Clostridium

Clostridium
SE micrograph of Clostridium difficile colonies from a stool sample
Scientific classification
Domain: Bacteria
Phylum: Firmicutes
Class: Clostridia
Order: Clostridiales
Family: Clostridiaceae
Genus: Clostridium
Prazmowski 1880
Selected species

Clostridium absonum, Clostridium aceticum, Clostridium acetireducens, Clostridium acetobutylicum, Clostridium acidisoli, Clostridium aciditolerans, Clostridium acidurici, Clostridium aerotolerans, Clostridium aestuarii, Clostridium akagii, Clostridium aldenense, Clostridium aldrichii, Clostridium algidicarni, Clostridium algidixylanolyticum, Clostridium algifaecis, Clostridium algoriphilum, Clostridium alkalicellulosi, Clostridium aminophilum, Clostridium aminovalericum, Clostridium amygdalinum, Clostridium amylolyticum, Clostridium arbusti, Clostridium arcticum, Clostridium argentinense, Clostridium asparagiforme, Clostridium aurantibutyricum, Clostridium autoethanogenum, Clostridium baratii, Clostridium barkeri, Clostridium bartlettii, Clostridium beijerinckii, Clostridium bifermentans, Clostridium bolteae, Clostridium bornimense, Clostridium botulinum, Clostridium bowmanii, Clostridium bryantii, Clostridium butyricum, Clostridium cadaveris, Clostridium caenicola, Clostridium caminithermale, Clostridium carboxidivorans, Clostridium carnis, Clostridium cavendishii, Clostridium celatum, Clostridium celerecrescens, Clostridium cellobioparum, Clostridium cellulofermentans, Clostridium cellulolyticum, Clostridium cellulosi, Clostridium cellulovorans, Clostridium chartatabidum, Clostridium chauvoei, Clostridium chromiireducens, Clostridium citroniae, Clostridium clariflavum, Clostridium clostridioforme, Clostridium coccoides, Clostridium cochlearium, Clostridium colletant, Clostridium colicanis, Clostridium colinum, Clostridium collagenovorans, Clostridium cylindrosporum, Clostridium difficile, Clostridium diolis, Clostridium disporicum, Clostridium drakei, Clostridium durum, Clostridium estertheticum, Clostridium estertheticum estertheticum, Clostridium estertheticum laramiense, Clostridium fallax, Clostridium felsineum, Clostridium fervidum, Clostridium fimetarium, Clostridium formicaceticum, Clostridium frigidicarnis, Clostridium frigoris, Clostridium ganghwense, Clostridium gasigenes, Clostridium ghonii, Clostridium glycolicum, Clostridium glycyrrhizinilyticum, Clostridium grantii, Clostridium haemolyticum, Clostridium halophilum, Clostridium hastiforme, Clostridium hathewayi, Clostridium herbivorans, Clostridium hiranonis, Clostridium histolyticum, Clostridium homopropionicum, Clostridium huakuii, Clostridium hungatei, Clostridium hydrogeniformans, Clostridium hydroxybenzoicum, Clostridium hylemonae, Clostridium jejuense, Clostridium indolis, Clostridium innocuum, Clostridium intestinale, Clostridium irregulare, Clostridium isatidis, Clostridium josui, Clostridium kluyveri, Clostridium lactatifermentans, Clostridium lacusfryxellense, Clostridium laramiense, Clostridium lavalense, Clostridium lentocellum, Clostridium lentoputrescens, Clostridium leptum, Clostridium limosum, Clostridium litorale, Clostridium lituseburense, Clostridium ljungdahlii, Clostridium lortetii, Clostridium lundense, Clostridium magnum, Clostridium malenominatum, Clostridium mangenotii, Clostridium mayombei, Clostridium methoxybenzovorans, Clostridium methylpentosum, Clostridium neopropionicum, Clostridium nexile, Clostridium nitrophenolicum, Clostridium novyi, Clostridium oceanicum, Clostridium orbiscindens, Clostridium oroticum, Clostridium oxalicum, Clostridium papyrosolvens, Clostridium paradoxum, Clostridium paraperfringens (Alias: C. welchii), Clostridium paraputrificum, Clostridium pascui, Clostridium pasteurianum, Clostridium peptidivorans, Clostridium perenne, Clostridium perfringens, Clostridium pfennigii, Clostridium phytofermentans, Clostridium piliforme, Clostridium polysaccharolyticum, Clostridium populeti, Clostridium propionicum, Clostridium proteoclasticum, Clostridium proteolyticum, Clostridium psychrophilum, Clostridium puniceum, Clostridium purinilyticum, Clostridium putrefaciens, Clostridium putrificum, Clostridium quercicolum, Clostridium quinii, Clostridium ramosum, Clostridium rectum, Clostridium roseum, Clostridium saccharobutylicum, Clostridium saccharogumia, Clostridium saccharolyticum, Clostridium saccharoperbutylacetonicum, Clostridium sardiniense, Clostridium sartagoforme, Clostridium scatologenes, Clostridium schirmacherense, Clostridium scindens, Clostridium septicum, Clostridium sordellii, Clostridium sphenoides, Clostridium spiroforme, Clostridium sporogenes, Clostridium sporosphaeroides, Clostridium stercorarium, Clostridium stercorarium leptospartum, Clostridium stercorarium stercorarium, Clostridium stercorarium thermolacticum, Clostridium sticklandii, Clostridium straminisolvens, Clostridium subterminale, Clostridium sufflavum, Clostridium sulfidigenes, Clostridium symbiosum, Clostridium tagluense, Clostridium tepidiprofundi, Clostridium termitidis, Clostridium tertium, Clostridium tetani, Clostridium tetanomorphum, Clostridium thermaceticum, Clostridium thermautotrophicum, Clostridium thermoalcaliphilum, Clostridium thermobutyricum, Clostridium thermocellum, Clostridium thermocopriae, Clostridium thermohydrosulfuricum, Clostridium thermolacticum, Clostridium thermopalmarium, Clostridium thermopapyrolyticum, Clostridium thermosaccharolyticum, Clostridium thermosuccinogenes, Clostridium thermosulfurigenes, Clostridium thiosulfatireducens, Clostridium tyrobutyricum, Clostridium uliginosum, Clostridium ultunense, Clostridium villosum, Clostridium vincentii, Clostridium viride, Clostridium xylanolyticum, Clostridium xylanovorans

