
�nal spine = 0.4375"

A
D

A
P

T
IV

E
 W

E
B

 D
E

S
IG

N
S

E
C

O
N

D
 E

D
IT

IO
N Gustafson

SECOND EDITION

LEVEL Beginning / Intermediate
COVERS Web Design
COVER DESIGN Veerle Pieters

US $34.99 CAN $43.99

www.newriders.com

Building an elegant, functional website requires more than just knowing how to code. In Adaptive Web Design,
Second Edition, you’ll learn how to use progressive enhancement to build websites that work anywhere, won’t
break, are accessible by anyone—on any device—and are designed to work well into the future.

This new edition of Adaptive Web Design frames even more of the web design process in the lens of progressive
enhancement. You will learn how content strategy, UX, HTML, CSS, responsive web design, JavaScript,
server-side programming, and performance optimization all come together in the service of users on whatever
device they happen to use to access the web.

Understanding progressive enhancement will make you a better web professional, whether you’re a content
strategist, information architect, UX designer, visual designer, front-end developer, back-end developer, or
project manager. It will enable you to visualize experience as a continuum and craft interfaces that are capable of
reaching more users while simultaneously costing less money to develop. When you’ve mastered the tenets
and concepts of this book, you will see the web in a whole new way and gain web design superpowers that will
make you invaluable to your employer, clients, and the web as a whole. Visit http://adaptivewebdesign.info to
learn more.

The web is the �rst truly �exible design medium. But its �exibility affects more than our layouts: we’re
designing for networks both fast and slow, for devices both modern and not, for users who may not see a
screen at all. In this second edition of Adaptive Web Design, Aaron shows us how progressive enhancement
is the solution to all these challenges, and more.

— Ethan Marcotte, Designer; Author of Responsive Web Design

Adaptive Web Design should be one of the �rst books on the shelf of anyone building for the web. Showing
a deep understanding of the web, Aaron manages to cram nearly 20 years of insight into a book that is an
absolute pleasure to read. I dare you to try and read this book without a highlighter handy.

— Tim Kadlec, Author of Implementing Responsive Design

About the Author
As would be expected from a former manager of the Web Standards Project, Aaron Gustafson is passionate
about web standards and accessibility. He has been working on the web for nearly two decades and is a web
standards advocate at Microsoft, working closely with their browser team. He writes about whatever’s on his
mind at aaron-gustafson.com.

ADAPTIVE WEB DESIGN SECOND EDITION
Crafting Rich Experiences with Progressive Enhancement

9780134216140_AdaptiveWebDesign_Cvr.indd 1 10/19/15 11:12 AM

Adaptive Web Design, Second Edition
Crafting Rich Experiences with Progressive Enhancement
Aaron Gustafson

New Riders
Find us on the Web at www.newriders.com
New Riders is an imprint of Peachpit, a division of Pearson Education.
To report errors, please send a note to errata@peachpit.com

Copyright © 2016 by Aaron Gustafson

Acquisitions Editor: Nikki Echler McDonald
Production Editor: Tracey Croom
Development Editor: Stephanie Troeth
Copy Editor: Kim Wimpsett
Proofer: Patricia Pane
Compositor: Danielle Foster
Indexer: James Minkin
Cover Design: Veerle Pieters
Interior Design: Ben Dicks
Technical Editors: Chris Casciano, Craig Cook, and Steve Faulkner

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission for
reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
�e information in this book is distributed on an “As Is” basis without warranty. While
every precaution has been taken in the preparation of the book, neither the author nor
Peachpit shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer so�ware and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Peachpit
was aware of a trademark claim, the designations appear as requested by the owner of
the trademark. All other product names and services identi�ed throughout this book are
used in editorial fashion only and for the bene�t of such companies with no intention of
infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other a�liation with this book.

ISBN 13: 9780134216140
ISBN 10: 0134216148

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

For Kelly

This page intentionally left blank

ACKNOWLEDGMENTS
Without the mentorship and assistance of so many of my friends and
colleagues in this industry, not only would this book have never been
written, but I would not have been in a position to write it. I’d like to take
a moment to extend them my sincerest gratitude.

To Molly Holzschlag and Je�rey Zeldman for taking me under their
wings and helping me hone my skills as both a speaker and writer. And
to the numerous conference organizers and publishers who’ve given me
the opportunity to apply those skills.

To Steph Troeth for helping me organize my thoughts and the �ow of this
book. Her support, encouragement, and mangement of this project made
the whole experience incredibly ful�lling and—dare I say—enjoyable!

To Chris Casciano, Craig Cook, and Steve Faulkner for keeping my code
on the straight and narrow, highlighting my oversights, and ensuring I
explained complex topics both simply and clearly. �eir contributions
were incredibly thoguhtful and appreciated.

To Tim Kadlec, Jeremy Keith, and Ethan Marcotte for reading my early
dra�s and saying such nice things about them.

To Veerle Pieters for making time in her busy schedule to update the look
and feel of this book and design me an even more beautiful cover than
she did for the �rst edition.

To Ben Dicks for his fantastic work on the interior layout and all the
custom illustration work.

To Je�, Matt, Adam, and the rest of the Perma team for creating a system
to maintain web citations in perpetuity and for allowing me to add the
links I referenced to their permenant collection.

To the �ne folks at Pearson/New Riders: Nikki McDonald for championing
this book’s move to Pearson and Tracey Croom and Mimi He� for their
invaluable help with the production of the book.

And, of course, to Kelly, for granting me the time to write this book,
keeping me focused, and pushing me to get it done.

This page intentionally left blank

ABOUT THE AUTHOR
As would be expected from a former manager of
the�Web Standards Project, Aaron Gustafson is
passionate about web standards and accessibility.

In his nearly two decades working on the Web,
Aaron has worked with a number of companies
you’ve probably heard of, including Box, Happy
Cog, Major League Baseball, McAfee,��e New York Times, SAS,
StubHub, the U.S. Environmental Protection Agency, Vanguard,
Walgreens, and Yahoo. He joined�Microso��as a web standards
advocate to work closely with their browser team.

Aaron loves to share his knowledge and insights in written form.
His�three-part series on progressive enhancement for A List Apart�is
a perennial favorite and his seminal book on the subject,�Adaptive
Web Design, has earned him numerous accolades and honors. When
he’s not writing, Aaron is frequently on the road�presenting at con-
ferences and running workshops�across the globe.

Back home in Chattanooga, Tenn., Aaron is the proprietor of
the�Chattanooga Open Device Lab�and helps organize the�Code
& Creativity�talk series with his partner�Kelly McCarthy. He is a
longtime member of�Rosenfeld Media’s “experts” group�and writes
about whatever’s on his mind at�������������������� .

This page intentionally left blank

CONTENTS
 Foreword xiii

 Introduction xv

 CHAPTER 1: Designing Experiences for People 1

Smart Code, Dumb Phones 2

When the Web Was Young 4

Technology vs. Experience 7

You Can’t Please Everyone 11

Support the Past, Optimize for the Future 12

Serving More for Less 16

Universal Accessibility 18

Thinking in Layers 20

This Is a Philosophy 23

 CHAPTER 2: Content Is the Foundation 25

Avoid Zombie Copy 28

Design Meaningful Content 29

Craft the Conversation 31

Plan for the Unknown 35

Write for Real People 38

x CONTENTS

Consider Content Beyond Copy 39

Keep Data Entry Conversational 47

Don’t Fill Space 48

Let Content Lead the Way 51

 CHAPTER 3: Markup Is an Enhancement 53

Learn from the Past 55

Illuminate Your Content 57

Mean What You Say 57

Embrace Classi�cation and�Identi�cation 63

Make Deliberate Markup Choices 71

Clarify Interfaces with ARIA 83

Understand Fault Tolerance 86

Markup Conveys Meaning 91

 CHAPTER 4: Visual Design Is an�Enhancement 93

Design Systems, Not Pages 94

Don’t Design Yourself Into a Corner 100

Understand How CSS Works 104

Start Small and Be Responsive 121

Focus on Standards 133

Design Defensively 137

Hide Content Responsibly 139

The Flip Side: Generated Content 143

xiCONTENTS

Consider the Experience with Alternate Media and Inputs 145

Embrace Default Styles 152

Embrace the Continuum 155

 CHAPTER 5: Interaction Is an Enhancement 157

Get Familiar with Potential Issues So You Can Avoid Them 160

Design a Baseline 165

Program Defensively 168

Establish Minimum Requirements for Enhancement 175

Cut Your Losses 177

Build What You Need 178

Describe What’s Going On 180

Write Code That Takes Declarative�Instruction 182

Adapt the Interface 185

Apply No Styles Before Their Time 190

Enhance on Demand 192

Look Beyond the Mouse 195

Don’t Depend on the Network 201

Wield Your Power Wisely 206

 CHAPTER 6: Crafting a Continuum 209

Map the Experience 210

Learn From the Past, Look to the Future 223

Be Ready for Anything 228

xii CONTENTS

 Progressive Enhancement Checklist 230

Content 230

Markup 232

Design 233

Interaction 234

 Further Reading 236

 Index 241

FOREWORD
I remember well when I got my hands on a copy of the �rst edition
of Adaptive Web Design. I knew it would be good, but I didn’t expect
to be quite so blown away a�er just one chapter. In that �rst chapter,
Aaron managed to perfectly crystallize what I had been struggling to
articulate for years on the true meaning of progressive enhancement.

In hindsight, I shouldn’t have been so surprised. Aaron is a multi-
talented worker for the Web and has cultivated a deep knowledge
of many areas—particularly accessibility. But his real talent lies not
in his way with technology but in his way with people.

It’s all too easy for us—web designers and developers—to get
caught up in the details of technical implementations. If we’re not
careful, we can lose sight of the reasons why we’re designing and
developing on the Web in the �rst place. Aaron can take you on a
deep dive into the minutiae of markup, the secrets of CSS, and the
jargon of JavaScript, while at the same time reminding you of why
any of it matters: the people who will be accessing your work.

I suspect that Aaron struggles to come up with a title to describe
what he does. Developer? Evangelist? Author? All those terms
describe parts Aaron’s work, but they all fall short. I think the title
that best describes Aaron Gustafson is…teacher.

Good teachers can work magic. �ey impart knowledge while
weaving an entertaining tale at the same time. �at’s exactly what
Aaron does with this book.

You’re in for a treat. You’re about to read a story that is as instruc-
tional as it is engrossing.

Take it away, teacher…

Jeremy Keith, Clearle�
August 2015

This page intentionally left blank

INTRODUCTION
Most web design books are �lled with great techniques and exam-
ples that you can pick up and use right away. �ey’re o�en �lled with
reams of documentation on which HTML tags to use in which situa-
tion and what each and every CSS property does. And most include
some sort of sample project or projects for you to work along with in
order to see how the code examples come together.

�is is not that kind of book. �is is a philosophy book about
designing for the ever-changing, ever-evolving Web.

�ere are thousands of technique books out there for you to buy
and hundreds of thousands of technique-based articles for you to
read. Many of them are quite good. Sadly, however, most of them
have a shelf life measured in months.

Technologies…browsers…toolsets…they’re constantly changing.
I�struggle to keep up and o�en �nd myself overwhelmed, adri�
on a churning sea of far too many options and ways I could be
building websites. When I’m being tossed hither and thither by
the waves, I a�x my gaze on the one thing that helps me get my
bearings and make sense of what’s happening: the philosophy of
progressive enhancement.

�is philosophy—which is the heart and soul of an adaptive
approach to web design—grounds me and helps me put any new
technology, technique, or idea in perspective. Furthermore, it
makes my sites more robust and capable of reaching more users
with fewer headaches. It has made me a better web designer, and I
know it can do the same for you.

“Anyone who slaps a ‘this page
is best viewed with Browser X’
label on a Web page appears
to be yearning for the bad old
days, before the Web, when
you had very little chance of
reading a document written on
another computer, another word
processor, or another network.”

—TIM BERNERS LEE

CHAPTER 1:
DESIGNING
EXPERIENCES
FOR PEOPLE
�e one constant on the Web is change. �ere’s always a new
design fad; a new darling language, framework, or tool; a shiny
new device to view it on; or new ideas of what it means to be
“on�the Web.”

It’s exceptionally di�cult to wrap your head around an industry
that is constantly in �ux. It makes my head hurt, and if you’ve been
working on the web for a while, I suspect you might feel the same.

Having worked on the Web for nearly two decades, I’ve seen
the cycle play out over and over. Java applets, Shockwave, Flash,
Prototype, jQuery, 960gs, Bootstrap, Angular, React…. Technologies
come and go, but the Web remains. Screens went from tiny to huge
and then back to tiny again, but the Web remains. Walled gardens
were built and then torn asunder to make way for “app” stores and
(yes) more walled gardens, but the Web remains.

�e Web remains because it is not a �xed screen size. �e Web
remains because it is not a speci�c device. �e Web doesn’t need to be
installed. �e Web is inherently resilient and in�nitely malleable. �e
Web has the capacity to go anywhere, do anything, and reach anyone.

2

SMART CODE, DUMB PHONES
In early 2012, my company began working with a client who
was struggling with the security of their mobile apps. �ey had
numerous native apps that all followed the common convention of
using a web service to authenticate users. �ey are a very security-
conscious organization, and this setup was creating a bottleneck
in deploying new security features. To roll out a new security
feature to their users (for example, a security question like “What
was the name of your �rst school?”), they had to go through an
excruciatingly long, arduous, multistep process:

1. Implement the new security feature.
2. Expose it via the web service.
3. Update each app to use the new web service (which might

include user interface changes, and so on).
4. Submit each app for approval.
5. Hope their users downloaded the new version of the app.

�ey brought us in to reimagine the authentication �ow as a web-
based process that would launch inside an app—they had separate
iPhone, iPad, and Android apps—and handle letting the app
know whether and when the user had successfully logged in. �is
approach meant they could roll out new security features immedi-
ately because the apps and the authentication �ow would be loosely
coupled. Letting users sign in through a web page within the native
app would be a huge win for everyone involved.

Despite that the project was aimed at handling authentication for
mobile apps on three speci�c platforms, we built the web pages
without getting hung up on technology or screen sizes. Instead, we
focused on the purpose of every interface component and every
screen. �e layouts were responsive from tiny screens all the way
up to large ones, and we implemented HTML5 and JavaScript in
completely unobtrusive ways. We wanted to take advantage of cool
new things (such as native form validation) while still keeping
the �le sizes small and ensuring the pages would function in the
absence of either technology.

3DESIGNING EXPERIENCESFOR PEOPLE

A few months a�er completing the project, our client came back to
us with a second project: �ey wanted to roll out the authentication
�ow to their “m-dot” users (people who visited their mobile-only
website). �ey gave us a list of nearly 1,400 unique User Agent
strings that had accessed the login screen over a two-day period
and asked whether we could handle it. We parsed the list1 and were
able to come up with a more manageable aggregate list of devices
and device types to use in our testing. It was something like 25
devices that would cover roughly 97 percent of their 1,400 device
spectrum. �e last 3 percent was at the end of a long tail when it
came to device usage, and we were comfortable assuming that �x-
ing issues in the other 97 percent would likely cover them as well.
�at said, we were prepared to �x any additional issues when and
if they cropped up.

Our budget for adding support for 1,400 new devices, includ-
ing some heinous old browsers (for example, BlackBerry 4 and
Openwave), was about one-third the budget of the original project
that targeted only three.

Let that soak in for a second.

Now here’s the kicker: When all was said and done, we came in at
roughly half of our proposed budget, in terms of both actual hours
billed and time to completion. It was awesome for us because we
delivered ahead of schedule—which made us look good—and it
earned our client contact major kudos from his bosses because
he’d saved the company serious money on the project (which rarely
happens in the corporate world).

It’s worth noting that this accomplishment had nothing to do with
our bug-squashing prowess or our speed—we just followed the
philosophy of progressive enhancement.

1 With the help of a little script I cooked up: ������������������������ .

4

Progressive enhancement is a web design philosophy that embrac-
es the very nature of the Web. It isn’t about devices or browsers,
and it’s not about which version of HTML or CSS you can use.
Using progressive enhancement means you cra� experiences
that serve your users by giving them access to content without
technological�restrictions.

It sounds pretty amazing, and anything that amazing must be a
lot�of work, right? Actually, it’s not. Once you understand how pro-
gressive enhancement works, or more importantly why it works,
you’ll see it’s quite simple. As we o�en say, progressive enhance-
ment just works.

During a presentation at the South by Southwest Interactive
Festival in 2003, Steve Champion of the Web Standards Project
o�ered the term progressive enhancement to describe his vision for
a new way to think about web design—starting with the content
and building out from there. Once you understand what progres-
sive enhancement is all about, it’s hard to imagine approaching a
project in any other way. It just makes sense. And yet, it took nearly
a decade a�er the Web’s creation for this approach to web design to
be proposed, let alone embraced.2

WHEN THE WEB WAS YOUNG
In the beginning there was text:3 the line mode browser.4 It has a
black screen with green text (Figure 1.1). You know, it was the kind
of program hackers use in the movies.

2 We’re still working on that one, which is the reason for this book.

3 Well, technically, in the beginning there was a graphical browser called
WorldWideWeb (later Nexus), but it was available only on the NeXT
operating system and never made it into general use.

4 Some of my friends and colleagues ventured back to CERN in 2013 to
re-create the line mode browser using modern web technologies. �ey
wrote about it, and you can try it out at �������������������
��	�� .

5DESIGNING EXPERIENCESFOR PEOPLE

Figure 1.1 �e line mode browser as re-created in 2013.

�e line mode browser supported basic formatting such as
indentation, centering, and the like, but that was about it. But
it didn’t matter. It was 1990. �e Web was an infant and was all
about publishing and reading text-based content, so it didn’t need
to look�pretty.

By the time I got online �ve years later, things were a bit di�erent.
�e National Center for Supercomputing Application’s Mosaic
had brought the graphical side of the Web to the masses two years
earlier, and Netscape’s Navigator was already a year old.5

But my experience of the Web in 1995 was not graphical. I was
attending New College in Sarasota, Florida, and had to dial in to
the campus’s server in order to access the Internet. It was all done
over the command line, and I saw my �rst website—sony.com—in
stark black and white (Figure 1.2).

I thought to myself �is web thing is bullshit! and quickly discon-
nected my modem in disgust.

5 Microso�’s Internet Explorer had just been born.

6

Figure 1.2 My best approximation of what I saw the �rst time I used Lynx
to access sony.com: a black screen with white text saying nothing.

You know what? I was right: �at experience was bullshit! Here
was a website whose purpose was to disseminate information about
Sony products and musicians and it had—e�ectively—no content.
In other words, its purpose was lost.

How did this happen? Well, the folks who designed that version of
sony.com had used images instead of actual page content. All the
page text was rendered in JPEGs and GIFs. When they assembled
the images onto the page, they failed to author ��� text that
provided access to that content. Anyone who couldn’t partake
of what I’m sure was the pinnacle of mid–1990s web design was
pretty�much screwed.

7DESIGNING EXPERIENCESFOR PEOPLE

And so there I was, taking my �rst tentative steps onto the Web
and I was denied access to a site because the technology I was
using to access it was not advanced enough. I felt like the short kid
at the amusement park, feigning disinterest in the Tilt-a-Whirl be-
cause I was the only one of my friends who was too small to ride it.

And just like my childhood height, my browser choice was not
something I had control over. I couldn’t have just downloaded
Mosaic or bought a copy of Netscape at my local Babbage’s and
been on my merry way. Our school’s server didn’t support Point-
to-Point Protocol (PPP) at the time, so I could browse only on the
command line via Lynx.

�at experience colored my perception of the Web and has
stuck�with me ever since, guiding my decisions as a web designer.
I always think about my experience and the lack of accessibility
the Web—well, sony.com speci�cally—had for me at the time.
It�sucked. I never want to make someone else feel like that.

TECHNOLOGY VS. EXPERIENCE
When the Web was young, the technologies we used to create
experiences for it were rapidly evolving. HTML was not standard-
ized like it is today, and Microso� and Netscape were taking turns
adding new elements and behaviors in a seemingly eternal game of
one-upmanship. We also had things like Java applets,6 RealMedia,
Shockwave, Flash, and a host of other proprietary technologies
that served only to complicate the page construction process and
heaped additional requirements on our users.

6 Did you ever use one to make your content look like it was re�ected in a pool
of water? �at was so cool!

8

As an industry, we adopted the engineering concept of graceful
degradation, which ensures a system can continue to work with
a reduced service level even when part of it is unavailable or
destroyed. In other words, it’s a philosophy meant to avoid
catastrophe. In practice on the Web, this meant we assumed older
browsers, or those without the necessary plug-ins, would get a poor
experience. We rarely made the time to test in these scenarios, so
we erected signs for our users:

�is page works best in Internet Explorer.

�is page looks best in Netscape.

You need Flash to use our website.

Keep out ye undesirables!

�e graceful degradation philosophy amounted to giving the latest
and greatest browsers the experience of a full-course meal, while
tossing a few scraps to the sad folk unfortunate enough to be using
an older or less-capable browser.

And when we really didn’t feel like testing in a browser, we’d just
read the User Agent string on the server and erect a roadblock
(Figure 1.3). 7 A�er all, we told ourselves, if we stop the user before
they experience an error, we’re avoiding delivering a bad experience.

But is no experience better than a less than ideal experience?
I�don’t think so.

7 Of course, few of us even did that well. A lot of User Agent sni�ng
(as�it’s�called) is poorly done and results in false positives. It’s been the
driving factor for the “evolution” of the User Agent string. Nicholas Zakas
wrote a brilliant piece chronicling that: �����������������
������� .

9DESIGNING EXPERIENCESFOR PEOPLE

Figure 1.3 An example roadblock page from Kodak.

Lessons Learned at the Bleeding Edge
Some time ago I worked on a Chrome app for WikiHow.8 As a
Chrome app and a showpiece for the then-new Chrome Web
Store, our client wanted it to have fancy CSS3 animations and tran-
sitions, web fonts, a WebSQL database, o�ine support, and lots of
other “HTML5” bells and whistles. And, as our target was a single
browser, we relented when asked to go the single-page app route.
�e app was built to degrade gracefully (it blocked non-WebKit
browsers), but it was not progressively enhanced.

Skip ahead about a year and our client returned, asking us to add
support for Firefox and Internet Explorer (IE) 9+. Oh boy.

8 ����������������•���•••• .

10

Having built the site purely for WebKit, it was a bit of a challenge.
In addition to implementation di�erences with the experimental
CSS features, we also had to deal with the DOM (document object
model) and JavaScript API (application programming interface)
variance among the browsers. But the single biggest issue we ran
into was the lack of WebSQL support in Firefox and IE.

You see, in the intervening year, WebSQL had been abandoned at
the W3C (World Wide Web Consortium)—the organization that
oversees most web standards—because of pushback (primarily from
Mozilla and Microso�). It was not available in either Firefox or IE,
nor would it ever be. IndexedDB, the new replacement for WebSQL,
had yet to be implemented in any production browser. So we ended
up writing a wrapper on top of �•���•�•��•� that looked a lot like
SQL. �ankfully, that allowed us to avoid rewriting the bulk of the
app. Incidentally, it also made the app a lot faster.

�e total cost of the new compatibility project was around 40�percent
of the budget to build the app the �rst time around. Without access
to an alternate timeline, I can’t be certain, but my experience tells me
it would have added less than 40 percent to the original project had
we been given the leeway to build it using progressive enhancement.
Plus, the end result would have been even better because it would
have been able to function without JavaScript.

Based on conversations I’ve had with other designers, the 40
percent number seems pretty accurate—possibly even a bit low.
I remember one conversation several years ago about Google
Maps. When the team originally built Maps—in all of its Ajax-y
glory—they didn’t make it accessible, and it required JavaScript.
According to the source of this anecdote (who I have long forgot-
ten), it took them almost twice as long to retro�t Maps as it would
have taken had they built it from the ground up following progres-
sive enhancement. As it’s purely anecdotal, you should take that
with a grain of salt, but it’s food for thought.

Now consider this story in light of the one I shared earlier. Given
the choice between a 40 percent budget increase to add support for
2 browsers and a 15 percent increase to add 1,400 browsers, I know

11DESIGNING EXPERIENCESFOR PEOPLE

which option I’d choose. Progressive enhancement does require a bit
more thoughtful consideration up front. But the extra time required
diminishes with practice, and the philosophy pays huge dividends in
the long run. More reach, less overhead, fewer headaches.

Progressive enhancement trounces graceful degradation when it
comes to reaching more browsers, devices, and (ultimately) users
for less money (and fewer headaches). But�how?

For starters, progressive enhancement recognizes that experience
is a continuum.

YOU CAN’T PLEASE EVERYONE
Providing a pixel-perfect, wholly identical experience for each and
every human being who tries to access your site would be impossi-
ble. �ere are simply far too many factors to consider.

On the technical side of things, you’ve got screen size, display
density, CPU (central processing unit) speed, amount of RAM
(random-access memory), sensor availability, feature availability,
interface methods…breathe…operating system, operating system
version, browser, browser version, plug-ins, plug-in versions, net-
work speed, network latency, network congestion, �rewalls, proxies,
routers, and probably a dozen other factors my mind is incapable of
plucking from the whirlwind of technological considerations.

And that doesn’t even take into account your users’ experiences
interacting with your work.

When it comes to people, you have to consider literacy level, read-
ing level, amount of domain knowledge, cognitive impairments
such as learning disabilities and dyslexia, attention de�cit issues,
environmental distractions, vision impairment, hearing impair-
ment, motor impairment, how much they understand how to use
their device, how much they understand how to use their browser,
how well-versed in common web conventions they are, and a ton of
other “human factors.”

12

Every person is di�erent, and everyone comes to the Web with
their own set of special needs. Some needs develop over time and
persist—blindness, for example. Others are transient, such as
breaking your mousing arm. Still others are purely situational and
dependent on the device you are using at the time and its technical
capabilities or constraints.

Trying to devise one monolithic experience for each and every
person to have in every context that considers every factor would
be impossible. Given unlimited time and budget, you could proba-
bly make it happen, but how o�en do you get to work under those
conditions?9 Designing for a monolithic experience is a form of
arrogance—it assumes you will always know your users’ context
and what’s best for them. In reality, you o�en know far less than
you think you do.

And yet, Sir Tim Berners Lee—the guy who invented the World
Wide Web—had a vision for a Web that was portable, capable of
going anywhere.10 Was he delusional?

SUPPORT THE PAST,
OPTIMIZE FOR THE FUTURE
Back in middle school, I wrote every paper in Word for MS-DOS.
It was a piece of so�ware that did one thing really well: It allowed
the user to focus on writing.11 You didn’t have a whole lot of op-
tions for formatting text, but it did what it needed to do, and it did
it with aplomb.

9 If you do, in fact, get to work under these conditions, please let me
know if you’re hiring.

10 You can read his proposal here: �����������������•����� • .

11 In many ways, iA Writer—which I am using to write these very
words—reminds me a lot of it.

13DESIGNING EXPERIENCESFOR PEOPLE

More than two decades later, it’s next to impossible for me to read
the DOC �les Word created for me. As an application, Word long
abandoned support for reading and editing that generation of the
DOC format.

Now I’m not saying that the stu� I wrote in middle school is
really worth reading today (I’m sure it’s not), but I am only one
of�millions of people who authored content in Word for DOS.
�at�content is largely lost to history because the format evolved
in�a way that made newer versions of Word incapable of reading
those older �les.

And that’s just one piece of so�ware. We see these sort of
“breaking changes” all the time in so�ware, even on the Web. �e
popular JavaScript framework Angular changed so much between
its 1.0 and 2.0 versions that developers had to rewrite their apps
almost entirely to take advantage of its new features.

�is is a huge challenge for archivists because even if they manage
to hang on to a copy of the programs that originally authored these
�les, they also need to maintain machines capable of running the
so�ware (which is equally challenging).

When he conceived of the World Wide Web, Sir Tim Berners Lee
wanted to avoid this problem. He wanted content on the Web to be
robust and future-proof, so he made that a guiding principle of the
web’s lingua franca, HTML. To wit, the HTML 2.0 spec says this:12

To facilitate experimentation and interoperability between
implementations of various versions of HTML, the installed
base of HTML user agents supports a superset of the HTML 2.0
language by reducing it to HTML 2.0: markup in the form of a
start-tag or end-tag, whose generic identi�er is not declared is
mapped to nothing during tokenization. Undeclared attributes
are treated similarly. �e entire attribute speci�cation of an
unknown attribute (i.e., the unknown attribute and its value,
if�any) should be ignored.

12 �����������������•����� •

14

In other words, browsers are instructed to ignore what they don’t
understand. �is is fault tolerance (another carry-over term from
the world of engineering), and it’s central to the design of HTML
as a language and CSS as well.13

Both languages were designed to be “forward compatible,” mean-
ing everything you write today will work tomorrow and next year
and in ten years. �ese languages were designed to evolve over
time. By ignoring anything they don’t understand, browsers give
these languages room to grow and adapt without ever reaching a
point where the content they encapsulate and style would no longer
be readable or run the risk of causing a browser to crash.

Fault tolerance makes it possible to browse an HTML5-driven
website in Lynx and allows you to experiment with CSS3 fea-
tures without worrying about breaking Internet Explorer 6.
Understanding fault tolerance is the key to understanding pro-
gressive enhancement. Fault tolerance is the reason progressive
enhancement works and makes it possible to ensure all content
delivered on the Web is accessible and available to everyone.

Maintaining Your Sanity
Trying to give everyone the same experience across the myriad
device and browser combinations, especially considering the
variety of human factors that a�ect how they interact with a page,
would be a fool’s errand. It’s important to pick your battles. Web
developer Brad Frost beautifully couched this approach as “support
vs.�optimization.”

Unless you want to hole yourself up in a cabin for the foreseeable
future, you’re not going to be able to optimize your web
experience for every single browser. What I’m really asking
for�here is consideration.

13 ������������������������

15DESIGNING EXPERIENCESFOR PEOPLE

You don’t have to treat these browsers as equals to iOS and
Android and no one is recommending that we have to serve up
a crappy WAP site to the best smartphones on the market. It’s
just about being more considerate and giving these people who
want to interact with your site a functional experience. �at
requires removing comfortable assumptions about support and
accounting for di�erent use cases. �ere are ways to support
lesser platforms while still optimizing for the best of the best.14

By following this approach, you enable your content to go as far
as possible, unencumbered by the requirements of some partic-
ular technology or capability. You can do this rather easily by
focusing on the content and building up the experience, layer
by layer, because the browser and device can adequately support
that�experience.

Progressive enhancement isn’t about browsers or devices or
technologies. It’s about cra�ing experiences that serve your users
by giving them access to content without technological restric-
tions. Progressive enhancement doesn’t require that you provide
the same experience to every user, nor does it preclude you from
using the latest and greatest technologies; it simply asks that you
honor your site’s purpose and respect your users by applying
technologies in an intelligent way, layer upon layer, to cra� an
amazing�experience.

Browsers, devices, and technologies will come and go. Marrying
progressive enhancement with your desire to be innovative and
do incredible things is entirely possible—as long as you’re smart
about your choices and don’t allow yourself to be so distracted
by the shiny and new that you lose sight of your site’s purpose or
your�users’ needs.

14 ������������������€����‚

16

SERVING MORE FOR LESS
Of course, there are many folks who consider progressive enhance-
ment—especially insofar as creating a non-JavaScript experience
goes—a total waste of time. Take this comment a reader le� on
web�developer Tim Kadlec’s blog post “Crippling the Web:”15

�is is all �ne and dandy, but not very real world. A cost-bene�t
analysis has to happen—what does that next user/visitor cost,
and more importantly earn you? �is idealistic approach would
leave most broke if they had to consider “every user” when
building a site. �at’s why clothes come in small, medium,
large,�and extra-large. Most of us have to buy them that way
because not everyone can a�ord a tailor made suit, much less
an�entire wardrobe. Your approach only works for those who
can�see the�return.

Tim’s response was dead-on:

I think that’s where the di�erence between ‘support’ and
‘optimization’ comes into play. I’m certainly not saying to go out
and buy every device under the sun, test on them, make sure
things look and behave the same. You don’t necessarily have to
optimize for all these di�erent devices and scenarios (that’s where
the cost-bene�t analysis has to come in), but it’s o�en not very
time consuming to at least support them on some level.

Progressive enhancement can get you a long way towards
accomplishing that goal. Sometimes it’s as simple as doing
something like ‘cutting the mustard’ to exclude older devices
and�browsers that might choke on advanced JS from having to try
and deal with that. �e experience isn’t the same, but if you’ve
used progressive enhancement to make sure the markup is solid
and not reliant on the JavaScript, it’s at least something that is
usable�for them.

15 �����������������
ƒ�„ƒ•�

17DESIGNING EXPERIENCESFOR PEOPLE

You can’t test every scenario, every browser, and every device. �ere
just aren’t enough hours in the day even if someone was willing to
spend the money on doing it—and guess what, they aren’t. You need
to balance your desired reach with your realistic resources.

�is is why progressive enhancement is so helpful. You can provide a
baseline experience that anyone can use and then look for ways to im-
prove it on the browsers and devices that are part of your test matrix.

As an added bonus, you’ll be able to reach new devices as they roll
out with little to no extra e�ort. Case in point: �e TechCrunch re-
design of 2013 did not prioritize the browsing experience on a tiny
screen, but they allowed for it; as a result, the site looks and works
just as well on a smart watch (Figure 1.4) as it does on a phone or
a�desktop screen.

Progressive enhancement is inherently future friendly.16

Figure 1.4 TechCrunch viewed on an
Android Wear device.

16 �����������������•����…••

18

UNIVERSAL ACCESSIBILITY
Sir Tim’s vision for the Web was that content could be created
once and accessed from anywhere. Disparate but related pieces of
“hypermedia”17 scattered across the globe could be connected to
one another via links. Moreover, they would be retrievable by
anyone on any device capable of reading HTML. For free.

Ultimately, Sir Tim’s vision is about accessibility.

For a great many of us, ensuring our websites are accessible is
an a�erthought. We talk a good game when it comes to “user
centered” this or that but o�en treat the word accessibility as a
synonym for “screen reader.”

Sure, people with visual impairments o�en use a screen reader to con-
sume content. But they might also use a braille touch feedback device
or a braille printer. �ey probably also use a keyboard. Or they may
use a touchscreen in concert with audio cues. Or they may even use a
camera to allow them to “read” content via optical character recogni-
tion (OCR) and text-to-speech. And yes, visual impairment a�ects a
decent percentage of the populace (especially as we age, which we all
do), but it is only part of the “accessibility” puzzle.

We all bene�t when designers consider accessibility. We all have
special needs. “Accessibility” is about recognizing that fact and
taking steps to address them.

People consume content and use interfaces in many di�erent
ways, some similar and some quite dissimilar to how you do it.
Designing for universal accessibility means not imposing a certain
world view—yours, your boss’s, or your client’s—on how or where
someone is going to access your website, giving your users ultimate
control on how they choose to consume your content.

�e dimensions of interactive elements—links, buttons, and so
on—and their proximity to one another is an important factor in

17 Sir Tim used the term hypermedia because he knew the Web would need to
contain more than just text.

19DESIGNING EXPERIENCESFOR PEOPLE

ensuring an interface actually registers your intent. Have you ever
injured your dominant arm and had to mouse with your other
one? It’s frustrating, especially when links are small or buttons are
too close together. Visual design is an accessibility concern.

�e color contrast between text and the background is an im-
portant factor in ensuring content remains readable in di�erent
lighting situations. Some websites are nearly impossible to read on
your phone while outside on a sunny day or when you’ve turned
down the screen brightness to sip that last 5 percent of your battery
life. Color choice is an accessibility concern.

�e language you use on your sites and in your interfaces directly
a�ects how easy it is for your users to understand what you do, the
products you’re o�ering, and why it matters. It also a�ects how you
make your users feel about themselves, their experience, and your
company. Terms of service are a perfect example of this: No one
reads them because they are alienating and unfriendly.18 Language
is an accessibility concern.

�e size of your web pages and their associated assets has a direct
e�ect on how long your pages take to download, how much it costs
your customers to access them, and (sometimes) even whether the
content can be reached. One time I unwittingly played 30 minutes
of a high-de�nition video while tethered to my phone, traveling
abroad, thanks to YouTube’s auto-play “feature.”19 It cost me about
$30. Bandwidth use and performance are accessibility concerns.

I could keep going, but I’m sure you get the point.

To me, accessibility is ultimately about ensuring people have equal
opportunity to access your content while simultaneously recogniz-
ing that we all have special needs—physical limitations, bandwidth
limitations, device limitations—that may require each of us to have
di�erent experiences of the same web page.

18 Except Medium’s; they’re awesome! See ������������������•ƒ�	€ .

19 ���������������� ••�•��•

20

When I load a website on my phone, for example, I am visually lim-
ited by my screen resolution (especially if I am using a browser that
encourages zooming), and I am limited in my ability to interact with
buttons and links because I am browsing with my �ngertips, which
are far larger and less precise than a mouse cursor. On a touch-
screen, I may need the experience to be slightly di�erent, but I still
need to be able to do whatever it is I came to the page to do. I need
an experience, but moreover, I need the appropriate experience.

Experience doesn’t need to be one hulking, monolithic ideal. It can
be di�erent for di�erent people. �at may be hard to wrap your
head around at times, but embracing it will help you reach more
people with fewer headaches.

Experience can—and should—be cra�ed as a continuum.
Progressive enhancement embraces that continuum.

THINKING IN LAYERS
One analogy I like to use for progressive enhancement are Peanut
M&M’s (Figure 1.5). At the center of each Peanut M&M’s candy
is, well, the peanut. �e peanut itself is a rich source of protein and
fat—a great food that everyone can enjoy (except those with an
allergy, of course). In a similar sense, the content of your website
should be able to be enjoyed without embellishment.

Figure 1.5 A confectionary continuum from peanut to Peanut M&M’s.

21DESIGNING EXPERIENCESFOR PEOPLE

Slather that peanut with some chocolate and you create a mouth-
watering treat that, like the peanut, also tastes great. So too,
content beautifully organized and arranged using CSS is o�en
easier to understand and certainly more fun to consume.

By coating your nutty confection with a sugary candy shell, the
experience of this treat is improved yet again. In a similar sense,
you can cap o� your beautiful designs with engaging JavaScript-
driven interactions that ease your user’s movement through the
content or bring it to life in unique and entertaining ways.

�is is, of course, an oversimpli�cation of progressive enhance-
ment, but it gives you a general sense of how it works. Technologies
applied as layers can create di�erent experiences, each one equally
valid (and tasty). And at the core of it all is the nut: great content.

Progressive enhancement asks you to begin with the core expe-
rience that is universally accessible and improve that experience
when you can. Benjamin Hoh eloquently put it this way: 20

[Progressive enhancement] keeps the design open to possibilities
of sexiness in opportune contexts, rather than starting with a
‘whole’ experience that must be compromised.

More o�en than not, experience begins with content. Clear,
well-written, and well-organized content provides solid footing for
any web project. It’s important to ensure that content is universally
available too, which means it needs to be addressable via HTTP.21

To enhance the meaning of your content, to make it more expres-
sive, you use markup. Every element has a purpose. Some elevate
the importance of a word or phrase, others clarify the role a
selection of content is playing in the interface, and still others ag-
gregate collections of elements into related sections of a document.
Markup gives more meaning to your content.

20 �����������������€•��…�

21 As web developer Tantek Çelik puts it, “If it’s not curlable, it’s not on the
Web.” See ����������������ƒ�• ��€�ƒ .

22

Visual design is a means of establishing hierarchy on a page.
Contrast, repetition, proximity, and alignment help to guide users
through your content quickly and easily. Visual design also helps
you reinforce your brand and provide the most appropriate reading
experience given the amount of screen real estate available to you.

You can use interaction as a means of reducing the friction of an
interface. Hiding content until it is needed, providing real-time
feedback based on user input, and enabling your users to accom-
plish more on a single page without constant page refreshes go a
long way in humanizing an interface. �ey help your users be more
productive and, when done well, can even make your creations
delightful to use.

�ese levels, when stacked upon one another, create an experience
that grows richer with every step, but they are by no means the
only experiences that will be had by a user. In fact, they are simply
identi�able milestones on the path from the most basic experience
to the most exceptional one (Figure 1.6). A user’s actual experi-
ence may vary at one or more points along the path and that’s all
right; as long as you keep progressive enhancement in mind, your
customers will be well served.

A website built following the philosophy of progressive enhance-
ment will be usable by anyone on any device, using any browser.
A user on a text-based browser like Lynx won’t necessarily have
the same experience as a user sur�ng with the latest version of
Chrome, but the key is that the user will have a positive experience
rather than no experience at all. �e content of the website will be
available, albeit with fewer bells and whistles.

In many ways, progressive enhancement is a Zen approach to web
design: Control what you can up until the point at which you must
relinquish control and let go.

23DESIGNING EXPERIENCESFOR PEOPLE

BROWSER CAPABILITIES

U
S

E
R

 E
X

P
E

R
IE

N
C

E

EnhancedBaseline

Figure 1.6 Progressive enhancement visualized: the user experience gets better as
opportunity allows.

THIS IS A PHILOSOPHY
Progressive enhancement is a philosophy that pays huge dividends
in terms of time, cost, and reach. It reminds you to embrace the
Web’s inherent “webbiness” and helps you reach your users where
they are, in the most appropriate way possible.

It all begins with embracing the concept of experience as a con-
tinuum. In the following chapters, you’ll explore what that means
and how to integrate the progressive enhancement philosophy into
your web design process.

“Content precedes design. Design
in the absence of content is not
design, it’s decoration.”

—JEFFREY ZELDMAN

CHAPTER 2:
CONTENT IS THE
FOUNDATION
Over the 2011 holidays, Facebook users uploaded photos like crazy.
In just a few days, Facebook processed more photo uploads than are
contained in the entirety of Flickr. Seriously, that’s a lot of photos.

One unintended consequence of this deluge of photo uploads was a
signi�cant uptick in people asking Facebook to remove speci�c ones.
Facebook received millions of these “photo reports,” but they made
no sense: moms holding babies reported for harassment, pictures of
puppies reported for hate speech, and so on. Roughly 97�percent of
these photo reports were dramatically miscategorized.

Facebook’s engineers reached out to some of the users who had
reported these photos to get a bit more background regarding their
submissions. At the time Facebook’s photo-reporting interface
provided a list of reasons users could choose from if they wanted
a photo removed, but, as Facebook soon discovered, many of the
reports were made because users didn’t want the photo posted for
reasons other than those provided. In some cases, it was because
they didn’t like how they looked in the photo. In others, it was be-
cause the photo was of an ex-partner or even a beloved pet they’d
shared with an ex-boyfriend or ex-girlfriend.

26

�e existing photo-reporting tool had not done a good job of
accounting for these more personal reasons for wanting a photo
removed, so the Facebook engineers went to work. �ey added a
step that asked, “How does this photo make you feel?” �e options
were simple.

