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Preface

In this book, we start the exploration of evolutionary dynamics for complex
networks with a working example that might look familiar to many people, at
least partially. The specific example intends to highlight the various aspects
of everyday life and work where humans encounter, use, act on and obtain
information from their interaction with complex communications networks,
as well as numerous other emerging functions. Such an example will drive
the following steps of the exploration of this book into a research domain
currently shaping and even expanding rapidly. Then we provide a more elab-
orated overview of the topic, related goals, and features provided by this book.
Finally, we provide potential alternative strategies for studying the material
provided, depending on whether the book is intended as a research reference,
an undergraduate or graduate course reference manual, or simply a reference
of broader interest.

Working Example

An executive of a multi-national company hires a taxi from Tokyo Financial
Center to go towards the International airport, to catch her return flight to the
United States. The driver quickly consults the GPS device of the vehicle for
the traffic street map, in order to identify the fastest route to the airport. The
executive has requested a speedy lift, which will ensure she boards on time.
The route duration estimation is 40min, safely enabling the executive to check
her email through her mobile handheld device in the meantime, rather than
worry about catching her flight. Both the accuracy of the GPS application and
the luxury of a good international roaming plan allow her to focus on her job,
while not wasting energy on logistics. The latest email requires her to complete
a report, thus, she also opens up her tablet device, connects to the 4G network
of the local provider, and via roaming and VPN, she connects safely to the
intranet of her corporation, in order to complete the short report online and
make it accessible to her supervisor in Philadelphia as soon as possible.

Incidentally, as soon as the taxi reaches the airport, the executive receives
an emergency call, informing her that she needs to reschedule her flight and
visit the corporate offices in Los Angeles for a couple of days before returning

ix
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to the headquarters in Philadelphia. She heads straight to the airline helpdesk
and requests an immediate flight change. The teller checks with the informa-
tion system of the airline and is able to locate a convenient flight reroute. The
executive will now fly from Tokyo to Chicago and instead of boarding the
connecting flight towards Philadelphia, she will board a connection towards
Los Angeles with only a slight delay of an additional hour. It just occurred
to the executive how important the airliner network proves to be in such
cases, where scheduling and other data have to be recalled and updated upon
such last minute modifications. Next, the executive checks the new flight data,
boarding times, duration, distance, mileage account, etc. from her smartphone
via the airline application account. She also updates her social network pro-
file status property in all social networks she uses, while waiting to board, in
order to let her close friends and colleagues know of her coming plans.

During the flight the executive connects to the airplane’s WiFi infrastruc-
ture in order to check her social accounts, read the news, and watch something
On Demand, such as a movie, or missed episodes of her favorite TV series.
Two of her college friends now living in Los Angeles have sent her invitations
for dinner, once they were notified by her social network status that she will
be in town. The executive checks her schedule and decides to join them as
soon as her assignment there is over. At the same time, one of her friend’s
article posts in the social network has gained numerous “likes” and popular-
ity, and she decides to check the article that coincidentally appeared in her
favorite newspaper, before she continues watching the latest episode of her
favorite TV series she unavoidably missed due to her original assignment.

Upon her arrival at Los Angeles she feels somewhat exhausted and prob-
ably a bit sick. Suspicious from various spreading news stories she heard over
the last couple of days in some of the cities she visited through her trip, she
quickly consults some of the latest medical blogs for her symptoms, while
waiting for her pick-up. She eventually believes she might have got the latest
flu from her business trip and heads directly to the nearest available hospital,
which she found through her smartphone device and a relevant application. By
collecting information from medical blogs and hospital databases, and based
on symptom input by the user in conjunction to the selected town, the app
is capable of suggesting such a hospital. In the hospital, the physicians that
examine her consult the hospital records for recent virus alerts, and eventually
they decide to proceed with some further lab tests and physical monitoring.

Eventually, the doctors inform her that she will need to receive medica-
tion and the prescribed antibiotics will take some time to spread through
her immune system, a cell network going through her body, before she will
start feeling better and be safely released. In the meantime, the correspond-
ing agency of the Centers for Disease Control and Prevention in the hospital
needs to know her exact travel plan, in order to obtain more accurate esti-
mates of the flu’s spreading dynamics. The epidemics control and prevention
agency, which is informed from the hospital authorities, is interested in as-
sessing the danger levels for a virus spread in the general population, and
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thus experts of the agency consult with the executive, inquiring about her
traveling. Combining such data with other information obtained by talking
to similar patients, they will become capable of reconstructing a propagation
network for the specific virus and variations throughout the nation, obtaining
the respective infection and recovery rates and assessing the importance of the
situation. This will enable them to better track the flu propagation network
and thus increase the efficacy of their countermeasures when needed.

Meanwhile, the executive is released after a few hours of close observation
and an imminent improvement of her physical condition. The latest antibi-
otics employed by the doctors were created based on feedback similar to that
obtained by epidemiologists consulting with the executive in previous cases.
The antibiotics reacted in a targeted and rapid fashion in her blood and cell
networks, allowing her to recover fast and luckily continue her planned occu-
pation with the minimum possible delay and overhead. She is now capable of
continuing her job, without suffering nasty symptoms and feeling assured she
will not be endangered in the coming days.

After her assignment, she finally meets with friends from Los Angeles, as
planned during her flight, most of which are active in the financial field as
well. They decide to start with dinner and at the same time spend some time
discussing the latest trends in their jobs and lives, while occasionally checking
several facts, photos, and articles online through their mobile devices. By the
end of their dinner, they decide to continue their night by having some more
fun. They can solve this quickly by using the latest social applications. In a
city like Los Angeles and with some aid by their smartphones they decide
to quickly book online seats for a theater play they found interesting among
those offered in the application, since some available seats were luckily still
available. They completed the transaction smoothly and rapidly, securing their
spots in the theatre. They also came across a post in an online nightlife guide
for a seemingly nice bar in the neighborhood, and decide to visit it right after
the play. While in the cab, the executive reflects once more on how easy it
has become to have all those options and features through the established
networks and how their interconnection enabled them to do so much on such
a short notice, whereas in former times, the same arrangements would take
at least 1–2 days of prior arrangements.

A couple of days later, after all her activities in Los Angeles are finished and
while on her return flight to Philadelphia, the executive is now more relaxed
and feels like scheduling her weekend online using her tablet and exploiting the
features of business class seating, like Internet access–communication capabil-
ities. It is time to allocate some time for herself. She has received an invitation
for a tennis match and she is able to confirm her availability through email
and also book a court through the Web service of the tennis club where she is
registered to avoid suffering any court unavailability. She was also informed of
an upcoming birthday party of one of her close friends. She immediately in-
dicated her attendance and in addition, she was able to chat with some other
friends that were online for the proper organization of the party through her
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social network mobile service.
Having set her social activities for the weekend, while in flight she decided

to selectively read the latest local news in Philadelphia, where it turned out
several things happened while she was out of town. Being registered in cus-
tomized and automated newsfeeds, she was able to quickly locate the most
interesting articles for her taste. She was also able to quickly form her per-
sonal opinion on them and post some comments in the relevant discussion
forums and blogs. She was even able to follow several immediate responses to
her comments by spending the remaining flight time productively on topics
she enjoyed discussing.

During a reflective moment, she realized she will not be required to manu-
ally update all of her updates and modifications in her schedule and document
management systems, as the latest cloud services will do so automatically, al-
lowing her to find everything in order once she turns her devices on back in
her place.

As soon as she landed, she was relieved that yet another demanding busi-
ness trip came to an end. While riding a taxi from the airport towards her
apartment, she spent some time reflecting on various moments from her trip
and it occurred to her how many times she used modern technology and es-
pecially networked devices and services in order to finish her job more easily,
communicate with colleagues and friends, and eventually document and boost
her work. Once more, she had to appreciate the benefit of a networked life-
time. That eventually made her think a bit more how many other aspects of
networked life she was actually using on a daily or less frequent basis and in
a subconscious manner. All these have been delicately underlaying her daily
routine for quite some time, and those regarding her health, from the moment
she was born. She felt a bit happier her everyday life was now easier than
what it would have been decades back and felt calm that she was now in a
position to get some rest, enjoying what seemed to be a very revitalizing and
fascinating weekend before a new week in the job started.

Topics and Features of the Book

The example of the previous section cannot characterize by any means a typ-
ical person, even in the more technologically-aware societies of our contem-
porary world. Even though there exist people that have to cope with similar
rigor, most of the professionals and non-professionals have a more plain style
of living. However, the example presents cumulative various facets of mod-
ern societies with respect to working, socializing, hobbies, entertainment and
practically any aspect of human life. It can be suggested that the example
combines many of the challenges that numerous people have to face, various
other tasks they have to accomplish, or occupations they want to achieve on a
daily basis. It illustrates how modern technology has changed human life, and
how many different tasks can be possibly achieved nowadays with the use of

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Preface xiii

modern devices, services, and infrastructures, even under strict or emergency
constraints. Furthermore, the example provides a glimpse into the future de-
mands and requirements that the modern style of living might impose over
communications technology and information societies in general.

Above all, the example highlights the important role that various types of
networks play in our modern societies. Essentially, it illustrates how modern
societies are centered around various types of information and infrastructure
networks. These networks span not only technological communications net-
works, such as those formed by mobile devices, the Internet, airline databases,
and mobile applications, but also involve other type of networks as well. For
instance, biological networks, such as protein and nerve networks, virus in-
fections, financial networks, such as stock and trade markets, and numerous
others. Networks of different types emerge everywhere, and conversely, sim-
ilar types of networks emerge in rather diverse fields of human activity. For
example, small-world networks, which will be analyzed in detail in subsequent
chapters of the book, emerge in biology, computer networks, and social net-
works, at the same or different scales.

Most people would identify a subset of the presented example to match
their daily lives to a lesser or greater degree. Through that, one may identify
a plethora of naturally emerging networks or developed networks that have
been specifically designed to interfere with our daily lives to the extent that
this becomes routine. In any case, the emerging networking structures are very
important and in addition, they operate most of the time in the background,
as it happens with biological, financial, and other critical types of networks.
What is more important is that this trend of identifying and exploiting more
consciously various types of networks is increasing with a strong tendency to
further intensify. As the technological means enable researchers and profes-
sionals to perform larger scale studies with greater accuracy, better control of
such network structures and mechanisms developing on them can be achieved
and eventually exploited for improving the quality of living of the current and
future generations.

Among others, the above example illustrates characteristic cases of hu-
man interaction and emergence of various and diverse types of networks in
our modern lives. Starting with telecommunications, professionals are able
to perform their jobs remotely from various places of the world, as if locally
present in their offices. Travelers are capable of scheduling and adapting their
journeys on the fly and in the most efficient manner by exploiting mobile de-
vices, global services, and integrated infrastructure networks. Airlines are in
a position to reschedule their passengers, ensuring the most efficient trans-
portation of persons and products in the most convenient manner. Doctors
and epidemiologists are capable of monitoring the spreading of diseases and
viruses and eventually may determine the severity of a threatening situation
for the population. Also, the understanding of biological and metabolic path-
ways within the human or animal cell networks enables the development of
more efficient and more rapidly acting medicines. Critical or more casual infor-
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mation on financial markets can also be quickly communicated through hybrid
social-communication networks, enabling more educated decisions and safer
risk asset management, or learning about rumors and critical updates that
could optimize decision-making and minimize the undertaken risk. Finally,
modern communication and IT infrastructures have enabled the development
of various social networks, which in turn have enabled people to experience
various events, updates, and news even when far away from their friends, fam-
ilies, or other social groups they belong to. Such social networks have enabled
the integration of social circles with activities in a virtual reality that could
be properly exploited for a more exciting and valuable daily life of modern
societies.

The common denominator and main feature of all the above emerging cases
of networks in all aspects considered is the formation/development, operation,
control, and eventual exploitation of the emerging networking structures, ei-
ther natural, human-initiated, or completely artificially engineered. All such
networks interfere directly with our lives in various capacities and for vari-
ous purposes. Several of them appear simple in their operation, while others
yield such complicated behaviors that currently we are not even close to un-
derstanding them, setting aside any aspirations for obtaining some type of
desired control over them. This book will consider exactly this feature of the
emerging networks and more specifically it will do so from the perspective of
evolutionary dynamics, namely by focusing on the factors and mechanisms
affecting the dynamic modification, spontaneous or designed, of these struc-
tures, as they evolve in time and sometimes even in space.

The second notable feature in the example of the previous section is
the evident diversity of the emerging networks and corresponding pro-
cesses/mechanisms developing on top of them. The application framework
diversity where these networking structures develop is even more diverse in
scope, nature, and objectives. However, in most cases even within this diver-
sity, fundamental, common, and generic problems of a mathematical nature
emerge among the various disciplines. For instance, the networking problems
of virus propagation among host machines in a wireless decentralized com-
munications network is similar in nature and mechanics to the problem of
virus propagation in humans, faults in engineering complex production lines,
and news in information channels around the globe. This potential provides a
great opportunity for tackling critical problems in generic, efficient, and con-
venient ways that would benefit multiple disciplines cumulatively and magnify
the potential progress in various fields. This book will cover the diversity ex-
hibited by the modern study of networks, by presenting and analyzing the
available networking structures along with their properties, applications, and
special features. Even though the book will not be exhaustive, the most char-
acteristic, important, and useful network types with applications in the most
interesting fields are included in the analysis provided.

The main topic of this book is devoted to the objective of first analyzing
complex communications networks by exploiting multiple and diverse math-
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ematical methodologies from other disciplines of Network Science and then
improving their operation and control approaches over them in a seamless
and efficient manner. This is a twofold goal, which will start by introduc-
ing the basic analytical tools that can be used for the analysis and study of
complex networks in general, independently from specific scientific fields of re-
search. Following this, the focus will shift to exploiting fundamental elements
of complex networks in more advanced evolutionary mechanisms, which can
be employed for improving artificial networks and more specifically wireless
decentralized communications networks, such as ad hoc, sensor, and mesh
networks. The whole approach taken is a holistic study of complex communi-
cations networks inspired by the inherently hierarchical structuring of more
general complex networks themselves (as will be explained in detail in the
next chapter) and the goal will be to jointly exploit elements from the mul-
tiple perspectives and mechanisms of complex networks in the improvement
and advancement of communications networks, in a manner that will enable
and inspire similar efforts in other disciplines as well and thus, eventually, con-
tribute to developing a novel and constant-improvement feedback approach
among the various disciplines of Network Science and complex networks, as
will be presented in the following chapters.

Roadmap and Book Objectives

This book has mainly been developed as a self-contained volume covering both
breadth and depth of evolutionary dynamics for wireless communications net-
works. However, multiple uses may be achieved by following different coverage
sequences and selecting different parts of each chapter.

Following the instigated chapter sequence provides a gradual and holistic
viewpoint of the corresponding field, starting with coverage of the broader
scope of Network Science and complex networks, then proceeding with the
development of the necessary background in terms of mathematical content
and algorithmic approaches, and finally, progressively applying several of the
concepts presented in the background-devoted section into frameworks and
mechanisms covering the dynamic and evolutionary behavior/improvement of
wireless networks.

In the aforementioned thread of coverage, several parts have been covered
in more detail, while others have been briefly touched on, citing other sources
that the more interested audience may consider. In case the reader wishes
to obtain a holistic perspective of evolutionary dynamics, but at the same
time does not have the luxury of time, several more specialized parts have
been noted with an asterisk and could be omitted in an initial, more breadth-
oriented study.

The book also jointly covers the theory and applications of the presented
approaches. The reader may select those theoretical approaches or applica-
tions that are of more interest or relevance to his/her interests on an on-
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demand basis and according to the level of detail he/she wishes. References
to more extensive sources and manuals or more detailed treatises are provided,
when the treatment in the book does not contain significant detail.

This book is also meant to be used in other ways, apart from its basic refer-
ence manual use. One of these possible uses is as an undergraduate textbook
for more advanced relevant courses, e.g., introductory courses on Network
Science, complex networks, or evolutionary network dynamics. Some basic
knowledge of computer/communications networks probability theory and dif-
ferential equations is considered prerequisite in these cases.

Finally, another use, and perhaps a more targeted one, is as a main text-
book for an introductory graduate course, covering the fundamentals of com-
plex network analysis and network engineering. In this case, the book can
be used to prove theoretical tools and practical examples for eventually ex-
ploiting elements of complex network analysis in the design and optimization
of communication networks, and thus aid students working in relevant fields.
However, the methodologies presented could be of interest for graduate stu-
dents and researchers of other disciplines, i.e., social sciences, etc., in which
case the book can be exploited in a selective manner, where the instructor
will be choosing excerpts of interest in a more focused manner.

As such, and since the complete material cannot be covered within a single
semester course, both at the undergraduate and graduate levels, we suggest
potential chapter layouts that could be utilized for constructing coherent ma-
terial for relevant courses. The flowchart in Figure 1 depicts such chapter out-
lines. In the middle, the cover-to-cover chapter flow approach is shown, as the
main suggested coverage of the book. On the left and right hand sides of the
figure, the flowchart depicts suggestions for deviating from the cover-to-cover
flow of the coverage, which can be determined according to the specific objec-
tives of an instructor, for an undergraduate and graduate course respectively
(left-hand side for undergraduate and right-hand side for graduate uses).

Finally, we note that the book contains some appendices, which can be
used within a course as needed, or simply as references for the independent
researcher or student, should a quick reference background be needed, as noted
in the text.
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Figure 1: Potential use of the book as a long-term research companion and/or
undergraduate or graduate course manual.
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Chapter 1

Introduction

A constant drop in computing costs can be observed in consumer mar-
kets [113], realized both in terms of cheaper devices with more capabilities
at lower prices (e.g. cheaper cellphones, smartphones, tablets more capable
than their desktop counterparts five years ago, etc. [85]) and in terms of mas-
sive and publicly accessible computing infrastructures (e.g. cloud services,
commodity virtual machines, public services, etc. [141]), and this has made
pervasive communication and information exchange massively available as
well [138]. It has essentially turned computing power into a commodity, avail-
able to the industry and individual users alike and at various available scales
(from small businesses to large production lines and home applications) [58].
In turn, this trend has shifted the focus of technological evolution to the ef-
fective interconnection of widespread communicating computing units, rather
than their further evolution, drawing even more attention to the networking
aspects of the research and technology of such devices/systems. Of course,
this does not mean that research and technological progress in computing re-
sources has diminished. However, the greatest interest of the industrial and
research communities has now shifted more towards the exploitation of com-
puting resources, which most frequently involves the Internet and relevant
infrastructure/access networks for exploiting the available commodity com-
putational infrastructures. Consequently, it may come as no surprise that the
inter-networking issue of computing has emerged as one of the most promi-
nent pillars of the intersection between two relevant fields of science, namely
computer science and electrical engineering, the first one covering the com-
puting aspects and the latter the networking aspects of the aforementioned
systems.

This book focuses on the more advanced aspects of the emerging network-
ing problems, relevant to the trend described above, and spans a number
of various and diverse topics centered on the more general field of complex
networks and the branch of Network Science that covers the emergence of net-
works from a broader perspective. The terms complex networks and Network

1



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

2 Evolutionary Dynamics of Complex Communications Networks

Science have been coined to describe inherently inter-disciplinary research es-
tablishments that concentrate around the concept of network, irrespective of
the applications and situations where this notion emerges. Network Science
and complex networks constitute a vast field of science, in which multiple and
diverse research facets emerge, many of which will be described in a detailed
manner in the following subsections and chapters. It should be noted though
that in principle, this book leans more towards the telecommunications aspects
of networking, as it mainly provides examples of such networks. However, it
explores inter-connections and relations of methodologies/mathematical mod-
els that have been developed in disciplines other than telecommunications, or
can be extrapolated from telecommunications into other disciplines as well.

In order to achieve the above goal, the book follows a hierarchical ap-
proach, in which the required knowledge will be gradually developed, enabling
the understanding and analysis of more advanced concepts and methodolo-
gies. However, for completeness purposes and in order to assist the non-expert
reader, the book is also involved in the presentation of the required background
before delving into the study and development of evolutionary methodologies
and analytical tools. This chapter serves as an introduction to the broader
areas spanned by the book. It serves the purpose of explaining the notion of
complex networks and in the broader sense that of Network Science.

The presentation of complex networks in Section 1.2 is a stepping stone,
which will develop all the fundamental notions relevant to networks and their
operation in general. Also, it provides the bigger picture for the applications,
yielding potential directions for further studies and uses of the proposed-
problems/solutions. Secondly, Section 1.3 attempts to provide further indica-
tions and insights both for the presented topics, as well as for other relevant
or implicitly relevant topics that emerge from the analysis of those included
in this book. Lastly, this chapter provides a concise summary of the objectives
that the whole book aspires to cover. It highlights several of the features pre-
sented, as well as the framework within which such features will be considered,
e.g., the wireless communications paradigm within which some of the standard
analytical tools employed in other disciplines have to be considerably modi-
fied, using radical approaches, in order to overcome provenly tough problems.

1.1 Approach and Objectives

As already mentioned, the main focus of this book is on the study and analy-
sis of methodologies and models that have been developed within the frame-
work of complex networks and Network Science for communications networks.
By exploiting multi-/inter-disciplinary features emerging within this frame-
work, the book aims at the improvement of the design, operation, and perfor-
mance of the latter types of networks at large. In order to better demonstrate
the broader concepts introduced and presented regarding the exploitation of
Network Science elements in computer/communication network design and
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Introduction 3

analysis, the book will adopt the perspective of wireless networks. Thus, the
main objective related to the above scope will be to present and then ex-
ploit analytical methodologies from different disciplines of Network Science
and complex networks in the design and more importantly in the control of
wireless networks.

Traditionally, wireless communications networks have been operating in
stringent environments and frequently under varying conditions (other than
environmental, e.g., user or mission related). Methodologies that were well-
established, or at least efficiently working, for their wired counterparts, have
been proven oftentimes at least inappropriate and occasionally, not even vi-
able. Routing is a characteristic representative aspect of this fact. Traditional
routing designed for the Internet and local area wired networks did not scale
or operate well in wireless ones [43], leading to the design of new wireless-
specific routing protocols [140], which, however, were not completely success-
ful for their own part. For instance, several performance and implementation
issues remain, most of which owe their existence to their wired counterparts,
e.g., scaling of the routing approach [42].

For these reasons, the latest trends in user demand, applications, and ser-
vices, combined with increasing volume of traffic and technology paradigm
shifts, have created high expectations for more radical approaches in the de-
sign and control of wireless infrastructures. This book focuses precisely on
introducing novel and radical methodologies for designing and dynamically
controlling the wireless networks of the future. In this effort, the benefit in
the engineering approach to observe, understand, and exploit features from
disciplines related to networking will become apparent, thus developing novel
radical analysis and design tools. It will also become apparent how straight-
forward it will be to follow the other direction as well, and thus enable benefits
for other disciplines as well through this two-way approach.

The book follows a hierarchical approach, based on which it first pro-
vides the required background for obtaining a solid mathematical lan-
guage/notation, thus enabling the easier identification of emerging models
from the observed network behaviors. Such background in this case includes
mainly traditional graph theory and the latest random graph theory basics.
The first is focused towards deterministic and static networking paradigms,
while the latter is oriented towards dynamic and varying behaviors. Then,
more advanced models that focus on the evolutionary behavior/optimization
of networks will be studied.

Apart from the fundamental background knowledge, the approach of the
book will be involved with methodologies that enable radically improving the
traditional architectures and operations. Introducing elements from complex
networks and Network Science in the analysis of communications networks,
mainly exploiting them in the fields of variational processes, control, and dis-
tributed computing, is a key objective of this book, one that not only provides
new perspectives in the analysis of communications networks, but also enables
the reconsideration and evolution of such networks.
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4 Evolutionary Dynamics of Complex Communications Networks

Another important goal of this book will be to provide paradigms and
methodologies that can be more holistically applied in other disciplines of
Network Science as well, possibly after small adaptations depending on the
specific discipline that the extrapolation is intended for. As will be more ana-
lytically explained in Section 1.3, this is a more far reaching objective, given
the current status of achievements in Network Science. However, this book
will attempt to provide a small-scale approach that could be extended to a
broader methodology (at least regarding its strategic steps) for transferring
analysis approaches from communications to other types of networks.

This book devotes special attention to evolutionary network design and
control, which mainly covers the dynamic behavior exhibited by communi-
cations and other types of networks. One of the most fascinating features of
network evolutionary dynamics is the fact that in many cases, networks change
from being totally random to being completely symmetrical and predictable,
a fact that has been proven to have great importance for human sustainment
(if one considers the corresponding biological networks exhibiting such behav-
ior). Order emerges out of chaos and sometimes the converse takes place as
well, through completely individual actions or collaborative behaviors. Sev-
eral such examples include various application frameworks, from the electrons
in a superconductor to the pacemaker cells in our hearts. And even though
these phenomena might seem unrelated on the surface, at a deeper level there
is a connection, forged by the unifying power of mathematics, and especially
regarding networks by the mathematics underlying Network Science [152].

Summarizing the main and secondary objectives of this book and the em-
ployed hierarchical approach, the following list contains the goal-topics to be
covered in the remaining chapters of this book:

1. Study the methodologies and features of complex networks and Network
Science that could be of potential use in communications networks.

2. Study the evolutionary behavior of communications networks by observ-
ing trends already analyzed in other disciplines of Network Science.

3. Introduce novel design and control methods for communications net-
works, inspired by social networks and other complex networks.

4. Create holistic frameworks and methodologies that can be applied in
various disciplines of Network Science with minimal adaptations.

The approach adopted will cover the above subjects in a generic manner,
potentially accommodating multiple perspectives for each approach. Namely,
the presented frameworks and methodologies can be applied in various types
of networks and their applications. However, the main perspective followed
will be that of wireless communications networks, and most of the examples,
problem instances, and solutions presented will be drawn from the area of
wireless complex networks.

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Introduction 5

1.2 Fundamentals of Complex Networks

The interest of the research and industrial communities, as well as the public
sense for networks, has grown substantially, especially in the last decade. Their
drastic and vast proliferation and technological penetration has increased the
observed public awareness in any type of form in which networks emerge.
Networks are nowadays omnipresent and have been identified as highly cru-
cial in most of their application frameworks. For example, protein interaction
networks in biology, which essentially implement a molecule signaling and
control toolbox, are highly important for human body operation. In computer
networks and telecommunications, mobile networks have enabled pervasive
communication between people across continents, diverse conditions, and de-
grees of importance and criticality.

Similar observations to the above, and many more others observed in nat-
ural and daily social lives, lead to the fact that if one needs to characterize
modern societies in a couple of words, these terms must be connected, inter-
connected, and inter-dependent. In addition, even though these terms represent
the bigger picture only from a narrow perspective, they are very successful in
providing the essential elements dominating our everyday lives.

Another key observation of emerging networks in our lives, widely accepted
in both the research and industrial communities, is that the complexity of most
interconnected (inter-networked) systems is not in the behavior/operation
of a single unit or larger component among the many constituting a real-
istic system, but rather in the cumulative behavior/operation exhibited by
the interconnection and communication of such individual units. Namely, the
inter-networking of such units/modules is more important for achieving more
beneficial analysis and control of such systems at a lower cost. Such inter-
dependence of nodes is closely related to the notion of collaboration as well,
where nodes might be working together for achieving a more complex objec-
tive that would be otherwise impossible to achieve individually by a single
network entity. Inter-dependence and collaboration are critical aspects of al-
most all types of networks, and will be widely considered in the rest of the
chapters of this book.

The main research efforts in the past were centered in the understanding
and analysis of the behavior of individuals units and components of them and
the achieved progress has been fascinating. However, as the level of under-
standing increases and daily demands for added-value knowledge and services
increase, the inter-dependent behavior of such basic modules gains interest
and sometimes it becomes essential in order to achieve the desired level of
control and flexibility over these structures.

Researchers involved in different capacities in the study of emerging net-
works have lately used a new term, namely complex networks, in order to
cumulatively refer to all network research in diverse and multiple disciplines,
namely [6], [115].

Definition 1 (Complex networks) A complex network is one that exhibits
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6 Evolutionary Dynamics of Complex Communications Networks

emergent behaviors that cannot be predicted a priori from known properties of
the network’s constituents.

The above definition does not explain the notion of a network, which will
be analyzed in more detail in the following subsection. It rather focuses on
the characterization of networks as “complex.” It considers especially that
the observed behaviors can be diverse and completely different, even within
the same discipline (e.g., social networks), but could also exhibit unexpected
similarities even when observed across diverse disciplines (e.g., malware prop-
agation in wireless multihop networks resembling the virus propagation in
animal species or humans).

The corresponding field of complex networks covers a very broad span of
network types and emerging features, problems, and mechanisms of broader
scientific interest. The proper definition, study, and classification of the corre-
sponding diverse types of involved network structures will provide a solid basis
for identifying and revealing common emerging problems. It will also reveal
the most suitable approaches that can be exploited from different scientific
fields, i.e., other than complex communications networks (such as systems bi-
ology, finance, and sociology), in order to address the involved problems more
efficiently and develop more feasible/practical solutions.

By considering the various networks involved in the study of complex net-
works and their emerging behaviors, in general, three dominating features are
characteristically observed. The first one is that when it comes to modeling
the interactions between network elements, this is achieved by links connect-
ing these entities. Links may represent various forms of interactions or rela-
tions. The second element is that nodes exchange different types of resources
across such links. The resources can be rather diverse, e.g., in communica-
tions networks, nodes exchange data in bit form, protein networks exchange
aminoacids, pipeline networks transfer various types of fluids (blood for veins,
oil for oil pipes, water for water utility networks), and others. As before, the
resources could be of different and diverse natures and quantities and convey
diverse meanings. Finally, the third element is that nodes interact through
the direct links defined. Thus, two nodes cannot interact directly unless they
share a common link between them. This type of interaction refers to a phys-
ical inter-connection of the nodes linked directly, e.g., two people being best
friends in a group of humans. However, interactions can also be implicit, for
instance, in the case of two people being linked to each other in a social net-
work, without physically knowing each other, but rather simply because they
shared another third link with a person who happened to be friend with both
in reality. Thus, in this book we are mainly involved with direct interactions
between network entities, especially in the more specific parts of the presented
frameworks. In any other case that interactions are implicit, this is explicitly
noted and relevant considerations are made.

Regarding the current information-based and network-dependent societies,
another two prominent features may be observed. The first is the diversity of
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Introduction 7

the emerging network structures arising almost holistically in every applica-
tion aspect that one could possibly think of. For instance, network structures
emerge in biology, societies, engineering, nature, and practically all other as-
pects of artificial operation (initiated and dominated by humans). The second
is that such networks consist of participating entities of various potentials
and intelligences. Different computational and decision-making capabilities
by such entities lead to nonpredictable cumulative behaviors. The latter is
the main reason that the corresponding interest has risen so much lately and
has attracted the attention of various scientific disciplines.

It has been observed and in some cases formally quantified, e.g., in
communications networks, that most of the important networks surround-
ing us are becoming larger, increasing in the scales of millions or billions
of users/actors/players/entities/etc. Some of these characteristic networks in
accordance with their projected current order1 estimate (as documented in
various sources of the bibliography and the Internet) are provided in Table
1.1.

A more complete network taxonomy is provided in subsection 1.2.2, along
with other features they exhibit, revealing more facets of complex network
diversity.

In this book, we emphasize networking aspects that are of a decentralized
nature and their structure and behavior resembles that of most distributed
complex networks encountered in general. Furthermore, the proliferation of
computing devices and computers in addition to the development of diverse
and social networking applications has led to the emergence of a new and
rapidly developing application area, namely that of online social networks.
The social dimension has been shown to have significant impact on wired
networks, especially the Internet [135], and it is expected to have a similar if
not a more vast one on wireless networks, due to the capabilities of modern
smartphones and respective provider services. Thus, in order to provide a more
complete picture of the methods associated with analyzing and controlling
complex communications networks, we also focus on the impact of the social
network layer on the actual physical one.

This book takes a more radical perspective, by establishing a top-bottom
approach in addition to the traditional bottom-up. In the latter, in complex
communications networks, most of the network design techniques took an
approach where the lower protocol layer mechanisms affected the design of the
higher ones. For instance, the properties and operation of the physical layer
have been taken into account for the design of the MAC layer protocol and
the MAC protocol has been considered for the design of the routing functions
in turn. However, this approach has not yielded fascinating results in the case
of wireless distributed networks. In most cases, the employed mechanisms are
essentially the ones designed for wired networks, properly adapted in order to

1The order of a network denoted in the caption of the figure as well is formally defined
in Chapter 2, Section 2.1.1.
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8 Evolutionary Dynamics of Complex Communications Networks

Table 1.1: Scaling of order of various complex networks.

Network Order of scale

computer networks billions
Internet billions

corporate network thousands
home network dozens

university campus network thousands
cellular phone networks billions
electrical power grids trillions

sensor networks hundreds of thousands
roadmap networks trillions

social networks billions
food webs hundreds

brain cell networks billions
protein interaction networks hundreds of thousands

affiliation networks hundreds
citation networks hundreds

open market networks decades
bank networks thousands

GDP2 flow networks hundreds
cash flow networks billions
air-traffic networks thousands

collaborator networks decades (hundreds)
logistics networks thousands–millions

yield the desired operation in wireless. Quality of Service (QoS) and advanced
features, such as good scaling, resilience, etc., were not considered due to the
fact that requirements for such elements were not realistic in the early days
of emergence of distributed wireless networks.

However, as the requirements and demand for such advanced services in-
crease every day and modern applications have become the driving force,
rather than the underlying technology, more sophisticated topology modifica-
tion mechanisms are required. According to the approach of this book, ele-
ments of the higher layer, such as the social, are exploited for directly modify-
ing the lowest physical topology, thus closing the design loop in an evolution-
ary fashion, similar to the one observed in natural cognitive processes [109].
Such an approach will allow more targeted and efficient adaptations of the un-
derlying complex communication network topology, thus increasing the value
of an infrastructure without requiring major cost/resource sacrifice.

The following chapters (Chapter 2 and Chapter 3) will focus on the back-
ground theory, as well as the classification and analysis of various network

2GDP: Gross domestic product.
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Introduction 9

modification mechanisms for wireless decentralized networks that exploit so-
cial features from the corresponding online social networks. The engineering
of complex networks of any type is not predictable and/or controllable be-
cause the scientific basis for analyzing, building, and evaluating such designs
is still immature. Thus, getting a grip of the fundamental science of networks
in terms of structure, dynamics, and evolution is a topic of immense interest
and critical value for the benefit and progress of human societies, as covered
in this work.

The level of analysis in complex networks spans multiple and diverse per-
spectives for different types of networks. For instance, in complex communi-
cations networks, there are mainly three analysis perspectives, i.e., physical,
logical, and social, as explained before and as will be analyzed in more detail
in the following chapters. Fully understanding such analysis perspectives will
enable building cross-level mechanisms in a cognitive fashion for each network
application, in a manner where not only the mechanisms of a layer build on the
features of lower-layer mechanisms, but also the lower-layer mechanisms ex-
ploit features offered by the higher-layer mechanisms. This book will offer the
background and arsenal to achieve such cognitive operation in complex net-
works, with special emphasis on wireless complex communications networks.

Finally, we refer to a significant aspect of complex network analysis, which
refers to the modeling of different network types represented or studied ana-
lytically, or their modeling as nodes bearing a specific processing (differential)
rule, etc. In the first, a complex network represents the diversity of the various
types of networks included and treated cumulatively as network models. In
this case, the analysis takes into account that the property is studied across
the various network types considered, which exhibit different properties and
topologies. Thus, in order to consider such variations, for instance studying
routing in ad hoc and cellular networks, a generic ‘complex’ network type
is considered. The term complex on this occasion is indicative of the various
and diverse properties exhibited by the different topologies needed to be taken
into account in the generic study of a process, i.e., here, routing. In the sec-
ond case, the term complex refers to the actual nodes of a network, which can
also vary in application and scope, and characterizes the complexity of their
features. More specifically, complex network nodes may vary in intelligence
and processing capabilities. However, if nodes are capable of executing some
type of computation, simple or more advanced, then the cumulative behavior
could exhibit various degrees of complexity and, thus, complex behavior may
be observed or engineered on demand.

The first step towards understanding such emerging and complex behaviors
is to understand the fundamentals of network emergence and operations and
then deal with the tools required for their proper control. In the following
we start with network fundamentals and their network taxonomy, in order to
provide a concise overview of networks and their application span.
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10 Evolutionary Dynamics of Complex Communications Networks

1.2.1 Complex Networks Fundamentals

The cornerstone question of complex networks regards the overall reason for
the formation and emergence of networked structures, within any type of
application framework and diverse operation of the networking structures.
This question has become more prominent lately with the increased interest
attracted by complex networks. It has been more broadly and thoroughly put
across the disciplines involved in the theory of complex networks than in the
past.

Interest in network research has exploded during the past ten years (es-
pecially the last ten years for communications and the last five for a broader
interest in different types of network research). Networks enable the necessi-
ties and conveniences of modern life, which can be easily observed in multiple
facets of human social life and natural processes. For instance, different types
of communications networks enable diverse and pervasive types of communi-
cations among people, online social networks have enabled new forms of social
contact and new norms of social living, and transportation networks of differ-
ent types, e.g., international highways, air-corridors, etc., have enabled more
efficiency in terms of time and consumed resources in the transportation of
people and goods. Especially, engineered networks are a major driver of the
increasingly global economy and social evolution, as can be verified with the
cases of road networks, air traffic airways, telecommunications networks, and,
lately, online social networks.

In any case, scientists involved in various capacities in the study of emerg-
ing networks, and especially those with analytical backgrounds, have won-
dered whether there exists a single and broad reason explaining the formation
of networks across all different application perspectives. The importance of
such a reason would be significant since it would not only explain why net-
works develop in various facets of life, but it would also drive the evolution of
such networks and indicate the dynamics of their typical behavior.

Substantial consideration has been accumulated on this key question and
across disciplines. It has turned out that the answer to this critical question is
a simple and profound, yet critical emerging trade-off underlying the existence
of all networks and involving the operation of all the entities constituting a
network. More formally:

Definition 2 (Network formation) The main reason for the formation of any
network observed in any aspect of nature or human society is the emerging
trade-off of gain versus cost of collaboration for the entities constituting the
network with their (inter)-relations or the network cumulatively.

The whole concept of such a trade-off is based on the notion of collab-
orative operation. In fact, collaboration of network entities appears as the
fundamental reason for the formation of a network and the gain (benefit) or
cost respectively emerge as consequences, namely measurable outcomes that
drive the very reason of existence of a network (i.e., collaboration) to one or
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Figure 1.1: Network formation trade-off.

the other direction as shown in Figure 1.1. This notion of collaboration may
seem weird, especially for distributed complex networks, where the entities
are supposed to act selfishly, aiming only at their own benefit. However, even
in this case some sort of collaboration between network entities is implicit
(or underlying), so that the whole structure remains concrete. In a different
case, should the network nodes be completely reluctant to collaborate in some
sense, those nodes would sustain their operation without any need for a net-
work structure. Their objectives would be better met away from the rest of
the network, and if all nodes had such potential, there would be no point in
forming a network. Thus, some form of collaboration is the very essence of
network formation.

Definition 2 does not only mention collaboration as the reason for net-
work formation. In addition, it describes the dynamics that drive network
formation. Such mechanics are described by the underlying trade-off between
benefit vs. cost of collaboration, which can be observed and quantified with
measurable ways in all types of emerging networks and within all application
perspectives where they appear. Furthermore, the benefit vs. cost of collabo-
ration trade-off involves both the individual entities of the network, i.e., nodes,
players, actors, etc., as well as the network as a whole and can be considered
in various levels of the network, i.e., node level, node group level, or the whole
network, by using different and diverse quantitative parameters. A network
engineer can exploit the benefit vs. cost trade-off to drive the design of various
mechanisms of the networks from one direction of the trade-off to the other
depending on the desired operational requirements and application demands.
For instance, in wireless ad hoc networks, the obtained benefit is the wire-
less and flexible transmission of data at the cost of energy consumed for the
wireless transmission.
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12 Evolutionary Dynamics of Complex Communications Networks

Table 1.2: Indicative examples of the benefit vs. cost of collaboration trade-off
for various network types.

Network Benefit of collaboration Cost of collaboration

Computer networks information (data) exchange power/financial
Cellular networks human communication/ power/financial

mobility
Internet information exchange financial
Wireless ad hoc communication/flexibility energy/interference

networks
Cortex cell networks message passing energy
protein interaction information tranfer/energy food consumption

networks
metabolic networks energy biochemical reactions
food webs survival effort
social networks communications privacy
air-traffic networks resource management communication cost
roadmap networks shortest routes initial and

maintenance cost
affiliation network context information privacy
financial networks information privacy
GDP flow networks economy assessment independence
bank networks cash flow monitoring fraud risk

Table 1.2 provides indicative examples of the aforementioned benefit vs.
cost of collaboration trade-off for various types of complex networks. The
benefit and cost columns provide only some indicative benefit/cost types in
each case, and in most cases, several other important benefit vs. cost trade-offs
may be identified at various levels of analysis of such networks.

1.2.2 Complex Network Taxonomy and Examples

It has already been explained that complex networks are quite diverse, vary-
ing in numerous aspects of their structure, operation, and application frame-
work/scope. For this reason, several classifications emerge, each of which is
developed according to different metrics/features, while also serving a differ-
ent purpose. In Table 1.3 we first provide a list of the parameters that can
be used in different cases to segregate complex networks. Each parameter
yields a different classification, so that a complex network might belong to
different classes based on these parameters. For instance, a biological net-
work may belong to the same class as a communication network according to
the type of network, but the two might belong in different classes according
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Table 1.3: Complex network taxonomy classification parameters.

Parameter Means of verification

Network type topology/implementation
Scope operation/benefit

Application framework environment/purpose
Origin (formation) observation/simulation
Scientific discipline mathematical analysis tools

Operation developing mechanisms
Scale number of entities/interactions

Performance properties/features quantities
Reliability network mechanisms
Security topology/mechanisms

to the formation criterion. Network type is concerned with the very essence
of each network in terms of entities-interactions, where different types ex-
hibit different properties, features, etc. For example, a small-world network is
fundamentally different from a random network.3 The scope and application
framework are slightly related; however, the first is concerned mainly with
the benefit obtained in the gain vs. cost trade-off, while the second criterion
is mainly concerned with the applications where the scope is realized, e.g., in
communications networks the application framework spans over information
dissemination, Internet services, etc. The origin criterion explicitly concerns
the gain vs. cost trade-off and how this develops and leads to the formation
of a network, while the scientific discipline cumulatively describes the math-
ematical tools that can be used to analyze and further control them. The
operation criterion regards the developing mechanisms, mainly in algorithmic
terms and their function/results, while the scale criterion is concerned with
the variability of network behavior, as the size of the network in terms of enti-
ties and interactions between them varies. The latter is also closely related to
the performance criterion, which can be used to classify networks, according
to specifically defined performance indices. Finally, reliability and security are
two criteria that have been employed lately for segregating the capabilities of
different networks and this is taken into account further in the network design
and analysis.

The second column of Table 1.3 denotes the means of verification for each
classification parameter provided, namely how the classification can be real-
ized. Specifically, regarding network types, the topology (in a mathematical
sense) can be a differentiation factor, while for the scope criterion, the op-
eration and benefit obtained by it (in the benefit vs. cost of collaboration
trade-off) can be used for identifying and classifying the various networks.

3Both network types will be explicitly defined in the following chapters.
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14 Evolutionary Dynamics of Complex Communications Networks

Table 1.4: Origin (formation) of complex network classification.

Natural Human-initiated Artificial

biological social networks computers
brain/cortex networks power-law mobile devices
evolutionary online social networks cellphones
genetic business sensor
transcriptional open-market delay-tolerant
immuno-suppressive corporate mesh
neuron networks GDP flow vehicular
ecologic production roadmap
protein networks supply/logistics air-traffic
regulatory scientific power-grid
substance networks affiliation artificial neural networks
material networks family IT networks
species language pipelines/utility networks
virus/disease malware4 circuits
food webs newsfeeds transportation

Following the classification criteria, we then proceed with some interesting
complex network taxonomies that serve various purposes and are of major
interest for the scope of this book. Of course, the classification parameter list
provided is non-exhaustive and many more criteria may be devised. Table
1.3 summarizes the most common ones with regard to current studies and
concerns related to complex networks and Network Science study.

One of the most useful of these classifications is the one that takes into
account the origin of network formation and operation, namely whether the
network was formed spontaneously or artificially and whether its operation
is dictated by natural or artificial factors as well. According to this parame-
ter, complex networks maybe characterized as natural, human-initiated, and
artificial.

Natural networks include those complex networks that emerge in Nature
and continue their spontaneous operation/evolution for the duration of their
lifetime. Characteristic examples are complex networks emerging in biology,
such as protein receptor networks, blood cell networks, cortex neural networks,
etc. Additional examples are provided in Table 1.4. The emerging gain vs. cost
of collaboration trade-offs among the participating entities can be identified
even for such networks that emerged naturally through spontaneous evolution
and continue to evolve in most cases. In many cases, it seems that Natural net-
works form as consequences of serving some gain of collaboration objectives
among cells, proteins, etc., and usually once their cost becomes greater, e.g.,
as cells become old, vessels and receptors age, etc., the networks progressively

4Malware is a generic term to denote spreading malicious software cumulatively.
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become dysfunctional and eventually cease their operation, fulfilling their
scope.

The second broad category of complex networks includes those that were
initiated by humans, but their operation and evolution is not controlled by
humans, at least not currently or in the near future. In fact, one of the under-
lying goals of this book is to set a framework for enabling analysis and control
of networks of this category, and this within potentially multiple application
frameworks. Characteristic examples of this complex network category are
networks emerging in finance, information, and news dissemination networks,
rumor spreading networks, malware propagation networks, production and
supply chain networks, etc. More extensive examples are provided in Table
1.4. For this category of complex networks, the benefit part of the forma-
tion trade-off is evident. Usually such networks are created in order to serve
a practical need, or operation of daily human life. However, this comes at
an operational cost, which can vary in form and performance. The objec-
tive here is to properly control this trade-off in order to increase the gain
with the minimum possible cost. However, sometimes it might be required
to sacrifice some of the benefit in order to obtain much larger cost savings
(and vice versa when the trade-off is balanced towards the cost minimization
side).

The third class in this classification is the completely engineered com-
plex networks. Such networks have been conceptualized and created artifi-
cially, and most of the time we have control over them, at least up to an
acceptable degree. Communications networks are a typical example. They
were humanly designed from their inception, then reached full-scale, covering
the globe, and nowadays administrators and investors control the way they
expand and evolve. Similarly, transportation networks and their subnetworks,
such as air-traffic, roadmap, and sealine networks, have been developed and
are constantly adapted to fit the needs of humans regarding traveling and
product transport (logistics). More examples of such networks are provided
in Table 1.4, along with application perspectives of their operation. The gain
vs. cost of collaboration of the network entities has the same form as for hu-
man initiated/spontaneous evolution complex networks. Such networks have
been designed to offer some benefit, e.g., data bits transferred in communica-
tions networks, while incurring some operational cost, e.g., energy in wireless
networks. Balancing such trade-offs is the main objective of engineers, and
usually adapting it to operational requirements or society trends becomes
another important objective.

Another important network category, and perhaps the most useful from the
perspective of complex network analysis classification, is the one more related
to the structural nature of each complex network type and it is mainly based
on the mathematical representation of such networks as graphs. By struc-
tural nature, we refer to the interactions developed between the entities of a
network and the properties/features of the entities and their interactions cu-
mulatively. This mathematical representation will be the explicit topic of the
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16 Evolutionary Dynamics of Complex Communications Networks

next chapter (Chapter 2) and the specific features of each separate category of
network classes according to their structure will be provided in later chapters
(Chapter 5 and Chapter 6). Here we only provide the corresponding classifi-
cation with some characteristic examples of complex networks, and postpone
analysis for the following chapters. The list of examples is non-exhaustive and
mainly aims at providing an overview of the corresponding network instances,
based on which the corresponding network types can be identified in practi-
cal cases. Table 1.5 contains the classification of complex networks according
to their underlying structure. This could be considered the most important
classification of complex network from an engineering and scientific point of
view, since it is indicative of the expected properties and behaviors developed
or emerging in each type of network. We should note that a scale-free net-
work mentioned in the table is essentially a network whose degree distribution
follows a power-law, at least asymptotically. Thus, for the rest of the book,
we will employ the term “power-law” to denote networks following exactly
a power-law degree distribution and “scale-free” to denote those that follow
such degree distribution asymptotically.

In many cases, it suffices to accurately identify the type of a complex net-
work, and then employ standard methodologies developed for the different
classes of network types. It should be explicitly noted that a network is al-
ways a representation or model of observable reality, but not the reality itself.
As a representation model, the network does not always provide the com-
plete information associated with its actual representation. However, it does
explain the basic mechanisms and the characteristic functions/features the
network has compared to other types of networks. The latter must be done in
a manner where no two networks having different operations overlap in terms
of modeled behaviors by the corresponding representations. Thus, the repre-
sentation should bear the properties of uniqueness and accuracy, in order to
be able to distinguish between different types of complex networks and at the
same time be able to use them properly for the analysis and control of their
functions. A third element for each representation is efficiency/convenience.
This means that a representation should be manageable in terms of space and
complexity requirements for the current technological potentials available. A
representation requiring significant amounts of storage memory or one that
cannot be processed in the amount of time allowed by the corresponding appli-
cation framework is unsuitable and essentially of no use. Efficiency in storage
and handling convenience in the manipulation and exploitation are essential
elements for a network representation as well.

Among the types of complex networks provided in Table 1.5, this book will
focus strongly on complex communications networks and especially wireless
networks. Wireless distributed devices have nowadays dominated their desk-
top counterparts and it is expected that soon the wired infrastructure will
mainly be restricted to a backbone carrier role, while the wireless will not be
just a plain access last-hop interface, but rather an added-value flexible and
autonomous network that uses the wired core for overseas and long-distance
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Table 1.5: Topology-based complex network classification.

Network type Network examples

Regular

Lattices
Grids

Crystals
Chains

Optical ring networks
Cellular phones

Supercomputing infrastructures
Cloud services

Sensor

Random

Peer-to-peer
Gas molecules (in equilibrium)

Brownian motion
email virus netoworks

Grid percolation
Immunization networks

Mesh

Sensor
Delay-tolerant networks

Optical networks
ZigBee/Bluetooth

LTE-A (4G)
WiFi (802.11x networks)

Power-law

Metabolic
Population of cities
Word frequencies

Co-authorship networks
Affiliation networks

Neurons

Scale-free

Social networks
WWW

Internet (ASa routers)
DNSb routers

Protein interaction networks
Inter-bank payments

Airline networks

Multi-hop

Military networks
TETRA

Packet radio networks (CSMA/CA)
Sensor

Vehicular
Roadmaps

LTE-A (4G) networks
Cognitive Radio networks

aAS: autonomous systems.
bDNS: Domain Name Service.
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18 Evolutionary Dynamics of Complex Communications Networks

connections only [75]. It is envisioned that the bulk of the local traffic will
be transferred through wireless channels, and in addition, enhanced and de-
manding applications will be locally supported by wireless networks in order
to decongest the wired core [111].

On the other hand, wireless distributed networks, such as ad hoc, sensor,
mesh, vehicular, delay tolerant and WiFi, exhibit several impairments and do
not inherently support a seamless transition from a wired-oriented applica-
tion design philosophy widely followed until today to a wireless-centered data
transmission expected in the future. In addition, the underlying technology
has not exhibited the respective development of the application layer, e.g.,
the tremendous proliferation of online social networks. The latter inherently
bear some features, such as logarithmic scaling and robustness, that would
mostly be desired in artificial networks. For this reason, it is strongly re-
quired that wireless distributed infrastructures are modified in a fashion that
ensures the realization of the demanding and diverse applications, without
significantly impacting their operation and resource management. Network
modifications should be as transparent as possible and they should allow the
maximum possible flexibility between the original and induced networks, en-
abling on-demand responses to different operational time scales and require-
ments. This would also align the progress in content and infrastructure, thus
smoothing out the transition from legacy systems, where the main informa-
tion sharing paradigm is that the user acts solely as information consumer
of the offered services and data, to more advanced and efficient architec-
tures, where the end-user has turned into both information consumer and pro-
ducer [122], given the capabilities offered by the current consumer electronic
devices.

In the next section, complex network analysis (CNA) will be put into
a broader perspective for Network Science research and the corresponding
content, status, and challenges faced by network engineers. It will essentially
provide a broader perspective for the methods and approaches presented in
this book.

1.3 Network Science

The previous discussion on complex networks represents a cumulative effort
to develop models of emerging network structures, irrespective of their poten-
tial application framework and any practical use they might have. However,
as in all other scientific fields, for complex networks too, it is desired to de-
velop a broader framework, where it will be possible to combine theory with
application and create a strong bond between modeling and practice.

Network Science is a term that has been coined lately to denote exactly this
broader and more ambitious effort for a proper scientific field devoted solely
to the study, analysis, and applications of networks, wherever and whenever
they emerge. A simple definition of Network Science is the following:

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Introduction 19

Definition 3 Network Science is the organized knowledge of networks based
on their study and by using formal scientific methods.

This definition should be used with caution, since it explicitly segregates the
scientific from the technological part of network study. However, it should be
noted that within the Network Science framework, building and extending
the scientific part takes place with the application perspective in mind, and
oftentimes, as it will be explained and shown in the sequel, the application
drives the theory as well.

Focusing on the case of information networks, which will be the main
topic of this book, the components of modern communication and informa-
tion networks are the result of technologies, which are based on fundamental
knowledge emanating from physics, mathematics, circuits, systems, and even
material science in various capacities. For instance, computer networks were
developed due to advances in circuits and signal processing, while wireless
communications networks were enabled due to advances in physics, materials,
and computer science. Especially for these types of networks, namely com-
munications, several advances and novelties of smaller scale and in various
other areas as well have enabled the design of modules critical for their opera-
tion/performance. The assembly of all such novelties into the development of
networks, however, is based extensively on empirical knowledge rather than on
a deep understanding of the principles of network behaviors gained from and
underlying the science of networks. For example, regarding the emergence of
the protocol layering concept and the infamous TCP/IP protocol stack used
extensively in modern networks, the technology was first developed within
the industry and it is only lately that it was possible to consider the whole of
the protocol stack across layers through a uniform mathematical methodology
(Network Utility Maximizaion—NUM), and thus, essentially reverse-engineer
the whole stack [46]. Now it is possible to optimally select the parameters of
various mechanisms across layers through NUM, where the design choices will
be holistically optimal. However, this was not possible a few years ago for the
aforementioned reasons. Another similar example is metabolic networks, for
which the consideration of network theory has only lately proved to be fruitful
and employed more systematically.

Considering the field from a holistic perspective, it becomes evident that
practitioners in each major application area of Network Science have their own
local nomenclatures to describe network models of the phenomena in which
they are interested and their own notions of the content of Network Science.
For example, spatially distributed networks emerge both in communications
networks and topography (multi-hop and roadmap networks respectively),
or in biology and computer networks (small-world and scale-free). However,
different terms have been traditionally employed for the same concepts and
slightly varying mechanisms employed to solve the same problems, not to
mention the same computerized tools employed. Consequently, a new field of
network investigation is yet to be codified and shaped properly, in order to
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20 Evolutionary Dynamics of Complex Communications Networks

reach the maturity level of the rest of the scientific fields, like fluid mechanics,
materials, etc.

The field of Network Science is currently evolving in a lively way and there
is limited concrete understanding of its ultimate scope and content. However,
as so many other scientific disciplines in the past, Network Science will even-
tually evolve into whatever its practitioners create in the coming time period.
Similar examples are the greater fields of probability and random processes,
fluid dynamics, etc., where applications based on empirical knowledge were
massively employed before the knowledge that is available today was estab-
lished. However, it was exactly the formal shaping of these fields that helped
in better understanding the underlying phenomena, achieving more progress
in the theoretical part, and eventually obtaining desired and efficient control
of the applications as well.

There has been no complete theory until today offering the required fun-
damental knowledge for analyzing and designing large (or arbitrary scale)
complex networks in a way that network or network component behaviors
can be predicted prior to realizing them in everyday life. This is especially
true for human initiated networks with spontaneous evolution and of course
natural networks. Even most of the technological networks designed, oper-
ated, and controlled by humans would need to bear such features more often
and more efficiently. Admittedly, Network Science is one of those fields where
technology evolved much earlier than scientific knowledge. In fact, it is now
widely accepted that the main highlight of Network Science is unfortunately
that currently it essentially describes a field of fragmented research. Network
Science consists of the study of network representations of physical, logical,
and social interactions, leading to predictive models of these phenomena and
relations. The fragmentation of knowledge is meant in the sense that most of
the methods and approaches employed for the study have a specific charac-
ter and they are applied in a narrow-minded fashion within each discipline
span. Thus, even though a method developed could be properly adapted and
employed in more than one discipline, e.g., biology and communications, it is
only lately that this possibility and its benefits have been identified and ap-
preciated. In addition, the current knowledge about the structure, dynamics,
and behaviors of both large infrastructure networks and vital social networks
at all scales is primitive [117]. This fragmentation is largely evident in that not
all disciplines of Network Science scale at the same order, namely, some are
progressing well, e.g., communications networks, while others at a much slower
pace, e.g., financial networks. Additionally, it has not been possible to perform
cross-disciplinary evaluations to the desired degree, due to such fragmentation.

The communities from which Network Science is expected to emerge en-
compass many different and diverse disciplines of applications areas. Char-
acteristic examples are, among others, the biology field, which seems to pro-
vide the most diverse examples of observed complex network structures of
arbitrary order and capabilities, all working usually in conjunction and in
an efficient manner. Telecommunications networks have employed substantial
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mathematical tools for their analysis and development and could provide solid
background for quantitative methods in many other disciplines in Network
Science and complex networks. Furthermore, online social networks and com-
munities could provide flexible and controllable ground for emulating and
evaluating various mechanisms of broader interest and thus may constitute a
realistic testbed infrastructure for mechanisms of other disciplines. Other dis-
ciplines expected to contribute in the development of Network Science include
mathematics and particle physics, statistics, etc.

By considering all these facts, there seems to be a widespread realization
that codifying a common nomenclature and body of core knowledge is at least
useful, if not inevitable, in order to achieve the level of control and efficiency
desired. Even though this has not yet occurred, significant progress towards
that scope is accumulating within the Network Science framework, as will be
explained in more detail in the forthcoming subsections.

1.3.1 Content and Promise of Network Science

As explained already in the previous subsection, Network Science aspires to
become a broader field of science, in which the theoretical and technological
knowledge related to emerging networks in multiple and diverse facets and
ways will converge. As a prominent field of its own merit, the content of Net-
work Science can be implicitly defined through the set of encompassing core
principles, broadly embedded in quantitative approaches. Such quantitative
disciplines are meant in the systematic manner that they could be poten-
tially taught to students, in order to prepare a newer generation of network
expert practitioners, researchers, and professionals, as with other established
disciplines.

However, passing the torch to a more conscious and better-trained gen-
eration means having an already concretely established framework and fu-
ture horizon for emerging problems and desired achievements. Although the
boundaries of Network Science remain fuzzy, as was the case with many other
currently well-defined scientific disciplines, there is broad agreement on key
topics that should constitute the field, the types of tools that must be de-
veloped and employed, and the research challenges that should be explored.
Today, there is a consensus among the practitioners of research on networks
for physical, biological, social, and information applications on the topics that
constitute Network Science.

One of the initial questions that emerged in the early days of Network
Science was the extent to which current research on networks exhibits a core
content that cuts across the involved diverse applications areas of interest.
Various studies and observations have revealed common elements in diverse
applications that helped in creating an operational definition of the field per-
tinent to the task of the field, as has been conceptualized distributively by
many already active researchers and professionals, originally coming from di-
verse disciplines and bringing in different methodologies.
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The core content of Network Science is basic scientific approaches, cur-
rently consisting of simplified models and of techniques that are appropriate
for the analysis of small-world networks that exhibit low topological complex-
ity. Such networks mainly include the earlier communications networks, some
online social networks, and some other engineered networks. Also, in some
other large-scale and highly complex networks, such as the human nerve sys-
tem, there are several subsystems consisting of smaller networks, which fall
under the previous umbrella, and for which acceptable models have already
been developed, paving the way for more advanced and accurate models.

This common core of Network Science is the study of complex systems
(networks) whose behavior and responses are determined by exchanges and
interactions between subsystems across a well-defined (possibly dynamic) set
of pathways. The central point is that the behavior of a network is deter-
mined both by the pathways (structure) and by exchanges and interactions
(dynamics). Moreover the structure itself may be (and usually is) dynamic.
The analysis of network structure is currently more advanced than that of net-
work dynamics. The outputs of models analysis in the core content are insight
and quantitative understanding, not engineering design. The objective of this
field is to shift gears and enable the convergence of established knowledge in
structure and dynamics to an equal degree.

It was already explained that current research on networks is highly frag-
mented and usually conducted in disciplinary settings. However, as for com-
plex networks, the field of Network Science is vast and inherently multi-
disciplinary. Network structures seem to emerge naturally, essentially when-
ever information exchange or control signalling emerges. And following the
emergence of network structure, dynamic network behavior, mainly involving
interactions, structure evolution, control, and computation, emerges as well in
multiple ways. For instance, such dynamic behavior could be a highly complex
structure modification imposed by network factors and determined and exe-
cuted in an autonomic fashion, as it is the case in several biological networks,
or a simple data packet forwarding which takes place in high speed switches.
Numerous intermediate combinations of complex network structures, behav-
iors, and dynamics exist in between these cases and in all such examples, ele-
ments from different and diverse disciplines emerge. For instance, even though
structures can be the same for different disciplines the cumulative observed
behaviors can be considerably different and vice-versa. Such diversity increases
the complexity of analysis, but also allows for more flexibility and potential
benefit, once such diversity is mastered and exploited for useful purposes.

If Network Science is to eventually exist in a meaningful way, the ap-
proaches developed and used within it must also be effective over many ap-
plication domains, with well-understood techniques to apply general tools,
methods, and models to specific domains. This book will be involved in vari-
ous capacities with all such considerations and potentials of Network Science,
as will become evident in the rest of the chapters.
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1.3.2 Networks and Network Research in the 21st
Century

The content of Network Science has been extensively studied in the previous
section. However, in order to understand completely the field and its actual
content, it is proper to study in parallel a few basic moments from the evolu-
tion of the emergence and study of networks.

Network Science is a term that emerged gradually through the concept of
network-centric warfare developed by the US Army. It is no coincidence that
the first data networks also developed under the same regime. As mentioned
before, the term has been used lately to cumulatively describe the research
centered around the study of networks emerging in any possible discipline and
application. Nevertheless, the emergence of networks is much older, even older
than the human species.

The first networking structures, which were used to transfer chemical mes-
sages, were developed in the primitive life forms. Similar messaging pathways
(nowadays represented by networks) developed in chemical bonds in physical
elements and substances from the very early days of the Earth and long before
human species emerged on the planet.

On the other hand, humans are social entities and networks have formed
by their interactions in various capacities from their very early emergence.
Their interactions have lead to various developments, such as open markets,
global economies, etc. Financial networks have emerged in these as well, fol-
lowing human operation, behavior, and trends. And even though financial
networks have emerged from the early days of currency markets and have
proliferated following the market and trade proliferation, the first networks to
have been systematically studied are the computer and later communications
networks.

In addition, computer networks are the first networks that were first an-
alytically designed/studied and then actually implemented. Their evolution
followed the knowledge accumulated their analytical design and ever since has
followed a development loop, where progress is dictated either from technol-
ogy or theory, depending on the cycle phase, so that once technology develops
due to deeper knowledge it immediately spurs a frantic research, which in
turn leads technology to even higher complexities and benefits. Communica-
tions networks have been tightly related to the US Army research. As already
stated, the first data network, ARPANET, was build with funding by DARPA,
in order to interconnect and promote research among American universities
and research centers, some of which belonged to the Army.

This observation has increased the interest for quantitative and qualitative
study of networks, calling for a holistic analytical science of networks, namely
Network Science. Such interest and essentially various requirements posed by
the current trends of societies call for more holistic development tools, such
as the one described above for computer/communications networks and more
inter-disciplinary outcomes, as explained before.

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

24 Evolutionary Dynamics of Complex Communications Networks

Human understanding of networks has the potential to play a vital role
in the 21st century, which is witnessing the rise of the Age of Connectivity.
There seems to be an enormous demand for information on how to design and
operate large global networks in a robust, stable, and secure fashion, following
the tremendous generation of information in a previously known Information
Era. If information has been the power of the current century and it is going to
play an equally significant role, if not even more significant, in the future, the
means to exchange information, process it efficiently and distributively when
local means are not sufficient, and share the obtained results will become even
more important. The prospect of the content and results of Network Science
in this framework become even more significant than before.

Present systems used by governments and other services need to be im-
proved and integrated into a solution encompassing the physical, cognitive,
and social domains, as well as the information domain. This is an elusive ob-
jective that involves both near- and far-term efforts in network research, and
includes efforts that go beyond research per se.

