Karyopherin

Karyopherins are a group of proteins involved in transporting molecules between the cytoplasm and the nucleus of a eukaryotic cell. The inside of the nucleus is called the karyoplasm (or nucleoplasm). Generally, karyopherin-mediated transport occurs through the nuclear pore, which acts as a gateway into and out of the nucleus. Most proteins require karyopherins to traverse the nuclear pore.

Karyopherins can act as importins (i.e. helping proteins get into the nucleus) or exportins (i.e. helping proteins get out of the nucleus). They belong to The Nuclear Pore Complex Family[1] in the transporter classification database (TCDB).

Energy for transport is derived from the Ran gradient. See Ran for further details.

Upon stress, several karyopherins stop shuttling between the nucleus and the cytoplasm and are sequestered in stress granules, cytoplasmic aggregates of ribonucleoprotein complexes.[2][3]

Importin beta

Importin beta is a specific type of karyopherin that facilitates the transport of cargo proteins into the nucleus. First, it is binding importin alpha - another type of karyopherin that binds the cargo protein in the cytoplasm - before the cargo protein is imported into the nucleus through the nuclear pore using energy derived from the Ran gradient. Once inside the nucleus, the cargo dissociates from the karyopherins.

Importin beta can also carry proteins into the nucleus without the aid of the importin alpha adapter protein.[4]

Human genes in the karyopherin family

Additional images

References

  1. http://www.tcdb.org/search/result.php?tc=9.A.14
  2. Mahboubi, Hicham; Seganathy, Evangeline; Kong, Dekun; Stochaj, Ursula (2013-06-27). "Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport". PLoS ONE. 8 (6): e68356. doi:10.1371/journal.pone.0068356. PMC 3694919Freely accessible. PMID 23826389.
  3. Fujimura, Ken; Suzuki, Tomonori; Yasuda, Yoshinari; Murata, Masayuki; Katahira, Jun; Yoneda, Yoshihiro (2010-07-01). "Identification of importin α1 as a novel constituent of RNA stress granules". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1803 (7): 865–871. doi:10.1016/j.bbamcr.2010.03.020.
  4. Poon, I. K. H. and D. A. Jans (2005). "Regulation of nuclear transport: Central role in development and transformation?" Traffic 6(3): 173-186.

External links


This article is issued from Wikipedia - version of the 6/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.