Antigen

In immunology, an antigen is a molecule capable of inducing an immune response on the part of the host organism,[1] though sometimes antigens can be part of the host itself. In other words, an antigen is any substance that causes an immune system to produce antibodies against it.[2] Each antibody is specifically produced by the immune system to match an antigen after cells in the immune system come into contact with it; this allows a precise identification of the antigen and the initiation of a tailored response. The antibody is said to "match" the antigen in the sense that it can bind to it thanks to adaptations performed to a region of the antibody; because of this, many different antibodies can be produced, with specificity to bind many different antigens while sharing the same basic structure. In most cases, an antibody can only bind one specific antigen; in some instances, however, antibodies may bind more than one antigen.

An antigen is a molecule that binds to Ag-specific receptors, but cannot necessarily induce an immune response in the body by itself.[3] Antigens are usually peptides, polysaccharides or lipids. In general, molecules other than peptides (saccharides and lipids) qualify as antigens but not as immunogens since they cannot elicit an immune response on their own. Furthermore, for a peptide to induce an immune response (activation of T-cells by antigen-presenting cells) it must be a large enough size, since peptides too small will also not elicit an immune response. The term antigen originally described a structural molecule that binds specifically to an antibody. It expanded to refer to any molecule or a linear molecular fragment that can be recognized by highly variable antigen receptors (B-cell receptor or T-cell receptor) of the adaptive immune system.

The antigen may originate from within the body ("self-antigen") or from the external environment ("non-self"). The immune system usually does not react to self-antigens under normal homeostatic conditions due to negative selection of T cells in the thymus and is supposed to identify and attack only "non-self" invaders from the outside world or modified/harmful substances present in the body under distressed conditions.[4]

Antigen presenting cells present antigens in the form of peptides on histocompatibility molecules. The T cells of the adaptive immune system recognize the antigens. Depending on the antigen and the type of the histocompatibility molecule, different types of T cells are activated. For T-Cell Receptor (TCR) recognition, the peptide must be processed into small fragments inside the cell and presented by a major histocompatibility complex (MHC).[5] The antigen cannot elicit the immune response without the help of an immunologic adjuvant.[3] Similarly, the adjuvant component of vaccines plays an essential role in the activation of the innate immune system.[6][7]

An immunogen is a substance (or adduct) that is able to trigger a humoral (innate) and/or cell-mediated immune response.[8] It first initiates an innate immune response, which then causes the activation of the adaptive immune response. An antigen binds the highly variable immunoreceptor products (B-cell receptor or T-cell receptor) once these have been generated. All immunogen molecules are also antigens, although the reverse is not true.[9]

At the molecular level, an antigen can be characterized by its ability to bind to an antibody's variable Fab region. Different antibodies have the potential to discriminate among specific epitopes present on the antigen surface. A hapten is a small molecule that changes the structure of an antigenic epitope. In order to induce an immune response, it needs to be attached to a large carrier molecule such as a protein. Antigens are usually proteins and polysaccharides, and less frequently, lipids. This includes parts (coats, capsules, cell walls, flagella, fimbrae, and toxins) of bacteria, viruses, and other microorganisms. Lipids and nucleic acids are antigenic only when combined with proteins and polysaccharides. Non-microbial non-self antigens can include pollen, egg white and proteins from transplanted tissues and organs or on the surface of transfused blood cells. Vaccines are examples of antigens in an immunogenic form, which are intentionally administered to induce the memory function of adaptive immune system toward the antigens of the pathogen invading the recipient.

Etymology

Paul Ehrlich coined the term antibody (in German Antikörper) in his side-chain theory at the end of 19th century.[10] In 1899, Ladislas Deutsch (Laszlo Detre) (1874–1939) named the hypothetical substances halfway between bacterial constituents and antibodies "substances immunogenes ou antigenes" (antigenic or immunogenic substances). He originally believed those substances to be precursors of antibodies, just as zymogen is a precursor of an enzyme. But, by 1903, he understood that an antigen induces the production of immune bodies (antibodies) and wrote that the word antigen is a contraction of antisomatogen (Immunkörperbildner). The Oxford English Dictionary indicates that the logical construction should be "anti(body)-gen".[11]

Terminology

Sources

Antigens can be classified according to their source.