• Embarrassing
• Upsetting
• Saddening
• Bad photo
• Other

�e Other option also provided a free-response text �eld to �ll in.

With this system in place, Facebook engineers found that 50�per-
cent of reporters who answered the new question chose one of
the provided options. �at was pretty helpful, but there was still
a problem: 34 percent of the respondents who chose Other were
writing “It’s embarrassing” in the blank rather than choosing the
Embarrassing option already provided.

What the Facebook team realized was that people were not iden-
tifying with the Embarrassing option (or may have even thought
it was referring to them rather than assuming the implied “It’s”).
A subtle shi� in language was needed, so they changed the label
to “Please describe the photo,” and they updated the options to
mirror how people actually talk.

• It’s embarrassing
• It’s a bad photo of me
• It makes me sad

With this subtle change, they were able to increase the percentage
of photo reporters who chose one of the options provided to a
whopping 78 percent.1

1 � is story appeared in RadioLab’s episode “�e Trust Engineers.” You can
listen to it at ������������������������ .

27CONTENT IS THE FOUNDATION

Words matter. Even in something as simple and banal as a form,
the words you choose set the tone for your users’ experiences and
o�en have an e�ect on what they do, or fail to do.

�e text of your interfaces—especially form labels and responses—
is just one small part of the content picture. �ere are many other
types of content, such as product descriptions, marketing copy,
legal statements, photography, illustrations, visualizations, video,
audio, and more. However, when we think about “content,” we
o�en equate it with “copy.” �is is no doubt a carry-over from the
marketing world where “copywriters” were tasked with authoring
the text for an advertisement or campaign.

“Content,” as a word, kinda sucks. It feels dry, mechanical, boring,
tedious. It’s generic and nonspeci�c. No one ever jumped out of
bed in the morning shouting “Today I’m going to make content!”
In fact, it �ts perfectly as a blanket term for that lifeless corporate
communications drivel we endure on a day-to-day basis.

And yet, “content” is where experience begins. We o�en lose sight
of that.

�e role of the traditional copywriter was to collaborate with an
art director on the message and purpose of a campaign. How
should it make someone feel? What actions should it prompt them
to take? Copywriters created a conversation with their audience
that was so much larger than the words they employed.

Words, as they say, are cheap. Without a message, a purpose,
words become weak. We can (and o�en do) author page upon
page of �owery prose without saying anything. To write e�ective
copy, it’s important to know what the words need to be doing.
To employ progressive enhancement, it’s crucial to understand
the role that content plays—it’s the foundation upon which
experiences�are�built.

28

AVOID ZOMBIE COPY
At the center of every interface is a conversation. You engage your
users directly in an e�ort to inform them, entertain them, or per-
suade them to act in a particular way. How this conversation goes
will directly a�ect the experience your users have.

When you speak to a friend or even a stranger, you speak with
enthusiasm, interest, and…well…like a human. �
	��
��
��
����
����
��
	��•	•���•
•���•
�•��•	��•����•�•�
�����•���
 ��
�����•�������
 ���• ���������
�
€
�••����	��� And yet, that’s the way scads of sites on the
Web sound. Just because your content is managed in, delivered via,
and displayed by a computer doesn’t mean it needs to sound like it
was written by one.

In her article “Attack of the Zombie Copy,” content strategist Erin
Kissane highlighted a real-world example of this.2

Incorporating our corporate culture into our business processes
and customer needs, we continue to leverage our exceptional
and e�ective work practices, improve operational e�ectiveness
to�meet business objectives and create win-win situations for our
employees and shareholders.

Wow. Now I’m not a violent man, but if someone said that to me at a
cocktail party, I might have to slap them. Don’t tell me you wouldn’t.

We don’t speak like that in person, so why should we speak
like that online (or anywhere for that matter)? It’s impossible
to connect with content that reads like this. How do you have
a�conversation with a robot (or a zombie)?

2 ����������������‚�•€� �‚�

29CONTENT IS THE FOUNDATION

Conversation is the basis for every user interaction. Don’t believe
me? Here are a few examples:

• Home page: You’ve just met someone and are explaining what you
do (and, in some cases, why it matters). It goes best if you can �nd a
way to relate what you do to something they’ve experienced.

• Contact form: You are trying to understand what someone needs
in order to help them. Managing their expectations is key; let
them know how long it may take you to get back to them.

• Product page: You are explaining what this object or service
is, what it does, and how it will bene�t them. If you know the
type of person you’ll be having this conversation with ahead of
time, you’d plan ahead so you’re ready to answer their questions
quickly and easily.

• Status update: You’re there to help someone open up…
and�then you shut up and listen (and mine their data for
marketing purposes).

When you approach interfaces as conversations, it humanizes the
interactions and improves your users’ experiences. It also helps you
focus on the important stu� so you don’t get caught up in the act
of�writing.

DESIGN MEANINGFUL CONTENT
Diving into etymology for a moment here, design comes from the
Latin designare, meaning “to mark out or indicate.” �e purpose of
design is not to make something pretty; it’s to clarify.

Words are powerful. �ey can obscure just as easily as they can
illuminate. When you author content, you need to consider not
only what you write but how you write it. Are you being unnec-
essarily vague? Are you using too much jargon or assuming too
much domain-speci�c knowledge from your readers? Are you
writing to the appropriate reading level? Are you being respectful?
Are you writing in a way that connects your readers with your
products or your brand? Is your content serving a purpose?

30

Asking these questions may be second nature to you, but I’ve
encountered countless projects where content was clearly an a�er-
thought, something that was stubbed out with nonsensical Latin
text and gray boxes. We o�en take these shortcuts in our eagerness
to tuck into “design” as quickly as possible, but that very decision
undermines what it means to be a designer in the �rst place.

Content strategist Liam King was dead-on when he said this:

�e problem with Lorem Ipsum is it conveniently �lls the
available space like an expanding gas. Unfortunately, it is inert,
meaningless and lacks context, revealing very little about the
relationship between the design and the content.3

We o�en use fake text—a.k.a. Lorem Ipsum—as a tool to help
us make some progress on designing an interface while we are
waiting for “�nal, approved copy” (as though such a thing exists).
We’re not etching this stu� in marble tablets, folks—we’re writing
so�ware. Start by writing the kind of copy you want to read. You
can always change things later.4

An added bonus of authoring real copy early is that even if you for-
get to replace it, you end up with something that’s halfway decent
rather than something horribly embarrassing (Figure 2.1).5

3 ����������������• €����•

4 Lorem Ipsum isn’t always the worst thing in the world. If you �nd that real
copy is a distraction in design review meetings, for instance—Bob keeps
nitpicking the copywriting—you can always sub in Lorem Ipsum for that
speci�c context. Content strategist Karen MacGrane discusses this and other
uses for Lorem Ipsum at �����������������	���•�� .

5 Product designer Rian van der Merwe has amassed quite a collection
of “placeholder” texts that have made it out into the wild:
����������������•�ƒ„��•�• .

31CONTENT IS THE FOUNDATION

Figure 2.1 Lorem Ipsum on a
wine bottle as discovered by
Rian�van�der�Merwe.

By focusing on how your interfaces read, you can gauge how well
the copy you’ve written helps or hinders users to accomplish their
goals. Words are the core of virtually every experience on the Web,
and if you don’t consider that from the beginning, no amount of
breathtaking visual design or incredible JavaScript gymnastics are
going to salvage it.

CRAFT THE CONVERSATION
Content strategist Stephanie Hay is a proponent of copy-driven
interfaces and has seen great success with this approach. She
begins collaboratively authoring real copy early in the process—
even at kicko�!6

To do so e�ectively, she o�ers the following guidelines:

1. Focus on writing actual content for the most sought-a�er
content FIRST.

6 Stephanie Hay’s template for kicking o� new projects is publicly available at
�����������������…†‚�•„• .

32

2. Ignore structure and �ow—focus entirely on:
• What is a realistic conversation we have with users on

speci�c topics?
• How can we clearly anticipate or answer their questions?
• What’s the end result of that conversation—a sign-up?

A�referral?
3. Create content that describes a realistic conversation you have

with the target audience.

�ese guidelines are invaluable for keeping copy clear and focused.
�ey also do wonders�for clarifying the purpose of a project, which is
all too easy to lose sight of in the rush to get it done and out the door.

A solid product or project strategy acknowledges the myriad
moving pieces and looks for ways to connect them in support of
the project’s purpose. Without this orchestration, every facet of the
project is le� to chance and can cause the whole thing to fall apart.
Copywriting is a powerful tool for tying it all together.

Another bene�t of using copywriting in this way is that it forms
a narrative but doesn’t dictate design or interaction. It becomes a
touchstone that each and every member of the team can reference
to keep them mindful of the conversation they’re having.

If the purpose of your site is to get a potential customer (let’s call
him Ben) to purchase a cra� dog biscuit, your conversation with
him might go a little something like this:

1. Explain what’s in most dog biscuits. Eeew!
2. Talk about the dog-appropriate, natural ingredients in your dog

biscuits. Yum!
3. O�er Ben a free sample pack or free shipping on a trial order. Nice!
4. Let Ben know that you believe so much in your biscuits that

if his dog doesn’t like them, you’ll refund his order in full.
�at’s�reassuring.

5. If he tries the biscuits, you’ll follow up a week a�er shipping to
see how it’s going. You’ll o�er him an easy way to start a sub-
scription or a painless way to get a refund. Wow, that’s easy!

33CONTENT IS THE FOUNDATION

6. If Ben goes for a subscription, you’ll throw a few sample packs
in there and ask him to share them with his friends. Awesome!
I’ll pass these around at the dog park.

While bare-bones—forgive the pun—this is a simple way to outline
the experience you want Ben to have. It’s also the perfect frame-
work for �eshing out the real copy for your pages, emails, and so
on, because you know what you want to say and what sort of reac-
tion you are hoping to elicit from Ben. And you’ve even accounted
for what happens if Ben is unhappy with the product, ensuring his
experience of the company is always a positive one.

Mapping out user experience as a conversation can be invaluable
for ensuring every decision you make in strategy, design, and
production o�ers a positive contribution to that conversation.
It�isn’t prescriptive about the way the page should be designed
or�what technology choices should be made. It does, however,
make�it clear that burying the “request a refund” button would be
a no-no. Similarly, it helps you prioritize the content of your pages
and informs you of what is crucial (and what’s not).

Prepare for Problems
It’s great when things go well, but what about when things go
badly? As a user, there are few worse feelings than having a form
you just �lled out spit back to you because it contained errors.

Errors are one of those things you hope no one ever encounters, but
someone always does. As users, they catch us o�-guard and make us
feel vulnerable and uneasy. As copywriters, it’s your job to be there
for your users to ease the tension, reassure them that it’s not the end
of the world, and help them quickly and easily remedy the issue.

Email marketing platform MailChimp does a fantastic job inte-
grating this sort of thinking into its process. In fact, MailChimp’s
content director, Kate Kiefer Lee, created a whole site, Voice and

34

Tone,7 that details how copywriters should be speaking to their
customers in various situations, with a clear focus on their users’
mental state and instructions on how to author copy that helps the
situation rather than making it worse (Figure 2.2).

Figure 2.2 MailChimp’s Voice and Tone resource, covering how to notify a user of
a�system failure.

For instance, when something goes wrong, the site acknowledges that
the user is likely feeling confusion, stress, and possibly even anger. It
o�ers what the user might be thinking—“What went wrong? I really
need to get this campaign out.”—and then o�ers some tips on how to
author copy that will be helpful rather than harmful:

• O�er a solution or next step.
• Be straightforward. Explain what’s going on right away.
• Be calm. Don’t use exclamation points or alarming words like

alert or immediately.
• Be serious. Don’t joke around with people who are frustrated.

7 �������������������‚��•� . See also MailChimp’s fantastic Style
Guide: ����������������‡•�̂ ��•• .

http://perma.cc/PAW2-LYCA
http://perma.cc/GQK6-79CM

35CONTENT IS THE FOUNDATION

� e guide even o�ers a good example that follows these guidelines:
“We’re experiencing a problem at one of our data centers. Our engi-
neers are on the case and will have things back to normal shortly.”

Simple. Direct. Clear. Conversational.

�is level of care for their users shows them respect. It creates a
reassuring experience for them, and consequently, MailChimp
stands out as a company that cares about its customers.

It’s also worth noting that putting together a guide like this helps
you scale your content creation to more individual contributors as
your project grows and your customer touchpoints become more
diverse. It’s a great way to keep everyone on the team speaking
with a uni�ed voice, further solidifying your brand’s personality in
the mind of your users.

PLAN FOR THE UNKNOWN
While the vast majority of web projects can use real content to
drive a project, there are many project types (or portions of proj-
ects) where this is simply not feasible. Some projects need to be
designed to handle a constant in�ux of new content, such as a blog,
a news site, or your Twitter feed.

But even if you don’t have all the content that will �nd a home
on your site from the outset, all is not lost. You just need to think
about the types of content you will need to support.

�inking about the content you write in a systematic way can help
ensure the words you author are assembled in a manner that best
realizes their purpose. Designer Mark Boulton put it�beautifully.8

You can create good experiences without knowing the content.
What you can’t do is create good experiences without knowing
the structure. What is your content made from, not what your
content is. An important distinction.

8 ����������������…�•��‡�€�

36

Content is hard. In my 20 years building websites, content has been
the number-one factor that has put those projects at risk. But as
Mark says, the content, while important, doesn’t need to be com-
plete. You don’t need “�nal, approved copy” to begin designing,
coding, or developing. What you need to know is what the content
is, all the bits it comprises, and which of those bits are optional.
�is forms the basis of a site’s information architecture.

If you are building a blog, for instance, you can’t write all the copy
before you launch the site; that would be absurd. What you can do,
however, is take stock of the kinds of content you will be posting
and use that to establish a consistent structure for each post.

For instance, you might know that every blog post will have a title
and a body. But maybe every post needs a teaser sentence or two as
well. �at content could be used on an aggregation page (for exam-
ple, the home page), or it might be used when the post is shared on
a social network or found in search results.

Maybe you want all blog posts to have a unique image for use in
the header, or maybe that’s a “nice-to-have” feature that’s optional.

If this blog is a solo undertaking, you may not need to capture the
author, but if you might consider guest posts in the future, perhaps
you should allow for that but make it optional. Tags, pull quotes,
references, and more might be appropriate to some posts but
not�others.

Taken together, these bits form a blog post, but you don’t need to
know what every blog post that you will ever write is in order to
design a blog template. You simply need to know what bits con-
stitute a blog post and which of those are optional. It also helps to
have a rough idea of how many words, images, videos, and so on,
to expect in each.

You can repeat this process for each unique content type on the
site, and it will give you a clear picture of what you are dealing
with. All of this information can also be taken into account when
designing the CMS (content management system) that powers the
blog (Figure 2.3).

37CONTENT IS THE FOUNDATION

Figure 2.3 NPR’s CMS showing a handful of the component pieces
of a story (from a presentation by Zach Brand of NPR, available at
����������������†„��……�‚).

�inking of content in this way creates the structure that is the
fundamental �rst step in creating any experience. You need to
know what Lego bricks you have in your pile before you can even
hope to assemble them into something that makes any sense.

But I Don’t Know the First Thing About Structured Content!
�inking about structured content like this can be tough at
�rst, so don’t worry if it doesn’t come naturally to you. If you
�nd it challenging to think about it all in the abstract, �nd some
examples of similar content that you can use as a reference.

If you are working on a blog or news site, you can go to a similar
site and dissect one of its posts, teasing out the component pieces.
You can compare di�erent posts on the same blog and see whether
some of the bits are optional. You can view the source of the page
to unearth things such as teasers that might be hiding in ����
tags. �en you can do it all over again for another site.

http://perma.cc/398N-5572

38

If you are working on an e-commerce site, you can view a competi-
tor’s site and perform the same sort of audit on its product listings.
You can check the product page information against what you
see for that same product in search results and on category land-
ing pages. Are there multiple descriptions of varying lengths for
di�erent contexts? Are there abbreviated feature lists and full ones?
Noting subtle di�erences like this helps you understand how your
competitor is structuring things under the hood. �en you can go
to another competitor and repeat the process.

Once you have the content structure nailed, it will be the roadmap
for building out the CMS. And while you’re waiting on real content
to get entered into the system, you can use the representative content
you found in your research (at least the bits you like) as the content
that drives the experience. It’s way better than Lorem Ipsum.

WRITE FOR REAL PEOPLE
In addition to helping you to stay true to your purpose, using the
“content �rst” approach to designing experiences also ensures that
your content is accessible to every potential user.

When I speak of accessibility, it’s easy to get quickly overwhelmed by
all the considerations—as I discussed in Chapter 1, everyone has spe-
cial needs. It’s daunting to even consider how to address a fraction of
these many and varied concerns. �is is when it helps to come back to
thinking of experience as a continuum. �at continuum needs to start
somewhere, and it starts with your content.

When you cra� content (or work with someone who does), think
about how the interface reads. How straightforward is the writing?
Is it lousy with jargon? Are you speaking to your audience the way
they speak to you or to each other? Are you addressing your users as
equals? Clear, well-written, and audience-appropriate prose is accessi-
ble to anyone. When you consider how your interfaces read, �rst you
create a solid foundation on which to build a great experience.

39CONTENT IS THE FOUNDATION

CONSIDER CONTENT BEYOND COPY
When I discuss “content,” I’m o�en speaking of the written word.
But content isn’t limited to copy. Photos, videos, audio �les, PDFs,
tables, interactive charts, iconography…those are all content too.
�ey deserve as much consideration as the prose you author.

Pictures, sound, and video content can greatly enhance the expe-
rience of an interface. �ey can bring copy to life and, when done
well, can provide clarity for your users that would be a struggle
with words alone. And they can do so much more succinctly in the
same way a single frame of HBO’s Game of �rones can convey as
much information as a dozen pages of George R. R. Martin’s prose.

But media can also be an unnecessary distraction. When you
begin to consider the concrete experience of downloading a web
page on a mobile device over a 3G or slower connection, the giant,
beautiful, high-resolution imagery you loved so much becomes
problematic. It’s o�en the same when accessing content in an
airport, train station, or hotel over wi�—it’s never fast enough, and
waiting for images to download can be a drag when you’re rushing
to catch your �ight. �ere are also occasions where images them-
selves are not a problem from a download standpoint, but they
cause the text content you’re trying to read to break in odd ways on
smaller screens, disrupting the reading experience.

Conduct a Cost-Bene�t Analysis
When working with media, you need to ask the hard question:
“Does this content actually add to the experience?” �e answer
doesn’t need to be a binary “yes” or “no.” It can be more nuanced
than that. As with many factors that a�ect your decisions regard-
ing how to build a website, it depends. It’s important to weigh the
pros and cons of including each photo, video, chart, or PDF in light
of what you are trying to achieve on a given page.

40

How much time does a given image add to the download and
rendering of the page? Will that time reduce the e�ectiveness of
the page? Will it result in lost sales or leads? Or is the image so
compelling that it will increase purchases or make a page more
e�ective? Are the answers to those questions universal, or do they
di�er when the screen sizes do? What about over mobile networks?

As an example, consider the World News page of the New York
Times (Figure 2.4). �is page is brimming with teasers for full sto-
ries, each hoping to catch your eye. Our eyes are naturally drawn to
contrasting elements on the page, so coupling an image with the text
can increase that story’s visibility amid a sea of competing prose.

Figure 2.4 �e New York Times’ World News landing page. Note the numerous
tiny thumbnails that don’t add much to the story.

41CONTENT IS THE FOUNDATION

Given the priority of stories on the page, these images could be
bene�cial, helping to guide users to the most important stories of
the day. �at’s a UX win!

And yet, these images can be problematic too. Depending on the
size of the image, a thumbnail could cause the text to �ow oddly
when viewed on a small screen. When the natural �ow of content
is interrupted, it makes the reading experience unpleasant and
awkward. As an example of this, consider the Guardian’s website,9
as shown in Opera Mobile on an HTC Wild�re (Figure 2.5). Sure,
layout is something that the page designers should be thinking
about, but that’s not the only potential issue with these images.

Figure 2.5 Compare a section of the Guardian as
rendered at “ full size” on a large desktop screen in
Chrome with an individual teaser as rendered by Opera
Mobile on an HTC Wild�re at a resolution of 240×320.
Note the text wrapping and awkward layout on the
small screen.

9 ����������������•‚�•����ƒ

http://perma.cc/M2EM-7JA4

42

Consider page performance. Each of those images must be re-
quested from the server and downloaded. On slower connections,
that can signi�cantly increase the time required to render the
page. In the case of the Guardian example, the page weighs about
1.5MB and takes 1.6 seconds to begin rendering on Chrome over
a 3G connection. It takes 27 seconds to fully load. Nearly half the
requests from the browser are for images, and they also account for
a third of the page weight.10

Performance and user experience are intrinsically linked. And while
performance may seem like something the server admin should be
concerned with, your decisions at the content level can limit your
team’s options when it comes to performance-tuning a site. You need
to consider performance from the beginning of a project.

As web developer Tim Kadlec said, it all starts with the content.11

At �rst glance, it seems unlikely that content strategy would
be a performance consideration. Frequently the people doing
content strategy seem to be as far removed from the process of
performance optimization as we could possibly imagine. But
content decisions can have powerful, and long-lasting, impacts
on performance.

Performance matters to your users, even if it is (as Tim also says)
“a�lot like plumbing: No one talks about it until it’s busted.”12

�en there’s the cost in terms of real money. On a metered connec-
tion, users are paying by the bit to download our content. Using
Tim’s insightful tool What Does My Site Cost?,13 you can see that
the Guardian home page would cost the average American about
11 cents to download on the least expensive mobile data plan. By

10 �����������������€ƒ���ƒ•

11 ������������������ �����‡

12 �����������������ƒ	��•�‚‡

13 ��������������������•��€

43CONTENT IS THE FOUNDATION

contrast, a user in Vanuatu will pay about 50 cents in U.S. dollars
for the same content (more than 6 percent of their daily�income).14

�ese may seem like technical challenges to solve, but content
strategy dictates experience. Does it make sense to not have the
images and have the large-screen usability su�er because you can’t
draw your users’ eyes e�ectively? Or should you force your mobile
users to su�er slow render times and costly downloads only to get
images that don’t add much to the experience?

�e answer, as I’ve said, is it depends. Each situation is di�erent,
but when you are looking at your content, you need to be prepared
to make a judgment call on whether a particular piece of content
adds to the experience.

I will say that it is possible to have it both ways in certain circum-
stances. For instance, if you decide that thumbnails are valuable
but not the most valuable content on the page, you could deem
them “nice to have.” In other words, you could deem them an
enhancement. Once you make that call, there are technical means
of having just the text content on small screens and having
images on larger displays. I’ll discuss this concept, called lazy
loading, in�Chapter 5.

All of this ignores the elephant in the room, of course: the actual
monetary cost and time required to produce imagery, videos, and
the like. Does the cost of licensing photographs—or of producing
your own photoshoots and doing the follow-up editing and re-
touching—outweigh any potential increase in sales (if you can even
make the case that your photos will increase sales)? Video and ani-
mation can increase engagement, but they take time to storyboard,
script, capture, and produce (particularly on an ongoing basis).
�at can be a signi�cant time-suck and dramatically increase the
cost of a project. Will you see a return on�those investments?

14 �����������������ƒƒ…�̂ €�

44

Avoid Trapping Content
When you are working with media—especially rich media such as
interactive charts, videos, and the like—it can be quite easy to view
the content of those media as pointless in any other form. �is
could not be further from the truth.

When you create an interactive chart, for example, it is the visualiza-
tion of information. �at visualization might be charting something
speci�c such as sales data. �at’s information that could also be
easily conveyed in a table.15

Sometimes, however, a literal translation from one medium to
another is unnecessary. Take the graph Vanguard uses to highlight
how much its customers save in fees (Figure 2.6). �is graphic,
though interactive, is simply an approximation and is not meant to
be taken literally. �e text paired with it does a great job of convey-
ing the spirit of the graphic.

We don’t have any stockholders or outside owners to answer to.
So we can run our funds at cost, and you get to keep more of your
returns. On average, Vanguard mutual fund expense ratios are
82% less than the industry average.* Over time, that means more
money can stay in your pocket.

Sometimes that’s all you need. In other cases, that wouldn’t be
enough. For instance, consider a stock performance chart.

From a technical standpoint, it might make sense to store the
content of the chart in an HTML table and convert it into a chart
using JavaScript. Or it might make more sense to provide a link
below the interactive chart to take users to a separate page con-
taining the data tables. Depending on the situation, you may want
to outline which is preferred as part of the content strategy, or it
might be something that can be le� up to the development team.

15 In fact, the data probably exists in some sort of database table (or maybe a
few), which hints at another way it can be represented.

45CONTENT IS THE FOUNDATION

Figure 2.6 �is animated graph from Vanguard goes into detail about how
much�you stand to save by investing with the company, but the text above
it�perfectly conveys the spirit of the graphic.

As with many things, it all depends on the purpose the media is
serving. But providing access to an alternate content form increases
the accessibility of your content. �e most important thing is that
the content exists, is accounted for, and is made available to your
users. It isn’t trapped in some proprietary format that requires a user
to have a speci�c technology or capability in order to access it.

Some folks might look at the Vanguard example and think the text
is redundant in light of the graphic, but the reality is that it supports
the graphic in numerous ways. We all learn and process stimuli
di�erently—some of us are visual learners, some are verbal, and so
on—and presenting the key information in multiple ways addresses
this by providing alternate means of getting your messages across.
Moreover, it ensures that no part of your message�is lost.

46

Exploring Alternatives
�e content embedded in any media type can and should be made
available in an open, universally accessible format. For video and
audio �les, a transcript is o�en appropriate.16 Videos can also be
captioned.17 For charts and graphs, it’s typically data tables. For
timelines and such, it’s probably lists.

Images should be called out and have alternative text if they are
important enough to warrant being called content. If they are
purely decorative, leave their �‰� attributes blank or consider add-
ing them via CSS. Icons can be meaningful. If they are, they need
alternative text.

The PDF Conundrum
One major challenge on the Web is PDF (Portable Document
Format). PDFs are o�en deployed on the Web when someone on
the project thinks the content needs to be delivered in that one spe-
cial format. But that’s generally a weak argument. Few documents,
apart from some legally restricted ones perhaps, require their con-
tent and layout be intrinsically tied the way they are in a PDF.

Have you ever tried reading a PDF on a mobile phone? Sure, it can
be done, but it’s not fun. Lots of pinching and zooming. It’s also
not fun to use 2.5MB of data to download a restaurant menu in
PDF format that could easily have been good old fashioned HTML.
And don’t even get me started on PDF accessibility.18

16 � ere are a ton of reasonably priced services that do this. YouTube will even
do it for you automatically, though the quality varies.

17 Accessibility expert Joe Clark has put together an amazing list of online
captioning best practices: �����������������ƒ	���̂Š„ .

18 Accessibility expert Shawn Henry maintains a wealth of information about
PDF accessibility and the accessibility of text in general at the TAdER proj-
ect: ����������������‚‡†�•Š… .

47CONTENT IS THE FOUNDATION

Tying up your content in formats such as PDF is like tethering it to
a giant anchor: It can’t go anywhere easily or quickly. And any-
thing you want to do with it requires a great deal of e�ort. When
your content is rendered in HTML, however, it can travel hither
and thither with the greatest of ease. It weighs little, it works on
any device that can access the Web, and the content re�ows to
meet the user’s needs. For free.

Spending a few moments thinking about making your content as
broadly accessible as you can will pay huge dividends in the long
run. It increases the accessibility of your content, improves the us-
ability of your interfaces, and ensures the products you create will
be able to reach your customers on any device, over any connec-
tion, anywhere in the world.

KEEP DATA ENTRY CONVERSATIONAL
When it comes to copy, few things are as boring, dry, or robotic
as�forms.

We o�en feel compelled to create forms that are very clinical.
Perhaps it’s because in the world of surveys we know too much
“personality” can in�uence responses. But there’s a di�erence
between being personable and having an aggressive personality.
In�fact, I’d say there’s a pretty wide chasm there.

You need to remember that you’re authoring interfaces that will
be used by real, honest-to-goodness people. When you’re creat-
ing forms that don’t require scienti�c rigor, you can (and should)
do whatever you can to make the interaction more human.
More�conversational.

You should ask real questions: “What’s your name?” and “What’s
your email?” and “How would you prefer we contact you?” are far
more friendly than Name, Email, and Contact Preference. �ey’re
also completely unambiguous. Sure, it’s unlikely, but it’s entirely
possible that someone could read Contact Preference and be un-
clear on what you want to know.

48

Clarity is important, and the words you choose matter. �e
Facebook story I shared earlier in this chapter is a perfect exam-
ple of this. You need to think about how your interfaces read. You
need to be deliberate in your word choices to avoid confusing your
users. You need to know your audience and speak to them as they
speak to you. �at is the foundation of a great user experience.

DON’T FILL SPACE
�ey say nature abhors a vacuum, but nature has nothing on a
website design committee.

Ever since the beginning of the Web, we have looked for ways to
�ll space. It was tougher when we were on 640×480 screens, but
when we moved to 800×600, by golly we �lled it up. 1024×768? Oh,
we packed it in. 1920×1080? To the brim! Give us a vacant inch of
screen real estate, and we’ll �nd something to go there.

We know we shouldn’t do it. Studies have shown that empty space
helps refocus attention where you want it.19 And yet, we cram more
and more onto the page, all of which competes for attention. �e
more competition, the more exhausting the experience is for your
users. When the distractions obscure the content, most users will
just give up.

�ankfully, it doesn’t have to be this way. By focusing on the
purpose of your pages at every decision point, you can keep things
from getting out of hand.

Some additional page bits are immutable: branding, navigation,
copyright information, advertising. But then there’s the other stu�

19 ����������������ƒ��•�̂ ‚�•

49CONTENT IS THE FOUNDATION

we chuck into the page because we feel compelled to: social media
buttons, possibly related articles, internal promotions, more adver-
tising, newsletter sign-up forms, and even more advertising.

You need to take a hard look at what you put on the page and ask
yourself that age-old question: Does this content actually add to
the experience?

In some cases, it legitimately might. For instance, when some-
one �nishes reading an article, it makes sense to o�er them some
related content options they might enjoy. Or maybe that’s a place it
makes sense to o�er them a quick way to share the content on their
social media network of choice. �ere’s some consideration of the
experience in those decisions.

By contrast, it makes no sense to put those sharing options right
below the title of the article. �e user hasn’t even had a chance to
read it; they don’t even know if it’s worth sharing yet!

By evaluating each page component through the lens of how it con-
tributes to the page’s purpose, you can keep your pages lean and
give your users a more focused experience. Typically, this is an easy
sell on mobile, where screen real estate is at a premium, but users
on larger screens will bene�t as well.

For a great example of how a company can shi� from cluttered to
clear, consider Forbes. In 2007, an article page on Forbes.com was
more distraction than content (Figure 2.7). In 2015, its layout is
far more focused (Figure 2.8). It’s absolutely clear that the purpose
of the page is getting their users to the content and making it a
pleasure to read.

A design revolution like this doesn’t happen by accident. A lot of
thoughtful consideration went into designing an interface that is
“less”—less cluttered, less disorienting, and less aggravating. �e
team was clearly focused and let content drive the experience.

50

Figure 2.7 An article in Forbes circa 2007 (as captured for posterity by
Merlin�Mann). Everything that is not the content is grayed out.

Figure 2.8 An article in Forbes circa 2015 is far more focused on providing the
article content.

51CONTENT IS THE FOUNDATION

LET CONTENT LEAD THE WAY
Every website has a purpose, and every decision you make with
respect to it should support that purpose. What do your users
need to be able to do? How can you help them do that as easily and
painlessly as possible? How can you ensure their experience is a
good one? Experience starts with your content. All the technology
in the world won’t make your web project successful if the content
lacks focus, clarity, and purpose.

Your interfaces are a conversation with your users, so you should
always begin by thinking about how you want it to go. You need
to think about how your contributions to the conversation can
get your users the information they need in a way they can easily
understand. And then you need to get out of the way.

Clear, well-written, and audience-appropriate content is the
necessary baseline for progressive enhancement. Taking time
to�think it through early on will help you make better decisions
down the road.

“HTML is the unifying language
of the World Wide Web. Using
just the simple tags it contains,
the human race has created an
astoundingly diverse network of
hyperlinked documents, from
Amazon, eBay, and Wikipedia,
to personal blogs and websites
dedicated to cats that look
like�Hitler. ”

—JEREMY KEITH

CHAPTER 3:
MARKUP IS AN
ENHANCEMENT
In 2005, when I was just starting to come to grips with web stan-
dards, I was tasked with leading the development end of a regional
bank’s website redesign. I was in charge of all the implementation
details, from the content management system on the back end
to the HTML templates, CSS, and JavaScript on the front end. It
wasn’t my �rst time overseeing a big project like that, but it was the
�rst time I’d been given the opportunity to make every implemen-
tation decision…for better or for worse.

Web standards were by no means a new concept—the Web
Standards Project had been advocating for them since 1998—but
standards were only beginning to gain traction in the corporate
world in the early 2000s. Wired News underwent a web standards–
based redesign in 2002,1 and ESPN.com shi�ed in 2003.2 �e

1 Designer Doug Bowman blogged about the project at
������������������������ .

2 Eric Meyer interviewed designer Mike Davidson about the project at
������������������
	����� .

54

idea of jettisoning table-based layouts and spacer GIFs in favor of
meaningful markup and CSS was only beginning to catch on.

I had been sold on the concept relatively early on, but I—like most
of our industry—had been caught in the quicksand of corporate
spaghetti code and Dreamweaver-driven templates, unable to drag
myself out of the mire, at least not until this project came along.

I jumped headlong into the project and did everything I was sup-
posed to do: semantic markup, CSS for layouts, optimized images,
content-�rst source ordering, JavaScript for enhancement, and
so on. No one else on the project seemed to care as much as I did
about the “purity” of the code, but a few of my fellow developers
thought it was cool how much CSS could do, even back then.

In the end, we delivered the project—on time and within budget,
mind you—and our agency moved on to the next project. Sure, I
felt the self-satisfaction of a job well done, but I doubt anyone else
even noticed.

�en, about six months later, we were told that the bank had gone
from page 10 in a Google search for “Connecticut bank” to the �rst
page. In fact, it was the second result. �e client—and our market-
ing team—was eager to know what wizardry we’d worked in the
���� tags.

�e answer: nothing.

In fact, I had forgotten to include the keyword and description
���� tags entirely. And yet here we were with an astounding
jump�in the organic search rankings.

What was the secret sauce? Progressive enhancement.

Before the redesign, the site was a bit of a markup nightmare:
Content was buried in deeply nested tables, much of the actual
text of the site was trapped within images that lacked appropriate
��� text, any actual text content was ����� wrapped and bere� of
meaning, and JavaScript was required for the primary navigation
on the home page.

55MARKUP IS AN ENHANCEMENT

We turned this on its head and produced a series of clean and lean
templates that used semantic elements such as heading levels and
lists, paid attention to source order and the document outline,
moved all the design into CSS, and used JavaScript to enhance
the experience. Yeah, I forgot the ���� tags, but it didn’t matter
because search engines love meaningful markup.3

In this chapter, you’ll learn how to use markup to enhance your
web pages. You’ll see the importance of semantically appropriate
elements, source order, the document outline, and accessibility.
You’ll also explore how you can use markup to supercharge your
pages, delivering your content beyond the browser.

LEARN FROM THE PAST
When we �rst began building web pages, many of us didn’t un-
derstand the purpose of markup. �ose of us who came to the
Web from a programming background o�en considered learning
HTML beneath us, so we never put in the time to come to grips
with the semantics it provided.

�ose of us who came to the Web from a design background didn’t
understand the importance of semantics either. We thought only
of the presentational aspect of a web page and latched on to the
��•�� element as a means of laying out pages in columns (CSS
didn’t exist at the time). Once we saw how ��•�� elements could
be used to control layout, we found other ways to use them, o�en
supplanting existing (and well-supported) semantic elements, such
as lists and paragraphs (Figure 3.1).

3 ����������������•••�••�•

56

Figure 3.1 We used ��•�� elements for everything back in the day. On top is a list,
as displayed in the browser. Below shows the underlying table with the table cells out-
lined so you can see the structure. We should have just used an unordered list (�).

In o�ces across the globe, advocacy for using meaningful markup
and CSS for presentation fell on deaf ears. �e argument was
seen as a largely idealistic one because, �rst, the fact remained
that ��•��� based layouts still worked in modern browsers and,
second, the case for greater web accessibility was lost on many
people who had no �rsthand experience of using the Web with
a disability. �en Google came along and changed everything.
Suddenly, semantic markup was important.

Google was the �rst search engine to take semantics into account
when indexing web pages. Starting with the humble anchor (�)
element, which was the cornerstone of its original PageRank
algorithm,4 Google pioneered the use of semantic markup to
infer�meaning and relevancy.

�e other search engines soon followed. As search engine spiders
began hunting for other meaningful HTML elements on web pages
(for example, the � element, which indicates the most important
content on a page), semantic markup became more important to the
business world. Proper semantics meant better search rankings and,
thereby, a greater opportunity to attract new customers.

4 So-named for Google cofounder Larry Page, not because it ranked pages.

57MARKUP IS AN ENHANCEMENT

ILLUMINATE YOUR CONTENT
If content were soil, semantic markup would be the compost you’d
add to ensure a productive garden. It enriches the content, pro-
viding your users with clues about intent and context, as well as
supplementary information about the content itself.

Take, for example, the humble abbreviation element (�••�). It’s
used to denote abbreviations and acronyms.

€��������‚�ƒ„…�••�„�†���‡ �̂����‰‰��̂ Š��…��••�Š

In this simple HTML snippet from my website, you can see how
the abbreviation enhances the letters TN by informing the user
that they stand for “Tennessee.”

As HTML has evolved, its vocabulary has steadily expanded to
o�er more options for describing the content it encapsulates. �e
advent of HTML5 ushered in a slew of new semantic options (such
as the ��†� element, which is to denote the primary content of a
page) and even augmented a few existing ones (such as the afore-
mentioned �••� that took over for the ousted �����‹�).

As I mentioned in Chapter 2, the purpose of design is not to make
something pretty; it’s to clarify content or an idea. HTML excels at
that. It takes the clear well-written prose that is the foundation of
every online experience, and it illuminates the role each element
plays in the interface. In short, the HTML you write matters.

MEAN WHAT YOU SAY
Every choice you make in building a website a�ects your users’
experience. If you’ve worked on the Web for any amount of time,
however, you’re also well aware that there are always multiple ways
to accomplish the same goal. For example, to create a button that
can submit a form, you could use an †�� � , a • ���� , an � , or a
Œ†Ž (or just about any other element). But not all these “buttons”
are created equal.

58

ELEMENT APPEARANCE FOCUSABLE TAPPABLE SUBMITS FORMS

†�� � Button Yes Yes If �‹��‡̂‰ •�†�̂

• ���� Button Yes Yes If �‹��‡̂‰ •�†�̂

� Inline text Yes Yes No

Œ†Ž Block text No No No

Table 3.1 A comparison of various elements and their native capacity to act
like�buttons.

Compare the button-ness of these di�erent elements in terms of
how they are handled by default in a browser (Table 3.1).

As you can see, these elements act very di�erently in their default
states. �e †�� � element and the • ���� are as you would ex-
pect: �ey look like a button, they are focusable via the keyboard
like a button, they are tappable/clickable, and they have the capaci-
ty to submit a form.

Anchor elements (�) are intended to function as anchor points in
a document or as links to other pages. �ey are not meant to be
buttons. Anchors are both focusable and tappable, but they lack the
default appearance of a button, meaning CSS is required to achieve
that. Anchors also cannot submit a form, which means you need
to employ JavaScript to do that. Anchors are also activated only via
the keyboard using the Enter key; true buttons can be activated by
the spacebar as well. Listening for and acting on the additional key
press also requires JavaScript.

In other words, to make an anchor element look and act like a
button, you have added two dependencies you didn’t have with
an †�� � or • ���� : CSS and JavaScript. If either is not avail-
able, the interface will not operate as intended. �at extra CSS
and JavaScript is also more code that needs to be downloaded
and executed in the browser, which a�ects the performance of
the interface. Oh, and you need to maintain all of that extra code
over�time. Fun!

59MARKUP IS AN ENHANCEMENT

� at brings us to the Œ†Ž. Semantically, a Œ†Ž is a generic
“division” of the page. It’s a vanilla box with no inherent design
or behavior other than its contents begin on a new line (like a
paragraph but with no default margins). �is makes the Œ†Ž
appealing if you want to fully customize an element to look and
behave a particular way; you don’t have to override the default look
or behavior of the element, which can potentially save a few bits in
your CSS or�JavaScript.

�e downside is that it’s a vanilla box, meaning you get nothing for
free (apart from the fact that it starts on its own line). To make the
Œ†Ž a button, you need to do the following:

1. Make it look like a button, requiring CSS
2. Make it clickable like a button, requiring JavaScript
3. Make it keyboard focusable like a button, requiring the

��•†�Œ�‘ attribute
4. Make it keyboard interactive like a button, requiring JavaScript
5. Make it capable of submitting a form, also requiring JavaScript

So, while you have complete control over the element’s visual
appearance and behavior, an extra attribute is required, and CSS
and JavaScript support are required for the Œ†Ž button to operate
as intended.

Now with all of this in place, the Œ†Ž or � may look like a button
and behave like a button, but as far as any computer or vision-
impaired user is concerned, it’s still not a button. �e � version is
a link (possibly to nowhere if the ���� value is “#” as it so o�en
is in scenarios like this), and the Œ†Ž version is just some text. To
indicate either is acting as a button, you need to add a ���� of
“button” to the�element.

�e ���� attribute comes to HTML from the WAI-ARIA or ARIA,
for short (Web Accessibility Initiative’s Accessible Rich Internet
Applications) spec.5 ARIA is a collection of HTML attributes

5 �����������������’�“�••”�

60

that declare what is happening in the interface. Assistive tech-
nology looks for these clues to provide appropriate feedback for
vision-impaired users. �ese attributes can also be useful hooks for
simplifying your JavaScript. I’ll touch on ARIA a bit more later in
this chapter and in Chapter 5.

With a ���� of “button” declared on the � or Œ†Ž, the browser will
know that the element in question is playing the part of a button
in the interface. It doesn’t get you anything additional, however; it
just exposes the element as a button to assistive technology such as
a screen reader.6

Avoid Introducing Fragility
Even with the ���� attribute, solidly authored CSS, and expertly
written JavaScript in place, there are no guarantees that your user
will be able to submit the form with the anchor (�) or Œ†Ž. Why?
Table 3.2 is a list of the dependencies and a few of the things that
can go wrong.

Hmm, that’s a pretty big list…it’s a wonder any page works!