Network Science consists of multiple branches as diverse as the disciplines
that shape it. The practitioners and researchers involved in one subset of them
usually find it easy to understand problems and notions in others as well. In
addition, a recent trend is that many experts from one discipline are becoming
involved in some other branch of Network Science, in order to build a relevant
background into methods of relating disciplines and thus obtain new perspec-
tives in the understanding of their own fields of expertise. Cross-disciplinary
research involving various Network Science branches seemingly different is also
becoming a norm and many research centers are adopting such approaches,
bringing together dedicated diverse teams that study the computational and
experimental aspects of social, biological, and communications networks, and
their ties with networks from other disciplines.

In the following, we provide a brief list of some of the most important
branches of Network Science with inter-disciplinary interest, as they have
emerged in the literature and relevant fora until now. Most of them contain
cutting-edge mathematical methodologies and numerous open problems, some
of which appear to be considerably tough:

• modeling, simulation, testing, and prototyping of very large networks

• command and control of joint/combined networked groups

• impact of network structure on organizational behavior

• security and information assurance of networks

• relationship of network structure to scalability and reliability

• managing network complexity

• improving shared situational awareness of networked elements
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• enhanced network-centric mission effectiveness

• advanced network-based sensor fusion

• hunter-prey relationships

• swarming behavior

• metabolic and gene expression networks

• visualization tools

Network research in general has proven to be an important source of eco-
nomic growth via the creation of new commercial pathways not seemingly
evident before. In fact, the very recent network research is leading to new and
growing businesses like Internet and large data analytics, social media, etc.
One of the outcomes and benefits of the above thinking regarding network re-
search is the emergence of various data mining and exploiting systems/engines,
which emerged lately and generated not only significant economic growth, but
also contributed to a paradigm shift of the Web and the way we treat data
information anywhere it comes from.

Although the technology for constructing and operating engineered physi-
cal networks is sophisticated, critical questions about their robustness, stabil-
ity, scaling, and performance still cannot be answered with confidence with-
out extensive simulation and testing. Investment in Network Science is both
a strategic and urgent national priority for some countries, most prominently
the United States [117]. This book aspires to further contribute towards this
direction.

1.3.3 Status and Challenges of Network Science

Based on the above discussions it becomes evident that the current status in
the field of Network Science has not converged to a stable direction with well
defined boundaries, as is the case for other well-established scientific branches.

Network Science is a field of research and practice that emerged in the
last decade and its whole boundaries are still evolving. New application do-
mains are discovered and new opportunities for cross-disciplinary research are
identified. In addition, currently there exists a gap between available knowl-
edge about networks and the knowledge required to characterize, design, and
operate the complex global, physical, information, biological, and social net-
works on which the well-being of mankind has come to depend [117]. Just like
the radar technology awaited the basic science of electromagnetism and that
of mobile communications the development of radio science and circuits, the
ability to control the complex networks in our lives awaits as yet unforseen
discoveries in the science of networks.

Presently, the Network Science community is a worldwide and diverse re-
search community with shared concepts and concerns. It has been found that
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26 Evolutionary Dynamics of Complex Communications Networks

even within diverse subgroups of this broad research community, consistent
and convergent opinions exist. A significant percent of them (slightly a bit
more than 2/3) agree on the fact that Network Science is a definable field of
investigation, even though not yet absolutely and accurately shaped.

In general, three main dimensions account for the difficulties emerging in
the research challenges faced within the framework of Network Science and
relevant applications. These “umbrella-like” areas, as can be identified in the
literature, are summarized as follows:

• complexity

• wide range of interacting scales

• network-to-network interactions

The first, cumulatively contains emerging issues that have to do with compu-
tation, communication, and interaction between network entities. Complexity
may characterize the encountered difficulties for processing or exchanging in-
formation in massive fashion, or it could describe the difficulties emerging
in handling various representations of the networks. The second dimension
contains the wide range of interacting scales of the various networks in the
framework of Network Science. In a system, different types of networks may
interact with each other. However, such networks could possibly have different
scaling behaviors, in terms of size, timing, etc. Finally, the third dimension
involves the types of interactions between different types of networks, e.g.,
cyber-physical systems [108], [105], but also interactions between nodes of the
same or different networks (in terms of scale and type). All the above di-
mensions are quite broad and frequently overlap, posing even more complex
challenges for the researchers involved. In the sequel, we will provide some
more specific challenges emerging in the field of Network Science, in order to
provide a more concrete picture of the current status and scope of Network
Science.

Given the latest updates and the current status in Network Science one
may identify seven major classes of challenges, which attract the interest of
the scientific and industrial communities and will have a significant role in the
evolution of the field. These directions have broadly appeared in the literature
and we summarize them in the following list:

• Dynamics, spatial location, and information propagation in networks

• Modeling and analysis of very large networks

• Design and synthesis of networks

• Abstracting common concepts across fields

• Better experiments and measurements of network structure

• Robustness and security of networks
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• Increasing the level of rigor and mathematical structure

The first one is about emerging problems related to the dynamical and topo-
logical behavior of distributed structures, such as ad hoc networks in com-
plex communications networks, and the transfer/distribution of information
through them. The second is purely of a topological nature and involves the
modeling and analysis of very large networks, in terms of optimal topologies,
as well as the means to represent and handle such structures. The third is
about the very existence of networks, namely the ability to design and syn-
thesize the desired networking structures in various disciplines and especially
for critical applications. The fourth regards the establishment and expansion
of cross-discipline research, where common concepts among Network Science
disciplines are abstracted and exploited across fields, by developing generic
methodologies, and tools. Especially towards the latter direction, it will be
required to progress both in our experimentation and testing means, in order
to be able to collect more accurate measurements and data, on the behavior
and performance of the studied networks and developed methodologies respec-
tively. This is the topic of the fifth research direction, while the sixth involves a
very popular concern spanning our societies, namely security and robustness.
The latter regards the sustainability of the networks that are of significant
interest or play a critical role, while the first is about the emerging behav-
iors and outcomes of these networks. Finally, perhaps the most important
challenge will be to increase the current mathematical rigor, thus providing
more flexible, accurate, and sophisticated means to achieve all the previously
mentioned challenges.

It is expected that connections between the basic and applied portions of
the research will be much more intimate. One of the envisioned scenarios is the
application of modern communications networks and tools and the insights of
modern social network theory to transforming the management of educational
projects, and possibly other research stimulating efforts.

Since Network Science is at an early stage of its development, a broad
portfolio of basic and applied research is expected to create greater value
than a more focused portfolio. For this reason, this book will initially cover
the broader span of Network Science and then take this one step ahead by
presenting a more focused application domain and corresponding methods.
Research on the lower layers of the network architecture is relatively mature.
Thus, the most immediate payoffs from Network Science are likely to result
from research associated with the upper levels of the network architecture and
the social networks that are built at an even higher level upon their outputs.
This aspect will be covered by the later chapters of the book, as it will become
more specific.
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Chapter 2

Basic Network Graph
Models and Their
Properties

Towards building the hierarchical approach of this book for the study of evo-
lutionary dynamics, the first step is to study the basic network models and
properties established, and then use them constructively for more advanced
studies. The examples provided in the previous chapters of various network
types, operations, behaviors, mechanisms, and emerging behaviors in Network
Science in general, have motivated the need for a more systematic analytical
approach of their analysis and control.

Before we present the more advanced analytical tools and techniques for
exploiting the potentials of complex networks and Network Science, in this
chapter, we provide a concise summary of the fundamental mathematical no-
tions and techniques of network engineering. These include elements from
traditional Graph Theory and the more advanced field of Random Graph
Theory, the latter being the first step towards the study of dynamic network
behavior. We first present traditional Graph Theory and then separately Ran-
dom Graph Theory, even though both are general Graph Theory toolboxes,
due to the different modeling approach adopted in Random Graphs. Random
Graph Theory considers a dynamical network behavior and thus a probabilis-
tic modeling perspective is developed, whereas in traditional Graph Theory
deterministic models and properties are studied.

This chapter will provide a summary of the fundamental notions that
emerge in the study and analysis of networks, in addition to a common math-
ematical language that is able to describe accurately the fundamentals of
network structure and dynamics. Graph Theory has been and remains the
main mathematical tool that ensures accuracy and control. It is also the main
language for communications networks, which is the main network type of
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30 Evolutionary Dynamics of Complex Communications Networks

interest in this manuscript among those considered Network Science. A fair
portion of this chapter will be devoted to the introduction of these concepts
through a concise summary of the basic concepts, measures, and properties
of the most important fields of traditional Graph Theory. This summary
will constitute a ground-breaking building block for studying networks from
different disciplines in a generic fashion and will enable further extending
this toolbox for the analysis and exploitation of more advanced concepts in
Network Science.

Regarding Graph Theory, the basic definitions and properties of all graphs
will be presented, followed by definitions and principles of graphs that have
to do with paths and cycles, connectivity, flow through networks, planarity
and coloring (covering) properties. An alternative, but very popular algebraic
representation will be also presented, since in modern complex network anal-
ysis it seems that this graph model representation and analysis approach is
gaining ground compared to the traditional ones.

Furthermore, Random Graph Theory is a combination of concepts from
traditional Graph Theory and Probability Theory and has been proved in-
valuable in the study of the dynamic, evolutionary behavior of several simple
network problems. It emerges as the most appropriate technique for more
advanced studies of dynamic network evolution. The various Random Graph
models and their equivalences will be presented, followed by properties of all
graphs and the emergence of threshold behaviors, which seems to be the norm
in relevant observed phenomena.

At the end of this chapter, we provide a concise summary of notation of
the most basic elements emerging in Graph Theory. Such notation will be
extensively used in the following chapters. Though Graph Theory notation is
non-standard, the aim of this table is to enable the reader in his/her study, by
providing a quick reference when necessary. In most other cases, the notation
employed in the following chapters remains self-explanatory.

2.1 Graph Theory Fundamentals

As already explained, the diversity of the field of network science calls for
methodologies and frameworks where the study of emerging network struc-
tures and behaviors will be studied in a generic fashion. Graph Theory pro-
vides a mathematical language for properly describing the interactions be-
tween various agents in the considered networks. The value of the means
provided by Graph Theory is significant, because the quantitative tools de-
veloped are independent of the involved application framework. In fact, the
mathematical representation of Graph Theory enables suppressing the effect
of discipline-specific parameters and revealing the actual dynamics of the stud-
ied network and identifying parameters enabling their control, irrespective of
the scope of a specific network. Graph Theory is the fundamental and essential
language for basic and advanced network analysis and engineering.
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The notion of graph is extensively used to represent various types of net-
works. A graph is an ordered pair G = (V,E) where V is the set of vertices
of the graph with cardinality |V | and E is the set of edges of the graph with
cardinality |E|. The edges of a graph are two element subsets of V . In this
book, unless otherwise stated, we represent an edge between two vertices i,
j with (i, j) as shown in Figure 2.1.1 There are many categories of graphs
with respect to the developing interconnections between agents and emerging
behaviors. In the previous chapter several classifications of these important
network types for Network Science and complex communication network de-
sign have been presented in more detail. In this chapter, we will assume a
simple and generic model of graph, as will be described in the following sub-
sections, and present properties that hold in general for many types of graphs.
Additional properties, features and characteristics that apply for each specific
type of network will be provided and analyzed in the following chapters. Pro-
gressively more advanced concepts on networks and features will be presented,
analyzed, and prescribed.

At this point we should note that despite the fact that Graph Theory
now has a well established history in mathematics and other scientific areas,
notation is not yet completely standardized. This is partly due to the diversity
of disciplines employing it and contributing to it. In this book we employ
the most widely accepted nomenclature for the most important or required
elements. We also provide a summary table in the end of this chapter (Section
2.3) with all Graph Theory notation used. In any case, most of the quantities
required for the study of complex networks are self-explanatory and symbols
will be compatible with them.

In the sequel, apart from basic definitions, we often include several useful
properties of general interest (usually in the form of theorems) for the an-
alyzed structures and parameters. Unless otherwise noted, these constitute
well-known results, which we include for completeness purposes and in order
to provide a quick reference for the interested researcher or student. We pro-
vide them without proofs and accompany them with suitable references for
the more interested reader, who wishes to spend more time focusing on the
details of the provided methods.

2.1.1 Basic Definitions and Notation

In this subsection, we provide the most basic definitions regarding graphs and
networks, along with their notation and simple emerging properties. More
advanced concepts are provided in the following subsections.

An undirected graph G(V,E) consists of a pair of finite and nonempty
set V = V (G) of |V | = n points with a set of |E| = m unordered pairs
(i, j), i, j ∈ V of distinct points of V . Elements of V are referred to as points or

1Typically ij denotes an unordered edge between vertices i, j, while (i, j) denotes a
directed edge from node i to j. When there is no risk of ambiguity, the (i, j) notation is
employed for both cases.
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Figure 2.1: Fundamental definitions on deterministic graphs.

vertices and elements of E are referred to as lines or edges or links (Figure 2.1).
All these terms are used interchangeably, e.g., points-nodes and lines-edges-
links, respectively. Sometimes an edge x = (i, j) may be denoted as x = ij.
We say that i and j are adjacent vertices, vertex i and edge x are incident
with each other, while two distinct edges x and y incident with a common
vertex are called adjacent edges. Sometimes vertices i, j of line x are called
endpoints of x as well. These definitions are illustrated in Figure 2.1.

A directed graph or digraph consists of directed edges and therefore the
pair (i, j) is ordered, expressing an arrow beginning from node i and pointing
to node j, as noted above. In the directed case, the edges (i, j) and (j, i) are
different (which is not the case for an undirected graph) and the existence of
one of these does not necessarily imply the existence of the other.

A graph G′ = (V ′, E′) is a subgraph of G(V,E) if V ′ ⊂ V and E′ ⊂ E,
where E′ is defined on V ′, and this is denoted by G′ ⊂ G. Figure 2.2(a) shows
an original undirected graph G and Figure 2.2(b) a subgraph G′ of G. If G′

contains all edges of G that join two vertices in V ′, then G′ is called the in-
duced subgraph or the subgraph spanned by V ′ and it is denoted by G[V ′]
(Figure 2.2(c)). If V ′ = V , then G′ is said to be a spanning subgraph of G
(Figure 2.2(d)).

If W ⊂ V (G) for a graph G, then G −W = G[V \W ] is the subgraph of
G obtained by deleting the vertices in W and all edges incident with them.
Similarly, if E′ ⊂ E(G), then G − E′ = (V (G), E(G)\E′). If W = {x} and
E′ = {xy}, then the above notation is simplified to G−x and G−xy. Finally,
if x and y are nonadjacent vertices of G, then G+ xy is obtained from G by
joining x to y. The complement Ḡ of G = (V,E) is defined as Ḡ = (V, V 2−E).

The order |G| of G is the number of vertices |G| = |V (G)| and the size of
G, denoted by e(G) is the number of edges in G, i.e., e(G) = |E(G)|. Both the
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Figure 2.2: Definitions of subgraphs.

order and size parameters of a graph are characteristic of the scales that the
network follows, in terms of the entities involved in the network and/or their
interactions, respectively. Usually, the scaling behavior as these parameters
increase is of great interest, indicating the potentials and usefulness of each
specific network graph type.

The neighborhood of a node x ∈ G, denoted by Γ(x) or most commonly
in communications by N (x), is the set of all vertices of G adjacent to x. The
degree of a vertex i, d(i) (usually denoted by ki to avoid misunderstanding
with distance functions) in an undirected graph is the number of edges having
as one of their endpoints the vertex i. In directed graphs, each vertex is char-
acterized by two degrees, the in-degree kini , which counts all edges pointing
to node i and the out-degree kouti counting all vertices starting from node i
(Figure 2.3). In both the directed and the undirected case, we denote by
A = [aij ] the adjacency matrix, where aij = 1 if there is a link from i to j,

otherwise aij = 0. By using the adjacency matrix, we obtain kouti =
∑N
j=1 aij

and kini =
∑N
j=1 aji. A is symmetric if it refers to the undirected case. More

on the adjacency matrix and other matrices that characterize different graphs
will be provided in Subsection 2.1.8, which focuses on spectral Graph Theory.
It will also be shown how the algebraic (matrix) representations of networks
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Figure 2.3: Examples of neighborhoods and node degrees.

are capable of providing efficient tools not only for the analysis of traditional
network problems, but more importantly, that they constitute tools for
the more interesting analysis of the dynamic behavior and/or evolution of
networks.

Similarly to adjacency matrices, the incidence matrix of a graph G may
be defined. If G is a bidirectional graph, then the incidence matrix B = [bij ]
is a |V | × |E| matrix such that bij = 1 if vertex vi is incident with edge xj
and zero otherwise. For the case of a directed graph G, the incidence matrix
is again a |V | × |E| matrix, such that bij = −1 if edge xj leaves vertex vi,
bij = 1 if edge xj enters vertex vi and zero otherwise.

A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge. They are rather impor-
tant concepts in Graph Theory and Network Science in general, and several
problems reduce to finding cliques in graphs representing network topologies.
A maximal clique is a clique that cannot be extended by including one more
adjacent vertex, that is, a clique that does not exist exclusively within the
vertex set of a larger clique. A maximum clique is a clique of the largest pos-
sible size in a given graph. The clique number ω(G) of a graph G(V,E) is the
number of vertices in a maximum clique in G.

A d-regular graph is an undirected graph where each vertex has the same
degree equal to d. A complete graph is an undirected graph where all ver-
tices are connected with all other vertices and thus, it is an (n-1)-regular
graph. Regular networks emerge oftentimes in nature and occasionally in en-
gineered applications as well, such as communications and power networks.
These structures will be extensively used in various capacities in the following
chapters of this book, mainly as reference network models or as starting points
for obtaining through evolutionary processes other network paradigms.

Definition 4 Given a graph G, its corresponding line graph, L(G), is a graph
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constructed as follows:

• Each vertex of L(G) represents an edge of G.

• Two vertices of L(G) are adjacent if and only if their corresponding
edges are adjacent in G.

Definition 5 A graph (directed or undirected) is weighted, if a measurable
quantity (referred to as weight and usually denoted by w) is assigned to each
edge, w : E → R.

Such quantities-weights might represent, for example, costs, lengths, or ca-
pacities in communications networks, distances, interest in social networks,
cash flow in financial networks, and numerous other context values depending
on the specifics of each problem. Similarly, with the adjacency matrix, the
weight matrix W = [wij ] can be defined, where wij is the weight of the link
(i, j). Furthermore, especially for weighted graphs, except for the degree of
a vertex (or in-degree and out-degree in digraphs) which does not take into
account at all the weights of links, a joint metric of both node degree and
adjacent link weights might be defined, denoted by strength of each node (or
the in-strength sini and the out-strength souti correspondingly for digraphs).
Node strength expresses the total amount of weight that reaches or leaves
node i correspondingly. Thus,

souti =
N∑
j=1

wij and sini =
N∑
j=1

wji (2.1)

In the case of undirected graph-network case, souti = sini = si where si is the
strength of node i

si =

N∑
j=1

wij (2.2)

2.1.2 Additional Definitions

The previous subsection presented a series of basic definitions regarding Graph
Theory, based on which more advanced concepts can be studied and properties
of networks analyzed. In this subsection, we provide some more advanced
definitions and properties of deterministic graphs, which in turn enable the
analysis of frequently emerging behaviors and relations in networks.

Two graphs G and H are isomorphic (denoted by G ∼= H or more simply
G = H) if there exists a one-to-one correspondence between their vertex
sets, which preserves adjacency. Intuitively, isomorphic graphs describe the
same set of relations developing between the underlying players/actors/nodes,
i.e., the same networking behavior. Mathematically, graph isomorphism is an
equivalence relation on graphs, which means that studying the properties of
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a graph is equivalent to proving the properties of all graphs belonging to the
specific isomorphy class. Thus, from an application perspective, studying one
graph from each isomorphism class suffices to obtain a holistic characterization
of the specific isomorphism class.

A concept very closely related to graph isomorphism is that of graph in-
variant. For a graph G, an invariant is a number associated with G, which
has the same value for any graph isomorphic to G. For example, the order and
size of a graph G are invariants. This means that graph invariants are char-
acteristic features of distinct graph types (equivalently isomorphy classes).
Moreover, a complete set of invariants determines a graph up to isomorphism.
Thus, all isomorphic graphs, namely all those graphs that represent the same
type of interactions, bear a specific set of features and properties as well, de-
scribed by the set of respective graph invariants. Most of the quantities of
interest, e.g., the average graph degree, the number of vertices/edges, etc.,
are graph invariants; nevertheless, not all of them constitute a complete set of
invariants. The term “complete set of invariants” characterizes a collection of
mappings determining the equivalence of objects in classification problems. In
Graph Theory, a complete set of invariants is used to determine an isomorphy
equivalence class of graphs. For instance, the order and size of a graph are
a complete set of invariants for all graphs with less than four vertices only,
which means that using only the invariants of order and size of a graph, all
graphs with less than four vertices may be determined.

A bipartite graph G is a graph whose vertex set V can be partitioned into
two subsets V1 and V2, such that every edge of G joins only a node from V1

with a node from V2 (Figure 2.4(a)). Such structures where essentially graph
vertices are split into two distinct groups and relations take place only between
members of different sets emerge often in a special type of social network,
i.e., affiliation networks that describe connections between social groups, e.g.,
advisors-advisees, doctors-patients, etc. A complete bipartite graph contains
all possible edges joining vertices of V1 and V2 (Figure 2.4(b)). A complete
bipartite graph with |V1| = m and |V2| = n is denoted by Km,n = K(m,n). A
star graph is a special case of complete K1,n bipartite graph (Figure 2.4(c)).
It is also apparent that a Km,n graph has exactly mn edges.

Identifying bipartite graphs is a relatively easy process exploiting the fol-
lowing theorem.

Theorem 1 A graph is bipartite if and only if ( iff) it does not contain an
odd cycle.2

In the above theorem, the notion of cycle in a graph is exploited. Cycles
in graphs are a very important aspect and characteristic feature of them,
which will be explained in detail in Subsection 2.1.4. Intuitively, a cycle in an

2We note that the proof for this theorem, as well as other proofs for the following ones,
have been omitted and can be found in various available references in the literature, such
as [33], [84], [50].
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Figure 2.4: Bipartite graphs.

undirected graph is an alternating sequence of vertices and links, which starts
and ends at the same vertex.

Thus, in a graph representation, a greedy algorithm deciding on the ex-
istence of an odd cycle is sufficient for determining if a graph is bipartite.
Of course, complexity and efficiency concerns might call for more advanced
processes; however, the above theorem provides a simple and handy charac-
terization for bipartite graphs.

Several special graph types have been identified in Graph Theory. Perhaps
one of the most important, both for theoretical as well as application oriented
purposes, is that of a tree. Various definitions of a tree graph exist and the
following statements are all equivalent for a graph G:

Theorem 2 The following statements are all equivalent for a graph G:

1. G is a tree.

2. G is a connected graph and every edge is a bridge.

3. G is a maximal acyclic graph; that is G is acyclic and if x and y are
nonadjacent vertices of G, then G+ xy contains a cycle.

A spanning tree of a graph G is a tree containing every vertex (node) of
G. A minimum weight spanning tree (minimum spanning tree for short) in a
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weighted graph is a spanning tree, which in addition has a minimum total edge
weight sum. Two greedy algorithms have mainly been proposed for obtaining
minimum weight spanning trees, denoted by Kruskal’s and Prim’s algorithm.
In the first one, the algorithm continuously increases the size of a tree, one
edge at a time, starting with a tree consisting of a single vertex, until it spans
all vertices. Kruskal’s algorithm, on the other hand, starts with a forest that
consists of n trees. Each and every tree consists of only a single node. In
every step of the algorithm, two different trees of this forest are connected
to a bigger tree. Therefore, the number of trees decreases, while the size of
each tree increases in the initial forest, until a single tree of minimum weight
is obtained. In every step, the edge with least cost is selected, following the
greedy policy. If the chosen edge connects nodes that belong in the same tree
the edge is rejected, and not examined again because it could produce a cycle
that will destroy the tree. Either this side or the next one in order of least cost
will connect nodes of different trees. If the graph is initially not connected,
then the Kruskal algorithm finds a minimum spanning forest (a minimum
spanning tree for each connected component).

One of the most useful properties of all connected graphs, which is analyti-
cally described in the next section (Section 2.1.3), is provided by the following
corollary:

Corollary 1 Every connected graph contains a spanning tree.

The notion of connectivity is formally defined in the following subsection,
however, intuitively, a graph is connected if every node is potentially linked
to any other node in the network, directly or implicitly through one or more
neighbors. A graph might not be completely connected, i.e., a node or a group
of nodes might not be able to obtain a direct/inderect connection to the rest of
the network nodes. In this case, the graph is separated into components, each
of which is connected in the sense that nodes within a connected component
have a direct or indirect connection to the rest of the nodes in the component.

Thus, one may spend time developing algorithms that create spanning
trees over connected graphs, since their existence is guaranteed by the above
corollary. In turn, such spanning tree algorithms may be exploited in the de-
velopment of efficient flow algorithms over networks of different application
frameworks and objectives. Characteristically, spanning trees might be use-
ful in the development of efficient traversing routes for delivery trucks, live
stream multicasting systems in the Internet, etc. In general, spanning tree
algorithms have a plethora of applications, and their importance increases
correspondingly.

2.1.3 Connectivity

Connectivity is a fundamental, yet a rather intuitive and naturally emerging
notion in Graph Theory. However, it is also rather central and decisive in
many aspects of network behavior and evolution. It represents the essence
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of networking relations and it is essentially the cumulative outcome of the
association between the parties involved in a network.

As already mentioned, the degree of a node i is the number of neighbors
(direct) of i in graph G and it is denoted by di or d(i). The minimum and
maximum degrees of G are denoted by δ(G) and ∆(G), respectively. The com-
plete spectrum of values of all node degrees of a graph is referred to as degree
distribution of the graph and it can be deterministic or probabilistic, depend-
ing on whether the graph is fixed like the ones assumed already, or graph
connections are stochastically determined, as will be the case in Subsection
2.2. Consequently, it should come as no surprise that the degree distribution
of G is closely related to the connectivity properties of G and vice-versa.

Furthermore, one of the most fundamental facets of Graph Theory is the
characterization of connectivity for different graphs. More specifically, the
connectivity of a graph is more formally introduced as:

Definition 6 The connectivity κ = κ(G) of a graph G is the minimum num-
ber of points whose removal results in a disconnected or trivial graph.

In some cases κ is referred to as vertex connectivity to distinguish it from
edge (line) connectivity. Thus, by analogy:

Definition 7 The line-connectivity λ = λ(G) of a graph G is the minimum
number of lines (edges) whose removal results in a disconnected or trivial
graph.

The term trivial graph denotes a graph consisting of an isolated node
(degenerate case). Therefore, for a disconnected graph G, κ(G) = 0 and for a
complete graph G of order p, κ(Kp) = p− 1, since one needs to remove p− 1
vertices to obtain the trivial graph of order 1. Similarly, κ(K1) = 0 and so
does the line-connectivity of a disconnected graph.

Perhaps the simplest and most straightforward result is a relation between
connectivity, edge-connectivity, and the minimum degree of the graph yielded
by the following:

Theorem 3 For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

Specifically, it is almost trivial to observe that the edge-connectivity, namely
the minimum number of edges whose removal disconnects a graph, is bounded
above by the minimum node degree, since removing all the edges adjacent to
one of these nodes with minimum degree (and potentially fewer than all of
them), the specific node will be disconnected and so will be the graph. Simi-
larly, the edge-connectivity is at least as much as the vertex connectivity, since
the connectivity is defined by the removal of vertices, and edge-connectivity
by the removal of edges. Assuming that some specific vertices need to be re-
moved by the connectivity definition, as shown in Figure 2.5, these vertices are
associated with a number of edges connecting them to the rest of the graph.
Removal of all of them disconnects the specific vertex set from the rest of the
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Figure 2.5: Illustration of Theorem 3.

graph. However, at least as many edges as vertices need to be removed, e.g.,
when the two components of the remaining graph are assumed to coincide,
namely the specific vertices are essentially connected to the rest of the graph
through a single edge each. In all other cases, more edges will be required to
be removed by the definition of edge-connectivity.

One can even extend this result to a more general one, where:

Theorem 4 For all integers a, b, c such that 0 < a ≤ b ≤ c, there exists a
graph G with κ(G) = a, λ(G) = b, and δ(G) = c.

This theorem can be very useful for designing artificial graphs-networks with
desired properties on connectivity and edge-connectivity, or redesigning other
graphs-networks found in nature so as to obtain more desired connectivity
features than those of the original graph-network.

The sparseness or density of a topology, which is reflected in the mini-
mum/maximum degree of a graph G, are also tightly related to connectivity.
The following results are characteristic of this relation:

Theorem 5 If G has p vertices and δ(G) ≥ [p/2], then λ(G) = δ(G).

and

Theorem 6 Among all graphs with p vertices and q edges, the maximum
connectivity is 0 when q < p− 1 and it is [2q/p], when q ≥ p− 1.

The first of these two theorems essentially expresses the fact that in a relatively
dense graph, where even the minimum degree is connected to at least half of
the network nodes, the edge-connectivity is equal to the minimum degree,
namely one should remove at least as many as half of the network edges.
Conversely, the second theorem says that for a very sparse graph, where the
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edges are even less than the number of nodes (even less connected than a
tree), the graph must be disconnected and κ = 0.

Definition 8 A connectivity pair of a graph G is an ordered pair (a, b) of
nonnegative integers, such that there is some set of a vertices and b edges
whose removal disconnects the graph, and there is no set of a− 1 nodes and b
edges or of a vertices and b− 1 edges with this property.

It can be easily obtained that for each value of a, 0 ≤ a ≤ κ, there is a
unique connectivity pair (a, ba). Thus, a graph G has exactly κ+1 connectivity
pairs.

Results on connectivity may also be extended to cases where all nodes of
a network have a minimum of neighbors, namely the minimum node degree
information is available. This is reflected in the following definition:

Definition 9 A graph is n-connected if κ(G) ≥ n and n-edge-connected if
λ(G) ≥ n.

Connectivity and n-connectivity emerge often in applications of social and sen-
sor networks. In the latter, sensor overlapping is usually required for seamless
operation. For this reason, nodes are usually put in grid topologies, where a
minimum connectivity is ensured, namely the resulting network is k-connected
for some non-zero integer parameter k. Similarly, in social networks, most of
the people have at least a minimum number of acquaintances, which also
means the corresponding representation graph is n-edge-connected, for some
parameter n describing the minimum number of each individual’s acquain-
tances.

A notion closely related to connectivity and searches in evolving networks
is that of commute time. The commute time C(u, v) between two vertices u
and v is the time required to get to node v, starting from node u. It is implicitly
assumed that at zero time the visiting process of vertices starts at node u and
at each time unit, it transitions to a neighboring vertex according to some
policy (in some cases in a completely random fashion, in others according to
a more specific policy).

A useful result closely related to k-connectivity, since it involves 3-
connected graphs, emerges often in social network applications (see the de-
scription of clustering coefficient at Chapter 4, Section 4.4) and it is provided
by the following theorem:

Theorem 7 (Tutte’s theorem) A graph G is 3-connected if and only if G is
a wheel or can be obtained from a wheel by a sequence of operations of the
following two types:

1. The addition of a new edge.

2. The replacement of a vertex v having degree at least 4 by two adjacent
vertices v′, v′′, such that each vertex formerly joined to v is joined by
exactly one of v′ and v′′ so that in the resulting graph, dv′ ≥ 3 and
dv′′ ≥ 3.
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W7

1 2

3

45

6
7

Figure 2.6: Example of a wheel graph.

where for n ≥ 4, a wheel Wn is a special type of graph, defined to be the
graph K1 + Cn−1. An example of a W7 wheel is shown in Figure 2.6.

Furthermore, in many applications or analyses, it is often necessary to
split graphs into partially smaller subgraphs, denoted as components. Break-
ing down a graph into its components, could be imposed by operational objec-
tives and requirements, e.g., splitting communication networks into disjoint
routing domains administrated by different entities in order to improve net-
work management, or by analysis objectives, i.e., because in such a way a
problem becomes simpler to analyze or handle. For this reason, the following:

Definition 10 An n-component of a graph G is a maximal n-connected sub-
graph.

introduces a concept very often employed in the above settings. A useful result
on n-components is described by:

Theorem 8 Two distinct n-components of a graph G have at most n − 1
vertices in common.

Let u and v be two vertices u 6= v of a connected graph G. Two paths
joining u and v are called disjoint (vertex disjoint) if they have no vertices
in common other than u and v. Obviously, this means they have no common
edges as well. The paths are edge-disjoint if they only have no edges in com-
mon. In general, it is intuitive to observe that the connectivity of a graph is
related to the number of disjoint paths joining distinct points in the graph.
Based on the previous definitions, a set S of vertices, edges, or both vertices
and edges separates u and v if u and v are in different components of G− S.

Separating vertices and/or edges have significant importance in Graph
Theory and in turn in network analysis, since they essentially determine
quite a number of mechanisms that can be developed over these underlying
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graphs-networks. For instance, in information networks, such vertices/edges
control the information flow across the underlying graph components, and
thus, they can be of key importance for health, military, political, and financial
applications.

The following results provide some characteristic properties of such ver-
tices/edges of a graph, as well as relations that can be used either for identify-
ing these groups of vertices/edges, or for exploiting/taking them into account
in the design and analysis of network mechanisms.

Theorem 9 The minimum number of vertices separating two nonadjacent
vertices s and t is the maximum number of disjoint s− t paths.

The above theorem indicates the essential structure imposed in a graph by
disjoint paths and also, through the following theorem, it provides insight in
the relation of disjoint paths with n-components:

Theorem 10 A graph is n-connected if and only if every pair of points are
joined by at least n vertex-disjoint paths.

Some additional and useful results on disjoint paths follow:

Theorem 11 For any two vertices of a graph, the maximum number of edge-
disjoint paths joining them equals the minimum number of edges that separate
them.

This theorem can be used not only in mathematical proofs regarding bounds,
but more importantly in practical applications, where disjoint path discovery
is required, e.g., information or metabolic pathways in data and biological
networks, respectively, for obtaining useful estimations on disjoint connecting
paths, especially in cases of large network populations.

An immediate outcome of the above theorem, which is intuitively expected,
is that provided by the following theorem:

Theorem 12 A graph is n-edge-connected if and only if every pair of vertices
are joined by at least n edge-disjoint paths.

which provides a way for determining if a network is n-edge-connected.
Furthermore, the above results can be extended in the following theorem

to cover cases of subsets of vertices, rather than only individual nodes as in
the previous results:

Theorem 13 For any two disjoint nonempty sets of vertices V1 and V2, the
maximum number of disjoint paths joining V1 and V2 is equal to the minimum
number of vertices that separate V1 and V2.

Alternatively, considering subsets of vertices and their connecting paths,
one may obtain results regarding the connectivity of a graph. The following
theorem is a characteristic example:
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Theorem 14 A graph with at least 2n vertices is n-connected if and only if
for any two disjoint sets V1 and V2 of n vertices each, there exist n disjoint
paths joining these two sets of vertices.

Theorem 15 The ordered pair (a, b) is a connectivity pair for vertices u and
v in a graph G if and only if there exist a vertex-disjoint u− v path and also
b edge-disjoint u− v paths, which are the maximum possible numbers of such
paths.

A closely related concept in Graph Theory, which is relevant not only to
connectivity, but also to notions such as paths and flow is that of cuts and
cut-sets.

Definition 11 A cut is a partition of the vertices of a graph into two disjoint
subsets.

The cut-set of the cut is the set of edges whose end points are in different
subsets of the partition, as shown in Figure 2.7. Edges are said to be crossing
the cut if they are in its cut-set. In an unweighted undirected graph, the size or
weight of a cut is the number of edges crossing the cut. In a weighted graph, the
same term is defined by the sum of the weights of the edges crossing the cut.

Theorem 16 In any graph, the maximum number of edge-disjoint cutsets of
edges separating two vertices u and v is equal to the minimum number of edges
in a path joining u and v.

The notion of path will be described in more detail in the following section.
Intuitively, a path consists of a sequence of edges and vertices in a graph.

Apart from the results regarding connectivity, results that characterize loss
of connectivity are also important in network science, especially those describ-
ing the loss of connectivity in the limit, namely when a minor modification in

min-cut

Figure 2.7: Example of cut and a cut-set.
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the network leads the graph from connectivity to disconnected. The latter has
been extensively studied in the context of percolation theory [34], [77], [150]
where other phase transition phenomena have also been studied, apart from
connectivity. Within the previously described framework of information flow,
network analysis will be required to identify the critical resources, and graph
components, loss of which can potentially harm the operations of the net-
works. The following concepts are relevant to these concerns in network
analysis.

A cutpoint (cutvertex) of a graph is one whose removal increases the num-
ber of components. A bridge is such an edge increasing the number of com-
ponents of the graph.

A nonseparable graph is connected, non-trivial, and has no cutpoints. A
block of a graph is a maximal nonseparable subgraph. If graph G is nonsepa-
rable, then G itself is often called a block.

The following theorems provides a straightforward characterization of
graph potentials regarding cutpoints, bridges, blocks and cycles.

Theorem 17 Let v be a vertex of a connected graph G. The following are all
equivalent:

1. Vertex v is a cutpoint of G.

2. There exist vertices u and w distinct from v such that v is on every
u− w path.

3. There exists a partition of the set of vertices V −{v} into subsets U and
W such that for any vertices u ∈ U and w ∈ W , vertex v is on every
u− w path.

Theorem 18 Let x be an edge of a connected graph G. The following are all
equivalent:

1. Edge x is a bridge of G.

2. Edge x is not on any cycle of G.

3. There exist vertices u and v of G such that the edge x is on every path
joining u and v.

4. There exists a partition of V into subsets U and W such that for any
vertices u ∈ U and w ∈W , edge x is on every path joining u and w.

Theorem 19 Let G be a connected graph G with at least three vertices. The
following are all equivalent:

1. G is a block.

2. Every two vertices of G lie on a common cycle.
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3. Every vertex and edge of G lie on a common cycle.

4. Every two edges of G lie on a common cycle.

5. Given two vertices and one edge of G, there is a path joining the vertices
that contain the edge.

6. For every three distinct vertices of G, there is a path joining any two of
them, which contains the third.

7. For every three distinct vertices of G, there is a path joining any two of
them, which does not contain the third.

These results have been used extensively in various applications and imple-
mentation in Network Science and complex/social network analysis, especially
in cases of grouping, structure discovery, and other occasions where the dis-
covery of structure in a network is important for social-, robustness-, and
network-related studies.

A final result ensures that for every connected graph that is nontrivial,
not all nodes are cutpoints, thus the graph does not have trivial connections.

Theorem 20 Every nontrivially connected graph has at least two points that
are not cutpoints.

2.1.4 Paths and Cycles

One of the important aspects in network science and analysis is the traversality
potentials of a graph, which describe cumulatively all relevant properties and
relations regarding the possibility of sequentially visiting nodes and edges
of a graph within different application perspectives, such as communication
(implicit or explicit), or flow (which will be analyzed in more detail in the
following subsection) of information.

As explained, the “ability to traverse” describes the potential of sequential
visiting of vertices and/or edges of the network. Thus, it is strongly connected
to the connectivity (previous subsection), flow (following subsection), and cov-
ering/planarity aspects of graphs. From this, it is evident that path and cycles
traversing/spanning a network can be tightly connected to the fundamental
structural properties of the network, and thus they can be very indicative of
the potentials of the specific network with respect to the application suitabil-
ity, etc. The most fundamental concept regarding the notions of paths and
cycles in graphs is that of a walk.

Definition 12 A walk of a graph G is an alternating sequence of vertices
and edges, e.g., v0, x1, v1, ..., vn−1, xn, vn, beginning and ending with vertices
in which each edge is incident with the two vertices immediately preceding and
following it in the given sequence.

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Basic Network Graph Models and Their Properties 47

Such a walk essentially joins v0 and vn and could be simply denoted by
v0, v1, ..., vn−1, vn and referred to as a v0−vn walk. A walk is closed if v0 = vn,
otherwise it is open. A walk is called a trail if all the edges of the walk are
distinct. If in addition all the vertices (and thus necessarily all the edges) are
distinct the walk is called a path. Another important notion is that of a cycle.

Definition 13 A cycle is a closed walk with distinct vertices and it is denoted
as Cn (cycle on n points, n > 3).

Graph C3 is called a triangle. A path with n points is denoted as Pn.
The length of a walk v0, v1, ..., vn−1, vn is n, equal to the number of edges

of the network traversed. The girth of a graph G, denoted by g(G) is the
length of the shortest cycle (if any) in G, while the circumference c(G) is the
length of the longest cycle (if any, as well).

The distance d(u, v) between two vertices u, v in G is defined as the length
of the shortest path joining them, if existing. Otherwise, the distance, defined
as above, is considered d(u, v) = ∞. If the underlying graph G is connected,
the distance is a proper metric, which means that for all points u, v, w the
following properties are satisfied:

1. d(u, v) > 0, with d(u, v) = 0 if and only if u = v.

2. d(u, v) = d(v, u)

3. d(u, v) + d(v, w) > d(u,w) (triangle inequality).

.
Usually, in measure theory, the shortest path between two nodes u-v is

called geodesic. Thus, the diameter d(G) of a connected graph G is the length
of the longest geodesic. The diameter is indicative of the longest path one
would experience in the best case scenarios where distances are computed
according to geodesics. For instance, in routing in communications networks,
the shortest paths are taken into account, and thus the diameter would be
the maximum distance experienced in multihop packet routing.

If a graph G has a walk that traverses each edge exactly once and goes
through all vertices, then G has an Eulerian trail. If the Eulerian trail is closed,
then G is said to have an Eulerian circuit and G is called Eulerian. In other
words, G is Eulerian, if it has an euler circuit. Clearly, a graph G cannot be
Eulerian if it is disconnected. The following theorems reflect exactly this fact
and offer further insight on the properties of Eulerian graphs:

Theorem 21 The following statements are equivalent for a connected graph
G:

1. G is Eulerian.

2. Every vertex of G has even degree.

3. The set of edges of G can be partitioned into cycles.
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Similarly to Euler trails and circuits, a Hamilton cycle is a cycle containing
all the vertices of a graph. A Hamilton path is a path containing all the vertices
of a graph. A Hamilton graph is a graph containing a Hamilton cycle. Thus,
a Hamilton graph has a closed Hamilton path.

The notion of Hamilton cycles and especially paths is important for vari-
ous applications, especially operations research. Unfortunately, no significant
characterization exists for Hamilton graphs and in fact we still lack an efficient
algorithm for constructing a Hamilton cycle in a Hamiltonian graph. Several
necessary or sufficient conditions are available for the characterizations, such
as the following theorem:

Theorem 22 Every Hamiltonian graph is 2-connected.

However, it is not yet known whether it is impossible to eventually obtain
efficient algorithms for constructing Hamilton cycles in graphs. Such a result
would be rather prominent and useful in practical applications of operations
research and more.

2.1.5 Flow

Another important aspect of the macroscopic operation of a network, second
only to the most fundamental of connectivity, is the transfer of some type
of quantity from a member of the network to other members through the
allowed paths (those imposed by connectivity). The transferred quantity could
be of various types, depending on the application framework. For instance, in
communications networks it could be data, in social networks it could be news
or another type of information, in financial networks it could be cash flow,
etc. Intuitively, such a notion is similar to water flow in a pipe network and
a mapping of the water intensity to the flow of information, currency, etc., is
possible to aid in the analysis and study of such problems.

In this subsection, we focus on flow-related aspects of networks, which
essentially describe the transferring capabilities of networks and the related
properties. We start with necessary definitions and then proceed with proper-
ties and features developed. In this case, since the direction of flow is important
(according to the water flow analogy the direction of flow is critical for the
water transferring capabilities of the pipe network), the underlying graphs
assumed for the study of flow need to be considered as directed. Such graph
types are considered in the sequel, unless otherwise noted.

Assume a finite directed graph
−→
G(V,

−→
E ) with two special vertices, namely

the source s and the sink t, where
−→
E is a directed set of edges (oftentimes

referred to as arcs).

Definition 14 A flow is defined as a nonnegative function on the edges, where
the value f(−→xy) = f(x, y) is the amount of flow traversing the edge-arc −→xy.

We also assume that f(x, y) = 0 whenever −→xy /∈ −→E .
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One of the basic principles in nature is that the total flow into each inter-
mediate vertex equals the total flow leaving the vertex (Kirchhoff’s law [33]),
except for the source and sink nodes. Using the water flow analogy, this es-
sentially may be thought of as the fact that in pipe junctions, the amount
of water towards the junction has to equal the amount of water out of the
junction, provided the junction is no source/sink. If that was not the case,
the amount of water remaining in the junction would either increase rapidly
and eventually blow up, or some amount of water would have to be created
out of nothing. This is essentially an application of the law of conservation in
nature. It may be expressed as:∑

y∈Γ+(x)

f(x, y) =
∑

z∈Γ−(x)

f(z, x) (2.3)

for all x ∈ V − {s, t} and the outgoing flow neighborhood of x, Γ+(x) = {y ∈
V : −→xy ∈ −→E }, incoming flow neighborhood Γ−(x) = {y ∈ V : −→yx ∈ −→E }. At
the same time, the total flow leaving the source equals the total flow entering
the sink:∑

y∈Γ+(s)

f(s, y)−
∑

y∈Γ−(s)

f(y, s) =
∑

y∈Γ−(t)

f(y, t)−
∑

y∈Γ+(t)

f(t, y) (2.4)

corresponding to a network, where no external input is assumed and the only
flow is generated from the source. Exactly this flow has to eventually reach
the sink, since the intermediate network nodes do not generate, nor absorb
any flow. The net flow value from s to t is denoted by v(f).

With each edge −→xy ∈ −→E , we associate a nonnegative number c(x, y), called
the capacity of −→xy, corresponding to the description that the flow of this edge
cannot exceed the capacity for any reason. Given two subsets X, Y of V ,−→
E (X,Y ) is the set of directed X − Y edges

−→
E (X,Y ) = {−→xy ∈ −→E : x ∈ X, y ∈

Y }. Whenever g :
−→
E → R we put g(X,Y ) =

∑
g(x, y), where the summation

is over
−→
E (X,Y ). If S is a subset of V containing s but not t, then

−→
E (S, S̄)

is called a cut separating s from t. The capacity of the cut
−→
E (S, S̄) is defined

as c(S, S̄) =
∑
c(x, y), with the summation spanning the set

−→
E (S, S̄).

By definition, edge capacity and flow cut are rather crudely related to
v(f) ≤ ∑

−→xy∈
−→
E

c(x, y).

Perhaps the most important result regarding network flow, which is widely
employed and exploited in many problem solving approaches, is the Max-
Flow Min-Cut theorem. The Max-Flow Min-Cut theorem allows identifying
the edges of a network that determine the flow dynamics in the network. It
can be expressed as:

Theorem 23 (Max-Flow Min-Cut Theorem) The maximal flow value from s
to t is equal to the minimum of the capacities of cuts separating s from t.
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The theorem remains valid even if some edges have infinite capacity, but the
maximal flow value is finite.

On one hand, the Max-Flow Min-Cut theorem enables the computation
of the maximum transferring capacity of the network, while on the other, it
enables us to locate the bottleneck part of the graph restricting this capacity.
Both are important for the analysis of operation and the design of efficient
networks.

An important fact regarding the structural properties of the capacity func-
tional is provided by the following theorem:

Theorem 24 If the capacity function is integral then there is a maximal flow
that is also integral.

which essentially describes the behavior of the maximal flow given the behav-
ior of the capacity function.

For the cases with multiple source and (or) sink nodes, the max-flow min-
cut theorem is straightforwardly extended as:

Theorem 25 The maximum of the flow value from a set of sources to a set
of sinks is equal to the minimum of capacities of cuts separating the sources
from the sinks.

The notion of capacity can be extended to cover vertices as well. More
specifically, assume capacity restrictions defined over all vertices except the
source and sink nodes. Thus, a vertex capacity constraint will be a function
c : V − {s, t} → R+ and every flow f from s to t has to satisfy the following
inequality for all x ∈ V − {s, t}:∑

y∈Γ+(x)

f(x, y) =
∑

z∈Γ−(x)

f(z, x) ≤ c(x) (2.5)

In this case, a cut is a subset S of V −{s, t}, such that no positive-valued flow
from s to t can be defined on G− S. The max-flow mix-cut theorem can also
be cast in a vertex form as follows:

Theorem 26 Let
−→
G be a directed graph with capacity bounds on the vertices

other than the source s and sink t. Then the minimum of the capacity of a
vertex-cut is equal to the maximum of the flow value from s to t.

2.1.6 Planarity

Another facet of graphs, which is very useful especially in the application
domain, such as topography, location-based applications (geo-location), and
visualization applications, is the topology of the graph in terms of embedding
it in specific spaces, e.g., a plane or a sphere.

A graph is said to be embedded in a surface S when it is drawn on S so
that no two edges intersect.
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Definition 15 A graph is planar if it can be embedded in the plane.

A plane graph has already been embedded in the plane. Regions defined by
a plane graph are referred to as faces and the unbounded region is called the
exterior face.

Planar graphs are very important since numerous network behaviors are
developing in surfaces, e.g., cell membranes in biology, earth in communica-
tions, and social networks, materials, etc. Apart from the evident applications,
and some others not so evidently expected, planarity offers significant insight
on the characteristics and capabilities of a network, in addition to the rest
of its analyzed properties. Several graph properties are tightly related to pla-
narity and various results on other features of a graph can be also derived
through results involving planarity.

Perhaps the most important result regarding planarity and graphs is the
following:

Theorem 27 (Euler Polyhedron Formula) For any spherical polyhedron with
p vertices, q edges, and F faces, p− q + F = 2.

A plane map is a connected plane graph together with all its faces. A
relevant result connecting plane graphs with graph cycles, which can be used in
various applications for identifying plane maps (e.g., topography and roadmap
networks) is the following:

Corollary 2 If G is a (p, q) plane map in which every face is an n-cycle,
then q = n(p− 2)/(n− 2).

A maximal planar graph is one in which no line can be added without los-
ing planarity. The following corollary provides a characterization of maximal
planar graphs regarding the types of their faces.

Corollary 3 If G is a (p, q) maximal plane graph, then every face is a triangle
and q = 3p − 6. If G is a plane graph in which every face is a 4-cycle, then
q = 2p− 4.

Some useful and relatively simple results that can be exploited in various
applications are the following. They essentially provide tools for identifying
graphs that can be planar or non-planar and can be used for designing desir-
able mechanisms for various types of networks and application frameworks.

Corollary 4 If G is any planar (p, q) graph with p ≥ 3, then q ≤ 3p − 6.
Furthermore, if G has no triangles, then q ≤ 2p− 4.

Corollary 5 The graphs K5 and K3,3 are nonplanar.

Corollary 6 Every planar graph G with p ≥ 4 has at least four vertices of
degree not exceeding 5.
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Perhaps one of the most important and more useful tools for identifying
planar networks is the following theorem. It can be very easily—and sometimes
efficiently as well—applied through greedy algorithms and used in practical
applications.

Theorem 28 A graph is planar if and only if each of its blocks is planar.

This means that planarity is not only a global graph property, but rather it
characterizes the graph in smaller scales as well. A graph is planar as long
as the smaller parts of it are also planar and vice-versa. This ‘recursive’-like
feature of planarity can be exploited in many applications related to planarity,
regarding both ways, namely top-down or bottom-up.

The following set of results provides useful tools for various applications
related to networks and planarity, e.g., roadmap networks, protein folding,
etc.

Theorem 29 Every 2-connected plane graph can be embedded in the plane so
that any specific face is the exterior.

Corollary 7 Every planar graph can be embedded in the plane so that a pre-
scribed edge is an edge of the exterior region.

Theorem 30 Every maximal planar graph with p ≥ 4 vertices is 3-connected.

Theorem 31 Every 3-connected planar graph is uniquely embeddable on the
sphere.

The following theorem is essentially considered the pinnacle of planarity,
since it describes very-easy-to-understand conditions for characterizing a
graph as non-planar.

Theorem 32 (Kuratowski’s theorem) A graph is planar if and only if it has
no subgraph homeomorphic to K5 or K3,3.

Thus, given Kuratowski’s theorem, the following result can be derived.

Theorem 33 A graph is planar if and only if it does not have a subgraph
contractible to K5 or K3,3.

The above result is very useful, since the problem of graph planarity charac-
terization is reduced to one of locating K5 or K3,3 components in a graph.
Greedy approaches may be developed for this purpose. However, depending
on the specific structure of a graph, such special features maybe exploited for
quicker and more efficient planarity characterization.
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2.1.7 Coloring (Covering)

Another important facet of traditional Graph Theory is covering, sometimes
equivalently denoted by coloring. In several emerging problems of traditional
and modern complex networks, it is required to distinguish the vertices of
a graph (i.e., complex network) in disjoint sets, in which nodes of the same
set are non-neighboring. These disjoint sets may be considered to represent
different color classes, so that the color corresponding to each class is used to
color the vertices of the class and eventually no two vertices of the same color
are adjacent. The latter is denoted by the vertex coloring problem, and due to
duality, the problem can be similarly considered for network edges, in which
case the problem is denoted by line (edge) coloring and no two adjacent lines
should be colored by the same color. The alternative terminology employed
refers to the objective of covering graph nodes with different colors and it is
equivalently used.

In the vertex coloring case, the different classes of colors essentially define
independent sets of nodes of the network. Such sets have multiple applications
in complex networks, e.g., scheduling in wireless ad hoc networks, or voter
groups of political parties in social networks. Examples are depicted in Figure
2.8, where vertex colors have been denoted by colored circles and edge colors
have been denoted by directly coloring the corresponding edges with different
colors. A maximum independent set is a largest independent set for a given
graph G and its size is denoted by α(G) and referred to as independence
number of G.

Both covering and coloring problems emerge very often, sometimes im-
plicitly, and constitute critical factors for many emerging behaviors in various
applications frameworks. In this subsection, we will present the fundamen-
tal definitions providing a solid basis for understanding some useful results
characterizing coverings and graphs, which could be useful for the interested
researcher and involved student.

Coloring refers to the assignments of different colors to the vertices (edges)
of a network in such a way that adjacent vertices (edges) have distinct colors
(Figure 2.8). The minimal number of colors in a vertex coloring is referred
to as chromatic number χ(G), and the minimal number of colors in an edge
coloring is referred to as edge-chromatic number χ′(G). It should be noted
that χ′(G) is exactly the chromatic number of the line (edge) graph of G,
χ′(G) = χ(L(G)). An n-coloring of a graph G uses n colors and thus, it
partitions the edge set V into n color classes. Clearly, a graph G s n-colorable
if χ(G) ≤ n and it is n-chromatic if χ(G) = n.

A straightforward consequence of the definition of the chromatic number
is that it is at least as large as the maximum clique size of the network, i.e.,
χ(G) ≥ ω(G). Similarly, the edge-chromatic number is at least as large as the
maximal network degree χ′(G) ≥ ∆(G).

Thus,

Theorem 34 Let G be a connected graph with maximal degree ∆. Suppose G
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(i)

(ii)

(iii)

(a) vertex coloring (b) edge coloring

Figure 2.8: Illustration of graph coloring (covering).

is neither a complete graph nor an odd cycle. Then χ(G) ≤ ∆,

which leads to the following theorem:

Theorem 35 A graph G of maximal degree ∆ has edge-chromatic number ∆
or ∆ + 1.

A more involved result is described in the following theorem:

Theorem 36 Every plane graph is 5-colorable.

which relates colorability with planarity and can be useful in various practi-
cal network applications, ranging from topography and roadmap networks to
protein folding networks and socio-politics dynamics.
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A more advanced notion in colorability is that of perfect graphs. A graph
G is perfect if χ(H) = ω(H) for every induced subgraph H of G, including G
itself.

Perfect graphs are closely related to bipartite graphs as the following the-
orem asserts.

Theorem 37 The complement of a bipartite graph is perfect.

Thus,

Theorem 38 A graph is bicolorable if and only if it has no odd cycles.

which is derived straightforwardly from the properties of bipartite graphs.
The complements of perfect graphs are also perfect graphs as asserted by

the following theorem.

Theorem 39 The complement of a perfect graph is perfect.

This means that a bipartite graph is also perfect. In fact, even more can be
obtained, so that every bipartite graph, the complement of every bipartite
graph, the line graph of every bipartite graph, and the complement of the line
graph of every bipartite graph, are all perfect.

A graph G is perfect if and only if neither G, not its complement Ḡ contains
an induced odd cycle of length at least 5.

One of the most important results in Graph Theory is the four color con-
jecture, which was eventually proven and turned into the following theorem:

Theorem 40 (Four Color Theorem) Every planar graph is 4-colorable.

We note that graph coloring here is meant in the sense of vertex coloring. The
Four Color Theorem relates planarity and colorability in a simple fashion. It
also limits the colorability potentials for a graph, namely 4 is the minimum
number of colors one will require to color the vertices of a planar graph, in the
general case. Thus, even though less than 4 colors might be sufficient, e.g., as
defined by the next theorem:

Theorem 41 Every planar graph with fewer than 4 triangles is 3-colorable.

there are special cases, as is evident by the above restriction of 4-triangle block
absence. Several other similar results are available, which are not presented
here due to their specialized nature.

2.1.8 Algebraic Graph Theory

A graph can be completely defined by its vertex or edge incidences and luckily,
both can be efficiently represented and exploited in matrix forms. Algebraic
Graph Theory, which among others, studies the properties of these represen-
tation matrices, is a field of its own merit and its in-depth description is out
of the scope of the field of complex networks (however, it is a mathematical
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field of great interest and importance in general). In this subsection, we will
present the fundamental and most interesting elements of algebraic Graph
Theory, which can be extensively used in Network Science, and the study and
analysis of complex networks. Some of these tools are extremely useful and
powerful for obtaining elegant results with minimum overhead, by utilizing
well-established and efficiently implementable techniques.

Graphs arise naturally in a field of mathematics denoted as group the-
ory, as representation diagrams and also in the study of object automorphism
in finite simple groups3 [165]. In such cases, graphs are essentially visual or
computational aids, exploited in providing convenient representation of ad-
mittedly more abstract mathematical concepts. In addition, graphs can also
be exploited for proving general results about groups and particular results
for individual groups via suitable mappings. Group diagrams reveal no addi-
tional information than what is already provided algebraically. However, what
is conveyed almost instantaneously by a single diagram could actually require
significant algebraic notation and description.

In this subsection, we will not be involved in this kind of detail or advanced
analysis. We will mostly focus on the basic definitions required for the study
of graphs and networks through matrix theory. We will also summarize the
most notable results that have been useful and could be also helpful in the
analysis, design, and control of complex networks.

Adjacency Matrix and Graph Laplacian

Techniques obtained from linear algebra enable establishing connections be-
tween graph combinatorial properties and the eigenvalue distributions of the
corresponding network adjacency and weight matrices. In turn, such tech-
niques enable more efficient representations and automation of such method-
ologies, since significant work has enabled matrix manipulation with comput-
ers in an efficient and illuminating manner.

The adjacency matrix A of an undirected graph was defined previously, as
the 0-1 element matrix, where an element (i, j) is 1 if edge (i, j) between nodes
i and j exists and 0 otherwise. The adjacency matrix contains all neighboring
(connectivity) information of the graph. This observation enables a two-fold
operation. Either exploit matrix representation for compactly analyzing net-
work properties, or applying well-known techniques from matrix theory in al-
gebraic graph representation to obtain properties and features not possible to
obtain with standard Graph Theory approaches. By definition the adjacency
matrix is symmetric and therefore, it has an orthonormal base v0, v1, ..., vn−1

3As a definition of simple groups, it may be considered that a simple group is a group
(algebraic structure) whose only normal subgroups are the trivial subgroup of order one
and the improper subgroup consisting of the entire original group. A more thorough study
goes beyond the scope of this book and the interested reader may refer to [165], [139] for
more details.
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with eigenvalues µ0, µ1, ..., µn−1 such that for all i, Avi = µivi, for an n × n
adjacency matrix A.

The following are the first such results that enable obtaining simple char-
acterizations of graph metric with means that can be easily implemented and
efficiently computed with modern software tools in plenty of commercial de-
vices, thus simplifying in turn complex network analysis and design.

Theorem 42 Assume G is a connected graph of order n and its adjacency
matrix is A. Then the following hold:

1. Every eigenvalue µ of G (A) satisfies |µ| ≤ ∆ = ∆(G).

2. The maximal degree ∆ is an eigenvalue of G iff G is regular, in which
case the multiplicity of this eigenvalue is m(∆) = 1.

3. If −∆ is an eigenvalue of G then G is regular and bipartite.

Denoting by µmax(G), µmin(G), the maximum and minimum eigenvalues
of G correspondingly, we have:

Corollary 8 Every graph G satisfies χ(G) ≤ µmax(G).

and a stronger result:

Theorem 43 Let G be a nonempty graph. Then

χ(G) ≥ 1− µmax(G)

µmin(G)
. (2.6)

Powers of the adjacency matrix have been proven very useful for the in-
vestigation of network graph properties. In particular, the number of k-hop
paths between vertices i and j in a graph with adjacency matrix A is the
(i, j) element of matrix Ak. Furthermore, the matrix Sk = A+ A2 + ...+ Ak

can be used to obtain the shortest path length between any pair of network
nodes. Sk provides the number of paths from i to j in k steps or less. Thus,
for increasing k, the first value of k for which Sk is non-zero is the shortest
path length between i and j. However, this is a non-constructive method in
the sense that it only determines the shortest path length, but not the actual
shortest path itself. In addition, the matrix Sk may be used for determining
graph connectivity. If the graph has n vertices, then the largest possible dis-
tance between nodes is n steps. Thus, by obtaining Sn, if there are zero entries
in Sn, it will be impossible for the corresponding vertices to be connected in
n or less steps, so this specific pair will be not possible to be connected and
thus by definition the graph is not connected.

Another useful algebraic feature of networks is the Lagrangian. More
specifically, the quadratic form < Ax, x > is referred to as the Lagrangian
of G and it is denoted by:

fG(x) =< Ax, x >=
n∑

i,j=1

aijxixj =
∑
ui uj

xixj . (2.7)
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The Lagrangian f(G) is intimately related to the complete subgraphs of
G. More specifically, it depends only on the clique number of G. If G is a
complete graph Kn, then f(Kn) = n−1

n .

Theorem 44 Let G be a graph with clique number k0. Then f(G) = k0−1
k0

.

The combinatorial Laplacian of G is simply L = D−A, where D = [Dij ] is
the diagonal matrix in which Dii is the degree d(vi) of node vi. The Laplacian
is a matrix as well. The second smallest eigenvalue of L is especially important.
The larger this eigenvalue is, the tougher it is to cut G into pieces and the more
G expands (see Expander Graphs at Chapter 5, Section 5.5). The Laplacian
is an even more powerful tool than the Lagrangian. If G is r-regular, the
spectrum of L is just the spectrum of G reversed and shifted.

The Laplacian is useful in characterizing various connectivity features of
the graph with other measures, as the following results show:

Theorem 45 The vertex connectivity of an incomplete graph G is at least as
large as the second smallest eigenvalue λ2(G) of the Laplacian G.

Theorem 46 The adjacency matrix of a graph G has at least α(G) non-
negative and at least α(G) non-positive eigenvalues, counted with multiplicity,
where α(G) is the independence number of graph G.

Obtaining knowledge of the entire eigenvalue spectrum of a graph would
be ideal for the design, study, and analysis of the systems where the graphs
emerge. However, this is intractable, if not impossible, in most applications.
Various bounds on the eigenvalue spectrum constitute a possible alternative,
whereas in some special cases, special graph topological properties could be
exploited to obtain sufficient or complete spectrum knowledge.

Trivially, the empty graph En = K̄n has one eigenvalue 0, with multiplicity
n, and more generally, adding an isolated vertex to a graph G increases by one
the multiplicity of the 0 eigenvalue. The complete graph Kn has eigenvalues
µ1 = n − 1 and µ2 = −1, with multiplicities 1 and n − 1 respectively. The
complete bipartite graph Kn,n−k has three eigenvalues µ1 = (k(n− k))2 and
µ2 = −(k(n−k))2, each with multiplicity 1 and µ3 = 0 with multiplicity n−2.

At this point, we quote the Perron–Frobenius Theorem [130], which char-
acterizes the eigenvalues and eigenvectors of nonnegative, irreducible matrices
and finds interesting applications in complex networks. A matrix A is said to
be nonnegative if it consists of nonnegative entries, i.e., A = [aij ], where
aij ≤ 0, ∀ i, j. A matrix A is said to be reducible if it is possible to rewrite A
after row and column operations so that its upper right-hand block consists
of zero elements, i.e.,

A =

(
B 0
C D

)
,

where B, D are square matrices. The Perron–Frobenius Theorem refers to
irreducible matrices, thus matrices not being reducible. Also, the spectral
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radius of A is defined as ρ(A) = maxi{|µi|}, i.e., ρ(a) coincides with the
eigenvalue of A with the largest absolute value.

Theorem 47 (The Perron–Frobenius Theorem) If A is a nonnegative irre-
ducible matrix, then:

1. ρ(A) > 0 and ρ(A) is an eigenvalue of A, i.e., the largest eigenvalue of
A is always positive and it equals the spectral radius of A.

