Animal sexual behaviour

This article is about the sexual behaviour of non-human animals. For human sexual behaviour, see Human sexual activity and Human sexuality. For other uses, see Animal sex (disambiguation).
Stags fighting – a common sexual behaviour
Greater sage-grouse at a lek, with multiple males displaying for the less conspicuous females.
Anatomical structures on the head and throat of a domestic turkey. 1. Caruncles, 2. Snood, 3. Wattle (dewlap), 4. Major caruncle, 5. Beard. During sexual behaviour, these structures enlarge or become brightly coloured.

Animal sexual behaviour takes many different forms, including within the same species. Common mating or reproductively motivated systems include monogamy, polyandry, polygamy, and promiscuity. Other sexual behaviour may be reproductively motivated (e.g. sex apparently due to duress or coercion and situational sexual behaviour) or non-reproductively motivated (e.g. interspecific sexuality, sexual arousal from objects or places, sex with dead animals, homosexual sexual behaviour, bisexual sexual behaviour).

When animal sexual behaviour is reproductively motivated, it is often termed mating or copulation; for most non-human mammals, mating and copulation occur at oestrus (the most fertile period in the mammalian female's reproductive cycle), which increases the chances of successful impregnation.[1][2] Some animal sexual behaviour involves competition, sometimes fighting, between multiple males. Females often select males for mating only if they appear strong and able to protect themselves. The male that wins a fight may also have the chance to mate with a larger number of females and will therefore pass on his genes to their offspring.[3]

Historically, it was believed that only humans and a small number of other species performed sexual acts other than for reproduction, and that animals' sexuality was instinctive and a simple "stimulus-response" behaviour. However, in addition to homosexual behaviours, a range of species masturbate and may use objects as tools to help them do so. Sexual behaviour may be tied more strongly to establishment and maintenance of complex social bonds across a population which support its success in non-reproductive ways. Both reproductive and non-reproductive behaviours can be related to expressions of dominance over another animal or survival within a stressful situation (such as sex due to duress or coercion).

Mating systems

In sociobiology and behavioural ecology, the term "mating system" is used to describe the ways in which animal societies are structured in relation to sexual behaviour. The mating system specifies which males mate with which females, and under what circumstances. There are four basic systems:

The four basic mating systems[4]:160–161[5]
Single female Multiple females
Single male Monogamy Polygyny
Multiple males Polyandry Polygynandry


Monogamy occurs when one male mates with one female exclusively. A monogamous mating system is one in which individuals form long-lasting pairs and cooperate in raising offspring. These pairs may last for a lifetime, such as in pigeons,[6] or it may occasionally change from one mating season to another, such as in emperor penguins.[7] In contrast with tournament species, these pair-bonding species have lower levels of male aggression, competition and little sexual dimorphism. Zoologists and biologists now have evidence that monogamous pairs of animals are not always sexually exclusive. Many animals that form pairs to mate and raise offspring regularly engage in sexual activities with extra-pair partners.[8][9][10][11] This includes previous examples, such as swans. Sometimes, these extra-pair sexual activities lead to offspring. Genetic tests frequently show that some of the offspring raised by a monogamous pair come from the female mating with an extra-pair male partner.[9][12][13][14] These discoveries have led biologists to adopt new ways of talking about monogamy; According to Ulrich Reichard (2003):

Social monogamy refers to a male and female's social living arrangement (e.g., shared use of a territory, behaviour indicative of a social pair, and/or proximity between a male and female) without inferring any sexual interactions or reproductive patterns. In humans, social monogamy takes the form of monogamous marriage. Sexual monogamy is defined as an exclusive sexual relationship between a female and a male based on observations of sexual interactions. Finally, the term genetic monogamy is used when DNA analyses can confirm that a female-male pair reproduce exclusively with each other. A combination of terms indicates examples where levels of relationships coincide, e.g., sociosexual and sociogenetic monogamy describe corresponding social and sexual, and social and genetic monogamous relationships, respectively.[15]

Whatever makes a pair of animals socially monogamous does not necessarily make them sexually or genetically monogamous. Social monogamy, sexual monogamy, and genetic monogamy can occur in different combinations.

Social monogamy is relatively rare in the animal kingdom. The actual incidence of social monogamy varies greatly across different branches of the evolutionary tree. Over 90% of avian species are socially monogamous.[10][16] This stands in contrast to mammals. Only 3% of mammalian species are socially monogamous, although up to 15% of primate species are.[10][16] Social monogamy has also been observed in reptiles, fish, and insects.

Sexual monogamy is also rare among animals. Many socially monogamous species engage in extra-pair copulations, making them sexually non-monogamous. For example, while over 90% of birds are socially monogamous, "on average, 30% or more of the baby birds in any nest [are] sired by someone other than the resident male."[17] Patricia Adair Gowaty has estimated that, out of 180 different species of socially monogamous songbirds, only 10% are sexually monogamous.[18]

The incidence of genetic monogamy, determined by DNA fingerprinting, varies widely across species. For a few rare species, the incidence of genetic monogamy is 100%, with all offspring genetically related to the socially monogamous pair. But genetic monogamy is strikingly low in other species. Barash and Lipton note:

The highest known frequency of extra-pair copulations are found among the fairy-wrens, lovely tropical creatures technically known as Malurus splendens and Malurus cyaneus. More than 65% of all fairy-wren chicks are fathered by males outside the supposed breeding group.[16]p. 12

Such low levels of genetic monogamy have surprised biologists and zoologists, forcing them to rethink the role of social monogamy in evolution. They can no longer assume social monogamy determines how genes are distributed in a species. The lower the rates of genetic monogamy among socially monogamous pairs, the less of a role social monogamy plays in determining how genes are distributed among offspring.


Main article: Polygyny in nature

Polygyny occurs when one male gets exclusive mating rights with multiple females. In some species, notably those with harem-like structures, only one of a few males in a group of females will mate. Technically, polygyny in sociobiology and zoology is defined as a system in which a male has a relationship with more than one female, but the females are predominantly bonded to a single male. Should the active male be driven out, killed, or otherwise removed from the group, in a number of species the new male will ensure that breeding resources are not wasted on another male's young.[19] The new male may achieve this in many different ways, including:

Von Haartman specifically described the mating behaviour of the European pied flycatcher as successive polygyny.[20] Within this system, the males leave their home territory once their primary female lays her first egg. Males then create a second territory, presumably in order to attract a secondary female to breed. Even when they succeed at acquiring a second mate, the males typically return to the first female to exclusively provide for her and her offspring.[21]

Polygynous mating structures are estimated to occur in up to 90% of mammal species.[22] As polygyny is the most common form of polygamy among vertebrates (including humans, to some extent), it has been studied far more extensively than polyandry or polygynandry.


The anglerfish Haplophryne mollis is polyandrous. This female is trailing the atrophied remains of males she has encountered.
Main article: Polyandry in nature

Polyandry occurs when one female gets exclusive mating rights with multiple males. In some species, such as redlip blennies, both polygyny and polyandry are observed.[23]

The males in some deep sea anglerfishes are much smaller than the females. When they find a female they bite into her skin, releasing an enzyme that digests the skin of their mouth and her body and fusing the pair down to the blood-vessel level. The male then slowly atrophies, losing first his digestive organs, then his brain, heart, and eyes, ending as nothing more than a pair of gonads, which release sperm in response to hormones in the female's bloodstream indicating egg release. This extreme sexual dimorphism ensures that, when the female is ready to spawn, she has a mate immediately available.[24] A single anglerfish female can "mate" with many males in this manner.


Main article: Polygynandry

Polygynandry occurs when multiple males mate indiscriminately with multiple females. The numbers of males and females need not be equal, and in vertebrate species studied so far, there are usually fewer males. Two examples of systems in primates are promiscuous mating chimpanzees and bonobos. These species live in social groups consisting of several males and several females. Each female copulates with many males, and vice versa. In bonobos, the amount of promiscuity is particularly striking because bonobos use sex to alleviate social conflict as well as to reproduce. This mutual promiscuity is the approach most commonly used by spawning animals, and is perhaps the "original fish mating system."[4]:161 Common examples are forage fish, such as herrings, which form huge mating shoals in shallow water. The water becomes milky with sperm and the bottom is draped with millions of fertilised eggs.[4]:161


The term polygamy is an umbrella term used to refer generally to non-monogamous matings. As such, polygamous relationships can be polygynous, polyandrous or polygynandrous. In a small number of species, individuals can display either polygamous or monogamous behaviour depending on environmental conditions. An example is the social wasp Apoica flavissima. In some species, polygyny and polyandry is displayed by both sexes in the population. Polygamy in both sexes has been observed in red flour beetle (Tribolium castaneum).

