Planet

This article is about the astronomical object. For other uses, see Planet (disambiguation).

The eight planets of the Solar System
Mercury, Venus, Earth, and Mars
Jupiter and Saturn (gas giants)
Uranus and Neptune (ice giants)

Shown in order from the Sun and in true color. Sizes are not to scale.

A planet is an astronomical object orbiting a star or stellar remnant that

The term planet is ancient, with ties to history, astrology, science, mythology, and religion. Several planets in the Solar System can be seen with the naked eye. These were regarded by many early cultures as divine, or as emissaries of deities. As scientific knowledge advanced, human perception of the planets changed, incorporating a number of disparate objects. In 2006, the International Astronomical Union (IAU) officially adopted a resolution defining planets within the Solar System. This definition is controversial because it excludes many objects of planetary mass based on where or what they orbit. Although eight of the planetary bodies discovered before 1950 remain "planets" under the modern definition, some celestial bodies, such as Ceres, Pallas, Juno and Vesta (each an object in the solar asteroid belt), and Pluto (the first trans-Neptunian object discovered), that were once considered planets by the scientific community, are no longer viewed as such.

The planets were thought by Ptolemy to orbit Earth in deferent and epicycle motions. Although the idea that the planets orbited the Sun had been suggested many times, it was not until the 17th century that this view was supported by evidence from the first telescopic astronomical observations, performed by Galileo Galilei. At about the same time, by careful analysis of pre-telescopic observation data collected by Tycho Brahe, Johannes Kepler found the planets' orbits were not circular but elliptical. As observational tools improved, astronomers saw that, like Earth, the planets rotated around tilted axes, and some shared such features as ice caps and seasons. Since the dawn of the Space Age, close observation by space probes has found that Earth and the other planets share characteristics such as volcanism, hurricanes, tectonics, and even hydrology.

Planets are generally divided into two main types: large low-density giant planets, and smaller rocky terrestrials. Under IAU definitions, there are eight planets in the Solar System. In order of increasing distance from the Sun, they are the four terrestrials, Mercury, Venus, Earth, and Mars, then the four giant planets, Jupiter, Saturn, Uranus, and Neptune. Six of the planets are orbited by one or more natural satellites.

More than two thousand planets around other stars ("extrasolar planets" or "exoplanets") have been discovered in the Milky Way. As of 6 December 2016, 3,545 known extrasolar planets in 2,660 planetary systems (including 597 multiple planetary systems), ranging in size from just above the size of the Moon to gas giants about twice as large as Jupiter have been discovered, out of which more than 100 planets are the same size as Earth, nine of which are at the same relative distance from their star as Earth from the Sun, i.e. in the habitable zone.[3][4] On December 20, 2011, the Kepler Space Telescope team reported the discovery of the first Earth-sized extrasolar planets, Kepler-20e[5] and Kepler-20f,[6] orbiting a Sun-like star, Kepler-20.[7][8][9] A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way.[10] Around one in five Sun-like[lower-alpha 2] stars is thought to have an Earth-sized[lower-alpha 3] planet in its habitable[lower-alpha 4] zone.

History

Printed rendition of a geocentric cosmological model from Cosmographia, Antwerp, 1539

The word "planet" derives from the Ancient Greek ἀστήρ πλανήτης astēr planētēs, or πλάνης ἀστήρ plánēs astēr, which means "wandering star,"[11] and originally referred to those objects in the night sky that moved relative to one another, as opposed to the "fixed stars", which maintained a constant relative position in the sky.[12]

The idea of planets has evolved over its history, from the divine lights of antiquity to the earthly objects of the scientific age. The concept has expanded to include worlds not only in the Solar System, but in hundreds of other extrasolar systems. The ambiguities inherent in defining planets have led to much scientific controversy.

The five classical planets, being visible to the naked eye, have been known since ancient times and have had a significant impact on mythology, religious cosmology, and ancient astronomy. In ancient times, astronomers noted how certain lights moved across the sky in relation to the other stars. Ancient Greeks called these lights πλάνητες ἀστέρες (planētes asteres, "wandering stars") or simply πλανῆται (planētai, "wanderers"),[13] from which today's word "planet" was derived.[14][15] In ancient Greece, China, Babylon, and indeed all pre-modern civilizations,[16][17] it was almost universally believed that Earth was the center of the Universe and that all the "planets" circled Earth. The reasons for this perception were that stars and planets appeared to revolve around Earth each day[18] and the apparently common-sense perceptions that Earth was solid and stable and that it was not moving but at rest.

Babylon

Main article: Babylonian astronomy

The first civilization known to have a functional theory of the planets were the Babylonians, who lived in Mesopotamia in the first and second millennia BC. The oldest surviving planetary astronomical text is the Babylonian Venus tablet of Ammisaduqa, a 7th-century BC copy of a list of observations of the motions of the planet Venus, that probably dates as early as the second millennium BC.[19] The MUL.APIN is a pair of cuneiform tablets dating from the 7th century BC that lays out the motions of the Sun, Moon, and planets over the course of the year.[20] The Babylonian astrologers also laid the foundations of what would eventually become Western astrology.[21] The Enuma anu enlil, written during the Neo-Assyrian period in the 7th century BC,[22] comprises a list of omens and their relationships with various celestial phenomena including the motions of the planets.[23][24] Venus, Mercury, and the outer planets Mars, Jupiter, and Saturn were all identified by Babylonian astronomers. These would remain the only known planets until the invention of the telescope in early modern times.[25]

Greco-Roman astronomy

See also: Greek astronomy
Ptolemy's 7 planetary spheres
1
Moon
2
Mercury
3
Venus
4
Sun
5
Mars
6
Jupiter
7
Saturn

The ancient Greeks initially did not attach as much significance to the planets as the Babylonians. The Pythagoreans, in the 6th and 5th centuries BC appear to have developed their own independent planetary theory, which consisted of the Earth, Sun, Moon, and planets revolving around a "Central Fire" at the center of the Universe. Pythagoras or Parmenides is said to have been the first to identify the evening star (Hesperos) and morning star (Phosphoros) as one and the same (Aphrodite, Greek corresponding to Latin Venus).[26] In the 3rd century BC, Aristarchus of Samos proposed a heliocentric system, according to which Earth and the planets revolved around the Sun. The geocentric system remained dominant until the Scientific Revolution.

By the 1st century BC, during the Hellenistic period, the Greeks had begun to develop their own mathematical schemes for predicting the positions of the planets. These schemes, which were based on geometry rather than the arithmetic of the Babylonians, would eventually eclipse the Babylonians' theories in complexity and comprehensiveness, and account for most of the astronomical movements observed from Earth with the naked eye. These theories would reach their fullest expression in the Almagest written by Ptolemy in the 2nd century CE. So complete was the domination of Ptolemy's model that it superseded all previous works on astronomy and remained the definitive astronomical text in the Western world for 13 centuries.[19][27] To the Greeks and Romans there were seven known planets, each presumed to be circling Earth according to the complex laws laid out by Ptolemy. They were, in increasing order from Earth (in Ptolemy's order): the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn.[15][27][28]

India

In 499 CE, the Indian astronomer Aryabhata propounded a planetary model that explicitly incorporated Earth's rotation about its axis, which he explains as the cause of what appears to be an apparent westward motion of the stars. He also believed that the orbits of planets are elliptical.[29] Aryabhata's followers were particularly strong in South India, where his principles of the diurnal rotation of Earth, among others, were followed and a number of secondary works were based on them.[30]

In 1500, Nilakantha Somayaji of the Kerala school of astronomy and mathematics, in his Tantrasangraha, revised Aryabhata's model.[31] In his Aryabhatiyabhasya, a commentary on Aryabhata's Aryabhatiya, he developed a planetary model where Mercury, Venus, Mars, Jupiter and Saturn orbit the Sun, which in turn orbits Earth, similar to the Tychonic system later proposed by Tycho Brahe in the late 16th century. Most astronomers of the Kerala school who followed him accepted his planetary model.[31][32]

Medieval Muslim astronomy

In the 11th century, the transit of Venus was observed by Avicenna, who established that Venus was, at least sometimes, below the Sun.[33] In the 12th century, Ibn Bajjah observed "two planets as black spots on the face of the Sun", which was later identified as a transit of Mercury and Venus by the Maragha astronomer Qotb al-Din Shirazi in the 13th century.[34] Ibn Bajjah could not have observed a transit of Venus, because none occurred in his lifetime.[35]

European Renaissance

Renaissance planets,
c. 1543 to 1610 and c. 1680 to 1781
1
Mercury
2
Venus
3
Earth
4
Mars
5
Jupiter
6
Saturn
See also: Heliocentrism

With the advent of the Scientific Revolution, use of the term "planet" changed from something that moved across the sky (in relation to the star field); to a body that orbited Earth (or that were believed to do so at the time); and by the 18th century to something that directly orbited the Sun when the heliocentric model of Copernicus, Galileo and Kepler gained sway.

Thus, Earth became included in the list of planets,[36] whereas the Sun and Moon were excluded. At first, when the first satellites of Jupiter and Saturn were discovered in the 17th century, the terms "planet" and "satellite" were used interchangeably – although the latter would gradually become more prevalent in the following century.[37] Until the mid-19th century, the number of "planets" rose rapidly because any newly discovered object directly orbiting the Sun was listed as a planet by the scientific community.

