Secondary metabolite

Secondary metabolites are organic compounds that are not directly involved in the normal growth, development, or reproduction of an organism. Unlike primary metabolites, absence of secondary metabolites does not result in immediate death, but rather in long-term impairment of the organism's survivability, fecundity, or aesthetics, or perhaps in no significant change at all. Secondary metabolites are often restricted to a narrow set of species within a phylogenetic group. Secondary metabolites often play an important role in plant defense against herbivory and other interspecies defenses. Humans use secondary metabolites as medicines, flavorings, and recreational drugs.[1]

Human health implications

Most polyphenol nutraceuticals from plant origin must undergo intestinal transformations, by microbiota and enterocyte enzymes, in order to be absorbed at enterocyte and colonocyte levels. This gives rise to diverse beneficial effects in the consumer, including a vast array of protective effects against viruses, bacteria, and protozoan parasites.[2]

Categories

Most of the secondary metabolites of interest to humankind fit into categories which classify secondary metabolites based on their biosynthetic origin. Since secondary metabolites are often created by modified primary metabolite synthases, or "borrow" substrates of primary metabolite origin, these categories should not be interpreted as saying that all molecules in the category are secondary metabolites (for example the steroid category), but rather that there are secondary metabolites in these categories.

Small "small molecules"

Big "small molecules", produced by large, modular, "molecular factories"

Non-"small molecules" - DNA, RNA, ribosome, or polysaccharide "classical" biopolymers

See also

References

  1. "Secondary metabolites - Knowledge Encyclopedia". www.biologyreference.com. Retrieved 2016-05-10.
  2. http://www.hindawi.com/journals/bmri/2015/905215/
  3. Chizzali, Cornelia & Beerhues, Ludger (2012). "Phytoalexins of the Pyrinae: Biphenyls and dibenzofurans". Beilstein J. Org. Chem. 8: 613–620. doi:10.3762/bjoc.8.68.
This article is issued from Wikipedia - version of the 11/21/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.