A tournament species is one in which "mating tends to be highly polygamous and involves high levels of male-male aggression and competition."[25] Tournament behaviour often correlates with high levels of sexual dimorphism, examples of species including chimpanzees and baboons. Most polygamous species present high levels of tournament behaviour, with a notable exception being bonobos.

Parental investment and reproductive success

Main article: Bateman's principle
Mating grey slugs, suspended from a slime thread

Female and male sexual behaviour differ in many species. Often, males are more active in initiating mating, and bear the more conspicuous sexual ornamentation like antlers and colourful plumage. This is a result of anisogamy, where sperm are smaller and much less costly (energetically) to produce than eggs. This difference in physiological cost means that males are more limited by the number of mates they can secure, while females are limited by the quality of genes of her mates, a phenomenon known as Bateman's principle.[26] Many females also have extra reproductive burdens in that parental care often falls mainly, or exclusively, on them. Thus, females are more limited in their potential reproductive success.[27] In species where males take on more of the reproductive costs, such as sea horses and jacanas, the role is reversed, and the females are larger, more aggressive and more brightly coloured than the males.

In hermaphroditic animals, the costs of parental care can be evenly distributed between the sexes, e.g. earthworms. In some species of planarians, sexual behaviour takes the form of penis fencing. In this form of copulation, the individual that first penetrates the other with the penis, forces the other to be female, thus carrying the majority of the cost of reproduction.[28] Post mating, banana slugs will some times gnaw off their partners penis as an act of sperm competition.[29] In the grey slug, the sharing of cost leads to a spectacular display, where the mates suspend themselves high above the ground from a slime thread, ensuring none of them can refrain from taking on the cost of egg-bearer.[30]


Main article: Seasonal breeder
Brain corals typically spawning in connection with the full moon every August

Many animal species have specific mating (or breeding) periods e.g. (seasonal breeding) so that offspring are born or hatch at an optimal time. In marine species with limited mobility and external fertilisation like corals, sea urchins and clams, the timing of the common spawning is the only externally visible form of sexual behaviour. In areas with continuously high primary production, some species have a series of breeding seasons throughout the year. This is the case with most primates (who are primarily tropical and subtropical animals). Some animals (opportunistic breeders) breed dependent upon other conditions in their environment aside from time of year.


Mating seasons are often associated with changes to herd or group structure, and behavioural changes, including territorialism amongst individuals. These may be annual (e.g. wolves), biannual (e.g. dogs) or more frequently (e.g. horses). During these periods, females of most mammalian species are more mentally and physically receptive to sexual advances, a period scientifically described as estrous but commonly described as being "in season" or "in heat". Sexual behaviour may occur outside estrus,[31] and such acts as do occur are not necessarily harmful.[32]

Some mammals (e.g. domestic cats, rabbits and camilidae) are termed "induced ovulators". For these species, the female ovulates due to an external stimulus during, or just prior, to mating, rather than ovulating cyclically or spontaneously. Stimuli causing induced ovulation include the sexual behaviour of coitus, sperm and pheromones. Domestic cats have penile spines. Upon withdrawal of a cat's penis, the spines rake the walls of the female's vagina, which may cause ovulation.[33][34]


For many amphibians, an annual breeding cycle applies, typically regulated by ambient temperature, precipitation, availability of surface water and food supply. This breeding season is accentuated in temperate regions, in boreal climate the breeding season is typically concentrated to a few short days in the spring.


Like many coral reef dwellers, the clownfish spawn around the time of the full moon in the wild. In a group of clownfish, there is a strict dominance hierarchy. The largest and most aggressive female is found at the top. Only two clownfish, a male and a female, in a group reproduce through external fertilisation. Clownfish are sequential hermaphrodites, meaning that they develop into males first, and when they mature, they become females. If the female clownfish is removed from the group, such as by death, one of the largest and most dominant males will become a female. The remaining males will move up a rank in the hierarchy.


Various neurohormones stimulate sexual wanting in animals. In general, studies have suggested that dopamine is involved in sexual incentive motivation, oxytocin and melanocortins in sexual attraction, and noradrenaline in sexual arousal.[35] Vasopressin is also involved in the sexual behaviour of some animals.[36]

Neurohormones in the mating systems of voles

The mating system of prairie voles is monogamous; after mating, they form a lifelong bond. In contrast, montane voles have a polygamous mating style. When montane voles mate, they form no attachments and separate after copulation. Studies on the brains of these two species have found that it is two neurohormones and their respective receptors that are responsible for these differences in mating strategies. Male prairie voles release vasopressin after copulation prairie vole and attachment to the female then develops. Female prairie voles release oxytocin after reproducing and an attachment to her partner also develops. Neither male nor female montane voles have such a high quantity of oxytocin and vasopressin when they mate. Even when injected with these neurohormones, the mating system does not change. In contrast, if prairie voles are injected with the neurohormones, they may form a lifelong attachment, even if they have not mated. The reason for this is that prairie voles have more oxytocin and vasopressin receptors than do montane voles, and are therefore far more receptive to the two neurohormones. It is not the quantity of the hormone that determines the mating system and bond-formation, rather, it is number of neurohormone receptors.[36]

Oxytocin and rat sexual behaviour

Mother rats experience a postparum estrus which makes them highly motivated to mate. However, they also have a strong motivation to protect their newly born pups. As a consequence, the mother rat solicits males to the nest but simultaneously becomes aggressive towards them to protect her young. If the mother rat is given injections of an oxytocin receptor antagonist, they no longer experience these maternal motivations.[37]

Prolactin influences social bonding in rats.[37]

Oxytocin and primate sexual behaviour

Oxytocin plays a similar role in non-human primates as it does in humans.

Grooming, sex, and cuddling frequencies correlate positively with levels of oxytocin. As the level of oxytocin increases so does sexual motivation. While oxytocin plays a major role in parent child relationships, it is also found to play a role in adult sexual relationships. Its secretion affects the nature of the relationship or if there will even be a relationship at all.

Studies have shown that oxytocin is higher in monkeys in lifelong monogamous relationships compared to monkeys which are single. Furthermore, the oxytocin levels of the couples correlate positively; when the oxytocin secretion of one increases the other one also increases. Higher levels of oxytocin are related to monkeys expressing more behaviours such as cuddling, grooming and sex, while lower levels of oxytocin reduce motivation for these activities.

Research on oxytocin's role in the animal brain suggests that it plays less of a role in behaviours of love and affection than previously believed. "When oxytocin was first discovered in 1909, it was thought mostly to influence a mother’s labour contractions and milk let-down. Then, in the 1990s, research with prairie voles found that giving them a dose of oxytocin resulted in the formation of a bond with their future mate (Azar, 40)." Oxytocin has since been treated by the media as the sole player in the "love and mating game" in mammals. This view, however, is proving to be false as, "most hormones don’t influence behaviour directly. Rather, they affect thinking and emotions in variable ways (Azar, 40)." There is much more involved in sexual behaviour in the mammalian animal than oxytocin and vasopressin can explain.[38][39][40][41][42][43][44]


It is often assumed that animals do not have sex for pleasure, or alternatively that humans, pigs (and perhaps dolphins and one or two species of primate) are the only species that do. This is sometimes stated as "animals mate only for reproduction". This view is considered a misconception by some scholars.[45][46] Jonathan Balcombe argues that the prevalence of non-reproductive sexual behaviour in certain species suggests that sexual stimulation is pleasurable. He also points to the presence of the clitoris in some female mammals, and evidence for female orgasm in primates.[47] On the other hand, it is impossible to know the subjective feelings of animals,[35] and the notion that non-human animals experience emotions similar to humans is a contentious subject.[48][49][50][51]

A 2006 Danish Animal Ethics Council report,[52] which examined current knowledge of animal sexuality in the context of legal queries concerning sexual acts by humans, has the following comments, primarily related to domestically common animals:

Even though the evolution-related purpose of mating can be said to be reproduction, it is not actually the creating of offspring which originally causes them to mate. It is probable that they mate because they are motivated for the actual copulation, and because this is connected with a positive experience. It is therefore reasonable to assume that there is some form of pleasure or satisfaction connected with the act. This assumption is confirmed by the behaviour of males, who in the case of many species are prepared to work to get access to female animals, especially if the female animal is in oestrus, and males who for breeding purposes are used to having sperm collected become very eager, when the equipment they associate with the collection is taken out.[53]