19th century

Eleven planets, 1807–1845
1
Mercury
2
Venus
3
Earth
4
Mars
5
Vesta
6
Juno
7
Ceres
8
Pallas
9
Jupiter
10
Saturn
11
Uranus

In the 19th century astronomers began to realize that recently discovered bodies that had been classified as planets for almost half a century (such as Ceres, Pallas, and Vesta) were very different from the traditional ones. These bodies shared the same region of space between Mars and Jupiter (the asteroid belt), and had a much smaller mass; as a result they were reclassified as "asteroids". In the absence of any formal definition, a "planet" came to be understood as any "large" body that orbited the Sun. Because there was a dramatic size gap between the asteroids and the planets, and the spate of new discoveries seemed to have ended after the discovery of Neptune in 1846, there was no apparent need to have a formal definition.[38]

20th century

Planets 1854–1930, Solar planets 2006–present
1
Mercury
2
Venus
3
Earth
4
Mars
5
Jupiter
6
Saturn
7
Uranus
8
Neptune

In the 20th century, Pluto was discovered. After initial observations led to the belief it was larger than Earth,[39] the object was immediately accepted as the ninth planet. Further monitoring found the body was actually much smaller: in 1936, Raymond Lyttleton suggested that Pluto may be an escaped satellite of Neptune,[40] and Fred Whipple suggested in 1964 that Pluto may be a comet.[41] As it was still larger than all known asteroids and seemingly did not exist within a larger population,[42] it kept its status until 2006.

(Solar) planets 1930–2006
1
Mercury
2
Venus
3
Earth
4
Mars
5
Jupiter
6
Saturn
7
Uranus
8
Neptune
9
Pluto

In 1992, astronomers Aleksander Wolszczan and Dale Frail announced the discovery of planets around a pulsar, PSR B1257+12.[43] This discovery is generally considered to be the first definitive detection of a planetary system around another star. Then, on October 6, 1995, Michel Mayor and Didier Queloz of the Geneva Observatory announced the first definitive detection of an exoplanet orbiting an ordinary main-sequence star (51 Pegasi).[44]

The discovery of extrasolar planets led to another ambiguity in defining a planet: the point at which a planet becomes a star. Many known extrasolar planets are many times the mass of Jupiter, approaching that of stellar objects known as brown dwarfs. Brown dwarfs are generally considered stars due to their ability to fuse deuterium, a heavier isotope of hydrogen. Although objects more massive than 75 times that of Jupiter fuse hydrogen, objects of only 13 Jupiter masses can fuse deuterium. Deuterium is quite rare, and most brown dwarfs would have ceased fusing deuterium long before their discovery, making them effectively indistinguishable from supermassive planets.[45]

21st century

With the discovery during the latter half of the 20th century of more objects within the Solar System and large objects around other stars, disputes arose over what should constitute a planet. There were particular disagreements over whether an object should be considered a planet if it was part of a distinct population such as a belt, or if it was large enough to generate energy by the thermonuclear fusion of deuterium.

A growing number of astronomers argued for Pluto to be declassified as a planet, because many similar objects approaching its size had been found in the same region of the Solar System (the Kuiper belt) during the 1990s and early 2000s. Pluto was found to be just one small body in a population of thousands.

Some of them, such as Quaoar, Sedna, and Eris, were heralded in the popular press as the tenth planet, failing to receive widespread scientific recognition. The announcement of Eris in 2005, an object then thought of as 27% more massive than Pluto, created the necessity and public desire for an official definition of a planet.

Acknowledging the problem, the IAU set about creating the definition of planet, and produced one in August 2006. The number of planets dropped to the eight significantly larger bodies that had cleared their orbit (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune), and a new class of dwarf planets was created, initially containing three objects (Ceres, Pluto and Eris).[46]

Extrasolar planets

There is no official definition of extrasolar planets. In 2003, the International Astronomical Union (IAU) Working Group on Extrasolar Planets issued a position statement, but this position statement was never proposed as an official IAU resolution and was never voted on by IAU members. The positions statement incorporates the following guidelines, mostly focused upon the boundary between planets and brown dwarfs:[2]

  1. Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same isotopic abundance as the Sun[47]) that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass and size required for an extrasolar object to be considered a planet should be the same as that used in the Solar System.
  2. Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "brown dwarfs", no matter how they formed or where they are located.
  3. Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).

This working definition has since been widely used by astronomers when publishing discoveries of exoplanets in academic journals.[48] Although temporary, it remains an effective working definition until a more permanent one is formally adopted. It does not address the dispute over the lower mass limit,[49] and so it steered clear of the controversy regarding objects within the Solar System. This definition also makes no comment on the planetary status of objects orbiting brown dwarfs, such as 2M1207b.

One definition of a sub-brown dwarf is a planet-mass object that formed through cloud collapse rather than accretion. This formation distinction between a sub-brown dwarf and a planet is not universally agreed upon; astronomers are divided into two camps as whether to consider the formation process of a planet as part of its division in classification.[50] One reason for the dissent is that often it may not be possible to determine the formation process. For example, a planet formed by accretion around a star may get ejected from the system to become free-floating, and likewise a sub-brown dwarf that formed on its own in a star cluster through cloud collapse may get captured into orbit around a star.

The 13 Jupiter-mass cutoff represents an average mass rather than a precise threshold value. Large objects will fuse most of their deuterium and smaller ones will fuse only a little, and the 13 MJ value is somewhere in between. In fact, calculations show that an object fuses 50% of its initial deuterium content when the total mass ranges between 12 and 14 MJ.[51] The amount of deuterium fused depends not only on mass but also on the composition of the object, on the amount of helium and deuterium present.[52] The Extrasolar Planets Encyclopaedia includes objects up to 25 Jupiter masses, saying, "The fact that there is no special feature around 13 MJ in the observed mass spectrum reinforces the choice to forget this mass limit."[53] The Exoplanet Data Explorer includes objects up to 24 Jupiter masses with the advisory: "The 13 Jupiter-mass distinction by the IAU Working Group is physically unmotivated for planets with rocky cores, and observationally problematic due to the sin i ambiguity."[54] The NASA Exoplanet Archive includes objects with a mass (or minimum mass) equal to or less than 30 Jupiter masses.[55]

Another criterion for separating planets and brown dwarfs, rather than deuterium fusion, formation process or location, is whether the core pressure is dominated by coulomb pressure or electron degeneracy pressure.[56][57]

2006 IAU definition of planet

Euler diagram showing the types of bodies in the Solar System.

The matter of the lower limit was addressed during the 2006 meeting of the IAU's General Assembly. After much debate and one failed proposal, 232 members of the 10,000 member assembly, who nevertheless constituted a large majority of those remaining at the meeting, voted to pass a resolution. The 2006 resolution defines planets within the Solar System as follows:[1]

A "planet" [1] is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit.

[1] The eight planets are: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

Under this definition, the Solar System is considered to have eight planets. Bodies that fulfill the first two conditions but not the third (such as Ceres, Pluto, and Eris) are classified as dwarf planets, provided they are not also natural satellites of other planets. Originally an IAU committee had proposed a definition that would have included a much larger number of planets as it did not include (c) as a criterion.[58] After much discussion, it was decided via a vote that those bodies should instead be classified as dwarf planets.[59]

This definition is based in theories of planetary formation, in which planetary embryos initially clear their orbital neighborhood of other smaller objects. As described by astronomer Steven Soter:[60]

"The end product of secondary disk accretion is a small number of relatively large bodies (planets) in either non-intersecting or resonant orbits, which prevent collisions between them. Minor planets and comets, including KBOs [Kuiper belt objects], differ from planets in that they can collide with each other and with planets."

The 2006 IAU definition presents some challenges for exoplanets because the language is specific to the Solar System and because the criteria of roundness and orbital zone clearance are not presently observable. Astronomer Jean-Luc Margot proposed a mathematical criterion that determines whether an object can clear its orbit during the lifetime of its host star, based on the mass of the planet, its semimajor axis, and the mass of its host star.[61][62] This formula produces a value π that is greater than 1 for planets. The eight known planets and all known exoplanets have π values above 100, while Ceres, Pluto, and Eris have π values of 0.1 or less. Objects with π values of 1 or more are also expected to be approximately spherical, so that objects that fulfill the orbital zone clearance requirement automatically fulfill the roundness requirement.[63]

Objects formerly considered planets

The table below lists Solar System bodies once considered to be planets.

Body Current classification Notes
Sun Star Classified as classical planets (Ancient Greek πλανῆται, wanderers) in classical antiquity and medieval Europe, in accordance with the now-disproved geocentric model.[64]
Moon Natural satellite
Io, Europa, Ganymede, and Callisto Natural satellites The four largest moons of Jupiter, known as the Galilean moons after their discoverer Galileo Galilei. He referred to them as the "Medicean Planets" in honor of his patron, the Medici family. They were known as secondary planets.[65]
Titan,[lower-alpha 5] Iapetus,[lower-alpha 6] Rhea,[lower-alpha 6] Tethys,[lower-alpha 7] and Dione[lower-alpha 7] Natural satellites Five of Saturn's larger moons, discovered by Christiaan Huygens and Giovanni Domenico Cassini. As with Jupiter's major moons, they were known as secondary planets.[65]
Pallas, Juno, and Vesta Asteroids Regarded as planets from their discoveries between 1801 and 1807 until they were reclassified as asteroids during the 1850s.[67]

Ceres was subsequently classified as a dwarf planet in 2006.

Ceres Dwarf planet and asteroid
Astraea, Hebe, Iris, Flora, Metis, Hygiea, Parthenope, Victoria, Egeria, Irene, Eunomia Asteroids More asteroids, discovered between 1845 and 1851. The rapidly expanding list of bodies between Mars and Jupiter prompted their reclassification as asteroids, which was widely accepted by 1854.[68]
Pluto Dwarf planet and Kuiper belt object The first known trans-Neptunian object (i.e. minor planet with a semi-major axis beyond Neptune). Regarded as a planet from its discovery in 1930 until it was reclassified as a dwarf planet in 2006.

