in the plane associated with its lowest slenderness value.

Based on this, if the column has identical support conditions with respect to both z- and 
y-axes, it will always buckle about the y-axis, i.e. in the xz plane. This is due to the fact that 
the slenderness calculated about the z-axis, λz, is smaller than the one for the y-axis, λy, i.e. 
λz < λy. A different response might occur if different support conditions are present about the 
two axes, which is often the case in practice.

Equation 14.80 is plotted in Figure 14.19a, where the relationship between the buckling 
stress σE and the column slenderness λ for a linear–elastic material is illustrated. In reality, a 
material is not able to carry an infinite level of stress and its carrying capacity is limited by 
its strength. For example, let us consider a steel section, whose material properties can be 
described by an elasto-perfectly plastic constitutive model, i.e. its stress–strain relationship 
is linear–elastic up to the yield stress of the steel σy, after which the steel continues to 
deform at constant stress as shown in Figure 14.19b (see also Chapter 15 for more details on 
nonlinear behaviour). On the basis of these assumptions, it is not possible for a steel section 

Figure 14.18 Typical I-shaped steel section.

Figure 14.19 Buckling stress for different levels of column slenderness.
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to resist a stress greater than its yield stress. Because of this, there is a particular value of 
slenderness, here referred to as λyield, for which the buckling stress equals the yield stress. If 
a column possesses a λ value lower than λyield, it is expected to yield before buckling. In the 
case λ > λyield, the column would buckle before the steel yields. These different responses can 
be described as follows:

 σmax = σy when λ ≤ λyield (14.82a)

 σ σ π
λ

σ λ λmax ( )= = < >E y
E2

2
when yield  (14.82b)

The relationship described by Equations 14.82 is only theoretical as, in reality, because of 
the presence of imperfections (such as out-of-straightness, and material and cross-sectional 
variations), the buckling stress–slenderness curve follows the trend illustrated in Figure 
14.19a by the dashed curve.

The procedure required to predict the occurrence of buckling in columns with different 
boundary conditions is outlined in Worked Examples 14.3 and 14.4.

WORKED EXAMPLE 14.3

Determine the buckling load for the 5 m long column shown in Figure 14.20. The I-shaped sec-
tion is shown in Figure 14.20a and has the following geometry: A = 8000 mm2, Iz = 60 × 106 mm4 
and Iy = 20 × 106 mm4. The column can buckle in either xy or xz planes. The relevant support 
conditions are shown for clarity for the two planes separately in Figures 14.20b and c. Assume 
the material to be linear–elastic with E = 200 GPa. Comment on how the results would change 
if the column length reduces to 3 m.

The calculation of the buckling load PE is carried out by calculating first the slenderness about the 
y- and z-axes and then the relevant buckling stress.
The radius of gyration r I A/=( )  is calculated about the y- and z-axes as:

 r
I
Az
z= = × =60 10

8000

6

86.6 mm
 

r
I

Ay
y= = × =20 10

8000

6

50 mm

Figure 14.20  Column arrangement for Worked Example 14.3. (a) Cross-section. (b) Boundary con-
ditions in the xy plane about the z-axis. (c) Boundary conditions in the xz plane about 
the y-axis.
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The support conditions are simply-supported in both planes, i.e. ke = 1 (from Table 14.1):

 kez = 1 key = 1

and the effective lengths become:

 Lez = kez × L = 1 × 5000 = 5000 mm  Ley = key × L = 1 × 5000 = 5000 mm

The slenderness can then be calculated with Equation 14.81:

 λz
z

z

L
r

= = =e 57.7
5000
86 6.  

λy
y

y

L

r
= = =e 100

5000
50

Buckling will occur in the xz plane because λz < λy. Its corresponding buckling stress and load are:

Equation 14.80: σ π
λ

πE
y

E= = =2
2

2
2

200 000
100

197 4
,

. MPa

Equation 14.79: PE = σEA = 197.4 × 8000 = 1579 kN

Considering that the column has identical support conditions in the xy and xz planes, it should 
be expected that the column buckles about its weakest axis, i.e. in the xz plane with respect to 
the y-axis.
Calculations are presented below for a column length equal to 3 m (only critical values about 
the y-axis are provided):

 Ley = key × L = 1 × 3000 = 3000 mm

 λy
y

y

L

r
= = =e 3000

50
60

 σ π
λ

πE
y

E= = =2
2

2
2

200 000
60

548 3
,

. MPa

 PE = σEA = 548.3 × 8000 = 4386 kN

In a real steel structure, if the yield stress of the steel was, say, 350 MPa, the steel section would 
have yielded before buckling and it is not possible to reach the stress of 548.3 MPa. After yield-
ing, the linear-elastic material response that forms the basis of the derivation of Equation 14.80 
is no longer valid.
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WORKED EXAMPLE 14.4

Consider the I-shaped column of Figure 14.21 and calculate its buckling load. The column can 
buckle in either xy or xz planes. Different support conditions are specified in these two planes 
as shown in Figures 14.21b and c. The column is 4 m long and its cross-sectional properties are 
A = 8000 mm2, Iz = 100 × 106 mm4 and Iy = 10 × 106 mm4. The material is linear–elastic with 
E = 200 GPa. Comment on how the results would change if Iy doubles (i.e. Iy = 20 × 106 mm4).

PE is calculated by considering the slenderness about each axis.

The radius of gyration r I A/=( )  is calculated about the y- and z-axes as:

 r
I
Az
z= = × =100 10

8000

6

111.8 mm
 

r
I

Ay
y= = × =10 10

8000

6

35.35 mm

The support conditions are those of a cantilever beam in the xy plane (with respect to the 
z-axis) and those of a propped cantilever in the xz plane (with respect to the y-axis). From 
Table 14.1:

 kez = 2 key = 0.7

and the effective lengths become:

 Lez = kez × L = 2 × 4000 = 8000 mm  Ley = key × L = 0.7 × 4000 = 2800 mm

The slenderness can then be calculated with Equation 14.81:

 λz
z

z

L
r

= = =e 71.55
8000
111 8.  

λy
y

y

L

r
= = =e 79.20

2800
35 35.

Buckling will occur in the xz plane because λz < λy. Its corresponding buckling stress and load are:

 Equation 14.80: σ π
λ

πE
y

E= = =2
2

2
2

200 000
79 20

314 7
,
.

. MPa

 Equation 14.79: PE = σEA = 314.7 × 8000 = 2518 kN

Figure 14.21  Column arrangement for Worked Example 14.4. (a) Cross-section. (b) Boundary 
conditions in the xy plane about the z-axis. (c) Boundary conditions in the xz plane 
about the y-axis.
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14.8  IMPERFECTIONS IN COLUMNS

In the previous sections, we have analysed perfectly straight columns. We will now consider the 
influence on the calculated buckling loads of imperfections, such as the out-of-straightness pres-
ent in real columns. This is carried out following the procedure already introduced in Section 
14.5, where the buckling response has been studied with the method of double integration.

The out-of-straightness is here introduced by assuming that the column possesses an ini-
tial deformed profile before the application of the load. The selection of this initial deformed 
geometry is very important and, in this section, we will assume it to follow the shape of the 
first buckling mode calculated for the same column without imperfections. In this manner, 
we are considering the worst possible imperfection profile for the overall column buckling.

For example, reconsider the simply-supported column of Figure 14.10, whose first buckling 
mode is defined by Equation 14.46 (i.e. v1 = C2 sin πx/L). The initial column geometry is 
described by:

 v v
x

Li i= sin
π

 (14.83)

where vi represents the magnitude of imperfection at mid-span, as shown in Figure 14.22a.

The previous calculations are now repeated in the case Iy = 20 × 106 mm4 (only for values related 
to the y-axis because properties with respect to z remained unchanged):

 r
I

Ay
y= = × =20 10

8000

6

50 mm

 Ley = 2800 mm (unchanged)

 λy
y

y

L

r
= = =e 56

2800
50

In this case, buckling will occur in the xy plane because λz(= 71.55) > λy(= 56).

 σ π
λ

πE
z

E= = =2
2

2
2

200 000
71 55

385 5
,
.

. MPa

 PE = σEA = 385.5 × 8000 = 3084 kN

Note that if the yield stress of the steel was 350 MPa, the steel would have yielded before 
buckling.

Figure 14.22  Column with initial imperfections. (a) Deformed configuration. (b) Cut along the column 
length in the deformed configuration.
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In the adopted notation, v is the deflection induced by the applied load, while vtot repre-
sents the total deflection:

 vtot = vi + v (14.84)

The internal moment is calculated from the free-body diagram of Figure 14.22b as:

 M = −HAvtot = −P(vi + v) (14.85)

Substituting Equation 14.85 into Equation 14.33, we get:

 EIv″ + Pv = −Pvi (14.86)

and including α (from Equation 14.37):

 ′′ + = −






v v v
x

Liα α π2 2 sin  (14.87)

The general solution of the differential Equation 14.87 is:
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(14.88)

and with the boundary conditions:

 v(x = 0) = 0  v(x = L) = 0 (14.89a,b)

we get:

 v(x = 0) = C1 = 0 (14.90a)

 v(x = L) = C1 cos αL + C2 sin αL = 0 (14.90b)

Unlike the case of the perfectly straight column, the solution C1 = C2 = 0 leads to the fol-
lowing deformed shape:

 v
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E
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1

sin
π

 (14.91)

where PE is the Euler buckling load (= π2 EI/L2) given by Equation 14.45.
The total deflection vtot is then determined combining the initial column geometry vi 

(Equation 14.83) with the calculated deflection v (Equation 14.91) as:
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The deflected shape obtained for different levels of initial out-of-straightness vi is illus-
trated in Figure 14.23. In the limit case where vi = 0, the solution of Equation 14.92 degener-
ates to v = 0 (the undeformed shape).

From Figure 14.23, it is clear that real columns, which always possess some degree of imper-
fections, cannot follow the equilibrium path described by v = 0 as observed for the perfectly 
straight columns in the previous sections. Depending on the magnitude of the imperfections, 
the deflection exhibited by the column can be significant even for relatively low levels of load. 
Despite this, the curves plotted in Figure 14.23, based on the linearised solution of the problem, 
tend towards the first buckling load for increasing values for the total deflection vtot.

PROBLEMS

 14.1 Determine the buckling and post-buckling response of the rigid column shown. 
An elastic spring, with rigidity ks, is connected to node B and tends to restrain its 
horizontal displacement. Answer this question enforcing moment equilibrium on 
the deformed shape of the structure, relying on both small and large displacements.

Figure 14.23  Total deflections for different levels of load and for different levels of initial out-of-straightness 
(based on the linearised solution of the problem).
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 14.2 Reconsider the column of Problem 14.1 and evaluate the buckling and post- 
buckling behaviour using the potential energy method. Clarify the type of stabil-
ity, i.e. unstable, neutral or stable equilibrium, for the different combinations of 
applied load P and rotations θ.

 14.3 Determine the buckling load for the column shown. Assume E to be equal to 
20 GPa. The column is free to buckle in either xy or xz planes. The relevant sup-
port conditions are shown for the two planes separately.

 14.4 Evaluate the buckling load for the column shown which can buckle in either xy or xz 
planes. Assume the cross-sectional and material properties are A = 10 × 103 mm2, Iz = 
80 × 106 mm4, Iy = 20 × 106 mm4 and E = 200 GPa.

 14.5 Reconsider the column of Problem P14.4 and calculate the buckling load if the 
cross-sectional and material properties are changed to: A = 12 × 103 mm2, Iz = 100 × 
106 mm4, Iy = 80 × 106 mm4 and E = 200 GPa.

 14.6 For the column illustrated below, calculate the buckling load with the following cross-
sectional and material properties: A = 8 × 103 mm2, Iz = 60 × 106 mm4, Iy = 20 × 106 mm4 
and E = 200 GPa. Assume the column can buckle in either xy or xz planes.

 14.7 The lengths of the column analysed in Problem 14.6 are modified to the dimensions 
specified below. Evaluate the buckling load based on the new geometry.
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Chapter 15

Introduction to nonlinear analysis

15.1  INTRODUCTION

This chapter provides an introduction to the nonlinear analysis of structures. The most 
common causes of nonlinearity in structures include (i) material nonlinearity — in this 
case, the relationship between strains and stresses is nonlinear and cannot be simply 
expressed in terms by Hooke’s law (σ = Eε); (ii) geometric nonlinearity — this occurs when 
the displacements and rotations of a structural system are large and the geometry of the 
structure changes significantly; and (iii) contact nonlinearity — this category relates to the 
situations in which the boundary conditions of a structure change during the analysis.

The use of nonlinear analysis is essential when nonlinearities significantly affect the struc-
tural behaviour. For example, a nonlinear analysis is required if we want to evaluate the 
load- carrying capacity of a member or a structure just before it fails. A nonlinear analysis 
might also be required to predict the day-to-day behaviour of a structure when, for example, 
deformations or material damage might become significant at service loads.

This chapter intends to provide introductory remarks only on material nonlinearity, pro-
viding some insight into the solution techniques required to account for it in an analysis. 
Some aspects related to geometric nonlinearity were already covered in Chapter 14 when 
dealing with instability problems. A detailed treatment of nonlinear modeling is beyond the 
scope of this book and reference should be made to specialised literature in the area.

In the first part of the chapter, we will provide a brief introduction to different nonlinear 
material properties. These will then be used in a number of illustrative examples to outline 
some key features of the nonlinear modelling of trusses and beams. This will then be fol-
lowed by a description of nonlinear numerical solutions based on the Newton–Raphson 
method applied first to cross-sectional analyses, to familiarise ourselves with the overall 
procedure, and then to member analyses implemented with the finite element method.

