Subduction

Diagram of the geological process of subduction

Subduction is a geological process that takes place at convergent boundaries of tectonic plates where one plate moves under another and is forced or sinks due to gravity into the mantle. Regions where this process occurs are known as subduction zones. Rates of subduction are typically in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.[1]

Plates include both oceanic crust and continental crust. Stable subduction zones involve the oceanic lithosphere of one plate sliding beneath the continental or oceanic lithosphere of another plate due to the higher density of the oceanic lithosphere. That is, the subducted lithosphere is always oceanic while the overriding lithosphere may or may not be oceanic. Subduction zones are sites that have a high rate of volcanism, earthquakes,[2] and mountain building.

Orogenesis, or mountain-building, occurs when large pieces of material on the subducting plate (such as island arcs) are pressed into the over-riding plate or when subhorizontal contraction occurs in the over-riding plate. These areas are subject to many earthquakes, which are caused by the interactions between the subducting slab and the mantle, the volcanoes, and (when applicable) the mountain-building related to island arc collisions.

General description

Subduction zones are sites of convective downwelling of Earth's lithosphere (the crust plus the top non-convecting portion of the upper mantle). Subduction zones exist at convergent plate boundaries where one plate of oceanic lithosphere converges with another plate. The descending slab, the subducting plate, is over-ridden by the leading edge of the other plate. The slab sinks at an angle of approximately twenty-five to forty-five degrees to Earth's surface. This sinking is driven by the temperature difference between the subducting oceanic lithosphere and the surrounding mantle asthenosphere, as the colder oceanic lithosphere is, on average, denser. At a depth of approximately 80–120 kilometers, the basalt of the oceanic crust is converted to a metamorphic rock called eclogite. At that point, the density of the oceanic crust increases and provides additional negative buoyancy (downwards force). It is at subduction zones that Earth's lithosphere, oceanic crust, sedimentary layers and some trapped water are recycled into the deep mantle.

Earth is so far the only planet where subduction is known to occur. Subduction is the driving force behind plate tectonics, and without it, plate tectonics could not occur.

Subduction zones dive down into the mantle beneath 55,000 kilometers of convergent plate margins (Lallemand, 1999), almost equal to the cumulative 60,000 kilometers of mid-ocean ridges. Subduction zones burrow deeply but are imperfectly camouflaged, and geophysics and geochemistry can be used to study them. Not surprisingly, the shallowest portions of subduction zones are known best. Subduction zones are strongly asymmetric for the first several hundred kilometers of their descent. They start to go down at oceanic trenches. Their descents are marked by inclined zones of earthquakes that dip away from the trench beneath the volcanoes and extend down to the 660-kilometre discontinuity. Subduction zones are defined by the inclined array of earthquakes known as the Wadati-Benioff zone after the two scientists who first identified this distinctive aspect. Subduction zone earthquakes occur at greater depths (up to 600 km) than elsewhere on Earth (typically <20 km depth); such deep earthquakes may be driven by deep phase transformations, thermal runaway, or dehydration embrittlement.[3][4]

The subducting basalt and sediment are normally rich in hydrous minerals and clays. Additionally, large quantities of water are introduced into cracks and fractures created as the subducting slab bends downward.[5] During the transition from basalt to eclogite, these hydrous materials break down, producing copious quantities of water, which at such great pressure and temperature exists as a supercritical fluid. The supercritical water, which is hot and more buoyant than the surrounding rock, rises into the overlying mantle where it lowers the pressure in (and thus the melting temperature of) the mantle rock to the point of actual melting, generating magma. The magmas, in turn, rise because they are less dense than the rocks of the mantle. The mantle-derived magmas (which are basaltic in composition) can continue to rise, ultimately to Earth's surface, resulting in a volcanic eruption. The chemical composition of the erupting lava depends upon the degree to which the mantle-derived basalt interacts with (melts) Earth's crust and/or undergoes fractional crystallization.

Above subduction zones, volcanoes exist in long chains called volcanic arcs. Volcanoes that exist along arcs tend to produce dangerous eruptions because they are rich in water (from the slab and sediments) and tend to be extremely explosive. Krakatoa, Nevado del Ruiz, and Mount Vesuvius are all examples of arc volcanoes. Arcs are also known to be associated with precious metals such as gold, silver and copper believed to be carried by water and concentrated in and around their host volcanoes in rock called "ore".