Beyond the scientific community, Pluto still holds cultural significance for many in the general public due to its historical classification as a planet from 1930 to 2006.[69] A few astronomers, such as Alan Stern, consider dwarf planets and the larger moons to be planets, based on a purely geophysical definition of planet.[70]

Mythology and naming

The Greek gods of Olympus, after whom the Solar System's Roman names of the planets are derived

The names for the planets in the Western world are derived from the naming practices of the Romans, which ultimately derive from those of the Greeks and the Babylonians. In ancient Greece, the two great luminaries the Sun and the Moon were called Helios and Selene; the farthest planet (Saturn) was called Phainon, the shiner; followed by Phaethon (Jupiter), "bright"; the red planet (Mars) was known as Pyroeis, the "fiery"; the brightest (Venus) was known as Phosphoros, the light bringer; and the fleeting final planet (Mercury) was called Stilbon, the gleamer. The Greeks also made each planet sacred to one among their pantheon of gods, the Olympians: Helios and Selene were the names of both planets and gods; Phainon was sacred to Cronus, the Titan who fathered the Olympians; Phaethon was sacred to Zeus, Cronus's son who deposed him as king; Pyroeis was given to Ares, son of Zeus and god of war; Phosphoros was ruled by Aphrodite, the goddess of love; and Hermes, messenger of the gods and god of learning and wit, ruled over Stilbon.[19]

The Greek practice of grafting of their gods' names onto the planets was almost certainly borrowed from the Babylonians. The Babylonians named Phosphoros after their goddess of love, Ishtar; Pyroeis after their god of war, Nergal, Stilbon after their god of wisdom Nabu, and Phaethon after their chief god, Marduk.[71] There are too many concordances between Greek and Babylonian naming conventions for them to have arisen separately.[19] The translation was not perfect. For instance, the Babylonian Nergal was a god of war, and thus the Greeks identified him with Ares. Unlike Ares, Nergal was also god of pestilence and the underworld.[72]

Today, most people in the western world know the planets by names derived from the Olympian pantheon of gods. Although modern Greeks still use their ancient names for the planets, other European languages, because of the influence of the Roman Empire and, later, the Catholic Church, use the Roman (Latin) names rather than the Greek ones. The Romans, who, like the Greeks, were Indo-Europeans, shared with them a common pantheon under different names but lacked the rich narrative traditions that Greek poetic culture had given their gods. During the later period of the Roman Republic, Roman writers borrowed much of the Greek narratives and applied them to their own pantheon, to the point where they became virtually indistinguishable.[73] When the Romans studied Greek astronomy, they gave the planets their own gods' names: Mercurius (for Hermes), Venus (Aphrodite), Mars (Ares), Iuppiter (Zeus) and Saturnus (Cronus). When subsequent planets were discovered in the 18th and 19th centuries, the naming practice was retained with Neptūnus (Poseidon). Uranus is unique in that it is named for a Greek deity rather than his Roman counterpart.

Some Romans, following a belief possibly originating in Mesopotamia but developed in Hellenistic Egypt, believed that the seven gods after whom the planets were named took hourly shifts in looking after affairs on Earth. The order of shifts went Saturn, Jupiter, Mars, Sun, Venus, Mercury, Moon (from the farthest to the closest planet).[74] Therefore, the first day was started by Saturn (1st hour), second day by Sun (25th hour), followed by Moon (49th hour), Mars, Mercury, Jupiter and Venus. Because each day was named by the god that started it, this is also the order of the days of the week in the Roman calendar after the Nundinal cycle was rejected – and still preserved in many modern languages.[75] In English, Saturday, Sunday, and Monday are straightforward translations of these Roman names. The other days were renamed after Tiw (Tuesday), Wóden (Wednesday), Thunor (Thursday), and Fríge (Friday), the Anglo-Saxon gods considered similar or equivalent to Mars, Mercury, Jupiter, and Venus, respectively.

Earth is the only planet whose name in English is not derived from Greco-Roman mythology. Because it was only generally accepted as a planet in the 17th century,[36] there is no tradition of naming it after a god. (The same is true, in English at least, of the Sun and the Moon, though they are no longer generally considered planets.) The name originates from the 8th century Anglo-Saxon word erda, which means ground or soil and was first used in writing as the name of the sphere of Earth perhaps around 1300.[76][77] As with its equivalents in the other Germanic languages, it derives ultimately from the Proto-Germanic word ertho, "ground",[77] as can be seen in the English earth, the German Erde, the Dutch aarde, and the Scandinavian jord. Many of the Romance languages retain the old Roman word terra (or some variation of it) that was used with the meaning of "dry land" as opposed to "sea".[78] The non-Romance languages use their own native words. The Greeks retain their original name, Γή (Ge).

Non-European cultures use other planetary-naming systems. India uses a system based on the Navagraha, which incorporates the seven traditional planets (Surya for the Sun, Chandra for the Moon, and Budha, Shukra, Mangala, Bṛhaspati and Shani for Mercury, Venus, Mars, Jupiter and Saturn) and the ascending and descending lunar nodes Rahu and Ketu. China and the countries of eastern Asia historically subject to Chinese cultural influence (such as Japan, Korea and Vietnam) use a naming system based on the five Chinese elements: water (Mercury), metal (Venus), fire (Mars), wood (Jupiter) and earth (Saturn).[75] In traditional Hebrew astronomy, the seven traditional planets have (for the most part) descriptive names - the Sun is חמה Ḥammah or "the hot one," the Moon is לבנה Levanah or "the white one," Venus is כוכב נוגה Kokhav Nogah or "the bright planet," Mercury is כוכב Kokhav or "the planet" (given its lack of distinguishing features), Mars is מאדים Ma'adim or "the red one," and Saturn is שבתאי Shabbatai or "the resting one" (in reference to its slow movement compared to the other visible planets).[79] The odd one out is Jupiter, called צדק Tzedeq or "justice." Steiglitz suggests that this may be a euphemism for the original name of כוכב בעל Kokhav Ba'al or "Baal's planet," seen as idolatrous and euphemized in a similar manner to Ishbosheth from II Samuel [79]

Formation

Main article: Nebular hypothesis
An artist's impression of protoplanetary disk

It is not known with certainty how planets are formed. The prevailing theory is that they are formed during the collapse of a nebula into a thin disk of gas and dust. A protostar forms at the core, surrounded by a rotating protoplanetary disk. Through accretion (a process of sticky collision) dust particles in the disk steadily accumulate mass to form ever-larger bodies. Local concentrations of mass known as planetesimals form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become ever denser until they collapse inward under gravity to form protoplanets.[80] After a planet reaches a mass somewhat larger than Mars' mass, it begins to accumulate an extended atmosphere,[81] greatly increasing the capture rate of the planetesimals by means of atmospheric drag.[82][83] Depending on the accretion history of solids and gas, a giant planet, an ice giant, or a terrestrial planet may result.[84][85][86]

Asteroid collision - building planets (artist concept).

When the protostar has grown such that it ignites to form a star, the surviving disk is removed from the inside outward by photoevaporation, the solar wind, Poynting–Robertson drag and other effects.[87][88] Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a single larger planet or release material for other larger protoplanets or planets to absorb.[89] Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become natural satellites of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or small bodies.

The energetic impacts of the smaller planetesimals (as well as radioactive decay) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by mass, developing a denser core.[90] Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the mantle and from the subsequent impact of comets.[91] (Smaller planets will lose any atmosphere they gain through various escape mechanisms.)

With the discovery and observation of planetary systems around stars other than the Sun, it is becoming possible to elaborate, revise or even replace this account. The level of metallicity—an astronomical term describing the abundance of chemical elements with an atomic number greater than 2 (helium)—is now thought to determine the likelihood that a star will have planets.[92] Hence, it is thought that a metal-rich population I star will likely have a more substantial planetary system than a metal-poor, population II star.

Supernova remnant ejecta producing planet-forming material.

Solar System

Solar System – sizes but not distances are to scale
The Sun and the eight planets of the Solar System
The four giant planets Jupiter, Saturn, Uranus, and Neptune against the Sun and some sunspots
Main article: Solar System

There are eight planets in the Solar System, which are in increasing distance from the Sun:

  1. Mercury
  2. Venus
  3. Earth
  4. Mars
  5. Jupiter
  6. Saturn
  7. Uranus
  8. Neptune

Jupiter is the largest, at 318 Earth masses, whereas Mercury is the smallest, at 0.055 Earth masses.

The planets of the Solar System can be divided into categories based on their composition:

Planetary attributes

Name Equatorial
diameter[lower-alpha 8]
Mass[lower-alpha 8] Semi-major axis (AU) Orbital period
(years)[lower-alpha 8]
Inclination
to Sun's equator
(°)
Orbital
eccentricity
Rotation period
(days)
Confirmed
moons[lower-alpha 9]
Axial tilt Rings Atmosphere
1. Mercury 0.382 0.06 0.39 0.24 3.38 0.206 58.64 0 0.04° no minimal
2. Venus 0.949 0.82 0.72 0.62 3.86 0.007 −243.02 0 177.36° no CO2, N2
3. Earth(a) 1.00 1.00 1.00 1.00 7.25 0.017 1.00 1 23.44° no N2, O2, Ar
4. Mars 0.532 0.11 1.52 1.88 5.65 0.093 1.03 2 25.19° no CO2, N2, Ar
5. Jupiter 11.209 317.8 5.20 11.86 6.09 0.048 0.41 67 3.13° yes H2, He
6. Saturn 9.449 95.2 9.54 29.46 5.51 0.054 0.43 62 26.73° yes H2, He
7. Uranus 4.007 14.6 19.22 84.01 6.48 0.047 −0.72 27 97.77° yes H2, He, CH4
8. Neptune 3.883 17.2 30.06 164.8 6.43 0.009 0.67 14 28.32° yes H2, He, CH4
Color legend:   terrestrial planets   gas giants   ice giants (both are giant planets). (a)Find absolute values in article Earth

Exoplanets

Main article: Exoplanet
Exoplanets, by year of discovery, through September 2014.