Exogenous antigens

Exogenous antigens are antigens that have entered the body from the outside, for example by inhalation, ingestion or injection. The immune system's response to exogenous antigens is often subclinical. By endocytosis or phagocytosis, exogenous antigens are taken into the antigen-presenting cells (APCs) and processed into fragments. APCs then present the fragments to T helper cells (CD4+) by the use of class II histocompatibility molecules on their surface. Some T cells are specific for the peptide:MHC complex. They become activated and start to secrete cytokines, substances that activate cytotoxic T lymphocytes (CTL), antibody-secreting B cells, macrophages and other particles.

Some antigens start out as exogenous, and later become endogenous (for example, intracellular viruses). Intracellular antigens can be returned to circulation upon the destruction of the infected cell.

Endogenous antigens

Endogenous antigens are generated within normal cells as a result of normal cell metabolism, or because of viral or intracellular bacterial infection. The fragments are then presented on the cell surface in the complex with MHC class I molecules. If activated cytotoxic CD8+ T cells recognize them, the T cells secrete various toxins that cause the lysis or apoptosis of the infected cell. In order to keep the cytotoxic cells from killing cells just for presenting self-proteins, the cytotoxic cells (self-reactive T cells) are deleted as a result of tolerance (negative selection). Endogenous antigens include xenogenic (heterologous), autologous and idiotypic or allogenic (homologous) antigens.

Autoantigens

An autoantigen is usually a normal protein or protein complex (and sometimes DNA or RNA) that is recognized by the immune system of patients suffering from a specific autoimmune disease. These antigens should not be, under normal conditions, the target of the immune system, but their associated T cells are not deleted and instead attack.

Neoantigens

Neoantigens are those that are entirely absent from the normal human genome. As compared with nonmutated self-antigens, neoantigens are of relevance to tumor control, as the quality of the T cell pool that is available for these antigens is not affected by central T cell tolerance. Technology to systematically analyze T cell reactivity against neoantigens became available only recently.[13]

Viral antigens

For virus-associated tumors, such as cervical cancer and a subset of head and neck cancers, epitopes derived from viral open reading frames contribute to the pool of neoantigens.[13]

Tumor antigens

Tumor antigens are those antigens that are presented by MHC class I or MHC class II molecules on the surface of tumor cells. Antigens found only on such cells are called tumor-specific antigens (TSAs) and generally result from a tumor-specific mutation. More common are antigens that are presented by tumor cells and normal cells, called tumor-associated antigens (TAAs). Cytotoxic T lymphocytes that recognize these antigens may be able to destroy tumor cells.[13]

Tumor antigens can appear on the surface of the tumor in the form of, for example, a mutated receptor, in which case they are recognized by B cells.[13]

For human tumors without a viral etiology, novel peptides (neo-epitopes) are created by tumor-specific DNA alterations.[13]

Process

A large fraction of human tumor mutations are effectively patient-specific. Therefore, neoantigens may also be based on individual tumor genomes. Deep-sequencing technologies can identify mutations within the protein-coding part of the genome (the exome) and predict potential neoantigens. In mice models, for all novel protein sequences, potential MHC-binding peptides were predicted. The resulting set of potential neoantigens was used to assess T cell reactivity. Exome–based analyses were exploited in a clinical setting, to assess reactivity in patients treated by either tumor-infiltrating lymphocyte (TIL) cell therapy or checkpoint blockade. Neoantigen identification was successful for multiple experimental model systems and human malignancies.[13]

The false-negative rate of cancer exome sequencing is low—i.e., the majority of neoantigens occur within exonic sequence with sufficient coverage. However, the vast majority of mutations within expressed genes do not produce neoantigens that are recognized by autologous T cells.[13]

As of 2015 mass spectroscopy resolution is insufficient to exclude many false positives from the pool of peptides that may be presented by MHC molecules. Instead, algorithms are used to identify the most likely candidates. These algorithms consider factors such as the likelihood of proteasomal processing, transport into the endoplasmic reticulum, affinity for the relevant MHC class I alleles and gene expression or protein translation levels.[13]