2. The left and right eigenvectors of A corresponding to the eigenvalue ρ(A)
consist of positive entries (i.e., positive vectors).

3. If µ is any other eigenvalue of A, then |µ| ≤ ρ(A). Equality of this
relation is achieved in the case that A is a periodic matrix with period
T , i.e., anii = 0, n 6= kT .

The Perron–Frobenius Theorem has plenty of applications in the field of
complex networks [130]. It is used in the power control problem where multi-
ple transmitting nodes need to identify their optimal transmission powers so
as to achieve successful communication under acceptable interference levels,
in commodity pricing, in population growth models, in the page ranking algo-
rithm used by the Google search engine, and in the expander graph structure.

2.2 Random Graphs

Random Graphs are considered one of the most contemporary branches in
Graph Theory, essentially started by a series of papers by Erdős and Rényi in
the 1940s and 1950s. Using probabilistic methods several unexpected results
on graphs were proven, some of which are deterministic. It was possible to
demonstrate the existence of the desired graphs without actually constructing
them, using probabilistic methods only.

Compared to traditional Graph Theory, the most important results of
which were summarized in the previous parts of this chapter, random graphs
study essentially the same problems from another perspective, more suitable
for studying the dynamic behavior of networks. Random graphs also offer an
alternative network model for cases where stochastic behavior is prevalent. In
the latter, various degrees of randomness can be incorporated in the formation
and evolution of design of networks, which was not straightforwardly achieved
in the case of traditional Graph Theory models.

An intuitive way of considering Random Graphs is that every probability
space whose points are graphs provides such a notion of a random graph.
However, this also gives rise to many different Random Graphs models. In the
following, we will summarize the most important ones and provide the more
useful results stemming from them.
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2.2.1 Basic Random Graph Models

In general, one encounters three basic and closely related models of Random
Graphs in the literature. The probability space in each case consists of graphs
on a fixed set of n distinguishable vertices V = [n] = {1, 2, ..., n}. In the
sequel, we use the notations M, N to represent number of edges.

For 0 ≤ M ≤ N , the space G(n,M) consists of all

(
N

M

)
subgraphs of

Kn with M edges. Thus, the G(n,M) model describes graphs that could be
obtained by the subspace of Kn which contains only graphs with M edges.
All elements (graphs) of this space are assumed equiprobable, and due to
the assignment of a probability measure to its elements, the space becomes a
probability space. It is customary to write GM = Gn,M for a random graph
in the space G(n,M). The probability that GM is precisely a fixed graph H
on [n] with M edges is:

PM (GM = H) =

(
N

M

)−1

(2.8)

The space G(n, p) (G(n,P(edge) = p)) is defined for probability 0 ≤ p ≤ 1.
A random element of this space corresponds to selecting edges independently
with probability p, for all possible existing edges in a graph of n nodes. This
means again that the potential probability space includes all possible sub-
graphs of the space of Kn graphs. In this case, however, only those are se-
lected that correspond to a selection process where each edge is selected with
probability p. Similarly to the G(n,M) model, the probability of a fixed graph
H on [n] with m edges is:

pm(1− p)N−m (2.9)

where each of the m edges of H has to be selected, and none of the N −m is
allowed to be selected.

In most cases, in Random Graphs one is interested in the behavior of
graphs for n −→∞. Thus, both M = M(n) and p = p(n) for the two models
become functions of n and so do most of the studied properties of the graphs.

Finally, the space G(n, 1/2) is obtained by picking one of the 2N graphs
on [n] at random, thus it is the space of Random Graphs of order n, where
all graphs are considered equiprobable.

The three spaces are very closely related to each other. For M ∼ pN the
spaces G(n,M) and G(n, p) are close to each other.

Once a probability space on Random Graphs has been defined, every graph
invariant, such as the ones defined for traditional deterministic graphs, be-
comes a random variable. These random variables depend on the specific ran-
dom space employed.

It has been proven that G(n,M) and G(n, p) are practically interchangeable
in many cases, provided that M = pN , as M →∞ and (N −M)→∞.
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Simple Properties of Almost All Graphs

For the rest of this subsection, unless otherwise noted explicitly, all reference
will be with respect to the probability space Ωn = G(n, p) of random graphs.
It could also be assumed that for the following results, 0 < p < 1 is fixed,
namely p is independent of n.

Given a property Q, it is customarily denoted that almost every (a.e.)
graph in the probability space Ωn consisting of graphs of order n has property
Q if P(G ∈ Ωn : G has Q)→ 1 as n→∞.

One of the most simple properties of almost every graph is that if H is
an arbitrary fixed graph, then almost every GP ∈ G(n, p) contains H as a
spanned subgraph. A stronger result of this is the following:

Theorem 48 Let 1 ≤ h ≤ k be fixed natural numbers and let 0 < p < 1 be
fixed as well. Then in G(n, p) a.e. graph Gp is such that for every sequence
of k vertices x1, x2, ..., xk there exists a vertex x such that xxi ∈ E(Gp) if
1 ≤ i ≤ h and xxi 6∈ E(Gp) if h < i ≤ k.

As noted before, G(n, p) and G(n,M) are practically interchangeable in
many situations, provided that p = M/N , for M → ∞ and (N −M) → ∞.
This can be expressed more strongly in the following theorem:

Theorem 49 Let 0 < p = p(n) < 1 be such that pn2 →∞ and (1−p)n2 →∞
as n→∞ and let Q be a property of graphs.

• Suppose ε > 0 is fixed and if (1 − ε)pN < M < (1 + ε)pN , then a.e.
graph in G(n,M) has Q. Then a.e graph in G(n, p) has Q.

• If Q is a convex property and a.e. graph in G(n, P (edge) = p) has Q,
then a.e. graph in G(n, bpnc) has Q.

The following is a characterization of the clique number through random
graph tools:

Theorem 50 Let 0 < p < 1 and b fixed. Then the clique number of almost
every Gn,p is d or d+ 1, where d = d(n) is given by:(

n

d

)
p(
d
2) ≥ log n (2.10)

A property of a graph is essentially a class of graphs closed under isomor-
phism. In particular for random graphs, a property Qn of graphs of order n
can be viewed as a subset of the set of graphs with vertex set [n]. This set
needs only be invariant under permutations of [n]. A property Q of graphs is
thus monotone increasing if Q is invariant under the addition of edges. Simi-
larly a property is monotone decreasing if it is invariant under the deletion of
edges.

A very interesting finding in Random Graphs was that overall a monotone
increasing property of graphs arises rather abruptly, which was coined as
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threshold behavior. To express this more precisely, a function p`(n) is a lower
threshold function (ltf) for a monotone increasing property Q if almost no
Gn,p`(n) has Q and pu(n) is an upper threshold function (utf) for Q if almost
every Gn,pu(n) has Q. Threshold functions are defined similarly for the space
G(N,M).

Threshold behavior in Random Graphs is closely related to connectivity.
The first result is the following:

Theorem 51 Let ω(n)→∞ and set p` = (log n−ω(n))/n and pu = (log n+
ω(n))/n. Then a.e. Gp` is disconnected and a.e. Gpu is connected. Thus, for
the model G(n, p), p` is a utf and pu is a utf for the property of being connected.

Another important result is the emergence of connectivity in random graphs.
Given a monotone increasing property Q, the time τ at which Q appears in a
graph process G̃ = (Gt)

N
0 is the hitting time of Q, defined as:

τ = τQ = τ(G̃;Q) = min{t : Gt has Q}. (2.11)

Relevant to the above is the very important theorem:

Theorem 52 For almost every graph process G̃ we have τ(G̃; conn) =
τ(G̃; δ ≥ 1),

where δ is the minimum node degree and conn denotes the connectivity prop-
erty. This Theorem essentially means that if one starts with an empty graph
on a large set of vertices and adds edges randomly until the graph has no
isolated vertices, then with high probability, the graph obtained is connected.
This also means that the edge that removes the last isolated vertex makes
the graph connected. Such a finding is very important, especially in wireless
communications networks, having a lot of implications, and its great value is
also that it can be used conversely when studying loss of connectivity. The
theorem essentially says that both properties are identical and reversible.

By observing that the complement of a random graphGn,p is also a random
graph Gn,q with q = 1 − p, the distribution of the independence number
α(Gn,p) is precisely the distribution of the clique number ω(Gn,p), and since
by the previous theorem (Theorem 51) ω(Gn,p) = ( 1

2 + o(1)) log n/ log(1/q),
then we have the following result:

Theorem 53 Let 0 < p < 1 be fixed. Then

χ(Gn,p) ≥
(

1

2
+ o(1)

)
log n

log(1/q)
(2.12)

for a.e. Gn,p, where q = 1− p.

Regarding Hamilton cycles, some considerable results follow. which can
characterize graphs and their ‘Hamiltonian’ properties:
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Theorem 54 Let p = (c log n)/n and consider the space G(n, p). If c > 3 and
x and y are arbitrary vertices, then almost every graph contains a Hamilton
path from x to y. If c > 9 then almost every graph is Hamiltonian connected,
thus every pair of distinct vertices is joined by a Hamilton path.

This is evidently a very useful result for information networks and the
spread/propagation of information analysis in military, financial, and com-
mercial perspectives. Similarly to connectivity threshold behavior, regarding
Hamilton paths, we have:

Theorem 55 Almost every graph process G̃ is such that τ(G̃;Ham) =
τ(G̃; δ ≥ 2), where “Ham” is the property of being Hamiltonian and “δ ≥ 2”
is the property of having minimal degree at least 2.

Consequently, if the random graph process is stopped as soon as the last vertex
with degree at most 1 exists (it becomes a vertex with degree more than 1),
then with high probability a Hamilton graph is obtained.

Finally, a very useful result regarding the components of a random graph
and essentially providing an idea of how a typical graph looks is the following:

Theorem 56 Almost every random graph process is such that if k ≥ 2 is fixed
and t = o(n(k−1)/k) then every component of Gt is a tree of order at most
t. Furthermore, if s is constant and t/n(k−1)/k → ∞ then Gt has at least s
components of order k.

2.3 Notation

The following Table 2.1, presents cumulatively the most important notation
symbols regarding the theory of graphs and random graphs. The purpose of
this table is to provide a solid nomenclature for the rest of this book and
future studies of the interested reader and progressively develop a concrete
idea of quantities of interest in the broader field of network graphs, which can
be extended in social and complex network analysis.

Notation adopts the most frequently encountered paradigms, e.g., the or-
der of a graph G(V,E)—namely the number of vertices of a graph is com-
monly denoted by n = |G|, and Table 2.1 reflects such common practice. On
the other hand, the neighborhood of a vertex x is usually denoted by Γ(x) for
mathematicians and N(x) by engineers. In any case, Table 2.1 includes both
notations (but does not indicate which is used in each case).

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

64 Evolutionary Dynamics of Complex Communications Networks

Table 2.1: Graph theory notation.
Symbol Definition

n order (number of vertices) of G(V,E) (n = |V |)
m size (number of edges) of G(V,E) (m = |E|)

A = A(G) adjacency matrix of G(V,E)
α(G) independence number of G(V,E)

B = B(G) incidence matrix of G(V,E)
C(s) cover time
C(x, y) mean commute time between vertices x-y
χ(G) chromatic (vertex) number of G(V,E)
χ′(G) edge chromatic number of G(V,E)

∆ maximum node degree of G(V,E)
δ minimum node degree of G(V,E)

diam(G) diameter of of G(V,E)
E(U,W ) set of U -W edges
E(G) set of edges of G(V,E)
H(ω) Hamiltonian
H(x, x) mean return time
H(x, y) mean hitting time
Kn complete graph of order n
Kp,q complete bipartite graph
κ(G) connectivity of G(V,E)
λ(G) edge-connectivity of G(V,E)
L(G) line graph of G(V,E)

N(x) or Γ(x) neighborhood of vertex x ∈ V of G(V,E)
V (G) vertex set of of G(V,E)
ω(G) clique number of G(V,E)
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Chapter 3

Cognitive Methods and
Evolutionary Computing

Evolutionary computing and various cognitive methods included within the
broader framework of evolutionary approaches constitute a vast branch of
computer science, where inspiration has been drawn from the processes of nat-
ural evolution, in a fashion similar to that in which communications networks
can employ approaches inspired by social networking and vice-versa. The fun-
damental metaphor of evolutionary computing and cognitive methods is a
characteristic style of problem solving, which is essentially an advanced trial-
and-error search. Such an approach usually takes place in a stochastic manner,
which ensures rapid response time and efficient implementation, while simul-
taneously ensuring sufficient exploration of the corresponding search space of
possible solutions to the problem.

In this chapter we initially explain the concept of evolutionary computing
and the underlying “evolutionary cycle” based on which the corresponding
approaches operate. In the sequel, we present in detail the most characteristic
evolutionary approach, namely genetic algorithms, with which we demonstrate
the specific operations and interactions of the evolutionary algorithm modules.
Then, we present other prominent evolutionary algorithms in a similar, but
more concise manner compared to the one employed for genetic algorithms.

The features presented in this chapter essentially constitute broader guide-
lines for developing evolutionary algorithms. They could be employed and
implemented in different ways in designing evolutionary algorithms. In the
following chapters, we show how to exploit concepts from the approaches
presented in this chapter for developing evolutionary topology modifica-
tion/control mechanisms.
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66 Evolutionary Dynamics of Complex Communications Networks

3.1 Brief History of Evolutionary Computing

According to [59], evolutionary computing can be summarized as applying
Darwinian principles to automated problem solving (computing), usually with
the aid of computers nowadays, even though this concept can be traced back to
the early 1940s, before the breakthrough of computers as we perceive them to-
day. Alan Turing was among the first to propose the concept of genetical (evo-
lutionary) search (1948) and Bremermann had already executed computer ex-
periments on optimization through evolution and recombination1 by 1968 [65].

The first widespread attempts appeared in the 1960s, where evolutionary
programming emerged and genetic algorithms (by Holland [87]) emerged in
the United States, while in Germany, Rechenberg [132] and Schwefel [144] in-
vented evolution strategies. These approaches eventually converged and from
the 1990s on they are considered as representatives of the same technology,
namely evolutionary computing. Genetic programming, which emerged in
the 1990s as well, complemented the other three branches, and all of them
are currently part of the literature referred to as evolutionary computing/
evolutionary algorithms.

Since the mid 1980s and later from the 1990s, more systematically, several
conferences, workshops, and other relevant events have been devoted to the
subject of evolutionary computing and the topics spanned by it. Later, from
the mid 1990s onwards, the first journal devoted to the subject appeared and
since then, several others followed. A significant number of publications are
nowadays annually devoted to evolutionary computing and several approaches
shaped and developed within this framework can be encountered in publica-
tions of other disciplines as well, signifying the importance and applicability
of such approaches in engineering and other scientific disciplines.

3.2 Elements from Evolution Theory

Observing natural evolution of human or other populations, the spontaneous
behavior of these groups is centered around survival (usually referred to as
reproduction for living species). Survival is constrained by the environment
and it is achieved by a measure of the population fitness, namely a measure of
the successfulness of the population effort and developed capabilities to adapt
to environmental changes and succeed in achieving their goals. In that sense,
the fitness is also a measure of the population quality, determining which of
these populations has greater odds to survive (and to what degree) drastic or
slower changes in their environment.

Considering macroscopically the natural evolution, natural selection plays
a key role. Given constrained population survival, where selection plays a
fundamental role, natural selection seems to favor those individuals that com-

1Evolution and recombination are basic evolutionary computing modules, which will be
analyzed in the rest of this chapter.
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pete for resources in the most effective manner. This is sometimes referred
to as “survival of the fittest.” Such competition-based selection is one of the
two cornerstones of evolutionary processes and will be a significant factor in
evolutionary computing as well.

In the context of the stochastic trial-and-error approach of evolutionary
computing described above and given the principle of the survival of the fittest,
for each problem a number of available (candidate) solutions exist, each char-
acterized by different quality (i.e. how well they solve the problem). Solution
quality (similar to population fitness in natural evolution) determines the
chance that these solutions will be still considered and used as seeds for fur-
ther candidate solutions, until the final solution is achieved.

As a trial-and-error approach, evolutionary approaches can be customarily
cast as optimization problems over search spaces with the objective function
to maximize or minimize a function. In the case that fitness is employed as
the optimization objective, maximization is the usual approach (unless fitness
of a malign population is employed, in which case a minimization would be
desired more). If each population’s objective function value (fitness or other)
is represented in a suitable space, local optima and global optima signify the
evolution of the population (problem solutions) and its effectiveness. Such
optima (local or global) denote populations (solutions) that are better than
all their neighboring populations (solutions). A problem in which there is only
one population (solution point) that is fitter than all of its neighbors is known
as unimodal and in the event of multiple populations (solution points) with
the same fitness value, the problem is known as multi-modal.

Even though the link between evolution and optimization from the above
discussion seems to be straightforward, it can also be misleading, as the evo-
lutionary processes are not always monotone (unidirectional uphill in a max-
imization case). Since the process is essentially of a stochastic trial-and-error
nature, and the population has finite size, while some choices are made at
random, there exist cases where highly fit individuals can be lost from one
population generation to another (contrary to optimization where local op-
tima with highest fitness always survive local optima with lower objective
values), or the whole population may face a loss of great variety affecting
it considerably. Such behavior is referred to as genetic drift in evolutionary
terms. The combined effect of drift and selection enable populations to move
up and down the fitness scale, which in optimization terms enables the popu-
lation to escape from local optima. The objective of an evolutionary approach
would be to exploit this behavior to avoid trapping in local optima, while
guaranteeing convergence to global ones when available and when desired.

At this point we need to clarify two aspects of evolution theory, namely
genotype and phenotype, which will aid in understanding the process and flow
of evolutionary computing. In genetics, each entity consists of both genotype
and phenotype. Genotype contains all the information necessary for building
an entity, while phenotype describes the outside (visible) properties of an en-
tity. Thus, the genotype encodes the phenotype of an individual entity. The
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genome describes cumulatively the whole genetic information, namely the
complete building plan of an entity. One of the principal dogmas of genetics
is that information flow is one-way, namely that genotypic information only
influences phenotypic and not vice-versa. Consequently, the genetic material
of a population can only arise from random variations and natural selections
of the population, and definitely not from individual learning. Thus, it is im-
portant to understand that variations take place at the genotype level, while
learning is based on actual performance in a given environment, namely at
the phenotypic level. These principles should be carefully respected in evolu-
tionary approaches and those mechanisms imitating their operation.

3.3 Evolutionary Computing

When trying to identify the most powerful natural problem solvers, which
would be desired to be imitated and/or exploited in engineering approaches,
and more specifically in the design of wireless networks, these two are the
most characteristic ones:

1. the human brain

2. evolutionary process

The latter is essentially created by the human brain (and other brains too,
to certain degrees) and is sometimes also referred to as cognition or cognitive
process. Designing solvers based on the first item is part of the field of neuro-
computing. The second, however, forms the basis for evolutionary computing.

The evolutionary computing field provides a proper framework for devel-
oping mechanisms and algorithms applicable to a wide range of problems (as
the cognitive operations of nature), which do not need much tailoring for spe-
cific problems and deliver good (but not necessarily optimal) solutions within
acceptable time scales. The latter, namely sub-optimality, which essentially
satisfies various time and possibly resource constraints, is the essence of cog-
nition, which is rather clearly observed in human behavior and other natural
processes.

In automated problem solving, one may observe three main components,
namely inputs, internal models receiving the inputs and producing the third
component, namely outputs. Knowledge of the model essentially means knowl-
edge of the system, since given an input and the model, the output may be
computed. In that rather generic consideration of systems as input-model-
output, three major categories may be identified in the literature, depending
on the knowledge availability of each component. The three classes of systems
are shown in Figure 3.1.

Figure 3.1(a) describes an optimization problem type, where the model
and the desired output are known and the objective is to find the required
input or inputs ensuring the desired output. Optimality is one of the desired
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known

Model

(system)

input output

specified?

(a) Optimization problems approach.

?

Model

(system)

input output

specifiedgiven

(b) Modeling problems approach.

known

Model

(system)

outputinput

?given

(c) Simulation approach.

Figure 3.1: Problem solving approaches.

properties that the system should bear and in communications terms this is
usually in the form of minimum resource consumption or other paid cost, or
maximum obtained outcome (benefit).

Figure 3.1(b) depicts a modeling or system identification problem type,
where now the input/output of the system are known and the objective is
to obtain a model that provides the correct output for each known input. In
such cases, typically prior input-output combinations history is exploited for
seeking a suitable model, which is aimed to be used as a predictor that will
provide the output for future received inputs.

Finally, Figure 3.1(c) presents a simulation problem type of system, where
the model and some inputs are known, while the objective is to compute the
corresponding outputs. Simulation is used extensively, especially in network
engineering in communications, as a cheap means to study the performance of
developed network infrastructure and for developing, testing, and validating
new concepts and protocol mechanisms.
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Evolutionary computing has been applied and has potential applications
in all three of the above classes of automated problem solving systems. For
instance, the ant-colony optimization technique, which has been inspired by
the observation of ant colonies, has been successfully applied in various di-
verse applications, such as for reverse optimization of car airfoils in mechanical
engineering [53]. Evolutionary computing has also been applied in modeling
problems, as in applications where available data, e.g., socio- and geo-location
data, were required to be matched to the profiles of users/clients for mobile
operators, financial institutions, etc. Such models are highly desired for their
predictive powers and their applications in critical decision-making. Another
characteristic case of modeling approaches are the design of classifiers, i.e.,
software systems that perform filtering and sorting of rules, trends, behav-
iors, etc. and have tremendous impact in the successfulness of applications in
stock markets, marketing, trading, etc. Finally, evolutionary computing has
been identified in the simulation domain as well, especially in finance and
communications networks. One characteristic example is agent-based com-
putation, where distributed software agents are employed for modeling the
behavior of financial players or network nodes, and obtain performance indi-
cations and/or validation for developed schemes. In such cases, the outcomes
need to be explored in a very cautionary fashion, by taking into account the
specific assumptions of the simulation study and the conditions of the actual
environment.

Sometimes, evolution may be considered as an adaptation process rather
than an optimizer. In this case, the fitness does not correspond to an ob-
jective function, but rather as an expression of environmental or operational
requirements. The populations strive to adapt to the imposed requirements,
hence the notion of evolutionary adaptation. It is key to always keep in mind
that several of the components of this process, which will be analyzed in more
detail in the following sections, are stochastic.

3.3.1 Components of Evolutionary Algorithms

Many different variants of evolutionary algorithms exist. However, a common
underlying concept that all these algorithms share is that given a population
of individuals (solutions), the environment leads to natural selection (survival
of the fittest), leading in turn in the rise of the overall fitness of the yielded
population. In general, given a function to be maximized (minimization can
usually be treated as a maximization of the inverse) a random set of candidate
solutions can be created from the functions’ domain. The quality function is
applied as a fitness measure and the higher it is, the better for the search
procedure. Some of the better candidates are chosen according to the fitness
function, in order to seed the next generation by applying either recombina-
tion or mutation. The first combines features of two or more of the selected
candidates (parents) and results in one or more new candidates (children).
Mutation is applied to a single candidate and results again in a single new
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candidate. The set of new candidates (offspring) compete based on their fit-
ness values and the whole process repeats until a solution (candidate set) with
sufficient cumulative fitness (quality) value is achieved.

In general the process described above is based on two driving forces:

1. variation operator (in this case recombination and mutation)

2. selection

The first creates the required diversity of the trial-and-error search process,
which essentially creates novelty in the considered solution set. The second
acts as a quality pusher, forcing the selection of individuals (solutions) of
better quality. The combined application of the above two forces leads to
improved fitness in consecutive populations.

A general sketch of the modules and their operation of an evolutionary
algorithm in pseudocode is given in the following Algorithm 1 and depicts the
potential components that an evolutionary algorithm may consist of.

Input: population
Output: new population
begin

INITIALIZE population with random candidate solutions;
EVALUATE each candidate;
while TERMINATION CONDITION not satisfied do

SELECT parents;
RECOMBINE pairs of parents;
MUTATE the resulting offspring;
EVALUATE new candidates;
SELECT individuals for the next generation;

end

end
Algorithm 1: General mechanism of an evolutionary algorithm (pseu-
docode).

It should be clearly noted that several of the components depicted in Algo-
rithm 1 are stochastic, in order to ensure the better and more efficient explo-
ration of the corresponding search space. However, this is also the reason that
such approaches are sub-optimal, since the whole space is not systematically
covered, and thus, the potentially uniquely optimal solution may be lost by
the stochastic search strategy.

From the above description, it becomes evident that evolutionary algo-
rithms employ a generate-and-test philosophy (we also referred to that pre-
viously as trial-and-error), where random outcomes are produced and with
greater probability the fittest among these survive to the next round. The
evaluation of fitness function is in fact a heuristic approach to estimate the
quality (fit to our desires) of a solution candidate in the population. The
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search in the surviving population is driven by the variation and selection
operators.

The most important components of an evolutionary algorithm can be iden-
tified from the pseudocode table of Algorithm 1, and they are provided in the
following list:

1. Representation

2. Evaluation (fitness) function

3. Population

4. Parent selection

5. Variation operators, recombination and mutation

6. Survivor selection (replacement)

In addition to the definition of the above components, an initialization pro-
cedure(s) and termination condition(s) should be defined for each algorithm
to operate properly and according to the specific application framework it is
intended for. The whole process is schematically depicted in Figure 3.2.

3.3.2 Representation

Representation is the first step for defining an evolutionary algorithm and
its objective is to link the real world with the “evolutionary world.” Objects
forming candidate solutions are referred to as phenotypes and their represen-
tation as genotypes, in accordance with the previous discussion on the genetics
analogy. The representation part accounts for specifying a mapping from the
phenotypes onto the set of genotypes, representing the original phenotypes.
An example of that in the mathematical programming domain would involve

Population

Offspring Parents

Input
(initialization)

Output
(termination)

Recombination

Mutation

Parent 

selection
Survivor

selection

Figure 3.2: Schematic operation of a generic evolutionary algorithm.
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integers as the phenotypes and their binary codes as their genotype represen-
tations. The terms candidate solution and chromosome have also been used
extensively to denote the phenotype and genotype individuals, respectively.

The whole process in an evolutionary algorithm takes place in the genotype
world, where an optimal (or suboptimal) solution is discovered and then a
reverse process of translating the obtained genotype-domain solution to its
phenotype-domain is required. The representation can be used in another
sense than the above sense of “encoding” described already. In that second
sense, it describes the data structure employed for the genotype in general.

3.3.3 Fitness Function

The role of the evaluation function, or fitness function as it is most commonly
known in evolutionary computing literature, is to represent the adaptations
required for the representation of reality in the evolutionary computing world.
It facilitates the basis on which improvement takes place, and therefore, it
can also enable selection leading eventually to evolution. Fundamentally, it
defines the generalized notion of improvement in the evolutionary process, and
mathematically, it is a function that assigns a quality measure to the genotypes
defined from the selected representation. In some cases, such fitness function
may be required to be minimized within a specific problem framework, but
this should not be confused with the implied notion of improvement that the
‘fitness’ term bears. It should be treated simply as an objective function to be
optimized in the sense dictated by the specific application framework applied
into. In many cases, the fitness function may be defined as a functional or
transformation of the actual objective function optimized in a mathematical
program within the framework of the studied problem. However, in any case,
the fitness is employed to assign a measure of improvement onto the candidate
solutions (genotypes), based on which election of the the most superior will
take place with higher probability, eventually yielding an overall more superior
(fittest) candidate solution set.

3.3.4 Population

The population contains the representation of potential solutions, and as such,
it is a multiset of genotypes, in the sense that multiple copies of an element
are possible in this set. It forms the basis of evolution in that, while the in-
dividuals remain static and do not change, it is the whole population that
changes and thus through population evolution, evolution of the complete
system follows. Representations of the populations can be in one of multiple
forms, e.g., enumeration, specifying population sizes, etc. However, in many
cases, populations are equipped with an additional measurable property, e.g.,
distance or neighboring relation between the elements of each population. This
additional structure may also take part in the selection process, as part of the
fitness evaluation. Contrary to variation operators, which will be analyzed
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shortly, parent selection (explained right in the next subsection) is applied to
the whole population, rather than on individuals in the population. Further-
more, in most of the evolutionary algorithm applications, the population size
remains constant during each evolutionary step. Finally, another important
aspect of a population is its diversity. It is defined as the number of different
solutions that the population may obtain. In that sense, no single successful
measure of population diversity exists, and thus, several different statistical
measures, such as the entropy, for example, are usually employed for this
purpose, typically adapted with respect to the specific application framework
that the evolutionary algorithms are going to be used for.

3.3.5 Parent Selection

Parent selection aims at distinguishing among individuals based on their qual-
ity, and thus, allows the better individuals to become parents of the next
generation. An individual of the population is called a parent if it has been
selected to undergo one of the variations, which will be analyzed in detail in
the next subsection. Parent selection is usually probabilistic and in conjunc-
tion with survivor selection, they both aim at driving the cumulative quality
of a population at higher scales. This means that higher-quality individuals
are preferred and should receive a higher chance to become parents. However,
in order to maintain the trial-and-error character of an evolutionary algorithm
for successive populations, low-quality (fitness) individuals should have some
small but positive chance of becoming parents. Otherwise, the whole search
process could get stuck in a local optimum of the search space.

3.3.6 Variation Operators: Recombination and
Mutation

Variation operators create new individuals, the latter corresponding to gener-
ating new candidate solutions in the phenotype space. Based on the number
of inputs they admit, variation operators are segregated in recombination and
mutations.

Recombination (sometimes referred to as crossover) is a binary variation
operator, i.e., it admits two individuals (genotypes) as inputs and produces
one or two offspring genotypes. It is a stochastic operator and assumes differ-
ent operations in various evolutionary computing paradigms. Recombination
operators with more than two input genotypes are mathematically possible,
but rarely employed, due to the lack of biological equivalence, even though
they seem to have positive effects on evolution [9]. The principle behind re-
combination is to mate two individuals with different, but desired features
and produce an offspring that combines those features.

On the other hand, a unary operator that admits only one genotype input
is called mutation. It yields a modified mutant, called child or offspring. Mu-
tations are stochastic operators and the offspring depends on the outcomes of
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a set of random choices, which, however, are unbiased. As with recombination,
mutation may have different operations in different evolutionary computing
paradigms.

Variation operators form the evolutionary implementation of the elemen-
tary steps within a search space. Generating children is essentially equivalent
to stepping to new points in the search space. In that sense, mutation can
also guarantee that the search space is connected (convex2 in such cases).
Also, variation operators are representation dependent, and they need to be
explicitly defined in each case.

3.3.7 Survivor Selection

The role of survivor selection mechanisms is to distinguish among the indi-
viduals of successive populations based on their fitness (quality). Intuitively,
it might seem similar to parent selection, but it is applied in a different stage
of the evolutionary cycle, namely following the generation of offspring. Sur-
vivor selection is employed in order to maintain the size of the population in
the original level, where, however, we want to ensure that the fittest offspring
make it in the surviving population compared to the rest of the offspring. In
addition to fitness selection of the offspring to make it to the next generation,
sometimes the age (in terms of successive generations) of an individual is also
taken into account.

Contrary to parent selection, survivor selection, which is also sometimes
called replacement as well, is mostly of a deterministic nature. Classification
and selection of the fittest individuals is often employed to implement replace-
ment. The concept behind such deterministic survivor selection is that some
randomness has already been incorporated in parent selection, and if another
randomness level has been implemented, especially in the survivor selection,
then the information conveyed by the fitness function, namely quality of indi-
viduals, would be canceled out by the random selection of survivors. Thus, the
stochastic search is implemented in the parent selection step, and the effect
of the offspring generation and surviving is implemented through the fitness
function and deterministic survival selection.

3.3.8 Initialization and Termination Conditions

The initialization of evolutionary algorithms is usually kept simple, mostly
through a simple randomly generated population of individuals. Alternative,
problem-specific heuristics for generating the first population can also be de-
vised at the cost of additional computation cost. In such cases, it is a matter
of tradeoff balancing that depends on each specific problem that determines
whether the added complexity of generating a more educated initial popula-

2For more details in convex search space and optimization, the interested reader is re-
ferred to [27] and [39].
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tion would eventually yield significant benefit in the overall performance of
the evolutionary algorithm.

In general there are two types of stopping conditions for evolutionary al-
gorithms. The first is based on a predefined and desired level of the objective
function, which once reached by the cumulative fitness value of the popula-
tion signifies the stopping of the algorithm. This is the case in problems and
environments, where the desired optimal fitness level is known a priori, or it
can be computed rather easily. In the second type of stopping conditions, the
optimum/desired fitness level might not be reached after a large number of
iterations, or not at all. Alternative conditions should be set, which stop the
evolutionary cycle with certainty. Some of the candidates are the following:

1. Defining a maximum number of evolutionary iterations.

2. Defining a maximum number of computations.

3. The fitness improvement remains restricted by a given threshold for a
given time period (expressed in evolutionary iterations).

4. The population diversity drops under a given threshold.

In many cases, a combination (disjunction) of the above two termination
conditions is employed. Namely, the evolutionary algorithm terminates “if the
optimum fitness level is hit” or “some specified condition is satisfied.”

3.3.9 Operation of Evolutionary Algorithm

In traditional optimization approaches (continuous) the search follows mono-
tone directions, until a global optimum is reached, or until the search is
trapped in a local optimum. Evolutionary algorithms operate in a different
manner. In the early stages, the individuals are randomly spread over the
search space. After some evolutionary iterations the population concentrates
around local optimums. By the end of the evolutionary algorithm the popu-
lation has concentrated over very few optima, some of which can be local and
some global optima.

In principle, it is possible that the population concentrates around the
wrong optimum (potentially a local one yielding a suboptimal solution even-
tually). These search phases of an evolutionary algorithm are referred to as
exploration (when new individuals are generated in untested regions of the
search space) and exploitation (in the event of concentration of the search in
the vicinity of known good solutions). The evolutionary search process often
comes down to balancing the tradeoff between exploration and exploitation,
where too much exploration leads to inefficient search and slow convergence,
while too much of the second leads to very focused searches that lead to what
is referred to as premature convergence, that is, losing population diversity
too quickly, which in turn leads to trapping in a local optimum. The latter is
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a considerable risk that all evolutionary algorithms face and should be taken
into account in the design of such approaches.

Another distinctive feature of evolutionary algorithms, and many other
approaches as well, is the anytime property. This feature describes the fact
that an evolutionary algorithm (and the other approaches too with the same
property) are capable of yielding a solution at anytime the search is stopped,
even if this solution is suboptimal. If the search is stopped in the very early
parts of the search, the solution may well be far away from the optimal (or
acceptable suboptimal solutions). However, in any case a solution will be avail-
able. This property is characteristic of approaches that work under the notion
of iterative improvement. Evolutionary algorithms fall under this category.
Bearing the above property has some interesting consequences for evolution-
ary algorithms. Since from the anytime property a solution is always available
and given the typical progress curve of such approaches, shown in a generic
form in Figure 3.3, it could be concluded that the initialization process of an
evolutionary algorithm does not have to be very complex and a simple one
will suffice, since within a relatively small number of evolutionary iterations,
the initial random population will quickly improve its fitness, while saving
the additional cost of developing and obtaining an educated initial popula-
tion. A similar consequence involves the termination condition of evolutionary
algorithms. As observed in Figure 3.3, beyond a point in time, additional evo-
lutionary iterations asymptotically improve the fitness function. This may be
exploited so that significant resources are saved, once an acceptable quality
solution is attained (and at the same time preventing long runs that have no
significant improvement in the overall performance).

time
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Figure 3.3: Typical form of the evolution progress of evolutionary algorithms
(progress of the best fitness function).
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Another aspect of evolutionary algorithms characterizing them cumula-
tively is that most of them are well-rounded and fit many types of problems
and their variations. In most of the cases, they can act as robust problem
solvers, since they provide a roughly good performance over a wide range of
problems, while not requiring significant implementation complexity, effort,
and operation. On the other hand, specifically developed algorithms perform
much better within the framework of the problem they were designed for, or for
a specific variation of the problem, where they exploit special structures of the
specific search space or of the special structure of a problem instance. However,
as the analysis deviates from the specific problem type to other variations, or
other similar problems, problem-specific algorithms quickly lose performance
benefits yielded. Consequently, facing a problem, there are essentially three
available options, namely an evolutionary algorithm, a problem-specific one,
and one based completely on random search. Each of them stands in a different
position regarding the analyzed tradeoff between exploration and exploitation.
The evolutionary approach is a good compromise for covering most aspects
of a problem at an acceptable level.

Regarding evolutionary algorithms and their provenly optimal counter-
part algorithms, it is widely recognized that in general, irrespective of the
progress of computational power, most real-world problems are reduced to
well-known abstract forms, for which the number of potential solutions grows
exponentially with the number of considered variables, when provenly opti-
mal algorithms are employed. This means that beyond a certain problem size
(which varies for different problems), the search for provably optimal solutions
cannot be attained and alternative (sometimes even heuristic approaches) are
required for obtaining good and acceptable solutions. Apart from the exact
methods, which even for some explicit boxing methods that arrange solutions
in tree structures and intelligently prune several branches guaranteed not to
provide good solutions (but still do not significantly reduce computational
cost), a class of search methods (heuristics), such as simulated annealing, are
guaranteed to find the optimal solution discovered until that point of their
search, but not necessarily the optimal one. Other categories of algorithms
that perform local search actually search only within restricted neighborhoods
of solutions from an already obtained solution point, but these too potentially
lead to local optimum solutions, rather than provenly global optimum ones.
However, they are good in quickly providing solutions with usually acceptable
solution quality (fitness).

Evolutionary algorithms distinctively distinguish from previous local
search algorithms due to the use of the population notion, which allows main-
taining a diverse set of search points, which in turn not only enables escaping
from local optimum points, but also provides a means to tackle the large and
even discontinuous search spaces. This contrasts with the globally uniform
distribution of purely random search or the locally uniform distribution of

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Cognitive Methods and Evolutionary Computing 79

other stochastic algorithms, e.g., simulated annealing,3 and in several cases,
it presents opportunities for achieving performance and efficiency.

3.4 Evolutionary Computing Approaches

In this section, we present several evolutionary approaches/algorithms that
have been shown to apply in several problem types and yield convenient so-
lution results.

3.4.1 Genetic Algorithms

Perhaps the most widely known type of evolutionary approach is the genetic
algorithm, which as its name indicates, is inspired by the genetics field. A
general feature of this approach is that there is actually no single definitive
genetic algorithm, but rather designers create algorithms from a suite of op-
erators in order to accommodate their particular needs and the requirements
of each problem.

Genetic algorithms were first introduced by Holland [87] for studying adap-
tive behaviors in natural but mainly in artificial systems. In general, they have
been customarily considered as function optimization methods, which, how-
ever, is not always the case.

In the following, we describe the various components of genetic algorithms
as identified in previous sections. We start with the representation of candidate
solutions, then proceed with variation operations, such as mutation, followed
by parent selection and survivor selection.

Representation of Individuals

The representation defines the genotype and the mapping from genotype to
phenotype. Choosing the right representation is a key factor of the perfor-
mance and efficiency of an evolutionary algorithm and thus of a genetic al-
gorithm as well. For this reason, a number of alternative representations for
genetic algorithms will be presented in the sequel, and in most cases, it comes
down to the complete set of problem parameters for deciding which repre-
sentation is more appropriate. It frequently turns out in practice that using
mixed representations is a more suitable way of describing and manipulating
a problem search process.

3Simulated annealing (SA) is a generic probabilistic meta-heuristic for the global op-
timization problem of locating a good approximation to the global optimum of a given
function in a large search space. It is often used when the search space is discrete (e.g.,
assignment of white space channels among cognitive radio secondary users). For certain
problems, simulated annealing may be more efficient than exhaustive enumeration pro-
vided that the goal is merely to find an acceptably good solution in a fixed amount of time,
rather than the best possible solution. SA implements the notion of slow cooling inspired by
annealing in metallurgy, as a slow decrease in the probability of accepting worse solutions
as it explores the solution space. Accepting worse solutions is a fundamental property of
meta-heuristics because it allows for a more extensive search for the optimal solution. The
more interested reader can refer to [28] and references therein for more details.
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0 1 1 1 0 1 1 0

L=8

10 9 8 93 5 51 1 47

1.0 9.0 8.0 9.3 5.0 5.1 1.0 4.7

binary representation

integer representation

floating-point representation

2 4 7 8 5 3 6 1

permutation representation

Figure 3.4: Representation of individuals in Genetic Algorithms.

One of the simplest representations, if not the simplest, is the binary
(Figure 3.4), where the genotype consists of a bit string (string of binary dig-
its). For some problems, especially when the decision variables are Boolean,
the mapping to a binary genotype is natural, since the phenotype is in a
similar form. However, in many cases, bit strings are employed to encode non-
binary information. An important factor is the selection of bit string length
employed. The encoding size should allow all possible bit strings to denote
a valid solution to the given problem and vice versa, all possible solutions
to be represented. Finally, the interpretation of the obtained genotype to an
appropriate phenotype should be ensured in an accurate manner.

Integer representations (Figure 3.4) are an alternative to binary ones, es-
pecially in problems where the objective is to find optimal values for variables
so that they all take integer values. Apart from the obvious value range re-
strictions, integer representation might also have ordinal attributes. However,
in some cases integer representations might be suitable, but do not necessarily
have ordinal properties. Such cases involve, for instance, variables represent-
ing azimuthal information, where integers are suitable for representation, but
do not have a natural ordering as the set of integers.
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A sensible and usual representation is that of real numbers (floating point
representation), which is capable of accommodating a broad range of appli-
cation frameworks. This representation is usually more applicable to cases
where the gene values are derived from a continuous domain/distribution,
rather than from a discrete one (Figure 3.4). In these cases, machine precision
could be a limiting factor, or a factor to take seriously into account, in order
to achieve/maintain an acceptable or desired level of accuracy.

In the event that the objective of the genetic algorithm is to decide the
order in which the sequence of events should occur, or a similar decision, a
permutation representation (Figure 3.4), based on a permutation of a set of
integers, is more appropriate than all the above. The specific representation
is required to ensure that each possible value occurs exactly once in each can-
didate solution (genotype). Especially regarding permutation representation,
two types of permutations should be distinguished. The first is where the or-
der of permutated integers matters, and the second is where the adjacency of
the represented individuals/entities matters. In the second type of permuta-
tions, even though the sequence of elements of the permutation matters, the
initial point does not, so that only the consistency of the sequence should be
ensured, but not necessarily the specific traversing.

Examples of all four representation types for genetic algorithms are cumu-
latively shown in Figure 3.4.

Mutation

As already mentioned, mutation refers cumulatively to the set of operators
that have input a single parent and provide as output a single child by per-
forming some randomization to the representation of the corresponding rep-
resentation (genotype) of the individual. The form of the mutation depends
greatly on the underlying representation employed. In addition, notable im-
pact on the behavior of the algorithm could be caused by the context of the
parameters (mutation rates) associated with mutation. Since mutation de-
pends on the representation, in the following, we discuss mutation operators
for the representations mentioned above.

For binary representations, the most frequently used mutation operations
treat each bit in the representation string separately and allows it to flip in-
dependently with a specified probability p. Clearly, the choice of p determines
the suitability of the operator for each application framework that the genetic
algorithm is used for. Thus, the most suitable choice of p is usually determined
in a training phase for each genetic algorithm, where this and another series of
tunable parameters are fine-tuned, given prototype behaviors and desired ob-
jectives. Due to the independence of each bit flip, the number of bits changed
in each mutation is not fixed, but on average L×p bits are flipped, where L is
the encoding length L selected. In this case, the probability p is the mutation
rate of the operator.

The integer representation has available two main types of mutation oper-
ators, both mutating each bit (gene) independently with mutation rate p. The
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first is random resetting, where bit flipping is extended to randomly choosing
a new value from the set of permissible values for each gene. The second is the
creep mutation, where a small positive or negative value is added to each gene
with probability p′. The first is more appropriate for encodings with cardinal
attributes, while the second for representations with ordinal attributes. The
small values added in each gene for the creep mutation are usually selected
from symmetric distributions with mean around zero and small variance, so
that the changes are likely to be small (sometimes referred to as perturba-
tions). Thus, creep mutation requires additional parameters, in order to con-
trol the perturbation distribution, in addition to the probability of perturbing
each gene, compared to the random resetting mutation.

For floating-point representations the gene values are derived from con-
tinuous distributions and thus, it is common to change the value of each
gene randomly within its corresponding domain, denoted in the following by
[Li, Ui]. Two major types of floating-point related mutations maybe identified,
uniform mutation and nonuniform with fixed distribution mutation. The first
essentially extends random resetting, where now the values for the genes are
drawn randomly and uniformly from [Li, Ui]. It is usually used in conjunc-
tion to position-wise mutation probability for selecting the gene to mutate.
Nonuniform mutation, on the other hand, extends creep mutation and it is
designed so that a perturbation is added to the current value of a gene. The
fixed distribution is usually a Gaussian with zero mean and specified standard
deviation and then curtailing the yielded value to the specified range [Li, Ui]
if needed. In this case, most of the changes will be small (perturbations),
but nonzero probability for greater changes remains as in the creep mutation.
Usually, this mutation is applied per each separate gene and the only param-
eters used are those controlling the fixed distribution employed (mean and
standard deviation in the Gaussian distribution case).

In permutation representations and in order to maintain the consistency
of the encoding string employed, the mutation parameter is meant in the
sense of the probability that the string undergoes mutation, rather than that
a single gene of the string is altered. The most common permutation oriented
mutation operators are the swap mutation, where two genes in a string are
randomly selected and their values are swapped, the insert mutation, where
two genes are randomly selected and the one is moved next to the other
by shuffling along the other genes that were originally between them, the
scramble mutation, where the entire string or some randomly selected subsets
of the genes have their positions scrambled, and inversion mutation, where
two positions in the string are randomly selected and the order in which the
values of the genes between the two selected positions appear is reversed.
This can be very useful for solving demanding problems, since this inversion
of randomly chosen substrings is the smallest change that can be made to, e.g.,
an adjacency-based problem, which uses permutation representation, such as
solving the TSP problem with the 2-opt search heuristic [106].

Figure 3.5 and Figure 3.6 cumulatively depict the mutation operators for
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0 1 1 1 0 1 1 0

Bitwise mutation

0 1 0 0 0 1 1 0

1 2 3 4 5 6 7 8

Swap mutation

1 2 7 4 5 6 3 8

1 2 3 4 5 6 7 8

Insert mutation

1 2 7 4 8 5 6 7

1 2 3 4 5 6 7 8

Scramble mutation

1 2 3 5 7 4 6 8

1 2 3 4 5 6 7 8

Inversion mutation

1 2 3 7 6 5 4 8

Figure 3.5: Mutation operator examples in Genetic Algorithms.

Genetic Algorithms and their classification based on the representation em-
ployed in each case.

Recombination (Crossover)

Recombination is considered one of the most important features of a genetic
algorithm, and it combines information from two or more parents to produce a
new individual solution. Compared to recombination, mutation as explained
above is considered secondary for creating diversity, and thus, significantly
more research has been devoted to the development of suitable recombination
methods.

Recombination is sometimes referred to as crossover as well. The reason
lies in the main concept implemented by recombination. A crossover rate pc
is defined, which lies in the range [0.5, 1], and two parents are selected. Then
a random variable in [0, 1) is drawn and compared to pc. If the value is lower,
two offspring are created through recombination of the two parents, otherwise
the parents remain intact and are yielded as the offspring. In contrast to the
mutation probability p mentioned above, which also controls how parts of
the chromosome are perturbed independently, the recombination probability
determines the probability that a chosen pair of parents will undergo the
recombination operator.

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

84 Evolutionary Dynamics of Complex Communications Networks

Mutation operators

(Genetic algorithms)

for binary 

representation

for integer 

representation

for floating-point 

representation

for permutation 

representation

Random resetting

Creep mutation

Uniform mutation

Non-uniform mutation 

with a fixed distribution

Swap mutation

Insert mutation

Scramble mutation

Inversion mutation

Figure 3.6: Mutation operators in Genetic Algorithms.

The recombination operators for binary and integer representation can
have the same implementation. It is also possible that some of the operations
on the values of the genes, e.g., in the event of integer representations, might
yield values not in the original set, namely non-integers in the case of integer
representations. Thus, recombination operators lead oftentimes to the sort of
“blending” of gene values as the one described above.

The three main types of crossover operators for binary and integer repre-
sentations are the one-point crossover, the N -point crossover, and the uniform
crossover. One-point recombination works by choosing a random number in
the range [0, L− 1], L being the length of the string representing the encod-
ing, and then splitting both parents at this point (position) and creating two
children by exchanging the constituting parts. For binary representations, this
seems straightforward to implement, while for integer representations the same
procedure may be applied, where now in place of each bit one has integer val-
ues to work on. In the N -point crossover, the one-point crossover is extended
to brake the representation in more than two substrings/subsequences. In this
case, N randomly selected crossover points are selected in the range [0, L−1],
and the offspring are created by taking alternative substrings/subsequences
from the two parents, i.e., combining segments 1, 3, 5, etc. of the first with
2, 4, 6, etc. of the second and vice-versa. In the uniform crossover, each gene
is treated independently and makes a random choice as to which parent it
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should be inherited from. To achieve this, ` random variables are drawn from
the [0, 1] distribution and for each position i in the representation string, the
i-th random variable is compared with a parameter p (usually p = 0.5). If the
random variable is lower than p the gene is inherited from the first parent,
otherwise from the second. The second offspring is created using the comple-
mentary process.

From the above discussion, it might be natural to believe that recom-
bination in the sense discussed already works by randomly mixing parts of
the parents; however, N -point crossover has an inherent bias in that it tends
to keep together genes that are located close to each other in their original
representation (since whole chunks of the original string are inherited in the
offspring). In addition, the parity (even or odd) of the string length might
create strong biases against keeping together combinations of genes originally
located in opposite ends of the encoding string. Such effects are known as
positional bias. On the contrary, uniform crossover does not exhibit positional
bias, but rather has another tendency known as distributional bias, where
approximately 50% of the genes from each parent are transmitted to the off-
spring and at the same time there is a negative tendency in transmitting to
the offspring a large number of co-adapted genes originating in one of the two
parents.

In general, understanding the types of biases involved in each recombina-
tion operator is invaluable for developing algorithms for specific problems, par-
ticularly when dependencies or known patterns emerge in the representation.

For floating-point representations, the recombination operation becomes
more complicated. There are two general types of crossover for floating-point
representations. The first is an operator analogous to the one for binary rep-
resentations, where now each gene value is a floating-point value, rather than
a single bit. This process is known as discrete recombination, but suffers the
drawback that it does not insert new values in the crossover (and the same
holds for all the crossover recombinations presented above), leaving only muta-
tion to insert such diversity. The second type of floating-point recombination,
termed as intermediate or arithmetic crossover, creates for each gene posi-
tion, a new value in the offspring that lies between those of the parents, as an
arithmetic combination of the bounds set by the values of the gene parents.
Formally, if xi and yi are the values of the parents for position i, then the
offspring value is zi = αxi + (1− α)yi for some α ∈ [0, 1]. In this way, the re-
combination creates new gene values, but as a result of the averaging process
the range of the values in the new population is reduced compared to that of
the original population.

Three types of arithmetic recombination exist, in all of which the choice
of the parameter α is made at random in [0, 1] in theory, but in practice a
fixed value of 0.5 is employed (uniform arithmetic recombination). In the first,
denoted by simple recombination, a recombination point k is picked for the
first child and the first k floats of the first parent are copied to the first child.
The rest is the arithmetic average of both parents. The second child is created
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analogously. In the second, namely single arithmetic recombination, a random
position k is picked and at this position, the arithmetic mean of the two
parents is taken, while the other positions are determined from the parents.
Finally, in the third type, whole arithmetic recombination, the weighted sum
of the two parent values are taken for each gene.

Apart from mutation and recombination that utilize one and two parents
respectively, it is straightforward to consider operators that use more par-
ents. The resulting multi-parent recombination operators are simple to define
and they are implemented by extending the other operators. This concept
deviates from the traditional model observed in nature that inspired genetic
algorithms, by moving to more peculiar ‘reproduction’ schemes. The latter is
potentially a perspective for further improving recombination from a technical
point of view. These operators can be classified on the basis of the main idea
employed for combining parental information. More specifically, the following
list presents some of these candidate operator categories:

1. based on gene frequencies (extends uniform crossover)

2. based on segmentation and recombination of parents (extends N -point
crossover)

3. based on numerical operations on real-valued genes (generalizes arith-
metic recombination operators)

However, in general, it is not definite that increasing the number of com-
bined parents increases performance and efficiency of evolutionary algorithms.
More systematic research is required in this case, even though several works
[159] have exhibited potential benefits of combining more than two parents to
obtain offspring candidate solutions in evolutionary algorithms.

Recombination for permutation-based representations appears to be more
complicated, since the permutation property needs to be maintained even for
this operator. Some specialized recombination operators have been developed
for this case with the objective to transmit as much information contained in
the parents as possible. The first is partially mapped crossover, which works
as follows:

1. Two crossover points are chosen at random and the segment between
them from the first parent is copied into the first offspring.

2. Starting from the first crossover point one searches for the elements of
the second parent that have not been copied.

3. For each of these, we compare it with the element that was copied in
the offspring in the specific place from the first parent.

4. The element copied in the offspring is placed in the corresponding posi-
tion of the second parent.
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5. If the place occupied in the second parent has already been filled in the
offspring by an element k, then the element from the first parent is put
in the position occupied by element k in the second parent.

6. Having dealt with the elements from the crossover segment, the rest of
the offspring can be filled from the second parent, and the second child
is created analogously with the two parental roles exchanged.

One of the desired properties of recombination is that of “respect,” where
any information carried in both parents should also be present in the off-
spring. This is true for the recombination operators for binary and integer
representations and for discrete recombination for floating-point representa-
tions. However, this is not true for the partially mapped crossover. For this
reason, several alternative operators have been designed for adjacency-based
permutation problems. One such candidate is the edge crossover, which is
based on the idea that an offspring should be created as far as possible using
only edges4 that are present in one or more parents. The operator works by
building edge tables (adjacency lists), which for each element contain all other
elements linked to the specific element in the two parents. The second, order
crossover, begins in a similar manner to partially mapped crossover, by copy-
ing a randomly selected segment of the first parent to the offspring. However,
its intention is to transmit information about relative order from the second
parent. Thus,

1. Starting from the second crossover point in the second parent, the re-
maining unused numbers are copied into the first child in the order that
they appear in the second parent, by wrapping around at the end of the
list.

2. The second offspring is created in an analogous manner, with the parent
roles inverted.

Finally, the third, denoted by cycle crossover, aims at preserving as much
information as possible about the absolute position in which elements occur.
The operator works by selecting alternate cycles from each parent, after the
elements have been divided into cycles. A cycle is a subset of elements that
has the property that each element always occurs paired with another element
of the same cycle when the two parents are aligned. A more detailed process
for constructing cycles, as well as details on implementing crossover operators
for the permutation representation, may be found in [59].

Figure 3.7 presents recombination operators cumulatively for Genetic Al-
gorithms, classified according to their employed representation of individuals.
The figure does not contain the multi-parent operators, which could also be
used in given circumstances.

4Here the notion of edge denotes elements linked together in the parents of offspring
produced.

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

88 Evolutionary Dynamics of Complex Communications Networks

Recombination 

operators

(Genetic algorithms)
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for floating-point 
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Uniform crossover

Arithmetic recombination

Simple recombination

Partially mapped crossover

Edge crossover

Order crossover

Cycle crossover

One-point crossover

N-point crossover

Single arithmetic recombination

Whole arithmetic recombination

Figure 3.7: Recombination operators in Genetic Algorithms.

Population Model

The previous components of the genetic algorithms were focused on the rep-
resentation and variation of candidate solutions, in order to provide a desired
degree of diversity in the solution search process. Once successful in the pre-
viously described objective, the next one is to concentrate on the survival of
these individuals and ensure they take part in the coming populations based
on their fitness values.

In general, there are two models for genetic algorithm population, namely
the generational model and the steady-state model. In the first, starting with
a population of size µ, λ = µ offspring are created by the application of
various operators and the population is evaluated based on the fitness value.
The whole population is replaced by its offspring in each iteration, and the
new population is referred to as “next generation.” On the other hand, in the
steady-state model the entire population is not changed at once, but only a
percentage of it. In this case, λ < µ and λ old individuals are replaced by λ
new offspring. The percentage of the population that is replaced is called the
generational gap and equals λ/µ. Usually a generation gap 1/µ, with λ = 1,
is employed in practical applications.
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Parent Selection

In the description of the generic evolutionary cycle, there were two points
of the cycle where fitness-based competition/selection took place. The first
was in the mating process (parent selection) and the second in the selection
of individuals to survive into the next generation (survivor selection). While
the latter will be the topic of the following subsection, the parent selection
process will be the focus of this one. The most frequently used parent selection
approaches are described as follows.

The first one is the fitness proportional selection, where the probability
that an individual is selected is proportional to the absolute fitness value of
the individual to the cumulative absolute fitness value of the rest of the pop-
ulation. Even though simple, this approach is associated with some problems:

• Outstanding individuals take over the rest of the population very quickly
(premature convergence).

• When all fitness values are close to each other, there is no selection pres-
sure, i.e., selection becomes almost uniformly at random, which even-
tually means that once the worst individuals have disappeared quickly,
performance improves only very slowly.

• The mechanism behaves differently on transposed instances of the same
fitness function.

To avoid the last two problems mentioned above, windowing may be employed.
Windowing is a process to keep track of the relative range of values a quantity
might take. It maintains fitness differentials by subtracting from the fitness
value a value that depends on the recent search history. A simple way to
achieve this is simply to subtract the value of the least-fit member of the
current population, or a running average over the last few generations, if the
least-fit value fluctuates very rapidly.

The second is ranking selection, which preserves a constant selection pres-
sure by sorting the populations according to the fitness value and then allocat-
ing selection probabilities to individuals according to their rank, rather than
according to their fitness value. Clearly, the mapping from rank to selection
probability can be arbitrary and incorporate different types of information
desired for the selection strategy. The only constraint imposed is that the se-
lection probabilities must sum to one, as expected. Usual mappings are linear
and exponentially decreasing ones. In the first case, the selection pressure that
can be applied is limited, while the exponential one induces higher selection
pressure.5

In general, it would be desired to be possible to have the same selection
likelihood for each individual in the population, so that the search space is
potentially evenly covered. However, this is not the case in reality, due to the

5Here selection pressure refers to the selection probability. The higher the probability,
the higher the selection pressure will be.
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finite size of the population. The simplest way to achieve the desired sampling
in a more efficient manner is denoted by roulette wheel algorithm and it works
as follows. It assumes some ordering of the population, which defines a list of
values, each of which corresponds to the population individuals and depends
on the selection distribution fitness. This approach is equivalent to spinning a
roulette wheel, where the sizes of the holes reflect the selection probabilities.
Stochastic universal sampling is an alternative method preferred, especially
whenever more than one sample is to be drawn. This is equivalent to making
one spin of a wheel with equally spaced holes (as many as the population
size), rather than multiple spins (as many as the population size) of a roulette
wheel.

In cases of very large populations or distributed populations and operation,
the above approaches are not suitable, since they rely on knowledge collected
from the whole population. In such cases, user subjectivity accounts for the
lack of a global quantitative measure that assigns fitness value to each member
of the population. Tournament selection is an operator with this property,
namely it does not require global knowledge of the population. Instead it
relies on an ordering relation between any two individuals of the population.
Tournament selection compares relative fitness rather than absolute and thus,
it has the same properties as ranking schemes regarding transposition of fitness
function and invariance translation. The selection probabilities in tournament
selection depend mainly on:

• Rank of an individual in the population;

• The tournament size;

• The probability that the most fit member is selected;

• Whether individuals are chosen with or without replacement.

More details on the impact of the above parameters on the selection prob-
abilities can be found in the more thorough treatment in [59]. Tournament
selection has the drawback that the outcomes can show a high variance from
the theoretical probability distribution of fitness (since tournament selection
employs the user-subjective one). Despite that, it is perhaps the most widely
used selection operator in contemporary genetic algorithms.

Survivor Selection

The main objective of survivor selection is to select among µ parents and λ
offspring the µ individuals that will constitute the next generation, which is
sometimes called replacement. Replacement mechanisms are usually differen-
tiated on the basis of age or fitness of individuals and in the following, we
present some of these replacement strategies.

In age-based replacement the fitness value is not taken into account, but
rather only the number of iterations that the individual has survived. In this
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Table 3.1: Summary of simple Genetic Algorithms.
Elements Genetic Algorithms

Typical problems function optimization
Representation bit strings
Recombination 1-point crossover

Mutation bit-flip
Parent selection fitness proportional

Survivor selection generational

way, each individual exists in the population for the same number of iterations.
In genetic algorithms, a simple strategy where µ = λ the number of parents is
the same as the number of offspring, each individual survives only one cycle,
and the parents are discarded and replaced entirely by the offspring. The
strategy can be implemented for overlapping populations λ < µ and single-
individual ones as well. Each parent can be randomly selected for replacement,
which, however, exhibits greater population variance, since in the random
parent replacement it was likely to lose the best member of the population.
For this reason, the random replacement strategy is not usually employed.

Fitness based replacement selection has been discussed in the previous
section as well, such as fitness proportionate, tournament selection, and rank-
based selection. Two other common mechanisms are replacement worst and
elitism. In the first, the worst λ members of the population are selected for
replacement. Even though this could lead to fast improvements, it could also
lead to premature convergence, and thus, it is usually recommended for large
populations, where the size will ensure that convergence time will be sufficient
to include the desired diversity in the search process. In elitism, a trace of
the currently fittest individual is maintained. If this member is chosen in
the replacement group of individuals, and none of the replacement offspring
has equal or better fitness, the traced individual is retained and one of the
offspring is discarded in some random or more intelligent manner. Elitism is
usually combined with age-based and stochastic fitness-based replacement, in
order to prevent loss of the fittest individual in these approaches.

Table 3.1 summarizes the main features emerging in simple Genetic Al-
gorithms (the basic flavor within the whole suite of Genetic Algorithms as
presented above), and it can be compared with Table 3.2 summarizing the
corresponding features for the rest of the evolutionary algorithms presented.

3.4.2 Evolutionary Strategy

Evolutionary strategies are characterized by another important feature of
evolutionary computing, namely self-adaptation. Self-adaptation cumulatively
characterizes the process that some parameters of an evolutionary algorithm
can vary during a run of the algorithm (between successive iterations, but
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remaining fixed for a specific evolutionary iteration) in a specific manner. The
varying parameters essentially co-evolve with the solutions. The perturbation
parameter employed in Evolutionary Strategy (ES) for mutation is referred
to as mutation step-size and it is rather important in the evolutionary cycle
of evolutionary strategies.

Evolutionary programming strategies exhibit some typical characteristics,
as shown in the following list:

• They are typically used for continuous parameter optimization, e.g.,
minimizing an n-dimensional function Rn → R.

• Strong emphasis is put on mutation for creating offspring.

• Mutation is implemented by adding some random noise obtained from
a Gaussian distribution.

• Mutation parameters vary for a run of the evolutionary algorithm.

The employed representation is real-valued vectors (since it is most fre-
quently used for numerical optimization of continuous functions). Recombi-
nation is usually in the form of discrete or intermediary recombination and
mutation is a Gaussian perturbation. Parent selection is uniformly random
and survivor selection is (µ, λ) or (µ+ λ).6

In representation for evolution strategy, the chromosomes consist of three
parts, namely one with the object parameters x1, ...., xn and another two
with the strategy parameters, i.e., the mutation step sizes σ1, ....σnσ , and
rotation angles α1, ....αnα . However, not every component of the above
three is always present. The full representation vector is given by <
x1, ...., xn, σ1, ....σnσ , α1, ....αnα >. In the simple case where self-adaptation
is not utilized, the genotype space becomes identical to the phenotype Rn

and no special encoding is required.
For mutation, the main mechanism is to change the value of parameters

by adding random noise drawn from a normal distribution, such as x′i =
xi + N(0, σ′). The key idea here and the actual implementation of the self-
adaptation is that the mutation step-size σ is part of the chromosome and
σ is also mutated into σ′ so that the mutation step size co-evolves with the
solution x. The net mutation effect is that < x, σ >→< x′, σ′ >, where the
order of update matters, requiring that the mutation step size evolves first and
then the solution update follows. The rationale is that this order allows double
evaluation of the net mutation < x′, σ′ >, where in the first x′ is good if f(x′)
and in the second, the σ′ is good if the x′ it created is good as well. By using a
Gaussian distribution, small mutations are more likely than larger ones. Also,
regarding the operation of varying mutation step sizes as explained above, it
is implicitly assumed that under different circumstances different step sizes

6Survivor notation denotes that in the first only λ offspring out of µ parents are selected,
while the second parameter denotes that λ offspring are selected from λ+ µ parents.
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will behave differently, and thus, some will be better than others. This turns
self-adaptation to a mechanism adjusting the mutation strategy as the search
of the evolutionary strategy proceeds. Assigning a separate mutation strategy
to each individual, which coevolves with it, opens the possibility to learn and
use a mutation operator suited for the local topology.