An exoplanet (extrasolar planet) is a planet outside the Solar System. More than 2000 such planets have been discovered[94][95][96] (3,545 planets in 2,660 planetary systems including 597 multiple planetary systems as of 6 December 2016).[4]

In early 1992, radio astronomers Aleksander Wolszczan and Dale Frail announced the discovery of two planets orbiting the pulsar PSR 1257+12.[43] This discovery was confirmed, and is generally considered to be the first definitive detection of exoplanets. These pulsar planets are believed to have formed from the unusual remnants of the supernova that produced the pulsar, in a second round of planet formation, or else to be the remaining rocky cores of giant planets that survived the supernova and then decayed into their current orbits.

Sizes of Kepler Planet Candidates – based on 2,740 candidates orbiting 2,036 stars as of 4 November 2013 (NASA).

The first confirmed discovery of an extrasolar planet orbiting an ordinary main-sequence star occurred on 6 October 1995, when Michel Mayor and Didier Queloz of the University of Geneva announced the detection of an exoplanet around 51 Pegasi. From then until the Kepler mission most known extrasolar planets were gas giants comparable in mass to Jupiter or larger as they were more easily detected. The catalog of Kepler candidate planets consists mostly of planets the size of Neptune and smaller, down to smaller than Mercury.

There are types of planets that do not exist in the Solar System: super-Earths and mini-Neptunes, which could be rocky like Earth or a mixture of volatiles and gas like Neptune—a radius of 1.75 times that of Earth is a possible dividing line between the two types of planet.[97] There are hot Jupiters that orbit very close to their star and may evaporate to become chthonian planets, which are the leftover cores. Another possible type of planet is carbon planets, which form in systems with a higher proportion of carbon than in the Solar System.

A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way.[10]

On December 20, 2011, the Kepler Space Telescope team reported the discovery of the first Earth-size exoplanets, Kepler-20e[5] and Kepler-20f,[6] orbiting a Sun-like star, Kepler-20.[7][8][9]

Around 1 in 5 Sun-like[lower-alpha 2] stars have an "Earth-sized"[lower-alpha 3] planet in the habitable[lower-alpha 4] zone, so the nearest would be expected to be within 12 light-years distance from Earth.[98][99] The frequency of occurrence of such terrestrial planets is one of the variables in the Drake equation, which estimates the number of intelligent, communicating civilizations that exist in the Milky Way.[100]

There are exoplanets that are much closer to their parent star than any planet in the Solar System is to the Sun, and there are also exoplanets that are much farther from their star. Mercury, the closest planet to the Sun at 0.4 AU, takes 88-days for an orbit, but the shortest known orbits for exoplanets take only a few hours, e.g. Kepler-70b. The Kepler-11 system has five of its planets in shorter orbits than Mercury's, all of them much more massive than Mercury. Neptune is 30 AU from the Sun and takes 165 years to orbit, but there are exoplanets that are hundreds of AU from their star and take more than a thousand years to orbit, e.g. 1RXS1609 b.

The next few space telescopes to study exoplanets are expected to be Gaia launched in December 2013, CHEOPS in 2017, TESS in 2017, and the James Webb Space Telescope in 2018.

Planetary-mass objects

Artist's impression of a super-Jupiter around the brown dwarf 2M1207.[101]

A planetary-mass object (PMO), planemo[102] /ˈplænm/, or planetary body is a celestial object with a mass that falls within the range of the definition of a planet: massive enough to achieve hydrostatic equilibrium (to be rounded under its own gravity), but not enough to sustain core fusion like a star.[103][104] By definition, all planets are planetary-mass objects, but the purpose of this term is to refer to objects that do not conform to typical expectations for a planet. These include dwarf planets, which are rounded by their own gravity but not massive enough to clear their own orbit, the larger moons, and free-floating planemos, which may have been ejected from a system (rogue planets) or formed through cloud-collapse rather than accretion (sometimes called sub-brown dwarfs).

Rogue planets

Main article: Rogue planet

Several computer simulations of stellar and planetary system formation have suggested that some objects of planetary mass would be ejected into interstellar space.[105] Some scientists have argued that such objects found roaming in deep space should be classed as "planets", although others have suggested that they should be called low-mass brown dwarfs.[106][107]

Sub-brown dwarfs

Main article: Sub-brown dwarf

Stars form via the gravitational collapse of gas clouds, but smaller objects can also form via cloud-collapse. Planetary-mass objects formed this way are sometimes called sub-brown dwarfs. Sub-brown dwarfs may be free-floating such as Cha 110913-773444[106] and OTS 44,[108] or orbiting a larger object such as 2MASS J04414489+2301513.

Binary systems of sub-brown dwarfs are theoretically possible; Oph 162225-240515 was initially thought to be a binary system of a brown dwarf of 14 Jupiter masses and a sub-brown dwarf of 7 Jupiter masses, but further observations revised the estimated masses upwards to greater than 13 Jupiter masses, making them brown dwarfs according to the IAU working definitions.[109][110][111]

Former stars

In close binary star systems one of the stars can lose mass to a heavier companion. Accretion-powered pulsars may drive mass loss. The shrinking star can then become a planetary-mass object. An example is a Jupiter-mass object orbiting the pulsar PSR J1719-1438.[112] These shrunken white dwarfs may become a helium planet or carbon planet.

Satellite planets and belt planets

Some large satellites are of similar size or larger than the planet Mercury, e.g. Jupiter's Galilean moons and Titan. Alan Stern has argued that location should not matter and that only geophysical attributes should be taken into account in the definition of a planet, and proposes the term satellite planet for a planet-sized satellite. Likewise, dwarf planets in the asteroid belt and Kuiper belt should be considered planets according to Stern.[70]

Captured planets

Free-floating planets in stellar clusters have similar velocities to the stars and so can be recaptured. They are typically captured into wide orbits between 100 and 105 AU. The capture efficiency decreases with increasing cluster volume, and for a given cluster size it increases with the host/primary mass. It is almost independent of the planetary mass. Single and multiple planets could be captured into arbitrary unaligned orbits, non-coplanar with each other or with the stellar host spin, or pre-existing planetary system.[113]

Attributes

Although each planet has unique physical characteristics, a number of broad commonalities do exist among them. Some of these characteristics, such as rings or natural satellites, have only as yet been observed in planets in the Solar System, whereas others are also commonly observed in extrasolar planets.

Dynamic characteristics

Orbit

Main articles: Orbit and Orbital elements
The orbit of the planet Neptune compared to that of Pluto. Note the elongation of Pluto's orbit in relation to Neptune's (eccentricity), as well as its large angle to the ecliptic (inclination).

According to current definitions, all planets must revolve around stars; thus, any potential "rogue planets" are excluded. In the Solar System, all the planets orbit the Sun in the same direction as the Sun rotates (counter-clockwise as seen from above the Sun's north pole). At least one extrasolar planet, WASP-17b, has been found to orbit in the opposite direction to its star's rotation.[114] The period of one revolution of a planet's orbit is known as its sidereal period or year.[115] A planet's year depends on its distance from its star; the farther a planet is from its star, not only the longer the distance it must travel, but also the slower its speed, because it is less affected by its star's gravity. No planet's orbit is perfectly circular, and hence the distance of each varies over the course of its year. The closest approach to its star is called its periastron (perihelion in the Solar System), whereas its farthest separation from the star is called its apastron (aphelion). As a planet approaches periastron, its speed increases as it trades gravitational potential energy for kinetic energy, just as a falling object on Earth accelerates as it falls; as the planet reaches apastron, its speed decreases, just as an object thrown upwards on Earth slows down as it reaches the apex of its trajectory.[116]

Each planet's orbit is delineated by a set of elements:

Axial tilt

Main article: Axial tilt
Earth's axial tilt is about 23.4°. It oscillates between 22.1° and 24.5° on a 41,000-year cycle and is currently decreasing.

Planets also have varying degrees of axial tilt; they lie at an angle to the plane of their stars' equators. This causes the amount of light received by each hemisphere to vary over the course of its year; when the northern hemisphere points away from its star, the southern hemisphere points towards it, and vice versa. Each planet therefore has seasons, changes to the climate over the course of its year. The time at which each hemisphere points farthest or nearest from its star is known as its solstice. Each planet has two in the course of its orbit; when one hemisphere has its summer solstice, when its day is longest, the other has its winter solstice, when its day is shortest. The varying amount of light and heat received by each hemisphere creates annual changes in weather patterns for each half of the planet. Jupiter's axial tilt is very small, so its seasonal variation is minimal; Uranus, on the other hand, has an axial tilt so extreme it is virtually on its side, which means that its hemispheres are either perpetually in sunlight or perpetually in darkness around the time of its solstices.[121] Among extrasolar planets, axial tilts are not known for certain, though most hot Jupiters are believed to have negligible to no axial tilt as a result of their proximity to their stars.[122]

Rotation

The planets rotate around invisible axes through their centres. A planet's rotation period is known as a stellar day. Most of the planets in the Solar System rotate in the same direction as they orbit the Sun, which is counter-clockwise as seen from above the Sun's north pole, the exceptions being Venus[123] and Uranus,[124] which rotate clockwise, though Uranus's extreme axial tilt means there are differing conventions on which of its poles is "north", and therefore whether it is rotating clockwise or anti-clockwise.[125] Regardless of which convention is used, Uranus has a retrograde rotation relative to its orbit.