There is nothing in female mammals' anatomy or physiology that contradicts that stimulation of the sexual organs and mating is able to be a positive experience. For instance, the clitoris acts in the same way as with women, and scientific studies have shown that the success of reproduction is improved by stimulation of clitoris on (among other species) cows and mares in connection with insemination, because it improves the transportation of the sperm due to contractions of the inner genitalia. This probably also concerns female animals of other animal species, and contractions in the inner genitals are seen e.g. also during orgasm for women. It is therefore reasonable to assume that sexual intercourse may be linked with a positive experience for female animals.[54]


Main article: Koinophilia

Koinophilia is the love of the "normal" or phenotypically common (from the Greek, koinos, meaning "the usual" or "common").[55] The term was introduced to scientific literature in 1990, and refers to the tendency of animals seeking a mate to prefer that mate not to have any unusual, peculiar or deviant features.[55] Similarly, animals preferentially choose mates with low fluctuating asymmetry. [56] However, animal sexual ornaments can evolve through runaway selection, which is driven by (usually female) selection for non-standard traits.[57]

Interpretation bias

The field of study of sexuality in non-human species was a long-standing taboo.[58] In the past, researchers sometimes failed to observe, mis-categorising and mis-described sexual behaviour which did not meet their preconceptions. In earlier periods, bias tended to support what would now be described as conservative sexual mores. An example of overlooking behaviour relates to descriptions of giraffe mating:

When nine out of ten pairings occur between males, "[e]very male that sniffed a female was reported as sex, while anal intercourse with orgasm between males was only [categorized as] 'revolving around' dominance, competition or greetings."[58]

In the 21st century, liberal social or sexual views are often projected upon animal subjects of research. Popular discussions of bonobos are a frequently cited example. Current research frequently expresses views such as that of the Natural History Museum at the University of Oslo, which in 2006 held an exhibition on animal sexuality:

Many researchers have described homosexuality as something altogether different from sex. They must realise that animals can have sex with who they will, when they will and without consideration to a researcher's ethical principles.[58]

Other animal activities may be misinterpreted due to the frequency and context in which animals perform the behaviour. For example, domestic ruminants display behaviours such as mounting and head-butting. This often occurs when the animals are establishing dominance relationships and are not necessarily sexually motivated. Careful analysis must be made to interpret what animal motivations are being expressed by those behaviours.[59]

Types of sexual behaviour

Reproductive sexual behaviour


Small male bluegill sunfishes cuckold large males by adopting sneaker strategies.

Alternate male strategies which allow small males to engage in cuckoldry can develop in species such as fish where spawning is dominated by large and aggressive males. Cuckoldry is a variant of polyandry, and can occur with sneak spawners. A sneak spawner is a male that rushes in to join the spawning rush of a spawning pair.[60] A spawning rush occurs when a fish makes a burst of speed, usually on a near vertical incline, releasing gametes at the apex, followed by a rapid return to the lake or sea floor or fish aggregation.[61] Sneaking males do not take part in courtship. In salmon and trout, for example, jack males are common. These are small silvery males that migrate upstream along with the standard, large, hook-nosed males and that spawn by sneaking into redds to release sperm simultaneously with a mated pair. This behaviour is an evolutionarily stable strategy for reproduction, because it is favoured by natural selection just like the "standard" strategy of large males.[62]


Female groupers change their sex to male if no male is available.

Hermaphroditism occurs when a given individual in a species possesses both male and female reproductive organs, or can alternate between possessing first one, and then the other. Hermaphroditism is common in invertebrates but rare in vertebrates. It can be contrasted with gonochorism, where each individual in a species is either male or female, and remains that way throughout their lives. Most fish are gonochorists, but hermaphroditism is known to occur in 14 families of teleost fishes.[63]

Usually hermaphrodites are sequential, meaning they can switch sex, usually from female to male (protogyny). This can happen if a dominant male is removed from a group of females. The largest female in the harem can switch sex over a few days and replace the dominant male.[63] This is found amongst coral reef fishes such as groupers, parrotfishes and wrasses. It is less common for a male to switch to a female (protandry).[4]:162 As an example, most wrasses are protogynous hermaphrodites within a haremic mating system.[64][65] Hermaphroditism allows for complex mating systems. Wrasses exhibit three different mating systems: polygynous, lek-like, and promiscuous mating systems.[66]

Sexual cannibalism

Main article: Sexual cannibalism
Araneus diadematus – cannibalistic mating behaviour

Sexual cannibalism is a behaviour in which a female animal kills and consumes the male before, during, or after copulation. Sexual cannibalism confers fitness advantages to both the male and female. Sexual cannibalism is common among insects, arachnids[67] and amphipods.[67] There is also evidence of sexual cannibalism in gastropods and copepods.[68]

Sexual coercion

Main article: Sexual coercion
During mating, the male muscovy duck typically immobilises the female.

Sex in a forceful or apparently coercive context has been documented in a variety of species. In some herbivorous herd species, or species where males and females are very different in size, the male dominates sexually by force and size.

Some species of birds appear to combine sexual intercourse with apparent violent assault; these include ducks,[69][70] and geese. Female white-fronted bee-eaters are subjected to forced copulations. When females emerge from their nest burrows, males sometimes force them to the ground and mate with them. Such forced copulations are made preferentially on females who are laying and who may therefore lay eggs fertilised by the male.[71]

In the Acilius genus of water beetles, an "evolutionary arms race" between the two sexes means that there is no courtship system for these beetles. Their mating behaviours include males holding females underwater till exhausted, and allowing only occasional access to the surface to breathe for up to six hours (to prevent them breeding with other males), and females which have a variety of body shapings (to prevent males from gaining a grip).[72]

It has been reported that young male elephants in South Africa sexually coerced and killed rhinoceroses.[73] This interpretation of the elephants' behaviour was disputed by one of the original study's authors, who said there was "nothing sexual about these attacks".[74]


Parthenogenesis is a form of asexual reproduction in which growth and development of embryos occur without fertilisation. Technically, parthenogenesis it is not a behaviour, however, sexual behaviours may be involved.

Whip-tailed lizard females have the ability to reproduce through parthenogenesis and as such males are rare and sexual breeding non-standard. Females engage in "pseudocopulation"[75] to stimulate ovulation, with their behaviour following their hormonal cycles; during low levels of oestrogen, these (female) lizards engage in "masculine" sexual roles. Those animals with currently high oestrogen levels assume "feminine" sexual roles. Lizards that perform the courtship ritual have greater fecundity than those kept in isolation due to an increase in hormones triggered by the sexual behaviours. So, even though asexual whiptail lizards populations lack males, sexual stimuli still increase reproductive success. From an evolutionary standpoint these females are passing their full genetic code to all of their offspring rather than the 50% of genes that would be passed in sexual reproduction.

It is rare to find true parthenogenesis in fishes, where females produce female offspring with no input from males. All-female species include the Texas silverside, Menidia clarkhubbsi[76] as well as a complex of Mexican mollies.[4]:162

Parthenogenesis has been recorded in 70 vertebrate species[77] including hammerhead sharks,[78] blacktip sharks,[79] amphibians[80][81] and crayfish.[82][83]


Unisexuality occurs when a species is all-male or all-female. Unisexuality occurs in some fish species, and can take complex forms. Squalius alburnoides, a minnow found in several river basins in Portugal and Spain, appears to be an all-male species. The existence of this species illustrates the potential complexity of mating systems in fish. The species originated as a hybrid between two species, and is diploid, but not hermaphroditic. It can have triploid and tetraploid forms, including all-female forms that reproduce mainly through hybridogenesis.[84]


A dog mates with a coyote to produce a dog-coyote hybrid.

