Carmichael's theorem

This article is about Carmichael's theorem on Fibonacci numbers and Lucas sequences. For the recursive definition of the Carmichael function, see Carmichael function.

In number theory, Carmichael's theorem, named after the American mathematician R.D. Carmichael, states that, for any nondegenerate Lucas sequence of the first kind Un(P,Q) with relatively prime parameters P, Q and positive discriminant, an element Un with n 1, 2, 6 has at least one prime divisor that does not divide any earlier one except the 12nd Fibonacci number F(12)=U12(1, -1)=144 and its equivalent U12(-1, -1)=-144.

In particular, for n greater than 12, the nth Fibonacci number F(n) has at least one prime divisor that does not divide any earlier Fibonacci number.

Carmichael (1913, Theorem 21) proved this theorem. Recently, Yabuta (2001) gave a simple proof.

Statement

Given two relatively prime integer parameters P and Q, let Un(P,Q) be the Lucas sequence of the first kind:

Assume that the roots a, b of the characteristic equation

are real and a/b is not a root of unity. Equivalently, assume that and PQ 0.

Then, for n 1, 2, 6, Un(P,Q) has at least one prime divisor that does not divide any Um(P,Q) with m < n except U12(1, -1)=F(12)=144, U12(-1, -1)=-F(12)=-144. Such a prime p is called a characteristic factor or a primitive prime divisor of Un(P,Q). Indeed, Carmichael showed a slightly stronger theorem: For n 1, 2, 6, Un(P,Q) has at least one primitive prime divisor not dividing D[1] except U3(1, -2)=U3(-1, -2)=3, U5(1, -1)=U5(-1, -1)=F(5)=5, U12(1, -1)=F(12)=144, U12(-1, -1)=-F(12)=-144.

Fibonacci and Pell cases

The only exceptions in Fibonacci case for n up to 12 are:

F(1)=1 and F(2)=1, which have no prime divisors
F(6)=8 whose only prime divisor is 2 (which is F(3))
F(12)=144 whose only prime divisors are 2 (which is F(3)) and 3 (which is F(4))

The smallest primitive prime divisor of F(n) are

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, ... (sequence A001578 in the OEIS)

Carmichael's theorem says that every Fibonacci number, apart from the exceptions listed above, has at least one primitive prime divisor.

If n > 1, then the nth Pell number has at least one prime divisor that does not divide any earlier Pell number. The smallest primitive prime divisor of nth Pell number are

1, 2, 5, 3, 29, 7, 13, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 137, 199, 37, 19, 45697, 23, 229, 1153, 1549, 79, 53, 113, 44560482149, 31, 61, 665857, 52734529, 103, 1800193921, 73, 593, 9369319, 389, 241, ... (sequence A246556 in the OEIS)

See also

References

  1. In the definition of a primitive prime divisor p, it is often required that p does not divide the discriminant.
This article is issued from Wikipedia - version of the 12/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.