Theoretical chemistry

Theoretical chemistry seeks to provide explanations to the chemical and physical observations of molecules. Theoretical chemistry includes the fundamental laws of physics Coulomb's law, Kinetic energy, Potential energy, the virial theorem, Planck's Law, Pauli exclusion principle and many others to explain and predict chemical observed phenomena.

In order to explain an observation one has to choose the "appropriate level of theory". For example, some theoretical methods (DFT) may not be appropriate to solve magnetic coupling or electron transitions properties. Instead, there are reports like Multireference configuration interaction (MRCI), which accurately and thoroughly explain the observed phenomena by means of the fundamental interactions.

Major components include quantum chemistry, the application of quantum mechanics to the understanding of valence, molecular dynamics, statistical thermodynamics and theories of electrolyte solutions, reaction networks, polymerization, catalysis, molecular magnetism and spectroscopy.

Branches of theoretical chemistry

Quantum chemistry
The application of quantum mechanics or fundamental interactions to chemical and physico-chemical problems. Spectroscopic and magnetic properties are between the most frequently modelled.
Computational chemistry
The application of computer codes to chemistry, involving approximation schemes such as Hartree–Fock, post-Hartree–Fock, density functional theory, semiempirical methods (such as PM3) or force field methods. Molecular shape is the most frequently predicted property. Computers can also predict vibrational spectra and vibronic coupling, but also acquire and Fourier transform Infra-red Data into frequency information. The comparison with predicted vibrations supports the predicted shape.
Molecular modelling
Methods for modelling molecular structures without necessarily referring to quantum mechanics. Examples are molecular docking, protein-protein docking, drug design, combinatorial chemistry. The fitting of shape and electric potential are the driving factor in this graphical approach.
Molecular dynamics
Application of classical mechanics for simulating the movement of the nuclei of an assembly of atoms and molecules. The rearrangement of molecules within an ensemble is controlled by Van der Waals forces and promoted by temperature.
Molecular mechanics
Modeling of the intra- and inter-molecular interaction potential energy surfaces via potentials. The latter are usually parameterized from ab initio calculations.
Mathematical chemistry
Discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Topology is a branch of mathematics that allows to predict properties of flexible finite size bodies like clusters.
Theoretical chemical kinetics
Theoretical study of the dynamical systems associated to reactive chemicals, the activated complex and their corresponding differential equations.
Cheminformatics (also known as chemoinformatics)
The use of computer and informational techniques, applied to crop information to solve problems in the field of chemistry.

Historically, the major field of application of theoretical chemistry has been in the following fields of research:

Hence, theoretical chemistry has emerged as a branch of research. With the rise of the density functional theory and other methods like molecular mechanics, the range of application has been extended to chemical systems which are relevant to other fields of chemistry and physics, including biochemistry, condensed matter physics, nanotechnology or molecular biology.

See also

Bibliography

References

    This article is issued from Wikipedia - version of the 8/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.