Different types of mutation can be employed, e.g., uncorrelated mutation
with one step size, uncorrelated mutation with n step sizes, and correlated
mutations. In the first, the same distribution is used to mutate each xi, there-
fore there is only one strategy parameter σ associated with each individual.
This parameter is mutated each time step by multiplying it by an exponential
term eΓ, where Γ is a random variable drawn each time from a normal distri-
bution with zero mean and standard deviation τ . It is usually suggested that
the employed standard deviation is not very close to zero, which is ensured by
adopting specific boundary rules. Parameter τ is a kind of learning rate. The
mutation of σ is of lognormal nature and the reason is that small modifica-
tions are ensured, while the standard deviations are sufficiently greater than
zero and the mutation process remains neutral on average. When dimensions
of the search space are desired to be treated differently, namely using different
step sizes for different dimensions, uncorrelated mutation with n step sizes is
applicable. The intuition behind this approach is that the fitness domain can
be itself asymmetric, having different slopes in different directions along the
various axes. In this case, each chromosome is extended with n step sizes, one
for each dimension. The mechanism now varies for each dimension, but again
a boundary rule is employed to prevent standard deviations of the mutation
step sizes from approaching zero. The rule becomes:

σ′i = σie
τ ′N(0,1)+τN(0,1) (3.1)

χ′i = χi + σiNi(0, 1) (3.2)

where the term eτ
′N(0,1) is a common mutation base that allows for an overall

change of the mutability guaranteeing preservation of all degrees of freedom,
while the coordinate-specific eτN(0,1) provides the flexibility to use different
mutation strategies in different directions. Considering the geometry of the
search space, the uncorrelated mutation with one step essentially corresponds
to creating a circle around an individual, while the uncorrelated mutation an
n-step size forms an ellipse. Generalizing this concept to ellipses with arbitrary
orientations (rather than aligned with the coordinate system axes as in the
uncorrelated mutation with n-step sizes) leads to correlated mutations, where
the rotation of the ellipse takes place according to a covariance matrix C. The
complete mutation mechanism is described by:

σ′i = σie
τ ′N(0,1)+τN(0,1) (3.3)

α′j = αj + βN(0, 1) (3.4)

x′ = x+N(0, C ′) (3.5)

where β is a constant with proper dimensions, usually in the order of 5o.
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Recombination on the other hand creates one child. It acts on each vari-
able/position, either by averaging parental values (intermediary recombina-
tion), or by selecting one of the parental values according to a specified dis-
cipline (if parental values are randomly and uniformly selected, the recombi-
nation is called discrete). For more parents, recombination works similarly by
using two selected parents to make a discipline and by selecting two parents
anew for each position. In order to obtain λ offspring, recombination must be
performed λ times.

Formally, the recombination can be given as:

zi =

{
(xi, yi)/2 intermediary recombination
xi or yi chosen randomly discrete recombination

(3.6)

where x and y are the parent vectors and z is the child. A multi-parent vari-
ant of recombination is denoted by global recombination (while the original is
referred to as local recombination) and more than two recombinants may be
used in this case. Evolutionary strategies typically employ global recombina-
tion. However, typically discrete recombination is used for the objective vari-
able part and intermediary recombination for the strategy parameters part.

Since parent selection is uniformly random, the selection is unbiased and
thus, each member of the population can be potentially selected as a par-
ent. Parents are randomly and uniformly selected from the population of µ
individuals.

Survivor selection is applied after creating λ offspring from µ parents by
mutation and recombination. If selection takes place from the offspring only,
it is called (µ, λ) selection, otherwise, if offspring are selected from the union
of parents and offspring it is called (µ+λ) selection. Both schemes are purely
deterministic and based on rank rather than on absolute fitness value. The first
is usually preferred in evolutionary strategies because it discards all parents
and therefore, it leads to local optima in principle, without failing to follow the
moving optimum of an on-fixed fitness function as (µ+λ) selection does. Also,
it does not hinder the self-adaptation with respect to strategy parameters like
(µ+ λ) selection does.

The benefits of self-adaptation, which was first introduced in evolutionary
strategies, have been shown not only for real-valued search spaces, but also for
binary and integer ones. This inspired other types of evolutionary algorithms
to adopt it as well. Unfortunately, there does not exist a firm theoretical
validation on the effectiveness of self-adaptation. However, close match of the
theoretical and experimental results seem to confirm the effectiveness of the
approach. Both theoretical and experimental studies agree on the fact that
the step sizes σ must decrease over time. The reason is that initially a large
space has to be covered to locate the promising regions, while later smaller
fine-tuning searches are required. Also, when the objective function changes,
the current population needs to be re-evaluated and some individuals may now
receive low fitness value, since they were adapted to the old objective. Self-
adaptation is able to reset the step sizes after each change in the objective
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function and thus improve the search process accordingly. Some conditions
that suit the employment of self-adaptation more are a generation of offspring
surplus (λ > µ), using (µ, λ) selection and the use of recombination on the
strategy parameters as well.

3.4.3 Genetic Programming

Genetic programming is the most recent type of evolutionary algorithm. Apart
from the basic representation difference with other evolutionary approaches
(genetic programming uses trees as chromosomes), it also has a different appli-
cation area. Genetic programming aims at seeking models with maximum fit,
rather than finding some input (solution) that maximizes the obtained payoff,
as provided by a specifically defined function (fitness function). Thus, genetic
programming is essentially a specialization of the Genetic Algorithms (GA)
option, where each individual is now a computer program. Consequently, ge-
netic programming could be classified as a machine learning technique as well,
which is used to optimize a population of computer programs, according to
their fitness values, the latter determined by a program’s ability to perform a
given computational task.

The main applications of genetic programming are prediction, classifica-
tion, and similar operations closely related to machine learning. Compared
to other approaches, genetic programming competes with neural networks,
since it is usually applied over large populations and it is typically character-
ized by slow evolution, namely it usually takes significantly large number of
evolutionary iterations to converge to the desired solutions.

In genetic programming computer program populations evolve where each
computer program is represented in memory as a tree structure. Such repre-
sentations over trees have the advantage that they can be completely eval-
uated in a convenient recursive manner with logarithmic complexity. Every
tree node has an operator function and every terminal (leaf) node has an
operand, thus making mathematical expressions easy to evolve and evaluate
recursively. Such expressions are formal notations for computer programs in
manners very well documented in finite state machine theory. Such trees used
to evaluate expressions in a given formal syntax are called parse trees. The
expressions can be arithmetic, logical, or even codes for whole programs (e.g.,
in C programming language), as shown in the examples in Figure 3.8. Parse
trees ensure that the expressions with the formal syntax can be properly in-
terpreted in each case. From a technical perspective genetic programming is a
variant of genetic algorithms operating on a specific and different than usual
data structure, namely trees. Parse trees may be interpreted in various ways
depending on the application context and employed representation.

For this reason, genetic programming favors programming languages and
especially functional programming languages, like LISP, which naturally em-
body tree structures. At this point we note that LISP is the programming
language most frequently employed in Artificial Intelligence (AI), where again
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Figure 3.8: Examples of tree representations in Genetic Programming algo-
rithms (arithmetic on the left — logical on the right).

evolutionary cognitive cycles like the one represented in the beginning of this
chapter, and the one that will be presented in Chapter 6, play significant roles
as many AI approaches strive to mimic evolutionary operations observed in
natural phenomena.

The specification of individuals in genetic programming can be reduced to
defining the syntax of the trees, or equivalently the syntax of the symbolic
expressions they represent. This is achieved by two sets, namely the func-
tional and terminal sets. Elements of the latter are allowed as leaves of the
tree representations, while elements of the first as internal nodes of the tree
representations. An idea can be obtained by the logical example on the right-
hand side of Figure 3.8, where the elements-values are at the leaves of the tree
(terminals), while the operators (functionals) are internal nodes of the tree.

The chromosomes in genetic programming are characterized by two impor-
tant features. First, they are non-linear structures, due to their tree nature.
Secondly, their size is not fixed as in the approaches using linear structures,
e.g., bit strings, but rather, the depth and breadth of the tree chromosomes
in genetic programming representation may vary.

The main operators in genetic programming are recombination and muta-
tion, even though the latter has received considerable skepticism specifically
in genetic programming approaches. A characteristic difference compared to
other approaches such as genetic algorithms and evolutionary strategies is
that crossover and mutation are performed in one step, contrary to the other
approaches where the crossover and mutation take place in two distinct steps.
Crossover is applied on an individual by simply switching one of its nodes
with another node from another individual in the population. With a tree-
based representation, replacing a node means replacing the whole branch that
the node belongs to, namely replacing the whole subtree rooted at the node
replaced. This adds greater effectiveness to the crossover operator. The ex-
pressions resulting from crossover are very different from their initial parents.
Mutation affects an individual in the population. It can replace a whole node
in the selected individual, or it can replace just the node’s information. To
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maintain integrity, operations must be fail-safe or the type of information the
node holds must be taken into account. For example, mutation must be aware
of binary operation nodes, or the operator must be able to handle missing
values.

Mutation has two parameters, the probability pm to choose mutation ver-
sus recombination and the probability to chose an internal point as the root of
the subtree to be replaced. In general, it is advised that pm is very small, al-
most zero. The most common implementation works by replacing the subtree
starting at a randomly selected node by a randomly generated tree. Typically
the newly created tree is generated the same way as in the initial population.
This means that the size (tree depth) of the child can potentially exceed that
of the parent.

Recombination in genetic programming creates offspring by swapping ma-
terial among the selected parents. It is essentially a binary operator creating
two child trees from two parent trees. A simple and most common implemen-
tation randomly selects two nodes of a tree parent and exchanges the subtrees
of these nodes. Recombination in genetic programming has two parameters,
the probability of choosing recombination or mutation, as in the mutation
case, and the probability of choosing an internal point within each parent as
crossover point.

Regarding parent selection, genetic programming usually employs fitness
proportionate selection, or in cases of large population sizes, a method denoted
by over-selection (typically for populations above 1000 individuals). In the
latter the population is first ranked by fitness and then divided into two
groups, one with the top x% and the other with the rest of the individuals.
When parents are selected, 80% of the selection operations come from the first
group and the other 20% from the second group. The value for the percentage
of x is empirically found/tuned depending on the underlying population size.

For survival selection, genetic programming uses a strategy where the
number of offspring created is the same as the population size and all the
individuals have a life span of one generation (generational strategy with no
elitism).

For the initialization of genetic programming the ramped half-and-half
method is usually employed, where a maximum initial depth Dmax of trees
is specified and each member of the initial population is created from the
available sets of functions and terminals according to two alternative methods,
referred to as full and grow method, respectively. In the first, for each branch,
which has depth Dmax, the contents of nodes at depth d are chosen from
the function set if d < Dmax and from the set of terminals if d = Dmax. In
the second, the branches may have different depths up to Dmax. The tree is
constructed starting with the root and the contents of each node are randomly
chosen from the union of the set of functions and terminals if d < Dmax.

An emerging effect is that the chromosomes tend to increase in size in
the search process, a phenomenon referred to as bloat. The main reason for
this is that the sizes are allowed to vary and within the survival of the fittest
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regime, chromosomes tend to increase in order to ensure they have a high
value of the fitness function. A simple way to restrict the effect is to impose
a maximum tree size and forbid a variation operator if the resulting children
would exceed the defined maximum size. This threshold can be considered as
one additional parameter of mutation and recombination, while another more
sophisticated approach would impose a penalty term in the fitness formula
for large chromosomes, thus driving them towards smaller sizes in order to
maintain high fitness function.

A noteworthy aspect of genetic programming are the cases where executing
a given expression of a parse tree representation changes the environment,
which in turn affects the execution of the expression, and thus the fitness
of the specific node. In such cases the solutions are not just simple mappings
from the inputs to the outputs, which means that some additional information
is required, perhaps in the form of a memory, to complete the mapping. This
means that fitness evaluations become more demanding and they potentially
require more time than in the simple case of data fitting problems, where the
above mapping is straightforward. However, the quality of the evolved results
is superior and this compensates for the higher evaluation cost paid.

3.4.4 Evolutionary Programming

Evolutionary programming is one of the four major evolutionary algorithm
paradigms. It is similar to genetic programming, but the structure of the
program to be optimized is fixed, while its numerical parameters are allowed
to evolve. It was first used by Lawrence J. Fogel in the US in 1960 in order
to use simulated evolution as a learning process aiming to generate artificial
intelligence [66]. More specifically, intelligence was considered as the capability
to adapt the behavior of the system, while meeting certain goals. In order to
achieve this goal, prediction of the environment was considered essential, and
in fact it was assumed to be a key feature for developing intelligence.

In the classical paradigm of evolutionary programming, Fogel used finite
state machines as predictors. A Finite State Machine (FSM) is conceived as
an abstract machine that can be in one of a finite number of states. The FSM
is only in one state at any time and it has a finite number of possible state
transitions from a state to another state. The FSM is also stimulated by a
finite alphabet of input symbols and it can respond with a finite number of
output symbols. An FSM can be used to implement learning and prediction
functions. The fitness of an FSM can be defined as the prediction accuracy of
the machine. Possible mutations of an FSM are changing an output symbol,
changing a state transition (next state of the FSM), adding/deleting a state,
and changing the initial state.

In this particular evolutionary approach, no recombination is employed,
the representation involved real valued vectors, mutation is again a Gaussian
perturbation, and parent selection is deterministic. Survivor selection is prob-
abilistic and in meta-evolutionary programming self-adaptation of mutation

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Cognitive Methods and Evolutionary Computing 99

step sizes is employed.
Currently evolutionary programming is a wide evolutionary computing

variation with no fixed structure or representation, in contrast to some of the
other variations of evolutionary computing. It is lately becoming harder to dis-
tinguish from the evolutionary strategies approach described in the previous
section.

Evolutionary programming is most frequently used for optimizing multi-
variate real functions and in this case a straightforward floating-point repre-
sentation is employed. Self-adaptation is used as a standard feature nowadays
in evolutionary programming and thus a general representation usually em-
ployed is: < x1, ..., xn, σ1, ..., σn >, where x̄ = {x1, ..., xn} and σ̄ = {σ1, ..., σn}
for the general form of individuals in evolutionary programming.

The main variation operator of evolutionary programming is mutation. In
general, there is no single evolutionary programming operator, but rather the
choice is determined by the application and especially the employed repre-
sentation on a per case basis. Nevertheless, one of the most commonly used
mutation operators, especially in the evolutionary variation, known as “meta-
EP,” uses self-adaptation of strategy parameters and a real-valued representa-
tion. Mutation in meta-EP transforms a chromosome < x1, ..., xn, σ1, ..., σn >
into < x′1, ..., x

′
n, σ

′
1, ..., σ

′
n >, where x′i = xi+σ′Ni(0, 1) and σ′(1 +αN(0, 1)).

N(0, 1) denotes a random sample from a Gaussian distribution with zero mean
and standard deviation 1, while α ∼= 0.2. A boundary rule to prevent standard
deviation values close to zero is in general employed/suggested. Some of the
differences for the self-adaptation of the step values that may be encountered
in various evolutionary programming variations are:

• Varying the formula for the step sizes, e.g., using log-normal function
as in evolutionary strategies;

• Incorporating variances instead of standard deviations as strategy pa-
rameters;

• The order in which the σ̄ and the x̄ are mutated.

Regarding the first and second, a common problem is the emergence of neg-
ative (invalid) values for the offspring variance, while the third regards the
order of σ̄, x̄ updates, several studies of which have shown that it is more
preferable to apply the “sigma first” strategy, which yields a more consistent
general advantage over the “sigma last” strategy.

In general, recombination in evolutionary programming has withstood a
long debate on the very essence of being useful for evolutionary programming,
since individuals in the corresponding search space represent abstract species,
rather than members of a single species, which in turn raises questions for
the context of representation, namely what recombination of different species
would mean. Until today, the question of whether crossover offers performance
benefits for evolutionary programming remains open and it is a potential
subject for further research in the future.
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Regarding parent selection in evolutionary programming, this is much less
an issue compared to other evolutionary algorithms. Here every member of
the population creates exactly one offspring via mutation, a fundamental dif-
ference from genetic algorithms and genetic programming, where selective
pressure based on fitness is applied. Evolutionary programming differs from
evolutionary strategies, since the choice of parents in the first is determinis-
tic, whereas in evolutionary strategies it is stochastic. Therefore, each parent
generates an offspring (survivor selection), using a (µ+ µ) survivor selection.
Sometimes stochastic variants are employed, where pairwise tournament com-
petitions are held in the round-robin format and involve both the parent and
offspring populations. The µ solutions with the greatest number of wins are
retained to be parents of the next generation. This variant allows for less-fit
solutions (individuals) to survive into the generation if they had a lucky draw
of opponents. In the limit, the mechanism becomes deterministic as in the
case of evolutionary strategies.

3.4.5 Evolutionary Computing at a Glance

Table 3.2 summarizes the features and special characteristics of the presented
evolutionary algorithms described above. It may be compared with Table 3.1,
in order to obtain a holistic overview of the common features, as well as
differences between typical evolutionary algorithms.

A few emerging trends may be identified by the joint observation of these
tables, mainly regarding the employed representations and mutations. The
applicable problem sets are also closely related, verifying the fact that evolu-
tionary approaches all share a common main approach that addresses broader
problems emerging in various and diverse applications.

3.4.6 Parameter Control in Evolutionary Algorithms

For a full specification of the evolutionary computing algorithms presented
before, a number of additional data requires clarification, in addition to the
specific techniques employed for, e.g., representation, crossover, mutation, etc.
Such data are called algorithm parameters. The values of these parameters
greatly affect the behavior of the algorithms and eventually determine whether
a specific algorithm will find an optimal or near-optimal solution, and whether
this solution will be efficiently obtained. This subsection will summarize some
of the typical approaches employed for the right selection of these parameter
values.

In general, there are two major approaches for parameter setting, namely
parameter tuning and parameter control . The first is a static approach where
parameter values remain fixed for a running, but they can be set in successive
algorithm runs according to a training approach, where parameters change
in successive runs, until a convenient setting is obtained. This strategy is
an experiment based approach, yielding suboptimal settings in most cases,
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requiring substantial experimentation time, and hence, almost always it is
deemed inappropriate for evolutionary algorithms, especially when the param-
eters are not independent of each other. In the second, parameter control, an
initial set of parameters is selected and their values change during the execu-
tion of the algorithm. Namely, parameter control is an adaptive approach that
dynamically alters parameter settings based on some learning, decision, or pre-
diction approach, in order to achieve better overall performance and efficiency.

Several other approaches have been devised for proper parameter setting;
however, most of them have been proven inefficient in practice, suffering from
a series of problems (usually one approach solving one problem exhibits ill-
behavior with respect to another). But this is exactly the type of problems
that evolutionary algorithms were developed for. Consequently, it is natural
to consider exploiting an evolutionary algorithm for tuning the parameter
set of another evolutionary algorithm for a particular problem. The second
evolutionary algorithm used for tuning the specific evolutionary algorithm
under particular problem scenarios is called the meta-evolutionary algorithm.
Of course the same evolutionary approach can be used for both tasks, namely
self-tuning and problem solving. Self-adaptation used for varying mutation
parameters is exactly representative of such an approach.

Changes in the parameters can be based on feedback from the search
process, as in Rechenberg’s 1/5 rule, which requires that the ratio of successful
mutations to all mutations be 1/5, and hence, if the ratio is greater than
1/5 the mutation step size is increased, whereas if the ratio is less than 1/5
the step size is decreased. Apart from mutation, the fitness function itself
(evaluation function) can be parameterized and varied less frequently. A very
characteristic case of the latter is penalty function coefficient variation in
constrained optimization problems, where static penalty weights (indicating
the importance of violating a constraint) can become dynamic, depending
on search feedback as in Rechenberg’s 1/5 rule, or determined according to
self-adaptation as in the mutation variation case. These three alternatives
applicable to mutation and evaluation function are valid for any parameter of
an evolutionary algorithm. Different domains of influence in the search space
that the various parameters may have are called scopes (domains of influence).

In order to classify parameter control techniques, a number of factors has
to be taken into account such as what is changed, how is it changed, the
data based on which the change is carried out and the scope/level of change.
Regarding the first, practically any component of an evolutionary algorithm
can be parameterized. Representation, evaluation function, selector operators
(parent and survivor), population, and mutation operators are some of the
components that can be parameterized, as was shown before for mutation
and the evaluation function (penalty weight).

Regarding the “how” changes are made question, three main approaches
have been mentioned already, namely deterministic parameter control, adap-
tive parameter control, and self-adaptive parameter control. In deterministic
parameter control the value of a strategy parameter is altered by some de-
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terministic rule that modifies parameters in a fixed predetermined manner.
Adaptive parameter control is when some form of feedback from the search
that serves as inputs to a mechanism used to determine the direction or mag-
nitude of the change to the strategy parameter is implemented. Finally, in
self-adaptive parameter control the parameters to be adapted are encoded
into the chromosome and undergo mutation and recombination, essentially
implementing an evolution of the evolution concept. Regarding the determin-
istic characterization of the first approach on “how” to implement changes, it
should be noted that it refers to the fact that the parameter-altering transfor-
mations take no input variables related to the search process. In that sense,
the term “fixed” parameter control might better reflect the actual mechanics
behind this class of approaches.

In self-adaptive parameter control, determining changes on the parameter
set is based on a monitoring system that gathers information on the evolu-
tion/behavior of the parameters and the evolutionary algorithm progress and
it is used as feedback for adjusting the parameters. Two approaches have
emerged, the first with absolute evidence and the second with relative evi-
dence. Absolute evidence characterizes the cases where the value of a strategy
parameter is altered by some rule that is applied when a predefined event
occurs. However, this trigger is not deterministic as in the deterministic pa-
rameter control, but rather it is based on feedback from the search process. Ex-
amples include increasing the mutation rate when population diversity drops
below a threshold, or changing the probability of applying mutation/crossover
according to a fuzzy rule, and it is clear that such mechanisms require that
the user has a clear (empirically or theoretically obtained) intuition about
how to steer the given parameter into a certain direction in cases that can
be specified in advance. In relative evidence parameter values are compared
according to the fitness of the offspring that they produce and the better val-
ues get rewarded. In this case, the direction and/or magnitude of the change
of the strategy parameter is not deterministically specified, but is specified
relative to the performance of other values.

The scope/level of a change determines whether any change within any
component of an evolutionary algorithm will affect other subcomponents and
the corresponding degree. Naturally, this depends on the component of the
evolutionary algorithm and the underlying degrees of freedom it allows. In that
sense this is a secondary feature of parameter control, which is component and
implementation dependent.

Summarizing the above, the main classification criteria for parameter set-
ting in evolutionary algorithms during the execution of the algorithm (param-
eter control) are:

• What component/parameter is changed (representation of individuals,
evaluation function, variation operators, selection operator, replacement
operator and population)?

• How is the change made (deterministic, adaptive or self-adaptive)?
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Table 3.3: Summary of evolutionary algorithm features.
Deterministic Adaptive Self-adaptive

Absolute + +
Relative + +

• Which evidence is employed for making the change (absolute or relative
evidence)?

Thus, a complete classification of parameter control is three dimensional,
where the dimensional component has six alternatives, and the other two
dimensions have three and two alternatives, respectively. The available com-
binations for the last two dimensions (on the change-evidence plane) are pro-
vided in Table 3.3. Figure 3.9 depicts cumulatively the overall classification
of parameter setting approaches.

Parameter setting
approaches

Parameter
control

Deterministic

Adaptive

Self-
adaptive

Parameter
tuning

Figure 3.9: Taxonomy of parameter control approaches. Parameter tuning
takes place before execution, while parameter control takes place during the
execution.
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3.4.7 Special Forms of Evolution

Apart from the evolution approaches described up to this point in this chap-
ter, all of which follow an overall methodology described in Subsection 3.3.1,
there are some other forms of evolution that deviate from the standard evo-
lutionary algorithm methodology. In particular, co-evolution and interactive
evolution are two characteristic representatives of these alternative evolution-
ary approaches, both of which operate under the “external influence concept,”
where a population or a person are employed respectively to affect the fitness
of the main population, and thus its evolution. In both cases, the fitness value
awarded to a solution may vary due to the fitness function being dependent
on the evolution of another population in the co-evolution case, or due to
inconsistencies exhibited by the subjective preferences of the fitness-affecting
users.

Co-evolution

Co-evolution was inspired by the fundamental observation that in real life, the
fitness of an organism is entirely determined by the environment in which it
resides. The characteristics of this environment are predominantly determined
by the presence and behavior of other organisms from the same or different
species (competition). Thus, the effect of other species in determining the fit-
ness of an organism can be positive or negative. The terms mutualism and
symbiosis are employed to denote co-adaptation of species in a mutually ben-
eficial way and the terms predation or parasitism refer to cases of one species
having negative effects on the evolution of the other. However, the main notion
is that since evolution affects all species, the net effect is that the perceived
landscape for each species is affected by the configuration of all the other
interacting species. This is referred to as co-evolution.

There are two main variants of co-evolution computational models, co-
operative and competitive co-evolution. Each of these variants is discussed
separately in the following.

Co-evolutionary models where a number of different species, each repre-
senting part of the problem, cooperate in order to come up with a solution
to a larger problem are referred to as cooperative co-evolution. The main ad-
vantage is that it allows for effective decomposition of problems. Essentially,
each subpopulation is solving a (much) smaller and more tractable problem.
If the smaller problem is not tractable, then there is no point in doing such
decomposition and an alternative approach should be attained. However, on
the other hand, a suitable partition must be provided and usually in an au-
tomated manner.

In an extreme point of cooperative co-evolution, two species become so
interdependent on each other that they end up linked to each other, a situation
referred to as endosymbiosis. The extent to which such populations, which in
evolutionary computing terms represent two different types of solutions, affect

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

106 Evolutionary Dynamics of Complex Communications Networks

the emerging strategies, depends significantly on the degree of such linkage,
so that eventually solutions with high linkage between the two populations
are preferred.

When cooperating co-evolution is employed, one of the significant aspects
is the way that solutions obtained from one population are combined with
solutions obtained from the other populations in order to obtain a meaning-
ful fitness evaluation. Various alternatives proposed in the literature include
using generational genetic algorithms in each subpopulation, using lifetime
fitness evaluation in the steady state generational model, or using diffusion
models of evolutionary algorithms, while changing the rate at which the com-
position of different populations is perceived by the user to change. Another
employed approach is the use of automatically defined functions within genetic
programming, where the function set is extended to include calls to functions
that are themselves being evolved in parallel and separate populations. All
these approaches introduce additional diversity and add in the “stochastic
search” degree of the developed approach in each case.

On the other hand, in competitive co-evolution, individuals compete
against each other to gain fitness at each other’s expense. Again the indi-
viduals may belong to the same or different species. As with cooperative co-
evolution, the fitness values for the various populations will change along with
their evolution and once more, the selection of pairing strategies among solu-
tions from individual populations can have a significant impact on the overall
outcome. There are two cases emerging, one where competition arises within
a single population (species) and then each strategy can be paired against the
other, or a randomly chosen sample of the others, and a second one where
competition arises between different populations and then a pairing strategy
is necessarily required for evaluating fitness.

The driving force of co-evolution is usually denoted as competitive fitness
evaluation [9]. The most prominent feature of competitive fitness evaluation
is that it is self-scaling, namely early in the operation of the process relatively
poor solutions may survive, since their competitors have not grown strong
yet. However, as the evolution progresses and the average strength of the
population increases, the difficulty of the fitness function continually scales.

Interactive Evolution

The characteristic feature of interactive evolution is that the user applying
the approach, i.e., the user, becomes part of the system playing the role of an
oracle that guides the evolutionary process. The net result is that the yielded
outcomes will better suit the expectations of the user and thus they will be
considered more successful.

The two basic mechanisms of interactive evolution are variation and selec-
tion. Interactive evolution is especially concerned with the second. In general,
the user can influence/control selection in various ways. The influence can
be direct or indirect. In all cases, the user’s influence is named subjective
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selection. The advantages of incorporating human guidance in the evolution
are:

• Handling situations with no clear fitness function, e.g., in cases where
the preference for certain solutions cannot be formalized.

• Improved search ability, where the user directs the search in case it traps
in a local optimum.

• Increased exploration and diversity.

However, these advantages come at a cost too, namely:

• Slowness, compared to fully automated processes.

• Inconsistency, since users may change their minds on the fly.

• Limited coverage, since the users cannot handle large populations effec-
tively.

Interactive evolution is usually related to evolutionary design and
component-based representations. It is oriented towards exploring the search
space. The basic template for an interactive evolutionary design system con-
sists of five components:

1. A phenotype representation defining the application-specific kind of ob-
jects that are to be evolved.

2. A genotype representation, where the genes represent (directly or indi-
rectly) a variable number of components making up a phenotype.

3. A decoder that defines the mapping from genotypes to phenotypes.

4. A solution evaluation facility allowing the user to perform.

5. An evolutionary algorithm to perform the actual search.

Such schemes can be used to evolve objects in a great variety that cannot
be obtained by typical approaches. These systems resemble their evolutionary
counterparts a great deal. Their main difference lies in the fact that their
objective is to please the user, rather than achieve some specific objective.

 





i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Chapter 4

Complex and Social
Network Analysis: Metrics
and Features

Exploiting features from Social Network Analysis (SNA) in Complex Net-
work Analysis (CNA) and control, as explained in previous chapters, requires
quantifying such features in accurate manners and then evaluating the effec-
tiveness of the approaches with proper and measurable means. As mentioned
already, these elements from network science could be used for improving sev-
eral aspects of network performance and in various application settings, i.e.,
in different applications and diverse network structures. Such elements from
SNA and network science should be measured and assessed in a meaningful,
scalable and computationally efficient manner in order to be successfully iden-
tified first and then employed in the various application frameworks. Defining
and exploiting the appropriate evaluation metrics that will be applied in the
corresponding analysis and development mechanisms is also an important part
of social/complex network analysis. In fact it is one of the first steps a de-
signer should take in order to determine appropriately the effectiveness and
efficiency of the developed mechanisms.

In this chapter, we will present and analyze the most prominent evaluation
and assessment metrics emerging in complex/social network analysis, most of
which will also be exploited in later chapters of this book, where network
topology control and improvement mechanisms will be presented, focusing on
communications networks. Several of the salient features of the analyzed met-
rics will be provided, thus serving as guidelines for further exploiting complex
network analysis concepts in communications networks.

The included metrics have been inspired in many cases by social in-
centives and studies. These metrics are highly characteristic of social fea-
tures/properties and could be used to assess the degree to which social
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mechanics/dynamics have been incorporated into communication networks,
as will be shown in detail in later chapters. In addition, these metrics will
be the means both for designing mechanisms that take advantage of these
emerging social aspects of communications networks in order to improve per-
formance, and the assessment of the successfulness of these mechanisms in
achieving their goals. These paradigms will serve as starting points for devel-
oping similar frameworks and mechanisms that exploit other types of features
from network science, e.g., elements from biological networks.

The majority of the complex network analysis metrics that will be pre-
sented in this chapter are centered around the notion of distance over metric
spaces. Most frequently, the considered metric space is that of the discrete
graph space, in which case, distances are measured in hops. Different metrics
(or space embedding) have been proposed as well and will also be examined
in this chapter. Additional details on computing distances in metric spaces
are provided in Appendix B, in conjunction with the notion of semirings and
path computations.

4.1 Degree Distribution

The notion of node degree has been explained in earlier chapters. It represents
neighboring relations between a node and those interacting directly with it.
The distribution of node degrees, commonly referred to as degree distribution,
describes cumulatively such measures of direct neighboring relations for net-
work nodes. Occasionally, the node degree depends on the Euclidean distance
of nodes (if they are embedded in a Euclidean plane), i.e., in geometric and
random geometric graphs [128]. In these cases, the degree distribution is an
implicit derivative of a distance-based metric in the Euclidean space. How-
ever, in the general case, neighboring relations are determined according to
different criteria, e.g., online social networks, protein networks, etc., and thus
the degree distribution is derived from non-distance-based metrics.

The degree distribution could have a deterministic or probabilistic form,
depending on the network analysis framework and the application scope of the
studied/analyzed networks. In cases where neighborhood relationships do not
vary, e.g., a snapshot of a local area network, or an edition of a transportation
map, the degree distribution is the full spectrum of node degree values. It
can be visualized by providing the value of each node degree for all nodes, as
shown for different types of networks in Figure 4.1. In cases where network
connections vary with time or other parameters and node connectivity cannot
be deterministically defined, i.e., where only a connection probability between
a node pair can be defined, the degree distribution becomes stochastic as well.
In these cases, the degree distribution P (k) is the probability that a node has
k neighbors.

The above definitions properly describe networks with undirected topolo-
gies. However, the definitions need to be extended in order to cover the cases
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(a) Finite regular graph degree distribution.
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(b) Poisson (random graph) degree
distribution.
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(c) Power-law graph degree distribution.

degree

n
od
e
s

(d) Heavy-tailed degree distribution.

Figure 4.1: Examples of degree distributions for various types of networks
(linear scale).

of directional topologies as well. In undirected networks a single degree distri-
bution suffices to characterize the whole network. In directed networks, two
different distributions are required, one for the in-degree and one for the out-
degree of the nodes. Each of the two distribution types is similar to the one for
undirected graphs (could be deterministic or probabilistic, etc.) and provides
similar information for the two asymmetric directions of flow, towards and
from network nodes.

At this point, we need to note that in some works, the degree distribution
is incorrectly referred to as connectivity of the network. This is a practice
that should be avoided in general, since connectivity describes cumulatively
the interconnection relations/capabilities of a network, i.e., in the sense of
κ(G), if G is the network graph (Section 2.1.3). The term distribution de-
scribes in a cumulative fashion properties of nodes individually, and thus the
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degree distribution should not be mistakenly used to characterize the global
connectivity properties of a network.

The degree distribution is characteristic of a network topology. It essen-
tially identifies uniquely a specific set of node interconnections and thus it
segregates among different network types. In complex network analysis, the
degree distribution is widely used for network classification. In fact, all net-
work types that will be presented in the following chapter are segregated
according to their interconnection relations, which in turn were reflected in
their node degree distributions.

Especially in social networks, degree distributions are mainly characterized
by heavy tails, i.e., in a chart of node degree-number of nodes (as the ones
shown in Figure 4.1), the distribution is similar to that of a power-law in
linear scale, where the curve exhibits a long tail in the axis of node degree,
thus signifying the fact that a large number of nodes have small degree. This
does not necessarily imply a typical power-law distribution, but rather that
significant mass can be found towards that part of the distribution. Various
heavy-tail distribution models maybe utilized in such cases for accurately
modeling such types of networks.

However, obtaining accurate representations of degree distributions is not
always feasible or at least efficiently viable, especially for real networks where
observations may be fuzzy and inaccurate. Numerical methods and sampling
are usually employed for reconstructing the degree distributions of real net-
works, in which case such distributions are usually referred to as empirical
degree distributions. In fact, obtaining an accurate mathematical model for
the degree distribution could be one of the toughest tasks, and thus, in many
cases, the empirically obtained degree distribution might not offer significant
benefits for the analysis of a network, but rather only a first indication of
the interconnection nature and node behaviors. Other more efficient and in-
dicative metrics should be considered, as shown in the following parts of this
chapter.

At this point we need to note that the degree distribution is sometimes
referred to as degree sequence. The latter is a characterization more suitable
for deterministic graphs, where the node degree does not vary for each node,
and thus the spectrum of node degrees may be indeed considered a sequence
of possible degree values. The term degree sequence is not so appropriate for
random or randomized graphs, where the spectrum of node degrees indeed
comes at a specific probability distribution. In this book, we employ the term
degree distribution for all cases, in order to have a common and uniform proper
terminology. The main use of the degree sequence representation is reserved,
as in many other works, for denoting an ordering relation, in the sense that the
degree sequence is ordered in a monotone (increasing or decreasing) fashion,
which in turn enables better analysis or description of the degree spectrum.
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4.2 Strength

As already explained in previous chapters, weighted graphs emerge oftentimes
in social and communications networks, especially in the latter, to signify in-
tensities of the developed relations represented by the network edges. However,
these intensities are not conveyed by the degree distribution described before,
which only provides connectivity information. A more involved metric is re-
quired to convey this kind of information, which will be described in this and
in the following sections.

The above concern becomes more prominent in weighted network repre-
sentations, where the weights of the links make notable difference in various
networking functions and mechanisms, e.g., shortest path computation and
routing in communications networks. The weights assigned to connecting links
(or sometimes nodes) also bear characteristic information for quantities ex-
changed between network nodes (e.g., traffic, information, money, shipments,
proteins, signals, etc.). Such information should be taken into account in a
more elaborated metric that provides the combined information of connectiv-
ity and intensity of connectivity for both undirected and directed networks.

Assuming a weighted undirected network graph, in addition to the adja-
cency matrix defined in Section 2.1.1, a weight matrix is employed as well.
The weight matrix W = [wij ] is an N × N matrix, in which element wij
specifies the weight in the link connecting vertices i and j (wij = 0 if the two
vertices are not connected). Along with the degree of a node, a very useful
and important measure of network properties in terms of node interaction is
the vertex strength si:

si =
∑
j∈V(i)

wij (4.1)

where the sum spans all neighbors of node i, in the neighborhood set V(i).
For a directed graph two strength measures need to be quantified, in order

to relate the directionality information together with connectivity informa-
tion and intensity of connectivity. Consequently, in-strength and out-strength
measures are defined:

sout
i =

∑
j∈V(i)

wij (4.2)

sin
i =

∑
j∈V(i)

wji (4.3)

Eventually, node strength integrates in a uniform fashion connectivity and
link weight information into a generalized connectivity metric that takes into
account the “amount” of exchanged information between interacting agents-
nodes. By combining vertex strengths, node strength can be turned into a
network metric, indicative of the components of a network and possible par-
titions of nodes [155].
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4.3 Average Path Length

Another very useful metric for performance evaluation in traditional commu-
nications networks and social structure assessment is the average path length.
The average path length is a network-wide defined metric (compared to node
degree, which is a distributed metric characterizing a specific node), which is
defined as the average of the shortest path lengths between all pairs of nodes
in the network. Thus, in order to obtain the average path length of a network,
one needs to identify all possible node pairs (at most

(|V |
2

)
) in the network,

then compute the length of the shortest path for each node pair and average
over all such pairs. By definition, the average path length requires knowl-
edge of all of the shortest paths of a network, and thus average path length
is an inherently centralized operation. However, in the literature several dis-
tributed approaches have been proposed for approximating the average path
length within acceptable bounds of the accurate value and in meaningful time
(Appendix B, [16], [112], [51], [26], [48] etc.).

The average path length indicates the expected distance one would ex-
perience between a randomly selected node pair of a network, according to
the selected distance measure for computing shortest paths. Thus, it can be
indicative of several performance aspects of the network for other metrics and
operations that depend on the distance between nodes. However, as it can
be realized from the preceding discussion, a very fundamental and critical
aspect for computing the average path length of a graph is the definition of
distance itself employed for the computation of the shortest paths. The def-
inition of the distance among nodes, based on which neighboring relations
between nodes are also usually determined, depends on the specific nature,
purpose, operation, and application framework of a network. The most fre-
quent metric employed is the hop-count, denoting the least possible number
of links separating two nodes. Alternative metrics may include sum/product
of the weights of the links along the path, if weighted networks are involved,
or even other functions of link weights.

Especially for network graphs, the distance has usually been incorporated
in the definition of the links between nodes. Thus, the actual distance be-
tween nodes is in turn determined by the hop-distance metric, indicating that
according to the specific underlying distance, the nodes have an immediate
(1-hop) distance, second order (2-hop) relations, etc.

The previous discussion essentially highlights the importance of the un-
derlying employed algebra for computing node distances, imposed either by
the operation and nature of a network or the design objectives of engineers.
For instance, depending on the application, e.g., trust computation or traffic
management, the shortest path may be more appropriate to be computed as
product or sum of the link weights, thus yielding different average path length
values for the same network topology.
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In any case, the average path length is indicative of the relative spatial
and connectivity potential spread across a network, and it is often used in
the definition of more complex network evaluation metrics, such as centrality,
as will be explained later. This confirms it as a very important assessment
metric and one that network scientists should always take into account in
their analysis.

4.4 Clustering Coefficient

The clustering coefficient is an important metric for complex networks, used
to characterize the structure of a social network both locally, i.e., at the node
level, and globally, i.e., at the network level. It computes the cliquishness of
the network, expressing the degree of the triadic closure process in the cor-
responding network. The triadic closure [57] process takes place when two
neighbors of a node become themselves neighbors and is very likely to happen
in social networks. More explicitly, suppose having a friendship network, i.e.,
nodes are persons and links are formed between two nodes if they know each
other on a first name basis. Then it is more likely that a new edge is formed
between a pair of nodes (i, j) having a common neighbor k as k can bring in
contact nodes i, j either willingly or randomly. The triadic closure is a pro-
cess characterizing the network evolution; however, the clustering coefficient
is computed on static networks. As a result, by computing the clustering co-
efficient at a particular time instant, we can get a feeling of how much triadic
closure has happened till then in the network, i.e., the higher the clustering
coefficient, the more the participation of the triadic closure in the network
evolution. It should be mentioned that the clustering coefficient of a random
graph G(n, p), defined in Section 2.2.1, equals p, since the probability that
two neighbors of a node are directly connected (and thus a triangle is formed)
equals the probability p that an edge exists in the graph. In the sequel, we
quote two definitions of the clustering coefficient in binary, undirected graphs;
the first one defines a local clustering coefficient for each node and then gen-
eralizes it to the whole network, while the second definition defines a global
clustering coefficient for the whole network. Afterwards, we extend the notion
of the clustering coefficient in weighted and directed networks.

4.4.1 Definition

The local clustering coefficient Ci of node i is a measure of direct connectivity
between the neighbors of node i:

Ci =
number of triangles connected to node i

number of triples centered at node i
(4.4)

=
number of edges between the neighbors of node i

number of all possible edges between the neighbors of node i
(4.5)

In graph theory, a triangle is an ordered, complete 3-node subgraph, while
a triplet is simply a connected 3-node subgraph. The network local clustering
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coefficient is the average Cnet = 1
N

∑N
i=1 Ci over all network nodes N . The

local clustering coefficient at node i has a value field equal to [0, 1], where
Ci = 0 when there are no connections among the neighbors of i (zero number
of triangles connected to i) and Ci = 1 when there exist all the possible
connections among node i’s neighbors. If i has ki neighbors, then the number

of all possible connections among node i’s neighbors is equal to ki(ki−1)
2 .

If we consider that A = [aij ] is the N × N adjacency matrix of the net-
work, as this is described in Section 2.1.1, Eq. (4.5), through simple matrix
equations, can take the form:

Ci =

∑
j,k aijajkaki

(
∑
j aij)

2 −∑j aij
=

(A3)ii
(
∑
j aij)

2 −∑j aij
(4.6)

i.e., the number of triangles adjacent to node i is equal to Ti =
∑
j,k aijajkaki

2 .
The global clustering coefficient CG of a network measures the portion of
triangles versus triples in the whole network topology:

CG =
number of triangles in the network

number of triples in the network
(4.7)

To illustrate the above definitions, Figure 4.2(a) depicts a simple network
topology for which we are going to compute the local and global clustering
coefficients. Figure 4.2(b) shows an indicative triangle (g-h-j) and an indica-
tive triplet (i-k-l). Firstly we compute the local clustering coefficients for
each one node separately. Node i has 3 neighbors, the maximum possible
number of connections between them is 3∗2

2 = 3, and there exists only 1 of
them, i.e., Ci = 1

3 . Node k has two neighbors that are not connected, there-
fore, Ck = 0. Similarly, it can be verified that Cj = 1

3 , Cl = 0, Ch = 2
3 ,

Cg = 1. The average local clustering coefficient over the whole network is

Cnet =
Ck+Ci+Cj+Cl+Ch+Cg

6 =
0+ 1

3 + 1
3 +0+ 2

3 +1

6 = 7
18 . Regarding the global

clustering coefficient, the network as a graph has 15 connected triples and 6
triangles, i.e., CG = 6

15 .

4.4.2 Extension to Weighted Graphs

As it is commonly accepted, a binary graph representation is not sufficient
for capturing the complex features of modern interactions. Weighted network
graphs can replace binary graphs for including information about the intensity
or importance of the communication between two nodes. As a result each link
(i, j) is associated with one or more weight values expressing the correspond-
ing performance metrics of interest such as cost of communication on the link
(i, j), trust value that node i assigns to node j, etc. In this section we extend
the definition of the local clustering coefficient to weighted graphs, based on
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(a) Simple network topology.
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(b) Example of triangle and
triplet formations.

Figure 4.2: Example of the computation of the clustering coefficient.

proposed extensions from related work. As described in Section 4.2, let us as-
sume that the network graph is represented by the weight matrix W = [wij ]
with wij = 0 if the edge (i, j) does not exist. The main idea of this extension
is not only taking into account the number of triangles and triples connected
to each node, but also consider the importance of each one triangle or triplet
as this is defined based on the weight values of the links they consist of. There
are many definitions of the clustering coefficient for weighted networks in the
related bibliography [17, 88, 118, 120, 143], where each one computes a differ-
ent function of the links’ weights included in each triplet or triangle leading in
this way to a different measure of importance of the triangles/triplets. Here
we quote and explain three representative of them [143].

To begin with, Barrat et al. [17, 143] defined the “weighted local clustering
coefficient” as:

Cbwi =

∑
j,h

(wij+wih)
2 aijaihajh

si(ki − 1)
(4.8)

According to Eq. (4.8), if aijaihajh = 1, i.e., the edges (i, j), (i, h), (j, h)
exist, the sum (wij +wih)/2 of the weights of the links of the triangle among
i, j, h, adjacent to node i is added to the nominator of Cbwi . As a result, for the
computation of the weighted clustering coefficient Cbwi , it takes into account
for each triangle among i, j, h, the intensity of interaction of the triplet among
j, i, h centered at i. The denominator serves the purpose of normalization
so that 0 ≤ Cbwi ≤ 1, which is more clear if it is written in the form of
si(ki− 1) = w̄iki(ki− 1), where w̄i represents the average weight of the edges
adjacent to node i, since si =

∑
j wij = w̄iki. If all the weights (on existing

edges) are equal to 1 (case of binary graph), or if all the weights are equal
to a constant value, Eq. (4.8) reduces to the Eq. (4.6). If Cbwi = 0, there are
no connections among the neighbors of node i. Also, Cbwi = 1 if the binary
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clustering coefficient Ci = 1, i.e., if there exist all the possible links between
the neighbors of node i.

Another definition of the local clustering coefficient in weighted networks
is proposed in [143, 169], and constitutes a generalization of Eq. (4.6) by
replacing the adjacency matrix A with the weight matrix W and changing
the denominator so as to become an upper bound for the nominator ensuring
that the local clustering coefficient is less than unity. Also, in order to apply
Eq. (4.9), we need to normalize the weight values by dividing each weight wij
with the maximum weight, i.e., maxi,j wij , where we denote the fraction as
ŵ =

wij
maxi,j wij

. Therefore,

Czwi =

∑
j,k ŵijŵjkŵki

(
∑
j ŵij)

2 −∑j ŵ
2
ij

(4.9)

In the case of binary graph, Eq. (4.9), reduces to Eq. (4.6) since W = A
and

∑
j ŵ

2
ij =

∑
j a

2
ij =

∑
j aij . In addition, Czwi = 0 when there are no

connections among the neighbors of node i. The value Czwi = 1 is achieved
when there exists all the possible connections among the neighbors of node
i (i.e., when Ci = 1) and for each triangle among i, j, k it holds that wjk =
maxi,j wij .

Last but not least, we quote a definition for the clustering coefficient in
weighted graphs, which regards that each formed triangle, including node i,
contributes to the nominator of the weighted local clustering coefficient of
node i a quantity equal to the geometric mean of the weights of the edges of
this triangle [118, 143]. Again, the weights should be normalized with respect
to their maximum value as in the previous case and they are denoted again
as ŵ. The corresponding equation is:

Cowi =

∑
j,k(ŵijŵjkŵki)

1
3

ki(ki − 1)
(4.10)

Similarly to the previous cases, Cowi = Ci in the case of a binary graph and
Cowi = 0 in a case where the subgraph of the neighbors of node i consists of ki
disconnected components. Finally, Cowi = 1, if the subgraph of the neighbors
of i is complete and all the edges participating at triangles have maximum
weights, i.e., equal to maxi,j wij .

4.4.3 Extension to Directed Graphs

Many real world complex networks include connections deriving from non-
mutual relationships. In graph theory language this is expressed as follows:
if the link (i, j) exists in the graph, the link (j, i) may exist or not (as also
described in Chapter 2). As an example, in the online social network Twitter, if
node i is a follower of another node j this does not mean that j will reciprocate
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this relationship and become a follower of i. As a result, complex networks
are modeled in higher detail if directed (and weighted) graphs are used. In
this section we are going to study the extensions of the clustering coefficient
for directed binary and weighted graphs as these are described in [63]. One
possible way of treating the clustering coefficient measure in directed network
graphs would be to symmetrize the network and use one of the definitions
described in the previous sections. This approach, although easy to implement,
leads to the loss of important information regarding the information flow in
the network, the structure of the network links, and their formation. Based
on this fact we focus on the non-trivial extensions of the definition of the
clustering coefficient in directed network graphs, which take into consideration
the direction of the edges in the definitions of the triangles and the triplets.

Before quoting the definitions, we define some notions that are going to be
used [63]. The in-degree and the out-degree of a node i are defined correspond-

ingly as kini =
∑N
j=1 aji, k

out
i =

∑N
j=1 aij (Chapter 2). Moreover, the total

degree of node i is defined as ktoti = kini +kouti =
∑N
j=1(aij+aji) = (AT +A)1,

where AT is the reverse matrix of A and 1 = [1,1,1, ...,1]T, a N -dimensional
column vector. Let us also consider that the number of links adjacent to i ex-
isting in both directions is denoted as kbi , i.e., kbi =

∑N
j=1,j 6=i(aijaji) = A2

ii. If
we symmetrize the network graph by considering each one of its connections as
bidirectional, the induced node degree of i will become equal to ki = ktoti −kbi ,
since each one of its bidirectional connections will be counted twice. Similar
definitions hold in the case of weighted networks where instead of using the
node degree we use the node strength, as this is defined in Section 4.2.

In a directed network, node i can form 8 different triangles with any pair
of its neighbors (23, since each one of the three edges of the triangle has two
possible directions). Let us use the term “directed triangle” to refer to one
of these. All the possible directed triangles centered at node i are visualized
in Figure 4.3. The more intuitive extension of the definition of the clustering
coefficient to directed graphs is the fraction of the directed triangles actu-
ally formed among i and its neighbors (tDi ), towards all the possible directed
triangles that can be formed among i and its neighbors (TDi ), i.e.

Cdi =
tDi
TDi

(4.11)

=

∑
j,h:j 6=h6=i(aij + aji)(aih + ahi)(ahj + ajh)

2(ktoti (ktoti − 1)− 2kbi )
(4.12)

=
(A+AT )3

ii

2(ktoti (ktoti − 1)− 2kbi )
(4.13)

where in Eq. (4.12), the nominator counts all directed triangles, which becomes
more evident if it gets expanded to a sum of products, each one representing
a different triangle (i.e., products of the form aijaihajh). The denominator
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Figure 4.3: All possible directed triangles formed among i and two of its
neighbors j, h.

expresses all possible triangles formed among i and its neighbors due to the

fact that node i can form up to 2
ktoti (ktoti −1)

2 directed triplets with its neighbors
and each triplet corresponds to two possible directed triangles (depending on
the direction of the third edge). However, 2kbi among them are formed between
i and the same neighbor j, in the cases that both edges (i, j), (j, i) exist, and
therefore, they are wrongly considered and should be subtracted. Moreover,
Cdi reduces to Ci (Eq. 4.6) if the graph A (adjacency matrix) is binary, as can
be easily proved by replacing the reciprocated connections (aij = aji ∀ i, j).
Finally, the directed clustering coeeficient of the whole network is defined as
the average of the Cdi for all i as exactly defined for binary undirected graphs,

i.e., Cdnet =
∑
i C

d
i

N . For weighted and directed networks the Eq. (4.13) is

extended by replacing the adjacency matrix A with the weight matrix W
1
3 =[

w
1
3
ij

]
as follows:

Cwdi =
(W

1
3 +W

1
3T )3

ii

2(ktoti (ktoti − 1)− 2kbi )
(4.14)

If the graph W is symmetric, i.e., all the consisting edges are bidirectional
with equal weights on both directions, Eq. (4.14) reduces to Eq. (4.9). Fur-
thermore, if the graph is directed and binary, Eq. (4.14) becomes equal to Eq.
(4.13).

In the sequel, more specialized definitions of the clustering coefficient are
going to be presented. The definition of Eq. (4.13) counts all triangles regard-
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less of the directions of their edges. However, the direction of the triangle
edges matters as it determines the flow of information in the network and by
observing Figure 4.3, all the possible directed triangles can be divided in 4
patterns or categories. The category “cycle” contains the triangles consisting
of edges with directions that form a directed circle of length 3. The category
“in” contains the triangles two edges of which point at node i. Similarly, the
category “out” consists of triangles two links of which leave node i. Finally, for
the category “middleman” the nodes j, h are connected directly or through
a directed path of length 2 via node i. For each one of these categories, a sep-
arate clustering coefficient can be defined [63]. Let us denote the number of
triangles of the category p, p = 1, 2, 3, 4 actually formed by i and its neighbors
as tpi , and the maximum possible number of triangles of the category p that
can be formed by i and its neighbors as T pi . As a result the local clustering
coefficient at node i and for the p category is defined as

Cpi =
tpi
T pi

(4.15)

As a result for computing Cpi , ∀ p, we need to compute tpi , T
p
i ∀ p. We begin

by computing T pi ∀ p by analyzing the equation for the maximum possible
number of directed triangles that can be formed by node i (denominator of
Eq. (4.13)) as follows:

ktoti (ktoti − 1)− 2kbi = (kini + kouti )(kini + kouti − 1)− 2kbi

= (kini k
out
i − kbi ) + (kouti (kouti − 1))

+(kini (kini − 1)) + (kini k
out
i − kbi )

= T 1
i + T 2

i + T 3
i + T 4

i (4.16)

In the case of T 1
i , T

4
i , kbi should be subtracted for the same reason ex-

plained earlier, i.e., the product kini k
out
i counts triangles formed by i and two

opposite directed edges with the same neighbor. Also, T 1
i , T

4
i have the same

form, as they differ only by the orientation of the third edge (i.e., between
nodes j, h in Figure 4.3), which does not affect the maximum number of tri-
angles for each category. In the sequel, tpi ∀ p are computed through simple
computations using the elements of the adjacency matrix A [63]. Therefore,
for the triangles belonging to the category cycle, we have:

t1i =
1

2

∑
j,h

[aijajhahi + aihahjaji]

=
1

2
[A(i,:)AA(:,i) +AT(i,:)A

TAT(:,i)] = A(i,:)AA(:,i) = A3
ii (4.17)

where we symbolize with A(:,i), A(i,:) the i − th column and line of A corre-
spondingly. The same notation is employed for AT . Similarly, for the triangles
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belonging to the category middleman, we have:

t4i =
1

2

∑
j,h

[aijahjahi + aihajhaji]

=
1

2
[AT(i,:)AA

T
(:,i) +A(i,:)A

TA(:,i)] = A(i,:)A
TA(:,i) = (AATA)(ii) (4.18)

For the categories 2, 3 we compute that:

t2i =
1

2

∑
j,h

[ajiajhahi + ajiahjahi]

=
1

2
[AT(i,:)AA(:,i) +AT(i,:)AA(:,i)] = (ATA2)ii (4.19)

t3i =
1

2

∑
j,h

[aijajhaih + aijahjaih]

=
1

2
[A(i,:)AA

T
(:,i) +A(i,:)AA

T
(:,i)] = (A2AT )ii (4.20)

For weighted networks, the adjacency matrix A is replaced by W
1
3 . In the case

that we want to compute the participation of triangles belonging to the cate-
gory/pattern p among all formed triangles, we can divide the actual number
of triangles of the category p with the number of all formed directed triangles,

i.e.,
tpi
tDi

. Finally, for computing the network-wide clustering coefficient for each

one pattern, we average over all the network the corresponding local cluster-
ing coefficients of all the nodes, similarly to the case of binary and weighted
network graphs.

4.5 Centrality

In various network types, it has been required/desired to characterize the
importance of the involved network elements (network nodes), both individ-
ually and with respect to the overall network structure. Centrality has been
conceived as an evaluation metric for characterizing this aspect of networks.
Typically, the focus is on the importance of nodes or connection links, but
other features of the graph structure under consideration may also be con-
sidered. The “centrality” metric of a node or link is a direct measure of its
importance in various networking operations or applications. In addition, a
“centrality” metric characterizing the network cumulatively is also conceived
as an overall metric characterizing the expected significance of each node in
the network, on average. Such metric of importance (i.e., centrality) could be
subjective, depending on numerous aspects of a network, such as the struc-
ture, the network objectives, network operation, and even other more context-
oriented factors characterizing a network. For these reasons, various centrality
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Table 4.1: Summary of centrality types in complex and social network analysis.

Type Metric Computation

Degree node degree distributed
Closeness (proximity) node pair distance centralized

Betweenness shortest path centralized/
approximations

Eigenvector adjacency matrix eigenvalues distributed

definitions have been established and employed in social and complex com-
munication networks. In the following, we will provide the most important
ones and then provide some approaches for effectively computing them. Table
4.1 summarizes the types of centrality measures that will be presented in the
sequel of this chapter. Perhaps the most prominent ones are the betweenness-
based centrality metric and the eigenvector-based centrality, both of which
could be tough to compute in an efficient and distributed manner, but also
both bearing the most useful information on node/link importance in networks
from various perspectives that will become more evident in the sequel.

For the majority of centrality metrics there are essentially two equiva-
lent values defined, one absolute and one relative, the second defined with
respect to the maximum possible achieved value of each centrality metric in
each case. In addition, the definition of centrality is inherently focused on
individual users. However, the centrality values of each individual node/user
can be used in order to obtain a macroscopic definition of graph centrality,
as explained previously. In the following, we mainly focus on node centralities
and briefly mention how graph centrality may be obtained in each case of a
specific centrality metric, when applicable.

4.5.1 Degree Centrality

Motivated by the simple observation that in a star topology the most “central”
and thus the most important node for the sustainment of the network is the
middle node (Figure 2.4), the simplest and perhaps the most intuitive concept
of centrality is that it should be some function of node degree, since in the
star topology the distinctive difference of the middle node compared with the
rest is the node degree. In this case, degree centrality, namely the centrality
measure defined as a function of node degrees and sometimes referred to
as point centrality as well, describes the potential of a node to control the
information flow in the network through popularity, i.e., a node with high
degree is expected to be able to control a greater portion of information flowing
in a network, compared to a less popular (lower degree) node.

According to the previous discussion, degree centrality can be a function
of the value of node degree for each node. The simplest of these functions is
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a linear function of the node degree value, and regarding the overall network
centrality, a linear function of the average node degree can be defined as the
network degree centrality. Assuming that A = [aij ] is the adjacency matrix of
a network topology, then the degree centrality and relative degree centrality
[38, 69, 71, 103, 119] of a node k can be obtained as:

CD(k) =
n∑
i=1

aik (4.21)

C ′D =

n∑
i=1

aik

n− 1
(4.22)

For a vertex k completely isolated from the rest of the node vertices, CD(k) =
0. The magnitude of CD(k) is partly a function of the actual size of the
network for which it is calculated. Depending on the application framework,
an absolute value of centrality, such as CD(k), would work smoothly. However,
in some cases a measure that is independent of network size is required. The
relative centrality metric C ′D is defined for this purpose.

The degree centrality was the first metric to be used to assess the im-
portance of network nodes. The earliest works on vertex centrality emerged
as early as the mid 1950s ([23]), initially for social network analysis. Later
the concept of vertex centrality was extended in communications networks
as well. Vertex centrality is convenient in the sense that in this way, the de-
gree distribution of the network provides a holistic centrality picture for the
corresponding graph.

In general, degree centrality has not been employed extensively, and in
fact, it is a measure that has received little attention. The main reason is
that it does not capture the dynamics of information flow in a network, and
thus the centrality values yielded are not as handy as those yielded by other
metrics. For instance, a node might indeed have a high value of node degree;
however, for a number of reasons, information might flow through paths that
do not include this specific node, e.g., because for security purposes it is safer
to go through less popular nodes, etc. Degree centrality appears to be more
suitable for applications such as malware propagation, where the degree of
a node significantly affects the dynamics of infections and it is the actual
factor determining system evolution. In that case, centrality is suitably cap-
tured and nodes with high centrality (i.e., degree) should be better protected
from targeted attacks. Similarly, in case of random attacks, the network will
be resilient due to the restricted node subset each having high node degree,
i.e., centrality. Thus, centrality is successfully captured in this application.
However, this is not the case with other networking application areas.

In several other applications of interest, such as routing, QoS provision,
delay, and throughput management, node importance cannot be quantified
solely on the basis of node degree. For instance, traffic bottlenecks are not
certain to appear in nodes with high degrees. On the contrary, depending
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on environmental conditions, the type of application and network structure,
bottlenecks could easily form even to the more loosely connected nodes. For
these cases, alternative measures of centrality have been developed, in order
to capture more accurately the relative importance of a node with respect to
all the involved parameters. The next two subsections provide such attempts,
despite the fact that that an absolute centrality measure does not seem to
have appeared yet.

4.5.2 Closeness (Path) Centrality

A more involved centrality metric, which is also related to the control of com-
munication, but in a different way, is a measure of the relation-importance of
a node in the network that identifies the more spatially central nodes. Spatial
metrics are inherently dependent on the definition of employed distance met-
rics. In graph theory the most frequent distance metric is that of hop count.
Thus, a centrality metric based on the spatial features of a network topology
is one that assigns high centrality to those nodes that are relatively in a cen-
tral position in the topology with respect to the edges of the network and the
employed distance metrics. By network edges here we mean the more distant
nodes in the spatial network distribution as shown in Figure 4.4, where all
edge nodes have been denoted by an “E” symbol.

The definition of closeness centrality (alternatively referred to as proximity
or path based centrality) is based on the distances of each node from all the

1
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E

Figure 4.4: Network edge nodes. All nodes denoted by “E” are the edge nodes
of the network.
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rest. As explained before, the distance in a network graph is meant in the
sense of the length of the shortest path from a node to another node given
the topology of the network. Denoting by d(i, k) the shortest path distance
between nodes i and k, the proximity and relative proximity centralities are
[24, 71, 103, 119]:

CP (k) =

(
n∑
i=1

d(i, k)

)−1

(4.23)

C ′P =


n∑
i=1

d(i, k)

n− 1


−1

=
n− 1
n∑
i=1

d(i, k)
(4.24)

The closeness centrality metric depends on the closeness (proximity) of a
node to the rest of the network nodes. Proximity describes quantitatively the
notion of how close to each other nodes are, and the corresponding centrality
metric essentially describes how close a node is to the rest of the network
nodes. Given the latter, a node that is relatively “close” to most of the rest
of the network nodes, for which its proximity based centrality will be high,
will be more “central” than a node that is relatively “far” from other nodes
in the network, and thus, its expected proximity centrality value will be low.
In that sense, a message originating in the most central node in the network
would spread throughout the entire network (through a flooding scheme) in
minimum time, since the message will follow exactly all the shortest paths
from that central node to all the rest and the total length sum of these paths
will be the lowest possible. Thus, the most central vertex in the network can
be defined as that with the minimum cumulative cost for reaching all the
rest. A simple way to quantify this is the one given above in Eq. 4.24, where
the centrality of a vertex (absolute measure) is measured by summing the
geodesic distances from the specific vertex to all other vertices in the graph and
then inverting this value, so that highest proximity centrality corresponds to
lowest communication cost (expressed as distance from the rest of the nodes).
The calculation of CP (k) is simple and straightforward, and several matrix
methods used in other centrality measure computations that will be described
in the sequel can be employed.

The above definition of the absolute value of CP (k) reveals that its value
depends on the order of the network, i.e., the number of network nodes. For
this reason, a network size independent metric, namely relative proximity cen-
trality, has also been provided, which averages the value of proximity central-
ity over the nodes of the network. The relative measure of closeness centrality
C ′P takes a unit value when a vertex is maximally close to all other vertices
and decreases as the average distance of a specific vertex to all other vertices
increases.
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Both the degree and proximity based measures of centrality suffer from
the fundamental problem that the underlying network has to be fully con-
nected. By definition, in disconnected networks, node degrees could have zero
values and shortest paths could have infinite values. Thus, in addition to the
fact that these two measures do not inherently take into account information
control dynamics, even though proximity centrality does address an aspect
of the information flow process—namely information dissemination, they also
exhibit quantitative problems, when networks have isolated nodes (i.e., discon-
nected networks) or network connectivity varies dynamically (intermittently
connected network types, such as delay-tolerant networks in communications
networks).

