Zilog Z80

Zilog Z80

An early Z80 microprocessor, manufactured in June 1976 according to the date stamp.
Produced From March 1976 to present
Common manufacturer(s)
Max. CPU clock rate 2.5 MHz to 8 MHz with CMOS variant up to 20 MHz
A May 1976 advertisement for the Zilog Z-80 8-bit microprocessor

The Z80 CPU is an 8-bit based microprocessor. It was introduced by Zilog in 1976 as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his then 11 employee Zilog from early 1975 until March 1976, when the first fully working samples were delivered. With the revenue from the Z80, the company could then build its own chip factories and grow to over a thousand employees over the following two years.[2]

The Zilog Z80 was a software compatible extension and enhancement of the Intel 8080 and, like it, was mainly aimed at embedded systems. According to the designers, the primary targets for the Z80 CPU (and its optional support and peripheral ICs[3]) were products like intelligent terminals, high end printers and advanced cash registers as well as telecom equipment, industrial robots and other kinds of automation equipment.

The Z80 was officially introduced on the market in July 1976 and came to be widely used also in general desktop computers using CP/M and other operating systems as well as in the home computers of the 1980s. It was also common in military applications, musical equipment, such as synthesizers, and in the computerized coin operated video games of the late 1970s and early 1980, the arcade machines or video game arcade cabinets.

In the early 1980s, the Z80 was the most commonly used CPU of all time, and, along with the MOS Technology 6502 family, dominated the home computer market from the late 1970s to the mid 1980s.[4][5]

Zilog licensed the Z80 to the US based Synertek and Mostek, that had helped them with initial production, as well as to a Europan second source manufacturer, SGS. The design was copied also by several Japanese, East European and Russian manufacturers.[6] This enabled the Z80 to gain acceptance in the world market since large companies like NEC, Toshiba, Sharp, and Hitachi, started to manufacture the device (or their own Z80 compatible designs). In recent decades Zilog has refocused on the ever-growing market for embedded systems (for which the original Z80 and the Z180 were designed) and the most recent Z80-compatible microcontroller family, the fully pipelined 24-bit eZ80 with a linear 16 MB address range, has been successfully introduced alongside the simpler Z180 and Z80 products.


One of the many clones of the Z80 microprocessor. Total die size is 4950×4720 µm using a 5 µm technology node process.
The Z80's original DIP40 chip package pinout

The Z80 came about when physicist Federico Faggin left Intel at the end of 1974 to found Zilog with Ralph Ungermann. At Fairchild Semiconductor, and later at Intel, Faggin had been working on fundamental transistor and semiconductor manufacturing technology. He also developed the basic design methodology used for memories and microprocessors at Intel and led the work on the Intel 4004, the 8080 and several other ICs. Masatoshi Shima, the principal logic and transistor level-designer of the 4004 and the 8080 under Faggin's supervision, also joined the Zilog team.

By March 1976, Zilog had developed the Z80 as well as an accompanying assembler based development system for its customers, and by July 1976, this was formally launched onto the market.[7] (Some of the Z80 support and peripheral ICs were under development at this point, and many of them were launched during the following year.)

Early Z80s were manufactured by Synertek and Mostek, before Zilog had its own manufacturing factory ready, in late 1976. These companies were chosen because they could do the ion implantation needed to create the depletion-mode MOSFETs that the Z80 design used as load transistors in order to cope with a single 5 Volt power supply.[8]

Faggin designed the instruction set to be binary compatible with the Intel 8080[9][10] so that most 8080 code, notably the CP/M operating system and Intel's PL/M compiler for 8080 (as well as its generated code), would run unmodified on the new Z80 CPU. Masatoshi Shima designed most of the microarchitecture as well as the gate and transistor levels of the Z80 CPU, assisted by a small number of engineers and layout people.[11][12][13]

The Z80 offered many improvements over the 8080:[10]

The Z80 took over from the 8080 and its offspring, the 8085, in the processor market,[21] and became one of the most popular 8-bit CPUs.[4][5] Perhaps a key to the initial success of the Z80 was the built-in DRAM refresh, and other features which allowed systems to be built with fewer support chips (Z80 embedded systems typically use static RAM and hence do not need this refresh).

For the original NMOS design, the specified upper clock frequency limit increased successively from the introductory 2.5 MHz, via the well known 4 MHz (Z80A), up to 6 (Z80B) and 8 MHz (Z80H).[22][23] CMOS versions were also developed with specified upper frequency limits ranging from 4 MHz up to 20 MHz for the version sold today. The CMOS versions also allowed low-power sleep with internal state retained, having no lower frequency limit.[24] The fully compatible derivatives HD64180/Z180[25][26] and eZ80 are currently specified for up to 33 and 50 MHz respectively.


Programming model and register set

The Z80 architecture

The programming model and register set are conventional and similar to the related x86 family. The 8080 compatible registers AF, BC, DE, HL are duplicated as two separate banks in the Z80,[27] where the processor can quickly switch from one bank to the other;[28] a feature useful for speeding up responses to single-level, high-priority interrupts. This feature was present in the Datapoint 2200 but was not implemented by Intel in the 8008. The dual register-set makes sense as the Z80 (like most microprocessors at the time) was really intended for embedded use, not for personal computers, or the yet-to-be invented home computers. According to one of the designers, Masatoshi Shima, the market focus was on high performance printers, high-end cash registers, and intelligent terminals. The two register sets also turned out to be quite useful for heavily optimized manual assembly-language coding.