Non-reproductive sexual behaviour

There is a range of behaviours that animals perform which appear to be sexually motivated but which can not result in reproduction. These include:

A male black and white tegu mounts a female that has been dead for two days and attempts to mate.[103]


Seahorses, once considered to be monogamous species with pairs mating for life, were described in a 2007 study as "promiscuous, flighty, and more than a little bit gay".[111] Scientists at 15 aquaria studied 90 seahorses of three species. Of 3,168 sexual encounters, 37% were same-sex acts. Flirting was common (up to 25 potential partners a day of both sexes); only one species (the British spiny seahorse) included faithful representatives, and for these 5 of 17 were faithful, 12 were not. Bisexual behaviour was widespread and considered "both a great surprise and a shock", with big-bellied seahorses of both sexes not showing partner preference. 1,986 contacts were male-female, 836 were female-female and 346 were male-male.[111]


The bonobo, which has a matriarchal society, is a fully bisexual species  both males and females engage in sexual behaviour with the same and the opposite sex, with females being particularly noted for engaging in sexual behaviour with each other and at up to 75% of sexual activity being nonreproductive. Primatologist Frans de Waal believes that bonobos use sexual activity to resolve conflict between individuals.[112] Sexual activity occurs between almost all ages and sexes of bonobo societies.[113]


Male bottlenose dolphins have been observed working in pairs to follow or restrict the movement of a female for weeks at a time, waiting for her to become sexually receptive. The same pairs have also been observed engaging in intense sexual play with each other. Janet Mann, a professor of biology and psychology at Georgetown University, argues[114] that the common same-sex behaviour among male dolphin calves is about bond formation and benefits the species evolutionarily. They cite studies that have shown the dolphins later in life are bisexual and the male bonds forged from homosexuality work for protection as well as locating females with which to reproduce. In 1991, an English man was prosecuted for allegedly having sexual contact with a dolphin.[115] The man was found not guilty after it was revealed at trial that the dolphin was known to tow bathers through the water by hooking his penis around them.[115]


The female spotted hyena has a unique urinary-genital system, closely resembling the penis of the male, called a pseudo-penis. The family structure is matriarchal and dominance relationships with strong sexual elements are routinely observed between related females. They are notable for using visible sexual arousal as a sign of submission but not dominance in males as well as females (females have a sizable erectile clitoris).[116] It is speculated that to facilitate this, their sympathetic and parasympathetic nervous systems may be partially reversed in respect to their reproductive organs.[117]

Mating behaviour

See also: Mating call



Mammals mate by vaginal copulation. To achieve this, the male usually mounts the female from behind.[118] The female may exhibit lordosis in which she arches her back ventrally to facilitate entry of the penis. Amongst the land mammals, other than humans, only bonobos mate in a face-to-face position.[119] Some sea mammals copulate in a belly-to-belly position.[120][121] Some camelids mate in a lying-down position.[122] In most mammals ejaculation occurs after multiple intromissions,[123] but in most ruminant species, a single pelvic thrust occurs during copulation.[124][125]


Courting garden snails – the one on the left has fired a love dart into the one on the right.
A male star coral releases sperm into the water.

Invertebrates are often hermaphrodites. Some hermaphroditic land snails begin mating with an elaborate tactile courting ritual. The two snails circle around each other for up to six hours, touching with their tentacles, and biting lips and the area of the genital pore, which shows some preliminary signs of the eversion of the penis. As the snails approach mating, hydraulic pressure builds up in the blood sinus surrounding an organ housing a sharpened dart. The dart is made of calcium carbonate or chitin, and is called a love dart. Each snail manoeuvres to get its genital pore in the best position, close to the other snail's body. Then, when the body of one snail touches the other snail's genital pore, it triggers the firing of the love dart.[126] After the snails have fired their darts, they copulate and exchange sperm as a separate part of the mating progression. The love darts are covered with a mucus that contains a hormone-like substance that facilitates the survival of the sperm.[127][128]

Penis fencing is a mating behaviour engaged in by certain species of flatworm, such as Pseudobiceros bedfordi. Species which engage in the practice are hermaphroditic, possessing both eggs and sperm-producing testes.[129] The species "fence" using two-headed dagger-like penises which are pointed, and white in colour. One organism inseminates the other. The sperm is absorbed through pores in the skin, causing fertilisation.

Corals can be both gonochoristic (unisexual) and hermaphroditic, each of which can reproduce sexually and asexually. Reproduction also allows corals to settle new areas. Corals predominantly reproduce sexually. 25% of hermatypic corals (stony corals) form single sex (gonochoristic) colonies, while the rest are hermaphroditic.[130] About 75% of all hermatypic corals "broadcast spawn" by releasing gametes  eggs and sperm  into the water to spread offspring. The gametes fuse during fertilisation to form a microscopic larva called a planula, typically pink and elliptical in shape.[131] Synchronous spawning is very typical on the coral reef and often, even when multiple species are present, all corals spawn on the same night. This synchrony is essential so that male and female gametes can meet. Corals must rely on environmental cues, varying from species to species, to determine the proper time to release gametes into the water. The cues involve lunar changes, sunset time, and possibly chemical signalling.[130] Synchronous spawning may form hybrids and is perhaps involved in coral speciation.[132]

Butterflies spend much time searching for mates. When the male spots a mate, he will fly closer and release pheromones. He then performs a special courtship dance to attract the female. If the female appreciates the dancing she may join him. Then they join their bodies together end to end at their abdomens. Here, the male passes the sperm to the female's egg-laying tube, which will soon be fertilised by the sperm.[133] The male often dies shortly after mating.

Many animals make plugs of mucus to seal the female's orifice after mating. Normally such plugs are secreted by the male, to block subsequent partners. In spiders the female can assist the process.[134] Spider sex is unusual in that males transfer their sperm to the female on small limbs called pedipalps. They use these to pick their sperm up from their genitals and insert it into the female's sexual orifice, rather than copulating directly.[134] On the 14 occasions a sexual plug was made, the female produced it without assistance from the male. On ten of these occasions the male's pedipalps then seemed to get stuck while he was transferring the sperm (which is rarely the case in other species of spider), and he had great difficulty freeing himself. In two of those ten instances, he was eaten as a result.[134]

Genetic evidence of interspecies sexual activity

Main article: Humanzee

Research into human evolution confirms that, in some cases, interspecies sexual activity may have been responsible for the evolution of new species (speciation). Analysis of animal genes found evidence that after humans had diverged from other apes, interspecies mating nonetheless occurred regularly enough to change certain genes in the new gene pool.[135] Researchers found that the X chromosomes of humans and chimps may have diverged around 1.2 million years after the other chromosomes. One possible explanation is that modern humans emerged from a hybrid of human and chimp populations.[136] A 2012 study questioned this explanation, concluding that "there is no strong reason to involve complicated factors in explaining the autosomal data".[137]

Inbreeding avoidance

Main article: Inbreeding avoidance

When close relatives mate, progeny may exhibit the detrimental effects of inbreeding depression. Inbreeding depression is predominantly caused by the homozygous expression of recessive deleterious alleles.[138] Over time, inbreeding depression may lead to the evolution of inbreeding avoidance behaviour. Several examples of animal behaviour that reduce mating of close relatives and inbreeding depression are described next.

Reproductively active female naked mole-rats tend to associate with unfamiliar males (usually non-kin), whereas reproductively inactive females do not discriminate.[139] The preference of reproductively active females for unfamiliar males is interpreted as an adaptation for avoiding inbreeding.

When mice inbreed with close relatives in their natural habitat, there is a significant detrimental effect on progeny survival.[140] In the house mouse, the major urinary protein (MUP) gene cluster provides a highly polymorphic scent signal of genetic identity that appears to underlie kin recognition and inbreeding avoidance. Thus there are fewer matings between mice sharing MUP haplotypes than would be expected if there were random mating.[141]

Meerkat females appear to be able to discriminate the odour of their kin from the odour of their non-kin.[142] Kin recognition is a useful ability that facilitates both cooperation among relatives and the avoidance of inbreeding. When mating does occur between meerkat relatives, it often results in inbreeding depression. Inbreeding depression was evident for a variety of traits: pup mass at emergence from the natal burrow, hind-foot length, growth until independence and juvenile survival.[143]

The grey-sided vole (Myodes rufocanus) exhibits male-biased dispersal as a means of avoiding incestuous matings.[144] Among those matings that do involve inbreeding the number of weaned juveniles in litters is significantly smaller than that from non-inbred litters indicating inbreeding depression.