Granted, many of these are edge cases, but details matter. If you’re
running an ecommerce shop, you want a user to be able to make
a purchase, no matter what. You need to erect as few barriers as
possible that could prohibit them from accomplishing that task. If
you use an †�� � or a • ���� , anyone will be able to submit an
order, regardless. You can always use CSS and JavaScript to make
the experience better, but they should serve to enhance the experi-
ence, not be the experience. I’ll talk more about CSS and JavaScript
in the next two chapters.

6 ����������������•–�•�’“—

61MARKUP IS AN ENHANCEMENT

TECHNOLOGY POTENTIAL ISSUE

CSS �e browser doesn’t support CSS.

CSS CSS is disabled for performance.

CSS �e user has altered CSS (via a user style sheet) for
accessibility or some other personal preference.

CSS A networking issue caused the CSS to be unavailable.

CSS �e selector is too advanced for the browser.

CSS Rules appear in a media query and the browser doesn’t
support them.

JavaScript �e browser doesn’t support JavaScript.

JavaScript JavaScript is disabled.

JavaScript A networking issue caused the JavaScript to
be�unavailable.

JavaScript A �rewall blocked requests for JavaScript.

JavaScript A browser plugin blocked the JavaScript download
or�execution.

JavaScript A third-party JavaScript error caused JavaScript
execution to stop.

JavaScript A bug in the code caused the JavaScript to
stop�executing.

JavaScript �e browser failed a feature detection test and exited
the�script early.

ARIA �e browser does not support ARIA.

ARIA �e assistive technology does not support ARIA.

Table 3.2 Technological dependencies and potential blocks to their availability.

62

As you can see, there are a lot of hoops to jump through to make
one element look and behave like another. �e trade-o�s are rarely
worth it. All you’re doing by going down that path is building a
more fragile, heavy, and di�cult-to-maintain interface. And we’ve
been looking at only a single button. Multiply the complexity of
this one element by the number of interface elements you have on
any given page, and you’re probably starting to see why this isn’t a
great road to go down.

Each element has a purpose.7 When you need a paragraph, you use
a � . When you have a list of items, they each go in an �† (for “list
item”). If the items need to be in a particular order, they go inside an
�� (for “ordered list”). If not, they go in a � (for “unordered list”).

You can use CSS to make these elements look however you want,
so there is no reason to use a Œ†Ž when what you really need is a
� , for example. It was a lesson many of us had to learn back in the
olden days when we were abusing tables to no end. I can’t count the
number of times I used a two-column ��•�� when I should have
used a list.8

When you use an element for its intended purpose, you enhance
the meaning of your content: You use � to indicate the most
important headline on the page and �� to indicate the least
important headline on the page; you use �� to add emphasis to a
word; you use ‰����‚ to indicate that phrase is important; and
you use ��Œ� to indicate, well, code. Markup enriches your con-
tent and reduces the ambiguity of plain text.

7 ����������������—�•��—••�

8 I would put the bullet in the �rst column of the table and the text in the
second column (like you saw in Figure 3.1) to control the margins and
padding and to get the bullets to line up nicely with the top of the text. I’d
also use an image for the bullets. Table with two columns and �ve rows—
which is what a screen reader says—obscures the fact that it’s a list and
obscures the number of items. List of �ve items is perfectly clear. I should
have used an unordered list and some CSS. Oh, the humanity!

63MARKUP IS AN ENHANCEMENT

In one �nal example, consider the last sentence in footnote 8. I’d
probably mark up “Oh, the humanity!” in an † element because if
I were to read that paragraph aloud to you, I’d say that in a slightly
sarcastic way. �e † element is for content that is in an alternate
voice or mood. One day in the future, I’ll even be able to use CSS
Speech (formerly “aural” style sheets) to prompt a synthesized
voice—such as a screen reader or digital assistant—to speak that
sentence di�erently.

When you put more thought into your markup—by making more
deliberate element choices—you clarify the meaning of your words,
make your content more expressive, and create more opportunities
to improve your users’ experiences.

EMBRACE CLASSIFICATION
AND�IDENTIFICATION
Choosing the right element is the crucial �rst step in progressively
enhancing a web page. Once you’ve done that, you can take things
a bit further with attributes.

Some elements, such as the � you saw earlier, require attributes
in order to serve their purpose. An � without its ���� would not
provide a link to anywhere. Other attributes are optional, like the
���� attribute you saw in the discussion of buttons.

Two attributes in particular are used to extend HTML’s native
semantics in a less formal way. I’m talking, of course, about †Œ
and����‰‰ .

64

When the W3C’s Dave Raggett dra�ed a speci�cation for
HTML�3.0,9 it contained two new concepts: classi�cation and iden-
ti�cation, expressed via the ���‰‰ and †Œ attributes, respectively.10
�ese two attributes were not formally introduced into the HTML
lexicon until HTML 4.0 but were implemented in browsers around
the same time as CSS support was added. And CSS, of course,
brought us two simple selectors that targeted these attributes ex-
plicitly, causing some unfortunate confusion over the intended use
of ���‰‰ and †Œ from the get-go.

For years, nearly every web designer—myself included—thought
the correlation between the attributes and the selectors was inten-
tional. We believed that †Œ and ���‰‰ were intended purely for
use with CSS. You can’t blame us, though: At the time CSS didn’t
provide many ways to select elements. It made sense that ���‰‰„
(e.g., ����) and †Œ (e.g., ̃�������) would have been introduced
so we could style elements both generally and speci�cally.11

�ankfully, we now understand how ���‰‰ and †Œ were meant to
operate. �e ���‰‰ attribute was introduced speci�cally to address
the limited set of elements within HTML.

As time goes by, people’s expectations change, and more will be
demanded of HTML. One manifestation of this is the pressure to
add yet more tags. HTML 3.0 introduces a means for subclassing
elements in an open-ended way. �is can be used to distinguish
the role of a paragraph element as being a couplet in a stansa

9 HTML 3.0 (����������������”����™�	—) was an ambitious dra�: It
introduced numerous tags and attributes. Many of the new elements were
dropped by the time it reached recommendation status as HTML 3.2, but the
���‰‰ and †Œ attributes survived. Interestingly enough, some of the same
constructs proposed in HTML 3.0 have found their way back into HTML,
either formally as part of HTML5 or quasiformally as microformats.

10 It’s worth noting that ���‰‰ and †Œ each make a (very) brief appearance in
the HTML 2 spec (������������������“•����•) but were not formally
de�ned attributes. �ey were simply used to demonstrate the fault-tolerant
way in which browsers should treat unknown attributes.

11 And the HTML 3 dra� did allow for this use, among others.

65MARKUP IS AN ENHANCEMENT

[sic], or a mathematical term as being a tensor. �is ability
to make fresh distinctions can be exploited to impart distinct
rendering styles or to support richer search mechanisms, without
further complicating the HTML document format itself.12

�e intent was that ���‰‰ would contain a list of subclasses for
that particular element, with the classes listed from most general to
most speci�c.13 In this example, the generic division is being sub-
classed as a “promotional module” (as it goes in order from least
speci�c to most speci�c).14

…Œ†Ž„���‰‰‡ �̂�Œ ��„������†����̂Š

„ ���

…�Œ†ŽŠ

�e †Œ attribute was created for the purpose of identifying
a�speci�c element on the page. Each †Œ is expected to be
unique�on a given page. Identi�ers can be used as a
reference point for CSS selection (e.g., ˜Œ���†�‰), scripts (e.g.,
Œ�� �����‚��
������–‹šŒ›œŒ���†�‰žŸ), and anchors
(e.g., …�„����‡ˆ̃ Œ���†�‰ˆŠ).

�e ���‰‰ and †Œ attributes allow page authors to add their own
semantics on top of those de�ned in the HTML spec. Together,
these ad hoc semantics imbue the markup with greater meaning
and, over time, have gravitated toward a common set of classi�ca-
tions and identi�ers in use across the globe (e.g., �̃��Œ�� , ̃ ��Ž ,
and ����†���). �is common set of classi�cations and identi�ers

12 From the “Scalability” section of the HTML 3 dra�.

13 You’ll see this throughout the HTML 3 dra�, whenever ���‰‰ is de�ned for
an element.

14 If you’ve heard at all about the Block-Element-Modi�er (BEM) methodology
developed by Yandex, its concept of a modi�er tracks quite closely to this
idea, but in BEM it is a bit more explicit (����������������•••��•�•�).
�e nature of subclassing in this example (exempli�ed by the block--modi�er
syntax) draws direct connections between the “module” subclass and its
“promotional” variant. BEM is an interesting approach to classi�cation that’s
grown on me the more I’ve used it.

66

has, in turn, provided valuable guidance in the continued evolu-
tion of HTML, resulting in many new elements (e.g., ���Œ�� , ��Ž ,
and ���†���). �ey also fostered the development of a communi-
ty-driven set of HTML conventions known as microformats.

Use Microformats to Empower Tools
Microformats are a set of community-driven speci�cations for how
to mark up content to expose semantics (and metadata) that are
not available in HTML. Microformats formalize organically de-
veloped ���‰‰ -based naming conventions into a speci�cation that
addresses a need not met by HTML. For example, HTML provides
no robust way to mark up contact information or events, so the
community created microformats to make that possible.

�e �rst microformat arose from a desire to express associations
between individuals on the Web and was called XFN (XHTML
Friends Network). �ough not developed as a “microformat” (that
term came later), XFN was a perfect example of extending the
semantics of HTML with a speci�c goal in mind.

Developed by web standards advocate Tantek Çelik, WordPress
creator Matt Mullenweg, and CSS wizard Eric Meyer, XFN
makes use of the o�-neglected ��� attribute. �e purpose of
��� —which you are probably familiar with in the context of
���‡ˆ‰�‹��‰����̂ when including external CSS �les—is to
indicate the relationship of the target of an ���� attribute to the
current page.

�e idea was simple: If I wanted to point from my blog to the blog
of a colleague, I could employ XFN and add ���‡ �̂�����‚ �̂
to the link. Similarly, if I was linking to my wife’s blog, I would
use ���‡ �̂�†��Œ„�����‰†Œ���„‰�� ‰�„� ‰�„‰¡��������„
���¡��¢��̂ because she is all of those things.15

15 And more. Awwww.

67MARKUP IS AN ENHANCEMENT

On its own, this additional markup does little more than provide
a bit more information about our relationship and why I might be
linking to another website, but if I use it for every link in my blog
roll and those people, in turn, use it in theirs, all of a sudden we’ve
created a network that is programmatically navigable, creating
myriad opportunities for data mining and repurposing.

And that’s exactly what happened: XFN spread like wild�re.
So�ware developers integrated it into popular blogging tools (e.g.,
WordPress, Movable Type) and developers at nearly every site on
the “social Web” (e.g., Twitter, Flickr, Last.fm) began adorning user
pro�le pages with the special case of ���‡ �̂�̂ (used to link from
one web page you control to another), enabling tools like Google’s
Social Graph to quickly build a full pro�le of their users starting
from a single URL.16

From that simple (yet powerful) beginning, microformats have
increased in number to address common and diverse needs.
Most use a speci�c set of ���‰‰ names to mark up content like
a person’s pro�le (h-card), event listings (h-event), content for
syndication (h-feed), and resumes (h-resume). Others build o� the
��� attribute as XFN did: rel-license to indicate licensing informa-
tion, rel-nofollow to control search engine spidering, and rel-tag to
enable taxonomic tagging.17

Almost in parallel with the development of these microformats,
numerous tools sprung up to make use of them. Search engines
pay attention to them and, in many cases, even rank microformat-
ted content higher than non-microformatted content.18 Browser
add-ons enable users to extract and repurpose microformatted
content. Microformat parsers are also available for nearly every
programming language out there, and there are even web-based
services that give users direct access to the microformats in use

16 Sadly, Google killed its Social Graph product in 2012.

17 � e Microformats.org wiki keeps a running list of all microformats and
documentation on how to use them.

18 ����������������£	•������

68

on their sites. Read-it-later services such as Readability also use
microformats to extract content reliably from web pages.

Here’s a quick example of an h-card:

…‰���„���‰‰‡ �̂����ŒˆŠ	����„� ‰���‰��…�‰���Š

Based on this markup—essentially, the inclusion of the h-card
���‰‰ —a microformats parser knows the page contains a refer-
ence to a person and that person’s name is Aaron Gustafson. �is
is a slightly more complicated example:

…�„���‰‰‡ �̂����Œˆ„

„„„����‡ �̂������¡¡¡�������‚ ‰���‰������̂ Š���…��Š

I say slightly because it’s not really all that more complicated. But
now, the microformats parser knows the page includes a reference
to a person, and it knows their name and URL.

Microformats are yet another layer in the progressive enhancement
continuum, enabling you to make your sites even more useful to
your users. A�er all, how cool is it that you can enable your users
to export an event to their calendar or a business card to their
address book directly from your web page? �at’s pretty slick. And,
as an added bonus—if, like me, you vacillate over ���‰‰ names—
microformats provide a set of prede�ned values to handle a variety
of common scenarios.

Take It Further with RDFa and Microdata
If microformats get you excited about the possibilities of adding
machine-readable hints and metadata to your documents but you
don’t �nd them rich or �exible enough, you’ll probably love RDFa
and microdata. �ese two technologies provide alternative ways to
imbue HTML (and XML and SVG, etc.) with structured data. �ey
are alternatives to microformats but can o�en play nicely with
them too.

69MARKUP IS AN ENHANCEMENT

I used a microdata vocabulary to describe a book19 on the web
page for the �rst edition of this tome.20 First, I set things up on the„
���� element.

…����„���‚‡ �̂�̂ „†���‰����„

„„„„„„†����‹��‡ �̂������‰��������‚�–��¢̂ Š

Adding the †���‰���� attribute set the whole page as the scope
of the object being described, and †����‹�� pointed to the Book
vocabulary I was using from Schema.org. With that basic stu� in
place, I just added one more tag and two more attributes to identify
speci�c bits of content for extraction. �e †������� attribute is
the key to identifying pieces of the object.

• I added a ���� element with †�������‡ †̂��‚�̂ and pointed
to the URL for the book cover image in the ������� attribute.

• I added †�������‡ �̂���̂ to the � element for the book’s
title, and I added †�������‡ˆŒ�‰��†��†��̂ to a paragraph I
felt best summarized the book.

It was surprisingly simple to implement given how di�cult the
documentation on Schema.org is to parse (at least to me).

RDFa is a bit more rigorous and formal than microformats and
microdata. A good example of RDFa in practice is the Open Graph
protocol created by Facebook.21 Incidentally, you can also �nd
Open Graph in use on that same page, serving the same general
function. Here’s a representative sampling:

19 I used the vocabulary from Schema.org, a collaboration between Google,
Microso�, Yahoo, and Yandex intended to improve search results.

20 ���������������������•�¤�

21 ����������������•�¥•�¤•�•

70

…����„�������‹‡ �̂‚��‹��̂ „�������‡ •̂��¢̂ Š

…����„�������‹‡ �̂‚��†���̂

„„„„„„�������‡ 	̂Œ���†Ž�„•�•„�‰†‚�̂ Š

…����„�������‹‡ �̂‚�†��‚�̂ „�������‡ �̂�Ž�����‚̂ Š

…����„�������‹‡ �̂‚�Œ�‰��†��†��̂ „

„„„„„„�������‡ š̂�„��†‰„•�†�����̂Š

As with the microdata example, these ���� tags enable a web
crawler to easily extract key information from the document.
Facebook, Google+, Twitter, LinkedIn, and others use the
OpenGraph tags to create the preview you see when you link to
a website in a post. Twitter has also created its own RDFa tags
to build upon the Open Graph protocol in service of its Twitter
Cards e�ort.22 Similarly, Pinterest drives its Rich Pins feature with
Open�Graph tags.23

You can embed RDFa outside of ���� tags too, using the Ž���• ,
�‹���� , and �������‹ attributes. RDFa Play24 provides a nice
isolated testing environment that helps you see how your RDFa
objects come together. Google also o�ers an incredibly handy
structured data testing tool,25 which can expose your microdata,
RDFa, and microformatted objects.

When adding structured data like this, you supercharge your
HTML documents, making already well-structured, easily indexed
content even more useful to search engines and other computer-
based tools by identifying the most useful bits using a more formal
naming structure. Structured data empowers your content to
go far beyond the browser, and that’s another perfect example
of�progressive enhancement.

22 �������������������	��•€�

23 �����������������•¥��•�•

24 ����������������£�•��•�–—

25 ����������������•�•��•��¥

71MARKUP IS AN ENHANCEMENT

MAKE DELIBERATE MARKUP CHOICES
�ere are times when you may legitimately need to insert seman-
tically unnecessary markup into your documents. Most o�en, it’s
when you need to group somewhat-related elements to lay out the
page properly with CSS. Traditionally, you’d use generic Œ†Ž ele-
ments for this purpose and give them semantic ���‰‰ names such
as “section,” “article,” or “aside.” With the advent of HTML5, we
were given �rst-class elements that serve those purposes: ‰���†�� ,
���†��� , �‰†Œ� , ���Œ�� , ������ , and ��†� . Using these ele-
ments, you can make wrappers like this purposeful, intentional.

You should try to avoid adding unnecessary markup as o�en as
possible to keep your pages smaller and faster to load. To achieve
this, I o�en start marking up the content of a page using only
content-related elements such as � and � . �en, I look for natural
ways to group those elements into related chunks (Figure 3.2). In
forms, you have the handy �†��Œ‰�� for aggregating related form
controls, but outside of forms you can use ���†��� or ‰���†��
for�that purpose.

Figure 3.2 A New York Times article page with organizationally linked content
grouped into colored blocks.

72

�ese two elements are pretty similar but serve di�erent purposes.
A ‰���†�� is just what you’d think: a portion of some larger piece
of content (for instance, the chapter you’re reading is a section of
this book). An ���†��� is best thought of as an autonomous unit
of content—it can exist on its own. A good rule of thumb for using
these elements is that if the content in question could be removed
from the document without a�ecting the meaning of either the
document or the content itself, ���†��� is your best bet. If it can’t,
it’s a ‰���†�� .

Interestingly (and somewhat confusingly), a ‰���†�� can contain
one or more ���†��� or ‰���†�� descendants, and an ���†���
can contain one or more ‰���†�� or ���†��� descendants. But if
you keep coming back to the ���†��� being an independent unit
of content, you’ll always make the right call.

Honor the Outline
While visually ���†��� and ‰���†�� are no di�erent than a Œ†Ž,
from a semantic standpoint they do have an e�ect on the page. �e
���†��� and ‰���†�� elements, along with ��Ž and �‰†Œ� , are
referred to as sectioning elements because they divide the docu-
ment in an explicit way. �e concept of explicit sectioning came
about in HTML5 as a way of overcoming the limitation of having
only six heading elements (� –��).

�e � –�� elements generate a natural document outline,26 which
enables a browser to create a table of contents for assistive technol-
ogy to use in order to ease navigation around the page (Figure�3.3).
�e document outline can also be accessed programmatically by
search engines to help them generate better search results. I’ve even
accessed the document outline with JavaScript to enable me to
turn static content into a dynamic tabbed interface.27

26 � e Web Developer Toolbar (����������������–““—��	
�) is an
excellent browser add-on and features easy access to the document outline.

27 ����������������—�����““”

73MARKUP IS AN ENHANCEMENT

Figure 3.3 �e Web Design Day 2015 Schedule (����������������
�“¥�”•�–)
and its corresponding document outline.

�e document outline provides an easy way to review the organi-
zation of your web pages and validate your source order decisions.
It helps you ensure the content �ow works.

As I mentioned, HTML de�nes only six heading levels. In some
cases, that may not be enough to accommodate your document;
once you need to go to a seventh level, you’re out of options.
Another problem this causes is that in a world of CMSs and com-
ponentized templates, maintaining control over the document
outline can be painful. For instance, if article teasers came below
an � on the home page but they came below an �� in the sidebar
of an article (Figure 3.4), you would need to have the teaser title
marked up in an �� in the �rst instance and an �• in the second to
maintain a proper outline.

To address these two use cases, explicit “sectioning elements” were
added to HTML. In theory, these elements create a nested level in
the document outline and allow you to start with � all over again.
�e reason I say “in theory” is that no browser has implemented
the accessibility aspect of this approach yet. �at doesn’t mean
they won’t in the future; I’m hopeful because explicit sectioning is
a useful feature in HTML.

74

Figure 3.4 �e same article teaser used in two di�erent places on Web Standards
Sherpa. In the top image, the teaser is featured front and center. In the bottom
image, it’s a promotion in the sidebar.

75MARKUP IS AN ENHANCEMENT

Look at the di�erence. Without sectioning elements, you would
create a good document outline like this:

…�Š	‰¢„���„������‰…��Š

…��Š� �‰�†��„	•� �„�� ��‰�����‰„��Œ„–�†�Œ„¤‰��‰…���Š

…¦��„���‰��„�������„��Š

…��Š� �‰�†��„	•� �„”� �Œ�Œ„€�����‰„��Œ„§��‚��‰‰†Ž�„

„„„„
����������…���Š

…¦��„���‰��„�������„��Š

But with sectioning elements, you have a bit more �exibility
because you are being explicit about the outline.

…�Š	‰¢„���„������‰…��Š

…���†���Š

„ …�Š� �‰�†��„	•� �„�� ��‰�����‰„��Œ„–�†�Œ„

„„„„„¤‰��‰…��Š

„ …¦��„���‰��„�������„��Š

…����†���Š

…���†���Š

„ …�Š� �‰�†��„	•� �„”� �Œ�Œ„€�����‰„��Œ„§��‚��‰‰†Ž�„

„„„„„
����������…��Š

„ …¦��„���‰��„�������„��Š

…����†���Š

And in both instances the document outline would be as follows:

1. Ask the Sherpas
a. Question About Touchscreens and Blind Users
b. Question About Rounded Corners and Progressive

Enhancement

If your website isn’t terribly complex so as to require more than six
heading levels and you have the �exibility in your CMS, I’d advise
you to use the traditional outlining algorithm as your guide while
still using sectioning elements. �is allows the outline to remain
the same under either outlining algorithm.

76

…�Š	‰¢„���„������‰…��Š

…���†���Š

„ …��Š� �‰�†��„	•� �„�� ��‰�����‰„��Œ„–�†�Œ„¤‰��‰…���Š

„ …¦��„���‰��„�������„��Š

…����†���Š

…���†���Š

„ …��Š� �‰�†��„	•� �„”� �Œ�Œ„€�����‰„��Œ„§��‚��‰‰†Ž�„

„„„„„
����������…���Š

„ …¦��„���‰��„�������„��Š

…����†���Š

�e reason it works is that explicit sections treat the �rst heading
level they encounter as the top heading level for that section. In
other words, if you kick o� an ���†��� with �� (as I just showed
you), the �� would be equivalent to an � in the same position (or
an �• , �� , and so on). �is approach ensures that the most users
are served, both now and in the future.

One �nal note regarding sectioning elements and the outline: If
you use a sectioning element, make sure it contains a heading. In
other words, never do this:

…‰���†��Š

„ …���†���Š

„„„ …��Š� �‰�†��„	•� �„�� ��‰�����‰„��Œ„–�†�Œ„

„„„„„„„¤‰��‰…���Š

„„„ …¦��„���‰��„�������„��Š

„ …����†���Š

„ …���†���Š

„„„ …��Š� �‰�†��„	•� �„”� �Œ�Œ„€�����‰„��Œ„

„„„„„„„§��‚��‰‰†Ž�„
����������…���Š

„„„ …¦��„���‰��„�������„��Š

„ …����†���Š

…�‰���†��Š

77MARKUP IS AN ENHANCEMENT

� e outer ‰���†�� must have a heading inside it before the
���†��� elements or else you end up with a broken outline:

1. MISSING HEADLINE
a. Question About Touchscreens and Blind Users
b. Question About Rounded Corners and Progressive

Enhancement

You can always use CSS to hide the headline if you don’t want to
show it. Or if no headline is really needed, maybe it isn’t worthy
of being a distinct ‰���†�� element a�er all; maybe it’s merely a
division (Œ†Ž). Or maybe—in place of a container and a heading—
a paragraph-level thematic break (��) makes the most sense. Each
situation is di�erent. Weigh the options and their implications and
then make the decision.

Be Intentional with Source Order
As discussed in Chapter 2, the interfaces you create are a conversa-
tion with your users. When you consider it in that light, it becomes
easy to make smarter decisions in terms of the source order you
use for your pages.

A classic design tension is where to place the navigation for your
site in terms of source order. Some argue that navigation should
come right a�er the site branding because users may want imme-
diate access to the navigational links to �nd what they are looking
for. Others argue that the content of the page is the priority and
should therefore come before the navigation.

On most pages, I �nd the latter approach to be more bene�cial,
and here’s why: If I am having a conversation with someone, that
conversation is my priority. Navigation ends the conversation by
forcing someone to make a choice, possibly before they are even
informed enough to feel like they can make a good one.

In his book Mobile First, Luke Wroblewski furthers this argu-
ment�with a focus on mobile devices (where screen real estate is
at�a premium).

78

As a general rule, content takes precedence over navigation on
mobile. Whether people are checking on frequently updated
data like stocks, news, or scores; looking up local information; or
�nding their way to articles through search or communication
tools—they want immediate answers to their needs and not
your�site map.

Too many mobile web experiences…start the conversation o�
with a list of navigation options instead of content. Time is o�en
precious on mobile and downloads can cost money, so get people
to what they came for as soon as you can.28

When you consider the continuum of experience moving from the
smallest screens to the largest ones, the decisions you make need to
support those smaller screen experiences �rst. Users come to your
site for the content, not your navigation.

�is approach may also have some bene�ts when it comes to SEO
(search engine optimization). Much of the world of SEO is voodoo
and black magic—search engines don’t o�en want the inner work-
ings of their web crawlers or indexing algorithms to be made public
because people would quickly use that information to game their
rankings. �at said, the web crawlers that search engines employ do
tend to reward thoughtful choices for source order as they do other
deliberate markup choices. For example, the following gives greater
weight to content that appears farther up in the page:29

[T]he placement of your keywords matters far more than their
frequency. Posting “auto repair shop” once in the title tag of your
site and once in the header matters far more than stu�ng it �ve
times into the body copy. Google breaks your site down into key
areas, with meta information and headers taking top priority,
body copy taking secondary priority, and side bars and footers
taking the last priority.

28 ���������������������•�™

29 �����������������•�–�€���

79MARKUP IS AN ENHANCEMENT

In my experience, making decisions that are in your users’ best in-
terests o�en yield SEO bene�ts organically, so I don’t spend much
time focusing on SEO-related recommendations. But if you need
the extra ammunition for discussing source order with a team
member, this is a good argument to have at the ready.

Although it happens less frequently now—with users’ increased
reliance on search engines—it’s worth noting that there are instances
where a user may land on the home page for a site and need to browse
or search for content. In this instance, it’s quite handy to have quick
access to the navigation. But if the navigation is at the bottom of a long
page on a mobile screen, all that scrolling could be frustrating.

�ankfully, all is not lost. Remember that †Œ attributes can func-
tion as anchor reference points in the document. �at means if
you give your navigation an †Œ of “nav,” you can simply include an
anchor to the navigation right a�er the branding. You can see this
approach in use on the Contents Magazine website (Figure 3.5).

Figure 3.5 Contents Magazine’s website (����������������’€••����)
with a link anchoring to the navigation.

80

Here’s a simpli�ed version of what is going on in this site:

…���Œ��Š

„ …¦��„��‚�„��Š

„ …�Š…�„����‡ˆ̃ ‰†�����Ž̂ Š
‘�����…��Š…��Š

…����Œ��Š

…¦��„��‚�„�������„��Š

…Œ†Ž„†Œ‡ˆ‰†�����Ž̂ Š

„ …¦��„‰�����„����„��Š

„ …��ŽŠ

„„„ … �Š

„„„„„ …�†Š…�„����‡ �̂���†���‰�̂ Š	���†Ž�…��Š…��†Š

„„„„„ …¦��„��Ž„����†� �‰„��Š

„„„ …� �Š

„ …���ŽŠ

…�Œ†ŽŠ

…¦��„‰†��„������„��Š

You can take this a step further by facilitating movement back up
the page as well. A�er the navigation, o�er a link to the content of
the page. Nichols College30 does that. You’ll examine this approach
and how they used CSS to enhance that experience to great e�ect
in Chapter 4.

On larger screens, most websites place the navigation of a page
above the content, which may also seem problematic. But with
CSS, there are myriad ways to rearrange the page and move the
navigation above the content.

Source order matters. It has a direct e�ect on the usability of your
pages, and navigation versus content is only one example of how this
can play out. �ere are countless other small-scale instances where
you need to pay attention to source order. Consider a blog post: It

30 ����������������•�•��•�–�

81MARKUP IS AN ENHANCEMENT

wouldn’t make sense to o�er a list of links to related posts until a�er
the user has read the post they’re on. Similarly, it doesn’t make sense
to ask them to share it on social media until they’ve actually read it.

�e document outline (discussed earlier) is a great tool for getting
an at-a-glance view of your overall page’s organization, but there
really is no substitute for reading your source. Search engines and
assistive technologies experience your content in this way, so you
should too. If the order of your elements makes sense as you are
reading the interface, then you are well on your way to providing a
usable and accessible experience.

Avoid Unnecessary Markup
Another situation in which you might feel the need to add extra
markup is when you are coding interactive widgets. Consider a
tabbed interface, for example (Figure 3.6). To build a tabbed in-
terface, you need some speci�c elements in your markup. Here’s a
simpli�ed version of the markup from that page:

…Œ†Ž„���‰‰‡ �̂�••�Œ�†��������̂ Š

„ …��„���‰‰‡ �̂�•�†‰�̂ Š

„„„ …�†„���‰‰‡ �̂�•̂ Š���‚��„�‹��…��†Š

„„„ …�†„���‰‰‡ �̂�•̂ Š������‹„�‹��…��†Š

„ …���Š

„ …‰���†��„���‰‰‡ �̂�•�����̂Š

„„„ …�„���‰‰‡ �̂†ŒŒ��̂ Š���‚��„�‹��…��Š

„„„ …��•��Š

„„„„„ …¦��„��•��„�������‰„��Š

„„„ …���•��Š

„ …�‰���†��Š

„ …‰���†��„���‰‰‡ �̂�•�����̂Š

„„„ …�„���‰‰‡ �̂†ŒŒ��̂ Š������‹„�‹��…��Š

„„„ …��•��Š

„„„„„ …¦��„��•��„�������‰„��Š

„„„ …���•��Š

„ …�‰���†��Š

…�Œ†ŽŠ

82

Figure 3.6 A tabbed interface on AlzForum.org
(����������������–”•¥�”•£�).

To make the tabbed interface functional, it needs tabs to click on
(�†���•), a tab list to contain them (�����•�†‰�), and content pan-
els to show and hide (‰���†�����•�����). But a tabbed interface
requires JavaScript to function, so if the JavaScript enhancement
is not available, a user has to contend with this cru�y markup,
which may be confusing. It’s also additional markup that has to be
downloaded, and it has to be maintained by people like us. What
happens if six months down the road you decide to ditch tabbed
interfaces on your site in favor of accordions? You’d need to rip all
this code out of your documents. Lame!

When you encounter situations like this—where you need extra
markup to enable JavaScript-based functionality—it pays to
recognize the potential usability and maintainability issues with
hard-coding the extra markup. Rather than hard-coding it, you
can use JavaScript to generate that markup only when you need it.

JavaScript is really good at manipulating HTML documents, so
it is no problem for it to yank out pieces of markup and dynam-
ically assemble the HTML you need to create a tabbed interface.
�at is exactly what happens on AlzForum.org: �e page authors
used a ���‰‰ of “tabbed-interface” to inform JavaScript that the
content within should be transformed into a tabbed interface, but
that’s the only bit that’s hard-coded; the tabbed interface is entire-
ly built using JavaScript. �e script then reads out the headings it

83MARKUP IS AN ENHANCEMENT

encounters within—which, per my earlier recommendation, would
be better as �• rather than � elements—and dynamically con-
structs the tabbed interface from there.

From a user’s standpoint, the experience is positive whether
JavaScript is available because the linearized content is
perfectly usable. From a maintenance standpoint, it becomes
inconsequential to make updates to the tabbed interface markup
because it’s generated by a single script. Finally, if they ever wanted
to get rid of the tabbed interfaces, they could either remove the
“tabbed-interface” ���‰‰ names or simply remove that particular
JavaScript from the site.

I’ll dissect the tabbed interface on AlzForum and talk more about
using JavaScript to progressively enhance pages in Chapter 5.

CLARIFY INTERFACES WITH ARIA
Early in this chapter, I introduced the ARIA ���� attribute as
a way to make one element behave as another as far as assistive
technology is concerned. Remember the Œ†Ž masquerading as
a • ���� ? �ere is a speci�c subset of ���� values that act as
landmarks within a document that assistive technology can expose
and allow a user to jump from one part of the page to another.
Table�3.3 lists a few examples.

Some of these roles directly correlate with existing HTML
elements (e.g., ��†� , �‰†Œ� , and ��Ž), which can seem a little
confusing. �e reason for this is twofold. First, the ARIA spec
and HTML5, which introduced these corresponding elements,
were developed independently at roughly the same time, so they
address some of the very same issues. Second, there are instances
where you may want one element to act as another (as in the Œ†Ž
button example or in non-HTML markup like SVG where the
same semantics don’t exist). In other words, there are times the
redundancy can be�quite useful.

84

ROLE INDICATES

•����� �e header for the page
(containing the site name, etc.)

��†� �e primary content of the page

�������†��� �e footer information for the page
(containing site copyright, etc.)

������������‹ Content related to but not part of the primary
page�content

��Ž†‚��†�� Where to �nd navigational links

‰����� Where to �nd the search form for the site

Table 3.3 A Few ARIA ���� Values and �eir Meaning

Whenever possible, you should follow the First Rule of ARIA Use.31

If you can use a native HTML element or attribute with the
semantics and behaviour you require already built in, instead
of re-purposing an element and adding an ARIA role, state or
property to make it accessible, then do so.

In other words, use the ��†� element rather than ����‡ �̂�†�̂ ,
use • ���� rather than ����‡ •̂ ����̂ , and so on. Now, in-
terestingly, the ARIA landmarks that don’t have direct semantic
equivalents become a gateway for new elements to be exposed
to assistive technology via the accessibility API. �e landmark
of ��†� is a perfect example of this: �e ARIA role predated the
��†� element, and because it did, the ARIA mapping already
existed to expose its semantic meaning. So when the ��†� element
came along, its mappings just piggybacked on the ARIA mapping,
and it was supported by assistive technology on day one.32

31 � is rule and other helpful guidelines are available in the W3C’s Notes on
Using ARIA in HTML (����������������—�•��’–—£).

32 For more, see ������������������£�•�
 .

85MARKUP IS AN ENHANCEMENT

ARIA o�ers a rich set of roles, beyond the landmark ones, that
allow you to clarify the function an element is playing in an
interface.33 Some map directly to existing HTML elements (e.g.,
“button”, “listitem”), others are wholly unique to ARIA (e.g., “ta-
blist”, “tree”), but all are intended to help users better understand
what is going on in the interface they are using.

I’ll cover some of the widget-related roles (as well as ARIA’s states
and properties) in Chapter 5, but there are two unique ARIA roles
I want to touch on before we move on.

�e “alert” ���� indicates content that the user should be made
aware of immediately. A good use case for using this ���� is to
highlight form errors that are being returned from the server. �is
is the sort of content you want your users (especially your non-
sighted ones) to be made aware of immediately. A closely related
���� is “alert dialog,” which is like “alert” but the initial focus is
taken to an element inside of it.

�e “presentation” ���� removes any semantic meaning an
element would otherwise have. In other words, it tells assistive
technology to treat it as purely presentational (as opposed to mean-
ingful). �is isn’t a ���� you’re likely to need o�en, but it’s useful
in rare cases, for instance when hiding a presentational image from
assistive technology. It’s worth noting that this ���� is ignored if
you apply it to an interactive element like a • ���� or an anchor.

While ARIA roles are not required in your markup, they go a
long�way toward clarifying the purpose key elements serve within
your interfaces, further enhancing the experience for users who
can bene�t from them.

33 A complete list is available at ����������������•••	��§•¤ .

86

UNDERSTAND FAULT TOLERANCE
Progressive enhancement in HTML is possible because of one key
feature of the language: fault tolerance. As I mentioned in Chapter
1, fault tolerance makes it possible to browse an HTML5-based
website in Lynx. But how is that possible? Lynx originally came out
in 1992, and HTML5 wasn’t �nalized until 2014.

It’s simple: Browsers are instructed to ignore what they don’t
understand. When it comes to HTML, that means elements that
aren’t understood are ignored, but their contents are exposed.
Unrecognized attributes are simply ignored.34

When I started building websites, it wasn’t something that came
up o�en. �en Flash came along35 and, early on, the default way to
include a Flash movie in your HTML was to do something akin to
the following:

…�•̈���„���Š

„ …�����„����‡ �̂�Ž†�̂ „Ž�� �‡ �̂�Ž†��‰¡�̂ Š

„ …¦��„����„�����„�������‰„��Š

„ …��•�Œ„‰��‡ �̂�Ž†��‰¡�̂ „���Š

…��•̈���Š

�is weird construct of an ��•�Œ element nested within an
�•̈��� element had me perplexed. According to the HTML spec,
��•�Œ wasn’t even a valid element,36 so what was it doing inside
the �•̈��� ?

As it turned out, ��•�Œ was a proprietary tag created by Netscape
to allow plugin content to be run in a web page.37 �e W3C had

34 ����������������¤•���——€

35 Remember Flash?!

36 It is now.

37 Interestingly, Netscape founder Marc Andreessen is also credited with the
creation of the once-proprietary †�‚ element, which he included in Mosaic
(he also worked on that early browser), much to the chagrin of Tim Berners-
Lee and others on the HTML mailing list in 1993.

87MARKUP IS AN ENHANCEMENT

standardized on the �•̈��� element for embedding generic mul-
timedia content of any kind. To serve both Netscape and Internet
Explorer (the two dominant browsers at the time), Macromedia
decided to use both.

�is is where the fault-tolerant nature of HTML came into play:
By wrapping the �•̈��� element around the ��•�Œ , the �•̈���
would be encountered �rst. Browsers that understood the �•̈���
element would insert the Flash movie and throw away the ��•�Œ
(since �•̈��� allows only for �����„ and other �•̈��� elements
inside it). Browsers that didn’t understand �•̈��� would ignore
that element and move into its content, encountering the ��•�Œ .
If�they understood the ��•�Œ element, they would display the
Flash movie. Browsers that didn’t understand ��•�Œ either
would�show nothing.

HTML is pretty brilliant in this way because it allows you to contin-
ue advancing the language without crippling older browsers’ ability
to display web pages. Let’s look at a few more examples of fault toler-
ance in action, starting with another multimedia object: Ž†Œ�� .

�e Ž†Œ�� element is a lot like �•̈��� in that it allows you to
embed video �les natively (rather than relying on a Flash wrap-
per as we did for many years). �e Ž†Œ�� element comes in two
�avors: a single tag version for when the video is available only in a
single format and a version with opening and closing tags that lets
you supply multiple video format options.

…Ž†Œ��„‰��‡ �̂�Ž†�����̂„�������‰„
„„„„„„„��‰���‡ �̂�Ž†��̈�‚̂ Š

…Ž†Œ��„�������‰„��‰���‡ �̂�Ž†��̈�‚̂ Š
„ …‰� ���„‰��‡ �̂�Ž†���‚‚̂ „�‹��‡ Ž̂†Œ����‚‚̂ Š
„ …‰� ���„‰��‡ �̂�Ž†�����̂„�‹��‡ Ž̂†Œ������̂Š
…�Ž†Œ��Š

Since you know browsers that don’t support the Ž†Œ��
element�will ignore it, the latter o�ers you a bit more �exibility
to�provide�fallbacks.

88

…Ž†Œ��„�������‰„��‰���‡ �̂�Ž†��̈�‚̂ Š
„ …‰� ���„‰��‡ �̂�Ž†���‚‚̂ „�‹��‡ Ž̂†Œ����‚‚̂ Š
„ …‰� ���„‰��‡ �̂�Ž†�����̂„�‹��‡ Ž̂†Œ������̂Š
„ …�Ššž�„‰���‹ƒ„¡�„���ž�„���‹„��†‰„Ž†Œ��„†�„
„„„„‹� �„•��¡‰���„�„‹� „¡���„��„Œ�¡����Œ„
„„„„†�„†�‰���Œ©…��Š
„ … �Š
„„„ …�†Š…�„Œ�¡����Œ„����‡ �̂�Ž†���‚‚̂ Šª‚‚„������„
„„„„„„„•�����…��Š…��†Š
„„„ …�†Š…�„Œ�¡����Œ„����‡ �̂�Ž†�����̂Š’§�„
„„„„„„„•�����…��Š…��†Š
„ …� �Š
…�Ž†Œ��Š

Now, if a browser comes along and doesn’t grok Ž†Œ�� , you
have provided a nice message and o�ered them download links
instead. But if Ž†Œ�� is supported in their browser, they just see
the video. You can (and should) use this same approach for the
� Œ†� element too. You may have noticed that I also included
the Œ�¡����Œ attribute on the links in the fallback. �is causes
supporting browsers to automatically download the linked content
rather than navigate to it when a user clicks the anchor. �at saves
users from having to right-click the link to download the �le.

�e �†�� �� element was modeled on Ž†Œ�� and gives you the
ability to de�ne multiple art-directed images to be displayed in
di�erent media query-de�ned contexts. Its markup should look
pretty familiar.

…�†�� ��Š
„ …‰� ���„��Œ†�‡ ›̂�†��¡†Œ���„•“��Ÿ̂ „
„„„„„„„„„‰��‰��‡ �̂��‚��̈�‚̂ Š
„ …‰� ���„��Œ†�‡ ›̂�†��¡†Œ���„�•��Ÿ̂ „
„„„„„„„„„‰��‰��‡ �̂�Œ† ��̈�‚̂ Š
„ …†�‚„‰��‡ˆ‰�����̈�‚̂ „
„„„„„„���‡ 	̂����„‚†Ž†�‚„‹� „�„�� �•‰� �¦̂ Š
…��†�� ��Š

89MARKUP IS AN ENHANCEMENT

As you can probably guess, browsers that don’t support �†�� ��
will display the nested †�‚ element, but browsers that under-
stand �†�� �� would use the source information to create an
adaptive�image.

�ere’s another adaptive image option too: ‰��‰�� and ‰†«�‰
applied to an †�‚ . Here’s an example:

…†�‚„‰��‡ˆ‰�����̈�‚̂ „‰†«�‰‡ ̂¬¬Ž¡̂

„„„ „ „ ‰��‰��‡ˆ‰�����̈�‚„�¬¬¡ƒ„��Œ† ��̈�‚„“¬¬¡ƒ„

„„„„„„„„„„„„„���‚��̈�‚„�¬¬¡̂

„„„ „ „ ���‡ˆ 	����„‚†Ž†�‚„‹� „�„Œ� •��„�� �•‰� �¦ ˆŠ

Browsers that support both the ‰��‰�� and ‰†«�‰ attributes
will download the most appropriate image given the width of the
browser window.38 Browsers that don’t will ignore those attributes
and use †�‚ in the traditional way by loading the image indicated
in the ‰�� attribute.