15.2  NONLINEAR MATERIAL PROPERTIES

Different materials respond in different ways to applied loads and induced deformations. 
In structural analysis, the material response is described by a mathematical equation or set 
of equations usually referred to as the constitutive models or material stress–strain rela-
tionships. The complexity of these mathematical representations varies depending on the 
number of material features that need to be captured and are usually expressed in terms of 
algebraic, differential or integral equations.

For the purpose of this chapter, we will only focus on uniaxial constitutive models that 
relate axial deformations and stresses in one direction and, because of this, are usually 
referred to as uniaxial stress–strain relationships. These are applicable when dealing with 
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line elements, such as those considered in previous chapters for the modelling of trusses, 
beams and frames. An example of a linear uniaxial constitutive model, already encountered 
in previous chapters, is Hooke’s law, for which the relationship between stress σ and strain 
ε is expressed by σ = Eε.

Stress–strain relationships of materials are usually obtained either by performing standard 
tests specified in national design guidelines or from formulations based on some theoretical 
assumptions. The actual details and requirements of a standard test vary depending on 
the failure modes expected for the material under consideration. In this section, we will 
consider the response of typical metals whose material properties can be evaluated by means 
of tensile tests. This experiment is usually carried out on a representative piece of material 
taken out of a structural component or member. For the sake of simplicity, we will consider 
the round bar shown in its unloaded condition in Figure 15.1a, with length L0 and cross-
sectional area A0 (with diameter D0). Once we start to apply a tensile load P, as shown in 
Figure 15.1b, the bar begins to elongate to a new length L and to decrease its area to A (and 
corresponding diameter D).

The overall response of the bar is described by plotting the deformations achieved at 
different levels of applied load or, alternatively, the loads exhibited for different levels of 
applied deformations. The measurements recorded from a tensile test can be converted to a 
stress–strain relationship on the basis of the following calculations:

 ε = −L L
L

0

0
 σ = P

A0
 (15.1a,b)

where P represents the load at which the sample reaches length L, and ε and σ are referred 
to as the nominal or engineering strain and stress, respectively, because they are calculated 
on the basis of the initial geometry of the sample. These calculations assume that the test is 
carried out under ideal conditions so that the sample is uniformly deformed over its entire 
cross-section and the sample is monitored over a sufficient length to ignore edge effects.

Typical stress–strain curves that can be obtained from a brittle and a ductile material are 
shown in Figure 15.2. In both cases, we have an initial linear–elastic branch (line OA in 
Figure 15.2). The elastic condition reflects the ability of a deformed material in this range to 
return to its initial conditions upon removal of the applied load, while the linear property 

Figure 15.1 Tensile test of a round bar. (a) Unloaded sample. (b) Loaded sample.
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highlights the linear proportionality between stresses and strains, defined by means of 
the elastic modulus E. For a brittle material, it is common that the material fractures at a 
limit stress f0 at the end of the linear–elastic region, i.e. at Point A in Figure 15.2a. In the 
case of ductile materials, the linear–elastic response is followed by an inelastic behaviour 
characterised, for example, in Figure 15.2b by a yielding plateau AB, where the material 
continues to deform at its yield stress fy, and to strain-harden up to its ultimate or peak stress 
fu (at Point C in Figure 15.2b). After this point, the engineering stress–strain curve starts 
to decrease until failure of the material occurs at Point D in Figure 15.2b. This decrease 
is due to the fact that the local stress and strain are calculated with Equations 15.1, using 
the initial geometry of the sample. In reality, the local stress continues to increase and this 
could be calculated by evaluating the stress based on the actual cross-sectional area A. 
This is usually referred to as the true stress. During the test, the sample elongates and, as it 
elongates, its cross-sectional area decreases, as illustrated in Figure 15.1b. When the peak 
stress fu is reached (at Point C in Figure 15.2b), there is usually some localised necking over 
a very short length of the test sample and the cross-sectional area A in this region reduces 
significantly as strain increases until rupture occurs at εr (Point D in Figure 15.2b).

Depending on the material considered, the compressive and tensile stress–strain 
relationships may exhibit significant differences, such as shown in Figure 15.3 for a typical 
stress–strain curve of concrete. In this case, the behaviour of the material subjected to 
tensile (positive) stresses and strains is brittle, while the material behaves in a nonlinear 
but generally more ductile manner under compression (for typical low- to medium-strength 
concrete), when stresses and strains are negative.

For the purpose of this chapter, we will use only simple nonlinear material properties, 
such as the idealised elastic–perfectly plastic behaviour shown in Figure 15.4. We will 
also assume that behaviour is the same in both compression and tension. This is usually 

Figure 15.2 Typical stress–strain curves. (a) Brittle material. (b) Ductile material.

Figure 15.3 Typical stress–strain curve for concrete.
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suitable for metals and, in particular, for mild steel. The constitutive stress–strain equations 
describing this behavior are defined as (see Figure 15.4):

 σ = Eε for yε ε≤  (15.2a)

 σ = fy for ε > εy and σ = −fy for ε < −εy (15.2b,c)

where εy = (fy/E) is the strain at which the material starts to yield, commonly referred to as 
the yield strain, and the absolute value of the strain |ε| has been introduced to account for 
both tensile (positive) and compressive (negative) strains.

15.3  ILLUSTRATIVE EXAMPLES

15.3.1  Axially loaded members

The nonlinear analysis of a member subjected to an axial force is illustrated by means of 
a simple example that consists of one element fixed at one end and subjected to an applied 
load P at the other end, as shown in Figure 15.5a. The cross-section is made up of three 
rectangular layers bonded together as illustrated in Figure 15.5b. The material of each 
layer is assumed to have an elastic–perfectly plastic stress–strain relationship as given by 

Figure 15.4 Idealised stress–strain curve for an elastic–perfectly plastic material.

Figure 15.5  Example of an axially loaded composite member. (a) Elevation. (b) Cross-section. (c) Material 
and cross-sectional properties.
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Equations 15.2. The doubly-symmetric cross-section ensures that the external force induces 
only axial deformations and axial forces in each material.

For low levels of P, the applied load is shared among the layers proportionally to their 
axial rigidities (since both materials are loaded in the linear–elastic range):
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where N1 and N2 represent the axial forces resisted by materials 1 and 2, respectively. The 
consequent deformation that must be the same in each material can be calculated recalling 
Equations 4.25 and 5.8 as:
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Equations 15.3 and 15.4 are valid provided the two materials remain in the linear–elastic 
range. This is satisfied when the strain in each material determined by Equation 15.4b is 
less than its yield strain or, alternatively, as long as the stress in each material is less than its 
yield stress.

Before investigating the nonlinear response of the member, it is useful to identify the load 
P at which one of the materials starts to yield. We do this by considering the yield strains of 
each material. From Figure 15.4:
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Material 1 yields at a lower strain than material 2 (because fy1 is smaller than fy2). The load 
P, which produces a strain of εy1 = 0.0015, is determined by re-arranging Equation 15.4b:

 Py1 = εy1E(A1 + A2) = 0.0015 × (200 × 103) × (2 × 103 + 4 × 103) = 1800 kN (15.6)

which causes an extension ey1 (from Equations 15.4):

 ey1 = εy1L = 0.0015 × 1000 = 1.5 mm (15.7)

The yield force Ny1 resisted by material 1 is obtained from Equation 15.3a:

 N Py y kN1 1
1
3

600= =  (15.8)
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After material 1 has yielded, under the assumption of the elastic–perfectly plastic behav-
iour, it cannot carry any additional load. Therefore, if the applied load P increases above 
Py1, the load carried by material 1 remains at Ny1 while all additional force is taken by 
material 2:

 N1 = Ny1 = 600 kN N2 = P − Ny1 = P – 600 kN (15.9a,b)

The structure will be able to carry higher levels of P until material 2 yields. This occurs at:

 Py2 = N1 + N2 = Ny1 + εy2EA2 = 600 × 103 + 0.0025 × (200 × 103) × 4 × 103 = 2600 kN  
  (15.10)

which takes place at an elongation equal to:

 ey2 = εy2L = 0.0025 × 1000 = 2.5 mm (15.11)

The force Py2 is usually referred to as the collapse load because unlimited deformation can 
take place in the structure at this level of load.

The response of the structure, expressed in terms of load and elongation, is summarised 
in Figure 15.6, which highlights how the changes in the overall rigidity are affected by the 
development of yielding in the two materials.

The incremental solution process followed in Equations 15.3 through 15.11 is useful in 
outlining the key aspects involved in a nonlinear solution. When dealing with nonlinear 
analyses, it is usually preferable to implement numerical solutions that are more flexible in 
dealing with complex structures and material properties. This will be outlined in Section 
15.4 presenting a widely used solution procedure, i.e. the Newton–Raphson method.

15.3.2  Beams in bending

In Chapter 5, we introduced the moment–curvature relationship to describe the flexural 
response of beams made up of linear–elastic materials (Equation 5.36):

 κ = M
EI

 (5.36)

The moment M is related to the curvature κ by means of the flexural rigidity EI. All terms 
are calculated with respect to the z-axis (based on a centroidal coordinate system) and 
assuming that the cross-section possesses an axis of symmetry coincident with the y-axis. If 

Figure 15.6 Nonlinear response of the axially loaded composite member.



Introduction to nonlinear analysis 495

the curvature along a beam is known, this expression can be used to determine the rotations 
and deflections along the member length, as for example carried out using the method of 
double integration (see Section 5.5).

When dealing with nonlinear material properties, the relationship between the moment 
and the curvature becomes nonlinear as well.

To determine the nonlinear moment–curvature relationship, we will consider the simple 
case of a rectangular cross-section (with width b and depth d) fabricated from an elastic–
perfectly plastic material (with a stress–strain relationship given by Equations 15.2) and 
subjected to an external moment only. This example has been selected to minimise the 
complexity of the derivation, but other cross-sections and other nonlinear material properties 
can also be considered with the same approach.

Taking the y- and z-axes as the centroidal axes, typical stress and strain distributions 
induced at the cross-section for low levels of moments are shown in Figure 15.7. The materials 
are assumed to remain within their linear–elastic range because their maximum strains at 
the top and bottom fibres of the cross-section fall below the yield strains εy. Under these 
conditions, stresses σ remain proportional to strains ε, with the proportionality constant 
being the elastic modulus E, as in Equation 15.2a.

For the cross-section of Figure 15.7a, the expressions relating ε and σ can be written as:

 ε = −yκ σ = Eε = −Eyκ (15.12a,b)

which represent simplified versions of Equations 5.18 and 5.20 because, in this case, the 
axial force is zero. Recalling the definition of the internal moment, the relationship between 
the moment and curvature can be derived as (Equation 5.22):

 M y A Ey y A E y A EI
A A A

= − = − − = =∫ ∫ ∫σ κ κ κd ( )d d2  (15.13)

which, re-arranged, produces Equation 5.36. This expression is valid up to the point at 
which the material starts to yield. This occurs when the extreme fibers of the cross-section 
reach the material yield stress as shown in Figure 15.8, i.e. when:

 ε ε= =y
yf

E
 (15.14)

Figure 15.7  Strain and stress diagrams in the linear–elastic range. (a) Cross-section. (b) Strain diagram. 
(c) Stress diagram.
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The corresponding curvature at first yield is referred to as κy and can be calculated from 
Equations 15.12a and 15.14 as:

 κ
ε

y
y y= =

d

f

Ed2

2
 (15.15)

where d/2 represents the distance between the z-axis and the extreme fibre of the cross-
section (Figure 15.8). The corresponding moment at first yield My can then be calculated 
using Equations 15.13 substituting κ = κy:

 My = EIκy  (15.16)

Recalling that I = bd3/12 for a rectangular section, Equation 15.16 can be re-written using 
Equation 5.15 as:

 M f
bd

f Zy y y= =
2

6
 (15.17)

where Z is the elastic section modulus and is equal to bd2/6 for a rectangular section.
For levels of moment greater than My, yielding extends into the cross-section as shown 

in Figure 15.9. In this case, the yielded part of the cross-section exhibits a strain greater 
than εy (Figure 15.9b) and is subjected to a stress equal to the yield stress fy (Figure 15.9c), 
while the remaining part of the cross-section remains in the linear–elastic range. For ease 
of notation, the extent of yielding is defined by the parameter α, which is equal to 1 for a 
section at first yield and 0 for a fully yielded section, i.e. 0 ≤ α ≤ 1. The moment corresponding 

Figure 15.8  Strain and stress diagrams at first yield. (a) Cross-section. (b) Strain diagram. (c) Stress 
diagram.

Figure 15.9  Strain and stress diagrams in the nonlinear range. (a) Cross-section. (b) Strain diagram. (c) Stress 
diagram.
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to strain diagrams for which α < 1 can be calculated by summing the moments induced 
by the stress blocks shown in Figure 15.9c whose resultant and lever arms are specified in 
Figure 15.10:

 M = 2d1F1 + 2d2F2 (15.18)

where:

 d
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α  F f bd2 4
= y

α  (15.19a–d)

Simplifying Equations 15.18 and 15.19, the nonlinear moment–curvature relationship can 
be expressed as:

 M M= −




p 1

3

2α
 (15.20)

where Mp is the plastic moment of the cross-section and is defined as:

 Mp = fyS (15.21)

with S being the plastic section modulus, calculated as S = bd2/4 for rectangular cross-
sections. Mp is the moment corresponding to α = 0, with the entire cross-section above the 
neutral axis yielding in compression and the entire cross-section below the neutral axis 
yielding in tension.

The values and differences between the first yield and plastic moments (My and Mp), and 
equivalently between the elastic and plastic section moduli (Z and S), depend on the shape 
of the cross-section and are captured in the shape factor λ defined as:

 λ = =
M

M
S
Z

p

y
 (15.22)

with λ equal to 1.5 for rectangular cross-sections, about 1.15 for I-shaped sections and 1.7 
for circular sections.