In natural populations of the bird Parus major (great tit), inbreeding is likely avoided by dispersal of individuals from their birthplace, which reduces the chance of mating with a close relative.[145]

Toads display breeding site fidelity, as do many amphibians. Individuals that return to natal ponds to breed will likely encounter siblings as potential mates. Although incest is possible, Bufo americanus siblings rarely mate. These toads likely recognise and actively avoid close kins as mates. Advertisement vocalisations by males appear to serve as cues by which females recognise their kin.[146]

See also


  1. Kent, Michael (2000). Advanced biology. Oxford University Press. pp. 250–253. ISBN 978-0-19-914195-1.
  2. Thorpe, Showick; Thorpe, Edgar (2009). General Studies Manual. Pearson Education India. p. 17. ISBN 9788131721339.
  3. Wickler, Wolfgang; Lorenz; Konrad; Kacher, Hermann (1974). "The sexual code : the social behaviour of animals and me".
  4. 1 2 3 4 5 Moyle PB and Cech JJ (2004) Fishes, An Introduction to Ichthyology. 5th Ed, Benjamin Cummings. ISBN 978-0-13-100847-2
  5. Berglund A (1997) "Mating systems and sex allocation" Pages 237–265 in JJ Godon, ed. Behavioural ecology of teleost fishes. Oxford University Press. ISBN 0-19-850503-5.
  6. "Pigeon". Encyclopædia Britannica. Encyclopædia Britannica. Retrieved 26 August 2014.
  7. Lily Whiteman (13 February 2013). "Animal Attraction: The Many Forms of Monogamy in the Animal Kingdom". National Science Foundation. National Science Foundation. Retrieved 26 August 2014.
  8. Ågren, G.; Zhou, Q.; Zhong, W. (1989). "Ecology and social behaviour of Mongolian gerbils, Meriones unguiculatus, at Xilinhot, Inner Mongolia, China". Animal Behaviour. 37: 11–27. doi:10.1016/0003-3472(89)90002-X.
  9. 1 2 Birkhead, T.R.; Møller, A.P. (1995). "Extra-pair copulations and extra-pair paternity in birds". Animal Behaviour. 49 (3): 843–848. doi:10.1016/0003-3472(95)80217-7.
  10. 1 2 3 Reichard, U.H. (2002). "Monogamy – a variable relationship" (PDF). Max Planck Research. 3: 62–67. Archived from the original (PDF) on 14 May 2011. Retrieved 24 April 2013.
  11. Westneat, D. F.; Stewart, I. R. K. (2003). "EXTRA-PAIRPATERNITY INBIRDS: Causes, Correlates, and Conflict". Annual Review of Ecology, Evolution, and Systematics. 34: 365–396. doi:10.1146/annurev.ecolsys.34.011802.132439.
  12. Birkhead, T.R. & Møller, A.P. (1996) "Monogamy and sperm competition in birds". In J. M. Black (Ed.), Partnerships in Birds: The Study of Monogamy, pp. 323–343, Oxford: Oxford University Press ISBN 0-19-854860-5.
  13. Owens, I. P. F.; Hartley, I. R. (1998). "Sexual dimorphism in birds: Why are there so many different forms of dimorphism?". Proceedings of the Royal Society B: Biological Sciences. 265 (1394): 397–407. doi:10.1098/rspb.1998.0308. JSTOR 50849. PMC 1688905Freely accessible.
  14. Solomon, N. G.; Keane, B.; Knoch, L. R.; Hogan, P. J. (2004). "Multiple paternity in socially monogamous prairie voles (Microtus ochrogaster)". Canadian Journal of Zoology. 82 (10): 1667–1671. doi:10.1139/z04-142.
  15. Reichard, U.H. (2003). Monogamy: Past and present. In U.H. Reichard and C. Boesch (Eds.), Monogamy: Mating strategies and partnerships in birds, humans, and other mammals, pp. 3–25, Cambridge: Cambridge University Press, ISBN 0521819733.
  16. 1 2 3 Barash, D.P. & Lipton, J.E. (2001). The Myth of Monogamy. New York, NY: W.H. Freeman and Company, ISBN 0805071369.
  17. Angier, Natalie (21 August 1990). "Mating for Life? It's Not for the Birds of the Bees". The New York Times.
  18. Morell, V. (1998). "EVOLUTION OF SEX:A New Look at Monogamy". Science. 281 (5385): 1982–1983. doi:10.1126/science.281.5385.1982. PMID 9767050.
  19. This section and examples taken from Robert Sapolsky (1998) Why Zebras Don't Get Ulcers, W.H. Freeman and Co., ISBN 0-7167-3210-6, pp. 140–141.
  20. Haartman, L. V. (1951). "Successive Polygamy". Behaviour. 3: 256–273. doi:10.1163/156853951X00296.
  21. Silverin, B. (1979). "Effects of long-acting testosterone administration on testes in free living pied flycatchers Ficedula hypoleuca". Endokrinologie. 74 (2): 141–146. PMID 583410.
  22. Aloise King, Edith D.; Banks, Peter B.; Brooks, Robert C. (2011). "Sexual conflict in mammals: consequences for mating systems and life history". Mammal Review (published January 2013). 43 (1): 47–58. doi:10.1111/j.1365-2907.2011.00200.x.
  23. Marraro, CH; Nursall JR (1983). "The reproductive periodicity and behaviour of Ophioblennius atlanticus at Barbados". J Zool. 61 (2): 317–325. doi:10.1139/z83-042.
  24. Theodore W. Pietsch. "Precocious sexual parasitism in the deep sea ceratioid anglerfish, Cryptopsaras couesi Gill". Retrieved 31 July 2008.
  25. Robert Sapolsky (2005). "Biology and Human Behavior: The Neurological Origins of Individuality, 2nd edition". The Teaching Company. Retrieved 2010-11-10.
  26. Bateman, A.J. (1948), "Intra-sexual selection in Drosophila", Heredity, 2 (Pt. 3): 349–368, doi:10.1038/hdy.1948.21, PMID 18103134
  27. Trivers, R.L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man, 1871–1971 (pp. 136–179). Chicago, IL: Aldine. ISBN 0-435-62157-2.
  28. Hermaphrodites duel for manhood, Science News Online. Accessed 14 March 2009.
  29. Miller, Brooke L. W (2007). Sexual conflict and partner manipulation in the banana slug, Ariolimax dolichophallus. SANTA CRUZ: UNIVERSITY OF CALIFORNIA. Retrieved 13 February 2015.
  30. Leonard, J. L. (5 May 2006). "Sexual selection: lessons from hermaphrodite mating systems". Integrative and Comparative Biology. 46 (4): 349–367. doi:10.1093/icb/icj041. PMID 21672747. Retrieved 11 February 2015.
  31. For example, masturbation, trial mounting, and other behaviours are regularly seen in male animals out of season
  32. 2006 Danish Animal Ethics Council report: "The mucous membrane in the female animal’s vagina and the animal’s behaviour is under influence of its rut cycle. That means that the animal is physically and mentally more ready for sexual activities at some times than at others. But this does not mean that sexual activity will lead to injuries, fear or suffering, if it happens outside the rut period."
    (Danish: "Slimhinden i hundyrets vagina og dyrets adfærd er under indflydelse af dets brunstcyklus. Det betyder, at dyret er fysisk og mentalt mere parat til seksuelle aktiviteter på nogle tidspunkter end på andre. Men dette er ikke ensbetydende med, at den seksuelle aktivitet vil være forbundet med skader, angst og lidelse, hvis den foregår udenfor brunstperioden.") Report November 2006 (PDF) Archived 12 March 2007 at the Wayback Machine.
  33. Virginia Douglass Hayssen; Ari Van Tienhoven (1993). Asdell's Patterns of Mammalian Reproduction: A Compendium of Species-specific Data. Cornell University Press. ISBN 978-0-8014-1753-5. Retrieved 27 September 2013.
  34. Aronson, L. R.; Cooper, M. L. (1967). "Penile spines of the domestic cat: their endocrine-behavior relations." (PDF). Anatomical Record. 157 (1): 71–78. doi:10.1002/ar.1091570111. PMID 6030760.