In Subsection 4.5.3, the described betweenness-based centrality definition
does not suffer from the problems faced by degree and proximity centrality,
and could be equally used both for connected and intermittently connected
networks.

Approximation of Closeness Centrality

As has become evident when computing vertex proximity centrality measures,
it is required to solve the all-pairs shortest-path problem (which could be
tackled in O(nm + n2 log n) or O(n3) time, for a graph with m edges and
n vertices) and then distribute the information back to the nodes [11]. Of
course, each time a topology changes, the whole process needs to be repeated.
Given also the fact that modern social and communications networks scale in
the order of millions of actors/users, more efficient computation methods are
required.

In the following we describe a random sampling technique to approximate
closeness based centrality of vertices in a weighted graph, within an additive
error of ε∆ with high probability of time complexity O( logn

ε2 (n log n + m)),
where ε > 0 and ∆ is the diameter of the graph. Especially for small-world
type networks where the diameter scales as O(log n) rather than as O(n)
(see Section 5.2), the following approach provides a near-linear time (1 + ε)-
approximation for the proximity centrality of all vertices [60].

The approximation algorithm, denoted by RAND, chooses k sample ver-
tices and computes single source shortest paths (SSSP) from each sample
vertex to all other vertices in the graph. The whole process takes place in k
iterations, in each of which, e.g., iteration i, a vertex vi is uniformly picked
at random and the SSSP problem is solved with vi as the source. Eventually,
the centrality measure of vertex u is given by ĉu = 1∑k

i=1
nd(vi,u)

k(n−1)

.

It has been shown in [60] that the expected value of 1/ĉu is equal to

1/cu, i.e., E
[

1
ĉu

]
= 1

cu
. It is also shown that for a connected graph G with

n vertices and diameter ∆, with high probability, algorithm RAND described
above computes the closeness centrality estimator 1

ĉu
to within ε∆ of the

inverse centrality 1
cu

for all vertices u of G, using Θ
(

logn
ε2

)
samples for ε > 0.
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Taking into account an efficient algorithm for solving the SSSP problem
in O(n log n + m) by Fredman and Tarjan [67], the total running time of
RAND is O(km) for unweighted graphs and O(k(n log n + m)) for weighted

graphs. Thus, for k = Θ
(

logn
ε2

)
samples, RAND is an O( logn

ε2 (n log n + m))

approximation algorithm for proximity centrality within an additive error of
ε∆ with high probability.

Other approximation methods have been presented in [166], [73], and [11]
in various capacities and covering different objectives. Compared to [60], which
focuses on closeness centrality, the other three focus on betweenness-based cen-
trality approximation, which will be extensively presented in the proceeding
subsections.

4.5.3 Betweenness Centrality

As already mentioned, typical centrality definitions are not appropriate for
use in intermittently connected networks, where at several instances various
nodes become disconnected permanently or temporarily (e.g., ad hoc, DTNs,
mesh and sensor in communications). In fact, for some of the earliest employed
definitions of centrality, where the centrality of a vertex is some function of
the sum of all minimum distances between the specific vertex and all other
vertices, computing centrality in intermittently connected nodes would not
be numerically possible. Thus, alternative centrality definitions are required
in order to ensure transparent and meaningful representation of the concept.
Such definitions should be able to handle such degenerate cases (disconnected
nodes) and yield the same results as the previous ones (at least relatively, in
the sense that nodes of higher centrality, according to one definition, retain
high centrality according to another definition). The appropriate definition
should also be able to segregate better between different classes-groups of
nodes with respect to their centrality metric.

Such a centrality metric could again be based on the notion of shortest
paths and more specifically on the frequency with which a node falls on the
shortest paths connecting other pairs of vertices of the underlying network
graph. This definition illustrates the idea that a node lying with high fre-
quency on emerging shortest paths has more potential to control the actual
information flow through the network, and thus should be considered more
central than others. Intuitively, in a communication network where routing
of information usually takes place along the shortest paths (in any manner
they are determined), a node with high frequency of falling on such emerging
shortest paths has more potential to withhold/distort/impact the transmitted
information and thus it has a more central role in the process of information
communication. Thus, it is the potential for control that determines the cen-
trality of vertices in this case. The term betweenness has been employed to
quantify the aforementioned frequency of a node to fall on the shortest paths
of other nodes [68, 70, 103, 119].
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The definition of betweenness centrality is straightforward when only one
geodesic (shortest path) connects each pair of nodes. However, when there
are several geodesics connecting a pair of points (alternative paths, all of
the same ‘shortest’ length), the situation becomes more complicated. Then,
a vertex that falls on some but not all of the geodesics connecting a pair
of others has a more limited potential for control. Such partial potential of
nodes to control information flow is reflected through the notion of partial
vertex betweenness. Given a vertex k and an unordered pair of vertices {i, j},
where i 6= j 6= k, the partial betweenness bij(k) of node k with respect to the
pair (i, j) can be defined in the following way. If i and j are not reachable
from each other, namely there exists no path connecting them at all, then
bij(k) = 0. If nodes i and j are reachable from each other, i.e., there exists
one or more geodesic paths connecting them, then the probability of using any
one of the alternative geodesics between i and j is 1

gij
, where gij is the number

of geodesics connecting i and j. This is also the probability that a message
passes along any particular geodesic among alternatives between i and j. The
potential for k to control information flowing between i and j can be defined
as the probability that k falls on a randomly selected geodesic connecting i
and j. If gij(k) is the number of geodesics connecting i and j also containing
k, then the aforementioned probability is:

bij(k) =
gij

gij(k)
(4.25)

In the event that k is on the only geodesic between i and j, or on all available
geodesics between i and j, then bij(k) = 1.

To determine the overall betweenness centrality of vertex k, we sum the
partial betweenness of k for all unordered pairs of vertices i 6= j 6= k:

CB(k) =
n∑ n∑

bij(k)
i6=j 6=k,i<j

(4.26)

where n is the number of vertices in the graph. Whenever there are alter-
native geodesics between node pairs, the betweenness centrality CB(k) of k
is increased in proportion to the frequency of occurrence of k among those
alternatives, which means that multiple available geodesics are indeed taken
into account. This allows computing a centrality value even for a disconnected
node, i.e., zero centrality, indicating that such a node correctly bears the low-
est possible centrality value.

Freeman (1977) [68] proved that the maximum betweenness centrality of
any vertex in a graph is achieved only by a central vertex in a star graph (or
of a wheel graph) and equals

Cmax
B (k) =

n(n− 1)

2
− (n− 1) =

n2 − 3n+ 2

2
. (4.27)

A constructive proof for the star graph having the node with maximum cen-
trality can be found in [68]. Therefore a relative centrality measure for a
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vertex, which will be independent of the size of the network over which it is
calculated, is:

C ′B(k) =
2CB(k)

n2 − 3n+ 2
(4.28)

The above definition indicates the major drawback of the betweeness-based
centrality. It requires the computation of the total number of shortest paths in
a network by each node, thus making the computation of CB(k) a centralized
process. This could be very demanding, especially for large scale networks
with thousands of nodes (sometimes millions as in online social networks).
Matrix methods have been developed and more discussion on such algebraic
approaches will be provided in the subsection 4.5.5.

However, the inherent remaining difficulties and centralized processing
even of algebraic approaches have stirred significant efforts for distributed
computations of centrality, most of which have yielded several acceptable ap-
proximation mechanisms. This is exactly the topic of the following subsection
and some popular approximation efforts will be described in the sequel.

4.5.4 Betweenness Centrality Approximation Methods

The previous subsections defined betweenness centrality and explained its im-
portance in social networks analysis. However, as the scale of the networks
analyzed increases rapidly and in most cases reaching the orders of millions of
nodes and even more edges, e.g., online social networks, mobile cellular net-
works, global market players, etc., exact computation of betweenness central-
ity becomes prohibitive, since all shortest paths in the network and all shortest
paths passing through each node need to be computed. Thus, a strong moti-
vation exists to devise methods for computing betweenness centrality values
in networks of millions of nodes within a few minutes. Within this context,
reasonable approximation methods are required that are capable of approxi-
mating within a reasonable error constraint the betweenness centrality value
of all network nodes, and consequently enabling segregation of network nodes
according to their centrality importance.

Brande’s Computation Approaches

Brandes [40] presented an exact algorithm for computing betweenness central-
ity of all nodes in a distributed fashion, which was based on solving a Single
Source Shortest Path (SSSP) problem from each node. An SSSP procedure
yields a Directed Acyclic Graph (DAG) with all shortest paths emanating
from each node. By backward aggregation of properly defined counter values
across these paths, the contributions of the paths on betweenness counters can
be computed in linear time. Depending on each topology the exact distributed
algorithm takes time Θ(nm) over unweighted graphs to Θ(nm+ n2 log n) for
arbitrary weighted graphs, where n is the number of nodes and m the number
of edges. However, even though this is a polynomial time approach, it remains
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prohibitive for very large networks in the order of millions. A massively paral-
lel implementation of the exact Brandes’ approach by Bader and Madduri [11]
can handle a few million nodes. Nevertheless, the need for approximation ap-
proaches remains.

The exact centrality computation approach is based on the notion of de-
pendency of a source vertex s ∈ V on a vertex v ∈ V , defined as:

δs∗(v) =
∑

t6=s6=v∈V

δst(v) (4.29)

where δst(V ) is the fraction of SPs between s and t that pass through vertex
v.

Using this quantity, the betweenness score of node v can be expressed as:

BC(v) =
∑

s6=v∈V

δs∗(v) (4.30)

Let Ps(v) denote the set of predecessors of a vertex v on shortest paths
from s, i.e., Ps(v) = {u ∈ V : (u, v) ∈ E, d(s, v) = d(s, u) + wuv}, where wuv
is the weight of edge (u, v).

Brandes showed that the dependencies satisfy the following recursive re-
lation:

δs∗(v) =
∑

w:v∈Ps(w)

gsv
gsw

(1 + δs∗(w)) (4.31)

First, n SSSP computations take place, one for each s ∈ V . The predecessor
set Ps(v) are updated in the above computations. Then for every s ∈ V , the
dependencies δs∗(v) for all other v ∈ V is computed by utilizing information
from the shortest path trees and predecessor sets. The sum of all dependency
values eventually yields the centrality value of a vertex v. The O(n2) space
requirements can eventually be reduced to O(n+m).

Extending the exact approach, Brande and Pich [41] turn it into an ap-
proximation algorithm based on sampling. Starting with only a subset of k
starting nodes, denoted by pivots, they use the same backwards aggregation
strategy as in the exact approach. A random sample of k starting nodes (piv-
ots) turns out to work well, yielding an unbiased estimator of betweenness,
namely that the expectation of the estimated betweenness is the actual be-
tweenness. However, it produces large overestimates for unimportant nodes
lying topologically near a pivot.

Bisection based Approximation Approach

In this approach, the main concept is to reduce the contributions of nodes
close to the pivot nodes, which as explained above essentially cause overesti-
mating centrality values for these nodes. A general framework for betweenness
approximation taking advantage of Brande’s random sampling approach en-
ables two implementations, one where the contribution of a sample depends
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linearly on the distance of the sample (termed linear scaling sampling ap-
proach) and a second one where the sample contributes on the second half of
a path (referred to as bisection scaling approach).

We define a length function ` : E → R on the edges and a scaling function
f : [0, 1] → [0, 1]. For a path P = 〈e1, ..., ek〉 the length of the path is given
by `(P ) :=

∑
1≤i≤k `(ei). In this approach, in each iteration, one of 2n pos-

sible path searches is performed with uniform probability 1/2n (forward or
backward search from a pivot). The scaled contribution of a path is defined
as

δP (v) :=

{
f(`(Q)`(P ))

gst
, for a forward search

1−f(`(Q)`(P ))
gst

, for a backward search

Based on that, node v obtains a contribution of

δ(v) := δs(v) :=
∑
t∈v

∑
{δP (v) : P ∈ SPst(v)} (4.32)

for a forward search and

δ(v) := δs(v) :=
∑
s∈v

∑
{δP (v) : P ∈ SPst(v)} (4.33)

for a backward search.
It has been shown in [73] that X := 2nδ(v) is an unbiased estimator for

the centrality of node v, namely that E[x] = CB(v). In order to obtain an
unbiased estimator of the betweenness of v, it suffices to average k independent
values, i.e., X1+...+Xk

k .
For a constant function f(x) = 1/2 the Brandes’ algorithm is obtained,

while for linear scaling f(x) = x and f(x) =

{
0, for x ∈ [0, 1/2)

1, for x ∈ [1/2, 1]
for bisec-

tion scaling. Bisection scaling seems to be more successful in reducing the
contributions for nodes close to pivots; however, linear scaling is easier to
implement.

In order to compute gst on the fly while traversing a shortest path, a
gss = 1 and for s 6= t, gst =

∑
v∈pred(t)gsv

, where pred(t) is a set containing
the immediate predecessors of t in the shortest path DAG. In a subsequent ag-
gregation phase, the nodes are processed in reverse topological order, namely
by non-increasing distance from s. Thus,

δs(v) =
∑

w∈succ(v)

gsv
gsw

(1 + δs(w)) (4.34)

where succ(v) denotes the immediate successors of v in the shortest path
DAG.

Linear scaling can be implemented by using the original edge weights as the
length function `, and with only minor deviations from Brandes’ aglorithm:

δs(v) =
∑

w∈succ(v)

µ(s, v)

µ(s, w)

gsv
gsw

(1 + δs(w)) (4.35)
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where µ(s, w) is the shortest path distance from s to w.
In the bisection scaling implementation, unit distances are employed for

the length function `. Aggregation follows a depth-first traversal of the
shortest-path tree, which allows storing the path from s to the explored node
in a simple array. The difference compared to Brandes’ algorithm is that when
a node v at depth d is explored, the current value δs(v

′) of node v′ on posi-
tion max{0, bd/2c − 1} is decremented, which has the effect of dropping the
contribution of v from the aggregation where it is prescribed by the scaling
function f .

In a variant called bisection sampling a parent pointer is randomly sampled
for each node t in the shortest path DAG. In this case, if a parent p of w is
selected with probability gsp

gsw
, an unbiased estimator is obtained. In addition,

without disturbing the unbiased estimator, more information can be extracted
out of the shortest path DAG by performing several sampling steps for the
same DAG.

Sampled bisection sampling yields good approximation of betweenness for
less important nodes as well that already have a small number of pivots.

The variations of Brande’s algorithm need slightly more time than
Brande’s algorithm for evaluating the shortest path DAG, while the same
approximation quality is obtained and works well even for huge networks.
However, for some directed networks, none of the approximation algorithms
give very convincing results, since a good approximation requires time almost
as much as an exact calculation.

Adaptive Sampling Betweenness Vertex Centrality Approximation

One of the problems identified in the above approach for approximating be-
tweenness centrality is that the approximation values computed are dependent
on the vertices from which the shortest path computations are initiated, i.e.,
the pivot, sometimes referred to as pivot nodes. It has been observed that a
random selection of source vertices to start the computations is superior to
deterministic strategies.

Most of the approximation methods follow the approach of computing
concurrently the centrality scores of all vertices in a topology, which essentially
mandates solving at least as many SSSP problems as the vertices in the graph.
However, the complete centrality scores of a topology are not always required.
In many applications and cases, it is only required to know the centrality score
of a single vertex, and at some times only the relative centrality value of the
vertex compared to the centrality scores of the rest of the network vertices,
i.e., how the centrality value of a node compares in an ordering of all nodes’
centrality values. This should take place in faster time than the approximation
of centrality of all nodes and should also require less resources (produce less
overhead as well).

In the sequel, an adaptive sampling based algorithm is presented, which
addresses the above considerations for approximating the centrality of selected
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network vertices and it is based on the adaptive sampling technique.
The adaptive sampling centrality approximation of a given vertex esti-

mates the centrality value by sampling a subset of vertices and performing
SSSP computations from these vertices. The number of samples required varies
with the information obtained from each sample, hence the term adaptive.

The first step deals with the degenerate case, where the neighbors of the
given vertex v induce a clique. In this case, all these neighbors will communi-
cate through their direct links and thus vertex v will not lie on any shortest
path. Thus, the betweenness centrality value of such nodes v will be zero.

The adaptive sampling algorithm proceeds as follows. It repeatedly sam-
ples a vertex vi ∈ V and computes the SSSP from vi using either Breadth-
first-search or Dijkstra’s approach for computing shortest paths. For each
SSSP computation it maintains a running sum S of the dependency scores
δv∗i (v). The sampling continues until S is greater than cn for some constant
c ≥ 2. Assuming the total number of samples required was k, the estimated
betweenness centrality score of node v is given by CB(v) = nS

k . The adap-
tiveness of the algorithm lies in the fact that the number of samples required
varies for different topologies and types of networks. Feedback is acquired by
the running accumulated value of the dependency sum, based on which it is
determined whether the samples taken are sufficient or not.

In [11] a lower bound on the expected number of samples required before
stopping is provided. It is shown that for 0 < ε < 0.5, with probability greater
than 1 − 2ε, the above algorithm estimates the centrality of a given vertex
within a factor of 1/ε. The results have been shown to hold for both high
centrality nodes and the ones with lower values of centrality, even nodes with
very low ones (the latter shown through simulations in [11]). More specifically,
the authors have shown through experiments on real-world graph traces that
the error for random graphs underlying a network is about 5% and roughly
about 10% for the rest of the considered network types.

Constrained Centrality Approximation

In some applications, it is required to find the node with the maximum cen-
trality value (or a relative ordering of node centrality values in order to find
the top centrality ranking nodes) given specific constraints. Such an exam-
ple is the gateway design problem in [166]. This is a dynamic mesh network
construction application, where given a connected backbone network G(V,E)
and an initiator node i ∈ V , it is required to find distributively the node v
with maximum centrality C(v) such that the least transmission overhead is
imposed (total number of messages exchanged) at the minimum possible time
(time elapsed).

FACE algorithm [166] addresses the above problem by decomposing it in
two sub-problems, namely centrality computation and extrema finding. It is
focused on the computation of closeness centrality rather than betweenness
centrality; however, we present it here since the method utilizes the random
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sampling SSSP approach presented above for approximating betwenness cen-
trality. For the first, a spanning tree from each node is built, and all the
distances from each root node to all the other nodes along the spanning trees
are collected by each root (similarly to and exploiting a proactive link state
routing protocol). The spanning tree of the initiator node i is denoted as pri-
mary spanning tree (PST) and it is used mainly for finding the extrema and
reporting it to the iniator, while the rest are denoted by secondary spanning
trees (SST) and are mainly used for centrality measuring.

A flooding based spanning tree construction approach is employed, where
a root sends messages to all its neighbors and all the neighbors propagate
them to their neighbors in turn, while keeping track through a specific field in
each message. This approach adopts the random sampling centrality approxi-
mation technique and further utilizes the observation that if a spanning tree is
constructed in a network, its leaves are highly likely to reside on the perimeter
of the actual underlying topology. Thus, such close-to-the-border leaves are
good pivot candidates, since centrality measurement is largely related to the
distances of nodes to the border of the topology. FACE uses exactly the root
and leaves of a spanning tree as the sample points (pivots) for centrality ap-
proximation. The approach essentially computes the relevant centrality values
of the network nodes.

The maximum centrality node is found on the basis of the PST after the
centrality values have been approximated. Starting at the PST leaves, each
reports to its parent its centrality value. A non-leaf node, upon receipt of the
centrality value of its children, compares its own centrality value with the
maximum reported value from its children and sends the largest to its par-
ent. Consequently, the initiator can determine which node has the maximum
centrality.

4.5.5 Eigenvector Centrality

The eigenvector centrality [35, 36, 38, 71, 103, 129] is defined as the principal
eigenvector of the adjacency matrix A (Section 2.1.8), representing the net-
work graph under consideration. The principal eigenvector of a matrix corre-
sponds to its largest eigenvalue. The difference between eigenvector centrality
and the already presented centrality measures lies in the fact that eigenvector
centrality takes into consideration the importance or centrality of the direct
neighbors of a node. This means that a node has a high eigenvector score if
it is adjacent to nodes having themselves high eigenvector centralities. This is
clear from the mathematical formula providing the eigenvector scores (which
coincides with the eigenvectors’ computation).

If λ is the maximum eigenvalue of A and v the corresponding eigenvector
(column vector), then
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λv = Av ⇒
v =

1

λ
Av (4.36)

If the network has N nodes then A is a N × N matrix and v =
[v1 v2 v3...vN ]T . Then

vi =
1

λ

N∑
j=1

aijvj , ∀ i (4.37)

We also note that if A is a connected graph then it is irreducible and
according to the Perron–Frobenius Theorem (Section 2.1.8), its largest eigen-
value is always positive. In this case also, each vi > 0, ∀ i. Similar definition
of the eigenvector centrality can be given for weighted network graphs where
A is replaced by the weight matrix W . It is important to note that Google’s
algorithm for ranking Web pages, i.e., PageRank, is based on a technique
similar to the one for the computation of the eigenvector centrality [121, 129].

4.5.6 Example of Centralities’ Computation

In this subsection, we provide a handy example depicting the computation of
centralities of the network shown in Figure 4.5.

2

3

1 4 5

7

8

9

6

Figure 4.5: Network topology used for the computation of node centralities.
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Table 4.2 presents the ranking of nodes in decreasing order and their cor-
responding centrality values for each one centrality metric, i.e., Degree Cen-
trality (CD), Closeness (Path) Centrality (CP ), Betweenness Centrality (CB),
Eigenvector Centrality (v). We observe that the ranking differs with respect to
the centrality measure used. However, all the centrality measures agree that
the node with ID 5 is the most important. Degree centrality, as expected, is
shown to rank in higher levels nodes with more direct neighbors. Closeness
centrality, due to its mathematical form, assigns higher values to nodes 5 and
4, which are located at the center of the topology and therefore in close hop
distance from all others. Betweenness centrality considers as important only
nodes participating in the shortest paths between other node pairs, i.e., nodes
with IDs 5, 4, 8, 2, assigning 0 centrality to nodes at the edge of the topology.
Finally, the Eigenvector centrality takes into account the centralities of the
neighbors of a node in the computation of its centrality value, and therefore,
a node with important neighbors is itself important (has high centrality).

4.6 Prestige

From the previous presentation of centrality, it has probably become appar-
ent that in the consideration of centrality, no directional properties of the
developing relations have been taken into account. Namely, the underlying
topologies were considered undirected, and the centrality was mainly deter-
mined on the basis of geodesic distance (betweenness, closeness) or popularity
(degree). The interest was in the existence of a relation (connectivity and min-
imum distance) signifying access or control to resources and information flow,
rather than on the direction in which this access or control takes place. How-
ever, in many technological and social applications, the direction in which the
above relations take place is important and needs to be quantified. Prestige
is a measure coined to express exactly this requirement. Thus, prestige may
be considered as a centrality measure for directed networks. The difference
is that prestige measures, compared to centrality measures, express not only
importance, but also a non-reciprocated direction of increasing importance.
If this direction can be reciprocated, centrality measures suffice. Such an ex-
ample is persons who are elected to board bodies and thus obtain prestige
in their social communities. The selection cannot be reciprocated (since it is
determined by legal vote) and thus a directed network is required to denote
such relations. The prestige is more appropriate for quantifying importance
in this case. Consequently, prestige is a more refined concept, signifying in
addition the direction to which a tie increases importance.

Based on the above intuitive definition, prestige should increase when a
node becomes the object of more relations (in-coming edges), but not nec-
essarily when the node itself initiates the ties (out-going edges). A directed
network may be used to determine relations received (in-edges) and initiated
(out-edges). Prestige measures focus on relations received (both direct and
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indirect). In that sense, centrality measures can also be used for relations ini-
tiated (both direct and indirect), which signify the degree of control that these
nodes have on the flow of information and access to resources of the network
under analysis. Degree and closeness (proximity) centrality are easy to apply
to directional relations while betweenness is not because of its reliance on
non-directed paths.

In the following, we present some of the prestige measures that express the
above concepts and note that research on prestige is relatively new compared
to the rest of complex/social network analysis metrics, which leaves a signifi-
cant margin for new research, as will also be explained in the last chapter of
the book.

4.6.1 Degree Prestige

The simplest measure of prestige is perhaps, as in the centrality case, the de-
gree of a node, and more specifically the in-degree of a node. Since it quantifies
the incoming edges of a node, which in general represent “received” behavior
by the specific node from its peers in the network, it is a direct measure of the
“positive influence” received by the node, which in many situations increases
the importance, i.e., prestige, of the specific node.

4.6.2 Influence Domain

Several efforts have been made to extend prestige to indirect relations, con-
trary to the direct ones described by the above definition of degree prestige.
A first extension is to employ the influence domain of a vertex t, which is
defined as the number of nodes that have a directed 1-hop or multi-hop path
towards the sink vertex t. All these nodes essentially represent actors that
could potentially influence directly or indirectly the sink node t. The propor-
tion of vertices that belong in the influence domain is computed by dividing
the number of vertices in the influence domain by n− 1 (number of all other
vertices). This measure of prestige is meaningful only if the network is not
strongly connected, namely if it is weakly connected. For strongly connected
networks, closeness (proximity) centrality is a more suitable metric to use.

As a measure of prestige, the influence domain of a vertex does not dis-
tinguish between direct and indirect choices, which is not always completely
desirable. Usually, direct relations are considered more prestigious than indi-
rect ones. A relation contributes less to prestige if it is mediated by a longer
chain of intermediaries. To overcome such drawbacks and allow direct choices
to contribute more to the computation of prestige than indirect choices, one
can weight each choice by its path distance to the selected vertex. A higher
distance will yield a lower contribution to the prestige of another vertex. A
simple computation of the mean distance of a vertex from vertices in its in-
fluence domain will suffice in this case. However, in order to obtain a more
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accurate estimation of prestige the average distances must be combined with
the size of influence domains.

4.6.3 Proximity Prestige

The actor and group-level prestige indices on proximity or graph distances
to each actor can be useful. Actors are judged to be prestigious based on
how close the other actors in the set of actors are to them. However, one
should also consider the prestige of actors that are proximate to the actor
in question. If many prestigious actors choose an actor, then that should be
given more weight than if many non-prestigious actors choose an actor. This
example motivates another prestige measure called proximity prestige. The
latter would constitute a measure of how close other actors are to a given
actor.

Proximity prestige is another measure of prestige based on the closeness
notion of centrality, extended to directed networks. The proximity prestige
of a selected vertex is computed by dividing the influence domain of this
vertex (expressed as a ratio) by the average distance from all vertices in the
influence domain. A larger influence domain and a smaller distance yield a
higher proximity prestige score. The maximum proximity prestige score is
achieved if a vertex is directly linked (selected) by all other vertices, i.e., when
all other vertices create a directed connection to the specific vertex achieving
the maximum proximity prestige score. In that case, the proportion of vertices
in the influence domain is 1 and the mean distance from these vertices is 1
as well, yielding a proximity prestige of 1. Vertices without influence domain
receive minimum proximity prestige, which is equal to zero.

A direct outcome of the above definition of proximity prestige is that if a
network is strongly connected, then the proximity prestige equals the input
closeness centrality.

Another two measures of prestige may be considered two distinct types
of vertices: hubs and sinks (sometimes referred to as authorities). The latter
describes a node where other nodes point at it, while the first describes nodes
that point to some other nodes. A good hub is a node pointing to many good
sinks, while it is a good sink if it points to many good hubs. Hubs and sinks
are characterized based on weight values computed for each node, which in
turn was computed by solving the eigenvector problem AAT for hubs and
ATA for sinks, where A is the adjacency matrix of a network.

As expected from the above definitions and analyses, most prestige mea-
sures are very similar in the computed score values, except for betwenneess
centrality, which measures prestige in a quite different way [170].
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A

B C

δ

Figure 4.6: δ-thin triangle.

4.7 Curvature

In this section, we are going to study a geometric property of complex net-
works denoted as negative curvature or hyperbolicity. This intrinsic geomet-
rical feature exists in many complex networks, and it is interconnected with
their topological characteristics and affects their performance, as will be more
clearly explained shortly. In the following, we will explain and discuss the defi-
nition of the network curvature and we will provide brief examples concerning
the computation of curvature in some complex networks of interest.

To begin with, let us suppose that we have a geodesic metric space, where
dij is the length of the geodesic between the nodes i, j of the graph G.

Definition 16 (Gromov’s definition of δ-hyperbolicity [114])
For three nodes, i, j, k, the geodesics dij, djk, dki are constructed. Let the set
of nodes on each corresponding geodesic be symbolized as (i, j), (j, k), (k, i).
Then we consider a fourth node m and denote the shortest distance between
m and all the nodes (i, j) as dmij . Similarly, for dmjk, dmki. It is defined as the
distance Dm

ijk = max{dmij , dmjk, dmki}. Then if maxi,j,k minmD
m
ijk = δ is finite,

then the graph is said to have negative or hyperbolic curvature.

In other words, Definition 16 states that there is a (minimal) value δ ≤
0, such that for any three nodes of the graph connected to each other by
geodesics, each geodesic is within the δ-neighborhood of the union of the
other two (Figure 4.6).

As can be observed from Definition 16, curvature is a global network fea-
ture, contrary to the aforementioned local network features such as degree
distribution, strength, local clustering coefficient, and locally computed cen-
tralities. Therefore, it can be related to the global performance of the network.
To verify this, through numerical evaluation, it can be observed that the load
C at the center of a hyperbolic graph scales with the number of nodes N in
the graph as C ∼ N2 [114], i.e., faster than in a Euclidean Network, where
C ∼ N1.5. It can be stated that the core congestion in networks with negative
(or hyperbolic) curvature is worse than that of Euclidean networks, i.e., in
hyperbolic networks all the traffic of the network passes through a small core
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of the network graph. It is important to note that the nodes inside the core
are not necessarily high-degree nodes.

At this point, we will refer to two important complex networks and char-
acterize their curvature through numerical studies. In [114], the parameter δ
(Definition 16) is numerically computed and plotted for the Watts and Stro-
gatz Model [162] and the Barabási–Albert Model [6], both of which will be
presented in detail in the next chapter (Chapter 5). It is shown that δ is finite
for the Barabási–Albert Model, which gives rise to scale-free network graphs,
but it is infinite for the Watts and Strogatz Model, which produces small-
world graphs. Therefore, we can state that the scale-free networks emerge
with negative curvature while the small-world networks are flat. The negative
curvature of scale-free networks is also shown analytically in [125]. In [125], a
two-way procedure is described showing the negative curvature of scale-free
graphs. In the first direction, it is proved that a hyperbolic random network
is scale-free, by examining its distribution, while in the second direction a
scale-free network is proved to have negative curvature.

Since it is complex to compute the network curvature through Definition
16, which however holds for all network graphs, we provide another definition
for the special case of planar graphs (Chapter 2). For planar graphs, the
curvature can be computed in node-level, using only the local structure of
the network. We remind the reader that ki is the degree of node i. Also,
Fij , 1 ≤ j ≤ ki are the faces incident to i and d(Fij) the number of sides
of each face. |V |, |E|, F are the number of vertices, edges, and faces of the
graph, correspondingly.

Definition 17 (Higuchi’s curvature for planar graphs) For each vertex i of a

planar graph, we define its curvature as K(i) = 2π
{

1− ki
2 +

∑ki
j=1

1
d(Fij)

}
.

Theorem 57 (Higuchi) Let G be a planar graph, if K(i) < 0 for every vertex
i ∈ G, then G is hyperbolic.

If K(i) < 0 (negative curvature or hyperbolic), we say that i has an angle
excess and if K(i) > 0, we say that i has an angle defect. The sum

∑
iK(i) is

the total curvature of the planar graph. By the Gauss–Bonnet theorem [45, 92],
the graph curvature is equal to K(G) =

∑
i∈GK(i) = 2πχ(G), where χ(G)

is the Euler characteristic of the graph. For planar graphs, χ(G) is defined
as χ(G) = |V | − |E| + F . Definition 17 is extended for non-planar graphs
after their embedding to a suitable torus surface, which however is not easily
computable and is out of the scope of the book. In the following, we show an
example of curvature computation for a planar graph. For the planar network
graph example in Figure 4.7, by using Definition 17, we compute the following,
considering that the exterior surface does not count as a face (or else it is a
face with ∞ sides).
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Figure 4.7: Paradigm of curvature computation of a planar graph.
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2
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) = −π
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K(3) = 2π(1− 2

2
+

1

∞ +
1

4
) =

π

2
(4.39)

K(2) = K(4) = 2π(1− 3

2
+

1

3
+

1

∞ +
1

4
) =

π

6
(4.40)

K(1) = K(7) = K(6) = K(5) = 2π(1− 3

2
+ 2

1

3
+

1

∞ ) =
π

3
(4.41)

K(G) = −π
6

+
π

2
+ 2 ∗ π

6
+ 4 ∗ π

3
= 2π (4.42)

Furthermore, following the Gauss–Bonnet theorem, χ(G) = |V |−|E|+F =
8− 13 + 6 = 1, leading to K(G) = 2πχ(G) = 2π.

4.8 Metrics at a Glance

The following Table 4.3, provides a quick overview of the presented metrics
that can be used for the assessment of various aspects of complex communica-
tions networks. This is a non-exhaustive summary of the existing metrics, and
many more others are available in the literature. However, we consider this
set of presented metrics to be the most fundamental and popular, enabling
quick understanding of the rest, and in addition, it may constitute a strong
basis for developing other more targeted metrics.

The centrality of a vertex may be determined according to any of the
measures presented in the previous subsections of this chapter, based on the
corresponding structural attributes of that vertex. The choice of a particular
structural attribute and its associated measure depends upon the context of
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Table 4.3: Complex and social analysis metrics at a glance.
Network Degree distribution Av Path Length Centrality

Regular dirac function constant constant
Small-world varying small varying
Scale-free power-law usually small varying
Random Poisson small uniform

Random regular uniform long uniform

the substantive application intended and it is usually a matter of conflicting
constraints in each application framework of network science.
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Chapter 5

Distinctive Structure and
Features of Complex
Networks

5.1 Network Structure and Evolution

The deep understanding of network structure and its evolution is of high
research interest as it can be exploited in diverse applications, from gener-
ating realistic topological network models to designing efficient algorithms
for the emerging underlying and/or overlaying networks. In this chapter, we
describe and study analytically the most characteristic formations, properties
and features that have been identified in complex networks along with various
evolutionary processes characterizing and/or leading to them.

Also, while presenting the different social or other types of emerging struc-
tures and evolutionary processes, we will simultaneously provide useful insight
of the importance and applicability of such features and properties in Network
Science in general, and more targeted network types in particular. The term
network structure captures all the properties of the network concerning the
distribution of the degree of the nodes, the distance (in hops or other met-
rics) between node pairs, the connectivity, the density of the connections, the
clustering coefficient, etc. The most characteristic structures of complex net-
works identified up until now, which are also examined in this book, are the
following: the small-world phenomenon, the power-law degree distribution,
the hyperbolic structure and the graph expansion. In addition, the models of
their development, formation, and evolution, when applicable, are thoroughly
examined.

The importance of understanding and categorizing the distinctive features
of network structure and evolution processes lies in the immense opening
potentials for designing precise and realistic network models and efficient

145
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algorithms for each category of network structure by exploiting such features.
By understanding and controlling the (social or other distinctive) network
structure and its evolutionary process, one can develop evolution models that
lead to networks accurately approximating the real ones, such as the preferen-
tial attachment (Barabasi–Albert) model or the small-world model, which will
be described and analyzed in Sections 5.2 and 5.3, respectively. In addition,
the knowledge of node properties such as the degree distribution and clus-
tering coefficient allows the localization of central or important nodes, while
an estimation of the network average path length and the network expansion
factor can provide significant insight on the efficient search potentials of the
network or the delay of message passing. Moreover, connectivity features are
exploited to spot bottleneck links or robust and vulnerable nodes and links.
Last but not least, applications such as query passing, rumor spreading, node
sampling, etc., may be designed and performed more efficiently with the aid
of the knowledge of the structure and various properties of the network. The
following sections will clarify the utility of developing characteristic network
structure awareness by explicitly describing the latest observed structures and
their impact on the network properties.

In this chapter, we focus on relational graphs, which are networks where
any two nodes may possibly become neighbors, i.e., the connections between
node pairs are not determined by their distances in a specifically defined met-
ric space. Relational graphs represent systems of interactions, solely related
to relation information, rather than defining such interactions through other
factors as well (e.g. distance, weight, etc.). On the other hand, in the case
of spatial graphs, the network is embedded in a metric space and the con-
nected node pairs are selected according to their distances determined by the
corresponding metric. An example of a relational graph is the social network
of citations among researchers, while a wireless network constitutes a spatial
graph due to the fact that nodes correspond to coordinates in a Euclidean
space and their limited transmission power allows communications (connec-
tions) within particular distances and with certain constraints.

In the following sections of this chapter, we will describe and study in
detail the most characteristic emerging complex network structures, along
with their features, properties, and related applications.

5.2 Small-world Paradigm

5.2.1 Prolegomena—Description of a Small-World
Network

In previous chapters, the notions of the average path length and the clustering
coefficient are thoroughly explained (Section 4). In this section, we are going
to study network graphs, which are distinctively characterized by high clus-
tering coefficient and short average path length. A first question that arises

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Distinctive Structure and Features of Complex Networks 147

regards the conditions/context needed so as to characterize the average path
length value and similarly the clustering coefficient as low or high. Towards
the search for measures of comparison for these two metrics, we revisit their
definitions. Since the clustering coefficient is the probability of two connected
nodes having a common neighbor, it can be compared with the probability of
two randomly selected nodes in the network being connected, denoted as p.
Therefore, the clustering coefficient can be characterized as high, if it is sig-
nificantly higher than p. However, the probability p coincides with the density
of the edges of the network (i.e., the number of edges existing in the network
graph divided by the maximum possible number of edges, which is maximally

equal to n(n−1)
2 for a network with n nodes). This in turn coincides with the

connection probability and the clustering coefficient of a random graph (Sec-
tions 4.4, 2.2.1). As a result, the clustering coefficient of a network is high
if it is significantly larger than the clustering coefficient of a corresponding
random network with the same number of nodes and edges. Such a high value
of clustering coefficient is as much as that of a regular lattice, and can be ex-
plained by the locality of the connections between node pairs. More precisely,
in a regular lattice (see Figure 5.1(a)) each node connects only to close (lo-
cal) neighbors in a specific, predetermined manner, which is the same for all
nodes. This fact implies that it is very likely that the neighbors of a node are
themselves neighbors leading to high values for the clustering coefficient (see
Eq. (4.5) of Section 4.4). Therefore, with respect to the average path length,
it is known that the average path length of a line graph (worst case scenario)
grows linearly with the number of nodes n. Based on this observation, we can
consider that a type of network graph has short average path length, if its
average path length increases slower than linearly with respect to n, i.e., as
log(n) [55, 102]. As is already known, random graphs are characterized by
average path length that grows logarithmically with n [72], and due to this
fact, they can be considered as a point of reference for the comparisons re-
garding the network path length. More precisely, if a network graph has an
average path length comparable with that of a random graph with the same
number of nodes and edges, then it is considered as having a short average
path length.

The term “small-world” is used to characterize networks that are neither
regular nor random. They can be highly clustered, like regular lattices, but
at the same time have small characteristic path lengths, like random graphs.
They lie somewhere between these two extremes. From a mathematical point
of view, a small-world network refers to a graph growing in size, the average
path length of which increases proportionally to the logarithm of the number
of nodes in the network. From a practical point of view, in the context of an on-
line social network (Internet, citation network), the small-world phenomenon
corresponds to strangers being linked through a small number of individuals.
In the following, we will describe two famous experiments of decentralized
search in real networks, both of which gave rise to the extensive research of
the small-world phenomenon in the network structure, and in the sequel we
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will thoroughly study the two small-world models that have prevailed in the
literature.

5.2.2 Large-scale Experiments—“Six Degrees of
Separation”

The term “six degrees of separation” is due to the experiment of Travers and
Milgram [154] in 1969, which was the first attempt to uncover the intercon-
nections and characterize the navigational properties of a large social network
such as American society (about 200 million residents at the time of the
study). Travers and Milgram performed a chain-letter experiment, aiming to
examine the probability that two strangers in the United States are connected
via a short path length and how characteristics such as geographic location
and occupation of the two strangers affect the composition of the individ-
uals lying on the path. In the procedure they designed, they selected three
groups of starting people and a target person, and a document was given to
each starter along with the requirement to forward it towards the target. The
target person was a stockbroker in a suburb of Boston, Massachusetts. Two
starter groups were chosen from Nebraska; one random group of 96 volunteers
and one group of 100 stockbrokers (the same occupation (affiliation) circle as
the target). Also, one more random starting group was chosen from the same
geographic area as the target, i.e., Boston. The diffusion of the packets took
place as follows. In the case that the starter knew the target personally (they
have met before and knew each other on a first name basis), the starter should
have mailed the message directly to the target. Otherwise, the starter should
have sent it to an acquaintance (friend or relative) satisfying two require-
ments: (a) the sender should know the acquaintance on a first-name basis,
(b) the acquaintance chosen is perceived as more likely to know the target or
forward the document closer to the target (due to different criteria such as ge-
ographic distance, similar occupation, etc.). For all the messages that reached
the target, the researchers could count the number of times that they were
forwarded and could also collect the names and other characteristics (such
as age, occupation, sex, etc.) of people lying on the intermediate path, i.e.,
reconstruct the whole human path that took place.

From 296 letters sent, 64 letters eventually reached the target in Boston.
The average path length was around six (in fact equal to 5.2), which can be
considered as small relatively to the population of the United States. Hence,
the researchers concluded that people in the United States are separated by
short paths of about five intermediates on average (distance of six hops).
According to the researchers’ evidence, the dropout of the messages can be
characterized as “random” (regarding the information about the participants
such as age, sex, etc.) and are either due to a participant’s apathy or unwill-
ingness to forward the document in a following step or due to his/her difficulty
in finding a suitable next hop. In addition, as expected, the completed chains
started from Boston were shorter on average than those started in Nebraska,
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and similarly the completed chains initiated by stockbrokers in Nebraska were
shorter than those initiated in the same geographic area by random individ-
uals. These results indicate how social and geographic location parameters
can influence the length of the paths separating two US residents. This ex-
periment, except for showing the small average path length separating a pair
of strangers in a large community, was also one of the first real experiments
of decentralized search in networks proving that people can find the existing
short paths without full knowledge of the network. Indeed, the existing short
paths in a social network are out of interest (i.e. not useful) if they cannot
be discovered in a decentralized way, as individuals in a social network have
only local information about the global network [52]. The basic conclusions of
Travers and Milgram’s experiment—the existence of short paths connecting
two strangers and the ability to locate these paths in a decentralized way—are
reflected in the two basic models for small-world graphs that are examined
in the following subsections (Watts and Strogatz model in Section 5.2.3 and
Kleinberg’s model in Section 5.2.4). Finally, it was observed that the penul-
timate individuals of the 64 completed chains were actually 26 people, in the
sense that the same acquaintances of the final target forwarded directly to him
multiple documents from different senders. This is evidence of the overlapping
of the various paths and the existence of a few node-hubs with high degree
(high circle of acquaintances) able to contract different paths. This conclusion
can be jointly considered with the emergence of heavy-tailed distributions in
social networks [12], i.e., the fact that there are a few nodes with high degree
and many nodes with low or medium-range degree (as will be discussed in
Section 5.3).

More recently (2003) a similar but more extensive experimental study was
performed by Dodds, Muhamad, and Watts [52], who constructed a global
Internet-based social search experiment. The experiment described and ana-
lyzed in [52], considered 18 targets instead of a single target of the Travers
and Milgram experiment. The participants registered online for the exper-
iment and they were assigned a target and asked to forward the message
towards the destination via email. Although the participants created about
24, 000 distinct message chains, which is a much larger volume that the hun-
dreds of chains initiated by Travers and Milgram’s experiment, the completion
rate of the experiment did not increase, since only 384 chains reached their
corresponding destination nodes. This study ([52]) re-discovered many of the
conclusions of [154], such as the small average path length of the network and
the random failure of the chains. However, there were no indications in the
results about node-hubs, each one of them constituting the penultimate hop
for many message transfers to the destination. The main conclusion was that
in order for the small-world hypothesis to hold, except from the existence of
short paths separating individuals, the members of a social network should
have enough incentives to forward the messages and allow for a decentralized
search with short paths. This was verified by increasing the incentives of the
participants and observing the subsequent decrease in the length of the paths.
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In the following subsections, we are going to describe, analyze, and dis-
cuss particular mathematical models for the formation of network graphs with
small-world properties. Further subsections will be devoted to providing quan-
titative means for studying and exploiting the small-world phenomenon in
complex networks analysis/control and more specifically in wireless complex
communications networks.

5.2.3 Watts and Strogatz Model (WS Model)

The Watts and Strogatz model [162], is a constructive process for obtaining
small-world and some other types of random graphs, beginning with a regular
lattice structure. This constructive model led to a formal definition of small-
world networks, as was mentioned before (Section 5.2.1), which will be more
precisely formulated in the sequel. To provide some insight, the model of [162]
starts from a clustered structure (regular lattice) and adds random edges con-
necting nodes that are otherwise far apart in terms of hop distance. These
random long edges will be denoted as “shortcuts” for the rest of the chapter.
The initial clustered structure ensures a high clustering coefficient for the final
network, while a suitable number of added shortcuts can further reduce the
average path length, up to a sufficient level, so that the created graph may
be characterized as small-world. The author in [162], presents three models,
denoted by a-model, β-model, and φ-model, each of them characterized by
a single parameter a, β, φ respectively. The value of each parameter in each
model defines a set of topologically similar graphs in the sense that their aver-
age path length and clustering coefficient depend only on the number of nodes
n and the average node degree k of the graph. Each one of these one-parameter
models leads to a family of graphs with topologies varying from totally ordered
structure to complete randomness. Therefore, these models provide the flexi-
bility to dictate the properties of the final topology (through the corresponding
parameter) from the regular structure to the small-world structure and then
to random networks, and to study interesting emerging scaling properties and
phase transitions (or threshold phenomena) regarding the average path length
and the clustering coefficient of the yielded networks. In the following, we are
going to describe and study the simplest of these models, namely the β-model,
also denoted by Watts and Strogatz model [163], [162].

The β-model’s algorithm modifies the topological structure of an ordered
lattice by randomly rewiring edges with increasing probability β up to the
point that a random graph’s topology is achieved. Specifically, the β-model
starts with the totally ordered structure of a ring lattice, where each node i
has k neighbors, the set {i− k

2 , ..., i−1, i+1, ...i+ k
2}, where we use the symbol

i− h for a node being h positions far away from i in the anti-clockwise sense
and similarly for i+h in the clockwise sense (see Figure 5.1(a)). The algorithm
takes k

2 rounds, each consisting of n sub-rounds. In a round j, for each of its
sub-rounds, a vertex i of the graph is selected in turn along with the edge
connecting it to its i + j neighbor (clockwise sense). With probability β the
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edge (i, i+ j) is rewired from node i+ j to a randomly and uniformly selected
node of the lattice. The n sub-rounds span all the vertices of the graph exactly
once per vertex, where vertices are selected in turn in a clockwise sense. After
all rounds have finished, all the edges of the graph have been traversed exactly
one time each. The process is shown in Figure 5.1. In case β = 0 (Figure
5.1(a)) the graph remains a 1-lattice (ring with k = 4), while, the case of
β = 1 modifies the initial ring to a completely random graph (Figure 5.1(c)).
The cases 0 < β < 1 (Figure 5.1(b)) are of particular interest, as they can
lead to network graphs between the two extremes of completely ordered and
random graphs (with respect to the values of the average path length and the
clustering coefficient). Parameter β controls the degree of randomness of the
graph [162], since it dictates the transformation of the initial regular lattice
to a random graph with asymptotically known properties.

In Figure 5.2, the scaling behavior of the average path length and the clus-
tering coefficient with respect to the parameter β (beta) are presented. It can
be observed that the average path length L(β) (semilog scale) is character-
ized by a rapid transition between its corresponding values for the two extreme
cases of the ring lattice and a random graph, and this transition corresponds
to a relatively small value of β. A similar tipping phenomenon characterizes
the clustering coefficient C(β), but for a higher value of β, which means that
the clustering coefficient remains high for a long interval of parameter’s β val-
ues, after L(β) has approached its value for random graphs. This difference
in transitions happens due to the fact that the rewiring of an edge creates a
new edge that serves as a shortcut for two previously long-distance nodes and
their neighborhoods. In a large graph, only a few shortcuts can contract the
distances between widely separated parts leading to a sudden, high reduction
of the average path length. However, the clustered character of the initial
ring, as described by the value of the clustering coefficient, does not change
rapidly with the addition of a small number of shortcuts, since a few edges
removed from their corresponding triads do not provoke sudden decrease in
the clustering coefficient (see Eq. (4.5), Chapter 4). This observation gave rise
to the abstract definition of the small-world graph, as follows:

Definition 18 (Small-world graphs) There exists a class of graphs that are
highly clustered, yet have characteristic path length and length scaling proper-
ties equivalent to random graphs. These are called small-world graphs ([162]).

In other words, for the intermediate values of β between the transition of
the average path length and the transition of the clustering coefficient to their
random limits (i.e., their values for random graphs), small-world phenomenon
properties emerge. Each value of the parameter β corresponds to a different
type of graph structure, from totally ordered graphs to small-world graphs
and to totally random graphs leading to a graph structure continuum from
regularity to randomness. By choosing the desirable value of β we can pro-
duce a specific type of graph from the whole continuum or family of network
structures. If instead of rewiring links to create shortcuts, we add new links
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Regular Ring with k=4

(a) Initial Regular Lattice (β = 0), Aver-
age path length = 3.4 hops, Average clus-
tering coefficient = 0.5.

Small−World Topology 

(b) Small-World Graph (β = 0.2), Aver-
age path length = 2.5 hops, Average clus-
tering coefficient = 0.3.

Random Graph 

(c) Random Graph (β = 1), Average path
length = 2.5 hops, Average clustering co-
efficient = 0.01.

Figure 5.1: Demonstration of the β-model of Watts and Strogatz. The network
parameters are n = 24, k = 4.
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Figure 5.2: The β-model of Watts and Strogatz: Average path length and
clustering coefficient scaling with varying β (beta) parameter. The network
parameters are n = 1000, k = 10.

that function as shortcuts, we conclude similar results. According to [162], a
more specific definition of the small-world graph can be given only in terms
of its corresponding random graph (i.e., with the same number of nodes and
expected number of edges) as follows:

Definition 19 (Small-world graphs) A small-world graph is a graph with
n-vertices and average degree k that exhibits L ≈ Lrandom(n, k), but γ �
γrandom ≈ k

n , where Lrandom(n, k), γrandom ≈ k
n are the average path length

and the clustering coefficient of the random graph with n-vertices and average
degree k correspondingly ( [162]).

5.2.4 Kleinberg’s Model

In contrast to the Watts and Strogatz model, Kleinberg’s model [99] consists
of two parts: a constructive one, similar to the Watts and Strogatz construc-
tive process, and an algorithmic one. Kleinberg observed that Milgram’s ex-
periment made in fact two discoveries. The first was the discovery of short
paths separating communicating node pairs, while the second was the ability
of nodes (participants in the experiment) to find these short paths by us-
ing local only information. Graphs with both these properties are denoted as
small-world navigable graphs.

With respect to the Kleinberg model for small-world navigable graphs, the
starting network topology design resembles in concept the corresponding one
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of Watts and Strogatz. The main difference of Watts and Strogatz and Klein-
berg’s topology is that the former starts from a regular ring where some edges
have been rewired to form long range links, while the latter starts with a two
dimensional grid enhanced with additional long range links. More precisely,
the network is a square 2-dimensional grid topology with n2 nodes, enhanced
with the lattice distance, i.e., if i, j are two nodes with coordinates in the
grid (xi, yi) and (xj , yj) correspondingly and d(i, j) is their lattice distance
then d(i, j) = |xi − xj |+ |yi − yj |. Each node is connected with all its neigh-
bors in a specified lattice distance p, forming in this way local connections
that increase the network clustering coefficient (Figure 5.3). Simultaneously,
each node forms directed long-range connections or shortcuts with q other
nodes (Figure 5.3). The probability that the ordered edge (i, j) is formed is
proportional to |d(i, j)|−r where the control parameter r determines how far
one can move in the network through a shortcut. As a result, if r = 0, each
node is connected with q other nodes selected with equal probability among
all nodes (uniform distribution of long-range edges). In this case, the short-
cuts are very likely to be long, thus further contracting the network paths.
As r increases, the shortcuts tend to be shorter, providing a much smaller
advancement in reaching a node located far away. Therefore, as also stated
in [99], if the parameters p, q are considered stable, the Kleinberg model is
a mono-parametric model—function of the parameter r—which leads to a
family of graphs, where each member is determined by the value of the r
parameter.

Although Kleinberg’s constructive model resembles the small-world net-
work construction of Watts and Strogatz, Kleinberg proved that only a unique
member of this family of graphs is small-world navigable, i.e., graphs where
the nodes can potentially find the existing short paths using only local infor-
mation. Local information is meant in the sense that the message holder at
each step of the algorithm’s deployment knows only its local connections, the
position of the destination node in the grid and the locations and long-range
contacts of all the nodes that have pre-occupied the message. As we know, the
average path length in a small-world graph is polynomial in logn. However,
Kleinberg proved that only if r = 2 in the predefined family of graphs, the
expected delivery time of a decentralized algorithm is at most a0(log n)2, i.e.,
polynomially dependent on log n similarly to the average shortest path length,
where the expected delivery time of an algorithm is the average number of
steps taken by the algorithm to deliver the message from source to destination.
Otherwise, if r < 2, the expected delivery time of a decentralized algorithm
is at least arn

2/3 and if r > 2, the expected delivery time of a decentral-
ized algorithm is at least of order arn

(r−2)/(r−1), where the constants a0, ar
are independent of n. Also, in the case of r = 2, the decentralized algorithm
that achieves the a0(log n)2 upper bound, routes a message to the one-hop
neighbor closer to the destination in lattice distance, i.e., it is a simple greedy
algorithm. Therefore, by exploiting additional information, breaking slightly
the restriction for local information, one can achieve a lower expected deliv-
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 Kleinberg’s Model for Small−World Graphs

Figure 5.3: Small-world navigable graph of Kleinberg’s Model. The topology
is a 2-regular grid consisting of n = 16 nodes with p = 1 and one directed
long range edge beginning from each node (q = 1). For some nodes the corre-
sponding shortcut is not obvious due to being a vertical or horizontal shortcut
coinciding with already existing grid connections.

ery time at a relevant signaling cost paid for obtaining that extra non-local
information.

5.2.5 Examples and Applications

For plenty of networks appearing in our daily life, in nature, in science, etc.,
the characterization “small-world network” or “small-world navigable net-
work” matches exactly with their structure. In this subsection, we refer to
relevant examples and describe some of their prominent small-world proper-
ties. A synopsis of some of these examples is shown in Table 5.1. To provide an
intuition about a real life small-world network, let us imagine a road map of a
country or a big city. One can observe a clustered structure consisting of small
roads of different areas enhanced with highways, which connect areas other-
wise separated by a large number of small roads, functioning as shortcuts. A
road map can be represented by a network graph where the nodes are the
roads and two roads are linked if they cross each other. This is a highly clus-
tered network, with small average path length due to the existing shortcuts or
highways (which correspond to nodes with high degree in the aforementioned
graph). Indeed, a roadmap network is a small-world one that we encounter
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in our everyday transportation and it resembles the small-world navigable
graph constructed by Kleinberg (Section 5.2.4). Following the same idea, we
can also assign the characterization small-world to the social influence graphs,
i.e., graphs where the nodes correspond to individuals and a directed link from
a node to another one is added, if the second is influenced by the first. One’s
ideas and thoughts are mostly influenced by one’s close friends or relatives,
but also by commonly known people such as politicians, artists, etc., who are
well-connected individuals that “shorten” the distances of social influence.
In the class of engineered networks, a heterogeneous wireless/wired ad hoc
network consists of both wireless parts and wire-based connections that con-
nect long-distance wireless nodes. This combination also yields a small-world
structure, since the wireless ad hoc networks are already highly clustered due
to the locality of their connections, and in addition, the long wires connect
directly some previously long-distance nodes, otherwise separated by many
wireless hops.

Table 5.1 presents some examples of networks that have been identified as
“small-world” through experimentation and statistical analysis [6, 115]. For
each one of them, the table denotes their type and description in the first
two columns and the absolute value of the average path length Lavg on the

third column. The fraction
Lavg
Lr

, where Lr is the average path length of a
random graph with the same number of nodes and links, compares the aver-
age path length of the network Lavg with that of the corresponding random

graph and indicates a small-world structure if
Lavg
Lr

is close to 1. Similarly,

the fraction
Cavg
Cr

, where Cr is the clustering coefficient of the correspond-
ing random graph and Cavg the clustering coefficient of the network under

analysis, indicates a small-world structure if
Cavg
Cr

>> 1. Finally, we provide
the size of each network for allowing comparisons with its absolute average
path length. All the networks exhibit emerging small-world properties as can
be deduced by computing the quantities

Lavg
Lr

,
Cavg
Cr

. Also their average path
length is disproportional to their size. The first network consists of movie
actors as nodes, who are linked through an edge if they have acted in the
same movie together [163]. The second is the network of the World Wide
Web [2], where the nodes represent domain names and two nodes are con-
nected if any of the Web pages in one domain is linked to any Web page in the
other. The three following networks correspond to data from networks of scien-
tists [14], where nodes are scientists and there is an edge between two scientists
if they have coauthored a paper. The fourth and the penultimate network
both refer to collaboration of mathematicians. However, the fourth is con-
structed as in [14], while the fifth as in [131]. Finally, the power grid network
of the western United States [163] consists of nodes that model generators,
transformers, and substations, and edges modeling high-voltage transmission
lines.
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5.3 Scale-free Networks

5.3.1 Definition and Properties

In this section, we will study another type of complex network bearing social
features, closely related to the small-world structure (Section 5.2), which can
also be used to reduce the average path length of other complex networks.
The “scale-free” property of a class of complex networks is closely related
to the notion of popularity [57] and it is also tightly related to the degree
distribution of several social networks. Specifically, the concept of “scale-free”
captures the lack of scale in the degree distribution of complex networks. More
precisely, in scale-free networks, different node groups exhibit differences in
scaling of their node degree, interpreted as scale difference in connectivity and
neighborhood relations.

To begin with, until recently, all complex networks were thought to be
completely random (i.e., Erdős and Rényi type Random Graphs). In random
networks, the node degree distribution follows a Poisson distribution with a
bell shape as shown in Figure 5.4. According to the Poisson distribution, the
probability of a node to have k connections decreases exponentially for large k.
Thus, it is extremely rare to find nodes having significantly more or fewer links
than the average. Approximating the degree distribution of a complex network
with the normal distribution is closely related to the Central Limit Theorem,
according to which the limit of the sum of small independent, egalitarian,
random quantities follows the Normal distribution [127]. This would also be
the case for complex networks subject to two important assumptions. The
first one [57] is that the formation of a link between two nodes should be
independent of the connection of every other node pair, so that we ensure the
independence of connections. As a counter example for this assumption (not
the only one), let us consider the small-world networks (Section 5.2), which
present high clustering coefficients, i.e., meaning that the probability of two
nodes being connected depends on their already existing mutual connections.
Therefore, a frequently made assumption, namely that of edge independence in
the network formation phase, does not hold for all complex networks. Secondly,
the degree of a node should be considered as the sum of these independently
formed links [57], which in this case does not hold, due to the circumvention
of the independence of link formation.

However, complex networks display more complicated features regarding
their structure and architecture. Their complexity lies mainly in the way nodes
are inter-connected as well as the interactions among them as the network
evolves. More specifically, contrary to the assumptions of the Central Limit
Theory, the behavior of the nodes regarding the formation of new connections,
or modification of existing ones, is correlated across the population and as a
result, the node degrees are characterized by imbalances. As an example, in
human communities, there are usually a few people who are very popular and
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well-known to most of the world, such as politicians, actors, etc., and many
more others (the majority) known to only to a very close circle, e.g., family,
friends and work circles.

In general, complex networks evolve according to two basic mechanisms
that are not taken into consideration by the random graph model. The first
one is “growth.” The way a network evolves, indicates that new nodes tend to
link to existing ones. The second is what is most popularly known as preferen-
tial attachment, the fact that when nodes form new connections, they tend to
connect to other nodes with probability proportional to the popularity of the
existing ones. Since not all nodes are equally popular, some of them are more
desirable than others. More explicitly, the probability that a new node con-
nects to existing ones is not uniform, but instead favors the nodes displaying
larger connectivity or degree, leading to a degree-heterogeneous system with
two extreme groups of hub nodes and low-degree nodes as shown in Figure 5.6.
The powerful, high degree nodes, referred to as hubs, have a seemingly unlim-
ited number of links, while the vast majority of nodes have a small number
of links (Fig 5.5). Preferential attachment is usually considered to be linear
with respect to node degree; however, other types of preferential attachment
such as non-linear or preferential attachment combined with initial fitness
have also been examined [6]. These cases will be discussed in the following
sections.

It is derived that large networks self-organize into a scale-free state. This
is due to both the two mechanisms of growth and preferential attachment,
as will be shown in section 5.3.3. The probability that a vertex interacts
with k other vertices is a power-law, following a model such as P (k) ∼ kγ ,
with an exponent γ between 2.1 and 4, as shown through experimentations
in real world networks [6]. Power-law distributions are quite different from
the bell-shaped distributions that characterize random networks. A power-
law function is continuously decreasing and does not have a peak, contrary to
a bell shaped curve. Consequently, the distribution of links is not democratic
in contrast to random networks. Indeed, there are a few hubs that dominate
because of having a large node degree, while there are many nodes with a
small degree. The random and power-law degree distributions are compared
in Figures 5.4 and 5.5. Each one of them is shown in both linear–linear scale
and logarithmic–logarithmic (log–log) scale. For the Poisson degree distribu-
tion, Figure 5.4(a) depicts the distribution in linear scale in both x-axis and
y-axis, while Figure 5.4(b) illustrates the distribution in logarithmic scale.
Correspondingly, Figures 5.5(a) and 5.5(b) show the curves in the two scales
for the power-law distribution. The reason for including the log-log scale in the
presentation is that it is important to emphasize the linearity of the power-law
distribution curve in this case, in contrast to the Poisson distribution. This
linearity is often called the “signature” of the scale-free networks and it is
used to verify the scale-free structure of real large scale networks under study
through collected data sets, by plotting their degree distributions in log–log
scale.
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(a) Poisson degree distribution. There is a strict cut-
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(b) Poisson degree distribution in logarithmic scale.

Figure 5.4: Random graph degree distribution.

We note that scale-free networks reveal two significant properties: they
are remarkably resistant to accidental failures, but extremely vulnerable to
coordinated attacks [13]. The first one happens due to the fact that the ma-
jority of nodes in a scale-free topology have a small number of connections.
Therefore, a failure to a random node would damage, with high probability,
a node with a small degree and therefore a node whose importance in the
network is restricted. However, if one wants to attack a scale-free topology,
he/she will address his/her attack to a hub, so as to have higher probabil-
ity to damage the network, as hubs play an important role in maintaining
network connectivity. It is important to notice that the hubs can potentially
decrease the hop-distance by linking the neighborhoods of otherwise long-
distance nodes, especially in highly clustered networks (which refers to the
notion of contraction as this is described in [163]). In this way, they give
rise to the small-world phenomenon, by reducing distances in a clustered
structure.
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(a) Power-law degree distribution. Nodes with high
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(b) Power-law degree distribution in logarithmic scale.

Figure 5.5: Degree distribution of scale-free types of complex networks.

5.3.2 Examples and Applications

As in the case of small-world networks in Section 5.2.5, we will describe some
examples of scale-free networks emerging in real situations, in order to make
the definition and properties of the scale-free paradigm more tangible. Ta-
ble 5.2 presents selected features and properties of some real scale-free net-
works, as these features were obtained through statistical analysis of collected
datasets. The coauthorship networks (math and neuroscience) and the movie
actors’ network adopt the same description as in the examples for small-world
networks (Section 5.2.5). However, the topology of the World Wide Web in [7]
is examined through a different point of view than in Section 5.2.5. The nodes
represent Web pages and the edges hyperlinks, which appear when a Web
page points to another. Finally, the citation network consists of nodes repre-
senting published articles and links that point from an article to another if
the first has a reference to the second. If the network is directed (such as the
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162 Evolutionary Dynamics of Complex Communications Networks

WWW and the citation network), for each node two degrees are defined, its
in-degree and its out-degree and therefore there are two degree distributions
(in and out) and two computed power-law exponents; γin for the in-degree
distribution and γout for the out-degree distribution. In undirected networks
the in and out degree distributions coincide and therefore the power-law co-
efficients coincide γin = γout as well. As it can be observed in Table 5.2, all
the networks under examination have power-law degree distributions, as their
estimated power-law exponents are different than 1 and for the first five net-
works, which are social networks, the power-law exponents vary between 2
and 3. For instance, the air transportation network is an artificial network,
however it is still characterized by an exponent other than unity.