Clostridium is a genus of Gram-positive bacteria, which includes several significant human pathogens, including the causative agent of botulism and an important cause of diarrhea, Clostridium difficile. They are obligate anaerobes capable of producing endospores. The normal, reproducing cells of Clostridium, called the vegetative form, are rod-shaped, which gives them their name, from the Greek κλωστήρ or spindle. Clostridium endospores have a distinct bowling pin or bottle shape, distinguishing them from other bacterial endospores, which are usually ovoid in shape. Clostridium species inhabit soils and the intestinal tract of animals, including humans.[1] Clostridium is a normal inhabitant of the healthy lower reproductive tract of women.[2][3]

Overview

Clostridium contains around 100 species that include common free-living bacteria, as well as important pathogens.[4] The main species responsible for disease in humans are:[5]

Bacillus and Clostridium are often described as gram-variable, because they show an increasing number of gram-negative cells as the culture ages.[7]

Clostridium and Bacillus are both in the division Firmicutes, but they are in different classes, orders, and families. Microbiologists distinguish Clostridium from Bacillus by the following features:[1]

Clostridium and Desulfotomaculum are both in the class Clostridia and order Clostridiales, and they both produce bottle-shaped endospores, but they are in different families. Clostridium can be distinguished from Desulfotomaculum on the basis of the nutrients each genus uses (the latter requires sulfur).

Glycolysis and fermentation of pyruvic acid by Clostridia yield the end products butyric acid, butanol, acetone, isopropanol, and carbon dioxide.[7]

The Schaeffer-Fulton stain (0.5% malachite green in water) can be used to distinguish endospores of Bacillus and Clostridium from other microorganisms.[8] There is a commercially available polymerase chain reaction (PCR) test kit (Bactotype) for the detection of C. perfringens and other pathogenic bacteria.[9]

Treatment

In general, the treatment of clostridial infection is high-dose penicillin G, to which the organism has remained susceptible.[10] Clostridium welchii and Clostridium tetani respond to sulfonamides.[11] Clostridia are also susceptible to tetracyclines, carbapenems (imipenem), metronidazole, vancomycin, and chloramphenicol.[12]

The vegetative cells of Clostridia are heat-labile and are killed by short heating at temperatures above 72–75 °C. The thermal destruction of Clostridium spores requires higher temperatures (above 121.1 °C, for example in an autoclave) and longer cooking times (20 min, with a few exceptional cases of > 50 min recorded in the literature). Clostridia and Bacilli are quite radiation-resistant, requiring doses of about 30 kGy, which is a serious obstacle to the development of shelf-stable irradiated foods for general use in the retail market.[13] The addition of lysozyme, nitrate, nitrite and propionic acid salts inhibits Clostridia in various foods.[14][15][16]

Fructooligosaccharides (fructans) such as inulin, occurring in relatively large amounts in a number of foods such as chicory, garlic, onion, leek, artichoke, and asparagus, have a prebiotic or bifidogenic effect, selectively promoting the growth and metabolism of beneficial bacteria in the colon, such as bifidobacteria and lactobacilli, while inhibiting harmful ones, such as clostridia, fusobacteria, and bacteroides.[17]

History

In the late 1700s, Germany experienced a number of outbreaks of an illness that seemed connected to eating certain sausages. In 1817, the German neurologist Justinus Kerner detected rod-shaped cells in his investigations into this so-called sausage poisoning. In 1897, the Belgian biology professor Emile van Ermengem published his finding of an endospore-forming organism he isolated from spoiled ham. Biologists classified van Ermengem's discovery along with other known gram-positive spore formers in the genus Bacillus. This classification presented problems, however, because the isolate grew only in anaerobic conditions, but Bacillus grew well in oxygen.[1]