It is useful to express α in terms of the curvature considering that, from its definition, it 
specifies the location y = ±αd/2 at which the strain equals ± εy and, recalling Equation 15.12a:

 ε κ αy
y= =







f

E
d
2

 (15.23)

Figure 15.10 Summary of cross-sectional resultants in the nonlinear range.
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Re-arranging and substituting the expression for κy in Equation 15.15, we get:

 α
κ
κ

= y  (15.24)

In summary, the moment–curvature relationship for a rectangular cross-section of 
an elastic–perfectly plastic material is described by Equations 15.13, 15.20 and 15.24, 
reproduced here for ease of reference:

 M = EIκ for yκ κ≤  (15.25a)

 M M= −
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κ κ  (15.25b)

The graphical representation of Equations 15.25 is illustrated in Figure 15.11, which 
shows how the cross-section remains in its linear–elastic range until the external moment M 
reaches My, after which yielding starts to develop and expands to the entire cross-section at 
M = Mp when the curvature is infinite, that is, when α = κy/κ = 0. The limiting capacity for 
the cross-section is the plastic moment Mp.

In the case of a statically determinate beam, we can determine the structural response 
by applying the method of double integration to Equations 15.25. This procedure is now 
outlined for a simply-supported beam with a rectangular cross-section and subjected to a 
point load applied at mid-span, as illustrated in Figure 15.12. Because of the symmetry of 
both the loading and boundary conditions, only half of the beam will be considered in the 
analysis. Considering the two different expressions derived to describe the moment–curvature 

Figure 15.11 Normalised moment–curvature diagram for a linear–perfectly plastic material.

Figure 15.12 Beam and cross-section. (a) Elevation. (b) Cross-section.
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relationship (Equations 15.25), the method of double integration needs to be applied twice: 
the first for the case where the beam remains in its linear–elastic range for its entire length 
and the second when part of the beam is yielding.

The determination of the rotations and deflections when the beam is linear–elastic follows 
the procedure already outlined in Sections 5.5 and 6.2 where we introduced the method of 
double integration.

For the beam of Figure 15.12, the expression for the internal moment is calculated using 
the free-body diagram shown in Figure 15.13b (reactions were obtained from statics: HA = 0, 
VA = P/2, VB = P/2):

 M
P

x x
L= ≤ ≤

2 2
for 0  (15.26)

Applying the method of double integration to the curvature of Equation 15.25a, the gen-
eral expressions for the rotation and deflection can be written as:
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whose constants of integration Ca and Cb are evaluated by enforcing the boundary conditions 
v(x = 0) = 0 and θ(x = L/2) = 0 as:

 C
PL

EIa = −
2

16
 Cb = 0 (15.28a,b)

Substituting Equations 15.28 into Equations 15.27b and c, the expressions for the rota-
tion and deflection are:
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Figure 15.13 Free-body diagrams.
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and the mid-span deflection is:

 v x
L PL

EI
=





 = −

2 48

3

 (15.29c)

When the mid-span moment is greater than My, i.e. when P is greater than 4My/L, part of 
the cross-section at mid-span starts to yield. As load increases, the region of the beam where 
M exceeds My expands. The part of the beam of length a adjacent to each supports where 
M ≤ My exhibits linear–elastic behaviour (regions 1 in Figure 15.14) and its response can be 
described by the moment–curvature relationship of Equation 15.25a. In the remaining central 
length of the beam, referred to as region 2 in Figure 15.14, the material is partly yielded and 
its response is represented by the moment–curvature relationship of Equation 15.25b.

For clarity, we will use subscripts ‘1’ or ‘2’ on the symbols for curvature, rotation and 
deflection to indicate when they relate to regions 1 or 2, respectively.

The expressions for the curvature in the two regions in the first half span of the beam are 
expressed as:
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where κ2 is obtained by re-arranging Equation 15.25b and substituting the expression for 
the internal moment (Equation 15.26). Applying the method of double integration to the 
two regions, we obtain the general expressions for the rotation and deflection:
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Figure 15.14 Linear–elastic and nonlinear regions along the beam length.
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The constants of integration are evaluated by enforcing the following boundary 
conditions:

 v1(x = 0) = 0 θ2 2
0x

L=




 =  (15.33a,b)

 v1(x = a) = v2(x = a) θ1(x = a) = θ2(x = a) (15.34a,b)

which specify zero deflection at the pinned support, zero rotation at mid-span owing to sym-
metry, and continuity of deflection and rotation at x = a. These are determined as:
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 Cb1 = 0 (15.35b)
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with:

 β1 = −( )M M Mp y p
 β κ2 3= yEI  β3 4= −( )M PL Mp p  (15.37a–c)

By substituting Equations 15.35 and 15.36 into Equations 15.31 and 15.32, we obtain the 
expressions for the rotations and deflections in regions 1 and 2. In particular, the mid-span 
deflection can be calculated as:
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These equations are applicable for load levels that induce mid-span moments between 
My and Mp. The limit case of a beam with a mid-span moment Mp leads to the formation 
of a hinge, because the curvature tends to infinity as shown by the asymptote of Figure 
15.11.
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An overview of the structural response of the beam, in terms of deflection and cur-
vature, is illustrated in Figure 15.15 for different load levels, expressed as a function 
of mid-span moment over moment at first yield. In particular, three cases have been 
considered:
 i. when the mid-span moment just reaches My, i.e. shown as M(x=L/2)/My = 1 in the plot 

(this case shows behaviour when the entire beam is linear–elastic)
 ii. at a level of load inducing a mid-span moment equal to the average of the yield and 

plastic moment (i.e. equal to (My + Mp)/2)
 iii. at a moment approaching Mp, i.e. with M(x=L/2)/My = 1.466 which corresponds to about 

98% of Mp

In the elastic–plastic region, the curvature tends to increase significantly as yielding prop-
agates in the cross-section and in central region of the beam. As a consequence, also the 
deflection increases significantly.

It is not always possible to derive analytical solutions to describe the nonlinear response 
of a structural member and, for this purpose, a more general numerical approach will be 
outlined in the following section based on the Newton–Raphson method.

15.4  NONLINEAR ANALYSIS USING THE 
NEWTON–RAPHSON METHOD

15.4.1  Overview of the Newton–Raphson method

The Newton–Raphson method is an iterative procedure suitable for the solution of non-
linear problems. In this section, we outline the key steps of the procedure considering that 
a structural problem can be expressed as a system of nonlinear equations enforcing equilib-
rium at particular locations or along specified freedoms of the structure. When dealing with 
material nonlinearities, these equations can be written in general form as:

 K(D) = Q (15.39)

where Q represents the vector of applied loads and vector K(D) collects the nonlinear func-
tions describing the internal actions, expressed in terms of displacements D. In this context, 
the components of vector D depend on the formulation of the problem being defined by the 
nonlinear equations. For clarity, no separation is specified at this stage between known and 
unknown variables collected in D.

Figure 15.15 Deflection and curvature distributions for different levels of load.
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The iterative procedure starts from an assumed set of results, adopted in the first iteration 
(referred to as i = 1, with i being the counter for the iterations). The assumed initial set of 
results is usually based on an informed guess. The solution is then improved in subsequent 
iterations until a selected convergence criterion is satisfied. For a structure subjected to a 
particular level of applied load, if we denote the solution at the i-th iteration as D(i), the 
solution in the next iteration (i + 1) is obtained by approximating Equation 15.39 with the 
first terms of its Taylor expansion as:

 K(D(i+1)) ≈ K(D(i)) + Kt(D(i))ΔD(i) = Q (15.40)

where ΔD(i) represents the vector of increments of the structure displacements and Kt(D(i)) 
describes the tangent behaviour of the structure based on the stiffness calculated at the 
displaced conditions set by D(i). Equation 15.40 can be re-arranged to separate the terms 
associated with the increment displacements ΔD(i) from the remaining terms as:

 K D D Qt R( )( ) ( ) ( )i i i∆ =  (15.41)

where QR
( )i  is usually referred to as the unbalanced load vector (or residual load) and is 

defined as:

 Q Q K DR
( ) ( )( )i i= −  (15.42)

In this expression, the vector K(D(i)) describes the internal actions corresponding to dis-
placements D(i).

At this point, the displacement increments ΔD(i) are calculated following the standard 
solutions procedures presented in Appendix C and used in previous chapters when dealing 
with linear–elastic material properties. For this purpose, in the detailed solution, the known 
and unknown terms of displacement increments and loads can be separated by partitioning.

At the end of each iteration, the possible convergence of the solution is evaluated based 
on a specified criteria and the current displacement vector D(i) is updated by adding the 
displacement increments ΔD(i) calculated at the i-th iteration. There are different possible 
termination criteria that can be used in the analysis. The convergence criteria are usually 
based on the calculations of normalised norms that involve either displacements or actions, 
such as those specified in the following:
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 (15.43a,b)

If the values obtained with the adopted normalised norm fall below a certain tolerance 
value normtol, then the solution is said to converge; otherwise, another iteration is required 
and performed. Adequate values to be used for normtol depend on the problem being consid-
ered and the accuracy sought. Usually, these are in the order of 10–2 to 10–6, but its validity 
can be easily checked for the particular problem being considered by evaluating the magni-
tude of the residual load vector for different normtol values.

The overall strategy of the Newton–Raphson method is illustrated in Figure 15.16 
considering a scalar problem for clarity.

The case of one load level is considered in Figure 15.16a to better highlight the details of 
the solution process. In particular, the first iteration starts by adopting an initial tangent 
stiffness, referred to as Kt(D(1)), calculated based on the ‘guessed’ displacement D(1). This 
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enables the calculation of the displacement increment ΔD(1) from which we get displacement 
D(2) (= D(1) + ΔD(1)). Convergence is then verified for this solution and, if satisfied, the analysis 
is terminated. If convergence is not satisfied, another iteration is carried out with a revised 
tangent stiffness Kt(D(2)) and the previous process is repeated as many times as necessary.

The ability of the Newton–Raphson method to follow the nonlinear response of a struc-
ture relies on the use of relatively small increments to avoid the solution diverging or oscil-
lations in the results. For this purpose, the loads are applied in increments and each of these 
load levels is usually referred to as a load step. The solution procedure applied to consider 
different load increments is identical to the one previously outlined for a load Q and illus-
trated in Figure 15.16b.

Other solution strategies that build on the Newton–Raphson method are available in the 
literature. For example, it is possible to avoid building the tangent stiffness between adjacent 
iterations and to keep on using the tangent stiffness calculated in the first iteration. This 
approach is usually referred to as the Modified Newton–Raphson method and becomes use-
ful with problems of large size, where the calculation of a new tangent stiffness can be very 
demanding computationally. When running an analysis for increasing levels of applied load, 
it is usually possible to approach the peak load, while different solution strategies need to be 
implemented to follow the post-peak response, such as the arc-length method.

15.4.2  Cross-sectional analysis using the 
Newton–Raphson method

The cross-sectional analysis considered in this section is based on the assumptions of the 
Euler–Bernoulli beam model. In this context, the variables included in the vector D are 

Figure 15.16 Newton–Raphson method.
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deformations, namely, the strain measured at the level of the reference axis εr and the cur-
vature κ, as illustrated in Figure 15.17b. The variation of the strain ε over the cross-section 
can then be written as:

 ε = εr − yκ (15.44)

The terms included in the vector K(D) are the internal actions that, in this case, are the 
internal axial force N and the internal moment M with respect to the reference z-axis. 
External loads considered are expressed in terms of the external actions applied to the cross-
section, consisting of the external axial force Ne and external moment Me calculated with 
respect to the reference axis.

To remain consistent with the notation introduced in Chapter 13, the variables D, K(D) 
and Q presented in the previous section are replaced with ε, r(ε) and re, respectively. These 
terms are defined as:
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 (15.45a–c)

and Equation 15.39 can be re-written as:

 r(ε) = re (15.46)

We will now revisit the nonlinear procedure presented in Equations 15.39 through 15.43. In 
particular, the internal actions to be calculated at the (i + 1)-th iteration are approximated with 
the first terms of the Taylor expansion of the internal actions calculated at the i-th iteration as:

 r(ε(i+1)) ≈ r(ε(i)) + rt(ε(i))Δε(i) = re (15.47)

Equation 15.47 is equivalent to Equation 15.40 and can be re-arranged to separate the 
vector of residual loads rR

( )i  as (equivalent to Equation 15.41):

 r rt R( )( ) ( ) ( )εε εεi i i∆ =  (15.48)

Figure 15.17 Cross-sectional discretisation. (a) Cross-section. (b) Strain diagram. (c) Stress diagram.
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with:

 r r rR e
( ) ( )( )i i= − εε  (15.49)

To better illustrate the solution procedure, we separate the two equations included in the 
nonlinear system of Equations 15.48:
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in which the residual load vectors N i
R
( ) and M i

R
( ) are calculated as:

 N N Ni i i
R e r
( ) ( ) ( ),= − ( )ε κ  (15.51a)

 M M Mi i i
R e r
( ) ( ) ( ),= − ( )ε κ  (15.51b)

with N i iε κr
( ) ( ),( )  and M i iε κr

( ) ( ),( )  being the internal axial force and moment determined at 
the i-th iteration.