An interesting scale-free and small-world network is the worldwide air
transportation network [79]. The interest in this network is due to its major
role in the propagation of commodities, diseases, the mobility of millions of
passengers every day, the popularity for a country based on its airport sizes
and importance, etc. The nodes of the airport graph represent the cities (we
consider that each node covers all the airports of each city) and there is an
edge connecting a city to another one if there is a direct flight from the first to
the second. The degree of a city is the number of other cities for which it has
a direct fight (like the out-degree of a directed network). More specifically, on
the one hand, there are small airports with, e.g., only domestic flights inside
the corresponding country, having therefore low connectivity in the airport
graph. On the other hand, there are airports-hubs, especially in major capi-
tals or large cities, operating both local and international flights and linking
long-distance countries, in which case the links are obviously functioning as
shortcuts. Indicatively, the average path length of the air transportation net-
work, the details of which are presented in Table 5.2, is only 4.4, which is very
small compared to the size of the graph, and it is found to grow logarithmi-
cally with the number of the cities. Its clustering coefficient is 0.62, while for
the corresponding random graph as defined in Section 5.2.5, it is much smaller
and equal to 0.049. Therefore, the air transportation graph is characterized
by both small-world and scale-free properties (Table 5.2).

5.3.3 Barabási–Albert Model

During the past few years, significant interest has been observed for develop-
ing models that mimic the evolution dynamics (node/edge addition/deletion)
of real complex networks and construct network topologies with complex net-
works’ characteristics such as scale-free or small-world properties. In contrast
to the Watts and Strogatz model, these models do not enhance an already
existing topology, but they construct a topology from scratch. A category
of these models, called “Preferential Attachment Models,” uses preferential
attachment laws to create networks with power-law degree distributions. In
this section, we provide a heuristic version of the “Preferential Attachment
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Node Hub

Node Hub

Scale−free network with 15 nodes (BA Model).

Figure 5.6: Visualization of a scale-free graph created by the Barabási–Albert
Model with 15 nodes and 3 connections per new node.

Models” that uses the mean field theory from physics to show that the com-
bination of growth and preferential attachment leads to a power-law degree
distribution. The following model is denoted as Barabási–Albert Model (BA
Model) and by being the first evolutionary model using preferential attach-
ment that emerged, it is probably the most representative of its category. The
BA model, instead of transforming a network topology to enhance it with par-
ticular features, as in the Watts and Strogatz model, is focused on modeling
the evolution dynamics of the network, and the final topology is obtained as
an outcome of this evolution.

Barabási and Albert incorporated in their evolutionary model two ba-
sic mechanisms, growth and preferential attachment, as mentioned in Sec-
tion 5.3.1. In this way, the obtained model dynamics essentially captured the
dynamics of the real-world networks. In general, through observations and
statistical analysis, real world networks have been observed to grow in size
with time, while the probability to connect to a specific node depends on
the node’s popularity (degree). Examples of real-world networks character-
ized by such evolutionary dynamics are shown in Table 5.2, i.e., the World
Wide Web or the Citations’ network. In the two following subsections we will
elaborate more on the two basic mechanisms of the BA’s model, growth and
preferential attachment. These two basic ingredients of the BA’s model are
shown through continuum theory to lead to scale-free or power-law degree
distributions.
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Preferential Attachment

Suppose that each node i of the network is characterized by a parameter
xi with a specified range of values. The parameter xi usually represents the
node degree, but for example it may also be the global trust value of the
node or it may also represent another characteristic of a node. We define as
linear preferential attachment with respect to the parameter xi, the process of
selecting a node with probability proportional to the value of the parameter
xi, expressed as follows:

Π(xi) =
xi∑
∀j xj

(5.1)

The denominator sum is a normalization factor in order to obtain a probability
distribution across all nodes in the network. In Barabási–Albert model, the
parameter xi for each node i coincides with its degree denoted as ki, i.e.,
xi = ki.

In the general case, the preferential attachment rule can be expressed in
terms of functionals depending on each xi, according to the following formu-
lation:

Π(xi) =
f(xi)∑
∀j f(xj)

, (5.2)

where f(xi) is an increasing function of the quantity xi. We will discuss more
about this formulation in Section 5.3.4.

Growth

In most cases, real networks are observed to grow in size with time, e.g.,
communications networks, social networks, etc. More specifically, with the
term “growth” we refer to the addition of new nodes in the network, which
connect to already existing nodes. This process will be denoted from now
on as node addition. In the BA model, it is considered that an initial core
network exists and during the network evolution, new members join the graph
by forming links with existing members, under the rule of linear preferential
attachment. The process of growth will become clearer in the following, as we
describe in more detail the BA’s algorithm.

Barabási–Albert Algorithm

At this point we will describe the steps followed by the BA’s model [6]. The
time is considered slotted. The starting network consists of m0 nodes. Each
newcomer connects to the network through m connections with m appropri-
ately chosen nodes (one for each chosen node), already present in the network.
Thus, at each time slot t:

• A new node joins the network and connects to m existing nodes.
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166 Evolutionary Dynamics of Complex Communications Networks

• Each of the m existing nodes is chosen according to the preferential
attachment rule, i.e., the node i with degree ki(t) is chosen with prob-

ability Π(ki) = ki(t)∑
∀j kj(t)

, where the sum at the denominator spans all

network nodes.

• The number of nodes in the network is equal to Nt = m0 + t.

A scale-free graph, created by the BA’s algorithm, is depicted in Figure 5.6.
Considering the average path length and the clustering coefficient of a scale-
free graph, they are both shown through simulations [6] to be significantly
less and higher, respectively, than those of a corresponding random graph
(as defined in Section 5.2.5). Due to these observations, one may reach the
conclusion that the scale-free graphs present a small-world behavior, which
however, is not always the case. Although their average path length increases
logarithmically with the number of nodes, the clustering coefficient decreases
with the number of nodes as well instead of being fixed [6].

Continuum Theory

In this subsection, we provide the derivation of the mathematical expression of
the average degree ki of each node i, in the network produced by the Barabási–
Albert Algorithm. We employ the continuum theory approach [6] [126], which
considers ki as a continuous variable and approximates its variation with time
t (time dependence), with a differential equation. According to the BA model,
only the processes of node addition and link addition are permitted, meaning
that the network only increases (each new node also adds 2m directed links),
therefore the average degree increases with time. Through the continuum the-
ory approach [126], we prove the power-law relation of ki with time t. We
assume that the node i joins the network at time ti.

For all i, the average degree ki satisfies at each time slot t the differential
equation:

dki(t)

dt
= mΠ(ki) = m

ki(t)∑Nt−1
j=1 kj(t)

(5.3)

where the sum in the denominator excludes the node added at time slot t,
while also Nt = t leading to

∑Nt−1
j=1 kj(t) = 2mt− 2m. Solving Eq. (5.3) with

the initial condition ki(ti) = m, gives

ki(t) = m

(
t

ti

) 1
2

(5.4)

which indicates that ∀ i, ki changes according to a power-law of t with expo-
nent 1

2 .
In the sequel, we deduce the power-law probability distribution (pdf) of the

average node degree ki(t), P (k) (Appendix B). The cumulative distribution
of ki(t) (cdf) is:
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P (ki(t) < k) = P

(
m

(
t

ti

) 1
2

< k

)
= P

(
ti >

m2t

k2

)
(5.5)

Assuming that the nodes enter the network at regularly spaced time in-
ternals, P (ti) = 1

m0+t . Therefore,

P

(
ti >

m2t

k2

)
= 1− m2t

k2(t+m0)
(5.6)

As a result, the pdf can be expressed as:

P (k) =
dP [ki(t) < k]

dk

=
2m2t

k3(t+m0)

t→∞−−−−→ 2m2k−3 (5.7)

which corresponds to a time-independent power-law degree distribution with
an exponent equal to −3, leading to the conclusion that the network produced
by the BA’s model reaches a stationary scale-free state.

Apart from continuum theory, there exist other methodologies for prov-
ing the power-law degree distribution. One of them is the “Rate equation”
approach [6, 100], which, rather than focusing on the average degree ki, ap-
proximates the rate of change of the number of nodes with degree k at time t,
Nk,t, with a differential equation. It uses the observation that any increases in
Nk,t can happen when nodes with degree k − 1 obtain a new edge, while any
decreases in Nk,t happen when nodes with degree k obtain new connections.
Therefore, the cumulative rate equation is:

dNk,t
dt

= m
(k − 1)Nk−1,t − kNk,t∑

∀j jNj,t
+ δk,m (5.8)

The Kronecker δk,m corresponds to new nodes added with degree m and it
holds that δk,m = 1 if k = m, while if k 6= m, δk,m = 0. The first summand
of the right hand side of Eq. (5.8) corresponds to the observation stated just
above.

A rigorous analysis of a preferential attachment model is described in
Chapter 4 of [37] and uses the properties of a martingale stochastic process.
This method first derives an asymptotic expression of E[Nk,t], as t→∞, and
then shows the concentration of Nk,t around its mean value E[Nk,t], either
by using the corresponding properties of martingales or by using variance
methods.
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5.3.4 Extensions of the Barabási–Albert Model

Variations of Preferential Attachment

The BA algorithm considers only linear preferential attachment, i.e., the prob-
ability of connecting to a node depends linearly on its degree. However, other
forms of preferential attachment exist with some of them being more repre-
sentative of the actual attachment taking place in real networks, than the
linear one presented before. To be more precise, experimental results in real
networks, such as the Internet, the citation network, or the actor collabora-
tion network, show that in some cases the preferential attachment regime is
a linear function of the node degree, while in other cases it is sublinear or
superlinear [100], depending on the correlations emerging among nodes. In
addition, Π(k) assigns zero probability to a node with no connections in the
network. Such a node, with zero degree, cannot exist in the case of the BA
model; however, this situation is possible when nodes or edges are also deleted
rather than only being added. Therefore, a form of preferential attachment
with “zero-degree attractiveness” or “initial attractiveness” is required [54].
In addition, a node i may have an intrinsic ability to attract links from new
nodes expressed by its fitness constant ηi. As proposed in [30], the degree of
the node i can be multiplied by the fitness constant of the node ηi. There-
fore, a recently added node with small degree can be highly attractive and
increase its degree in a fast rate, if its fitness constant is high enough. Follow-
ing the previous discussion, we categorize below possible forms of preferential
attachment.

• Linear preferential attachment:

Π(xi) =
xi∑
∀j xj

(5.9)

• Power-based preferential attachment:

Π(xi) =
xai∑
∀j x

a
j

(5.10)

– if a < 1 the preferential attachment regime is sublinear, if a > 1,
it is superlinear and the linear preferential attachment is a special
case for a = 1.

• Preferential attachment with initial attractiveness:

Π(xi) =
A+ xi∑
∀j(A+ xj)

(5.11)

where A is a constant.

• Preferential attachment with fitness:

Π(xi) =
ηixi∑
∀j(ηjxj)

(5.12)
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where ηi is the fitness constant of node i. The case that ηi = 1 corre-
sponds to the classic linear preferential attachment regime.

• General form of preferential attachment:

Π(xi) =
A+ ηixi∑
∀j(A+ ηjxj)

(5.13)

By determining the different parameters of Eq. (5.13) as described
above, more specific cases of preferential attachment can be obtained
and the form that adapts better to each particular occasion can be se-
lected.

But what are the effects in the resulting degree distribution, if the general-
ized preferential attachment is applied to an evolutionary model similar to the
BA’s model? It is analytically calculated [100] that the nonlinear preferential
attachment (a > 1 or a < 1) negatively affects the scale-free structure of the
network. However, when the preferential attachment is asymptotically linear,
i.e., when it tends to a linear function of xi as xi tends to infinity, then the
network preserves its scale-free nature (with a power-law exponent different
than 3). It is also analytically proved [54] that the constant A due to the
initial attractiveness does not change the scale-free property of the network
structure, but rather only the exponent of the power-law degree distribution.
Finally, the fitness constant leads to a power-law degree distribution with a
logarithmic correction [30].

Holistic Modification Framework

As mentioned above, the BA model considers only a growing network by ignor-
ing processes such as edge rewiring, edge removal, or node removal. However,
in real-world networks, such as online social networks or the World Wide
Web, all processes (edge addition/deletion/rewiring, node addition/deletion)
may take place. The aim of this section is to present a holistic framework of
modeling network evolution and pinpoint special cases from the bibliography
with available results regarding the node degree distribution. To begin with,
we describe a general framework of network evolution, which can be adapted
by appropriately specifying its parameters so as to mimic the evolution of a
particular real network.

We categorize the processes constituting the network evolution in two parts
denoted as Edge Churn, which consists of edge addition/deletion/rewiring,
and Node Churn, which consists of node addition and node deletion. We
consider relational graphs, such as peer-to-peer networks, social networks,
etc. Therefore all pairs of nodes can be potential neighbors. We denote with
N (i) the direct neighbors of node i and with Nt the number of nodes at time
t. Also, for ease of notation we write ki instead of ki(t), when this causes no
confusion.
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• Edge Churn

– Edge Addition: With probability p1 we add m1 new edges between
existing nodes. For each new edge i − j, the first endpoint, i, is
selected with probability P a1 (ki) and the second endpoint, j, with
probability P b1 (kj). This process is repeated m1 times.

– Edge Rewiring: With probability p2 we rewire m2 existing edges.
The node i from which the link is deleted is chosen with probabil-
ity P a2 (ki), while the new endpoint, j, is selected with probability
P b2 (kj). The endpoint of the rewired link that remains the same
does not change its connectivity due to this process. This process
is repeated m2 times.

– Edge Deletion: With probability p3 we delete m3 existing edges. A
node i is selected with probability P3(ki) and randomly deletes one
of its links. This process is repeated m3 times.

• Node Churn

– Node Addition: With probability q1 we add n1 new nodes, each
one creating M new links with older nodes, each one selected with
probability Pa(ki).

– Node Deletion: With probability q2 we delete n2 nodes, along with
all their edges, where each node is selected with probability Pb(ki).

• No action takes place with probability 1− p1 − p2 − p3 − q1 − q2.

Based on continuum theory, we derive the following expression for the rate
of change of the average node degree ki, ∀ i.

dki
dt

= p1m1

[
P a1 (ki) + P b1 (ki)

]
+ p2m2

[
P b2 (ki)− P a2 (ki)

]
−

p3m3

P3(ki) +
∑

j∈N (i)

P3(kj)

kj

+ q1n1MPa(ki)− q2n2

∑
j∈N (i)

Pb(kj), (5.14)

where the right hand side of Eq. (5.14) consists of the sum of the rates of
each process separately. Specifically, the first summand corresponds to edge
addition, the second to edge rewiring, the third to edge deletion, and the
last two summands to node addition and deletion, correspondingly. If only
node addition is considered, then the model is identical to the BA model with
M = m, q1 = p, Pa(ki) = Π(ki) and n1 = 1 and P1 = P2 = P3 = q2 = 0.
In order to understand how the above equation is derived, we explain more
explicitly the third summand that corresponds to edge deletion, which can be
written in “events” formalism:
{edge deletion happens with probability p3}∩{node i has m3 chances of losing
a link}∩
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Figure 5.7: Visualization of the network evolution in the case of a relational
graph. Edge Churn consists of the three processes with IDs 1, 2, 3 while,
Node Churn consists of the processes with IDs 4, 5.

{{node i is chosen with probability P3(ki) and deletes one of its links}∪
{{one of the neighbors j of node i is chosen with probability P3(kj)} ∩{j
chooses i with probability 1

kj
, so as to delete the link ji}}}.

The other summands are derived under the same logic. Figure 5.7 illus-
trates the evolutionary processes taking place in a dynamic relational graph
with respect to time evolution.

At this point, we examine a special case of the above framework, which
is studied by Barabási–Albert in [5]. This example is restricted to edge addi-
tion, edge rewiring, and node addition. Therefore, it consists of the following
processes:

• Edge Churn

– Edge Addition: With probability p1 = p we add m1 = m new edges
between existing nodes. The first endpoint, i, is selected with prob-
ability P a1 (ki) = 1

Nt
and the second endpoint, j, with probability

P b1 (kj) =
1+kj∑
∀l(1+kl)

.
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– Edge Rewiring: With probability p2 = q we rewire m2 = m
existing edges. The node from which the link is deleted is cho-
sen with probability P a2 (kj) = 1

Nt
(randomly), while the node

where the link will be reconnected is selected with probability
P b2 (kj) = P b1 (kj) =

1+kj∑
∀l(1+kl)

.

• Node Churn

– Node Addition: With probability q1 = 1−p−q we add n1 = 1 new
nodes, each one creating M = m new links with older nodes, each
one selected with probability Pa(ki) = 1+ki∑

∀l(1+kl)
.

Therefore, the rate equation for the average degree, i.e. Eq. (5.14), takes
the form:

dki
dt

= pm

[
1

Nt
+

1 + ki∑
l(1 + kl)

]
+

qm

[
1 + ki∑
∀l(1 + kl)

− 1

Nt

]
+ (1− p− q)m 1 + ki∑

∀l(1 + kl)
(5.15)

which can be written in a more compact form:

dki
dt

= (p− q)m 1

Nt
+m

1 + ki∑
∀l(1 + kl)

(5.16)

leading to a generalized power-law degree distributions, as shown in [5].

Weighted and Directed Network Graphs

The evolutionary models presented in the previous sections use a network rep-
resentation as an undirected and binary graph. Realistic networks, however,
may consist of directed connections, namely those that are formed unilaterally
only by one node towards the other. As an example, in Twitter, a user may
unilaterally follow another user, where the latter may not want to reciprocate
this connection. On the other hand, weighted graphs are increasingly used
nowadays to represent realistic networks, as they do not only encode informa-
tion regarding connectivity, but also information regarding the properties of
each one connection. As an example a weight on a link may correspond to the
strength or the cost of the connection or the trust value that the one node poses
for the other node. In this section, we are going to extend the BA evolutionary
model in the case of weighted and directed graphs [20, 21, 29, 160, 168]. We
describe the corresponding extension for weighted networks presented in [18],
which is further extended in [19] for weighted and directed networks.

In order to develop an evolutionary model for weighted networks, one
should take into consideration, apart from the mechanisms of growth and
preferential attachment, the evolution of the weights on the graph if present
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as well. To be more precise, let us consider the weighted airport network
graph (similar in structure to the worldwide airport graph of Section 5.3.2,
but extended to bear weights on its links), with weights corresponding to the
number of passengers transferred between two directly connected airports.
Then, the addition of a new connection to an airport will increase the number
of passengers traveling out of this airport, therefore it will increase the weights
of the other links of the particular airport and this weight change will be
transmitted to other connected airports as a chain. The same weight evolution
takes place on the weighted graph of the Internet routers, where now the
weights represent traffic. However, if the weights represent trust values, this
weight evolution may not have a tangible meaning. The model developed by
Barrat, Barthélemy, and Vespignani in [18] considers for simplicity only local
weight evolution, i.e., the addition of a link to a node affects only the weights
of the links connected to this node. In the analysis that follows, we use N (i) to
denote the one-hop neighborhood of node i. This evolutionary model considers
a connected initial core network of N0 nodes and homogeneous link weights
equal to w0 and consists of the following processes:

• Growth: At each time step t, a new vertex with ID t is added and con-
nects to m already existing vertices, each of which is selected according
to the rule of strength-driven preferential attachment, i.e., with proba-

bility defined as: Π(si) = si(t)∑
∀j sj(t)

, where si(t) =
∑
j wij(t) =

∑
j wji(t)

(due to the assumption of an undirected network graph, also see Chap-
ter 2). The probability Π(si) assigns higher priority of selection to nodes
central in terms of strength of interactions. The weight of each new edge
is set to w0.

• Weight Evolution: The addition of a new edge to node i, at time step
t, with weight w0 will cause a perturbation of the weights on the rest
of the links with endpoint at the node i, which, for link (i, j) equals
∆wij(t) and is described by the rule: wij(t) ← wij(t) + ∆wij(t). The
proposed model assumes that each new link added at node i induces an
increase equal to δi on si which is distributed to the weights wij(t) for all

nodes j ∈ N (i), proportionally with their value, i.e.: ∆wij(t) = δi
wij(t)
si(t)

.

Therefore, the strength of node i is adapted as si(t)← si(t) + w0 + δi.

According to the above model, we can obtain analytical expressions for the
variables si, ki, wij based on continuum theory, following the same approach as
the BA model, i.e., by considering si, ki, wij as continuous variables. Therefore,
we obtain the following differential equations:

dki(t)

dt
= mΠ(si) = m

si(t)∑
∀l sl(t)

, (5.17)

which is similar to the BA model,

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

174 Evolutionary Dynamics of Complex Communications Networks

dsi(t)

dt
= m

si(t)∑
∀l sl(t)

(1 + δi) +
∑

j∈N (i)

m
sj(t)∑
∀l sl(t)

δj
wij(t)

sj(t)
, (5.18)

where at the right hand side, the first term corresponds to the increase of si
because of the selection of node i with strength-driven preferential attachment,
while the second summand is due to the increase in the strength of node i
because of the selection of a neighbor of i,

dwij(t)

dt
= m

si(t)∑
∀l sl(t)

δi
wij(t)

si(t)
+m

sj(t)∑
∀l sl(t)

δj
wij(t)

sj(t)
, (5.19)

where at the right hand side, the first term corresponds to the increase in
wij due to the selection of node i, while the second summand is due to the
selection of the endpoint j of the link ij.

We solve the above equations in the simple case where δi = δ, ∀ i. This
case is denoted by the authors in [18] as homogeneous coupling, and considers
that the addition of a link with weight w0 to node i causes a node-independent
weight increase to the strength of node i, equal to δ. However, this is a theo-
retical model, a more realistic version of which is analytically described in [18],
where parameter δi is different for each node i. This model is denoted as het-
erogeneous coupling. From now on, we consider all the weights normalized by
the initial weight w0. A new edge to an existing node adds weight to the entire
network, equal to 2(1+δ). As a result,

∑
∀l sl(t) ≈ 2(1+δ)mt (if we ignore the

initial sum of weights in the network graph) and similarly
∑
∀l kl(t) ≈ 2mt.

With respect to homogeneous coupling, Eq. (5.18) can be written as:

dsi(t)

dt
= m

si(t)∑
∀l sl(t)

(1 + δ) +
∑

j∈N (i)

m
sj(t)∑
l sl(t)

δ
wij(t)

sj(t)

= m
si(t)

2(1 + δ)mt
(1 + δ) +m

si(t)

2(1 + δ)mt
δ =

si(t)

2(1 + δ)mt
m(1 + 2δ)

(5.20)

⇒ si(t) = m

(
t

i

) 2δ+1
2(δ+1)

, if si(t = i) = m. (5.21)

where, t = i is the time on which node i entered the network. By using Eq.
(5.20), Eq. (5.17) takes the following form:

dki(t)

dt
= mΠ(si) = m

si(t)∑
l sl(t)

(5.22)

⇒ ki(t) =
si(t) + 2mδ

2δ + 1
, (5.23)
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Directed-Weighted Graph
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Figure 5.8: Extension of the Barabási–Albert Model for the evolution of
weighted and directed graphs.

which correlates the degree of node i with its strength. Finally, Eq. (5.19) is
transformed to:

dwij(t)

dt
= m

2∑
l sl(t)

δwij = m
2wij(t)

2(1 + δ)mt
=

δwij(t)

(1 + δ)t
(5.24)

⇒ wij(t) =

(
t

tij

) δ
δ+1

, (5.25)

where tij is the time of appearance of the link ij and tij = max(i, j).
Therefore, for all the above metrics (node degree, strength, and link

weights) analyzed, the yielded topologies develop power-law time relations.
Figure 5.8, shows the addition of a new link between a newcomer node

n and node i, and the weight adaptation due to the increase of the strength
of node i. Both cases of weighted undirected graphs and weighted directed
graphs are depicted.

A similar procedure is followed for the construction and the analysis of
evolutionary models for both weighted and directed network graphs. However,
contrary to the case of an undirected network graph, in a directed network
one should model separately the evolution of the in-degree, kini (t), the out-
degree, kouti (t), the in-strength, sini (t), and the out-strength, souti (t). In [19],
the authors study an evolutionary model corresponding to the evolution of the
weighted and directed World Wide Web Graph. The vertices correspond to the
Web pages, the directed links correspond to hyperlinks from one Web page to
another, and the link weight corresponds to the number of users (traffic) using
the corresponding hyperlink. They prove that kini (t), sini (t), souti (t) follows a
power-law degree distribution, while for their model, kouti (t) is constant by
construction.
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To briefly sketch the model described in [19], it is very similar to the
evolutionary model of [18] described just above; however, when node i is added
at time step t = i, it has an out-degree kouti (i) = m. Thus it attaches through
directed connections (hyperlinks) to m already existing nodes (Web pages)
increasing their in-degree. Each one of the m existing nodes is selected with

probability Π(sini ) =
sini (t)∑
j s
in
j (t)

, at time t, due to the fact that sini (t) expresses

node i’ s popularity. Each new directed edge is assigned a weight of w0 and
causes a weight adaptation to the node that points to, in similar manner as
in [18]. The out-degree kouti (t) = m remains for all t constant as a node obtains
only new in-connections through the addition of new nodes. The analytical
equations of kini (t), sini (t), souti (t) are obtained through continuum theory in
the same fashion and following the same logic as described above for the model
of [18].

5.4 Hyperbolic Structure of Complex
Networks

In the previous sections, we have described analytically some of the most char-
acteristic features of the structure of complex networks, i.e., the small-world
paradigm and the scale-free property along with the evolutionary models that
mimic the dynamics of real complex networks’ evolution and lead to network
models with these particular properties. To sum up the basic evolutionary
models, the Watts and Strogatz model constructs a small-world network while
the Kleinberg model leads to a small-world navigable network, i.e., not only
the final network graph has a small-world structure but the nodes can actually
find the short paths without using global information of the network topology.
Finally, the Barabási–Albert model uses the preferential attachment rule and
the growth mechanism in order to produce networks with power-law degree
distributions, i.e. scale-free networks.

In this section, we study another category of evolutionary models that
leads to network topologies that appear to emerge both scale-free and small-
world properties. This new category is based on a very useful observation:
the hyperbolic hidden metric space that seems to exist behind the complex
networks’ structure [101], [32]. Initially, we provide some basic knowledge
about the hyperbolic geometry and the two dimensional hyperbolic plane,
which will be exploited for modeling purposes in the sequel. Also, we give
an intuitive explanation about the connection between the hyperbolic metric
space and scale-free complex networks [124].

5.4.1 Background on Hyperbolic Geometry

The whole infinite hyperbolic plane can be represented inside the finite unit
disk D = {z ∈ C||z| < 1} of the Euclidean space. Hyperbolic geometry has
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negative curvature (contrary, i.e., to the spherical geometry), as mentioned
above and analyzed in Section 4.7. This model of visualization of the hyper-
bolic space, where nodes are represented with complex numbers in the set
D, is denoted as the Poincaré Disk model. However, there are other models
for visualization of a hyperbolic geometry space, a summary of which can be
found in [8]. The hyperbolic distance function dH(zi, zj), for two points zi, zj ,
in the Poincaré Disk model is given by:

cosh dH(zi, zj) =
2|zi − zj |2

(1− |zi|2)(1− |zj |2)
+ 1 (5.26)

The Euclidean circle ∂D = {z ∈ C||z| = 1} is the boundary at infinity for the
Poincaré Disk model. In addition, in this model, the shortest hyperbolic path
between two nodes is either a part of a diameter of D, or a part of a Euclidean
circle in D perpendicular to ∂D. Figure 5.9 shows a network embedded inside
the Poincaré Disk.

In the following, we explain the similarity between an infinite tree graph
and the hyperbolic space, aiming to provide an intuition about the hidden
hyperbolic structure of complex networks. Considering the two-dimensional
space with constant curvature −1, the length of the circle and the area of a
disk of radius R are 2πsinhR ∼ eR and 2π(coshR−1) ∼ eR, correspondingly,
which are exponentially growing with the radius R. This exponential scaling
coincides with the scaling of the number of nodes with respect to their distance
form the root of the tree in an “e-ary” tree, as stated in [124]. To make this
clearer, let us examine a b-ary tree, which is a tree with branch factor equal to
b. In the case of the b-ary tree, the number of nodes located at distance exactly
R from the root of the tree is (b + 1)b(R−1) ∼ bR and the number of nodes

being at distance at most R from the tree is (b+1)bR−2
(b−1) ∼ bR. As a result of

the described similarity of scaling between the tree and the hyperbolic space,
the hyperbolic space can be seen as a continuous version of a tree and this is
denoted as the exponential expansion property of the hyperbolic space. Scale-
free complex networks are characterized by heterogeneity regarding the node
degree, leading to the categorization of the nodes in groups and subgroups
based on their node degree, which can be represented by a tree, and this
observation, as a result, implies the existence of a hidden hyperbolic metric
space.

Figures 5.9 and 5.10 serve the purpose of illustrating the form of some ba-
sic hyperbolic geometric objects. Figure 5.9, depicts a tree-network embedded
in the Poincaré Disk Model, where two neighboring nodes are connected via
their shortest paths. Figure 5.10(a) shows two circles inside the Poincaré Disk
Model, where it can be observed that the center is not located in the mid-
dle of the circle as it happens in the Euclidean metric space. Figure 5.10(b)
shows a hyperbolic polygon with the non-straight shortest paths connecting
two consecutive points. Finally, Figure 5.10(c), depicts a tessellation of the
Poincaré Disk into hyperbolic triangles illustrating how distances scale in the
hyperbolic space as we move closer to the infinite boundary ∂D.
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1
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Figure 5.9: Visualization of a tree network embedded in hyperbolic coordi-
nates. The edge between two neighbors represents their hyperbolic shortest
path. As stated in the text, it is either part of a diameter in D, i.e., edge
(2, 9) or part of a Euclidean circle in D perpendicular to ∂D, i.e., edge (7, 5)
or (6, 4). (Figure created with [157].)

5.4.2 Evolutionary Models Developed on Hyperbolic
Geometry

In this subsection, we are going to present the network growing model in-
troduced in [124] for the hyperbolic metric space. The created network has a
power-law degree distribution, it is small-world navigable through greedy rout-
ing and is highly clustered. We are mostly focused on the general philosophy
followed by the model and its outcomes, rather than its exact algorithmic real-
ization. We assume polar coordinates for the nodes (r, θ). A uniform distribu-
tion of N nodes on the hyperbolic plane over a disk of radius R is performed by
assigning to each node an angular coordinate randomly and uniformly chosen
in the interval [0, 2π] and a radius coordinate r ∈ [0, R] chosen with exponen-
tial density f(r) = sinhr

(coshR−1) ≈ e(r−R) ∼ er, due to the exponential growing

length of a circle with the radius r. For achieving a non-uniform distribution
of nodes, we use a parameter a in f(r) as f(r) = asinhar

(coshaR−1) ≈ aea(r−R) ∼ ear.
Initially the network is considered empty. At each time slot t = i, a node with
ID i enters the network and after defining its polar coordinates, connects to
some appropriately chosen nodes as it is described below. In addition, at each
time slot, the disk area over which the nodes are placed increases. At each
time slot t = i, the new node i performs the following:

• It selects its angular coordinate θ randomly and uniformly inside the
interval [0, 2π].
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1

2

(a) Two hyperbolic circles in the
Poincaré Disk Model. The first one has
as center the point with label 1 and ra-
dius 1.2, while the second has as center
the point with label 2 and radius 2. (Fig-
ure created with [157].)

1

2

3
4

5

6

(b) A hyperbolic polygon in the
Poincaré Disk Model, where the lines
connecting two points are identified
with their hyperbolic shortest paths.
(Figure created with [157].)

(c) Tessellation of Poincaré Disk Model
into hyperbolic triangles, showing the
exponential scaling in the hyperbolic ge-
ometry.

Figure 5.10: Demonstration of geometric schemes in the Poincaré Disk Model.

• It computes the new increased hyperbolic disk radius as R(i) = 1
a ln i

c .

• It selects its radial coordinate r ∈ [0, R(i)] according to the distribution
f(r|R(i)) = asinhar

(coshaR(i)−1) ≈ aea(r−R(i)).

• It connects to every other node j with hyperbolic distance from i less
than R(i).

The above model, which links node pairs without the explicit use of prefer-
ential attachment, leads to power-law degree distribution, i.e., the probability
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of node degree k at time t is P (k, t) ∼ k−γ , with exponent γ = 2a+ 1, a ≥ 1
2 .

In addition, the networks created by the above model appear to be highly
clustered since the connections with close nodes in hyperbolic distance lead to
the formation of a large number of triangles in the network structure. Finally,
the networks with hidden hyperbolic structure perform very well under greedy
routing based on hyperbolic distances, as it is shown through experimental
examination. The term “good performance” denoted the fact that the paths
followed by the packets through greedy routing are very close to the global
shortest paths between the corresponding node pairs. This is a very impor-
tant property showing the small-world navigability of this particular category
of networks. The nodes discover the global shortest paths by using only lo-
cal information consisting of their coordinates, the coordinates of their one-
hop neighbors, and the coordinates of the destination the packet is intended
for.

In [123], a special case of the above model is examined, where the polar
coordinates of a node i are assigned as a function of the time that i entered the
network and more precisely ri = ln i and the angular coordinate expresses the
preferences of i. Then the difference in angular coordinates between two nodes
corresponds to their similarity and the polar coordinate of a node reflects its
age and thus its popularity, if considering the older nodes as more popular.
In this case, the hyperbolic distance between two points at polar coordinates
(r1, θ1), (r2, θ2), which is approximated by the type d12 = r1 + r2 + ln( θ122 ),
where θ12 = θ1−θ2, expresses the combination of the two metrics of popularity
and similarity between the two points. Therefore, the connections based on
hyperbolic distance are determined through the popularity and the similarity
metrics of the candidate node pairs. For this special case, the probability that
a node of degree k is selected for a connection by a newcommer is computed
and found to be equal to the preferential attachment probability P (k) (Section
5.3.4).

5.5 Expansion Properties

5.5.1 Definition and Analytical Properties

Expander graphs constitute a field of spectral graph theory with interesting
and important applications in many directions including hardness problems,
error correcting codes, algorithmic design, and analysis of complex networks.
In this book, we are mostly interested in the expansion properties of complex
communication networks and their practical significance. Specifically, the ex-
pansion of a graph is a parameter that measures the degree to which a graph is
simultaneously sparse and highly connected, which is by definition a counter-
intuitive notion. In the following, we provide the definition and the basic
analytic properties of expander graphs in mathematical formalism, while in
the next section, we illustrate their use by describing possible applications.
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Let us denote as S̄ the complement of a set S of vertices in a graph
G = (V,E) with |V | = n nodes, i.e., S̄ includes the vertices of V that do not
belong to S (Section 2.1). We denote with ϑS = E(S, S̄) the “edge boundary”
of the set S, which is defined as the set of edges with exactly one endpoint
inside set S and the other endpoint inside S̄. The expansion of a set S with

|S| ≤ n
2 is defined as |ϑS||S| . The expansion ratio of a graph G is defined as the

least expansion of any set S ⊂ V , where |S| ≤ n
2 , as in Definition 20 [89].

Definition 20 The expansion ratio of a graph G, based on the edge boundary,

is defined as h(G) = min
{S
∣∣|S|≤n2 } |ϑS||S| .

It is important to notice that the expansion ratio of a graph is the minimum
expansion of every set S ⊆ V with |S| ≤ n

2 . This means that when sampling
a set of nodes S from G with less that n

2 nodes, it is ensured that there are at
least h(G)|S| connections beginning inside the sampled set S and ending in
S̄. As an example, the Petersen graph (Figure 5.11) has h(G) = 1 (according
to Definition 20) and similarly for the complete graph with n nodes, Kn, each
subset S with |S| = l ≤ n will have l · (n− l) edges in its edge boundary and
for l = n

2 , h(G) takes its lower value equal to n− n
2 = n

2 .
Another definition of the expansion ratio is obtained if instead of consid-

ering the edge boundary of the set S ⊆ V , we consider the Node Boundary
of the set S. As Node Boundary of S, we define the set of nodes N(S), where
N(S) = {w ∈ V − S : ∃u ∈ S s.t. (u,w) ∈ E}.
Definition 21 The expansion ratio of a graph G based on the node boundary,

is defined as h′(G) = min
{S
∣∣|S|≤n2 } |N(S)|

|S| .

In general, the computation of the expansion ratio of a graph is NP-
hard [89]; however, there exist spectral methods that simplify the compu-
tations due to the existence of key relations between the spectrum of a graph

Figure 5.11: Visualization of Petersen graph.
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and its expansion properties. More precisely, the expansion ratio is highly
correlated with the spectrum of the graph, i.e., the set of the eigenvalues of
the adjacency matrix A of the graph, through some basic theorems of the
expander graphs’ analysis. In the sequel, we briefly present some definitions,
theorems, and applications for d-regular graphs with symmetric adjacency
matrix n × n (undirected graphs), in order to show briefly how the expan-
sion properties are connected to the spectrum of the graph (see also Section
2.1.8). Since the matrix A is real and symmetric, it has n real eigenvalues. We
consider that the eigenvalues of the adjacency matrix A of the graph G are
ordered as λ1 ≥ λ2 ≥ λ3... ≥ λn.

Definition 22 A sequence of d-regular graphs {Gi}i∈N of size increasing with
i is a family of expander graphs, if there exists an ε so that h(Gi) > ε for each
i.

Intuitively, every small subset of an expander graph has a large neighbor-
hood. In the case of d-regular graphs, the largest eigenvalue, λ1, is equal to d,
i.e., λ1 = d.

Definition 23 The spectral gap of a d-regular graph is defined as SG = d−λ2,
expressing the difference between the first and the second eigenvalue.

The following theorem connects the spectral gap of a d-regular graph with
its expansion ratio.

Theorem 58 Let G be a finite d-regular graph on n nodes with spectrum
d ≥ λ2 ≥ λ3... ≥ λn. Then, d−λ2

2 ≤ h(G) ≤
√

2 · d · (d− λ2).

The main observation derived from Theorem 58 is that good expander
graphs have high spectral gap. This theorem is also extended to general graphs
by replacing d with λ1 and the difference λ1 − λ2 of the first and second
eigenvalues of the adjacency matrix of a network graph defines the spectral
gap of the corresponding graph. In this case if λ1 − λ2 is high, then the
network is considered a good expander. However, according to the following
Alon–Boppana theorem, λ2 is lower-bounded, meaning that the spectral gap
of a graph cannot increase infinitely. Let us define as λ = max{|λ2|, |λn|}.

Theorem 59 (Alon–Boppana): Let G be a finite d-regular graph with n ver-
tices. Then, λ ≥ 2

√
d− 1 − on(1), where on(1) is a quantity that for fixed d

tends to 0 as n→∞.

The use of the spectral gap λ1 − λ2 as a metric for determining if a par-
ticular graph is an expander or not has the drawback that we do not know
how large it should be so as to accurately decide. In order to surpass this diffi-
culty, we present another way of examining and characterizing the expansion
properties [61] of any general graph that links a centrality measure denoted
as subgraph centrality [62] with the first eigenvalue of the adjacency matrix of
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a network graph. The definition of the subgraph centrality of node i involves
the number of closed walks that start and end at node i. More precisely, the
subgraph centrality of i [62] is defined as:

Sc(i) =
∞∑
k=0

µk(i)

k!
, (5.27)

where µk(i) = Ak(i, i), i.e., the (i, i) entry of the k-th power of the adjacency
matrix A, which coincides with the number of closed walks starting and end-
ing at node i, with length equal to k. If we consider only closed walks with odd
length (since a cycle of even length may correspond to back and forth move-
ments on acyclic subgraphs) for non-bipartite graphs (for bipartite graphs,
the number of cycles with odd length is zero (Theorem 1)) and by using the
spectral graph theory, the subgraph centrality of node i can be written as
follows:

Scodd(i) =

n∑
j=1

[γj(i)]
2 sinh(λj) = [γ1(i)]2 sinh(λ1) +

n∑
j=2

[γj(i)]
2 sinh(λj),

(5.28)
where λj , γj(i) are the jth eigenvalue and the ith component of the jth eigen-
vector, correspondingly. In the case of expander graphs, as mentioned above,
the spectral graph difference is large, thus λ1 � λ2 ≥ λ3... ≥ λn and the
subgraph centrality of node i can be approximated as follows:

Scodd(i) ≈ [γ1(i)]2 sinh(λ1)⇒ γ1(i) ∝ sinh(λ1)−
1
2Scodd(i)

1
2 , (5.29)

which relates directly the principal eigenvector (eigenvalue) with the subgraph
centrality and leads to a linear relation in log-log scale:

1

2
logScodd(i)−

1

2
log sinh(λ1) = log γ1(i). (5.30)

As a result, a graph is an expander, if a log–log plot of γ1(i) versus Scodd(i),
∀ i = {1..n} is linear with slope approximately equal to 1

2 .
At this point, we present some experimental results based on the above

analysis from [61] regarding the expansion properties of complex networks.
According to these results, networks such as the Internet (at the autonomous
systems level (AS)), the food chain, the bibliographic citation networks, and
the US airport transportation network present good expansion properties since
they appear to have the desirable scaling relation between the subgraph cen-
trality and the principal eigenvector, while other networks such as the network
of the inmates in prison, the injecting drug users, and the protein–protein in-
teraction network do not seem to be good expanders from the experimental
results. In [110], it is shown through the same method, i.e., by using the sub-
graph centrality, that large social networks (like Facebook, Youtube, Epinions,
etc.) exhibit very good expansion properties. It is very interesting to point out
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that, as it is shown in [74] and supported by [61], the scale-free networks that
obey power-law degree distributions are expander graphs. As stated in [61],
very clustered networks without the existence of shortcuts, such as the net-
work of the drug users, are not expected to be good expanders. A possible
procedure for the creation of graphs with good expansion properties would be
to create clustered networks with high average node degree and then rewire
edges that connect nodes inside the same clusters so as to connect nodes from
different clusters (and therefore, the rewired edges are functioning like short-
cuts). As a result, in order for a network to be a good expander, it should
have higher number of intra-cluster links than inter-cluster links. For this
reason, community-based small social networks, such as the network of the
drug users or the protein–protein interaction network, do not seem to have
expansion properties.

5.5.2 Applications of Expander Graphs

As we mentioned before, the applications of expander graphs are important
and extend to many fields. In the sequel, we enumerate and briefly describe
some of these applications.

• Random Walk: A simple random walk on an expander graph is similar
to choosing vertices uniformly and randomly. This is due to a theorem
denoting that the stationary distribution of a random walk on an ex-
pander graph is the uniform distribution [89]. Therefore, we can sample
a network that is a good expander, uniformly and randomly, more effi-
ciently, i.e., by using less random bits, if performing a random walk on
its graph.

• Routing through shortest paths: It can be proved that between two
nodes of an expander graph, there is a path, the length of which depends
on the expansion ratio of the graph and specifically, as the expansion
ratio increases, the path becomes shorter. Through this application, the
relation existing between expander graphs and small-world graphs be-
comes obvious.

• A graph with high expansion ratio has very good communication prop-
erties by avoiding bottlenecks. A bottleneck is a set of nodes that if being
removed separates the rest of the graph to at least two large components
(Chapter 2). The existence of bottlenecks is characteristic of the clus-
tered networks that are not good expanders. Expander Graphs present
robustness to node and link failures due to the lack of bottlenecks.

• Error correcting codes: The graph codes defined on expander bipartite
graphs can be characterized by a large number of codewords with a large
distance between them (robustness to channel errors) and also can be
efficiently decoded.
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• Complexity: Expander graphs are proven to amplify the success proba-
bility of randomized algorithms.

The interested reader may refer to [89] for a more extensive and detailed
presentation of expander graphs. Since we are studying communications net-
works in this book, we are interested in the second and third applications of
the expander graphs presented before. In general, by proving that a network
graph is an expander, we have proved that it inherently has short paths be-
tween the node pairs without being overcrowded with shortcuts, as in the case
of small-world networks. Also, routing becomes very efficient by avoiding bot-
tlenecks. Finally, since according to the first application it is possible to select
vertices uniformly and randomly by just performing a random walk on the
expander graph, in the case of a communication network with expander graph
structure, it will be possible to perform very efficiently random node election
processes [3], etc. To conclude, proving the existence of the expanding graph
structure is hard, but it if it is achieved, it indicates networks that achieve
efficiently very good performance. A possible, but difficult direction for future
work is to develop mechanisms for emerging the expander graph structure in
communication networks.

5.6 Conclusions

In Table 5.3 we provide a summary of the most important structure types
identified in complex networks. Since each type of structure characterizes or
is characterized by particular trends with respect to a set of evaluation metrics
(such as average path length, clustering coefficient, curvature, degree distri-
bution), we provide these trends in Table 5.3 and columns 2− 5. If a trend is
not known (or it is not of particular interest for the applications presented in
this book) for a specific combination of structure type and metric, the corre-
sponding cell shows an “N/A” sign. In the case of hyperbolic structure, the
high clustering refers to the network constructed and studied by the models
of [124] and [123], which, however, might not always be the case. Finally, it is
important to note that some networks may present features for more than one
structure, i.e., the airport network [79] is both scale-free and small-world and
similarly the network constructed by [124] combines features from hyperbolic,
small-world, and scale-free structures.
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Chapter 6

Evolutionary Approaches

The non-trivial and sometimes rather desired properties of (online) social
networks have attracted the interest of the research community (Chapter 5),
eventually rendering (online) social networks a new, interesting and evolving
research field. Such research interest in the properties and dynamic behavior
of social networks is dictated by the fact that some of their salient features
can also be observed, exploited, or even incorporated in other more com-
plex network contexts. The most typical example of the latter is the fact
that, due to the small-world phenomenon, the communication through a so-
cial network can be expedited, as the small-world shortcuts may contract the
average distance1 separating two nodes. In other words, the communication
speed is a salient characteristic of social networks and by mimicking the way
it is achieved in a social network context, it can be incorporated in other
network types as well. Intuitively, by introducing appropriate shortcuts in an-
other network class, one can obtain a network structure and function similar
to the small-world phenomenon and this makes it possible to reduce the dis-
tance between a communicating pair and leads to an increase of the speed
of communication, without modifying the initial character of the network.
Many works in the past have established themselves in the bibliography for
attempting to apply social network concepts in order to make more efficient
the function of various wired or wireless networks. This topic will also be the
main focus and objective of the current chapter.

More specifically, in this chapter, we are going to describe and analyze evo-
lutionary approaches mainly applied, but not limited, to wireless multi-hop
networks, which are briefly described in Section 6.1. A common viewpoint that
can be currently identified in the literature is the fact that the evolutionary
approaches regard the physical topology of the wireless network, which is al-
tered in a nominal way so that the network as a graph is enhanced with social
features. As a result, the main focus of this chapter is the reconsideration and

1In the sense defined in each case, e.g., hop-wise.
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sometimes even efficient re-design of the wireless multi-hop network topology,
without, however, altering its original characteristics as these are defined by
the wireless nodes’ properties. Both the design procedure and the desirable
characteristics are inspired by corresponding methodologies and features of
social networks’ evolving topology graphs. The improvement of the network
performance is either analytically proved beforehand, or observed and quan-
tified after the development through simulations. In addition, the majority
of the described mechanisms focus on the small-world property of social net-
works, and consist of topology modification methods applicable to wireless ad
hoc networks that enrich them with small-world features.

This chapter is organized as follows. The topology control mechanism that
is the basic tool for the topology modifications applied in wireless multi-hop
networks is briefly explained in Section 6.2. Sequentially, in Section 6.3 we
discuss the emerging difficulties in the effort of evolving the spatial wireless
multi-hop networks into small-world graphs and explain on which level such a
modification is attained throughout the presented bibliography. Afterwards,
in Section 6.4 we analytically present some of the mechanisms that have been
developed for enhancing the wireless ad hoc networks with social features
and further make them small-world-like graphs. In the sequel, we focus on
the description and analysis of a holistic topology modification approach for
enhancing the physical topology of wireless multi-hop networks with small-
world features. The mechanism presented in Section 6.5 is of a probabilistic
nature, it is reversible in the sense that nodes can revert quickly to their orig-
inal states, it applies to both weighted and binary graph network models, and
eventually it can be adapted properly with respect to the given cost budget,
the desirable performance objectives, and the given application requirements.

6.1 A Brief Description of Wireless Multi-hop
Communications

In this Section, we briefly present basic elements of wireless multi-hop net-
works so as to facilitate the flow of the rest of the chapter. We summarize the
operation and modeling of the wireless multi-hop networks and we present
some metrics that are used to quantify their performance. Such metrics will
be exploited in this chapter for assessing the improvemens in performance
obtained by the presented mechanisms. Finally, we conclude the section with
some references and terminology. We note that this section can be omitted by
a reader already familiar with the field of wireless communications, in order
to focus on the less well-known material following.

Wireless communications are continuously increasing their penetration
in the whole system of networking, basically due to their ability for self-
organization and low cost deployment. From a net perspective, a wireless
system consists of nodes that communicate with each other through a wireless
channel. Some of these networks consist of a backbone wired infrastructure.
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As an example in the case of cellular networks, a wireless client communicates
directly through the wireless channel with the base station and the latter is
connected directely to the wired backbone infrastructure. In this chapter, we
are focusing on completely distributed wireless networks such as wireless ad
hoc and wireless sensor networks, which are generally denoted by the term
wireless multi-hop networks. In this case there is no central authority dictat-
ing the nodes’ actions. On the contrary, nodes self-organize their topology and
functionalities so as to ensure connectivity and good quality of communica-
tion. The lack of centralized control and high cost of deployment led to their
use in cases where there is no possibility of establishing wired communications
(i.e., battlefields, disaster recovery, etc.), or in cases when a temporary infras-
tructure is needed (i.e., conferences) or we cannot afford the cost of wired
networks (i.e., developing countries). In these networks, cooperation among
nodes is necessary for achieving the basic network functionalities such as mes-
sage transmissions and routing.

We assume that the wireless nodes are located either uniformly and ran-
domly (Appendix A) or in a specified topology over a bounded region. Each
node i has a limited transmission power and therefore cannot communicate
directly with all nodes in the network region, but rather only with those that
are located close enough to node i. The communication with the long-distance
nodes is achieved via multi-hop transmissions through intermediate nodes act-
ing as routers. Typically, the Random Geometric Graph (RGG) model is used
to represent the topology of a wireless multi-hop network. In the RGG model
(as also employed in this chapter) each node i is characterized by a transmis-
sion radius, i.e., R, and can transmit directly to all nodes j lying on a disc
centered at i with radius R. This disc is defined as the communication range
of node i and each node j lying in this range is denoted as one-hop (or direct)
neighbor of node i. Similarly node i can directly receive a transmission only
from a node lying inside its range. The ij (or sometimes denoted as (i, j))
direct communication is denoted as link or edge. The links and nodes com-
pose the corresponding network graph of the wireless multihop network. The
term “unicast link” denotes the communication between a single sender and
a single receiver, also referred to as end-to-end communication. The network
topology and the transmissions define the physical layer of the wireless net-
work function. If i is not the destination of the packets arriving at i, these can
be buffered at i until they are further transmitted, when possible, towards
the destination. We use the term “when possible” since, as the wireless nodes
share the same channel, they may interfere with each other. As a result, two
more network functionalities occur here, the data link layer scheduling pro-
cess, which determines when a node can attempt a physical transmission, and
the network layer routing process determining the sequence of nodes that a
packet follows from the source to the destination (i.e., the path of the packet).
Routing and scheduling also take place in other types of networks, however,
being of significant importance in wireless multi-hop networks due to their
decentralized nature and the interference constraints. Regarding the inter-
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ference, there exist two models defining a successful communication over a
wireless channel, the Protocol and the Physical model [81].

Definition 24 The Protocol Model [81]: Suppose that node i transmits to
node j, then node j successfully receives a transmission from i, if:

distance(k, j) ≥ (1 + ∆)distance(i, j)

for every node k transmitting simultaneously over the channel,

where ∆ is a fixed quantity used when a guard zone is specified by the protocol
to prevent neighboring nodes from transmitting simultaneously on the same
subchannel. As a result, according to the protocol interference model, there is
spatial differentiation among communicating node pairs, meaning that while
a transmission takes place, another transmission may occur over the same
channel supposing that there is sufficient separation distance between the
two. Similarly, more than two transmissions can take place simultaneously
supposing that every pair of them is separated by sufficient distance. There-
fore, the protocol interference model leads to binary interference constraints,
i.e., two transmissions either interfere or not.

For the Physical Model, we first need to make the following assumptions
and definitions. Let us suppose that node i transmits directly to node j with
power Pi and that the gain over the link ij is Gij ∼= 1

distance(i,j)a , where a > 2

is the path loss exponent (i.e., in this regime the signal power decays with
distance). Then if T (i) is the set of nodes transmitting simultaneously with i
over the common wireless channel and N is the ambient noise at node j, we
define the Signal-to-Interference-plus-Noise-Ratio (SINR) for the transmission
of node i to node j as:

SINR(i, j) =

Pi
distance(i,j)a

N +
∑
k∈T (i)

Pk
distance(k,j)a

Definition 25 The Physical Model [81]: Under the above definitions, the
transmission of node i is successfully received by node j, if SINR(i, j) ≥ β,
where β is a fixed threshold value determined by the capabilities of the tran-
ceiver devices.

At this point, we define some metrics used for assessing the performance
of wireless multi-hop networks, in the later subsections of this chapter and in
other studies as well.

Definition 26 The Delay (or Latency) of message delivery is defined as the
time difference between the generation of a packet from the source node and
its arrival at the destination node.

Definition 27 Throughput is defined as the number of packets arrived at the
destination divided by those sent by the source.
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For the following definition, let us suppose that the network transports
one bit-meter when one bit has been transported by one meter towards the
destination.

Definition 28 The Transport capacity [81] is defined as the sum of products
of bits and the distances over which they are carried.

In order to use more compact notation in the sequel, we write that f(n) =
O(g(n)), if f(n) grows no faster than g(n) and f(n) = o(g(n)), if f(n) grows
strictly less than g(n). Similarly, we write f(n) = Ω(g(n)), if f(n) grows at
least as g(n), and finally we write f(n) = Θ(g(n)), if f(n) grows at the same
rate as g(n).

The definitions of this section will hold in the rest of the chapter unless
otherwise noted. For an analytical presentation on wireless communications
(which is not within the narrow scope of this book), the interested reader can
be advised by [81], [156].

6.2 Topology Control (TC) and Inverse
Topology Control (iTC)

Multi-hop networks suffer from intermittent connectivity, energy shortage,
and wireless medium contention. In order to alleviate these problems, several
approaches have been introduced, such as power control [133] and Topology
Control (TC) [142]. Contrary to the first, the latter addresses all such issues
in a unified, cross-layer framework (oftentimes involving interaction of MAC
and Network protocol layers), which is characterized by dynamic and paral-
lel operation. Successful TC protocols are decentralized approaches that vary
the transmission power of a node if possible in order to properly adapt its
local neighborhood (Figure 6.1). The main objectives of TC are to increase
the traffic-carrying capacity of the network by increasing spatial reuse and
to reduce energy consumption, while maintaining connectivity and adapting
quickly to variations of the topology [96]. Technically speaking, TC may re-
duce the transmission range of a node if network/node connectivity is not
damaged. As a result, the nodes rely on the cooperation with their neigh-
bors for many network tasks such as routing, which can be achieved in a
multi-hop fashion. TC attempts to balance a trade-off between energy con-
sumption and node interference on one hand, and network connectivity, on
the other. Therefore, a network able to perform TC achieves an exploitation of
the node cooperation so as to minimize energy consumption and interference.
An additional characteristic of TC protocols is that most of them bear a very
efficient and computationally light operation that is appropriate for multi-hop
networks, such as the protocols described in [31] and [161]. However, the im-
plementation of a TC protocol on the network topology may lead to increases
of the average path length, and deteriorate other performance metrics (except
from energy consumption) such as delay and sometimes throughput, which are
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however critical in modern communication services, especially as the energy
capabilities of the nodes are improving. The topology modification mecha-
nism proposed in Section 6.5, which is the main focus of this chapter, employs
an inverse Topology Control (iTC) viewpoint. The iTC scheme aims at the
opposite result of traditional TC mechanisms, i.e., to improve QoS-relevant
performance metrics, e.g., average path length and throughput, while not
significantly impacting resource consumption. In other words, starting from
a “non-dense” network topology, iTC will rearrange and/or increase/enhance
the connections and potentially the positions of special nodes so as to improve
the network performance in terms of delay, throughput, path length, and all
that with minimum additional cost in terms of energy consumption. In the fol-
lowing, some basic related bibliography of topology modification mechanisms
for path length decrease and performance improvements is initially presented
(Section 6.4). These approaches resemble the iTC approach. However, most of
these approaches lack the optimization and/or the analytical/numerical com-
putation of the additional cost in energy consumption, as it will be explained
in Section 6.4. Figure 6.1 shows a possible topology modification, either by
the TC or iTC mechanisms, for node A. Topology control could have reduced
the radius of node A from value Rf to R′f , since connectivity is maintained,
while energy expenditure at one transmission is reduced due to the range re-
duction and the same happens for interference. However, after the TC range
adaptation to radius R′f , node A can no longer communicate directly with
nodes 2 and 3, but rather only in a two-hop manner through node 5. We do
not show the transmission range of nodes 2 and 3 so as to avoid making the
figure too complex, but we suppose that these cover node A. This may increase
the number of transmissions and retransmissions (increasing in this way the
energy consumed totally in the network), the delay, throughput, etc. On the
contrary, iTC could have increased the radius R′f to R′′f so as to achieve a
balance between cost metrics (such as energy consumption and interference)
and performance metrics (such as delay, throughput, path length), or differ-
ently expressed, between the TC approach (range R′f ) and the superfluous
connectivity (range Rf ).

6.3 Spatial Graphs and Small-World
Phenomenon

This section aims at better clarifying the differences between wireless multi-
hop and social network graphs and discusses how these incompatibilities can
be overcome in the effort to exploit properties of social networks for improv-
ing wireless networks. To begin with, the basic difference between the two
graph types lies in the way their nodes are linked together. Wireless multi-
hop networks are spatial graphs, meaning that the possible connections formed
between node pairs are restricted by the physical distance separating every
two nodes, where an upper bound for the former is in turn determined by the
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Figure 6.1: Topology Control (TC) vs. inverse Topology Control (iTC). Topol-
ogy control can reduce the radius of A from Rf to R′f , since connectivity is
maintained and energy cost is reduced. However, then node A can no longer
communicate directly with nodes 2 and 3, but rather only in a two-hop way
through node 5. iTC can increase the radius R′f to R′′f so as to achieve a
balance between cost metrics and performance metrics, leaning more towards
the performance side of the trade-off.

nodes’ transmission powers. On the contrary, social networks are relational
graphs, i.e., the possibility of connectivity for every pair of nodes in the net-
work is non-zero, irrespectively of the actual distance between them. Any two
nodes of relational social networks (e.g., Facebook) can be neighbors.

The β − model, described in Chapter 5, concerns the case of relational
graphs. The construction of relational graphs does not depend on any ex-
ternal metric of distance between the nodes. Therefore, in relational graphs,
distances are not taken into consideration in the formation of links. On the
other hand, spatial graphs are embedded in a suitable metric space (it is usu-
ally the two-dimensional Euclidean space, but it could also be the hyperbolic
or any other metric space) and the possible connections between their entities
(nodes) depend on their distances defined in the specific embedding metric
space. Consequently, if any links are added in a spatial graph, these must
conform to the corresponding spatial constraint. Therefore, in order to mimic
the β−model to add shortcuts in a spatial graph, we have to relax the spatial
constraint, so that the desirable length of the shortcut is permitted. Consider
that there is a parameter R that defines the maximum distance in which a
node can form connections in a spatial wireless network graph. The process of
shortcut construction according to the β−model consists of the connection of
nodes that are otherwise far apart with a particular probability. As a result,
in a wireless spatial graph the formation of a shortcut between two nodes (not
directly connected in the current graph instance) assumes the relaxation of
their power constraints in some way leading to the increase of R for these two
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nodes. By increasing R, more and longer shortcuts can be formed and when
R spans the whole network, every node can be potentially connected with
everyone else as in the case of a random or relational graph.

According to [162], spatial graphs can never be totally small-world graphs
following the strict definition of Section 5.2.3, and under the naive mechanism
of forming longer shortcuts by increasing the transmission radius R, for two
main reasons, which are presented and studied in detail in [162]. The first
reason concerns the phase transitions of the characteristic path length and the
clustering coefficient as functions of R to their random limits (values achieved
when R spans the whole network and therefore the spatial graph becomes
relational). Contrary to the small-world networks, both phase transitions seem
to occur at approximately the same time, or in other words the characteristic
path length and the clustering coefficient have similar functional form with
respect to R. This happens because the shortcuts for low values of R are not
long enough to drastically reduce the path length. When R is increasing, the
path length reduces, but so does the clustering coefficient, since the locality of
connections is not preserved any more. The second reason is that in contrast
to relational small-world graphs, in spatial graphs the path length scaling
with respect to the number of nodes n as n → ∞ is not logarithmic. To
elaborate more on the first reason, Figure 6.2 illustrates the scaling of the
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Figure 6.2: Scaling of the average path length and the clustering coefficient
with respect to R for a spatial graph. We observe that the phase transition
of both parameters to their corresponding random limits occurs at the same
value R ∼= 150.
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average path length and the clustering coefficient as R increases. Let us denote
as k the expected average node degree. The methodology of constructing the
undirected spatial graph consists of the following procedure, which is repeated
until kn

2 links are formed (so that the expected average degree equals to k,

since k = kn
2

2
n ) [162]. For each vertex i a node j lying in Euclidean distance

at most R from i is chosen uniformly and randomly and the undirected link
(i, j) is formed, if it does not exist. The parameters for Figure 6.2 are n =
1000, R = 20 : 400m, k = 10.

However, as we will discuss later, shortcuts in spatial graphs, and especially
in wireless multi-hop networks can eventually be realized and in a nominal
fashion. Although the resulting graphs are not provably small-world in the
strict sense of satisfying the small-world logarithmic length scaling of prop-
erties as n → ∞, they are shown, either through analysis or simulations, to
develop and exhibit features of small-world graphs and present salient per-
formance improvement. By using specific techniques going beyond the simple
technique of relaxing the spatial constraint and adopting features from evolu-
tionary deployment, the average path length and clustering coefficient scaling
of the small-world graphs can be approximated closely enough (Section 6.5).

6.4 Inverse Topology Control-Based
Approaches

In wireless multi-hop networks the communication type between a node pair
depends on their physical distance (for the moment not considering fading)
and can be of two types, direct or multi-hop. Nodes being close “enough” can
communicate directly, while long-distance nodes use their direct neighbors
as relays to achieve a multi-hop communication. This locality of the direct
connections, which can be represented as links on a network graph, renders
the wireless multi-hop networks highly clustered, almost as clustered as regu-
lar graphs. It is observed that multi-hop communications, although they can
sometimes increase throughput due to spatial reuse, lead to significant net-
work overhead and delay increment due to the multiple number of physical
transmissions taking place for just one packet transfer. Indeed, due to the low
reliability of the wireless connections, increase in the number of hops hinders
the satisfaction of the necessary Quality of Service (QoS) requirements such
as the low total message transmission time (delay) and the high end-to-end
delivery rate (throughput). In recent years, some topology modification mech-
anisms have been developed in order to modify in a realistic way the topology
of a wireless multi-hop network (ad hoc or sensor) so as to overcome the afore-
mentioned problems. These mechanisms are inspired by small-world complex
networks such as social networks and apply methodologies either centralized
or decentralized on the wireless multi-hop topology targeting to reduce its
average path length. The common part of these topology modification mech-

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

196 Evolutionary Dynamics of Complex Communications Networks

anisms is the enhancement of the wireless network topology with shortcuts
in a similar way as proposed in the Watts Strogatz or the Kleinberg’s Model
(Chapter 5), but adapted to the restrictions imposed by the wireless spatial
graphs. We can define two basic categories of such mechanisms with respect
to the kind of shortcuts they use, namely wired or wireless.

6.4.1 Early Approaches Using Wired Shortcuts

In this subsection, we will describe some early topology modification mech-
anisms that augment the network with wires in specific positions aiming to
enhance the network topology with small-world features and reduce its average
path length. Specifically they deploy some wired connections into the network,
with high power transceivers at their ends and are considered to bear no en-
ergy constraints, infinitesimal cost of communication, and infinite bandwidth.
Since the cost of sending packets along the wires is considered negligible, the
communication through the wires is preferable. As a result, wired communi-
cations are interpolated among wireless communications, leading eventually
to less overhead, delay decrease, throughput increase, and decrease of energy
consumption. Wired link placement has both disadvantages and advantages
regarding its cost of deployment and performance (especially energy consump-
tion) correspondingly. We will refer more analytically to these aspects after
presenting the mechanisms and thus having an idea of how a wireless multi-
hop network can be augmented with wired connections. The most important
impact of adding wires to a wireless multi-hop network is that it is trans-
formed from a pure wireless network to a hybrid—both wired and wireless—
network. Such transformation is not always applicable due to changing the
original scope and operation of the network, while this is sometimes incom-
patible with the operational, environmental, or other constraints/objectives
of the network. In the following, we present three of the available topology
modification mechanisms for wireless multi-hop and sensor networks, in or-
der to provide a more specific picture of possible integrations of the wired
infrastructure in their topologies and the corresponding gains in performance.