Theory on origin

Although the process of subduction as it occurs today is fairly well understood, its origin remains a matter of discussion and continuing study. Subduction initiation can occur spontaneously if denser oceanic lithosphere is able to founder and sink beneath adjacent oceanic or continental lithosphere; alternatively, existing plate motions can induce new subduction zones by forcing oceanic lithosphere to rupture and sink into the asthenosphere.[6] Both models can eventually yield self-sustaining subduction zones, as oceanic crust is metamorphosed at great depth and becomes denser than the surrounding mantle rocks. Results from numerical models generally favor induced subduction initiation for most modern subduction zones,[7][8] which is supported by geologic studies,[9][10] but other analogue modeling shows the possibility of spontaneous subduction from inherent density differences between two plates at passive margins,[11][12] and observations from the Izu-Bonin-Mariana subduction system are compatible with spontaneous subduction nucleation.[13][14] Furthermore, subduction is likely to have spontaneously initiated at some point in Earth's history, as induced subduction nucleation requires existing plate motions, though an unorthodox proposal by A. Yin suggests that meteorite impacts may have contributed to subduction initiation on early Earth.[15]

Geophysicist Don L. Anderson has hypothesized that plate tectonics could not happen without the calcium carbonate laid down by bioforms at the edges of subduction zones. The massive weight of these sediments could be softening the underlying rocks, making them pliable enough to plunge.[16] However, considering that some refractory minerals used for dating early Earth, such as zircon, are typically generated in subduction zones and associated with granites and pegmatites, some of these early dates may have preceded significant biological activity on Earth.

Effects

Metamorphism

Volcanic activity

Main article: Volcanic arc
Oceanic plates are subducted creating oceanic trenches.

Volcanoes that occur above subduction zones, such as Mount St. Helens, Mount Etna and Mount Fuji, lie at approximately one hundred kilometres from the trench in arcuate chains, hence the term volcanic arc. Two kinds of arcs are generally observed on Earth: island arcs that form on oceanic lithosphere (for example, the Mariana and the Tonga island arcs), and continental arcs such as the Cascade Volcanic Arc, that form along the coast of continents. Island arcs are produced by the subduction of oceanic lithosphere beneath another oceanic lithosphere (ocean-ocean subduction) while continental arcs formed during subduction of oceanic lithosphere beneath a continental lithosphere (ocean-continent subduction). An example of a volcanic arc having both island and continental arc sections is found behind the Aleutian Trench subduction zone in Alaska.

The arc magmatism occurs one hundred to two hundred kilometres from the trench and approximately one hundred kilometres above the subducting slab. This depth of arc magma generation is the consequence of the interaction between hydrous fluids, released from the subducting slab, and the arc mantle wedge that is hot enough to melt with the addition of water. Arcs produce about 25% of the total volume of magma produced each year on Earth (approximately thirty to thirty-five cubic kilometres), much less than the volume produced at mid-ocean ridges, and they contribute to the formation of new continental crust. Arc volcanism has the greatest impact on humans, because many arc volcanoes lie above sea level and erupt violently. Aerosols injected into the stratosphere during violent eruptions can cause rapid cooling of Earth's climate and affect air travel.

Earthquakes and tsunamis

Main article: Megathrust earthquake

The strains caused by plate convergence in subduction zones cause at least three different types of earthquakes. Earthquakes mainly propagate in the cold subducting slab and define the Wadati-Benioff zone. Seismicity shows that the slab can be tracked down to the upper mantle/lower mantle boundary (approximately six hundred kilometer depth).

Nine of the ten largest earthquakes of the last 100 years were subduction zone events, which included the 1960 Great Chilean earthquake, which, at M 9.5, was the largest earthquake ever recorded; the 2004 Indian Ocean earthquake and tsunami; and the 2011 Tōhoku earthquake and tsunami. The subduction of cold oceanic crust into the mantle depresses the local geothermal gradient and causes a larger portion of Earth to deform in a more brittle fashion than it would in a normal geothermal gradient setting. Because earthquakes can occur only when a rock is deforming in a brittle fashion, subduction zones can cause large earthquakes. If such a quake causes rapid deformation of the sea floor, there is potential for tsunamis, such as the earthquake caused by subduction of the Indo-Australian Plate under the Euro-Asian Plate on December 26, 2004 that devastated the areas around the Indian Ocean. Small tremors which cause small, nondamaging tsunamis, also occur frequently.

