Oligodynamic effect

Silver spoons self-sanitize due to the oligodynamic effect

The oligodynamic effect (from Greek oligos "few", and dynamis "force") is a biocidal effect of metals, especially heavy metals, even in low concentrations. The effect was discovered in 1893 by Karl Wilhelm von Nägeli, although he did not identify the cause.[1] Brass doorknobs and silverware both exhibit this effect.

Mechanism

The metals react with thiol (SH) or amine (NH) groups of enzymes or proteins, a mode of action to which microorganisms may develop resistance. Such resistance may be transmitted by plasmids.[2]

Use

Aluminium

Aluminium acetate (Burow's solution) is used as an astringent mild antiseptic.[3] Aluminium-based antiperspirant ingredients ("aluminum salts") such as aluminum chlorohydrate, activated aluminum chlorohydrates, and aluminum-zirconium-glycine (AZG) complexes work by forming superficial plugs in the sweat ducts, reducing the flow of perspiration.[4]

Antimony

Orthoesters of diarylstibinic acids are fungicides and bactericides, used in paints, plastics, and fibers.[5] Trivalent organic antimony was used in therapy for schistosomiasis.[6]

Arsenic

For many decades, arsenic was used medicinally to treat syphilis. It is still used in sheep dips, rat poisons, wood preservatives, weed killers, and other pesticides. Arsenic is also still used for murder by poisoning, for which use it has a long and continuing history in both literature and fact.[7]

Barium

Barium polysulfide is a fungicide and acaricide used in fruit and grape growing.[8]

Bismuth

Bismuth compounds have been used because of their astringent, antiphlogistic, bacteriostatic, and disinfecting actions. In dermatology bismuth subgallate is still used in vulnerary salves and powders as well as in antimycotics.[9] In the past, bismuth has also been used to treat syphilis and malaria.[10]

Boron

Boric acid esters derived from glycols (Biobor JF) are being used for the control of microorganisms in fuel systems containing water.[11]

Copper

Indian tradition holds that water stored in brass pitchers prevents disease. Brass vessels release a small amount of copper ions into stored water, thus killing fecal bacterial counts as high as 1 million bacteria per milliliter.[12]

Copper sulfate mixed with lime is used as a fungicide and antihelminthic.[13] Copper sulfate is used chiefly to destroy green algae (algicide) that grow in reservoirs, stock ponds, swimming pools, and fish tanks. Copper 8-hydroxyquinoline is sometimes included in paint to prevent mildew.[14]

Gold

Gold is used in dental inlays and inhibits the growth of bacteria.[15]

Lead

Physicians prescribed various forms of lead to heal ailments ranging from constipation to infectious diseases such as the plague. Lead was also used to preserve or sweeten wine.[16] Lead arsenate is used in insecticides and herbicides.[17] Some organic lead compounds are used as industrial biocides: thiomethyl triphenyllead is used as an antifungal agent, cotton preservative, and lubricant additive; thiopropyl triphenyllead as a rodent repellant; tributyllead acetate as a wood and cotton preservative; tributyllead imidazole as a lubricant additive and cotton preservative.[18]

Mercury

Phenylmercuric borate and acetate were used for disinfecting mucous membranes at an effective concentration of 0.07% in aqueous solutions. Due to toxicological and ecotoxicological reasons phenylmercury salts are no longer applied nowadays. Nevertheless, surgeons use mercurochrome even today and despite toxicological objections.[2] Dental amalgam used in fillings inhibits bacterial reproduction.[12]

Organic mercury compounds have been used as topical disinfectants (thimerosal, nitromersol and merbromin) and preservatives in medical preparations (thimerosal) and grain products (both methyl and ethyl mercurials). Mercury was used in the treatment of syphilis. Calomel was commonly used in infant teething powders in the 1930s and 1940s. Mercurials are also used agriculturally as insecticides and fungicides.[19]

Nickel

The toxicity of nickel to bacteria, yeasts, and fungi differs considerably.[20]

Silver

The metabolism of bacteria is adversely affected by silver ions at concentrations of 0.01–0.1 mg/L. Therefore, even less soluble silver compounds, such as silver chloride, also act as bactericides or germicides, but not the much less soluble silver sulfide. In the presence of atmospheric oxygen, metallic silver also has a bactericidal effect due to the formation of silver oxide, which is soluble enough to cause it. Bactericidal concentrations are produced rapidly by adding colloidal silver, which has a high surface area. Even objects with a solid silver surface (e.g., table silver, silver coins, or silver foil) have a bactericidal effect. Silver drinking vessels were carried by military commanders on expeditions for protection against disease. It was once common to place silver foil or even silver coins on wounds for the same reason.[21]

