Martin Pope

Martin Pope (born August 22, 1918) is a physical chemist and professor emeritus at New York University.

His discoveries of ohmic contacts and research in the fields of organic insulators and semiconductors led to techniques enabling organic semiconductors to carry relatively large currents, and to convert electricity into light and vice versa. These discoveries have had application in electrophotography, organic light-emitting diodes (OLED), photovoltaic cells, biological sensors, transistors, molecular electronics and batteries.

For his work, Dr. Pope was awarded the Davy Medal from the Royal Society in 2006.

Biography

Martin Pope was born in 1918 to Jewish immigrants from Poland. The second of four sons, Pope grew up on New York's Lower East Side. He attended the City College of New York and graduated with a bachelor's in chemistry in 1939.

While at CCNY, Pope assisted in nuclear experiments at Columbia University and met Fermi, Schwinger, Dunning and other key figures in the development of nuclear fission. After graduation, he served as in the Army Air Force in the Pacific, where he reached the rank of first lieutenant. After the war, Pope returned home and found work at Balco Research Laboratories, where he received two patents for thin film inventions. He received his Ph.D. in 1950 from the Brooklyn Polytechnic Institute.

He joined the faculty of New York University in 1956 as a researcher in the Radiation and Solid State Physics Lab (RSSL). In 1988, he retired as professor of chemistry and director of the RSSL.

Since 1988, Pope has been professor emeritus, physical chemistry at NYU. He is still active in research, and most recently published papers in 2003 and 2004.

Pope married Lillie Pope, an educational psychologist and author, in 1946. They live in Brooklyn.

Timeline

Career Achievements

Career at New York University

Scientific Research and Discoveries

Publications, Awards

Wikimedia Commons has media related to Martin Pope.
This article is issued from Wikipedia - version of the 2/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.