Outer rise earthquakes occur when normal faults oceanward of the subduction zone are activated by flexture of the plate as it bends[17] into the subduction zone. The Samoa earthquake of 2009 is an example of this type of event. Displacement of the sea floor caused by this event generated a six-metre tsunami in nearby Samoa.

Anomalously deep events are a characteristic of subduction zones, which produce the deepest quakes on the planet. Earthquakes are generally restricted to the shallow, brittle parts of the crust, generally at depths of less than twenty kilometres. However, in subduction zones, quakes occur at depths as great as seven hundred kilometres. These quakes define inclined zones of seismicity known as Wadati-Benioff zones, after the scientists who discovered them, which trace the descending lithosphere. Seismic tomography has helped detect subducted lithosphere in regions where there are no earthquakes. Some subducted slabs seem not to be able to penetrate the major discontinuity in the mantle that lies at a depth of about 670 kilometres whereas other subducted oceanic plates can penetrate all the way to the core-mantle boundary. The great seismic discontinuities in the mantle, at 410 and 670 kilometre depth, are disrupted by the descent of cold slabs in deep subduction zones.

Orogeny

Main article: Orogeny

Orogeny is the process of mountain building. Subducting plates can lead to orogeny by bringing oceanic islands, oceanic plateaus, and sediments to convergent margins. The material often does not subduct with the rest of the plate but instead is accreted (scraped off) to the continent resulting in exotic terranes. The collision of this oceanic material causes crustal thickening and mountain-building. This accretion process is thought by many geologists to be the reason for the crustal growth of western North America and of the uplift that produced the Rocky Mountains.

Subduction may also cause orogeny without bringing in oceanic material that collides with the overriding continent. When the subducting plate subducts at a shallow angle underneath a continent (something called "flat-slab subduction"), the subducting plate may have enough traction on the bottom of the continental plate to cause the upper plate to contract leading to folding, faulting, crustal thickening and mountain building. This flat-slab subduction process is thought to be one of the main causes of mountain building and deformation in South America.

The processes described above allow subduction to continue while mountain building happens progressively, which is in contrast to continent-continent collision orogeny, which often leads to the termination of subduction.

Subduction angle

Subduction typically occurs at a moderately steep angle right at the point of the convergent plate boundary. However, anomalous shallower angles of subduction are known to exist as well some that are extremely steep.

Importance

Subduction zones are important for several reasons:

  1. Subduction Zone Physics: Sinking of the oceanic lithosphere (sediments, crust, mantle), by contrast of density between the cold and old lithosphere and the hot asthenospheric mantle wedge, is the strongest force (but not the only one) needed to drive plate motion and is the dominant mode of mantle convection.
  2. Subduction Zone Chemistry: The subducted sediments and crust dehydrate and release water-rich (aqueous) fluids into the overlying mantle, causing mantle melting and fractionation of elements between surface and deep mantle reservoirs, producing island arcs and continental crust.
  3. Subduction zones drag down subducted oceanic sediments, oceanic crust, and mantle lithosphere that interact with the hot asthenospheric mantle from the over-riding plate to produce calc-alkaline series melts, ore deposits, and continental crust.

Subduction zones have also been considered as possible disposal sites for nuclear waste in which the action of subduction itself would carry the material into the planetary mantle, safely away from any possible influence on humanity or the surface environment. However, that method of disposal is currently banned by international agreement.[21][22][23][24] Furthermore, plate subduction zones are associated with very large megathrust earthquakes, making the effects on using any specific site for disposal unpredictable and possibly adverse to the safety of longterm disposal.[22]