The Z80 registers
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 (bit position)
Main registers
A Flags AF (accumulator and flags)
H L HL (indirect address)
Alternate registers
A' Flags' AF' (accumulator and flags)
B' C' BC'
D' E' DE'
H' L' HL' (indirect address)
Index registers
IX Index X
IY Index Y
SP Stack Pointer
Other registers
  I Interrupt vector
  R Refresh counter
Program counter
PC Program Counter
Status register
  S Z - H - P N C Flags

As on the 8080, 8-bit registers are typically paired to provide 16-bit versions. The 8080 compatible registers[29] are:

The new registers introduced with the Z80 are:

There is no direct access to the alternate registers; instead, two special instructions, EX AF,AF' and EXX,[29] each toggles one of two multiplexer flip-flops; this enables fast context switches for interrupt service routines: EX AF, AF' may be used alone (for really simple and fast interrupt routines) or together with EXX to swap the whole BC, DE, HL set; still much faster than pushing the same registers on the stack (slower, lower priority, or multi level interrupts normally use the stack to store registers).

The refresh register, R, increments each time the CPU fetches an opcode (or opcode prefix) and has therefore no simple relationship with program execution. This has sometimes been used to generate pseudorandom numbers in games, and also in software protection schemes. It has also been employed as a "hardware" counter in some designs; an example of this is the ZX81, which lets it keep track of character positions on the TV screen by triggering an interrupt at wrap around (by connecting INT to A6).

The interrupt vector register, I, is used for the Z80 specific mode 2 interrupts (selected by the IM 2 instruction). It supplies the high byte of the base address for a 128-entry table of service routine addresses which are selected via an index sent to the CPU during an interrupt acknowledge cycle; this index is simply the low byte part of the pointer to the tabulated indirect address pointing to the service routine.[17] The pointer identifies a particular peripheral chip and/or peripheral function or event, where the chips are normally connected in a so-called daisy chain for priority resolution. Like the refresh register, this register has also sometimes been used creatively; in interrupt modes 0 and 1 (or in a system not using interrupts) it can be used as simply another 8-bit data register.

The instructions LD A,R and LD A,I affect the Z80 flags register, unlike all the other LD (load) instructions. The Sign (bit 7) and Zero (bit 6) flags are set according to the data loaded from the Refresh or Interrupt source registers. For both instructions, the Parity/Overflow flag (bit 2) is set according to the current state of the IFF2 flip-flop.[30]

Z80 assembly language

Datapoint 2200 and Intel 8008

The first Intel 8008 assembly language was based on a very simple (but systematic) syntax inherited from the Datapoint 2200 design. This original syntax was later transformed into a new, somewhat more traditional, assembly language form for this same original 8008 chip. At about the same time, the new assembly language was also extended to accommodate the added addressing possibilities in the more advanced Intel 8080 chip (the 8008 and 8080 shared a language subset without being binary compatible; however, the 8008 was binary compatible with the Datapoint 2200).

In this process, the mnemonic L, for LOAD, was replaced by various abbreviations of the words LOAD, STORE and MOVE, intermixed with other symbolic letters. The mnemonic letter M, for memory (referenced by HL), was lifted out from within the instruction mnemonic to become a syntactically freestanding operand, while registers and combinations of registers became very inconsistently denoted; either by abbreviated operands (MVI D, LXI H and so on), within the instruction mnemonic itself (LDA, LHLD and so on), or both at the same time (LDAX B, STAX D and so on).

Datapoint 2200 & i8008 i8080 Z80 i8086/i8088
before ~1973 ~1974 1976 1978
-- STAX D LD (DE),A MOV [DX],AL[31]
LDI 56 MVI D,56 LD D,56 MOV DL,56
LMI 56 MVI M,56 LD (HL),56 MOV byte ptr [BP],56
-- LDA 1234 LD A,(1234) MOV AL,[1234]
-- STA 1234 LD (1234),A MOV [1234],AL
-- -- LD B,(IX+56) MOV BL,[SI+56]
-- -- LD (IX+56),C MOV [SI+56],CL
-- -- LD (IY+56),78 MOV byte ptr [DI+56],78
-- LXI B,1234 LD BC,1234 MOV BX,1234
-- LXI H,1234 LD HL,1234 MOV BP,1234
-- SHLD 1234 LD (1234),HL MOV [1234],BP
-- LHLD 1234 LD HL,(1234) MOV BP,[1234]
-- -- LD BC,(1234) MOV BX,[1234]
-- -- LD IX,(1234) MOV SI,[1234]

Illustration of four syntaxes, using samples of equivalent, or (for 8086) very similar, load and store instructions.[32] The Z80 syntax uses parentheses around an expression to indicate that the value should be used as a memory address (as mentioned below), while the 8086 syntax uses brackets instead of ordinary parentheses for this purpose. Both Z80 and 8086 use the + sign to indicate that a constant is added to a base register to form an address

New syntax

Because Intel had a copyright on their assembly mnemonics,[33] a new assembly syntax had to be developed for the Z80. This time a more systematic approach was used:

These principles made it straightforward to find names and forms for all new Z80 instructions, as well as orthogonalizations of old ones, such as LD BC,(1234).

Apart from naming differences, and despite a certain discrepancy in basic register structure, the Z80 and 8086 syntax are virtually isomorphic for a large portion of instructions. Only quite superficial similarities (such as the word MOV, or the letter X, for extended register) exist between the 8080 and 8086 assembly languages, although 8080 programs can be assembled into 8086 object code using a special assembler or translated to 8086 assembly language by a translator program.[35][36]

Instruction set and encoding

The Z80 uses 252 out of the available 256 codes as single byte opcodes ("root instruction"); the four remaining codes are used extensively as opcode prefixes:[37] CB and ED enable extra instructions and DD or FD selects IX+d or IY+d respectively (in some cases without displacement d) in place of HL. This scheme gives the Z80 a large number of permutations of instructions and registers; Zilog categorizes these into 158 different "instruction types", 78 of which are the same as those of the Intel 8080[37] (allowing operation of most 8080 programs on a Z80). The Zilog documentation further groups instructions into the following categories:

No multiply instruction is available in the original Z80.[38] Different sizes and variants of additions, shifts, and rotates have somewhat differing effects on flags because most[39] of the flag-changing properties of the 8080 were copied.

The Z80 has four new LD instructions that can load the DE and BC register pairs from memory, and load memory from these two register pairs -- unlike the 8080.[40] As on the 8080, load instructions do not affect the flags (except for the special purpose I and R register loads). A quirk (common with the 8080) of the register-to-register load instructions is that each of the 8-bit registers can be loaded from themselves (e.g. LD A,A). This is effectively a NOP.

Unlike the 8080, the Z80 can jump to a relative address using a signed 8-bit displacement. Only the Zero and Carry flags can be tested for these new two-byte JR instructions.

A two-byte instruction specialized for program looping is new to the Z80. DJNZ (Decrement Jump if Non-Zero) takes a signed 8-bit displacement as an immediate operand. The B register is decremented. If the result is nonzero then program execution jumps relative to the address of the PC plus the displacement. The flags remain unaltered. To perform an equivalent loop on an 8080 would require separate decrement and jump (to a two-byte absolute address) instructions, and the flag register would be altered.

The index register (IX/IY) instructions can be useful for accessing data organised in fixed heterogenous structures (such as records) or at fixed offsets relative a variable base address (as in recursive stack frames) and can also reduce code size by removing the need for multiple short instructions using non-indexed registers. However, although they may save speed in some contexts when compared to long/complex "equivalent" sequences of simpler operations, they incur a lot of additional CPU time (e.g. 19 T-states to access one indexed memory location vs. as little as 11 to access the same memory using HL and INCrement it to point to the next). Thus, for simple or linear accesses of data, IX and IY tend to be slower. Still, they may be useful in cases where the 'main' registers are all occupied, by removing the need to save/restore registers. Their officially undocumented 8-bit halves (see below) can be especially useful in this context, for they incur less slowdown than their 16-bit parents. Similarly, instructions for 16-bit additions are not particularly fast (11 clocks) in the original Z80; nonetheless, they are about twice as fast as performing the same calculations using 8-bit operations, and equally important, they reduce register usage.

The 10-year-newer microcoded Z180 design could initially afford more "chip area", permitting a slightly more efficient implementation (using a wider ALU, among other things); similar things can be said for the Z800, Z280, and Z380. However, it was not until the fully pipelined eZ80 was launched in 2001 that those instructions finally became approximately as cycle-efficient as it is technically possible to make them, i.e. given the Z80 encodings combined with the capability to do an 8-bit read or write every clock cycle.

Undocumented instructions

The index registers, IX and IY, were intended as flexible 16 bit pointers, enhancing the ability to manipulate memory, stack frames and data structures. Officially, they were treated as 16-bit only. In reality, they were implemented as a pair of 8-bit registers,[41] in the same fashion as the HL register, which is accessible either as 16 bits or separately as the High and Low registers. Even the binary opcodes (machine language) were identical, but preceded by a new opcode prefix.[42] Zilog published the opcodes and related mnemonics for the intended functions, but did not document the fact that every opcode that allowed manipulation of the H and L registers was equally valid for the 8 bit portions of the IX and IY registers. As an example, the opcode 26h followed by an immediate byte value (LD H,n) will load that value into the H register. Preceding this two-byte instruction with the IX register's opcode prefix, DD, would instead result in the most significant 8 bits of the IX register being loaded with that same value. A notable exception to this would be instructions similar to LD H,(IX+d) which make use of both the HL and IX or IY registers in the same instruction;[42] in this case the DD prefix is only applied to the (IX+d) portion of the instruction.

There are several other undocumented instructions as well.[43] Undocumented or illegal opcodes are not detected by the Z80 and have various effects, some of which are useful. However, as they are not part of the formal definition of the instruction set, different implementations of the Z80 are not guaranteed to work the same way for every undocumented opcode.


The OTDR instruction doesn't conform to the Z80 documentation. Both OTDR and OTIR are supposed to leave the carry C unaffected. OTIR functions correctly; however, during the execution of the OTDR instruction, the carry takes the results of a spurious compare between the accumulator and what has last been output by the OTDR instruction.

Example code

The following Z80 assembly source code is for a subroutine named memcpy that copies a block of data bytes of a given size from one location to another. Important: The example code does not handle a certain case where the destination block overlaps the source; a fatal bug. The sample code is extremely inefficient, intended to illustrate various instruction types, rather than best practices for speed. In particular, the Z80 has a single instruction that will execute the entire loop (LDIR). The data block is copied one byte at a time, and the data movement and looping logic utilizes 16-bit operations. Note that the assembled code is binary-compatible with the Intel 8080 and 8085 CPUs.

 1000 78         
 1001 B1         
 1002 C8         
 1003 1A         
 1004 77         
 1005 13         
 1006 23         
 1007 0B         
 1008 C3 00 10   
 ; memcpy --
 ; Copy a block of memory from one location to another.
 ; Entry registers
 ;      BC - Number of bytes to copy
 ;      DE - Address of source data block
 ;      HL - Address of target data block
 ; Return registers
 ;      BC - Zero

             org     1000h       ;Origin at 1000h
 memcpy      public
 loop        ld      a,b         ;Test BC,
             or      c           ;If BC = 0,
             ret     z           ;Return
             ld      a,(de)      ;Load A from (DE)
             ld      (hl),a      ;Store A into (HL)
             inc     de          ;Increment DE
             inc     hl          ;Increment HL
             dec     bc          ;Decrement BC
             jp      loop        ;Repeat the loop

Instruction execution

Each instruction is executed in steps that are usually termed machine cycles (M-cycles), each of which can take between three and six clock periods (T-cycles).[44] Each M-cycle corresponds roughly to one memory access and/or internal operation. Many instructions actually end during the M1 of the next instruction which is known as a fetch/execute overlap.

Examples of typical instructions (R=read, W=write)


instruction M1 M2 M3 M4 M5 M6
1[45] INC BC opcode
2[46] ADD A,n opcode n
3[47] ADD HL,DE opcode internal internal
4[48] SET b,(HL) prefix opcode R(HL), set W(HL)
5[49] LD (IX+d),n prefix opcode d n,add W(IX+d)
6[50] INC (IY+d) prefix opcode d add R(IY+d),inc W(IY+d)

The Z80 machine cycles are sequenced by an internal state machine which builds each M-cycle out of 3, 4, 5 or 6 T-cycles depending on context. This avoids cumbersome asynchronous logic and makes the control signals behave consistently at a wide range of clock frequencies. It also means that a higher frequency crystal must be used than without this subdivision of machine cycles (approximately 2–3 times higher). It does not imply tighter requirements on memory access times, however, as a high resolution clock allows more precise control of memory timings and memory therefore can be active in parallel with the CPU to a greater extent (i.e. sitting less idle), allowing more efficient use of available memory bandwidth.

One central example of this is that, for opcode fetch, the Z80 combines two full clock cycles into a memory access period (the M1-signal). In the Z80 this signal therefore lasts for a much larger (relative) part of the typical instruction execution time than in a more asynchronous processor design such as the 6800, 6502, or similar, where this period would typically last only a (rather imprecise) fraction (typically 30-40%) of a clock cycle. With memory chip affordability (i.e. access times around 450-250 ns in the 1980s) typically determining the fastest possible access time, this meant that such designs were locked to a significantly longer clock cycle (i.e. lower internal clock speed) than the Z80.

Memory, especially EPROM, but also Flash, were generally slow as compared to the state machine sub-cycles (clock cycles) used in contemporary microprocessors. The shortest machine cycle that could safely be used in embedded designs has therefore often been limited by memory access times, not by the maximum CPU frequency (especially so during the home computer era). However, this relation has slowly changed during the last decades, particularly regarding SRAM; cacheless, single-cycle designs such as the eZ80 have therefore become much more meaningful recently.

The content of the refresh register R is sent out on the lower half of the address bus along with a refresh control signal while the CPU is decoding and executing the fetched instruction. During refresh the contents of the Interrupt register I are sent out on the upper half of the address bus.[51]

Compatible peripherals

Zilog introduced a number of peripheral parts for the Z80, which all supported the Z80's interrupt handling system and I/O address space. These included the Counter/Timer Channel (CTC),[52] the SIO (Serial Input Output), the DMA (Direct Memory Access), the PIO (Parallel Input-Output) and the DART (Dual Asynchronous Receiver Transmitter). As the product line developed, low-power, high-speed and CMOS versions of these chips were produced.

Like the 8080, 8085 and 8086 processors, but unlike processors such as the Motorola 6800 and MOS Technology 6502, the Z80 and 8080 had a separate control line and address space for I/O instructions. While some Z80-based computers such as the Osborne 1 used "Motorola-style" memory mapped input/output devices, usually the I/O space was used to address one of the many Zilog peripheral chips compatible with the Z80. Zilog I/O chips supported the Z80's new mode 2 interrupts which simplified interrupt handling for large numbers of peripherals.

The Z80 was officially described as supporting 16-bit (64 KB) memory addressing, and 8-bit (256 ports) I/O-addressing. All I/O instructions actually assert the entire 16-bit address bus. OUT (C),reg and IN reg,(C) places the contents of the entire 16 bit BC register on the address bus;[53] OUT (n),A and IN A,(n) places the contents of the A register on b8-b15 of the address bus and n on b0-b7 of the address bus. A designer could choose to decode the entire 16 bit address bus on I/O operations in order to take advantage of this feature, or use the high half of the address bus to select subfeatures of the I/O device. This feature has also been used to minimise decoding hardware requirements, such as in the Amstrad CPC/PCW and ZX81.

Second sources and derivatives

Second sources

Mostek's Z80: MK3880
NEC's μPD780C Z80 second-sourced by NEC
Sharp's LH0080 Sharp version of the Z80
The T34BM1, a Russian Z80 clone
Toshiba TMPZ84C015; a standard Z80 with several Z80-family peripherals on chip in a QFP package
The Z80 compatible Hitachi HD64180
Z180 in a PLCC package
The Z80 compatible R800 in QFP
The Z280 in a PLCC package

Mostek, who produced the first Z80 for Zilog, offered it as second-source as MK3880. SGS-Thomson (now STMicroelectronics) was a second-source, too, with their Z8400. Sharp and NEC developed second sources for the NMOS Z80, the LH0080 and µPD780C respectively. The µPD780C was used in the Sinclair ZX80 and ZX81, original versions of the ZX Spectrum, and several MSX computers, and in musical synthesizers such as Oberheim OB-8 and others. The LH0080 was used in various home computers and personal computers made by Sharp and other Japanese manufacturers, including Sony MSX computers, and a number of computers in the Sharp MZ series.[54]

Toshiba made a CMOS-version, the TMPZ84C00, which is believed (but not verified) to be the same design also used by Zilog for its own CMOS Z84C00. There were also Z80-chips made by GoldStar (alias LG) and the BU18400 series of Z80-clones (including DMA, PIO, CTC, DART and SIO) in NMOS and CMOS made by ROHM Electronics.

In East Germany, an unlicensed clone of the Z80, known as the U880, was manufactured. It was very popular and was used in Robotron's and VEB Mikroelektronik Mühlhausen's computer systems (such as the KC85-series) and also in many self-made computer systems. In Romania another unlicensed clone could be found, named MMN80CPU and produced by Microelectronica, used in home computers like TIM-S, HC, COBRA.

Also, several clones of Z80 were created in the Soviet Union, notable ones being the T34BM1, also called КР1858ВМ1 (parallelling the Russian 8080-clone KR580VM80A). The first marking was used in pre-production series, while the second had to be used for a larger production. Though, due to the collapse of Soviet microelectronics in the late 1980s, there are many more T34BM1s than КР1858ВМ1s.


Compatible with the original Z80
Partly compatible
No longer produced

Notable uses

Desktop computers

The Z80A was used as the CPU in a number of gaming consoles, such as this ColecoVision.

During the late 1970s and early 1980s, the Z80 was used in a great number of fairly anonymous business-oriented machines with the CP/M operating system, a combination that dominated the market at the time.[65][66] Two well-known examples of Z80+CP/M business computers are the portable Osborne 1 and the Kaypro series. Research Machines manufactured the 380Z and 480Z microcomputers which were networked with a thin Ethernet type LAN and CP/NET in 1981. Other manufacturers of such systems included Televideo, Xerox (820 range) and a number of more obscure firms. Some systems used multi-tasking operating system software to share the one processor between several concurrent users.

In the U.S., the Radio Shack TRS-80, introduced in 1977, as well as the Models II, III, IV, and the proposed Model V, used the Z80. In the United Kingdom, Sinclair Research used the Z80 and Z80A in its ZX80, ZX81 and, ZX Spectrum home computers. Amstrad used them in their Amstrad CPC range and an early UK computer, the Nascom 1 and 2 also used the Z80. The Commodore 128 featured a Z80 processor alongside its MOS Technology 8502 processor for CP/M compatibility.[67] Other 6502 architecture computers on the market at the time, such as the BBC Micro, Apple II,[68] and the 6510 based Commodore 64,[69] could make use of the Z80 with an external unit, a plug-in card, or an expansion ROM cartridge. The Microsoft Z-80 SoftCard for the Apple II was a particularly successful add-on card and one of Microsoft's few hardware products of the era.

In 1981, Multitech (later to become Acer) introduced the Microprofessor I, a simple and inexpensive training system for the Z80 microprocessor. Currently, it is still manufactured and sold by Flite Electronics International Limited in Southampton, England.

Embedded systems and consumer electronics

Z80-based PABX. The Z80 is third chip in from the left, to the right of the chip with the hand-written white label on it.

The Zilog Z80 has long been a popular microprocessor in embedded systems and microcontroller cores,[29] where it remains in widespread use today.[4][70] The following list provides examples of such applications of the Z80, including uses in consumer electronics products.


Consumer electronics

Musical instruments

See also


  1. Only in CMOS, National made no NMOS version, according to Oral History with Federico Faggin
  2. Source: Federico Faggin oral history.
  3. These were named the Z80 CTC (counter/timer), Z80 DMA (direct memory access), Z80 DART (dual asynchronous receiver-transmitter), Z80 SIO (synchronous communication controller), and Z80 PIO (parallel input/output)
  4. 1 2 3 4 Balch, Mark (2003-06-18). "Digital Fundamentals". Complete Digital Design: A Comprehensive Guide to Digital Electronics and Computer System Architecture. Professional Engineering. New York, New York: McGraw-Hill Professional. p. 122. ISBN 0-07-140927-0.
  5. 1 2 The Seybold report on professional computing. Seybold Publications. 1983. In the 8-bit world, the two most popular microcomputers are the Z80 and 6502 computer chips.
  6. Zilog actually included several "traps" in the layout of the chip to try to delay this copying. According to Faggin, a NEC engineer later told him it had cost them several months of work, before they were able to get their μPD780 to function.
  7. Anderson 1994, p. 51
  8. Zilog manufactured the Z80 as well as most of their other products for many years until they sold their manufacturing plants and become the "fabless" company they are today.
  9. Anderson 1994, p. 57
  10. 1 2 Brock, Gerald W. (2003). The second information revolution. Harvard University Press. ISBN 978-0-674-01178-6.
  11. "History of the 8-bit: travelling far in a short time". InfoWorld. Vol. 4 no. 47. Palo Alto, CA: Popular Computing Inc. November 29, 1982. pp. 58–60. ISSN 0199-6649.
  12. Shima, Masatoshi; Federico Faggin; Ralph Ungermann (August 19, 1976). "Z-80 chip set heralds third microprocessor generation". Electronics. New York. 49 (17): 32–33 McGraw–Hill.
  13. CEO Federico Faggin was actually heavily involved in the chip layout work, together with two dedicated layout people. Faggin worked 80 hours a week in order to meet the tight schedule given by the financial investors, according to himself. (See Federico Faggin, oral history.)
  14. Mathur. Introduction to Microprocessors. p. 111. ISBN 978-0-07-460222-5. The register architecture of the Z80 is more innovative than that of the 8085
  15. Ciarcia 1981, pp. 31,32
  16. Although the 8080 had 16-bit addition and 16-bit increment and decrement instructions, it had no explicit 16-bit subtraction, and therefore no possibilty to correctly set an overflow flag. The Z80 complemented this with the ADC HL,rr and SBC HL,rr instructions which sets the overflow flag accordingly.
  17. 1 2 Wai-Kai Chen (2002). The circuits and filters handbook. CRC Press. p. 1943. ISBN 978-0-8493-0912-0. interrupt processing commences according to the interrupt method stipulated by the IM i, i=0, 1, or 2, instruction. If i=1, for direct method, the PC is loaded with 0038H. If i=0, for vectored method, the interrupting device has the opportunity to place the op-code for one byte . If i=2, for indirect vector method, the interrupting device must then place a byte . The Z80 then uses this byte where one of 128 interrupt vectors can be selected by the byte .
  18. Notably to simultaneously handle the 32-bit mantissas of two operands in the 40-bit floating point format used in the Sinclair home computers. They were also used in a similar fashion in some earlier but lesser known Z80 based computers, such as the Swedish ABC 80 and ABC 800.
  19. As this refresh do not need to transfer any data, just output sequential row-adresses, it occupies less than 1.5 T-states. The dedicated M1-signal (machine cycle one) in the Z80 can therefore be used to allow memory chips the same amount of access time for instruction fetches as for data access, i.e almost two full T-states out of the 4T fetch cycle (as well as out of the 3T data read cycle). The Z80 could thereby use memory with the same range of access times as the 8080 (or the 8086) at the same clock frequency. This long M1-signal (relative to the clock) also meant that the Z80 could employ about 4-5 times the internal frequency of a 6800, 6502 or similar using the same type of memory.
  20. "Z80 Special Reset".
  21. Adrian, Andre. "Z80, the 8-bit Number Cruncher".
  22. Popular Computing. McGraw-Hill. 1983. p. 15.
  23. Markoff, John (18 October 1982). "Zilog's speedy Z80 soups up 8-bit to 16-bit perfofrmance". InfoWorld. InfoWorld Media Group. p. 1. ISSN 0199-6649.
  24. Unlike the original nMOS version, which used a few dynamic latches, and therefore could not be stopped for more than a few thousand clock cycles.
  25. Electronic design. Hayden. 1988. p. 142. In addition to supporting the entire Z80 instruction set, the Z180