  35. 1 2 Georgiadis, J. R.; Kringelbach, M. L. & Pfaus, J. G. (2012). "Sex for fun: a synthesis of human and animal neurobiology". Nature Reviews Urology. 9 (9): 486–498. doi:10.1038/nrurol.2012.151.
  36. 1 2 Bear, Mark F. (2007). Neuroscience, exploring the brain. Baltimore, MD: Lippincott Williams and Wilkins. pp. 544–545. ISBN 0781760038.
  37. 1 2 Kennett, J.E.; McKee, D.T. (2012). "Oxytocin: An emerging regulator of prolactin secretion in the female rat.". Journal of Neuroendocrinology. 24 (3): 403–412. doi:10.1111/j.1365-2826.2011.02263.x. PMC 3288386Freely accessible. PMID 22129099.
  38. Lambert, K. (2011). The Lab Rat Chronicles. New York: penguin group. pp. 151–172.
  39. Azar, B. (March 2011). "Oxytocin's other side". Science Watch. 42 (3): 40.
  40. Aubert, Y.; Gustison, M. L.; Gardner, L. A.; Bohl, M. A.; Lange, J. R.; Allers, K. A.; Sommer, B.; Datson, N. A.; Abbott, D. H. (2012). "Flibanserin and 8-OH-DPAT Implicate Serotonin in Association between Female Marmoset Monkey Sexual Behavior and Changes in Pair-Bond Quality". The Journal of Sexual Medicine. 9 (3): 694–707. doi:10.1111/j.1743-6109.2011.02616.x. PMID 22304661.
  41. Gil, M.; Bhatt, R.; Picotte, K. B.; Hull, E. M. (2011). "Oxytocin in the medial preoptic area facilitates male sexual behavior in the rat". Hormones and Behavior. 59 (4): 435–443. doi:10.1016/j.yhbeh.2010.12.012. PMC 3081415Freely accessible. PMID 21195714.
  42. Scott, Graham (2004). Essential Animal Behavior. Wiley-Blackwell. pp. 166–197. ISBN 0632057998.
  43. Agrati, D.; Fernández-Guasti, A.; Ferreño, M.; Ferreira, A. (2011). "Coexpression of sexual behavior and maternal aggression: The ambivalence of sexually active mother rats toward male intruders". Behavioral Neuroscience. 125 (3): 446–451. doi:10.1037/a0023085. PMID 21517149.
  44. McHenry, J. A.; Bell, G. A.; Parrish, B. P.; Hull, E. M. (2012). "Dopamine D1 receptors and phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein-32 in the medial preoptic area are involved in experience-induced enhancement of male sexual behavior in rats". Behavioral Neuroscience. 126 (4): 523–529. doi:10.1037/a0028707. PMC 3409344Freely accessible. PMID 22708956.
  45. Hull, Elaine M., R. L. Meisel, and B. D. Sachs. "Male sexual behavior." Hormones, brain and behavior 1 (2002): 3-137.
  46. Jeffrey Moussaieff Masson (21 October 2009). When Elephants Weep: The Emotional Lives of Animals. Random House Publishing Group. ISBN 978-0-307-57420-6. Retrieved 28 May 2013.
  47. Balcombe, J. (2009). "Animal pleasure and its moral significance". Applied Animal Behaviour Science. 118 (3): 212. doi:10.1016/j.applanim.2009.02.012.
  48. Dawkins, M. (2000). "Animal minds and animal emotions". American Zoologist. 40 (6): 883–888. doi:10.1668/0003-1569(2000)040[0883:amaae];2.
  49. Panksepp, J. (1982). "Toward a general psychobiological theory of emotions". Behavioral and Brain Sciences. 5 (3): 407–422. doi:10.1017/S0140525X00012759.
  50. "Emotions help animals to make choices (press release)". University of Bristol. 2010. Retrieved October 26, 2013.
  51. Jacky Turner; Joyce D'Silva, eds. (2006). Animals, Ethics and Trade: The Challenge of Animal Sentience. Earthscan. ISBN 9781844072545. Retrieved October 26, 2013.
  52. Det Dyreetiske Råd (2006). "Udtalelse om menneskers seksuelle omgang med dyr" (PDF). Justitsministeriet. Archived from the original (PDF) on 27 February 2012.
  53. 1 2 Det Dyreetiske Råd (2006). "Udtalelse om menneskers seksuelle omgang med dyr" (PDF). Justitsministeriet. Archived from the original (PDF) on 27 February 2012. Selv om det evolutionsmæssige formål med at parre sig kan siges at være reproduktion, er det ikke selve det, at dyrene får afkom, der i første omgang får dem til at parre sig. Det er til gengæld sandsynligt, at de parrer sig, fordi de er motiverede for selve parringsakten, og at denne er forbundet med en positiv oplevelse. Det er derfor rimeligt at antage, at der er en eller anden form for behag eller tilfredsstillelse forbundet med akten. Denne antagelse bekræftes af adfærden hos handyr, der for mange arters vedkommende er parate til at arbejde for at få adgang til hundyr, især hvis hundyret er i brunst, og handyr der i avlsøjemed er vant til at få tappet sæd – de viser stor ivrighed, når det udstyr, de forbinder med sædopsamlingen, tages frem.
  54. Det Dyreetiske Råd (2006). "Udtalelse om menneskers seksuelle omgang med dyr" (PDF). Justitsministeriet. Archived from the original (PDF) on 27 February 2012. Der er intet ved hunpattedyrenes anatomi eller fysiologi, der modsiger, at stimulation af kønsorganerne og parring skulle kunne være en positiv oplevelse – fx fungerer klitoris på samme måde som hos kvinder. Videnskabelige undersøgelser har vist, at reproduktionssuccesen forbedres ved stimulation af klitoris på bl.a. køer og hopper i forbindelse med insemination, fordi det forbedrer sædtransporten pga. sammentrækninger af de indre kønsdele. Dette gælder sandsynligvis også hundyr af andre dyrearter, og sammentrækninger i de indre kønsdele ses fx også under orgasme hos kvinder. Det er derfor rimeligt at antage, at det seksuelle samvær kan være forbundet med en positiv oplevelse for hundyrene.
  55. 1 2 Koeslag, J.H. (1990). "Koinophilia groups sexual creatures into species, promotes stasis, and stabilizes social behaviour". Journal of Theoretical Biology. 144: 15–35. doi:10.1016/S0022-5193(05)80297-8.
  56. Moller, A.P.; Pomiankowski, A (1993). "Fluctuating asymmetry and sexual selection". Genetica. 89: 267–279. doi:10.1007/bf02424520.
  57. Dawkins, Richard (1986). The Blind Watchmaker. Longman, London. Published in Penguin Books 1988, 1991, and 2006. Chapter 8, Explosions and Spirals.
  58. 1 2 3 "1,500 animal species practice homosexuality". 23 October 2006. Retrieved 19 February 2007.
  59. Katz, L. S.; McDonald, T. J. (1992). "Sexual behavior of farm animals". Theriogenology. 38 (2): 239–253. doi:10.1016/0093-691X(92)90233-H. PMID 16727133.
  60. Streak spawning Fishbase Glossary. Retrieved 11 February 2011.
  61. Spawning rush Fishbase Glossary. Retrieved 11 February 2011.
  62. Gross MR (1984) "Sunfish, salmon, and the evolution of alternative reproductive strategies and tactics in fishes". Pages 55–75 in GW Potts and RJ Wottoon, eds. Fish reproduction: Strategies and tactics. Academic Press.
  63. 1 2 Shapiro DY (1984) "Sex reversal and sociodemographics processes in coral reef fishes" Pages 103–116 in GW Potts and RK Wootoon, eds., Fish reproduction: Strategies and tactics, Academic Press.
  64. Robertson, D.R.; R.R. Warner. "Sexual patterns in the labroid fishes of the Western Caribbean II: the parrotfishes (Scaridae)". Smithsonian Contributions to Zoology. 255: 1–26. doi:10.5479/si.00810282.255.
  65. Kazancioglu, E.; S.H. Alonzo (August 2010). "A comparative analysis of sex change in Labridae supports the size advantage hypothesis". Evolution. 64 (8): 2254–2264. doi:10.1111/j.1558-5646.2010.01016.x. PMID 20394662.
  66. Colin, P.L.; L. J. Bell. "Aspects of the spawning of labrid and scarid fishes (Pisces, Labroidei) at Enewetak Atoll, Marshall Islands with notes on other families (corrected reprint.)". Environmental Biology of Fishes. 33 (3): 330–345. doi:10.1007/BF00005881.