Silver sulfadiazine is used as an antiseptic ointment for extensive burns. An equilibrium dispersion of colloidal silver with dissolved silver ions can be used to purify drinking water at sea.[2] Silver is incorporated into medical implants and devices such as catheters. Surfacine (silver iodide) is a relatively new antimicrobial for application to surfaces. Silver-impregnated wound dressings have proven especially useful against antibiotic-resistant bacteria. Silver nitrate is used as a hemostatic, antiseptic and astringent. At one time, many states required that the eyes of newborns be treated with a few drops of silver nitrate to guard against an infection of the eyes called gonorrheal neonatal ophthalmia, which the infants might have contracted as they passed through the birth canal. Silver ions are increasingly incorporated into many hard surfaces, such as plastics and steel, as a way to control microbial growth on items such as toilet seats, stethoscopes, and even refrigerator doors. Among the newer products being sold are plastic food containers infused with silver nanoparticies, which are intended to keep food fresher, and silver-infused athletic shirts and socks, which are claimed to minimize odors.[14][15]

Thallium

Thallium compounds such as thallium sulfate have been used for impregnating wood and leather to kill fungal spores and bacteria, and for the protection of textiles from attack by moths.[22] Thallium sulfate has been used as a depilatory and in the treatment of venereal disease, skin fungal infections, and tuberculosis.[23]

Tin

Tetrabutyltin is used as an antifouling paint for ships, for the prevention of slimes in industrial recirculating water systems, for combating freshwater snails that cause bilharzia, as a wood and textile preservative, and as a disinfectant. Tricyclohexyltin hydroxide is used as an acaricide. Triphenyltin hydroxide and triphenyltin acetate are used as fungicides.[24]

Zinc

Zinc oxide is used as a weak antiseptic (and sunscreen), and in paints as a white pigment and mold-growth inhibitor.[25] Zinc chloride is a common ingredient in mouthwashes and deodorants, and zinc pyrithione is an ingredient in antidandruff shampoos. Galvanized (zinc-coated) fittings on roofs impede the growth of algae. Copper- and zinc-treated shingles are available.[14] Zinc iodide and zinc sulfate are used as topical antiseptics.[26]

Safety

Besides the individual toxic effects of each metal, a wide range of metals are nephrotoxic in humans and/or in animals.[27] A few metals and their compounds are carcinogenic to humans; the vast majority are not. A few metals, such as lead and mercury, can cross the placental barrier. Some metals (cadmium, zinc, copper, and mercury) induce special protein complexes called metallothioneins.[28]

