This proposal concerns the financing of the ongoing development of smoldot.

Overview: what is SMOIdOt?.........cooiiir e 1
HIStOry @nd teamo ettt e neeeneeeees 2
Delivery of the previous milestones............ccccvmimiiiiniiiir e ——— 2
Project objectives, status, and direction..........cccccccmrrriiiiiiii 3
Being a correct and secure implementation..............cccoooiiiiiieiccci e 3
Providing a good €nd USEr €XPEFIENCE..........cceeuiiuuiiie e eee e e e e e e e e e e eeeeraaaaaas 4
Improving the infrastructure developers experience...........ccccovvveviiiiiiiii 5
Improving the developers’ EXPErIENCE. e eeeeeeeeeeeeeeeeeeeeeees 5
Building a new full node implementation (Iow priority)..........cccoeeeeeieiiiiiiii e 6
Quarterly milestones and budget............ccoiiiiiiii e ——————————— 6

Overview: what is smoldot?

This section contains a general presentation of the smoldot project and is present in every
smoldot treasury proposal. If you are already familiar with smoldot and its purpose, | invite
you to skip directly to the milestones delivery section.

A blockchain, such as the Polkadot blockchain, consists in two things: a certain state (e.g. a
list of accounts), and a peer-to-peer network. There exists only two ways to access the state:
either run a client software (such as the client software made by Parity Technologies) that
connects to this peer-to-peer network, or rely on something else running that client software
for you. In both cases, this client software is critically important.

Currently, most blockchain-related web applications or Uls connect to a trusted server (such
as with Infura or so-called JSON-RPC nodes) that runs the client software and acts as an
intermediary between the web application and the actual blockchain. In other words, the web
server "runs the client software for you”. This trusted server is a considerable security issue:
it can be hijacked and send bad information to the web application, can go down and leave
the web application non-functional, etc. Additionally, running these trusted servers incurs
significant complexity and maintenance costs. Getting rid of these trusted servers is one of
the primary objectives of building a decentralization blockchain.

The smoldot light client is a client software capable of connecting to the peer-to-peer
network. Compared to the official client, the smoldot light client intentionally provides fewer
capabilities (it cannot author blocks, vote for finality, or easily look at the history of the chain)
but is considerably lighter in terms of CPU, memory, and disk space consumption. Because
it is so light, the smoldot light client can be embedded within a web page in order for this web
page to establish a direct connection to the peer-to-peer network of the chain. This
eliminates the need to rely on a trusted server, and thus eliminates the security issue and
maintenance costs.

The smoldot GitHub repository can be found here: https://github.com/smol-dot/smoldot

https://infura.io/
https://github.com/paritytech/smoldot

| invite you to read the README of the GitHub repository if you are interested in more
details.

History and team

The smoldot project started in December 2019 by me, Pierre Krieger, the submitter of this
proposal, and is presently still driven entirely by him.

The project was initially started within Parity Technologies. From February to August 2023, it
has been financed through Gov1 treasury proposals. Since August 2023, it has been
financed through OpenGov treasury proposals.

Pierre is a rank 5 Polkadot technical fellowship member. He worked for Parity Technologies
for roughly 5 years, between 2017 and 2022. At the time of writing of this text, he is the third
biggest contributor to Substrate with 623 pull requests and the biggest contributor to
rust-libp2p with 640 pull requests. He initially started and led the peer-to-peer networking
team in addition to contributing to other parts of Substrate (e.g. HTTP requests in offchain
workers). Pierre is likely one of the most knowledgeable people when it comes to how the
Polkadot client works.

Before and during his time at Parity Technologies, Pierre has also led several other open
source projects, such as vulkano (3.6k GitHub stars), glium (3.1k GitHub stars), glutin (1.8k
GitHub stars), or redshirt (1.4k GitHub stars).

- GitHub profile: https://qithub.com/tomaka/

- E-mail address: pierre.krieger1708@gmail.com

- Matrix account: @tomaka17:matrix.org

- DOT address (for anything smoldot-related):
15kgSF60SMFeaN7xYAykihoyQFZL Rul1cF5FaBdiSDHJ233H5

At the time of the writing of this text, the smoldot repository contains 136k lines of Rust
source code. Despite its size and the overall complexity of writing a client implementation,
the source code is overall well organized, of good quality, reasonably well documented, and
no large-scale refactoring is likely to ever be needed. It is unlikely for any major blocker to be
encountered in the future with regards to implementing a specific feature. Additionally, the
list of open issues is actively maintained, and the size of the backlog is reasonable.

One of the main issues that smoldot could potentially face is the fact that it is being built only
by one person. However, it should be considered that the code of smoldot is reasonably
clear and reasonably well documented, making it relatively easy for someone else to take
over if it ever becomes necessary. Furthermore, smoldot is nothing more than source code,
licensed under GPL3. Anyone can legally fork the code and continue working on it
themselves.