Switching gears a little, consider form elements. Have you ever
misspelled the value of a �‹��„ attribute on an †�� � before?
You know, “chekbox” instead of “checkbox” or “adio” instead of
“radio”? I do it all the time. When you do that, the browser dis-
plays a standard text �eld. Why? Fault tolerance! It doesn’t know
what an †�� � of type “adio” is, so it falls back to the default
†�� � type: text.

�is is yet another way the fault-tolerant nature of HTML enables
the language to evolve. It’s what allows you to use newer form
controls such as “email” and “range” without making the form un-
usable to folks who are using browsers that don’t understand those
†�� � types. It’s pretty amazing.

38 � e browser will also take into account a ton of other factors, as detailed
in�the spec at ����‰������������–��•�•�•” .

90

Now here’s the coup de grâce, courtesy of web developer Jeremy Keith:39

…��•��„���‡ˆ‰����̂ „†Œ‡ˆ‰����®��•��̂Š�����…���•��Š

…Œ����†‰�„†Œ‡ˆ‰����‰ˆŠ

„ …‰�����„����‡ˆ‰����̂ „��†����•����Œ•‹‡ˆ‰����®��•��̂Š

„„„ …���†��Š	��•���…����†��Š

„„„ …���†��Š	��‰¢�…����†��Š

„„„ …���†��Š	�†«���…����†��Š

„„„ …���†��Š	�¢��‰�‰…����†��Š

„„„ …¦��„���†��‰„����†� �„��Š

„ …�‰�����Š

„ š�„�����ƒ„����‰�„‰���†�‹

…�Œ����†‰�Š

…†�� �„†Œ‡¯‰����̂ „����‡ˆ‰����̂ „�†‰�‡ˆ‰����‰ˆŠ

I’ll give you a moment to look that over and come up with what the
primary interaction is and what the fallback is.

(Yeah, I’m humming the Jeopardy theme in my head.)

Ready? �is example makes use of the Œ����†‰� element, which,
in concert with the �†‰� attribute, enables native input suggestions
in the browser (a.k.a. predictive typing). As Figure 3.7 shows,
browsers that don’t support Œ����†‰� will see the “State” ��•�� ,
the ‰����� , the text “If other, please specify,” and the text �eld;
browsers that support Œ����†‰� will see the “State” ��•�� and the
text �eld only because the Œ����†‰� element is allowed to con-
tain only ���†�� elements (which it cleverly plucks from within
the�‰�����).

39 �����������������“��€“•�

91MARKUP IS AN ENHANCEMENT

Figure 3.7 Two interpretations of the same markup: a browser that understands
Œ����†‰� displays one thing (above) and a browser that doesn’t displays some-
thing else (below).

Mind blown? �at’s the power of fault tolerance.

MARKUP CONVEYS MEANING
Good user experience starts with content, but it is your job to do
whatever you can to ensure the meaning of your words ring loud
and clear. By being deliberate in choosing appropriate HTML
elements and in providing fallbacks for older browsers when you
use new ones, you ensure your users can actually use the markup
you write. When you diligently police your markup for cru� and
presentational tags, you keep your pages small and avoid confusing
your users. When you add greater meaning and structure through
microformats, microdata, and RDFa, you increase the potential
reach of your content and make it more useful for your customers.

As this chapter has demonstrated, embracing the inherent awe-
someness of HTML is not only easy, it also improves your users’
experiences dramatically.

“I’ve been amazed at how o�en
those outside the discipline
of design assume that what
designers do is decoration—
likely because so much bad
design simply is decoration.
Good design isn’t. Good design
is problem solving.”

— JEFFREY VEEN

CHAPTER 4:
VISUAL DESIGN IS
AN�ENHANCEMENT
In 2012, a blog post from Jason Samuels of NCFR (National
Council on Family Relations) caught my eye.1 In the post, Jason
took a look at the analytics data collected from the NCFR site2
over a four-year period to demonstrate how much the pro�le of
its users—professionals studying family dynamics and such—had
changed over that period.

He found that OS-wise, Windows use had dropped from 93.5 percent
to 72.4 percent, no doubt because of the rise of Apple’s OS X and iOS
as well as Google’s Android operating system. As you’d likely expect,
he found that mobile usage (including tablets) had grown year over
year at a rate of 200 to 400 percent from a paltry 0.1 percent in 2008
to 6.2 percent in 2012. Couple the decline of Windows with the rise of
mobile and the launch of Chrome (which came out in 2008) and it’s no
wonder Jason also saw a sharp decline in Internet Explorer’s numbers:
Internet Explorer dropped from a dominant position, bringing 75.5
percent of their visits, to a mere 37 percent.

1 ������������������������

2 �������������������
��		�

94

�ese stats make complete sense if you were working on the Web at
that time. Our relationship with the Web was changing just as new
hardware and so�ware options for accessing it were being rolled out.
�at said, nothing had quite prepared me for what he found regard-
ing screen sizes: In 2008, he detected 71 di�erent screen resolutions,
but in the �rst quarter of 2012, he detected a whopping 830!

�ink about that for a minute: 830 di�erent screen resolutions? �at’s
astounding! But wait, there’s more. Jason updated the post in 2014 to
re�ect stats from the �rst quarter of that year, when he was seeing an
average of about 1,000 unique screen resolutions every quarter.

�at stat blows my mind every time I read it. You can’t create
distinct layouts for 71 di�erent screens, let alone 1,000. It’s a fool’s
errand. And that’s just variability in screen dimensions and says
nothing about CSS capabilities, pixel density, and a host of other
visual design–related concerns.

How do you manage all of these variables when it comes to visual
design? You do what designers have been doing for centuries:
You problem solve. You look for ways to do more with less. You
embrace constraints and look for creative solutions to gnarly prob-
lems. If that sounds good to you, you’re in the right place: �e Web
is full of gnarly problems and seemingly binding constraints.

Let’s look at a few ways to tackle them, starting with how to make
visual design work less complicated, more consistent, and incredi-
bly �exible.

DESIGN SYSTEMS, NOT PAGES
In the early days of the Web, starting a new web design typically
meant cracking open Adobe Photoshop and creating a new canvas
onto which you’d draw a picture of a website. As browsers have
provided more opportunities to write markup and CSS directly in
the browser, some designers have begun to design there instead.

95VISUAL DESIGN IS AN�ENHANCEMENT

I’m not here to tell you which you should use; you should design
wherever you feel most comfortable. You might even �nd you like
to work in both.

What I am here to tell you, however, is that you should not be
thinking about web design as page design. Web pages rarely exist
in isolation, and when you go down the rabbit hole of designing
a site in “pages,” you run the risk of overdesigning it. I de�ne
overdesign as the practice of making every page type a one-o�
with only the most tacit aesthetic connections to its siblings within
the site. I once worked on a project that had several designers
who generated a staggering 135 unique page designs. �at was
overdesign. Madness, I tell you, madness.

Web developer Stephen Hay lays it out nicely in his book
Responsive Design Work�ow.

�ink in terms of types. �ink in terms of components. �ere are
never many page types, so don’t think too much about pages. One
of my most challenging conversations with a client involved me
explaining that I didn’t have to redesign their site’s 10,000 pages.
Rather, we had to spend a lot of time analyzing their content, and
then I would design about 10 or 12 pages (plus a battery of small
components). I would be designing a system. Not individual pages.

When you design systems, you create thematic links between
elements and between pages. When you design systems, you inject
predictability, which is comforting for your users. When you design
systems, you make reuse easy, which is comforting for you as well.

�e systems you design can be created in many ways, and the
artifacts of these systems serve di�erent purposes. I’ll walk you
through a few popular tools for designing systems and discuss how
and when they can be useful.

96

Conduct a Design Audit
If you are redesigning an existing site, you should consider con-
ducting a design audit.3 With a design audit (or, as it’s sometimes
called, an interface inventory), you go page-by-page through your
existing website (and the wireframes for the new one), collecting
screenshots of each unique style element you spot: headings, but-
tons, icons, bullets, promotional blocks, and so on. You can do this
pretty easily with screen-capture so�ware like the one that’s built
into OS X or with programs like Skitch or Jing.4

A design audit is quite helpful for seeing how consistently the
site’s brand is realized. If the site in question has been up for quite
some time, it’s pretty likely that you will �nd elements that don’t
�t, either because the aesthetic of the organization shi�ed over
time without all the assets being updated or because new designers
came onto the project and wanted to do something di�erent. �e
reasons why your site has 14 di�erent button styles don’t really
matter, though—design consistency does. Design consistency
belies reliability and trustworthiness. It makes your users feel more
comfortable and secure.5

Design audits are also invaluable as you establish a visual language
for your site. �ey remind you of all the elements you will need to
design as part of your design system.

3 �������������������������

4 ���������������������•••

5 ������������������••�• ��

97VISUAL DESIGN IS AN�ENHANCEMENT

Explore Visual Language with Style Tiles
During the ideation phase of your design process, you might con-
sider using what designer Samantha Warren refers to as style tiles.6
Style tiles are single-page documents that represent a design direc-
tion through a collection of interface elements such as headings,
body copy, iconography, buttons, and whatever elements might be
seminal to the purpose of the site (Figure 4.1).

Figure 4.1 Style tiles from Phase2 Technology’s 2012 election site
for the Washington Examiner. You can read the case study at
����������������
����	 € .

6 ����������������� �‚�•�	�

98

Style tiles allow you to focus on the overall theme for a site in
isolation, and their simplicity means you can revise them easily (or
produce a few alternates if you want to o�er multiple design direc-
tions). You rarely see all the important components of a site on a
single page, so style tiles let you look at the collection of interface
elements at once, which helps you ensure they �t well together.

Create a Style Guide or a Pattern Library
When you design a system, you need to document that system
somewhere. Two popular options for this kind of documentation
are style guides and pattern libraries. �e actual de�nitions of
these artifacts of the design process seem to vary a little from com-
pany to company, but I will explain them in the way I hear them
most commonly used (and how I use them in my own practice).7

Style guides came to us from the print design world, and they col-
lect all the visual design assets that comprise a site. Taken together,
they are the design. �ink of them as exhaustive style tiles. O�en
style guides contain annotations about font sizes, spacing, margins,
image sizes, ad dimensions, and the like. �ey may also indicate
the purpose that each element serves, but that’s not always the case.
Style guides can exist as HTML documents, PDFs, JPEGs, or even
printed books.

Pattern libraries are essentially living style guides. �ey don’t o�en
contain annotations (though they can), but they exist as live web
documents. Pattern libraries should use the same HTML, CSS,
and JavaScript that is or will be used on the live site. �is can make
a pattern library a bit more useful than a style guide (especially a

7 A word of warning: I have heard them used interchangeably, so if you aren’t
sure what someone is talking about when they say either of these terms—or
something completely di�erent that hints at a similar idea—it’s best to ask
for clari�cation. Teams need to speak the same language and have a shared
understanding of what terms mean.

99VISUAL DESIGN IS AN�ENHANCEMENT

PDF one). O�en pattern libraries even provide easy access to the
HTML markup so front-end developers can grab that code and
drop it into the templates they are assembling.

�ere are numerous tools for creating pattern libraries. Some
popular ones include Barebones, Pattern Lab, Pattern Primer, and
Style Prototype.8 For small projects, a pattern library might be
overkill, but for large projects, they are well worth the investment.
�ey can take time to produce, but once you have established the
design patterns, you’ve essentially created a bucket full of Lego-like
pieces that can be �t together in scads of di�erent ways to serve the
purpose of every page on your site. Website production goes much
more quickly when you have a pattern library.

Additionally, when you think about your design as a system of relat-
ed components and maintain them within a pattern library, you can
isolate each component to ensure it will adapt to your users’ needs.
�is isolation is also incredibly helpful when it comes to testing your
designs on real devices because you are able to limit the number of
variables at play and focus on each component individually.

�is isolation also allows you to focus on the purpose of every
component and how that relates to your content. A�er all, you are
designing a system in support of your content, not just for giggles.

8 An excellent roundup of pattern library generators is available at
����������������•�������€ .

100

DON’T DESIGN YOURSELF INTO A CORNER
As I mentioned in Chapter 2, “�nal content” is always a challenge.
It’s an elusive beast that o�en takes time (and committees) to
produce. �e time required to create real content is o�en underesti-
mated, causing project leadership to put pressure on you to just “get
something going” in the design world. If you don’t, the project might
not get done on time. And it will be all your fault. No pressure.

As Je� Veen astutely observed in the quote opening this chapter,
design without purpose is not design—it’s decoration. You need
content to understand how you can help it become more lively,
more e�ective, and more understandable. �e purpose of design is
to illuminate. It’s your job, as designer, to push back against deco-
ration and explain that design has a purpose, and it needs content
to realize that purpose. Or you need to make things up.

Design the Conversation
In Chapter 2, I mentioned that—in the absence of �nal content—
you might consider borrowing content from a competitor’s site to
help you think more clearly about the types of content you need
in order to design your site, but there are many instances where
borrowing representative content from other sites gets you only
so far. Navigation, for instance. Button labels. Error messages. All
these things need to be in your company’s voice and appropriate
to your audience. As a designer, you should be aware of the pur-
pose of each page and should feel comfortable making suggestions
about what those elements should read like. You can (and should)
contribute to the conversation your interface is having.

If you don’t do this and use only Lorem Ipsum in your designs,
you�run the risk of letting your design dictate your content rather
than the other way around. When you are designing in Photoshop,
in Sketch, or even in the browser, it’s easy to shave o� a few words
(or paragraphs) here or there to tweak the proportions of the
container block to look just right on top of an image. But that isn’t
grounded in reality.

101VISUAL DESIGN IS AN�ENHANCEMENT

You may �nd that the copy you end up getting is necessarily longer
or shorter than what you planned for. �at’s when things get awk-
ward. Do you cut or truncate the copy to make it �t? Do you add
more content to �ll the space? Either decision compromises the con-
tent and (possibly) the usability of your site (Figure 4.2). �e other
option is to change the design to accommodate the content (which is
o�en the correct choice), but that will probably be painful too. How
many rounds of revision did that design go through again?

Figure 4.2 YouTube designed the teaser
blocks for videos to have only a certain
amount of text. When the program
name is long, users get no useful
information in the teaser, as in this
screenshot taken in Opera Mobile on
an�HTC Evo 4G.

To avoid situations like this, it’s crucial for content strategists,
copywriters, and designers to all be on the same page. Designers
need to have a good sense of anticipated content length and key
words that might be particularly long. Content authors need to
be aware of any design constraints they need to consider, such
as character limits for buttons, headlines, and teasers. Working
together will help establish a shared understanding of what the
needs of the content are and ensure the pieces �t together well
when the time comes.

102

Find the Edges
Content is the foundation of design. It’s why you’re building a web-
site in the �rst place. It needs to be the starting point of your design
work and needs to be central to every design decision you make.

When working with copy—real or representative or even Lorem
Ipsum—we have a tendency to design for the ideal scenario. We
use brief, punchy copy for product descriptions or terse calls to
action for buttons and links. It’s natural. It feels good. Sadly, that’s
not reality. When designing a given module, it’s always good
to throw something ugly in there that breaks from the norm,
the�comfortable.

Do your product descriptions typically have �ve bulleted features?
Make sure the design holds up when you have one with two and
another with 20.

Have nice content images where everyone in the photo is looking
in the direction of the text? What if they are facing the other way,
o� the screen?9 And speaking of photos, are all of your photos in
the same aspect ratio? What if you have one that is overly wide or
overly tall that doesn’t �t quite right (Figure 4.3)? What if your
call to action runs two lines instead of one? What if it runs three?
What if your product title includes two really long words? What if
the site is being translated into German?10

Considering the edge cases early on makes for more robust
designs. It’s kind of like how it’s easier to put together a jigsaw
puzzle once you’ve framed it out with the edge pieces.

9 � ankfully, we tend to face right most of the time in photos,
so we’re usually looking le� on the page, but there’s always an outlier
(���������������� •���•���).

10 A word of advice regarding horizontal navigation in German—don’t do it.

103VISUAL DESIGN IS AN�ENHANCEMENT

Figure 4.3 �e Chattanooga �eatre Centre’s Facebook page (above) has a cover
photo that is oriented vertically. Facebook scales it to �ll the allotted space, but the
result is pretty horrible. Whenever you are dealing with user-generated content,
it pays to design defensively. Medium (below) handles user-uploaded images with
di�erent aspect ratios rather well.

104

UNDERSTAND HOW CSS WORKS
�is isn’t a CSS book, so I’m not going to walk you through all the
options available to you in CSS. One thing I do want to do, how-
ever, is give you an ever-so-brief recap of how CSS works because
I think it will provide invaluable insight into how to construct
progressive designs. If you’re already an expert in CSS, this sec-
tion may be a bit remedial, but I suggest you at least skim it. �e
principles of CSS I’ll cover here are not o�en discussed, but under-
standing them will undoubtedly make you a better coder.

At its most fundamental, CSS is a series of human-readable rule
sets, each composed of a selector and declaration block containing
a set of property-value pairs (declarations) to be applied to any
element matched by the selector.

�ƒ„

ƒƒ�…†…��ƒ��‡̂

ƒƒ‰…Š��‹�ŒŽ���ƒ‘…†‡̂

’

�e previous example is about as basic as CSS gets. Anyone who’s
worked with CSS before (and probably even someone who hasn’t)
can look at it and quickly comprehend that it selects paragraphs
and makes their text bold and red. Easy peasy.

Proximity Is Powerful
�e �rst topic I want to discuss with you is the cascade (it is the
�rst word in Cascading Style Sheets a�er all). �e cascade is a
pretty easy concept to understand: When everything else is equal,
the last value de�ned for a given property wins. I’ll come back to
the “when everything else is equal” bit in a moment, but let’s focus
on that second half: �e last value de�ned for a given property
wins. �is is sometimes referred to as the proximity aspect of the
cascade. Here’s an example:

105VISUAL DESIGN IS AN�ENHANCEMENT

�ƒ„

ƒƒ�…†…��ƒ��‡̂

ƒƒ�…†…��ƒŽ���Š̂

’

Now this isn’t something you would typically do, but bear with me.
When this CSS is applied to the page, the color of all paragraphs
would be green rather than red because the “green” �…†…�
declaration comes second. In other words, the “green” �…†…� value
overwrites the “red” �…†…� value. Let’s look at another example:

�ƒ„

ƒƒ�…†…��ƒ��‡̂

’

�“ƒŒ��ŽŒŠ�ƒ”…��ƒ�…��ƒ�•†�ƒ”��”ƒ����ƒ“�

�ƒ„

ƒƒ�…†…��ƒŽ���Š̂

’

�is example has two rule sets with identical selectors but di�erent
values assigned for �…†…� . �is sort of thing happens a little more
frequently, typically when you are working on large style sheets or on
a team. As you’d expect, paragraphs will be green because the latter
declaration wins. It’s closer in proximity to the element it’s a�ecting.

Expanding this a bit further, consider moving these rule sets into
two separate embedded style sheets in the ���‡ of the document.

–”�—†�̃

ƒƒ�ƒ„

ƒƒƒƒ �…†…��ƒ��‡̂

ƒƒ’

–�”�—†�̃

–”�—†�̃

ƒƒ�ƒ„

ƒƒ ƒƒ�…†…��ƒŽ���Š̂

ƒƒ’

–�”�—†�̃

106

Still green. Move them to linked style sheets.

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›��‡�����Ž������””›̃

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›Ž���Š�����Ž������””›̃

Still green. Each of these examples results in a green paragraph
because of proximity—the �…†…� value was rede�ned from “red”
to “green” in rules that came later in the document. Now here’s a
tricky one:

–”�—†�̃

ƒƒ�ƒ„

ƒƒƒƒ �…†…��ƒŽ���Š̂

ƒƒ’

–�”�—†�̃

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›��‡�����Ž������””›̃

In this instance, you might think the paragraph would go red
because the linked style sheet comes second, but that’s not the case.
Proximity has to do with the distance of the rule to the content in
terms of position in the document, true, but it also has to do with
actual distance of the rule from the element it describes, following
the cascade order. It goes like this:

1. Browser default styles
2. Linked external style sheets (by order they’re linked)
3. Embedded style sheets (by order they’re embedded)
4. Inline styles (which I’ll discuss in a second)

�at means declarations in linked style sheets may be overridden
by declarations in embedded style sheets. �at’s why the para-
graphs would still be green.

At the end of the line are the inline styles.

–”�—†�̃

ƒƒ�ƒ„

ƒƒƒ ƒ�…†…��ƒŽ���Š̂

ƒƒ’

–�”�—†�̃

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›��‡�����Ž������””›̃

107VISUAL DESIGN IS AN�ENHANCEMENT

–œ��ƒ�…��ƒ� •ƒ��̃

–�̃ �Œ”ƒ����Ž����ƒŒ”ƒŽ���Š�–��̃

–�ƒ”�—†�š›�…†…��ƒ‘†•�›̃ �Œ”ƒ����Ž����ƒŒ”ƒ‘†•��–��̃

As with the previous example, the style rule in the embedded style
sheet would turn the �rst paragraph green, but the inline style dec-
laration trumps both the linked and embedded rules. It’s as close
as you can get with respect to proximity.

Why does this matter? Knowing how proximity works allows
you to wield it to your advantage when applying CSS. I’ll get into
some of that shortly, but �rst let’s tackle the bit about the cascade
I�skipped: “when everything else is equal.” �e “everything else”
is�speci�city.

Speci�city Trumps Proximity
Speci�city is another core concept in CSS. It’s a measure of
how many elements a given selector can select and is the only
mechanism available for overruling proximity. Some selectors
are�more speci�c than other selectors. For example, an Œ‡ selector
(e.g., žŒŠ��…) is in�nitely more speci�c than a �†�”” selector
(e.g.,��Ÿ���‡), which is, in turn, in�nitely more speci�c than a
type selector (e.g., �).11

�e speci�city of a given selector is calculated by adding the speci-
�city of all its component parts. Let’s take a look at an example:

‰ŒŽ•��ƒ‰ŒŽ����Œ…Šƒ„

ƒƒ�…†…��ƒŽ���Š̂

’

‰ŒŽ����Œ…Šƒ„

ƒƒ�…†…��ƒ��‡̂

’

11 If you don’t quite grasp how speci�city is calculated, be sure to check out
Andy Clarke’s “CSS Speci�city Wars,” ����������������
€¡�‚•¢ .

108

Here are two rule sets that each target a �gure caption
(‰ŒŽ����Œ…Š). �e ‰ŒŽ����Œ…Š element is valid only within
a ‰ŒŽ•�� , so both rules should select any ‰ŒŽ����Œ…Š on the
page. Any ‰ŒŽ����Œ…Š on the page will be green—even though
the second rule has greater proximity—because the speci�city of
the �rst selector is greater than that of the second. �e �rst rule’s
selector includes two type selectors (‰ŒŽ•�� and ‰ŒŽ����Œ…Š),
which is more than the second rule’s single type selector (‰ŒŽ����Œ…Š).

If, however, you were to change things up and switch to using a �†�””
for the selector in the latter rule set, the results would be di�erent.

‰ŒŽ•��ƒ‰ŒŽ����Œ…Šƒ„

ƒƒ�…†…��ƒŽ���Š̂

’

�����Œ…Šƒ„

ƒƒ�…†…��ƒ��‡̂

’

In this instance, the �†�”” selector (�����Œ…Š) is more speci�c
than the two type selectors combined. A good rule of thumb for
�guring out which selectors are more speci�c is to assign a value to
each component part of the selector:

• 0 to any universal selector (“)
• 1 to any type or pseudo-element selector (e.g., � or ��‘�‰…��)
• 10 to any class, pseudoclass, or attribute selector

(e.g., �����Œ…Š , ��…Ÿ�� , or £�†�¤)
• 100 to any Œ‡ selector (e.g., ž�…�)

If you use this formula, just be aware that 11 �†�”” selectors will
never trump an Œ‡ selector because each of these groupings is in-
�nitely more speci�c than the ones in the grouping a�er them.

Rules applied via more speci�c selectors will trump those applied
with less speci�c selectors, regardless of their order in the cascade.

Speci�city of selectors is something that takes time to master
and can cause any number of headaches. If you apply all your
styles with heavy-handed selectors (e.g., each one contains an Œ‡

109VISUAL DESIGN IS AN�ENHANCEMENT

selector), you end up having to create even more speci�c selectors
to overrule them (e.g., two Œ‡ selectors). To avoid an ever-
escalating arms race of speci�city, I recommend you make your
selectors as nonspeci�c as possible.12 In other words, keep things
simple and work with your markup. �oughtful, meaningful
markup choices—the kind discussed in Chapter 3—should be your
guide. Microformat �†�”” names and ARIA attributes can be
particularly useful for keeping your selectors minimally speci�c.

Errors Create Opportunity
�e �nal aspect of CSS I want to touch on is how fault tolerance
applies to CSS. You’ll remember from Chapter 1 that fault toler-
ance is the chief means by which CSS and HTML are empowered
to evolve over time without sacri�cing backward-compatibility. In
both languages, it comes down to a single rule for browsers: Ignore
what you don’t understand.

In HTML, this means unknown elements and attributes are
ignored and the browser moves on, but in CSS the error handling
works a little di�erently.

When parsing CSS to determine how to render a page, a browser reads
each rule set and examines it. If it encounters something it doesn’t
understand, it experiences something called a parsing error. Parsing
errors aren’t scary things. �ey don’t o�en cause your site to fall apart
like JavaScript program errors do. Parsing errors in CSS are fault tol-
erant in the same way HTML is fault tolerant. �ough they are o�en
the result of malformed CSS syntax (e.g., the misspelling of a property
name or value, a missing colon or semicolon, etc.), they also result
when perfectly valid CSS syntax is simply beyond the parser’s compre-
hension. Let’s revisit that simple rule set that kicked o� this section.

12 Numerous style systems based on �†�”” selectors have taken o� because
of the challenges of speci�city. BEM and SMACSS are two examples of this
and can help you avoid writing overly speci�c selectors by relying on every
element having a �†�”” (or two or three) assigned to it. �is can make your
CSS more modular but can bloat your HTML. Trade-o�s!

110

�ƒ„

ƒƒ�…†…��ƒ��‡̂

ƒƒ‰…Š��‹�ŒŽ���ƒ‘…†‡̂

’

Assuming all the curly braces, colons, and semicolons are in
their proper places (which they are), this example might not be
interpreted the way you’d expect. According to the speci�cation,13
if a browser encounters this rule set and doesn’t understand any
part of it (i.e., it experiences a parsing error), the browser must
ignore the larger component of the rule set in which the parsing
error occurs.

So, for example, if the browser did not understand the CSS �…†…�
keyword “red,” it would ignore the declaration �…†…��ƒ��‡ but
would still apply the remaining declarations. �e same goes for
the ‰…Š��‹�ŒŽ�� keyword “bold.” If, however, the browser was
unable to understand the selector (�), it would ignore the entire
rule set, regardless of the browser’s ability to comprehend either of
the declarations it contained.

�e reasoning behind this is simple: We don’t know what the
future of CSS may be. As a language, CSS continues to evolve.
New features are added, and, on occasion, older features may be
removed. For websites to work properly and for CSS to be a reliable
design language, it’s imperative that a browser ignores declarations
and selectors it doesn’t recognize. �is �exibility not only helps you
avoid exposing errors to your users but makes it possible to pro-
gressively enhance pages using CSS.

Property Fallbacks
For properties, using parsing errors to your advantage is pret-
ty straightforward, and it opens up some awesome possibilities.
Here’s a quick example using CSS3’s RGBa color scheme:

13 ����������������•�	����•	

111VISUAL DESIGN IS AN�ENHANCEMENT

�ƒ„

ƒƒ‘��™Ž�…•Š‡��…†…��ƒ�Ž‘¥¦��§ƒ¡¡•§ƒ¦�̈ ©̂

ƒƒ‘��™Ž�…•Š‡��…†…��ƒ�Ž‘�¥¦�̈§ƒ¡•�§ƒ¡•�§ƒ�•�©̂

’

A browser parsing this rule set would likely understand the selec-
tor (a�er all, you can’t get much simpler than a type selector), so
it would move on to the �rst ‘��™Ž�…•Š‡��…†…� declaration.
�e ‘��™Ž�…•Š‡��…†…� property has been part of CSS since
version 1, so the browser should have no problem there and would
move on to the assigned value. RGB-based color values have also
been part of CSS since the beginning, so the browser will under-
stand that value too. With the �rst declaration passing muster
with the parser, the browser would apply ‘��™Ž�…•Š‡��…†…��ƒ
�Ž‘¥¦��§ƒ¡¡•§ƒ¦�̈© to all paragraphs and then move on to the
second declaration.

In the second declaration, ‘��™Ž�…•Š‡��…†…� is rede�ned with
a new value (overriding the previous declaration, per the cascade).
Obviously, as I discussed, the browser understands the property,
so it would move on to the declared value, which uses RGBa.14
If the browser understands RGBa, there’s no problem, and the
RGBa value is assigned to the ‘��™Ž�…•Š‡��…†…� property,
overwriting the original RGB value. If RGBa is not supported,
such as in the case of IE 8, the browser experiences a parsing error
and ignores the entire declaration, leaving all paragraphs with the
original RGB value for ‘��™Ž�…•Š‡��…†…� .

�is is a pretty simple example of how you can use CSS’s fault-
tolerant nature to deliver an enhanced experience to users on more
modern browsers without sacri�cing the experience of folks on
older ones. �is technique can be used for other values that have
been introduced over time such as the ��†�¥© function, viewport
units (vw and vh), and “�ex.” Following this approach ensures your
design is robust and will work anywhere. It’s pretty easy to do, too!

14 RGBa, in case you aren’t familiar, is an RGB color with an alpha channel that
governs opacity.

112

Hiding Rule Sets
Using parsing errors to your advantage doesn’t just work at the
declaration level, though; you can apply this same technique to
hide entire rule sets from a particular browser by using a more
advanced selector.

�������”¥‘…‡—©ƒŠ�Ÿƒ„

ƒƒ�“ƒ•ƒ‘•Š��ƒ…‰ƒ�‡Ÿ�Š��‡ƒ”�•‰‰ƒŽ…�”ƒ����ƒ“�

’

Any browser encountering this rule set would parse it, starting
with the selector. If the browser understands type selectors and
the �������” pseudoclass, it will continue parsing the rule set
and apply the declarations it understands. If, on the other hand,
said browser does not comprehend any one of the selectors used,
it�would experience a parsing error and ignore the entire rule set.15

Perhaps the most famous example that uses this technique to
selectively deliver rules to one browser over another (more for
e�ect than practicality) is Egor Kloos’ CSS Zen Garden entry titled
“Gemination” (Figure 4.4). In this proof-of-concept piece, Kloos
created a basic layout aimed at Internet Explorer (then in version 6)
and employed a technique dubbed MOSe (“Mozilla/Opera/Safari
enhancement”)16 to o�er more advanced browsers a completely dif-
ferent experience. Kloos used simple selectors for the basic layout
and advanced selectors for the enhanced styles. Here’s a snippet
that demonstrates his approach:

15 If you’re interested, that selector �nds any Š�Ÿ element that is a descendant
of a ‘…‡— element, but it does so using a CSS4 selector.

16 Dave Shea, curator of the CSS Zen Garden, coined the term in 2003, but
when Internet Explorer 7 came out, the term fell out of use because it didn’t
have the same selector-based limitations as IE 6. You can read his original
post at ����������������¢
��‚�•• . Why not MOSCE, you ask?
Chrome didn’t exist yet.

113VISUAL DESIGN IS AN�ENHANCEMENT

Figure 4.4 Egor Kloos’
“Gemination”—
����������������
¢•¡������ —in IE 6
(le�) and IE 7 (top).

114

žŒŠ��…ƒ„

ƒƒ�“ƒ��”Œ�ƒ”�—†�”ƒ‰…�ƒª«�ƒ“�

’

�“ƒ…��ƒ”�—†�”ƒ����ƒ“�

‘…‡—£Œ‡š�””�¬�Š�Ž��‡�Š¤ƒžŒŠ��…ƒ„

ƒƒ�“ƒ•‡Ÿ�Š��‡ƒ”�—†�”ƒ‰…�ƒ�Ÿ��—…Š�ƒ�†”�ƒ“�

’

Following CSS cascade order, the browser parses the �rst rule set
�rst to render the žŒŠ��… layout. A little later, the browser parses
the “enhanced” rule set for žŒŠ��… . If the browser understands
attribute selectors, it will render a completely di�erent layout for
žŒŠ��… ; if it doesn’t, it will ignore the new rule set entirely.

Selector-based screening can be a useful technique, but it tends to
trip up many CSS authors who don’t realize selector failure in a
compound selector (two or more selector statements, separated by
commas) is complete, not discrete.

�§ƒ�£�†�””¤ƒ„

ƒƒ�…†…��ƒ��‡̂

ƒƒ‰…Š��‹�ŒŽ���ƒ‘…†‡̂

’

�is example has the same potential for parsing errors as the ex-
ample that opened this chapter. Browsers that understand only one
of the selectors in the compound selector will ignore the entire rule
set rather than just the advanced selector (which, in case you were
wondering, �nds paragraphs with �†�”” attributes).

�ough it may seem unintuitive, the CSS 2.1 spec clearly states that
this is how it should be: “�e whole statement should be ignored if
there is an error anywhere in the selector, even though the rest of

115VISUAL DESIGN IS AN�ENHANCEMENT

the selector may look reasonable.”17 Every CSS rule set has only one
selector. �e commas act as an “or” separating multiple options,
but those options are not distinct when it comes to parsing.

Knowing this, you can make better decisions about how and when
to combine selectors. As a general rule, it’s best to avoid combining
advanced selectors with simple ones (as in the example) unless you
want to hide the whole rule set from older browsers.

Hiding Multiple Rule Sets
From a maintainability standpoint, this method is not ideal for
more than a single rule set here and there; to apply the concept of
rule set �ltering en masse, you can use at-rules.

®��‡Œ�ƒ”����Šƒ„

ƒƒ�ƒ„

ƒƒƒ ƒ�…†…��ƒ��‡̂

ƒƒ’

’

®��‡Œ�ƒ…Š†—ƒ”����Šƒ„

ƒƒ�ƒ„

ƒƒƒ ƒ�…†…��ƒŽ���Š̂

ƒƒ’

’

In this example, all browsers that support the “screen” media type
will turn the text of paragraphs red. Only browsers that support
media queries (signi�ed by the “only” keyword) will turn their
paragraph text green. In other words, browsers will not apply rule
sets that appear within at-rules they can’t comprehend. �e same
logic applies with other at-rule blocks such as ®”•��…��” (which
I’ll talk about shortly).

17 �������������������	�•‚•�

116

It’s worth noting, however, that some at-rules allow for compound
assignment using a comma, like you do in selectors. �e behavior
is a little di�erent, however.

®��‡Œ�ƒ”����Š§ƒ��ŒŠ�§ƒ��‰�ŒŽ����…�ƒ„
ƒƒ�ƒ„
ƒƒƒ ƒ�…†…��ƒŽ���Š̂
ƒƒ’
’

A browser that encounters this at-rule will turn paragraphs green
in whichever media they can match (i.e., screen and print because
I�made the refrigerator media type up). In other words, compound
media assignment does not work like compound selectors: An
unknown statement within a compound selector will cause
the browser to ignore the whole rule set, but an unknown value
member within a recognized compound at-rule will cause the
browser to ignore only the unrecognized at-rule value.

Example: Progressive Navigation
In Chapter 3, I mentioned that Nichols College had an interesting
approach to handling its mobile navigation where the links are at
the end of the document and there is a “jump” link that anchors
you down to them and another that takes you from the navigation
back to the content. Here’s an excerpt of the markup from the
Graduate & Professional Studies site:18

–���‡��ƒŒ‡š›�…�›̃

ƒƒ–œ��ƒ†…Ž…§ƒ����ƒ��̃

ƒƒ–�ƒŒ‡š›̄•��›̃

ƒƒƒ ƒ–�ƒ���‰š›žŠ�Ÿ›̃ –‘̃ ••��ƒ�…ƒ���ƒ��ŸŒŽ��Œ…Šƒ

ƒƒƒƒ–�‘̃ �Š•–��̃

ƒƒ–��̃

–����‡��̃

18 ����������������•¡•�� �‚«

117VISUAL DESIGN IS AN�ENHANCEMENT

–œ��ƒ�…Š��Š�§ƒ�…Š��Š�§ƒ�…Š��Š����ƒ��̃

–Š�Ÿƒ�…†�š›Š�ŸŒŽ��Œ…Š›̃

ƒƒ–•†ƒŒ‡š›Š�Ÿ›ƒ��‘ŒŠ‡�°š›�¦›̃

ƒƒƒ ƒ–œ��ƒŠ�ŸŒŽ��Œ…Šƒ…��Œ…Š”ƒ��̃

ƒƒƒ ƒ–†ŒƒŒ‡š›‘��™›̃ –�ƒ���‰š›ž�…�›̃ ���™ƒ�…ƒ

ƒƒƒƒ�…�–��̃ –�†Œ˜

ƒƒ–�•†̃

ƒƒ–œ��ƒ”�����ƒ‰…��ƒ��̃

–�Š�Ÿ˜

–œ��ƒ‰……���§ƒ����ƒ��̃

�e baseline experience of the navigation is the same as what you
saw in Chapter 3 with Contents Magazine: �e user clicks the
“jump” link and the browser scrolls to the navigation. �e user clicks
the “back” link and the browser goes back to the top of the page. It’s
not terribly elegant, but it works everywhere (even without CSS).

With CSS, the links are designed to be easily tappable with
your �ngers on a small touchscreen (Figure 4.5). �at’s a nice
a�ordance for browsers with only basic CSS support. Browsers
with more advanced CSS support, however, receive a much more
elegant solution: Tapping the jump link reveals the navigation right
beneath the site header (Figure 4.6).

Figure 4.5. A selection of the Nichols College
Graduate & Professional Studies site
navigation in Opera Mobile on an HTC
Hero. Note that the links are easy to tap.

118

Figure 4.6. Nichols College Graduate & Professional Studies’ enhanced site
navigation collapsed (le�) and expanded (right).

�e site achieves this using the ����Ž�� pseudoclass, which selects
any element whose Œ‡ matches the fragment identi�er in the URL.
First, the developers positioned the list just below the header using
absolute positioning. �en, they set up the default styles for when
the navigation (•†žŠ�Ÿ) is not targeted, giving the list items a
height of 0. When the navigation is targeted (which happens when
the “jump” link is tapped), the list items return to their normal
height. Here’s an excerpt of the CSS that makes it possible:

žŠ�Ÿƒ†Œƒ„

ƒƒ��ŒŽ���ƒ̈ ˆ

ƒƒ…Ÿ��‰†…‹�ƒ�Œ‡‡�Š̂

’

žŠ�Ÿ����Ž��ƒ†Œƒ„

ƒƒ��ŒŽ���ƒ�•�…ˆ

’

119VISUAL DESIGN IS AN�ENHANCEMENT

Some browsers (IE 8, for instance) don’t support ����Ž�� , so
Nichols uses a CSS-based �lter—‘…‡—�Š…�¥����Ž��© —to
restrict these rules to only browsers that understand the ����Ž��
pseudoclass. �ey added that selector as a pre�x to any selectors in
the rule sets that govern this enhancement. So, the rules actually
look like this:

‘…‡—�Š…�¥����Ž��©ƒžŠ�Ÿƒ†Œƒ„

ƒƒ��ŒŽ���ƒ̈ ˆ

ƒƒ…Ÿ��‰†…‹�ƒ�Œ‡‡�Š̂

’

‘…‡—�Š…�¥����Ž��©ƒžŠ�Ÿ����Ž��ƒ†Œƒ„

ƒƒ��ŒŽ���ƒ�•�…ˆ

’

Taking this step ensures that older browsers remain able to access
the navigation in the default manner (at the bottom of the page).
Without the �lter in there, those browsers would never see the nav-
igation because the default state was for the list items to be hidden.

In another clever application of CSS, Nichols College uses the
“back” link as a hidden layer to trigger the menu to be collapsed
(because when you click it, žŠ�Ÿ is no longer targeted). �e devel-
opers absolutely position the layer and set its le� and right o�sets
to 0 and set absurdly large negative top and bottom o�sets to make
it cover the page. �ey then place the main navigation links on top
of it in the stacking order using ¬�ŒŠ‡�° (Figure 4.7).

Here’s the code that handles that:

‘…‡—�Š…�¥����Ž��©ƒžŠ�Ÿƒ†Œƒ�ƒ„

ƒƒ�…”Œ�Œ…Š�ƒ��†��ŒŸ�̂

ƒƒ¬�ŒŠ‡�°�ƒ¦̂

’

žŠ�Ÿ����Ž��ƒž‘��™ƒ�ƒ„

ƒƒ�…”Œ�Œ…Š�ƒ�‘”…†•��̂

ƒƒ†�‰��ƒ̈ ˆ

ƒƒ�ŒŽ���ƒ̈ ˆ

120

ƒƒ�…��ƒ�•••��̂

ƒƒ‘…��…��ƒ�••��̂

ƒƒ¬�ŒŠ‡�°�ƒ̈ ˆ

’

Figure 4.7. Nichols College’s exposed
navigation with the “back” link
highlighted in red (it’s transparent
by�default.)

As if that wasn’t enough, Nichols College makes use of the
���Š”Œ�Œ…Š property to animate the height change for the
navigation list items. It gives the whole thing a “JavaScript-y”
feel�(even though no JavaScript is involved).

‘…‡—�Š…�¥����Ž��©ƒžŠ�Ÿƒ†Œƒ�ƒ„

ƒƒ���Š”Œ�Œ…Š�ƒ��ŒŽ��ƒ�¡�”ƒ†ŒŠ���̂

’

Since this approach to navigation works best on narrower screens,
Nichols College uses a di�erent layout when the screen size gets
large enough to accommodate a horizontal nav (which they move
from the bottom of the page to the top using absolute positioning).
To sequester these styles to smaller screens only—so they don’t
have to override all these styles when they build the horizontal
nav—the developers use a ��°�‹Œ‡�� media query.

121VISUAL DESIGN IS AN�ENHANCEMENT

®��‡Œ�ƒ¥��°�‹Œ‡���ƒ�•�•�����©ƒ„

ƒƒ �“ƒ•††ƒ…‰ƒ���ƒ�…‘Œ†�ƒŠ�ŸŒŽ��Œ…Š���†���‡ƒ”�—†�”ƒ“�

’

Interestingly, that media query is contained within a linked style
sheet with its own media query.