Based on the notation adopted in Equations 15.50 and 15.51, it is possible to define all 
terms included in Equation 15.48 at the i-th iteration as follows:
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The partial derivatives of N and M with respect to εr and κ included in Equations 15.50 
(and collected in Equation 15.52a) can be re-arranged in a more practical form, recalling the 
definitions of internal actions (Equation 13.7), as:
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where the value of the stress depends on the constitutive models adopted for the materials 
and on the magnitude of the strain, which is defined by the strain variables εr and κ as well 
as by the location y of the point being considered within the cross-section.
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For the implementation of a nonlinear analysis, it is possible to rewrite the terms of 
Equations 15.53 making use of the chain rule for the calculation of the partial deriva-
tives. This is carried out for Equation 15.53a recalling the expression for the strain of 
Equation 15.44:
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and applying the same procedure to Equations 15.53b through d:
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To gain a better understanding of the use of these equations, let us reconsider the elastic–
perfectly plastic model illustrated in Figure 15.4 and defined in Equations 15.2, recalling 
that ε = εr – yκ:

 σ = Eε for yε ε≤  (15.55a)

 σ = fy for ε > εy and σ = −fy for ε < −εy (15.55b,c)

The partial derivatives of the stress σ with respect to ε are:
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The integrals of Equations 15.52 and 15.54 are usually performed numerically and, for 
this purpose, the cross-section is subdivided into a number of layers as shown in Figure 
15.17a. In this discretisation, we assume that the stress resisted by each layer is constant and 
determined by the strain calculated at the centroid of the layer, as shown in Figure 15.17 
for the j-th layer (with j = 1,...,nj). Other assumptions could be introduced in regards to the 
stress distribution within each layer. For example, it is possible to adopt a linearly varying 
profile defined by the strain values calculated at the top and bottom of the layer.

With the adopted discretisation and under the assumption of constant stress over each 

layer, the integrals defining the internal actions N i iε κr
( ) ( ),( )  and M i iε κr

( ) ( ),( )  can be approxi-
mated by means of the rectangular rule as follows:
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In a similar manner, the integrals of Equations 15.54 are approximated as:
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When performing a nonlinear cross-sectional analysis, the load is usually applied in suc-
cessive load increments, usually referred to as load steps. At each level of load (i.e. at each 
load step), the iterative procedure is applied until convergence is achieved. This is carried 
out by solving Equations 15.48 for ∆εr

( )i  and Δκ(i) in subsequent iterations until the selected 
convergence criterion is satisfied. For the cross-sectional analysis, we will use the following 
normalised norms as termination criteria:

 normtol1 1
=

+

∆εε
εε
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( )

i
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e
2

1

=
+( )r

r

i

 (15.59a,b)

The use of the nonlinear procedure is now outlined in Worked Examples 15.1 and 15.2.

WORKED EXAMPLE 15.1

Consider the member fixed at one end and subjected to an axial force P, previously analysed 
in Section 15.3.1 and illustrated in Figure 15.5. Assume the material properties to be elastic–
perfectly plastic with values detailed in Figure 15.5c. Determine the deformations, expressed 
in terms of strain at the level of the reference axis (taken at mid-height of the section) and 
curvature, with a cross-sectional analysis implemented with the Newton–Raphson method for 
the following load steps: (1) Ne = 1000 kN, Me = 0 kNm; (2) Ne = 2200 kN, Me = 0 kNm; and 
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(3) Ne = 2600 kN, Me = 0 kNm. For the convergence criteria, use normtol2 defined in Equation  
15.59b equal to 0.001.

We will discretise the cross-section into three layers to account for the presence of different mate-
rials, as shown in Figure 15.18. A higher number of layers is usually adopted in the modelling, but 
for this simple problem, three layers are acceptable and have been specified here to keep the 
complexity of the solution to a minimum.

On the basis of the elastic–perfectly plastic material assumptions, the partial derivatives of the 
stress–strain relationship can be re-written based on Equations 15.56 as:
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Load step 1: Ne = 1000 kN, Me = 0 kNm
Iteration 1 (i = 1)
The initial tangent rigidity rt(ε(1)) to be used in the analysis is calculated assuming the member 
to be unloaded with εr

( )1 0=  and κ(1) = 0, which is based on an initial ‘guessed’ condition of the 
structure being undeformed. The strains are all zero and, consequently, the internal actions and 
their derivatives are calculated as (Equations 15.57 and 15.58):
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Figure 15.18 Summary of the cross-sectional properties.
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The residual loads to be used in the first iteration are (Equation 15.51):

 N N NR e r N( ) ( ) ( ),1 1 1 3 31000 10 0 1000 10= − ( ) = × − = ×ε κ

 M M MR e r Nmm( ) ( ) ( ),1 1 1 0 0 0= − ( ) = − =ε κ

We can now write the system of Equations 15.50 to solve for the unknown ∆εr
( )1  and Δκ(1):

 12 10 1000 108
r

3× × + × = ×∆ ∆ε κ( ) ( )1 10

 0 01 1× + × × =∆ ∆ε κr
113.2 10( ) ( )

from which: ∆εr 0( ) .1 38333 10= × −  and Δκ(1) = 0 mm–1.
The convergence of the solution is calculated based on normtol2 (Equation 15.59b), which 
requires the evaluation of the residual internal actions NR

( )2  and MR
( )2  (Equations 15.51). To 

achieve this, we calculate the strain values for the second iteration:

 ε ε εr r r 0 0( ) ( ) ( ) . .2 1 1 3 30 8333 10 8333 10= + = + × = ×− −∆

 κ(2) = κ(1) + Δκ(1) = 0 mm–1

and the internal actions based on εr
( )2  and κ(2):
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The residual loads are then evaluated as:

 N N NR e r N( ) ( ) ( ),2 2 2 3 31000 10 1000 10 0= − ( ) = × − × =ε κ

 M M MR e r Nmm( ) ( ) ( ),2 2 2 0 0 0= − ( ) = − =ε κ

on the basis of which:
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which satisfies the convergence criterion being normtol2 below 0.001. A nil value for normtol2 is 
expected when dealing with linear–elastic materials. We can now move to the next load step.
If we would have used normtol1 (Equation 15.59a) as the convergence criterion, its value at the 
end of iteration 1 would be:
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and using this criterion, we would have required a second iteration to be performed in this case. 
This is the case because the materials are still in the linear–elastic range.

Load step 2: Ne = 2200 kN, Me = 0 kNm
We will now continue the analysis from the previous load step adopting the strain values 
obtained at the end of the previous load step for our first iteration with i = 1 (at load step 2): 
εr 0( ) .1 38333 10= × −  and κ(1) = 0 mm–1. We have already calculated the corresponding internal 
actions as N ε κr N( ) ( ),1 1 31000 10( ) = ×  and M ε κr kNm( ) ( ),1 1 0( ) = . The residual actions to be used in 
the first iteration of load step 2 are:

 N N NR e r
( ) ( ) ( ),1 1 1 3 32200 10 1000 10 1200 1= − ( ) = × − × = ×ε κ 003 N

 M M MR e r Nmm( ) ( ) ( ),1 1 1 0= − ( ) =ε κ

Considering the fact that at εr 0( ) .1 38333 10= × −  and κ(1) = 0 mm–1, the material properties of the 
cross-sections are still linear–elastic:
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The system of Equations 15.50 can then be written as:

 12 10 1200 108
r

3× × + × = ×∆ ∆ε κ( ) ( )1 10

 0 01 1× + × × =∆ ∆ε κr
113.2 10( ) ( )

and solving gives ∆εr 1( )1 310= × −  and Δκ(1) = 0 mm–1.
Based on this:

 N Mε κ ε κr rN and( ) ( ) ( ) ( ), . ,2 2 3 2 22066 6 10 0( ) = × ( ) = kkNm

and

 N N NR e r
( ) ( ) ( ), . .2 2 2 3 32200 10 2066 6 10 133= − ( ) = × − × =ε κ 33 103× N

 M M MR e r Nmm( ) ( ) ( ),2 2 2 0 0 0= − ( ) = − =ε κ

Convergence is then evaluated with normtol2:
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which is greater than the limit value 0.001 and the analysis continues to the next iteration i = 2. 
The results of the iterations carried out for load step 2 are summarised in the tables below.

i εr
( )i × −10 3

κ(i)

mm–1 ∆εr
( )i × −10 3

Δκ(i)

mm–1 normtol2

1 0.8333 0 1 0 0.0606
2 1.8333 0 166.7 × 10–3 0 0
3 2 0 – – –

i

∂ ( )
∂
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r

r
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( ) ( ),

2

1 1200 × 106 0 0 320 × 109

2 800 × 106 0 0 320 × 109

i
Ne × 103

N
Me

Nmm
N i iε κr

N

( ) ( ),( ) ×103 M i iε κr

Nmm

( ) ( ),( ) N i
R

N

( ) ×103 M i
R

Nmm

( )

1 2200 0 1000 0 1200 0
2 2200 0 2066.7 0 133.3 0
3 2200 0 2200 0 0 0
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Load step 3: Ne = 2600 kN, Me = 0 kNm
The calculations carried out for load step 3 follow the procedure used in the previous load steps 
and the results are summarised in the following tables:

i εr
( )i ×10–3

κ(i)

mm–1 ∆εr
( )i ×10–3

Δκ(i)

mm–1 normtol2

1 2 0 500 × 10–3 0 0
2 2.5 0 – – –

i
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r
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r

r
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κ

r
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( ) ( ),

2

1 800 × 106 0 0 320 × 109

i
Ne × 103

N
Me

Nmm
N i iε κr

N

( ) ( ),( ) ×103 M i iε κr

Nmm

( ) ( ),( ) N i
R

N

( ) ×103 M i
R

Nmm

( )

1 2600 0 2200 0 400 0
2600 0 2600 0 0 0

It is worth pointing out that the ability to converge to a solution when material 2 also starts to 
yield is possible only because the initial ‘guessed’ solution used at the beginning of load step 3 did 
not cause yielding in material 2. In fact, if we were to repeat the same calculation starting with 
higher values for εr

(1) and κ(1), we would not have been able to find a solution because rt(ε(i)) would 
become a zero matrix, therefore not enabling the calculation of the unknowns Δεr

(1) and Δκ(1). 
This consideration highlights the importance of carefully interpreting numerical results, especially 
when obtained from nonlinear analyses.
It is noted that this solution is identical to that calculated in the illustrative example in 
Section 15.3.1.

WORKED EXAMPLE 15.2

Consider a rectangular cross-section with a width of 100 mm and a height of 360 mm bending 
about its strong axis. Assume the material to be elastic–perfectly plastic with E = 200 GPa and 
fy = 300 MPa. Determine the deformations, expressed in terms of the strain at the level of the 
reference axis (taken at mid-height of the section) and the curvature, with a cross-sectional 
analysis implemented using the Newton–Raphson method for the following load steps:
(1) Ne = 0 kN, Me = 648 kNm
(2) Ne = 0 kN, Me = 810 kNm
(3) Ne = 0 kN, Me = 950 kNm
For the convergence criteria, use normtol2 defined in Equation 15.59b equal to 0.001. Compare 
the results with those obtained from the moment–curvature expressions of Equations 15.25.
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The first step in the solution is to discretise the cross-section. We will consider a very simple 
approach to select the number of layers. It involves the evaluation of the flexural rigidity based 
on different number of layers, assuming linear–elastic material properties. The preferred num-
ber of layers will be the number for which the error of the flexural rigidity is less than 0.1% of 
the value of EI calculated for the cross-section without layering. For the cross-section consid-
ered in this example:

 EI E
bd= = × × = ×

3
3

3
12 2

12
200 10

100 360
12

77 76 10. Nmm

A discretisation with 40 layers is preferred on the basis of the comparisons shown in the table 
below, where different numbers of layers have been considered.

Number of layers ∑E y Aj j j
2 2Nmm ∑( )−



{ }×E y A Ebd Ebdj j j

2 3 312 12 100( ) ( )/ / Error (%%)

10 76.98 × 1012 –1
20 77.56 × 1012 –0.25
30 77.67 × 1012 –0.11
40 77.71 × 1012 –0.06

The elastic–perfectly plastic material properties are calculated based on Equations 15.60 with 
E = 200 GPa and fy = 300 MPa.
For each load step, Equations 15.45 through 15.59 are applied until the convergence criterion 
based on normtol2 (Equation 15.59b) is satisfied, following the procedure adopted in the previous 
worked example.
The various results calculated for the iterations of each load step are summarised in the tables 
below.

Load step i εr
( )i × −10 3

κ(i) × 10−6

mm−1 ∆εr
( )i × −10 3

Δκ(i) × 10−6

mm−1 normto12

1 1 0 0 0 8.3385 0
1 2 0 8.3385 – – –
2 1 0 8.3385 0 2.0846 0.0562
2 2 0 10.4231 0 1.1441 0.0076
2 3 0 11.5673 0 0.2310 0
2 4 0 11.7983 – – –
3 1 0 11.7983 0 5.2558 0.0586
3 2 0 17.0541 0 5.7396 0.0226
3 3 0 22.7936 0 6.4712 0.0047
3 4 0 29.2648 0 2.1413 0.0011
3 5 0 31.4062 0 0.8090 0
3 6 0 32.2151 – – –
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Load 
step i
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κ

r

Nmm

( ) ( ),

2

1 1 7.2 × 109 0 0 77.7114 × 1012

2 1 7.2 × 109 0 0 77.7114 × 1012

2 2 5.76 × 109 0 0 39.7742 × 1012

2 3 5.04 × 109 0 0 26.6377 × 1012

3 1 5.04 × 109 0 0 26.6377 × 1012

3 2 3.6 × 109 0 0 9.6957 × 1012

3 3 2.52 × 109 0 0 3.3170 × 1012

3 4 2.16 × 109 0 0 2.0849 × 1012

3 5 1.8 × 109 0 0 1.2029 × 1012

Load 
step i

Ne
N

Me × 106 
Nmm

N i iε κr

N

( ) ( ),( ) ×103 M i iε κr

Nmm

( ) ( ),( ) ×106 N i
R

N

( ) ×103 M i
R

Nmm

( ) ×106

1 1 0 648 0 0 0 648
1 2 0 648 0 648 0 0
2 1 0 810 0 648 0 162
2 2 0 810 0 764.5 0 45.5
2 3 0 810 0 803.8 0 6.2
2 4 0 810 0 810 0 0
3 1 0 950 0 810 0 140
3 2 0 950 0 894.4 0 55.6
3 3 0 950 0 928.5 0 21.5
3 4 0 950 0 945.5 0 4.5
3 5 0 950 0 949.0 0 1.0
3 6 0 950 0 950 0 0

The results are plotted in Figure 15.19, together with the moment–curvature curve obtained 
from the analytical solutions of Equations 15.25 (with moment values non-dimensionalised 
against My = 648 kNm calculated for the cross-section under consideration). As expected, 
these results perfectly match.

