Skywave

For the satellite terminal company in Ottawa, see SkyWave Mobile Communications.
Radio waves (black) reflecting off the ionosphere (red) during skywave propagation.

In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave propagation can be used to communicate beyond the horizon, at intercontinental distances. It is mostly used in the shortwave frequency bands.

As a result of skywave propagation, a signal from a distant AM broadcasting station, a shortwave station, or—during sporadic E propagation conditions (principally during the summer months in both hemispheres)—a low frequency television station can sometimes be received as clearly as local stations. Most long-distance shortwave (high frequency) radio communication—between 3 and 30 MHz—is a result of skywave propagation. Since the early 1920s amateur radio operators (or "hams"), limited to lower transmitter power than broadcast stations, have taken advantage of skywave for long distance (or "DX") communication.

Skywave propagation is distinct from:

Explanation

The ionosphere is a region of the upper atmosphere, from about 80 km to 1000 km in altitude, where neutral air is ionized by solar photons and cosmic rays. When high frequency signals enter the ionosphere obliquely, they are back-scattered from the ionized layer as scatter waves.[1] If the midlayer ionization is strong enough compared to the signal frequency, a scatter wave can exit the bottom of the layer earthwards as if reflected from a mirror. Earth's surface (ground or water) then diffusely reflects the incoming wave back towards the ionosphere. Consequently, like a rock "skipping" across water, the signal may effectively "bounce" or "skip" between the earth and ionosphere two or more times (multihop propagation). Since at shallow incidence losses remain quite small, signals of only a few watts can sometimes be received many thousands of miles away as a result. This is what enables shortwave broadcasts to travel all over the world.

If the ionization is not great enough, the scatter wave is initially deflected downwards, and subsequently upwards (above the layer peak) such that it exits the top of the layer slightly displaced. Sky wave propagation occurs in the waveguide formed by the ground and ionosphere, each serving as reflectors. With a single "hop," path distances up to 3500 km may be reached. Transatlantic connections are mostly obtained with two or three hops.[2]

The layer of ionospheric plasma with equal ionization (the reflective surface) is not fixed, but undulates like the surface of the ocean. Varying reflection efficiency from this changing surface can cause the reflected signal strength to change, causing "fading" in shortwave broadcasts.

Depending on the transmitting antenna, signals below approximately 10 MHz during the day and 5 MHz at night, entering the ionosphere at a steep angle (near-vertical incidence) may be back-scattered down to Earth within a short range. Alternatively, signals beamed close to the horizon enter the ionosphere at a shallow angle and return to Earth over medium to long distances.

Rough plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation, including radio waves.

Other considerations

VHF signals with frequencies above about 30 MHz usually penetrate the ionosphere and are not returned to the Earth's surface. E-skip is a notable exception, where VHF signals including FM broadcast and VHF TV signals are frequently reflected to the Earth during late Spring and early Summer. E-skip rarely affects UHF frequencies, except for very rare occurrences below 500 MHz.

Frequencies below approximately 10 MHz (wavelengths longer than 30 meters), including broadcasts in the mediumwave and shortwave bands (and to some extent longwave), propagate most efficiently by skywave at night. Frequencies above 10 MHz (wavelengths shorter than 30 meters) typically propagate most efficiently during the day. Frequencies lower than 3 kHz have a wavelength longer than the distance between the Earth and the ionosphere. The maximum usable frequency for skywave propagation is strongly influenced by sunspot number.

Skywave propagation is usually degraded—sometimes seriously—during geomagnetic storms. Skywave propagation on the sunlit side of the Earth can be entirely disrupted during sudden ionospheric disturbances.

Because the lower-altitude layers (the E-layer in particular) of the ionosphere largely disappear at night, the refractive layer of the ionosphere is much higher above the surface of the Earth at night. This leads to an increase in the "skip" or "hop" distance of the skywave at night.

History

Discovery of skywave propagation

Amateur radio operators are credited with the discovery of skywave propagation on the shortwave bands. Early long-distance services used surface wave propagation at very low frequencies,[3] which are attenuated along the path. Longer distances and higher frequencies using this method meant more signal attenuation. This, and the difficulties of generating and detecting higher frequencies, made discovery of shortwave propagation difficult for commercial services.

Radio amateurs conducted the first successful transatlantic tests[4] in December 1921, operating in the 200 meter mediumwave band (1500 kHz)the shortest wavelength then available to amateurs. In 1922 hundreds of North American amateurs were heard in Europe at 200 meters and at least 30 North American amateurs heard amateur signals from Europe. The first two-way communications between North American and Hawaiian amateurs began in 1922 at 200 meters. Although operation on wavelengths shorter than 200 meters was technically illegal (but tolerated as the authorities mistakenly believed at first that such frequencies were useless for commercial or military use), amateurs began to experiment with those wavelengths using newly available vacuum tubes shortly after World War I.