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›���†�—…•�”��””›

ƒƒƒƒ ƒƒ��‡Œ�š›…Š†—ƒ”����Šƒ�Š‡ƒ¥�ŒŠ�‹Œ‡���¡̈ ��©›̃

Taken together, the †ŒŠ™ and ®��‡Œ�ƒ block ensure these styles
apply only in media query–aware browsers that have a screen size
of between 20em and just shy of 60em. �is is an excellent example
of progressive enhancement that takes full advantage of parsing
errors to selectively deliver the enhanced experience to only those
users who can actually bene�t from it. Clearly, knowing how these
mechanisms work pays huge dividends when you start considering
browser and device proliferation.

START SMALL AND BE RESPONSIVE
In 2010, web designer Ethan Marcotte was seeking an elegant way
to address device proliferation and the requests he was getting
from clients.

In recent years, I’ve been meeting with more companies that
request ‘an iPhone website’ as part of their project. It’s an
interesting phrase: At face value, of course, it speaks to mobile
WebKit’s quality as a browser, as well as a powerful business case
for thinking beyond the desktop. But as designers, I think we o�en
take comfort in such explicit requirements, as they allow us to
compartmentalize the problems before us. We can quarantine the
mobile experience on separate subdomains, spaces distinct and
separate from ‘the non-iPhone website.’ But what’s next? An iPad
website? An N90 website? Can we really continue to commit to
supporting each new user agent with its own bespoke experience?
At some point, this starts to feel like a zero sum game. But how
can we—and our designs—adapt?

122

In answering that question, Ethan came up with the design
approach he termed responsive web design. �is quote comes
from his A List Apart article that introduced that concept.19
Responsive web design came about as a way of addressing the
varied screen sizes we were seeing back then (which pales in com-
parison to what we are seeing today).

Ethan came up with a basic formula—�uid grids, �exible media,
and media queries—that allows a designer to control the visual
design of a site across a wide swath of dimensions with little e�ort.
Here’s a breakdown:

1. Fluid grids (i.e., grid columns that are based on percentages)
enable the layout to �ex and �ll the available space, making the
layout adapt nicely to di�erent widths.

2. Flexible media are images, videos, and the like that are not
allowed to over�ow their containers (typically, by setting a
‹Œ‡�� or ��°�‹Œ‡�� of 100 percent on the associated element).

3. Media queries are then used to tweak the �uid grid to provide
the most appropriate reading experience at that size by optimiz-
ing line lengths, font sizes, and so on.

In his original article, Ethan used two di�erent kinds of media
queries to adapt the layout of his demo page: ��°�‹Œ‡�� and
�ŒŠ�‹Œ‡�� .20

�“ƒ	��ƒ‰…�ƒ���ƒ����—ƒ��‡Œ•�ƒ“�

®��‡Œ�ƒ¥��°�‹Œ‡���ƒ�̈ �̈°©ƒ„

ƒƒ�“ƒ•‡̄•”���Š�”ƒ‰…�ƒ”��††ƒ”����Š”ƒ“�

’

®��‡Œ�ƒ¥��°�‹Œ‡���ƒ•̈ �̈°©ƒ„

ƒƒ�“ƒ•‡̄•”���Š�”ƒ‰…�ƒ�Ÿ�Šƒ”��††��ƒ”����Š”ƒ“�

’

19 ������������������••� •�• . He later wrote a book by the same name.

20 ����������������•��¢���•

123VISUAL DESIGN IS AN�ENHANCEMENT

®��‡Œ�ƒ¥�ŒŠ�‹Œ‡���ƒ¦�̈ �̈°©ƒ„

ƒƒ�“ƒ•‡̄•”���Š�”ƒ‰…�ƒ†��Ž��ƒ”����Š”ƒ ƒ“�

’

�e ��°�‹Œ‡�� media query (��°�‹Œ‡���ƒ�̈ �̈°) is the CSS
equivalent of saying if the browser’s width is less than or equal to
600px, apply these style rules. �e �ŒŠ�‹Œ‡�� media query
(�ŒŠ�‹Œ‡���ƒ¦�̈ �̈°) says the opposite: If the browser’s width
is�greater than or equal to 1300px, apply these style rules.

Both of these approaches are completely valid, but, a short while
later, it was generally agreed that �ŒŠ�‹Œ‡�� media queries are
the better way to go for your overall design because they are more
e�cient. �ey are more e�cient because you end up writing less
CSS when you are starting with a baseline and building up the
design because you have more screen real estate. With the other
approach, you end up writing a bunch of style rules for your large
screen layout that you then have to override in order to apply the
narrower design.

Let’s look at a quick example to demonstrate the di�erence.
Consider the following markup:

–‡ŒŸƒ�†�””š›��Œ���—›̃ –�‡ŒŸ˜

–‡ŒŸƒ�†�””š›”��…Š‡��—›̃ –�‡ŒŸ˜

Let’s say I wanted the two ‡ŒŸ elements to stack on top of one an-
other on a small screen but to sit side by side on a wider screen. If I
consider the small screen �rst, I could simply say the following:

®��‡Œ�ƒ¥�ŒŠ�‹Œ‡����̈ �̈°©ƒ„

ƒƒ���Œ���—ƒ„

ƒƒƒ ƒ‰†…���ƒ†�‰�̂

ƒƒƒ ƒ‹Œ‡���ƒ��±̂

ƒƒ’

ƒƒ�”��…Š‡��—ƒ„

ƒƒƒ ƒ‰†…���ƒ�ŒŽ��̂

ƒƒƒ ƒ‹Œ‡���ƒ�¡±̂

ƒƒ’

’

124

�is approach is sometimes referred to as mobile �rst, though with
the advent of smart watches and other similarly tiny screens (that
aren’t necessarily mobile), I prefer the broader term small screen �rst.
By contrast, if I wanted to get the same result but considered the
large screen �rst—formerly desktop �rst—I would have to write this:

���Œ���—ƒ„

ƒƒ‰†…���ƒ†�‰�̂

ƒƒ‹Œ‡���ƒ��±̂

’

�”��…Š‡��—ƒ„

ƒƒ‰†…���ƒ�ŒŽ��̂

ƒƒ‹Œ‡���ƒ�¡±̂

’

®��‡Œ�ƒ¥��°�‹Œ‡����••�°©ƒ„

ƒƒ���Œ���—§ƒ�”��…Š‡��—ƒ„

ƒƒƒ ƒ‰†…���ƒŠ…Š�̂

ƒƒƒ ƒ‹Œ‡���ƒ�•�…ˆ

ƒƒ’

’

In other words, I would need to include two additional lines of
CSS just to override the default settings outside of the media
query. �ose are unnecessary if I consider the small screen �rst
because they come for free as part of the default rendering of a ‡ŒŸ
element. In other words, approaching CSS thinking of the small
screen �rst embraces default styles and progressively enhances the
design when you have more screen real estate to work with.21

21 You can dissect these two contrasting approaches more on CodePen at
����������������¢����•	 and �����������������•	€��«
� .

125VISUAL DESIGN IS AN�ENHANCEMENT

Support Everyone, Optimize for Some
Understanding how browsers handle parsing errors makes it quite
easy to draw a line in the sand between older, less capable browsers
and modern ones. For example, you can divide your styles into
basic styles that every browser can understand (e.g., typography,
color, and margins) and more advanced styles that only modern
browsers will be able to handle (e.g., layout, positioning, �exbox).

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›‘�”Œ���””›ƒ��‡Œ�š›�††›̃

–†ŒŠ™ƒ��†š›”�—†�”����›ƒ���‰š›�‡Ÿ�Š��‡��””›ƒ

ƒƒƒƒƒƒ��‡Œ�š›…Š†—ƒ”����Š›̃

Browsers that don’t understand media queries22 would download
only the �rst style sheet. �e “only” keyword was introduced with
media queries and older browsers don’t know what to make of it,
so they ignore the style sheet. Modern browsers would download
both. �is approach is a perfect example of “mobile �rst” thinking
because older mobile devices (which don’t understand media que-
ries) are not penalized by having to download a ton of styles they’ll
never use. It’s a great use of media queries that works because, as
web developer Bryan Rieger put it, “[T]he absence of support for
®��‡Œ� queries is in fact the �rst ®��‡Œ� query.”23

It’s worth noting that even older browsers like IE 8 are pretty good at
handling �oats and positioning. �at said, IE 8 is a pretty old brows-
er—it doesn’t support media queries, �exbox layouts, or even RGBa.
You might consider demoting your support for IE 8. I’m not saying
to stop supporting IE 8 entirely, but you can give it a simpler expe-
rience. Taking the approach outlined earlier, you could use its lack
of media query support to deliver it the mobile experience, and that
would be okay. As long as users on IE 8 can still do what they need
to do, they don’t need to have the same visual design as someone on
the latest version of Chrome, Edge, Firefox, Opera, or Safari.

22 ����������������•��¡��•€�

23 ����������������¢����«� •

126

Now, you might think that delivering a minimally designed
website would annoy any users getting that experience. �at’s not
necessarily the case. If the experience on that device was not so
great previously, it might be a pleasant surprise. One of my favor-
ite examples of this comes from A List Apart. In 2001, it stopped
delivering CSS to Netscape Navigator 4 and other 4.0 generation
browsers. Here’s what the magazine’s cofounder (and web stan-
dards luminary) Je�rey Zeldman had to say about it at the time:

We assume that those who choose to keep using 4.0 browsers
have reasons for doing so; we also assume that most of those
folks don’t really care about “design issues.” �ey just want
information, and with this approach they can still get the
information they seek. In fact, since we began hiding the design
from non–compliant browsers in February 2001, ALA’s Netscape
4 readership has increased, from about 6% to about 11%.24

�at’s right: When A List Apart switched from delivering a design
to Netscape Navigator 4 to delivering only the content, it actually
saw the use of that browser increase. In other words, the magazine
delivered a better, more appropriate experience in that browser,
and people appreciated it.

We o�en look at usage stats for our sites and take them at face
value. One such example of this is seeing a low percentage of a par-
ticular browser, say, 0.1 percent. You might look at a paltry number
like that and reason that it’s not worth testing or even considering
that browser. Before jumping to conclusions like this, however,
you should look at these percentages in light of your actual usage
numbers—0.1 percent of 1,000 visitors (i.e., one person) is di�erent
than 0.1 percent of 1,000,000 users (i.e., 1,000 people).

It’s also worth questioning why the usage stats for that particular
browser might be low. Start by looking at your site in that browser.
How’s the experience? If the experience is a good one, then it’s like-
ly nothing you’ve done has unintentionally skewed that number.

24 ����������������•��‚�
	€�

127VISUAL DESIGN IS AN�ENHANCEMENT

If�it’s not a good experience, however, then you might be arti�cially
depressing usage of that browser by prohibiting folks from accom-
plishing what they need to on that browser. You might want to
look into addressing the issues you see, or, if it’s easier, you might
consider reducing the amount and type of content you are sending
to that browser, just like A List Apart did.

�ink of it this way: �ere’s no musical listening experience quite
like sitting dead-center in an acoustically perfect concert hall. A
7.1 channel stereo at home is not nearly the same but still o�ers a
great experience. A 5.1 channel system isn’t quite as impressive as
7.1 channels, but it’s still better than basic two-channel stereo. And
�nally, there’s mono—it’s not even close to the same experience as
a concert hall, but at least you’re still listening to music.

�e “mono” design is your baseline small-screen experience that
will work on older browsers, desktop or otherwise (e.g., the stu�
that can go in ‘�”Œ���”” , as mentioned earlier). In all likelihood,
the design will be linear (single column, vertically oriented). �at
works well for old browsers and narrow ones alike.

Example: Growing a Layout
When you think about layout from a mobile-�rst perspective, you
need to begin with optimizing things for as narrow a screen as best
you can. Perhaps that screen size is 240px wide, like some fea-
ture phones, or even 144px, like some smart watches. Regardless,
in addressing a small screen, you’ll want to maximize your use
of space. At the same time, however, you also want to keep text
from crashing awkwardly into the side of the screen. �e Boston
Globe25 achieves this balance by letting its primary layout elements
maintain their default width while the primary content block
(‡ŒŸž��ŒŠ) has a 10px margin on the le� and right (Figure 4.8).

25 �����������������¡
���•�

128

Figure 4.8 �e Boston Globe website on
a narrow screen with the margins of the
primary content ‡ŒŸ highlighted using
the Chrome browser’s Developer Tools.

On browsers with a little more horizontal space, the website still
maintains a narrow margin, even though it has adjusted the layout
to occupy two columns to make the most optimal use of space
(Figure 4.9).

As the browser width increases, the website relaxes the layout a bit
and increases the horizontal margins. It does this by removing the
margin from the primary content ‡ŒŸ and setting the width of its
parent container (‡ŒŸž�…Š��ŒŠ) to 93.75 percent. It also centers
the layout by de�ning a maximum width for ‡ŒŸž�…Š��ŒŠ so that
it will never exceed 1232px and lets the browser autocalculate its
horizontal margins (Figure 4.10). It does this all inside a media
query that tests for a minimum width of 620px.

129VISUAL DESIGN IS AN�ENHANCEMENT

Figure 4.9 �e Boston
Globe website on a wider
screen maintains the same
margins even though the
layout is slightly di�erent.

Figure 4.10 �e widest version of the Boston Globe website.

130

®��‡Œ�ƒ”����Šƒ�Š‡ƒ¥�ŒŠ�‹Œ‡���ƒ�¡̈ �°©ƒ„

ƒƒž�…Š��ŒŠƒ„

ƒƒƒ ƒ���ŽŒŠ�ƒ̈ƒ�•�…ƒ¦̈ �°̂

ƒƒƒ ƒ‹Œ‡���ƒ•����±̂

ƒƒƒ ƒ��°�‹Œ‡���ƒ¦¡�¡�°̂

ƒƒ’

’

�e design continues to adjust, keeping readable line lengths and
making the most of the available space until it reaches that maxi-
mum with of 1232px—the “concert hall” experience, to bring back
that analogy. �e layout of the large screen page is far more com-
plex than that of the small screen one, but the site works no matter
how much screen real estate a user has available for it.

�e Boston Globe web team’s approach of delivering styles in this
way had an unintended side e�ect: On a lark, designer Grant
Hutchinson loaded the Boston Globe site on an Apple MessagePad
2100—an old PDA from 1997—and the site worked because pro-
gressive enhancement just works (Figure 4.11).

Figure 4.11 �e Boston Globe as
viewed on in the Newt’s Cape browser
on an Apple MessagePad 2100.
Screenshot by Grant Hutchinson,
used�with�permission.

131VISUAL DESIGN IS AN�ENHANCEMENT

�e Boston Globe site is a perfect example of progressive enhance-
ment with responsive web design. It’s also great for another reason:
�e dimensions it chose for the media queries (a.k.a. breakpoints)
don’t directly map to any speci�c devices.

Embrace Fluidity
When we �rst began to address device proliferation with media
queries, we started by mapping our media queries directly to com-
mon device dimensions (like those of the iPhone). Using media
queries, it’s entirely possible to get super-granular in an attempt to
deliver certain rules only to particular devices.

Take a look at this beast:

®��‡Œ�ƒ…Š†—ƒ”����Šƒ�Š‡ƒ¥�ŒŠ�‡�ŸŒ���‹Œ‡���¦̈ ¡•�°©

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ�Š‡ƒ¥��°�‹Œ‡���•�•�°©§

ƒƒƒƒƒƒƒ…Š†—ƒ”����Šƒ�Š‡ƒ¥��°�‡�ŸŒ���‹Œ‡���•�̈ �°©§

ƒƒƒƒƒƒƒ…Š†—ƒ”����Šƒ�Š‡ƒ¥��°�‡�ŸŒ���‹Œ‡���•�̈ �°©

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ�Š‡ƒ¥…�Œ�Š���Œ…Š�†�Š‡”����©§

ƒƒƒƒƒƒƒ…Š†—ƒ”����Šƒ�Š‡ƒ¥�ŒŠ�‡�ŸŒ���‹Œ‡���•�¦�°©

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ�Š‡ƒ¥…�Œ�Š���Œ…Š��…����Œ�©ƒ„

ƒƒ�“ƒ�Œ™�”œƒ“�

’

Now banish it from your mind and commit to never, ever writing
something this heinous.26

I’m thankful that we now have a much better understanding of
what we should and should not do with media queries and picking
our breakpoints. Stephen Hay sums up the process for picking
breakpoints beautifully.

Start with the small screen �rst, then expand until it looks like
shit. Time for a breakpoint!

26 I will admit to writing this. I was young, and I needed the money.

132

What Stephen is saying here is simple: Let the content guide you.
Start with your browser window very narrow and slowly make it
wider. When the design starts to look awkward, it’s probably time
to insert a breakpoint to adjust the layout or the page or at least the
given component.

Notice that Stephen never said anything about a speci�c device or
browser. Every device is di�erent, and while there are some com-
mon sizes, catering only to them can result in a poor experience
for anyone who doesn’t use one of those devices. Remember Jason
Samuels and the 1,000 di�erent screen sizes he was seeing every
quarter? You can’t design every one of those experiences. Chasing
screen sizes is pointless. Instead, follow Stephen’s advice and focus
on the content. Let it be your guide and inform you as to where
you need to add breakpoints.

Interestingly, Pattern Lab (which I mentioned earlier in this chap-
ter) reinforces the idea that screen sizes vary widely. It has buttons
to toggle the viewport to be “small,” “medium,” and so on, but
the actual width varies each time you click one of them. In one
instance, “small” might be 315px; in another it might be 345px.
Pattern Lab also sports “Hay Mode,” which starts the viewport o�
small and slowly enlarges it automatically, just as Stephen recom-
mends (minus the swearing), and “Disco Mode,” which randomly
switches viewport sizes in order to stress test the design and makes
it look like the browser is dancing.

When considering how your design plays out on di�erent devices,
it’s still important to pay particular attention to certain, speci�c
devices. �at may sound contradictory to the universal support
I’ve been advocating, but it’s not. Certain devices are necessarily
more important than others. For instance:

• Devices that frequently visit your site
• Devices that are used by your high-pro�le clients or the ones

you want to attract
• Devices that are starting to take o� in the marketplace

133VISUAL DESIGN IS AN�ENHANCEMENT

Ignoring devices that are used by a large percentage of your users
(or by your most in�uential users) would be foolish. Optimizing
the experiences for these devices is a good idea. Give them the
“concert hall” experience; just don’t forget about the long tail of
other devices and browsers your users rely on to access your web-
site. Support the long tail, but optimize for an important subset.

Everyone deserves to have their device supported, even if they get
only the “mono” experience. �e more people you support, the
greater your reach and the more opportunity you create for sales,
leads, visits, shares, or whatever other metrics you use to gauge
your website’s success.

FOCUS ON STANDARDS
Earlier on, in my examination of Nichols College’s navigation, I
showed the ���Š”Œ�Œ…Š property. If you don’t remember, here’s
the code again:

‘…‡—�Š…�¥����Ž��©ƒžŠ�Ÿƒ†Œƒ�ƒ„

ƒƒ���Š”Œ�Œ…Š�ƒ��ŒŽ��ƒ�¡�”ƒ†ŒŠ���̂

’

CSS transitions are part of CSS3 that was tested—during its devel-
opment as a feature—on the open Web using vendor pre�xes. You
may have seen a vendor pre�x before; -‹�‘™Œ�� is probably the
most common.

Vendor pre�xes were created as a mechanism that would allow a
browser maker (a.k.a. a vendor) to implement an experimental spec
to let web designers “road test” the feature. �e pre�x indicates
that the feature is experimental and may change in a future release.
In other words, use at your own risk. Sadly, browsers o�en weren’t
very forthcoming about the experimental nature of these features
and so we went ahead and used them in production on high-pro�le
sites, o�en without providing a declaration that would support the
future nonpre�xed standard.

134

A perfect example of this becoming problematic is with CSS
gradients. CSS gradients were introduced by WebKit in 2008 with
a vendor pre�x.27 In the blog post unveiling this feature, Apple’s
Safari and WebKit Architect Dave Hyatt didn’t explicitly state that
this was an experiment, despite using the vendor pre�x. Perhaps he
assumed that was understood. �is was an instance where Apple
was testing the waters with an idea—CSS gradients didn’t even
make it into a Working Dra� at the W3C for another three years.28
Here’s an example of the syntax from that post:

‘��™Ž�…•Š‡�ƒ�‹�‘™Œ��Ž��‡Œ�Š�¥

ƒƒ†ŒŠ���§ƒ†�‰�ƒ�…�§ƒ†�‰�ƒ‘…��…�§ƒ

ƒƒ‰�…�¥�Ž‘¥̈§ƒ¦�¦§ƒ¡��©©§ƒ�…¥�Ž‘¥¡��§ƒ¡��§ƒ¡��©©§

ƒƒ�…†…��”�…�¥̈��§ƒ�Ž‘¥¡��§ƒ¡��§ƒ¡��©©§

ƒƒ�…†…��”�…�¥̈��§ƒ�Ž‘¥¦̈ ¡§ƒ¡̈ •§ƒ̈©©

©̂

�e syntax was pretty impenetrable, but designers were eager to
make use of this new feature. A�er all, it allowed them to generate
simple gradient images in the browser rather than having to down-
load an additional asset. And so �‹�‘™Œ��†ŒŠ����Ž��‡Œ�Š�
migrated on to the Web and proliferated.

As it made its way through the standards process at the W3C, the
syntax changed a bit from Apple’s original proposal.29 Other brows-
ers picked up the revised syntax (as did Apple) and implemented it
behind their own pre�xes until the spec was deemed �nal.

As more browsers supported the feature, tools cropped up to en-
able you to generate the rather verbose gradient syntax; ColorZilla’s
tool30 is particularly popular. To ensure all browsers that supported
gradients were accommodated, you needed to write something
akin to the following:

27 ����������������«��‚�••�¢

28 ����������������•�•	�••�

29 ����������������€�	•�‚¢��

30 ����������������«¡���•�«�

135VISUAL DESIGN IS AN�ENHANCEMENT

‘��™Ž�…•Š‡�ƒž���̈ ‰‡̂

‘��™Ž�…•Š‡�ƒ��…¬�†ŒŠ����Ž��‡Œ�Š�¥ž���̈ ‰‡ƒ̈ ±§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒž �̈••��ƒ¦̈ ¨±©̂

‘��™Ž�…•Š‡�ƒ�‹�‘™Œ��Ž��‡Œ�Š�¥†ŒŠ���§ƒ†�‰�ƒ�…�§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒ†�‰�ƒ‘…��…�§

ƒƒƒƒƒƒƒƒƒƒƒƒ �…†…��”�…�¥̈ ±§ž���̈ ‰‡©§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒ�…†…��”�…�¥¦̈ ¨±§ž �̈••��©©̂

‘��™Ž�…•Š‡�ƒ�‹�‘™Œ��†ŒŠ����Ž��‡Œ�Š�¥ž���̈ ‰‡ƒ�� ¨±§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒž �̈••��ƒ¦̈ ¨±©̂

‘��™Ž�…•Š‡�ƒ�…�†ŒŠ����Ž��‡Œ�Š�¥ž���̈ ‰‡ƒ̈ ±§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒž �̈••��ƒ¦̈ ¨±©̂

‘��™Ž�…•Š‡�ƒ��”�†ŒŠ����Ž��‡Œ�Š�¥ž���̈ ‰‡ƒ̈ ±§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒž �̈••��ƒ¦̈ ¨±©̂

‘��™Ž�…•Š‡�ƒ†ŒŠ����Ž��‡Œ�Š�¥ž���̈ ‰‡ƒ̈ ±§ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒž �̈••��ƒ¦̈ ¨±©̂

Background-by-background, these are the steps:

1. A solid color for older browsers
2. � e vendor-pre�xed Firefox version
3. � e �rst pass from Apple, vendor-pre�xed for WebKit (early

Chrome used this syntax too)
4. � e revised vendor-pre�xed WebKit version
5. � e vendor-pre�xed Opera version
6. � e vendor-pre�xed IE version (supported in IE 10)
7. � e o�cial, standardized W3C version

As you’ll recall, parsing errors results in an unknown value being
ignored, so the order of these properties matters. It needed to be
the default value �rst, the vendor pre�xes in the middle, and the
standardized version at the end. �at way, when CSS gradients got
standardized—which they were in 2012—the o�cial version would
always trump the vendor-pre�xed versions.

Despite plenty of articles, blog posts, and examples demonstrating
this syntax in order to reach the largest possible number of design-
ers, sites were still being created using only the original concept
from Apple. For example, up until its 2014 redesign, Macy’s mobile

136

site31 used only the old linear gradient syntax in its navigation but-
tons (which were also ‡ŒŸ elements, not actual links, but I digress).

�ey were not the only ones to do this, of course; many other
popular sites had and continue to have the same issue. �is causes
problems from an interoperability standpoint. For instance, with-
out the gradient background, it’s possible that the text could be
unreadable (which wasn’t the case with Macy’s but could potential-
ly be an issue on other sites).

To ensure users on other browsers got the experience designers
intended, other browser makers eventually ended up having to
support Apple’s original experimental syntax, pre�x and all.32
Having to make an accommodation like this adds unnecessary
bloat to a browser, making it larger and slower.

Having learned from this experience, most browser vendors have
moved to put experimental features behind “�ags” in the browser’s
con�guration. To turn on an experimental feature, a user (or devel-
oper) would have to opt into it speci�cally. �is should help reduce
the likelihood of a situation like this arising in the future, but it’s
not a guarantee. It’s possible that you could �ip on the feature on
your browser and forget that you’ve done so, giving you a false im-
pression of something working for other users. I know; I’ve done it.

When it comes to features like this, it’s important that you take
note of their experimental nature. Don’t rely on their availability
unless you have some way of testing for whether they are support-
ed (more on that in a minute). And if you do use a vendor-pre�xed
property, make sure you keep your style sheets updated as the spec
for that property matures and as more browser vendors begin to
implement it.

31 ����������������‚¡•��‚�� . An archive of the version I’m referring to
is available at ����������������•���•
�� .

32 ����������������•��•�����

137VISUAL DESIGN IS AN�ENHANCEMENT

If you use a CSS preprocessor like Sass, Less, or Stylus,33 you may
�nd that the preprocessor makes it easy to write the syntax accord-
ing to the spec, and it will create the fallback and vendor-pre�xed
versions for you. Autopre�xer, a post-processor for CSS, will also
take the W3C syntax for certain features and copy it to the ven-
dor-pre�xed versions based on the con�guration you�supply.34

DESIGN DEFENSIVELY
As I’ve mentioned a few times in this chapter, when you use new
CSS features like gradients, you need to make sure you also pro-
vide an experience that works for users who don’t have the ability
to use that feature. You need to design defensively and provide fall-
backs. �ankfully, that is pretty easy to do when you understand
how fault tolerance works.

��…����—�ƒ‘�”Œ�ƒŸ�†•�̂

��…����—�ƒ�‡Ÿ�Š��‡ƒŸ�†•�̂

Newer CSS properties and values will be ignored automatically be-
cause the browser knows to ignore anything it doesn’t understand.
If you have a bunch of advanced properties on an element and need
to hide a whole CSS rule set, you can use a more advanced selector
like you saw with the Nichols College navigation example. And if
you want to hide several rule sets, you can use at-rules (including
media queries) to achieve that too.

It’s particularly important that you pay attention to color when
it comes to devising di�erent experiences for di�erent browser
generations. For instance, if you are using an RGBa color for a
background, make sure the foreground color will still be legible

33 CSS preprocessors are beyond the scope of this book but might be
useful�in�your work�ow. Sass (����������������•��•���•�) is probably
the�most popular, with Less (����������������•�������) a close
second. Stylus (���������������������••�) is a distant third.

34 You can �nd a great introduction to Autopre�xer on CSS Tricks:
�������������������•���«� .

138

against your fallback. You can always supply two di�erent fore-
ground colors for each version if you need to by using the RGBa
syntax (even if you are using an opaque color).

�…†…��ƒž‰‰‰̂

�…†…��ƒ�Ž‘�¥¡•§ƒ�¦§ƒ��§ƒ¦©̂

‘��™Ž�…•Š‡��…†…��ƒž¨̈ ¨̂

‘��™Ž�…•Š‡��…†…��ƒ�Ž‘�¥¡��§ƒ¡��§ƒ¡��§ƒ̈ ���©̂

In this example, the second �…†…� value is actually an opaque color
but will be understood only by browsers that support RGBa, ensur-
ing it partners well with the RGBa ‘��™Ž�…•Š‡��…†…� value.

Be Conservative in How You Apply Styles
Sometimes you need more robust feature detection in order to
isolate CSS code that could cause the design to fall apart in older
browsers. Modernizr35 has �lled this need for many designers
but relies on JavaScript to work. Since JavaScript is not always
available, the W3C has introduced feature queries to allow you to
achieve this kind of isolation. In practice, they work via a new at-
rule: ®”•��…��” .

Like the ®��‡Œ� block for media queries, the ®”•��…��” block
acts as a wrapper around a collection of rule sets to enable you to
selectively apply them only if your query evaluates as true. Queries
can be made for a property or a property-value pair, and, as with
®��‡Œ� blocks, you can also check for lack of support using the
“not” keyword. Here are a few examples:

®”•��…��”ƒ¥‡Œ”�†�—�Ž�Œ‡©ƒ„

ƒƒ�“ƒ�•†�ƒ”��”ƒ����ƒ‹…•†‡ƒ��Š‡��ƒ���ƒŒŠ���‰���ƒ

ƒƒƒƒƒ•Š•”�‘†�ƒ‹Œ��…•�ƒŽ�Œ‡ƒ†�—…•�ƒ”•��…��ƒ“�

’

35 �������������������‚�•���

139VISUAL DESIGN IS AN�ENHANCEMENT

®”•��…��”ƒŠ…�ƒ¥‡Œ”�†�—�Ž�Œ‡©ƒ…�ƒ¥‡Œ”�†�—���”�Ž�Œ‡©ƒ„

ƒƒ�“ƒ••†�”ƒ‰…�ƒ‘�…‹”��”ƒ����ƒ‡…Š²�ƒ”•��…��ƒ	��ƒ¢�Œ‡ƒ

ƒƒƒƒƒ•�—…•�ƒ“�

’

It’s worth noting that, as of this writing, ®”•��…��” is still quite
new, but it is—er—supported in more browsers with each new
release.36 �e positive test case (example 1) is your best option;
forward-compatibility is far more useful because only advanced
browsers currently understand ®”•��…��” . Older browsers will
simply ignore it, making backward compatibility not quite as use-
ful. However, as with media queries, lack of feature query support
is, in fact, the �rst feature query.

Regardless, native CSS-based feature detection is an amazing tool
for progressive enhancement. It allows better encapsulation and
more granular testing without having to rely on JavaScript.

HIDE CONTENT RESPONSIBLY
Perhaps the most heavily repeated pattern in JavaScript-based
interfaces is showing and hiding content. You’ve seen numerous
examples that use it already: tabbed interfaces, accordions, and
navigation. It crops up nearly everywhere.

In and of itself, this pattern is not a bad thing, but few people
realize how profoundly your choice of hiding mechanism can in-
�uence the accessibility of your content when it comes to assistive
technologies such as screen readers. It’s important to know what
the di�erent approaches do and how they can a�ect the reading
experience of your users.

36 Reference Can I Use for an updated support table:
����������������

���
•�• .

140

Techniques to Avoid
Assuming you want your content available to screen readers, it’s
best to avoid using any of the following techniques to hide content.

Invisible
��Œ‡‡�Šƒ„

ƒƒŸŒ”Œ‘Œ†Œ�—�ƒ�Œ‡‡�Š̂

’

When you adjust the visibility of an element, the element is hid-
den from view but is not removed from the normal �ow (i.e., it
still takes up the space it normally would). Unfortunately, “black
hat” SEO folks ruined this option when they started �lling pages
with popular keywords and hid them from view using this CSS
property. To save screen-reader users from having to hear Pamela
Anderson’s name over and over,37 assistive technology doesn’t
expose content hidden in this way.

Not Displayed
��Œ‡‡�Šƒ„

ƒƒ‡Œ”�†�—�ƒŠ…Š�̂

’

�is is probably the most popular way of hiding content with CSS.
Pretty much every JavaScript library does this by default. When
you set ‡Œ”�†�— to Š…Š� , the element is removed from the normal
�ow and hidden. �e space it once occupied is collapsed. �is was
another technique used to “keyword stu�” pages so its contents are
ignored by assistive technologies.

37 ����������������•	�€�¡
��

141VISUAL DESIGN IS AN�ENHANCEMENT

Collapsed
��Œ‡‡�Šƒ„

ƒƒ��ŒŽ���ƒ̈ ˆ

ƒƒ‹Œ‡���ƒ̈ ˆ

ƒƒ…Ÿ��‰†…‹�ƒ�Œ‡‡�Š̂

’

�is setup collapses the element to nothing and prohibits its
contents from �owing outside of its edges. �is is yet another
technique abused by the black hats, so it’s not accessible. People
ruin everything!

Techniques to Use Sparingly
�ese hiding techniques keep text accessible, but have some
limitations.

Negatively Indented
��Œ‡‡�Šƒ„

ƒƒ��°��ŒŠ‡�Š��ƒ�•••��̂

’

Finally, a technique that assistive technology does expose to users!
�e negative ��°��ŒŠ‡�Š� shi�s the element’s contents o�-screen
and out of view. Sadly, it works only with text and inline con-
tent, and links within the content may focus oddly. Also, you can
never be sure the negative indent will be long enough to fully hide
the�content.

Positively Indented
��Œ‡‡�Šƒ„

ƒƒ…Ÿ��‰†…‹�ƒ�Œ‡‡�Š̂

ƒƒ��°��ŒŠ‡�Š��ƒ¦̈ ¨±̂

ƒƒ‹�Œ���”�����ƒŠ…‹���̂

ƒƒ‹Œ‡���ƒ¡̈ �°̂ƒ�“ƒ‰Œ°�‡ƒ‹Œ‡��ƒ“�

’

142

As with the previous example, this one is accessible. It’s also lim-
ited to text and inline content. �is approach is useful only when
you know the precise width of the element.

Positioned Offscreen
��Œ‡‡�Šƒ„

ƒƒ�…”Œ�Œ…Š�ƒ�‘”…†•��̂

ƒƒ†�‰��ƒ�•••��̂

’

A perennial favorite, this approach removes the content from the
normal �ow and shi�s it o� the le� edge. �e space the element
occupied is collapsed. Its contents are accessible, but this approach
works only in le�-to-right languages. For right-to-le� languages,
use the �ŒŽ�� o�set instead of †�‰� .

The Best Way to Go
Developed by a team at Yahoo!, this is the current gold standard
for hiding content:

��Œ‡‡�Šƒ„

ƒƒ�…”Œ�Œ…Š�ƒ�‘”…†•��̂

ƒƒ��ŒŽ���ƒ¦�°̂

ƒƒ‹Œ‡���ƒ¦�°̂

ƒƒ…Ÿ��‰†…‹�ƒ�Œ‡‡�Š̂

ƒƒ�†Œ��ƒ����¥¦�°§ƒ¦�°§ƒ¦�°§ƒ¦�°©̂

’

It’s a bit to take in, so I’ll walk you through it.

�e positioning removes the element from the normal �ow, but
because no o�sets are used, it remains in its original position.
�e width and height collapse the element to a 1×1 square (which
avoids the accessibility issues introduced by the 0×0 approach).
Finally, its contents are hidden from view via a combination of
…Ÿ��‰†…‹ and �†Œ� . Using this technique, the element’s content is
accessible, and its text direction is irrelevant.

143VISUAL DESIGN IS AN�ENHANCEMENT

One thing to keep in mind with respect to hiding content is that
when you hide elements such as images—which can have a signif-
icant e�ect on the performance of your page—in many cases the
browser will still download the image.38 Any users who don’t get to
see the hidden image are paying to get it and waiting to download it.
�e current best practice for selectively delivering images and other
weighty assets is to load them via JavaScript, assuming, of course,
they actually add to the experience (as we discussed in Chapter 2).

THE FLIP SIDE: GENERATED CONTENT
In addition to hiding content, you sometimes need to insert con-
tent into your pages via CSS. A perfect example of this is in forms.
Imagine you’re laying out a form and can’t decide whether you
want colons a�er the �eld labels. Rather than adding them to the
markup directly, you could simply generate them in with CSS.

†�‘�†���‰���ƒ„

ƒƒ�…Š��Š��ƒ³�›̂

’

�at way you can easily remove the colons later if you decide you
don’t like them. NPR uses generated content in a pretty ingenious
way on its site: �e generated content allows data tables to be
linearized on small screens.39 NPR does this through a clever com-
bination of data attributes and generated content.

In the HTML, NPR adds a ‡�����Œ�†� attribute to each table cell.
�e contents of this attribute match the column header for that
cell. Here’s a sample row:

38 ����������������¡����•••�

39 �����������������•�¢����

144

–��̃

ƒƒ–�‡ƒ‡�����Œ�†�š›	���Ž…�—›̃ …��†ƒ¥¦�ƒ—���”ƒ�Š‡

ƒƒƒƒƒƒ…Ÿ��©–��‡˜

ƒƒ–�‡ƒ‡�����Œ�†�š›•�Š•��—›̃ ���–��‡˜

ƒƒ–�‡ƒ‡�����Œ�†�š›��‘�•��—›̃ ���–��‡˜

ƒƒ–�‡ƒ‡�����Œ�†�š›����›̃ ���–��‡˜

–���̃

On the CSS end, inside a media query, NPR converts all table cells,
rows, and so on, to ‡Œ”�†�—�ƒ‘†…�™ so they stack on top of one
another. �en it hides the contents of the ����‡ and uses gener-
ated content to insert the column headers before the contents of
each�cell.

®��‡Œ�ƒ”����Šƒ�Š‡ƒ¥��°�‹Œ‡���ƒ•�̈ �°©ƒ„

ƒƒ��‘†�§ƒ�‘…‡—ƒ„

ƒƒƒ ƒ‡Œ”�†�—�ƒ‘†…�™ˆ

ƒƒƒƒ ‹Œ‡���ƒ¦̈ ¨±̂

ƒƒ’

ƒƒ����‡ƒ„

ƒƒƒƒ ‡Œ”�†�—�ƒŠ…Š�̂

ƒƒ’

ƒƒ��§ƒ��§ƒ�‡ƒ„

ƒƒƒƒ ‡Œ”�†�—�ƒ‘†…�™ˆ

ƒƒƒƒ ��‡‡ŒŠŽ�ƒ̈ ˆ

ƒƒƒƒ ��°���†ŒŽŠ�ƒ†�‰�̂

ƒƒƒƒ ‹�Œ���”�����ƒŠ…���†̂

ƒƒ’

ƒƒ��£‡�����Œ�†�¤��‘�‰…��§

ƒƒ�‡£‡�����Œ�†�¤��‘�‰…��ƒ„

ƒƒ ƒƒ�…Š��Š��ƒ����¥‡�����Œ�†�©ƒ³�́¨̈ •̈ ›̂

ƒƒƒƒ ‰…Š��‹�ŒŽ���ƒ‘…†‡̂

ƒƒ’

’

�at last rule set is where the magic happens: �e value of the
‡�����Œ�†� attribute is inserted into the cell, followed by a colon
and a space (´̈ •̈̈ is hexadecimal for a space).

145VISUAL DESIGN IS AN�ENHANCEMENT

Now you might be wondering why, a�er all I did to badmouth
‡Œ”�†�—�ƒŠ…Š� , NPR is using it for hiding the ����‡ . �ey are
rendering the ����‡ inaccessible on purpose, because generated
content is exposed to assistive technology. If the ����‡ was
also available, the column header contents could be read out
multiple�times.

Why would generated content be read by assistive technology?
It’s coming from CSS, which means it’s presentational, right? Yes,
that’s absolutely true, and I’m right there with you. It used to be
that generated content was not exposed to assistive technology,
but sadly, as with ŸŒ”Œ‘Œ†Œ�—�ƒ�Œ‡‡�Šƒ and ‡Œ”�†�—�ƒŠ…Š� ,
designers didn’t understand that generated content was intended
to be for presentational content only—they started using it for
important page content too. To avoid causing issues for people who
depend on assistive technologies, browsers began exposing gener-
ated content as though it was real content in the page. It’s still not
selectable with a mouse or keyboard, though.

CONSIDER THE EXPERIENCE WITH
ALTERNATE MEDIA AND INPUTS
�e Web is unlike any other medium we’ve encountered thus
far. It isn’t print, television, radio, a video game, a kiosk, or an
application, but it functions as a hybrid of all these things and
more. Realizing this, the W3C added the ability to target styles to
a speci�c medium. I took advantage of that capability earlier in
an ®��‡Œ� block, but you’re probably more familiar with using
media declarations with linked or embedded style sheets (using the
��‡Œ� attribute).

�e W3C maintains the list of approved media types but is open
to adding to it as technology evolves. Currently, the list addresses
CSS’s application on the computer screen, in print, on televisions,

146

on handheld devices (which, sadly, no browser maker uses), and
in assistive contexts such as screen readers, braille printers, and
touch-feedback devices. Without a speci�c media designation, the
browser assumes the screen media type.

At their most basic, media assignments use a single-media desig-
nation, but (as you saw with my silly refrigerator example) multiple
media assignments can be combined using a comma (which acts as
an implicit “or”). As I covered earlier, media assignments are also
fault tolerant in that unknown media types are simply ignored,
with the browser applying the contained rule sets only in the
known media types.40 Media assignments are incredibly powerful
because they allow you to create layouts that adapt to the medium
in which they are presented.

Design the Printed Page
One of the �rst great examples of designing an experience for a
nonscreen medium came from CSS wizard Eric Meyer back in
2000. He showed us how to jettison “printer-friendly” pages and
use a media-speci�c style sheet to provide a printer-friendly view
of any web page.41 He o�ered the following suggestions to make
the�print experience better:

‘…‡—ƒ„

ƒ‘��™Ž�…•Š‡�ƒ‹�Œ��̂

ƒ�…†…��ƒ‘†��™ˆ

’

��†ŒŠ™§ƒ��ŸŒ”Œ��‡ƒ„

ƒ‘��™Ž�…•Š‡�ƒ‹�Œ��̂

ƒ�…†…��ƒ‘†��™ˆ

40 � e CSS 2.1 spec (����������������‚¡•‚����) addresses this explicitly
in the case of ®��‡Œ� and ®Œ��…�� but is oddly nonprescriptive about the
same behavior applying to linked and embedded styles. Still, all modern
browsers treat the HTML-based media designations the same way.