Figure 15.19 Nonlinear moment–curvature response.
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15.5  FINITE ELEMENT ANALYSIS USING THE 
NEWTON–RAPHSON METHOD

In this section, the Newton–Raphson method applied to the finite element approach is pre-
sented. In particular, the procedure considering the displacement-based finite element for-
mulation presented in Chapter 13 for the Euler–Bernoulli beam model is outlined. We will 
only focus on the aspects related to the nonlinear solution and reference should be made to 
Chapter 13 for issues related to the general finite element modelling, such as the transfor-
mation from local to global coordinate for an isolated element, its assembling, the defini-
tion of the support conditions, the determination of the unknown displacements and the 
post-processing.

The Newton–Raphson iterative procedure required for the finite element solution is based 
on the steps provided in Equations 15.39 through 15.43 where the vector of displacements 
D(i) is replaced with the finite element nodal freedoms De

( )i  of the assembled structure. 
Equations 15.41 and 15.42 can be re-written as:

 K D D Qt e e R
( ) ( ) ( )i i i( ) =∆  (15.61)

and

 Q Q K DR e
( ) ( )i i= − ( )  (15.62)

where vectors Q and QR
( )i  are expressed in terms of nodal freedoms. Convergence is then 

evaluated by calculating the norms of Equations 15.43 based on the finite element nodal 
displacements or the residual actions:

 normtol
e

e
1 1
=

+

∆D

D

( )

( )

i

i
 normtol

R

2

1

=
+Q

Q

( )i

 (15.63a,b)

Equations 15.61 and 15.62 describe the behaviour of the entire structure, obtained by 
assembling the contributions of the various elements. We will now derive the stiffness matrix 
and the tangent stiffness matrix of an isolated finite element, by following the formulation 
already described in Chapter 13 and extending it to account for material nonlinearity. We 
start from the weak form for the Euler–Bernoulli beam model (Equation 13.18):

 r e p e⋅ = ⋅∫ ∫A ˆ ˆdx x
L L

d  (15.64)

where, for ease of notation, we omit the iteration index i previously introduced in the 
Newton–Raphson iterative procedure (this will be included again when describing the 
details of the iterative scheme). As specified in Chapter 13, r is the vector of internal actions, 
A is a differential operator, e is the vector of the generalised displacements and p is the vector 
of member loads:

 r =










N
M

 A =












∂
∂
0

0 2  e =










u
v

 p =










n
w

 (15.65a–d)
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The key step in the derivation of a displacement-based finite element is to approximate 
the generalised displacements e by means of polynomial functions, which can be described 
in compact form as:

 e ≈ Nede (15.66)

where matrix Ne collects the shape functions adopted for the displacements and de is the 
vector of nodal displacements.

On the basis of this approximation, it is possible to rewrite the weak form of the problem 
(Equation 15.64) as:

 B r d N p dT
e e

T
ed d⋅ = ⋅∫ ∫ˆ ˆx x

L L

 (15.67)

where matrix B is introduced to describe the strain field ε expressed in terms of the nodal 
displacements (Equation 13.36):

 ε = ANede = Bde (15.68)

The stiffness relationship for an isolated element can then be written as:

 ke(de) = qe (15.69)

in which ke(de) defines the internal actions and qe is the vector of nodal actions describing 
member loads (Equation 15.65d). These terms may be expressed as:

 k d B re e
T d( ) = ∫ x

L

 (15.70a)

 q N pe e
T d= ∫ x

L

 (15.70b)

In Equation 15.70a, we have highlighted the dependency of ke on the nodal displacements 
de. In fact, unlike the linear–elastic case outlined in Chapter 13, the rigidity of the structure 
depends on its material properties and its deformed shape.

For the Euler–Bernoulli beam model, we need to specify a uniaxial constitutive model (see 
Section 15.2) relating stresses and strains:

 σ = f(ε) (15.71)

where the function f(ε) is assigned for the actual material under consideration. In finite 
element modelling, the strains are calculated in terms of the nodal displacements de as:

 ε = [1 −y]ε = [1 −y]ANede = [1 −y] Bde (15.72)

and Equation 15.71 can be re-written, highlighting the independent variables, as:

 σ = f(x, y, de) (15.73)
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We can then reconsider the expressions for the internal actions highlighting their depen-
dency on the member axis x and nodal displacements de. This is carried out by discretising 
the cross-section into nj layers (with j = 1,...,nj) to account for the nonlinear material behav-
iour as previously performed for the cross-sectional analysis in Figure 15.17 and Equations 
15.57:

 r d
d

d

d

e( , )
( , )

( , )

( , , )d

x
N x

M x

x y A

y

A=











=

−

∫
e

e

eσ

σ(( , , )d

( , , )

x y A

x y A

A

j

n

j j

j

d

d

e

e

∫





















=
∑

−

=1
σ

∑∑



















=j

n

j j j

j

y x y A
1

σ( , , )de

 (15.74)

When performing nonlinear analyses, the integrals of Equations 15.70 and 15.74 are usu-
ally evaluated numerically. For the purpose of this chapter, the Gauss–Legendre formulae 
are used to enable the calculation of an integral I between a and b of a function f(x) based 
on the following weighted summation:

 I f x x
b a

f
a b b a

x x
b a

a

b

k
= = − + + −



 ≈ − ∑∫ ∫

−
=

( )d d
2 2 2 2

1

1

11 2 2

n

k kw f
a b b a

x
G + + −



  (15.75)

Some of the possible values for the weighting functions wk and function arguments xk are 
provided in Table 15.1 for different numbers of Gauss integration points nG. The level of 
accuracy achieved by the numerical integration depends on nG. When specifying nG integra-
tion points, it is possible to integrate exactly a polynomial of degree (2nG + 1).

Based on Equation 15.75, the numerical integrals of Equations 15.70 can be carried out as:

 k d B r d B re e
T

e
Td

G

( , ) ( ) ( , ) ( ) (x x x x
L

w x x
L

k

n

k k= ≈ ∑∫ =2 1
kk , )de  (15.76a)

 q N p N pe e
T

e
Td

G

= ≈ ∑∫ =
( ) ( ) ( ) ( )x x x

L
w x x

L
k

n

k k k2 1
 (15.76b)

where xk is calculated as a function of xk (Table 15.1) based on:

 x
L

xk k= +
2

1( )  (15.76c)

assuming the limits of the integral to vary between 0 and L, with L being the length of the 
finite element.

Considering the terms included in Equations 15.76, matrices B and Ne are known, once 
nG is specified, because they are defined in terms of xk. Vector p(xk) is also known because it 
describes the known applied loads for the specific problem, while vector r(xk,de) represents 
the internal actions resisted by the member and these depend on the current deformations 
and material properties (see Equation 15.74).
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We will now describe in more detail the proposed finite element derivation consider-
ing the 7-dof finite element of Figure 13.4 (reproduced here in Figure 15.20). This is 
preferred to the 6-dof finite element described in Figure 13.7 because the latter element 
produces inaccurate results when the reference system used in the derivation of its stiffness 
coefficients is not centroidal (see Figure 13.8), as can occur when dealing with material 
nonlinearities.

To better outline the following calculations, it is more convenient to rewrite Equation 
15.66 highlighting the terms included in Ne and de (Equation 13.34), as well as their depen-
dency on x:

Table 15.1  Function arguments and weighting factors for the Gauss–Legendre 
formulae

nG xk wk

1 x1 = 0 w1 = 2
2 x1 = −0.577350269 w1 = 1

x2 = 0.577350269 w2 = 1
3 x1 = −0.774596669 w1 = 0.5555556

x2 = 0 w2 = 0.8888888
x3 = 0.774596669 w3 = 0.5555556

4 x1 = −0.861136312 w1 = 0.3478548
x2 = −0.339981044 w2 = 0.6521452
x3 = 0.339981044 w3 = 0.6521452
x4 = 0.861136312 w4 = 0.3478548

5 x1 = −0.906179846 w1 = 0.2369269
x2 = −0.538469310 w2 = 0.4786287

x3 = 0 w3 = 0.5688888
x4 = 0.538469310 w4 = 0.4786287
x5 = 0.906179846 w5 = 0.2369269

6 x1 = −0.932469514 w1 = 0.1713245
x2 = −0.661209386 w2 = 0.3607616
x3 = −0.238619186 w3 = 0.4679139
x4 = 0.238619186 w4 = 0.4679139
x5 = 0.661209386 w5 = 0.3607616
x6 = 0.932469514 w6 = 0.1713245

Figure 15.20  The 7-dof finite element (Euler–Bernoulli beam). (a) Nodal displacements. (b) Freedom num-
bering for the isolated finite element.
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(15.77)

where the terms of Ne(x) are (Equations 13.27 and 13.33):

 N x
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v4
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( ) = − +  (15.78f,g)

Separating the expressions for u and v, we can re-arrange Equation 15.77 as:

 u(x) = Nu1(x)uL + Nu2(x)uM + Nu3(x)uR (15.79a)

 v(x) = Nv1(x)vL + Nv2(x)θL + Nv3(x)vR + Nv4(x)θR (15.79b)

Based on Equation 15.68, matrix B(x) is calculated as:

 B( )
( ) ( ) ( )

( ) ( )
x

N x N x N x

N x N x
u u u

v v

=
′ ′ ′

′′ ′′
1 2 3

1 2
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0 00 0 3 4′′ ′′











N x N xv v( ) ( )  (15.80)

with:
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L
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1 4
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(15.81a–c)
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L L
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L Lv2 2

6 4
( ) ; ′′ = −N x

L

x

L
v3 2 3

6 12
( ) ; ′′ = −N x

x

L Lv4 2

6 2
( )  (15.81d–g)

Recalling Equations 15.76 and 15.77, the expressions describing ke (x, de) and qe can 
now be written for the 7-dof finite element as follows (calculated at the i-th iteration of the 
solution process):
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Considering the cross-sectional discretisations of Figure 15.17 (Equation 15.57), the 
internal actions are:

 N x x y Ak
i

j

n

k j
i

j

j

, , ,( ) ( )d de e( ) = ∑ ( )
=1
σ  (15.83a)

 M x y x y Ak
i

j

n

j k j
i

j

j

, , ,( ) ( )d de e( ) = − ∑ ( )
=1

σ  (15.83b)

The Newton–Raphson method requires the calculation of the tangent stiffness matrix of 
an isolated element (Equation 15.61):

 k d B r det e
T

t e d( , ) ( ) ( , )x x x x
L

= ∫  (15.84)

where rt(x, de) is similar to the tangent properties evaluated in the previous section for the 
cross-sectional analysis (see Equations 15.48 and 15.52). In this case, we are expressing the 
problem in terms of the nodal displacements and, therefore, the partial derivatives need to 
be carried out with respect to de. At the i-th iteration of the solution process, ket(x, de) can 
be calculated as follows:
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∂∫  (15.85)

Based on the numerical approximations introduced for the integrals carried out over the 
cross-section (with nj layers) and over the member length (at the nG Gauss integration points), 

the tangent vector k det ex i, ( )( ) can be approximated by:
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(15.86)

where the partial derivatives can be simplified by applying the chain rule, as already per-
formed for the nonlinear cross-sectional analysis in Equations 15.54:
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and considering the cross-sectional discretisation of Figure 15.17:
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We will now calculate k det ex i, ( )( ) of Equation 15.86 for the 7-dof finite element of Figure 
15.20 as follows:
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where, for ease of notation, N xk
i, ( )de( ), M xk

i, ( )de( ) and ε x yk
i, ,de
( )( ) are replaced with Nk

i( ) , 
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the different terms included in the second matrix of Equation 15.89 are calculated as:
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Reconsidering the elastic–perfectly plastic constitutive model of Equations 15.2, the 
partial derivatives of the stress σ with respect to ε have already been calculated in Equations 
15.60.

The stiffness matrix, the tangent stiffness components and the loading vector of the 
entire structure, required in the Newton–Raphson approach in Equations 15.61 and 15.62, 
can be obtained by assembling the contributions of the individual elements produced 
by Equations 15.82, 15.85 and 15.89 following standard finite element procedures (see 
Section 13.2).

The use of the Newton–Raphson procedure for the 7-dof finite element of Figure 15.20 is 
outlined in Worked Example 15.3.
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WORKED EXAMPLE 15.3

Consider a simply-supported beam subjected to a mid-span point load and with span of 8 m. 
Calculate the deflection and curvature along the member length with the finite element 
approach for the following two applied mid-span loads: (1) P = 405 kN and (2) P = 475 kN. Use 
the Newton–Raphson method and, for the convergence criteria, take normtol2 equal to 10–5 
(Equation 15.59b). Consider the rectangular cross-section (width of 100 mm and height of 360 
mm) and the elastic–perfectly plastic material properties (E = 200 GPa and fy = 300 MPa) of 
Worked Example 15.2. Compare the calculated results with those obtained using the analytical 
solutions in Section 15.3.2 and plotted in Figure 15.15. For the numerical integrations, use three 
Gauss integration points.