Example 1: Randomly placed wires in a wireless grid topology

It is considered a wireless multi-hop network with square grid topology, the
topology of which is enhanced via wires’ placement aiming to increace its
capacity. Such an approach can be found in [137]. Motivated by the random
shortcuts of the small-world model of Watts and Strogatz [163], a wired infras-
tructure consisting of point-to-point randomly placed wired links is chosen. Of
course, the final topology is hybrid, including both wireless and wired connec-
tions. Regarding the routing procedure, only one wire/shortcut can be used
per flow destination pair at each packet transmission and only if it eventually
reduces the point-to-point distance in terms of hopcount between the specific
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source-destination pair. Otherwise, the regular wireless links of the square
grid are applicable. The capacity scaling laws of the heterogeneous network
are studied in [137] and compared with the case of a pure wireless network
and the case where the wired connections are not random but rather form
an interconnected square grid. Through these comparisons, it is shown that
the random wire placement along with the described communication scheme
increases the transport capacity gains in both cases.

In the same fashion, the possibility of improving the energy efficiency and
performance (throughput, delay) of a sensor network through its enhancement
with wired connections is considered ([47], [145]). The difference between the
case of ad hoc networks and sensor networks regarding the topology modifi-
cation mechanisms and the placement of the shortcuts is the communication
pattern. In wireless ad hoc networks we consider the communication taking
place between randomly chosen node-pairs, while in sensor networks there are
one or more sink nodes and the communication involves the pair of a random
sensor and the sink or one of the sinks. The information either begins or it is
destined to the sink node(s). As a result, the implemented shortcuts should
be oriented to support the communication with the sink, meaning that their
placement should be more deterministic and intelligent, leaving its random
nature in the case of wireless ad hoc networks.

Example 2: Deployment of wires in a static wireless sensor network
with one sink

The enhancement of a wireless sensor network with a single sink node with
wires, towards reducing its average path length and decreasing the energy con-
sumption, is investigated [47]. A disk shaped topology where the static nodes
are uniformly distributed, and transmit with the same power low rate pack-
ets to the also-static sink, arbitrarily located inside the topology, is assumed.
The sensors are considered to have local information about the network topol-
ogy and the locations of wires. Regarding the wires, they have no bandwidth
limitations and their ends are equipped with transceivers without energy con-
straints, which share information with sensors k-hops away from them (local
information). The energy consumption for 1 bit of information transmitted
from the source to the destination is assumed to be equal to the number of
hops of the shortest path separating the source–destination pair [47] (MAC
layer issues are ignored), and under this assumption, their aim is to improve
the energy efficiency or equivalently the reduction of the average path length.
The wire placement is deterministic and it is in accordance with the follow-
ing procedure: one end of each wire is placed one hop away from the sink
node, while the other lies on a circle of radius l, where l is the length of the
wire. All the wires added in the network have the same length and are placed
on the circle equidistantly, as shown in Figure 6.3. The routing model when
there are no wires in the network is greedy geographic routing [80], while
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when the network is augmented with wires, the source computes the shortest
path to the sink, through all the wires for which it has information and also,
through only wireless connections choosing the shortest path among them. To
make this more clear, if A is the source, B is the sink, and wie1, wie2 (wie2
closer to B) the transceivers of the wire i, the source computes the distances
dAwie1 +dBwie2 (where d expresses Euclidean Distance and it is used for the
wireless connections) for all wires i for which A has location information and
also computes the distance between A, B, dAB, chooses the shortest path,
and forwards the packet to the next hop along this path. It is obvious that the
area can be divided into three regions. The first one consists of sensors in a
distance less than l

2 from the sink that do not use the wires, and the second of

sensors in distance higher than l
2 from the sink that use the wired connections

to send packets to the sink (Figure 6.3). The authors in [47] simulated the
proposed topology design in both cases of the sink node placed at the center of
the topology and at the end of the topology and for different values of param-
eters such as the number and length of the wires. The maximum reduction in
the path length reaches 70% for the central sink and 60% for the sink at the
end. After this percentage, the reduction of the average path length saturates
with respect to the wire length. Regarding the restriction of the information
up to k-hops away from the wire, when the length of the wire is small, it is not
an obstacle in the average path length reduction. However, when the length
of the wire increases, the achieved gain in path length deteriorates, especially
for small values of k.

Example 3: Combinations of wired shortcuts deployment with rout-
ing protocols for a wireless sensor topology (static or mobile)

In the same spirit and towards the reduction of the average path length and the
energy dissipation of the sensor nodes, Sharma and Mazumdar in [145], [146]
propose four combinations of topology modification and routing schemes based
on the addition of wired links. For each created sensor network topology and
type of network (static or mobile), a different routing protocol is chosen as
more suitable on a per-case basis. The final topology is characterized by basic
features of the small-world topology as clustering and small diameter. To be-
gin with the system model, the n sensor nodes are distributed uniformly in a
square area with a sink node located arbitrarily in the area. The time is con-
sidered slotted, all sensors generate data with the same rate, and transmit by
employing the same power level. The network is divided into N (n) square ar-

eas denoted as “cells,” each one with side a(n) =
√

32 logn
n , for mathematical

analysis purposes so that a square grid topology is embedded over the network
region. In contrast to Example 2 [47], which studies a particular model of wire
placement, the main aim here is, given a cost budget for the wires’ placement,
l(n) (l(n) < 1) wires per cell, where n is the number of nodes, to place the
wires in such a manner so as to optimally reduce the average hop count in the
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S

l/2

l

Figure 6.3: A sensor network in a disc deployment area with center at the sink
node, enhanced with equidistant wires of equal length, as in [47].

network and achieve the maximum possible gain in energy dissipation. Con-
sidering the order of l(n), it is stated that in order to achieve non-negligible

gains, l(n) should be of order ω( log(n)
n ). The physical interference model [81] is

used, assuming that the network does not change during a time slot. Sensors
in adjacent cells can communicate directly, while for indirect communication,
the packet is greedily routed to the adjacent cell closest to the sink node, first
horizontally up to the column containing the sink node and then vertically to-
wards the sink node. It is supposed that the sensors have knowledge of the cell
where the sink node is located. Under this model, the authors prove [145] that
each cell almost surely contains Θ(log(n)) nodes and there is a transmission
schedule according to which each cell can successfully transmit once within a
fixed number of hops. The last proposition along with the greedy geographic
routing guarantee the delivery of packets to the sink node. Similarly to the
previous example, the infrastructural support consists of wires equipped with
wireless transceivers. Let us define the “Energy Dissipation Skew” (EDS) as
the ratio of the maximum to the minimum rate at which a node drains its
energy for the transmission and reception of packets, where the maximization
or the minimization both span all network nodes. If EDS = 1 there is homo-
geneity in the energy expenditure of the sensor nodes. As the authors prove
in [145] and as can also be intuitively considered, in order to minimize the
average hop count, the wires should originate from the cell of the sink node.
Also, in the same reference it is proved that:
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Proposition 1 Under any wiring and routing scheme that uses at most

N (n) × l(n) wires the average hop count must be Ω

(
1√
l(n)

)
and if the path

length is o

(√
n

log(n)

)
the EDS must be Ω

(
1
l(n)

)
.

In the case of a static sink node, the authors in [145] propose two determin-
istic schemes (combinations of wired link placement and routing) conforming
to the above propositions for adding wired links and for each one of these
schemes, they provide bounds and approximations for the EDS and the aver-
age hop count. Regarding the first one (scheme 1), every 1

l(n) cells are clustered

together and the cell in the middle of the cluster is wired to the sink’s cell.
Supposing that each cell knows the nearest cell with a wire connection, it
routes its packet to this cell and from there the packet is directly sent to
the sink through the wired connection. In the case of mobile sensor nodes or
node failures, the authors propose a protocol where the transceivers on the
wire ends periodically transmit their location through Advertisement (ADV)
packets and this information is retransmitted by the neighboring cells and so
forth, up to a maximum number of hops. Scheme 1 achieves an average path

length of order Θ

(
1√
l(n)

)
and EDS of order Θ

(
1
l(n)

)
. Assuming now that

the sensor does not know the exact position of the closest wire and simply
(reducing in this way the overhead) forwards with greedy routing the packets
to the known cell of the sink node, the achieved path length increases and

scales at least as Ω
(

1
l(n)

)
. In this case the gains in path length and EDS of

the wire placement are negligible compared with the topology of the pure sen-
sor network. Scheme 2 solves this issue by using a different wires’ placement.
More precisely, scheme 2 consists of a deterministic placement of less than
N (n)× l(n) wires and a greedy geographic routing to the sink node, achieving

path length and EDS both of order Θ
(

1
l(n)

)
. According to this scheme the

wired links placement is performed as follows: if we use index i for the rows
and j for the columns of the grid, then all the cells of each row or column of

the grid where i, j = 0 mod
(

3
l(n)

)
are connected with a wired link to the sink

node.
Correspondingly, in the case of a mobile sink, the authors propose an-

other two schemes. However, the EDS in this occasion cannot be controlled,
and therefore they try to minimize the average hop count and the routing
overhead. Also, in contrast to the static sink case and Example 2 [47] the
wires cannot all originate from the sink node, since its location is varied. On
the contrary, the wire placement is permanent. In the first proposed scheme
(scheme 3), the network is clustered as in scheme 1, an arbitrary cluster c0 is
chosen and the cell in the middle of this cluster is deterministically connected
with wires with the centers of all the other clusters. A node first sends its
packet to the nearest cluster having a wire to c0, and from c0 the packet is
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routed to the sink. This combination of wire placement and routing achieves

an average path length of order Θ

(
1√
l(n)

)
. Considering the routing over-

head, not only the wire ends should periodically transmit their location, but
the mobile sink should also send HELLO messages to make its position public
under a total overall overhead of Θ(n) for each update. This is due to the
fact that all the cells should know the nearest wire, and the wire transceivers
should know the way to the sink node. The last scheme (scheme 4) proposes a
probabilistic wire placement scheme closer in philosophy with the Watts and
Strogatz mechanism, where l(n) wires are placed on average per cell and two
cells are randomly chosen to become connected with probability proportional
to l(n) and a k-power of the inverse of the distance of their centers. Greedy
geographic routing is used to send data to the sink node. Scheme 4 achieves

an average path length close to Θ
(

1
l(n)

)
by using greedy routing due to the

probabilistic wire placement. In this scheme, the overhead depends only on
the mobility of the sink node (due to the greedy geographic routing), and it
can be observed that it is capable of leading to an improvement in the over-
head with respect to scheme 3 in situations of higher mobility of the sensor
nodes compared with the sink node. For more details, the interested reader
should refer to [145], [146].

Advantages and Disadvantages of Using Wired Shortcuts

In this subsection, we enumerate some of the advantages and disadvantages
[94] of employing wired shortcuts in wireless sensor/ad hoc networks. To begin
with the advantages, the wires ensure low-cost transportation of a significant
amount of data, as the wired communication is costless with respect to the
data transfer compared with the wireless. This is of great importance in a
wireless multi-hop network where most of energy is consumed when a sensor
transmits and receives packets via the wireless interface. This energy efficiency
also contributes to the fact that the transmissions through wires do not inter-
fere with other simultaneous wireless communications, so throughput can be
increased overall. In addition, as the wires are shortcuts with low or even zero
transmission cost, they can further decrease energy consumption as they re-
duce the average path length of the network and as a result they also reduce
the total number of wireless transmissions in the network. Finally, a wired
infrastructure in a wireless multi-hop network can make the network more re-
silient, keeping the rest of the network interconnected in case of some random
node failures.

However, there are a lot of disadvantages in this implementation as well.
Firstly, as mentioned above, the network loses its pure wireless character and
becomes hybrid, consisting of both wired and wireless network parts. This
fact combined with the fact that the wired infrastructure has a costly de-
ployment, especially for short-term applications or non-human-approachable
areas (remote surveillance) shows that wires can eventually be deployed only

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

202 Evolutionary Dynamics of Complex Communications Networks

in a small number of applications. Indeed, the wires should be placed offline
and there is no possibility of adaptive and on-demand implementation during
the network operation. Their deployment has to be designed in a centralized
manner prior to the network function. In addition, wired links are in most
cases subject to unexpected risks, such as natural disasters and man-made
constructions, which can destroy their deployment structure and functional-
ity. Finally, they do not fit well to sensor networks with mobile sink nodes, or
in general wireless network cases with mobile nodes.

From all the above, it can be concluded that although the wired shortcuts
have important advantages, especially regarding the energy consumption of
the wireless network, their disadvantages eventually prohibit rendering the de-
ployment of wired shortcuts unrealistic in the majority of wireless networks. In
the next section, we study alternative approaches regarding topology enhance-
ment with wireless shortcuts that seem to be more promising for a possible
realistic and tangible implementation of a “small-world” wireless multi-hop
network. Most importantly, when the added shortcuts are wireless, the net-
work can always return back to its energy-conserving mode, where the nodes
transmit in lower power, when there is no need of such added higher power,
long-range transmissions, as the ones added for the QoS performance improve-
ments.

6.4.2 Approaches Using Wireless Shortcuts

Helmy in his work in [86] was the first to study the possibility of inducing
small-world properties in the spatial graphs of wireless multihop networks by
using wireless shortcuts while [86] does not provide a specific framework for
enhancing a wireless multi-hop network with wireless shortcuts, and this pos-
sibility is mostly explored through simulations. Also investigated was what
advantages can be derived by such an enhancement especially in the field of
developing efficient protocols for large scale wireless networks (ad hoc and
sensor), i.e., resource discovery. The wireless shortcuts may represent either
physical links or logical links that translate into multiple physical hops. The
wireless multihop network is represented initially by a Random Geometric
Graph (RGG). In order to study the benefits from the enhancement of a small-
world graph with features of social networks, two simple topology modification
mechanisms are used: link addition and link rewiring. In link rewiring, a node
is chosen at random and a link to one of its neighbors is removed and relinked
to another randomly chosen node (with proper power adaptation of the partic-
ipating nodes if needed). In link addition, a link is added between a randomly
selected pair of nodes in the network (also with proper power adaptations as
in link rewiring). Two main results were derived from Helmy’s study. The first
one deals with the small-world character of the yielded network topology after
link rewiring. Specifically, the derived topology has small-world features, since
by rewiring a small fraction of the links (0.2%–2%) the average path length
is drastically reduced, while at the same time the structure of the network,
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expressed by the clustering coefficient, is not damaged. The second conclu-
sion regards the possible increase in the transmission overhead following the
addition of shortcut edges. However, the simulation results indicated that by
limiting the shortcut length to a fraction of the network diameter (and more
specifically to D

4 , where D is the network diameter) the average path length
is maximally reduced and therefore it can be concluded that the length of the
shortcuts, which is strongly linked with the additional interference, can be lim-
ited. In the same spirit as [86], in [4] is proposed a simple, optimized placement
of long-range links in a square grid, wireless mesh network. The main aims of
the optimization approach of shortcut placement is to reduce the delay due
to multi-hop transmission and increase capacity (throughput), while taking
into consideration practical aspects such as interference and traffic congestion
imposed by the added shortcut links. The equal-length, long-range links are
established between randomly selected pairs of nodes, which are assumed to
be equipped with directional antennas for the targeted long-range communi-
cation and two radio transceivers (one used for the short and the other for
the long connection). Only these selected nodes transmit in higher power. As
expected, the random placement of shortcuts in the square grid leads to small-
world features. However, a more deterministic shortcut-topology is achieved
through genetic algorithm optimization (Chapter 3), which is characterized by
minimizing heuristically the average path length. Similar heuristic optimiza-
tion methods with respect to shortcut placement are also adopted aiming at
reducing interference and achieving load balancing. Finally, through simula-
tions it is concluded that the number of shortcuts employed should be of the
order of the initial average path length of the network.

Up to now, the described mechanisms have not been suitable for a realistic
implementation as they do not take into consideration important limitations
regarding the nature of wireless multi-hop networks. Firstly, the wireless links
have a limited bandwidth, contrary to the wired ones, and therefore there is
a limit in the information carried through them. Also, each node may have
a limited number of separate frequencies KLL and an upper bound on its
transmission power (or transmission radius) Rh, posing a limit to the potential
maximum length of the long-range link. In [158], the authors take all the above
constraints into consideration, and propose three mechanisms for reducing
the average path length of a wireless mesh network with a central gateway.
The mesh network consists of static routers that provide services to wireless
clients through multi-hop transmissions up to the also-static gateway node
(Figure 6.4). Each node, excluding the gateway, has one short-range radio
and KLL long-range radios for establishing shortcuts with distant nodes. The
gateway is assumed to form only short-range links. In all the mechanisms,
the shortcuts added must be bidirectional, the Euclidean distance between
the selected nodes must be less than Rh, while both selected nodes must
have a spare long-range radio, since each node assigns a separate radio to
each one of its long-range connections. The first mechanism, simply places
shortcuts between selected pairs of nodes satisfying the above constraints. In

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

204 Evolutionary Dynamics of Complex Communications Networks

G

G

Short Range Link

Long Range Link
Gateway Node

Router

Figure 6.4: Topology enhancement with long range links as described in [158].

the second mechanism, an additional constraint is posed for the difference of
the distances of the two endpoints (nodes) of the possible shortcut from the
gateway node, denoted as ∆h, to exceed a certain value, ∆′h. However, the
third mechanism is proved by simulations to be the most efficient, according to
which the pairs of nodes with higher ∆h are first greedily linked giving rise to
higher reductions of path length toward the gateway node. For all mechanisms,
the path length toward the gateway is reduced, while this reduction increases
with the increase of the number of shortcuts in the network and the values
of Rh, KLL, ∆′h. However, for the first two parameters, saturation points
are presented through simulations, as in [47], after which the path length
cannot be reduced more. Simulations show that the long-range connections
are not congested in contrast to the common expectations and in fact assist
the network to serve more load than the initial traditional mesh network.

The previous approaches have a common drawback, which consists of the
fact that the shortcuts are created irrespectively of the communication needs
and their length is predetermined. Also, the nodes need to be stationary as
the shortcut placement enhances a particular network topology. The authors
in [94] follow a completely different approach, where the shortcut creation and
its length are determined by the data demands. Another important contribu-
tion of [94] is the extension of these mechanisms on disconnected networks
in contrast with the rest of the related works, which refer to connected net-
works. Therefore, the mechanism proposed in [94] applies on connected and
partially-connected (delay-tolerant) ad hoc and sensor networks. More ex-
plicitly, instead of increasing the radios’ transmission ranges or enhancing
the network with wired shortcuts, a small number of mobile nodes denoted
as “data mules” is used to mimic shortcuts in the wireless network. These
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data mules also forward packets between disconnected parts of the networks.
According to the proposed mechanism, the normal nodes execute greedy for-
warding routing, when they have packets to send. However, when there is
a neighboring data mule moving toward the direction of the destination, the
data packet, instead of being greedily routed to the next hop normal neighbor,
is attached to the data mule. If the data mule reaches the destination, or starts
moving in the opposite direction of the destination, data is unloaded. Indeed,
if the data mule turns, it is necessary to check whether its direction remains
toward the destination for continuing to carry the data. The simulation re-
sults indicate that a small number of data mules (∼ 10% of the total number
of nodes) reduces the average path length of a connected wireless network up
to 50%. However, the data mules increase the delay of message delivery, so
the emerging trade-off must settle in an equilibrium state. In disconnected
networks, employing a number of data mules up to approximately 30% of the
total number of nodes increases the packet delivery rate, and enhances the
network with small-world features. Finally, it should be mentioned that if the
initial network contains some mobile nodes, these can act as data mules, and
as a result, there is no need for extending the network with new mobile nodes
(delay-tolerant case).

A completely different approach, using aerial nodes, is presented in [15],
where the authors focus on the topological properties of the network in order
to improve the performance (i.e. the convergence) of distributed algorithms.
In this direction they create a small-world topology aiming to ensure a faster
convergence of distributed algorithms in the whole network. More specifically,
they aim at creating topologies that are simultaneously sparse (i.e., each node
is connected to few other nodes) and highly connected. Such efficient topolo-
gies are the expander graphs (Section 5.5) and the small-world graphs (Section
5.2), which offer a favorable trade-off between convergence speed and cost of
collaboration. In [15], the network is first clustered and centrality-based cri-
teria (locally computed betweenness centrality) are used to choose the cluster
heads. The convergence is achieved firstly at every cluster and then in the
inter-cluster area among the cluster heads. The convergence further speeds
up with the aid of aerial nodes that ensure the connectivity of cluster heads.
Although being costly, the connections of the clusters with the aerial nodes
function as shortcuts or more correctly as contractions as there are defined
in [162], by connecting nodes that are otherwise multiple hops apart. The
employed number of the aerial nodes is minimized subject to connectivity
maintenance balancing the trade-off between cost of deployment and group
performance. Finally, the authors propose an expander graph structure at the
level of the aerial nodes so as to speed up their peer communication (see the
applications of expander graphs in Section 5.5).

Eventually, a more holistic approach is presented in [147] and [148]. In
these works a more general framework is analytically described and mathe-
matically analyzed through continuum theory and simulated in Matlab and
Ns2. In practice, the infusion of wireless long-range links in a wireless multi-
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hop network is based on either enhancing the network with nodes-hubs with
increased power capabilities or adding directed long-links between wireless
node pairs. This idea is captured in the general framework presented in [147]
and [148], which is based on network churn. Network churn consists of two
sub-mechanisms, edge churn and node churn, where the first one includes
the addition, deletion, and rewiring of links and the second the addition and
deletion of nodes. These processes naturally take place in dynamic systems,
through the evolution of the wireless multi-hop network and not only as a
part of a biased modification mechanism. However, the topology modification
mechanism emerging from the above framework properly adapts edge churn
and node churn, so as to achieve the infusion of social/small-world properties
in the wireless multi-hop network by controlling the trade-off between the
cost-budget (energy consumption and radio resources) and the desirable per-
formance. More specifically, the probabilistic framework presented takes place
in a limited number of time slots during which the network is considered static
and their number is determined by the capabilities of the network, such as
the maximum possible transmission power of a node. Therefore, the length
of the added shortcuts is determined by the nodes’ power capabilities, and
neither an excessive transmission power of the nodes, nor the use of differ-
ent transmission frequencies are required, although the latter implementation
can be easily incorporated in the mechanism. Therefore, the proposed frame-
work is rather realistic and fits in the pure wireless network’s case paradigm.
In addition, a distributed implementation of the framework based on given
parameters’ values is described, therefore giving the possibility of an indepen-
dent deployment of increased transmission radii in the network when this is
desired from network performance. However, when the network performance
is high, the nodes can always return to their original, less-power-consuming
modes by reducing their transmission radii. We will present this general mech-
anism and mathematically tractable special cases of it in complete detail, in
the following section.

In [78], a theoretical model of topology modification for a wireless sen-
sor network based on wireless shortcuts is described and simulated. As well
as the theoretical model, a distributed protocol was also developed for on-
line implementation of the mechanism, during the operation of the network.
This proposed distributed implementation is very important for the realiza-
tion of small-world features in a wireless sensor network in an on-demand,
reactive manner. The latter means that the shortcuts can be employed in case
the performance of the traditional sensor network deteriorates and needs im-
provement. Because of the sensor network topology, the placement of shortcuts
is oriented towards the sink node. Specifically, there are two types of sensor
nodes in the network, the L-sensors with low power capabilities and the H-
sensors, which are equipped with more powerful hardware, and are able to
transmit over long distances. The shortcuts are unicast links between the H-
sensors, which function in two separate frequencies for their communication
with other H-sensors or L-sensors correspondingly, aiming to reduce inter-
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i
Φ

Figure 6.5: Topology of the sensor network. H-sensor i can create a unicast
long range link towards the sink with another H-sensor lying inside the marked
angular area φ.

ference. In the theoretic model, an edge is selected and one of its ends, e.g.,
i, is linked with probability p with another node lying in a sector of angle
φ centered on i, the bisector of which contains the sink node, as shown in
Figure 6.5. This procedure is followed for all edges of the network graph. In
the online protocol, however, this procedure is not efficient as each node has
to know the coordinates of all the other sensors in the network. Also, this pro-
cess leads to a pre-planned topology of H-sensors as we force the H-sensors
to be the endpoints of the randomly added shortcuts, which might not be
the case for the real network. Therefore, the procedure is adapted, so as to
choose only H-sensors as possible endpoints of long-range links and so each
H-sensor has to know only the location of other H-sensors in its communica-
tion range. In order to achieve this simplification, the theoretical model has
to be pre-evaluated through simulations with the specific probability p and
a new probability p′ should be computed expressing the probability of cre-
ating a shortcut between two H-sensors. p′ is defined as the fraction of the
average number of shortcuts of an H-sensor divided by the average number
of H-sensor neighbors of an H-sensor. Experimental evaluation of the online
model shows an emerging trade-off between throughput increase (the number
of packets transmitted to their destination from the sink) and latency (delay)
decrease on the one hand, and the energy consumed in the network or else
the number of H-sensors on the other. Increment of p leads to an increment
in throughput and latency reduction, but also an increase in the energy con-
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sumed from the H-sensors. According to [78], the value of p that creates a
useful equilibrium in the above trade-off is p = 0.01.

Wireless shortcuts are strongly linked with the increase of the transmis-
sion range of the wireless nodes. Therefore, deeper research is needed, since by
increasing the transmission radius of the wireless nodes, interference and load
balancing issues can deteriorate network performance. This is a weak point
of all the mechanisms existing until now for pure wireless networks (and an
advantage of the wired shortcuts regime), as it is not proven in a formal sense
that the infusion of small-world properties in the network topology can safely
improve throughput and delay. Analytical results that prove bounds on the
network capacity for the “small-world” wireless ad hoc and sensor networks
are available only for certain types of enhanced topologies [107], [137]. Prov-
ing the throughput gains of the modified topologies is essential, especially
in the case of adding wireless shortcuts in order to create a pure wireless
“small-world” network. Contrary to the case of enhancing the topology with
costless wired shortcuts in terms of communication, the wireless shortcuts
are obviously strongly related to transmission radii increments. This fact,
as it is shown in [91], can reduce throughput, due to node activity reduc-
tion, if the shortcuts are not appropriately chosen and realized. Beyond the
mathematical analysis of the performance, most mechanisms of the above
presented [4, 15, 86, 148, 158] do not test their mechanisms in a real envi-
ronment (i.e. Testbed) to provide validation for possible gains in throughput
and delay. Also, it is interesting to further study the interaction between
some scheduling/routing schemes and network topology so as to find the best
combination of a distributed scheduling/routing and enhanced topology for
providing throughput and delay optimality.

6.5 Holistic Topology Modification Framework

In this section, we describe and analyze a holistic topology modification frame-
work for weighted network graphs. Binary graphs constitute a special case and
can be taken into account by simply considering all the weights equal to 1.
They will be studied in detail in Section 6.6.1. The main scope of this topology
modification mechanism is to enhance the network topology with small-world
properties in an “online” way, while simultaneously accounting for the partic-
ularities of each network, or for the overlaying applications, both expressed
through the link weight values. The term “online” expresses the possibility of
applying the topology modification mechanism when this is required by the
network performance requirements and not “a priori.” The holistic framework
consists of two basic mechanisms, inspired by dynamic network evolution, the
Weighted Edge Churn (WEC) mechanism, which is applied over the network
edges, and the Weighted Node Churn (WNC) mechanism, which is applied
over the network nodes. Each one of these mechanisms has two components,
an addition and a deletion process of the corresponding participating enti-
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ties, i.e., for the links in WEC and for the nodes in WNC. Contrary to the
topology modification mechanisms of the previous section (Section 6.4.2), the
holistic topology modification framework is not limited to only the addition of
long-range edges and nodes-hubs (edge and node addition processes), but also
incorporates deletion processes as well. The intuition behind this enhance-
ment is to both add new edges and nodes in a suitable manner for contracting
the path length, and at the same time, delete appropriately selected links and
nodes for balancing the cost of various network functions.

First, we describe the system model considered for the application of the
proposed topology modification mechanism. The time is considered slotted
and the nodes synchronized. A square deployment area of side L is con-
sidered, where N nodes with homogeneous transmission radius Rf are ran-
domly and uniformly distributed. Also, it is assumed that an initial weight
in a specified interval is assigned to each directed link. Each node is capa-
ble of varying its current transmission radius, denoted as Rc(i), in the range
[RMIN , RMAX ], i.e., there is a restriction on the maximum transmission power
of nodes rendering the mechanism suitable for a realistic implementation.
Each time step is characterized by two parameters, Rmin(t), Rmax(t), where
RMIN ≤ Rmin(t) ≤ Rmax(t) ≤ RMAX . These two parameters will determine
the maximum and minimum possible length of a shortcut at time slot t. Ini-
tially, RMIN = Rmin(0) = Rmax(0) = Rf . At the beginning of each step
t (starting at t = 1), Rmin(t) = Rmax(t − 1) and Rmax is increased by a
predefined step value a, i.e., Rmax(t) = Rmax(t − 1) + a. In order to avoid
increasing the probability of disconnecting the network topology via the dele-
tion processes, we assume higher addition rates of links and/or nodes than
the corresponding deletion rates, so as to maintain connectivity in the final
network graph with high probability. Next, the weighted edge and node churn
mechanisms are described and analyzed, and afterwards, they are combined
in one holistic modification framework for weighted graphs.

6.5.1 Weighted Edge Churn Framework

Weighted Edge Churn (WEC) is the process of dynamic link evolution, con-
sisting of dynamic link addition and link deletion. Link addition, along with
the node addition process of WNC, are the main processes of the infusion
of small-world features in the topology of wireless multihop networks. Link
deletion aims mostly at balancing the trade-off between the path length re-
duction and the cost incurred by overcrowding the network with links. The
endpoints of the new links are selectively chosen according to some probability
distribution (Appendix A), which determines with high probability connec-
tions to more suitable nodes depending on the overlaying application and the
operational objectives/requirements. Due to the existence of a weight value
on each link, the new links should be assigned an initial weight value in an
appropriate way, while the existing weight values should be re-adapted due to
the change of the network topology. To make this clearer, in the case that the
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Figure 6.6: Edge addition and weight adaptation.

weight values represent communication data flow, the addition of a new link
will force changes on the respective traffic flows. Therefore, the weights should
be suitably adapted to the new network topology. Next, WEC is described
and analyzed in detail.

Process of Edge Addition

The edge addition process takes place at step t with probability p (0 ≤ p ≤ 1)
and ma new connections are added to ma selected nodes. Each one of the
ma nodes is selected with probability Pai in order to add a link and increases
its range for including its new one-hop neighbor. Similarly to online social
networks, whose members obtain new acquaintances, the ma selected nodes
become more “social” (popular) in the network. The probability Pai is pro-
portional to node i’s “popularity,” thus proportional to the intensity that
the other network nodes want to communicate with i, since popularity in
terms of communication denotes traffic intensity. Edge addition is realized
at both the Physical and the Network protocol stack layers. More explicitly,
if link addition is performed at step t, a node i is selected with probability
Pai 2 (

∑N
i=1 Pai = 1) and extends its range from Rc(i) to Rmax(t), as shown in

Figure 6.6. Although i increases its transmission range to Rmax(t) and thus, it
can transmit in the Physical layer to all the nodes in this range, it forms a Net-
work layer “long-range” connection, only with one node j, lying in the annulus
from Rmin(t) to Rmax(t) centered at node i and denoted by ARmax

Rmin
(i). Thus,

node i avoids depleting its energy by sending and forwarding to all the nodes
in the newly added range. Node j is selected among all nodes in ARmax

Rmin
(i)

2The notation Pai denotes the probability of selecting i to add a link. a should not be
confused with a numerical exponent of P.
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with probability Q(j|i) (
∑
j∈ARmax

Rmin
(i)Q(j|i) = 1), which denotes the selection

of j given that i has already been selected. The form of Q(j|i) depends on the
application and may be a function of the weights in the local neighborhoods
of nodes i, j, i.e., Q(j|i) = f1(wkh|k, h ∈ local neighborhoods of i, j). Also,
the weight vij of the new link is determined according to the application set-
ting and vij = f2(wkh|k, h ∈ local neighborhoods of i, j). The addition of the
directed link i→ j with weight vij is depicted in Figure 6.6, where initially j
was two hops away from i and Rc(i) = Rf . At slot t, Rc(i) becomes equal to
Rmax(t) and j becomes a one-hop neighbor of i. However, node i still commu-
nicates in a multi-hop manner with nodes k, l lying in the ring delimited by
radii Rmin(t), Rmax(t) and centered at node i. The above process is repeated
for each one of the ma nodes selected at a time step t and the links added
are considered directional, as only the transmission radius of the node initiat-
ing the modification process increases. As a result, the final network topology
can be represented by a directed network graph, since the new links added
are directed, as it will be explained in the sequel. We denote by N in(i), the
set of nodes having a direct connection towards node i and by N out(i) the
set of nodes towards which i is connected. By controlling parameters p and
ma, different combinations of the number and length of the added links can
be achieved. More explicitely, we can either add a few links at a step but of
different lengths, i.e., in many steps (with high p and low ma), or add many
links of the same length (low p, high ma), or even add many links at each step
of different lengths (high p, high ma), etc.

The addition of the new weighted link will dictate a corresponding change
in the weight values of the rest of the links in the network depending on the
metric these weights represent. As an example, let us suppose again that the
weight of each link represents its traffic flow. In this case, if a node adds a
new connection towards node i, the traffic passing through i will be increased,
leading to a corresponding increase of the flows of the links starting from node
i, which in the sequel increases the flows of i’s one-hop neighbors, and so on
and so forth. For simplification, at this mechanism, it is considered that the
addition of a long-range link (i, j) will cause a variation in the weights of only
the local neighborhood of nodes i and j, similarly to the weight adaptation
of Section 5.3.4, as shown in [18] as well. It is assumed that a node is able
to adapt only its out-links, which is a reasonable assumption, as the traffic
passing through the out-links of a node is controlled totally by this node, while
the traffic passing through the in-links is controlled by neighboring nodes.
Precisely, as in Figure 6.6, node i has added a long-range connection i→ j and
thus it can use more intensively this connection for traffic exchange towards
this flow direction, while it can reduce the traffic sent through the rest of its
out-connections towards the specific direction. Similarly, node j has obtained
a new in-connection that will result in more flow leaving node j, especially
when j is used as a relay node. Following a similar approach for the weight
adaptation as in [18], [20] described in Section 5.3.4, three constants, δ1a, δLa
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and δ2a are defined to express the total change in the amount of traffic, for
node i, for the link i → j and node j correspondingly. As a result, node i
adapts the weights of its out-links as follows:

w′ih = wih + δ1a wih
souti

, h ∈ (1, 2, .., N), h 6= j (6.1)

The link i→ j is adapted as:

v′ij = vij + δLavij (6.2)

Similarly for j,

w′jh = wjh + δ2awjh
soutj

, h ∈ (1, 2, .., N) (6.3)

After the addition of the directed link i→ j (Figure 6.6) the strengths of
nodes i and j are altered as follows:

sinj ← sinj + vij(1 + δLa)

soutj ← soutj + δ2a

souti ← souti + vij(1 + δLa) + δ1a (6.4)

At this point, the construction of the differential equations expressing the
rate of change of the in-strength and out-strength of each node, is outlined.
Towards this direction a Continuum Theoretic approach is utilized and thus,
a similar logic as for the construction of the Eq. (5.18) of Chapter 5 is adopted
as well. The out-strength of node i changes when:

1. The node is the one initiating the process, i.e., the node from where the
long-range link starts (node i in Figure 6.6). In this case, i is selected
with probability Pai and souti changes by vik(1+δLa)+δ1a with k chosen
with probability Q(k|i).

2. The node i is the end of the long-range link (i.e., node j in Figure
6.6). This occurs if one of i’s neighbors, i.e., k ∈ ARmax

Rmin
(i) is chosen to

initiate the process and chooses i with probability Q(i|k). In this case
souti changes by δ2a, and this takes place with probability

PG(i) =
∑

k∈ARmax
Rmin

(i)

PakQ(i|k) (6.5)

However vik does not depend only on i and this creates a difficulty in con-
structing the differential equation for the rate of change of souti . Thus, instead
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of vik, the average of the vik for all neighbors k of i in the ARmax

Rmin
(i) is defined

and used, expressed by equation:

v̂i =

∑
k∈ARmax

Rmin
(i) vik

N |ARmax
Rmin

(i)|
L2

(6.6)

From all the above, the rate of change for souti is:

dsouti

dt
= map

[
Pai (v̂i(1 + δLa) + δ1a) + PG(i)δ2a

]
(6.7)

Similarly, the in-strength of node i changes when:

1. The node is an out-neighbor of the one initiating the process (nodes
1, 3, 6 in Figure 6.6). This happens with probability

∑
k∈N in(i) Pak.

2. The node is the end of the long-range link (node j in Figure 6.6) with
probability PG(i).

3. The node is an out-neighbor of the end of the long-range link (nodes
3, 4, 6 in Figure 6.6). This happens with probability

∑
k∈N in(i) PG(k).

Thus, the evolution equation for the sini is:

dsini
dt

= map
[ ∑
k∈N in(i)

Pakδ1a wki
soutk

+

∑
k∈ARmax

Rmin
(i)

PakQ(i|k)(δLa + 1)v̂k +
∑

k∈N in(i)

PG(k)δ2a wki
soutk

]
(6.8)

Process of Edge Deletion

Edge deletion takes place at step t with probability q (0 ≤ q ≤ 1), and md

links in total, one from each of md selected nodes, are deleted. A node i is
selected to initiate edge deletion with probability Pdi 3(

∑N
i=1 Pdi = 1), which

depends on the popularity of a node. More precisely, less popular nodes are
chosen with high probability to perform deletion. This choice follows typical
trends in social networks, but it is also intuitive, since deleting one of the
out-links of an unpopular node would not significantly influence the informa-
tion flow. It is considered that, in the case that both directions of the link
between nodes i and j exist, only the link i → j is deleted. This can be
achieved at the Network layer of the Protocol Stack through proper routing
modification. The node j from where the edge is deleted is chosen with prob-
ability Qd(j|i)4 (

∑
j∈Nout(i)Q

d(j|i) = 1) among the out-neighbors of i where

Qd(j|i) = f3(wkh|k, h ∈ local neighborhoods of i, j). As an example, in Figure
6.7 node i is selected to delete its link with its one-hop neighbor j. Similarly to

3The notation Pdi denotes the probability with which i is chosen to initiate the edge
deletion process. d should not be confused with a numerical exponent of P.

4In this notation d should not be confused with a numerical exponent of Q.
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Figure 6.7: Edge deletion and weight adaptation.

edge addition, we consider an adaptation of weights in the local neighborhood
of nodes i and j, due to the deletion of the link i→ j. Therefore, the constants
δ1d, δ2d, express the total amount of change of flow in the remaining links of
i and j respectively and the following weight adaptations take place:

w′ih = wih + δ1d wih
souti − wij

, h ∈ (1, 2, .., N), h 6= j (6.9)

Similarly for j, the adaptation of the weights of its out-links are given by:

w′jh = wjh + δ2dwjh
soutj

, h ∈ (1, 2, .., N) (6.10)

After the deletion of the directed link i→ j (Figure 6.7) the strengths of
nodes i and j are re-computed as follows:

sinj ← sinj − wij
soutj ← soutj + δ2d

souti ← souti − wij + δ1d (6.11)

Sequentially, following the same approach as in the edge addition mecha-
nism, the rates of change of the strength values are computed through differ-
ential equations [20]. Specifically, the out-strength of node i changes when:

1. The node is the one initiating the process, i.e., the node deleting an out-
link, e.g., i → j (node i in Figure 6.7). In this case, node i is selected
with probability Pdi and souti changes by δ1d − wij .
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2. The node i is losing an in-link (i.e., node j in Figure 6.7). This happens
if one of its neighbors k in N in(i) is chosen to initiate the process and
chooses i with Qd(i|k). Thus the probability is

P dG(i) =
∑

k∈N in(i)

PdkQd(i|k) (6.12)

In this case souti changes by δ2d.

However wij does not depend only on i and this creates a difficulty in
constructing the differential equation for the rate of change of souti . In a similar
way that the similar problem of the weight of the new link, v, is handled in
the edge addition process, instead of using wij , we use the average weight, w̄,
of the links of the whole network.

Consequently, the equation for the evolution of souti is:

dsouti

dt
= mdq[Pdi (δ1d − w̄) + P dG(i)δ2d] (6.13)

In a similar manner with the description of the changes in the out-strength,
the in-strength of a node i changes when:

1. The node is an out-neighbor of the one initiating the process (nodes
1, 2, 4 in Figure 6.7). This could happen with probability

∑
k∈N in(i) Pdk.

2. The node is the node from where the in-link is deleted (node j in Figure
6.7) with probability P dG(i).

3. The node is an out-neighbor of the node that loses its in-link (nodes
4, 5, 6 in Figure 6.7), which happens with probability

∑
k∈N in(i) P

d
G(k).

Thus, the equation describing the evolution for the sini is:

dsini
dt

= mdq
[ ∑
k∈N in(i)

Pdkδ1d wki
soutk − w̄ − P

d
G(i)w̄ +

∑
k∈N in(i)

P dG(k)δ2d wki
soutk

]
(6.14)

Weighted Edge Churn (Edge Addition and Deletion)

After analytically describing the processes of link addition and link deletion,
the next step is to unify them in a common framework so as to balance the
trade-off between increased cost due to the addition of shortcuts and perfor-
mance (or average path length) improvement. Combining edge addition and
deletion is important, since the first infuses small-world features in the multi-
hop topology (leaning towards performance), while the second ensures that
the induced network does not become overcrowded and thus it does not suffer
from excessive interference (restricting the respective entailed cost). Summing
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up, in order to formulate the unified framework, in WEC mechanism, at time
slot t, edge addition takes place with probability p and ma links are added to
ma appropriately selected nodes, while edge deletion takes place with proba-
bility q and md selectively chosen links are deleted. We assume that p+ q ≤ 1
and if p+ q < 1 then with probability 1−p− q the network topology does not
change. In the combined edge addition/deletion mechanism, the rate of change
dsini
dt is obtained by the superposition of the rates in Eq. (6.8) and (6.14), while

the rate
dsouti

dt is obtained by the superposition of the rates in Eq. (6.7) and
(6.13). However, in the general case, the solution of these equations is cum-
bersome and requires that all quantities included (weights, probabilities) are
expressed as time functions. In the following section (Section 6.6), the WEC
mechanism will be restricted to the case of binary graphs (using node degree
instead of node strength) and analytical solutions will be obtained for the rate
of change of the node degree. The average change of the number of links at
each time step t due to edge churn is equal to pma− qmd. Thus, up to step t,
we have a total average change of `(t) = (pma− qmd)t of the number of links
in the network.

6.5.2 Weighted Node Churn Framework

Based on and extending the Weighted Edge Churn Framework, the Weighted
Node Churn Framework is developed, which applies addition and deletion of
nodes in weighted topology graphs. Node variation as the basis of Weighted
Node Churn is a natural process in many wireless multi-hop networks. For
instance, some nodes may deplete their energy and become inactive, while
others recharge and become operational again. Node churn is also evident in
online social networks where new users enter the network, possibly invited by
their friends, or existing nodes choose to leave the network especially when
their intensity of participation in the network processes is low. Therefore,
inspired by social networks, the addition and deletion processes of the node
churn mechanism can be designed in such a way that the spatial wireless multi-
hop network graph exhibits features encountered in small-world networks.5

Process of Node Addition

At time slot t, node addition takes place with probability r and Ma new nodes
are added in the network. The new nodes have increased radius compared to
the original ones (greater than Rf ) in the network, which serves the purpose of
introducing in the network “hub” nodes for eventually reducing the average
path length as in the case of scale-free networks (Section 5.3). Each new
node, added at step t, has a radius Rmax = Rf + at. The new connections
are considered bidirectional in an area of πR2

f and directional in the annulus
extending from radius Rf to radius Rmax centered at the newly added node

5We call these features small-world-like features.
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Figure 6.8: Node addition and weight adaptation.

as shown in Figure 6.8. The weights of the new links are chosen according
to a probability distribution (Appendix A) depending on the application. For
instance, the beta β(m,n) distribution can be used, as it takes different forms
depending on m,n and thus can be adapted to a wide range of applications.

The addition of the new node with increased radius is considered to cause
a variation in links’ weights explained in the following. Inside the disk of
radius Rf (Figure 6.8) there is no adaptation of the weights as the links
are bidirectional, and therefore both the out- and the in-strength of a node
are influenced by the addition of the new links, leading to a relative balance
in flow. However, in the annulus ARmax

Rf
(i), the links added are considered

directional increasing the in-flow of the corresponding nodes, i.e., in Figure 6.8
the incoming flow of nodes 1, 6, 7 has increased. Therefore, their out-strength
has to be adapted so that they can satisfy the additional flow. Each one of
the nodes in ARmax

Rf
(i), where i is the newly added node, changes the weights

of its out links as follows:

w′jh = wjh + δna
wjh
soutj

, j ∈ ARmax

Rf
(i), h ∈ (1, 2, .., N) (6.15)

where δna is a constant parameter chosen as the corresponding weight vari-
ations in the WEC case, and depends on the application. Also, the weight
adaptation, as in the WEC case, is considered local and concerns only the
out-links of the corresponding nodes. As an example, in Figure 6.8, node 7
changes the weight w74 according to Eq. (6.15).

If considering each new link having a weight equal to the average of the
probability distribution used for assigning weights to the new links and de-
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noted as E(P ), then the change of the total weight, wa(t), of the network due
to node addition is approximately equal to:

dwa(t) = 2πMaN(t)r
R2
f

L2
E(P ) + πrMaN(t)

(Rf + at)2 −R2
f

L2
(E(P ) + δna)

(6.16)
In Eq. (6.16), the first term corresponds to the bidirectional links in the range
Rf . More specifically, the number of undirected links in the range Rf equals

to N(t)π
R2
f

L2 (Appendix A), and therefore this quantity is multiplied by 2
to obtain the number of directed links. The second term corresponds to the
directional links added in each area ARmax

Rf
(i) for each new node i. Also, N(t)

is the number of nodes in the network at step t.

Process of Node Deletion

At time slot t, node deletion takes place with probability v and Md nodes, each
one chosen with probability Pndi are deleted. The probability Pndi (

∑N
i=1 Pndi =

1) is defined to be inversely proportional to some metric of participation of
a node in the network. Specifically, a node with no strong connections with
its neighbors is with high probability deleted. If a node is deleted then as
expected, all its in- and out- connections are also deleted. Through the node
deletion process, some unpopular nodes (according to the specific definition
of unpopularity employed in each application) or some nodes with low partic-
ipation in the network function can be replaced with others more popular or
important and set more intelligently in the topology. In node deletion, there
is no weight adaptation, since once a node is deleted, all of its connections
are deleted bidirectionally as well. Considering that each deleted link has at
(t− 1) step an average weight w̄(t− 1) and the deleted node has average (in-
or out-) degree k̄(t − 1), then the total change of weight induced by node
deletion is calculated as

dwd(t) = −2vMdk̄(t− 1)w̄(t− 1) (6.17)

Weighted Node Churn (Addition and Deletion)

The Weighted Node Churn (WNC) mechanism consists of the node addition
and deletion processes described above. WNC can be interpreted also as part
of the natural evolution process of the network, where nodes leave and enter
the network in its considered area. Its components, addition and deletion of
nodes are two complementary processes as this is also implied by the natu-
ral network evolution. Essentially, the one cannot be considered without the
other and vice-versa, since the first improves the network structure (aver-
age distance) and consequently the network performance, while the second
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ensures a balanced operation without excessive transmission costs and inter-
ference. In the node churn case, at each time step t, node addition takes place
with probability r, where Ma nodes are added. Node deletion takes place
with probability v, where Md nodes are deleted. Similarly with edge churn,
r + v ≤ 1. The average number of nodes at each time step t is theoretically
equal to: N(t) = N +Mart−Mdvt with N , the initial number of nodes in the
network.

The average out-strength s̄out (the same equation holds for s̄in), over all
nodes, changes from step (t− 1) to the next step t as follows:

s̄out(t) = s̄out(t− 1)
N(t− 1)

N(t)
+ 2πMar

R2
f

L2
E(P ) + (6.18)

πrMa

(Rf + at)2 −R2
f

L2
(E(P ) + δna)− 2vMd

k̄(t− 1)w̄(t− 1)

N(t)

The first term of the right hand-side of Eq. (6.18) corresponds to the sum of
the link weights over the network at step (t−1), divided by N(t), which is the
number of nodes at the next step so as to obtain the averaged per node value
at slot t. The other three terms reflect the mean change in the sum of link
weights in the network expressed as an average over the N(t) nodes. Specif-

ically the sum of the last three terms of Eq. (6.18) is given by dwa(t)+dwd(t)
N(t)

(dwa(t), dwd(t) are expressed in Eq. (6.16) and (6.17) correspondingly).
The total change in the number of links at each time step t may be ap-

proximated as:

Ln(t) =

(
2Maπr

R2
f

L2
+ πrMa

(Rf + at)2 −R2
f

L2

)
N(t)− 2vMdk̄(t− 1) (6.19)

The change in the number of links at time t is given by the sum dwa(t)+dwd(t),
when the weights of all links become equal to unity, i.e., in Eq. (6.16), (6.17),
the values E(P ) = 1, δna = 0, w̄(t− 1) = 1 are assigned.

The approximate recursive equation of the average node degree is:

k̄in(t) = k̄out(t) = k̄(t) =
E +

∑t
k=1 Ln(k)

N(t)
(6.20)

where E is the number of directed links in the initial RGG.
Assuming that Ws is the sum of the weights in the initial RGG topology

and following the same logic as for obtaining Eq. (6.18), the change in total
weight at time step t is:

dw(t) = 2πMaN(t)r
R2
f

L2
E(P ) + πrMaN(t)

(Rf + at)2 −R2
f

L2
(E(P ) + δna)

−2vMdk̄(t− 1)w̄(t− 1) (6.21)
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Table 6.1: Combined mechanism.
Processes Probability Number of nodes or links participating

Edge addition p ma links added
Edge deletion q md links deleted
Node addition r Ma nodes added
Node deletion v Md nodes deleted

Therefore, the average weight in the network at time t is given by:

w̄(t) =
Ws +

∑t
k=1 dw(k)

E +
∑t
k=1 Ln(k)

(6.22)

Thus, if the initial average connectivity (k̄(0)), the initial average weight of
the network (w̄(0)), and the initial average strength of the network (s̄out(0))
are known, we can compute the average in- or out-strength by Eq.(6.18) with
the aid of equations (6.20) and (6.22).

6.5.3 Combined Mechanism (WEC and WNC)

Finally, node churn and edge churn can be combined together and in this case
the iTC-based topology modification mechanism consists of all the processes
of the network evolution. It should be noted that the framework proposed to
infuse social properties in wireless multi-hop networks takes into considera-
tion their spatial character and does not impact their character as Random
Geometric Graphs. In this case, the mechanisms and their probabilities are
depicted in Table 6.1 (where p+ r + q + v ≤ 1):

The following section (Section 6.5.4) focuses on a methodology for ob-
taining optimal values for the parameters in Table 6.1 within a constrained
optimization framework. Also, it is important to mention that the proposed
mechanisms apply to a wide range of applications by properly specifying the
probabilities Pai , Pdi , Pndi , Q(k|i), Qd(k|i) and the values of the parameters
δ1a, δ2a, δLa, δ1d, δ2d, vik so as to fit in the framework of the specific applica-
tion. For a realistic implementation of the proposed combined mechanism one
should take into consideration the distributed nature of the wireless multi-hop
network and the restricted energy resources by using optimal parameter values
for each process (Table 6.1), so as to lead to the highest possible gain with the
smallest energy consumption. As already mentioned, Section 6.5.4, provides
a framework for optimizing the parameters of Table 6.1, given the permitted
cost, which is related to the capabilities of the corresponding network and the
desirable performance improvement. Finally, the schematic in Figure 6.9 sum-
marizes the submechanisms of the holistic Topology Modification Mechanism,
their relations, and their parameters that need to be specified for a possible
practical application and development of the mechanism.
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Topology Modification Framework for Weighted Network Graphs

Weighted
Edge Churn

Weighted
Node Churn

Edge Addition
p,ma,Pa

i ,Q( j|i),δ 1a,δ La,δ 2a

Edge Deletion
q,md ,Pd

i ,Q
d( j|i),δ 1d ,δ 2d

Node Addition
r,Ma,δ na

Node Deletion
v,Md ,Pnd

i

Figure 6.9: Topology modification mechanism binary tree diagram. The cor-
responding parameters of each process, subject to appropriate definition, are
listed. The parameters’ definition depends on the application that overlays
the network, the required network performance, and the available network
resources. The trade-off between performance, and resources consumption is
analytically formulated and treated in the next section (Section 6.5.4).

6.5.4 Optimization Methodology

The topology modification mechanism described in Section 6.5 enables the
enhancement of the wireless network topology with small-world properties,
while it is able to adapt to different network functionalities and requirements
through appropriate assignment of parameter values. However, the energy
consumed by the modified nodes for each transmission increases polynomially
with their transmission range. To alleviate the excessive increase in energy
consumption, in [149] an optimization methodology was developed for design-
ing the parameters defined in Section 6.5.3 and Table 6.1, in order to achieve
the desired average path length, at the minimum additional cost regarding the
energy consumption. Therefore, it is sought to optimize and control the pa-

rameter vector
−→
P = [p ma q md r Ma v Md]

′, in order to achieve an acceptable
trade-off between the specified performance requirements, i.e., the needed av-
erage path length reduction, and the relevant cost paid, i.e., additional energy
consumption due to radii increase. More specifically, it is possible to achieve a
desired path length reduction by simply increasing the edge and node addition
probabilities and at the same time turning off the deletion processes. How-
ever, this choice will lead to an excessive increase of energy consumption. On
the other hand, by properly balancing the parameters of P , it will be shown
that a desired path length reduction can be achieved while the increase in
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energy consumption is minimized. A detailed description of this optimization
methodology can be found in [149].

Determination of the Objective Function

Towards this direction, a constrained optimization framework is developed

with respect to
−→
P , addressing the aforementioned trade-off. The employed

objective function, which will be subject to minimization, should be related
to the energy consumed by network nodes. To define the objective function,
it is observed that given the transmission radius of each node and considering
that each node transmits data (saturated network) and all messages have the
same transmission time, a measure of the energy consumed by the network is

E(t,
−→
P ) =

∑N(t,
−→
P )

i=1 cRγi (t,
−→
P ), where γ is the path loss constant depending

on the communication medium (γ ∈ [2, 4] as in reference [164] and others), c

a constant [164], N(t,
−→
P ) is the number of nodes, and Ri(t,

−→
P ) the radius of

node i, at time t with parameter vector
−→
P . This is due to the fact that the

transmission radius of node i to the path loss exponent γ is proportional to

the node transmission power PTi , i.e., PTi ∼ Rγi (t,
−→
P ), and thus an accurate

indication of the consumed energy. However, obtaining the analytical form of

the energy is difficult, since the analytical form of Ri(t,
−→
P ) ∀i = 1, ..., N(t,

−→
P )

is required, which is rather complicated for a multi-hop network as well. How-

ever, at each time step t, the average radius Ravg(t,
−→
P ) satisfies the relation

N(t,
−→
P )∑

i=1

Ri(t,
−→
P ) = N(t,

−→
P )Ravg(t,

−→
P ),

so that N(t,
−→
P )∑

i=1

Ri(t,
−→
P )

γ

=
(
N(t,

−→
P )Ravg(t,

−→
P )
)γ
,

yielding
N(t,
−→
P )∑

i=1

Ri(t,
−→
P )γ ≤

(
N(t,

−→
P )Ravg(t,

−→
P )
)γ
.

Therefore, given a maximum step t denoted as T , which equals with the
time slots of the whole application of the iTC mechanism, the optimiza-

tion of an upper bound of E(T,
−→
P ) can be achieved by minimizing the

quantity N(T,
−→
P )Ravg(T,

−→
P ). Based on the iTC probabilistic framework de-

veloped in Section 6.5.3, an analytical expression of an upper bound of

N(T,
−→
P )Ravg(T,

−→
P ) is possible to obtain.
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Determination of the Equations for the Constraint Set

The constraint set should capture the desired small-world features of the final
topology. Since analytical expressions of the average path length in a multi-
hop network are hard to determine, even for simple random topologies, we
are able to exploit the following observation regarding the iTC modification
mechanism. A very tight relation exists between the average path length and
the added shortcuts by the iTC approach. As verified in [86], by increasing the
number of long-links added, the average path length decreases. Consequently,
instead of conditioning on the average path length, one may condition on the

number of shortcuts L(T,
−→
P ) added in the topology.

As also stated in Section 6.5.2, at each time step t, the average number of

nodes in the network is N(t,
−→
P ) = N + rMat − vMdt and thus, the average

transmission radius Ravg(t,
−→
P ) is:

Ravg(t,
−→
P ) =

∑N(t,
−→
P )

i=1 Ri(t,
−→
P )

N(t,
−→
P )

=
NRf + dR(t,

−→
P )

N(t,
−→
P )

(6.23)

where N(0,
−→
P ) = N , NRf is the sum of the initial node radii and dR(t,

−→
P ) is

the total change of radii values across the network nodes up to step t. We have

to compute the contribution of each node iTC sub-mechanism to dR(t,
−→
P ).

Link deletion does not change the physical range of a node, thus has zero con-
tribution. Node addition contributes at each time step k a quantity equal to
Mar(Rf+ak), since at step k, with probability r, we add Ma nodes in the net-
work, each one having a radius Rf +ak. Thus, up to step t, the contribution of

node addition to dR(t,
−→
P ) is Mar

∑t
k=1(Rf + ak). Concerning node deletion,

its maximum contribution to dR(t,
−→
P ) up to step t is −MdvRf t, in the case

that all nodes deleted have the initial radius Rf , defining an upper bound on

dR(t,
−→
P ). Edge addition is more complicated as the network becomes hetero-

geneous with respect to node range, and the difference Rmax(t) − Ri(t,
−→
P ),

which expresses the increase of the transmission radius of selected node i at

time t, depends on Ri(t,
−→
P ). In order to take into account the edge addi-

tion in the definition of the upper bound for dR(t,
−→
P ), we observe that the

maximum value of dR(t,
−→
P ) occurs when all links are added to nodes with

Ri(t,
−→
P ) = Rf . This value corresponds to an increment of the sum of radii

that equals to pmaak at step k (the explanation is the same as in the node
addition case), and therefore this sums to pmaa

∑t
k=1 k up to step t.

Therefore, an upper bound for Ravg can be obtained of this probabilistic
model:

Rupavg(t,
−→
P ) =

NRf +MarRf t+ (Mar + pma)a (t2+t)
2 −MdvRf t

N + rMat− vMdt
(6.24)

Instead of Ravg(t,
−→
P ), we use in the objective function its upper bound
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equal to Rupavg(t,
−→
P ). In the following, we calculate the average number of links

added in the network. The number of links added up to step t is:

L(t,
−→
P ) = pmat− qmdt+

t∑
k=1

(
2Maπr

R2
f

L2
+ πrMa

(Rf + ak)2 −R2
f

L2

)
N(k)

−2Mdv
t∑

k=1

π
R2
f

L2
N(k − 1) (6.25)

where, in the right-hand side, the first two terms correspond to EC and the
last two summands to NC. Its derivation is similar to Eq. 6.19 of Section (6.5),
including the WEC process. The coefficient 2 is used when the links added
are bidirectional.

Optimization Formulation

The proposed approach minimizes an upper bound of the normalized energy

consumption (by factor c), and consequently N(t,
−→
P )Rupavg(t,

−→
P ), under the

following conditions:

1. The number of added links L(t,
−→
P ) has a fixed value `0, depending on

the targeted value of mean path length, which ensures that the operation
and the performance of the network is as desired.

2. The number of nodes N(t,
−→
P ) remains bounded by n0, corresponding

to a limit of the total active and non-active nodes (deletion may be
considered temporal deactivation), or by the highest possible density of
nodes in the topology.

3. The deletion process takes place less frequently than the addition, so as
to avoid network disintegration.

4. Component-wise bounds (
−→
LB,

−−→
UB) in

−→
P can be imposed for the prob-

abilities of the sub-mechanisms and the number of nodes participating
in each process.

The constraint set includes the necessary inequalities/equalities (i.e., con-
ditions (1), (2), (3), (4) and a maximum t, denoted as T ), in order to determine
a realistic parameter set for the multi-hop network improving mechanism.
Therefore, the following optimization problem can be obtained:

min−→
P
N(T,

−→
P )Rupavg(T,

−→
P ) (6.26)

L(T,
−→
P ) = `0, p+ q + r + v = 1

N(T,
−→
P ) ≤ n0, p ≥ q, r ≥ v, ma ≥ md, Ma ≥Md

ma,md,Ma,Md ∈ Z,
−→
LB � −→P � −−→UB
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The proposed optimization setup has the special form of a separable op-
timization problem [25]. In the case of a separable optimization problem,
as defined in [25], the objective function and the constraints can be written
as sums of other sub-functions, each one being dependent only on a par-
ticular subset of optimization parameters, where the defined subsets of pa-
rameters are common for all the sub-functions. In this case, if two subsets
of the parameters (i.e., p, q, r, v,ma,md,Ma,Md), xEC = {p q ma md} and
xNC = {r v Ma Md} are defined, where the first one (xEC) contains only
edge churn parameters, while the second (xNC) only node churn parameters,
all the functions of the optimization problem can be expressed as sums of
sub-functions, each one containing parameters only in xEC or only in xNC .
These problems are often solved by using the dual6 function, which eventually
separates the problem into smaller minimization problems, each one depend-
ing only on a specific subset of the whole set of the parameters. In this case,
the integer constraints are suitable for branch and bound optimization meth-
ods, so algorithmic/numerical evaluations can be effectively used. However, if
duality is used, two minimization sub-problems would emerge (to build the
dual function), one depending on xEC and the other on xNC . Therefore, this
intuitively points to the fact that each of the mechanisms could be separately
minimized, while satisfying all the constraints.

Simulation results shown analytically in [149] lead to the following basic
interesting conclusions:

• Observation 1: There is an emerging trade-off between the Edge and
Node Churn mechanisms. Edge Churn (link addition and deletion), if

6Let us suppose having the following optimization problem where f is a nonlinear func-
tion:

min f(x)

subject to fi(x) ≤ 0 i ∈ 1, ...,m

hi(x) = 0 i ∈ 1, ..., p (6.27)

where x ∈ D ⊂ <n. Let us denote with f∗ the optimal value of this optimization problem.
The Lagrangian function is defined as L : <n ×<m ×<p → < and

L(x, λ, ν) = f(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x),

where the variables λ ≥ 0 ∈ <m, ν > 0 ∈ <p are denoted as dual variables or Langrange
multipliers. The dual function is always concave irrespectively of the initial problem, and
is defined as h : <m ×<p → <:

h(λ, ν) = inf
x∈<n

L(x, λ, ν) = inf
x∈<n

{f(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)}.

Finally, the dual problem is the following optimization problem:

h∗ = max
λ,ν

h(λ, ν).

Regarding the relation between f∗, h∗, it always holds that h∗ ≤ f∗.
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applied and optimized by itself, i.e., by turning off the Node Churn
mechanism, leads to a higher optimal upper bound of the overall energy
consumed, decreasing the clustering of the network faster, but it achieves
a greater contraction of the hop distances in the network topology than
in the case of Node Churn being applied and optimized by itself. As a re-
sult, Edge Churn needs more additional energy consumption and quickly
decreases the degree of network clustering in favor of its effectiveness in
reducing the average path length.

• Observation 2: The optimization method uses the lower possible
bounds for the Edge Churn vector xEC (when a feasible solution can be
found) and adapts xNC of the Node Churn mechanism, so as to achieve
the desirable value of `0. This is intuitively expected if we take into con-
sideration Observation 1 and the fact that the aim of the optimization
is to reduce the additional energy consumption.

• Observation 3: The individual minimization of each EC, NC sub-
mechanism discussed previously, due to the problem separability, be-
comes evident from the attained equality of parameters of each process
when possible (constraints do not permit more deletions than additions).

• Observation 4: Node Churn mechanism achieves a stable optimal up-
per bound of the overall energy consumed irrespective of the number
of links added `0, or the maximum radius RMAX . This observation is
clearly evident in Figure 6.10. For Node Churn, the most suitable values
of RMAX and `0 will be chosen with respect to other criteria, such as
the desirable mean path length, or the clustering coefficient.

• Observation 5: Although Edge Churn achieves higher minimum sum
of radii (Figure 6.10), its participation in the whole topology modifica-
tion mechanism, when desirable, should be increased through the con-

straints, and especially via the lower bound vector of
−→
P ,
−→
LB, for the sake

of performance improvement. Consequently, the number of links (short-
cuts/contractions) added is important for the path length reduction,
while the Edge Churn sub-mechanism should have a suitable percent-
age contribution in the modification mechanism, in order to obtain a
desirable path length reduction with less added shortcuts. Node Churn,
for its part, may need a lot of nodes added in the network to achieve
individually a path length reduction of the order of the Edge Churn
sub-mechanism. This trend can be observed in Figure 6.11.