41 ����������������•« «�•� �

147VISUAL DESIGN IS AN�ENHANCEMENT

ƒ��°��‡��…���Œ…Š�ƒ•Š‡��†ŒŠ�̂

ƒ‰…Š��‹�ŒŽ���ƒ‘…†‡̂

’

�¦§ƒ�¡§ƒ��ƒ„

ƒ‘��™Ž�…•Š‡�ƒ‹�Œ��̂

ƒ�…†…��ƒ‘†��™ˆ

ƒ��‡‡ŒŠŽ�‘…��…��ƒ¦�°̂

ƒ‘…�‡���‘…��…��ƒ¦�°ƒ”…†Œ‡ƒŽ��—̂

’

‡ŒŸ��‡‘�ŠŠ��ƒ„

ƒ‡Œ”�†�—�ƒŠ…Š�̂

’

Most of these tweaks are focused around improving the readability
of the document. �ey facilitate scanning and hide stu� that’s not
all that useful in print (such as that banner ad you can’t click). You
could also easily build on this and get rid of other stu� that wastes
paper: navigation, most forms, and decorative images.

Two years later, Eric extended that concept and showed how to
use advanced CSS to progressively enhance the print experience.42
My favorite bit from that article was the way, in one sweet rule, he
made links useful in print.

ž�…Š��Š�ƒ��†ŒŠ™���‰���§ƒ

ž�…Š��Š�ƒ��ŸŒ”Œ��‡���‰���ƒ„ƒ

ƒƒ�…Š��Š��ƒ³ƒ¥³ƒ����¥���‰©ƒ³©ƒ³̂ ƒ

’

�at simple rule set inserts the ���‰ URL value (via the ����¥©
function) as a parenthetical a�er every link, using generated
content (���‰���).

Since these two articles came out, web designers have been grant-
ed a lot more control over the printed page. You can control page
margins based on whether the page is le�- or right-facing (®��Ž�).
You can control how many lines of an element should remain when

42 ����������������•¡•«�•� ¢

148

it breaks across pages (‹Œ‡…‹”) and how many can be le� alone on
the new page (…����Š”). You can even control where page breaks
should occur (��Ž��‘���™�‘�‰…�� , ��Ž��‘���™��‰��� ,
��Ž��‘���™�ŒŠ”Œ‡�).

�ere are countless ways to embrace alternate media, such as print,
and show it the same sort of care you show your screens. In most
cases, your rules for alternate media won’t be so many that they
require their own style sheet, so it makes sense to put them in an
®��‡Œ� block within your basic style sheet. �at way it will be there
as an enhancement for every browser, and any that don’t support the
particular medium will just ignore the block, as they should.

Embrace Alternative Interactions
In addition to considering alternate media, you should be consid-
erate of alternative interaction methods. Technology continues to
o�er novel ways of consuming and interacting with websites. We,
as an industry, are just starting to dip our toes—er, hands—into
the world of motion-based gestural controls. We’ve had them in
two dimensions on touchscreens for a while now, but three-dimen-
sional motion-based controls are beginning to appear.

�e �rst big leap in this direction was Kinect on the Xbox 360
(and later, Windows and Xbox One). �e Kinect watches for body
movements such as raising your hand (which gets Kinect to pay
attention), pushing forward with your hand to click/tap, and grasp-
ing to drag the canvas in one direction or another.

�e Kinect was a major revolution in terms of interfacing with
computers, but large body gestures such as raising your hand (or a
wand controller as with the Nintendo Wii and PlayStation Move)
can be tiring. �ey’re also not terribly accurate. If you thought that
touchscreen accuracy was an issue, hand gestures like those for the
Kinect or the LEAP Motion pose even more of a challenge.

Interactions like this—which are currently impossible to detect
and accommodate—require diligence when it comes to ensuring

149VISUAL DESIGN IS AN�ENHANCEMENT

interactive controls are actually usable. You need to determine
whether your buttons and links are large enough to activate. You
need to be aware of what kinds of interactive controls work well. You
also need to �gure out whether there is enough space between them
to ensure your user’s intent is accurately conveyed to the browser.

Next-generation media queries give you the ability to apply style
rules to particular interaction contexts. Here’s an example of when
your user has accurate control over her cursor (as in the case of a
stylus or mouse) or less accurate control (as in the case of a touch-
screen or physical gesture):

®��‡Œ�ƒ¥�…ŒŠ����‰ŒŠ�©ƒ„

ƒƒ�“ƒ���††��ƒ†ŒŠ™”ƒ�Š‡ƒ‘•��…Š”ƒ���ƒ…™ƒ“�

’

®��‡Œ�ƒ¥�…ŒŠ�����…��”�©ƒ„

ƒƒ�“ƒ•��Ž��ƒ†ŒŠ™”ƒ�Š‡ƒ‘•��…Š”ƒ���ƒ��…‘�‘†—ƒ�ƒŽ……‡

ƒƒƒƒƒŒ‡��ƒ“�

’

Of course, you’ll want to o�er a sensible default in terms of size
and spacing as a fallback for older browsers and devices that don’t
support this new query type.

In addition to querying pointer accuracy, you can detect whether
the device is capable of hovering.

®��‡Œ�ƒ¥�…Ÿ����…Ÿ��©ƒ„

ƒƒ�“ƒ�…Ÿ���‘�”�‡ƒŒŠ������Œ…Š”ƒ¥†Œ™�ƒ�Œ��ƒ�……†�Œ�”©

ƒƒƒƒƒ���ƒ�…””Œ‘†�ƒ“�

’

®��‡Œ�ƒ¥�…Ÿ���…Š�‡���Š‡©ƒ„

ƒƒ�“ƒ�…Ÿ�����†���‡ƒŒŠ������Œ…Š”ƒ���ƒ�…��Š�Œ�††—ƒ

ƒƒƒƒƒ‡Œ‰‰Œ�•†�§ƒ��—‘�ƒ‡…ƒ”…����ŒŠŽƒ�†”�ƒŒŠ”���‡ƒ“�

’

®��‡Œ�ƒ¥�…Ÿ���Š…Š�©ƒ„

ƒƒ�“ƒ�…ƒ�…Ÿ��ƒ�…””Œ‘†�ƒ��¥ƒ“�

’

150

In terms of real-world application, however, no one has �gured
out a best practice for how all this should work on devices such
as Microso�’s Surface tablet, which supports keyboard, mouse,
pen, and touch. Will the design change as the user switches be-
tween input modes? Should it? To that end, the spec also provides
�Š—��…ŒŠ��� and �Š—��…Ÿ�� values to allow you to query for
whether any supported interaction method on the device meets
your requirements, but here’s a word of warning from the spec:

Designing a page that relies on hovering or accurate pointing
only, because �Š—��…Ÿ�� or �Š—��…ŒŠ��� indicate that an
input mechanism with these capabilities is available, is likely to
result in a poor experience.43

In other words, use them with caution and probably only in
concert with other queries.

Think Bigger
Of course, in addition to considering the level of accuracy your users
have while interacting with your site, you need to consider the po-
tentially increased distance at which they are reading your content.

When you design your sites, you’ll want to ensure your line lengths
stay somewhere in the 45–75 character range. You can manage
that by adjusting column widths according to the font size pretty
easily. Assuming you’ve set the ��°�‹Œ‡�� of your responsive
design for the largest size you want to design for, what happens
when the screen is bigger than that? You get white space on one
or both sides of the design. �e larger the screen, the more white
space you�see. �is can be particularly problematic on large
wall-mounted�displays.

43 ��������������������‚��

151VISUAL DESIGN IS AN�ENHANCEMENT

� is is where the viewport width (vw) unit of measurement can be
quite useful. A vw is a fraction of the overall viewport width (a.k.a.
available horizontal space). Interestingly, however, you can use this
unit in scenarios that have nothing to do with layout—such as font
size. Check this out:

‘…‡—ƒ„

ƒƒ��°�‹Œ‡���ƒ�•��̂

’

®��‡Œ�ƒ¥�ŒŠ�‹Œ‡���ƒ�•��©ƒ„

ƒƒ‘…‡—ƒ„

ƒƒƒƒ ‰…Š��”Œ¬��ƒ¦���¡�Ÿ‹̂

ƒƒ’

’

Here I have set a maximum width of 64em on the ‘…‡— element.
�at makes the width of the ‘…‡— proportional to its font size
(which is what you want). �en, within a media query that applies
only above that 64em limit, I set the font size to 1.5625vw. How did
I arrive at that number? Math!

(1em / 64em) * 100

If the font size of the ‘…‡— is 1em and its width is 64em, then
the font size of ‘…‡— is roughly 1/64th the width of the element.
Multiply that by 100 and you have your vw unit. Now, as if by
magic, the site enlarges as the screen size gets bigger (Figure 4.12).

If you don’t want to turn something like that on automatically, you
could also toggle it on and o� with JavaScript.44 Either way you go,
however, this is an excellent progressive enhancement for larger
screens and televisions, which tend to be viewed from across the
room rather than across a desk.

44 You can see an example of this behavior at ����������������¡��
�•¢¡¡ .

152

Figure 4.12 North Shore Chiropractic (����������������•••��••�)
uses vw units to zoom its design on larger screens. On top is the narrower
“wide” version below the 64em cuto�; underneath is the design zoomed in
when the browser width exceeds 64em.

EMBRACE DEFAULT STYLES
In his astute post “‘Native experience vs. styling select boxes,”45
Opera’s Bruce Lawson correctly identi�ed a common tension in
the�web world: wanting interface controls to be consistent, while
at�the same time wanting them to look how we want them to look.

45 �����������������•••�‚��€

153VISUAL DESIGN IS AN�ENHANCEMENT

I’ve seen numerous arguments in favor of changing a browser’s
native rendering of interface widgets, especially when it comes to
form controls. My favorites are as follows:

1. It doesn’t look good to me.
2. It’s not “on brand.”
3. It clashes with our brand’s color scheme.
4. We want the web experience to feel like a native app.
5. It doesn’t behave how we think it should.

It’s worth noting that browsers have done a pretty good job reduc-
ing the visual strength (and gaudiness) of their native widgets so
they can blend in with a wider variety of designs. �e clash men-
tioned in #3 happens far less o�en now than it did a decade ago.

Altered Aesthetics
When it comes to aesthetics (arguments #1, #2, and #3), it’s true that
the rendering of a native widget is not always the most appealing
thing. Native widgets don’t have much personality. But that’s a good
thing. Too much personality would lead to visual design clashes.
�ey are intended to blend in to work with pretty much any design.

�e native renderings are also familiar to your users. A ”�†���
box on your website that looks like the one they see on Wikipedia
or Zappos or their banking site will be immediately recogniz-
able. �at’s reassuring. �e look and feel of a ”�†��� di�ers
from browser to browser and from operating system to operating
system, but most people use only a small number of browsers
throughout the day—at work, at home, on their device. If you want
to ensure the design of a form control feels “right” to them, it’s
probably best to go with the native rendering�in the browser they’re
using at the time.

That OS Look and Feel
It can seem desirable to have a particular widget on the Web look
and feel like a similar widget within the operating system (argu-
ment #4). �at’s not a rabbit hole you want to go down. Here’s why:

154

Achieving exact design and functional parity between a native
control and a web control o�en requires extra markup, a bunch
of CSS, and a bit of JavaScript. As with the button I discussed in
Chapter 3, it can be done, but it’s a lot more work, and you don’t
get to take advantage of all the baked-in behaviors and accessi-
bility mappings you’d get with the native widget. On top of that,
the end result is considerably more fragile because it has many
more�dependencies.

Unlike the button example, modeling your controls a�er the
operating system’s equivalent creates additional complexity over
and above simply making a custom control. Of course, you’ll need
to decide which operating system or systems you want to mimic.
You’ll need to pick the versions of each of those operating systems
you plan to create renderings for as well—the design of an oper-
ating system can shi� dramatically between versions, so this is
important.46 You might also need to consider whether you want to
support the design variance introduced by manufacturer “skins.”47
And, on top of creating unique style rules for each of your wid-
get themes, you’ll need to write some JavaScript to determine
which theme to apply. �en you’ll need to maintain all this extra
code�over time.

Or you could use the native browser rendering, and it will just work.

46 � e design shi� from iOS 6 to iOS 7, for instance, was quite drastic. It would
be jarring for a user to see an OS-esque control that looks like an older
version of that OS (or, conversely, like a newer version than they are using).
It’s not unusual for iOS devices two generations back to be stuck with older
versions of the OS because of a lack of support from Apple. And these are
perfectly good devices!

47 Skins, if you aren’t familiar with the term, are a customized look and
feel put on top of something you didn’t create. You could also call them
themes. Skinning the operating system is particularly prevalent in the
Android world. Sometimes manufacturers even create unique skins on a
device-by-device basis.

155VISUAL DESIGN IS AN�ENHANCEMENT

EMBRACE THE CONTINUUM
When you focus on your content, it keeps your designs honest and
supportive of their purpose. When you design in systems rather
than pages, it helps you keep your eye on the big picture, ensuring
consistency throughout your website. Building up your design
from the small screen �rst will ensure your code is e�cient and
that your site downloads quickly. When you understand the me-
chanics of CSS, you can use them to ensure support for the widest
number of browsers, media, and input types. When you don’t get
hung up on making your design look the same everywhere, you
create a �exible design that can �ex and adapt to the device ac-
cessing it. When you embrace the continuum, you’ll �nd your site
serving far more users while causing you far fewer headaches.

Remember, the purpose of design is to solve problems, not just to
make things pretty. Beauty has its place, but a beautiful, unusable
thing is not design; it’s art (Figure 4.13).

Figure 4.13 Jacques Carelman famous “Co�eepot for Masochists”
(�����������������¢¢��••��) is a beautiful art piece but is
completely impractical.

“�e Web is the most hostile
so�ware engineering
environment imaginable.”

—DOUGLAS CROCKFORD

CHAPTER 5:
INTERACTION IS AN
ENHANCEMENT
In February 2011, shortly a�er Gawker Media launched a uni�ed
redesign of its various properties (Lifehacker, Gizmodo, Jezebel, etc.),
users visiting those sites were greeted by a blank stare (Figure 5.1).
Not a single one displayed any content. What happened? JavaScript
happened. Or, more accurately, JavaScript didn’t happen.1

In architecting its new platform, Gawker Media had embraced
JavaScript as the delivery mechanism for its content. It would
send a hollow HTML shell to the browser and then load the actual
page content via JavaScript. �e common wisdom was that this
approach would make these sites appear more “app like” and
“modern.” But on launch day, a single error in the JavaScript
code running the platform brought the system to its knees. �at
one solitary error caused a lengthy “site outage”—I use that term
liberally because the servers were actually still working—for every
Gawker property and lost the company countless page views and
ad impressions.

1 ������������������������

158

Figure 5.1 Lifehacker during the JavaScript incident of 2011.

It’s worth noting that, in the intervening years, Gawker Media has
updated its sites to deliver content in the absence of JavaScript.

� Q � � � Q � � � Q

Late one night in January 2014 the “parental �lter” used by Sky
Broadband—one of the UK’s largest ISPs (Internet service pro-
viders)—began classifying ��
��	��������� as a “malware and
phishing” website.2 �e jQuery CDN (content delivery network) is
at that URL. No big deal—jQuery is only the JavaScript library that
nearly three-quarters of the world’s top 10,000 websites rely on to
make their web pages work.

With the domain so mischaracterized, Sky’s �rewall leapt into
action and began “protecting” the vast majority of their customers
from this “malicious” code. All of a sudden, huge swaths of the
Web abruptly stopped working for every Sky Broadband customer
who had not speci�cally opted out of this protection. Any site that

2 ������������������������•

159INTERACTION IS AN ENHANCEMENT

relied on CDN’s copy of jQuery to load content, display advertis-
ing, or enable interactions was dead in the water—through no fault
of their own.

� Q � � � Q � � � Q

In September 2014, Ars Technica revealed that Comcast was
injecting self-promotional advertising into websites served via
its Wi-Fi hotspots.3 Such injections are e�ectively a man-in-the
middle attack,4 creating a situation that had the potential to break
a�website. As security expert Dan Kaminsky put it this way:

[Y]ou no longer know, as a website developer, precisely what code
is running in browsers out there. You didn’t send it, but your
customers received it.

Comcast isn’t the only organization that does this. Hotels, airports,
and other “free” Wi-Fi providers routinely inject advertising and
other code into websites that pass through their networks.

� Q � � � Q � � � Q

Many web designers and developers mistakenly believe that
JavaScript support is a given or that issues with JavaScript dri�ed
o� with the decline of IE 8, but these three stories are all recent,
and none of them concerned a browser support issue. If these
stories tell you anything, it’s that you need to develop the 1964
Chrysler Imperial5 of websites—sites that soldier on even when
they are getting pummeled from all sides. A�er all, devices,
browsers, plugins, servers, networks, and even the routers that
ultimately deliver your sites all have a say in how (and what)
content actually gets to your users.

3 ����������������••••�•�

4 ����������������������••

5 � e 1964 Chrysler Imperial is a bit of a legend. It’s one of the few cars that
has actually been outright banned from “demolition derby” events because
it’s practically indestructible.

160

GET FAMILIAR WITH POTENTIAL ISSUES
SO YOU CAN AVOID THEM
It seems that nearly every other week a new JavaScript framework
comes out, touting a new approach that is going to “revolutionize”
the way we build websites. Frameworks such as Angular, Ember,
Knockout, and React do away with the traditional model of
browsers navigating from page to page of server-generated content.
Instead, these frameworks completely take over the browser and
handle all the requests to the server, usually fetching bits and
pieces of content a few at a time to control the whole experience
end to end. No more page refreshes. No more waiting.

�ere’s just one problem: Without JavaScript, nothing happens.

No, I’m not here to tell you that you shouldn’t use JavaScript.6 I think
JavaScript is an incredibly useful tool, and I absolutely believe it can
make your users’ experiences better…when it’s used wisely.

Understand Your Medium
In the early days of the Web, “proper” so�ware developers shied
away from JavaScript. Many viewed it as a “toy” language (and felt
similarly about HTML and CSS). It wasn’t as powerful as Java or
Perl or C in their minds, so it wasn’t really worth learning. In the
intervening years, however, JavaScript has changed a lot.

Many of these developers began paying attention to JavaScript in
the mid-2000s when Ajax became popular. But it wasn’t until a
few years later that they began bringing their talents to the Web
in droves, lured by JavaScript frameworks and their promise of
a more traditional development experience for the Web. �is,
overall, is a good thing—we need more people working on the
Web to make it better. �e one problem I’ve seen, however, is the

6 It would be a short chapter if I did.

161INTERACTION IS AN ENHANCEMENT

fundamental disconnect traditional so�ware developers seem to
have with the way deploying code on the Web works.

In traditional so�ware development, you have some say in the
execution environment. On the Web, you don’t. I’ll explain. If I’m
writing server-side so�ware in Python or Rails or even PHP, one of
two things is true:

• I control the server environment, including the operating
system, language versions, and packages.

• I don’t control the server environment, but I have knowledge
of�it and can author my program accordingly so it will execute
as anticipated.

In the more traditional installed so�ware world, you can similarly
control the environment by placing certain restrictions on what
operating systems your code supports and what dependencies
you might have (such as available hard drive space or RAM). You
provide that information up front, and your potential users can
choose your so�ware—or a competing product—based on what
will work for them.

On the Web, however, all bets are o�. �e Web is ubiquitous. �e
Web is messy. And, as much as I might like to control a user’s
experience down to the pixel, I understand that it’s never going to
happen because that isn’t the way the Web works. �e frustration
I sometimes feel with my lack of control is also incredibly liber-
ating and pushes me to come up with more creative approaches.
Unfortunately, traditional so�ware developers who are relatively
new to the Web have not come to terms with this yet. It’s under-
standable; it took me a few years as well.

You do not control the environment executing your JavaScript
code, interpreting your HTML, or applying your CSS. Your users
control the device (and, thereby, its processor speed, RAM, etc.).
Depending on the device, your users might choose the operating
system, browser, and browser version they use. Your users can de-
cide which add-ons they use in the browser. Your users can shrink
or enlarge the fonts used to display your site. And the Internet

162

providers sit between you and your users, dictating the network
speed, regulating the latency, and ultimately controlling how (and
what part of) your content makes it into their browser. All you can
do is author a compelling, adaptive experience and then cross your
�ngers and hope for the best.

�e fundamental problem with viewing JavaScript as a given—
which these frameworks do—is that it creates the illusion of
control. It’s easy to rationalize this perspective when you have
access to the latest and greatest hardware and a speedy and stable
connection to the Internet. If you never look outside of the bubble
of our industry, you might think every one of your users is so well-
equipped. Sure, if you are building an internal web app, you might
be able to dictate the OS/browser combination for all your users
and lock down their machines to prevent them from modifying
any settings, but that’s not the reality on the open Web. �e fact
is that you can’t absolutely rely on the availability of any speci�c
technology when it comes to delivering your website to the world.

It’s critical to cra� your website’s experiences to work in any situa-
tion by being intentional in how you use speci�c technologies, such
as JavaScript. Take advantage of their bene�ts while simultaneous-
ly understanding that their availability is not guaranteed. �at’s
progressive enhancement.

�e history of the Web is littered with JavaScript disaster stories.
�at doesn’t mean you shouldn’t use JavaScript or that it’s in-
herently bad. It simply means you need to be smart about your
approach to using it. You need to build robust experiences that
allow users to do what they need to do quickly and easily, even if
your carefully cra�ed, incredibly well-designed JavaScript-driven
interface can’t run.

Why No JavaScript?
O�en the term progressive enhancement is synonymous with “no
JavaScript.” If you’ve read this far, I hope you understand that this
is only one small part of the puzzle. Millions of the Web’s users

163INTERACTION IS AN ENHANCEMENT

have JavaScript. Most browsers support it, and few users ever turn
it o�. You can—and indeed should—use JavaScript to build amaz-
ing, engaging experiences on the Web.

If it’s so ubiquitous, you may well wonder why you should worry
about the “no JavaScript” scenario at all. I hope the stories I shared
earlier shed some light on that, but if they weren’t enough to con-
vince you that you need a “no JavaScript” strategy, consider this:
�e U.K.’s GDS (Government Digital Service) ran an experiment to
determine how many of its users did not receive JavaScript-based
enhancements, and it discovered that number to be 1.1 percent, or
1 in every 93 users.7, 8 For an ecommerce site like Amazon, that’s
1.75 million people a month, which is a huge number.9 But that’s
not the interesting bit.

First, a little about GDS’s methodology. It ran the experiment on a
high-tra�c page that drew from a broad audience, so it was a live
sample which was more representative of the true picture, meaning
the numbers weren’t skewed by collecting information only from
a subsection of its user base. �e experiment itself boiled down to
three images:

• A baseline image included via an �€ element
• An �€ contained within a ‚�ƒ���� element
• An image that would be loaded via JavaScript

�e ‚�ƒ���� element, if you are unfamiliar, is meant to encap-
sulate content you want displayed when JavaScript is unavailable.
It provides a clean way to o�er an alternative experience in “no
JavaScript” scenarios. When JavaScript is available, the browser
ignores the contents of the ‚�ƒ���� element entirely.

7 ����������������•„���•�…†

8 A recent Pew Research study pegged the JavaScript-deprived percentage of its
survey respondents closer to 15 percent, which seems crazy. Incidentally, it
also found that “the �ashier tools JavaScript makes possible do not improve
and may in fact degrade data quality.” See ������������������•����•� .

9 � e most recent stat I’ve seen pegs Amazon.com at around 175 million
unique monthly visitors. See ����������������•�‡�̂ ��‰ .

164

With this setup in place, the expectation was that all users would
get two images. Users who fell into the “no JavaScript” camp would
receive images 1 and 2 (the contents of ‚�ƒ���� are exposed only
when JavaScript is not available or turned o�). Users who could
use JavaScript would get images 1 and 3.

What GDS hadn’t anticipated, however, was a third group: users
who got image 1 but didn’t get either of the other images. In other
words, they should have received the JavaScript enhancement
(because ‚�ƒ���� was not evaluated), but they didn’t (because
the JavaScript injection didn’t happen). Perhaps most surprisingly,
this was the group that accounted for the vast majority of the “no
JavaScript” users—0.9 percent of the users (as compared to 0.2
percent who received image 2).

What could cause something like this to happen? Many things:

• JavaScript errors introduced by the developers
• JavaScript errors introduced by in-page third-party code

(e.g.,�ads, sharing widgets, and the like)
• JavaScript errors introduced by user-controlled browser add-ons
• JavaScript being blocked by a browser add-on
• JavaScript being blocked by a �rewall or ISP (or modi�ed, as in

the earlier Comcast example)
• A missing or incomplete JavaScript program because of network

connectivity issues (the “train goes into a tunnel” scenario)
• Delayed JavaScript download because of slow network down-

load speed
• A missing or incomplete JavaScript program because of a

CDN�outage
• Not enough RAM to load and execute the JavaScript10 (Figure 5.2)

10 Stuart Langridge put together a beautiful chart of these at
�����������������Š•‡�•��� if you’d like to decorate your workspace.

165INTERACTION IS AN ENHANCEMENT

Figure 5.2 A BlackBerry device
attempting to browse to the Obama for
America campaign site in 2012. It ran
out of RAM trying to load 4.2MB of
HTML, CSS, and JavaScript.
������������������•„�•�†� .

�at’s a ton of potential issues that can a�ect whether a user gets
your JavaScript-based experience. I’m not bringing them up to scare
you o� using JavaScript; I just want to make sure you realize how
many factors can a�ect whether users get it. In truth, most users will
get your enhancements. Just don’t put all your eggs in the JavaScript
basket. Diversify the ways you deliver your content and experiences.
It reduces risk and ensures your site will support the broadest num-
ber of users. It pays to hope for the best and plan for the worst.

DESIGN A BASELINE
When you create experiences that work without JavaScript, you
ensure that even if the most catastrophic error happens, your users
will still be able to complete key tasks such as registering for an
account, logging in to your site, or buying a product. �is is easily
achievable using standard HTML markup, links to actual pages,
and forms that can be submitted to a server. HTTP is your friend.
It’s the foundation of the Web, and you should embrace it.

As you’ll recall from Chapter 3, using non-native controls to
handle activities such as form submission increases the number of
dependencies your site has in order to deliver the right experience.
Using real links, actual buttons, and other native controls keeps
the number of dependencies to an absolute minimum, ensuring
your users can do what they came to your site to do.

166

Establishing this sort of baseline for a web project built as a “single-
page app”—using a front-end MVC (Model-View-Controller)
framework such as Angular, Backbone, or Ember—used to be a
challenge. In fact, it was the primary driver for many JavaScript
programmers to call for the death of progressive enhancement,
as�Ember creator Tom Dale did in 2013.11

We live in a time where you can assume JavaScript is part of
the web platform. Worrying about browsers without JavaScript
is like worrying about whether you’re backwards compatible
with HTML 3.2 or CSS2. At some point, you have to accept that
some things are just part of the platform. Drawing the line at
JavaScript is an arbitrary delineation that doesn’t match the state
of browsers in 2013.

As JavaScript has become more �rmly established as a server-side
programming language too (thanks to node.js), it has become
possible for developers to execute much of the code they send to
the browser on the server. �is technique, dubbed isomorphic
JavaScript by Nodejitsu,12 enables the server to respond to page
requests in the traditional way, delivering the HTML, CSS, and
JavaScript as it traditionally would (Figure 5.3). �ose HTML
pages contain links to other HTML pages and forms that submit
back to the server. Assuming the conditions are right, that baseline
experience is then overtaken by JavaScript, and the whole expe-
rience is converted into a single-page app. It’s a fantastic example
of progressive enhancement: a universally usable “no JavaScript”
experience that gets replaced by a “single-page app” experience
when it’s possible to do so.

11 ����������������†Š‹‰�ŒŽ •

12 ����������������‘����„•�•

167INTERACTION IS AN ENHANCEMENT

JavaScript

APIYour App

JavaScript

Figure 5.3 A diagram of how isomorphic JavaScript works,
adapted from a visualization created by Airbnb.

In 2012, Twitter was one of the �rst big sites to move initial render-
ing of its single-page app to the server (although it didn’t do it using
server-side JavaScript). Twitter found that this move created a more
stable experience for its users, and it also improved the speed of the
site, reducing rendering time to one-��h the time it took to get to
the �rst render using the MVC framework.13 Airbnb transitioned
to an isomorphic JavaScript approach about a year later, citing page
performance and SEO as major factors in their decision.14

In the intervening years, more sites have embraced this approach,
and many of the popular MVC frameworks have followed. Even
Tom Dale changed his tune and released Ember FastBoot.15

13 ����������������Ž•���‡ •̂Œ

14 ��������������������� ’•

15 ������������������†Š�•’��

168

Say what you will about server-rendered apps, the performance of
your server is much more predictable, and more easily upgraded,
than the many, many di�erent device con�gurations of your
users. Server-rendering is important to ensure that users who are
not on the latest-and-greatest can see your content immediately
when they click a link.

I couldn’t agree more. JavaScript execution in the client is never
guaranteed. You should always begin with a JavaScript-less base-
line, delivered by a server, and build up the experience from there.
Progressive enhancement—even in the world of single-page apps
and client-side MVC frameworks—just makes sense.

PROGRAM DEFENSIVELY
Unlike HTML and CSS, JavaScript isn’t fault tolerant. It can’t
be; it’s a programming language. If any part of the program isn’t
understood, the program can’t be run. �is makes authoring
JavaScript a little more challenging than writing HTML and CSS.
You must program defensively by acknowledging your program’s
dependencies and take every precaution to minimize the fallout
when one of them is not available.

As JavaScript is a programming language, you can dictate which
parts of your program should run in di�erent scenarios. By using
conditional logic, you can create alternate paths for the browser’s
JavaScript interpreter to follow. For example, you could create al-
ternate paths based on what elements are in the page. Or you could
create alternate experiences based on which language features the
browser supports (or which it doesn’t). You could also enhance the
page in di�erent ways based on the amount of screen real estate
available to you.

Conditional logic—using “ , “����”ƒ� , and so on—makes this
possible and is an invaluable tool for ensuring your program
doesn’t break. Let’s look at a few examples.

169INTERACTION IS AN ENHANCEMENT

Look Before You Act
You should test for the elements you need for your interface.
With�the exception of ���” , ���
 , and •�
� , you can’t assume any
element exists when your JavaScript program runs.

�ere are three main reasons why an element you expected to be
on the page might not actually be there.

• Your JavaScript and HTML have gotten out of sync. �is could
happen if someone updated an HTML template (e.g., moving
an element or removing a particular �”�ƒƒ) without realizing
there was JavaScript that depended on the original markup.

• Depending on when your code is being executed, the element
may not exist yet. �is can happen frequently if the element in
question is generated by another part of your JavaScript pro-
gram. �is sort of issue is referred to as a race condition because
two tasks are running asynchronously and you have no way of
knowing which will �nish �rst.

• � e element might have existed on page load, but it’s no lon-
ger there. �is can happen if another part of the program has
removed or otherwise manipulated the element. It can also hap-
pen if a browser add-on has manipulated the document (which
many of them do).

Being aware of this, you can alter your JavaScript to be more �ex-
ible. Two ways of addressing these potential issues are by looking
for an element before you try to do something with it and by dele-
gating behavior rather than assigning explicit event handlers. Let’s
take a look at these two approaches in more detail.

Isolate DOM Manipulation
You can elegantly avoid missing element errors by looking
for an element before you try to do something with it. Let’s
say you want to look for a speci�c element in the DOM like
“������€ƒ�����‚ . You could do something like this:

–��— �̃�€™“���—š—
�����‚�������„�”�����›

——————————————————œ“������€ƒ�����‚ž—Ÿ¡

170

Assuming “������€ƒ�����‚ exists, ̃��€™“��� would now
be a reference to that element. But, if it doesn’t, �̃�€™“��� would
be ‚�”” . Knowing that, you can avoid throwing a JavaScript error
by encapsulating any code related to manipulating �̃�€™“���
inside a conditional.

“—›— �̃�€™“��� —Ÿ—¢

——��—������£—¤�—��‚—
�—ƒ�����‚€—¤��—�—‚�¤�

¥

�e ‚�”” value is falsey, meaning that in a conditional like this, it
evaluates as “�”ƒ� . If
�����‚�������„�”����� successfully
collected an element, its value would be truthy, and the conditional
would evaluate as ���� .

Delegate Behavior
If you’re looking to add a custom behavior to an interaction with
an HTML element (a.k.a. an event handler), you can use the event
model to your advantage and avoid missing element issues alto-
gether. Let’s continue looking at “������€ƒ�����‚ and say you
want to do something when it’s submitted. You could look for the
element (as I did earlier) and then attach the event handler to that
element using �

•–�‚�ƒ��‚�� or �‚�”�¦ . Alternately, you
could also listen for the event further up in the DOM, such as on
the •�
� element.

�����‚��•�
���

•–�‚�ƒ��‚��›—œƒ�•��ž£—“�‚���‚›�Ÿ—¢

——“—›—�����€��—§§

———————�����€���������ƒ›—œ“������€ƒ�����‚ž—Ÿ—Ÿ—¢

————��—
�—ƒ�����‚€—¤��—���—“���—ƒ�•�ƒƒ�‚

——¥

¥£—“�”ƒ�—Ÿ¡

�is approach is called event delegation, and the reason it works
is that events move up and down the DOM tree in the event
capturing and event bubbling phases, respectively (Figure 5.4).
So, the submit event of a form hits the ���” element (as the root
node), then the •�
� element, then however many other ancestor

171INTERACTION IS AN ENHANCEMENT

elements exist between the •�
� and “������€ƒ�����‚ , and
then �nally the “��� itself. �at’s the event capturing phase. �en
it does the whole thing in reverse, starting with the “��� and
moving ancestor by ancestor up the DOM tree to the ���” ele-
ment. �at’s the bubbling phase. Since the third argument in this
method call is “�”ƒ� , the event handler will execute only on the
bubbling�phase.

html
Capturing Phase

Bubbling Phase

head body

header main footer

h1 p form.registration

Figure 5.4 �e W3C event model indicating the capturing (orange) and bubbling
(blue) phase of an event.

�e beauty of this approach is that without “������€ƒ�����‚
in the DOM, no errors are encountered. When it is available—even
if that happens a�er the listener is registered—the event handler is
in place to do whatever it needs to when the form is submitted. As
an added bonus, if you wanted to apply the same event-handling
logic to multiple elements on the page, you could do it once on a
shared ancestor rather than assigning individual event handlers for
each element. A great use case for this is a sortable list, where you
can assign the handler on the list container (e.g., �”�ƒ����•”�)
rather than on the individual list items themselves.

172

�e downside to this approach is that, with certain events, run-
ning an event listener at such a high level can negatively a�ect
performance. Imagine if event-handling code had to run and the
conditionals inside it had to be evaluated every time someone
clicked an element on the page. Depending on the complexity,
that could make the experience slow or laggy. Whenever possible,
assign event delegation as close to the element you want to control
as you can (as in the example of the sortable list container earlier).

Test for Feature Support
You’ve seen a couple of examples of where conditionals are excel-
lent for isolating code for use with speci�c elements, but they’re
also extremely useful when it comes to using new (or newish)
JavaScript features. Consider this bit of JavaScript:

“—›—œ�

•–�‚�ƒ��‚��ž—‚—¤‚
�¤—Ÿ—¢

——��—¤�—��‚—�ƒ�—�

•–�‚�ƒ��‚��

¥

�is code tests for whether the ¤‚
�¤ object contains a member
named �

•–�‚�ƒ��‚�� . If this sounds familiar, it’s because I
covered this same concept, feature detection, with CSS in the previ-
ous chapter (¨ƒ������ƒ). �is form of logic is even more critical
in JavaScript because, as a programming language, JavaScript is
not fault tolerant. Feature detection is necessary for creating robust
programs in JavaScript.

�e �

•–�‚�ƒ��‚�� method is the modern standard for
attaching event handlers. Back during the height of the browser
wars, however—before �

•–�‚�ƒ��‚�� was standardized—
Microso� developed a competing method called ������•–�‚�
that did largely the same thing. Until the release of IE 9 in 2011,
�

•–�‚�ƒ��‚�� was completely unavailable in their browser.
To enable the same interactions in IE versions prior to that and
in every other browser, developers were forced to support both
methods. So, instead of the example shown earlier, you’d see
something�like this:

173INTERACTION IS AN ENHANCEMENT

“—›—œ�

•–�‚�ƒ��‚��ž—‚—¤‚
�¤—Ÿ—¢

——��—��
�—�ƒ‚€—�

•–�‚�ƒ��‚��

¥—�”ƒ�—“—›—œ������•–�‚�ž—‚—¤‚
�¤—Ÿ—¢

——��—��
�—�ƒ‚€—������•–�‚�

¥

�is update creates two alternate paths (or forks in the program)
for the browser’s JavaScript interpreter to take. �e order is
important because you could have a browser that supports both
(e.g.,�IE 9–10), and you should always favor the standardized
method (�

•–�‚�ƒ��‚��) over the proprietary one
(������•–�‚�). �ankfully, ������•–�‚� was removed from
IE�in version 11, so it will soon be a thing of the past, but this is
still a good example of feature detection.

It’s worth noting that some features are challenging to test.
Sometimes browsers o�er partial support for new feature or have
otherwise incomplete implementations. In these cases, browsers
may lie about or somehow misrepresent their support when you
only test for the existence of an object or method. For instance,
currently Safari understands HTML5 form validation (i.e., it pays
attention to ������
 attributes, ������‚ , etc.), and it can tell
you, via the JavaScript API, that a �eld is not valid, but it won’t
stop the form from being submitted.16 Testing for support of the
������
 attribute, for instance, doesn’t give you the full picture.
In cases like this, your tests need to be more robust. For example,
you might need to try using the feature or setting the property and
then test to see whether the outcome is what you expected. Whole
JavaScript libraries have been developed to assist you with more
complex feature detection. Modernizr17 is probably the most popu-
lar and fully featured of these testing libraries.

Feature detection enables you to isolate blocks of code that have a
particular feature dependency without running the risk of causing
the interpreter to fail. A JavaScript error, you’ll recall, was what took

16 �������������������•����Œ

17 �����������������Œ�†��„•„

174

down Gawker Media’s whole network of sites. Feature detection is
another way to reduce the likelihood that will happen on your site.

Make Sure Libraries Are There
One of the critical �aws of so many sites that succumbed to the
Sky Broadband jQuery �asco is that their code did not test to make
sure the jQuery library had loaded before trying to run. You see
this pattern a lot in jQuery plugins and example code, but this is a
potential issue for any JavaScript library.

�e HTML5 Boilerplate 18 uses an interesting approach to maxi-
mize the potential for properly loading jQuery.

©ƒ����—ƒ��šª��������	�«�€��€”���ƒ������	�«�”•ƒ� —

�́ ��	������¬�	�������‚�	ƒª®©�ƒ����®

©ƒ����®¤‚
�¤�	‰����—¯̄—
�����‚��¤���›œ©ƒ����— —

�́ ��ƒ��šª	ƒ�–�‚
���	������¬��‚�	ƒª®©°�ƒ����®žŸ©� —

�́ ��ƒ����®

�e �rst ƒ����— element attempts to download jQuery from
Google’s CDN. �e second ƒ���� element contains JavaScript to
test whether the 	‰���� object is available. If it isn’t (which means
the CDN version of jQuery didn’t load), the JavaScript writes in a
third ƒ���� element pointing to a copy that exists locally on the
server. �e reasoning behind this approach is that when many sites
use this pattern, there’s a good chance your users already have a
version of jQuery from the Google CDN in their cache. �at means
it won’t need to be downloaded again (leading to faster page load).
�e CDN version will be requested if they don’t have it, and if that
request fails, the copy stored on the domain’s server will be used.
�is is a really well-thought-out pattern.

�at said, it’s still possible that jQuery (or whatever library you use
this pattern with) might not be available. Perhaps the user lost all

18 �����������������••������

175INTERACTION IS AN ENHANCEMENT

network connectivity while going through a tunnel or walking out
of their mobile provider’s coverage zone; life happens, and you need
to plan accordingly. So, before you attempt to use a library in your
JavaScript, test to make sure it’s there. You could, for instance, in-
clude something like this at the top of your jQuery-dependent script:

“—›—�����“›	‰����Ÿ—šš—œ�‚
�“‚�
ž—Ÿ—¢

——�����‚¡

¥

�at would cause the program to exit if jQuery isn’t available.
With simple tests such as this in place, you can rest assured that
your users can meet the minimum dependency requirements your
JavaScript program has before their absence causes a problem.

ESTABLISH MINIMUM REQUIREMENTS
FOR ENHANCEMENT
�e BBC uses feature detection in an interesting way. It runs tests
for several features at once and uses them to infer the caliber of
browser it’s dealing with.

“—›—œ�����„�”�����ž—‚—
�����‚�—§§

—————œ”���”„����€�ž—‚—¤‚
�¤—§§

—————œ�

•–�‚�ƒ��‚��ž—‚—¤‚
�¤—Ÿ—¢

——��—�‚—±�•�•ª—•��¤ƒ��

¥

�is conditional checks to see whether all three tests return true
before executing the program within the curly braces. If the
browser passes these tests—the BBC calls that “cutting the mus-
tard”19—it goes ahead and loads the JavaScript enhancements. If
not, it doesn’t bother.

19 ����������������’…�̂ �Ž��•

176

�ere’s a reason the BBC has chosen these three speci�c feature tests.

•
�����‚�������„�”����� : �e code for �nding elements (so
you can then do something with them) takes up a sizable chunk
of any JavaScript library. If a browser supports CSS-based
selection, that simpli�es the code needed to do it and makes it
unnecessary to have as part of the library (thereby saving you in
both �le size and program performance).

• ¤‚
�¤��

•–�‚�ƒ��‚�� : I talked about this one already.
Event handling is the other major component of nearly every
JavaScript library. When you no longer need to support two
di�erent event systems, your program can get even smaller.

• ¤‚
�¤�”���”„����€� : �is feature allows you to store
content locally in the browser so you can pluck it out later. Its
availability can aid in performance-tuning a site and dealing
with intermittent network connectivity.

Each project is di�erent and has di�erent requirements. Your
project may not use ”���”„����€� , for instance, so this bit of
logic might not be appropriate for you, but the idea is a sound one.
If you want to focus your e�orts on enhancing the experience for
folks who have the language features you want to use, test for each
before you use them. Never assume that because one feature is sup-
ported, another one must be as well; there’s no guarantee.

It’s worth noting that you can use an approach such as this to
establish a minimum level of support and then test for additional
features within your JavaScript program when you want to use
them. �at allows you to deliver enhancements in an à la carte
fashion—delivering only the ones that each speci�c user can
actually use.

Finding ways to avoid introducing your own JavaScript errors is the
�rst step toward ensuring that the awesome progressive enhance-
ments you’ve created stand any chance of making it to your users.