Delivery of the previous milestones

This is not the first proposal for the financing of the development of smoldot. The previous
proposal can be found here.

https://github.com/smol-dot/smoldot/#readme
http://github.com/tomaka/
https://github.com/paritytech/substrate/pulls?q=is%3Apr+author%3Atomaka
https://github.com/libp2p/rust-libp2p/pulls?q=is%3Apr+author%3Atomaka+
https://github.com/paritytech/substrate/pull/3447
https://github.com/paritytech/substrate/pull/3447
https://github.com/vulkano-rs/vulkano
https://github.com/glium/glium
https://github.com/rust-windowing/glutin
https://github.com/tomaka/redshirt/
https://github.com/tomaka/
mailto:pierre.krieger1708@gmail.com
https://explorer.polkascan.io/polkadot/account/15kgSF6oSMFeaN7xYAykihoyQFZLRu1cF5FaBdiSDHJ233H5
https://docs.google.com/document/d/1hXWsYPyvsF5KjU320hXseaoY4qxZ6TJLeZKt3WzcGEw

The table below recapitulates the milestones from the previous treasury proposal and
presents the work that has been done. Keep in mind that work is still happening as this
proposal is being discussed, and as such the table below might be missing some items.

Title and work done

Remarks

General maintenance of the project

Too many changes to list reasonably, see
https://github.com/smol-dot/smoldot/commits/main?branch

=main for the full list of commits.

| also invite you to look at the CHANGELOG. Keep in
mind, however, that the CHANGELOG doesn’t cover
internal changes.

The maintenance notably included a lot of work
related to the new JSON-RPC API, and a
rewrite of the Noise implementation and of one
of the main networking APls in order to improve
performance.

Research and implement a proper discovery
and peering process

Still in progress as of the time of writing of this
text. The implementation effort would currently
be too tedious, and will be done after #478.

Refactor and fix all the remaining issues in the
warp syncing code

#1060

Done! The refactoring has unfortunately not
improved much the time between initialization
and warp sync success (#864), but the code is
now much more simple and further
investigation will be done.

Implement the new JSON-RPC and the
most-commonly called legacy JSON-RPC
functions in the full node

Tracking issue: #1006
See all the linked pull requests.

All the JSON-RPC functions used by
PolkadotJS in its main Ul have been
implemented. The new JSON-RPC API hasn’t
been fully implemented due to it being very
tedious to test. However, all the necessary
changes for example to the database API have
been done. The new JSON-RPC API will be
fully implemented once the full node is fully
usable, which might be the case after the
current proposal.

Project objectives, status, and direction

On September 15th, | gave a technical talk at the Protocol Berg conference about
smoldot’s internals. You can find the replay here.

The smoldot project is following five main high-level objectives: being a correct and secure
implementation, providing a good end user experience, improving the infrastructure
developers experience, improving the developers’ experience, and building a new full node

implementation.

Let’s take a look at the status of each of these objectives, and how smoldot plans to fulfill

them in the long term.

https://github.com/smol-dot/smoldot/commits/main?branch=main
https://github.com/smol-dot/smoldot/commits/main?branch=main
https://github.com/smol-dot/smoldot/blob/main/wasm-node/CHANGELOG.md
https://github.com/smol-dot/smoldot/pull/870
https://github.com/smol-dot/smoldot/pull/870
https://github.com/smol-dot/smoldot/issues/918
https://github.com/smol-dot/smoldot/issues/918
https://github.com/smol-dot/smoldot/issues/478
https://github.com/smol-dot/smoldot/pull/1060
https://github.com/smol-dot/smoldot/issues/864
https://github.com/smol-dot/smoldot/issues/1006
https://watch.protocol.berlin/ethberlin/protocol_berg/session/creating_a_browserembedded_light_client_a_postmortem

Being a correct and secure implementation

The most important objective of smoldot is to conform to the Polkadot protocol.

This objective is as a whole generally fulfilled. Unfortunately, it is sometimes hard to know
whether smoldot behaves as it should because the official specification is still very
incomplete. The recent creation of the RFCs repository is however a good step towards
formalizing changes to the specification.

It would be desirable for smoldot to undergo an audit in the future. | would be happy to
collaborate with an auditing company that would be willing to audit the source code
of smoldot. | am also, more generally, happy to answer any technical question concerning
aspects of the source code.

Providing a good end user experience

While end users are normally not directly using smoldot, they are using software that relies
on smoldot. For example, the PolkadotJS Ul or the staking dashboard both have an option
that allows using smoldot to connect to the chain. The ultimate end goal is for all
Polkadot/Kusama/... Uls and all parachain Uls to use a light client such as smoldot.