Extreme interference at the upper edge of the 150-200 meter bandthe official wavelengths allocated to amateurs by the Second National Radio Conference[5] in 1923forced amateurs to shift to shorter and shorter wavelengths; however, amateurs were limited by regulation to wavelengths longer than 150 meters (2 MHz). A few fortunate amateurs who obtained special permission for experimental communications below 150 meters completed hundreds of long distance two way contacts on 100 meters (3 MHz) in 1923 including the first transatlantic two way contacts[6] in November 1923, on 110 meters (2.72 MHz)

By 1924 many additional specially licensed amateurs were routinely making transoceanic contacts at distances of 6000 miles (~9600 km) and more. On 21 September several amateurs in California completed two way contacts with an amateur in New Zealand. On 19 October amateurs in New Zealand and England completed a 90-minute two-way contact nearly halfway around the world. On October 10, the Third National Radio Conference made three shortwave bands available to U.S. amateurs[7] at 80 meters (3.75 MHz), 40 meters (7 MHz) and 20 meters (14 MHz). These were allocated worldwide, while the 10-meter band (28 MHz) was created by the Washington International Radiotelegraph Conference[8] on 25 November 1927. The 15-meter band (21 MHz) was opened to amateurs in the United States on 1 May 1952.

Marconi

In June and July 1923, Guglielmo Marconi's transmissions were completed during nights on 97 meters from Poldhu Wireless Station, Cornwall, to his yacht Ellette in the Cape Verde Islands. In September 1924, Marconi transmitted during daytime and nighttime on 32 meters from Poldhu to his yacht in Beirut. Marconi, in July 1924, entered into contracts with the British General Post Office (GPO) to install high speed shortwave telegraphy circuits from London to Australia, India, South Africa and Canada as the main element of the Imperial Wireless Chain. The UK-to-Canada shortwave "Beam Wireless Service" went into commercial operation on 25 October 1926. Beam Wireless Services from the UK to Australia, South Africa and India went into service in 1927.

Far more spectrum is available for long distance communication in the shortwave bands than in the long wave bands; and shortwave transmitters, receivers and antennas were orders of magnitude less expensive than the multi-hundred kilowatt transmitters and monstrous antennas needed for long wave.

Shortwave communications began to grow rapidly in the 1920s,[9] similar to the internet in the late 20th century. By 1928, more than half of long distance communications had moved from transoceanic cables and long wave wireless services to shortwave "skip" transmission and the overall volume of transoceanic shortwave communications had vastly increased. Shortwave also ended the need for multimillion-dollar investments in new transoceanic telegraph cables and massive long wave wireless stations, although some existing transoceanic telegraph cables and commercial long wave communications stations remained in use until the 1960s.

The cable companies began to lose large sums of money in 1927, and a serious financial crisis threatened the viability of cable companies that were vital to strategic British interests. The British government convened the Imperial Wireless and Cable Conference[10] in 1928 "to examine the situation that had arisen as a result of the competition of Beam Wireless with the Cable Services". It recommended and received Government approval for all overseas cable and wireless resources of the Empire to be merged into one system controlled by a newly formed company in 1929, Imperial and International Communications Ltd. The name of the company was changed to Cable and Wireless Ltd. in 1934.

See also

References

  1. Sony Corporation. (1998). Wave Handbook. p.14. OCLC 734041509.
  2. K.Rawer:Wave Propagation in the Ionosphere. Kluwer Acad.Publ., Dordrecht 1993. ISBN 0-7923-0775-5.
  3. Stormfax. Marconi Wireless on Cape Cod
  4. "1921 - Club Station 1BCG and the Transatlantic Tests". Radio Club of America. Retrieved 2009-09-05.
  5. "Radio Service Bulletin No. 72". Bureau of Navigation, Department of Commerce. 1923-04-02. pp. 9–13. Retrieved 2009-09-05.
  6. Archived November 30, 2009, at the Wayback Machine.
  7. "Recommendations for Regulation of Radio: October 6-10, 1924". Earlyradiohistory.us. Retrieved 2012-08-31.
  8. http://www.twiar.org/aaarchives/WB008.txt
  9. "Full text of "Beyond the ionosphere : fifty years of satellite communication"". Archive.org. Retrieved 2012-08-31.
  10. Cable and Wireless Pl c History

Further reading

  • Davies, Kenneth (1990). Ionospheric Radio. IEE Electromagnetic Waves Series #31. London, UK: Peter Peregrinus Ltd/The Institution of Electrical Engineers. ISBN 0-86341-186-X. 
This article is issued from Wikipedia - version of the 11/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.