The rotation of a planet can be induced by several factors during formation. A net angular momentum can be induced by the individual angular momentum contributions of accreted objects. The accretion of gas by the giant planets can also contribute to the angular momentum. Finally, during the last stages of planet building, a stochastic process of protoplanetary accretion can randomly alter the spin axis of the planet.[126] There is great variation in the length of day between the planets, with Venus taking 243 days to rotate, and the giant planets only a few hours.[127] The rotational periods of extrasolar planets are not known. However, for "hot" Jupiters, their proximity to their stars means that they are tidally locked (i.e., their orbits are in sync with their rotations). This means, they always show one face to their stars, with one side in perpetual day, the other in perpetual night.[128]

Orbital clearing

The defining dynamic characteristic of a planet is that it has cleared its neighborhood. A planet that has cleared its neighborhood has accumulated enough mass to gather up or sweep away all the planetesimals in its orbit. In effect, it orbits its star in isolation, as opposed to sharing its orbit with a multitude of similar-sized objects. This characteristic was mandated as part of the IAU's official definition of a planet in August, 2006. This criterion excludes such planetary bodies as Pluto, Eris and Ceres from full-fledged planethood, making them instead dwarf planets.[1] Although to date this criterion only applies to the Solar System, a number of young extrasolar systems have been found in which evidence suggests orbital clearing is taking place within their circumstellar discs.[129]

Physical characteristics

Mass

Main article: Planetary mass

A planet's defining physical characteristic is that it is massive enough for the force of its own gravity to dominate over the electromagnetic forces binding its physical structure, leading to a state of hydrostatic equilibrium. This effectively means that all planets are spherical or spheroidal. Up to a certain mass, an object can be irregular in shape, but beyond that point, which varies depending on the chemical makeup of the object, gravity begins to pull an object towards its own centre of mass until the object collapses into a sphere.[130]

Mass is also the prime attribute by which planets are distinguished from stars. The upper mass limit for planethood is roughly 13 times Jupiter's mass for objects with solar-type isotopic abundance, beyond which it achieves conditions suitable for nuclear fusion. Other than the Sun, no objects of such mass exist in the Solar System; but there are exoplanets of this size. The 13-Jupiter-mass limit is not universally agreed upon and the Extrasolar Planets Encyclopaedia includes objects up to 20 Jupiter masses,[131] and the Exoplanet Data Explorer up to 24 Jupiter masses.[132]

The smallest known planet is PSR B1257+12A, one of the first extrasolar planets discovered, which was found in 1992 in orbit around a pulsar. Its mass is roughly half that of the planet Mercury.[4] The smallest known planet orbiting a main-sequence star other than the Sun is Kepler-37b, with a mass (and radius) slightly higher than that of the Moon.

Internal differentiation

Illustration of the interior of Jupiter, with a rocky core overlaid by a deep layer of metallic hydrogen

Every planet began its existence in an entirely fluid state; in early formation, the denser, heavier materials sank to the centre, leaving the lighter materials near the surface. Each therefore has a differentiated interior consisting of a dense planetary core surrounded by a mantle that either is or was a fluid. The terrestrial planets are sealed within hard crusts,[133] but in the giant planets the mantle simply blends into the upper cloud layers. The terrestrial planets have cores of elements such as iron and nickel, and mantles of silicates. Jupiter and Saturn are believed to have cores of rock and metal surrounded by mantles of metallic hydrogen.[134] Uranus and Neptune, which are smaller, have rocky cores surrounded by mantles of water, ammonia, methane and other ices.[135] The fluid action within these planets' cores creates a geodynamo that generates a magnetic field.[133]

Atmosphere

Earth's atmosphere

All of the Solar System planets except Mercury[136] have substantial atmospheres because their gravity is strong enough to keep gases close to the surface. The larger giant planets are massive enough to keep large amounts of the light gases hydrogen and helium, whereas the smaller planets lose these gases into space.[137] The composition of Earth's atmosphere is different from the other planets because the various life processes that have transpired on the planet have introduced free molecular oxygen.[138]

Planetary atmospheres are affected by the varying insolation or internal energy, leading to the formation of dynamic weather systems such as hurricanes, (on Earth), planet-wide dust storms (on Mars), a greater-than-Earth-sized anticyclone on Jupiter (called the Great Red Spot), and holes in the atmosphere (on Neptune).[121] At least one extrasolar planet, HD 189733 b, has been claimed to have such a weather system, similar to the Great Red Spot but twice as large.[139]

Hot Jupiters, due to their extreme proximities to their host stars, have been shown to be losing their atmospheres into space due to stellar radiation, much like the tails of comets.[140][141] These planets may have vast differences in temperature between their day and night sides that produce supersonic winds,[142] although the day and night sides of HD 189733 b appear to have very similar temperatures, indicating that that planet's atmosphere effectively redistributes the star's energy around the planet.[139]

Magnetosphere

Main article: Magnetosphere

One important characteristic of the planets is their intrinsic magnetic moments, which in turn give rise to magnetospheres. The presence of a magnetic field indicates that the planet is still geologically alive. In other words, magnetized planets have flows of electrically conducting material in their interiors, which generate their magnetic fields. These fields significantly change the interaction of the planet and solar wind. A magnetized planet creates a cavity in the solar wind around itself called the magnetosphere, which the wind cannot penetrate. The magnetosphere can be much larger than the planet itself. In contrast, non-magnetized planets have only small magnetospheres induced by interaction of the ionosphere with the solar wind, which cannot effectively protect the planet.[143]

Of the eight planets in the Solar System, only Venus and Mars lack such a magnetic field.[143] In addition, the moon of Jupiter Ganymede also has one. Of the magnetized planets the magnetic field of Mercury is the weakest, and is barely able to deflect the solar wind. Ganymede's magnetic field is several times larger, and Jupiter's is the strongest in the Solar System (so strong in fact that it poses a serious health risk to future manned missions to its moons). The magnetic fields of the other giant planets are roughly similar in strength to that of Earth, but their magnetic moments are significantly larger. The magnetic fields of Uranus and Neptune are strongly tilted relative the rotational axis and displaced from the centre of the planet.[143]

In 2004, a team of astronomers in Hawaii observed an extrasolar planet around the star HD 179949, which appeared to be creating a sunspot on the surface of its parent star. The team hypothesized that the planet's magnetosphere was transferring energy onto the star's surface, increasing its already high 7,760 °C temperature by an additional 400 °C.[144]

Secondary characteristics

Several planets or dwarf planets in the Solar System (such as Neptune and Pluto) have orbital periods that are in resonance with each other or with smaller bodies (this is also common in satellite systems). All except Mercury and Venus have natural satellites, often called "moons". Earth has one, Mars has two, and the giant planets have numerous moons in complex planetary-type systems. Many moons of the giant planets have features similar to those on the terrestrial planets and dwarf planets, and some have been studied as possible abodes of life (especially Europa).[145][146][147]

The four giant planets are also orbited by planetary rings of varying size and complexity. The rings are composed primarily of dust or particulate matter, but can host tiny 'moonlets' whose gravity shapes and maintains their structure. Although the origins of planetary rings is not precisely known, they are believed to be the result of natural satellites that fell below their parent planet's Roche limit and were torn apart by tidal forces.[148][149]

No secondary characteristics have been observed around extrasolar planets. The sub-brown dwarf Cha 110913-773444, which has been described as a rogue planet, is believed to be orbited by a tiny protoplanetary disc[106] and the sub-brown dwarf OTS 44 was shown to be surrounded by a substantial protoplanetary disk of at least 10 Earth masses.[108]

See also

Notes

  1. This definition is drawn from two separate IAU declarations; a formal definition agreed by the IAU in 2006, and an informal working definition established by the IAU in 2001/2003 for objects outside of the Solar System. The official 2006 definition applies only to the Solar System, whereas the 2003 definition applies to planets around other stars. The extrasolar planet issue was deemed too complex to resolve at the 2006 IAU conference.
  2. 1 2 For the purpose of this 1 in 5 statistic, "Sun-like" means G-type star. Data for Sun-like stars wasn't available so this statistic is an extrapolation from data about K-type stars
  3. 1 2 For the purpose of this 1 in 5 statistic, Earth-sized means 1–2 Earth radii
  4. 1 2 For the purpose of this 1 in 5 statistic, "habitable zone" means the region with 0.25 to 4 times Earth's stellar flux (corresponding to 0.5–2 AU for the Sun).
  5. Referred to by Huygens as a Planetes novus ("new planet") in his Systema Saturnium
  6. 1 2 Both labelled nouvelles planètes (new planets) by Cassini in his Découverte de deux nouvelles planetes autour de Saturne[66]
  7. 1 2 Both once referred to as "planets" by Cassini in his An Extract of the Journal Des Scavans.... The term "satellite" had already begun to be used to distinguish such bodies from those around which they orbited ("primary planets").
  8. 1 2 3 Measured relative to Earth.
  9. Jupiter has the most verified satellites (67) in the Solar System.[93]

