High-speed camera

A high-speed camera is a device capable of image exposures in excess of 1/1,000 or frame rates in excess of 250 frames per second.[1] It is used for recording fast-moving objects as a photographic image(s) onto a storage medium. After recording, the images stored on the medium can be played back in slow-motion. Early high-speed cameras used film to record the high-speed events, but today high-speed cameras are entirely electronic using either a charge-coupled device (CCD) or a CMOS active pixel sensor, recording typically over 1,000 frames per second into DRAM and playing images back slowly to study the motion for scientific study of transient phenomena.[2] A high-speed camera can be classified as:

  1. A high-speed film camera which records to film,
  2. A high-speed video camera which records to electronic memory,
  3. A high-speed framing camera which records images on multiple image planes or multiple locations on the same image plane[3] (generally film or a network of CCD cameras),
  4. A high-speed streak camera which records a series of line-sized images to film or electronic memory.

A normal motion picture film is played back at 24 frames per second, while television uses 25 frames/s (PAL) or 29.97 frames/s (NTSC). High-speed film cameras can film up to a quarter of a million frames per second by running the film over a rotating prism or mirror instead of using a shutter, thus reducing the need for stopping and starting the film behind a shutter which would tear the film stock at such speeds. Using this technique one can stretch one second to more than ten minutes of playback time (super slow motion). High-speed video cameras are widely used for scientific research,[4][5] military test and evaluation,[6] and industry.[7] Examples of industrial applications are filming a manufacturing line to better tune the machine, or in the car industry the crash testing to better document the crash and what happens to the automobile and passengers during a crash. Today, the digital high-speed camera has replaced the film camera used for Vehicle Impact Testing.[8]

Schlieren video of an intermediate ballistic event of a shotshell cartridge. Nathan Boor, Aimed Research.

Television series such as MythBusters and Time Warp often use high-speed cameras to show their tests in slow motion. Saving the recorded high-speed images can be time consuming because the newest consumer cameras today have resolutions up to four megapixels at record rates over 1000 frames per second, which means in one second the user will have over 11 gigabytes of image data. Technologically these cameras are very advanced, yet saving images requires use of slower standard video-computer interfaces.[9] While recording is very fast, saving images is considerably slower. One of the solutions to drive down the recorded data, or to minimize the required time to look at the images, is to pre-select only the parts which are interesting enough to film. During industrial breakdown analysis, cyclical filming focuses only on that part of the cycle which is interesting.

A problem for high-speed cameras is the needed exposure for the film, so one needs very bright light to be able to film at forty thousand frames per second sometimes leading to the subject of examination being destroyed because of the heat of the lighting. Monochromatic filming (black/white) is sometimes used to reduce the required amount of light. Even higher speed imaging is possible using specialized electronic charge-coupled device (CCD) imaging systems which can achieve speeds of up to or in excess of 25 million frames per second.[10] All development in high-speed cameras is now focused on digital video cameras which have many operational and cost benefits over film cameras.

Recent advances in the form of image converter devices are able to provide temporal resolutions of less than fifty picoseconds, equivalent to over 20 billion frames per second. These instruments operate by converting the incident light (consisting of photons) into a stream of electrons which are then deflected onto a photoanode, back into photons, which can then be recorded onto either film or CCD.

Uses in television

Uses in science

High-speed cameras are frequently used in science in order to characterize events which happen too fast for traditional film speeds. Biomechanics employs such cameras to capture high-speed animal movements, such as jumping in frogs and insects,[12] suction feeding in fish, the strikes of mantis shrimp, or the aerodynamic study of pigeons helicopter like movements [13] using motion analysis of the resulting sequences from one or more cameras to characterize the motion in either 2-D or 3-D.

The move from film to digital technology has greatly reduced the difficulty in use of these technologies with unpredictable behaviors, specifically via the use of continuous recording and post-triggering. With film high-speed cameras, an investigator must start the film then attempt to entice the animal to perform the behavior in the short time before the film runs out, resulting in many useless sequences where the animal behaves too late or not at all. In modern digital high-speed cameras,[14] the camera can simply record continuously as the investigator attempts to elicit the behavior, following which a trigger button will stop the recording and allow the investigator to save a given time interval before and after the trigger (determined by frame rate, image size and memory capacity during continuous recording). Most software allows saving a subset of recorded frames, minimizing file size issues by eliminating useless frames before or after the sequence of interest. Such triggering can also be used to synchronize recording across multiple cameras.