In 1924, Ida A. Bengtson separated van Ermengem's microorganisms from the Bacillus group and assigned them to a new genus, Clostridium. By Bengtson's classification scheme, Clostridium contained all of the anaerobic endospore-forming rod-shaped bacteria, except the genus Desulfotomaculum.[1]

Use

References

  1. 1 2 3 4 5 Anne Maczulak (2011), "Clostridium", Encyclopedia of Microbiology, Facts on File, pp. 168–173, ISBN 978-0-8160-7364-1
  2. Hoffman, Barbara (2012). Williams gynecology (2nd ed.). New York: McGraw-Hill Medical. p. 65. ISBN 0071716726.
  3. Senok, Abiola C; Verstraelen, Hans; Temmerman, Marleen; Botta, Giuseppe A; Senok, Abiola C (2009). "Probiotics for the treatment of bacterial vaginosis". Cochrane Database Syst Rev: CD006289. doi:10.1002/14651858.CD006289.pub2. PMID 19821358.
  4. UK Standards for Microbiology Investigations (October 10, 2011). "Identification of Clostridium Species". Standards Unit, Health Protection Agency. p. 7. 8. Retrieved November 3, 2013.
  5. Baron, S.; et al., eds. (1996). Baron's Medical Microbiology (4th ed.). Univ. of Texas Medical Branch. ISBN 0-9631172-1-1.
  6. Meites E, Zane S, Gould C (2010). "Fatal Clostridium sordellii infections after medical abortions". New England Journal of Medicine. 363 (14): 1382–3. doi:10.1056/NEJMc1001014. PMID 20879895.
  7. 1 2 3 Gerard J. Tortora; Berdell R. Funke; Christine L. Case (2010), Microbiology: An Introduction (10th ed.), Benjamin Cummings, pp. 87, 134, 433, ISBN 978-0-321-55007-1
  8. Anne Maczulak (2011), "stain", Encyclopedia of Microbiology, Facts on File, pp. 726–729, ISBN 978-0-8160-7364-1
  9. Hermann Willems; Cornelie Jäger; Gerald Reiner (2007), "Polymerase Chain Reaction", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–27, doi:10.1002/14356007.c21_c01.pub2
  10. Jerrold B. Leikin; Frank P. Paloucek, eds. (2008), "Clostridium perfringens Poisoning", Poisoning and Toxicology Handbook (4th ed.), Informa, pp. 892–893, ISBN 978-1-4200-4479-9
  11. Paul Actor; Alfred W. Chow; Frank J. Dutko; Mark A. McKinlay (2007), "Chemotherapeutics", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–61, doi:10.1002/14356007.a06_173
  12. Richard A. Harvey, ed. (2012), Lippincott's Illustrated Reviews: Pharmacology (5th ed.), Lippincott, pp. 389–404, ISBN 978-1-4511-1314-3
  13. Pavel Jelen (2007), "Foods, 2. Food Technology", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–38, doi:10.1002/14356007.a11_523
  14. Guido Burkhalter; Christian Steffen; Zdenko Puhan (2007), "Cheese, Processed Cheese, and Whey", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–11, doi:10.1002/14356007.a06_163
  15. Karl-Otto Honikel (2007), "Meat and Meat Products", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–17, doi:10.1002/14356007.e16_e02.pub2
  16. Ulf-Rainer Samel; Walter Kohler; Armin Otto Gamer; Ullrich Keuser (2007), "Propionic Acid and Derivatives", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–18, doi:10.1002/14356007.a22_223
  17. Ralf Zink; Andrea Pfeifer (2007), "Health Value Added Foods", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–12, doi:10.1002/14356007.d12_d01
  18. Velickovic M, Benabou R, Brin MF. Cervical dystonia pathophysiology and treatment options" Drugs 2001;61:1921–1943.
  19. Gerard M. Doherty, ed. (2005), "Inflammation, Infection, & Antimicrobial Therapy", Current Diagnosis & Treatment: Surgery, McGraw-Hill, ISBN 978-0-07-159087-7
  20. "Providing for a Sustainable Energy Future". Bioengineering Resources, inc. Retrieved 21 May 2007.
  21. Mengesha; et al. (2009). "Clostridia in Anti-tumor Therapy". Clostridia: Molecular Biology in the Post-genomic Era. Caister Academic Press. ISBN 978-1-904455-38-7.
  22. Chou, Chia-Hung; Chang-Lung Han; Jui-Jen Chang; Jiunn-Jyi Lay (October 2011). "Co-culture of Clostridium beijerinckii L9, Clostridium butyricum M1 and Bacillus thermoamylovorans B5 for converting yeast waste into hydrogen". International Journal of Hydrogen Energy. 36 (21): 13972–13983. doi:10.1016/j.ijhydene.2011.03.067.

External links

This article is issued from Wikipedia - version of the 10/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.