  26. Ganssle, Jack G. (1992). "The Z80 Lives!". The designers picked an architecture compatible with the Z80, giving Z80 users a completely software compatible upgrade path. The 64180 processor runs every Z80 instruction exactly as a Z80 does
  27. Kilobaud. 1001001. 1977. p. 22.
  28. Zaks, Rodnay (1982). Programming the Z80 (3rd ed.). SYBEX. p. 62. ISBN 978-0-89588-069-7.
  29. 1 2 3 Steve Heath. (2003). Embedded systems design. Oxford: Newnes. p. 21. ISBN 978-0-7506-5546-0.
  30. "Z80 Flag Affection". www.z80.info. Thomas Scherrer. Retrieved June 14, 2016.
  31. It is not actually possible to encode this instruction on the Intel 8086 or later processors. See Intel reference manuals.
  32. Frank Durda IV. "8080/Z80 Instruction Set".
  33. Jump (JP) instructions, which load the program counter with a new instruction address, do not themselves access memory. Absolute and relative forms of the jump reflect this by omitting the round brackets from their operands. Register based jump instructions such as "JP (HL)" include round brackets in an apparent deviation from this convention."Z80 Relocating Macro Assembler User's Guide" (PDF). p. B–2.
  34. Scanlon, Leo J. (1988). 8086/8088/80286 assembly language. Brady Books. p. 12. ISBN 978-0-13-246919-7. The 8086 is software-compatible with the 8080 at the assembly-language level.
  35. Nelson, Ross P. (1988). The 80386 book: assembly language programmer's guide for the 80386. Microsoft Press. p. 2. ISBN 978-1-55615-138-5. An Intel translator program could convert 8080 assembler programs into 8086 assembler programs
  36. 1 2 "Z80 CPU Introduction". Zilog. 1995. It has a language of 252 root instructions and with the reserved 4 bytes as prefixes, accesses an additional 308 instructions.
  37. Sanchez, Julio; Canton, Maria P. (2008). Software Solutions for Engineers And Scientists. Taylor & Francis. p. 65. ISBN 978-1-4200-4302-0. The 8-bit microprocessors that preceded the 80x86 family (such as the Intel 8080, the Zilog Z80, and the Motorola) did not include multiplication.
  38. The Z80 redefines the P (parity) flag of the 8080 as P/V (parity/overflow), and arithmetic instructions on the Z80 set it to indicate overflow rather than parity. Also, bit 1 of the F (flags) register, unused on the 8080, is defined on the Z80 as N, a flag that indicates whether the last arithmetic instruction executed was a subtraction or addition, and the Z80 DAA instruction checks the N flag and behaves differently in the latter case, so a subtraction followed later by DAA will yield a different result on a Z80 than on an 8080.
  39. "8080/Z80 Instruction Sets". Quick and Dirty 8080 Assembler. Frank Durda. Retrieved July 25, 2016.
  40. Froehlich, Robert A. (1984). The free software catalog and directory. Crown Publishers. p. 133. ISBN 978-0-517-55448-7. Undocumented Z80 codes allow 8 bit operations with IX and IY registers.
  41. 1 2 Bot, Jacco J. T. "Z80 Undocumented Instructions". Home of the Z80 CPU. If an opcode works with the registers HL, H or L then if that opcode is preceded by #DD (or #FD) it works on IX, IXH or IXL (or IY, IYH, IYL), with some exceptions. The exceptions are instructions like LD H,IXH and LD L,IYH
  42. Robin Nixon The Amstrad Notepad Advanced User Guide ,Robin Nixon, 1993 ISBN 1-85058-515-6, pages 219-223
  43. Zilog (2005). Z80 Family CPU User Manual (PDF). Zilog. p. 11.
  44. Ciarcia 1981, p. 65
  45. Zaks, Rodnay (1989). Programming the Z80. Sybex. p. 200. ISBN 978-0-89588-069-7. ADD A, n Add accumulator with immediate data n. MEMORY Timing: 2 M cycles; 7 T states.
  46. Ciarcia 1981, p. 63
  47. Ciarcia 1981, p. 77
  48. Ciarcia 1981, p. 36
  49. Ciarcia 1981, p. 58
  50. "Z80 User Manual, Special Registers pg. 3". www.zilog.com. Zilog. Retrieved June 14, 2016.
  51. "Z80 Family CPU Peripherals User Manual" (PDF). EEWORLD Datasheet. ZiLOG. 2001. Retrieved April 2014. Check date values in: |access-date= (help)
  52. Young, Sean (1998). "Z80 Undocumented Features (in software behaviour)". The I/O instructions use the whole of the address bus, not just the lower 8 bits. So in fact, you can have 65536 I/O ports in a Z80 system (the Spectrum uses this). IN r,(C), OUT (C),r and all the I/O block instructions put the whole of BC on the address bus. IN A,(n) and OUT (n),A put A*256+n on the address bus.
  53. "Overview of the SHARP MZ-series". SharpMZ.org. Most MZ's use the 8bit CPU LH0080 / Z80 [...]
  54. Ganssle, Jack G. (1992). "The Z80 Lives!". The 64180 is a Hitachi-supplied Z80 core with numerous on-chip "extras". Zilog's version is the Z180, which is essentially the same part.
  55. Ganssle, Jack G. (1992). "The Z80 Lives!". Both Toshiba and Zilog sell the 84013 and 84015, which are Z80 cores with conventional Z80 peripherals integrated on-board.
  56. "EZ80 ACCLAIM Product Family". Zilog.
  57. Electronic Business Asia. Cahners Asia Limited. 1997. p. 5. Kawasaki's KL5C80A12, KL5C80A16 and KL5C8400 are high speed 8-bit MCUs and CPU. Their CPU code, KC80 is compatible with Zilog's Z80 at binary level. KC80 executes instructions about four times faster than Z80 at the same clock rate
  58. "Hardware specs". S1mp3.org. 2005.
  59. "Projects :: OpenCores".
  60. "Section 6 MOS MPU, MCU, and Peripherals Market Trends" (PDF). p. 16.
  61. Axelson, Jan (2003). Embedded ethernet and internet complete. Lakeview research. p. 93. ISBN 978-1-931448-00-0. Rabbit Semiconductor's Rabbit 3000 microprocessor, which is a much improved and enhanced derivative of ZiLOG, Inc.'s venerable Z80 microprocessor.
  62. Hyder, Kamal; Perrin, Bob (2004). Embedded systems design using the Rabbit 3000 microprocessor. Newnes. p. 32. ISBN 978-0-7506-7872-8. The Rabbit parts are based closely on the Zilog Z180 architecture, although they are not binary compatible with the Zilog parts.
  63. http://arcadehacker.blogspot.com.au/2014/11/capcom-kabuki-cpu-intro.html
  64. Holtz, Herman (1985). Computer work stations. Chapman and Hall. p. 223. ISBN 978-0-412-00491-9. and CP/M continued to dominate the 8-bit world of microcomputers.
  65. Dvorak, John C. (10 May 1982). "After CP/M, object oriented operating systems may lead the field". InfoWorld. Vol. 4 no. 18. InfoWorld Media Group. p. 20. ISSN 0199-6649. The idea of a generic operating system is still in its infancy. In many ways it begins with CP/M and the mishmash of early 8080 and Z80 computers.
  66. Byte. McGraw-Hill. 1986. p. 274. C-128 CP/M uses both the Z80 and 8502 processors. The Z80 executes most of the CP/M BIOS functions.
  67. Petersen, Marty (6 February 1984). "Review: Premium Softcard IIe". InfoWorld. Vol. 6 no. 6. InfoWorld Media Group. p. 64. Several manufacturers, however, make Z80 coprocessor boards that plug into the Apple II.
  68. Popular Computing. McGraw-Hill. 1986. p. 22. The Commodore 64 CP/M package contains a plug-in cartridge with a Z80 microprocessor and the CP/M operating system on a disk.
  69. Ian R. Sinclair. (2000). Practical electronics handbook. Oxford, Angleterre: Newnes. p. 204. ISBN 978-0-7506-4585-0.
  70. A. Meystel. (1991). Autonomous mobile robots : vehicles with cognitive control. Teaneck, N.J.: World Scientific. p. 44. ISBN 978-9971-5-0089-4.
  71. American Society of Cinematographers (1983). American cinematographer. ASC Holding. p. 18.
  72. Bruce A. Artwick. (1980). Microcomputer interfacing. Englewood Cliffs, N.J.: Prentice-Hall: Prentice-Hall. p. 25. ISBN 978-0-13-580902-0.
  73. Anderson, Nate. "Source code requests force breathalyzer maker to sober up". Ars Technica. The Intoxilyzer 5000EN, a breathalyzer, runs on a pair of Z80 processors
  74. "Game Board Schematic". Midway Pac-Man Parts and Operating Manual (PDF). Chicago, Illinois: Midway Games. December 1980. pp. 33, 34. Retrieved 2014-01-20.
  75. "Game Logic Schematic". Midway Galaxian Parts and Operating Manual (PDF). Chicago, Illinois: Midway Games. February 1980. pp. 22, 24. Retrieved 2014-01-20.
  76. "Schematics and Wiring Diagrams". Midway Galega Parts and Operating Manual (PDF). Chicago, Illinois: Midway Games. October 1981. pp. 7–7 – 7–9, 7–14. Retrieved 2014-01-20.
  77. InfoWorld. Vol. 4 no. 50. 20 December 1982. p. 33. ISSN 0199-6649. The ColecoVision uses the Z80 microprocessor Missing or empty |title= (help)
  78. Daniel Sanchez-Crespo Dalmau (2004). Core techniques and algorithms in game programming. Indianapolis, Ind.: New Riders. p. 14. ISBN 978-0-13-102009-2. Internally, both the NES and Master System were equipped with 8-bit processors (a 6502 and a Zilog Z80, respectively)
  79. nintendods (2004-09-29). "季節報 Nintendo DS ブログ : 解体新書。初代GBをバラしてみる。" [Game Boy hardware dissection] (in Japanese). Retrieved 2009-01-02.
  80. Campbell, Robert (2001). "TI-82/83/85/86 Mathematics Use". UMBC.
  81. Machek, Pavel (2005-11-18). "Ericsson GA628". Hackable cell-phones. Retrieved 2012-07-17.
  82. Miesenberger, Klaus (2008). Computers Helping People with Special Needs. Berlin: Springer. p. 556. ISBN 978-3-540-70539-0.
  83. Reid, Gordon (March 1999). "Sequential Circuits Prophet Synthesizers 5 & 10 (Retro)". Sound on Sound. Although the Prophet 5s and Prophet 10s incorporated Z80 microprocessors,
  84. "About MemoryMoog". Moog MemoryMoog User Group. CPU is Z80 + Z80CTC


Further reading

Wikimedia Commons has media related to ZiLOG Z80.
Wikibooks has a book on the topic of: Z80 Assembly
This article is issued from Wikipedia - version of the 11/16/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.