Tineola bisselliella

"Clothing moth" redirects here. This term may also refer to several other Tineidae.
Tineola bisselliella
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Tineidae
Genus: Tineola
Species: T. bisselliella
Binomial name
Tineola bisselliella
(Hummel, 1823)

Numerous, see text

Tineola bisselliella, known as the common clothes moth, webbing clothes moth, or simply clothing moth, is a species of fungus moth (family Tineidae, subfamily Tineinae). It is the type species of its genus Tineola. The specific name is commonly misspelled biselliella – for example by G. A. W. Herrich-Schäffer, when he established Tineola in 1853.[1]

The larvae (caterpillars) of this moth are considered a serious pest, as they can derive nourishment from clothing – in particular wool, but many other natural fibers – and also, like most related species, from stored foods, such as grains.

Life cycle

Females lay eggs in clusters of between 30 and 200 which adhere to surfaces with a gelatin-like glue. These hatch between four and ten days later into near-microscopic white caterpillars which immediately begin to feed. They will also spin mats under which to feed without being readily noticed and from which they will partially emerge at night or under dark conditions to acquire food. Development to the next stage takes place through between five and 45 instars typically over the course of between one month and two years until the pupal stage is reached. At this point, the caterpillars spin cocoons and spend another approximately 10–50 days developing into adults.[2]

After pupation is complete, the adult moths emerge and begin searching for mates. Females tend to move less than males, and both sexes prefer scuttling over surfaces to flying— some adults never fly at all. Adults can live for an additional 15–30 days, after which they die (otherwise death takes place shortly after mating for males and shortly after egg laying for females). Life cycle may be completed within one month under the most favorable conditions (75 °F (24 °C) and 70-75% relative humidity) but may take several years (lower temperatures and humidity will only slow development, larvae will still hatch and grow at temperatures as low as 10 °C (50 °F) and can survive up to 33 °C (91 °F)).[3][4]

Unlike the caterpillars, the adult moths do not feed: they acquire all of the nutrition and moisture they need while in the larval stage, and once they hatch from cocoons their only goal is to reproduce. They have only atrophied mouth parts and cannot feed on fabric or clothing. All feeding damage is done by the caterpillar (larval) form.[5] Heated buildings allow clothes moths to develop year-round. The overall life cycle from egg to egg typically takes 4–6 months, with two generations per year.[5]

Range and ecology

Adult specimen
Larval form

This moth's natural range is western Eurasia, but it has been transported by human travelers to other localities. For example, it is nowadays found in Australia. The species' presence has not been recorded in France, Greece, Slovenia and Switzerland, though this probably reflects the lack of occurrence data rather than absence.[6]

This species is notorious for feeding on clothing and natural fibers; they have the ability to digest keratin protein in wool and silk. The moths prefer dirty fabric for oviposition and are particularly attracted to carpeting and clothing that contains human sweat or other organic liquids which have been spilled onto them; traces of dirt may provide essential nutrients for larval development. Larvae are attracted to these areas not only for the food but for traces of moisture; they do not require liquid water.[2]

The range of recorded foodstuffs includes cotton, linen, silk and wool fabrics as well as furs. They will eat synthetic fibers if they are blended with wool.[5] Furthermore, they have been found on shed feathers and hair, bran, semolina and flour (possibly preferring wheat flour), biscuits, casein, and insect specimens in museums. In one case, living T. bisselliella caterpillars were found in salt. They had probably accidentally wandered there, as even to such a polyphagous species as this one pure sodium chloride has no nutritional value and is in fact a strong desiccant, but this still attests to their robustness.[7] Unfavorable temperature and humidity can slow development, but will not always stop it.

Both adults and larvae prefer low light conditions. Whereas many other Tineidae are drawn to light, common clothes moths seem to prefer dim or dark areas. If larvae find themselves in a well-lit room, they will try to relocate under furniture or carpet edges. Handmade rugs are a favorite, because it is easy for the larvae to crawl underneath and do their damage from below. They will also crawl under moldings at the edges of rooms in search of darkened areas where fibrous debris has gathered and which consequently hold good food.[5][2]

Pest control

Airtight containers should be used to prevent re-infestation once eggs, larvae, and moths are killed by any of these methods.[8] Control measures for T. bisselliella (and similar species) include the following:


The common clothes moth is such a widespread and frequently seen species that it has been described time and again under a variety of junior synonyms and other now-invalid scientific names:[19]


  1. Pitkin & Jenkins (2004), FE (2009), and see references in Savela (2003)
  2. 1 2 3 "Webbing Clothes Moth" (PDF). MuseumPests.net. Integrated Pest Management Working Group. Retrieved 2015-05-20.
  3. John A. Jackman; Bastiaan M. Drees (1 March 1998). A Field Guide to Common Texas Insects. Taylor Trade. p. 227. ISBN 978-1-4616-2291-8.
  4. Jane Merritt; Julie A. Reilly (16 January 2010). Preventive Conservation for Historic House Museums. Rowman Altamira. p. 112. ISBN 978-0-7591-1941-3.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 Choe, D.-H. "Clothes moths". UC IPM Online. Agriculture and Natural Resources, University of California. Retrieved 2014-09-15.
  6. ABRS (2008), FE (2009)
  7. Grabe (1942)
  8. "Solutions: Isolation/Bagging". MuseumPests.net. Integrated Pest Management Working Group. Retrieved 2015-05-20.
  9. "Solutions: Carbon Dioxide Treatment". MuseumPests.net. Integrated Pest Management Working Group. Retrieved 2015-05-20.
  10. "Insect Mortality under Anoxia". Keepsafe. Keepsafe Microclimate Systems. Retrieved 2015-05-20.
  11. Daniel, Vinod; et al. (25 October 1993). "Nitrogen Anoxia of The Back Seat Dodge 38: A Pest Eradication Case Study". WAAC Newsletter. Retrieved 2011-07-29.
  12. 1 2 "Solutions: Nitrogen/Argon Gas Treatment". MuseumPests.net. Integrated Pest Management Working Group. Retrieved 2015-05-20.
  13. "Solutions: Low Temperature Treatment". MuseumPests.net. Integrated Pest Management Working Group. Retrieved 2015-05-20.
  14. 1 2 Prakash, Om; Banerjee, J.; Parthasarathy, L. (July 1979), "Preservation of Woollens Against Clothes Moths and Carpet Beetles" (PDF), Defense Science Journal, 29: 147–150
  15. "Aldrin/Dieldrin". US Environmental Protection Agency.
  16. Sunderland, M. R.; Cruickshank, R. H.; Leighs, S. J. (2014). “The efficacy of antifungal azole and antiprotozoal compounds in protection of wool from keratin-digesting insect larvae”. Textile Research Journal 84 (9): 924–931. http://trj.sagepub.com/content/84/9/924
  17. 1 2 3 Ingham, P. E.; McNeil, S. J.; Sunderland, M. R. (2012). "Functional finishes for wool – Eco considerations". Advanced Materials Research, 441: 33–43. http://www.scientific.net/AMR.441.33
  18. "Raid Ingredients".
  19. ABRS (2008), Robinson [2010]
  20. 1 2 Sometimes attributed to Treitschke (1832) in error: see e.g. references in Savela (2003)


Wikimedia Commons has media related to Tineola bisselliella.
This article is issued from Wikipedia - version of the 11/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.