References

  1. 1 2 3 "IAU 2006 General Assembly: Result of the IAU Resolution votes". International Astronomical Union. 2006. Retrieved 2009-12-30.
  2. 1 2 "Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union". IAU. 2001. Retrieved 2008-08-23.
  3. "NASA discovery doubles the number of known planets". USA TODAY. 10 May 2016. Retrieved 10 May 2016.
  4. 1 2 3 Schneider, Jean (16 January 2013). "Interactive Extra-solar Planets Catalog". The Extrasolar Planets Encyclopaedia. Retrieved 2013-01-15.
  5. 1 2 NASA Staff (20 December 2011). "Kepler: A Search For Habitable Planets – Kepler-20e". NASA. Retrieved 2011-12-23.
  6. 1 2 NASA Staff (20 December 2011). "Kepler: A Search For Habitable Planets – Kepler-20f". NASA. Retrieved 2011-12-23.
  7. 1 2 Johnson, Michele (20 December 2011). "NASA Discovers First Earth-size Planets Beyond Our Solar System". NASA. Retrieved 2011-12-20.
  8. 1 2 Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets". Nature. doi:10.1038/nature.2011.9688.
  9. 1 2 Overbye, Dennis (20 December 2011). "Two Earth-Size Planets Are Discovered". New York Times. Retrieved 2011-12-21.
  10. 1 2 Cassan, Arnaud; D. Kubas; J.-P. Beaulieu; M. Dominik; et al. (12 January 2012). "One or more bound planets per Milky Way star from microlensing observations". Nature. 481 (7380): 167–169. arXiv:1202.0903Freely accessible. Bibcode:2012Natur.481..167C. doi:10.1038/nature10684. PMID 22237108. Retrieved 11 January 2012.
  11. "Planet Etymology". dictionary.com. Retrieved 29 June 2015.
  12. "Ancient Greek Astronomy and Cosmology". The Library of Congress. Retrieved 2016-05-19.
  13. πλανήτης, H. G. Liddell and R. Scott, A Greek–English Lexicon, ninth edition, (Oxford: Clarendon Press, 1940).
  14. "Definition of planet". Merriam-Webster OnLine. Retrieved 2007-07-23.
  15. 1 2 "planet, n". Oxford English Dictionary. 2007. Retrieved 2008-02-07. Note: select the Etymology tab
  16. Neugebauer, Otto E. (1945). "The History of Ancient Astronomy Problems and Methods". Journal of Near Eastern Studies. 4 (1): 1–38. doi:10.1086/370729.
  17. Ronan, Colin. "Astronomy Before the Telescope". Astronomy in China, Korea and Japan (Walker ed.). pp. 264–265.
  18. Kuhn, Thomas S. (1957). The Copernican Revolution. Harvard University Press. pp. 5–20. ISBN 0-674-17103-9.
  19. 1 2 3 4 Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford University Press. pp. 296–7. ISBN 978-0-19-509539-5. Retrieved 2008-02-04.
  20. Francesca Rochberg (2000). "Astronomy and Calendars in Ancient Mesopotamia". In Jack Sasson. Civilizations of the Ancient Near East. III. p. 1930.
  21. Holden, James Herschel (1996). A History of Horoscopic Astrology. AFA. p. 1. ISBN 978-0-86690-463-6.
  22. Hermann Hunger, ed. (1992). Astrological reports to Assyrian kings. State Archives of Assyria. 8. Helsinki University Press. ISBN 951-570-130-9.
  23. Lambert, W. G.; Reiner, Erica (1987). "Babylonian Planetary Omens. Part One. Enuma Anu Enlil, Tablet 63: The Venus Tablet of Ammisaduqa.". Journal of the American Oriental Society. 107 (1): 93–96. doi:10.2307/602955. JSTOR 602955.
  24. Kasak, Enn; Veede, Raul (2001). Mare Kõiva; Andres Kuperjanov, eds. "Understanding Planets in Ancient Mesopotamia" (PDF). Electronic Journal of Folklore. Estonian Literary Museum. 16: 7–35. doi:10.7592/fejf2001.16.planets. Retrieved 2008-02-06.
  25. A. Sachs (May 2, 1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society. Royal Society of London. 276 (1257): 43–50 [45 & 48–9]. Bibcode:1974RSPTA.276...43S. doi:10.1098/rsta.1974.0008. JSTOR 74273.
  26. Burnet, John (1950). Greek philosophy: Thales to Plato. Macmillan and Co. pp. 7–11. ISBN 978-1-4067-6601-1. Retrieved 2008-02-07.
  27. 1 2 Goldstein, Bernard R. (1997). "Saving the phenomena: the background to Ptolemy's planetary theory". Journal for the History of Astronomy. Cambridge (UK). 28 (1): 1–12. Bibcode:1997JHA....28....1G.
  28. Ptolemy; Toomer, G. J. (1998). Ptolemy's Almagest. Princeton University Press. ISBN 978-0-691-00260-6.
  29. J. J. O'Connor and E. F. Robertson, Aryabhata the Elder, MacTutor History of Mathematics archive
  30. Sarma, K. V. (1997) "Astronomy in India" in Selin, Helaine (editor) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Kluwer Academic Publishers, ISBN 0-7923-4066-3, p. 116
  31. 1 2 Ramasubramanian, K. (1998). "Model of planetary motion in the works of Kerala astronomers". Bulletin of the Astronomical Society of India. 26: 11–31 [23–4]. Bibcode:1998BASI...26...11R.
  32. Ramasubramanian etc. (1994)
  33. Sally P. Ragep (2007). "Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā". In Thomas Hockey. The Biographical Encyclopedia of Astronomers. Springer Science+Business Media. pp. 570–572. Bibcode:2000eaa..bookE3736.. doi:10.1888/0333750888/3736. ISBN 0-333-75088-8.
  34. S. M. Razaullah Ansari (2002). History of oriental astronomy: proceedings of the joint discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25–26, 1997. Springer. p. 137. ISBN 1-4020-0657-8.
  35. Fred Espenak. "Six millennium catalog of Venus transits: 2000 BCE to 4000 CE". NASA/GSFC. Retrieved 11 February 2012.
  36. 1 2 Van Helden, Al (1995). "Copernican System". The Galileo Project. Retrieved 2008-01-28.
  37. See primary citations in Timeline of discovery of Solar System planets and their moons
  38. Hilton, James L. (2001-09-17). "When Did the Asteroids Become Minor Planets?". U.S. Naval Observatory. Archived from the original on 2007-09-21. Retrieved 2007-04-08.
  39. Croswell, K. (1997). Planet Quest: The Epic Discovery of Alien Solar Systems. The Free Press. p. 57. ISBN 978-0-684-83252-4.
  40. Lyttleton, Raymond A. (1936). "On the possible results of an encounter of Pluto with the Neptunian system". Monthly Notices of the Royal Astronomical Society. 97: 108–115. Bibcode:1936MNRAS..97..108L. doi:10.1093/mnras/97.2.108.
  41. Whipple, Fred (1964). "The History of the Solar System". Proceedings of the National Academy of Sciences of the United States of America. 52 (2): 565–594. Bibcode:1964PNAS...52..565W. doi:10.1073/pnas.52.2.565. PMC 300311Freely accessible. PMID 16591209.
  42. Luu, Jane X.; Jewitt, David C. (1996). "The Kuiper Belt". Scientific American. 274 (5): 46–52. doi:10.1038/scientificamerican0596-46.
  43. 1 2 Wolszczan, A.; Frail, D. A. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0.
  44. Mayor, Michel; Queloz, Didier (1995). "A Jupiter-mass companion to a solar-type star". Nature. 378 (6356): 355–359. Bibcode:1995Natur.378..355M. doi:10.1038/378355a0.
  45. Basri, Gibor (2000). "Observations of Brown Dwarfs". Annual Review of Astronomy and Astrophysics. 38 (1): 485–519. Bibcode:2000ARA&A..38..485B. doi:10.1146/annurev.astro.38.1.485.
  46. Green, D. W. E. (2006-09-13). "(134340) Pluto, (136199) Eris, and (136199) Eris I (Dysnomia)" (PDF). Central Bureau for Astronomical Telegrams, International Astronomical Union. Circular No. 8747. Archived from the original on June 24, 2008. Retrieved 2011-07-05.
  47. Saumon, D.; Hubbard, W. B.; Burrows, A.; Guillot, T.; et al. (1996). "A Theory of Extrasolar Giant Planets". Astrophysical Journal. 460: 993–1018. arXiv:astro-ph/9510046Freely accessible. Bibcode:1996ApJ...460..993S. doi:10.1086/177027.
  48. See for example the list of references for: Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". University of California and the Carnegie Institution. Retrieved 2008-08-23.
  49. Stern, S. Alan (2004-03-22). "Gravity Rules: The Nature and Meaning of Planethood". SpaceDaily. Retrieved 2008-08-23.
  50. Whitney Clavin (2005-11-29). "A Planet With Planets? Spitzer Finds Cosmic Oddball.". NASA. Retrieved 2006-03-26.
  51. Bodenheimer, Peter; D'Angelo, Gennaro; Lissauer, Jack J.; Fortney, Jonathan J.; Saumon, Didier (20 June 2013). "Deuterium Burning in Massive Giant Planets and Low-mass Brown Dwarfs Formed by Core-nucleated Accretion". The Astrophysical Journal. 770 (2): 120. arXiv:1305.0980Freely accessible. Bibcode:2013ApJ...770..120B. doi:10.1088/0004-637X/770/2/120.
  52. Spiegel; Adam Burrows; Milsom (2010). "The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets". arXiv:1008.5150Freely accessible [astro-ph.EP].
  53. Schneider, J.; Dedieu, C.; Le Sidaner, P.; Savalle, R.; et al. (2011). "Defining and cataloging exoplanets: The exoplanet.eu database". Astronomy & Astrophysics. 532 (79): A79. arXiv:1106.0586Freely accessible. Bibcode:2011A&A...532A..79S. doi:10.1051/0004-6361/201116713.
  54. Wright, J. T.; et al. (2010). "The Exoplanet Orbit Database". arXiv:1012.5676v1Freely accessible [astro-ph.SR].
  55. Exoplanet Criteria for Inclusion in the Archive, NASA Exoplanet Archive