See also

References

  1. Nägeli, Karl Wilhelm (1893), "Über oligodynamische Erscheinungen in lebenden Zellen", Neue Denkschriften der allgemeinen Schweizerischen Gesellschaft für die gesamte Naturwissenschaft, XXXIII (1)
  2. 1 2 3 Harke, Hans-P. (2007), "Disinfectants", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–17, doi:10.1002/14356007.a08_551
  3. Berth-Jones, John (2010), "Topical Therapy", in Burns, Tony; Breathnach, Stephen; Cox, Neil; Griffiths, Christopher, Rook's Textbook of Dermatology, 4 (8th ed.), Wiley-Blackwell, p. 73.16, ISBN 978-1-4051-6169-5
  4. Cai, Zhengwei; Hakkinen, Pertti J. (2005), "Deodorants and Antiperspirants", in Wexler, Philip, Encyclopedia of Toxicology, 1 (2nd ed.), Elsevier, pp. 737–738, ISBN 0-12-745354-7
  5. Grund, Sabina C.; Hanusch, Kunibert; Breunig, Hans J.; Wolf, Hans Uwe (2007), "Antimony and Antimony Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–34, doi:10.1002/14356007.a03_055.pub2
  6. Leikin, Jerrold B.; Paloucek, Frank P., eds. (2008), "Antimony", Poisoning and Toxicology Handbook (4th ed.), Informa, p. 753, ISBN 978-1-4200-4479-9
  7. Kapp, Robert (2005), "Arsenic", Encyclopedia of Toxicology, 1 (2nd ed.), Elsevier, pp. 168–171, ISBN 0-12-745354-7
  8. Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jochen; Wolf, Hans Uwe (2007), "Barium and Barium Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–21, doi:10.1002/14356007.a03_325.pub2
  9. Krüger, Joachim; Winkler, Peter; Lüderitz, Eberhard; Lück, Manfred; Wolf, Hans Uwe (2007), "Bismuth, Bismuth Alloys, and Bismuth Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–22, doi:10.1002/14356007.a04_171
  10. Gad, Shayne C.; Mehendale, Harihara M. (2005), "Bismuth", Encyclopedia of Toxicology, 1 (2nd ed.), Elsevier, pp. 312–314, ISBN 0-12-745354-7
  11. Brotherton, Robert J.; Weber, C. Joseph; Guibert, Clarence R.; Little, John L. (2007), "Boron Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–23, doi:10.1002/14356007.a04_309
  12. 1 2 Bauman, Robert W. (2012), Microbiology with diseases by body system (3rd ed.), Benjamin Cummings, pp. 278–279, ISBN 978-0-321-71271-4
  13. Gad, Shayne C. (2005), "Copper", Encyclopedia of Toxicology, 1 (2nd ed.), Elsevier, pp. 665–667, ISBN 0-12-745354-7
  14. 1 2 3 Tortora, Gerard J.; Funke, Berdell R.; Case, Christine L. (2010), Microbiology: An Introduction (10th ed.), Benjamin Cummings, pp. 300–301, ISBN 978-0-321-55007-1
  15. 1 2 Cowan, Marjorie Kelly (2012), Microbiology: A Systems Approach (3rd ed.), pp. 320–321, ISBN 978-0-07-352252-4
  16. Sutherland, Charles A.; Milner, Edward F.; Kerby, Robert C.; Teindl, Herbert; Melin, Albert; Bolt, Hermann M. (2007), "Lead", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, doi:10.1002/14356007.a15_193.pub2
  17. Gad, Shayne C. (2005), "Lead", in Wexler, Philip, Encyclopedia of Toxicology, 2 (2nd ed.), Elsevier, pp. 705–709, ISBN 0-12-745354-7
  18. Carr, Dodd S. (2007), "Lead Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–10, doi:10.1002/14356007.a15_249
  19. Gad, Shayne C. (2005), "Mercury", Encyclopedia of Toxicology, 3 (2nd ed.), Elsevier, pp. 36–39, ISBN 0-12-745354-7
  20. Lascelles, Keith; Morgan, Lindsay G.; Nicholls, David; Beyersmann, Detmar (2007), "Nickel Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–16, doi:10.1002/14356007.a17_235.pub2
  21. Renner, Hermann; Schlamp, Günther; Zimmermann, Klaus; Weise, Wolfgang; Tews, Peter; Dermann, Klaus; Knödler, Alfons; Schröder, Karl-Heinz; Kempf, Bernd; Lüschow, Hans Martin; Drieselmann, Ralf; Peter, Catrin; Schiele, Rainer (2007), "Silver, Silver Compounds, and Silver Alloys", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–17, doi:10.1002/14356007.a24_107
  22. Micke, Heinrich; Wolf, Hans Uwe (2007), "Thallium and Thallium Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–14, doi:10.1002/14356007.a26_607
  23. Gad, Shayne C. (2005), "Thallium", Encyclopedia of Toxicology, 4 (2nd ed.), Elsevier, pp. 165–166, ISBN 0-12-745354-7
  24. Graf, Günter G. (2007), "Tin, Tin Alloys, and Tin Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–35, doi:10.1002/14356007.a27_049
  25. Leikin, Jerrold B.; Paloucek, Frank P., eds. (2008), "Zinc Oxide", Poisoning and Toxicology Handbook (4th ed.), Informa, p. 705, ISBN 978-1-4200-4479-9
  26. Rohe, Dieter M. M.; Wolf, Hans Uwe (2007), "Zinc Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–6, doi:10.1002/14356007.a28_537
  27. Rankin, Gary O. (2005), "Kidney", Encyclopedia of Toxicology, 2 (2nd ed.), Elsevier, pp. 666–689, ISBN 0-12-745354-7
  28. Gad, Shayne C. (2005), "Metals", in Wexler, Philip, Encyclopedia of Toxicology, 3 (2nd ed.), Elsevier, p. 49, ISBN 0-12-745354-7
This article is issued from Wikipedia - version of the 11/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.