(1) The load P = 405 kN is applied in one load step and is included in the load vector Q.
In the first iteration, we assume that the beam is undeformed, therefore described by a nil vec-
tor of displacements. Based on this, we can calculate the internal actions resisted by the beam 
K De

( )1( ) and substitute it in Equation 15.62 for the calculation of the residual loads to be used in 
the analysis: Q Q K DR e

( ) ( )1 1= − ( ). In particular, K De
( )1( ) is obtained by collecting the contribution 

of each element k de ex, ( )1( ) from Equation 15.82a.
We then calculate the tangent stiffness matrices for each element from Equations 15.89 to 15.92 
and assemble these in K Dt e

( )1( ). At this point, we can evaluate the unknown displacement incre-
ment by solving Equation 15.61 for ∆De

( )1 .
We then assign D D D De e e e

( ) ( ) ( ) ( )2 1 1 1= + =∆ ∆  and recalculate the internal actions K De
( )1( ) so that we 

can verify the acceptance criteria of the convergence on the basis of normtol R2
2= Q Q( ) / , where 

Q Q K DR e
( ) ( )2 2= − ( ). If normtol2 is less than 10–5, then convergence is reached and the solution 

can be post-processed; otherwise, an  additional iteration is required. The actual number of 
iterations depends on the number of layers and mesh discretisation specified in the solution 
process.
Comparisons between the results obtained at mid-span with the analytical solutions derived 
in Section 15.3.2 (referred to in the figure as ‘CFS’ for closed-form solution) and the finite ele-
ment results (referred to in the figure as ‘FEA’) are plotted in Figure 15.21 for different levels of 
discretisation to provide better insight into the convergence behaviour. The number of layers 
used at the cross-section has been varied between 40, 80 and 200 to highlight how the results 
obtained with the discretisation of 40 layers (selected in Worked Example 15.2 for this particu-
lar cross-section) provide an acceptable prediction of the structural response. As expected, the 
convergence of the curvature is slower than convergence of the deflection because the former 
is based on the second derivative of the latter.
(2) A similar procedure is followed for the calculation of the solution when the beam is sub-
jected to the load P = 475 kN. Comparisons between analytical (CFS) and numerical (FEA) 
values for the mid-span results of deflection and curvature are illustrated in Figure 15.22, which 
show similar trends to those observed at point 1. Because of the higher level of nonlinearity 
developed in the beam, a larger number of elements are required, when compared to point 1, 
to approach the values calculated with the analytical solution.
The variations along the member length are presented in Figure 15.23 for both deflection and 
curvature using the values plotted in Figure 15.15 as reference. Good agreement between the 
analytical and finite element results (calculated with a highly refined mesh) is evident.
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Figure 15.22 Convergence of the solution for load 2. (a) Mid-span deflection. (b) Mid-span curvature.

Figure 15.21 Convergence of the solution for load I. (a) Mid-span deflection. (b) Mid-span curvature.
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PROBLEMS

 15.1 Consider the following constitutive model (known as Ramberg–Osgood model):

 ε σ σ
σ

= +




E

n

0 002
0 2

.
.

  where E is the elastic modulus, σ0.2 represents the 0.2% proof stress and n defines 
the strain-hardening parameter. Plot this expression considering the following 
properties: E = 200 GPa, σ0.2 = 400 MPa and n = 5, and evaluate the derivatives of 
the stress σ with respect to the strain ε.

 15.2 Consider a rectangular cross-section with width 100 mm and height 460 mm. Based 
on a cross-sectional analysis implemented with the Newton–Raphson method, cal-
culate the curvature for the following levels of applied moments: (1) Me = 1000 kNm 
and (2) Me = 1500 kNm. Assume the material to follow the Ramberg–Osgood con-
stitutive model specified in Problem 15.1, with E = 200 GPa, σ0.2 = 400 MPa and 
n = 5. In the solution, determine and adopt a suitable number of layers for the dis-
cretisation of the cross-section. Evaluate the convergence based on normtol2 = 10–5.

 15.3 Consider a simply-supported beam 10 m long with the rectangular cross-section 
of Problem 15.2. Calculate the variations of the deflection and curvature along 
the member length induced by the following point loads applied at mid-span: 

Figure 15.23 Variation of the solution along the member length. (a) Deflection. (b) Curvature.
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(1) P = 400 kN and (2) P = 600 kN. Assume the material to follow the Ramberg–
Osgood constitutive model, with E = 200 GPa, σ0.2 = 400 MPa and n = 5 (as con-
sidered in Problem 15.1). In the solution, determine and adopt a suitable number of 
layers for the discretisation of the cross-section. Evaluate the convergence based on 
normtol2 = 10–5. For the numerical integrations use 3 Gauss integration points.
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Appendix A: Properties of plane sections

In structural analysis, the geometrical properties of the cross-sections of structural mem-
bers are required to determine the structural deformation and the distribution of internal 
actions. In addition, the geometrical properties of shapes are needed to find the magnitude 
and position of the resultant of a distributed load acting on a plane surface and in many 
other types of problems.

A.1  CENTROID

Consider a plane surface of arbitrary shape subjected to a uniform pressure of intensity p as 
shown in Figure A.1. The resultant of the pressure distribution is P and it acts at a point on 
the arbitrary shape called the centroid.

The pressure acting on an infinitesimal area dA is dP = p dA and the resultant force P 
acting on the shape is obtained by integration:

 P p A p A pA= = =∫ ∫d d  (A.1)

where A is the area of the surface. The area A for regular-shaped surfaces (such as often 
occur in structural engineering) is easily calculated and integration is only necessary for 
unusual shapes. The resultant force P is equal to the volume of the pressure block of area A 
and thickness p (shown in Figure A.1).

Consider the plane surface of area A and the arbitrary axes Oz and Oy shown in Figure 
A.2a. To find the position of the centroid of the area (zc, yc), we simply have to find the 
position of the resultant force P if the area is subjected to a uniform pressure p (assumed to 
be acting into the page). To find the ordinate yc, consider the infinitesimal force dP acting 
on the infinitesimal area dA, shown in Figure A.2b, where dP = p dA. The moment of this 
infinitesimal force about the axis Oz is dM = y dP = yp dA. The sum of the moments of all 
the infinitesimal forces about the axis Oz is therefore:

 M p y A pBz= ∫ d =
A

 (A.2)

where the integral y Ad
A
∫  is known as the first moment of area about the axis Oz. It is a 

geometrical property of the surface of area A and is denoted here as Bz.
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The sum of the moments of all the infinitesimal forces about the axis Oz (given by Equation 
A.2) must equal the moment of the resultant force P about the axis Oz:

 M = pBz = Pyc = pAyc

and therefore:

 
y

B
A

B y Az
z

A

c with= = ∫ d  (A.3a,b)

Similarly, the z coordinate of the centroid zc is found by taking moments about the Oy 
axis and is given by:

 
z

B

A
B z Ay

y

A

c with d= = ∫  (A.3c,d)

In the determination of the first moments of area about the y- and z-axes, Bz and By, 
respectively, the calculations of the integrations can be simplified by considering the 
infinitesimal strips  of varying widths shown in Figure A.2b rather than the infinitesimal 

Figure A.1 Plane surface of arbitrary shape subjected to a uniform pressure.

Figure A.2 Plane surface of a cross-section.
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area dA. Consider the horizontal strip of width b and thickness dy. The infinitesimal 
force on this strip is dP = pb dy and its moment about the Oz axis is dM = y dP = pby dy. 
The total moment about Oz is:

 
M p by y pBz z= =∫ d

 

Similarly, the moment about Oy of the force on the vertical strip of height h and thickness 
dz shown in Figure A.2b is:

 
M p hz z pBy y= =∫ d

 

The first moments of area about the z- and y-axes can then be calculated considering an 
infinitesimal strip of varying width as:

 B y A by yz

A

= =∫ ∫d d  and B z A hz zy

A

= =∫ ∫d d

 

(A.4a,b)

where b and h need to be expressed (if necessary) in terms of y and z, respectively.

WORKED EXAMPLE A.1

For the shaded triangular area shown in Figure A.3, find the y coordinate of its centroid. The 
dimensions of the triangle are in mm.

The width b of the infinitesimal strip shown in Figure A.3 is first expressed in terms of y. From 
similar triangles:

 
90

120
90

120 1
90

= − ∴ = −






y
b

b
y

Figure A.3 Cross-section for Worked Example A.1.
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From Equation A.4a:

 B by y
y

y y y yz = = −






= −∫∫ d d120 1
90

60
120
270

0

90

0

90

2 3







 = ×

0

90

3 3162 10 mm  

The area of the triangle is A = 0.5 × 90 × 120 = 5400 mm2, and from Equation A.3a:

 y
B
A
z

c mm= = =162 000
5400

30 0
,

.  

The centroid of the triangle lies 30 mm above the base (i.e. one-third of the height of the triangle 
above the base).

Figure A.4 Areas and positions of centroid for common geometrical shapes.
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In Figure A.4, the area and the position of the centroid for some common geometrical 
shapes are provided.

Some particular features related to the centroid are noted below.
 1. If a plane area has an axis of symmetry, the centroid will lie on that axis of symmetry.
 2. If a plane area has two axes of symmetry, the centroid will lie on the intersection of 

the two axes of symmetry.
 3. Axes that pass through the centroid are called centroidal axes. Since the resultant 

force P acts at the centroid, the first moment of area B about any axis passing through 
the centroid must be zero.

 4. The first moment of an area about any axis is the product of the area A and the per-
pendicular distance of the axis from the centroid.

In most problems in structural engineering, the cross-sectional shapes for which the geo-
metrical properties are required can be sub-divided into simple shapes whose areas and 
centroids are known. In such cases, integration is replaced by summation. This is illustrated 
in Worked Example A.2.

WORKED EXAMPLE A.2

Find the position of the centroid C of the cross-section shown in Figure A.5. All dimensions are 
in millimetres. The vertical y-axis drawn in the figure is an axis of symmetry.

The cross-section is here divided into five regular-shaped elements as shown in Figure A.5: ele-
ments 1, 4, and 5 are rectangular with dimensions 120 × 900 mm, 750 × 130 mm, and 250 × 
250 mm, respectively, while elements 2 and 3 are triangular both with dimensions 150 × 385 mm.
The position of the centroid of the cross-section is conveniently found using the following 
tabulation. In the second column, Ai is the area of the i-th element, and in the third column, yci is 
the y coordinate of the centroid of element i. The product Ai yci in the fourth column is the first 
moment of the i-th element about the Oz axis.

Figure A.5 Cross-section for Worked Example A.2.
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A.2  SECOND MOMENT AND PRODUCT MOMENT OF AREA

A.2.1 Second moment of area

We will now consider the cross-section in Figure A.6 subjected to a linearly varying stress 
from top to bottom (i.e. in the direction of the Oy axis). The stress is uniform in the direc-
tion of Oz. The position of the Oz axis corresponds to the level at which the linearly varying 
stress would be zero, as shown. The stress at any value of y in the range ybtm ≤ y ≤ ytop is 
obtained from simple geometry as:

 σ
σ σ σ

( )
( ) ( ) ( )

y
y

y
y

y
y

y
y

y
yA

A

= = =top

top

btm

btm
 (A.5)

where yA defines the vertical position of an arbitrary point A within the cross-section and 
σ(yA) denotes the stress at A. The infinitesimal force on the horizontal strip shown in Figure 
A.6 is dF = σ(y)dA and the resultant force F on the cross-section is:

 F y A
y

y
y A

y
y

y A
y

y
BA

A
AA

A

A

A

A
A

z= = = =∫∫ ∫σ σ σ σ
( )

( ) ( ) ( )
d d d  (A.6)

Element Area,  Ai (mm2) yci (mm) Ai yci (mm3)

1 108,000 1060 114.48 × 106

2 28,875 950 27.43 × 106

3 28,875 950 27.43 × 106

4 97,500 625 60.94 × 106

5 62,500 125 7.81 × 106

Sum 325,750 238.09 × 106

The height of the centroid above the bottom of the cross-section (i.e. above the Oz axis) is 
therefore:

 y
A y
A
i i

i
c

c mm= ∑
∑

= 730 9.
 

The centroid lies on the axis of symmetry at 730.9 mm above the Oz axis.

Figure A.6 Cross-section subjected to a linearly varying stress distribution.
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recalling that Bz is the first moment of area about Oz and is given by Equation A.4a.
If the position of the centroid above Oz is yc, then we know that:

 Bz = ycA and therefore F = 
σ( )y

y
A

A

ycA = σ(yc)A (A.7a,b)

To find the position yF of the resultant force, we take moments about the Oz axis:

 M y y A
y

y
y A

y
y

y A
y

yz

A

A

A
A

A

A
A

= ∫ ∫σ σ σ
( )

( ) ( ) ( )
d =

σ 2 2d = d =A

A
∫∫ Izz

 (A.8)

where Izz is known as the second moment of area about Oz and is given by:

 I y Azz = ∫ 2 d
A

 (A.9a)

or performing the integral using an infinitesimal strip of varying width:

 
I by yzz = ∫ 2 d

 (A.9b)

The moment Mz given by Equation A.8 is equal to the resultant force F multiplied by its 
distance above Oz (i.e. Mz = FyF), and therefore, from Equations A.7b and A.8:

 Mz = 
σ( )y

y
A

A

 Izz = 
σ( )y

y
A

A

 ycAyF

and rearranging gives:

 y
I
y A

I
BF

zz zz

z

= =
c

 (A.10)

WORKED EXAMPLE A.3

For the shaded triangular area shown in Figure A.3 (and reproduced here as A.7), find the sec-
ond moment of area about the Oz axis.