Uses in industry

When moving from reactive maintenance to predictive maintenance, it is crucial that breakdowns are really understood. One of the basic analysis techniques is to use high-speed cameras in order to characterize events which happen too fast to see, e.g., during production. Similar to in science, with a pre- or post-triggering capability the camera can simply record continuously as the mechanic waits for the breakdown to happen, following which a trigger signal (internal or external) will stop the recording and allow the investigator to save a given time interval prior to the trigger (determined by frame rate, image size, and memory capacity during continuous recording). Some software allows viewing the issues in real time, by displaying only a subset of recorded frames, minimizing file size and watch time issues by eliminating useless frames before or after the sequence of interest.

High-speed video cameras are used to augment other industrial technologies such as x-ray radiography. When used with the proper phosphor screen which converts x-rays into visible light, high-speed cameras can be used to capture high-speed x-ray videos of events inside mechanical devices and biological specimens. The imaging speed is mainly limited by the phosphor screen decay rate and intensity gain which has a direct relationship on the camera's exposure. Pulsed x-ray sources limit frame rate and should be properly synchronized with camera frame captures.[15]

Uses in warfare

In 1950, Morton Sultanoff, an engineer for the U.S. Army at Aberdeen Proving ground, invented a super high-speed camera that took frames at one-millionth of a second, and was fast enough to record the shock wave of a small explosion.[16] High Speed digital cameras have been used to study how mines dropped from the air will deploy in near-shore regions[17] including development of various weapon systems. In past years, the modern high speed digital cameras with 4 megapixel resolution recording at 1500 fps have been replacing the 35mm and 70mm high speed film cameras used on tracking mounts on test ranges that capture ballistic intercepts.[18]

See also


  1. Journal Of The Society Of Motion Picture Engineers: High-Speed Photography, Preface p.5, Mar 1949
  2. High Frame Rate Electronic Imaging
  3. http://www.aimed-research.com/help.html
  4. scientific research Chen, Xianfeng. "Effect of CH4–Air Ratios on Gas Explosion Flame Microstructurec and Propagation Behaviors". Energies 2012, 5, 4132-4146; doi:10.3390/en5104132. Retrieved 22 October 2012.
  5. scientific researchAnderson, Christopher V. "Ballistic tongue projection in chameleons maintains high performance at low temperature" (PDF). Proceedings of the National Academy of Sciences of the United States of America. Retrieved 2 February 2010.
  6. Chu, Dr. Peter C. "Non-Cylindrical Mine Drop Experiment" (PDF). Seventh International Symposium on Technology and Mine Problem, NPS, Monterey, California, USA. Retrieved 2–4 May 2006. Check date values in: |access-date= (help)
  7. "Photron Camera Honored by Japan Society of Mechanical Engineers". Quality Magazine. Retrieved January 23, 2008.
  8. Replacing 16 mm Film Cameras with High Definition Digital Cameras
  9. REVIEW: High Speed Cameras, Jan. 4, 2011
  10. Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
  11. "NAC High Speed Cameras Are Popular Choices for European Broadcasting". Retrieved 8 October 2010.
  12. Kesel, Antonia B. "Quantifying the Landing Reaction of Cockroaches" (PDF). University of Applied Sciences Bremen Bionics-Innovation-Centre (B-I-C)Neustadtswall 30 D-28199, Bremen, Germany. Retrieved 15 December 2009.
  13. Rosa, Ivo G. "Pigeons steer like helicopters and generate down and upstroke lift during low speed turns" (PDF). Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station, 100 Old Causeway Road, Bedford, MA 01730 and Department of Engineering, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711. Retrieved 24 October 2011. line feed character in |work= at position 139 (help)
  14. Balch, Kris S. "Fourth-generation motion analyzer". Proc. SPIE 1358, 19th Intl Congress on High-Speed Photography and Photonics, 373 (April 1, 1991); doi:10.1117/12.23937. Retrieved 16 September 1990. Check date values in: |access-date= (help)
  15. http://www.aimed-research.com/Services.html
  16. "Super Speed Camera Films Shock Wave" Popular Mechanics, October 1950, p. 158.
  17. weapon developmentChu, Dr. Peter C. "Non-Cylindrical Mine Drop Experiment" (PDF). Seventh International Symposium on Technology and Mine Problem, NPS, Monterey, California, USA. Retrieved 2–4 May 2006. Check date values in: |access-date= (help). By using high speed digital cameras to record and playback the images in slow motion, the trajectory of a mine entering into the water can be optimized for accuracy by adjusting the shape of the mine and the entry angle into the water. There are many instances of high speed digital cameras used to study firearm ballistics"Handgun Wounding Effects Due to Bullet Rotational Velocity" (PDF). Retrieved 18 February 2013.
  18. Bridges, Andrew. "INDUSTRY VIEW: Military test ranges make the switch from film to digital imaging". Military & Aerospace Electronics magazine. Retrieved 1 August 2005.
Wikimedia Commons has media related to High speed cameras.
This article is issued from Wikipedia - version of the 11/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.