  56. "Planetesimals To Brown Dwarfs: What is a Planet?". Annu. Rev. Earth Planet. Sci. 34: 193–216. 2006. arXiv:astro-ph/0608417Freely accessible. Bibcode:2006AREPS..34..193B. doi:10.1146/annurev.earth.34.031405.125058.
  57. Boss, Alan P.; Basri, Gibor; Kumar, Shiv S.; Liebert, James; et al. (2003). "Nomenclature: Brown Dwarfs, Gas Giant Planets, and ?". Brown Dwarfs. 211: 529. Bibcode:2003IAUS..211..529B.
  58. Rincon, Paul (2006-08-16). "Planets plan boosts tally 12". BBC. Retrieved 2008-08-23.
  59. "Pluto loses status as a planet". BBC. 2006-08-24. Retrieved 2008-08-23.
  60. Soter, Steven (2006). "What is a Planet". Astronomical Journal. 132 (6): 2513–19. arXiv:astro-ph/0608359Freely accessible. Bibcode:2006AJ....132.2513S. doi:10.1086/508861.
  61. "Simpler way to define what makes a planet". Science Daily. 2015-11-10.
  62. "Why we need a new definition of the word 'planet'". Los Angeles Times.
  63. Jean-Luc Margot (2015). "A Quantitative Criterion For Defining Planets". The Astronomical Journal. 150 (6): 185. arXiv:1507.06300Freely accessible. doi:10.1088/0004-6256/150/6/185.
  64. Lindberg, David C. (2007). The Beginnings of Western Science (2nd ed.). Chicago: The University of Chicago Press. p. 257. ISBN 978-0-226-48205-7.
  65. 1 2 "The New Universal Geographical Grammar".
  66. Giovanni Cassini (1673). Decouverte de deux Nouvelles Planetes autour de Saturne. Sabastien Mabre-Craniusy. pp. 6–14.
  67. Hilton, James L. "When did the asteroids become minor planets?". U.S. Naval Observatory. Archived from the original on 2008-03-24. Retrieved 2008-05-08.
  68. "The Planet Hygea". spaceweather.com. 1849. Retrieved 2008-04-18.
  69. Moskowitz, Clara (2006-10-18). "Scientist who found '10th planet' discusses downgrading of Pluto". Stanford news. Retrieved 2008-08-23.
  70. 1 2 "Should Large Moons Be Called 'Satellite Planets'?". News.discovery.com. 2010-05-14. Retrieved 2011-11-04.
  71. Ross, Kelley L. (2005). "The Days of the Week". The Friesian School. Retrieved 2008-08-23.
  72. Cochrane, Ev (1997). Martian Metamorphoses: The Planet Mars in Ancient Myth and Tradition. Aeon Press. ISBN 0-9656229-0-8. Retrieved 2008-02-07.
  73. Cameron, Alan (2005). Greek Mythography in the Roman World. Oxford University Press. ISBN 0-19-517121-7.
  74. Zerubavel, Eviatar (1989). The Seven Day Circle: The History and Meaning of the Week. University of Chicago Press. p. 14. ISBN 0-226-98165-7. Retrieved 2008-02-07.
  75. 1 2 Falk, Michael; Koresko, Christopher (1999). "Astronomical Names for the Days of the Week". Journal of the Royal Astronomical Society of Canada. 93: 122–133. Bibcode:1999JRASC..93..122F. doi:10.1016/j.newast.2003.07.002.
  76. "earth, n". Oxford English Dictionary. 1989. Retrieved 2008-02-06.
  77. 1 2 Harper, Douglas (September 2001). "Earth". Online Etymology Dictionary. Retrieved 2008-08-23.
  78. Harper, Douglas (September 2001). "Etymology of "terrain"". Online Etymology Dictionary. Retrieved 2008-01-30.
  79. 1 2 Stieglitz, Robert (Apr 1981). "The Hebrew Names of the Seven Planets". Journal of Near Eastern Studies. 40 (2): 135–137. doi:10.1086/372867. JSTOR 545038.
  80. Wetherill, G. W. (1980). "Formation of the Terrestrial Planets". Annual Review of Astronomy and Astrophysics. 18 (1): 77–113. Bibcode:1980ARA&A..18...77W. doi:10.1146/annurev.aa.18.090180.000453.
  81. D'Angelo, G.; Bodenheimer, P. (2013). "Three-dimensional Radiation-hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks". The Astrophysical Journal. 778 (1): 77 (29 pp.). arXiv:1310.2211Freely accessible. Bibcode:2013ApJ...778...77D. doi:10.1088/0004-637X/778/1/77.
  82. Inaba, S.; Ikoma, M. (2003). "Enhanced Collisional Growth of a Protoplanet that has an Atmosphere". Astronomy and Astrophysics. 410 (2): 711–723. Bibcode:2003A&A...410..711I. doi:10.1051/0004-6361:20031248.
  83. D'Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P. (2014). "Growth of Jupiter: Enhancement of core accretion by a voluminous low-mass envelope". Icarus. 241: 298–312. arXiv:1405.7305Freely accessible. Bibcode:2014Icar..241..298D. doi:10.1016/j.icarus.2014.06.029.
  84. Lissauer, J. J.; Hubickyj, O.; D'Angelo, G.; Bodenheimer, P. (2009). "Models of Jupiter's growth incorporating thermal and hydrodynamic constraints". Icarus. 199: 338–350. arXiv:0810.5186Freely accessible. Bibcode:2009Icar..199..338L. doi:10.1016/j.icarus.2008.10.004.
  85. D'Angelo, G.; Durisen, R. H.; Lissauer, J. J. (2011). "Giant Planet Formation". In S. Seager. Exoplanets. University of Arizona Press, Tucson, AZ. pp. 319–346. arXiv:1006.5486Freely accessible. Bibcode:2010exop.book..319D.
  86. Chambers, J. (2011). "Terrestrial Planet Formation". In S. Seager. Exoplanets. University of Arizona Press, Tucson, AZ. pp. 297–317. Bibcode:2010exop.book..297C.
  87. Dutkevitch, Diane (1995). "The Evolution of Dust in the Terrestrial Planet Region of Circumstellar Disks Around Young Stars". PhD thesis, University of Massachusetts Amherst. Bibcode:1995PhDT..........D. Archived from the original on 2007-11-25. Retrieved 2008-08-23.
  88. Matsuyama, I.; Johnstone, D.; Murray, N. (2005). "Halting Planet Migration by Photoevaporation from the Central Source". The Astrophysical Journal. 585 (2): L143–L146. arXiv:astro-ph/0302042Freely accessible. Bibcode:2003astro.ph..2042M. doi:10.1086/374406.
  89. Kenyon, Scott J.; Bromley, Benjamin C. (2006). "Terrestrial Planet Formation. I. The Transition from Oligarchic Growth to Chaotic Growth". Astronomical Journal. 131 (3): 1837–1850. arXiv:astro-ph/0503568Freely accessible. Bibcode:2006AJ....131.1837K. doi:10.1086/499807. Lay summary Kenyon, Scott J. Personal web page.
  90. Ida, Shigeru; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi (1987). "The Earth's core formation due to the Rayleigh-Taylor instability". Icarus. 69 (2): 239–248. Bibcode:1987Icar...69..239I. doi:10.1016/0019-1035(87)90103-5.
  91. Kasting, James F. (1993). "Earth's early atmosphere". Science. 259 (5097): 920–6. Bibcode:1993Sci...259..920K. doi:10.1126/science.11536547. PMID 11536547.
  92. Aguilar, David; Pulliam, Christine (2004-01-06). "Lifeless Suns Dominated The Early Universe" (Press release). Harvard-Smithsonian Center for Astrophysics. Retrieved 2011-10-23.
  93. Scott S. Sheppard (2013-01-04). "The Jupiter Satellite Page (Now Also The Giant Planet Satellite and Moon Page)". Carnegie Institution for Science. Retrieved 2013-04-12.
  94. "Exoplanet Archive Planet Counts".
  95. Johnson, Michele; Harrington, J.D. (February 26, 2014). "NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds". NASA. Retrieved February 26, 2014.
  96. "The Habitable Exoplanets Catalog - Planetary Habitability Laboratory @ UPR Arecibo".
  97. Lopez, E. D.; Fortney, J. J. (2013). "Understanding the Mass-Radius Relation for Sub-Neptunes: Radius as a Proxy for Composition". arXiv:1311.0329Freely accessible [astro-ph.EP].
  98. Sanders, R. (4 November 2013). "Astronomers answer key question: How common are habitable planets?". newscenter.berkeley.edu.
  99. Petigura, E. A.; Howard, A. W.; Marcy, G. W. (2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences. 110: 19273–19278. arXiv:1311.6806Freely accessible. Bibcode:2013PNAS..11019273P. doi:10.1073/pnas.1319909110.
  100. Drake, Frank (2003-09-29). "The Drake Equation Revisited". Astrobiology Magazine. Archived from the original on 2011-06-28. Retrieved 2008-08-23.
  101. "Artist's View of a Super-Jupiter around a Brown Dwarf (2M1207)". Retrieved 22 February 2016.
  102. Weintraub, David A. (2014), Is Pluto a Planet?: A Historical Journey through the Solar System, Princeton University Press, p. 226, ISBN 1400852978
  103. Basri, G.; Brown, E. M. (May 2006), "Planetesimals to Brown Dwarfs: What is a Planet?", Annual Review of Earth and Planetary Sciences, 34: 193–216, arXiv:astro-ph/0608417Freely accessible, Bibcode:2006AREPS..34..193B, doi:10.1146/annurev.earth.34.031405.125058
  104. Stern, S. Alan; Levison, Harold F. (2002), Rickman, H., ed., "Regarding the criteria for planethood and proposed planetary classification schemes", Highlights of Astronomy, San Francisco, CA: Astronomical Society of the Pacific, 12, pp. 205–213, Bibcode:2002HiA....12..205S, ISBN 1-58381-086-2. See p. 208.
  105. Lissauer, J. J. (1987). "Timescales for Planetary Accretion and the Structure of the Protoplanetary disk". Icarus. 69 (2): 249–265. Bibcode:1987Icar...69..249L. doi:10.1016/0019-1035(87)90104-7.
  106. 1 2 3 Luhman, K. L.; Adame, Lucía; D'Alessio, Paola; Calvet, Nuria (2005). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". Astrophysical Journal. 635 (1): L93. arXiv:astro-ph/0511807Freely accessible. Bibcode:2005ApJ...635L..93L. doi:10.1086/498868. Lay summary NASA Press Release (2005-11-29).
