Terrabacteria

Terrabacteria
Scanning electron micrograph of Actinomyces israelii (Actinobacteria)
Scientific classification
Domain: Bacteria
(unranked): Terrabacteria
Battistuzzi et al., 2004, Battistuzzi & Hedges, 2009
Phyla
Synonyms
  • Glidobacteria Cavalier-Smith, 2006 (excluding Actinobacteria and Firmicutes)

Terrabacteria is a taxon containing approximately two-thirds (6,157 sp.) of prokaryote species, including those in the gram positive phyla (Actinobacteria and Firmicutes) as well as the phyla Cyanobacteria, Chloroflexi, and Deinococcus-Thermus.[1][2]

It derives its name (terra = "land") from the evolutionary pressures of life on land. Terrabacteria possess important adaptations such as resistance to environmental hazards (e.g., desiccation, ultraviolet radiation, and high salinity) and oxygenic photosynthesis. Also, the unique properties of the cell wall in gram-positive taxa, which likely evolved in response to terrestrial conditions, have contributed toward pathogenicity in many species.[2] These results now leave open the possibility that terrestrial adaptations may have played a larger role in prokaryote evolution than currently understood.[1][2]

Terrabacteria was proposed in 2004 for Actinobacteria, Cyanobacteria, and Deinococccus-Thermus [1] and was expanded later to include Firmicutes and Chloroflexi.[2] Other phylogenetic analyses [3] have supported the close relationships of these phyla. Most species of prokaryotes not placed in Terrabacteria were assigned to the taxon Hydrobacteria [2] (3,203 sp.), in reference to the moist environment inferred for the common ancestor of those species. Terrabacteria and Hydrobacteria were inferred to have diverged approximately 3 billion years ago, suggesting that land (continents) had been colonized by prokaryotes at that time.[2] Together, Terrabacteria and Hydrobacteria form a large group containing 99% (9,360 sp.) of all Eubacteria, and placed in the taxon Selabacteria, in allusion to their phototrophic abilities (selas = light).[4]

Terrabacteria should not be confused with the recently described taxon "Glidobacteria",[5] which includes only some members of Terrabacteria but excludes Firmicutes and Actinobacteria, and is not supported by molecular phylogenetic data.[2]

Tree from:[1][2]


Archaea




Thermotogae




Aquificae




Fusobacteria


"Selabacteria"
Hydrobacteria
Polyphyletic PVC group


 Spirochaetes



 Planctomycetes 





 Chlamydiae 


FCB group

Chlorobi



Bacteroidetes





Paraphyletic Proteobacteria

 Epsilonproteobacteria 





 Solibacteres



 Deltaproteobacteria 





Alphaproteobacteria




Betaproteobacteria



Gammaproteobacteria



 





Terrabacteria


Actinobacteria



Deinococcus-Thermus






Cyanobacteria



Chloroflexi




Firmicutes








References

  1. 1 2 3 4 Battistuzzi, F. U.; Feijão, A.; Hedges, S. B. (2004). "A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land". BMC Evol. Biol. 4: 44. doi:10.1186/1471-2148-4-44. PMC 533871Freely accessible. PMID 15535883.
  2. 1 2 3 4 5 6 7 8 Battistuzzi, FU; Hedges, SB (2009). "A major clade of prokaryotes with ancient adaptations to life on land". Mol. Biol. Evol. 26 (2): 335–43. doi:10.1093/molbev/msn247. PMID 18988685.
  3. Bern, M; Goldberg, D (2005). "Automatic selection of representative proteins for bacterial phylogeny". BMC Evol. Biol. 5 (1): 34. doi:10.1186/1471-2148-5-34. PMC 1175084Freely accessible. PMID 15927057.
  4. Battistuzzi, F. U., Hedges, S. B. 2009. Eubacteria. Pp. 106-115 in The Timetree of Life, S. B. Hedges and S. Kumar, Eds. (Oxford University Press, New York, 2009). http://www.timetree.org/book.php.
  5. Cavalier-Smith, T (2006). "Rooting the tree of life by transition analyses". Biol. Direct. 1 (1): 19. doi:10.1186/1745-6150-1-19. PMC 1586193Freely accessible. PMID 16834776.
This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.