  67. 1 2 Polis, G.A. (1981). "The evolution and dynamics of intraspecific +4193 predation". Annual Reviews Ecological Systems. 51: 225–251.
  68. Bilde, T.; Tuni, C.; Elsayed, R.; Pekár, S.; Toft, S. (2006). "Death feigning in the face of sexual cannibalism". Biology Letters. 2: 23–5. doi:10.1098/rsbl.2005.0392.
  69. Bailey, R.O.; Seymour, N. R.; Stewart, G.R. (1978). "Rape behaviour in blue-winged teal" (PDF). Auk. 95: 188–90. doi:10.2307/4085514. JSTOR 4085514.
  70. Barash, D. P. (1977). "Sociobiology of Rape in Mallards (Anas platyrhynchos): Responses of the Mated Male". Science. 197 (4305): 788–789. Bibcode:1977Sci...197..788B. doi:10.1126/science.197.4305.788. PMID 17790773.
  71. Emlen, S. T.; Wrege, P. H. (2010). "Forced Copulations and Intra-specific Parasitism: Two Costs of Social Living in the White-fronted Bee-eater". Ethology. 71: 2–29. doi:10.1111/j.1439-0310.1986.tb00566.x.
  72. "Not tonight, not ever. I’ve got a headache. Don’t come near me", The Times, 25 June 2007 p. 25
  73. Siebert, Charles. (2006-10-08) ''An Elephant Crackup?'', Charles Siebert, New York Times Magazine, October 8, 2006. Retrieved on 2011-12-22.
  74. "Have elephants begun raping rhinos in the wild?". The Straight Dope. 25 July 2008. Retrieved 5 March 2013.
  75. Hiskey, D. "New Mexico whiptail lizards are all females". Retrieved February 13, 2015.
  76. Echelle AA, Echelle AF, Crozier CD (1983). "Evolution of an all-female fish, Menidia clarkhubbsi (Atherinidae)". Evolution. 37 (4): 772–784. doi:10.2307/2407918.
  77. Harmon, K. (2010). "No sex needed: All-female lizard species cross their chromosomes to make babies.". Scientific American. Retrieved February 13, 2015.
  78. "Captive shark had 'virgin birth'". BBC News. 2007-05-23. Retrieved 23 December 2008.
  79. "'Virgin birth' for aquarium shark". 2008-10-10. Retrieved 2008-10-10.
  80. Halliday, Tim R.; Adler, Kraig, eds. (1986). Reptiles & Amphibians. Torstar Books. p. 101. ISBN 0-920269-81-8.
  81. Walker, Brian (2010-11-11). "Scientists discover unknown lizard species at lunch buffet". CNN. Retrieved 2010-11-11.
  82. Scholtz, Gerhard; Braband, Anke; Tolley, Laura; Reimann, André; Mittmann, Beate; Lukhaup, Chris; Steuerwald, Frank; Vogt, GüNter (2003). "Ecology: Parthenogenesis in an outsider crayfish". Nature. 421 (6925): 806. Bibcode:2003Natur.421..806S. doi:10.1038/421806a. PMID 12594502.
  83. Martin, Peer; Kohlmann, Klaus; Scholtz, Gerhard (2007). "The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring". Naturwissenschaften. 94 (10): 843–6. Bibcode:2007NW.....94..843M. doi:10.1007/s00114-007-0260-0. PMID 17541537.
  84. Alves MJ, Collarea-Pereira MJ, Dowling TE, Coelho MM (2002). "The genetics of maintenance of an all-male lineage in the Squalius alburnoides complex". J. Fish. Biol. 60: 649–662. doi:10.1111/j.1095-8649.2002.tb01691.x.
  85. Kinsey, Alfred (1953). Sexual Behavior in the Human Female. W.B. Saunders Company. p. 504.
  86. "Penguins are turning to prostitution". BBC. 26 February 1998. Retrieved 12 June 2008.
  87. Connor, Steve (8 April 2009). "Sex for meat – how chimps seduce their mates". The Independent. London.
  88. 1 2 Pfaus, J. G.; Kippin, T. E.; Coria-Avila, G. A.; Gelez, H.; Afonso, V. M.; Ismail, N.; Parada, M. (2012). "Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance". Archives of Sexual Behavior. 41 (1): 31–62. doi:10.1007/s10508-012-9935-5.
  89. Deaner M. O.; Khera A. V.; Platt M. L. (2005). "Monkeys pay per view: adaptive valuation of social images by rhesus macaques" (PDF). Current Biology. 15 (6): 543–548. doi:10.1016/j.cub.2005.01.044. PMID 15797023.
  90. Gray, Denis D. (27 November 2006) Porn sparks panda baby boom in China: Research — and blue movies — attributed to record-high birth rate in 2006. Associated Press (via MSNBC). Retrieved on 22 December 2011.
  91. Klaus Reinhardt, Nils Anthes, and Rolanda Lange (2015) Copulatory Wounding and Traumatic Insemination" Cold Spring Harb Perspect Biol 2015; 7: a017582
  92. Watson, P. F. (1978). Artificial breeding of non-domestic animals: (the proceedings of a symposium held at the Zoological Society of London on 7 and 8 September 1977). Academic Press for the Zoological Society of London. ISBN 978-0-12-613343-1. Retrieved 9 February 2013.
  93. Balcombe, Jonathan P. (2011). The Exultant Ark: A Pictorial Tour of Animal Pleasure. University of California Press. pp. 89–. ISBN 978-0-520-26024-5.
  94. These Bears Are Having Lots Of Oral Sex, And Scientists Think They Know Why (The Huffington Post) By: Grenoble, Ryan.
  95. Hideshi Ogawa (2006). Wily Monkeys: Social Intelligence of Tibetan Macaques. Kyoto University Press. pp. 4–. ISBN 978-1-920901-97-4.
  96. Fox, M. W. (1972). "The Social Significance of Genital Licking in the Wolf, Canis lupus". Journal of Mammalogy. 53: 637–640. doi:10.2307/1379064. JSTOR 1379064.
  97. G. R. Pafumi (15 January 2010). Is Our Vision of God Obsolete?. Xlibris Corporation. ISBN 978-1-4500-0396-4.
  98. Tan, M.; Jones, G.; Zhu, G.; Ye, J.; Hong, T.; Zhou, S.; Zhang, S.; Zhang, L. (2009). Hosken, David, ed. "Fellatio by Fruit Bats Prolongs Copulation Time". PLoS ONE. 4 (10): e7595. Bibcode:2009PLoSO...4.7595T. doi:10.1371/journal.pone.0007595. PMC 2762080Freely accessible. PMID 19862320.
  99. Waterman, J. M. (2010). Briffa, Mark, ed. "The Adaptive Function of Masturbation in a Promiscuous African Ground Squirrel". PLoS ONE. 5 (9): e13060. Bibcode:2010PLoSO...513060W. doi:10.1371/journal.pone.0013060. PMC 2946931Freely accessible. PMID 20927404.
  100. Tan, Min; Gareth Jones; Guangjian Zhu; Jianping Ye; Tiyu Hong; Shanyi Zhou; Shuyi Zhang; Libiao Zhang (28 October 2009). Hosken, David, ed. "Fellatio by Fruit Bats Prolongs Copulation Time". PLoS ONE. 4 (10): e7595. Bibcode:2009PLoSO...4.7595T. doi:10.1371/journal.pone.0007595. PMC 2762080Freely accessible. PMID 19862320. Retrieved 28 October 2009.
  101. Bagemihl, Bruce (1999). Biological Exuberance: Animal Homosexuality and Natural Diversity. St. Martin's Press. p. 673.
  102. "Oslo gay animal show draws crowds". BBC News. 19 October 2006. Archived from the original on 29 October 2006. Retrieved 19 October 2006.
  103. Sazima, I. (2015). "Corpse bride irresistible: a dead female tegu lizard (Salvator merianae) courted by males for two days at an urban park in South-eastern Brazil". Herpetology Notes. 8: 15–18.
  104. de Waal FB (1995). "Bonobo sex and society". Sci Am. 272 (3): 82–8. doi:10.1038/scientificamerican0395-82. PMID 7871411. Perhaps the bonobo's most typical sexual pattern, undocumented in any other primate, is genito-genital rubbing (or GG rubbing) between adult females. One female facing another clings with arms and legs to a partner that, standing on both hands and feet, lifts her off the ground
  105. Paoli, T.; Palagi, E.; Tacconi, G.; Tarli, S. B. (2006). "Perineal swelling, intermenstrual cycle, and female sexual behavior in bonobos (Pan paniscus)". American Journal of Primatology. 68 (4): 333–347. doi:10.1002/ajp.20228. PMID 16534808.
  106. Walker, Matt (2 May 2008) Science/Nature 'Sex pest' seal attacks penguin. BBC News. Retrieved on 15 February 2011.