Figures 6.10 and 6.11 verify some of the above observations, e.g., (1), (4),
and (5). The observations (2) and (3) are illustrated in Figure 6.12. For more
details, the interested reader should refer to [149]. In both Figures 6.10 and
6.11, each one of the two submechanisms Edge Churn and Node Churn is
optimized separately so that relevant comparisons can be made. Figure 6.10
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Figure 6.10: Comparison of the optimal sum of radii with respect to the num-
ber of links added in the network, for Edge Churn and Node Churn and two
values of maximum radius Rmax = 350, Rmax = 450.
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Figure 6.11: Comparison of the average path length with respect to the number
of links added in the network, for Edge Churn and Node Churn and two values
of maximum radius Rmax = 350, Rmax = 450.

presents the minimum objective value achieved by each of the mechanisms
for the corresponding values of `0, Rmax. Similarly, Figure 6.11 presents the
average path length improvement achieved by each one of the mechanisms
Edge and Node Churn simulated with the optimal parameter vectors xEC
and xNC , respectively, for the corresponding values of `0 and Rmax. In Fig-
ure 6.12, the optimal values of the holistic topology modification mechanism
computed by the optimization problem defined by (6.26) are presented with−→
LB = [0.4 10 0.01 1 0.01 1 0.01 1]′ and for different values of `0. More
specifically, Figure 6.12(a) depicts the optimal values of the parameters of
the probability distribution, p, q, r, v (Appendix A), and Figure 6.12(b) de-
picts the optimal values of the parameters of the number of nodes/edges being
added/deleted, ma, md, Ma, Md.

As an example, supposing that we need a high average path length reduc-
tion with the restriction that the addition of a high number of nodes/hubs is
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RMAX = 350m.

Figure 6.12: Optimal parameter values.

not possible. One way to achieve this is to increase the participation of the

edge addition process by determining appropriately the vectors
−→
LB of Prob-

lem (6.26), so that we can achieve the desired low path length by increasing
the transmission range of already existing nodes and avoiding overcrowding
the network with new nodes. Then the solution of the Problem (6.26) will
assign the lower bound parameters to the edge addition process and adapt
the rest of the processes in order to satisfy the constraints. In this case the
optimal (minimum) increase in energy consumption will be higher, compared
to the case of assigning a zero valued lower bound on the edge addition pro-
cess. This conclusion means that if LB = [0 0 0 0 0 0 0 0]′, it is optimal in
terms of energy consumption to perform topology modification by using only
the Node Churn process.
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6.6 Special Cases

6.6.1 Example 1: Elimination to Binary Graphs (SETM)

At this section, the general topology modification mechanism is applied in the
case of directed, unweighted graphs, i.e., the weights of the existing links are
all equal to 1. In this case, the topology modification mechanism is denoted
as “Socially Evolutionary Topology Modification Mechanism (SETM)” due to
both the infusion of small-world properties in the wireless network topology
and the use of preferential attachment for the definition of the probabilities
Pai , Pdi , Pndi , Q(k|i), Qd(k|i), i.e., the topology modification mechanism has
a socially-inspired design concept. Its detailed presentation can be found in
[148]. Since the weights are equal to unity, the node strengths coincide with
the node degrees, i.e., souti = kouti , ∀ i, and sini = kini , ∀ i. Also, as mentioned
above, wij = 1 if the link (i, j) exists, and similarly for a newly added link
(i, k) we assign weight vik = 1. There is no reason for weight adaptation,
therefore, δ1a = 0, δ2a = 0, δLa = 0, δ1d = 0, δ2d = 0. For SETM, Eq. (6.13),
(6.7) and (6.18) become mathematically tractable and analytic solutions can
be obtained.

Regarding Edge Addition, the first endpoint of the link is selected with
preferential attachment, i.e., proportionally to the node out-degree.

Pai (kouti ) =
kouti + c∑

all nodes j

(koutj + c)
(6.28)

As a result, the nodes with high degree are more likely to be selected,
while a node with zero degree can be still chosen, due to the constant factor
(here c = 1). The other endpoint k is a randomly chosen neighbor, among the
new ones in the annulus ARmax

Rmin
(i). Such probability is equal to the probability

that the node is in the ring area ARmax

Rmin
(i) (area |B|) of node i, which equals

(Appendix A):

Q(k|i) =
|B|
L2

=
π(R2

max −R2
min)

L2
.

Regarding Edge Deletion, the first endpoint i of the deleted link is selected
with probability

Pdi (kouti ) =
N − 1− kouti + c∑

all nodes j

(N − 1− koutj + c)
(6.29)

and the second endpoint k is a random one-hop neighbor of i, i.e., selected
with probability Qd(k|i) = 1

kouti
. The first endpoint of the deleted edge is

chosen with inverse preferential attachment probability, i.e., with probability
inversely proportional to the popularity of a node. Inverse preferential at-
tachment is obtained by subtracting the degree of each node kouti from the
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maximum possible degree N − 1 (if the number of nodes in the network is
N), which represents an effective node degree value for inverse preferential
attachment and then replacing such quantity in the preferential attachment
rule. The constant c = 1 has a role similar to that in probability Pai (kouti ),
given in (6.28).

The total rate of change of the node out-degree is the sum of the right-hand
sides of Eqs. (6.13), (6.7) as follows:

dsouti

dt
=
dkouti

dt
= pmaPai (kouti )− rmdPdi (kouti ) (6.30)

The form of the solution may be obtained as:

kouti (t) = e(f(t)+g(t))h(t) + eg(t)w(t)d (6.31)

where the functions f , g have the form: f(t) = A arctan(Bt + `), g(t) =
A arctan(−Bt − `), where A, B and ` are defined constants and h(t), w(t)
are defined polynomial functions. The value of d is obtained by the initial
condition ki(0) = C, where C denotes the initial average node degree.

Regarding node deletion, we consider that the selection of a node for be-
ing deleted is equal to Pndi = Pdi (ki), by replacing N with N(t) since when
introducing node churn, the number of nodes changes with t.

In the case of binary graphs, Eq. (6.18) becomes as follows:

k̄out(t) ∼= k̄out(t− 1)
N(t− 1)

N(t)
+ 2πMar

R2
f

L2

+πrMa

(Rf + at)2 −R2
f

L2
− 2vMd

k̄(t− 1)

N(t)
(6.32)

since one can make the following replacements: E(P ) = 1, δna = 0, w̄(t−1) =

1, k̄(t−1)
N(t)

∼= π
R2
fN(t)

L2N(t) where the last approximate equality is due to the choice

of nodes for deletion with inverse preferential attachment, Pdi (kouti ), which
assigns high probability to nodes with the lowest transmission radius Rf to
be selected for deletion.

Based on Eq. (6.32), the total rate of change of the average connectivity
kouti of each node i is given by the differential equation:

dkouti

dt
= 2πMar

R2
f

L2
+ πrMa

(Rf + at)2 −R2
f

L2
− vMdπ

R2
f

L2
(6.33)

The solution of the above is: kouti (t) =
2R2

fMarπt

L2 − R2
fπvMdt

L2 +
aRfMarπt

2

L2 +
a2Marπt

3

3L2 + C where C is the average node degree of the initial network.
We should mention that the above specification of the holistic topology

modification mechanism for unweighted graphs is not unique, but rather it can
take other forms as well, in order to serve different applications. Another pos-
sible consideration would probably have expressed the probability Pai propor-
tional to a node’s degree at the social layer, i.e., with the neighbors of a node
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at the application/social layer and not at the physical layer. Therefore, a node
having many friends to communicate with (this communication may require
multiple hops in the physical layer) would have a higher transmission range
at the physical layer. This adaptation expresses and utilizes the socio-physical
layer interaction, by designing the physical layer according to the social layer
and by taking into consideration the restrictions of the physical layer.

In the following, the infusion of small-world properties in the topology of
wireless multi-hop networks, modeled by a binary (unweighted) graph, in the
case of Edge Churn, Node Churn and SETM, the latter being the combined
Edge and Node Churn, is demonstrated. The network topology consists ofN =
750 nodes, L = 2000m and RMIN = Rf = 150m. At each step, the current
value at time t of Rmax(t) increases progressively, reaching RMAX = 450m
eventually. The value by which the transmission radius Rmax(t) increases at
each step, a, is appropriately chosen, so that at least one node exists in the ex-
tended annulus of the selected node i, ARmax

Rmin
(i), based on the network density.

Figure 6.13(a) exhibits the behavior of the average path length and clus-
tering coefficient for the execution of the proposed Edge Churn iTC mech-
anism. The average path length decreases as expected, due to the addition
of shortcuts in the local neighborhood of selected nodes. Even though one
might expect that addition of new links leads to increasing clustering coeffi-
cient scaling, on the contrary, the latter decreases. The clustering coefficient
in the induced digraph is evaluated in the same manner as in an undirected
graph (i.e., by considering the edges undirected). Edge additions happen in
random places and not in a specific area leading to the reduction of the clus-
tering coefficient in Eq. (4.5) of Chapter 4, since each added link is randomly
placed, rather than targeted around specific nodes or areas. Figure 6.13(b)
presents the out-degree distribution in the initial and induced networks. The
node degree distribution (Appendix A) of the initial network shifts towards
higher values (which is reflected in the average path length reduction), while
it maintains the random geometric nature of the network. Both distributions
are of similar shape. However, the distribution of the induced graph contains
more probability mass towards higher node degrees and it stochastically dom-
inates7 (first order domination) the initial node degree distribution [93].

7Let us consider two discrete probability distributions P̂ and P . The main idea behind
the definition of the first-order stochastic dominance is that P is obtained by shifting mass
from P̂ to place it on higher values. More specifically, the following conditions are equivalent:∑

f(d)P (d) ≥
∑

f(d)P̂ (d) for all nondecreasing functions f

x∑
d=0

P (d) ≤
x∑
d=0

P̂ (d) for all x

∞∑
d=x

P (d) ≥
∞∑
d=x

P̂ (d) for all x

If these conditions hold, we say that the distribution P first order stochastically dominates
P̂ [93].
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Figure 6.13: Edge Churn: Scaling of metrics. The parameters of the Edge
Churn process are p = 0.8, ma = 75 for addition, q = 0.2, md = 45 for
deletion, and a = 10m.

In the following the demonstration of the node churn process is provided by
using the same initial network topology, where at each time t the parameters
of node addition and node deletion are chosen as r = 0.7, Ma = 5, and v = 0.3,
Md = 1, correspondingly.

Figure 6.14(a) exhibits the decrease in the average path length and the
behavior of the clustering coefficient at each time step. It can be observed
that the average path length is reduced as expected, because of the addition
of nodes with increased radius. The clustering coefficient (Eq. (4.5) of Chapter
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Figure 6.14: Node Churn: Scaling of metrics.

4) increases, because now new edges are added in localized areas around the
new nodes, augmenting the connectivity percentage of these areas. The scal-
ing behavior of the clustering coefficient yields stronger connectivity between
neighboring nodes, and retains the initial character of the RGG. Figure 6.14(b)
demonstrates the node degree distributions of the initial and induced net-
works. Similar observations as with Edge Churn apply. The induced network
maintains the features of the initial. However, in the induced network, signif-
icant mass of the distribution shifts towards the higher degree values leading
to a larger tail, characteristic of scale-free networks (Chapter 5). The great-
est percentage of it remains close to the previous concentration area, and a
small percentage shifts to greater values of node degree. In comparison to

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

234 Evolutionary Dynamics of Complex Communications Networks

0 5 10 15 20 25 30
5

6

7

8

9

10

A
ve

ra
g

e 
p

at
h

 le
n

g
th

Step of the simulation
0 5 10 15 20 25 30

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

C
lu

st
er

in
g

 c
o

ef
fi

ci
en

t

 

 

Clustering Coefficient
Average path length

(a) Scaling of mean path length and clustering coefficient.

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

Node degree

D
en

si
ty

 o
f 

d
eg

re
e

 

 

Initial Network
Final Network
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Figure 6.15: SETM: Scaling of metrics.

Edge Churn modification mechanism, the maximum degree is higher, but the
number of nodes having connectivity higher than 50 is limited.

Finally, in order to check how Edge and Node Churn wrap up together,
the operation for SETM mechanism for a similar network topology is demon-
strated. The following parameters were used for the simulation of the SETM
mechanism: p = 0.4, ma = 75, q = 0.15, md = 45, r = 0.4, Ma = 5, v = 0.15,
Md = 3. Each combination of parameters yields a different result with respect
to the average path length and clustering coefficient.

Figure 6.15(a) exhibits the decrease in the average path length, and the be-
havior of the clustering coefficient at each step. Consequently, by implement-
ing both Node and Edge Churn with the aforementioned choice of parameters,
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the average path length of the network can be significantly reduced, without
altering the original nature of the network (by retaining as almost constant
the initial value of the clustering coefficient), which allows the network to
operate properly for its designated mission. Figure 6.15(b) demonstrates the
node degree distributions of the initial and induced topologies. Similar obser-
vations as before apply (i.e., for the case of Edge and Node Churn), i.e., the
induced degree distribution stochastically dominates the initial in the first or-
der sense and it is characterized by a long tail, which confirms the topological
heterogeneity of the network, as a consequence of the addition of nodes and
links.

At this point, betweenness centrality (Chapter 4) is used as a measure of
the amount of flow that a node controls or as a measure of the congestion
of each node. This is a common use of betweenness centrality in communi-
cation networks, since by definition, betweeness centrality coincides with the
percentage of paths passing through a node in the network and thus, it can
be easily translated to the percentage of packets passing through a node over
the total number of packets exchanged in the network. Similarly to the defi-
nition of node betweenness centrality, edge betweenness centrality can also be
defined (Chapter 4), for every edge instead of every node. At this point the
centrality (based on betweenness) of the different categories of nodes in the
network such as the existing nodes, or nodes that have added shortcuts due to
Edge Churn, or nodes/hubs that have been added during the node addition
process, is studied. Regarding Node Churn, Figure 6.16 shows that the newly
added nodes have the highest betweenness centrality (Figure 6.16(a)) in the
final network, while their betweenness centrality decreases as the number of
nodes Ma, or the probability r increase (Figure 6.16(b)). Consequently, when
applying Node Churn iTC, a sufficient number of nodes should be added, so
that the traffic load is balanced and bottlenecks are avoided when the network
traffic is heavy. Similarly, for the Edge Churn induced network, the between-
ness centrality per edge (Figure 6.16(c)) and per node (Figure 6.16(d)) are
depicted and appear to be more homogeneous among the edges and nodes
correspondingly.

The proposed mechanisms lead to infusion of social properties in the wire-
less network topology for properly chosen parameters. Both churn mechanisms
reduce the average path length, while node churn helps at keeping the clus-
tering coefficient stable compared with the initially highly clustered ad hoc
topology, as in small-world networks. In [148], SETM is studied under a re-
alistic implementation in a wireless multi-hop network, where metrics such
as throughput and delay have been counted in real data traffic between node
pairs. An important improvement in the network performance is observed for
both delay (decrease up to 30%) and throughput (increase up to 40%), with-
out sacrificing much energy, as the energy consumption is increased by at
most 4%. This topology improvement can be combined with efficient schedul-
ing and routing algorithms for further improving the performance of wireless
multi-hop networks.
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(a) Node Churn network.
Betweenness centrality per node.
Initial nodes: id ≤ 250,
New nodes: id > 250, Ma = 5, r = 0.7, v = 0.

1 2 3 4 5 6 7 8 9
1000

2000

3000

4000

5000

6000

7000

Nodes added at an addition step

B
et

w
ee

nn
es

s 
C

en
tr

al
ity

r =0.1
r =0.3
r =0.5
r =0.6
r =0.7
r =0.9
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Figure 6.16: Betweenness centralities (L = 800m, N = 250, Rf = RMIN =
120m, RMAX = 220m, a = 10m).

6.6.2 Example 2: Trust Management in Wireless
Multi-Hop Networks

This example shows the potential of designing the holistic topology modifi-
cation mechanism via its parameters in order to take into consideration the
weights of the network graph. We focus on the case that the weights repre-
sent trust values and the topology modification mechanism’s parameters are
selected as being functions of the trust weights. Commonly used trust models
are mainly based on a weighted and directed graph model, in order to denote
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(c) Edge Churn network.
Betweenness centrality per
edge (ma = 25, p = 0.7, q = 0).
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(d) Edge Churn network. Betweenness centrality per node
(ma = 25, p = 0.7, q = 0).

Figure 6.16: (Continued)

trust relations between node pairs (personal beliefs, statistical recommenda-
tions, etc.) [95, 153]. Two interacting nodes i, j, may assign local trust values
wij , wji expressing their biased trust perception. These two values may differ,
as the opinion of i for the trustworthiness of j may be different from the opin-
ion of j for i. The obtained weighted directed graph describing such relations
is called trust graph. In the static wireless multi-hop networks considered in
our work, the trust graph coincides with the physical topology due to the
locality of wireless communications and the weight matrix W expresses the
trust values for all one-hop node pairs. In this work, a trust value equal to 0
means that node i has no direct communication with node j.
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Framework Specification and Operation

Such a type of network, i.e., where the weight matrix W represents the trust
graph, can be used in cases where trusted communication is more important
than shortest path communication. However, the most trusted path between
a node pair might be much longer in hops compared to the corresponding
shortest path. The application of the topology modification mechanism, while
incorporating the trust weight values through the selection of its parameters,
can lead to contracting the most trusted paths allowing for faster communica-
tion with better quality. Taking this into account, in this section, the proposed
topology modification framework is adapted by determining the probabilities,
Q(k|i), Qd(k|i), Pai , Pdi , Pndi , and aiming at jointly reducing the mean hop
count of the most trusted paths, in addition to increasing the correspond-
ing path trust value. We use a simple definition for the total trust value
of a path, as the multiplication of link weights of a path. Thus, the most
trusted path separating two nodes, is the one possessing the highest trust
value. This value is denoted as “distance” in the trust graph. The weights
are normalized in the interval [0, 1] for simplicity. Based on the above defi-
nition of the trust value of a path and the most trusted path, the semiring
(R,⊕,⊗, 0, 1) ≡ ([0, 1],max,×, 0, 1) (Appendix B) is used for computing the
corresponding quantities.

In the deletion process, a node i should choose with high probability a
distrusted out-neighbor k to remove from its neighbor list, according to prob-
ability Qd(k|i), which expresses inverse preferential attachment with respect
to the weight wik:

Qd(k|i) =
wmax − wik∑

j∈Nout(i)(wmax − wij)
(6.34)

A node k with low value of wik is more probable to be selected to lose its
in-link from node i. The value of wmax is equal to 1 in this case.

At this point, we provide two probability based selection rules. According
to the first one, denoted as in-strength preferential attachment, selection is
performed proportionally to the total weight entering node i and is expressed
by:

Πin
i =

sini∑N
j=1 s

in
j

(6.35)

while the second one is inversely proportional to the in-strength, namely:

Πinvs
i =

1
sini +θ∑N

j=1 ( 1
sinj +θ

)
(6.36)

Πinvs
i is obtained from Eq. (6.35), by replacing sini with the inverse in-strength

equal to 1
sini

. As sini decreases, 1
sini

increases, leading to higher selection prob-

ability for low-strength nodes. The positive parameter θ (taking very small
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values) ensures the rule works even for disconnected nodes with zero strength.
Similarly, it can be defined the out-strength (inverse) preferential attachment
by replacing, in Eq. (6.35) and (6.36), Πin

i , Πinvs
i , and sini with Πout

i , Πoutvs
i ,

and souti , respectively. Strength preferential attachment generalizes the degree-
driven preferential attachment for weighted networks (Section 6.6.1).

In addition, Pai is identified with Πin
i , based on the observation that a

node with high in-strength is trusted by its one-hop neighbors and thus, more
preferable to participate in the creation of shortcuts in the trust graph. Sim-
ilarly for edge deletion, Pdi is chosen as Πinvs

i , so as to avoid distrusted nodes
included in paths. On the contrary, the rule Pndi will delete nodes having low
trusted connections, i.e., with probability inversely proportional to their out-
strength, thus Pndi = Πoutvs

i . It can be observed that when Pai = Πin
i , the

creation of chains of long-range connections may take place. This is possible,
if for instance the link i → j is formed and thus, sinj increases, leading to a
higher probability that j will be chosen at a next step.

In the sequel, two variations of the probability Q(k|i) that the shortcut
i→ k is formed are proposed. In the first one, referred to as a local algorithm,
nodes require local information only in order to perform edge addition, while
in the second, denoted by global algorithm, nodes require a network wide
view. We define Q(k|i) in two possible ways:

• Local algorithm: In this case, node i requests information from its local
neighbors (1 or 2 hops away), in order to learn the trust values of its
potential neighbors in ARmax

Rmin
(i), so that eventually the long link added

is limited to 2 or 3 hops. Let h2 be the nodes in ARmax

Rmin
(i) that are 2

hops away from i and h3 the nodes 3 hops away from i.

– 2 hops: If node k is 2 hops away from i, its probability of being
selected to form the link i→ k is:

Q(k|i) =

∑
h wihwhk∑

h,(m∈h2) wihwhm +
∑
h,g,(m∈h3) wihwhgwgm

=
W 2

(ik)∑
m∈h2

W 2
(im) +

∑
m∈h3

W 3
(im)

(6.37)

The weight assigned to the long-link is:

vik = max
h

(wihwhk) (6.38)

– 3 hops: If k is 3 hops away from i, its probability of being selected
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is:

Q(k|i) =

∑
h,g wihwhgwgk∑

h,(m∈h2) wihwhm +
∑
h,g,(m∈h3) wihwhgwgm

(6.39)

=
W 3

(ik)∑
m∈h2

W 2
(im) +

∑
m∈h3

W 3
(im)

(6.40)

vik = max
h,g

(wihwhgwgk) (6.41)

• Global algorithm: In this case there is no limitation on the hops covered
by the added long link (depending however on the power capabilities
of the nodes), while node i is assumed to obtain information from the
whole network aiming to select with high probability the most trusted
node in ARmax

Rmin
(i). In this case, the node i should compute the path

semirings (Appendix B) for all nodes in ARmax

Rmin
(i) and the probability

that k ∈ ARmax

Rmin
(i) is selected by node i is given as follows:

Q(k|i) =
Dt
i→k∑

j∈ARmax
Rmin

(i)D
t
i→j

(6.42)

vik = Dt
i→k (6.43)

where Dt
i→k is the distance between i and k in the trust graph as noted above.

In both algorithms node i chooses with high probability a node k for which
the path i→ k has a high trust value.

Evaluation and Discussion

This section clarifies through simulation results the benefits in the network
topology and performance by applying a topology modification mechanism
tied with the network trust values. The simulation results concern the average
path length (geodesic) in hops, the trust value of the most trusted paths
(distance), the number of hops of the most trusted paths and the clustering
coefficient. An initial weighted directed RGG of N = 250 nodes, Rf = 100m,
square deployment area of side L = 800m, RMAX = 250m, and a = 10m is
considered. Initially, positive weights are assigned randomly on the directed
links. Weight adaptation does not have a special meaning in trust graphs,
as the direct opinion of a node for its neighbors does not change with edge
variations. Therefore, it is considered δ1a = δ2a = δ1d = δ2d = δna = 0.

If only edge churn is performed, the parameters used are: p = 0.7, q = 0.3,
ma = 25, md = 8. In the case of node churn, the parameters used are r = 0.7,
v = 0.3, Ma = 3, Md = 1. For the combined mechanism, the parameters used
for each process are p = 0.35, ma = 25, q = 0.15, md = 8, r = 0.35, Ma = 3,
v = 0.15, Md = 1.

In Node Churn, shown in Figure 6.17(a), the newly added nodes are con-
sidered as trusted and the weights of their in-links are assigned according to
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(a) Newly added trusted nodes.
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(b) Newly added neutral nodes.

Figure 6.17: Node Churn mechanism performance for trusted and neutral
newly added nodes.

the beta β(5, 1) distribution, which gives with high probability values close to
1, and of their out-links, according to β(2, 2) which gives with high probability
values close to 0.5. In Figure 6.17(b) the weights are randomly chosen from
β(2, 2) to both the in- and out-connections of the newly added nodes, so as
to consider their trustworthiness as neutral. It can be observed in Figure 6.17
that the Node Churn mechanism achieves both the reduction of the mean
geodesic path (in hops) and of the mean most trusted path (in hops) at ap-
proximately the same percentage. In addition, it maintains a stable clustering
coefficient. The links of the new nodes with higher ranges serve as shortcuts,
while nodes with distrusted connections are deleted, leading to higher values
of most trusted paths (distances). When the newly added nodes are highly
trusted, the hop number of the most trusted paths reduces with higher rate
and the average distance increases more (Figure 6.17(a)).

Two cases of the parameter δLa are examined, i.e., δLa = 0, δLa = 0.1.
Initially, Figure 6.18 presents the results when weight adaptation is not con-
sidered (δLa = 0). In Edge Churn, the most trusted paths and the geodesic
paths decrease for both local and global algorithms. However, the global al-
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(a) Edge Churn (geodesic and most trusted
paths).
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(b) Edge Churn (distance and clustering coef-
ficient).
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(c) Combined Mechanism (geodesic and most
trusted paths).
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(d) Combined Mechanism (distance and clus-
tering coefficient).

Figure 6.18: Performance of the proposed framework—comparison of local
and global algorithms for the Edge Churn and combined mechanism in case
δLa = 0.
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(a) Edge Churn (geodesic and most trusted paths).
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(b) Edge Churn (distance and clustering coefficient).

Figure 6.19: Performance of the proposed framework—comparison of local and
global algorithms for the Edge Churn (with weight adaptation δLa = 0.1).

gorithm leads to higher reduction as far as the number of hops of the most
trusted paths is concerned, due to the more complete knowledge of the net-
work it has available. In the case of the global algorithm the new link i → k
attains the value vik of the most trusted path between i and k, while in the lo-
cal algorithm vik = maxh(wihwhk) or vik = maxh,g(wihwhgwgk), which is not
surely the highest value of trust between i and k. For the global algorithm,
the semiring path algorithm will choose either the multi-hop most trusted
path or the new shortcut in computing the path between two nodes. Both of
them have the same trust value, and thus the path algorithm does not ensure
the selection of the one hop shortcut, so that eventually it cannot achieve the
largest reduction in the mean most trusted path in terms of hops. For the lo-
cal algorithm, the value vik may not be equal to Dt

i→k and thus, not selected
by the semiring based algorithm. The clustering coefficient is reduced due to
the addition of long links, which in turn reduce the proportion of triangles
to triplets (if one considers the corresponding definition of clustering coeffi-
cient). Also, the mean distance remains stable, as we do not perform weight
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adaptation.
The combined mechanism exploits the characteristics of both the Edge

Churn and Node Churn mechanisms. The new nodes are considered as trusted.
The clustering coefficient is approximately stable, the distance is increased,
and the influence of the locality in the local algorithm is reduced due to
the Node Churn mechanism. Thus, the geodesic paths are reduced, and the
number of hops of the most trusted paths is also reduced with a percentage
close to this of the geodesic paths. As can be observed, for this choice of
parameters, the results of the local algorithm are close to those of the global
algorithm leading to the choice of the local algorithm for less overhead.

Figure 6.19 shows that a low value of δLa = 0.1 makes the improvements
more evident, especially for Edge Churn. Specifically, for the global algorithm
it distinguishes the new link from the corresponding multi-hop path with
the same trust value, while for the local algorithm the increase in vik will
probably render the weight of the long link higher than Dt

i→k, helping the path
algorithm to select the new shortcut. The distance is increased as expected,
due to the increment of the weights of the long-range links and both the local
and the global algorithms lead to higher reductions in the number of hops
of the most trusted paths. The mean geodesic path does not change much
compared to the case of δLa = 0, as expected.

6.7 Conclusions

In this chapter we discussed and developed the idea of enhancing wireless
multi-hop networks with social networks’ properties aiming to improve their
performance regarding delay, throughput, and average path length. We pre-
sented evolutionary topology modification mechanisms that incorporate ap-
propriate shortcuts in the topology of wireless multi-hop networks targeting
at creating small-world like structure in the topology of spatial wireless multi-
hop networks. Firstly, we described diverse topology modification mechanisms
from the related bibliography by dividing them in two categories depend-
ing on the type of shortcuts they use, wireless or wired. For most of them
we provided indices for the achieved performance improvement, either theo-
retically or through simulation/numerical results. Secondly, we focused on a
general topology modification mechanism, consisting of two basic processes,
namely Edge Churn and Node Churn. This mechanism can infuse small-world
properties in a non-dense network through inverse Topology Control by a
proper selection of its parameter vector. In addition, through an optimiza-
tion framework, its parameter vector can be adapted so as to balance the
trade-off between cost and performance improvement. Two implementations
of the holistic topology modification mechanism, one in binary and one in
weighted networks are analytically presented. The holistic topology modifi-
cation mechanism presented is based on two mechanisms characterizing the
natural network evolution (edge and node churn), i.e., they can take place
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in the network topology via the physical process of network development,
not only through biased control. Finally, its application is not restrictive in
wireless multi-hop networks, but by making appropriate modifications (i.e.,
relax the spatial constraints), it may be applied in other networks, such as
wired networks or relational social graphs, e.g., as a network of hospitals or
airports, so as to improve the medical care or the transportation efficiencies,
correspondingly. 
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Chapter 7

Conclusion

In the previous chapters of this book, we progressively developed and pre-
sented a framework for classifying, studying, analyzing, and designing evolu-
tionary algorithms for complex networks, with special emphasis on wireless
decentralized networks. Adopting the viewpoint of Network Science and uti-
lizing elements from social/complex network analysis, novel approaches in
the analysis and design of wireless complex networks were presented from a
broader perspective enabling their analysis and further extension. The main
purpose was to provide a working viewpoint of the corresponding methodol-
ogy and to demonstrate the potentials of the proposed approaches, while also
explaining the benefits of further adopting this inherently inter-disciplinary
and multi-disciplinary framework for the analysis and design of these and
other types of networks.

In this last chapter, we will first summarize the most important highlights
of the previous ones, in order to make clearer the benefits of employing so-
cial/complex network analysis in modern communications networks research
and then spend some time to indicate some interesting open issues consti-
tuting smaller or higher streak directions for future research endeavors in
the corresponding research area. Finally, we conclude this book by provid-
ing a holistic current and future picture of the framework of evolutionary
network analysis and design, which will shed additional light in the under-
standing and adoption of the proposed approach, and potentially stir more
interest and effort in the related research communities and the industrial
professionals.

7.1 Lessons Learned

The evolutionary topology modification and network design framework that
was presented in the previous chapters has utilized various techniques already
available in other disciplines of Network Science, thus combining and exploit-
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ing their benefits. As already explained, the aim was originally to eventually
develop more efficient methodologies for analyzing, designing, and controlling
networks, leading eventually to more efficient and useful networking struc-
tures.

In the following, we provide a brief overview of the most important emerg-
ing trends that were presented in the previous chapters and are expected
to prove themselves in various similar or different studies with respect to
Network Science and complex networks. Furthermore, we highlight several
features of the summarized approaches that could be proven useful in future
studies in various and diverse ways. We note that the corresponding list is
non-exhaustive. However, it could be used as a first validation of the key is-
sues and steps that one may take into account in similar studies and designs,
or in an attempt to extrapolate such trends in other areas not yet touched
from this perspective.

7.1.1 Emerging Trends and Their Benefits

Various aspects of the problems and features of the networking structures pre-
sented in the previous chapters are mostly noteworthy for future consideration
and further analysis. Such emerging trends may potentially enable researchers
and practitioners in modifying and/or designing well-adopted and employed
complex network topologies of today more efficiently, with better control and
possibly in various and diverse application frameworks. The most significant
of those emerging in this book are summarized in the following:

1. Network Science is becoming one of the very promising areas of re-
search, mainly because it brings several scientific disciplines together
and it could potentially contribute towards solving more efficiently even
more problems that belong in the various disciplines, by utilizing each
time the more appropriate techniques (as they originally emerge in each
discipline, or properly adapted to fit the special circumstances in each
specific discipline).

2. The small-world paradigm has emerged as one of the very important
topological structures, both in the presentation of Network Science in
general, and in the specific mechanisms provided regarding topology
modification of wireless multi-hop networks. It seems that the small-
world effect is characteristically related to the feature of small average
path length of network topologies. Ideally, a network desired to scale
efficiently in terms of average network distance should employ in one way
or another the small-world paradigm, or at least employ a mechanism
that embeds some kind of small-world features in the network structure,
which in turn will drive the scaling of the average path length towards
the lower values of the allowed scale.
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3. Similarly, the scale-free (power-law) regime emerging as a consequence
of preferential attachment law and its variations in evolving networks
has been closely tied with many desired features of networks across the
disciplines of Network Science, constituting both the scale-free property
and preferential attachment, two of the significant substances of net-
works in general. Furthermore, with respect to the preferential attach-
ment mechanism, it has been shown how to theoretically and practically
exploit it in evolutionary network modification mechanisms for improv-
ing the features and performance of certain types of networks. More
importantly, a broader concept emerged, namely extending the incorpo-
ration of scale-free features and the preferential attachment mechanism
into other types of network application frameworks as well.

4. Regarding evolutionary computing approaches, the process of selec-
tion emerges as a vital feature in any evolutionary algorithm. Sev-
eral studies have revealed how critical selection can be for develop-
ing effective algorithms and desired performance results. For this rea-
son, in any evolutionary process considered or designed, it is impor-
tant to identify the type of selection involved and carefully considered
and/or parameterized, in order to yield the desired outcomes. Similarly,
crossover/mutation has a role analogous to selection, and essentially it
jointly realizes with selection the “stochastic search” approach employed
by all evolutionary algorithms.

5. The presented evolutionary network modification framework adopts
some, but not all the features of evolutionary computing and/or Net-
work Science methodologies. This is a broader principle to consider in
the design of similar approaches, where the designer may adopt only the
features that will yield the desired results, in a manner that does not
complicate the operation and retains resource consumption (from any
resource type) that is low, or at least to the level of the original net-
work design. Luckily, social and complex network analysis have revealed
and continue to reveal a lot of interesting features, which might become
rather desired in the immediate or more distant future.

In the rest of this subsection, we focus on presenting some examples related
to the aforementioned trends, in which the application of a socially-inspired
topology modification mechanism in the initial wireless network yielded im-
portant benefits for the network and its users (network and application layers).
These examples will further reinforce the approaches presented in the previous
chapters of the book and provide additional perspective on their theoretical
potential and practical applications.

To begin with, the authors in [44] discussed (mainly through simulations)
the significant improvement in network connectivity from the introduction
of a small number of special nodes in the network topology. These special
nodes function in two radios with different transmission radii (a short and a
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long) serving as long-range shortcuts. A practically feasible consideration of
connectivity through a percolation perspective was suggested, in order to ob-
tain results on the information diffusion control potentials. By adding special
nodes with different long-range transmission radii, it was proved that there
is an upper bound on the number of special nodes that should be added and
on their transmission range, to transform a disconnected topology to an al-
most connected topology. Thus, the power increase required for connectivity
improvement is limited, while the transmission radii of only the special nodes
needs to be increased for achieving connectivity with high probability. These
results are closely related to some of the trends mentioned before, showing
that the overall direction suggested by the identified trends have practical
merit, in addition to their theoretic interest.

Another perspective of positive influence of nodes’ heterogeneity on net-
work’s overall performance is the lifetime of the network, which is typically
defined as the time until the first node dies due to battery outage. Towards
this emerging direction, the authors in [167] studied through analysis and sim-
ulations the positive impacts of the link or energy heterogeneity on a sensor
network lifetime. Regarding link heterogeneity, some nodes in the topology
were assumed to possess long-range and highly reliable (with respect to suc-
cess rates) links to the sink node, like shortcuts in social networks although
not explicitly mentioned. Energy heterogeneity was achieved through enabling
some nodes to have no energy restrictions and thus zero energy-cost for their
communications, and it was analytically proved that energy heterogeneity in-
creased the network lifetime when the high power nodes form a dominating
tree routed at the sink node. Furthermore, simulation and testbed results in-
dicated improvements in end-to-end success rates, energy consumption, and
end-to-end latency. The large-scale sensor network lifetime with respect to
node degree heterogeneity was studied in [104], from a percolation perspec-
tive, as the critical time before which the network keeps a giant component
and the impact of the degree-dependent node lifetime upon the network life-
time is examined. Through analysis and simulations, it was demonstrated
that controlling the individual node lifetime so as to exploit heterogeneity on
nodes’ degrees (and lifetime is especially increasing with node degree) signif-
icantly increases the overall network maintenance, a very useful guideline for
designing future networks.

Other important examples with emerging useful trends and guidelines of
either the application of socially-inspired topology modification mechanisms
or social networks’ analysis metrics include the fast consensus and decision
making on small-world graphs [116], [90], [15], the random walks on small-
world graphs [136], the routing and content management in wireless multi-hop
networks [97], [49], etc.
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7.1.2 Discussion on Evolutionary Topology Modification
Mechanisms

The evolutionary topology modification and design framework presented in
this book was mainly based on the notion of topology control, and it was
specifically demonstrated for wireless multi-hop networks (Chapter 6), such
as ad hoc, sensor, etc. These choices have mainly been made in order to
facilitate the transparent and smooth demonstration of the framework, in
terms not only of theory and analysis, but of implementation as well. Topology
control ensures that the topology modifications made are feasible, nominal,
and, in addition, can be easily implemented through simple means, i.e., power
variations in this case, without further complicating the evolutionary process.
The objective was to eventually demonstrate the approach rather than the
complete implementation details involved. Complete details may be found in
the references provided in the corresponding parts of the book.

A more careful study will reveal several aspects of the whole framework
that require additional consideration, more prominently issues regarding the
model extension, implementation, and application aspects of the presented
framework and mechanisms. These aspects could be part of a broader study
that will not only address the aforementioned concerns on realistic implemen-
tations of the presented evolutionary topology modification framework, but
also reveal different mechanisms and operations for realizing similar dynamic
features in other types of communications networks and possibly extrapolate
the presented process to other types of networks and mechanisms by drawing
the proper analogies.

7.2 The Road Ahead

The scope of this section is to collect and classify several problems from differ-
ent areas of Network Science and topology modification that were presented
previously, which remain open and could be of potential future value for in-
terested researchers. Towards this direction, we first begin by providing an
overview analysis of the effort accumulated until today, in order to cover the
required ground towards developing the aforementioned design framework.

7.2.1 Route Covered Already

This book focused on complex network analysis metrics and complex network
graphs’ characteristics, as well as the development, modeling and possible
applications on a wireless multi-hop network setting, aiming mainly at per-
formance improvements. Chapter 4 described analytically all the currently
used social network metrics. First, “the node degree distribution” was de-
fined and extended to the quantity of “the node strength distribution” in
weighted graphs, measuring the popularity of a node by the number of con-
nections a node has, or by the value of the weights assigned to its connections
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(strength or intensity of its connections). This enabled taking into account in
the analysis more than just connectivity information. The second and third
metrics were the average path length of the network measuring the distance
between every node pair and the clustering coefficient measuring the degree
of clustering inside the network, respectively, which were also exploited in
further characterizing salient features of networks, such as node distances,
network robustness, coherency, and proximity. Following this, the diverse cat-
egories of centrality measures were extensively presented, allowing for the use
of the most suitable centrality metrics for different applications. The most
prominent metrics include the degree centrality, the closeness centrality, the
betweenness centrality, the eigenvector centrality, and the subgraph centrality
(Chapter 5). For directed network graphs, the centrality measure is extended
to the prestige measure. Finally, another important perspective of complex
networks revealed was their inherent hyperbolic structure or negative curva-
ture, which can be used to characterize the performance of the network as
a whole, which opened up a new perspective in complex and social network
analysis.

Regarding the structure of social networks (Chapter 5), many of them
emerge to be small-world graphs, i.e., their average path length is small and
their clustering coefficient is high. Also, their degree distribution has a power-
law form, characteristic of scale-free networks, showing a heterogeneity in
the node degrees over the network. The Watts and Strogatz [162] model
was mainly used for constructing small-world graphs, while the Barabási–
Albert [6] model yields power-law graphs, both of them operating in an evo-
lutionary constructive fashion. In general, the Watts and Strogatz model grad-
ually introduces shortcuts in the network topology leading to path length re-
duction without importantly altering the clustering coefficient. The Barabási–
Albert model is based on preferential attachment rules, and gradually adds
both new nodes and new links enlarging the network topology, while achieving
the power-law degree distribution observed in many real complex networks.
Also, evolutionary models in hyperbolic space have been developed, which
lead to network topologies emerging both scale-free and small-world prop-
erties. The basic intuition behind the development of evolutionary models in
the hyperbolic space is the inherent hyperbolic structure existing behind many
complex networks, as explained in Chapter 5. Finally, a similar property to
the small-world one is the expansion property characterizing networks that are
simultaneously sparse and well connected, which was described analytically
in Chapter 5.

Regarding the applications of ideas from social networks analysis and evo-
lutionary mechanisms to wireless multi-hop networks towards their improving
their performance, Chapter 6 summarized all the possible existing approaches
and emphasized a holistic socially-inspired topology modification mechanism.
Through this holistic topology modification mechanism, we are now able, for
the first time, to:
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• Exploit the possible connections and similarities of wireless multi-hop
with the social networks.

• Improve the network performance, while taking into account the desig-
nated mission of the network in the application layer via the network
weights.

• Optimize the topology modification methodology so as to minimize the
additional energy consumption.

• Provide the possibility of a distributed implementation of the topology
modification mechanism when this is demanded by the network perfor-
mance.

• Automate the topology modification approach towards both directions
of the evolutionary design loop (top-down and bottom-up) according
to incentives and various operational factors. This means that, on the
one hand, we are able to enhance with shortcuts the network topology
in case of a scarcely connected network with poor performance. This is
achieved by assigning higher values to the parameters of the addition
processes compared to the corresponding ones for the deletion processes.
However, in the other case, of a densely connected topology experiencing
high interference, we are able to apply SETM, parameterized towards
the deletion processes leading to a sparser final topology. The latter is
denoted as “inverse SETM.”

The following section states and briefly discusses already identified open
problems lying ahead of the aforementioned established research aspects and
closely related to the research areas presented in general in this book.

7.2.2 Open Problems

The emerging problems can be classified into the following main categories.
Some of them constitute straightforward extensions of the presented tech-
niques, while others are tougher problems that require significant effort, and
some could potentially prove to be too tough in the future.

• Betweenness centrality is a very interesting and important centrality
measure, especially for communication networks, indicating the control
that a node has in the network by participating in shortest paths. This
is important in many different disciplines, such as identifying and re-
inforcing central nodes to avoid network disconnection, boost network
efficiency, or simply identify key nodes that affect the message quality
when security or QoS matters. However, the exact betweenness cen-
trality computation currently requires centralized algorithms and high
computational power, significantly increasing with the number of nodes.
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Although diverse approximations of the betweenness centrality are al-
ready proposed, given the importance of betweenness centrality for the
network performance, we need to invent completely distributed, light,
and efficient algorithms for its computation. This will provide the pos-
sibility of designing optimized network algorithms using each node’s
importance, allowing for improved network performance needed for the
next generation social-based communications networks.

• Another open issue is the invention of a more generic and flexible central-
ity definition, one that is able to cover holistically diverse and conflicting
notions of node importance. An appropriate metric should also be possi-
ble to distributively compute with the minimum possible overhead with
respect to the background network traffic, if any.

• In the presentation of evolutionary computation approaches, recombina-
tion and crossover emerged as significant aspects of such methodologies
and in some cases, e.g., evolutionary programming, they were shown to
be dominant factors, typically decisive for the operation of such tech-
niques. Deciding the exact form and parameters of such mechanisms
and their relative weight on the final outcome of an employed method-
ology is not straightforward, and significant research is still required in
this case, especially in order to achieve this in an automated fashion
as well. More specifically, the corresponding research should be more
focused on the specific aspects of the evolutionary process that are of
more interest within the framework of social/complex network analysis
than those presented in Chapter 4 regarding the computational aspect
of such algorithms.

• In Chapter 5 and Section 5.5, we briefly described the theory of ex-
pander graphs and their salient properties regarding routing and com-
munication properties. It would be very efficient to develop mechanisms
for creating wireless network topologies that were provably expander
graphs, since expander graphs have sparse connections reducing the in-
terference but are, however, well connected through short paths (similar
to small-world graphs), improving the speed of communication and the
retransmissions.

• Finally, another open problem is to simplify and improve the distributed
implementation of SETM, so that the next generation of self-improved
(alternatively self-optimized) networks is obtained, which will be able
to observe their current performance and if necessary to autonomically
trigger the application of SETM or inverse SETM for balancing the
trade-off between performance and cost. It is important that such a
procedure is realized at the node-level, without requiring complex and
costly centralized mechanisms.
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7.3 Epilogue

In the previous chapters, this book mainly covered subjects relevant to the
dynamics of evolutionary methods for the analysis and design of wireless
complex networks. The presentation adopted the framework of Network Sci-
ence, which is an inherently multi-disciplinary approach, applicable to nu-
merous and diverse branches of science, while it also employs diverse and
radical methodologies from the involved scientific fields. The Network Sci-
ence perspective allows, in general, the uses of complex and social network
methods for modeling and studying several different types of networks, and
also exploits a broad set of metrics, such as centrality and clustering coeffi-
cient, for the design, analysis, and performance assessment of the networks of
interest.

Apart from the network analysis part that was mainly based on the Net-
work Science perspective and social/complex network analysis methods, an-
other important pillar of this book was the evolutionary design and modifi-
cation of wireless complex networks. Inspired by evolutionary computing ap-
proaches, which were briefly presented, the concept of evolutionary network
modification/improvement was suggested and described in a generic fashion,
applicable to arbitrary types of networks, even networks regarding other scien-
tific disciplines. However, along with the relevant objectives and goals of evo-
lutionary network modification/improvement in the general case, some more
specific application examples were provided, focusing on wireless complex net-
works. Specifically, this book focused on the modification and improvement
of wireless ad hoc and sensor networks in different application paradigms,
e.g., data flow, trust establishment, etc. It provided the general strategy and
some of the more specific objectives required in order to achieve the evolu-
tionary approach for improving the communications of interest. More specific
goals and desired features were identified for the case of multi-hop networks
and according to these goals and features several approaches and examples
were provided demonstrating in a more concrete manner how the evolutionary
modification/improvement paradigm can be applied in this specific setting of
wireless ad hoc and sensor networks.

We strongly believe that the described emerging framework and its appli-
cation as demonstrated in the previous chapters can be more broadly applied
in other types of communications networks, by following the steps described
in the specific scenarios presented and adapting them properly to conform
with legitimate processes and actions in the application framework of each
type of network. As already explained, the presented topics are just a small
step towards more holistic frameworks, and it is expected that within the
framework of Network Science similar approaches will emerge in the future,
possibly in various application domains. However, it should be expected that
communications networks will be dictating the pace of this paradigm shift,
mainly because the corresponding trends have already been observed in vari-
ous degrees in the different areas of communications networks, and because in
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addition, such networks can be easily modified nowadays, allowing the corre-
sponding ideas to be rapidly verified and assessed. For instance, compared to
financial or social networks, where real modifications may be costly or even
impossible, not to mention the potential underlying risk, especially in net-
works involving biological modifications, in communications networks these
modifications can be more tested and applied straightforwardly. Such aspects
may be potential limiting factors for the evolution of such networks and the
eventual drivers are not always necessarily dictated by logical or measurable
factors, as is the case in communications networks.

It is exactly this last difference that sets communications networks and the
corresponding Network Science-related methodologies in a dominant position
in the broader field of network analysis and engineering. New ideas and con-
cepts can first be developed within the communications networks framework
and then research effort may be focused on drawing the proper analogies and
extending these ideas to other types of networks as well. However, this means
that communications networks are not expected to receive similar feedback
from other disciplines in the near future, and it is for this reason that more
effort should be accumulated in the communications domain in Network Sci-
ence, in accordance with the guidelines and factors presented in Chapter 1.
Future attempts should also focus on obtaining feedback from other neigh-
boring fields, such as Mathematics and Physics, which have traditionally fed
engineering with valuable knowledge and techniques.

Perhaps the most intriguing trend emerging from this book is that net-
work engineering has just begun to become exciting and fascinating, and it
progressively becomes an established field of its own merit. Contrary to the
previous times, where networks were mainly considered a part of graph theory
and thus were treated as a working knowledge that researchers would superfi-
cially acquire in order to apply it in their own fields of expertise, currently the
emerging trend is that more focused scientists active in the field of Network
Science will be summoned to solve emerging network problems in other fields,
the same way that mathematicians might be required to solve complicated
problems of mathematical nature in other disciplines.

This book attempted to contribute to the aforementioned direction, and
provide some starting points for such attempts, using as application domain
the field of wireless ad hoc and sensor networks. The successfulness of this goal
will be measured by similar emerging attempts, both in the field of commu-
nications networks and other types of networks. Extrapolating the method-
ologies and results presented in this book in other disciplines of Network
Science would be one of the major achievements of the current effort and
we strongly believe that it would stir considerable additional research effort
that would benefit not only the other disciplines of Network Science, but
specifically wireless networks as well. We trust that the presented material
will prove sufficient to provide the necessary background and stimulus for the
aforementioned goals.
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Appendix A

Geometric Probability

This appendix serves a twofold purpose, initially presenting some basic notions
from Probability Theory, which are used extensively and implicitly throughout
this book, and secondly, introducing some concepts of Geometric Probability,
which are used in the more focused section of Chapter 6. The latter are ly-
ing at the core of the topology modification methodology and especially at
the heart of the modeling approach for the case of wireless networks demon-
strated in this book. We refer only to the most basic elements of Probability
Theory and Geometric Probability required in the current treatment, in or-
der to facilitate the interested reader. For a detailed study of Probability
Theory the more interested reader can refer to various established references
such as [127], [64] and the more advanced and recent ones, [76], [56]. Es-
pecially for Geometric Probability three excellent references for further study
are [10], [98], and [151], all of which require a more involved knowledge of prob-
abilistic elements and tools (in an increasing order of required familiarity). A
more accessible overview and working coverage of Geometric Probability can
be found in [83], while [82] provides a more focused perspective of Geometric
Probability from the perspective of wireless networks.

A.1 Probability Theory Elements

In the following, we first present the elements of Probability Theory required
for presenting in the sequence the notions of Geometric Probability exploited
and applied in various capacities in this book.

Let us begin by considering a probability space (Ω,F,P), where Ω is the
sample space consisting of all the possible outcomes, F is a σ-algebra, i.e.,
the collection of all the events (sets of outcomes of Ω) to which probabilities
can be assigned, and P : F → [0, 1] is the probability measure (probability
function) that assigns probabilities to the elements of F. Then with respect
to this probability space,
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Definition 29 A random variable is a function X : Ω → R, assigning to
every ω ∈ Ω (i.e., to every outcome of a random experiment) the value X(ω) ∈
R.

X is a random variable on Ω if and only if the sets {X(ω) ≤ x},∀x ∈ R,
are events of F, i.e., the probabilities P{X(ω) ≤ x},∀x ∈ R can be defined.
In this case, if B is a Borel set of R, it holds that X−1(B) ∈ F. If X can take
only discrete values (i.e., X can only take the values {p1, p2, ..., pn}) then it
is a discrete-type random variable, otherwise if X can take all the values in a
predefined continuous set (i.e., X ∈ [a, b], given a, b), it is a continuous type
random variable.

Example 1: In a coin tossing experiment, there are two possible outcomes,
“head,” denoted as “h,” or “tail,” denoted as “t.” Thus Ω = {h, t}. If we toss
the coin only once then Ω ≡ F, and for a fair coin it holds that P(h) =
P(t) = 1

2 . A possible discrete random variable over Ω is X, where X(h) =
1, X(t) = 0. Then P(1) = P(0) = 1

2 . In the case that the coin is tossed
twice, Ω = {h, t} × {h, t}, (F ) = {hh, ht, th, tt}, and a probability should be
assigned to each one of the four events (which for a fair coin is assigned in an
equiprobable manner).

Definition 30 The probability distribution function of the random variable
X is the function FX(x) = P{X ≤ x}, where x ∈ [−∞,+∞].

The distribution function has the following properties:

• FX(+∞) = P{X ≤ +∞} = 1, FX(−∞) = P{X ≤ −∞} = 0.

• FX(x) is a non-decreasing function of x, i.e., if x1 < x2 → FX(x1) ≤
FX(x2).

• P{X > x} = 1− P{X ≤ x}.

• FX(x) is right continuous, i.e., limx→x+
0
FX(x) = F (x0), where x→ x+

0

denotes that x→ x0 from the right, i.e., from higher values.

• P{x1 < X ≤ x2} = FX(x2)− FX(x1).

• P{X = x} = FX(x)− FX(x−), where FX(x−) = limx→x− FX(x).

Example 2: In Example 1, we defined the random variable X where
X(h) = 1, X(t) = 0, and P(1) = P(0) = 1

2 . Regarding its distribution func-
tion, we have the following:

∀ x < 0, P{X < x} = 0

∀ 0 ≤ x < 1, P{X < x} =
1

2

∀ x ≥ 1, P{X < x} = 1

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

Geometric Probability 261

Definition 31 The probability density function of the random variable X,
fX(x) is a non negative function defined as the derivative of the probability
distribution function FX(x).

If X is of continuous type then fX(x) = dFX(x)
dx , otherwise if X is of dis-

crete type then fX(x) =
∑
∀ i piδ(x − xi), where the values xi represent the

discontinuity points of FX(x). Also, it can be obtained by integration that
FX(x) =

∫ x
−∞ fX(u)du.

Definition 32 The joint probability distribution function of two random
variables X and Y , denoted as FXY (x, y), is the probability of the event
{X ≤ x, Y ≤ y}, where x, y are real numbers.

The following properties hold for the joint distribution function:

• FXY (+∞,+∞) = 1, FXY (−∞, y) = 0, FXY (x,−∞) = 0.

• P({x1 < X ≤ x2, y1 < Y ≤ y2}) = FXY (x2, y2) − FXY (x1, y2) −
FXY (x2, y1) + FXY (x1, y1)

Definition 33 The joint probability density function of two continuous type
random variables X and Y , denoted as fXY (x, y), is defined as fXY (x, y) =
∂2FXY (x,y)

∂x∂y .

Definition 34 Two random variables X, Y are called independent if the
events {X ∈ A}, {Y ∈ B} for all Borel sets A,B, are independent, i.e.,
if P({X ∈ A, Y ∈ B}) = P{X ∈ A}P{Y ∈ B} and as a result, fXY (x, y) =
fX(x)fY (y).

A.2 Probabilistic Modeling of the Deployment
of a Wireless Multi-Hop Network

Wireless multi-hop networks are typically modeled as Random Geometric
Graphs (RGGs), as already mentioned in Chapter 1 (Section 1.2.2). In turn,
the RGG model of a wireless multihop network can be regarded as a spa-
tial point process. A spatial point process describes a random pattern of
points/nodes distributed over a space of given dimensions [10]. For the case of
wireless multihop it suffices to assume a plane square region A of side length
L as the space over which the random pattern of points/nodes is deployed.
We consider N points distributed uniformly and randomly over A. In this
arrangement, the coordinates of points/nodes (x, y) in the area A can be per-
ceived as the values of two independent random variables X,Y , due to the
randomness in the way the points were distributed over the plane A [98].
Then, assuming the point process is simple (i.e., with probability 1, no two
points are coincidental) and locally finite (i.e., any bounded region contains

 



i
i

“K15155” — 2013/9/10 — 9:05 i
i

i
i

i
i

262 Evolutionary Dynamics of Complex Communications Networks

only a finite or countably infinite number of points with probability 1), the
probability of the event {a point (x, y) is located in a subarea of region L2},
is described by the joint density function of X,Y :

fXY (x, y) = fX(x)fY (y) =

{
1
L2 , (x, y) ∈ A

0, otherwise
(A.1)

provided that X, Y are independent random variables uniformly distributed
in [0, L] [10].

Similarly, the probability that a point (x, y) belongs to the subarea B of
the area L2 equals:

P {(x, y) ∈ B} =

∫ ∫
B

fXY (x, y)dxdy =
|B|
L2

(A.2)

where | · | denotes the measure of a set.
The above means that this probability depends only on the size of the

geometric subarea of region L2 considered, and it is identical to the probability
that the point (x, y) belongs to another subarea C of the region of the same
measure |C| = |B|. This is due to the independence of X, Y , and it could
be considered a form of spatial Markov property , in a manner similar to the
time expression of Markov property (memoryless property).
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Appendix B

Semirings and Path
Problems

In this appendix two very important notions, both for the broader field of
shortest path problems on graphs (discrete optimization), as well as the
topology modification approaches presented in this book, are presented. More
specifically, in the current setting, these two structures are used for solving
the generalized shortest path problem in weighted graphs. Two such algebraic
structures are the monoid and the semiring, where the definition of the latter
is based on the definition of the former.

The notion of semiring is widely used for the modeling and computation of
the generalized shortest paths in weighted graphs spanning various and diverse
application frameworks. The semiring can be adapted via its two operators
⊕,⊗ for expressing diverse notions of “shortest paths,” as is will be explained
shortly. In the following, we first present the definitions of the monoid and the
semiring, and then illustrate their use for the computation of the generalized
shortest paths through some indicative examples.

B.1 Monoids

A monoid is a set S, together with a binary operation �, denotes as (S,�),
which satisfies the following three axioms:

• Closure: For all a, b ∈ S, also a� b ∈ S.

• Associativity: For all a, b and c ∈ S, the equation (a�b)�c = a�(b�c)
holds.

• Identity element: There exists an element e ∈ S, such that ∀a ∈ S, the
equation e� a = a� e = a holds.
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If a � b = b � a, i.e., the operator � is commutative, then the monoid is
characterized as commutative monoid.

B.2 Semirings

A semiring is an algebraic structure (S,⊕,⊗), where S is a set and ⊕,⊗ are
binary operators with the following properties:

• ⊕ is commutative, associative with neutral element 0̂ ∈ S, which means
that (S,⊕) is a commutative monoid, i.e., for a, b, c ∈ S:

a⊕ b = b⊕ a

(a⊕ b)⊕ c = a⊕ (b⊕ c)
a⊕ 0̂ = a

• ⊗ is associative with neutral element 1̂ ∈ S and absorbing element 0̂ ∈ S,
which means that (S,⊗) is a monoid, i.e., for a, b, c ∈ S:

(a⊗ b)⊗ c = a⊗ (b⊗ c)

a⊗ 1̂ = 1̂⊗ a = a

a⊗ 0̂ = 0̂⊗ a = 0̂

• ⊗ distributes over ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

The operators of the semiring can be applied in the case of computing
the generalized shortest path problem, in the following sense. The operator
⊗ is used to combine the values of the weights along a single path, while
the operator ⊕ serves the comparison among the values of different paths
(comparison of path length across paths) and the choice of the “shortest”
one. Let us consider the path p = (v0, v1, v2, ..., vn) starting from node v0

and ending at vn, where vi, i = 0, 1, ...,m are the network vertices and W =
[w(vi, vj)] is the weight matrix. Then the generalized weight of the path p
is equal to wp = w(v0, v1) ⊗ w(v1, v2) ⊗ ... ⊗ w(vn−1, vn). Let us consider
that there are l > 1 paths connecting the nodes v0, vn. Then the generalized
shortest path will have a weight equal to d(v0, vn) = wp1 ⊕ wp2 ⊕ ...wpl. To
illustrate this computation, the generalized shortest path between nodes i, j
in Fig. B.1 (the values on the links represent their corresponding weights)
equals to d(i, j) =

(
(wik ⊗ wkl)⊕ (wim ⊗ wml)

)
⊗ wln ⊗ wnj .
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wik
wkl

wim wml

wln wnj
i j

k

nl

Figure B.1: Network graph for the computation of the generalized shortest
path problem.

B.3 Examples

In the following, we present three specific examples of generalized shortest
path formulations/computations via semirings.

In the first, in order to compute the minimum cost path between each
pair of nodes (i.e., the weights represent cost values), the semiring S1 = (<∪
∞,min,+) is employed. The weight of each path is computed by summing
the cost of its links, while the path chosen is the one with the minimum cost
value.

In the second example, if one desires to compute the maximum possible
rate of traffic between each pair of nodes (the weights of the links represent the
maximum rate that can be supported by the corresponding link), the semiring
S2 = (< ∪ ∞,max,min) can be employed. This is so because the maximum
rate that can be supported by each path is the minimum rate of all its links,
while the path that is able to support the maximum rate is chosen.

Finally, in the case that the weights of network edges model trust values
that are defined in the set [0, 1] (with zero representing no trust at all, while
the unity representing total trust) the suitable semiring to be employed is S3 =
([0, 1],max,×). This semiring can be interpreted in the following manner. The
weight/trust value of a path is the product of the trust values of its constituent
links and the trust value that node vi assigns to node vj (if they are not directly
connected) equals to the maximum trust value of all the paths beginning from
vi and ending at vj .

For a detailed study of the path problems of networks based on semirings,
the interested reader should refer to [16], [112], [22].
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intuitive way of considering,

59
monotone decreasing graph,

61
monotone increasing graph,

61
probabilistic methods, 59
theorem, 61
threshold functions, 62

Random variable, 260
Ranking selection, 89
Recombination, 74, 83
Regular graph, 34
Relational graphs, 146, 193
Relative evidence, 103
Replacement worst, 91

Representation, 72–73
RGG, see Random Geometric

Graph

S
SA, see Simulated annealing
Scale-free networks, 158–176

Barabási–Albert algorithm,
165

Barabási–Albert model,
162–167

citation network, 161
continuum theory, 166
definition and properties,

158–160
Edge Churn, 169
events formalism, 170
examples and applications,

161–162
extensions of the

Barabási–Albert model,
168–176

growth, 159, 165
holistic modification

framework, 169
homogeneous coupling, 174
initial attractiveness, 168
Node Churn, 169
Poisson distribution, 159
power-law distributions, 159
preferential attachment, 165
rate equation, 167
signature, 159
weighted and directed

network graphs, 172
World Wide Web Graph, 175
zero-degree attractiveness,

168
Scramble mutation, 82
Secondary spanning tree (SST),

135
Self-adaptation, 91,94
Self-adaptive parameter control,

103
Semirings and path problems,
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263–265
adaptation of semiring, 263
algebraic structure, 264
examples, 265
generalized shortest path, 264
monoids, 263–264
semirings, 264
traffic between nodes, 265
trust values, 265

Shortest path communication, 238
“Sigma last” strategy, 99
Signal-to-Interference-plus-Noise-

Ratio (SINR),
190

Simple recombination, 85
Simulated annealing (SA), 79
Simulation problem, 69
Single arithmetic recombination,

86
Single Source Shortest Path

(SSSP), 127, 130
SINR, see Signal-to-Interference-

plus-Noise-Ratio
Six degrees of separation, 148–150
Small-world, 150
Small-world paradigm, 146–157

clustering coefficient, 147
examples and applications,

155–157
Internet-based social search

experiment, 149
Kleinberg’s model, 153–155
large-scale experiments,

148–150
Prolegomena (description of

a small-world network),
146–148

relational graphs, 146
six degrees of separation,

148–150
small-world graphs, 151, 153
Watts and Strogatz model,

150–153
SNA, see Social Network Analysis
Social Network Analysis (SNA),

109, see also Complex
and social network
analysis metrics and
features

Spanning tree, 37, 38
Spatial graphs, 192–195
Spatial Markov property, 262
SSSP, see Single Source Shortest

Path
SST, see Secondary spanning tree
Steady-state model, 88
Stochastic dominance, 231
Stochastic universal sampling, 90
Strength, 113
Subgraph, 32
Survival, 66
Survivor selection, 75
Swap mutation, 82
Symbiosis, 105
System identification problem, 69

T
Throughput, 190
Topology Control (TC), 191, see

also Inverse Topology
Control-based
approaches

Topology Modification
Mechanism, 209, 220,
238

Tournament selection, 90
Transport capacity, 191
Trust values, 236, 265
Tutte’s theorem, 41

U
Unicast link, 189
Uniform arithmetic

recombination, 85
Uniform crossover, 84
Uniform mutation, 82

V
Vertex strength, 113
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W
Walk, 46
Watts and Strogatz (WS) model,

150–153
WEC, see Weighted Edge Churn
Weighted Edge Churn (WEC),

208, 209
Weighted Node Churn (WNC),

208, 216
Whole arithmetic recombination,

86
Wired shortcuts, 196
Wireless multi-hop

communications,
188–191

assumption, 189
delay of message delivery, 190
Physical Model, 190
Random Geometric Graph,

189
self-organization, 188
Signal-to-Interference-plus-

Noise-Ratio,
190

throughput, 190
transport capacity, 191
unicast link, 189

Wireless shortcuts, 202
WNC, see Weighted Node Churn
WS model, see Watts and

Strogatz model, 150–153

Z
Zero-degree attractiveness, 168
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