As in Worked Example A.1, the width b of the infinitesimal strip shown in Figure A.7 is first 
expressed in terms of y. From similar triangles:

 b
y= −
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90
 

From Equation A.9b:

 I by y
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Similar considerations could have been done for a stress distribution varying along the 
z-axis, based on which the second moment of area calculated with respect to y-axis is 
defined as:

 

I z Ayy

A

= ∫ 2 d

 

or performing the integral using an infinitesimal strip of varying with h:

 
Iyy = ∫ hz z2 d

 

A.2.2 Product moment of area

To determine the z coordinate of the position of the resultant force F, we will consider the 
elemental area dA shown in Figure A.8a. The force acting on dA is dF = [σ(yA)/yA]ydA and 
the moment of that infinitesimal force about the Oy axis is:

 dMy = dFz = 
σ( )y

y
A

A

 y dAz (A.11)

Figure A.8 Cross-sections with linearly varying stress distribution.

Figure A.7 Cross-section for Worked Example A.3.
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The moment of the stress block about the Oy axis is obtained by integrating over the area:

 
M

y
y

yz A
y

y
yz A

y
y

Iy
A

A

A

A
A

zy= ∫ ∫σ σ σ( ) ( ) ( )A

A
A

d = d =
 

(A.12)

where Izy is called the product moment of area and is given by:

 
I yz Azy = ∫ d

A
 

(A.13)

The moment My given by Equation A.12 is equal to the resultant force F multiplied by its 
distance above Oy (i.e. My = FzF = [σ(yA)/yA]ycAzF), and therefore, from Equations A.7b and 
A.12:

 My = 
σ( )y

y
A

A

Izy = 
σ( )y

y
A

A

ycAzF

and rearranging gives:

 x
I

y A

I

BF
zy zy

z

= =
c

 (A.14)

If we now consider the infinitesimal strip of area dA = b dy shown in Figure A.8b, sub-
jected to a stress of σ(y) = [σ(yA)/yA]y, the moment of the force on dA about Oy is:

 dMy = 
σ( )y

y
A

A

yb dy zS (A.15)

where zS is the distance from the Oy axis to the centroid of the infinitesimal strip dA. 
Equation A.15 can be expressed as:

 M
y

y
ybz y

y
y

Iy
A

A

A

A
zy= =∫σ σ( ) ( )

Sd  (A.16)

where the product moment of area is calculated by performing the integral using an infini-
tesimal strip of width b as follows:

 
I yz A ybz yzy = =∫ ∫d d

A

S  (A.17)

where b needs to be expressed (if necessary) in terms of the axis coordinates.
Similar considerations could have been carried out considering a stress distribution vary-

ing along the z-axis.
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A.2.3 Parallel axis theorems

When the value of the second moment of area is calculated about a particular axis, such as 
Izz about axis Oz (Iyy about axis Oy), it is a relatively simple matter to determine the second 
moment of area about any parallel axis. Reconsidering Figure A.6 and Equation A.9, we can 
see that Izz is always a positive quantity, irrespective of the position of the Oz axis (since y2 
must always be positive). It is noted that a change in position of the Oz axis corresponds to 
a change in position of the axis of zero stress (see Figure A.6).

Figure A.10 shows an infinitesimal area dA on a cross-section a distance y above the Oz 
axis. Also shown is the position of the centroidal axis Cz′ parallel to Oz and yc above it.

The second moment of area about the centrodial axis and about the Oz axis are, respectively:

 I y Az z′ ′ = ′∫ 2 d  and I y Azz = ∫ 2 d  

WORKED EXAMPLE A.4

For the triangular area shown in Figure A.9, find the product moment of area, Izy.

As in Worked Example A.1, the width b of the elemental strip shown in Figure A.9 is:

 b
y y= −





 = −120 1

90
120

4
3  

and the z coordinate of its centroid is:

 z y b
y y y

s = + = + − = −/ /3 2
3

60
2
3

60
3

 

Using Equation A.17 and considering the infinitesimal strip shown in Figure A.9:

 

I ybz y

y
y y

y

zy =

= −
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 = ×

∫ s d
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Figure A.9 Cross-section for Worked Example A.4.
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With y = y′ + yc, Izz becomes:

 I y y A y A y y A y Azz = ′ + = ′ + ′ +∫ ∫ ∫ ∫( )c c cd d d d2 2 22  (A.18)

We saw in Section A.1 that the first moment of area about the centroidal axis is zero, i.e. 
′ =∫ y Ad 0. Therefore, Equation A.18 becomes:

 I y A y A I y Azz z z= ′ + = +∫ ∫ ′ ′
2 2 2d dc c  (A.19)

Both terms on the right-hand side of Equation A.19 are always positive, so it follows that 
the second moment of area about a centroidal axis is always less than the second moment of 
area about any other parallel axis.

The value of the product moment of inertia also changes with a change in the axis system. 
If the coordinates of the centroid of a cross-section with respect to the orthogonal axes Oz 
and Oy are zc and yc and if the product moment of inertia about the orthogonal centroidal 
axes Cz′ and Cy′ is Iz′y′, it can be readily shown that:

 Izy = Iz′y′ + zcycA (A.20)

Equations A.19 and A.20 are often called the parallel axis theorem and they are read-
ily used to determine the second moment of area and product moment of area of irregular 
cross-sectional shapes that can be sub-divided into simple shapes, whose areas, centroids 
and second moments of area (Izz) are known. This is illustrated in Worked Example A.5. 
The second moments of area and the product moment of area of some simple shapes are 
provided in Figure A.11.

The parallel theorem can also be derived for the calculation of the second moments of 
area with respect to the y-axis and this can be expressed as:

 
I I z Ayy y y= +′ ′ c

2

 

where Iyʹyʹ represents the second moment of area about the centroidal axis yʹ and zc defines 
the location of the centroid of area A in the z direction.

Figure A.10 Typical cross-section.
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WORKED EXAMPLE A.5

For the Z-shaped cross-section shown in Figure A.12, determine the position of the centroid 
and the values of I I Izz y y zy, and  calculated with respect to the centroidal axes of the cross-
section. All dimensions are in millimetres.

For convenience, we sub-divide the cross-section into three rectangular elements as shown. 
The top flange plate (element 1) is 30 × 120, the vertical web plate (element 2) is 300 × 40, and 
the bottom flange plate (element 3) is 40 × 240.

Figure A.11 Second moments of area and product moments of area for common geometrical shapes.
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We first calculate the location of the centroid.

Element i Ai (mm2) zi (mm) Byi = Ai zi (mm3) yi (mm) Bzi = Ai yi (mm3)

1 3600 60 216 × 103 355 1278 × 103

2 12,000 100 1200 × 103 190 2280 × 103

3 9600 200 1920 × 103 20 192 × 103

Sum 25,200 3336 × 103 3750 × 103

The coordinates of the centroid of the whole section are:

 z
B

A
y

c mm= = × =3336 10
25 200

132 4
3

,
.  and y

B
A
z

c mm= = × =3750 10
25 200

148 8
3

,
.  

The coordinates of the centroids of the three elements with respect to the centroidal axes are:

Element 1: z1 = − = −60 132 4 72 4. . y1 = − = +355 148 8 206 2. .
Element 2: z2 = − = −100 132 4 32 4. . y2 = − = +190 148 8 41 2. .
Element 3: z3 = − = +200 132 4 67 6. . y3 = − = −20 148 8 128 8. .

and the values of Iz z Iy y, and Iz y for each element about its own centroidal axis are:

 Element 1: I
b h

z z′ ′ = = × = ×1
1 1

3 3
6 4

12
120 30

12
0 27 10. mm    

  I
b h

y y′ ′ = = × = ×1
1
3

1
3

6 4

12
120 30

12
4 32 10. mm  and Iz′y′1 = 0

 Element 2: I
b h

z z′ ′ = = × = ×2
2 2

3 3
6 4

12
40 300

12
90 0 10. mm    

  I
b h

y y′ ′ = = × = ×2
2
3

2
3

6 4

12
40 300

12
1 60 10. mm  and Iz′y′2 = 0

Figure A.12 Cross-section for Worked Example A.5.
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 Element 3: I
b h

z z′ ′ = = × = ×3
3 3

3 3
6 4

12
240 40

12
1 28 10. mm    

  I
b h

y y′ ′ = = × = ×3
3
3

3
3

6 4

12
240 40

12
46 08 10. mm  and Iz′y′3 = 0

We now calculate the values of Iz z, Iy y and Iz y for the whole section making use of Equations 
A.19 and A.20:

Element i

Ai Iz′z′i A yi i
2 Iy′y′i A zi i

2 Iz′y′i A z yi i i

 (mm2) ( mm×106 4 )

1 3600 0.27 153.07 4.32 18.87 0 –53.74
2 12,000 90.00 20.37 1.60 12.60 0 –16.02
3 9600 1.28 159.26 46.08 43.87 0 –83.59

Sum 91.55 332.70 52.00 75.34 0 –153.35

From Equation A.19:

 
I I Ay

I I Az
zz z z i i

yy y y i

= ∑ + ∑ = ×
= ∑ + ∑

′ ′

′ ′

2 6 4424 25 10. mm

ii

zy z y i i iI I Az y

2 6 4127 34 10

153 35 10

= ×

= ∑ + ∑ = − ×′ ′

.

.

mm
66 4mm
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Appendix C: Matrix algebra

C.1  MATRICES

A matrix is a rectangular array of numbers, variables or functions. A matrix is said to have 
an order of m × n when it possesses m rows and n columns. For example, an m × n matrix 
A can be arranged as:

 A =




















A A A

A A A

A A A

n

n

m m mn

11 12 1

21 22 2

1 2

�

� � �
� 

 (C.1)

where Aij represents the term located in the i-th row and j-th column.
A row vector is a matrix with a single row, while a column vector is a matrix with a single 

column.
A matrix that possesses the same number of columns and rows is referred to as a square 

matrix. A square matrix with non-zero terms only on the principal diagonal is said to be 
a diagonal matrix. When all diagonal terms (in a diagonal matrix) are equal to unity, it is 
defined as an identity matrix. Examples of a diagonal matrix A and an identity matrix I are:

 A =





















A

A

Anm

11

22

0 0

0 0

0 0

�

� � �
�

   I =



















1 0 0
0 1 0

0 0 1

�

� � �
�

 (C.2,3)

A matrix is symmetric when Aij = Aji. An example of a symmetric matrix is provided below:

 A =

−

−



















1 2 12 8
2 14 7 0

12 7 11 6
8 0 6 3

 (C.4)

Two matrices are said to be equal only if all their terms coincide. For example, matrices 
A and B are equal only if Aij = Bij for all values of i and j.
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C.2  OPERATIONS WITH MATRICES

Two matrices can be added or subtracted by simply adding and subtracting their terms 
included in corresponding rows and columns. Additions and subtractions are possible only 
between matrices that possess the same numbers of rows and columns. For example, the 
addition and subtraction of two matrices A and B:

 A =
















3 2 5
7 7 7
4 6 2

   B =
















1 2 3
4 5 6
7 8 9

 (C.5a,b)

can be carried out based on:

 A B+ =















+















=

+3 2 5
7 7 7
4 6 2

1 2 3
4 5 6
7 8 9

3 1 22 2 5 3
7 4 7 5 7 6
4 7 6 8 2 9

4 4 8
11 12 13
11

+ +
+ + +
+ + +
















=

114 11

















 (C.6a)

 A B− =















−















=

−3 2 5
7 7 7
4 6 2

1 2 3
4 5 6
7 8 9

3 1 22 2 5 3
7 4 7 5 7 6
4 7 6 8 2 9

2 0 2
3 2 1
3 2

− −
− − −
− − −
















=

− − −77

















 (C.6b)

The result of a matrix A multiplied by a scalar number k is another matrix whose compo-
nents are equal to the components of matrix A multiplied by k. For example, reconsidering 
A from Equation C.5a, its product with k can be written as:

 k k
k k k
k k k
k k k

A =















=








3 2 5
7 7 7
4 6 2

3 2 5
7 7 7
4 6 2









 (C.7)

The product of two matrices A and B is equal to a matrix C whose coefficients are calcu-
lated based on:

 
C A Bij

k

n

ik kj=
=
Σ

1
 (C.8)

which highlights the need for matrix A to have the number of columns equal to the number 
of rows of matrix B. If this latter condition is not satisfied, it is not possible to carry out the 
multiplication. Based on this, the product of a matrix A (m × n) with B (n × q) is equal to a 
matrix C (m × q). For example, the product of matrices A and B

 A =



















A A

A A

A A

11 12

21 22

31 32

   B =












B B

B B
11 12

21 22

 (C.9a,b)
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is equal to:

 C AB= =



















A A

A A

A A

B B

B B

11 12

21 22

31 32

11 12

21 22












=

+ +
+

A B A B A B A B

A B A B
11 11 12 21 11 12 12 22

21 11 22 221 21 12 22 22

31 11 32 21 31 12 32 22

A B A B

A B A B A B A B

+
+ +



















 (C.10)

The multiplication of two matrices is:
 i. not commutative, i.e. AB ≠ AB;
 ii. distributive, i.e. A (B+C) = AB + AC;
 iii. associative, i.e. A (BC) = (AB) C.

The transpose of a matrix A is referred to as AT and is determined by interchanging its rows 
and columns. For example, the transpose of the matrix A defined in Equation C.9a is:

 AT =












A A A

A A A
11 21 31

12 22 32

 (C.11)

The transpose of the sum of two matrices is given in Equation C.12a. The transpose of 
the product of a matrix and a scalar is given in Equation C.12b, while the transpose of the 
product of two matrices may be expressed by Equation C.12c:

 (A + B)T = AT + BT (C.12a)

 (kA)T = kAT (C.12b)

 (AB)T = BTAT (C.12c)

At times, it is useful to subdivide a matrix into sub-matrices. This process is usually 
referred to as partitioning. For example, the following matrix A is partitioned into subma-
trices A11, A12, A21 and A22:

 A =















A A A A

A A A A

A A A A

11 12 13 14

21 22 23 24

31 32 33 34





=












A A

A A
11 12

21 22
 (C.13)

where:

 A11 = [A11]; A12 = [A12 A13 A14]; A21
21

31

=












A

A
; A22

22 23 24

32 33 34

=












A A A

A A A
 (C.14a)

C.3  DETERMINANT OF A MATRIX

The determinant of a square matrix A is usually represented by either det(A) or A . A matrix 
whose determinant is equal to zero is denoted as singular.
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In the case of a 2 × 2 matrix:

 A =












A A

A A
11 12

21 22
 (C.15a)

the determinant is calculated as:

 det (A) = A  = A11A22 − A12A21 (C.15b)

For example, for A =










1 2
3 4

, we have A  = (1)(4) − (2)(3) = −2.