As such, if smoldot is slow, the Ul is slow as well.

A new JSON-RPC API has been proposed for watching and following the state of the
networking, and smoldot will implement it. This will make it possible to add ways to visualize
how smoldot connects to the peer-to-peer network of a chain, making it easier to potentially
understand why things aren’t working when they aren’t working.

Improving the infrastructure developers experience

The objective of smoldot is to eliminate the need for JSON-RPC nodes. This has the side
effect of removing the burden of having to deploy and maintain these JSON-RPC nodes for
the teams building parachains.

Smoldot is currently still waiting for the WebRTC feature {o be implemented in Substrate.

Additionally, REC 8 has recently been approved, making the handling of bootnodes
automatic. It is currently waiting to be implemented in Substrate.

Improving the developers’ experience

Smoldot has re-implemented many Substrate features, sometimes in a way that makes them
more simple to use externally.

If you are a developer in need of specialized tools that Substrate doesn’t provide, or
that Substrate does provide but in a way that is too difficult to use, feel free to open
an issue or discussion in the smoldot repository.

https://github.com/w3f/polkadot-spec
https://github.com/polkadot-fellows/RFCs/
http://polkadot.js.org/apps/
https://staking.polkadot.network/
https://github.com/paritytech/json-rpc-interface-spec/pull/91
https://github.com/paritytech/substrate/pull/12529
https://github.com/polkadot-fellows/RFCs/pull/8
https://github.com/paritytech/polkadot-sdk/issues/1825

Building a new full node implementation

While most of the development of smoldot focuses around its light client, the smoldot
repository also contains a prototype of a full node built upon the same primitives that the light

client uses.

Having multiple functional full node implementations would be a good thing for the Polkadot
network, as it would reduce the risk that the network collapses in case of a bug or security

issue in the unique client.

Previously, very little effort was spent on improving the smoldot work-in-progress full node
implementation. In this proposal and future ones, however, | would like to focus a bit more on
it. While implementing a relay chain validator would be a very difficult endeavor for a single
person, implementing a full node (non-validator) or a parachain collator is a realistic

long-term goal.

Quarterly milestones and budget

Based on the directions laid out in the previous section, work items for the next three months
have been picked. The choice of these work items was done based on what seems to me to
be the highest priority. However, | am totally open to feedback if you think that priority

should be put somewhere else.

This proposal covers three months of work, from August to October, after which a new

proposal will be submitted.

An hourly rate of 300 € is applied.

General maintenance of the project:

- Fix panics and/or security issues that may arise

- Fix quality of life issues

- Fix overly-high computational complexity issues

- Improve the project-wide documentation and code
readability

- Keep dependencies up-to-date

A lot of changes are either unpredictable at the moment, or are too small to be
their own milestone. See the previous milestone delivery for examples.

80 hours

24 000 €

Periodically rotate the networking key

When a light client is running for an extensive period of time, it is currently
possible for full nodes to track it due to the fact that smoldot always uses the
same networking key for as long as it is running. In order to improve privacy, it
is desirable to change this networking key periodically.

While the change itself seems relatively easy, it unfortunately requires a
refactoring of some of the networking code.

Tracking issue: #44

60 hours

18 000 €

https://github.com/smol-dot/smoldot/issues/44

Implement the “sudo_network_unstable_watch® JSON-RPC API | 40 hours 12 000 €
This new JSON-RPC API will make it possible to visualize how smoldot

connects to the peer-to-peer network of a chain, which makes it easier to

understand connectivity issues, but also can be used for teaching end users or

developers on how the client works.

Implement warp syncing for the full node 60 hours 18 000 €
The full node will now warp sync directly to the head of the chain. This should

make the full node actually usable.

Tracking issue: #131

Also requires #1109, as otherwise the full node will crash right after finishing

the warp sync

Total 240 hours | 72 000 €

The exact amount in DOTs will be calculated when the proposal is submitted on chain using
the 7-days average found on subscan and the current USD <-> EUR exchange rate found

on xe.com. The destination address is

15kgSF60SMFeaN7xYAykihoyQFZLRu1cF5FaBdiSDHJ233HS5.

Please note that these milestones are provided as a best effort estimate, and the reality
might differ. This proposal assumes a certain level of trust, and an emphasis is made on
code quality rather than delivering the milestones at any cost. The actual work that has been
performed will be showcased in the treasury proposal asking to fund the next 3-months
period. If you were to be unsatisfied with my work, | am open to discussing the way | focus

my efforts.

https://github.com/paritytech/json-rpc-interface-spec/pull/91
https://github.com/smol-dot/smoldot/issues/131
https://github.com/smol-dot/smoldot/issues/1109
https://polkadot.subscan.io/tools/charts?type=price
https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD
https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD

