Fold mountains

Zagros Mountains, seen from space.

Fold mountains are mountains that form mainly by the effects of folding on layers within the upper part of the Earth's crust. Before either plate tectonic theory developed, or the internal architecture of thrust belts became well understood, the term was used for most mountain belts, such as the Himalayas. The term is still fairly common in physical geography literature but has otherwise generally fallen out of use except as described below. The forces responsible for formation of fold mountains are called orogenic movements. The term orogenic has derived from a Greek word meaning mountain building. These forces act at tangent to the surface of the earth and are primarily a result of plate tectonics.

Formation

Fold mountains form when two tectonic plates move towards each other at a convergent plate boundary. Fold mountains form from sedimentary rocks that accumulate along the margins of continents. When plates and the continents riding on them collide, the accumulated layers of rock may crumple and fold like a tablecloth that is pushed across a table, particularly if there is a mechanically weak layer such as salt.[1]

Examples

See also

References

  1. 1 2 Ulmer, S. (11 August 2011). "Fold mountains slip on soft areas". ETH Life. ETH Zürich. Retrieved 21 February 2012.
This article is issued from Wikipedia - version of the 10/11/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.