When dealing with a 3 × 3 matrix:

 A =



















A A A

A A A

A A A

11 12 13

21 22 23

31 32 33

 (C.16)

its determinant is evaluated as:

 det (A) = A  = A11A22A33 + A12A23A31 + A21A32A13  
  − (A13A22A31 + A21A12A33 + A11A32A23) 

(C.17)

For example, A =
















2 3 4
3 5 7
11 4 9

, and its determinant is det (A) = 12.

The calculation of the determinant of a larger matrix A (n × n) is more tedious and is car-
ried out as follows:

 det (A) = Aj1Cj1 + Aj2Cj2 + … + AjnCjn (C.18)

where:

 A =




















A A A

A A A

A A A

n

n

n n nn

11 12 1

21 22 2

1 2

�

� � �
� 

 (C.19)

and Aji (with i = 1,…,n) represent the terms in the j-th row of matrix, while Cjk is the cofac-
tor defined as:

 Cjk = (−1)j+kMjk (C.20)

Mjk is referred to as the minor of matrix A and is the determinant of the matrix obtained by 
eliminating row j and column k from A.
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The same results could have been obtained by considering the components of A in its k-th 
column (unlike the j-th row as described in Equation C.18):

 det (A) = A  = A1kC1k + A2kC2k + … + AnkCnk (C.21)

For example, considering the following matrix A:

 A =
















1 2 5
5 3 4
2 8 9

 (C.22)

it is possible to determine the determinant following Equation C.18:

 det (A) = A  = A11C11 + A12C12 + A13C13 (C.23)

where its cofactors are obtained as:

 C11 = (−1)(1+1)(−5) = −5 C12 = (−1)(1+2)(37) = −37 (C.24a,b)

 C13 = (−1)(1+3)(34) = 34 (C.24c)

based on the following minors:

 M11
3 4
8 9

3 9 4 8 5= = × − × = −  (C.25a)

 M12
5 4
2 9

5 9 4 2 37= = × − × =  (C.25b)

 M13
5 3
2 8

5 8 3 2 34= = × − × =  (C.25c)

The determinant can then be evaluated by substituting the calculated values in Equation 
C.23 as:

 det (A) = A  = 1 × (−5) + 2 × (−37) + 5 × 34 = 91 (C.26)

C.4  INVERSE OF A MATRIX

The inverse of a square matrix A is denoted as A–1. Multiplying a matrix by its inverse (and 
vice-versa) produces the identity matrix I (see Equation C.3).
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For the particular case of a 2 × 2 matrix, the inverse can be calculated as

 A
A

− =
−

−













1 22 12

21 11

1 A A

A A  (C.27)

where A =












A A

A A
11 12

21 22

 and det (A) = A  = A11A22 − A12A21 (see Equations C.15).

For a larger matrix A, its inverse is evaluated using:

 A
A

C− =1 1
det( )

T  (C.28)

in which C is the matrix collecting all cofactors Cij (already defined in Equation C.20).
From Equations C.27 and C.28, it becomes apparent that if det(A) = 0, the inverse would 

tend to infinity. Based on this, a matrix cannot be inverted if its determinant is zero, i.e. if 
it is singular.

Reconsidering matrix A of Equation C.22, its inverse is evaluated as (Equation C.28):

 A
A

C− = =
− −
− −

− −

















1 1 1
91

5 22 7
37 1 21

34 4 7
det( )

T  (C.29)

where det(A) was calculated in Equation C.26, and C and its transpose are:

 C =
− −

− −
− −

















5 37 34
22 1 4
7 21 7

 (C.30a)

and

 CT =
− −
− −

− −

















5 22 7
37 1 21

34 4 7

 (C.30b)

All the cofactors are obtained as follows (Equation C.20):

 C11
1 1

111 3 4
8 9

5= − = = −+( ) M  ; C12
1 2

121 1 5 4
2 9

37= − = − × = −+( ) M  (C.31a,b)

 C13
1 3

131 5 3
2 8

34= − = =+( ) M  ; C21
2 1

211 1 2 5
8 9

22= − = − × =+( ) M  (C.31c,d)

 C22
2 2

221 1 5
2 9

1= − = = −+( ) M  ; C23
2 3

231 1 1 2
2 8

4= − = − × = −+( ) M  (C.31e,f)
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 C31
3 1

311 2 5
3 4

7= − = = −+( ) M  ; C32
3 2

321 1 1 5
5 4

21= − = − × =+( ) M  (C.31g,h)

 C33
3 3

331 1 2
5 3

7= − = = −+( ) M  (C.31i)

C.5  SOLVING A SYSTEM OF LINEAR EQUATIONS

In this section, three procedures are introduced that can be used for the solution of a system 
of linear equations. In particular, we will consider:

• a method based on matrix algebra
• Cramer’s rule
• the triangulation method, also known as Gauss elimination

These will be illustrated by considering the following system of three linear equations:

 

A x A x A x b

A x A x A x b

A x A

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1

+ + =
+ + =
+ 332 2 33 3 3x A x b+ =

 (C.32)

which can be written in more compact form as:

 

A A A

A A A

A A A

x

x

x

11 12 13

21 22 23

31 32 33

1

2

3





































=



















b

b

b

1

2

3

 (C.33)

or

 Ax = b (C.34)

Obviously, the proposed procedures are also applicable to larger and smaller systems of 
linear equations.

C.5.1  Method based on matrix algebra

The solution method based on matrix algebra involves the calculation of the inverse of 
matrix A. In particular, the vector of unknowns x is evaluated based on the following steps 
starting from Equation C.34.

 1. Pre-multiplying both sides of Equation C.34 by the inverse of A:

 A−1Ax = A−1b (C.35)
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 2. Recalling that I = A−1A:

 Ix = A−1b (C.36)

 3. From which x can be calculated as:

 x = A−1b (C.37)

C.5.2  Cramer’s rule

This method is very useful for solving a system of linear equations when only a few 
unknowns need to be evaluated. For example, reconsidering the system of equations out-
lined in Equation C.32, the unknown value for x1 can be determined using:

 x

b A A

b A A

b A A
1

1 12 13

2 22 23

3 32 33
=

A
 (C.38)

where the matrix considered in the numerator is obtained by replacing the first column of 
matrix A with the vector of known coefficients b. In a similar manner, the value for x2 is 
calculated as:

 x

A b A

A b A

A b A
2

11 1 13

21 2 23

31 3 33
=

A
 (C.39)

In general, the unknown xj can be calculated as the ratio of the determinants of two 
matrices, where the matrix considered in the numerator is obtained replacing the j-th col-
umn of matrix A with the column of known coefficients b and the matrix considered in the 
denominator is A.

C.5.3  Triangulation method (Gauss elimination)

The procedure involved with the triangulation method, also known as the Gauss elimina-
tion, is outlined in this section by means of an example. For this purpose, we will consider 
the following system of linear equations:

 x1 + 4x2 − 2x3 = 2 (C.40a)

 4x1 + 4x2 + 3x3 = 1 (C.40b)

 2x1 + 7x2 + 5x3 = 5 (C.40c)

 1. We first determine the expression for x1 from the first equation (Equation C.40a)

 x1 = –4x2 + 2x3 + 2 (C.41)
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 and substitute it in all remaining equations (Equations C.40b and c):

 4(2 − 4x2 + 2x3) + 4x2 + 3x3 = 1 (C.42a)

 2(2 − 4x2 + 2x3) + 7x2 + 5x3 = 5 (C.42b)

 Simplifying:

 12x2 − 11x3 = 7 (C.43a)

 x2 − 9x3 = −1 (C.43b)

 2. We then evaluate x2 from Equation C.43a:

 x x2 3
11
12

7
12

= +  (C.44)

 and substitute in into the remaining equation (Equation C.43b):

 
11
12

7
12

9 13 3x x+





− = −  and simplifying: 

97
12

19
123x =  (C.45a,b)

 3. Finally, we calculate x3 from Equation C.45b:

 x3
19
97

=  (C.46)

 4. At this point, we can determine the expressions for all unknowns, i.e. x1 and x2, by 
back-substituting x3 (Equation C.46) into Equations C.41 and C.44:

 x2
11
12

19
97

7
12

74
97

= + =  (C.47a)

 x1 4
74
97

2
19
97

2
64
97

= − + + = −  (C.47b)

C.5.4  Matrix form of the triangulation 
method (Gauss elimination)

The triangulation method (Gauss elimination) previously outlined can also be implemented 
in matrix form. This is outlined below using the previous example (Equations C.40).

The idea at the basis of the matrix form of the triangulation method is to convert the 
system of equations from its initial format:

 
1 4 2
4 4 3
2 7 5

2
1
5

1

2

3

−

































=








x

x

x









 (C.48)
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to:

 
1 0 0
0 1 0
0 0 1

1

2

3

1

2

3



































=






x

x

x

b

b

b













 (C.49)

so that the unknowns x1, x2, and x3 equal the terms included in the vector of known terms. 
To achieve this, we need to perform a number of operations on the equations of the system 
to transform the matrix A into an identity matrix I. The required steps are outlined in the 
following:

 1. We start by verifying whether the term A11 is equal to unity. In this case, it is (see 
Equation C.48), and we do not need to change the first equation.

 2. We then manipulate the matrix so that all terms below A11 are nil. For example, the 
new second line is equal to the old one minus 4 times line 1. In this way, we make sure 
that A21 will be zero in the revised line:

 A21(new) = A21(old) − A21(old)A11 = 4 − 4 × 1 = 0 (C.50a)

 A22(new) = A22(old) − A21(old)A12 = 4 − 4 × 4 = −12 (C.50b)

 A23(new) = A23(old) − A21(old)A13 = 3 − 4 × (−2) = 11 (C.50c)

 b2(new) = b2(old) − A21(old)b1 = 1 − 4 × 2 = −7 (C.50d)

  from which:

 
1 4 2
0 12 11
2 7 5

2
7
5

1

2

3

−
−



































= −
x

x

x 













 (C.51)

  In a similar way, the third line of the system of Equation C.51 is modified as follows: 
Line 3 (new) = Line 3 (old) – A31(old) × Line 1, which leads to A31(new) = 0 and:

 
1 4 2
0 12 11
0 1 9

2
7
1

1

2

3

−
−
−



































= −

x

x

x

















 (C.52)

 3. We move to the second column and make sure to equate A22 to unity. This is achieved 
by dividing the second equation (specified in Equation C.52) by A22. In this case, we 
divide the second equation by –12:

 

1 4 2

0 1 11
12

0 1 9

21

2

3

−
−

−





































=
x

x

x

77
12
1



















 (C.53)
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 4. We can then operate on the terms below A22 and ensure that these become zero follow-
ing a similar procedure to the one adopted at step 2:

 

1 4 2

0 1 11
12

0 0 97
12

1

2

3

−
−





































x

x

x 


=





















2
7

12
19

12

 (C.54)

 5. Finally, we ensure that A33 is 1 (by dividing the third equation by 97/12 as specified in 
Equation C.54 for A33):

 

1 4 2

0 1 11
12

0 0 1

2
71

2

3

−
−





































=
x

x

x
112

19
97





















 (C.55)

 6. The system of equation is further manipulated to ensure that all terms above A33, and 
consequently above A22, become nil, as shown in the following:

 
1 4 2
0 1 0
0 0 1

2
74

97
19

9

1

2

3

−

































=
x

x

x
77





















 (C.56a)

 

1 4 0
0 1 0
0 0 1

232
97

74
97

1

2

3



































=
x

x

x 119
97























 (C.56b)

 

1 0 0
0 1 0
0 0 1

64
97

74
97

1

2

3



































=

−
x

x

x 119
97























 (C.56c)

 7. The values of the unknown variables are obtained directly from Equation C.56c as:

 

x

x

x

1

2

3

64
97

74
97

19
97



















=

−





















 (C.57)
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C.6  DETERMINATION OF THE RANK OF A MATRIX

The rank of a matrix A is usually referred to as rank(A) and it represents the number of 
linearly independent rows or columns of A. In the case of an m × m square matrix, it is said 
to be non-singular only if its rank is equal to m.

In the following, we will consider a possible approach suitable for hand calculation that 
requires the matrix to be reduced into a simpler form following steps 1 to 5 previously 
adopted in the matrix manipulation for the triangulation method (see Equations C.50 
through C.55). This approach is acceptable as these operations on row or columns do not 
influence the matrix rank. At the completion of the matrix manipulation, the rank of the 
matrix is equal to the number of rows (or columns) with non-zero values.

For example, reconsidering the revised matrix of A included in Equation C.55:

 A =
−

−



















1 4 2

0 1 11
12

0 0 1

 (C.58)

All three rows have non-zero values and, because of this, the rank of the matrix is 3.
Let us now consider the following matrix B:

 B =
















3 6 15
10 6 8
6 5 9

 (C.59)

After applying steps 1 to 5 (see Equations C.50 through C.55), we obtain the following 
revised version of B:

 B =
















1 2 5
0 1 3
0 0 0

 (C.60)

in which case the rank is equal to 2 because there are only 2 rows with non-zero values (as 
all terms in the last row are equal to zero).
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