See also

References

  1. Defant, M. J. (1998). Voyage of Discovery: From the Big Bang to the Ice Age. Mancorp. p. 325. ISBN 0-931541-61-1.
  2. Martínez-López, M.R., Mendoza, C., (2016). "Acoplamiento sismogénico en la zona de subducción de Michoacán-Colima-Jalisco,México" (PDF). Boletín de la Sociedad Geológica Mexicana (in Spanish). 68 (2): 199–214.
  3. The Nature of Deep Focus Earthquakes, C. Frolich, Annual Review of Earth and Planetary Sciences, May 1989, doi:10.1146/annurev.ea.17.050189.001303
  4. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, B. Hacker et al., Journal of Geophysical Research, 18 Jan. 2003, doi:10.1029/2001JB001129
  5. Systematic changes in the incoming plate structure at the Kuril trench, Gou Fujie et al, Geophysical Research Letters, Jan. 16, 2013, doi:10.1029/2012GL054340
  6. Subduction initiation: spontaneous and induced, R.J. Stern, Earth and Planetary Science Letters, 15 Oct 2004, doi:10.1016/j.epsl.2004.08.007
  7. Catastrophic initiation of subduction following forced convergence across fracture zones, C.E. Hall et al., Earth and Planetary Science Letters, 15 July 2003, doi:10.1016/S0012-821X(03)00242-5
  8. Evolving force balance during incipient subduction, M. Gurnis et al., Geochemistry, Geophysics, Geosystems, 10 July 2004, doi:10.1029/2003GC000681
  9. Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin. "Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology". PNAS. doi:10.1073/pnas.1609999113.
  10. House, M. A.; Gurnis, M.; Kamp, P. J. J.; Sutherland, R. (September 2002). "Uplift in the Fiordland Region, New Zealand: Implications for Incipient Subduction". Science. 297 (5589): 2038–2041. doi:10.1126/science.1075328.
  11. Mart, Y., Aharonov, E., Mulugeta, G., Ryan, W.B.F., Tentler, T., Goren, L. (2005). "Analog modeling of the initiation of subduction". Geophys. J. Int. 160 (3): 1081–1091. Bibcode:2005GeoJI.160.1081M. doi:10.1111/j.1365-246X.2005.02544.x.
  12. Goren, L., E. Aharonov, G. Mulugeta, H. A. Koyi, and Y. Mart (2008). "Ductile Deformation of Passive Margins: A New Mechanism for Subduction Initiation". J. Geophys. Res. 113: B08411. Bibcode:2008JGRB..11308411G. doi:10.1029/2005JB004179.
  13. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs, R.J. Stern and S.H. Bloomer, Geological Society of America Bulletin, 1992, doi:10.1130/0016-7606
  14. A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc, R.J. Arculus et al., Nature Geoscience, Aug 2015, doi:10.1038/ngeo2515
  15. An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth, A. Yin, Lithosphere, 2012, doi:10.1130/L195.1
  16. Harding, Stephan. Animate Eart. Science, Intuition and Gaia. Chelsea Green Publishing, 2006, p. 114. ISBN 1-933392-29-0
  17. Garcia-Castellanos, D., M. Torné & M. Fernàndez (2000). "Slab pull effects from a flexural analysis of the Tonga and Kermadec Trenches (Pacific Plate)". Geophys. J. Int. 141: 479–485. Bibcode:2000GeoJI.141..479G. doi:10.1046/j.1365-246x.2000.00096.x.
  18. W. P. Schellart; D. R. Stegman; R. J. Farrington; J. Freeman & L. Moresi (16 July 2010). "Cenozoic Tectonics of Western North America Controlled by Evolving Width of Farallon Slab". Science. 329 (5989): 316–319. Bibcode:2010Sci...329..316S. doi:10.1126/science.1190366. PMID 20647465.
  19. Fault curvature may control where big quakes occur, Eurekalert 24-NOV-2016
  20. Lallemand, Serge; Heuret, Arnauld; Boutelier, David (8 September 2005). "On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones" (PDF). Geochemistry Geophysics Geosystems. 6 (9): Q09006. Bibcode:2005GGG.....609006L. doi:10.1029/2005GC000917.
  21. Hafemeister, David W. (2007). Physics of societal issues: calculations on national security, environment, and energy. Berlin: Springer. p. 187. ISBN 0-387-95560-7.
  22. 1 2 Kingsley, Marvin G.; Rogers, Kenneth H. (2007). Calculated risks: highly radioactive waste and homeland security. Aldershot, Hants, England: Ashgate. pp. 75–76. ISBN 0-7546-7133-X.
  23. "Dumping and Loss overview". Oceans in the Nuclear Age. Archived from the original on June 5, 2011. Retrieved 18 September 2010.
  24. "Storage and Disposal Options. World Nuclear Organization (date unknown)". Archived from the original on July 19, 2011. Retrieved February 8, 2012.

Lallemand, S., La Subduction Oceanique, Gordon and Breach, Newark, N. J., 1999.

Wikimedia Commons has media related to Subduction.
The Wikibook Historical Geology has a page on the topic of: Subduction
Look up subduction in Wiktionary, the free dictionary.
This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.