Histone-modifying enzymes

Histone-Modifying Enzymes, the sites for modification are marked in color.

The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by the chromatin. The nucleosome is composed of an octamer of the four core histones (H3, H4, H2A, H2B) around which 147 base pairs of DNA are wrapped. Several distinct classes of enzyme can modify histones at multiple sites.[1] The figure on the right enlists those histone-modifying enzymes whose specificity has been determined. There are at least eight distinct types of modifications found on histones (see the legend box on the top left of the figure). Enzymes have been identified for acetylation,[2] methylation,[3] demethylation,[4] phosphorylation,[5] ubiquitination,[6] sumoylation,[7] ADP-ribosylation,[8] deimination,[9][10] and proline isomerization.[11] For a detailed example of histone modifications in transcription regulation see RNA polymerase control by chromatin structure and table Influence of modifications on gene expression in mammalian cells.

See also

References

  1. Kouzarides T (February 2007). "Chromatin modifications and their function". Cell. 128 (4): 693–705. doi:10.1016/j.cell.2007.02.005. PMID 17320507.
  2. Sterner DE, Berger SL (June 2000). "Acetylation of histones and transcription-related factors". Microbiol. Mol. Biol. Rev. 64 (2): 435–59. doi:10.1128/MMBR.64.2.435-459.2000. PMC 98999Freely accessible. PMID 10839822.
  3. Zhang Y, Reinberg D (2001). "Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails". Genes Dev. 15 (18): 2343–60. doi:10.1101/gad.927301. PMID 11562345.
  4. Klose RJ, Zhang Y (2007). "Regulation of histone methylation by demethylimination and demethylation". Nat. Rev. Mol. Cell Biol. 8 (4): 307–18. doi:10.1038/nrm2143. PMID 17342184.
  5. Nowak SJ, Corces VG (April 2004). "Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation". Trends Genet. 20 (4): 214–20. doi:10.1016/j.tig.2004.02.007. PMID 15041176.
  6. Shilatifard A (2006). "Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression". Annu. Rev. Biochem. 75: 243–69. doi:10.1146/annurev.biochem.75.103004.142422. PMID 16756492.
  7. Nathan D, Ingvarsdottir K, Sterner DE, et al. (April 2006). "Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications". Genes Dev. 20 (8): 966–76. doi:10.1101/gad.1404206. PMC 1472304Freely accessible. PMID 16598039.
  8. Hassa PO, Haenni SS, Elser M, Hottiger MO (September 2006). "Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?". Microbiol. Mol. Biol. Rev. 70 (3): 789–829. doi:10.1128/MMBR.00040-05. PMC 1594587Freely accessible. PMID 16959969.
  9. Cuthbert GL, Daujat S, Snowden AW, et al. (September 2004). "Histone deimination antagonizes arginine methylation". Cell. 118 (5): 545–53. doi:10.1016/j.cell.2004.08.020. PMID 15339660.
  10. Wang Y, Wysocka J, Sayegh J, et al. (October 2004). "Human PAD4 regulates histone arginine methylation levels via demethylimination". Science. 306 (5694): 279–83. doi:10.1126/science.1101400. PMID 15345777.
  11. Nelson CJ, Santos-Rosa H, Kouzarides T (September 2006). "Proline isomerization of histone H3 regulates lysine methylation and gene expression". Cell. 126 (5): 905–16. doi:10.1016/j.cell.2006.07.026. PMID 16959570.
This article is issued from Wikipedia - version of the 5/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.