177INTERACTION IS AN ENHANCEMENT

CUT YOUR LOSSES
Some browsers, particularly older versions of IE, can be problemat-
ic when it comes to JavaScript. �e event model di�erences are just
one example of the forks you need in your code to accommodate
them. Sometimes it’s best to avoid delivering JavaScript to these
browsers at all. �ankfully, there’s an easy way to do this using an-
other proprietary Microso� technology: Conditional Comments.20
Conditional Comments are exactly what you’d expect: a speci�-
cally formatted HTML comment that is interpreted by IE but is
ignored by all other browsers (because it’s a comment). Here’s a
simple example:

©²��³“—”��—•́—‹µ®

——¶‚”�—•́—‹—�‚
—���”��—ƒ��—��ƒ—��«��

©²³�‚
“µ��®

�is appears as merely a comment to any non-IE browser because
it starts with ©²�� . IE, however, evaluates the conditional before
deciding what to do with the contents (in this case, delivering them
to IE 6 and older). Conditional Comments work in IE 9 and earlier;
Microso� stopped supporting them in IE 10.

But wait, I was talking about hiding content from older versions of
IE, not showing it to them. Interestingly, you can do that too. �e
code is just slightly more complex.

©²��³“—€��—•́—�µ®©²��®

——•́—�·—�‚
—�””—‚�‚�́•—•��¤ƒ��ƒ—ƒ��—��ƒ—��«��

©²��©²³�‚
“µ��®

To break this down for you, a comment is started by the ©²�� .
If the browser supports Conditional Comments, the condition
is evaluated. If it evaluates as true, the contents are revealed. For
browsers that don’t support Conditional Comments, the contents
need to be revealed too, so the opening bit of the Conditional

20 �������������������•�’‹�•

178

Comment needs to be closed with ��® . Sadly, browsers that
support Conditional Comments will display the ��® as text, but
putting ©² �rst hides it (as a comment). Next up is the content
that will be exposed in IE 8+ and all other browsers. Finally, the
last line closes the Conditional Comment, hiding its nonstandard
syntax from other browsers by putting it in a comment using
©²�� . Phew!

Taken all together, you can use this setup to avoid delivering
JavaScript to older/problematic versions of IE altogether:

©²��³“—€��—•́—�µ®©²��®

——©ƒ����—ƒ��šª�‚��‚����‚�ƒ�	ƒª®©�ƒ����®

©²��©²³�‚
“µ��®

With this code in place, your JavaScript would be delivered to IE
9–11, Microso� Edge, and every other browser. IE 8 and older
would get the “no JavaScript” experience. Since you intentionally
designed an experience for that scenario—you did, right?—your
users can still do what they need to do. As an added bonus, you’re
spared the headache of trying to debug your JavaScript in those
browsers. It’s yet another perfect example of supporting as many
users as you can while optimizing the experience for folks with
more capable browsers.

BUILD WHAT YOU NEED
As I mentioned in Chapter 3, AlzForum uses a tabbed interface,
but the baseline markup is not the markup required for a tabbed
interface. �e baseline markup is simply a container that is clas-
si�ed as a tabbed interface. �e JavaScript program it uses21 looks
for any elements classi�ed in such a way and then builds a tabbed
interface dynamically, based on their contents.

21 ����������������••����•��

179INTERACTION IS AN ENHANCEMENT

By reading in the contents and parsing the document outline, the
script generates the following:

• A container for the tabs
• As many tabs as are necessary
• As many content panels as are necessary

It assigns the appropriate ��”�— values to make the interface
appear as a tabbed interface to assistive technology: ��•”ƒ� , ��• ,
and ��•��‚�” , respectively.

�e program uses another set of ARIA attributes to estab-
lish relationships between the related elements. First, it adds
������‚���”ƒ to the tab. �e ������‚���”ƒ attribute indi-
cates that the tab controls the element referenced in the value of the
attribute. In this case, the attribute’s value is set to reference the

 the program generated onto the corresponding content panel.
Second, it adds an ����
�ƒ��•�
•� attribute that operates just
like ������‚���”ƒ but indicates that the tab is described by the
contents within the referenced content panel.

To make the connection in the other direction, each content panel
is given an ����”�•�””�
•� attribute with a value pointing
to the
 generated onto the corresponding tab. As you’d expect,
����”�•�””�
•� is used to indicate the element that labels the
current element.

Here’s a simpli�ed version of the script-generated markup so you
can see the relationships:

©�”—��”�šª��•”ƒ�ª®

——©”—��”�šª��•ª—
šª��•�̧ ª—

——————������‚���”ƒšª��•��‚�”�̧ ª

——————����
�ƒ��•�
•�šª��•��‚�”�̧ ª®•��€��—•���©�”®

——©”—��”�šª��•ª—
šª��•�¬ª—

——————������‚���”ƒšª��•��‚�”�¬ª

——————����
�ƒ��•�
•�šª��•��‚�”�¬ª®•������—•���

——————©�”®

©��”®

©ƒ����‚—��”�šª��•��‚�”ª—
šª��•��‚�”�̧ ª—

180

—————————����”�•�””�
•�šª��•�̧ ª®

——©²��—��‚�”—¬—��‚��‚�ƒ—��®

©�ƒ����‚®

©ƒ����‚—��”�šª��•��‚�”ª—
šª��•��‚�”�¬ª—

—————————����”�•�””�
•�šª��•�¬ª®

——©²��—��‚�”—�—��‚��‚�ƒ—��®

©�ƒ����‚®

Without the JavaScript necessary to make the tabbed interface
behave like a tabbed interface, these ARIA roles and properties
would be pointless. As with the extra markup necessary to create
the interface, JavaScript is the perfect place to add these accessibili-
ty enhancements.

As I discussed in Chapter 3, whenever possible, you should look
for opportunities to extract JavaScript-dependent markup from
the page and generate it programmatically. It reduces page weight,
reduces the possibility of confusing users by including markup
they don’t need, and eases maintenance because all code necessary
for the component to operate is managed in one place.

DESCRIBE WHAT’S GOING ON
In addition to de�ning the purpose elements are serving (using ��”�)
and the relationships between elements (using properties such as
����
�ƒ��•�
•�), ARIA also gives you the ability to explain
what’s happening in an interface via a set of attributes referred to as
ARIA states. When creating a JavaScript-driven widget, these three
components are invaluable. �ey enhance the accessibility of your
interfaces by mapping web-based interactions to traditional desktop
so�ware accessibility models already familiar to your users.

�e tabbed interface script on AlzForum (Figure 5.5) uses several
ARIA states to inform users of what’s happening in the interface while
they are interacting with it. �e �rst of these is ����ƒ�”����
 ,
which indicates which tab is currently active. When the page
loads and the script constructs the tabbed interface, the �rst tab is

181INTERACTION IS AN ENHANCEMENT

active, so ����ƒ�”����
 is set to “true” on that tab. �e other
tabs are not active, so ����ƒ�”����
 is “false” on them. Here’s a
simpli�ed example of one of the tab lists:

©�”—��”�šª��•”ƒ�ª®

——©”—��”�šª��•ª—����ƒ�”����
šª����ª—���®•��€��—

————•���©�”®

——©”—��”�šª��•ª—����ƒ�”����
šª“�”ƒ�ª—���®•������—

————•���©�”®

©��”®

Figure 5.5 �e tabbed interface on AlzForum’s site.

When a user activates the second tab in order to display its related
contents, that activated tab becomes ����ƒ�”����
šª����ª ,
and the other tab is set to ����ƒ�”����
šª“�”ƒ�ª . At the other
end of the tabbed interface, a similar switch is happening but with
another set of ARIA states.

When the interface initially loads and the �rst content
panel is displayed, that panel is �����

�‚šª“�”ƒ�ª
because it’s visible. All the other content panels are set to
�����

�‚šª����ª . When a new tab is activated, the
new panel is set to �����

�‚šª“�”ƒ�ª ,—and the
previously visible one is �����

�‚šª����ª .

With these roles, properties, and states in place, assistive tech-
nologies such as screen readers can identify this markup as a

182

tabbed interface and explain the interface to the user. For instance,
ChromeVox (Google’s screen reader add-on for Chrome) would say
the following when this markup is encountered:

Tab list with two items. Target Type tab selected, one of two.

When the user navigates to the second tab, it would read
the�following:

�erapy Type tab selected, two of two.

When activating the content panel, it would say the following:

�erapy Type tab panel.

From there, the user can instruct the screen reader to continue read-
ing the contents of the content panel. It’s a pretty nice experience
without requiring too much of you, the programmer. �e straight-
forward, declarative nature of ARIA is one of its greatest strengths.

WRITE CODE THAT TAKES
DECLARATIVE�INSTRUCTION
Declarative code, as in code you can understand by reading it, is
incredibly useful from a maintenance standpoint. It can make it ob-
vious what’s happening and makes it easy for a team to collaborate.

In the AlzForum example, the developers used a �”�ƒƒ to indi-
cate a tabbed interface should be created. �at’s declarative, but it
can also create confusion, especially if there is a reason the tabbed
interface should not be created. �ankfully, there is another option
for providing declarative instruction: data attributes.

Data attributes are a completely customizable group of attributes
that begin with
���� . With that pre�x, you can create whatever
attribute names you want, such as
�������‚��� or

����•�‚€�����‚�ƒ� . You have carte blanche to name them
whatever makes you happy. �at said, it’s a good idea to use a name
that’s intuitive as a courtesy to your fellow developers (or you, a

183INTERACTION IS AN ENHANCEMENT

few weeks removed from this project). It’s also considered a best
practice to separate words with hyphens.

In the case of AlzForum, it might have made more sense to give
the container a data attribute of
������‚�•�����šª��••�
ª
or
������••�
�‚���“��� ; it wouldn’t even need to be given
a value. �e script could then look for that indicator instead of
the��”�ƒƒ .

–��— �̃�‚��‚��—š—
�����‚�������„�”�����Ž””›—

———————————————————œ³
������‚�•�����š��••�
µž—Ÿ¡

�ere are many hugely bene�cial ways to use data attributes. On
Fidelity’s website,22 they use data attributes to hold the form vali-
dation error message strings. Here’s a simpli�ed excerpt from their
login form:

©‚���—����šª��ƒƒ¤��
ª—‚���šªŠ́•ª

———————������
šª������
ª—����������
šª����ª

———————
�����ƒ€�������
šªŠ”��ƒ�—�‚���—����— —

———————�́ ����ƒƒ¤��
ª

———————
�����ƒ€�‚–�”
šª•�ƒ—“�”
—ƒ—‚��—������”�— —

———————�́ ��“�������
ª

———————®

�e validation script, jQuery Validation,23 uses two data attributes
to provide feedback to users when either they forget to �ll in the
password (
�����ƒ€�������
) or the value they supply isn’t
valid (
�����ƒ€�‚–�”
). By taking this approach, the actu-
al JavaScript program does not need to contain these messages
(Figure 5.6), nor does it need to be updated when the wording
needs to change. �is loose coupling of logic and messaging leads
to better maintainability.

22 ����������������‡ �•�Š •̂�

23 ����������������Ž����‡�Œ

184

Figure 5.6 A login form with validation error messages on Fidelity’s website. View
the video of it in action at ������������������•̂ ���•• .

Data attributes are accessible in your JavaScript via an element’s

���ƒ�� property. In the case of the Fidelity code, you could write
something like this to access them:

–��— “̃�”
—š—
�����‚�������„�”�����›—œ³‚���šŠ́•µž—Ÿ£

————������
™�ƒ€—š—“̃�”
�
���ƒ����ƒ€������
£

————‚–�”
™�ƒ€—š—“̃�”
�
���ƒ����ƒ€́‚–�”
¡

Note that the data attributes are automatically coerced into “camel
case”—where letters immediately following a hyphen are capital-
ized and the hyphens are removed—as properties of the
���ƒ�� .

One �nal note on data attributes: since these are declarative
instructions that are generally scoped to one use case, it’s a
good idea to pre�x every data attribute related to that use case
identically. So if you have a bunch of data attributes related to
a tabbed interface, make your attributes start with
������•�
‚���“����£—
������•ƒ� , or similar. �is will reduce the
possibility of name collisions with other scripts.

You can see this form of “namespacing” in use on the container for
another tabbed interface on AlzForum’s Mutations database page.24

24 ������������������‹��‹�†Œ

185INTERACTION IS AN ENHANCEMENT

©
–—�”�ƒƒšª��••�
�‚���“���ª

—————
������•�ƒ����‚šª³
����¹����“����µª

—————
������•����
��šª���‚��ƒ�•��”�ª

—————
������•��
�����
��ƒšª“�”ƒ�ª

—————
������•������ƒ�”

—————®

——©²��—��‚��‚�ƒ—��—•�—��‚–����
—��®

©�
–®

�ese various data attributes all provide additional instruction to
the tabbed interface program to con�gure the �nal output.

When used well, declarative data attributes can make the pro-
gressive enhancement of your pages even easier by reducing the
initial development and ongoing maintenance overhead of your
programs. Data attributes make it easier to build more generic pro-
grams that pay attention to declarative con�guration instructions,
and they also help you reduce the overall volume of JavaScript code
required to bring your interface dreams into reality.

ADAPT THE INTERFACE
If you happened to load the tabbed interface example from
AlzForum on a small screen, you might have noticed that the expe-
rience isn’t terribly awesome (Figure 5.7). �e table-based content
in the content panels gets linearized for a more mobile-friendly
layout (using a ��«�¤
�� media query and some clever generated
content), but the tabs remain and continue to allow the user to tog-
gle between the two di�erent content panels. �is experience could
certainly be improved.

186

Figure 5.7 �e AlzForum tabbed
interface doesn’t work as well on a
narrow screen.

One way to improve the experience might be to simply allow it to
remain linearized on smaller screens. To do that, the script could
be updated to check the available screen width when the page is
rendering (and again on window resize, just in case). If the brows-
er width is above a certain threshold, the tabbed interface could
be generated. If not, the content could be le� alone or the tabbed
interface could be reverted to the linearized version of the content.

�is allows you to provide three experiences of the interface:

• Headings with tables for “no JavaScript” scenarios without
media query support

• Headings with linearized tables for “no JavaScript” scenarios
with media query support and a narrow screen width

• A tabbed interface for users who get the JavaScript enhance-
ment and are on a wide-enough screen

But where do you set the threshold? You could set it based on some
arbitrary number, but there are instances when the screen width

187INTERACTION IS AN ENHANCEMENT

may be “big enough” to handle a tabbed interface but it isn’t big
enough to allow all the tabs to sit nicely side by side. �en you have
two choices.

• Keep the tabs on one line and make users scroll to see addition-
al ones that don’t �t.

• Stack the tabs.

As Figure 5.8 demonstrates, neither results in a particularly good
experience for your users. �e Canon example25 shows how stacked
tabs can run the risk of not looking like navigation tools. Give
Central’s horizontally scrolling tabs26 have the potential to cut o�
content, rendering it less useful.

�e horizontal scrolling tabs could also end up scroll jacking the
page. Scroll jacking is when something other than the expected
scroll behavior happens when you are scrolling a page. In the case
of some scrolling tab implementations, when your mouse cursor
ends up over one while scrolling, the vertical scroll stops, and the
tabs begin scrolling horizontally.

So, if neither of those two options works well, what’s le�? Not
setting a �xed threshold.

Instead of checking an arbitrarily prede�ned threshold against the
browser width, why not test the width required for the tabs them-
selves? It’s inconsequential to generate a dummy tab list and inject
an invisible version of it into the page for a fraction of a second
to determine its display width. �en you can compare that value
against the available screen real estate and determine whether to
load the tabbed interface. As an added bonus, this approach will let
each tabbed interface self-determine whether it should be created,
providing users with the most appropriate experience given the
amount of screen real estate.

25 ����������������†�Œ•�„ Œ�

26 ������������������• �•‡…

188

Figure 5.8 Above: �ree columns of
stacked tabs on Canon’s page about
the EOS D6 camera. Le�: Horizontally
scrolling tabs on Give Central.

189INTERACTION IS AN ENHANCEMENT

Consider Alternatives
So, on the narrow screen, this approach gives AlzForum’s users
a linearized view of the content. �at’s a fantastic baseline, but
tabs are an excellent enhancement for reducing the cognitive load
heaped on users by incredibly long pages. Is there a way to enhance
the experience for the narrow screen too? Sure there is.

Accordion interfaces (like the one in Figure 5.9) act similarly to
tabbed interfaces—they hide content until it is requested by the
user. An accordion might make a good alternative to a tabbed
interface when there isn’t enough room to �t the tabs horizontally
across the screen. A few small tweaks to the JavaScript program
could make that happen quite easily.

Figure 5.9 An accordion interface on •�¤•��¦…���ƒ���€ .

190

Taking it a step further, you may recall that the
���”ƒ and
ƒ������ elements create a native accordion in browsers that
support them.27 You could test for that option and convert the linear
markup into a series of
���”ƒ elements if the browser supports it in
order to reduce the number of JavaScript events running on the page.

As I’ve said many times before, experience isn’t one monolithic
thing. You can use JavaScript to progressively enhance your web-
sites, build incredibly nimble and �exible interfaces, and provide
the most appropriate experiences for your users, tailored to their
needs and capabilities.

APPLY NO STYLES BEFORE THEIR TIME
When you are creating JavaScript-driven interfaces like those I’ve
been discussing, it’s tempting to style the markup to look like the
interface from the get-go. �at’s a mistake. Continuing with the
tabbed interface example, imagine coming to a page and seeing
something that looks like a tabbed interface but doesn’t actually
work like one. �at would be frustrating, right? For this reason,
you should �nd some mechanism for indicating that the coast is
clear and it’s safe to apply your widget-related styles. Perhaps you
can have JavaScript add a �”�ƒƒ or data attribute somewhere fur-
ther up the DOM tree and use that as a switch to apply the styles.
�ough not speci�cally widget-related, this is precisely what Adobe
Typekit28 does.

Plant a Flag
Typekit is a service that enables you to embed any of a number of
high-quality fonts on your website. �e code it gives you to embed
the fonts is a small JavaScript that veri�es your domain’s right to
include the typefaces you’re requesting (for licensing purposes).

27 ����������������•‘ �� �• —

28 ����������������…�‘���•‰Œ

191INTERACTION IS AN ENHANCEMENT

If your site is allowed to use the fonts, the JavaScript injects a ”‚¦
element that points to a CSS �le with “̈�‚��“��� blocks for each
typeface. When the JavaScript program has run its course, it adds
a �”�ƒƒ of ¤“����–� to the ���” element.29 �is �”�ƒƒ acts as a
�ag to indicate that fonts are loaded and everything is OK.30

�is approach allows you to specify alternate fallback fonts if
something goes wrong.

���
�”����”�—¢

——�º—
�“��”�—ƒ��”�ƒ—º�

¥

�¤“����–�—���
�”����”�—¢

——�º—Ž
�•�—•���¦�—�‚��‚��
—ƒ��”�ƒ—º�

¥

You may be wondering why you’d want to do something like that
when CSS provides for font stacks31 that automatically support
fallback options. In many cases, you won’t need to do this, but
sometimes the font you are loading has di�erent characteristics
or weights than the “web-safe” fallback options de�ned in your
font stack. In cases like that, you may want your baseline type
to�be�sized di�erently or have di�erent ”������ƒ���‚€ or
”‚����€�� settings. You can’t �ne-tune fonts in the same way
with only a font stack.

Capitalize on ARIA
When you are dealing with an interface that maps well to a dynamic
ARIA construct (e.g., tabbed interfaces, tree lists, accordions), you

29 Typekit’s JavaScript actually adds numerous �”�ƒƒ names during
its life�cycle: ¤“�”��
‚€ while it gets started, ¤“����–� when it
�nished�successfully, and ¤“�‚���–� if something goes wrong.
You can read more about these classes and other “font events” at
����������������‡‘•��•�� .

30 Typekit gets bonus points for using a unique pre�x (¤“�) to reduce potential
collision with other “active” �”�ƒƒ names.

31 ����������������’•‡Œ�‡„‹̂

192

can keep things simple and use the ARIA roles and states as your
selectors. AlzForum uses this approach for its tabbed interface.

³��”�š��•”ƒ�µ—¢

——�º—ƒ��”�ƒ—“��—���—��•—��‚��‚��—º�

¥

³��”�š��•µ—¢

——�º—ƒ��”�ƒ—“��—��•ƒ—º�

¥

³��”�š��•µ³����ƒ�”����
š����µ—¢

——�º—ƒ��”�ƒ—“��—���—�����‚�—��•—º�

¥

³��”�š��•��‚�”µ—¢

——�º—ƒ��”�ƒ—“��—���—�����‚�—��‚��‚�—��‚�”—º�

¥

³��”�š��•��‚�”µ³�����

�‚š����µ—¢

——�º—ƒ��”�ƒ—“��—���—�����—��‚��‚�—��‚�”ƒ—º�

¥

�is approach is an alternative to using a �”�ƒƒ or data attribute
as a trigger for your styles, but it operates in much the same way if you
are adding these roles and states dynamically (like you should be).

ENHANCE ON DEMAND
Just as you should be selective about when you apply certain
styles, you can be selective about when you load content and assets
that are “nice to have.” I �rst mentioned this concept, called lazy
loading, in Chapter 2 in my discussion of thumbnail images on
newspaper sites. �e idea behind lazy loading is that only the core
content is loaded by default as part of the baseline experience.
Once that baseline is in place, additional text content, images, or
even CSS and JavaScript can be loaded as needed. Sometimes that
need is user-driven; other times it’s programmatic.

193INTERACTION IS AN ENHANCEMENT

�e Boston Globe website, for instance, uses lazy loading to in-
ject large content drawers for each of its main navigation items
(Figure�5.10). �ese drawers highlight numerous stories, some
of which include thumbnail images. �is content is useful but
not necessary for every user who comes to the site. In fact, these
drawers are really useful only if a user can hover over the naviga-
tion menu. For these reasons, the markup for these drawers is lazy
loaded once the page is �nished loading and only if the screen is
larger than 788px and the browser supports hover events.

Figure 5.10 �e Boston Globe uses lazy loading to inject promotional content
drawers into the page. �ey are revealed when hovering the main navigation items.

�is approach o�en gets used for other common types of supple-
mental content, such as related items and reviews in ecommerce or
comments on a blog. �at said, the bene�ts of lazy loading are not
limited to content. Web design consultancy �e Filament Group
wrote a lengthy post about how it uses lazy loading to improve
page-load performance.32 �e approach inserts critical CSS and
JavaScript into the page within ƒ��”� and ƒ���� elements, re-
spectively. It uses two JavaScript functions, ”��
…„„ and ”��
’„ ,
to asynchronously load the remaining CSS required to render the
page and any additional JavaScript enhancements. �eir approach

32 ����������������„�‡�����

194

also places a link to the full CSS �le within a ‚�ƒ���� element
in order to deliver CSS in a “no JavaScript” scenario. Of course, as
you learned from the GDS experiment, ‚�ƒ���� content is not
always available when JavaScript fails.

AlzForum also uses lazy loading in a few places on its site. One
particularly interesting implementation is on the home page,33
where it lazy loads comment preview tooltips for its news teasers
(Figure 5.11). Each comment link includes a reference to the URL
for the tooltip markup in a
��� attribute.

©�—���“šª‚�
��‡•�̧ �¬�»�����‚�ƒª

———
�������”��šª����•�“™�����‚�ƒ� —

———�́ ����–��™�����‚�ƒ¼
š‡•�̧ �¬ª®�—�����‚�ƒ©��®

Figure 5.11 Comment teasers on the AlzForum home page are lazy loaded in a
single request.

With that declarative markup in place, it would have been easy
to write some JavaScript to load the tooltip content when a user

33 �����������������•‹…�Ž�…�

195INTERACTION IS AN ENHANCEMENT

hovers the link. To improve the site’s performance, AlzForum
might even have considered looking for all the elements with

�������”�� attributes, looping through the list, and loading
the associated tooltip content in anticipation of a user wanting
it. But AlzForum went even a step beyond that and wrote code
that collects the data tooltip URLs and then combines them into
a single request. �e API responding to the request can look for
multiple
 values and return the markup for all the tooltips. �e
JavaScript then splits up the returned markup and assigns each
tooltip to its respective link. �is approach is incredibly e�cient—a
single request has far less overhead than the eight to ten that would
be required if they were gathered individually.

Lazy loading embodies the spirit of progressive enhancement. It
allows you to identify optional content and code, loading it only
when it makes sense to do so. It’s also an approach that drastically
improves your users’ experiences by enabling your website to be
rendered faster. In Chapter 6, you’ll explore another lazy loading
technique in even greater depth.

LOOK BEYOND THE MOUSE
When it comes to interaction, we tend to be very mouse-focused.
We design small buttons and links, closely grouped together. We
listen for “click” events predominantly. And we o�en ignore the
ways that nonmousing or multimodal users interact with our
pages. Progressive enhancement asks us to look for every opportu-
nity to enhance a user’s experience, which means embracing more
than just the mouse.

Empower the Keyboard
With the pervasiveness of the mouse and an increased reliance on
touchscreens, it’s easy to forget about the humble keyboard, but
that would be a critical mistake. �e keyboard is an incredibly
useful tool and is the standard interface for vision-impaired
users and power users alike. When it comes to the keyboard,

196

we’ve learned a great deal in the last few years. First, we realized
that access keys were a good idea in theory but not so great in
practice.34 Second, we realized that overzealous application of the
��•‚
�« attribute could get your users jumping (and not in a
good way).35 But the most important thing we’ve discovered is that
we can use JavaScript to “juggle” ��•‚
�« values in order to
streamline a user’s path through a complex widget such as a tabbed
interface or an accordion.

So, what exactly is ��•‚
�« juggling? Well, sometime in 2005
(it’s hard to pin down the exact origin), we discovered that assign-
ing ��•‚
�«šª�¬ª to an element would remove that element
from the default tab order of the document.36 Interestingly, despite
being taken out of the document’s tab order, the element remained
focusable via JavaScript (using �”���‚��“���ƒ›Ÿ). �is opened
up a lot of possibilities for controlling a user’s experience.

Let’s walk through a scenario, revisiting the tabbed interface
from�AlzForum.

1. A user arrives at the tabbed interface and presses the Tab key on
the keyboard, bringing focus to the �rst tab (which is associated
with the visible content panel).

2. Pressing the Tab key again moves focus out of the tabbed inter-
face and to the next piece of focusable content (e.g., a link, form
�eld, or any element with a ��•‚
�« of 0 or higher).

3. Holding Shi� while hitting the Tab key returns the user to the
tab list and restores focus to the currently active tab.

4. Using the arrow keys, the user can move forward and backward
through the tabs in the tab list.

5. Hitting the Enter key at any point while navigating through
the tab list brings focus to the content panel associated with the
currently focused tab.

34 ���������������������Œ‹Š�

35 �������������������‹��Ž‰Š

36 � is was especially interesting because, according to the W3C spec,
��•‚
�« should accept values only between 0 and 32767. Yeah, you
read�that right: 32767.

197INTERACTION IS AN ENHANCEMENT

� is is all made possible with ��•‚
�« juggling. Here’s how this
interaction becomes possible:

1. By assigning a ��•‚
�« of -1 to every tab and tab panel, you
remove them from the default tab order of the page.

2. Going back and reassigning a value of 0 to the currently active
tab restores it to its default position in the tab order.

3. Using JavaScript, you can dynamically adjust the ��•‚
�«
value of each tab as a user moves le� or right and up or down
on the keyboard. You do this by changing the destination tab
to a ��•‚
�« of 0 and giving the previously selected one a
��•‚
�« of -1.

4. � e content panels always have a ��•‚
�« of -1, which means
a user can focus them only via an interaction that involves
JavaScript (which sits by listening for the Enter key to be pressed).

Juggling ��•‚
�« may sound complicated, but it’s really not. In
the tab-swapping scenario, it can be as simple as this:

�”
™��•�ƒ��Ž���•���›—œ��•‚
�«ž£—œ�¬ž—Ÿ¡

‚�¤™��•�ƒ��Ž���•���›—œ��•‚
�«ž£—œ̧ž—Ÿ¡

Enhance for Touch
Since the advent of the iPhone, touch has become an important
interaction to consider, but touch didn’t start there. We’ve had
touchscreens since the mid-1960s. We’ve had them in portable
devices since way back in 1984 when Casio introduced the
AT–550 watch37 and in mobile phones since IBM announced the
Simon38 in 1993. But things de�nitely took a massive leap forward
when Apple released the iPhone in 2007.

37 � at watch was pretty crazy. It allowed you to trigger the calculator
function�by tapping in the lower-le� corner of the watch face. You could
then draw the numbers and operands you wanted to use in your calculation:
����������������Ž��„��…�• . Could it have been the �rst smart watch?

38 � e IBM Simon was the �rst combination of a cellular telephone and a
touchscreen. It was also a personal digital assistant (PDA) and supported
sending and receiving email.

198

At the time, most of us were used to designing interactions with
a continuously available mouse pointer in mind. When someone
browses the Web with their �nger, we don’t have a constant sense
of where they are in the interface. We don’t have the ability to
sense when they are hovering over an element—events such as
���ƒ���–� , ���ƒ��‚��� , and the like are simply irrelevant.

�ankfully, the �”�¦ event already existed. It does a good job of
unifying keyboard- and mouse-based activation of elements such
as links and buttons. �e Safari browser for iOS triggers �”�¦
events as well, albeit with a 300ms delay.39 �e reason for the delay
is to allow for a user to double-tap the screen to zoom.

Accompanying the release of the iPhone were a handful of
touch-related events: �����ƒ���� , ������‚
 , �������–� , and
�������‚��” . �e ������‚
 event, in particular, became a solid
alternative to �”�¦ because it avoided the 300ms delay altogether.

As per usual, we began to make assumptions based on the avail-
ability of touch. Here’s an example of something I regret doing at
the time:

“—›—œ�‚������‚
ž—‚—¤‚
�¤—Ÿ—¢

——���™�–�‚�—š—œ������‚
ž¡

¥

�º—�‚
—”����—�‚—º�

�”���‚���

•–�‚�ƒ��‚��›—���™�–�‚�£—��…�””•��¦£

——“�”ƒ�—Ÿ¡

Do not try this at home. �is code assumes that �”�¦ is a good
baseline (which it is), but then it clobbers it as the event to look for
if touch is available, assuming touch is the right event to trigger
��…�””•��¦ (my fake event-handler function). What if a user
can�do both?

39 Other touch devices do it, too. Here’s a good overview and workaround:
�����������������†���…•�� .

199INTERACTION IS AN ENHANCEMENT

You can assign both event handlers, but that’s a little cumbersome.

�”���‚���

•–�‚�ƒ��‚��›—œ�”�¦ž£—��…�””•��¦£—

——“�”ƒ�—Ÿ¡

�”���‚���

•–�‚�ƒ��‚��›—œ������‚
ž£—��…�””•��¦£—

——“�”ƒ�—Ÿ¡

Unfortunately, this code would also �re ��…�””•��¦ twice on a
device that supports both event types—the �”�¦ handler version
will �re 300ms behind the ������‚
 one. To overcome that issue,
you’d need to ensure the handler is �red only once, requiring even
more code (and some additional abstraction).40

��—
�����‚�—“—�����—ƒ—�–�”�•”�

–��—��ƒ™�����—š—œ������‚
ž—‚—¤‚
�¤¡

��—�•ƒ�����—���—�–�‚�—�ƒƒ€‚��‚�

“�‚���‚—�ƒƒ€‚•����‚
”��›—���™�”���‚�£—��””•��¦—Ÿ—¢

——��—����¦—¤������—�žƒ—•��‚—��””�

——–��—��””�
—š—“�”ƒ�¡

——��—�‚ƒ���—���—�–�‚�—��ƒ—‚��—•��‚—��””�
—�”���
�

——��—•�“���—“�‚€—���—��””•��¦

——“�‚���‚—�‚��›Ÿ—¢

————“—›—²��””�
—Ÿ—¢

——————��””•��¦����”�›—��ƒ£—��€���‚�ƒ—Ÿ¡

——————��—‚���—����—�žƒ—•��‚—��””�

——————��””�
—š—����¡

————¥

——¥

——��—������—���—�–�‚�—”ƒ��‚��ƒ

——���™�”���‚���

•–�‚�ƒ��‚��›—œ�”�¦ž£—�‚��£—

————“�”ƒ�—Ÿ¡

40 You can see this code in action on CodePen:
����������������Ž„‡Š�•…Ž‰ .

200

——“—›—��ƒ™�����—Ÿ—¢

————���™�”���‚���

•–�‚�ƒ��‚��›—©������‚
®£—�‚��£—

——————“�”ƒ�—Ÿ¡

——¥

¥

��—“‚�””�£—�ƒ�—���—�•ƒ������‚

�ƒƒ€‚•����‚
”��›—�”���‚�£—��…�””•��¦—Ÿ¡

Phew! �at’s a lot to wrap your head around for something as sim-
ple as a click or tap. What if you wanted to support pen events too?
If only it could be easier….

�is problem is precisely what Pointer Events41 were developed
to address. Pointer Events abstract pointer-based interactions—
mouse, pen, touch, and whatever’s next—to a series of generic
events that �re no matter what type of interaction is happening.
Once you’ve caught the event, you can decide what to do with it
and even whether you want to do something di�erent based on the
mode of input.

¤‚
�¤��

•–�‚�ƒ��‚��›œ��‚���
�¤‚ž£—
�����́ ‚���£—

——“�”ƒ�Ÿ¡

“�‚���‚—
�����́ ‚���›—�–�‚�—Ÿ—¢

——ƒ¤���›—�–�‚����‚���•���—Ÿ—¢

————��ƒ�—œ���ƒ�ž�

——————��—���ƒ�—‚���—
������

——————•���¦¡

————��ƒ�—œ��‚ž�

——————��—��‚�ƒ��”�ƒ—‚���—
������

——————•���¦¡

————��ƒ�—œ�����ž�

——————��—�����—‚���—
������

——————•���¦¡

————
�“��”��

41 ����������������‡ˆŠ���‹Ž’

201INTERACTION IS AN ENHANCEMENT

——————��—��‚���•���—���”
—‚��—•�—
������

——————��—��—ƒ—‚��—�����‚��
—“��

——¥

¥

Pointer Events are still new but have gained signi�cant traction.
As I write this, Apple is the lone holdout. Ideally, that will have
changed by the time you pick up this book.42

DON’T DEPEND ON THE NETWORK
More and more of your users are weaving the Web into the parts of
their lives when they aren’t behind a desk with a hardwired connec-
tion to the Internet. As people move around during the day, their
connections bounce from cell tower to Wi-Fi hotspot to cell tower
again: 4G to Wi-Fi to 3G to Edge to hotel Wi-Fi (which is absolutely
in a class of its own…and not a good one). Your users move in and
out of these di�erent networks throughout the day. And, for many,
at least some part of their daily travels take them into a “dead zone”
where they simply can’t get a signal. Clearly, you can’t depend on the
network to be there all the time, so how do you cope?

�ere are numerous options that make it possible to handle net-
work issues elegantly, and they all require JavaScript. In fact, this
is one area where JavaScript really brings a lot of value in terms of
enhancing a user’s experience.

Store Things on the Client
Back in the early days of the Web, the only way you could store data
on a user’s computer was via cookies. Cookies let you store infor-
mation such as session IDs, someone’s username, or even certain
preferences such as the number of items to display per page, but
they aren’t practical for any substantial amount of content. Cookies

42 Can I Use would know: ����������������‰‰�•�‹Œ�• .

202

are limited to 4,093 bytes in total length per domain (that’s for all
cookies on the domain, not per cookie). �ey’re also a bit of a perfor-
mance killer because each request sent by the browser includes every
cookie in use by the domain receiving the request.

We needed something better. �at something better came in
two forms: ”���”„����€� and ƒ�ƒƒ�‚„����€� .43 �ese two
technologies operate in the same way, but ”���”„����€� persists
from session to session (i.e., it sticks around even when you’ve quit
the browser application), and ƒ�ƒƒ�‚„����€� is available only
for the duration of your session (i.e., while the browser is open). In
both, the information you store is private to your domain, and you
are limited to about 5MB of storage. I’ll focus on ”���”„����€� ,
but you can rest assured that ƒ�ƒƒ�‚„����€� can do the same
things because they are both instances of the same „����€� object.

You can detect ”���”„����€� support just like any other
JavaScript language feature.

“—›—œ”���”„����€�ž—‚—¤‚
�¤—§§

—————¤‚
�¤�”���”„����€�—²šš—‚�””—Ÿ—¢

——��—�́žƒ—ƒ�“�—��—�ƒ�—”���”„����€�

¥

You might be wondering why there are two conditions that need to
be met before you proceed down the path of using ”���”„����€� .
A user must give your site permission to store information on their
machine. If they decline, ¤‚
�¤�”���”„����€� will be ‚�”” .

You can store data as string-based key-value pairs, like this:

”���”„����€��ƒ��́���›—œ¦��ž£—œ–�”��ž—Ÿ¡

You are limited to storing strings of data, so you can’t save DOM
references. You can, however, store JavaScript objects if you coerce
them to JSON strings �rst.

43 ���������������� •���‡Š‰

203INTERACTION IS AN ENHANCEMENT

”���”„����€��ƒ��́���›—œ��™�•	���ž£—

——’„¶•�ƒ��‚€“�›—��™�•	���—Ÿ—Ÿ¡

Getting them back is easy too.

–��—��™–�”��—š—”���”„����€��€��́���›—œ¦��ž—Ÿ£

————��™�•	���—š—’„¶•����ƒ�›—”���”„����€��€��́���›—

——————————————————œ��™�•	���ž—Ÿ—Ÿ¡

Just be aware that your data stores can be overwritten accidentally.

”���”„����€��ƒ��́���›—œ¦��ž£—œ–�”��ž—Ÿ¡

��—�‚
—”����—�‚—��—‚—�‚�����—ƒ����

”���”„����€��ƒ��́���›—œ¦��ž£—œ�‚�����—–�”��ž—Ÿ¡

�is isn’t so much of an issue if you don’t use ”���”„����€� for
much or you are a one-person dev shop, but if you want to play
well in the ”���”„����€�— sandbox, it’s a good idea to namespace
your keys. I tend to prefer prepending the JavaScript object name
to the key. So if I were to use ”���”„����€� to store a reference to
the currently selected tab in a tabbed interface, I might do some-
thing like this:

”���”„����€��ƒ��́���›—œ•�•́ ‚���“���������‚�ž£—

——œ��•�̧ ž—Ÿ¡

Alternatively, you could use a helper such as Squirrel.js that allows
you to create an isolated data store within ”���”„����€� based
on this idea.44

Client-side storage can be used for all sorts of helpful enhance-
ments. Perhaps you’d like to store your CSS locally to improve
performance and provide a better o�ine experience.45 Or maybe
you simply want to cache responses given by heavy Ajax calls so

44 �����������������Š•‹��•••

45 �����������������•••���…Ž

204

you only need to make them once.46 Or maybe you want to reduce
your users’ frustrations with forms and save the content as they
enter it, just in case the browser crashes.47

Ri�ng on the form idea a bit more, you could hijack a form
submission and post the form data via �����������ƒ� . If
the request fails (because the user is o�ine or you can’t read the
server), you could capture the form data in a JSON object, squirrel
it away in ”���”„����€� , and inform the user you’ll send it when
the connection is back up. You could then have JavaScript poll at a
certain interval to see when the connection comes back. When it
does, you could submit the data and inform the user that it’s been
sent. Talk about enhancing the forms experience!

You could even take this approach further and make an entire
web app function o�ine, performing data synchronizations
with the server only when a connection is available. It’s entirely
possible. And if you don’t want to write the logic yourself, there
are tools such as PouchDB48 that can rig it all up for you. With
”���”„����€� , the possibilities are endless. OK, that’s not really
true; they’re bound by the 5MB storage limit, but I think you
get�my point.

Of course, ”���”„����€� is not the only option when it comes
to�enabling o�ine experiences, but it is one of the easiest ways to
get started.

Taking Of�ine Further
If you like the ability to store structured content locally but �nd
that ”���”„����€� is limited in terms of its power and storage
space, ‚
�«�
†� 49 might be what you are looking for. When

46 ����������������‹••’�‹Š•�

47 �����������������Ž’‘�‘Š •

48 ����������������’‰••���…•

49 ������������������••� ‡Š†

205INTERACTION IS AN ENHANCEMENT

you work with ‚
�«�
†� , your storage limit increases tenfold
to 50MB. �e ‚
�«�
†� data store is also much more advanced
than the simple key-value pairings of ”���”„����€� ; its capa-
bilities much more closely resemble what you’d expect from a
traditional database. �e one trade-o� for this additional power
and storage space is a more complex API, but it is intuitive once
you understand how all the pieces �t together.

Another option worth considering is a Service Worker.50 A Service
Worker is a script that is run by the browser in a separate thread
from your website but that is registered and governed by your site.
As Service Workers exist within the browser, they are granted
access to features that would not make sense in a web-page con-
text. Eventually this will include push messages, background sync,
geofencing, and more, but Service Workers are a new idea and
are starting with one feature: the ability to intercept and handle
network requests, including managing the caching of resources for
o�ine use. Previous to Service Workers, the only way we had to
control what browsers cached was via the Application Cache, and it
was complicated and fraught with issues.51 Service Workers should
make the Application Cache obsolete.

As I am writing this, Service Workers are still in their infancy,
and only Chrome has a complete implementation of the dra�
speci�cation. �at said, Firefox is working on one, and Microso�
is showing an interest in Service Workers as well. When they do
land, Service Workers will undoubtedly be an excellent tool for en-
hancing your users’ experiences when the network is not available.

Finally, if the website you work on is more transactional than in-
formational, all of this o�ine business can help you in another way
as well: You can easily make your website installable. �e W3C has

50 � e Working Dra� speci�cation is at ����������������‡��…���•‹ ,
and you can �nd a good introduction to them at
����������������Ž‹̂ ‡���� .

51 ����������������•�Ž��• ••

206

been working on the Application Manifest speci�cation52 to enable
websites to become installable applications. �e spec is still a dra�
as I am writing this, but we are already starting to see tools—like
ManifoldJS53—that allow you to generate installable application
wrappers for your website. �ese “hosted” apps already work on
Android, Chrome OS, Firefox OS, iOS, and even Windows. Once
installed, your website can request access to more of the operat-
ing system’s core services such as the address book, calendar, and
more. Talk about progressive enhancement!

WIELD YOUR POWER WISELY
Make no mistake, progressive enhancement with JavaScript requires
considerably more e�ort than it does with CSS or HTML. �e �rst
and most critically important thing you can do is to become familiar
with all the things that can potentially demolish your JavaScript-
based experiences. �e more familiarity you have with them, the
more steps you can take to mitigate the potential damage.

Having a solid experience in the absence of JavaScript is a good
starting point because it will ensure your users will always be able to
do what they came to your site to do, no matter what happens. From
there, authoring your JavaScript programs defensively—detecting
language features and elements you want to work with—will help
you avoid introducing errors when an outside in�uence such as a
browser plugin or ad service messes with your page.

�ere’s nothing wrong with setting a minimum threshold for
browser support using feature detection; just be sure your choices
aren’t arbitrary and accurately re�ect your goals for the proj-
ect. You could even take this a step further and avoid delivering
JavaScript to browsers you know are particularly old or incapable

52 ����������������•…‹Ž�„�•�

53 ����������������Œ�������•

207INTERACTION IS AN ENHANCEMENT

of using tools such as Conditional Comments. With a JavaScript-
less baseline in place, your users on unsupported browsers will still
be taken care of, and you can focus on enhancing the experiences
of users who have access to more modern browsers.

