Chymotrypsin

chymotrypsin

Crystallographic structure of Bos taurus chymotrypsinogen.[1]
Identifiers
EC number 3.4.21.1
CAS number 9004-07-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
chymotrypsin C
Identifiers
EC number 3.4.21.2
CAS number 9036-09-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum where it performs proteolysis, the breakdown of proteins and polypeptides.[2] Chymotrypsin preferentially cleaves peptide amide bonds where the carboxyl side of the amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their sidechain that fits into a 'hydrophobic pocket' (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 sidechain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme.[3][4] Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine and methionine at the P1 position.

Structurally, it is the archetypal structure for its superfamily, the PA clan of proteases.

Activation

Chymotrypsin is synthesized in the pancreas by protein biosynthesis as a precursor called chymotrypsinogen that is enzymatically inactive. Trypsin activates chymotrypsinogen by cleaving peptidic bonds in positions Arg15 - Ile16 and produces π-Chymotrypsin. In turn, aminic group (-NH3+) of the Ile16 residue interacts with the side chain of Glu194, producing the "oxyanion hole" and the hydrophobic "S1 pocket". Moreover, Chymotrypsin induces its own activation by cleaving in positions 14-15, 146-147 and 148-149, producing α-Chymotrypsin (which is more active and stable than π-Chymotrypsin). The resulting molecule is a three-polypeptide molecule interconnected via disulfide bonds.

Mechanism of action and kinetics

See also: catalytic triad

In vivo, chymotrypsin is a proteolytic enzyme (Serine protease) acting in the digestive systems of many organisms. It facilitates the cleavage of peptide bonds by a hydrolysis reaction, which despite being thermodynamically favorable occurs extremely slowly in the absence of a catalyst. The main substrates of chymotrypsin include tryptophan, tyrosine, phenylalanine, and leucine, which are cleaved at the carboxyl terminal. Like many proteases, chymotrypsin will also hydrolyse amide bonds in vitro, a virtue that enabled the use of substrate analogs such as N-acetyl-L-phenylalanine p-nitrophenyl amide for enzyme assays.

Mechanism of peptide bond cleavage in α-chymotrypsin

Chymotrypsin cleaves peptide bonds by attacking the unreactive carbonyl group with a powerful nucleophile, the serine 195 residue located in the active site of the enzyme, which briefly becomes covalently bonded to the substrate, forming an enzyme-substrate intermediate. Along with histidine 57 and aspartic acid 102, this serine residue constitutes the catalytic triad of the active site.

These findings rely on inhibition assays and the study of the kinetics of cleavage of the aforementioned substrate, exploiting the fact that the enzyme-substrate intermediate p-nitrophenolate has a yellow colour, enabling us to measure its concentration by measuring light absorbance at 410 nm.

It was found that the reaction of chymotrypsin with its substrate takes place in two stages, an initial “burst” phase at the beginning of the reaction and a steady-state phase following Michaelis-Menten kinetics. It is also called "ping-pong" mechanism. The mode of action of chymotrypsin explains this as hydrolysis takes place in two steps. First acylation of the substrate to form an acyl-enzyme intermediate and then deacylation in order to return the enzyme to its original state. This occurs via the concerted action of the three amino acid residues in the catalytic triad.[5] Aspartate hydrogen bonds to the N-δ hydrogen of histidine, increasing the pKa of its ε nitrogen and thus making it able to deprotonate serine. It is this deprotonation that allows the serine side chain to act as a nucleophile and bind to the electron-deficient carbonyl carbon of the protein main chain. Ionization of the carbonyl oxygen is stabilized by formation of two hydrogen bonds to adjacent main chain N-hydrogens. This occurs in the oxyanion hole. This forms a tetrahedral adduct and breakage of the peptide bond. An acyl-enzyme intermediate, bound to the serine, is formed, and the newly formed amino terminus of the cleaved protein can dissociate. In the second reaction step, a water molecule is activated by the basic histidine, and acts as a nucleophile. The oxygen of water attacks the carbonyl carbon of the serine-bound acyl group, resulting in formation of a second tetrahedral adduct, regeneration of the serine -OH group, and release of a proton, as well as the protein fragment with the newly formed carboxyl terminus [5]

Isozymes

chymotrypsinogen B1
Identifiers
Symbol CTRB1
Entrez 1504
HUGO 2521
OMIM 118890
RefSeq NM_001906
UniProt P17538
Other data
EC number 3.3.21.1
Locus Chr. 16 q23.1
chymotrypsinogen B2
Identifiers
Symbol CTRB2
Entrez 440387
HUGO 2522
RefSeq NM_001025200
UniProt Q6GPI1
Other data
EC number 3.3.21.1
Locus Chr. 16 q22.3
chymotrypsin C (caldecrin)
Identifiers
Symbol CTRC
Entrez 11330
HUGO 2523
OMIM 601405
RefSeq NM_007272
UniProt Q99895
Other data
EC number 3.3.21.2
Locus Chr. 1 p36.21

See also

References

  1. PDB: 1CHG; Freer ST, Kraut J, Robertus JD, Wright HT, Xuong NH (April 1970). "Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation". Biochemistry. 9 (9): 1997–2009. doi:10.1021/bi00811a022. PMID 5442169.
  2. Wilcox PE (1970). "Chymotrypsinogens — chymotrypsins". Methods in Enzymology. Methods in Enzymology. 19: 64–108. doi:10.1016/0076-6879(70)19007-0. ISBN 978-0-12-181881-4.
  3. Appel W (December 1986). "Chymotrypsin: molecular and catalytic properties". Clin. Biochem. 19 (6): 317–22. doi:10.1016/S0009-9120(86)80002-9. PMID 3555886.
  4. Berger A, Schechter I (February 1970). "Mapping the active site of papain with the aid of peptide substrates and inhibitors". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 257 (813): 249–64. doi:10.1098/rstb.1970.0024. PMID 4399049.
  5. 1 2 Petsko, Gregory; Ringe, Dagmar (2009). Protein Structure and Function. Oxford: Oxford University Press. pp. 78–79. ISBN 978-0-19-955684-7.

Further reading

  • Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry. San Francisco: W.H. Freeman. ISBN 0-7167-4684-0. 
  • Grisham CM, Reginald H (2005). Biochemistry. Australia: Thomson Brooks/Cole. ISBN 0-534-49033-6. 
This article is issued from Wikipedia - version of the 11/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.