The majority of human neoantigens identified in unbiased screens display a high predicted MHC binding affinity. Minor histocompatibility antigens, a conceptually similar antigen class are also correctly identified by MHC binding algorithms. Another potential filter examines whether the mutation is expected to improve MHC binding. The nature of the central TCR-exposed residues of MHC-bound peptides is associated with peptide immunogenicity.[13]

Nativity

A native antigen is an antigen that is not yet processed by an APC to smaller parts. T cells cannot bind native antigens, but require that they be processed by APCs, whereas B cells can be activated by native ones.

Antigenic specificity

Antigenic specificity is the ability of the host cells to recognize an antigen specifically as a unique molecular entity and distinguish it from another with exquisite precision. Antigen specificity is due primarily to the side-chain conformations of the antigen. It is measurable and need not be linear or of a rate-limited step or equation.[14]

See also

Notes

  1. Alberts B, Johnson A, Lewis J, et al. (2002). "24. The Adaptive Immune System". Molecular Biology of the Cell (4th ed.). New York: Garland Science.
  2. "Antigen". US National Library of Medicine. Retrieved 2015-07-30.
  3. 1 2 Gavin, AL; Hoebe, K; Duong, B; Ota, T; Martin, C; Beutler, B; Nemazee, D (22 December 2006). "Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling.". Science. 314 (5807): 1936–8. doi:10.1126/science.1135299. PMC 1868398Freely accessible. PMID 17185603.
  4. Gallucci, S; Lolkema, M; Matzinger, P (November 1999). "Natural adjuvants: endogenous activators of dendritic cells.". Nature Medicine. 5 (11): 1249–55. doi:10.1038/15200. PMID 10545990.
  5. Parham, Peter. (2009). The Immune System, 3rd Edition, pg. G:2, Garland Science, Taylor and Francis Group, LLC.
  6. Janeway CA, Jr (1 November 2013). "Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold spring harb symp quant biol. 1989. 54: 1–13.". Journal of immunology (Baltimore, Md. : 1950). 191 (9): 4475–87. PMID 24141854.
  7. Gayed, PM (June 2011). "Toward a modern synthesis of immunity: Charles A. Janeway Jr. and the immunologist's dirty little secret.". The Yale Journal of Biology and Medicine. 84 (2): 131–8. ISSN 1551-4056. PMC 3117407Freely accessible. PMID 21698045.
  8. Parham, Peter. (2009). The Immune System, 3rd Edition, pg. G:11, Garland Science, Taylor and Francis Group, LLC.
  9. Kuby Immunology (6th ed.). Macmillan. 2006. p. 77. ISBN 978-1-4292-0211-4.
  10. Strebhardt, Klaus; Ullrich, Axel (Jun 2008). "Paul Ehrlich's magic bullet concept: 100 years of progress". Nature Reviews Cancer. 8 (6): 473–480. doi:10.1038/nrc2394. ISSN 1474-1768. PMID 18469827.
  11. Lindenmann, Jean (1984). "Origin of the Terms 'Antibody' and 'Antigen'". Scand. J. Immunol. 19 (4): 281–5. doi:10.1111/j.1365-3083.1984.tb00931.x. PMID 6374880. Retrieved 2008-10-31.
  12. Doolan DL, Southwood S, Freilich DA, Sidney J, Graber NL, Shatney L, Bebris L, Florens L, Dobano C, Witney AA, Appella E, Hoffman SL, Yates JR 3rd, Carucci DJ, Sette A (August 19, 2003). "Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data" (PDF). Proc Natl Acad Sci USA. 100 (17): 9952–9957. doi:10.1073/pnas.1633254100.
  13. 1 2 3 4 5 6 7 8 9 Schumacher1, Ton N.; Schreiber, Robert D. (April 3, 2015). "Neoantigens in cancer immunotherapy". Science. 348 (6230): 69–74. doi:10.1126/science.aaa4971. PMID 25838375.
  14. "Antigen specificity – Medical Terms". Steadyhealth.com. 2010-12-17. Retrieved 2012-07-08.

External links

This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.