When you are designing JavaScript-driven widgets, don’t embed
the markup in the document. Instead, use �”�ƒƒ or data attribute
triggers to inform your JavaScript program that it can convert the
existing markup into a speci�c interactive widget and enable the
necessary styles. �is reduces the potential for user confusion in
seeing an interface that might not behave as expected, and it also
gives you more �exibility to evolve the implementation over time.
Use ARIA to explain the component parts of the interface and
what’s happening as a user interacts with it so that your users who
require the aid of assistive technology are just as well-supported
as your other users. Adapt your widgets to be appropriate to the
form factor, prioritizing your users’ reading experience over your
JavaScript cleverness.

Finally, look for ways to increase the reach of your creations by
opening them up to alternative inputs such as touch, keyboards,
and pens. And recognize that even the network is not a given in
our increasingly mobile world. Take advantage of the tools that
allow you to improve the performance of your website through
clever caching and moving more of your experience o�ine. Your
users will thank you for it.

JavaScript is an incredibly powerful tool with the astonishing
potential to drastically improve or unforgivably ruin your users’
experience. As Spider-Man’s Uncle Ben famously said, “With
great power there must also come great responsibility!” Armed
with a solid understanding of how to best wield the power of
JavaScript, you’re sure to make smart decisions and build even
more usable�sites.

“�e web’s greatest strength,
I believe, is o�en seen as a
limitation, as a defect. It is the
nature of the web to be �exible,
and it should be our role as
designers and developers to
embrace this �exibility, and
produce pages which, by being
�exible, are accessible to all.”

—JOHN ALLSOPP

CHAPTER 6:
CRAFTING A
CONTINUUM
As you’ve seen over the course of the previous chapters, not only
does progressive enhancement enable more users to access your
website, it can also make the development process much easier on
you. It all starts by shi�ing the way you view experience.

When you see experience as a single thing, you devote all your
e�ort toward realizing that one single experience. With such laser-
focus on that one goal, it’s easy to lose sight of the fact that that one
experience may not be what’s best for a good number of your users.
Designing a single monolithic experience is a form of arrogance.

�e reality is that everyone is di�erent and everyone has special
needs—some permanent, some transitory, some contextual. Rather
than striving to produce one identical, in�exible experience that
serves only a subset of the incredibly vast spectrum of web-enabled
devices and the users who rely on them, you should embrace the
inherent adaptability of the Web and design malleable experiences
that bend and �ex without compromising their purpose. You can’t
possibly know all the places your site will go, but with a little plan-
ning, you can empower it to shine, no matter what. You can even
prepare your sites for whatever devices and interaction methods
the future may have in store.

210

MAP THE EXPERIENCE
One of the greatest challenges of progressive enhancement lies not
with the coding but with the planning. It can be incredibly chal-
lenging to articulate how a single interface might adapt to a wide
variety of situations. Ix Maps (Interface Experience Maps) are a
great tool for helping with this.

In 2007, I was presented with a challenge while putting together
a�talk called Ruining the User Experience. In the talk, I discussed
treating JavaScript as an enhancement and what happens when
you�don’t.

While preparing the talk, I struggled with the best way to convey
the various decision points and interface adjustments that would
need to happen as a result of those decisions. With the help of my
co-presenter, UX strategist Sarah B. Nelson, I decided to use a �ow-
chart, and it worked marvelously. Not only are �owcharts simple to
create, but they’re also incredibly easy to understand. Figure�6.1 is
the �rst one I did. It was pretty rudimentary (and failed to properly
capitalize the S in JavaScript), but it got the point across.

In future iterations of the talk, I expounded upon the idea of
�owcharts for describing how interfaces might adapt to di�erent
circumstances and browser capabilities (Figure 6.2). Over the
years, I found more and more ways to put these artifacts to use.
And, at a certain point, the term �owchart didn’t seem to cut it,
so�I began calling them UI construction �ows1—which, admittedly,
was a mouthful—and then �nally settled on the name Interface
Experience Maps or Ix Maps, with the help of a client.

1 I used the term “UI Construction Flow” in my chapter “Designing Adaptive
Interfaces” in Smashing Book 4 (������������������������).

211CRAFTING A CONTINUUM

Figure 6.1 An early �owchart used to describe progressive enhancement
with�JavaScript.

Figure 6.2 A later pass on the �owchart, this one describing the progressive
enhancement and interaction options for an FAQ.

212

The Bene�ts of Ix Maps
An Ix Map is a pretty simple concept for anyone to grasp. �is
makes it a fantastic tool for enabling mixed teams—designers,
developers, content folks, business strategists—to come together,
brainstorm ideas, and build a strategy around progressive en-
hancement. Time and time again, I’ve seen these simple diagrams
bring a diverse team together and help them quickly and easily
come up with creative ways to address complex interface problems.

Ix Maps have become a useful tool to me and the teams I’ve
worked with. �ey excel at articulating the di�erent ways in which
a given interface might adapt and what the end results of each
adaptation might be. �e clear documentation they provide is
invaluable to just about everyone on the team.

• Copywriters get a clear picture of the di�erent experience
possibilities so they can cra� the copy accordingly.

• Designers can see the di�erent experience possibilities and can
create wireframes and visual designs that account for each.

• Developers get a clear outline of what functionality is expect-
ed and know exactly what features and capability detection to
employ in generating each experience.

• � e quality assurance team has a clear picture of what they
should be looking for in each component of an interface.

In short, Ix Maps ensure everyone on the team has an understand-
ing of what’s expected so they can work toward a common goal.
One company I worked with found Ix Maps so useful that they
created one for every pattern in their pattern library. �en they
included the drawings as part of each pattern’s documentation.

Because they are so basic, Ix Maps can be sketched out quickly on
paper, on a whiteboard, or in so�ware like OmniGra�e. �eir sim-
plicity also makes it quite easy to explore di�erent ideas of how to
adapt a particular interface without having to worry about throw-
ing away an idea that doesn’t pan out. It’s only a few boxes and
arrows…you haven’t invested any time in design or production.

213CRAFTING A CONTINUUM

Example: Lazy Loading Images
In Chapter 2, I said that you must evaluate each piece of con-
tent you consider including in your website with one question:
Does this content actually add to the experience? A relevant ex-
ample I gave was thumbnail images on the New York Times and
Guardian�websites.

In reviewing those examples, I conceded that having thumbnail
images for certain article teasers can help to draw a user’s eye. �is
is particularly helpful on large screens where information density
is high and there is a lot of competition for the user’s attention
(please refer to Figure 2.4). �at said, on smaller screens, the
same level of competition does not exist. Furthermore, thumb-
nail images can, in some cases, cause your text to wrap oddly
(Figure�2.5). Finally, for all the bene�ts in terms of visual interest
and gaze-attraction, these images carry some heavy baggage: �ey
greatly increase the overall size of the page and each one needs to
be downloaded individually.2

For these reasons, I would label the thumbnail images a “nice-to-
have” feature, not a necessity. Let’s walk through an Ix Map that
illustrates the di�erent scenarios and then discuss how it might be
implemented in terms of code.

To serve the most users the most appropriate experience, you
should always start with a sensible baseline. In this particular in-
terface, the images are optional; therefore, no ��
 elements should
exist in the markup. As you may recall from Chapter 4, hiding im-
ages with CSS does not guarantee they won’t be downloaded. You
can only guarantee that the browser will not download the extra
images if you don’t have markup for them in the HTML.

2 At least until HTTP2 rolls out far and wide:
����������������	������� .

214

Load JS?
No

No Image

Figure 6.3 Before JavaScript runs and in the absence of JavaScript, users will not get
the thumbnail images.

As no ��
 elements will exist in the markup, you will need to dy-
namically inject them into the page a�er the page �nishes loading.
�at requires JavaScript. As you’ll recall from Chapter 5, JavaScript
enhancements are never guaranteed, so you will need to come to
terms with the fact that some users, even on a large screen, may
never get your JavaScript-based enhancement. Putting these bits
together in an Ix Map results in Figure 6.3.

With the “no JavaScript” scenario accounted for, let’s go down the
“with JavaScript” path. If the JavaScript enhancement can run, you
want to load the images, but if you just le� it at that, any small-
screen browser would load the images too, which is not what you
want. So, you need to insert a test before you load the images. A
good rule of thumb when it comes to allowing text to wrap around
an image is that the screen width should be at least twice the image
width. Since your thumbnail images are likely a consistent size (or
at least a consistent series of sizes), you could use twice that width
as a threshold, beyond which JavaScript will lazy load the images
but beneath which it doesn’t. Adding this bit of logic into the Ix
Map results in Figure 6.4.

As you can see, Ix Maps enable easy iteration. Using this document
as a guide, you can begin to consider implementation details. For
example, if you don’t use ��
 , how do you get the image in there?
Nichols College, which I’ve mentioned a few times in this book,
has an elegant solution.

������•�••••���
���•�•••

���� ���������
�••������� ����
���
•€�����€

215CRAFTING A CONTINUUM

Load JS?
No

No
Yes

No Image

Image

Adjust HTML

Verify browser
width in JavaScript

Figure 6.4 Adding the JavaScript path to the Ix Map.

It opted to use a non-semantic division with a data attribute
to�carry the image path information. �is approach o�ers two
key�bene�ts.

• �e ��� has no default padding or margins when rendered in
a document, so it will occupy no space on the page when it has
no�contents.

• � e data attribute makes a declarative statement about the ��� ,
indicating its purpose and o�ering the path that should be used
to generate the image.

From a CSS standpoint, Nichols College defensively ensures the
��� is not displayed by default, just in case some styles from else-
where in the style sheets might give it some display properties.

����
���•�••�‚

����•�•�•��ƒ ƒ�„

…

216

�e JavaScript it uses to lazy load images is pretty straightforward.
�e site uses jQuery and compresses the JavaScript, but I will tran-
scribe the meat of it to normal JavaScript with some explanatory
comments so you can follow what the developers did.

���

���• †�‡ ���ƒ•�•�••����
�•

•̂�••‰���
�•�•�� �Š��ƒ��‹Š��•Œ�•��� ��••Ž�

�����������������‘’��������
�“”�•–

������������� ��•���
�� ��• ƒ�

�̂�
�•�� �Š��ƒ��������—•���ƒ�Ž‘��
”•–

����ƒ•��ƒ���������� ����������̃ •�•�Š•��

•�ƒ–��–�̂ � ƒ���ƒ��–�̂ ���
�–�•��„

���• ����� Š
�������•�••����
�

‡ ��Ž��•™–�•�ƒ• •̂�••‰���
�•�•�ƒ
��„�����•�ƒ„��šš�•�‚

� ����
�������� ƒ���ƒ��

� �̂ � ƒ���ƒ���•�̂ •�••‰���
�•’�“„

� � ��� ƒ••��Šƒ� ƒ�������� ƒ���ƒ��

� ��‡�Ž�̂ � ƒ���ƒ�������•������
���›•�ƒŠ••�•�‚

�� � � � ƒ��ƒŠ�„

� �…

� ������†���������
���ƒ���ƒ•������

� �̂ ���
��•�̂ ��
��• ƒ�œ ��Ž•„

� �̂ ���
��•���•�̂ � ƒ���ƒ�������•������
�„

� �̂ ���
���•��•�ž•„

� �̂ � ƒ���ƒ�������ƒ�Ÿ��•�Ž�̂ ���
��•„

� � ������†����•� ƒ���•�• ����

� �̂ � ƒ���ƒ���•�������̃Š��Ž�‘��������
��”–�‘”�•„

…

217CRAFTING A CONTINUUM

In Nichols College’s case, rather than tying the lazy load to a par-
ticular screen width, it opted to have the JavaScript pay attention to
the current CSS media query in e�ect. It managed this synchroni-
zation using a technique based on the work of web designer Adam
Bradley.3 Using JavaScript, the developers inject a hidden ��� into
the page.

����̂ ¡�������•�� �Š��ƒ��������—•���ƒ�Ž‘���”•„

ˆ¡�������•�������̃Š��Ž�‘��”–�‘
��������¢�¡������”�•„

ˆ¡�������•�••����•�•�•�•�‘ƒ ƒ�”„

� �Š��ƒ��̃ �•�����ƒ�Ÿ��•�Ž�̂ ¡�������•„

In the CSS, they have a series of rules that assign a breakpoint
keyword to ���£
��������¢�¡������ as a ‡ ƒ��‡���••
value. �e default is “default” (naturally). �ey follow this with
“tiny,” “small,” “medium,” and “full,” each within its correspond-
ing breakpoint, like this:

£
��������¢�¡�������‚

� �‡ ƒ��‡���••��ž��‡�Š•�•„

…

¤������ ƒ••�•����ƒ��ƒ��Ž��ƒ�¡�����¥™��•�‚

� �£
��������¢�¡�������‚

� � �� ‡ ƒ��‡���••��ž��ƒ••„

� �…

…

¤������ ƒ••�•����ƒ��ƒ��Ž��ƒ�¡�����¥��¦§��•�‚

� �£
��������¢�¡�������‚

� � �� ‡ ƒ��‡���••��ž•��•••„

� �…

…

�̈��ƒ��• � ƒ����̈ �

3 �����������������	�§�¥Ÿ�� . Jeremy Keith did a round-up of techniques
like this at ����•������������¢¢©��—ª	« .

218

Using JavaScript’s
��Ÿ ��Š���Œ�••� , the developers then
created a custom function to pluck the corresponding breakpoint
keyword from the CSS and return it.

¡�ƒ� ¡�
��������¢�•�‡Šƒ��� ƒŽ•�‚

� ����Š�ƒ�¡�ƒ� ¡�
��Ÿ ��Š���Œ�••�Ž�̂ ¡������–�ƒŠ••�•

���������� ��
��	� ����•��•Š�Ž�‘‡ ƒ��‡���••”�•

���������� �����•���Ž��’‘•“�
–�‘”�•„

…„

(�at call to ���•��� strips any single or double quotation marks
that might be around the keyword.)

�ey wrap the lazy loading program you saw earlier within a
conditional that uses their custom function
��������¢ to test
for the active media query before applying the logic. �ey let it
run only if the breakpoint is “medium” or “full”. �e whole thing
is then passed to another custom function called ¡����«�•�•� 4
that, as you’d expect, watches for resize events and then triggers
any functions passed into it to run.

¡�ƒ� ¡�¡����«�•�•�Ž�‡Šƒ��� ƒŽ•‚

� � ����������‰�����‰‹Š��•�•�¡�ƒ� ¡�
��������¢Ž•„

� � �‡�Ž�������‰�����‰‹Š��•�••�‘����Š�”�¬¬

� ������ ������‰�����‰‹Š��•�••�‘‡Š••”�•�‚

� ��� ���������•�••�• ���ƒ
�� ���
 �•�����

� �…

…�•„

It’s worth noting that ¡����«�•�•� also runs the passed function
once when the page loads. It does this to ensure the function runs
at least once in case a user never resizes the browser.

Taken together, all this JavaScript and CSS realizes the Ix Map as
I’ve built it thus far, but Nichols takes things a step further. Since
¡����«�•�•� will run on load and whenever a user resizes the
browser (an event that also occurs when she rotates her device),

4 �����������������	�®�̄—«�

219CRAFTING A CONTINUUM

Nichols wanted to make sure any loaded images never caused prob-
lems when a user went from a widescreen view to a narrow one. A
perfect example of this use case is a 7-inch tablet—they tend to be
tall and narrow in portrait orientation and short and wide in land-
scape. To prevent an awkward reading experience, Nichols shows the
lazy loaded images only in the medium breakpoint or larger.

������•��•�������ž����Š�•�•�•�

¤������ ƒ••�•����ƒ��ƒ��Ž��ƒ�¡������©°�±¥§��•�‚

� �����
���•�••’��������
��“�‚

�� � � ��•�•�•��̃ • �†„

� �…

…

Updating the Ix Map for parity with Nichols College’s implemen-
tation, I can simply say that the decision point based on width
is actually a live test (Figure 6.5). It tests for enough width via
JavaScript—using ¡����«�•�•� and
��������¢ —and either

Load JS?
No

Yes

Yes

Yes

No Image

Image

Adjust HTML

Verify browser
width in JavaScript

Hide with CSS

No

No

Verify browser width
with CSS media query

Figure 6.5 �e �nal Ix Map for the lazy loading image pattern.

220

loads the image or doesn’t. If JavaScript has loaded the image, the
page then uses CSS to enforce the rule—embodied by a media
query—governing whether it should be displayed. Clever stu�.5

Example: Tabbed Interface
We’ve looked at tabbed interfaces a lot and dissected them in great
detail, so I won’t rehash all of that. I do want to run through an
Ix Map for one, however, so I can show you how this tool can be
incredibly useful for iterating on an interface.

Let’s say you start with the basic tabbed interface. I mentioned in
Chapter 5 that you can build a tabbed interface from linear con-
tent, using the document outline as your guide. �is approach is
documented in the fairly simple Ix Map shown in Figure 6.6.

Load JS?

Yes

Linear

Tabbed

Adjust HTML
Assign event handlers

No

Figure 6.6 Pass 1: If JavaScript is available, make a tabbed interface out of linear
content. If not, leave it as it was.

5 I have built a reduced version of this whole setup for you to dissect and
explore: ������������������®°�¦�²̄ .

221CRAFTING A CONTINUUM

Load JS?

Yes

Linear

Tabbed

Verify there is
space for tabs

No
Accordion

Adjust HTML
Assign event handlers

Adjust HTML
Assign event handlers

No

Yes

Figure 6.7 Pass 2: Add a live width test into the mix to see whether there’s enough
room for the tabs and make it an accordion if the screen is too narrow.

You may also recall that tabbed interfaces aren’t necessarily the
best way to interact with content on narrow screens. Maybe it
makes sense to switch to an alternate interface, such as an accor-
dion if the screen is below a speci�c width or if there isn’t enough
room for the tabs to �t horizontally. You can incorporate that
option into the Ix Map and get Figure 6.7.

�ere is also a native element combination for creating an accor-
dion: �����•• and •Š����• . You could avoid having to load a
lot of extra JavaScript code if you allowed for that as an option in
supporting browsers. Revisiting the Ix Map to include this as an
alternate path would result in Figure 6.8.

222

Load JS?

Yes

Linear

Tabbed

Verify there is
space for tabs

No

Does the browser
support details ?

Accordion

details
summary

< ? >

Adjust HTML
Assign event handlers

Adjust HTML

No

No

Yes

Adjust HTML
Assign event handlers

Figure 6.8 Pass 3: Test for native details/summary support and use the native
functionality if available.

As you can see, iteration on an interface is incredibly easy
with�Ix�Maps.

Ix Maps allow you to explore innovative ways to solve design
challenges using progressive enhancement without getting bogged
down in the minutia of implementation details. �ey are a tool any
member of the project can easily understand, discuss, and con-
tribute to. �ey are also a great touchstone to refer to as a project
continues because they help you focus on purpose and intended
outcomes. �ey help you visualize progressive enhancement.

223CRAFTING A CONTINUUM

LEARN FROM THE PAST,
LOOK TO THE FUTURE
When discussing progressive enhancement, I’ve encountered a lot
of designers and developers who have a hard time understanding
why this philosophy’s focus on supporting older browsers matters in
the modern browser era. As I’ve mentioned at length in the previous
chapters, starting with a universally accessible baseline and enhanc-
ing it based on browser and device capabilities has many bene�ts for
the people who are coming to your site today, but it does more than
that. Progressive enhancement’s focus on supporting the past also
ensures your customers will always be able to do what they came to
your site to do, even on devices not yet imagined.

�at may seem like a bold claim, but if you look at how our relation-
ships with computers, and thereby the Web, are evolving, you’ll see
that looking at the past actually helps us prepare for the future.

Mobile Is the New Dial-Up
If you’ve been on the Web for a long time, you probably remember
early dial-up modems and their sluggish 14.4Kbps, 28.8Kbps , or
even 56Kbps speeds. As web designers in that era, we went to great
pains to reduce the size of our web pages to deliver a speedy expe-
rience. With the shi� from hard-line to mobile data connections,
performance optimization has again become critical.

It seems that every day we �nd new and clever ways to wring a
few bytes here and there from CSS, JavaScript, and images. �ese
tactics have their roots in lessons we learned during the early days
of dial-up: Keep your �les light. Optimize your images. Load only
what’s necessary.

224

As dial-up access has been overtaken by broadband in our homes
and o�ces, we’ve allowed our page sizes to balloon and the num-
ber of assets we request to skyrocket. We lost this knowledge until
search engines started penalizing our sites for poor performance.6
Performance matters, even if you happen to be on a high-speed
mobile connection—which most of the world isn’t. Progressive
enhancement honors your users by prioritizing your website’s core
experience. Its focus on your website’s true purpose will help your
content reach your users wherever they are.

Small Is Big Again
When I �rst got online, I browsed the Web on a 640×480, 8-bit
color display. It was incredibly limited. �e jump to 800×600 on
my next computer was huge. By the time I graduated to a 1024×768
monitor, I had no idea what to do with the space. Since that time,
screens on our laps and desks have largely continued the trend
of getting bigger with each successive generation. �e computer
I am writing this on boasts a high-de�nition 2880×1800, 32-bit
color display, and it’s not uncommon to see designers working on
42-inch screens. As technology has improved, we’ve been granted
more real estate, so it might seem there’s not much we have to learn
from those small desktop screens of yore. �ere is.

Sales of mobile and wearable devices are quickly eclipsing those
of traditional desktop and laptop computers. It turns out having a
computer in your pocket is far more convenient than having to go
back to your desk to look something up. Carrying around a large
screen isn’t terribly convenient, so the screens we have with us are
smaller and more manageable. �ey may boast high resolutions,
but they are typically packed into 6 inches or less in smartphones.
Tablets get a bit bigger but not much. And wearables o�er the
tiniest screens of all—the Apple Watch and Pebble Time o�er reso-
lutions of 312×390 and 144×168, respectively.

6 ����������������«��Ÿ��³́ �

225CRAFTING A CONTINUUM

Optimizing our users’ experience on a small screen—a lesson
we learned in the early days of the Web—is relevant again. Your
copywriting should be straightforward and to the point while still
being personable and human. Your font sizes and margins need to
provide a good reading experience in narrow viewports. And your
imagery (if it even makes sense to include any) needs to be appro-
priate and focused. Progressive enhancement, with its laser-like
focus on the content that matters, will help your website be suc-
cessful on these tiny screens.

Text-Only Is Back in a Big Way
When I �rst started using a computer, few programs sported
fancy graphical interfaces like we see today. �e �rst nonconsole
video game I played was no exception. Zork7 (Figure 6.9) was
entirely text-based. Much like the “gamemaster” role in a table-
top role-playing game like Dungeons & Dragons or Vampire: �e
Masquerade, the game acted as a guide for you, the adventurer. It
was purely text-based, so you read about the setting you were in
and typed commands like ��ƒ����•̃ µ or �����•��‡•�� to
interact with the environment and play the game. When compared
to the latest Xbox or PlayStation title, this kind of gameplay may
seem like something that would be more interesting in a museum
than on the Web. In some ways, it is. But it’s also the future.

Science �ction has o�en been a strong predictor of our techno-
logical future. HAL 9000 from 2001: A Space Odyssey is probably
the most (in)famous example of a computer that interacts with its
users largely via voice. As a concept, the “talking computer” has
appeared time and time again in space-age �ction—everything
from Red Dwarf to Interstellar. To function in the real world like
they do on TV and in movies, computers need two capabilities:
natural-language processing (to understand what we say) and
speech synthesis (to communicate, aurally, back to us).

7 ����������������¶©¦���·�«

226

Figure 6.9 Playing Zork, in all of its text-driven glory.

Natural-language processing has its roots in the 1950s. In 1954,
the “Georgetown experiment” demonstrated that it was possible to
automatically translate a couple dozen written, romanized Russian
sentences into English. In the 1960s, ELIZA began mapping text-
based conversations to scripts and sometimes responded in an
uncannily human manner. �e 1970s saw the rise of chat bots that
could engage in basic small talk, most of which were experiments
attempting to pass the Turing Test8 by convincing a human that
they were also human. Around the same time, the �rst speech
recognition prototypes were being developed.

Many of these models were limited because they were built
around a series of hard-coded rules that the computers followed.
In the 1980s, however, machine learning and real-time statistical
analysis became possible. As hardware capabilities continued to
improve and computers became more powerful, they got better at
recognizing the words we were saying to them, leading to auto-
matic transcription so�ware like DragonDictate. Eventually, with

8 ����������������́ ¦�ª�©��²

227CRAFTING A CONTINUUM

enough processing power, they also began to assign meaning to
words and could react accordingly.

Listening is great, but true communication is bidirectional. Early
experiments in speech synthesis began in 1779 with Christian
Kratzenstein’s models of a human vocal tract capable of producing
vowel sounds. Electronic experiments in the 1930s–1950s yielded
some pretty unintelligible synthesized speech, but it was a start. In
the 1980s, Dennis Klatt came up with an algorithm called MITalk,
which was eventually implemented within the DECtalk so�ware
notably used by Stephen Hawking for a number of years. By the
1990s, reasonably intelligible text-to-speech so�ware was being
rolled out alongside most operating systems as a cornerstone com-
ponent of assistive technology: the “screen reader.” Notable screen
readers include Apple’s VoiceOver, Freedom Scienti�c’s JAWS,
GNOME’s Orca, Google’s ChromeVox, Microso�’s Narrator, and
the NonVisual Data Access project’s NVDA.

When combined, these two technologies eventually gave rise to
virtual personal assistants. �e most prevalent are found in popu-
lar operating systems: Siri in iOS, Google Now as part of Android,
and Cortana predominantly on Windows but available on iOS and
Android as well. But they aren’t limited to smartphones. Amazon’s
Echo is a stand-alone virtual assistant that can control your lights
and thermostat and order you more toilet paper. Many cars are
also coming with personal assistant features. It makes sense in
context: A driver’s hands should be placed �rmly on the wheel, and
their eyes should remain on the road while driving.

Practice the Fundamentals
Over time, your users will become more accustomed to and reliant
on voice-based interactions with their computers—and, thereby, the
Web. Enabling them to complete critical tasks without a visual user
interface will be crucial for the long-term success of your website.

So, how do you design a “headless” UI? �at’s easy: You design
the�text.

228

As I covered in Chapter 2, conversation is at the root of every
interaction we have, be it with another human being, with a game,
or with a website. Design every experience as a conversation you
want to have with your users.

As a video game, playing Zork may seem crude and unnatural to
you, but it’s not. It’s simply unfamiliar. Language is the root of how
we, as humans, communicate, and it’s likely to become a big part
of how we interact with computers in the future—though via voice
rather than typing. Treat that conversation as sacred and make
sure that the technological decisions you make with respect to
HTML, CSS, and JavaScript respect and support it. �at’s progres-
sive enhancement.

BE READY FOR ANYTHING
When you use progressive enhancement to build a website, every-
one reaps the rewards. Your users bene�t because the products you
build reach them where they are, in the most appropriate way pos-
sible. You bene�t because you avoid tearing your hair out trying to
give the same experience to every user who comes to your website.
And your clients (or managers) bene�t by reaching more users for
far less money and in less time.

Embracing this web design philosophy will make you a better web
designer, too. When you truly understand your medium, you can
embrace its constraints and work with them rather than against
them. In his piece “�e Web’s Grain,” designer Frank Chimero
nailed the beauty of progressive enhancement.

Most of the solidi�ed techniques about our practice come from the
natural ways of the web that have been there since the start. �e
answer is right there in front of us, in the website itself, and each
step we take away from its intentions makes our creations weaker.9

9 ����������������Ÿ��§�́ ©°́

229CRAFTING A CONTINUUM

Progressive enhancement sees the Web as it is. It embraces the
Web’s solid foundation and inherent adaptability, enabling you to
cra� interfaces that can work for anyone, no matter what device
they are on, network they connect to, or browser they use. It helps
you avoid �xating on highly variable factors such as screen dimen-
sions or speci�c browsers. It keeps your designs �exible enough to
reach your users on the devices they actually use rather than ones
you happen to be familiar with. It increases the potential reach of
your site dramatically by giving everyone a good experience, even
if it isn’t an identical one. And it reduces your testing and browser
support annoyances by selectively delivering only the code and
instruction each browser can handle. Beyond all that, the pro-
gressive enhancement philosophy enables you to capitalize on the
awesomeness of the Web, both today and in the future.

PROGRESSIVE
ENHANCEMENT
CHECKLIST
What follows is a distillation of key concepts from this book. My
hope is that you will �nd it a useful reference in your work.

You can also download this checklist in PDF form at
��������������������������������������
������� .

CONTENT
 � Avoid Zombie Copy

People have to read what you write. Write for them like you’d talk
to them. Your content should have a voice and a personality.

 � Design Meaningful Content
�ink about the content you need and what you want it to do early
in the process. Content is the foundation of every experience.

231PROGRESSIVE ENHANCEMENT CHECKLIST

 � Craft the Conversation
Your website is a conversation with your customers. �ink about the
conversation you want to have with them. Evaluate each content, de-
sign, and interaction decision to ensure it supports that conversation.

 � Plan for the Unknown
“Final content” rarely exists. Focus on content structure, and don’t
be afraid to temporarily borrow copy from competitors while de-
signing your content structure and hierarchy.

 � Write for Real People
Make sure your copy is written with your users in mind. It should
be clear and take into consideration factors such as domain knowl-
edge, level of education, and how your users speak to each other.

 � Consider Content Beyond Copy
Carefully consider other content types such as images, video, and
PDFs. Do they enhance the experience? Could the information they
contain be expressed in text or in a less bandwidth-intensive way?

 � Keep Data Entry Conversational
Pay attention to �eld labels, button text, and error messages and
look for ways to make them more human.

 � Don’t Fill Space
Resist the urge to �ll every inch with related content, teasers, and
more stu�. Evaluate “extra” content to ensure it supports the con-
versation you’re having with your users.

232

MARKUP
 � Learn from the Past

Read up on the history of web design and learn from the mistakes
we’ve made so you can avoid making similar mistakes in the future.

 � Illuminate Your Content
Use basic HTML semantics to give greater meaning to your content.

 � Mean What You Say
If an HTML element already exists that does what you need it to
do, use it.

 � Embrace Classi�cation and Identi�cation
Use
��� and �� attributes to enhance and organize your web
pages. Add microformats, microdata, and RDFa to empower your
content to go beyond the browser.

 � Make Deliberate Markup Choices
Understand the document outline, pay attention to source order,
and avoid authoring unnecessary markup. Embracing these three
practices will make your website more usable and accessible.

 � Clarify Interfaces with ARIA
Use ARIA roles to inform assistive technology about the part an
element is playing in your interface. But don’t use an ARIA 	�
�
when there’s an HTML element that serves the same purpose.

 � Understand Fault Tolerance
Become familiar with how to author markup-based fallbacks and
use fault-tolerant patterns to deliver natively adaptive interfaces.

233PROGRESSIVE ENHANCEMENT CHECKLIST

DESIGN
 � Design Systems, Not Pages

Break down your interface into discrete, reusable patterns to
achieve greater design consistency. Iterate on your patterns
to�improve adaptability, usability, and accessibility.

 � Don’t Design Yourself Into a Corner
Consider variable headline and body-copy lengths, image
dimensions, and aspect ratios to create more �exible designs.

 � Understand How CSS Works
Study up on proximity, speci�city, the cascade, and parsing errors to
deliver di�erent experiences to browsers with di�erent capabilities.

 � Start Small and Be Responsive
Design your patterns “mobile �rst” following responsive web design
best practices. But don’t forget that older browsers don’t understand
media queries (and you can use that to your advantage).

 � Focus on Standards
Pay attention to vendor-pre�xed properties and use them conser-
vatively. If you use them, track the developing standard and update
your style sheets as the spec changes. Remove the vendor-pre�xed
versions when the standard is well-supported.

 � Design Defensively
Provide fallbacks for new CSS properties and values. Use
������	�� to selectively deliver collections of style rules
that�depend on the availability of a new CSS feature.

 � Hide Content Responsibly
Pay attention to how you hide content in your CSS and in the
JavaScript libraries you use. Some methods of hiding content
introduce accessibility issues.

234

 � Consider the Experience with Alternate Media and Inputs
Consider how your website will render in print or on large screens.
�ink about how the design might need to adapt for users who
don’t use a mouse.

 � Embrace Default Styles
Exercise caution when it comes to redesigning form and other
native interaction controls. Redesigning native controls can require
a lot of development time (and money) and may result in a less
usable experience for your customers in the end.

INTERACTION
 � Anticipate Potential Issues So You Can Avoid Them

Get to know the medium of the Web. Understand what you can
control (and, more importantly, what you can’t).

 � Design a Baseline
Create an experience that works without JavaScript so your users
will be able to do everything they need to do, even if something
goes wrong.

 � Program Defensively
Use feature, object, and element detection to make your code more
robust and minimize potential code-induced failures.

 � Establish Minimum Requirements for Enhancement
Consider using feature detection as a litmus test for whether you
want to provide a JavaScript-enhanced experience.

 � Cut Your Losses
Consider delivering the “no JavaScript” experience to older,
less-capable browsers to reduce development time and headaches.

235PROGRESSIVE ENHANCEMENT CHECKLIST

 � Build What You Need
Use JavaScript to generate any markup needed for JavaScript-
driven interfaces.

 � Describe What’s Going On
Use ARIA properties and states to describe complex JavaScript-
driven interfaces.

 � Write Code That Takes Declarative Instruction
Author JavaScript programs that take instruction from declarative
markup to create more �exible scripts that are easier to update.

 � Adapt the Interface
Pay attention to changes in the browser such as screen resizing,
and adjust your interfaces in real time to provide the most
appropriate experience.

 � Apply No Styles Before Their Time
Have a baseline set of styles for an interface without JavaScript
and then turn on the JavaScript-dependent styles when you know
JavaScript is available and your widget can be used.

 � Enhance on Demand
Look for opportunities to “lazy load” nice-to-have content
(e.g.,�related items, comments) when users request it or only
a�er�all critical content has been downloaded.

 � Look Beyond the Mouse
Ensure your interfaces support a variety of input methods such as
touch and keyboard, or combinations of these, at the same time.

 � Don’t Depend on the Network
Look for opportunities to move critical features o�ine to account
for network loss.

FURTHER READING
What follows is a list of some of my favorite books and articles
pertaining to the various topics I discussed in this book. Some
were cited, some weren’t, but they are all excellent and worthy of
your time should you want to delve further into any or all of these
topics (which I hope you will).

Understanding the Web

“A Dao of Web Design”
by John Allsopp, A List Apart
������������������������ �

See also:
������������������
	����
 �
������������������������

“Continuum”
by Jeremy Keith
���������������������••••

“Information Management:
A�Proposal”
by Tim Berners-Lee, CERN
����������������•
�•�
 €

“Web! What is it good for?”
by Jeremy Keith
����������������••
������

“�e Web’s Grain”
by Frank Chimero
�������������������€��� �

237FURTHER READING

User Experience

“Choosing Performance”
by Tim Kadlec
��������������������‚��€

Don’t Make Me �ink, Revisited:
A�Common Sense Approach to Web
Usability, 3rd Edition
by Steve Krug (New Riders, 2014)

Mobile First
by Luke Wroblewski, A Book
Apart,�2011

Web Form Design: Filling in the Blanks
by Luke Wroblewski (Rosenfeld
Media, 2008)

Web Design Process

Designing with Web Standards,
3rd�Edition
by Je�rey Zeldman and Ethan
Marcotte (New Riders, 2009)

“Device Agnostic”
by Trent Walton
����������������•��	��ƒ��

Implementing Responsive Design
by Tim Kadlec (New Riders, 2012)

Responsible Responsive Design
by Scott Jehl (A Book Apart, 2014)

Responsive Design Work�ow
by Stephen Hay (New Riders, 2013)

“Responsive Design is Not About
Screen Sizes Any More”
by Gorka Molero, Speckboy
�����������������	„��‚ƒ��

Content

“Attack of the Zombie Copy”�
by Erin Kissane,�A List Apart
����������������„��ƒ��

“Calling All Designers: Learn to
Write!”�
by Derek Powazek,�A List Apart
����������������…‚•���€†

Content Everywhere: Strategy and
Structure for Future-Ready Content
by Sara Wachter-Boettcher,
Rosenfeld�Media, 2012

Content Strategy for Mobile
by Karen McGrane (A Book
Apart,�2012)

Letting Go of the Words: Writing Web
Content that Works
by Janice (Ginny) Redish (Morgan
Kaufmann, 2007)

Nicely Said: Writing for the Web with
Style and Purpose
by Nicole Fenton and Kate Kiefer Lee
(New Riders, 2014)

“Reviving Anorexic Web Writing”�
by Amber Simmons,�A List Apart
������������������

�†•��

238

Semantics and HTML

HTML & CSS: Design and Build
Websites
by Jon Duckett (Wiley, 2011)

HTML5 for Web Designers
by Jeremy Keith (A Book Apart, 2010)

Introducing HTML5, 2nd Edition
by Bruce Lawson and Remy Sharp
(New Riders, 2011)

“On HTML belts and ARIA braces
(�e Default Implicit ARIA semantics
they didn’t want you to know about)”
by Steve Faulkner, HTML5 Doctor
����������������€•ƒ���„

“Notes on Using ARIA in HTML”
by Steve Faulkner, et al., W3C
����������������„�…�����

“Responsive Images 101” (Series)
by Jason Grigsby, �e Cloud Four�Blog
������������������…ƒ��
�

“Srcset and Sizes”
by Eric Portis
����������������†�•��
•��

Web Standards Solutions: �e Markup
and Style Handbook�
by Dan Cederholm (Friends of
ED,�2009)

Visual Design and CSS

“Big, Stark & Chunky”�
by Joe Clark,�A List Apart
����������������••���•��

Bulletproof Web Design: Improving
�exibility and protecting against
worst-case scenarios with XHTML
and�CSS, 2nd Edition�
by Dan Cederholm
(New Riders, 2007)

“CSS Design: Going to Print”�
by Eric Meyer,�A List Apart
����������������	•����†

“�e Pitfalls of UI Kits and
Pattern�Libraries”
by Tyler Sticka, �e Cloud Four Blog
�����������������••†�•
�

Responsive Web Design, 2nd Edition
by Ethan Marcotte (A Book
Apart,�2014)

Smashing Book 5: Real-Life Responsive
Web Design
by Vitaly Friedman, et al., Smashing
Magazine, 2015

Interaction and JavaScript

“Behavioral Separation”�
by Jeremy Keith,�A List Apart
����������������„�€�	•��

DOM Scripting:�Web Design with
JavaScript and the Document
Object�Model
by Jeremy Keith and Je�rey Sambells
(Friends of ED, 2010)

239FURTHER READING

“�e JavaScript Framework
Bandwagonism”
by Teylor Feliz, Admixweb
����������������••	����‚

“JavaScript Triggers”�
by Peter Paul Koch,�A List Apart
���������������� •�†��†�€

“js;dr = JavaScript Required;
Didn’t�Read”
by Tantek Çelik
����������������	����� •

“Web applications don’t follow
new�rules”
by Christian Heilmann
����������������€�
•��•�

Accessibility

“�e Browser Accessibility Tree”�
by Steve Faulkner,��e Paciello
Group�Blog
������������������••��‚•

“High Accessibility Is E�ective Search
Engine Optimization”�
by Andy Hagans,�A List Apart
��������������������•	…

Just Ask: Integrating Accessibility
�roughout Design�
by Shawn Lawton Henry (Lulu, 2007)

A Web for Everyone: Designing
Accessible User Experiences
by Sarah Horton & Whitney
Quesenbery (Rosenfeld Media, 2014)

Testing and Analytics

“Browser Testing”
by Jeremy Keith
�����������������€����•�

“Analytics con�rm the need for
adaptive web design and cross-
browser compatibility”
by Jason Samuels
����������������•�€��•ƒ•�

“Setting a Performance Budget”
by Tim Kadlec
���������������������•�••

http://perma.cc/HK9J-WSD3
http://perma.cc/3HLG-VG75
http://perma.cc/9BL8-J32K
http://perma.cc/5AQY-ZXJ3
http://perma.cc/7JHY-SRDE
http://perma.cc/2ZRA-LH96
http://perma.cc/85CN-BK2N
http://perma.cc/K75N-PFXN
http://perma.cc/C78T-ECHE

This page intentionally left blank

INDEX
����� element, 88
audit, design, 96
Autopre�xer, 137

B
back link, 117, 119, 120
���������������� declaration, 111
bandwidth use, 19
Barebones so�ware, 99
Berners-Lee, Tim, 12, 13, 18, 236
Block-Element-Modi�er (BEM)

methodology, 65n
blogs

planning for content on, 36
source order on, 80–81

Boston Globe website, 127–131, 193
Boulton, Mark, 35
Bowman, Doug, 53n
Bradley, Adam, 217
Brand, Zach, 37
breakpoints, 131–132
browsers

fault tolerance of, 14, 86–91
hiding content from, 177–178
line mode, 4–5
native rendering by, 153–154

button creation, 57–60
������ element, 58

C
Canon website, 187, 188
cascade in CSS, 104, 106
Cederholm, Dan, 238
Çelik, Tantek, 21n, 66, 239
Champion, Steve, 4
checklist of key concepts, 230–235
Chimero, Frank, 228, 236
Chrome app, 8–9
Clark, Joe, 46n, 238
����� attribute, HTML, 63–66
����� selector, CSS, 107, 108, 109n
����� event, 198–199

A
A List Apart website, 126
abbreviation (����) element, 57
accessibility, 18–20, 239
accordion interfaces, 189–190, 221
��������������� method,

172–173,�176
Adobe Typekit, 190–191
ads, Wi-Fi, 159
Airbnb, 167
alert ���� , 85
Allsopp, John, 208, 236
alternate media, 148
alternative interactions, 148–150
AlzForum, 82, 178, 180, 181, 186, 194–195
analytics and testing, 239
anchor (�) element, 56, 58
Andreessen, Marc, 86n
Angular JavaScript, 13
��������� value, 150
����
������ and ���������

values,�150
Application Cache, 205
ARIA, 59–60

clarifying interfaces with, 83–85
describing states with, 180–182
�rst rule of using, 84
potential issues with, 61
roles available in, 83, 84, 85
styles triggered with, 191–192
tabbed interfaces and, 179

������������� attribute, 179
���������������� attribute, 179, 180
��������������� attribute, 179
������������� attribute, 180–181
������� element, 72, 77
at-rules, 115–116
����������� method, 172–173
“Attack of the Zombie Copy” (Kissane), 28
attributes

����� and �� , 63–66
data, 182–185

	Contents
	Foreword
	Introduction
	CHAPTER 1: Designing Experiences for People