  107. Clavin, Whitney (November 9, 2005). "A Planet with Planets? Spitzer Finds Cosmic Oddball.". Spitzer Space Telescope Newsroom. Archived from the original on July 11, 2007. Retrieved 2009-11-18.
  108. 1 2 Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; et al. (2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics. 558 (7): L7. arXiv:1310.1936Freely accessible. Bibcode:2013A&A...558L...7J. doi:10.1051/0004-6361/201322432.
  109. Close, Laird M.; Zuckerman, B.; Song, Inseok; Barman, Travis; et al. (2007). "The Wide Brown Dwarf Binary Oph 1622–2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623–2402): A New Class of Young Evaporating Wide Binaries?". Astrophysical Journal. 660 (2): 1492–1506. arXiv:astro-ph/0608574Freely accessible. Bibcode:2007ApJ...660.1492C. doi:10.1086/513417.
  110. Luhman, K. L.; Allers, K. N.; Jaffe, D. T.; Cushing, M. C.; et al. (2007). "Ophiuchus 1622–2405: Not a Planetary-Mass Binary". The Astrophysical Journal. 659 (2): 1629–36. arXiv:astro-ph/0701242Freely accessible. Bibcode:2007ApJ...659.1629L. doi:10.1086/512539.
  111. Britt, Robert Roy (2004-09-10). "Likely First Photo of Planet Beyond the Solar System". Space.com. Retrieved 2008-08-23.
  112. Bailes, M.; Bates, S. D.; Bhalerao, V.; Bhat, N. D. R.; et al. (2011). "Transformation of a Star into a Planet in a Millisecond Pulsar Binary". Science. 333 (6050): 1717–20. arXiv:1108.5201Freely accessible. Bibcode:2011Sci...333.1717B. doi:10.1126/science.1208890. PMID 21868629.
  113. On the origin of planets at very wide orbits from the re-capture of free floating planets, Hagai B. Perets, M. B. N. Kouwenhoven, 2012
  114. D. R. Anderson; Hellier, C.; Gillon, M.; Triaud, A. H. M. J.; Smalley, B.; Hebb, L.; Collier Cameron, A.; Maxted, P. F. L.; Queloz, D.; West, R. G.; Bentley, S. J.; Enoch, B.; Horne, K.; Lister, T. A.; Mayor, M.; Parley, N. R.; Pepe, F.; Pollacco, D.; Ségransan, D.; Udry, S.; Wilson, D. M. (2009). "WASP-17b: an ultra-low density planet in a probable retrograde orbit". arXiv:0908.1553Freely accessible [astro-ph.EP].
  115. 1 2 3 4 5 Young, Charles Augustus (1902). Manual of Astronomy: A Text Book. Ginn & company. pp. 324–7.
  116. Dvorak, R.; Kurths, J.; Freistetter, F. (2005). Chaos And Stability in Planetary Systems. New York: Springer. ISBN 3-540-28208-4.
  117. Moorhead, Althea V.; Adams, Fred C. (2008). "Eccentricity evolution of giant planet orbits due to circumstellar disk torques". Icarus. 193 (2): 475–484. arXiv:0708.0335Freely accessible. Bibcode:2008Icar..193..475M. doi:10.1016/j.icarus.2007.07.009.
  118. "Planets – Kuiper Belt Objects". The Astrophysics Spectator. 2004-12-15. Retrieved 2008-08-23.
  119. Tatum, J. B. (2007). "17. Visual binary stars". Celestial Mechanics. Personal web page. Retrieved 2008-02-02.
  120. Trujillo, Chadwick A.; Brown, Michael E. (2002). "A Correlation between Inclination and Color in the Classical Kuiper Belt". Astrophysical Journal. 566 (2): L125. arXiv:astro-ph/0201040Freely accessible. Bibcode:2002ApJ...566L.125T. doi:10.1086/339437.
  121. 1 2 Harvey, Samantha (2006-05-01). "Weather, Weather, Everywhere?". NASA. Retrieved 2008-08-23.
  122. Winn, Joshua N.; Holman, Matthew J. (2005). "Obliquity Tides on Hot Jupiters". The Astrophysical Journal. 628 (2): L159. arXiv:astro-ph/0506468Freely accessible. Bibcode:2005ApJ...628L.159W. doi:10.1086/432834.
  123. Goldstein, R. M.; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science. 139 (3558): 910–1. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054.
  124. Belton, M. J. S.; Terrile, R. J. (1984). Bergstralh, J. T., ed. "Rotational properties of Uranus and Neptune". Uranus and Neptune. NASA. CP-2330: 327–347. Bibcode:1984urnp.nasa..327B.
  125. Borgia, Michael P. (2006). The Outer Worlds; Uranus, Neptune, Pluto, and Beyond. Springer New York. pp. 195–206.
  126. Lissauer, Jack J. (1993). "Planet formation". Annual Review of Astronomy and Astrophysics. 31. (A94-12726 02–90) (1): 129–174. Bibcode:1993ARA&A..31..129L. doi:10.1146/annurev.aa.31.090193.001021.
  127. Strobel, Nick. "Planet tables". astronomynotes.com. Retrieved 2008-02-01.
  128. Zarka, Philippe; Treumann, Rudolf A.; Ryabov, Boris P.; Ryabov, Vladimir B. (2001). "Magnetically-Driven Planetary Radio Emissions and Application to Extrasolar Planets". Astrophysics & Space Science. 277 (1/2): 293–300. Bibcode:2001Ap&SS.277..293Z. doi:10.1023/A:1012221527425.
  129. Faber, Peter; Quillen, Alice C. (2007-07-12). "The Total Number of Giant Planets in Debris Disks with Central Clearings". arXiv:0706.1684Freely accessible [astro-ph].
  130. Brown, Michael E. (2006). "The Dwarf Planets". California Institute of Technology. Retrieved 2008-02-01.
  131. How One Astronomer Became the Unofficial Exoplanet Record-Keeper, www.scientificamerican.com
  132. Jason T Wright; Onsi Fakhouri; Marcy; Eunkyu Han; Ying Feng; John Asher Johnson; Howard; Fischer; Valenti; Anderson, Jay; Piskunov, Nikolai (2010). "The Exoplanet Orbit Database". arXiv:1012.5676Freely accessible [astro-ph.SR].
  133. 1 2 "Planetary Interiors". Department of Physics, University of Oregon. Retrieved 2008-08-23.
  134. Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8.
  135. Podolak, M.; Weizman, A.; Marley, M. (December 1995). "Comparative models of Uranus and Neptune". Planetary and Space Science. 43 (12): 1517–1522. Bibcode:1995P&SS...43.1517P. doi:10.1016/0032-0633(95)00061-5.
  136. Hunten D. M., Shemansky D. E., Morgan T. H. (1988), The Mercury atmosphere, In: Mercury (A89-43751 19–91). University of Arizona Press, pp. 562–612
  137. Sheppard, S. S.; Jewitt, D.; Kleyna, J. (2005). "An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness". The Astronomical Journal. 129: 518–525. arXiv:astro-ph/0410059Freely accessible. Bibcode:2005AJ....129..518S. doi:10.1086/426329.
  138. Zeilik, Michael A.; Gregory, Stephan A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 67. ISBN 0-03-006228-4.
  139. 1 2 Knutson, Heather A.; Charbonneau, David; Allen, Lori E.; Fortney, Jonathan J. (2007). "A map of the day-night contrast of the extrasolar planet HD 189733 b". Nature. 447 (7141): 183–6. arXiv:0705.0993Freely accessible. Bibcode:2007Natur.447..183K. doi:10.1038/nature05782. PMID 17495920. Lay summary Center for Astrophysics press release (2007-05-09).
  140. Weaver, Donna; Villard, Ray (2007-01-31). "Hubble Probes Layer-cake Structure of Alien World's Atmosphere" (Press release). Space Telescope Science Institute. Retrieved 2011-10-23.
  141. Ballester, Gilda E.; Sing, David K.; Herbert, Floyd (2007). "The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b". Nature. 445 (7127): 511–4. Bibcode:2007Natur.445..511B. doi:10.1038/nature05525. PMID 17268463.
  142. Harrington, Jason; Hansen, Brad M.; Luszcz, Statia H.; Seager, Sara (2006). "The phase-dependent infrared brightness of the extrasolar planet Andromeda b". Science. 314 (5799): 623–6. arXiv:astro-ph/0610491Freely accessible. Bibcode:2006Sci...314..623H. doi:10.1126/science.1133904. PMID 17038587. Lay summary NASA press release (2006-10-12).
  143. 1 2 3 Kivelson, Margaret Galland; Bagenal, Fran (2007). "Planetary Magnetospheres". In Lucyann Mcfadden; Paul Weissman; Torrence Johnson. Encyclopedia of the Solar System. Academic Press. p. 519. ISBN 978-0-12-088589-3.
  144. Gefter, Amanda (2004-01-17). "Magnetic planet". Astronomy. Retrieved 2008-01-29.
  145. Grasset, O.; Sotin C.; Deschamps F. (2000). "On the internal structure and dynamic of Titan". Planetary and Space Science. 48 (7–8): 617–636. Bibcode:2000P&SS...48..617G. doi:10.1016/S0032-0633(00)00039-8.
  146. Fortes, A. D. (2000). "Exobiological implications of a possible ammonia-water ocean inside Titan". Icarus. 146 (2): 444–452. Bibcode:2000Icar..146..444F. doi:10.1006/icar.2000.6400.
  147. Jones, Nicola (2001-12-11). "Bacterial explanation for Europa's rosy glow". New Scientist Print Edition. Retrieved 2008-08-23.
  148. Molnar, L. A.; Dunn, D. E. (1996). "On the Formation of Planetary Rings". Bulletin of the American Astronomical Society. 28: 77–115. Bibcode:1996DPS....28.1815M.
  149. Thérèse, Encrenaz (2004). The Solar System (Third ed.). Springer. pp. 388–390. ISBN 3-540-00241-3.

External links

Wikimedia Commons has media related to Planets.
Wikiquote has quotations related to: Planet
Look up planet in Wiktionary, the free dictionary.

This article is issued from Wikipedia - version of the 11/14/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.