Crabtree effect

See also: Evolution of aerobic fermentation

Named after the English biochemist Herbert Grace Crabtree, the Crabtree effect describes the phenomenon whereby the yeast, Saccharomyces cerevisiae, produces ethanol (alcohol) in aerobic conditions and high external glucose concentrations rather than producing biomass via the tricarboxylic acid (TCA) cycle, the usual process occurring aerobically in most yeasts e.g. Kluyveromyces spp[1]. This phenomenon is observed in most species of the Saccharomyces, Schizosaccharomyces, Debaryomyces, Brettanomyces, Torulopsis, Nematospora, and Nadsonia genera.[2] Increasing concentrations of glucose accelerates glycolysis (the breakdown of glucose) which results in the production of appreciable amounts of ATP through substrate-level phosphorylation. This reduces the need of oxidative phosphorylation done by the TCA cycle via the electron transport chain and therefore decreases oxygen consumption. The phenomenon is believed to have evolved as a competition mechanism (due to the antiseptic nature of ethanol) around the time when the first fruits on Earth fell from the trees.[1] The crabtree effect works by repressing respiration by the fermentation pathway, dependent on the substrate.[2]

References

  1. 1 2 Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005). "Resurrecting ancestral alcohol dehydrogenases from yeast.". Nat. Genet. 37 (6): 630–635. doi:10.1038/ng1553. PMC 3618678Freely accessible. PMID 15864308.
  2. 1 2 De Deken, R. H. (1966). "The Crabtree Effect: A Regulatory System in Yeast". J. gen. Microbiol. 44: 149–56. doi:10.1099/00221287-44-2-149. PMID 5969497.

Further reading


This article is issued from Wikipedia - version of the 8/12/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.