Isotropic manifold

Not to be confused with isotropic subspace, a quadratic space containing a non-zero vector v for which q(v) is 0.

In mathematics, an isotropic manifold is a manifold in which the geometry does not depend on directions. Formally, we say that a Riemannian manifold is isotropic if for any point and unit vectors , there is an isometry of with and . Every complete isotropic manifold is homogeneous, i.e. for any there is an isometry of with This can be seen by considering a geodesic from to and taking the isometry which fixes and maps to

Examples

The simply-connected space forms (the n-sphere, hyperbolic space, and ) are isotropic. It is not true in general that any constant curvature manifold is isotropic; for example, the flat torus is not isotropic. This can be seen by noting that any isometry of which fixes a point must lift to an isometry of which fixes a point and preserves ; thus the group of isometries of which fix is discrete. Moreover, it can be seen that no oriented surface with constant curvature and negative Euler characteristic is isotropic.

Moreover, there are isotropic manifolds which do not have constant curvature, such as the complex projective space () equipped with the Fubini-Study metric.

Further examples of isotropic manifolds are given by the rank one symmetric spaces, including the projective spaces , , , and , as well as their noncompact hyperbolic analogues.

A manifold can be homogeneous but not isotropic, such as the flat torus or with the product metric.

See also


This article is issued from Wikipedia - version of the 5/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.