Relation between Schrödinger's equation and the path integral formulation of quantum mechanics

This article relates the Schrödinger equation with the path integral formulation of quantum mechanics using a simple nonrelativistic one-dimensional single-particle Hamiltonian composed of kinetic and potential energy.

Background

Schrödinger's equation

Schrödinger's equation, in bra–ket notation, is

where is the Hamiltonian operator. We have assumed for simplicity that there is only one spatial dimension.

The Hamiltonian operator can be written

where is the potential energy, m is the mass and we have assumed for simplicity that there is only one spatial dimension q.

The formal solution of the equation is

where we have assumed the initial state is a free-particle spatial state .

The transition probability amplitude for a transition from an initial state to a final free-particle spatial state at time T is

Path integral formulation

The path integral formulation states that the transition amplitude is simply the integral of the quantity

over all possible paths from the initial state to the final state. Here S is the classical action.

The reformulation of this transition amplitude, originally due to Dirac[1] and conceptualized by Feynman,[2] forms the basis of the path integral formulation.[3]

From Schrödinger's equation to the path integral formulation

Note: the following derivation is heuristic (it is valid in cases in which the potential, V(q), commutes with the momentum, p). Following Feynman, this derivation can be made rigorous by writing the momentum, p, as the product of mass, m, and a difference in position at two points, xa and xb, separated by a time difference, δt, thus quantizing distance.

Note 2: There are two errata on page 11 in Zee, both of which are corrected here.

We can divide the time interval [0, T] into N segments of length

The transition amplitude can then be written

We can insert the identity matrix

N − 1 times between the exponentials to yield

Each individual transition probability can be written

We can insert the identity

into the amplitude to yield

where we have used the fact that the free particle wave function is

.

The integral over p can be performed (see Common integrals in quantum field theory) to obtain

The transition amplitude for the entire time period is

If we take the limit of large N the transition amplitude reduces to

where S is the classical action given by

and L is the classical Lagrangian given by

Any possible path of the particle, going from the initial state to the final state, is approximated as a broken line and included in the measure of the integral

This expression actually defines the manner in which the path integrals are to be taken. The coefficient in front is needed to ensure that the expression has the correct dimensions, but it has no actual relevance in any physical application.

This recovers the path integral formulation from Schrödinger's equation.

References

  1. Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, Fourth Edition. Oxford. ISBN 0-19-851208-2.
  2. Richard P. Feynman (1958). Feynman's Thesis: A New Approach to Quantum Theory. World Scientific. ISBN 981-256-366-0.
  3. A. Zee (2003). Quantum Field Theory in a Nutshell. Princeton University. ISBN 0-691-01019-6.
This article is issued from Wikipedia - version of the 4/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.