  107. Doncarlos, Michael W.; Petersen, Jay S.; Tilson, Ronald L. (1986). "Captive biology of an asocial mustelid; Mustela erminea". Zoo Biology. 5 (4): 363–370. doi:10.1002/zoo.1430050407.
  108. Dawkins, Richard (2004). "Chimpanzees". The Ancestor's Tale. Houghton Mifflin. ISBN 1-155-16265-X.
  109. de Mattos Brito, L. B.; Joventino, I. R.; Ribeiro, S. C.; Cascon, P. (2012). "Necrophiliac behavior in the "cururu" toad, Rhinella jimi Steuvax, 2002, (Anura, Bufonidae) from Northeastern Brazil" (PDF). North-Western Journal of Zoology. 8 (2): 365.
  110. Thornhill, R.; Gangestad, S. W. (2008). The Evolutionary Biology of Human Female Sexuality. USA: Oxford University Press. pp. 37–55.
  111. 1 2 Simon De Bruxelles Promiscuous and bisexual — the 'faithful' seahorse has a secret sex life. 31 January 2007. Retrieved on 22 December 2011.
  112. Homosexual Activity Among Animals Stirs Debate, National Geographic (22 July 2004) Retrieved 6 November 2007
  113. Zihlman, A. L.; Hunter, W. S. (1972). "A biomechanical interpretation of the pelvis of Australopithecus". Folia Primatologica. 18 (1): 1–19. doi:10.1159/000155465. PMID 4658666.
  114. Central Park Zoo's gay penguins ignite debate. (7 February 2004). Retrieved on 22 December 2011.
  115. 1 2 Unwin, Brian (22 January 2008). "'Tougher laws' to protect friendly dolphins". London: The Telegraph.
  116. East, Marion L.; Hofer, Heribert; Wickler, Wolfgang (1993). "The erect 'penis' is a flag of submission in a female-dominated society: greetings in Serengeti spotted hyenas". Behavioral Ecology and Sociobiology. 33 (6): 355–370. doi:10.1007/BF00170251.
  117. Sapolsky (1998), Why Zebras Don't Get Ulcers, W.H. Freeman and Co., ISBN 0-7167-3210-6, pp. 127–129.
  118. Dewsbury, Donald A. "Patterns of copulatory behavior in male mammals." Quarterly Review of Biology (1972): 1-33.
  119. Fortey, I. (2008). "The 15 most bizarre animal mating rituals". Retrieved February 18, 2015.
  120. Diaz, K. "Tursiops aduncus Indo-Pacific bottlenose dolphin". Animal Diversity Web. Retrieved October 19, 2016.
  121. Adulyanukosol, K.; Thongsukdee, S.; Hara, T.; Arai, N.; Tsuchiya, M. (2007). "Observations of dugong reproductive behavior in Trang Province, Thailand: further evidence of intraspecific variation in dugong behavior". Marine Biology. 151 (5): 1887–1891.
  122. "Bactrian & Dromedary Camels". Factsheets. San Diego Zoo Global Library. March 2009. Retrieved 4 December 2012.
  123. Encyclopedia of Behavioral Neuroscience. Elsevier Science. 16 April 2010. ISBN 978-0-08-091455-8.
  124. David E. Noakes (23 April 2009). Arthur's Veterinary Reproduction and Obstetrics. Elsevier Health Sciences UK. pp. 714–. ISBN 978-0-7020-3990-4.
  125. Donald M. Broom; Andrew Ferguson Fraser (1 January 2007). Domestic Animal Behaviour and Welfare. CABI. pp. 156–. ISBN 978-1-84593-287-9.
  126. Rogers, David; Chase, Ronald (2001). "Dart receipt promotes sperm storage in the garden snail Helix aspersa". Behavioral Ecology and Sociobiology. 50 (2): 122–7. doi:10.1007/s002650100345.
  127. Chase, R. (2007). "The function of dart shooting in helicid snails". American Malacological Bulletin. 23: 183–189. doi:10.4003/0740-2783-23.1.183.
  128. Chase, R.; Blanchard, K. C. (2006). "The snail's love-dart delivers mucus to increase paternity". Proceedings of the Royal Society of London B, Biological Sciences. 273 (1593): 1471–1475. doi:10.1098/rspb.2006.3474.
  129. Newman, Leslie. "Fighting to mate: flatworm penis fencing". PBS.
  130. 1 2 Veron, J.E.N. (2000). Corals of the World. Vol 3 (3rd ed.). Australia: Australian Institute of Marine Sciences and CRR Qld Pty Ltd. ISBN 0-642-32236-8.
  131. Barnes, R. and; Hughes, R. (1999). An Introduction to Marine Ecology (3rd ed.). Malden, MA: Blackwell Science, Inc. pp. 117–141. ISBN 0-86542-834-4.
  132. Hatta, M.; Fukami, H.; Wang, W.; Omori, M.; Shimoike, K.; Hayashibara, T.; Ina, Y.; Sugiyama, T. (1999). "Reproductive and genetic evidence for a reticulate evolutionary theory of mass spawning corals" (PDF). Molecular Biology and Evolution. 16 (11): 1607–1613. doi:10.1093/oxfordjournals.molbev.a026073. PMID 10555292.
  133. "Chan Lee Peng, August 2008". Retrieved 5 March 2013.
  134. 1 2 3 Sexual Appetite and Animal behaviour – Sex and the single spider. 400. The Economist Intelligence Unit. 14 July 2011. ISSN 0013-0613.
  135. Patterson, Nick; Daniel J. Richter; Sante Gnerre; Eric S. Lander; David Reich (June 29, 2006). "Genetic evidence for complex speciation of humans and chimpanzees". Nature. 441 (7097): 1103–1108. Bibcode:2006Natur.441.1103P. doi:10.1038/nature04789. ISSN 0028-0836. PMID 16710306.
  136. Wade, Nicholas (18 May 2006) Two Splits Between Human and Chimp Lines Suggested, New York Times.
  137. Yamamichi, M; Gojobori J; Innan H. (Jan 2012). "An autosomal analysis gives no genetic evidence for complex speciation of humans and chimpanzees". Mol Biol Evol. 29 (1): 145–56. doi:10.1093/molbev/msr172. PMID 21903679.
  138. Charlesworth D, Willis JH (2009). "The genetics of inbreeding depression". Nat. Rev. Genet. 10 (11): 783–96. doi:10.1038/nrg2664. PMID 19834483.
  139. Clarke FM, Faulkes CG (1999). "Kin discrimination and female mate choice in the naked mole-rat Heterocephalus glaber". Proc. Biol. Sci. 266 (1432): 1995–2002. doi:10.1098/rspb.1999.0877. PMC 1690316Freely accessible. PMID 10584337.
  140. Jiménez JA, Hughes KA, Alaks G, Graham L, Lacy RC (1994). "An experimental study of inbreeding depression in a natural habitat". Science. 266 (5183): 271–3. doi:10.1126/science.7939661. PMID 7939661.
  141. Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WE, Stockley P, Beynon RJ, Hurst JL (2007). "The genetic basis of inbreeding avoidance in house mice". Curr. Biol. 17 (23): 2061–6. doi:10.1016/j.cub.2007.10.041. PMC 2148465Freely accessible. PMID 17997307.
  142. Leclaire S, Nielsen JF, Thavarajah NK, Manser M, Clutton-Brock TH (2013). "Odour-based kin discrimination in the cooperatively breeding meerkat". Biol. Lett. 9 (1): 20121054. doi:10.1098/rsbl.2012.1054. PMC 3565530Freely accessible. PMID 23234867.
  143. Nielsen JF, English S, Goodall-Copestake WP, Wang J, Walling CA, Bateman AW, Flower TP, Sutcliffe RL, Samson J, Thavarajah NK, Kruuk LE, Clutton-Brock TH, Pemberton JM (2012). "Inbreeding and inbreeding depression of early life traits in a cooperative mammal". Mol. Ecol. 21 (11): 2788–804. doi:10.1111/j.1365-294X.2012.05565.x. PMID 22497583.
  144. Ishibashi Y, Saitoh T (2008). "Role of male-biased dispersal in inbreeding avoidance in the grey-sided vole (Myodes rufocanus)". Mol. Ecol. 17 (22): 4887–96. doi:10.1111/j.1365-294X.2008.03969.x. PMID 19140979.
  145. Szulkin M, Sheldon BC (2008). "Dispersal as a means of inbreeding avoidance in a wild bird population". Proc. Biol. Sci. 275 (1635): 703–11. doi:10.1098/rspb.2007.0989. PMC 2596843Freely accessible. PMID 18211876.
  146. Waldman, B; Rice, JE; Honeycutt, RL (1992). "Kin recognition and incest avoidance in toads". Am Zool. 32: 18–30. doi:10.1093/icb/32.1.18.


Further reading

External links

This article is issued from Wikipedia - version of the 12/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.