Rubidium silver iodide

Rubidium silver iodide is a ternary inorganic compound with the formula RbAg4I5. It is an unusual solid where the conductivity involves movement of silver ions within the crystal lattice. It was discovered while searching for chemicals which had the ionic conductivity properties of alpha-phase silver iodide at temperatures below the 146 °C for AgI.[1]

Rubidium silver iodide can be formed by melting together[2] or grinding together[3] stoichiometric quantities of rubidium iodide and silver(I) iodide. The reported conductivity is 25 siemens per metre (that is a 1×1×10 mm bar would have a resistance of 400 ohms along the long axis).

The crystal structure is composed of sets of iodine tetrahedra; they share faces through which the silver ions are able to diffuse.[4]

Rubidium silver iodide was proposed around 1970 as a solid electrolyte for batteries, and has been used in conjunction with electrodes of silver and of RbI3.[1]

Rubidium silver iodide family is a group of compounds and solid solutions which are isostructural with the RbAg4I5 alpha modification. The examples of such advanced superionic conductors with mobile Ag+ and Cu+ cations are: KAg4I5, NH4Ag4I5, K1−xCsxAg4I5, Rb1−xCsxAg4I5, CsAg4Br1−xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2, KCu4I5 and others.[5][6][7][8]

References

  1. 1 2 Smart, Lesley & Elaine A. Moore (2005). Solid State Chemistry: An Introduction. CRC Press. p. 192. ISBN 0-7487-7516-1.
  2. Popov, A. S.; Kostandinov, I. Z.; Mateev, M. D.; Alexandrov, A. P.; Regel, Liia L.; Kostandinov; Mateev; Alexandrov; Regel (1990). "Phase analysis of RbAg4I5 crystals grown in microgravity". Microgravity Science and Technology. 3: 41–43. Bibcode:1990MiST....3...41P.
  3. Peng H.; Machida N. Shigematsu T. (2002). "Mechano-chemical Synthesis of RbAg4I5 and KAg4I5 Crystals and Their Silver Ion Conducting Properties". Journal of the Japan Society of Powder and Powder Metallurgy. 49 (2): 69–74. doi:10.2497/jjspm.49.69.
  4. Geller, S. (1967). "Crystal Structure of the Solid Electrolyte, RbAg4I5". Science. 157 (3786): 310–312. Bibcode:1967Sci...157..310G. doi:10.1126/science.157.3786.310. PMID 17734228.
  5. Geller S.; Akridge J.R.; Wilber S.A. (1979). "Crystal structure and conductivity of the solid electrolyte α-RbCu4Cl3I2". Phys. Rev. B. 19 (10): 5396–5402. Bibcode:1979PhRvB..19.5396G. doi:10.1103/PhysRevB.19.5396.
  6. Hull S. Keen D.A.; Sivia D.S.; Berastegui P. (2002). "Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides – I. Superionic Phases of Stoichiometry MAg4I5: RbAg4I5, KAg4I5, and KCu4I5". J.Solid State Chemistry. 165 (2): 363–371. Bibcode:2002JSSCh.165..363H. doi:10.1006/jssc.2002.9552.
  7. Despotuli A.L.; Zagorodnev V.N.; Lichkova N.V.; Minenkova N.A. (1989). "New high conductive CsAg4Br1−xI2+x (0.25 < x < 1) solid electrolytes". Sov. Phys. Solid State. 31: 242–244.
  8. Lichkova N.V.; Despotuli A.L.; Zagorodnev V.N.; Minenkova N.A.; Shahlevich K.V. (1989). "Ionic conductivity of solid electrolytes in the two- and three-components AgX–CsX (X = Cl, Br, I) glass-forming systems". Sov. Electrochem. 25: 1636–1640.
This article is issued from Wikipedia - version of the 9/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.